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Zusammenfassung 
 

Zink ist das zweithäufigste Übergangsmetalle, das in lebenden Systemen Verwendung 

findet. Es ist hauptsächlich in katalytische Prozesse involviert, hat aber auch in 

verschiedenen Proteinen eine strukturgebende Funktion. Bei Zink-Defizienz handelt es sich, 

aufgrund der weitverbreiteten Verwendung in Lebewesen, um eines der häufigsten 

Mangelernährungs- probleme. Laut aktuellen Schätzungen sind ca. 31% der 

Weltbevölkerung von Zink-defizienz bedroht. Exponentielles Bevölkerungswachstum und 

die Verknappung der natürlichen Ressourcen werden dieses Problem höchstwahrscheinlich 

noch verschärfen. Aus diesem Grund wurde ein genetischer Screen zur Identifizierung 

molekularer Komponenten des Zinkhomöostase Netzwerkes in pflanzen mit dem Ziel das 

Verständnis der Zinkhomöostasemechanismen zu verbessern und damit die Forschung im 

Bereich der Biofortifikation zu unterstützen begonnen. Frühere Untersuchungen haben 

gezeigt, dass Deregulationen in der Zinkhomöostase oft zu einer verminderten Zinktoleranz 

in Pflanzen führen. Aus diesem Grund wurden EMS-mutagenisierte Samen (M2-Generation) 

von Arabidopsis thaliana auf ein vermindertes Wurzelwachstum hin selektiert, um neue 

Mechanismen der Zinkhomöostase zu identifizieren. Die zweite Selektionsrunde, die im 

Rahmen dieser Arbeit durchgeführt wurde, führte zu Identifizierung von 28 neuen 

Mutanten. Aufgrund der erhöhten Zinksensitivität wurden diese Mutanten als IZS-Mutanten 

(für increased zinc sensitivity) bezeichnet. Fünf dieser Mutanten (IZS 377, IZS 389, IZS 390, 

IZS 394 und IZS 479) wurden im Zuge dieser Arbeit näher charakterisiert. Als einzige dieser 

fünf Mutanten zeigte IZS 479 eine zinkspezifische Hypersensitivität (keine Hypersensitivität 

gegenüber anderen getesteten Schwermetallen wie z.B. Cadmium). Weiterführende 

Untersuchungen konnten zeigen, dass in IZS 479 einen Aminosäureaustausch an Position 293 

das Gen MTP1 aufweist. An dieser Stelle wurde Asparaginsäure durch Asparagin ersetzt. 

Dieser Austausch ist wahrscheinlich der Grund für die beobachtete Zinkhypersensitivität. 

Darüber hinaus führten detaillierte Untersuchungen an der Mutante IZS 288 (diese Mutante 

wurde im Zuge der ersten Selektionsrunde identifiziert) zu dem Ergebnis, dass neben der 

erhöhten Zinksensitivität die Mutation auch noch weitere pleiotrope Effekte bedingt. Zu 

diesen Effekten zählen Veränderungen in Wurzelarchitektur und Blattmorphologie, sowie 

eine verfrühte Blühinduktion und eine erhöhte Kältesensitivität. Mittels Kartierung konnte 

eine variation in einem bisher noch nicht charakterisierten WD40-gen gefunden werden, 

welches wahrscheinlich Komplexe mit Cullin 4 Ubiquitin E3-Ligasen eingeht. Diese 
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Komplexe sind für die selektive Degradation von Substratproteinen mittels Proteasomen und 

vorhergehender Ubiquitinierung verantwortlich. Einzelne putative Orthologe sind in Homo 

sapiens, D. melanogaster, C. elegans, X. laevis und anderen Spezies zu finden. Allerdings gibt es 

für die meisten dieser orthologen Gene keine funktionelle Daten. Auf Grund dieser Tatsache 

wurde, drei RNAi-Linien von Drosophila untersucht, in denen das orthologe Gen 

herunterreguliert wurde. Die Ergebnisse dieser Untersuchungen weisen darauf hin, dass 

dieses Gen wichtig für die Bildung bestimmter Organe und verschiedene 

Entwicklungsstadien der Fruchtfliege ist. In der Mutante IZS 288 hat der Austausch der 

Aminosäure 377 von Threonin zu Isoleucin (in einem konservierten Bereich des Proteins) 

wahrscheinlich eine Veränderung der Proteinstruktur zur Folge, welche eine korrekte 

Interaktion mit dem Cullin 4 Ubiquitin E3 Ligase Komplex verhindert. Weiterführende 

Microarray Analysen führten zur Identifizierung von drei potentiellen Substraten (z.B. JAZ8) 

dieses Komplexes. Es sind aber weitere Experimente nötig, um den Effekt der Punktmutation 

auf die Struktur des Proteins sowie die Interaktionseigenschaften zu bestätigen. Darüber 

hinaus müssen auch die potentiellen Substrate noch experimentell bestätigt werden. Neben 

der Charakterisierung von IZS Mutanten wurden auch andere Mutanten auf ihre Zink 

sensitivität hin untersucht, die Beeinträchtigungen bei verschiedenen Schritten der Flavonoid 

biosynthese haben (tt-Mutanten für transparent testa). Diese Mutanten wurden ausgewählt, 

da frühere Beobachtungen nahelegten, dass Flavonoide eine Rolle bei der 

Schwermetalltoleranz von Pflanzen spielen. Die beiden Mutanten, die entweder kein 

Quercitin (tt7) oder überhaupt keine Flavonoide (tt4) synthetisieren konnten, zeigten eine 

starke Zink-Hypersensitivität. Daraus läßt sich ableiten, dass Quercitin anscheinend 

effektiver als Kaempferol darin ist, den Effekt von Zinkstress in Arabidopsis zu vermindern. 
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Summary  
 

Zinc is the second most widely used transition metal in living systems. It is mainly involved 

in catalytic processes; it has also structural role in different proteins. Besides its widespread 

use in living systems zinc deficiency is one of the prevalent malnutrition challenges. Current 

estimates suggest that 31% of the world's population is at risk of zinc deficiency. Exponential 

population growth and natural resources scarcity might aggravate this problem. Therefore, in 

an initiative to advance the current understanding of the Zn homeostasis mechanism and aid 

the biofortification research, a forward genetics approach was adopted to identify molecular 

components of the Zn homeostasis network in plants. Previous observations have indicated 

that irregularity in zinc homeostasis mechanism often leads to a reduction in zinc tolerance of 

plants. Hence, EMS mutagenized second generation seeds of Arabidopsis thaliana were 

screened for reduced root growth in the presence of zinc stress (i.e. zinc hypersensitive 

response) in order to identify new elements of the zinc homeostasis mechanism. On the 

second round of screening conducted in this project 28 new Increased Zinc Sensitivity (IZS) 

mutants were identified and five of them (i.e. IZS 377, IZS 389, IZS 390, IZS 394 and IZS 479) 

were further characterized. Among these five newly characterized IZS mutants, only IZS 497 

showed a specific zinc hypersensitivity phenotype (i.e. not hypersensitive to other transition 

metals tested). In IZS 479 a substitution of the 293rd aspartic acid by asparagine was 

indentified in the MTP1 gene, which could be the reason behind its zinc hypersensitivity 

phenotype. Furthermore, characterization of IZS 288 (one of the IZS mutants identified in the 

first round of screening) identified pleiotropic effects of the mutation, such as altered root 

architecture, changed leaf morphology, early flowering and chilling hypersensitivity, in 

addition to the zinc hypersensitivity phenotype. Map-based cloning of the mutated gene in 

IZS 288 lead to the identification of a novel WD-40 gene that is presumed to form a complex 

with cullin 4 ubiquitin E3 ligases and take part in the selective degradation of substrate 

proteins via the ubiquitin proteasome pathway. Single putative orthologs of this gene are 

found in Homo sapiens, D. melanogaster, C. elegans, X. laevis etc. However, functional 

characterization of most of these genes was still missing; hence a phenotypic analysis of three 

RNAi lines of the putative Drosophila ortholog was carried out. Observation in this 

experiment indicated the potential role of this gene at different organs and developmental 

stages of Drosophila. In IZS 288, the substitution of the 377th threonine by isoleucine (which is 
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in the conserved region of the protein) might have caused a disruption in the protein 

structure that led to malfunctioning in the cullin 4 ubiquitin E3 ligases complex. Based on 

microarray analysis potential substrates (i.e. JAZ8, the TTD-A subunit of the basal 

transcription factor complex (TFIIH) and three histone families) of this complex were 

indentified. However further experiments will be required to prove the effect of the point 

mutation on the structure of the protein and its interaction with cullin 4 ubiquitin E3 ligase as 

well as to verify the potential substrates. Finally, based on prior observation flavonoids were 

assumed to have a role in heavy metal tolerance of plants; thus, the effect of flavonoids in 

zinc tolerance of Arabidopsis thaliana plants were investigated using five different flavonoids 

deficient mutants (i.e. transparent testa (tt) mutants). The mutant line that is completely 

devoid of flavonoids (tt4) and the one lacking quercetin (tt7) showed strong zinc 

hypersensitivity. Thus, quercetin appeared to be more effective than kaempferol in shielding 

the effect of zinc stress in Arabidopsis.  
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1. Introduction 
 

A decade ago the occurrence of the September 11 attack on the United States of America 

created the eye opener experience regarding imminent danger of terrorism. In the aftermath 

of this attack the attitude of the general public irremediably changed towards being ill-

prepared for this kind of threats, which forced many governments to reconsider their 

national security policies and to take more elaborate counter terrorism measures. However, 

in the current state of awareness humanity appears to be oblivious to the looming challenge 

of feeding an ever increasing world population.  

 

As the world population is estimated to reach 9 billion in 2050, the global demand for food is 

expected to increase by 60 percent. Therefore, food production will have to increase by 70 

percent in order to feed the world population (FAO, WFP and IFAD, 2012). Adding to this 

challenge, climate change (i.e. changes in temperature and precipitation associated with 

continued emissions of greenhouse gases) will diminish the agricultural productivity of most 

sub-Saharan African countries (Schmidhuber and Tubiello, 2007). Furthermore, natural 

resource (i.e. water, arable land) constraints and competing demands (such as production of 

biofuels) will restrict the potential of increasing agricultural productivity. On a separate note, 

the growing per capita income of many countries, especially developing countries leads to an 

increase in the consumption of animal-source foods (including fish) causing additional 

pressure on agricultural productivity by raising the demand for animal feed (FAO, WFP and 

IFAD, 2012).  

 
Adding more layers to the complexity of this challenge, even in a good harvest year where 

global food production exceeds global food demand, considerable number of the world’s 

population still go hungry. For instance, despite a significant decline in the number of hungry 

people over the past decade, in 2010-2012 harvest years 12.5 % of the global population 

(around 870 million people) was chronically undernourished. The vast majority of these 

people (852 million) are found in developing countries. Furthermore, micronutrient 

deficiencies (also known as “hidden hunger”) are common in over 30 percent of the world’s 

population (FAO, WFP and IFAD, 2012). Particularly, deficiencies in iron, vitamin A, iodine 

and zinc are the most prevalent (WHO, 2009). Hence, due to uneven food distribution or low 

purchasing power (poverty), not having enough to eat (malnutrition) or the right kind of 
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food (low in micronutrient content etc) will remain to be a problem even at times of surplus 

global food production (Sen, 1982).  

 
Meanwhile, despite the lack of awareness and attitude of the general public, researchers have 

proposed different approaches for tackling this challenge. Jonathan Foley and his colleagues 

for example directed their attention on analyzing the shortcomings of the current agricultural 

practices and deduced strategies that can increase cropping efficiency while reducing the 

environmental impacts of agriculture (Foley et al., 2011). Conway and Toenniessen (1999) in 

their part promoted the deployment of plant biotechnology by a strong public-sector 

agricultural research. In the frontier of combating hidden hunger, food fortification 

(artificially mixing missing nutrients like vitamin A, iron, zinc or folic acid into a staple food 

like wheat flour, sugar or cooking oil) has been the popular approach. International NGOs 

(non-governmental organizations) such as the Helen Keller International (www.hki.org) are 

providing both “in home fortification” using a cocktail of multiple micronutrients in single-

dose sachets that can be added to home-cooked meals as well as large scale food fortification 

through partnership with private companies producing cooking oil and wheat flour. 

However, poor farmer communities in rural areas that produce most of their food could not 

benefit from this approach. A second upcoming strategy was to breed the missing nutrients 

into staple food crops either through conventional breeding or through genetic engineering 

(Mayer et al., 2008). This strategy is known as biofortification. In recent years, following the 

principles of biofortification, HarvestPlus (an international research institute 

(www.harvestplus.org)) has released a yellow sweet potato variety, which is extremely rich 

in provitamin A. The efficacy study of the yellow fleshed sweet potato variety among school 

children in KwaZulu-Natal province of South Africa produced positive outcome by 

improving the vitamin A stores in liver (van Jaarsveld et al., 2005.). Currently the program is 

distributing this line to farmers in countries like Uganda and Mozambique and the results of 

a pilot study indicated >60% rate of adoption among the farms. The introduction of the 

variety increased the children and mother Vitamin A intake (www.harvestplus.org). 

 

The important steps in biofortification process are identifying crop germplasms with 

improved micronutrient composition or content and combining these characteristics with 

locally adapted varieties (i.e. varieties with good agronomic characteristics and high yield in 

the locality). To achieve this purpose, specific morphological or molecular markers that can 
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distinguish the genotypes with increased accumulation of micronutrients (such as iron and 

zinc) in edible parts of a crop need to be identified (Waters and Pedersen, 2009; White and 

Broadley, 2011). To date, information regarding the β carotene biosynthetic pathway (that 

were used for bioengineering golden rice (Burkhardt et al., 1997; Ye et al., 2000)) and genes 

involved in iron homeostasis such as ferritin and nicotianamine (that played vital role in iron 

biofortification in rice (Goto et al., 1999; Takahashi et al., 2003; Ishimaru et al., 2010)) have 

been instrumental to the biofortification strategy. However, information regarding zinc 

homeostasis genes is quite limited and identification and characterization of genes involved 

in zinc homeostasis in model plants can pave the way for the application of marker-assisted 

selection in many crop plants (Assunção et al., 2010).  

 
The main aim of the research reported in this thesis was for the advancement of the current 

understanding of the Zn homeostasis mechanism through the identification of new genes 

involved in zinc homeostasis mechanism of plants, which could also contribute to zinc 

biofortification strategies. Additionally, based on prior observation regarding 

interconnections between secondary metabolites like flavonoids and heavy metals in plants, 

the role of flavonoids in heavy metal (particularly zinc) tolerance in plants was investigated. 

The thesis is organized into five parts. It starts with chapter one by describing the rationale 

behind carrying out this research project and continues to give a comprehensive literature 

review regarding zinc and zinc homeostatic mechanisms in plants, followed by detailed 

overview of the current understanding of flavonoids and their interactions with heavy 

metals. Chapter two, categorized into three sections, describes the materials put to use and 

implemented methods throughout the course of this project. Chapter three, organized into 

three subsections, reports the results and findings of the research project. Chapter four 

discusses the findings stated in chapter three and conveys a summary and conclusion. The 

last chapter, chapter 5, lists the references cited in the thesis. 
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1.1  Zinc homeostasis in plants 

1.1.1  Zinc and its importance 

Zinc (Zn) is a transition metal of atomic number 30 and is the 23rd most abundant element on 

earth crust (Broadley et al., 2007). The recognition for its importance came in the late 19th 

century when Raulin discovered its impact on the growth and cell division of Aspergillus 

niger (Sandstead and Klevay, 2000). Since then, the knowledge regarding the role of Zn in 

different biological systems has intensified.  

 

In living systems Zn is the second most widely used (following iron) transition metal 

(Clemens, 2010). Particularly, the adult human body contains 2 to 3 g of Zn making it one of 

the most prevalent trace elements (Berg and Shi, 1996). However, its specific biological role 

was unknown up until Keilin and Mann (1940) illustrated the detail enzymatic activity of 

carbonic anhydrase that conveyed the involvement of zinc in its catalytic core. So far, more 

than 300 Zn containing enzymes have been indentified (Fig. 1.1. and Tab. 1.1) that belong to 

oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases enzyme families 

making Zn the only metal ion encountered in each class of enzymes (Vallee and Falchuk, 

1993).  

 

In addition to the catalytic role of Zn in enzymes, there are also few enzymes that exploit it 

for sole structural purpose. Zn ions could form structure-stabilizing cross-links without 

introducing undesired chemical reactivity (Berg and Shi, 1996). A very good example for 

such enzymes is aspartate transcarbamoylase of Escherichia coli, where the removal of the zinc 

bound in the regulatory subunits leads to the dissociation of the regulatory subunits from the 

catalytic subunits leaving the catalytic activity intact (Nelbach et al., 1972).  

 

The first encounter of the structural role of Zn came from the detailed description of the 

protein transcription factor IIIA (TFIIIA) (Berg and Shi, 1996; Clemens, 2010) which led to the 

discovery of the “zinc finger” domain. The phrase “zinc finger” stands for a conserved 

sequence motif in which cysteines (Cys) and/or histidines (His) tetrahedrally coordinate a 

zinc atom(s) to form a compact structure that interacts with DNA in a sequence-specific 

manner (Takatsuji, 1998). Proteins containing zinc finger domain are implicated in the 

regulation of different signal transduction pathways as well as developmental processes and 
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programmed cell death (Ciftci-Yilmaz and Mittlera, 2008). Zinc finger motifs enable proteins 

to directly bind with DNA and/or RNA, as well as interact with other proteins in order to 

generate a desired effect within a cell (Broadley et al., 2007). Based on the number and 

arrangement of the Cys and His residues that bind the Zn ion, zinc finger proteins are 

categorized into different groups such as the: Cys2-His2, Cys2-Cys2, Cys2-HisCys, Cys2-

Cys2-Cys2-Cys2, and Cys2-His-CysCys2-Cys2. Among them Cys2-His2-type zinc finger 

proteins are the most abundant in eukaryotes (Klug and Schwabe, 1995; Ciftci-Yilmaz and 

Mittlera, 2008). 

 

Figure 1.1. The graph represents enzyme classes (EC) that bind a given catalytic metal ion with known 
structures. The pie charts represent ECs that bind iron (Fe) and Zinc (Zn) ions with known structures. (EC1- 
oxidoreductases, EC2- transferases, EC3- hydrolases, EC4- lyases, EC5- isomerases, EC6- ligases). The figure is 
adapted from Andreini et al., (2008).  
 
Table 1.1. The six enzyme classes (EC) and representative zinc-enzymes together with their specified 
functions. The table is adapted from Vallee and Falchuk (1993).  
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One can also state a third function of Zn in enzymes. The term a coactive (or cocatalytic) 

function of zinc stands for those Zn atoms that can enhance or weaken the catalytic function 

of an enzyme in combination with another active site (which can be another Zn atom or other 

metals such as Cu and Mg) within the same enzyme, but is not a prerequisite for both 

enzymatic activity or structural stability (Vallee and Auld, 1992; Vallee and Falchuk, 1993). 

The best example of such cases is superoxide dismutase that contains Zn and Cu ions in its 

catalytic core (Tainer et al., 1982).  

 

In general, Zn in its structural role has four coordination numbers (i.e. binding to four amino 

acid residues which could be either cysteine or histidine and form a stabilizing structure 

(Fig.1.2)) whereas catalytic Zn is bound to three residues and one water molecule 

(Matsubaraa et al., 2003), and in some cases the coordination number may increase from four 

to five with an additional ligand provided by the substrate or an intermediate (Deerfield II et 

al., 2001). 

 
Figure 1.2. Common structural and catalytic Zn-binding sites in proteins. Yellow circles represent cysteine, 
blue circles histidine and red ones represent water and/or aspartate and glutamate. The figure is adapted from 
Lee and Lim (2008).  
 

The reasons behind the selection of Zn as the most prominent functional metal are its 

chemical and physical properties. Zn, under physiological conditions is redox-stable, which 

is a result of its complete d-shell of electrons (i.e. neither the potential oxidized form, Zn3+, 

nor the potential reduced form, Zn+, is accessible). In aqueous solutions it exists only in one 

(+2) oxidation state making it safe to be used in the vicinity of DNA. Other redox active 

transition metals such as copper (Cu) and iron (Fe) have a potential to generate hydroxyl 
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radicals leading to DNA damage and apoptosis (Barak and Helmke, 1993; Vallee and 

Falchuk, 1993; Auld, 2001). Secondly, the ligand field stabilization energy of Zn is zero; hence 

it does not get polarized while binding to ligands allowing it to have more flexible 

coordination geometry. It can also readily attain a tetrahedral coordination, which makes it 

more suitable for structural roles than other transition metals (Berg and Shi, 1996; Clemens, 

2010).  

 

Additionally, because of its small radius to charge ratio, Zn has pronounced Lewis acid 

characteristics (i.e. 0.83 Å, with coordination number of 6) enabling it to react with both soft 

and strong bases like sulphide and hydroxyl ligands, respectively (Broadley et al., 2007; 

Clemens, 2010). Furthermore, in relative terms to other divalent transition metals, Zn is 

kinetically labile permitting fast and free ligand exchange reactions, making it well suited for 

a catalytic role (Berg and Shi, 1996). In short, the unique combination of the physicochemical 

nature of zinc allowed it to be one of the most utilized transition metal with multifaceted 

function in different biological systems. 

 

The sheer-number of predicted Zn interacting proteins within different living systems can be 

considered as one proof of the multipurpose nature of Zn. Evaluations based on protein 

family domains (Pfam) and annotations predicted around 2,800 proteins (10% of the 

proteome) in human and about 2,400 proteins (8% of the proteome) in Arabidopsis thaliana to 

be Zn binding. On average in eukaryotes 9% of the proteome is presumed to be made up of 

Zn-proteins (Andreini et al., 2006).  

 

Additional facts indicative of the vital role of zinc in living systems are the physiological 

problems caused by suboptimal zinc availability. In human, limited dietary Zn intake is 

linked to a wide range of pathological problems, like growth retardation, diarrhea, eye and 

skin lesions, and delayed sexual maturation (Vinkenborg, 2010). In addition to that, a genetic 

disorder known by the name acrodermatitis enteropathica has been identified, which is caused 

by a reduction in Zn absorption of the intestine causing dermatological lesions, immune and 

reproductive dysfunction (Wang et al., 2002; Kury et al., 2002). In plants the most common 

visible symptoms of Zn deficiency are stunted growth, reduced leaf size and epinasty, 

hindrance in stem elongation and interveinal chlorosis followed by necrosis (Sharma et al., 

1994; Marschner, 1995). 
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On the other hand, the strong Lewis acids nature of Zn as well as its strong potency in 

displacing other divalent metal ions from catalytic sites of enzymes plus the increased 

stability of Zn-ligand complexes have created a high risk for toxicity by elevated 

concentrations of Zn ions in living systems. As demonstrated by the rank of Zn in the Irving-

Williams series (which lists transition metals according to the relative stabilities of complexes 

they form) Zn is able to displace any metal ion except for Cu and form a stable complex (Fig. 

1.3). In plants, Zn concentration is usually maintained at the range of 15-50µg per gram of dry 

weight (Hänsch and Mendel, 2009). In leaves Zn concentration exceeding 300mg per kg of 

dry weight is reported to cause phytotoxicity. Depending on the susceptibility of the plant 

species this value can even be lower than 100mg per kg of dry matter (Chaney, 1993). Zn 

toxicity symptoms in plants include leaf chlorosis, inhibition of root growth, decreased 

photosynthetic rates and reduced seed sets (Woolhouse, 1983; Ren et al., 1993). For example, 

in Phaseolus vulgaris Zn toxicity caused a reduction in photosynthesis rate by displacing a 

magnesium(Mg) ion at the water splitting site of photosystem II (van Assche and Clijsters, 

1988; Kupper et al., 1996). Similarly, there are reports tying the chlorosis symptoms of zinc 

toxicity to that of the iron deficiency caused by it (Fukao et al., 2011). On the other hand, in 

humans toxic effects of high Zn concentrations are demonstrated in cultured lung cells by a 

decrease in protein and RNA synthesis in dose and exposure time dependent manner 

(Walther et al., 1995). Furthermore, there are reports of pulmonary damage caused by 

accidental exposure to zinc fumes (Milliken et al., 1963).  

 

Figure 1.3. A) Irving-Williams series. B) The order for exchange rates of ions from relatively strong binding 
sites (which is a product of the strength of binding and the activation free energy for release). This figure is 
adapted from Williams (1982). 
 
The far-reaching functions of Zn plus the requirement for a strict regulation of free 

cytoplasmic Zn led to the evolution of a sophisticated control and relay system within living 

systems known as the zinc homeostasis network. In order to maintain Zn within 

physiological range, cells are fitted with uptake and sequestration mechanisms as well as 

efflux activities in order to carry the Zn to its desired subcellular location as well as prevent 

overaccumulation in the cytoplasm. The following subtopic describes the current level of 

understanding of this complex process. 
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1.1.2  Current level of understanding for the Zinc homeostatic mechanism in plants 

Plants, in addition to being the primary source of energy in the food chain, they are also the 

main entry point for micronutrients such as Zn into the food chain; thus understanding their 

homeostasis mechanism for heavy metals like Fe and Zn will aid the fight against 

micronutrient deficiency. In this section the Zn homeostasis mechanism in plants is discussed 

focusing on Arabidopsis thaliana (given that most of the molecular aspects of the mechanism 

were revealed using this model plant). However, while describing the universal zinc 

homeostasis mechanism in plants, metallophyte and their unique nature of 

hyperaccumulation of metal ions are beyond the scope of this review. 

 

Zinc ion’s passive diffusion rate through biological membranes is very limited. Moreover, 

like with most other metal ions the concentration of Zn in soil is subjected to major 

fluctuations. Therefore, plants should have a well developed Zn uptake mechanism that will 

allow them to take up the essential Zn ions into the cytosol (Marschner, 1995; Krämer et al., 

2007). However, uptake alone is not enough. For Zn ions to get to particular subcellular 

destinations (either for ultimate use or further storage) different means of transport are 

required. These different means of transport that remove Zn ions from the cytosol are 

collectively referred as the Zn efflux mechanism. Meanwhile, at a given time the level of free 

Zn ions (liable Zn) within a given cell should be highly regulated. Even if the total amount of 

Zn in eukaryotic cells can reach up to 100 µM, the intracellular liable zinc concentration is 

below the nanomolar range (Sinclair and Krämer, 2012). As it has been mentioned 

previously, free Zn ions can easily form stable complexes with non target ligands or replace 

other divalent metal ions and cause toxic effects; hence strict regulation intracellular Zn 

concentration is emplace. In human for example a rise in intracellular liable Zn ion has been 

shown as a key factor in neuronal death following seizure (Lee et al., 2002). For this purpose 

plant cells have evolved different molecules with varying Zn binding capacity and function 

forming the chelation and sequestration mechanism. In short, these three mechanisms (i.e. 

uptake to the cytosol, chelation and/or sequestration and efflux from the cytosol) jointly 

form the zinc homeostasis mechanism (Clemens, 2001).  

1.1.2.1  Uptake mechanisms 

Plants are not able to access the total metal content of a soil; instead they can obtain a limited 

portion of it. Total metal content of soil can be categorized into different fractions: (1) soluble 

metals in the soil solution, (2) metal-precipitates, (3) metals sorbed to clays, hydrous oxides 
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and organic matter and (4) metals within the matrix of soil minerals. Among these 

subdivisions plants are able to take up free metal ions only from the soluble metal fraction in 

the soil solution, thus this fraction is known as the bioavailable fraction (Reichman, 2002).  

 

Metal ion acquisition from the bioavailable fraction of soil across plasma membranes engages 

the use of particular proteins with transmembrane domains. Currently, different protein 

families with varying number of transmembrane domains have been shown to be involved in 

metal ion uptake across plasma membrane into the cytosol. Some of these protein families 

are: the ZRT- IRT- like Protein (ZIP) family, Cation Diffusion Facilitator (CDF) family, P1B-

type subfamily of P-type Atpases , the Natural Resistance Associated Macrophage Protein 

(NRAMP) family, the Yellow-Stripe1-Like (YSL) subfamily of the oligopeptide transporter 

(OPT) superfamily, the copper transporter (COPT) family, the Ca2+-sensetive Cross 

Complementer 1(CCC1) family and the Iron-Regulated protein (IREG) family (Krämer et al., 

2007). Among these known heavy metal ion transporters the ZIP protein family is anticipated 

to have a major role in the Zn uptake process. Structurally, most of the ZIP proteins are 

predicted to have eight transmembrane domains having both their amino (N) - and 

carboxy(C)-terminal ends located on the extracellular side of the membrane. They also have a 

long cytoplasmic loop between the third and the forth transmembrane domain, which is rich 

in histidine and predicted to have metal binding function (Guerinot, 2000; Eide, 2006).  

 

Among the ZIP family proteins the first to be identified was the Arabidopsis IRT1 that rescued 

the growth defect of a Saccharomyces cerevisiae strain carrying an iron transport deficient 

mutation. Thus it was first described as an iron transporter. Later on it was shown that the 

substrate range of IRT-1 is quite broad including Zn2+ Mn2+ Cd2+ and Co2+ (Eide et al., 1996; 

Korshunova et al., 1999; Clemens, 2006). Subsequently, on the bases of sequence similarity to 

IRT1, the discovery of ZIP1, ZIP 2, ZIP3 and ZIP4 followed. Since ZIP1 and ZIP3 are 

expressed in the root system of plants, their function is believed to be in Zn uptake from the 

soil whereas ZIP4, being expressed in both shoots and roots, is presumed to be involved in 

the transport of Zn intracellularly (Grotz et al., 1998). Later on, when the genomic sequence 

of Arabidopsis became available the number of predicted ZIP family proteins in Arabidopsis 

genome reached 15. Among these the expression of ZIP5, ZIP9 to ZIP12 as well as IRT3 were 

shown to be Zn dependent serving as an indictor of their involvement in Zinc homeostasis 

(Wintz et al., 2003; Krämer et al., 2007). However, the contribution of the individual ZIP 
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transporters towards Zn uptake is not yet clearly known. A recent work by Milner and 

colleagues (2013) analyzed metal specificities of 11 ZIP proteins and reported six ZIP genes, 

namely ZIP1, ZIP2, ZIP3, ZIP7, ZIP11, and ZIP12 were able to complement the zrt1/zrt2∆ 

yeast mutant fully or partially under Zn-limiting conditions. Moreover, the expression level 

of ZIP1, ZIP2 and ZIP3 in roots was higher than in shoots; hence they could be part of Zn 

uptake mechanism (Milner et al., 2013).  

 

1.1.2.2  Chelation and Sequestration mechanisms 

After entering the cytoplasm metals cannot move simply by random series of binding and 

dissociation because it would make the movement very slow (i.e. binding can be as fast as 

≥108/s but dissociation is very slow ≤ 10-2/s) (Krämer et al., 2007). On top of that, following 

the concept of “zinc quota” (i.e. the total Zn content of a cell required for its optimum 

growth) the average cellular zinc concentration of cells is in the range of 0.1–0.5 mM. 

However, the metal binding affinities of most metalloproteins is in the nM to pM range. 

Therefore, cells need to have means of preventing non-specific binding of Zn and directing it 

to its target proteins without raising the concentration of free zinc in the cell (Eide, 2006). For 

this purpose cells have metal binding ligands that can buffer the metal ion concentration. 

Assuming a parallel exist between Cu and Zn transport, there are reports proposing Zn gets 

delivered to specific proteins by metallochaperones through protein-protein interaction 

(Huffman and O'Halloran, 2001). However, such ubiquitous metallochaperones that are able 

to interact with Zn are not yet discovered. On the other hand, based on the absence of 

indicators for the existence of huge group of genes dedicated to specifically escorting Zn to 

each particular Zn-proteins as well as the lack of a conserved set of genomic sequences 

identifying the presence of a few escort metallochaperones serving a family of Zn-proteins, 

the role of metallochaperones in Zn trafficking could be very limited (Eide, 2006). Meanwhile, 

directing the focus mainly on plant cells, three ligands that serve in Zn buffers have been 

identified, namely the two low molecular weight ligands phytochelatins (PCs) and 

nicotianamine (NA) and the cysteine-rich proteins metallothioneins (MTs) (Cobbett and 

Goldsbrough, 2002; Weber et al., 2004; Deinlein et al., 2012). 

