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I 

Abstract  

Atmospheric lifetimes of pesticides are limited by reactions with OH, which have 

been studied for a long time. Most studies were focused on the gas phase and only 

very few experiments on semivolatile pesticides investigated their OH reactions with 

aerosol-borne compounds. In this work, the reaction of gas-phase OH radicals with 

aerosol-borne terbuthylazine (TBA) has been investigated in the low temperature 

aerosol simulation chamber (LOTASC) at three temperatures. Self-synthesized, 

monodisperse SiO2 particles (diameter around 160 nm) were used as carrier particles 

in order to avoid any influence of agglomeration. The experimental results of second 

order rate constants showed a lower value than previous work on Aerosil 200 particles 

(Palm et al., 1997). However, results from this work correspond to the 

Langmuir-Hinshelwood mechanism, revealing the process of a reversible adsorption 

of OH on particle surfaces before chemical reaction. This is the first time to apply the 

Langmuir-Hinshelwood mechanism on the heterogeneous reaction of gas-phase OH 

radicals with aerosol-borne compounds. In this work, the Langmuir-Hinshelwood 

expression kI
obs=(8.6±1.2)×10-12COH/ (1+(9.4±1.6)×10-8COH) was obtained at 25 °C, 

where the limiting slope for COH=>0 according to an Eley-Rideal mechanism leads to 

k(OH)Eley-Rideal = (8.6±1.2) ×10-12 cm3 s-1 (which is similar to the current views of 

structure/reactivity relations for gas-phase reactions). 

Chamber experiments were also performed at 6.5 °C and -10 °C. The experimental 

Langmuir-Hinshelwood expressions are kI
obs=(8.5±1.6)×10-12 COH / 

(1+(1.07±0.24)×10-7 COH) and kI
obs=(6.08±0.97)×10-12 COH / (1+(1.40±0.26)×10-7 

COH), respectively. Based on the kinetic parameters, the atmospheric half-lives at 

different temperatures have been calculated. The results show that at 25°C and 6.5°C, 

the half-life of terbuthylazine is less than 2 days on plain mineral dust. 



 

II 
 

 

 

 

 



 

III 

Zusammenfassung 

Die atmosphärische Lebensdauer von Pestiziden wird durch ihre Reaktion mit 

OH-Radikalen begrenzt, die seit langem Gegenstand der Forschung ist. Die meisten 

Arbeiten über semivolatile Pestizide konzentrieren sich ausschließlich auf die 

Gasphasen-Reaktionen, und nur sehr wenige Experimente untersuchen die 

OH-Reaktion mit aerosolgetragenen Stoffen.  

In dieser Arbeit wurde die Reaktion von OH-Radikalen in der Gasphase mit 

aerosolgetragenem Terbuthylazin (TBA) bei drei unterschiedlichen Temperaturen in 

einer temperierbaren Aerosol-Smogkammer (LOTASC) untersucht. Um eine 

Beeinflussung durch Agglomeration zu vermeiden, wurden hierfür monodisperse 

SiO2-Partikel (Durchmesser ca. 160 nm) selbst synthetisiert und als Trägeraerosol 

verwendet. Aus der Auswertung der Experimente ergaben sich 

Geschwindigkeitskonstanten zweiter Ordnung, die kleiner waren als in in einer 

früheren Arbeit mit Aerosil-200-Partikeln (Palm et al., 1997). Ein weiteres Ergebnis 

dieser Arbeit war, dass die Reaktion dem Langmuir-Hinshelwood Mechanismus folgt, 

der eine reversible Adsorption von OH auf der Partikeloberfläche vor der chemischen 

Reaktion annimmt. Dies ist das erste Mal, dass der 

Langmuir-Hinshelwood-Mechanismus auf die heterogene Reaktion von 

OH-Radikalen in der Gasphase mit aerosolgetragenen Stoffen angewendet wird. Es 

ergibt sich für T = 25 °C eine Gleichung nach Langmuir-Hinshelwood von  kI
obs = 

(8.6 ± 1.2) × 10-12 COH / (1 + (9.4 ± 1.6) × 10-8 COH) und ein Grenzwert für COH => 0 

nach dem Eley-Rideal Mechanismus von k(OH)Eley-Rideal = (8.6 ± 1.2) × 10-12 cm3s-1 

(vergleichbar mit aus Struktur / Reaktivitäts Beziehungen in der Gasphase 

abschätzbaren Werten). 