 
Metallothioneins (MTs) are genetically encoded small molecular weight peptides that are rich 

in cysteine (Cys) residues with a potential of chelating Cu, Zn, and Cd by forming sulfhydryl 

ligands (Hara et al., 2010). Based on the arrangement of the Cys residues, which determine 
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their metal-binding affinity and their functions, MTs are categorized into four groups: Type 

1, 2, 3 and 4. Particularly, type 4 MTs (i.e. MT 4a and MT 4b in Arabidopsis) have been shown 

to confer greater Zn tolerance that leads to the accumulation of Zn using the Zn-sensitive 

yeast mutant ∆zrc1∆cot1 (Guo et al., 2008). Moreover, the expression levels of MT 4a and MT 

4b were shown to correlate with the amount of Zn stored in seeds and their germination rates 

in low-Zn conditions (Ren et al., 2011). Additionally, heterologously expressed Arabidopsis 

MT in MT-deficient strains of Synechococcus was able to restore Zn tolerance (Robinson et al., 

1996; Cobbett and Goldsbrough, 2002). The first plant MT to be discovered was the type 4 MT 

protein of wheat Ec (Early cysteine-labeled protein). It was purified from wheat embryos as a 

Zn binding protein. It is presumed that this embryo-specific MT provides means of storing 

Zn in seeds which is required for proper germination (Kawashima et al., 1992). Similar 

assumption has been made with regards to MT4a and MT4b of Arabidopsis (Ren et al., 2011). 

Recently, in barley MT3 has been reported to play a house-keeping role in metal homeostasis, 

while MT4 contributes in Zn storage in developing and mature seeds (Hegelund et al., 2012). 

 
Similarly, phytochelatins are small molecular weight peptides that are rich in cysteines and 

take part in the detoxification of heavy metals. However, unlike MTs, PCs are enzymaticaly 

derived from glutathione. The enzyme that catalyzes the conversion of glutathione into PCs 

is known as phytochelatin synthase. Using PC-deficient Arabidopsis mutant (i.e. cad1-3) the 

involvement of PCs in the detoxification of Cd in plants has long been established. Very 

recently, the involvement of PCs in the homeostatic mechanism of Zn was clearly 

demonstrated using cad1-3 and a second strong allele (cad1-6). Both mutants showed 

pronounced Zn hypersensitivity as well as a significant reduction in root Zn accumulation. 

Meanwhile, Zn was able to activate PC synthase in almost the same extent as Cd. These 

observations exemplified the role of PCs in Zn homeostasis, leading to the conclusion of PCs 

significance for Zn tolerance as well as its task in Zn accumulation (Tennstedt et al., 2009). 

 

On the other hand, nicotianamine (NA) is a non-proteinogenic amino acid synthesized from 

three molecules of S-adenosyl methionine (SAM) by the enzyme nicotianamine synthase 

(NAS). NA has a capacity of forming strong complexes with most transition metal ions 

(Stephan and Scholz, 1993; Callahan et al., 2006) and its first discovered role was in Fe 

homeostasis (Stephan and Scholz, 1993, Herbik et al., 1999). Four genes that code for NAS are 

found in the thaliana genome. The expression levels of three of them, i.e. NAS1, NAS2 and 
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NAS3, have been shown to be dependent on the level of available Zn (i.e. they all get induced 

by Zn deficiency in both roots and shoots) (Wintz et al., 2003). In addition to that, in 

hyperaccumulating species (Arabidopsis halleri and Thlaspi caerulescens) the transcript level of 

several NAS genes as well as SAM synthetase genes were higher than in the non 

accumulating relative A. thaliana (Weber et al., 2004; Talke et al., 2006; Hammond et al., 2006; 

van de Mortel et al., 2006). Heterologous expression of NAS2 of A. thaliana in 

Schizosaccharomyces pombe conferred increased Zn tolerance (Weber et al., 2004). Moreover, 

the formation of intracellular Zn-NA complexes has been demonstrated using NAS-

expressing S. pombe cells and synchrotron experiments (Trampczynska et al., 2010). Very 

recently following the same trend, RNA interference mediated knock down of NAS2 in A. 

halleri resulted in the reduction of root-to-shoot translocation of Zn. Based on all of these 

observations it is proposed that NA-Zn complexes facilitate the symplastic passage of Zn 

toward the xylem (Deinlein et al., 2012). However, transporters of NA-Zn complexes are yet 

to be identified. 

 

In addition to the three ligands discussed above the amino acid histidine (His) has been 

implicated as Zn-binding ligand in plants. X-ray absorption spectroscopy mediated 

investigations carried out on Thlaspi caerulescens have identified Zn-histidine complexes as 

being the second most abundant form of Zn-ligand complexes, following the Zn-citrate 

complex (explained in the next paragraph) (Salt et al., 1999). 

 

Furthermore, organic acids, such as citrate and malate, have been proposed to serve as Zn 

ligands in plant vacuoles (Haydon and Cobbett, 2007). In this regard, computer based 

simulation models predicted 90% of the vacuolar Zn content of tobacco (Nicotiana tabacum) to 

be citrate bound (Wang et al., 1992) and the same is true for Thlaspi caerulescens (Salt et al., 

1999). However, in Arabidopsis halleri x-ray absorption spectroscopic analysis identified 

malate as the most prominent Zn ligand in leaves (Sarret et al., 2002). 

 

One additional groups of ligands implicated in Zn chelation are phytosiderophores (PSs). PSs 

are synthesized through deamination of NA by nicotianamine amino transferase (NAAT) 

forming deoxymugineic acid that can undergo hydroxylation to form mugineic acid or 

through extra hydroxylation many more additional derivatives (Takagi et al., 1984). Even if 

releasing PSs to facilitate uptake is mainly reported in Fe acquisition process (Schaaf et al., 



Introduction 

14 

2004; Kim and Guerinot, 2007), PSs have been implicated in Zn uptake in maize (von Wirén 

et al., 1996). Similarly, under Zn and Fe deficient condition different wheat varieties have 

been reported to release more PSs indicating their involvement in Zn uptake (Cakmak et al., 

1994). Specially, Zn efficient genotypes secreted more PSs and showed improved Zn uptake 

efficiency as well as translocation to shoots than did the sensitive genotypes (Rengel et al., 

1998; Guerinot and Eide, 1999). Likewise, in barley and rice, transcript levels of PSs 

biosynthetic pathway genes were induced under Zn and Fe limited conditions thereby 

increasing the amount of PSs released. These observations further strengthen the notion of 

phytosiderophores’ involvement in the process of Zn uptake (Suzuki et al., 2006; Schaaf et al., 

2004; Suzuki et al., 2008; Sinclair and Krämer, 2012). 

1.1.2.3 Efflux mechanisms 

After the uptake of a Zn ion into the cytoplasm the next challenge is to deliver it to a 

destination organelle or plant tissue. Seven protein families are described to transport Zn 

from the cytoplasm into the lumen of intracellular organelles or across the plasma 

membrane. Among these the four well known ones are P1B-type subfamily of P-type 

ATPases, NRAMP and the CDF protein families and the YSL transporter family (Eide, 2006; 

Palmer and Guerinot, 2009).  

 

The P-type ATPases represent a large family of proteins that pump various charged 

substrates across biological membranes through the expenditure of ATP. The distinguishing 

feature of P-type subfamily is the formation of a phosphorylated intermediate during the 

course of the reaction cycle. Among the P-type ATPase heavy metal ATPases are again sub-

grouped into 1B. Heavy metal ATPases (HMA) are predicted to have 8 transmembrane 

domains with a large cytoplasmic loop between the 6th and 7th transmembrane domain (Mills 

et al., 2003; Hall and Williams, 2003). The A. thaliana genome has 8 HMA genes among which 

HMA2 and HMA4 are reported to have a vital role in the root to shoot translocation of Zn. 

Even though neither single mutant showed visible defect, the hma2hma4 double mutant 

showed leaf chlorosis, stunted growth and reduced fertility. Moreover, despite elevated Zn 

content in roots, it accumulated less Zn in shoots. These aberrations of hma2hma4 could be 

rescued by supplementing the growth medium with a higher concentration of Zn, which is 

indicative of impairment in the root-to-shoot translocation of Zn (Hussain et al., 2004). In a 

different approach, overexpression of HMA4 alone in Arabidopsis increased transport of Zn to 

aerial tissues (Verret et al., 2004). Therefore, it is believed that HMA2 and HMA4 function in 
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loading of Zn into vascular tissues for long-distance transport (Hussain et al., 2004). It has 

also been shown that a mutation in HMA1 (protein that localizes to the chloroplast envelope) 

caused accumulation of Zn ions in the chloroplast and plants carrying inactivating mutation 

in the HMA1 were sensitive to high concentrations of Zn. Furthermore, expressing HMA1 

that lacks the chloroplast-targeting signal (the amine terminus) in Saccharomyces cerevisiae 

caused aggravated Zn sensitivity. These indications imply HMA1 takes part in Zn efflux 

from the chloroplast (Kim et al., 2009). When it comes to HMA3, not all Arabidopsis accessions 

carrying a functional HMA3 but in Arabidopsis accessions carrying functional HMA3 (such as 

Wassilewskaja (Ws)) a mutated version of it caused hypersensitivity to elevated Zn; whereas 

overexpression of it has led to increased Zn tolerance. Moreover, the expression level of 

HMA3 in shoots of two Zn hyperaccumulator species (Arabidopsis halleri and Thlaspi 

caerulescens) is comparatively higher than that of Arabidopsis thaliana signifying its role in Zn 

efflux to the vacuole (Morel et al., 2008; Sinclair and Krämer, 2012). 

 

The second protein family associated with Zn efflux mechanism is NRAMP family. The 

NRAMP have 12 transmembrane domains with consensus transport motif between 8th and 

the 9th transmembrane domain. Six NRAMP genes have been identified in Arabidopsis thaliana 

among which NRAMP4 is shown to transport Zn (Lanquar et al., 2004). In addition to that, 

because of the hypersensitivity phenotype observed in the double mutant of nrmp3nrmp4, 

NRAMP3 is also presumed to be involved in the efflux mechanism of zinc homeostasis 

(Oomen et al., 2009). Besides that, the localization of NRAMP3 and NRAMP4 proteins is in the 

tonoplast of vascular tissues of roots and shoots that suggests an involvement in long-

distance Zn transport (Thomine et al., 2003). 

  

The third category of efflux transporters involved in Zn transport represent the CDF proteins. 

Most members of this family have six predicted transmembrane domains and both the 

amino- and the carboxy-terminal ends of the protein are located in the cytoplasm. They also 

have a histidine-rich domain between the 4th and 5th transmembrane domain that may 

function as a Zn-binding region (Williams et al., 2000). The A. thaliana genome encodes 12 

putative CDF genes. The first CDF gene to be shown as Zn efflux transporter was MTP1 

(Metal Tolerance Protein 1). MTP1 (formerly named as ZAT1) has tonoplast localization and 

is constitutively present in both shoots and roots of A. thaliana plants. A mutation in this gene 

caused a strong hypersensitivity to excess Zn as well as lower accumulation of zinc in plant 
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tissues (Kobae et al., 2004; Desbrosses-Fonrouge et al., 2005). Further investigations have 

indicated that the characteristic His-rich cytoplasmic loop of MTP1 buffers cytoplasmic Zn 

and may also serve as sensor because deletion of this loop caused induction of hyperactivity 

in MTP1 (Kawachi et al., 2009). The second CDF protein to be discovered as Zn efflux 

transporter was MTP3. The expression pattern of the tonoplast-localized MTP3 is confined to 

roots and it gets further induced by higher Zn concentration and iron (Fe) limitation. These 

observations are indicative of the function of MTP3 in sequestration of Zn in root vacuoles 

especially under elevated Zn and Fe deficient condition (Arrivault et al., 2006).  

 

The forth transporter family implicated in Zn efflux contains the YSL transporter proteins. 

YSL proteins belong to the Oligopeptide Transporter (OPT) superfamily. Their function was 

first observed in monocots where they serve in the uptake of Fe-phytosiderophore 

complexes. Later on, the Arabidopsis genome was shown to carry 8 members of the YSL 

proteins. Among the eight the transcription level of YSL2 was shown to be responsive of Zn 

availability whereby it gets repressed by lower availability of Zn. Heterologous expression of 

Arabidopsis YSL2 in yeast has shown its function in the transport of Fe-NA and Cu-NA 

complexes. Accordingly, YSL2 is assumed to have a role in the transport of various metal–

NA complexes including a Zn-NA complex (Schaaf, 2005; Sinclair and Krämer, 2012). 

 

The fifth transporter family that has been identified in plants as Zn efflux transporter is the 

Arabidopsis MHX transporter (Haydon and Cobbett, 2007). The MHX is a proton antiport 

transporter that shares sequence similarity to mammalian sodium (Na) and calcium (Ca) 

exchanger. It has vacuolar localization and it has been implicated in the transport of 

magnesium (Mg) and Zn (Shaul et al., 1999). The expression pattern of MHX is mainly 

confined to the vascular cylinder implying its function in the proper partitioning of Zn 

between different organs of plants. Similar to that of other members of the Zn homeostasis 

mechanism, MHX showed higher transcript level in A. halleri compared to A. thaliana which 

may have important effect in the Zn tolerance of this species (Elbaz et al., 2006).  

 

Another Zn efflux transporter is the zinc-induced facilitator1 (ZIF1). ZIF1 encodes a major 

facilitator superfamily (MFS) transporter. Having tonoplast localization, it is presumed to be 

involved in a novel mechanism of Zn sequestration, possibly by transporting Zn ligands or a 

Zn ligand complex into vacuoles (Haydon and Cobbett, 2007). Latest findings in this regards 



Introduction 

17 

have indicated the involvement of ZIF1 in Zn and Fe homeostasis, whereby it contributes to 

the detoxification of Zn under Fe deficient conditions. It has been shown that overexpression 

ZIF1 has caused enhanced vacuolar accumulation of NA and Zn wich in turn caused Zn and 

Fe deficiency symptoms that can be corrected by spraying Arabidopsis plants with Zn and Fe 

(Haydon et al., 2012).  

 

In recent years a new member of the Zn efflux transporters named as PCR2 has been 

reported. The name PCR2 stands for a cysteine-rich protein with only two transmembrane 

helices localizing in the plasma membrane. When the corresponding cDNA was expressed in 

yeast PCR2 was able to engage in the efflux of Zn and Cd out of the cytoplasm. The 

expression of PCR2 is mainly localized in the vascular tissues of the shoot, in the xylem as 

well as epidermis of the root tip. Furthermore, the Arabidopsis pcr2 mutant showed higher 

accumulation of Zn and Fe in roots, as well as sensitivity to both excess and deficient Zn 

which is a sign of PCR2’s involvement in long distance translocation of Zn ions (Song et al., 

2010; Sinclair and Krämer, 2012). 

 

1.1.3  Regulation of the Zn homeostasis mechanism 

Organisms throughout the course of their lifetime are always exposed to enduring change; 

they go through various developmental and physiological processes. The surrounding 

environment also undergoes various climatic as well as seasonal changes. Therefore, living 

things need to have systems that can accommodate these various ongoing changes. A plant 

root cell can be mentioned as an example. Based on the developmental stage it is in and 

nutrient availability in the surrounding, it needs to adjust uptake and utilization of macro 

and micronutrients. Going back to the main focus of this chapter, Zn homeostasis 

mechanisms also should be able to entertain the plasticity of demand and supply of a cell. 

The two main ways of regulating Zn homeostasis mechanism are active Zn flux regulation 

and transcriptional regulation of genes involved in the process.  

 

Genetic transcription level analysis carried out on Arabidopsis thaliana grown under variable 

zinc concentrations (i.e. deficient, sufficient and excess) have indicated that the expression 

level of most of the uptake and efflux transporter genes as well as those encoding enzymes 

for the synthesis of chelating ligands (Tab. 1.2) are dependent on the extent of Zn availability 

(van de Mortel et al., 2006). Verifying the observed change in transcript abundance, increased 
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amount of protein levels of MTP3 and IRT1 were measured in Arabidopsis under excess Zn 

concentrations (Fukao et al., 2011).  

 

Further transcription factors regulating the transcription rate of genes involved in the zinc 

homeostasis mechanism have been identified. Two basic-region leucine zipper (bZIP) 

transcription factors (bZIP19 and bZIP23) have been identified as a result of the positive 

interaction they have manifested with the promoter regions of ZIP4 gene in a yeast-one-

hybrid screening. Similar to that of ZIP4 the expression levels of bZIP19 and bZIP23 were 

higher under Zn deficiency and the double mutant bZIP19bZIP23 showed a strong 

hypersensitivity towards zinc-deficiency, whereas the single mutant bZIP19 showed a mild 

but visible effect indicating their role in controlling the zinc deficiency response of Arabidopsis 

thaliana. Further investigations on the palindrome (RTGTCGACAY) discovered in the 

promoter region of ZIP4 led to the establishment of the cis element called Zinc Deficiency 

Response Element (ZDRE) which is also present in the promoters of six (i.e. ZIP1, ZIP3, ZIP5, 

ZIP9, ZIP12, and IRT3) other alleged Zn transporter encoding genes. Additionally, 

microarray analysis carried out on bZIP19bZIP23, the double mutant in comparison to the 

wild type, increased the number of genes anticipated to be under the regulation of these two 

transcription factors. Among the genes picked up by the microarray analysis are two of the 

NA synthase genes (NAS2 and NAS4) that provides further support to the central role of 

bZIP19/23 transcription factors in the regulation of Zn homeostasis under zinc deficient 

conditions (Assunçãoa et al., 2009). 

 

Table 1.2. List of genes up-regulated (expression differences of ≥3 fold and P value of < 0.05) under zinc deficient 
(0µM) and surplus Zn (25µM) when compared to optimal zinc availability (2µM). This table is adapted from van 
de Mortel et al., (2006).  
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The second approach of regulating Zn homeostasis process is through posttranscriptional 

modification of the uptake and efflux transporters depending on the intracellular Zn status. 

In yeast the presence of such regulation methods has been reported, where high 

concentration of Zn induces the removal of the uptake transporter ZRT1 from the plasma 

membrane through ubiquitination mediated endocytosis and subsequent degradation in the 

vacuole (Gitan and Eide, 2000). Similarly, in human and mouse the Zn availability dependent 

regulation of the localization of the uptake transporter ZIP4 has been reported, in which Zn 

deficiency increased the ZIP4 protein levels at the plasma membrane and resulted in 

increased Zn uptake, whereas higher Zn concentration stimulated the rapid endocytosis of 

the transporter in order to limit the amount of Zn uptake (Kim et al., 2004). However, the 

parallel regulatory process in plants has not yet been identified. Nevertheless, the report 

regarding monoubiquitin-dependent trafficking of the uptake transporter IRT1 can be 

mentioned as the first evidence for the presence of posttranslational regulation in plants. 

Even if iron availability is not serving as signal, the observation reveals the requirement for 

constant turnover of IRT1 between the plasma membrane and the vacuole in order to control 

the localization of IRT1, ensure proper iron uptake and prevent metal toxicity (Barberon et 

al., 2011).  

 

However, for both transcriptional and posttranscriptional regulations of Zn homeostasis 

mechanism to work properly plant cells need to have means of detecting extracellular and 

intracellular Zn levels. Unlike in S. cerevisiae where a Zn-sensing transcription factor (ZAP1) 

is identified, in plants a Zn sensing mechanism is not yet discovered (Clemens, 2010).  

 

When discussing about the regulatory mechanism of Zn homeostasis, one thing that should 

not be forgotten is its interdependence with other macro and micronutrient availability and 

acquisition processes. This interdependency could be due to shared network components like 

transporters and chelators or due to physiological changes that impact the concentration of 

multiple elements in plants (Baxter, 2010). Zn uptake and levels in plants have been linked to 

phosphate (P), Magnesium (Mg) and Fe concentration and uptake of plants. With regards to 

the interaction of Zn and P, the first observation was made when Zn limited condition lead to 

reduced accumulation of phosphate (P) in plants (Cakmak and Marschner, 1986). Later on 

after the identification P uptake transporters, it has been shown that in barley roots at lower 

Zn availability the transcript levels of high affinity P transporters were highly induced that 
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led to the accumulation of more P. Normally, the activity of high affinity P transporter is 

dependent on the P status of the plant. However under Zn deficiency, this regulatory 

mechanism seems to be overridden (Huang et al., 2000). When it comes to influence of Fe and 

Mg on Zn concentrations in plants, both metal ions share uptake transporters with Zn (IRT1 

and HMX1, respectively) and the availability of each has an impact on the uptake and 

accumulation of the other metal (Emery et al., 2012). Accordingly, the accumulation of Zn in 

plants under Fe deficiency has been correlated to increased IRT1 protein level. Similarly, 

exposure to excess Zn causes physiological Fe deficiency. By the same token, the 

transcriptional response of Zn efflux transporters like MTP3, HMA3 and ZIF1 to excess Zn 

and limited Fe availability are identical showing the interconnection of the two homeostasis 

processes (Sinclair and Krämer, 2012). 

 

1.1.4  The overall Zn homeostasis mechanism at the organismal level 

Plants have shown their potential in influencing the solubility and speciation of metals in the 

rhizosphere by exuding chelators and manipulating rhizosphere pH (Fan et al., 1997). 

Nevertheless, the activity of such mechanisms in manipulating the availability of Zn has not 

been recorded yet.  

 

Once Zn is taken up across the plasma membrane of root epidermal cells (possibly through 

ZIPs and ITRs) it can either be kept within the root system by being sequestered (by MTPs 

and ZIF1) into vacuoles (i.e. root vacuoles are the main storage site of surplus Zn and they 

contribute greatly towards basal Zn tolerance (Sinclair and Krämer, 2012)), or it can be 

moved through symplastic passage via plasmodesmata to the pericycle to be loaded into the 

xylem (via HMA2 and HMA4). After being loaded into the apoplastic route of xylem, Zn is 

transported like most other transition metals by mass flow of water created by the 

transpiration stream and root pressure (Welch, 1995; Curie et al., 2008). Within the xylem, pH 

(which is in the range of 5.4 to 6.5) and redox potential are important for regulating the 

solubility and speciation of metals (Welch, 1995). Zn is assumed to be transported as ligand 

complex (possibly bind to citric / malic acid or NA) that prevents unspecific uptake and 

retention by neighboring cells (Palmgren et al., 2008). Similarly, remobilization of Zn from 

senescing leaves and translocation to sink tissues such as seeds takes place via long distance 

transport within the phloem. Generally, transport in phloem occurs via the hydrostatic 

pressure gradient created as a result of loading of sucrose into the phloem from 
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photosynthetically active leaves and unloading of sucrose into the sink tissues such as 

meristematic zones of shoot and root tips. Phloem unlike xylem is composed of alive and 

metabolically active cells. Thus it has the potential to make the phloem sap more responsive 

to changes in the internal plant environment (Welch, 1995). Here again, since phloem has 

higher pH (≥8) and carries large amount of solutes that can bind Zn, the requirement for Zn 

chelation is strong (Sinclair and Krämer, 2012). The phloem mobility of Zn is considered to be 

dependent on the level of Zn within individual plant as well as the species of the plant. In a 

split-root experiment, it has been shown that during inadequate Zn supply, the phloem 

transport of Zn is lacking. However, in the presence of adequate Zn supply its phloem 

transport also increases (Welch et al., 1999). Representative picture of the Zn homeostasis 

mechanism in plants is depicted in figure 1.4. 
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Figure1.4. Model representation of Zn transport within a plant. A) represents epidermal root and B) pericycle 

cells, C) represents xylem and shows the apoplastic Zn movement  represent Zn-ligand complex whereas  
stands for free Zn D) stands for the symplastic Zn translocation in the phloem.  
 

1.1.5 Open questions and missing links in the Zn homeostasis mechanisms  

So far, one important open question in the Zn homeostasis mechanism in plants is that no 

sensors for Zn status have been identified. Multiple responses to excess or lack of Zn in plant 

cells have been observed but a particular Zn sensing apparatus is yet to be discovered. The 

second important missing link in the Zn homeostasis mechanism is the interaction between 

transporters (i.e. both uptake and efflux) and chelators (Clemens, 2010). The understanding 

about “how do the different components of the Zn homeostasis mechanisms interact and 
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regulate each other and fit to the overall plant ionomics” is still a work in progress (Baxter, 

2010). In recent years, the detailed knowledge about single components (i.e. transporters, 

chelators etc.) of the Zn homeostasis mechanisms has advanced considerably. However, a 

clear picture of the overall Zn homeostasis mechanism is yet to be achieved. 

 

1.1.6 Zinc toxicity tolerance in plants 

Plants have evolved different schemes to maintain the concentration of heavy metals like Zn 

within a physiological limit. During exposure to toxic concentration of metal ions first they 

use mechanisms like: (1) limiting the amount of ions taken-up either by releasing chelating 

agents that would hinder their uptake or by binding ions at the cell wall and cell membrane 

and preventing their entry (e.g. cell wall and cell membrane of moss Pohlia drummondii 

functions as barrier to excluded harmful doses of zinc from reaching the protoplast (Lang 

and Wernitznig, 2011)), (2) sequestering them into special compartments in order to isolate 

them from sensitive organelles (e.g. excess Zn induces the transcript level of MTP3 in order to 

increase the Zn efflux into the vacuole (van de Mortel et al., 2006)) or (3) increasing the rate of 

root to shoot translocation (e.g. HMA2 and HMA4 confer tolerance trough Zn translocation 

from roots to shoots (Clemens, 2010)). When these mechanisms are exhausted, plants activate 

secondary line of defense that involves the oxidative stress defense mechanism and synthesis 

of stress-related signaling molecules like heat shock proteins, hormones (e.g. toxic level of Zn 

leads to increased production of ethylene (Maksymiec, 2007)) and reactive oxygen species 

(Clemens, 2001; Manara, 2012). However, detailed understanding of how these systems 

function in dealing with toxic level of Zn is still unclear (Clemens, 2010). 

 

1.1.7  Problems related to zinc deficiency 

Zn deficiency is among the factors reducing the productivity of the agricultural sector. Zn 

availability in the soil is mainly influenced by three things: pH, organic matter content and 

water availability. At higher pH Zn gets more easily adsorbed to the clay minerals of the soil 

or it precipitates as a phosphate or carbonate. Similarly, shortage of water hampers the 

solubility of Zn slowing down the diffusion process through which it reaches the root surface 

(Broadley et al., 2007; Clemens, 2010). Therefore, arable lands with high pH (>7) and semiarid 

environments are predisposed to suffer from Zn deficiency. In areas like Australia, China, 

India and Turkey, where calcerous soil with higher pH is prevalent, Zn deficiency is a critical 



Introduction 

24 

problem (Broadley et al., 2007). Especially in cereals like wheat and rice major grain-yield 

reduction has been observed as a result of Zn deficiency (Cakmak et al., 1996; Sudhalakshmi 

et al., 2007). In the paddy cropping system of rice the flooding phase has made matters 

worse, because the low redox potential causes Zn to precipitate as zinc sulphide, zinc 

carbonate or zinc oxy-hydroxides (Rose et al., 2013).  

 

Besides the yield reduction, cereal grains produced under Zn deficiency have poor 

nutritional qualities due to lower levels of Zn in seeds (Cakmak et al., 1996; Sinclair and 

Krämer, 2012). Correspondingly, in populations where the diet is mainly comprised of 

cereals the prevalence of Zn deficiency is also very high. Despite lack of reliable biomarkers 

for Zn deficiency, the WHO estimates 31% of the world's population to be at risk of Zn 

deficiency (Sinclair and Krämer, 2012). In human the bioavailability of Zn is mainly 

dependent on the quantity of zinc ingested, but the amount of dietary factors (such as inositol 

hexa-/penta-phosphate commonly known as phytate) can also affect its bioavailability by 

impairing its absorption (Hambidge et al., 2010). Therefore, in the developing world where 

diets constitute less animal product (that have more dietary Zn content), the severity of Zn 

deficiency could be extremely high (Fig. 1.5). Inadequate Zn supply in human diet can lead to 

growth retardation, eye and skin lesions, impotence and delayed sexual maturation 

(Vinkenborg, 2010). Particularly, in infants Zn deficiency has been linked with the prevalence 

and severity of infectious diseases like pneumonia and diarrhea where Zn supplements 

reduced the morbidity rate caused by diarrhea (Bouis, 2003).  

 

Figure 1.5. Global prevalence of zinc deficiency.  
The prevalence of Zn deficiency in a population is inferred from the percentage of children under 5 years of age 
with low height-for-age ratio ( which is indicative of growth stunting).The significance of Zn deficiency 
prevalence towards public health is classified as low (≤20.0%), moderate (>20%–40%), or high (≥40%) 
Source: World Health Organization, Global Health Observatory Database: http://apps.who.int/ghodata/  
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In the past few years, this problem has gained lots of attention and various approaches have 

been designed in order to alleviate zinc deficiency in the developing world. One of such 

programs working on the area is the zinc and nutrition initiative of the International Zinc 

Association (IZA) that works to ensure the survival, growth and development of children 

through Zn supplementation (www.zinc.org). The other approach in tackling this problem is 

utilization of Zn efficient varieties and Zn fertilizers in order to maximize yield as well as 

obtain cereal grains with better Zn accumulation. With this regard there are joint ventures 

such as HarvestPlus (www.harvestplus.org) that are working to breed staple crop genotypes 

that load high amounts of bioavailable micronutrients (such as Zn) in their seeds. Identifying 

different crop genotypes with higher Zn accumulation by screening different varieties would 

be a cumbersome job and very time consuming. On the other hand, most of the identified 

components of the Zn homeostasis mechanism contribute to basal Zn tolerance of plants. As 

it has been mentioned in previous subtopics malfunctioning of parts of the uptake, chelation 

or efflux mechanisms of the Zn homeostasis mechanism leads to growth inhibition of plants 

during the presence of excess Zn (Weber et al., 2013; Krämer and Clemens, 2005). For 

example, mutants like mtp1 (loss of function mutant of Zn efflux transporter) and cad1-3 

(phytochelatin deficient line) show Zn hypersensitivity signifying the role of MTP1 and 

Phytochelatins in Zn tolerance (Kawachi et al., 2009; Tennstedt et al., 2009). However, as 

discussed in the previous subtopics, comprehensive understanding of the Zn homeostasis 

mechanism is still lacking. Hence, screening for Zn hypersensitivity mutants could be one 

suitable approach to identify novel components of Zn homeostasis mechanisms that can lead 

to Zn tolerance and at the same time be useful for the biofortification strategy. 

  

1.1.8  Screening for zinc tolerance in EMS mutagenized seeds 

Genetic studies set up to identify the function of a gene have been a favored method in 

deciphering complex biosynthetic pathways as well as homeostasis mechanisms. In such 

studies, the classic approach is to look for mutant phenotypes. If the impact of a mutation in a 

particular gene is known then it would be possible to infer the activity of the gene in its 

native state. The first step in this kind of processes is inflicting genetic lesions (which is 

referred to as mutagenesis). The choice of mutagens used in order to inflict genetic lesions is 

dependent on the type of mutant desired. For mutants with large deletions of pieces of 

chromosome or chromosomal re-arrangement that can be mapped with ease are induced by 

physical mutagens such as X-rays, γ-rays, electrons and ion beams (Magori et al., 2010). 
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Whereas, chemical mutagens such as ethyl methane sulfonate (EMS) and diethyl sulfate 

(DES) are better suited for creating mutations restricted to individual genes (Kim et al., 2006). 

There are also insertional mutations that are produced either through T-DNA or transposon 

integration into the genome. Based on the integration site, insertion mutations can be loss of 

function mutants (i.e. when the insertion is within the coding region) or mutants with 

compromised intron splicing or gene expression patterns (Stracke et al., 2010).  

  

One way of conducting genetic studies is the classical method, where first a particular 

mutant phenotype is identified and later on it is mapped to the gene that is affected by the 

mutation. This kind of method is known as forward genetics. Within the arm of forward 

genetics there is a practice referred as saturation genetics or saturation mutagenesis in which 

large numbers of mutations are inflicted on one area of a genome or in one biological 

function expecting to identify all the genes in that area, or affecting that particular function. 

Meanwhile, in the last decade, the number of organisms whose genome has been sequenced 

increased that lead to a new technique in the identification of the function of a gene. Whole 

genome sequencing initiatives have created new challenges where all the genes in an 

organism are known but very little is revealed about their function. In this era a new 

approach of genetic studies has crystallized, where a particular gene with a predicted 

function is mutated and the resulting phenotype is noted. This way of identifying the 

function of a gene is referred as reverse genetics. 

 

The mutagen selected to be used in this particular project is the chemical mutagen ethyl 

methane sulfonate (EMS). Its effect originates from its alkylating nature that can induce 

chemical modification of nucleotides mostly guanine (G) residues. Strong alkylation of 

guanine forms O6-ethylguanine that pairs with thymine (T) instead of cytosine (C). 