Weitere Smogammer-Experimente wurden bei 6.5 °C und -10 °C durchgeführt. Die 

daraus resultierenden Langmuir-Hinshelwood Gleichungen waren kI
obs = (8.5 ± 1.6) × 

10-12COH / (1 + (1.07 ± 0.24) × 10-7 COH), beziehungsweise kI
obs = (6.08 ± 0.97) × 10-12 

COH / (1 + (1.40 ± 0.26) × 10-7 COH). Basierend auf den kinetischen Parametern wurden 

die atmosphärischen Halbwertszeiten bei unterschiedlichen Temperaturen berechnet. 
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Die Berechnungen ergaben für T = 25 °C und 6.5 °C eine Halbwertszeit von 

Terbuthylazin von weniger als 2 Tagen für rein mineralische Stäube.
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1. Introduction 

 

1.1 Motivation 

The atmospheric degradation of pesticides plays an important role in the 

environmental fate. Their behavior in the atmosphere could be evaluated based on the 

kinetic data from the reactions of pesticides with oxidants in the atmosphere, such as 

photolysis, heterogeneous reaction with OH radical, ozone, NOx and other oxidants 

(Finlayson-Pitts and Pitts Jr., 2000). However, most of the research has been focused 

on the homogeneous gas-phase reactions (Atkinson et al., 1999). Considering the low 

volatility of the majority of the pesticides  (Bidleman, 1999), the heterogeneous 

chemical reactions which contribute to the atmospheric degradation pathways 

(reactions with OH, NO3 radicals and ozone, or photolysis) of semi-volatile organic 

compounds (SVOCs) (normally adsorbed on particle surfaces) should attract more 

attention since such studies are rare. This leads to the result that currently most of the 

atmospheric lifetimes of pesticides are calculated from the gaseous-phase chemical 

reactivity using structure–reactivity relationships (known as SAR, now the U. S. 

Environmental Protection Agency provides similar estimation software as EPIWIN). 

This methodology has been established for oxygenated compounds and volatile 

hydrocarbons (Kwok and Atkinson, 1995). However, due to the lack of consideration 

of heterogeneous reactions in the atmosphere, the lifetimes which were derived by 

such calculation seemed to be different from the actual measurement results. 

During the 1980s, the smog-chamber technique has been developed to study the 

aerosol-borne reaction of SVOCs in the atmosphere. Jeffries et al. (1976) constructed 

an outdoor chamber at the University of North Carolina for atmospheric chemistry 

study; Behnke et al. (1986, 1997) built up an indoor glass chamber at Hannover for 

homogeneous and heterogeneous studies; at the University of California at Riverside 

(UCR), a “UCR-EPA” chamber has been constructed to address emphasis mainly on 
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mechanism evaluation of atmospheric chemistry 

(http://www.engr.ucr.edu/~carter/epacham/); until recently, more attention has been paid to 

the simulation experiments in the atmospheric chemistry and more chambers has been 

built all around Europe (http://www.eurochamp.org/chambers/). Besides, there are other 

photochemical techniques, such as rotating bulb/drum (Yang et al., 2010, Pflieger et 

al., 2011), and flow reactor (Cox et al., 2005), which have been developed to 

understand how the chemical kinetics takes place in the real atmosphere. Those 

results are crucial for overall atmospheric evaluation of SVOCs. 

Following previous work which was conducted on the heterogeneous reactivity of OH 

radicals with aerosol-borne terbuthylazine (Palm et al., 1997), this work set out to 

explore how different characteristics of carrier particles impact their reaction kinetics 

during the experiments in the aerosol simulation chamber. The preliminary results 

suggested that the surface characteristics of SiO2 particles could have an impact to the 

heterogeneous reactions of aerosol-borne terbuthylazine with OH radicals. The 

reaction happened with a faster rate on porous SiO2 particle agglomerates, in 

comparison to non-porous SiO2 spheres. Within a certain concentration range of OH 

radicals, the heterogeneous rate constant decreased slightly when the OH 

concentration increased. In this case, the Langmuir-Hinshelwood and Eley-Rideal 

mechanisms are used to explain the relations between the concentration of OH 

radicals and the reaction rate constant. Those mechanisms could also explain the 

discrepancy of recent results from Pflieger et al. (2013) with previous work (Palm et 

al., 1997, Palm et al., 1998).    