Subsequent DNA repair processes then might replace the G/T pair with A (adenine)/T pair. 

Hence, 99% of the time EMS induces C-to-T changes resulting in C/G to T/A substitutions 

(Kim et al., 2006) and the frequency of EMS-induced stop codon and missense mutations in 

Arabidopsis has been deduced to be around 5% and 65%, respectively (McCallum et al., 2000). 

Two most important advantages of EMS mutagenesis are:  

• there is no real bias in the distribution of mutations caused by EMS throughout the 

genome creating a potential for generating mutants of genes located near the 

telomere and centromere regions,  
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• Secondly, like all other chemical mutagens EMS can induce weak nonlethal alleles 

that are useful in the understanding of the function of essential genes where total 

disruption of the gene is lethal.  

In addition to that, chemical mutagens including EMS are shown to have better efficiency 

and frequency in achieving saturation mutagenesis. Furthermore, by using EMS mutagenesis 

chromosomal rearrangements (common feature of insertion mutagens like T-DNA and 

transposable elements) and inversions and deletion of chromosomes (common effect of 

irradiation mutagenesis) can be evaded (Kim et al., 2006).  

 

In this project a forward genetic approach has been implemented where second generation 

(M2) EMS mutagenized Arabidopsis thaliana Colombia-0 ecotype seeds were screened for 

increased Zn sensitivity manifested in terms of reduced root length in the presence of Zn. 

Identifying mutants with increased Zn hypersensitivity signifies the disruption of the basic 

Zn tolerance mechanism of plants that involves regulation of transport, sequestration and 

translocation processes. Hence, genetic and functional characterization of such mutants could 

lead to the identification of pathways that contribute to improved efficiency of root to shoot 

translocation and Zn loading of grains. Concomitantly, such knowledge could serve as a 

molecular tool for biofortification strategy. 
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1. 2 Role of flavonoids in heavy metal tolerance 

1.2.1  Understanding the link between flavonoids and heavy metal ions 

Plants, being sessile organisms, have evolved various mechanisms of dealing with the 

adverse effects of the environment they live in. Secondary metabolites like flavonoids are 

part of such mechanisms involved in the defense responses of plants to biotic factors like 

pathogens and herbivores attack (Koes et al., 1994; Lin and Weng, 2006) as well as abiotic 

stresses like ultraviolet (UV) light and low temperature (Winkel-Shirley, 2002; Sharma et al., 

2007). 

 

Flavonoids represent a diverse set of polyphenolic compounds that are part of the plant 

secondary metabolism. The main structure of flavonoids (Fig. 1.6) is made up of two 

hydroxyl substituted aromatic rings (A and B) joined by three carbon chains that form an 

oxygenated heterocyclic ring (C) (Nijveldt et al., 2001; Marais et al., 2006; Tsimogiannis et 

al.,2007). Flavonoids, with an estimated 10,000 different members, have a widespread 

occurrence in the plant kingdom (Dixon and Pasinetti, 2010). Some common flavonoids and 

their edible plant sources are listed in table 1.3. 

 

Figure 1.6. General structure of flavonoids 

Table 1.3. Common flavonoids and their edible plant sources 

 

B 

C A 
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1.2.2  Flavonoid biosynthesis and flavonoid deficient mutants 

One of the well characterized biosynthetic pathways in plants is the phenylpropanoid 

pathway. Especially the branch pathway leading to the synthesis of flavonoids has been 

thoroughly analyzed (Winkel-Shirley et al., 1995).  

Figure 1.7. The flavonoid biosynthesis pathway in Arabidopsis. This figure is adapted from Buer and 
Djordjevic (2009).  
 

Flavonoid synthesis (Fig. 1.7) starts with condensation of one molecule of 4-coumaroyl-CoA 

and three molecules of malonyl- CoA yielding naringenin chalcone through the enzymatic 

activity of chalcone synthase (CHS). Coumaroyl-CoA, one of the precursors of the flavonoid 

biosynthesis, is synthesised from phenylalanine by three enzymatic steps, collectively known 

as the general phenylpropanoid pathway. The name general phenylpropanoid pathway was 

coined because the structures involved at this stage are phenylpropane-based and this step is 

a common step to the biosynthesis of a variety of compounds such as lignin, coumarins, 

stilbenes and flavonoids. The second precursor, malonyl-CoA, is synthesized by 

carboxylation of acetyl-CoA, a central intermediate in the Krebs tricarboxylic acid cycle. The 

second step in the biosynthesis of flavonoids is that of the enzyme chalcone flavanone 

isomerase (CHI) that isomerizes the naringenin chalcone (NC) to naringenin (a flavanone). 

From these central intermediates the pathway diverges into several side branches, each 

yielding a different class of flavonoids (Koes et al., 1994).  

 

In Arabidopsis thaliana, different mutant lines carrying defective genes in various steps of the 

flavonoid biosynthesis pathway have been identified. The loci are collectively called 

transparent testa (tt) because of the lighter seed coat phenotype produced as a result of the 

reduction or absence of pigments in the seed coat (testa). Flavonoid-deficient mutants (Tab. 
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1.4) provide useful tools for studying the roles of flavonoids in plant growth and 

development (Koornneef et al., 1982; Koornneef, 1990; Winkel-Shirley et al., 1995). These 

mutants could be grouped into two subclasses (Fig. 1.8.): those with yellow seeds (testa 

lacking color completely showing the yellow color of the cotyledon) including tt1, tt2, tt3, tt4, 

tt5 and tt8 and those with pale brown seeds comprising tt6, tt7, tt10 and ttg2 (Winkel-Shirley 

et al., 1995). 

 

Table 1.4. List of transparent testa mutants of Arabidopsis and the genes affected by the mutation 

 

Figure 1.8. Seed color of common transparent testa mutants compared with the wild type. The figure is 
adapted from Buer et al., (2010). 
 

Chalcone synthase (CHS) is encoded by single gene in Arabidopsis. Therefore, CHS knockout 

plants (i.e. tt4) are deficient in flavonoids (Saslowsky et al., 2000). The rest of the tt mutants, 

depending on the type of the affected enzyme, accumulate different intermediate compounds 

and flavonoids (i.e. tt5 accumulates NC; tt7 accumulates an excess amount of kaempferol, 

whereas, excess amounts of quercetin and kaempferol are accumulated in tt3 (Peer et al., 

2001)).  

 

The flavonoid biosynthesis pathway is partly regulated by TT2 (a MYB transcription factor), 

TT8 (a bHLH transcription factor) and TTG1 (a WD40 repeat gene), which form a complex in 

order to induce BANYLUS expression that leads to the formation of anthocyanins. TT1 (a 

WIP family zinc finger transcription factor) and TTG2 (a WRKY type transcription factor) act 

downstream of TTG1 (Buer and Djordjevic, 2009). In addition to these processes 
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isoflavonoids that are only present in leguminous plants are synthesized through enzymatic 

activity of chalcone reductase (CHR) and isoflavone synthase (IFS) (Buer et al., 2010). 

 

1.2.3  Flavonoids as health promoting factors in human diet 

The isolation of the first flavonoid from oranges in 1930 sparked an interest in identifying 

new flavonoids and their activities. Furthermore, the discovery of the French paradox (i.e. the 

low cardiovascular mortality rate observed in Mediterranean populations in association with 

red wine consumption and a high saturated fat intake) created tremendous momentum in the 

fields of research dealing with flavonoids and their impact on human health (Nijveldt et al., 

2001). The most important effect of flavonoids on human health arises from their oxygen-

derived free radicals scavenging potential. In-vitro experimental systems also showed that 

flavonoids possess anti-inflammatory, anti-allergic, anti-viral, and anti-carcinogenic 

properties (Middleton, 1998). 

 

Free radicals and reactive oxygen species which are produced during normal oxygen 

metabolism or induced by exogenous damage are constant sources of threat for different 

body cells and tissues (de Groot, 1994). One mechanism by which free radicals interfere with 

the normal functioning of the body seems to be lipid peroxidation that causes cellular 

membrane damage. Consequently, the membrane damage leads to a shift in the net charge of 

the cell that alters the osmotic pressure leading to swelling and eventually cell death. Free 

radicals can attract various inflammatory mediators, contributing to a general inflammatory 

response and tissue damage (Nijveldt et al., 2001). As a protection from reactive oxygen 

species, organisms have enzymatic mechanisms like superoxide dismutase (that catalyzes the 

dismutation of the superoxide radical into hydrogen peroxide and oxygen), peroxidase (that 

facilitates the conversion of hydrogen peroxide to water using different electron donors) and 

catalase (that enzymaticaly converts hydrogen peroxide into water and oxygen molecule) as 

well as compounds like glutathione, ascorbic acid, and tocopherol that scavenge them 

(Dunand et al., 2007; Yurekl and Porgali, 2006). However, during injury and illness the 

endogenous protection mechanism becomes abnormally overstretched. In such cases 

flavonoids can have an additive effect to the endogenous system (Nijveldt et al., 2001). Most 

common flavonoids can scavenge superoxides; whereas other flavonoids can scavenge the 

highly reactive oxygen derived radical called peroxynitrite. Peroxynitrite is formed as a result 

of the released nitric oxide (destined to maintain the dilation of blood vessels during injury) 
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reacting with free radicals. Interestingly, flavonoids like silibin can also directly scavenge 

nitric oxide molecules. Whereas, flavonoids like quercetin provide similar effects by 

regulating the synthesis of nitric oxide (van Acker et al., 1995). The other mechanism by 

which flavonoids influence the level of free radical ions within a cell is by chelating heavy 

metal ions like iron and copper, which are potential causatives for the accumulation of free 

radicals. Quercetin in particular is known for its iron-chelating and iron-stabilizing properties 

(Ferrali et al., 1997). 

 

Another interesting effect of flavonoids on enzyme systems is the inhibition of the 

metabolism of arachidonic acid. This feature gives flavonoids anti-inflammatory and anti-

thrombogenic properties. The release of arachidonic acid is a starting point for a general 

inflammatory response (Ferrandiz and Alcaraz, 1991). 

 

In a separate direction of research, isoflavonoids have been indicated to have a role in the 

prevention of cancer, particularly of hormone-dependent cancers such as breast and prostate 

cancer (Wiseman, 2006). In support of this notion, breast and prostate cancer are much less 

prevalent in countries where soybean-containing foods (having the highest isoflavone 

content) are widely consumed. However, the risk of encountering these diseases increases in 

emigrant population from these same countries, like in the case of emigrant population from 

Far Eastern countries like Japan living in the United States of America. These changes have 

been mostly attributed to changes in diet, in particular the switch to a low-soy Western diet 

(Shimizu et al., 1991). Lower incidence of heart disease has also been reported in populations 

consuming large amounts of soy products (Sirtori and Lovati, 2001). Similarly, soy 

isoflavones have been reported to improve cardiovascular risk factors in pre-pubertal rhesus 

monkeys (Anthony et al., 1996). 

 

As a result of their strong antioxidant and metal chelating potential, flavonoids appear to be 

effective in reducing the risk of cancer and preventing cardiovascular disease. Overall, 

several of these flavonoids appear to be effective chemo-preventive agents. 

 

1.2.4  Flavonoids interaction with heavy metals 

As mentioned previously, flavonoids particularly quercetin have the ability to chelate metal 

ions which is believed to be related to their strong antioxidant nature. Excess metal ions such 
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as iron and copper have a potential to create free hydroxyl radicals through the Fenton 

reaction. Flavonoids can scavenge Fe3+ through the formation of phenoxylradicals by 

transferring charge from their deprotonated hydroxyl group (Ren et al., 2008). A strong 

evidence for the formation of flavonoid-metal complexes in vivo comes from morin (a 

pentahydroxyflavone) that forms a complex with aluminum and is routinely used to stain for 

aluminum in the root apoplast (Gunse et al., 2000). Catechin also forms stable aluminum 

complexes; consequently, green tea that contains high levels of catechin tolerates as well as 

accumulates high tissue levels of aluminum (Kidd et al., 2001). 

 

Additionally, according to Lachman et al. (2005) young barley plants grown on hydroponic 

solution treated with different cadmium concentration showed a significant reduction in the 

amount of free flavonoids. The strongest reduction in free flavonoid content was observed in 

the root that also accumulated the highest cadmium concentration in dose dependent manner 

implying the young barley plants are using flavonoid-metal complex to alleviate the heavy 

metal stress. 

 

Furthermore, there is experimental evidence showing flavonoid metal complexes having 

significantly higher radical scavenging potencies than those of bare flavonoids. For example, 

the data from Kostyuk et al. (2001) demonstrated that complexes formed between metal ions 

and flavonoids like rutin, dihydroquercetin, and epicatechins are considerably more potent 

than parent flavonoids in protecting red blood cells against asbestos-induced injury. 

 

1.2.5  Screening of flavonoid deficient mutants for heavy metal sensitivity 

In recent years, the quest for understanding the direct interaction of flavonoids with heavy 

metals has intensified. A number of in-vitro experiments demonstrating complexation 

mechanisms as well as structural elucidations of flavonoid metal ion complexes have been 

reported. For instance, Ren et al. (2008) and Lekka et al. (2009) compared different chelating 

sites and identified the most likely site of complexation for Fe3+ and Cu2+, respectively, as 

well as demonstrated its dependence on pH. Similarly, the chemical structures of different 

flower pigments that hold metal ions in their core structure have been identified, e.g. Al3+ in 

hydrangea (Yoshida et al., 2003), Fe3+ in tulips (Shoji et al., 2007), Fe3+ and Mg2+ in Himalayan 

poppy (Yoshida et al., 2006) and Fe3+, Mg2+ and Ca2+ in cornflower (Shiono et al., 2005). 

Moreover, Kostyuk et al. (2004) for the first time experimentally demonstrated flavonoids 
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bound to metal ions were much less subjected to oxidation compared with those of free 

compounds and formulated the suggestion that flavonoid metal complexes may exhibit 

superoxide dismuting activity. Likewise, de Souza and de Giovani (2004) investigated 

antioxidant activities of metal ion complexes with the flavonoids quercetin, rutin, galangin 

and catechin and found that complexed flavonoids showed higher antioxidant activity, 

which could be due to the acquisition of additional superoxide dismutating centers. 

 

However, most of the investigations carried out in this area of researches were in-vitro 

experiments. Hence, similar sets of experiments must be conducted in a living system in 

order to investigate whether the effects observed in-vitro cause detectable phenotypes in 

plants. 

 

Transparent testa mutant lines (previously described under the topic of flavonoid 

biosynthesis) are mutant lines carrying defective genes in various steps of flavonoid 

biosynthesis. Based on the enzymatic step disrupted by the mutated gene tt mutants 

accumulate either precursors or a range of flavonoids (Tab. 1.5). These lines have been 

instrumental in studying the function of flavonoids in a plant system. For example, in the 

process of proving the role of flavonoids in UVB protection in vivo, tt4, tt5 and tt7 were used 

(Li et al., 1993). Similarly, in experiments conducted to elucidate the negative impact of 

flavonoids on auxin transport, two different alleles of tt4 mutants were used (Brown et al., 

2001). 

 
Table 1.5. List of tt mutants and major flavonoids that accumulate at their root tips 
 

 
 

Therefore, part of this project was carried out with the aim of investigating the role of heavy 

metal ions and the complexes they form with flavonoids on health-promoting biological 

activities (antioxidant and free radical scavenging potential) of flavonoids. For this purpose 
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five flavonoid deficient mutant lines of Arabidopsis thaliana were analyzed for possible 

phenotypes in relation to heavy metal ion concentration.  

 

Based on the knowledge from literature, the presumed research hypotheses were: 

Since flavonoid deficient mutants are unable to form flavonoid-metal complexes they 

would be predisposed to suffer from oxidative stress. 

 In accordance to the type of precursors and flavonoids that they accumulate, the five 

transparent testa mutants would behave differently towards tolerance of heavy metal 

stress.  
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2. Materials and methods 

2.1 Screening for zinc tolerance in EMS mutagenized seeds 

2.1.1 Plant materials and growing conditions 

EMS mutagenized M2 seeds of Arabidopsis thaliana Colombia ecotype (Col-0) provided by 

Lehle seeds (M2E-02-05 Lehle seeds) were used. Seeds were surface sterilized by incubating 

them in chlorine gas within a desiccator jar under a fume hood for duration of 45 minutes 

(chloride gas was generated by mixing 10 ml sodium hypochlorite (12%) and 5 ml 35% HCl). 

Then seeds were inoculated onto rectangular agar (1% Type A, Sigma) plates that contain, 1% 

Sucrose and 1/10-strength Hoagland medium (appendix list-1) without microelements, 

buffered with MES buffer (0.01%) at a final pH of 5.7 and with 50µM ZnSO4 added. After 

stratification for 2 days at 4°C, the agar plates were moved to light room under long day 

condition (16-h light/8-h dark) and vertically placed and incubated for one week.  

 

After the one week growing period those seedlings with roots shorter than half of the 

average root length (Fig. 2.1a) were picked up and transferred onto control plates (i.e. 

without Zn treatment) and laid in such a way that the starting root length could be 

differentiated (Fig. 2.1b). After additional 10 days, those seedlings that showed root growth 

recovery (that showed root growth comparable to the control seedlings on the plate) were 

identified as putative mutants and transferred to soil filled pots and left to produce seeds. 

These putative mutants were named with a combination of numbers and the abbreviation 

IZS that stands for Increased Zinc Sensitivity (e.g. IZS 479). 

A)        B) 

 

Figure 2.1. Genetic screen for increased zinc sensitivity. A) Stands for the first step of the genetic screen where 
seedlings with root length shorter than half the length of the average root length on the plate are indicated with 
red arrow. B) Represents the second step of the screen where seedlings picked from plate together with 
seedlings with normal root length are placed on control plate horizontally. Then those seedlings that showed 
root growth in the horizontal plane at the same extent to that of the control seedlings (indicated by red arrow) 
are picked as putative IZS mutants. This picture is adapted from Weber et al., 2013.  
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Then as a confirmation step seeds of putative IZS mutants are grown again on vertical agar 

plates that contain 50µM ZnSO4 (similar to the one used in the first step of the screen) and 

those lines that showed root growth reduction consistently including in this step are 

designated as IZS mutants. 

 

2.1.2 Characterization of 5 newly identified IZS mutants 

Second generation seeds of five newly identified mutants namely IZS 377, IZS 389, IZS 390 

IZS 394 and IZS 479 were assayed for cadmium, copper, manganese, zinc and sodium 

chloride tolerance and compared to the response of the wild type Col-0 towards these stress 

causative agents. Seeds were surface sterilized through incubation in chlorine gas in a similar 

way as mentioned in section 2.1.1. Then seeds were inoculated onto rectangular agar (1% 

Type A, Sigma) plates that contain 1% Sucrose and 1/10-strength Hoagland medium 

(appendix list-1) without microelements and buffered with MES buffer (0.01%) having a final 

pH of 5.7. For plates with heavy metal stress Cd and Cu were added to the medium as 

chloride salts whereas, Zn and Mn were added as sulfate salt. The different ion 

concentrations applied to the agar plates are given in table 2.1. After stratification for 2 days 

at 4°C, the agar plates were moved to light room under long day condition (16-h light/8-h 

dark) and incubated vertically for up to three weeks. 

 

2.1.3 Growth parameters and statistical analysis 

Each conducted experiment consisted of three biological replicates. Root length was 

measured manually using a standard ruler. For each individual treatment a total of 30 

seedlings were measured. For all the data collected one way analyses of variance was 

performed using R statistical package version 2.14.2 and means were separated using a 

Tukey tests at 0.05 significance level. 

 

Table 2.1. Final concentrations of metal ions applied at different tolerance testes  
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2.2 Mapping and characterization of IZS 288 

2.2.1 Plant materials and growing conditions 

Two independent backcross lines of IZS 288 (namely E1-1 and E2-5) and wild type Col-0 

seeds were surface sterilized and cultivated using procedures stated under section 2.1.1. For 

elemental profiling analysis and metal accumulation plants were grown hydroponically as 

described by Weber et al., (2004) in growth chambers (Percival Scientific) with light and 

temperature regime of 16 h light (110 µE m-2s-1) at 23°C (day) and 8 h dark at 18°C (night).  

 

2.2.2 Heavy metal stress assay 

The concentrations used in the heavy metal stress assays were 2µMCd2+, 10µM Cu2+, 6µM 

Ni2+, 5µM Co2+, 450µM Mn2+, 300µM Fe2+. In addition to those stated here, concentration 

series were tested for Zn and Mn. The different concentrations used in these experiments are 

mentioned under the result section.  

 

2.2.3 Physiological parameters and statistical analysis 

Root length, cotyledon size and petiole length were measured manually using a standard 

ruler. Daily root growth rate was determined by demarcating the daily root length increment 

of seedlings. Hypocotyl length of dark grown seedlings was determined using image 

processing software called ImageJ version 1.43u (http://rsb.info.nih.gov/ij). Unless stated 

other wise each conducted experiment consisted of three biological replicates. For each 

individual treatment of the heavy metal stress assays a total of 30 seedlings were measured. 

For the determination of average cotyledon size 50 individual plants from each group were 

measured. On all the data collected one way analyses of variance was performed using R 

statistical package 2.14.2 version and means were separated using a Tukey tests at 0.05 

significance level. 

 

2.2.4 Elemental profile determination 

For elemental profile analysis, Arabidopsis plants grown hydroponically on 1/10-strength 

Hoagland medium (appendix list-1) as well as soil grown plants were used. Leaves were 

harvested and up until they were lyophilized they were stored under -20°C. Roots after being 

rinsed with Millipore water and blotted dry, were desorbed for 10 min each in ice-cold 

solutions of 0.1MCaCl2 and 10mMEDTA, and finally washed again with Millipore water and 
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blotted dry using layers of paper towels. The lyophilized plant materials (both roots and 

shoots) and seeds were digested in a microwave (START 1500 of the company MLS) using 4 

mL HNO3 (65% V/V) and 2 mL (30% V/V) hydrogen peroxide. Then elemental profile was 

determined using ICP-OES on an iCAP 6000 Series spectrometer (from Thermo-Fisher). 

 

2.2.5 Genetic mapping 

IZS 288 was mapped using three types of PCR based molecular markers, one that detect 

simple sequence-length polymorphisms commonly known as SSLPs (simple sequence length 

polymorphism) markers (Bell and Ecker, 1994), a second type that detects restriction 

fragment-length polymorphisms called CAPS (cleaved amplified polymorphic sequences) 

markers (Konieczny and Ausubel, 1993) and a third type that detect single nucleotide 

polymorphisms in short known as SNPs, which exploit the natural differences between 

Colombia (Col-0) and Landsberg erecta (Ler-0) ecotypes (Tab. 2.2). Mapping populations 

were constructed by outcrossing IZS 288 (Col-0 background) with the ecotype Landsberg 

erecta (Ler-0) and the F1 progeny were allowed to self-pollinate then the rustling F2 progeny 

were screened for Zn tolerance and those seedlings that showed Zn hypersensitivity 

phenotype similar to that of IZS 288 were selected to construct the mapping population. 

Genomic DNA from each individual plant of the mapping population was isolated as 

described in the 2.2.6 section and used as a template for the PCR- based mapping. 

Recombination events were scored for each molecular marker employed and the genomic 

window with the lowest recombination frequency was identified on the lower arm of 

Chromosome two. To narrow the map position of IZS 288 novel markers (CAPS markers and 

Tetra-primer ARMS-PCR (Ye et. al., 2001) and triple primers that lack the PCR product for 

Colombia) that detect single nucleotide variations between Col-0 and Ler-0 were utilized 

(Tab. 2.3). Finally, 14 candidate genes within the genetic window were sequenced and the 

sequences were compared to the published Arabidopsis genomic sequences 

(http://www.arabidopsis.org/), which lead to the identification of a point mutation in a 

single gene.  

 

2.2.6 DNA isolation 

Genomic DNA isolation from the mapping population was carried out following a fast and 

economical procedure referred as the quick prep method. Two or three leaves were harvested 
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and put in liquid nitrogen and stored away at -80°C. When the genomic DNA is required, a 

sample was finely grinded and 500µl extraction buffer (200 mM Tris-HCl (pH 7.5), 250 mM 

NaCl, 25 mM EDTA and 0.5 % (w/v) SDS) was added to it. Then, after mixing it very well, it 

was centrifuged for 5 minutes at a maximum speed (Eppendorf 5424) and 300µl of the 

supernatant was transferred into new tube. Then to the supernatant 300µl isopropanol was 

added and gently mixed followed by centrifugation for 10 minutes at maximum speed. Then 

after the supernatant was removed the pellet was washed by 500µl of 70% ethanol (without 

re-suspending it again) and centrifuged for 5 minutes. Following that the pellet was air dried 

for 30 minutes in a fume hood. Finally, it was re-suspended in 30µl Millipore water and 

incubated for 5 minutes at 50°C and then cooled down on ice for 1 minute and centrifuged 

for another minute at maximum speed. Genomic DNA that was stored at 4°did maintain its 

quality for up to 8 to10 weeks. 

 

Table 2.2. Commercially available PCR-based markers used in the chromosome mapping of IZS 288. Positions 
of markers on chromosomes are given in mega base pairs (Mbp). 
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Clean and super quality genomic DNA for sequencing and other purpose was isolated using 

potassium acetate and phenol method. In this procedure on grinded leaf samples 1ml 

extraction buffer (100 mM Tris-HCl (pH 8), 50 mM EDTA (pH 8), 500 mM NaCl, 1.5 % SDS, 

0.5 % β-Mercaptoethanol) was added and incubated for 10 minutes at 65°C and then 300µl „5 

M“ K-Acetate (60 ml 5M K-Acetate, 11.5 ml acetic acid (pH 5.2) and 28.5 ml Millipore water) 

was added and incubated for about an hour on ice. After centrifugation for 10 minutes at 

maximum speed the supernatant was taken and 800 µl PCI was added to it. After mixing it 

very well it was centrifuged for 5 minutes at maximum speed. Following that the pellet was 

washed by 500µl of 70% ethanol and air dried. Finally, it was re-suspended by 25µl Millipore 

water.  

 

Table 2.3. Newly designed tetra-arm PCR- markers, triple primers (that lack Col product from the tetra arm 
primer PCR marker) and derived caps markers. Positions of markers on chromosomes are given in mega base 
pairs (Mbp). Size of PCR products are given in base pairs.  
 

 

 

2.2.7 Polymerase chain reaction, gel electrophoresis and sequencing 

Polymerase chain reaction (PCR) for mapping purpose was set in two reaction volumes. 

SLLP and tetra-primer markers had 11µl reaction volumes and CAPS markers had 51µl 

reaction volumes. The compositions of the PCR reactions are stated in table 2.4. The reactions 

were carried out in MJ mini 48-well personal thermal cycler and Icycler version 3.021 (from 
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BIO-RAD). PCR products were separated using 3% Nusieve-Agar (from BIOZYM 

SCIENTIFIC). Sequence of novel markers and their annealing temperatures are included in 

appendix list 2. Sequencing of candidate genes were carried out by amplifying fragments of 

the gene (~700 base pairs long) with overlaps in both 3’ and 5’ends. The sequencing reactions 

were performed in a commercial sequencing lab (AGOWA). 

Table 2.4. Composition of PCR reactions carried out using Tetra primers and CAPs markers 

  

 

2.2.8 Plasmids, constructs and genetic complementation 

PCR amplification of genes for sequencing and cloning purpose were carried out using the 

Phusion polymerase (from INVITROGEN) that has lesser degree of errors as a result of its 

proof reading ability. The reaction mix had a volume of 50µl and its composition is given in 

table 2.5. 

In order to check for functional complementation, genomic construct consisting of the 

promoter region (2000 base pairs up stream of the start codon) the 5’ UTR region (500base 

pairs down stream the stop codon) as well as exons and introns of the coding region was 

introduced into IZS 288 using the TOPO® cloning Kit (from INVITROGEN). Similarly, a 

second construct carrying only the coding sequence under the promoter of cauliflower 

mosaic virus (35S) was also introduced into IZS 288. In the constructs used for testing the 

hypothesis of loss of phosphorylation site single alanine and serine substitutions of the 377th 

threonine were introduced individually into the gene by oligonucleotide-directed 

mutagenesis (Kunkel, 1985), and the introduced mutations were confirmed by DNA 

sequencing. For the Xenopus WDR70 construct coding sequence of the gene was introduced 

into plasmid carrying a 35S promoter. Plasmids used in these procedures are given in table 

2.6. 
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Table 2.5. Composition of Cloning PCR reactions using Phusion polymerase. 

 

2.2.9 Genetic transformation 

Plasmids carrying different constructs were first introduced into chemically induced E. coli 

(DHB 10 strain) competent cells. The procedure used for transforming competent E. coli cells 

was as follows. 2µl of the ligation reaction mix (composed of the designed construct and the 

destination vector) was added to properly thaw competent cells and after gradually mixing it 

was left on ice for 30 minutes. Then cells were exposed to heat shock by incubating them at 

42°C for 1 minute followed by rapid cooling by placing them on ice. Then 1ml sterile LB 

medium (Appendix list 3) was added to them and further incubated in a shaker with 

adjusted temperature of 37°C and 180 revolutions per minute. Following that the cells were 

centrifuged (Eppendorf 5424) at 5000 revolutions per minute for 5 minutes. Finally, for re-

suspension 60µl of sterile LB medium was added to the pellet and plated on LB agar plates 

that carry specific antibiotic as a selection marker (depending on the type of plasmid used) 

and placed in 37°C incubator for overnight. The next day a number of single colonies were 

picked (using sterile pipette tips) and transferred into fresh LB agar plates with the selection 

marker (by scratching the surface of the agar plate) and at the same time the tips were used to 

inoculate 2ml liquid LB medium with the specific selection marker and incubated overnight 

in 37°C shaker. Then plasmid DNA was isolated from the overnight liquid culture using the 

Wizard® Plus Mini-prep DNA Purification kit (from PROMEGA) and used to identify 

positive clones by performing colony PCR and/or restriction enzyme digestion.  

 

Later on a plasmid carrying the right construct was transformed into chemically induced 

Agrobacterium tumefaciens (DV3101) competent cells. The method used for transforming the 

competent Agrobacterium tumefaciens was as follows. 1 µg of a plasmid DNA carrying the 

right construct was introduced into properly thaw competent cells. In parallel as a negative 
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control 4µl of sterile water was also introduced into another tube of competent Agrobacterium 

tumefaciens cells. Following appropriate mixing, cells were let to instantly freeze by drooping 

them in liquid nitrogen. Then heat shock was introduced by incubating the cells on a heat 

bock with adjusted temperature of 37°C for duration of 5 minutes. Then 1ml YEP (Appendix 

list-3) media was added to it and incubated for 3 hours and 30 minutes on a shaker with 

adjusted temperature of 28°C. Finally, the culture was centrifuged at 5000 revolutions per 

minute for 10 minutes and the pellet was re-suspended by 100µl YEP medium and plated on 

LB agar plates treated with the appropriate selection marker and placed in 28°C incubator for 

two days.  

 

Finally, the Agrobacterium tumefaciens colony carrying the specific plasmid was introduced 

into IZS 288 plants by the floral dip method (Clough and Bent, 1998). First generations of 

floral dip treated plants were screened for transformants using specific screening marker 

based on the specification of the plasmid utilized (i.e. the herbicide BASTA or hygromycin). 

Later on the second generation of the positive transformants were used in different 

experimental set ups. 

 

Table 2.6. List of plasmids together with their specifications, selection markers and sources. 

 

 

2.2.10 Reporter line establishment 

The auxin response reporter DR5::GUS (Ulmasov et al., 1997) and the cell cycle reporter 

cycB1::GUS (Colon-Carmona et al., 1999) were crossed into IZS 288 background and the F2 

generations were used for the respective analysis.  
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2.2.11 Histochemical GUS staining and Microscopy 

3-5 days after germination seedlings of DR5::GUS and cycB1::GUS lines in both IZS 288 and 

Col-0 backgrounds were histochemaical stained and examined under light microscope (Leica 

Microscope DM1000) pictures were taken with Leica DFC 420 digital microscope camera. The 

Staining procedure included incubation of seedlings for three hours at 37°C in staining 

solution composed of 20mM X-glucuronidase, 100mM NaHPO4 (pH 7), 0.05% Triton X-100 

and 5mM each of K4[Fe(CN)6].3H20 and K3[Fe(CN)6] . Followed by destining step where 

samples were overnight incubated in 70% ethanol. Root tips were also investigated using 

propidium iodide (PI) staining and confocal microscope (Leica SP5 laser laser-scanning 

microscope) at excitation wavelength 488 nm. The PI staining procedure utilized a propidium 

iodide working solution of 1µg/ml in PBS buffer. Whole plant seedlings were incubated in 

the PI staining solution for 10 minutes followed by two rounds of washing with Millipore 

water. Finally, root tips were mounted under coverslip. Protein localization study using the 

GFP tagged 35S:At2g20330 line was also performed using Leica SP5 laser laser-scanning 

microscope.  