In this research effort the author has striven to work with chamber experiments to 

study the atmospheric heterogeneous reaction of gas phase OH radicals with 

aerosol-borne terbuthylazine. Since the LOw Temperature Aerosol Simulation 

Chamber (LOTASC) is temperature controlled (from 25 °C down to -25 °C), 

experiments were performed at different temperatures and the temperature 

dependence of the chemical kinetics is obtained.  
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1.2 Pesticides in the atmosphere  

Application of pesticides was considered to be beneficial alone until the late 1960s 

and early 1970s, when DDT residues were detected in the polar region (Sladen et al., 

1966, Tatton and Ruzicka, 1967, Peterle, 1969, Bowes and Jonkel, 1975). Even in 

remote areas like Mt. Everest, the existence of organochlorine pesticides has been 

recognized (Li et al., 2006). As the pesticides can not be distributed so far away 

through the food chain, or attributed to surface water movement, the effect of 

atmospheric deposition is regarded as a dominant source in remote areas.  

Pesticides are released into the atmosphere through many processes such as an 

application drift during spraying (Payne and Thompson, 1992, van den Berg et al., 

1999), post-application volatilization and wind erosion of soil (Glotfelty et al., 1989,  

Nash and Gish, 1989, Klöppel and Kördel, 1997, Cherif and Wortham, 1997). For a 

proper evaluation of the final fate of pesticide in the atmosphere, it is important to 

understand the physical chemical characteristics of chosen compounds. 

1.2.1 Gas/particle distribution 

Many pesticides have vapour pressures (p) roughly between 10-4 and 10-11 atm at 

ambient temperatures and are therefore defined as semi-volatile organic compounds 

(SVOCs). Pesticides with higher volatility could be found in the atmospheric gas 

phase, while others which have low vapour pressures ( p < 10-4 Pa at 20°C) will be 

adsorbed on atmospheric aerosol particles (Bossan et al., 1995). Most of the pesticides 

will be distributed between the gas phase and the particulate phase (Bidleman, 1988). 

The distribution equilibrium between gas and particles is defined by the following 

equation: 

ATSPFK p /)/(=          1.1 

Here Kp (m
3 µg-1) is the gas/particle partitioning coefficient, F (ng m-3) and A (ng m-3) 

are the mass concentrations of the SVOCs in gas phase and particulate phase, 

respectively, and TSP (µg m-3) is the total concentration of suspended particles 
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(Finlayson-Pitts and Pitts Jr., 2000). 

The distribution of pesticides between gas phase and particulate phases can be 

estimated by the well-known Junge-Pankow equation (Junge, 1977, Pankow, 1987). 

The partitioning in the equation is a function of the available aerosol surface and 

liquid-phase vapour pressure of the pesticide. Although it started with the BET 

(Brunauer, Emmett and Teller) isotherm, Pankow (1987) showed that the 

methodology of Junge (1977) finally followed a linear Langmuir isotherm. The 

theoretical Junge-Pankow model considered that the partitioning equilibrium between 

the gaseous phase and the suspended particles was reached rapidly in the atmosphere. 

The empirical Langmuir isotherm model was developed by Yamasaki et al. (1982). 

The gas/particle distribution is consistent with Langmuir adsorption of the SVOCs on 

the surface of the particles. 