 

2.2.12 Transcript analysis 

For transcript level identification by microarray analysis and real-time (RT-PCR), RNA was 

extracted from IZS 288 and WT roots with Trizol (Invitrogen Life Technologies). For the 

microarray analysis the hybridization to Affymetrix ATH1 chips was performed at the 

Affymetrix service provider and core facility KFB center of excellence for fluorescent 

bioanalytics (Regensburg, Germany). Following the requirement of the service center 250 ng 

of purified (using RNeasy Mini columns (Qiagen)) RNA from both genotypes (IZS 288 and 

WT) and stress condition (chilling stressed and unstressed samples) were sent. The center 

uses Agilent 2100 bioanalyzer (Agilent Technologies) for analyzing the fragment length of the 

cRNA and hybridization is achieved by 16h incubation at 45°C in a rotating chamber. For 

washing and staining the hybridized ATH1 chips an Affymetrix Fluidics Station FS450 was 

used, and the fluorescent signals were measured using an Affymetrix Gene Chip Scanner 

3000. CEL files from the Affymetrix microarray hybridization were processed using the R 

program and Bioconductor packages (Gentleman et al., 2004). The robust multichip average 

normalization was performed using the default settings of the corresponding R function 

(Irizarry et al., 2003). To estimate the amount of expressed mRNAs, the present call 

information of the nonparametric Wilcoxon signed rank test (PMA values) was computed 
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with the “affy” package (Gautier et al., 2004). Hybridization data from three biological 

replicates were generated for both genotypes and stress conditions. Analysis of differentially 

expressed genes was performed with the LIMMA package using the robust multichip 

average normalized expression values (Smyth, 2004). P values were corrected for multiple 

testing and adjusted to a 5% false discovery rate (Benjamini and Hochberg, 1995). The 

confidence threshold for up or down regulated genes was set to an adjusted P value of <0.05.  

  

For the RT-PCR, the synthesis of cDNA was carried out using an Invitrogen SuperScript II kit 

and reaction mix composition is given in table 2.7. SYBR Green (Eurogentec) was used to 

monitor cDNA amplification. RT-PCR was set up in 96-well plates in a Bio-Rad iCycler with 

a MyiQ real-time PCR detection system. For data analysis the system uses iQ5 optical system 

software version 2.0. Relative expression values were calculated by using the difference in 

cycle threshold (CT) value of the target gene and a reference gene, namely EF1a. Primers for 

the RT-PCR were designed using the Primer3 software (http://primer3.sourceforge.net/). 

List of RT-PCR primers and their sequences are given in appendix list-2.  

 

Table 2.7. Composition of RT-PCR reactions. 

 

 

2.2.13 Drosophila stocks 

Three independent RNAi lines each containing an inducible UAS-RNAi construct against the 

IZS 288 homolog gene in Drosophila (CG5543) were obtained from the Vienna Drosophila 

RNAi center (http://stockcenter.vdrc.at). Lines VDCR _27454 and VDCR_106320 were viable 

transgenic lines; hence the acquired flies were homozygous RNAi lines. However, since the 

insertion in VDCR_41441 was lethal, this line was kept over a balancer (i.e. TM3, Sb). For the 

expression of UAS-transgenes, females from all three lines were crossed with males of 5 

different GAL4 driver lines (i.e. ey-GAL4, gmr-GAL4, sev-GAL4, da-GAL4 and MS 1096-GAL4) 

obtained from Dr. Stefan Heidmann Lab. The crosses were setup in two replicates and the 

results from the first cross were confirmed by setting up a second separate cross. Depending 
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on the type of GAL4 driver in use phenotypes of the RNAi effects were observed at different 

developmental stages and organs. 

 

 

2.3 Screening of flavonoid deficient mutants for heavy metal sensitivity 

2.3.1 Plant materials and growing conditions 

For the metal tolerance as well as deficiency test assays, seeds of Arabidopsis thaliana 

Landsberg erecta ecotype (Ler-0) and five transparent testa mutant lines (Tab. 2.8) were used. 

Seed sterilization and plant growth on agar plates were performed according to the methods 

described in section 2.1.1. In the case of the iron deficiency test, 1/10 of Hoagland medium 

was prepared without including the iron source. For plates with heavy metal stress Cd and 

Cu were added to the medium as chloride salts whereas Zn was added as sulfate salt. The 

different ion concentrations applied to the agar plates and or hydroponic medium are given 

in table 2.8. For the analysis of elemental profiles and metal accumulation, plants were grown 

hydroponically as described by Weber et al., (2004) in growth chambers (Percival Scientific) 

with light and temperature regime of 16 h light (110 µE m-2s-1) at 23°C (day) and 8 h dark at 

18°C (night) and 8 h dark.  

 

Table 2.8. List of seed stock used in the experiments  

 

 

2.3.2 Elemental profile determination 

For elemental analysis, A. thaliana plants grown hydroponically on 1/10-strength Hoagland 

medium were treated with different Cu concentration (Tab. 2.9) for one week. The 

hydroponic experiment was carried out only under Cu stress, since tt7 uniquely showed Cu 
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phenotype and the hydroponic experiment was designed as a follow up experiment on this 

observation. After 7 days roots and leaves of treated and control plants were harvested. Both 

shoot and root samples were prepared for ICP-OES analysis following the procedure stated 

in section 2.2.4.  

 

 

Table 2.9. Final concentration of heavy metal ions applied at different experiments  

 

 

2.3.3 Growth parameters and statistical analysis 

Growth parameters and statistical analysis used in these experiments were similar to those 

described in section 2.2.3.  
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3. Results 

3.1 The quest for new genes involved in zinc homeostasis 

3.1.1 New mutants identified in the genetic screen  

The Zn tolerance genetic screen implemented in this project is part of a continuous effort laid 

out in the lab of Prof. Dr. Stephan Clemens to identify new genes involved in the Zn 

homeostasis process. The first round of genetic screen conducted gave rise to 6 IZS mutants 

namely IZS 101, IZS 129, IZS 130, IZS 133, IZS 171 and IZS 288, which belong to different 

complementation groups. These six mutants are also newly named as OZS 1-6. OZS stands 

for overly Zn sensitive (Weber et al, 2013). In order to increase the number of the Zn 

hypertensive mutant library a second round genetic screen was conducted. The seed 

collection, used for this project, represent 32,448 M1 plants and so far in the two round 

genetic screens 22,000 M2 seeds have been screened that covers around 3000 M1 seeds. 

Therefore, the genetic screen is far from getting saturated.  

 

The genetic screen for increased Zn sensitivity is composed of two major steps. The first step 

filters out seedlings with compromised root growth on agar plates treated with Zn. However, 

at this stage the selected seedlings are not exclusively Zn hypersensitive, rather the group 

contains all seedlings with short roots but the reason for their compromised root growth can 

be late germination, general root growth defect or miniature sized stature. Therefore, the 

second step is introduced to sift through this group and retain only those with Zn 

hypersensitivity. This is attained by comparing the extent of root growth recovery of 

seedlings picked at the first step of the screen on control agar plates (i.e. without the Zn 

treatment). Then, those seedlings with the highest root growth recovery are picked as 

putative IZS mutants. The rationale behind this step is that seedlings, which had shorter root 

length for reasons other than Zn hypersensitivity, will not be able to recover on the second 

step because the only change introduced at this stage is the absence of Zn from the plates. 

Therefore, the seedlings that exhibited root growth recovery at the second step are only those 

seedlings that were not able to grow fully on the first plate due to the presence of Zn and 

their increased sensitivity towards it. 

 

In this second round genetic screen 8,800 EMS mutagenized Col-0 seeds were screened for 

increased Zn sensitivity phenotype and 255 putative IZS mutants were identified. Among 
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these 255 putative IZS mutants, the confirmation step has selected 28 IZS mutants (Fig.3.1, 

Tab.3.1). Within these 28 IZS mutants 14 exhibited pleiotropic effects (particularly shorter 

root length under optimal growing conditions) (Fig.3.2).  

Table 3.1. List of newly identified IZS mutants  

 
 Figure 3.1. Figurative illustration of the results of the second round screen of the M2 seeds of EMS 
mutagenized Arabidopsis thaliana seeds. 
A)  

  

B) 

 

Figure 3.2. Representative pictures of newly identified mutants. A) IZS 479 and IZS 507 represent those with 
normal root length whereas B) IZS 615 and IZS 508 represent those with reduced root growth even under 
optimal growing conditions. 
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3.1.2 Phenotypic Characterization of Five IZS Mutants 

Deciphering the function of genes involved in different biological processes such as the Zn 

homeostasis mechanism is quite complex because a single gene may have different functions 

depending on circumstances such as the presence or absence of other gene products (Gillis 

and Pavlidis, 2011). Especially during characterization of phenotypes caused by mutations 

there is a condition referred to as pleiotropy that explains the ability of a gene to influence 

multiple phenotypic traits like in the case of mutants of AUX/IAA gene that exhibit different 

pleiotropic phenotypes related to auxin response (Rogg et al., 2001). Multifunctionality of a 

gene is also reported in iron homeostasis mechanism, where the iron uptake transporter IRT1 

under iron deficient condition is reported to transport other metal ions like Zn and Cd 

(Barberon et al., 2011). Hence, phenotypic characterization were conducted on the newly 

identified IZS mutants whereby the specificity of the increased Zn sensitivity phenotype is 

tested in comparison to other metal ions and salt as a representative for other abiotic stresses. 

 

The phenotypic characterization of five of the newly identified IZSs revealed that each 

mutant line has a unique combination of response to various metal ions. Some are sensitive to 

a wide range of metal ions while others are explicitly sensitive to a particular metal ion 

(Tab.3.2). Furthermore, the sensitivity response of the IZS mutants to the stress caused by the 

various metal ions tested was not uniform. Some of them were hypersensitive to lower 

concentrations of metal ions but these effects got diminished with the increasing 

concentration, whereas others did not exhibit hypersensitivity response up until exposure to 

higher concentrations. 

 

Table 3.2. Summary of phenotypes of the five newly identified IZS mutants 
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IZS 377 (Fig 3.3) in particular was hypersensitive to cadmium (Cd) and Zn in a dose 

dependent manner. It also showed a hypersensitivity response to higher concentrations of 

copper chloride (namely at 6µM and 8µM concentrations). However, no apparent difference 

to the wild-type was observed in its response to different concentration of manganese sulfate 

and sodium chloride.  

 

 
 Figure 3.3. IZS 377 showed significantly stronger sensitivity towards Zn, Cd and higher concentration of Cu 
than wild type Col-0. (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level)  
 

Similarly, IZS 389, showed hypersensitivity to Cd and Zn (Fig. 3.4). The peculiar character of 

IZS 389 that differentiates it from IZS 377 is its hypersensitivity response to copper even at 

lower concentrations (i.e. 2µM and 4µM) which might be an indication for stronger impact of 

the mutation on copper related physiological process. 
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Figure 3.4. IZS 389 showed significantly stronger hypersensitivity towards Zn, Cd and Cu than wild type Col-
0(‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level).  
 

 

Likewise, IZS 394 showed dose dependent hypersensitivity to Cd, Cu and Zn (Fig. 3.5). 

However, uniquely IZS 394 showed hypersensitivity to Mn at both concentrations tested (i.e. 

400µM and 550µM) and to sodium chloride at lower concentration (15mM). In addition to 

that IZS 394, in comparison to the other four IZS, exhibited the largest percentage of root 

growth reduction (namely 81%, 94% and 84%) under 8µM CuCl2, 5µM CdCl2 and 550µM 

MnS04, respectively.  
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Figure 3.5. IZS 394 showed significantly stronger hypersensitivity towards all four metal ions tested (i.e. Zn, 
Cd, Cu and Mn) and to lower concentration of salt than wild type Col-0. (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 
0.05 significance level).  
 

 

When it comes to IZS 390 (short rooted even under optimal growing condition) the stress 

effects observed are as strong as the other three mutant lines. The strongest root growth 

inhibition (87%) was caused by 80µM of ZnS04. However, at moderate concentrations of Cu, 

Cd and Mn a significant difference of hypersensitivity has also been observed (Fig. 3.6).  
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Figure 3.6. IZS 390 in addition to the Zn hypersensitivity, it showed significant root growth reduction under 
moderate concentration of Cd, Cu and Mn. (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level).  
 

Meanwhile, IZS 479 distinctively showed root growth hindrance only in the presence of Zn in 

the agar plates (Fig. 3.7). Furthermore, it showed the highest percentage of root growth 

reduction (98%) at 80µM of ZnS04. Therefore, among the five IZS mutants phenotypically 

characterized the only mutant with an exclusive Zn hypersensitivity phenotype was IZS 479. 

It also showed a significant root growth reduction at low concentration of cadmium 

(0.5µMCd2+). The unique characteristic of IZS 479 bare greater resemblance to that of a well 

documented mutant phenotype of MTP1, which is CDF transporter family protein that has 

been shown to be involved in Zn transport. Therefore, it is likely for the mutated gene in IZS 

479 to be MTP1. Consequently, sequencing the MTP1 (At2g46800) gene in IZS 479 revealed a 

point mutation at the 877th base pair where guanine (G) is substituted with adenine (A) that 

lead to the replacement of the 293rd amino acid, which was aspartic acid (D), with asparagine 

(N). The multiple sequence alignment of homologues genes obtained from KEGG (Kanehisa 

and Goto, 2000) identifies this particular amino acid to be conserved across different species. 

Similarly, the 3D model of AtMTP1 generated through homology modeling based on the 
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crystal structure of Escherichia coli MTP1 (EcYiiP) showed the location of the mutated amino 

acid to be at the start of the sixth transmembrane domain of MTP1 (Fig. 4.1) (Kawachi et al., 

2012).  

 

 
 
Figure 3.7. IZS 479 showed specific hypersensitivity towards Zn and to limited extent to lower concentration 
of cadmium. (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level) 
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3.2 Mapping and characterization of IZS 288 

3.2.1 Genetic background of IZS 288 

The first step of the characterization work on IZS 288 was identifying the number of mutated 

genes that resulted in the Zn hypersensitivity phenotype. The allelic segregation observed in 

the second generation (F2) progenies of different backcross lines of IZS 288 were all above 

0.0625. If the Zn hypersensitivity phenotype was the effect of two genes the allelic 

segregation ratio would have been 1/16 (Tab. 3.3). Therefore, the mutation under 

consideration seems to be a single gene mutation. Meanwhile, all the F1 (first generation) 

progenies of the backcross lines behaved similar to the wild-type, hence the mutated gene is 

believed to be inherited as a recessive trait. 

Table 3.3 Allelic segregation of different backcross lines of IZS 288  

 

Since IZS 288 is isolated from EMS mutagenized seeds its genome carries a large number of 

background mutations in addition to the mutation causing the Zn hypersensitivity. In order 

to clean up the unwanted mutations a series of backcrossing with the wild-type is required. 

However, instead of the time-intensive clean up work, the alternative approach of excluding 

the impact of unwanted mutations is to use two independent backcross lines and verify each 

observation using these two independent backcross lines. Accordingly, in all the traits taken 

into consideration the two independent back cross lines of IZS 288 (i.e. E1-1 and E2-5) 

showed similar behaviors verifying the very small effects from unwanted background 

mutations.  

 

3.2.2 Observed phenotypes of IZS 288 

The Zn tolerance assay conducted on vertical agar plates treated with different Zn 

concentrations (Fig.3.8) confirmed the dose dependent Zn hypersensitivity of IZS 288, where 

the highest concentration tested (70µM Zn2+) caused almost 90% root length reduction in IZS 

288 while the wild-type only lost 73% of its root length. Likewise, the Zn tolerance test 
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conducted on artificially contaminated soil also showed similar outcome, where the Zn 

hypersensitivity phenotype of IZS 288 was manifested in the form of leaf size reduction and 

loss of chlorophyll content resulting in leaf yellowing. Surprisingly, under the experimental 

set up of the artificially contaminated soil IZS 288 showed an additional phenotype, where 

under both optimal as well as excess Zn availability the petiole length of IZS 288 appeared to 

be longer than the wild-type. To further investigate this phenotype the average petiole length 

of five fully developed leaves of IZS 288 and Col-0 grown on non contaminated soil were 

measured.  
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The results confirmed that the average petiole length of IZS 288 was significantly longer than 

that of Col-0. Pervious reports have indicated a link between the trait of developing extra 

long petioles and shade avoidance mechanism of plants; therefore the difference in petiole 

length of IZS 288 and Col-0 were tested under low light availability. When IZS 288 and Col-0 

plants were cultivated under low light intensity (i.e. in the range of 10-16 µE m-2s-1) IZS 288 

showed more pronounced increment in petiole length. During the cultivation under optimal 

light intensity (i.e. 110-90 µE m-2s-1) depending on the position in the growth chamber) the 

average petiole length of the wild-type measured only 84% of the petiole length of IZS 288, 

meanwhile during shading this variation got even wider where the petiole length of Col-0 

covered only 70% of the petiole length of IZS 288 (Fig 3.9). 

 

Figure 3.9. A) i Petiole length of five mature leaves of Col-0 and the two backcross lines of IZS 288. Different 
letters represent significantly different petiole length. A) ii Pictures of all the leaves in the rosette of Col-0 and 
E1-1 and E2-5. B) i Petiole length of five mature leaves of Col-0 and the two backcross lines of IZS 288 under 
dim light condition. B) ii Pictures of whole plants cultivated under dim light. The white bars represent 2 cm. 
 
In order to determine whether the observed Zn hypersensitivity is accompanied by alteration 

in metal ion content of IZS 288, the elemental profile of roots and shoots cultivated on both 

hydroponic system and soil substrate were determined using inductively coupled plasma–

optical emission spectroscopy (ICP-OES). The comparison of the elemental profiles of IZS 288 

and WT conveyed the absence of significant difference among the two genotypes in both 

cultivating systems (Fig. 3.10-12). Similarly, preliminary analysis conducted on seeds also 

showed parallel result except for manganese and calcium contents where it seems that IZS 

288 accumulated more than Col-0, but more elaborate analysis must be conducted in larger 
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sample sets before making a concrete conclusion. In short, despite the hypersensitivity 

response to Zn stress, under optimal growing condition IZS 288 did not show a significant 

variation in the amount of both micro and macronutrient contents of different organs.  

 

Figure 3.10. Elemental profile of leaves of A) i Col-0 and two backcross lines of IZS 288 (E1-1 and E2-5) that 
were cultivated hydroponic system and A) ii three different lines of Col-0 (namely Col D, Col E and Col T) and 
three different lines of the two backcross lines of IZS 288 (namely E1-1, E1-3,E1-5 and E2-4, E2-5, E2-6) on soil 
substrate. 
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Figure 3.11. Elemental profile of roots of B) i Col-0 and two backcross lines of IZS 288 (E1-1 and E2-5) that 
were cultivated in hydroponic system and B)ii three different lines of Col-0 (namely Col D, Col E and Col T) 
and three different lines of the two backcross lines of IZS 288 (namely E1-1, E1-3,E1-5 and E2-4, E2-5, E2-6) on 
soil substrate.  
 

 
Figure 3.12. Preliminary results of elemental profile of seeds Col-0 and E2-5, where IZS 288 seemed to have 
more Mn and Ca. (“* ” 0.01 significance level). 
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Moreover, the tolerance test conducted using Cu, Ni, Co, Mn, Cd, Fe and sodium chloride 

proved the specificity of the Zn hypersensitivity phenotype of IZS 288. Astonishingly, IZS 

288 showed significantly higher level of tolerance towards cobalt, manganese, cadmium and 

iron than the wild-type Col-0 (Fig 3.13).  

 

Figure 3.13. Root growth assay of IZS 288 in comparison to wild-type Col-0 on plates with different metal ion 
concentrations. A) Shows average root length of IZS 288 and Col-0 grown on plates treated with 9µMCu2+, 
6µMNi2+, 5µM Co2+, 400µM Mn2+, 2µM Cd2+, 400µM Fe2+, 30mM NaCl. B) Relative root length of IZS 288 and 
Col-0 in % (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level). C) picture of a plate containing i) 5µM 
Co2+, ii) 400µM Mn2+, iii) Non treated, iv) 2µM Cd2+ and v) 400µM Fe2+. The bars represent 2 cm. 
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On the other hand, the abiotic stress tolerance test has led to the discovery of strong chilling 

sensitivity in IZS 288. When seeds of the two backcross lines of IZS 288 and Col-0 were set to 

germinate under chilling temperature (4°C), the seedlings of IZS 288 stopped growing 

completely after the onset of cotyledons. Likewise, when seedlings of IZS 288 and wild-type 

were transferred to chilling temperature on the fourth day after germination, the seedlings of 

IZS 288 suspended their growth at the stage their were in before they were moved to the 

chilling environment (Fig. 3.14). 

 

 
Figure 3.14. A) Picture of seedlings of IZS 288 and Col-0 transferred to 4°C and cultivated for six weeks, B) i 
Pictures of seedlings of both IZS 288 and Col-0 that were germinated in a cold room with ambient temperature 
of 4°C, B) ii close up picture of IZS 288 seedlings germinated under chilling condition. Development stops at 
cotyledon stage. 
 

However, despite the prominent chilling hypersensitivity observed in IZS 288, chilling stress 

did not cause lethality. Recovery experiments conducted on seedlings that stayed in the cold 

room with the ambient temperature of 4°C for different durations (i.e. 1, 2, 4 and 8 weeks) 

showed full recuperation after one week of being moved back to optimal growing condition 

(Fig. 3.15). Furthermore, the chilling hypersensitivity of IZS 288 manifested in the form of 

growth arrest was observed only during cultivation under 4°C, when seedlings were placed 

in a growth chamber with an ambient temperature of 12°C instead, they were able to sustain 

growth. Nonetheless, the chilling hypersensitivity of IZS 288 could not be overcome by 

acclimatization process. When the seedlings that were cultivated at 12°C got transferred to 

4°C, the IZS 288 seedlings were still unable to sustain growth (Fig. 3.16). 
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Figure 3.15. Pictures of recovery experiments A) after one week B) after two weeks C) four weeks and D) 

after eight weeks stay in 4°C they were moved to optimal growing condition and cultivated for one week, black 
bars represent the root length of seedlings at the time they were placed in the cold room, the red broken line 
represents the root growth under chilling condition, blue bars represents the root growth recovery under 
optimal growing condition. Picture of seedlings of IZS 288 and Col-0 transferred to 4°C and cultivated for six 
weeks. 

 
 

Meanwhile, in order to rule out the possibility of nutritional deficiency or any other factors 

introduced by the growing media, the influence of the lack of micronutrients (since the agar 

plates are made up of 1/10 Hoagland media without micronutrients) and increased sugar 

concentrations (up to 2%) on the root length of IZS 288 were tested. The supplementation of 

micronutrients to the growing medium and the increment in sugar concentration resulted in 

a moderate root length improvement in both wild-type and IZS 288. However, the observed 

level of increment of the root length of IZS 288 was insignificant when compared to the 

average root length of the wild-type (Col-0) (Fig. 3.17). Therefore, the short root phenotype of 

IZS 288 seems to be a developmental defect observed in different growing media irrespective 

of their composition. 
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Figure 3.17. Root length of IZS 288 and Col-0 on Control=1/10 Hoagland without micronutrients (MN) Hog 

+MN=1/10 Hoagland +micronutrients, 2% = 2% sugar added to 1/10 Hoagland media, 2%+MN=1/10 
Hoagland + MN+ 2% sugar, MN= micronutrients only. 
 
To further elucidate the short root phenotype of IZS 288, the root growth rates of IZS 288 was 

deduced under optimal growing condition as well as under Zinc stress (50µM Zn2+). Under 

optimal growing condition the daily root growth rate of IZS 288 was comparable to that of 

Col-0 up until the 4th day after germination. Beyond the 4th day after germination IZS 288 

maintained a very slow root growth rate. This root growth rate reduction of IZS 288 in 

optimal growing condition has the same magnitude as the reduction of Col-0 root growth 

rate under Zn stress condition. In addition to that, under Zn stress the root growth rate 

reduction of IZS 288 was quite tremendous (Fig. 3.18). In short, IZS 288 maintained average 

root growth rate up until the 4th day after germination, but afterwards the root growth rate 

dropped considerably leading to a significant decrease in the average length of the primary 

root. Thus, the short root phenotype of IZS 288 did not occur as a result of root growth 

cessation rather it is due to a reduction in root growth rate that started after the 4th day of 

germination.  

 

Figure 3.18. A) Root growth rate of IZS 288 and Col-0 per day under optimal growing and zinc stress 
conditions. B) Relative root growth rate per day of IZS 288 and Col-0.  
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Going further into the details of the short root phenotype, observation of the root tips of IZS 

288 under light microscope revealed a reduction in the size of the elongation zone. 

Furthermore, under Zn stress (50µM Zn2+) the meristematic zone of IZS 288 was also smaller 

than that of Col-0 (Fig. 3.19). A closer inspection of propidium iodide stained root tips of IZS 

288 under the confocal microscope uncovered defects in the root tip organization. 

Particularly, the cells at lateral side of the root cap (lateral root cap cells) contained too many 

smaller sized cells instead of larger sized differentiating cells (Fig. 3.20 A-C). Moreover, the 

short root phenotype of IZS 288 correlated with a reduced rate of cell division in the 

meristem, as indicated by the cyclin B1 marker (i.e. CycB1;1::GUS). Especially, in the 

presences of Zn stress the number of mitotically active cells dropped significantly in the 

meristem of IZS 288 (Fig. 3.20 D-I).  

 

  

 
Figure 3.19. Root tip of A) Col-0 and B) IZS 288 grown on control plates. Yellow line represents the 
meristematic zone and blue line stands for the elongation zone. C) Col-0 and D) IZS 288 grown on 50µM 
Zn2+treated plates. Arrows indicate root hairs that signify the beginning of the zone of maturation.  
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Figure 3.20. A) Schematic representation of the Arabidopsis root tip. Adapted from Swarup et al., (2005). B) 

Root tip of Col-0, C) IZS 288, white arrow indicates the quiescent center (QC), arrow heads show cells in lateral 
root cap and the star symbol stands for dividing cells. Root tip of D) Col-0 E) E1-1 and F) E2-5 cultivated 
without Zn stress; G) Col-0 H) E1-1 and I) E2-5 grown in the presence of 50µM Zn2+ visualized by CycB1;1::GUS 
staining.  
 

 

The other morphological alteration observed on the root architecture of IZS 288 was the 

increased number of lateral root formation. Particularly, the numbers of secondary and 

tertiary lateral roots were significantly higher than that of the wild-type (Fig. 3.21). However, 

Zn stress seems to reverse this effect, whereby the number of secondary lateral roots 

increased in the wild-type but decreased in IZS 288. The observed lower number of 

secondary lateral roots in IZS 288 could be due to the considerable reduction of root length 

caused by the Zn stress.  

 

100µM 100µM 
100µM 

50µM 50µM 
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Figure 3.21. A) Number of lateral roots (i.e. primary secondary and tertiary) of IZS 288 and Col-0 per the first 
1 cm of root length grown under optimal growing condition. B) Number of lateral roots of IZS 288 and Col-0 
grown on 50µM Zn 2+ treated plates. (‘***’for 0.001 significance level). C) Picture of agar plate showing the 
difference in root architecture of E1-1 and col-0 
 

Following up the observed influence of Zn on the incidence of lateral roots, IZS 288 and Col-0 

were exposed to mild Zn stress (i.e. 1µm, 5µM and 10µM) and lateral roots of 15 day old 

seedlings were counted. Moreover, in order to take into count the effect of sugar on the 

development of root architecture, sugarless agar plates treated with the same level of mild Zn 

stress were also tested. Under optimal growing condition as well as during the presence of 

1µM Zn2+ the ratio of lateral roots to overall root length of IZS 288 was significantly higher 

than that of wild-type. However, as the concentration of Zn ion present in the agar plate 

increased the difference between IZS 288 and the wild-type Col-0 disappeared (Fig. 3.22 A). 

On the other hand, the absences of sugar in the growing media caused greater variability in-

between seedlings of the same genotype treated with the same concentration of Zn ion. 

Therefore, in the experimental set up where sugar was absent from the agar plates, no 

apparent difference was observed between IZS 288 and Col-0 (Fig. 3.22 B).  

 

 
Figure 3.22. The comparison of the ratio of lateral roots to root length of the wild-type Col-0 and two back 
cross lines of IZS 288 A) on agar plates that contain sugar and different concentration of Zn ions. B) on agar 
plates without sugar. (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level). 
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In the meantime, to see the effect of mild Zn stress on both genotypes, the ratio of lateral root 

to root length of each genotype was compared across different Zn concentrations. The wild-

type showed a significant increase in the number of lateral roots per unit root length across 

the different Zn concentrations. On the contrary, in the case of IZS 288 the highest ratio of 

lateral root per unit root length was observed at optimal growing condition and it got 

reduced by the presence of Zn ion (Fig.3.23). Here also the absences of sugar from the 

growing media caused huge variability among seedlings within the same treatment that 

masked the effect of Zn ion on lateral root numbers of both genotypes.  

 

Figure 3.23. The ratio of lateral roots to root length of the wild-type Col-0 and two back cross lines of IZS 288 
compared across different Zn ion concentrations A) on agar plates that contain sugar B) Grown on agar plates 
without sugar. Different letters represent significantly different means.  
 
Furthermore, in the comparison of IZS 288 to that of the wild-type secondary lateral roots 

were considered as one additional parameter. Here also under optimal growing condition 

IZS 288 appeared to have significantly higher number of secondary lateral roots than Col-0. 

This difference was still visible even when sugar was absent from the growing media. Similar 

to that of the number of lateral roots per unit root length, the total number of secondary 

lateral roots of IZS 288 also got reduced by the presence of Zn in the growing media (Fig. 

3.24).  

 

Figure 3.24. Comparison of number of secondary lateral roots of the wild-type Col-0 and two back cross lines 
of IZS 288 in the presence of different Zn ion concentration A)grown on agar plates that contain sugar B) grown 
on agar plates without sugar. (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level). 
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The root architectural alteration of IZS 288 caused by Zn stress was more severe in 

hydroponically grown plants. During prolonged Zn stress (20µM Zn for a duration of three 

weeks) the occurrence of lateral roots in IZS 288 increased considerably, yet they did not 

presume the normal developmental progress of lateral roots rather they appeared to have a 

root nodule like structure (Fig 3.25).  

 

Figure 3.25. Lateral roots of A) Col-0, B) E1-1 and C) E2-5 hydroponically grown under optimal growing 
condition. Whereas D) Col-0, E) E1-1 and F) E2-5 hydroponically grown seedlings exposed to 20µM Zn for three 
weeks consecutively. Arrows indicate root nodule like out growth of lateral roots.  
 

The distinctive root architectural alterations plus the morphological defects of the leaves of 

IZS 288 ignited an interest on the involvement of plant hormones on the observed 

phenotypes of IZS 288. Hence, the level of tolerance of IZS 288 towards different kinds of 

plant hormones was tested. In these tests IZS 288 showed increased tolerance towards 

different kinds of auxin applied exogenously (i.e. indole-3-acetic acid (IAA), 1- naphthalene 

acetic acid (NAA), synthetic auxin (2, 4-D) and Indole-3-butyric acid (IBA)) (Fig. 3.26). 

Additionally, IZS 288 showed dissimilar response towards known auxin inhibitors. The 

response towards the auxin transport inhibitor N-(1-naphthyl) thalamic acid (NPA) was quite 

similar to that of the wild-type, where the development of lateral roots was blocked and the 

primary root tips grew in circular forms and showed moderate level of root length reduction. 

However, the response of IZS 288 towards the anti-auxin p-chloro-phenoxy-iso-butyric acid 

(PCIB) and 2,3,5-triiodobenzoic acid (TIBA) was different from that of the wild-type, where 

the reduction of the primary root length in IZS 288 was lesser than Col-0 and seemed to have 

more lateral roots than the wild-type. Meanwhile, possible variation in the auxin response 
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maxima of IZS 288 was investigated using the auxin response marker DR5::GUS. The present 

results did not give any indication for the presence of an alteration in the auxin response 

maxima of IZS 288 (Fig. 3.27). However, a thorough investigation needs to be carried out, like 

the effect of exogenous auxin and auxin inhibitors on DR5::GUS activity, before ruling out 

the impact of the mutation of IZS 288 on auxin response maxima.  

 

Figure 3.26. Relative root length of IZS 288 and Col-0 in the presence of A) i. different IAA concentrations, A) 

ii different NAA concentrations A) iii 2,4-D and two IBA concentrations, A) vi three auxin inhibitors (i.e. NPA, 
PCIB, TIBA). Letters represent significant difference at average relative root length. 
 

 

Figure 3.27. Auxin response maxima visualized by DR5::GUS of A) Col-0, B) IZS 288 under optimal growing 
condition, C) Col-0 and D) IZS in the presence of Zn stress.  
 

Similarly, the tolerance test conducted using series of kinetin concentrations revealed the 

tolerance response of IZS 288 towards exogenous cytokinins (Fig. 3.28 A). Especially when 

IZS 288 seeds were directly sown on agar plates treated with different concentration of 

kinetin the root architecture resembled that of the wild-type (Fig. 3.28 B). Furthermore, the 

inhibitory effect of abscisic acid (ABA) on the root growth of IZS 288 was smaller than the 

250µM 250µM 

100µM 250µM 
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wild-type, but the effect of ABA on the germination rate (considering the emergence of 

radicle as the onset of germination) of IZS 288 and Col-0 seemed to be more or less similar. In 

contrast, the tested concentrations of gibberellic acid (GA) did not cause any apparent effect 

on the root length of IZS 288 as well as Col-0 (Fig. 3.29).  

 
Figure 3.28. Relative root length of IZS 288 and Col-0 in the presence of different concentrations of kinetin, A) 

seedlings transferred to agar plates containing different concentration of Kinetin after the fourth day of 
germination B) seeds of IZS 288 and Col-0 directly sown on agar plates treated with 500nM and 1.5µM kinetin. 
Letters represent significant difference at average relative root length. 
 

 
Figure 3.29. Relative root length of IZS 288 and Col-0 directly grown on agar plates containing A) i 2µM and 4 
ABA, A) ii 500nM and 1µM GA , B) i germination rate of Col-0 and IZS 288 on plates containing 2µM ABA and 
B) ii 4µM ABA. 
 
In short, IZS 288 was only hypertensive towards Zn and chilling stress. In contrast, it showed 

enhanced tolerance towards heavy metals Cd, Co, Mn and Fe. Similarly, it showed better root 
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growth than the WT in the presence of different forms of auxin and auxin inhibiters, kinetin 

as well as ABA. These phenotypic responses of IZS 288 are summarized in table 3.4.  

 

Table 3.4 Summary of phenotypic responses of IZS 288 towards abiotic stress and phytohormones. (-) 
represents hypersensitivity, (+) represents tolerance. 
 

 

 

Previous observations of mutants with defects in auxin response revealed the presence of 

additional phenotypes such as alteration in cotyledon size, hypocotyl and root hair length. 

Hence, the cotyledon size, hypocotyl and root hair lengths of IZS 288 were compared and 

contrasted with that of the wild-type that led to the finding of three additional phenotypes of 

IZS 288. The cotyledons and dark grown hypocotyls of IZS 288 were significantly smaller 

than that of Col-0 but root hairs were considerably longer in IZS 288 than in Col-0 (Fig. 3.30). 
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Earlier, leaf morphological aberration of IZS 288 in regards to petiole length has been 

mentioned. In addition to that, leaves of IZS 288 seemed to have shape defects, where their 

tips appeared to be more oval than round. The depth of the leaf coloration also varied 

between Col-0 and IZS 288, where Col-0 leaves appeared to be bright green; whereas the 

leaves of IZS 288 had grayish green appearance and accumulated more anthocyanins at their 

lower side (Fig. 3.31). Moreover, they appeared to have more trichomes than Col-0. The 

distribution of stomata in the lower side of IZS 288 leaves also looked as if they aggregate in 

close proximity to each other than in Col-0. The venation of IZS 288 cotyledons also seemed 

to show irregularities. However, since there were disparities among plants within the same 

500µM 

500µM 500µM 500µM 

500µM 500µM 
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genotype, it is very difficult to make a concrete and quantitative statement about these 

phenotypes (Fig. 3.32).  

 

 

 
Figure 3.31. Pictures of A) i rosette of Col-0, A) ii and A) iii single leaves of Col-0 having more round and 
symmetrical shape, A) iv fully grown rosette of Col-0 showing bright green color and A) v back side of leaves of 
Col-0 lacking anthocyanin accumulation. B) i rosette of E1-1, B) ii and B) iii single leaves of E1-1 having more 
oval shapes, B) iv fully grown rosette of E1-1 showing grayish green color and B) v back side of leaves of E1-1 
showing anthocyanin accumulation. C) i roseate of E2-5, C)ii and C) iii singles leaves of E2-5 showing oval 
shapes. Red arrows indicate the difference in shape, C) iv fully grown rosette of E2-5 showing grayish green 
color and C) v lower side of leaves of E2-5 showing anthocyanins accumulation. 
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Figure 3.32. A) i Pictures of two leaves of Col-0 cleared with ethanol having fewer trichomes, here red arrows 
indicate trichomes. A) ii and A) iii showing close up view of venation in cotyledons of Col-0 leaves where the 
leaf veins are formed symmetrically around the mid rib, A) iv and A) v Col-0 lower leaf impression showing 
evenly distributed stomata. B) i Pictures of two E1-1 leaves cleared with ethanol showing large number of 
trichomes, B) ii and B) iii showing close up view of venation in cotyledons of E1-1 where the leaf veins are 
formed asymmetrically around the mid rib. C) i Pictures of two leaves of E2-5 cleared with ethanol showing 
increased number of trichomes, C)ii and C)iii close up view of venation in cotyledons of E2-5 where the leaf 
veins are not formed symmetrically around the mid rib, C) iv and C) v lower leaf impression of E2-5 where 
stomata seems to aggregate in close proximity. 
 
On the other hand, under short day condition (8D/16N) the onset of flowers in IZS 288 

started earlier than the wild-type. It appeared as if the vegetative stage of IZS 288 was cut 

short in order to transit to the reproductive stage and for this transition IZS 288 did not 

require the classical long day condition (Fig. 3.33). 

 

Figure 3.33. A) Number of leaves at the time of flowering in Col-0 and IZS 288 under short day condition, B) 
Pictures of Col-0 and IZS 288 that have already sated flowers, white bar represent 3 cm. 
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In the aim of establishing a connection for the defects in auxin response of IZS 288 and its 

hypersensitivity towards Zn and chilling, Col-0 and IZS 288 seeds were cultivated on agar 

plates treated with a combination of Zn and auxin (2, 4-D) or Zn and NPA (the auxin 

transport inhibitor) and placed under optimal temperature (23°C) or under chilling 

temperature (4°C). Based on the growth response of Col-0 towards Zn stress under chilling 

condition and in the presence or absence of auxin, chilling temperature (4°C) appeared to 

have amplified the Zn toxicity, whereas auxin down played the negative effect of Zn stress. 

However, NPA did not have a significant impact on Zn stress under both temperatures 

regimes (Fig. 3.34). Moreover, Zn tolerance test conducted on well established auxin response 

mutants (i.e. aux-1, tir1-1 and eir1), chilling hypersensitive mutants (i.e. hos1, sar1 and sar3), 

ABA insensitive mutant (aba-1) and sinat2 (a mutant with a defect in the ring ubiquitin 

ligase) identified Zn hypersensitivity phenotype in aux-1 which is an auxin influx 

transporter. This observation further strengthened the interconnection between Zn and auxin 

signaling (Tab. 3.5 and Fig 3.35). 

  

Figure 3.34. Systematically arranged pictures of agar plates with different treatments, as the number progress 
from left to right the stress effects got intensified. Particularly picture 4 depicts the strongest effect on both Col-0 
and IZS 288 caused by the combination of Zn and chilling temperature. Picture 8 shows the minimizing effect of 
auxin on the combined stress effect of Zn and 4°C. Pictures 9-12 show the NPA effect. On the NPA experimental 
set up seedlings were transferred to agar plates with treatments after 4th day of germination and under all 
conditions tested NPA did not have a significant impact on Zn stress. NPA has been reported to promote root 
looping (Buer et al., 2003), here also as it can be seen on picture 9 and 10 WT roots were forming loops which is 
caused by the disruption of proper auxin signaling. 

4 
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Table 3.5 List of known mutants tested for Zn hypersensitivity  

 

 

 

Figure 3.35. A) Relative root length of aux-1 in the presence of Zn stress. B) Pictures of agar plates with and 
without Zn on which Col and aux-1 seedlings are growing- white bars represent 2 cm. Gravitropic response of 
aux-1 is greatly compromised 
 

3.2.3 Genetic mapping of IZS 288 

To isolate the IZS 288 gene, a map-based cloning strategy was implemented. Following the 

principle of linkage mapping (i.e. the closer a gene and a molecular marker are located to one 

another on a chromosome, the greater the chance that they will be inherited together as a 

unit) the genetic locus of IZS 288 was identified by means of scoring recombination events in 

the mapping population. The mapping population was derived through crossing IZS 288 

with that of the Ler-0 ecotype. Since IZS 288 has Col background, the number of 

recombination events is equivalent to the number of times the Ler-0 ecotype is found on a 

chromosome. This means, as the recombination frequency scored by a molecular marker gets 

smaller and smaller the closer it gets towards the location of the mutated gene. Accordingly, 

after analyzing 907 individual F2 plants the mutation was found to map on chromosome two 

between the CAPS marker Thy1 and the SSLP marker NGA361. Subsequent fine mapping 

using novel SNP markers further narrowed the genomic window of the mutation into 44.918 
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Kbp, which lay between the perl339 markers (located at 8,775,325bp) and perl9577 (located at 

8,820,243bp) within a contig of two bacterial artificial chromosome (BAC) clones (F11A3 and 

T13C7). 14 candidate genes located in this region were sequenced using genomic DNA of IZS 

288 plants as a template. Subsequent sequence analysis revealed a single nucleotide 

substitution (G1156- to - A1156) in the coding sequence of the AT2G20330 gene. This 

substitution resulted in the replacement of a conserved amino acid namely threonine at 

position 377 (T377) by an isoleucine (I377) residue (Fig.3.36).  

 

 

 
Figure 3.36. Positional cloning of IZS 288. A) Genetic mapping of IZS 288 using commercially available PCR-
based markers. Genetic region where the mutation is located is represented by a contig of three BAC clones 
(T2G17, F11A3 and T20). Numbers in brackets represent location of a marker on the chromosome. B) 
Diagrammatic representation of the gene At2g20330 which is composed of 8 exons. Exons and introns are 
represented by filled boxes and lines, respectively. IZS 288 carries missense mutation in the sixth exon where it 
led to the substitution of the 377th amino acid (threonine) by isoleucine. C) Multiple sequence alignment of the 
closest 10 homologues genes of At2g20330 (At2g20330, ARALYDRAFT_900383, Gmx_100815380, 
MTR_7g098900, RCOM_0541360, POPTR_573381, Vvi_9819, osa_4348832, SORBI_01g019930 and 
zma_100280725), red arrow indicates the amino acid that is mutated in IZS 288.  
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Furthermore, to ascertain the Zn hypersensitivity of IZS 288 resulted from the mutation of 

At2g20330, a complementation experiment was set up on IZS 288 using the WT At2g20330 

gene under the control of its own promoter as well as the coding sequence of At2g20330 

under the control of the cauliflower mosaic virus promoter (35S:At2g20330). Both constructs 

were able to restore WT phenotypes in IZS 288. This confirmed that the IZS 288 phenotypes 

were caused by the mutation in the At2g20330 gene (Fig.3.37). 

 

 

Figure 3.37. Complementation test using genomic fragment and cDNA of At2g20330 under 35S promoter. A) 
Diagram of constructs used for the complementation assay. Exons and introns are represented by filled boxes 
and lines, respectively. B) Pictures of agar plates with and without Zn on which WT, IZS 288 and the two 
transgenic lines carrying the complementation constructs are growing. As it can be seen both the short root 
phenotype as well as the Zn hypersensitivity was restored. White bars represent 2cm. 
 

In order to identify additional mutant alleles for the At2g20330 gene, three different T-DNA 

insertion lines (namely SALK_140479, SALK_038590 and SALK_065643) were obtained from 

the SALK T-DNA insertion collection (Alonso et al., 2003). The reported T-DNA insertion site 

in the SALK_140479 line was in the first exon of the gene (i.e. 10 bp downstream of the start 

codon); whereas in lines SALK_065643 and SALK_038590 it was in the promoter (i.e. 213bp 

upstream of the start codon) and 3' untranslated region of the gene (i.e. 296 bp down stream 
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of the stop codon), respectively (Fig. 3.38). Homozygous T-DNA insertion mutants were 

sought-after through PCR screening using a combination of gene specific primers and a T-

DNA left border–specific primers. The gene specific primers were designed in such a way 

that the forward and reverse primers flanked the T-DNA insertion site, thus a PCR product 

was formed only when there is no T-DNA insertion. In homozygous T-DNA insertion lines a 

PCR product is detected using the reverse gene specific primer and a left border T-DNA 

primer. Heterozygous lines (i.e. insertion in one of the pair chromosomes) would form both 

the WT PCR product and T-DNA insertion PCR product. On the first round of PCR screening 

carried out on 10 plants taken form each SALK lines no homozygous T-DNA insertion lines 

were detected (Fig. 3.39a). Assuming homozygous mutations in the At2g20330 gene might 

lead to embryo lethality; siliques from 3 individual plants from each SALK line were 

examined for aberrant embryo development. Since in Arabidopsis embryos within a single 

silique develop approximately at the same rate, individual embryos with aberrant 

development can be easily scored (Errampalli et al., 1991), however in case of all three SALK 

lines under investigation no such aberrant embryo development was observed (data is not 

included here). Subsequently, extensive screening was carried out on additional 30 

individuals of the SALK_140479 line (given that SALK_140479 line has the T-DNA insertion 

in the first exon of At2g20330, it is more likely to show stronger effect) and also a second gene 

specific primer pair obtained using the SALK institutes T-DNA primer design tool 

(http://signal.salk.edu/tdnaprimers.2.html) was included in the analysis. However, 

contradicting results were attained; where the analysis using the first pair of gene specific 

primers did not detect any homozygous lines, the second gene specific primer pair identified 

7 individual plants as homozygous lines (Fig. 3.39 b).  

 

 

 
 
Figure 3.38. A) Schematic structure of At2g20330 gene and inserted T-DNA. Exons and introns are 
represented by filled boxes and lines, respectively. T-DNA insert is not drawn to scale. The T-DNA insertion site 
in the SALK_065643 line is in the promoter region (i.e. 213bp upstream of the start codon), in SALK_140479 line 

it is in the first exon (i.e. 10bp down stream of the start codon) and in SALK_038590 line it is in the UTR region 
(i.e. 296 bp down stream of the stop codon). 



Results  

82 

A) 

 
B) 

 

 
Figure 3.39. A) Picture representation of gene specific primers for each T-DNA insertion lines and gel picture 
of PCR screening on 10 individuals of each lines. B) Gel pictures of PCR screening on additional 30 individuals 
of SALK_140479 line. White arrows indicate putative homozygous lines identified by the second primer pare in 
test. 
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In order to detect the effect of the T-DNA insertion on the integrity of the genomic sequence 

surrounding the insertion site, the transcript abundance of At2g20330 in four putative 

homozygous lines was quantified using quantitative real time PCR (qRT-PCR). Despite the 

fact that, within the genomic sequence the T-DNA insertion site and the binding site of the 

RT-PCR primers were further apart, no apparent difference in transcript level was observed 

among the WT and the four putatively homozygous lines (Fig. 3.40 a).  

 

In a different approach, all three T-DNA insertion lines were crossed with one of the IZS 288 

backcross lines (i.e. E1-1) and the first generation seeds were observed for possible 

phenotypes. In SALK_140479 and SALK_038590 lines, 33% (7 out of 21 individuals) and 43% 

(6 out of 14 individuals) of the F1 progenies respectively failed to germinate. These 

observations further supported the notion that complete knockout of the WD40 gene can 

cause embryo lethality. However, the ratio of non-germinated to germinating F1 seeds failed 

to accurately demonstrate Mendel's Law of Segregation (Fig. 3.40 b). 

 
 
Fig 3.40. A) Relative transcript levels (RTL) of the WD40 gene in roots of WT, IZS 288 and three putative 
homozygous T-DNA insertion lines (i.e. Salk14 2-3, 2-7 and 3-7) and one heterozygous line (2-9). RTL values are 
arithmetic means of three independent experiments and bars represent standard deviation. B) Pictures of agar 
plates with first generation progenies of a cross between E1-1 and three independent T-DNA insertion lines. 
Red arrows indicate seeds that failed to germinate. The ratio of non-germinated seeds in Salk14 line was 7/21 
and in Salk03 line it was 6/14. However in Salk06 line no such effect was observed. White bars represent 2cm. 
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3.2.4 Functional analysis and subcellular localization of the novel WD40 protein 

The At2g20330 gene is a member of WD40 protein family. WD-40 repeat (also known as beta-

transducin repeat) proteins got their name from ~40 amino acid motifs that often terminate in 

a tryptophan (W) - aspartic acid (D) dipeptide. WD40 repeats usually assume a 7-8 bladed 

beta-propeller fold. The WD40 protein family is a large protein family found in all 

eukaryotes. Members are implicated in a variety of functions ranging from signal 

transduction and transcription regulation to cell cycle control and apoptosis. Repeated WD40 

motifs act as a site for protein-protein interaction, and proteins containing WD40 repeats are 

known to serve as platforms for the assembly of protein complexes or mediators of transient 

interplay among other proteins (http://www.ebi.ac.uk/interpro/).  

 

The homologs of At2g20330 are found in a range of organisms from yeast 

(Schizosaccharomyces pombe) to plants and human (Fig.3.41). Moreover, there is a single 

orthologous gene per species and no paralogs within a species can be detected (Penkett et al., 

2006). However, in Arabidopsis thaliana as well as in most other species the function of this 

gene is not yet described. Among the very few that have been functionally characterized is 

the homologous gene in Caenorhabditis elegans known as gastrulation defective (gad-1), which 

is required maternally for gastrulation initiation during early embryogenesis (Knight and 

Wood, 1998). Since information regarding At2g20330 and putative orthologs was quite 

limited, it was useful to determine functionality of the gene in other model eukaryotic 

organisms. For this purpose three RNAi (RNA-mediated gene interference) lines, namely 

VDCR_27457, VDCR_106320 and VDCR_41441 carrying constructs that target the Drosophila 

melanogaster homolog (CG5543), were obtained from the Vienna Drosophila RNAi center 

(http://stockcenter.vdrc.at). The genome-wide library of Drosophila melanogaster RNAi 

transgenes carry short gene fragments cloned as inverted repeats expressed using the binary 

GAL4/UAS system enabling the conditional inactivation of gene function in specific tissues 

of the intact organism (Dietzl et al., 2007). Progenies of crosses set up between the three RNAi 

lines and five different GAL4 driver lines kindly provided by Dr. Stefan Heidmann showed 

different RNAi phenotypes. Among the five driver lines three drivers activate the expression 

of a hairpin RNA (hpRNAs) in the eye (i.e. eyeless-GAL4 (ey-GAL4), glass multiple reporter-

GAL4 (gmr-GAL4) and sevenless-Gal4 (sev-GAL4)), one driver has a wing directed expression 

(i.e. MS 1096-GAL4) and the last driver has ubiquitous expression (i.e. daugtherless-GAL4 

(da-GAL4)). Two of the UAS-RNAi transgenes (VDCR_27454 and VDCR_106320) when 
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expressed under the control of the da-GAL4 driver caused a lethal phenotype, whereas when 

expressed under the control of the ey-GAL4 driver resulted in a “missing eye” phenotype. In 

the case of MS 1096-GAL4 driver that has “X” linked expression showed strong wing 

deformity in all hatched female files. In the third UAS-RNAi line (VDCR_41441) sterile 

female flies were hatched when expressed under the control of the da-GAL4, but no visible 

phenotype was detected when the hairpin RNA was activated by the ey-GAL4 driver and MS 

1096-GAL4. Meanwhile, the remaining two GAL4 drivers (sev-GAL4 and gmr-GAL4) did not 

create any visible phenotypes in all three RNAi lines (Tab. 3.6). In short the knock-down of 

the CG5543 gene (a homolog of the Arabidopsis At2g20330 gene) led to lethal or semi-lethal 

(sterile progeny) phenotype when expressed under the control of a driver with ubiquitous 

expression. 

A) 

 

B) 

 

Figure 3.41. A) Phylogenetic tree showing AT2G20330 and 14 putative orthologs. Multiple protein sequence 
alignment was created using COBALT (Papadopoulos and Agarwala, 2007). B) Phylogenetic pattern 
representing different orthologs of AT2G20330. In each genome no paralogs were detected. Orthologous 
proteins were retrieved using YOGY (Penkett et al., 2006).  
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Table 3.6 Three RNAi lines in Drosophila melanogaster expressed under the control of five different drivers. The 
first row represents the characteristic feature of the parental lines. The third row, in case of the first two lines, 
shows a missing eye on a detached head. The fifth row carries pictures of severely deformed wings from female 
files. 
 

 
 

 

Beyond the established structural homologs of At2g20330, an experiment was conducted to 

identify a possible functional homology using the Xenopus laevis WDR70 gene (i.e. putative 

orthologous gene). Inferred from EST profiles the WDR70 gene in Xenopus shows higher level 

of expression in the testis and at early embryonic development (i.e. at gastrula stage) 

(http://www.xenbase.org). Similarly, in Arabidopsis AT2G20330 shows higher level of 

expression in mature pollen grains and imbibed seeds (https://www.genevestigator.com). 

Therefore, an attempt was made to rescue the mutant phenotype of IZS 288 using the 

Xenopus WDR70. A construct (i.e. 35S:XlaWDR70) was created using the coding sequence of 

Xenopus WDR70 (kindly provided by Prof. Dr. Olaf Stemmann) under the control of the 

cauliflower mosaic virus promoter. However transgenic plants carrying this construct did not 

show rescuing of the mutant phenotype of IZS 288 (Fig. 3.42). 

 

RNAi lines  
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Figure 3.42. Pictures of agar plates, with and without Zn treatment, on which transgenic lines (in IZS 288 
background) carrying a construct containing cDNA XlaWDR70 under the control of 35S promoter and the WT 
Colombia as well as IZS 288 were growing. White bars represent 2cm. 
 

 

One distinctive feature about the missense mutation that occurred in IZS 288 (i.e. the 377th 

threonine was replaced by isoleucine) was that the replaced threonine belongs to a group of 

amino acids predicted as phosphorylation sites in the protein (http://phosphat.mpimp-

golm.mpg.de/). Therefore, the observed phenotypes of IZS 288 could have been caused by 

disruption in the phosphorylation state of the protein caused by loss of a particular 

phosphorylation site. In order to test this hypothesis, two point mutations were introduced 

into the genomic sequence of At2g20330 that created two alternative constructs. In the first 

construct where the 377th threonine is substituted by serine (T377S) the protein is presumed 

to maintain its phosphorylation site. In the second construct where alanine is substituted for 

the 377th threonine (T377A), the protein is believed to keep its overall structure intact but lose 

the ability to be phosphorylated at this particular site. This construct serves as a negative 

control for the hypothesis that proposes disruption of the phosphorylation state of the 

protein as a reason for the phenotypes of IZS 288. Homozygous transgenic lines (in IZS 288 

background) carrying either one of the two constructs were tested for phenotypic rescue. 

However, both constructs were able to rescue the short root and Zn hypersensitivity 

phenotypes of IZS 288 (Fig. 3.43). Therefore, it is less likely that the effects of the IZS 288 

mutation are due to loss of a phosphorylation site.  
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Figure 3.43. Picture of agar plate with and without Zn treatment on which transgenic lines (in IZS 288 
background) carrying a construct made of cDNA At2g20330 with T377Ala and T377Ser substitutions under the 
control of 35S promoter and the wild type Col were growing. White bars represent 2cm. 
 

Meanwhile, the localization of the IZS 288 protein was investigated using a transgenic line 

that was used in the complementation assay (i.e. 35S:At2g20330 in IZS 288 background). In 

this transgenic line the cDNA of At2g20330 was expressed under the promoter of the 

cauliflower mosaic virus (35S), and had green fluorescent protein (GFP) fused in frame to its 

C terminus. The detected GFP signal colocalized with that of the DAPI signal coming from 

the nucleus. Therefore, based on this observation subcellular localization IZS 288 protein is in 

the nucleus (Fig.3.44). 

 

Figure 3.44. Root cells under confocal microscope A) Propidium iodide stating of root tissue, B) DAPI 
staining of the same root tissue shown in panel A, C) At2G20330-GFP signal of the same root tissue shown in 
panel A, D) Merged image of panels A, B, and C. Note that the GFP signal colocalizes with the DAPI signal in 
the nucleus.  

100µM 
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3.2.5 Microarray analysis 

To determine the effect of the IZS 288 mutation on global gene expression, a microarray 

experiment was carried out on hydroponically grown 4-week-old roots of IZS 288 and wild-

type plants. In parallel, a group of plants were exposed to chilling stress (4°) for 24 hours in 

order to compare the transcript levels of the two genotypes under chilling stress.  

 

The comparative transcriptome of the two genotypes under optimal growing condition 

identified 183 genes that showed statistically significant alteration of transcript levels i.e. 

exceeding a 2-fold difference threshold and adjusted P-value cutoff of 0.05. Among these 

differentially expressed genes the three most up-regulated genes in IZS 288 were: starch 

biosynthesis gene QUA-QUINE (QQS) (AT3G30720), ankyrin repeat-containing protein 

(AT5G50140) and CC-NBS-LRR class disease resistance protein (At5g43730); whereas the 

three most down-regulated genes were thioredoxin H8 (AT1G69880), RPM1-interacting 

protein 4 (RIN4) (AT3G48450) and Core-2/I-branching beta-1,6-N-

acetylglucosaminyltransferase family protein (AT1G10880). For further investigation these 

differentially expressed genes were clustered into 5 groups using K-mean clustering 

algorithm and the resulting gene lists were analyzed for significantly enriched GO terms 

using Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) (Zheng and Wang, 

2008) and with adjusted p value (false discovery rate (FDR) cut off 0.05.  

 

In addition to the expression difference between the two genotypes at optimal growing 

condition, peculiar character of the genes included in the first cluster was they showed 

chilling stress induced expression only in WT roots. These genes are mainly involved in three 

biological processes: oxidation-reduction process, sulfur assimilation and triterpenoid metabolic 

process. The second cluster consisted of genes that are constitutively active in WT but not in 

IZS 288. Oxidation-reduction process was the only biological process enriched in this group. 

The third cluster contained genes that showed chilling stress induced expression only in IZS 

288 roots. This group included genes that take part in responses to wounding, chitin, and 

jasmonic acid stimulus. Two cold acclimation genes ZAT12 (AT5G59820) and LTI30 

(AT3G50970), were also found in this group. The unique feature of the genes in the fourth 

cluster was that they showed lower level of transcript abundance in WT at optimal growing 

conditions. The main biological process represented in this group is innate immune response 

and the molecular function of transmembrane signaling receptor activity. The fifth cluster is 
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made up of genes that were constitutively active only in IZS 288 at optimal growth condition. 

Genes included in this group are mainly involved in programmed cell death (apoptotic) process. 

Additionally, in this group five (i.e. AT5G43040, AT3G46800, AT5G02350, AT5G02360, 

AT4G02540) Zn binding, cysteine/histidine-rich C1 domain-containing proteins were 

included that perform protein-disulfide reductase activity (Fig. 3.45 and Tab. 3.7).  

 

 

 

 

 
Figure 3.45. Heat map of scaled expression values of 183 genes that are differential expressed in IZS 288 roots 
at optimal growing condition compared to WT roots and clustered into five groups by K-mean algorithm using 
the Pearson correlation coefficient as the distance metrics. The average of three unlogged expression values for 
each genotype and stress condition were used (i.e. ColK represents the average transcript level of three 
replicates of WT at optimal growing condition, whereas Col4 represents the average transcript level after 24 
hour chilling (4°) stress. The same is true for 288K and 2884).  
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Table 3.7. Highly enriched gene ontology terms in 183 genes that were differential expressed in IZS 288 roots 
at optimal growing condition and clustered into five groups by K-mean algorithm using the Pearson correlation 
coefficient as a distance metrics. The enrichment analysis was carried out using the Gene Ontology Enrichment 
Analysis Software Toolkit (GOEAST) (Zheng and Wang, 2008). The header ‘level’ represents the longest path 
connecting back to the root of the GO hierarchical tree and adjusted p value or false discovery rate (FDR) was 
calculated using Benjamini Yekutieli (2001) method. Cluster -1 is made up of genes that showed cold induced 
expression only in WT, Cluster-2 contains genes that are constitutively active in WT but not in IZS 288, Cluster-3 
contains genes that showed chilling stress induced expression only in IZS 288, Cluster-4 contains genes that 
showed lower level of transcript abundance in WT at optimal growing conditions and Cluster-5 is composed of 
genes that were constitutively active only in IZS 288. 
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The second set of differentially expressed genes was identified based on comparative 

transcriptome of the two genotypes after being exposed to chilling stress. After chilling stress 

180 genes showed statistically significant (≥ 2-fold difference threshold and adjusted P-value 

cutoff of 0.05) variation of transcript level between the two genotypes. The list of genes 

showing the highest level of increases in IZS 288 include uridine diphosphate 

glycosyltransferase 74E2 (AT1G05680), sulphotransferase 12 (At2g03760) and MATE efflux 

family protein (AT2G04050), whereas the list of down-regulated genes with the highest fold 

difference include methionine sulfoxide reductase B5 (AT4G04830), sulfate transporter 1.1 

(AT4G08620) and thalianol hydroxylase/cytochrome 450 708A2 (AT5G48000).  
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After K-mean clustering of the 180 genes into five groups GO term enrichment analysis was 

carried out for each cluster. The first cluster consisted of genes that showed transcriptional 

repression due to chilling stress only in WT roots. However, statically significant enrichment 

of GO terms was not observed in this cluster group. The second cluster included genes that 

were constitutively active in both genotypes but transcriptionally repressed in IZS 288 after 

chilling stress. RNA polyadenylation was the only biological process enriched in this group. 

The third cluster contained genes that are constitutively up-regulated under both optimal 

and chilling stress condition in WT, but due to chilling stress showed transcriptional 

repression in IZS 288. In this group also no apparent enrichment of GO terms of biological 

process was observed. The fourth cluster was made up of genes that showed chilling stress 

induced transcriptional activation only in IZS 288. Some of the biological processes enriched 

in this group are regulation of transcription (DNA-dependent), regulation of cellular biosynthetic 

process, particularly regulation of RNA biosynthetic process, and response to ethylene stimulus. The 

fifth cluster is composed of genes that showed transcriptional induction due to chilling stress 

in WT roots only. Genes included in this group are implicated in biological processes such as 

sulfur transport, root development, cellular lipid metabolic process and cysteine biosynthetic process 

(Fig. 3.46 and Tab. 3.8).  

 

Figure 3.46. Heat map of scaled expression values of 180 genes that are differential expressed in IZS 288 roots 
after 24 hours of chilling stress compared to WT roots after chilling stress and clustered into five groups by K-
mean algorithm using the Pearson correlation coefficient as the distance metrics. The average of three unlogged 
expression values for each genotype and stress condition were used (i.e. ColK represents the average transcript 
level of three replicates of WT at optimal growing condition, whereas Col4 stands for the average transcript 
level after 24 hour chilling (4°) stress. The same is true for 288K and 2884). 
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Table 3.8. Highly enriched gene ontology terms in 180 genes that were differential expressed in IZS 288 roots 
after chilling stress and clustered into five groups by K-mean algorithm using the Pearson correlation coefficient 
as a distance metrics. The enrichment analysis was carried out using the Gene Ontology Enrichment Analysis 
Software Toolkit (GOEAST) (Zheng and Wang, 2008). The header ‘level’ represents the longest path connecting 
back to the root of the GO hierarchical tree and adjusted p value or false discovery rate (FDR) was calculated 
using Benjamini Yekutieli (2001) method. Cluster -1 is made up of genes that showed transcriptional repression 
due to chilling stress only in WT roots, Cluster-2 contains genes that are constitutively active in both genotypes 
but transcriptionally repressed in IZS 288 after chilling stress, Cluster-3 contains genes that are constitutively 
up-regulated under both optimal and chilling stress condition in WT, but showed transcriptional repression in 
IZS 288 under chilling stress, Cluster-4 contains genes that showed chilling stress induced transcriptional 
activation only in IZS 288 and Cluster-5 is composed of genes that showed transcriptional induction due to 
chilling stress in WT roots only. 
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The third sets of differentially expressed genes were identified through a comparison of the 

individual transcriptional responses of WT and IZS 288 roots to chilling stress. Chilling stress 

induced a two fold or more change in the transcript abundance of 1992 and 2560 genes in WT 

and IZS 288 roots, respectively. As shown in the Venn diagram of Fig. 3.47 the degree of 

overlap between the chilling response of WT and IZS 288 roots was huge i.e. only 29% and 

45% percent of the transcriptional responses to chilling are unique to WT and IZS 288 roots, 

respectively. Meanwhile, the comparison of these unique gene lists (i.e. 1142 genes 

differentially expressed only in IZS 288K/IZS 2884° and 574 genes differentially expressed 

only in ColK/Col4°) with that of previously determined lists (i.e. 183 genes differentially 

expressed in the WT versus IZS 288 comparison at optimal condition (ColK/IZS 288K) and 

the 180 genes identified after chilling stress (Colk4°/IZS 2884°) identified very littlie overlaps. 