In the real measurements, the relative humidity (RH) is a more realistic parameter 

which could have an impact to the gas/particle partitioning. However, the models are 

unable to take into account the relative humidity (RH) in the calculation. Some studies 

have suggested it to be influential in the gas/particle distribution of atmospheric 

organic pollutants (Pankow et al., 1993, Sanusi et al., 1999, Sauret et al., 2008). The 

function of relative humidity is not yet clear. Pankow et al. (1993) reported a negative 

correlation of the gas/particle partition coefficient with increased relative humidity, 

while Sanusi et al. (1999) observed an increase of polar pesticides in the gas phase 

with enhanced RH. One possible explanation is the competition for adsorption sites 

on particles of polar water molecules and polar pesticides, which are in favour of 

water when the humidity increases, however, more research is needed to evaluate the 

detailed mechanism. On the other hand, models, as well as measurements, can not 

represent the true value of the gas/particle partitioning coefficient. Artifacts always 

exist during filter sampling (Sanusi et al., 1999, van Pul et al., 1999) and deviation 

occurs frequently between the modeling result and the measured values (Bidleman 

and Harner, 2000). Futhermore, very little information is available on the 

characteristics and size distributions of particles loaded with pesticides. There is an 
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assumption that the compounds are adsorbed mainly on small aerosols because of the 

large available aerosol surface (van Pul et al., 1999). 

1.2.2 Transport in the atmosphere 

After entering the atmosphere, pesticides are dispersed by air turbulence and 

transported by the wind flow. Pesticides can be carried to remote regions by air 

movement in a relatively short time. It has been regarded that the atmospheric 

transport of pesticides is the most important way of contamination of non-target 

remote areas (Guicherit et al., 1999). There have been numerous reports about the 

evidence of long-range transport of persistence organic pollutants (POPs) (Hargrave 

et al., 1988, Norstrom et al., 1988, Gregor and Gummer, 1989, Iwata et al., 1993, 

Oehme et al., 1996, Wania and Mackay, 1996, Harner et al., 1999, Hung et al., 2005, 

Li et al., 2006). 

In addition to organochlorine compounds as traditional POPs, a number of modern 

pesticides (e.g. acetanilides, alachlor, carbofuran, dicofol, diuron, malathion, 

metolachlor, phosalone, trifluralin) have been found to be able to be transported to 

remote areas (Welch et al., 1991, Chernyak et al., 1996, Boyd-Boland et al., 1996, 

Rice and Chernyak, 1997, Majewski et al., 1998, Sanusi et al., 2000, Hoferkamp et al., 

2010). Pesticides which are considered to be of low persistence in temperate climate 

are apt to be much more resistant to breakdown in cold regions. Those currently used 

pesticides were considered to be less persistent than before. However, their 

environmental behavior needs further evaluation.  

1.2.3 Removal processes: deposition in the atmosphere 

The residence time of a pesticide in the atmosphere depends on how rapidly the 

removal process takes place. Neglecting the exchange with the free troposphere, the 

removal process can be classified into two categories: one is the atmospheric 

deposition, which involves the wet deposition and the dry deposition (Bidleman, 

1988); the other is the photochemical reactions, which play an important role to 

evaluate the atmospheric lifetime of pesticides. 
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Wet deposition 

In wet deposition, the pesticides are scavenged by atmospheric hydrometeors (rain 

drops or snow). Wet deposition consists of deposition by washout and in-cloud 

scavenging processes. Washout is a process by which atmospheric contaminants 

collide with rain droplets or snow flakes and are then removed from the atmosphere. 

During the in-cloud scavenging, the cloud droplets accommodate the contaminants 

within the cloud, and afterwards those organic contaminants leave the atmosphere as 

the droplets fall to the ground. 

Dry deposition 

Dry deposition associated with particles includes gravitational sedimentation and 

diffusion onto water surface, or land and vegetated surfaces, or turbulent transfer in 

which collision happens with the droplets. It is strongly influenced by the size of 

particles, and most of the sorbed pesticides may be condensed on smaller particles due 

to their higher surface area-to-volume ratio (Bidleman and Christensen, 1979).  

1.2.4 Photochemical reactions 

The photochemical reactions have been regarded as an important pathway for 

pesticides to be removed from the atmosphere. Considering the low vapour pressure 

of pesticides and the corresponding distribution between gas and particles, studies 

about the photochemical reactions are focused on two aspects: reactions in the gas 

phase and reactions in the particle phase. 
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HO2·+NOàNO2+OH·

 

Figure 1.1 Source and degradation pathways of pesticides in the atmosphere (courtesy from 

Wolf-Ulrich Palm) 

Gas-phase reactions 

Reactions in the gas phase involve photolysis and reaction with reactive species, such 

as OH radicals, NO3 radicals and O3. Reaction with OH radicals and photolysis by 

direct irradiation are the major pathways of degradation for pesticides in the 

atmosphere (Atkinson, 1995). The nitrate radical photolyses rapidly, thus has less 

contribution to the daytime photochemistry (Atkinson et al., 1997a). Although 

reactions with ozone are also potential reaction pathways, the reaction rate is quite 

slow (Atkinson et al., 1999), showing less significance in the degradation process. 

Only until recent years, techniques for in-situ measurements (e.g. laser-induced 

fluorescence, high performance liquid chromatography (HPLC), chemical-ionization 

mass spectrometer (CIMS)) have become available, and more studies have focused on 

the heterogeneous ozonolysis process (Mmereki et al., 2004, Kwamena et al., 2004 

and 2006, Perraudin et al., 2006, Vlasenko et al., 2008, Miet et al., 2009, Pflieger et 

al., 2011). 

Photolysis is important only for compounds which absorb light above 290 nm (Palm 

et al., 1998). Many kinds of pesticides do not have chromophores to absorb light 
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above this wavelength, like triazines and many halogenated pesticides. Thus, the 

degradation process of these compounds is supposed to proceed mainly through the 

reaction with OH radicals (Atkinson, 1989, de Leeuw, 1993, Palm et al., 1998). 

In the past few decades, a number of studies have been carried out on the degradation 

of pesticides during their atmospheric fate in the gas phase. Table 1.1 shows the 

published data for reactions of gas-phase pesticides in the atmosphere. Most of the 

measurements were using established absolute rate or relative rate techniques. Some 

pesticides have such low vapour pressure, that the measurements have to be 

performed at elevated temperature. The results were then extrapolated to room 

temperature.  

Table 1.1 Published data on atmospheric reaction rate of gas-phase pesticides 

and selected SVOCs (reaction rate constants are in units of cm3 molecule-1 s-1 at 

room temperature) 

Organic OHk  
3Ok  

3NOk  photok  (s-1) Reference 

Parathion    ~6×10-3 a 

Trifluralin (1.7±0.4)×10-11   ~6×10-4  a 

    ~3×10-4  e 

    
(1.2±0.5) 

×10-3 
q 

      

Phosphine 1.5×10-11    b 

Biphenyl (8.5±0.8)×10-12    c 

2-Chlorobiphenyl (2.9±0.4)×10-12    c 

3-Chlorobiphenyl (5.4±0.8)×10-12    c 

4-Chlorobiphenyl (3.9±0.7)×10-12    c 

1,2-Dibromo-3- 

chloropropane 
4.3×10-13 3×10-20   d 

Trimethyl 

phosphate 
7.4×10-12    d 

cis-1,3- 

Dichloropropane 
8.4×10-12 1.5×10-19   d, f 

trans-1,3- 

Dichloropropane 
1.4×10-11 6.7×10-19   d, f 

EPTC 3.18×10-11 <1.3×10-19 9.2×10-15  g 

Cycloate 3.54×10-11 <3.0×10-19 3.29×10-14  g 
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MDTC 1.33×10-11 <4×10-20 7.3×10-15  g 

Methyl 

isothiocyanate 
   

(6.7±1.7) 

×10-6 
h 

4,4'-PCB 2.0×10-12    i 

1-Chlorodibenzo- 

p-dioxin 
4.7×10-12    j 

1,2- 

Dimethoxybenzene 
3.5×10-11    j 

2,2'-PCB 2.0×10-12    j 

3,3'-PCB 4.1×10-12    j 

3,5-PCB 4.2×10-12    j 

Methyl bromide 2.9×10-14    k 

Chloropicrin    
(10.5±0.3) 