Therefore, not to overlook the details of the variation in chilling response between the two 

genotypes, further investigations were carried out on these data sets aiming to uncover the 

causes for the chilling hypersensitivity phenotype of IZS 288.  

 

Figure 3.47. A) Venn diagram showing overlap between chilling responsive genes in WT roots (1992) and in 
IZS 288 roots (2560). B) Overlap between exclusive chilling responsive genes in WT roots (574) and 
differentially expressed genes of IZS 288 at optimal growing condition (183) and after chilling stress (180). C) 
Overlap between exclusive chilling responsive genes in IZS 288 roots (1142) and differentially expressed genes 
of IZS 288 at optimal growing condition (183) and after chilling stress (180). 
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Figure 3.48. Heat map of scaled expression values of 1992 genes that are chilling responsive in WT roots after 
24 hours of chilling stress and clustered into five groups by K-mean algorithm using the Pearson correlation 
coefficient as the distance metrics. The average of three unlogged expression values for each genotype and 
steers condition were used (i.e. ColK represents the average transcript level of three replicates of WT at optimal 
growing condition, whereas Col4 stands for the average transcript level after 24 hour chilling (4°) stress. The 
same is true for 288K and 2884). 
 

Following the same methods of analysis first the 1992 of genes that showed transcriptional 

response in WT were clustered into 5 groups and each cluster was investigated for GO term 

enrichments. The first cluster consisted of genes that showed similar response to chilling 

stress in both genotypes but at optimal growing conditions they were constitutively up-

regulated only in WT. Genes included in this category were involved in response to heat and 

response to reactive oxygen species. The second cluster of genes showed similar chilling induced 

transcriptional repression in both WT and IZS 288 roots. Photosynthesis and light harvesting 

were the main biological processes represented by this group. The third cluster consisted of 

genes that showed chilling stress induced expression in both genotypes. Standard biological 

process implicated in cold response process such as cold acclamation, response to water 

deprivation and phenylpropanoid biosynthetic process were found in this group. The fourth 

cluster is composed of genes that showed strong induction of expression as a result of 

chilling stress only in IZS 288 roots. The biological process enriched in this group included 

carbohydrate biosynthetic process, trehalose biosynthetic process and most importantly response to 
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cold, water deprivation and abscisic acid stimulus are also implicated in this group. Well 

established cold responsive genes of Arabidopsis genome like C-repeat-dehydration 

responsive element (DRE) Binding Factors 1B/ CBF1 (AT4G25490), CBF2 (AT4G25470), Cold 

Regulated protein 15 A/ COR15A (AT2G42540), COR15B (AT2G42530) and COR27 

(AT5G42900) were among this group showing higher transcript level in IZS 288 than in WT 

roots after chilling stress. The fifth cluster is made up of genes that showed strong induction 

of expression as a result of chilling stress only in WT roots. Genes included in this group 

were involved in metabolic process of tryptophan, phenylpropanoids, triterpenoids, flavonoids and 

lignins. Other biological processes enriched in this group were response to temperature stimulus, 

defense response by callose deposition in cell wall and auxin transport (Fig. 3.48 and Appendix. list-

4).  

 

 

Figure 3.49. Heat map of scaled expression values of 2560 genes that are chilling responsive in IZS 288 roots 
after 24 hours of chilling stress and clustered into five groups by K-mean algorithm using the Pearson 
correlation coefficient as the distance metrics. The average of three unlogged expression values for each 
genotype and steers condition were used (i.e. ColK represents the average transcript level of three replicates of 
WT at optimal growing condition, whereas Col4 stands for the average transcript level after 24 hour chilling (4°) 
stress. The same is true for 288K and 2884). 
 

Meanwhile, clustering and further analysis of the 2560 genes that showed transcriptional 

response to chilling stress in IZS 288 was also carried out into 5 groups (Fig. 3.49 and 
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Appendix. list-5), but since two groups showed the most striking transcriptional variation the 

focus was directed only in these two groups. The first group (i.e. cluster 2 on Fig. 3.49) 

showed strong induction of expression only in IZS 288 as a result of chilling stress. This 

group of genes showed similar expression pattern to that of the fourth cluster of genes 

described earlier during the analysis of chilling response in WT roots. However, in this 

particular cluster additional genes involved in transcriptional regulation and RNA biosynthesis 

process have been identified. Most importantly, 10 cold response genes (i.e. AT2G38470, 

AT3G22370, AT3G50260, AT5G59820, AT5G50720, AT3G49530, AT4G03430, AT4G34150, 

AT5G43760, and AT2G40140) were also found in this group. Whereas, the second group (i.e. 

cluster 5 on Fig. 3.49) of genes showed stronger induction of transcript levels after chilling 

stress in WT roots than in IZS 288. They were also known to be involved in cold response and 

acclimation. Some of these genes were KIN1 (AT5G15960), Low Temperature Induced 

30/LIT30 (AT3G50970), Early Response to Dehydration 10/ ERD10 (AT1G20450) and 

putative low temperature and salt responsive protein (At4g30650).  

 

3.2.5.1 Differentially expressed and chilling responsive genes in IZS 288 

The comparative analysis of the root transcriptome of WT and IZS 288 in both optimal 

growing condition and after chilling stress generated a large list of genes taking part in a 

broad spectrum of biological processes. This list included genes that are described in cold 

response and cold acclimation process of plants. Since IZS 288 is predisposed to chilling 

sensitivity, looking further into these differentially expressed cold response and cold 

acclimation genes could lead to understand the underlying cause of the chilling 

hypersensitive phenotype of IZS 288. The overall analysis identified 13 cold acclamation 

genes and 55 cold responsive genes as differentially expressed between WT and IZS 288. 

Within the cold acclamation genes strong expressional variation was observed in the 

transcript values of the ZAT 12 gene. Under optimum condition the transcript level of ZAT12 

in IZS 288 roots was lower than that of WT but after chilling stress higher transcript level was 

observed in IZS 288 roots. In contrast, genes like cold regulated 413 plasma membrane 

1/COR431-PM1 (AT2G15970), cold regulated 314 thylakoid membrane 2/COR314-TM2 

(AT1G29395) and Early Response to Dehydration 10/ ERD10 (AT1G20450) were showing 

comparable amount of transcript levels in both genotypes before being exposed to chilling 

stress, but after chilling stress their expression level in IZS 288 was lower than that of the WT 

(Fig. 3.50).  
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Figure 3.50. Heat map of 13 cold acclamation genes that are differentially expressed in IZS 288 roots. 
Unlogged fold changes between WT (Col) and IZS 288 at optimal (K) and after chilling stress (4°) conditions are 
shown. ColK/IZS288 represents the fold difference in transcript level between WT and IZS 288 at optimal 
growing condition, whereas Col4°/IZS2884° stands for the fold difference in average transcript level after 24 
hours chilling (4°) stress. ColK/Col4° shows fold changes in WT roots as a result of chilling stress and 
IZS288K/IZS2884°° shows the fold changes in IZS 288 as a result of chilling stress. 
 
 
Furthermore, among the 55 differentially expressed cold response genes identified so-far 

Low Temperature Induced / LIT30 (AT3G50970), LIT78 (AT5G52310), Galactinol Synthase 

3/ GolS3 (AT1G09350), C-repeat-dehydration responsive element (DRE) Binding Factors 3 

/CBF3/DREB1A (AT4G25480), stress-induced protein KIN1 (AT5G15960) & KIN2 

(AT5G15970) and putative low temperature and salt responsive protein (AT4G30650) showed 

moderate up-regulation in IZS 288 roots at optimal growing condition, however, after 

chilling stress the accumulation of their transcript levels was lower than what is in WT roots. 

On the other hand, Cold-Regulated protein 15B /COR15B (AT2G42530), COR27 

(AT5G42900), CBF1 (AT4G25490), Salt Tolerance Zinc finger STZ/ZAT10 (AT1G27730) and 

pre-mRNA-processing factor 6/SAT1 (AT4G03430) showed the highest level of transcript 

level in IZS 288 after chilling stress (Fig. 3.51). On the contrary, ethylene-responsive 

transcription factors RAP2-1 (AT1G46768) and RAP2-6 (AT1G43160), inducer of CBF 

expression 1/ICE1 (AT3G26744) and outer plastid envelope protein 16-1/OEP16-1 
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(AT2G28900) showed similar transcript level in both genotypes at optimal growing condition 

but got strongly induced in WT roots after chilling stress (Fig. 3.51).  

 

 

Figure 3.51. Heat map of 28 cold responsive genes that are differentially expressed in IZS 288 roots. Unlogged 
fold changes between WT (Col) and IZS 288 at optimal (K) and after chilling stress (4°) conditions are shown. 
ColK/IZS288 represents the fold difference in transcript level between WT and IZS 288 at optimal growing 
condition, whereas Col4°/IZS2884° stands for the fold difference in average transcript level after 24 hours 
chilling (4°) stress. ColK/Col4° shows fold changes in WT roots as a result of chilling stress and 
IZS288K/IZS2884°° shows the fold changes in IZS 288 as a result of chilling stress. 
 
 

3.2.5.2 Differentially expressed and Zn homeostasis related genes in IZS 288 

One of the interesting observations made about the IZS 288 transcriptome was that a number 

of sulfur metabolic genes were showing different expression pattern than what they usually 

show in WT roots. This discrepancy was observed under both optimal growing conditions as 

well as after chilling stress. Sulfate adenylyltransferase /APS4 (AT5G43780) and molybdate 

transporter 1/ MOT1 (AT2G25680) showed twofold up-regulations in IZS 288 with and 
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without chilling stress, whereas sulfate transporter 1.1 /SULTR1.1 (AT4G08620), serine 

acetyltransferase /SAT-106 (AT2G17640), 5'-adenylylsulfate reductase 3/APR3 (AT4G21990) 

showed lower transcript level in IZS 288 under both conditions. On the other hand, 

bifunctional 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-

phosphatase/SAL1 (AT5G63980), tryptophan N-hydroxylase/ CYP79B2 (AT4G39950) and 

putative 2-oxoacid dependent dioxygenase (AT2G25450) showed induction by chilling stress 

in WT roots but in case of IZS 288 roots no similar response was observed. Uniquely, at 

optimal growing condition the roots of IZS 288 showed significantly lower transcript level of 

1-aminocyclopropane-1-carboxylate synthase 7/ACS7 (AT4G26200), however, after chilling 

stress higher level of transcript abundance was observed in IZS 288 roots (Fig. 3.52).  

 

 

 

Figure 3.52. Heat map of 22 genes involved in sulfur transport and sulfur assimilation process, which are 
differential expressed in IZS 288 roots. Unlogged fold changes between WT (Col) and IZS 288 at optimal (K) and 
after chilling stress (4°) conditions are shown. ColK/IZS288 represents the fold difference in transcript level 
between WT and IZS 288 at optimal growing condition, whereas Col4°/IZS2884° stands for the fold difference 
in average transcript level after 24 hours chilling (4°) stress. ColK/Col4° shows fold changes in WT roots as a 
result of chilling stress and IZS288K/IZS2884°° shows the fold changes in IZS 288 as a result of chilling stress. 
 

AT5 G4 3 7 8 0  

AT2 G2 5 6 8 0  

AT2 G1 7 6 4 0  

AT2 G2 6 4 0 0  

AT1 G0 1 4 8 0  

AT2 G2 2 3 3 0  

AT4 G2 1 9 9 0  

AT4 G0 8 6 2 0  

AT1 G2 3 0 9 0  

AT4 G0 4 6 1 0  

AT2 G3 6 8 8 0  

AT1 G6 2 1 8 0  

AT5 G1 3 5 5 0  

AT4 G1 3 7 7 0  

AT5 G6 3 9 8 0  

AT4 G3 9 9 5 0  

AT2 G2 5 4 5 0  

AT1 G7 4 1 0 0  

AT4 G1 4 0 3 0  

AT4 G1 4 0 4 0  

AT4 G3 1 5 0 0  

AT4 G2 6 2 0 0  



Results  

103 

In an attempt to explain the Zn hypersensitivity phenotype of IZS 288 a comparison was 

made between the differentially expressed genes of IZS 288 (i.e. 69 genes were up-regulated 

and 114 genes were down-regulated) and three previously reported zinc-responsive sets of 

genes. The first set of Zn responsive genes were identified through exposure to excess (30 µM 

ZnSO4) Zn concentration (Talke et. al., 2006); the second set included genes responding to 

both excess concentration (25 µM ZnSO4) and Zn deficient condition (van de Mortel et. al., 

2006) and the third set was identified using iTRAQ (isobaric tags for relative and absolute 

quantification)-based quantitative proteomics approach conduced on Arabidopsis roots grown 

on Murashige and Skoog (MS) medium supplemented with 300 µM ZnSO4 (Fukao et. al., 

2011). Considerable number of overlaps was observed between the differentially regulated 

genes of IZS 288 and the first two data sets (Tab. 3.9). Particularly, MTPA1 (AT3G61940) and 

NAS4 (AT1G56430), which are among well established Zn deficiency responsive genes, were 

significantly down-regulated in IZS 288. Interestingly, BHLH039 (AT3G56980), a 

transcription factor implicated in iron homeostasis, which gets induced by excess Zn 

concentration, was also down-regulated in IZS 288. The same is true for R2R3 MYB 

transcription factor/ MYB 15 (AT3G23250) and jasmonate-zim-domain protein 8 /JAZ8 

(AT1G30135). On the other hand, 1-aminocyclopropane-1-carboxylate synthase 2/ ACS2 

(AT1G01480) and ethylene-responsive transcription factor ERF071 (AT2G47520) that gets 

repressed by Zn deficiency were down-regulated in IZS 288. However, only LIT 30 

(AT3G50970) was found in both the third Zn responsive data set (Fukao et al., 2011) and in 

the differentially expressed genes of IZS 288. In both data sets LIT30 showed strong 

induction. 
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Table 3.9. Overlap between the 183 genes that were differential expressed in IZS 288 roots at optimal growing 
condition and three previously reported Zn responsive genes sets. Blue color represents down-regulation 
whereas yellow color stands for up-regulation of genes.  

 

Additionally, using the plant gene set enrichment analysis toolkit /PlantGSEA (Yi et. al., 

2013) ranking of associations between the differentially expressed genes of IZS 288 and 20,290 

gene sets that are available in the PlantGSEA platform was performed. Important 

associations were observed between the differentially expressed genes of IZS 288 and gene 

sets representing response to nutrient availability, phytohormones biosynthesis and their 

mediated signaling pathways, response to abiotic stress like cold and hypoxia and long day 

photoperiodism (Tab. 3.10).  
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Table 3.10. Overlap between the differential expressed genes in IZS 288 roots and different gene sets hosted 
on the ‘PlantGSEA’ platform (www. http://structuralbiology.cau.edu.cn/PlantGSEA/). The header title 
‘category’ represents sources of data sets i.e. ‘LIT’ for literature and GO term categories ‘BP’ for biological 
process and ‘CC’ for cellular component. False discovery rate (FDR) was calculated using Benjamini Yekutieli 
(2001) method. 
 

 

 

Among the overlapping genes of IZS 288 and the gene sets representing different biological 

processes, glutaredoxin-C9/ROXY19/GRX480 (AT1G28480) and WRKY transcription factor 

40 (AT1G80840) showed the highest frequency of occurrence among the gene sets (Tab. 3.11). 

Glutaredoxin-C9/ROXY19/GRX480 is a member of the glutaredoxin family that regulates 

protein redox state and its expression level is responsive to different phytohormones and 

stress conditions. It is speculated to be involved in the cross-talk between the salicylic acid 

(SA) signaling pathway and the jasmonic acid signaling pathway (Zander et. al., 2012). 

WRKY40 is involved in resistance to a variety of pathogens through a complex interaction 

with other WRKY transcription factors. It has also been shown that WRKY40 serves as a 

repressor of ABA signaling and serves as a regulator of stress responses of mitochondrial 

proteins (van Aken et. al., 2013).  
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Table 3.11. List of overlapping genes between differential expressed genes in IZS 288 roots and different gene 
sets representing various biological process (gene ontology terms) hosted on the ‘PlantGSEA’ platform (www. 
http://structuralbiology.cau.edu.cn/PlantGSEA. Turquoise color represents the presence of the gene in the 
gene set.  
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Focusing more on the overlap between IZS 288 gene set and Fe deficiency responsive genes 

(Dinneny et al., 2008), 87% of the overlapping genes including transcription factor BHLH039 

(AT3G56980) and ethylene-responsive transcription factor ERF071 (AT2G47520) showed 

opposite expression pattern. The only genes that showed similar expression pattern (i.e. 

induction) in both gene sets were phloem protein 2-like A6 (AT5G45070), phloem protein 2-

like A8 (AT5G45080), pectinesterase 41 (AT4G02330) and non-specific lipid-transfer protein 5 

(AT3G51600). Similarly, 76% of the overlapping genes between selenium (Se) responsive 

gene set and IZS 288 gene set showed opposing pattern of expression. Among the genes that 

showed similar pattern of expression in both gene sets senescence-associated protein/ SEN1 

(AT4G35770), transcription factor reveille 2 /RVE2 (AT5G37260) and E3 ubiquitin protein 

ligase /ATL23 (AT5G42200) showed repression, while CBF3/DREB1A (AT4G25480) and 

pectinesterase 41 (AT4G02330) showed induction. Uniquely, all of the overlapping genes (i.e. 

6) between arsenic (As) responsive genes and IZS 288 gene set showed repression of 

expression (Tab.3.12). 

Table 3.12. List of overlapping genes between differential expressed genes in IZS 288 roots and Fe, Se and As 
responsive gene sets hosted on the ‘PlantGSEA’ platform. Blue color stands for repression and yellow color 
represents induction of a gene. (www. http://structuralbiology.cau.edu.cn/PlantGSEA).  
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Furthermore, additional overlaps were observed between IZS 288 gene set and gene sets of 

various established mutant lines. Particularly, the mutant lines with defective 

ARGONAUTE1 /AGO1 (AT1G48410) and AUXIN RESPONSE FACTOR2 /ARF2 

(At5g62000) showed the highest number of overlapping genes (Tab. 3.13). ARGONAUTE1 is 

one of the 10 argonaute proteins in Arabidopsis that are involved in posttranscriptional gene 

silencing (Kurihara et. al., 2009). The overlapping genes of ago1-25 and IZS 288 showed 

contrasting pattern of expression (i.e. they were induced in ago1-25 but showed repression in 

IZS 288). In case of ARF2, one of the 22 auxin response factor gene family in Arabidopsis is 

presumed to have a repressor role on auxin induced genes (Vert et. al., 2008). Here also the 

majority of the overlapping genes (77%) showed contrasting expression pattern (i.e. they 

were induced in the loss-of-function arf2 but showed repression in IZS 288). Among the 

remaining 23% of genes that showed similar pattern of expression (i.e. repressed in both gene 

sets) are sulfur deficiency induced 1/ ATSDI1 (AT5G48850) and 5'-adenylylsulfate reductase 

3/ APR3 (AT4G21990) genes. Interestingly, four genes up-regulated in inducer of CBF 

expression 1 /ice1 (AT3G26744), a mutant defective in an upstream transcription factor 

required for chilling tolerance, also showed up-regulation in IZS 288 (Lee et. al., 2005). 
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Table 3.13. List of overlapping genes between differential expressed genes in IZS 288 roots and gene sets 
resenting ago1, camata3, arf2, sol2, pkl, ice1 and slim1 mutants hosted on the ‘PlantGSEA’ platform (www. 
http://structuralbiology.cau.edu.cn/PlantGSEA. Blue color stands for repression and yellow color represents 
induction of a gene. 
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Finally, quantitative real-time PCR (qRT-PCR) was used to confirm the results of the 

microarray analysis for selected representative genes. The transcript level of six genes, i.e. 

QUA-QUINE STARCH /QQS (AT3G30720), nicotianamine synthase 4 /NAS4 (AT1G56430), 

metal tolerance protein A1/MTPA1 (AT3G61940), C-repeat-binding-factor 3 CBF3/ DREB1A 

(AT4G25480), RPM1-interacting protein 4 /RIN4 (AT3G48450) and the WD40 domain 

containing protein (i.e. the mutated gene in IZS 288), were analyzed in triplicate samples and 

the relative transcript levels (RTL) were determined. Except for CBF3 that showed larger 

difference in qRT-PCR, the differences in transcript values observed between the two 

genotypes (WT and IZS 288) and stress condition (at optimal condition and after chilling 

stress) were more or less equivalent in both qRT-PCR and microarray read outs (Fig. 3.14). 

Table 3.14. A) Relative transcript levels (RTL) of six different genes determined by qRT-PCR and unlogged 
expression values from the microarray experiment. RTL values were expressed relative to EF1l and are 
arithmetic means ±SD of three independent experiments. B) Fold differences in transcript levels between the 
two genotypes and stress conditions determined by qRT-PCR and microarray analysis. 
A) 

 

B) 
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3.3 Understanding the link between flavonoids and heavy metal ions 

The root length of the five tt mutants on the specified media without the inclusion of heavy 

metal ions (Fig 3.53-55) were more or less comparable to that of the wild type (Ler-0) root 

length. However, tt7 showed wide range of variation among seedlings grown in the same 

experimental condition as well as between experimental replicates. When it comes to 

tolerance towards heavy metal stress, the tt mutants demonstrated different levels of 

tolerance.  

 
Figure 3.53. Zn hypersensitivity response of tt mutants. Vertical bars represent the average root length of 30 
three weeks old seedlings grown on vertical agar plates treated with 40, 70 and 100 µM ZnSo4. At control 
condition (K) root length was comparable for all different lines. However, at higher zinc concentration tt4 and 
tt7 showed reduction in root length. (Different letters represent significantly different means)  
 

The tt4 (Chalcone synthase deficient line) and tt7 (Flavonoid 3-hydroxylase deficient line) 

mutant lines showed a strong dose dependent sensitivity towards Zn (Fig 3.53). The strongest 

reduction was observed in tt7 at 70µM Zn concentration, where tt7 seedlings root length 

measured only 25% of the average root length of the wild type (Ler-0). However, tt3, tt5 and 

tt6 showed no apparent hypersensitivity phenotype in response to the Zn ion concentration 

present in the media. Rather, at higher Zn concentrations tt3 and tt5 showed comparatively 

longer average root length than the wild type, which could be indicative of their tolerance 

towards Zn stress.  

 

In the case of Cd stress, a minimum root length reduction was observed on all tt lines except 

for tt5. Similar to that of the response to Zn stress, tt5 showed slightly better tolerance 

towards Cd stress as well (Fig 3.54).  
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Figure 3.54. Cadmium (Cd) hypersensitivity response of tt mutants. Vertical bars represent the average root 
length of three weeks old seedlings grown on vertical agar plates treated with 0.5, 1.25, 3 and 5 µM CdCl2. K 
represents control, media untreated with heavy metal ions. (Different letters represent significantly different 
means).  

 

Figure3.55. Copper (Cu) hypersensitivity response of tt mutants. Vertical bars represent the average root 
length of three weeks old seedlings grown on vertical agar plates treated with 4, 6, 8, and 12 µM CuCl2. At 
control condition (K) root length was comparable for all different lines except for tt7. At the given experimental 
condition tt7 showed slightly reduced root length even under normal (without Cu stress) growing condition. 
However, the effect of Cu stress was the strongest on mutant line tt6. (Different alphabets represent significantly 
different means)  
 

On the other hand, the only mutant that showed hypersensitivity response to Cu stress is tt6. 

Particularly, at the highest concentration tested (12µM of CuCl2) tt6 showed approximately a 

70% root length reduction (Fig. 3.55). Another interesting observation in this experiment was 

that tt7 (that showed strong hypersensitivity towards zinc and slight hypersensitivity 

towards cadmium) showed moderate growth improvement at lower Cu concentrations. This 
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effect is more visible on figure 3.56 that depicts a picture of sample of seedlings grown at 

different Cu2+ concentration.  

A)         B)  

 

Figure 3.56. A) Picture of a vertical agar plates with seedlings of tt7 grown at different Cu concertinos. B) A 
graph representing the average root length of tt7 at 4, 6, 8, and 12 µM CuCl2. 

 
Since tt7 showed the most interesting phenotype (i.e. sensitivity towards cadmium and zinc 

and tolerance towards copper) further investigation was carried out on tt7. To begin with, its 

metal content was determined and compared to that of wild type (Ler-0), whereby tt7 

showed significantly higher content of zinc in both leaves and roots and higher content of 

cadmium in leaves (Fig 3.57). Moreover, tt7 had a general trend to have higher content of 

metals in both leaves and roots, but, since there is large variation in metal content between 

seedlings within the same genotypes, the observed difference between genotypes is not large 

enough to be statistically significant.  

 

Meanwhile, the impact of heavy metal stress on the metal content of tt mutants was 

investigated by measuring the metal content of tt7 and wild type (Ler-0) after 7 days of Cu 

stress at different levels of ion concentration. In which case, the two genotypes (i.e. tt7 and 

Ler-0) reacted differently to copper stress by showing significant difference in their Zn, Mn 

and Cd content of both leaves and roots (Fig. 3.58). Similarly, their Mo, Fe and Ni content in 

leaves and their Cu content in roots are significantly different between the two genotypes 

under Cu stress (Tab. 3.15). Additionally, the strength of the Cu ion stress had a significant 

effect on the Cu (incremental effect in both leaves and roots), Fe (reduction in leaves and an 

increase in roots) as well as Mo (reduction in both leaves and roots) content of both 

genotypes. In addition, the Mn content of leaves and the Cd content of roots also showed 
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significant reduction because of the Cu stress in both genotypes. However, interaction 

between genotype and concentration of Cu stress was only observed in roots Cd content, 

where Cd content of Ler-0 roots increase significantly with the level of Cu stress up until the 

highest (8µM) level of stress, but in case of tt7 roots a significant increase in Cd content was 

only observed at the highest level of Cu stress (Tab. 3.15) implying different degrees of 

response between the two genotypes.  

 

 

Figure 3.57. Metal content of A) leaves and B) roots of tt7 and wild type grown on 1/10 Hoagland media 
hydroponically for three weeks. (‘***’ for 0.001, ‘**’for 0.01 and‘*’ for 0.05 significance level). 
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Figure 3.58. Metal content of A) leaves and B) roots of tt7 and wild type grown on 1/10 Hoagland media 
hydroponically and exposed to different level of Cu stress (2µM, 4µM, 6µM and 8µM) for 7 days. 
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Table 3.15. Significant impact of Cu stress on metal content of tt7 and wild type (Ler-0 and the possible 
interaction of the two factors (genotype and stress intensity)  
 

 
 

In a different approach, to check for the contribution of flavonoid-metal complexes as means 

of storage of metal ions, tt4 and tt7 were tested for iron deficiency symptoms by growing 

them side by side with Ler-0 on an iron deficient media. As seen on figure 3.59, even if leaf 

chlorosis is visible as a sign of iron deficiency, neither tt4 (deficient in flavonoids) nor tt7 

(with excess kaempferol) showed deviating phenotype from the wild type. 

 

Figure 3.59. A picture of a root growth assay depicting tt4, Ler-0 and tt7 on vertical agar plate, where iron 
was omitted from the 1/10 Hoagland media. No difference in phenotype between the genotypes was observed. 
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4. Discussion and conclusion  

4.1 The quest for new genes involved in zinc homeostasis 

In comparison to the number of putative IZS mutants described, the small number of 

confirmed mutants (i.e. 255 putative/28 confirmed) gives the impression of the majority of 

the putative mutants turn out to be false positives. However, the reason behind this huge 

discrepancy between the number of putative and confirmed IZS mutants is that the 

confirmation step of the genetic screen is not yet complete. Only about 100 putative IZS 

mutants have been tested for the genuineness of the phenotype, the rest of the putative IZS 

mutants are awaiting the confirmation step. Therefore, in the near future there is still a 

potential for the number of IZS mutants to increase.  

 

Among the five IZS mutants under investigation, four showed a combination of phenotypes. 

These mutants could be instrumental for the investigation of the interaction of different 

physiological process as well as homeostasis mechanisms of heavy metal ions like Zn, Cu and 

Mn. There are existing reports regarding shared detoxification strategies of toxic metal ions 

like Cd and toxic level of essential heavy metal ions like Zn, such as the induction of the 

synthesis of phytochelatins (Tennstedt et al., 2009). Similarly, there are transporter proteins 

like IRT1 and IRT2 that are implicated in the transport process of various metal ions like Fe, 

Zn, Mn and Cd (Hall and Williams, 2003). Therefore, identification of such mutants like IZS 

377, 389, 390 and 394 that show hypersensitivity to a wide range of metal ions create new 

opportunity for the identification of multifunctional genes taking part in nonspecific metal 

uptake systems, synthesis of nonspecific metal chelating ligands and efflux process. 

 

 Particularly, the mutated gene in IZS 394 (since it shows salt hypersensitivity) appears to be 

a multifunctional gene with broader activity rather than specific role in metal homeostasis. 

However, before making a conclusive statement more tests should be carried out on 

additional abiotic stress, testing compounds such as mannitol, paraquat, low temperature etc.  

 

Moreover IZS 479, which showed a specific Zn hypersensitivity phenotype, was 

demonstrated to carry a missense mutation in the sixth transmembrane domain of the MTP1 

gene. Arabidopsis thaliana’s MTP1 gene was the first identified CDF protein family shown to 

be involved in Zn transport to the vacuole. The role of MTP1 in Zn transport has been 
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demonstrated through series of experiments following different leads and approaches. 

Ectopic overexpression of AtMTP1 under the control of a cauliflower mosaic virus (CaMV) 

35S promoter resulted in the enhancement of Zn tolerance as well as a slight increase in Zn 

accumulation in the roots (van der Zaal et al., 1999). Later on, AtMTP1 was shown to localize 

in the vacuole and was able to complement the Zn hypersensitivity of yeast zrc1cot1 double 

mutant. Moreover, T-DNA insertion knockout mutants as well as RNAi knockdown mutant 

lines were shown to have Zn hypersensitive phenotype and accumulate less Zn than wild 

type plants (Kobae et al., 2004; Desbrosses-Fonrouge et al., 2005). Very recently, Kawachi and 

colleagues (2012) using site-directed mutagenesis determined a number of amino acid 

residues within AtMTP1 gene required for Zn transport as well as Zn2+ ion specificity. Based 

on the impact of different point mutations on the function of AtMTP1 in Zn tolerance 

complementation assays in yeast zrc1cot1 double mutant, 9 amino acids substitutions have 

been identified to cause a complete loss of the Zn tolerance that was conferred by the intact 

AtMTP1. Among these 9 amino acid residues with crucial role in the Zn transport of MTP1 

belongs the aspartic acid at the 293rd position. Therefore, the strong Zn hypersensitivity 

phenotype observed in IZS 479 is likely to arise due to the EMS induced substitution of 293rd 

aspartic acid (D) by asparagine (N). A potential explanation for this effect is the location of 

the substituted amino acid within the protein. The 3D structural model of ATMP1 suggests 

that Asp293 is located in the opening of the cavity towards the vacuole. This residue may 

well be involved in the translocation of H+ and/or Zn2+ across the membrane (Kawachi et al., 

2012). Similar reports have been published about the corresponding amino acid in the 

PtdMTP1 of the hybrid Poplar (Populus trichocarpa X Populus deltoids) and in the EcZitB of 

Escherichia coli (Lee et al., 2002, Blaudez et al., 2005). However, the lack of complementation 

assays using MTP1 gene on IZS 479 weakens the credibility of the final conclusion. 