×10-6 
l 

Hexachloro- 

benzene 
2.7×10-14     m 

a-HCH 1.4×10-13    m 

g-HCH 1.9×10-13    m 

Phorate    ~2×10-3 n 

 (2.0±0.4)×10-11    o 

Carbaryl (3.3±0.5)×10-11    o 

 Chlordimeform (3.0±0.7)×10-10    o 

2,4-D butyl ester (1.5±0.2)×10-11    o 

Dichlorvos (2.6±0.3)×10-11   <5×10-6 p 

a. (Woodrow et al., 1978)-derived from field measurement 

b. (Fritz et al., 1982)-lab measurement 

c. (Atkinson and Aschmann, 1985)-lab measurement, and extrapolation data 

d. (Tuazon et al., 1986) 

e. (Mongar and Miller, 1988)-photolysis rate In outdoor chamber 

f, (Tuazon et al., 1988)-laboratory measurement in chamber 

g. (Kwok et al., 1992)-lab measurement 

h. (Alvarez and Moore, 1994)-lab measurement 

i. (Anderson and Hites, 1995)-lab measurement, and extrapolation result 

j. (Kwok et al., 1995)-lab measurement 

k. (Atkinson et al., 1997b) 

l. (Carter et al., 1997)-lab measurement, and for overhead sun 

m. (Brubaker and Hites, 1998)-lab measurement, and extrapolation result 

n. (Hebert et al., 1998)-photolysis rate In outdoor chamber 

o. (Sun et al., 2005)-lab measurement 

p. (Feigenbrugel et al., 2006)-measurement in outdoor chamber 

q. (Le Person et al., 2007)-outdoor chamber 
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Particulate phase reactions 

In the particle/aerosol phase, direct photolysis and reactions with O3 and OH or NO3 

radicals are the main chemical transformation pathways of pesticides, which have 

been adsorbed on the surface of particles. Due to the complexity of heterogeneous 

gas-surface reactions, these studies have received much less attention, in comparison 

to the gas phase reactions. 

The photocatalytic degradation of pesticides may occur on certain semiconducting 

metal oxides (TiO2, ZnO, or Fe2O3). Behnke et al. (1987b) performed chamber 

experiments with di-(2-ethylhexyl-)-phthalate (DEHP) on Al2O3, TiO2 and Fe2O3 

aerosols and on fly ash from a coal-fired power plant, where the results for the 

reaction of OH with aerosol-borne DEHP on Al2O3 and Fe2O3 showed no significant 

difference compared with the results on SiO2 aerosols. On the other hand, TiO2 

showed a marked photocatalytic effect, releasing huge amounts of OH radicals to the 

gas phase and shortening the lifetime of DEHP to less than 30 min. Fe2O3 showed 

only a minor photoctalytic effect on the degradation of the aerosol-borne DEHP, 

approximately doubling the decay rate in the absence of OH. This minor 

photocatalytic effect of Fe2O3 could be suppressed by a UV cutoff filter for l < 360 

nm, but the OH-reactivity of the aerosol-borne DEHP remained unchanged. On the 

other hand, the reaction of OH with DEHP on fly-ash aerosol was found to be 

significantly lower though enhanced in the absence of OH. Since in most cases the 

reactions were investigated in aqueous environment alone (Borello et al., 1989, Mills 

and Hoffmann, 1993, Herrmann et al., 1999, Guo et al., 2001, Marinas et al., 2001, 

Quan et al., 2003, Anandan et al., 2007), more investigations are needed to understand 

the detailed photocatalytic mechanism.  
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Table 1.2 Summary of published data on OH radical reaction rate of pesticides 

in the particulate phase (reaction rate constant are in units of cm3 molecule-1 s-1, 

at room temperature) 

Compound 
Carrier 

Particles OHk  
3Ok  Reference 

DEHP SiO2 (1.36±0.2)×10-11 < 10-18 

 Al2O3 (1.4±0.2)×10-11  

 Fe2O3 (1.28±0.3)×10-11  

 Fly ash (0.8±0.2)×10-11  

(Behnke et al., 

1987b) 

Lindane SiO2 6.0 ×10-13  
(Behnke and 

Zetzsch, 1989a) 

Terbuthylazine SiO2 (1.1±0.2)×10-11 ≤ 5×10-19 
(Palm et al., 

1997) 

Pyrifenox SiO2 (1.8±0.4)×10-11 (2±1)×10-19 
(Palm et al., 

1999) 

DDT/dicofol SiO2 
5.4×10-12 

(6.5°C) 
 

(Munthe and 

Palm, 2003) 

γ-HCH SiO2 
3.0×10-12 

(6.5°C) 
 

(Munthe and 

Palm, 2003) 

Aldrin SiO2 (3.9±0.2)×10-11  

(Gavrilov, 

2007) 

 

During the past years, there has been an emergence of research focusing on 

heterogeneous O3 processing with semi-volatile compounds on atmospheric aerosol 

surfaces (Pöschl et al., 2001, Kwamena et al., 2004, 2006,  Miet et al., 2009, Pflieger 

et al., 2009, Net et al., 2010). However, only a few studies have been concentrated on 

the gas-surface reaction of OH radicals with adsorbed pesticide on aerosols (Behnke 

and Zetzsch, 1989b, Palm et al., 1997, Palm et al., 1999, Bertram et al., 2001, Pflieger 

et al., 2013). Considering that the reactivity of OH radicals is much higher than ozone 

in the atmospheric heterogeneous reactions (based on published data, see that of table 

1.2), more emphasis is needed on the study of OH radical reactions on the gas-solid 

interface. 

Table 1.3 Summary of published data on ozone equilibrium and reaction rate 

constants of pesticides and selected SVOCs in the particulate phase (reaction rate 

constant are in units of cm3 molecule-1 s-1, at room temperature) 
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Compound 
Carrier 

Particles 

3OK  * 

cm3 

molecule-1 

I
maxk # 

s-1 

3Ok  

cm3molecu

le-1 s-1 

Reference 

BaP Soot 
(2.8±0.2) 

×10-13 
0.015±0.001  

(Pöschl et al., 

2001) 

 azelaic acid 

(1.2±0.4) 

×10-15  

(<1% RH) 

(0.048±0.008) 

(<1% RH) 
 

(Kwamena et 

al., 2004) 

  

(2.8±1.4) 

×10-15   

(72% RH) 

(0.060±0.018) 

(72% RH) 
 

(Kwamena et 

al., 2004) 

 NaCl (dry) <1.2×10-16  0.032  
(Kwamena et 

al., 2004) 

Anthracene Pyrex glass 
(2.8±0.9) 

×10-15   

(6.4±1.8)×10-3 

(<1% RH) 
 

(Kwamena et 

al., 2006) 

Cypermethrin ZnSe 
(4.7±1.7) 

×10-16 
(7±1)×10-4   

(Segal-Rosen

heimer and 

Dubowski, 

2007) 

Pyrene 
Silica 

particle 
  

(3.2±0.7) 

×10-16 

(Miet et al., 

2009) 

1-Hydroxypyrene 
Silica 

particle 
  

(7.7±1.4) 

×10-16 

(Miet et al., 

2009) 

1-Nitropyrene 
Silica 

particle 
  

(2.2±0.5) 

×10-17 

(Miet et al., 

2009) 

Trifluralin 

Silica 

particle 

(AEROSIL

®R812) 

(3.4±3.6) 

×10-16 

(1.1±0.9) 

×10-3 

(2.9±0.1) 

×10-19 

(Pflieger et 

al., 2009) 

Terbuthylazine 

Silica 

particle 

(AEROSIL

®R812) 

  <0.5×10-19 
(Pflieger et 

al., 2009) 

4-Phenoxyphenol 

Silica 

particle 

(AEROSIL

®R812) 

 (9±3) 

×10−14 
9.95×10−6  

(Net et al., 

2010) 

Isoproturon 

Silica 

particle 

(AEROSIL

®R812) 

(14.2±3.4) 

×10-16 

(19.8±3.4) 

×10-4 

(2.09±0.06)

×10-18 

(Pflieger et 

al., 2012) 

* 
3OK : Ozone gas-surface equilibrium constant, I

maxk : Maximum rate coefficient 
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1.2.5 Atmospheric lifetime and long range transport 

The atmospheric lifetime of pesticides is mainly affected by chemical reactions in the 

atmosphere. Due to their low volatility, pesticides are distributed into the gaseous and 

particulate phases. For this reason, their atmospheric fate must be considered in both 

phases (Bidleman, 1999). As already mentioned, currently most of the atmospheric 

lifetimes of pesticides are estimated from the chemical reactivity of the gaseous phase 

using structure–reactivity relationships (SAR) which have been established for 

volatile hydrocarbons and oxygenated compounds (Kwok and Atkinson, 1995).  