Meanwhile, among the IZS mutants indentified in the first round of screening, IZS 101 (OZS 

1) carried the exact point mutation in the MTP1 gene and complementation assay using the 

genomic fragment of MTP1 was able to rescue the Zn hypersensitivity phenotype of IZS 101 

(Weber et al., 2013). Hence, the probability for the identified point mutation to be the cause of 

the Zn hypersensitivity in IZS 479 is quite high.  

 

In summary, 28 new IZS mutants have been identified that would hopefully in the future 

contribute in the process of deciphering the Zn homeostasis mechanism. Among these 28 

newly identified mutants, five have been further characterized that led to the identification of 
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one mutant (IZS 479) with Zn specific phenotype. IZS 479 carried a point mutation in its 

MTP1 gene, which might have caused the Zn hypersensitivity. The fact that the Zn 

hypersensitivity screen identified a mutant affected in a gene with a known function in the 

Zn homeostasis mechanism by itself can serve as verification for the capacity of the screen.  

 
A) 

Arabidopsis thaliana       YLHVLGDSIQSVGVMIGGAIIWYNPEWKIVDLICTLAFSVIVLGTTINMI 

Arabidopsis lyrata         YLHVLGDSIQSVGVMIGGAIIWYNPEWKIVDLICTLVFSVIVLGTTINMI 

Ricinus communis           YLHVLGDSIQSIGVMIGGGIIWYKPEWKIVDLICTLIFSVVVLGTTIRML 

Populus trichocarpa        YIHVLGDSIQSIGVMIGGAIVWYKPEWKIVDVICTLFFSVIVLGTTIKML 

Drosophila melanogaster    YLHVLGDSIQSIGVMIGGAIIWYKPEWKIIDLICTLIFSVIVLFTTIKML 

Oryza sativa               YLHVLGDSIQSIGVMIGGAIIWYKPEWKIIDLICTLIFSVIVLFTTIKML 

Zea mays                   YLHVLGDSVQSVGVMVGGAIIWYKPEWKVIDLICTLVFSVVVLFTTIRML 

Xenopus laevis             FIHVVGDLLQSVGVLIAAYVIYYKPEYKIIDPICTFLFSVLVLITTLTIL 

Homo sapiens               FIHVIGDFMQSMGVLVAAYILYFKPEYKYVDPICTFVFSILVLGTTLTIL 

                           ::**:** :**:**::.. :::::**:* :* ***: **::** **: :: 

 
B)  

 
 

Figure 4.1. A) Multiple sequence alignment of homologues genes of MTP1, the red arrow indicates the 
conserved aspartic acid that got replaced by asparagine in IZS 479. B) Putative membrane topology model of 
MTP1 showing residues involved in the ability of AtMTP1 to confer tolerance to Zn in yeast. The red arrow 
indicates the location of the point mutation in IZS 479. This figure is adapted from Kawachi et al., (2012).  
 



Discussion 

120 

4.2 Mapping and characterization of IZS 288 

4.2.1 Pleiotropic effects of the IZS 288 mutation 

Among the Increased Zn Sensitive (IZS) mutants identified in the previous round of 

screening, IZS 288 showed extreme Zn hypersensitivity. IZS 288 in addition to its Zn 

hypersensitivity also showed pleiotropic effects like shorter primary root, earlier flower 

induction under short day condition, chilling hypersensitivity, alteration in leaf shapes, 

increased number of trichomes on the upper surface of leaves and accumulation of 

anthocyanins on the lower surface of leaves. Furthermore, IZS 288 has longer petioles, longer 

root hairs, and increased number of lateral roots, shorter hypocotyls and smaller cotyledons. 

The response of IZS 288 to exogenous auxin and auxin antagonists like PCIB and TIBA was 

also attenuated, which signifies the distortion of the auxin response spectrum of IZS 288. In 

the literature there have been reports about different auxin signaling and transport mutants 

showing a combination of various defects in root development (both in primary and lateral 

root growth), leaf structure alterations (including cotyledon size and petiole length), and 

variations in hypocotyl length and root hair density. For example, similar to IZS 288, the arx3-

1 (AUX/IAA 17) mutant shows a reduction in the elongation of the primary root and dark 

grown hypocotyl. It also shows an increase in the density of lateral roots and leaves have 

dark green hues. Interestingly, these phenotypes are partially rescued by the application of 

exogenous cytokinin (Leyser et al., 1996). In IZS 288 exogenous cytokinin application rescued 

the reduction of the primary root elongation and reduced the lateral root formation, too. The 

second example is the yucca mutant (auxin biosynthesis mutant with elevated amount of free 

auxin) that shows similar phenotypes like that of IZS 288 (i.e. shorter primary root and dark 

grown hypocotyl, increased number of lateral roots, longer root hairs and narrow leaves with 

extended petioles). In this mutant line, it has been shown that the phenotypes are caused by 

elevated levels of free auxin (Zhao et al., 2001). Additional interesting point between yucca 

and IZS 288 was observed in the microarray analysis of the yucca mutant that showed 

significantly lower transcript level of At2g20330 (i.e. the mutated gene in IZS 288) than in WT 

(Nemhauser et al., 2004). However, no significant association was detected between the IZS 

288 gene set and gene sets representing auxin biosynthesis and/or signaling that are 

available in the PlantGSEA platform (Yi et. al., 2013). Taking into consideration these 

similarities and the moderate response of IZS 288 towards exogenous auxin and the primary 

root growth rescuing effect of exogenous cytokinin, it is tempting to assume IZS 288 might 

have a role in auxin related physiological processes and the transcript level of At2g20330 (the 
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mutated gene in IZS 288) is responsive to the amount of free auxin in the plant, hence the 

mutation in IZS 288 disrupted this process and caused the respective phenotypes. Following 

this line of argument an attempt was made to detect any possible difference in auxin 

response maxima between IZS 288 and WT using DR5::GUS marker, and under optimal 

condition no difference was observed. However, since IZS 288 is less responsive towards 

exogenous auxin, if there would be a variation between IZS 288 and WT, it is more likely for 

this difference to be apparent in the presence of exogenous auxin. Therefore it would be 

curtail to undertake the test in the presence of exogenous auxin.  

 

Likewise, ethylene signaling defective mutant eto1-1 (ethylene over producing mutant) 

showed a phenotype similar to that of IZS 288 (reduction in primary root elongation, 

increased number of lateral roots, shortened petiole and hypocotyl when grown in dark) 

(Guzman and Ecker, 1990). Furthermore, five genes (namely ASC2, ACS7, JAZ8, GRX480, 

and HS1pro-1) involved in ethylene biosynthesis and 12 ethylene responsive genes showed 

lower transcript abundance in IZS 288, which could be an indicator of a disruption in the 

ethylene biosynthesis and/or signaling pathway. Therefore, further experiments testing for 

the classic ethylene triple response of IZS 288 as well as the impact of common ethylene 

inhibitors such as silver nitrate would be vital in order to identify the potential impact of the 

IZS 288 mutation on the ethylene signaling cascade.  

  

Focusing more on the short root phenotype of IZS 288, under optimal growing condition the 

pronounced shortening of the elongation zone plus when exposed to Zn stress the reduction 

of the meristematic zone seems to be the reasons behind the root growth defects of IZS 288. 

The observed reduction of the meristematic region in the presence of Zn stress is further 

supported by the drop in the number of mitotically active cells of IZS 288 (as seen in the 

CycB1;1::GUS reporter lines). In WT roots also similar effects of Zn stress was observed; 

however, the extent of reduction of the meristematic zone was much more severe in IZS 288 

roots. Likewise, in mtp1 ( a mutant line lacking vacuolar membrane Zn2+/H+ antiporter) Zn 

stress caused severe inhibition of root growth that occurred as result of suppression of cell 

division and elongation (Kawachi et al.,2009). In maize roots Zn stress was reported to inhibit 

root growth through a decrease in the number of meristematic cells and a reduction in the 

length of the fully elongated cells (Seregin et al., 2011). In sugar cane also as Zn stress has 
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been reported to cause a decline in mitotic activity of roots and total biomass (Jain et al., 

2010).  

 

Cytokinin is another factor involved in determining the size of the root meristem and its 

maintenance. It has been shown that mutants with reduced level of endogenous cytokinin 

like in the case of Arabidopsis histidine kinase 3(ahk3), cytokinin oxidase-dehydrogenase1 

(AtCKX1) and triple mutant of isopentenyltransferases (ipt3,ipt5,ipt7) exhibited increased root 

meristem size plus longer primary roots. Similarly, application of exogenous cytokinin has a 

reducing effect on the size of the root meristem as well as the root length in general (Dello 

Ioio et al., 2007). Furthermore, it has been observed that until the fourth day after 

germination the root meristem undergoes a gradual increase in size, but after the fifth day on 

wards a balance between cell division and cell differentiation is set, and this stage of the root 

meristem development is determined by cytokinin perception and cytokinin-mediated cell 

differentiation via the AHK3/ARR1 and AHK3/ARR12 two component signaling pathway 

(Dello Ioio et al., 2007). In a similar note, IZS 288 also maintained equivalent root length to 

the WT until the fourth day of germination. The reduction in root growth rate of IZS 288 was 

observed only after the fourth day of germination, which could be an indication of an 

alteration in the cytokinin signaling pathway. An alternative explanation could be a 

malfunction in the crosstalk between cytokinin and auxin in the maintenance of the root 

meristem. Since cytokinin promotes cell differentiation by increasing the abundance of short 

hypocotyl 2 (SHY2/IAA3) that represses the expression of auxin-efflux carrier proteins 

(PIN1, PIN3 and PIN7) at the boundary between the meristematic zone and the root 

elongation zone. In contrast, auxin facilitates the degradation of SHY2/IAA3 and promotes 

cell division (Dello Ioio et al., 2008). Hence, cytokinin and auxin interact antagonistically to 

control the balance of cell division and differentiation in the transition zone of the root tip (Su 

et al., 2010). Therefore, alteration in either auxin or cytokinin biosynthesis and signaling 

could be the reason behind the short root phenotype of IZS 288. Further investigation could 

be tailored to identify possible alteration in cytokinin signaling by using the cytokinin 

reporter line ARR5::GUS.  

 

Meanwhile, under optimal growing condition IZS 288 had more lateral roots per unit root 

length as well as the incidence of secondary and tertiary lateral roots were higher than that of 

the WT. A recent report (Richard et al., 2011) has indicated the involvement of Zn in the 
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development of lateral roots in A. thaliana, whereby moderate Zn treatment (50µM) has 

resulted in an increase in the number of lateral roots of some Arabidopsis ecotypes. Even 

though, in this report the ecotype Colombia was not listed as an ecotype showing Zn related 

increase in the number of lateral roots, in our experimental setup Colombia also showed Zn 

induced lateral root number increase, but IZS 288 did not. In IZS 288 the highest number of 

lateral roots was observed on plates without Zn. One possible explanation for this 

observation is that the increased frequency of lateral roots in IZS 288 is directly linked to the 

irregularity in the Zn homeostasis mechanism. Thus, in WT roots Zn application activated a 

process that led to an increase in the number of lateral roots but in case of IZS 288, since the 

Zn homeostasis mechanism is distorted, increased number of lateral roots was observed 

without the application of Zn. The other possible explanation is that Zn influences lateral root 

development rather indirectly by manipulating the level of auxin or its signaling. As it has 

been previously described IZS 288 showed decreased response to exogenous auxin and many 

auxin insensitive mutants also display alteration in the number of lateral roots; hence, the 

alteration of root morphology in IZS 288 could be a result of distorted auxin biosynthesis, 

transport or signaling. One observation that supports this hypothesis is that a long term Zn 

exposure in IZS 288 caused a lateral root abortion (i.e. lateral roots remain as a balls of 

undifferentiated cells) which is similar to the phenotype observed in Aberrant Lateral Root 

Formation 3 mutant (alf3). It has been suggested that alf3 affects a locus involved in either 

transport or biosynthesis of auxin in the developing lateral root and it can be rescued by 

exogenous application of indole-3-acetic acid (IAA) (Celenza et al., 1995). The second 

observation made in favor of the hypothesis that Zn interacts with auxin signaling in 

determining the development of lateral roots is the detection of Zn hypersensitivity 

phenotype in the auxin influx deficient mutant (aux-1). This further strengthens the 

involvement of auxin in Zn homeostasis mechanism or vice versa. The interconnection 

between the role of Zn and auxin in plant development has been first reported, when Zn 

deficient plants were shown to have lower level of indole-3-acetic acid (Skoog, 1940). Later 

on, the meristematic regions at leaf bases and root tips were shown to accumulate Zn and at 

the same time have high concentration of auxin, implying the interaction of auxin and zinc in 

the regulation of plant growth (Haslett et al., 2001). Similarly, enhancement of the auxin-

induced growth of callus by zinc treatment was reported suggesting that zinc is an important 

factor in auxin-mediated plant growth (Oguchi et al., 2004).  
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The other observed irregularity in IZS 288 root is the increased number of cells at the side of 

the root cap (Lateral Root Cap cells, LRC). The root cap forms a protective cell layer that 

continually sloughs off as the root tip explores new territory and also serves as a sensor for 

environmental signals such as gravity, light and touch. The root cap is mainly composed of 

two types of cells: the columella cells which are the site for gravity sensing and the lateral 

root cap cells (LRC) (Ottenschlager et al., 2003). LRC divide periclinally to form new layers of 

LRC and anticlinally to produce a daughter cell that will differentiate into epidermal tissue 

(Petricka et al., 2012). Disorganization as well as physical and genetic ablation of the root cap 

has been reported to change the root architecture by inhibiting root meristematic activity and 

by stimulating lateral root initiation (Ottenschlager et al., 2003). Therefore, it is likely for the 

increased number of LRC to be related to the reduction in primary root length and increased 

number of lateral roots in IZS 288.  

 

4.2.2 Chilling hypersensitivity of the IZS 288 

Considering the fact that at optimum growing condition IZS 288 already showed 

transcriptional misregulation of 74 genes that were chilling responsive in WT roots, the 

chilling hypersensitivity phenotype of IZS 288 could be a secondary effect of the mutation. 

Among the 74 misregulated genes 65 of them showed similar pattern of expression in both 

IZS 288 roots at optimum growing condition and in the chilling exposed WT roots. 

Particularly, two transcription factors: WRKY transcription factor 75/ WRKY7 (AT5G13080) 

and MYB-like transcription factor /RVE8 (AT3G09600) that showed suppressed expression 

were part of this group. In Arabidopsis WRKY75 transcription factor is involved in regulating 

the phosphate starvation response. It has also been shown that in RNAi lines with 

suppressed expression of WRKY75 lateral root length and number, as well as root hair 

number, were significantly increased (Devaiah et al., 2007) which is also true in case of IZS 

288. The second transcription factor, REV8, is a Myb-like transcription factor that shows high 

sequence similarity to CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and ELONGATED 

HYPOCOTYL (LHY), which are essential regulators of the Arabidopsis circadian clock (Rawat 

et al., 2011). Loss of RVE8 causes a delay and reduction in levels of evening-phased clock 

gene transcripts and significant lengthening of circadian clock pace (Hsu et al., 2013). 

Similarly, among the remaining 9 misregulated genes that showed opposing pattern of 

expression was found REV2/CIR1 (AT5G37260) another MYB family transcription factor 

involved in circadian regulation in Arabidopsis (Zhang et al., 2007). REV2 was up-regulated in 
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WT roots after chilling stress however it was down-regulated in IZS 288 roots under optimal 

growing condition.  

 

Interestingly, four sulfur nutrition related genes ( i.e. sulfate transporter 1.1 (AT4G08620), 5'-

adenylylsulfate reductase 3/APR3 (AT4G21990), response to low sulfur 2 (AT5G24660) and 

glutathione S-transferase U17(AT1G10370)) that showed up-regulation in WT roots after 

chilling stress were repressed in IZS 288 roots at optimum growing condition. In literature 

there are reports where inhibition of glutatione (GSH) synthesis and reduced glutatione 

reductase activity has led to reduced chilling tolerance in maize (Zea mays) (Kocsy et al., 

2000). In Chorispora bungeana (an alpine plant) low-temperature induced GSH conferred 

chilling tolerance by maintaining high enzymatic activity and the fluid state of plasma 

membrane via increasing unsaturated fatty acids composition of the membrane (Wu et al., 

2008). In contrast, increasing glutathione content through application of safeners (herbicide) 

in a chilling-sensitive maize inbred line increased protection against chilling-induced injury 

(Kocsy et al., 2001). Hence, in IZS 288 misregulation of the expression of sulfur uptake and 

assimilation genes could possibly lead to a reduction in GSH pool, which compromises their 

ability to degrade the high level of H2O2 created during chilling stress making them more 

susceptible to chilling stress. As a follow up one can verify this possibility by applying 

exogenous cysteine or γ-glutamylcysteine and increase the amount of GSH and investigate its 

impact in improving the chilling hypersensitivity of IZS 288.  

 

Chilling stress induced profound transcriptional changes in IZS 288 influencing 11% of the 

genome while affecting 8% in the WT. In literature there are reports stating that 4%-20% of 

the Arabidopsis transcriptome are cold responsive (Chinnusamy et al., 2007). The regulation of 

70% of the cold responsive genes was similar between IZS 288 and the WT, therefore the key 

to IZS 288 chilling hypersensitivity is hypothesized to lie in few of the differences observed 

between the two genotypes. One of such differences is the transcript level of cold response 

genes (like CBF3/DREB1A, LIT30, LIT78 and KIN1) not showing the same level of 

transcriptional induction after chilling stress in IZS 288. These genes showed two three fold 

up-regulation at optimum temperature in IZS 288 but after chilling stress they showed up to 

20 fold lower transcript levels than in WT. One possible explanation for this variation could 

be the low transcript abundance of ICE1 (inducer of CBF expression1) in IZS 288 after chilling 

stress. ICE1 is a constitutive transcription factor that can bind to MYC recognition cis-
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elements (CANNTG) in the promoter of CBF3/DREB1A and induce the expression of 

CBF3/DREB1A and its regulons during cold acclimation (Lee et al., 2005). In our case after 

chilling stress ICE1 showed a two fold up-regulation in WT facilitating the higher induction 

of CBF3 but in case of IZS 288 such effect was not observed. In further support for this notion, 

MYB15, an upstream transcription factor that negatively regulates the transcription of CBF 

genes was five fold up-regulated in IZS 288 after chilling stress. Here again, ICE1 appears to 

negatively regulate the transcription of MYB15 (Agarwal et al., 2006). Therefore, the low level 

ICE1 transcript abundance in IZS 288 after chilling stress might have led to higher transcript 

level of MYB15 and consequently to the repression of CBF3 (Fig. 4.2). The second possible 

explanation would be, since cbf2 null mutant showed increased expression level of 

CBF1/DREB1B and CBF3/DREB1A and demonstrated freezing tolerance, CBF2/ DREB1C is 

suggested to be a negative regulator of both CBF1/DREB1B and CBF3/DREB1A (Novillo et 

al., 2004). Thus the increased expression level of CBF2/ DREB1C in IZS 288 could also have 

caused the lack of strong induction in CBF3/DREB1A. It is worth mentioning here that two 

zinc finger stress-response proteins, ZAT12 (At5g59820) and ZAT10/STZ (At1g27730), also 

showed higher level of induction in IZS 288 after chilling stress. These two stress-response 

proteins have been implicated to have a central role in reactive oxygen and abiotic stress 

signaling in Arabidopsis (Davletova et al., 2005; Mittler et al., 2006).  

 

The other variation observed in chilling response of IZS 288 was that early and transient cold 

response genes were still up- or down-regulated after the 24 hours chilling stress. Based on a 

comparison made between the chilling responsive gene set of IZS 288 (i.e. 2560 genes up or 

down regulated as a result of chilling stress) and the cold stress response gene sets of the 

AtGenExpress global stress expression data set (Kilian et al., 2007) 31 genes that showed 

differential expression particularly at earlier time points of chilling stress (i.e. at 30 minutes, 

1, 3, 6 and 12 hours) were part of the IZS 288 chilling responsive gene set (which was 

identified after exposing the plants to chilling stress (4°C) for 24 hours); which could be 

indicative of the lack of proper regulation of the expression of chilling responsive genes. 

Among these 31 genes three ethylene responsive element binding factor (ERF13 

(AT2G44840), ERF6 (AT4G17490) and ERF2 (AT5G47220)), two MYB transcription factors 

(MYB4 (AT4G38620) and MYB44 (AT5G67300)) and a potential calcium sensor 

(TCH2/CLM24 (AT5G37770)) were included (Appendix. list 6). A previous study reported 

that CLM24 shows 15 fold increase after 4 hours exposure to 4°C, whereas CML24-
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underexpressing transgenic lines are resistant to ABA inhibition of germination and seedling 

growth, show late flowering and have enhanced tolerance to MgCl2, ZnSO4, CoCl2. 

Consequently, it has been postulated CML24 may have a role in redox signaling, whereby 

altering the sensitivity to and/or production of reactive oxygen species (Delk et al., 2005). 

Therefore, the constitutive up-regulation of C ML24 together with other factors may have 

negative impact on the chilling tolerance of IZS 288. 

 

 

Figure 4.2. Schematic representation of the cold response pathway. Low temperature activates ICE1 and ICE1 
like proteins that consequently induce the transcription of CBFs and at the same time block the transcription of 
MYB15. MYB15 when expressed negatively regulates the transcription of CBFs. This picture is adapted from 
Gong et al., 2009. 
 
 

4.2.3 Zinc hypersensitivity of the IZS 288 

Turning the focus to the Zn hypersensitivity phenotype of IZS 288, the microarray data 

analysis indicated that in IZS 288 the expression of Zn responsive genes were misregulated. 

Overlaps were observed in the comparison of IZS 288 gene set with that of Zn deficiency and 

excess Zn induced gene expression changes. It appears as if IZS 288 activated some of the Zn 
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deficiency and Zn toxicity response genes at the same time. On the other hand, few of the 

genes induced by Zn deficiency or excess Zn were showing expressional repression in IZS 

288. MTP1A (AT3G61940) a member of Zn transporter (ZAT) family is one of the genes that 

showed repression in IZS 288. MTPA1/ATMTPA1 together with the homologous metal 

tolerance protein 1/MTP1 (AT2G46800) encodes functional proteins that mediate the 

detoxification of zinc in the cell vacuole (Drager et al., 2004; van de Mortel et al., 2006). In the 

hyperaccumulator A. halleri the expression of MTP1 in roots increased upon exposure to high 

zinc concentrations (Drager et al., 2004), however in A. thaliana the expression of MTPA1 

showed an increase while being exposed to Zn deficiency (van de Mortel et al., 2006). In case 

of IZS 288 the basal expression level of MTP1A is lower than that of the WT, which might be 

a predisposing factor for the Zn stress hypersensitivity of IZS 288. Similar observations have 

been reported where mutants lacking functional MTP1 (the homolog of MTP1A) showing Zn 

hypersensitivity (Kobae et al., 2004; Desbrosses-Fonrouge et al., 2005; Kawachi et al., 2009).  

 

Furthermore nicotianamine synthase 4 /NAS4 (AT1G56430) one of the four enzymes that 

synthesize nicotianamine also showed lower basal transcript level in IZS 288. In recent years, 

there has been an increasing amount of evidence supporting the role of nicotianamine (NA) 

in the intercellular and long-distance transport of Zn in plants (Klatte et al., 2009; Deinlein et 

al., 2012; Clemens et al., 2013). Particularly, Klatte et al. (2009) observed in quadruple NAS 

mutant line the Zn content of rosette leaves decreased by 38% implicating the direct role of 

NAS in Zn transport. Therefore, the low basal transcript level of NAS4 in IZS 288 can also 

contribute to its Zn hypersensitivity by hindering the Zn translocation towards rosette leaves. 

A third possible factor contributing to the Zn hypersensitivity phenotype of IZS 288 would be 

the BHLH transcription factor 39/ BHLH039 (AT3G56980) that also showed lower basal 

transcript level in IZS 288. It has been suggested that BHLH039 is involved in mediating 

signals related to Fe deficiency and/or Fe homeostasis. High Zn levels induce the expression 

of BHLH039 while lower Zn levels repressed its expression (Wang et al., 2007). Therefore, 

taking into account the expression of BHLH039 being Zn responsive, its reduced basal 

transcript level in IZS 288 might be one factor leading to Zn hypersensitivity.  

 

However, all three cases of misregulation of Zn responsive genes in IZS 288 mentioned above 

could be the effects of altered Zn homeostasis mechanism rather than the causes of it. 
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Therefore, the Zn hypersensitivity of IZS 288 could also be one of the pleiotropic effects of a 

higher level signaling or metabolic pathways. 

 

4.2.4 IZS 288 gene function  

A map based cloning approach identified the mutated gene in IZS 288 to be a novel 

uncharacterized WD40 protein with homologs in a wide range of eukaryotic genomes. 

Interestingly, phylogenetic analysis identified only single-copy genes in each of the genomes 

with homologs of the IZS 288 gene. The diverse phenotypes observed in IZS 288 and the 

lethal or semi-lethal (sterile progeny) effect of the RNAi mediated knock-down of the 

Drosophila melanogaster homolog (CG5543) provides additional support for the single-copy 

gene per genome notion. If there were paralogs in either the Arabidopsis or the Drosophila 

genome, there would have been a redundancy in function and the occurrence of phenotypes 

by altering a single gene would have been less probable. 

 

Based on the presence of a conserved 16 amino acid long motif within the WD40 domain that 

interacts with DDB1 ( commonly known as DDB1-binding WD40 (DWD) motif) the IZS 288 

gene is presumed to form a complex with cullin 4 RING ubiquitin E3 ligase (Lee et al., 2008). 

Cullin 4 ubiquitin E3 ligases are part of the ubiquitin proteasome pathway. The ubiquitin 

proteasome pathway is part of the mechanisms by which cells selectively discard defective or 

unwanted proteins as well as regulate the concentration of desirable proteins at a given time 

(Hershko and Ciechanover, 1998). The pathway entails a covalent attachment of the ubiquitin 

(Ub) protein (that serves as recognition signal for selective protein turnover) to target 

proteins using an ATP-dependent three-step conjugating cascade. The first step is the ATP 

dependent ubiquitin activation using the Ub-activating enzyme (E1). Then the ubiquitin is 

transferred to the ubiquitin conjugating enzyme (E2). Finally, the ubiquitin protein ligase (E3) 

delivers it to a substrate (Hershko and Ciechanover, 1998; Schwechheimer and Calderon-

Villalobos, 2004; Smalle and Vierstra, 2004; Lee and Kim, 2011). Since the ubiquitin protein 

ligase (E3) determines the specificity of the entire pathway plants have numerous E3 ligases; 

the Arabidopsis genome contains more than 1300 genes that encode putative E3 subunits 

(Smalle and Vierstra, 2004). E3 ligases can either be monomeric proteins (like the HECT E3s 

and the RING E3s) or form multimeric complexes (i.e. cullin based E3 ligases) (Lee and Kim, 

2011; Bedford et al., 2011). In cullin based E3 ligases the cullin proteins function as 

scaffolding subunits where the N-terminal region is capable of binding substrate adaptor 
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proteins and the C-terminal region of the cullin interacts with the catalytic module known as 

RING-finger protein (RBX1) that recruits E2 (Mazzucotelli et al., 2006; Biedermann and 

Hellmann, 2011; Lee and Kim, 2011). The Arabidopsis genome consists of five different cullins 

namely, cullin 1, cullin 2, cullin 3a, cullin 3b, and cullin 4, which form large array of 

substrate-specific E3 complexes (Lee and Kim, 2011). Among the E3 ligases the cullin–RING 

complexes comprise the largest known class of ubiquitin ligases (Petroski and Deshaies, 

2005). The cullin 4 based E3 ligases use DNA damaged binding protein 1 (DDB1) as an 

adaptor to assemble the E3 ligase complex. In Arabidopsis, two closely related forms of DDB1 

namely DDB1a and DDB1b are found (Schroeder et al., 2002). Genotypic and phenotypic 

analysis carried out on both genes indicated their essential function in CUL4 E3 ubiquitin 

ligases in Arabidopsis (Zhang, et. al., 2008). Most common substrate receptors of CUL4 that 

bind to DDB1 are composed of around seven WD40 domains, of which at least one ends in an 

aspartate–arginine motif (WDxR) (Lee et al., 2008; Biedermann and Hellmann, 2011; Lee and 

Kim, 2011). In the Arabidopsis genome 119 genes contain WDxR motif among which 85 

contain a highly conserved 16–17 amino acid motif called the DWD box (DDB1 binding 

WD40). The mutated gene in IZS 288 (i.e. AT2G20330) is a member of these 85 member gene 

group. Lee and colleagues (2008) showed that using yeast two-hybrid assay and in vivo 

coimmunoprecipitation, 11 of the 85 Arabidopsis DWD proteins directly interact with DDB1 

and thus may serve as substrate receptors for the DDB1– CUL4 E3 ubiquitin ligase complex. 

Hence, using similar approaches the direct interaction of AT2g20330 with DDB1 needs to be 

proven. Meanwhile, preliminary results from yeast two-hybrid and bimolecular fluorescence 

complementation (BiFC) assays indicated the presence of direct interaction between 

At2g20330 (the mutated gene in IZS 288) and DDB1 and the point mutation appears to 

disrupt this interaction (Prof. Stephan Clemens, personal communication, September 24, 

2012). 

 

In Arabidopsis RNAi mediated partial loss of function of cullin 4 resulted in a constitutive 

photomorphogenic (i.e. short hypocotyls and open and fully expanded cotyledons) 

phenotype (Chen et al., 2006). Similarly, Bernhardt and colleagues (2006) using T-DNA 

insertion and CUL4 antisense transgenic lines demonstrated reduced cullin 4 expression 

leads to a reduced number of lateral roots, abnormal vascular tissue and stomatal 

development. Therefore, the similar developmental defects observed in IZS 288 could have 

arisen as a result of partial reduction in the functionality of cullin 4 E3 ligase complex caused 
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by loss of a substrate receptor. Furthermore, several substrate receptors of cullin 4 E3 ligases 

have been discovered that take part in a range of developmental processes (Schroeder et al., 

2002; Zhang et al.,2008; Lee et al., 2008; Biedermann and Hellmann, 2011). A recent study by 

Lee and colleagues (2010) identified two substrate receptors (DWA1 and DWA2) that are 

involved in the regulation of abscisic acid (ABA) signaling. Based on their observation of the 

increased accumulation of the leucine zipper transcription factor ABA INSENSITIVE 5 (ABI5) 

in DWA1 and DWA2 mutant lines they proposed DWA1 and DWA2 to be substrate 

receptors for ABI5. Later on, via coimmunoprecipitation they proved the physical association 

ABI5 with DWA1 and DWA2, which targets ABI5 for degradation. Following the same line of 

thought, on the bases of the findings of the microarray data it is possible to propose potential 

substrates of IZS 288. Hence, in the following paragraphs three potential substrates of IZS 288 

are discussed in detail together with different strategies of proving them.  

 

Based on the microarray findings IZS 288 appears to be involved in the regulation of 

jasmonic acid (JA) signaling. One observation that supports this hypothesis is the number of 

misregulated genes in IZS 288 that are JA stimulus responsive. Particularly, 6 transcription 

factors (namely ZAT12, MYB15, BHLH039, NAC3/ANAC055, WRKY40 and REV8) that 

regulate JA signaling response were among the misregulated genes in IZS 288 (Bu et al., 2008; 

Ivanov et al., 2011). Besides that, the JASMONATE ZIM-domain 8/JAZ8 (AT1G30135) 

showed low basal transcript level in IZS 288. JAZ8 is a member of the plant-specific 

transcriptional regulators that mediate repression of JA responses depending on the level of 

hormone in the cell (Shyu et al., 2012). Under optimal growing condition when the level of JA 

in a cell is low transcription factors (such as MYC2) that promote the expression of JA-

responsive genes are repressed by members of the JAZ protein family. However, when JA 

accumulates in response to stress-related cues the bioactive form of the hormone stimulates 

the degradation of JAZ proteins via the ubiquitin 26S proteasome pathway releasing JAZ-

bound transcription factors from repression, thereby allowing the expression of JA-

responsive genes (Koo and Howe, 2012). The JA driven degradation of most of the 12 JAZ 

proteins occurs through binding to CORONATINE INSENSITIVE 1(COI1), which is the F-

box protein component of the E3 ubiquitin ligase SCFCOI1 (Shyu et al., 2012; Koo and Howe, 

2012). However, very recently it was demonstrated that JA8 lacks the necessary motif to 

associate strongly with COI1 in the presence of the bioactive form of JA. Hence the 

mechanism by which it is removed from the cell remains unknown (Shyu et al., 2012). 
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Therefore, it is possible that JAZ8 is degraded by cullin 4 E3 ligase complex and IZS 288 

serves as the receptor. Furthermore, the lower transcript level of JAZ8 in IZS 288 could be 

indicative of the presence of a negative feed back loop, where presumably excess 

accumulation of JAZ8 protein (due to lack of degradation) leads to the repression of JAZ8 

expression. The first step to verify this hypothesis shall be testing the JA response of IZS 288, 

which could be easily demonstrated in the future using coronatine, a bacterial toxin that 

bears structural similarity to the bioavailable form of JA. Later on, the physical association of 

JAZ8 with IZS 288 could be investigated using yeast two hybrid or coimmunoprecipitation 

assays which are commonly used to detect protein-protein interactions. Furthermore the 

level of JAZ8 protein in WT and IZS 288 could be compared in order to show the mutation in 

IZS 288 has rendered malfunctioning in the degradation of JAZ8 leading to its accumulation. 

In the meantime, there is only circumstantial evidence supporting this notion, such as the 

down-regulation of sulfur uptake and assimilation genes which can serve as molecular 

markers for misregulation in JA signaling (i.e. sulfur deficiency leads to up-regulation of JA 

biosynthesis pathway (Nikiforova et al., 2003)).  

 

In addition to being responsible for the turnover of proteins in eukaryotic cells, the ubiquitin 

26S proteasome pathway is also involved in transcriptional regulation. One of the ways in 

which the 26S ubiquitin proteasome pathway influences transcription is through 

monoubiquitination of basal transcription factors or histone (Kodadek, 2009; Geng et al., 

2012). Unlike the polyubiquitination of proteins that targets them for degradation, 

monoubiquitination provides signals for internalization of membrane proteins or for sorting 

newly synthesized proteins at the trans-Golgi network. It also regulates biological processes 

like histone modification, transcription and DNA repair (d’Azzo et al., 2005). The human 

steroid receptor coactivator-3 (SRC-3) is a good example for demonstrating this effect, where 

monoubiquitination leads to its activation but polyubiquitination beyond certain threshold 

targets it for degradation (Geng et al, 2012). On a similar note, in Arabidopsis the basal 

transcription factor complex (TFIIH) TTD-A subunit (AT1G12400) could be a potential 

substrate of IZS 288, which gets activated via monoubiquitination by the cullin 4 E3 ubiquitin 

ligase complex. The first observations that support this concept is a mutation in the human 

homologous gene of the basal transcription factor complex leads to a rare autosomal 

recessive disorder characterized by sulfur-deficient brittle hair and other neuroectodermal 

symptoms that commonly include mental and growth retardation (Hashimoto and Egly, 
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2009; Stefanini et al., 2010). Even if sulfur content was not determined experimentally, in IZS 

288 a number of high affinity sulfur uptake and assimilation genes were repressed that might 

lead to alteration of the sulfur metabolism and that could be the result of malfunctioning of 

the basal transcription factor complex TTD-A subunit. Secondly, in IZS 288 the transcript 

level of the basal transcription factor complex TTD-A subunit was higher than in WT, which 

could also be an indication for its malfunctioning. Here again experimental set up 

demonstrating the interaction of the basal transcription factor complex (TFIIH) TTD-A 

subunit with IZS 288 is required in order to prove this notion. Following similar approaches 

as in case of JAZ8, yeast two hybrid assay or bimolecular fluorescence complementation 

(BiFC) assay could be set up, where IZS 288 is used as bait and its interaction with the basal 

transcription factor could be investigated. 

 

The third potential substrates of IZS 288 are three core histone family proteins, namely 

histone 2B/ H2B (AT3G46030), histone 3.1/ H3.1 (AT3G27360) and the two paralogs of 

histone 4/H4 (AT3G45930 and AT3G46320) that showed higher basal transcript level in IZS 

288. Chromatins are formed by chromosomal DNAs wrapping around histone octarmers that 

consist of two sets of each of H2A/H2B and H3/H4 dimer. In all eukaryotes since most 

histones are encoded by multiple genes there is always a potential for generating excess 

histones (Singh et al., 2009; Singh et al., 2012). It has been reported that in yeast excess histone 

leads to chromosome instability and enhanced DNA damage (Takayama and Toda, 2010). 

Therefore, eukaryotic cells have acquired different mechanisms of strictly regulating their 

histone protein levels. One way of regulating histone levels is through post-transcriptional 

modifications such as ubiquitination (Singh et al., 2009). In mammals it has been 

demonstrated that H3 and H4 ubiquitination occur via cullin 4 ubiquitin E3 ligase complex, 

which also facilitates cellular response to DNA damage caused by UV irradiation (Wang et 

al., 2006). On a different note, ubiquitination of histones can also act non-proteolytically to 

control gene activity. Best studied examples for non-proteolytic control of gene activity by 

histone ubiquitination are H2A and H2B. The ubiquitination of H2A is typically associated 

with chromatin compaction and transcriptional repression, whereas H2B ubiquitination is 

associated with gene activation (Weake and Workman, 2008). Hence, it is possible for IZS 288 

to be receptor of H2B, H3 and H4 and consequently the mutation might have stronger impact 

in regulation of transcription through chromatin remodulation. In IZS 288, the long list of 

pleiotropic effects and the overlaps between the differentially expressed genes set of IZS 288 
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and the Zn, Fe and sulfur response gene sets also suggest misregulation of transcription. 

Moreover, since both deficiency and toxicity induced genes appeared to be misregulated the 

defect seems to be in a general regulatory process rather than in a specific nutrient 

homeostasis process. However, the possibility for other explanations such as a cross talk 

between the different homeostasis processes can not be ruled out. Besides that, within this 

conceptual framework it would be possible to explain the observed Zn hypersensitivity of 

IZS 288. In literature there are reports showing the influence of Zn on histone expression and 

modification as well as on the ubiquitin 26S proteasome pathway. Such as in cultured 

hippocampal (brain) cells Zn induces polyubiquitination in a concentration- and time-

dependent manner, may impair protein degradation pathway and may be a crucial factor 

mediating neuronal death following traumatic brain injury (Zhu et al., 2012). In Drosophila in 

addition to its essential role in the reprocessing of ubiquitin moieties from polyubiquitinated 

proteins, Zn can induce an extensive structural rearrangement of the 26S proteasome which 

could be part of the polyubiquitinated substrate identification system of the pathway (Kiss et 

al., 2005). Sadil and colleagues (2011) showed that Zn decreased the expression level of 

histone H3 and H4 in human neuronal cells and reduced histone H3 acetylation by altering 

the activity of histone de-acetylases. Therefore, in IZS 288 if the hypothesis holds true and the 

histone proteins are substrates, Zn could lead to even higher degree of misregulation of 

transcription by influencing the transcription and/or modification of histones.  

 

There is also a large body of evidence linking histone modifications with chilling resistance 

(Stockinger et al., 2001; Benhamed et al., 2006, Sokol et al., 2007; Zhu et al., 2008; Kwon et al., 

2009; Kumar and Wigge, 2010 ). Particularly in Kwon et al. (2009) work it has been shown 

that during exposure to cold stress the enrichment level of methylated histone 3 (H3K27me3) 

in two cold responsive genes, COR15A and AtGOLS3, decreased gradually. Zhu and 

colleagues (2008) showed HOS15, a histone H4 de-acetylase, is responsible for repressing 

gene expression in response to cold stress. Interestingly, in Arabidopsis the alternative histone 

H2A.Z has been identified as the sensor for ambient temperature. Genotypes deficient in 

incorporating H2A.Z into nucleosomes phenocopy warm grown plants, and show a striking 

constitutive warm temperature transcriptome (Kumar and Wigge, 2010). Hence, in IZS 288 

the increased transcript level of COR15A and AtGOLS3 at optimal temperature (without 

being exposed to chilling stress) could have been the result of a defect in histone occupancy 
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and/or modification that lead to the activation of stress induced genes without the exposure 

to the stress.  

 

On a similar note, in Arabidopsis simultaneous knockout of two histone chaperons, NRP1 and 

NRP2, impaired postembryonic root growth. In the nrp1-1 nrp2-1 double mutant, arrest of 

cell cycle progression at G2/M and disordered cellular organization occurred in root tips 

(Zhu et al., 2006). Surprisingly, the root structure of the nrp1-1 nrp2-1 double mutant, with a 

very short primary root length and increased number of lateral roots, appears similar to that 

of the IZS 288 root morphology. Especially, the root tip structure, where the meristematic and 

elongation zones are reduced, shows similarity to the defects of IZS 288 root tip structure. 

Thus, the root architecture alteration of IZS 288 could also be a result of histone level 

imbalance caused by malfunctioning of a substrate receptor (i.e. IZS 288) of the ubiquitin 

mediated 26S proteasomal pathway. In future studies, the impact of the IZS 288 mutation on 

histone modifications could be investigated using Trichostatin A (TSA) an organic compound 

that inhibit a group of the histone deacetylase (HDAC) family of enzymes. Such a test will 

have a broad impact on both WT and IZS 288 plants; however if the mutation of IZS 288 has a 

direct effect on the process of histone modification, IZS 288 plants will show strong 

hypersensitivity than WT plants.  

 

4.2.5 The IZS 288 mutation 

Since the point mutation in IZS 288 has replaced the 377th threonine (a conserved amino acid 

across homologs genes) by isoleucine, the first assumption was the mutation might have 

caused a loss of phosphorylation site in the protein leading to malfunctioning of the protein. 

However, transgenic lines carrying alanine substitution for the 377th threonine, another non-

phosphorylatable amino acid, did not exhibit IZS 288 like phenotypes (short root and zinc 

hypersensitivity), thus the mutation effects were not caused by loss of phosphorylation site. 

The alternative explanation for the effect of the point mutation in IZS 288 comes from 

comparing the amino acid property of threonine and the substitute amino acid isoleucine. 

The two amino acids differ both in their size as well as chemical property. As it can be seen 

on the Venn diagram illustrating the properties of amino acids (Fig 4.3) , threonine belongs to 

a group of amino acids that are slightly polar and small in size; but isoleucine belongs to the 

hydrophobic amino acid groups that have aliphatic side chains (Betts and Russell, 2003). 

Since the structure of the IZS 288 protein is not yet identified, demonstrating the impact of 
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the Thr/Ile substitution on the protein function is very difficult. However, based on the 

nature of the amino acids taking part in the substitution it is possible to infer the impact it 

might have on the protein structure. Threonine being slightly polar amino acid can reside on 

the surface of a protein and quite commonly situated in functional centers of proteins. On the 

other hand, Ile being hydrophobic amino acid prefers to be buried in protein hydrophobic 

cores and because of the non-reactive side chains are rarely directly involved in protein 

function. Hence substituting Thr by Ile may lead to destabilization of the protein structure 

inhibiting it from binding to cullin 4–DDB1 ubiquitin E3 ligase complex. An indirect 

supporting evidence for this supposition is both transgenic lines carrying alanine or serine 

substitution were able to complement the IZS 288 phenotype in planta. However, since the 

binding ability of IZS 288 construct carrying alanine/serine substations with DDB1 was not 

tested, the possibility for other explanations is not ruled out. In the future when information 

regarding the protein structure of IZS 288 or its homologs becomes available a better 

understanding of the effect of the point mutation on the protein structure can be achieved. In 

the mean time, there are reports in literature where substitution of threonine by isoleucine 

led to detrimental effect that could be considered as circumstantial evidences, like in the case 

of the S-opsin mutation that lead to Tritan color-vision deficiency (Blue-yellow color 

blindness) in human (Baraas et al., 2012) and GTPase gene (SPG3A) mutation that led to 

hereditary spastic paraplegia (muscle tightening in lower limbs) (Hedera et al., 2004). 

 

 

 

Figure 4.3. Venn diagram illustrating the properties of amino acids. This picture was adapted from Betts and 
Russell, 2003. 
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In summary, the IZS 288 mutant, in addition to being Zn hypersensitivity, also showed other 

pleiotropic effects like alteration of root morphology, early flowering and strong chilling 

hypersensitivity. This unique combination of phenotypes observed in IZS 288 could be useful 

later on to study the role of the Zn homeostasis mechanism in different developmental 

process as well as abiotic stress tolerance. The mapping and characterization of IZS 288 has 

lead to the identification of a novel gene with presumed function in the 26S ubiquitin 

proteasome pathway. The trail to identify a T-DNA mediated knockout line for IZS 288 was 

not successful. Based on the data at hand it is impossible to conclude if homozygous lines for 

the SALK_140479 T-DNA insertion line are lethal. Therefore, in the future it would be 

recommendable to set up a new cross between identified heterozygous lines of SALK_140479 

and follow up the development of seeds in order to detect any possible defects in embryo 

development. Secondly, T-DNA insertion site should be verified by sequencing the 

neighboring genomic fragments up and down the insertion point. Despite the Zn 

hypersensitivity phenotype of IZS 288, no significant difference was observed in the 

elemental profile of both roots and shoots; however, future work is required to illustrate the 

impact of Zn stress on the elemental profile of IZS 288. The other open question that still 

requires further investigation is the influence of Zn on chilling tolerance of Arabidopsis. Since 

exposure to excess Zn under chilling temperature had drastic impact on the development of 

WT plants, it seems that Zn has a negative influence on the general process of chilling 

tolerance. Therefore, future studies should be directed in identifying the crosstalk between 

cold signaling and Zn homeostasis mechanism in Arabidopsis thaliana. On the other hand, 

even though the microarray data did not provide the necessary support, IZS 288 appeared to 

have auxin signaling related defects and a known auxin transport mutant (Aux1) showed Zn 

hypersensitivity; hence there is still room for further progress in determining the link 

between Zn and auxin signaling. Finally, among the outputs of the microarray analysis there 

were candidate genes with a potential to be substrates for the IZS 288 in the cullin 4 E3 

ubiquitin ligase complex.  

 

In the future, first the findings of the preliminary results regarding the interaction of the IZS 

288 with that of DDB1, which was attained using yeast two hybrid interaction assay and 

bimolecular fluorescence complementation (BiFC) assays, should be further verified using 

different negative and positive controls in order to exclude the possibility of a false positive. 

In vivo coimmunoprecipitation (Co-IP) assay could also be performed as a third approach in 
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proving the interaction of IZS 288 with DDB1. One approach of attaining this would be, first 

to capture DDB1 from protein extract of Arabidopsis tissues using an antibody specific for 

DDB1 and then performing subsequent immunoblot assays using specify antibody for IZS 

288 on the extract immunoprecipitated for DDB1. Furthermore, the effect of the point 

mutation in IZS 288 on its interaction with DDB1 should be further investigated by creating 

different constructs of IZS 288 carrying different amino acid substitutions at position 

presumed to have positive or negative impact on the interaction with DDB1. A staring point 

for this investigation could be the constructs carrying alanine or serine in the place of the 

377th threonine. Since these two constructs were able to complement the phenotypes of IZS 

288 it possible that they maintained the interaction with DDB1. Secondly, the interaction of 

IZS 288 with the proposed candidate substrates should be tested. For this purpose IZS 288 

could be used as bait in yeast two hybrids and its interaction with JAZ8, basal transcription 

factor complex (TFIIH) TTD-A subunit and the three histones families (i.e. H2B, H3.1 and H4 

) could be investigated. The principle behind a yeast two hybrid assay is the transcription 

factor, which is required for the activation of downstream reporter gene by binding onto an 

upstream activating sequence (UAS), is split into two separate fragments, known as the 

binding domain (BD) and the activating domain (AD). The construct containing the binding 

domain and protein of interest usually called the bait binds to the UAS, however for 

transcription of the reporter line to succeed a second construct called the prey carrying the 

activating domain and a potential interacting protein should interact with the bait. Hence, the 

activation of the reporter gene signifies an interaction between the protein of interest hosted 

in the bait construct and the potential interacting protein in the prey construct (Young, 1998). 

Alternatively, bimolecular fluorescence complementation (BiFC) assays could be used to 

validate the interaction of IZS 288 with the three potential substrates. The premise for the 

BiFC assay is the association of fluorescent protein fragments. The protein of interest and a 

potential interacting partner are fused to either the amine-terminus or carboxyl-terminus of 

unfolded complementary fragments of a fluorescent reporter protein and expressed in live 

cells. If and when these two proteins interact it allows the two fluorescent fragments to come 

to proximity leading to the re-formation of the reporter protein in its native three-

dimensional structure and emit its fluorescent signal (Kerppola, 2008). Finally, positive 

interactions observed in the yeast two hybrid assays or BiFC assays could be confirmed using 

coimmunoprecipitation (Co-IP) technique.  
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4.3 Understanding the link between flavonoids and heavy metal ions 

 

The potent capacity of metal-flavonoid complexes in scavenging radicals has been 

experimentally demonstrated (Kostyuk et al., 2001 and de Souza and de Giovani, 2004). 

Similarly, diversity in the metal chelating ability of flavonoids has been demonstrated. For 

example, Ren et al. (2008) report quercetin to have superior ability of chelating iron ions than 

kaempferol, and Mira et al. (2002) report a higher reducing capacity of flavonoids for copper 

ions than for iron ions. 

 

On the other hand, the tt mutants have demonstrated a wide range of variation in tolerance 

response to different environmental cues. For instance, the impact of UV-B stress is higher on 

all three tt mutants tested so far (tt4, tt5 and tt6) than wild type (Ler-0), but tt5 and tt6 

suffered far more than tt4, which is attributed to diminished leaf sinapate esters content (Li et 

al., 1993). There are also reports showing distinction among tt lines morphological 

phenotypes. It has been reported that tt4 shows quite low lateral root density whereas tt5 and 

tt6 have higher lateral root density than wild type. In addition tt6 had longer hypocotyl and 

root hairs while tt7 had shorter root hairs (Bauer and Djordjevic, 2009). Hence, it is possible 

that the reported developmental deference between the tt mutants could have contributed 

towards the difference in metal tolerance of the tt mutants. 

 

Therefore, the observed variation among the tt mutants in their tolerance response to heavy 

metal ion stress could be a result of the presence and absence of different flavonoids as well 

as their efficiency in forming complexes with metal ions and the potential of this metal-

flavonoid complexes in quenching the oxidative stress that might have arisen as a result of 

the excess metal ions. According to Koornneef et al. (1982) tt4 is devoid of any detectable 

flavonoids; consequently, it’s observed strong zinc and to a lesser extent cadmium 

hypersensitivity could be attributed to complete lack of flavonoids. However, even if the 

mutation in tt5 renders accumulation of naringenin chalcone and deficiency in upstream 

flavonoid, tt5 exhibited no apparent sensitivity towards the metal ions tested, rather it had 

slightly better root growth at moderate stress levels. This unexpected phenomenon could be 

due to spontaneous isomerization of naringenin chalcone (NC) to form naringenin (N) and 

subsequent flavonoids, and this excess accumulation of NC with that of N and subsequent 

flavonoids might provide an extra layer of protection from oxidative stress. Supporting the 
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hypothesis of spontaneous isomerization of naringenin chalcone to naringenin, previously 

conducted experiments on tt5 have demonstrated naringenin chalcone accumulation plus an 

unidentified peak with a retention time equal to quercetin (Peer et al., 2001). Using thin-layer 

chromatography, Winkel-Shirley et al. (1995) had also detected kaempferol in seeds of tt5. 

Similarly, Pelletier et al. (1999) using HPLC showed flowers of tt5 also contained kaempferol.  

 

Similarly, the reason behind the lack of hypersensitivity response towards cadmium and zinc 

in tt3 and tt6 could be due to the accumulation of quercetin and kaempferol and N 

respectively (Bauer and Djordjevic, 2009). However, one possible explanation for the 

surprising hypersensitivity of tt6 towards copper ions could be a weaker copper chelating 

potential of naringenin in comparison to kaempferol and quercetin. In order to test this, 

follow up experiments should be conducted that measure chelating potential of different 

flavonoids towards copper.  

 

On the other hand, tt7 showed no apparent hypersensitivity towards cadmium and copper, 

which is fitting to its kaempferol accumulating nature (Koornneef et al., 1982). However, a 

strong zinc hypersensitivity as well as higher content of zinc in both leaves and roots was 

observed in tt7. These characteristics of tt7 are in line with phenotypes of AtHMA1 knock-out 

plants (i.e. a mutant line deficient in zinc detoxification mechanism) (Kim et al., 2009). 

Therefore, it is tempting to assume that lack of quercetin and/or the accumulation of 

kaempferol might have a negative impact on the zinc detoxification mechanisms of 

Arabidopsis. Nevertheless, since greater degree of variation has been observed among tt7 

seedlings as well as between different seed batches, additional experiments must be carried 

out in order to rule out the effect of extraneous factors. 

 

Among all the effects observed in the tt mutant lines, the most prominent and consistent is 

the hypersensitivity phenotype observed in response to excess Zn. The mutant completely 

devoid of flavonoids (tt4) and the one that lacks quercetin (tt7) showed strong zinc 

hypersensitivity. The link between flavonoids and Zn hypersensitivity could arise from the 

induction of reactive oxygen species (ROS) by the presence of excess Zn in the medium (Kim 

et al. 1999) and the tt mutants’ inability to deal with the extra amount of ROS generated. 

However, if excess ROS generation was the only reason behind the Zn sensitivity phenotype 

of tt4 and tt7 then one would expect them also to show Cu hypersensitivity. This was not the 



Discussion 

141 

case in both mutant lines. Therefore, there should be additional factors to it than only ROS 

generation. The second alternative explanation would be Zn may directly influence the 

phenylpropanoid pathway. Interestingly, it has been reported that in Arabidopsis PAL2 

(which encodes a key enzyme in the early phenylpropanoid pathway) was among the genes 

up-regulated by exposure to excess Zn (van de Mortel et al., 2006). Thus, the induction of the 

phenylpropanoid pathway by excess Zn can be one indication in Arabidopsis for the 

recruitment of flavonoids in dealing with exposure to excess Zn. The means by which 

flavonoids offer protection against excess Zn could be either in a form of directly chelating 

away Zn ions or indirectly by influencing the Zn homeostasis mechanism. Moreover, only tt4 

and tt7 showed Zn hypersensitivity, which could be indicative of preference for particular 

flavonoids in dealing with excess Zn. Particularly focusing on the tt7 mutant, which 

accumulates kaempferol and lacks quercetin and still shows Zn hypersensitivity phenotype, 

it is tempting to speculate quercetin is more potent in dealing with excess Zn. In support of 

this idea, quercetin has three potential metal binding sites (Fig 4.4), while kaempferol has 

only two. Besides that, in kaempferol the two metal binding sites can not be used 

simultaneously (Hider et al., 2001). Therefore, quercetin may have a better Zn chelating 

potential than kaempferol. However, the reported developmental differences among the tt 

mutants can not be ruled out from being a possible explanation for the variation in Zn 

tolerance between the different tt mutants (Bauer and Djordjevic, 2009).  

 

A)     B) 

  

Figure 4.3. A) Potential metal binding sites of quercetin indicated by letters, the binding affinity of site (A) 
being greater than sites (B) and (C) at pH 7. B) Potential metal binding sites of kaempferol indicated by letters, 
but only (D) or (E) will be used for chelation; both can not be used simultaneously.  
 

Additionally, independent of the copper stress effect, tt7 contained more iron, manganese, 

molybdenum and cadmium and less nickel in its leaves than Ler-0. Nevertheless, copper 

stress caused similar effects on both genotypes except for cadmium content of roots, where 

tt7 under the different copper stress levels was not able to accumulate cadmium to the same 
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extent as Ler-0. Meanwhile, an increase in copper content of both leaves and roots was 

observed, verifying the elevated concentration of available Cu ions in the different stress 

regimes. However, it had no impact on the zinc and nickel content of both organs. In spite of 

that, a significant reduction was detected in the iron, manganese and molybdenum content of 

leaves in both genotypes, and an increase in the root iron content, which could have arisen 

due to competition among different metal ions for shared transporters like NRAMPs, IRT, 

(Oomen et al., 2009, Hall and Williams, 2003) and chelators (Guo et al., 2008). The other 

possible explanation would be the interdependence of the different metal homeostasis 

mechanism on each other. For instance, a recent report has indicated that Cu deficiency 

affects the root-to-shoot Fe translocation of Arabidopsis (Bernal et al. 2012), which is in 

agreement to what has been observed here (i.e. elevated Cu availability caused a disruption 

in iron distribution by reducing the shoot iron content and at the same time increasing the 

root iron content). 

 

Meanwhile, during the course of this project, Keilig and Ludwig-Müller, (2009) following 

similar experimental set up reported similar findings indicating the role of flavonoids in 

heavy metal stress tolerance. However, even if the final conclusion is similar, there are some 

major discrepancies in the details of these two experiments. According to Keilig and Ludwig-

Müller, tt5 showed hypersensitivity towards cadmium and zinc (even if a closer look at the 

graphs tells otherwise, like during cadmium stress the seedling weight of tt5 and the root 

length of tt7) and the line tt7 out performed tt4 and tt5 on cadmium treated plates. These 

variation might have arisen due to differences in the mediums used (i.e. MS and Hoagland) 

and the parameter considered to assess the impact of heavy metal stress (seedling weight). 

Especially, regarding the difference between the two media , the Ca2+ and Fe3+ content of full-

strength MS (Murashige and Skoog) medium is tremendously higher than that of 1/10 

Hoagland medium. Consequently to reach similar levels of Zn2+ and Cd2+ stress, up to 6-

times higher amounts of metal solutions should be applied. Furthermore, the high content of 

cations in the medium plus vitamins and their interaction with the applied high 

concentration of metal salts can lead to additional factors influencing the growth of seedlings. 

Similar disparity between phenotypes observed in the two mediums has been reported in 

Tennstedt et al. (2009). While investigating stress factors with strong phenotype, the 

difference between the two mediums may not have a pronounced impact; but for 

experiments with subtle phenotypes such variations can have a significant effect with a 
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potential of masking important results. The second discrepancy between the two approaches 

was the traits considered to assess the impact of the stress (i.e. seedling fresh weight has been 

used as a main trait by Keilig and Ludwig-Müller, (2009) whereas in this project seedling root 

length was the main focus). Usually, diversified data sets have better chance in describing the 

physiological impact of a treatment. However, a particular trait selected based on previous 

observations and findings can also provide similar level of information. In this project 

seedling root length was used as a characteristic feature to measure the impact of heavy 

metal stress on plants because former findings have indicated root elongation to be far more 

sensitive than shoot growth to heavy metal stress (Cheung et al., 1989). Therefore, the tt 

mutants heavy metal sensitivity response observed as a change in their root elongation 

should be a better representative of the overall change caused by various metal ions stress.  

  

In summary, based on the observation of these experiments, flavonoids seem to have some 

sort of interaction with heavy metal ions, particularly with zinc and copper ions and this 

interaction appears to be part of the heavy metal tolerance mechanism of Arabidopsis thaliana 

plants. Besides that, different flavonoids and intermediate compounds showed different 

capacity in shielding the effect of heavy metal stress. In contrast, the contribution of 

flavonoid-metal complexes in sequestration of metal ions particularly iron is very limited. In 

the future, determining the elemental profile of tt4 mutant and investigating the effect of Zn 

stress on the elemental composition of both tt4 and tt7 might give a better understanding of 

the flavonoid metal interaction. Furthermore, in-depth analysis of the remaining transparent 

testa mutants like tt1, tt2, tt8 and ttg, with mutations on transcriptional regulation of 

flavonoid biosynthesis genes might broaden the present perception about flavonoids and 

their role in heavy metal tolerance. The other approach could be testing the metal tolerance 

responses of progenies of crosses set up between the tt mutants that already showed 

hypersensitivity phenotype and other well established Zn hypersensitive mutants like MTP1. 

The results of such experiments can shed more light on the link between flavonoids and 

heavy metals like Zn.  

 

4.4 Conclusion  

 

This project was carried with the aim of identifying new components of the Zn homeostasis 

mechanism and deciphering the role of flavonoid towards heavy metal tolerance in plants. 
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The second round mutant screen on EMS mutagenized seeds was successful in identifying 28 

new increased Zn sensitive (IZS) mutants. The steady increase in the number of the Zn 

sensitive mutant library will ensure in the future the identification of major stakeholders of 

the Zn homeostasis mechanism in plants, which will lead eventually to a better 

understanding of the Zn homeostasis mechanism. Having a broad and in-depth 

understanding of how the Zn homeostasis mechanism is governed in plants will arm the 

biofortification strategy with the necessary knowhow to improve the Zn content food items.  

 

The mapping and functional characterization of IZS 288 has lead to a discovery of a new gene 

family, the cullin 4 ubiquitin E3 ligases, that could be involved in Zn homeostasis process of 

Arabidopsis. It also gave a hint of a possible connection between Zn homeostasis and chilling 

stress tolerance mechanism of Arabidopsis thaliana. The comparative transcriptome of IZS 288 

and WT identified candidate genes that are affected by the mutation in IZS 288; which could 

be substrates for IZS 288 and the cullin 4 ubiquitin E3 ligase complex in general. Future work 

in the verification of these candidate genes will illustrate either the interconnection of the Zn 

homeostasis mechanism with jasmonic acid signaling or identify the indirect effect of Zn on 

transcriptional regulation by regulating histone availability or modification.  

 

Additionally, heavy metal stress tolerance test of five of the transparent testa (tt) mutants 

have verified the presence of metal and flavonoid interaction in vivo. It appears that the total 

lack of flavonoid synthesis (tt4) and/or the accumulation of quercetin (tt7) negatively 

influences Zn tolerance in Arabidopsis thaliana. Further studies investigating the impact of Zn 

stress on the overall elemental profile of tt4 and tt7 may identify a potential effect of 

flavonoids on the accumulation of Zn and other metals in Arabidopsis thaliana.  

 

Overall, in the course of this project a novel WD40 gene from Arabidopsis thaliana that has 

homologs genes in wide range of eukaryotic organisms was identified. The function of this 

gene was still uncharacterized in almost all of the organisms with a homolog except for 

Caenorhabditis elegans. Therefore, the new knowledge acquired through this project would 

pave a way for functional characterization of many new genes in their respective genomes. In 

the future there are still several questions to be addressed such as proving the formation a 

complex between the WD40 protein of IZS 288 and the cullin 4 ubiquitin E3 ligase, 

verification of the candidate substrates, and clarifying the impact of the point mutation on 
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the function of the gene. Nevertheless, this project was successful in laying out the 

foundation for understanding the role of cullin 4 ubiquitin E3 ligases on the Zn homeostasis 

mechanisms of Arabidopsis thaliana plants. 
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Appendix list-4 
Highly enriched gene ontology terms in 1992 genes that were chilling responsive in WT roots after 24 hours of 
chilling stress and clustered into five groups by K-mean algorithm using the Pearson correlation coefficient as a 
distance metrics. The enrichment analysis was carried out using the Gene Ontology Enrichment Analysis 
Software Toolkit (GOEAST) (Zheng and Wang, 2008). The header ‘level’ represents the longest path connecting 
back to the root of the GO hierarchical tree and adjusted p value or false discovery rate (FDR) was calculated 
using Benjamini Yekutieli (2001) method. Cluster -1 is made up of genes that were constitutively up-regulated at 
optimal growing conditions only in WT, Cluster-2 contains genes that showed similar chilling induced 
transcriptional repression in both WT and IZS 288, Cluster-3 contains genes that showed chilling stress induced 
expression in both genotypes, Cluster-4 contains genes that showed strong induction of expression as a result of 
chilling stress only in IZS 288 roots and Cluster-5 is composed of genes that showed strong induction of 
expression as a result of chilling stress only in WT roots. 
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Appendix list-5 
Highly enriched gene ontology terms in 2560 genes that were chilling responsive in IZS 288 roots after 24 hours 
of chilling stress and clustered into five groups by K-mean algorithm using the Pearson correlation coefficient as 
a distance metrics. The enrichment analysis was carried out using the Gene Ontology Enrichment Analysis 
Software Toolkit (GOEAST) (Zheng and Wang, 2008). The header ‘level’ represents the longest path connecting 
back to the root of the GO hierarchical tree and adjusted p value or false discovery rate (FDR) was calculated 
using Benjamini Yekutieli (2001) method. Cluster -1 is made up of genes that were constitutively up-regulated at 
optimal growing conditions only in IZS 288, Cluster-2 contains genes that showed strong induction of 
expression as a result of chilling stress only in IZS 288 roots, Cluster-3 contains genes that showed chilling 
induced transcriptional repression in both genotypes, chilling stress induced expression in both genotypes, 
Cluster-4 contains genes that showed strong induction of expression as a result of chilling stress only in IZS 288 
roots and Cluster-5 is composed of genes that showed strong induction of expression as a result of chilling 
stress only in WT roots. 
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