Considering the lack of kinetic data about heterogeneous reactions, the atmospheric 

lifetime of SVOCs calculated from gas phase kinetic data could be different from the 

real atmospheric condition. Esteve et al. (2006) have discovered that the 

heterogeneous reactivity of PAHs with OH radicals was inhibited on the carbonaceous 

surface, which has led to a slower degradation of PAHs. Scheringer et al. (2004) also 

proved that for several organochlorine compounds, the estimated lifetimes (according 

to gas-phase SAR data) are likely to be inconsistent with the observed long-range 

transport of these compounds, probably because of a lowered reactivity on the aerosol 

surface. Another example is that for α- and γ-HCH, Brubaker and Hites (1998) have 

reported about 100 days of the measured lifetimes in air from their measured OH-rate 

constants and Arrhenius parameters, while Howard et al. (1991) estimated the 

lifetimes of about 2 days for the hexachlorocyclohexanes (in accord with the present 

EPIWIN software of the US-EPA (Meylan, 1999)). Those results have shown a 

deviation of the previous calculation of atmospheric lifetimes of SVOCs, if based 

only on the gas-phase reactivity. There is a need to investigate the heterogeneous 

reactivity of pesticides on aerosol phase and give comprehensive evaluation of their 

fate in the atmosphere. 

1.2.6 Introduction of terbuthylazine 

Terbuthylazine (TBA) is a herbicide that is part of the chloro-triazine family. It acts as 

an inhibitor of photosynthesis. TBA is a selective herbicide for many kinds of crops 

and forests. It is especially effective against annual dicotyledons. About the 
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ecotoxicological properties, the risk of terbuthylazine to most animals was assessed as 

low, except the aquatic organisms (Anonymous, 2011).  

 

Figure 1.2 Molecular structure of terbuthylazine 

 

Due to its low vapour pressure (1.2×10-4 Pa at 25°C (C.I.L., 2005)), terbuthylazine is 

easy to get adsorbed on particulate matter. Sauret et al. (2008) have confirmed in field 

measurements that in the real atmosphere, terbuthylazine was detected only in the 

particle phase. In this study, terbuthylazine was chosen as the objective as 

semi-volatile compound, which is adsorbed on aerosol surface for the present 

heterogeneous study. It is because of its low vapour pressure and the existing 

knowledge of its kinetic studies. The purpose of the experimental work is to 

understand whether there are differences of results from this work in comparison to  

previous studies or not in order to understand more about the heterogeneous processes 

on aerosols in the atmosphere. 

1.3 Research objectives 

The specific objective of this work is to understand the reaction dynamics of the 

reaction of OH radical with terbuthylazine which takes place on non-porous 

self-synthesized SiO2 particles in aerosol simulation smog chamber. 

In chapter 2, the experimental facilities are introduced. The smog chamber had been 

reconstructed after removal from Hannover and suited into a refrigerated laboratory in 

2003. The instrumentation, the synthesis of the powder and the following coating 

procedure, dispersion of aerosol into the chamber and aerosol sampling technology 

are all explained in this chapter.  

In chapter 3, the principle of how to calculate the kinetic of heterogeneous reactions is 
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presented. Both the Langmuir-Hinshelwood and the Eley-Rideal mechanism are 

introduced in this chapter. Those mechanisms are important for gas-surface kinetics 

studies, and have been already introduced into atmospheric studies. 

In chapter 4, the method of OH radical production in the smog chamber is described. 

A comparison is made between different OH radical precursors. The way to introduce 

the OH precursor into chamber is also presented.  

In chapter 5, the procedure of calculation is introduced, including an illustration how 

OH radical concentration was obtained, and how the apparent rate constant of 

heterogeneous reaction of terbuthylazine was finally achieved. 

In chapter 6, the analysis of gaseous compounds and aerosols in the chamber is 

explained. Detailed information about aerosol characterization, and filter extraction 

technique is also given in this chapter. 

In chapter 7, the experimental results are presented and followed by discussions. The 

monitoring results of temperature and NOx and ozone concentration are shown. 

Results from every single experiment are summarized in tables. Those experiments 

were performed at different temperatures. Comparison of the results with other studies 

and the possible temperature independence are also discussed in this chapter. For the 

first time, the Langmuir-Hinshelwood and Eley-Rideal mechanism have been used to 

explain the heterogeneous reaction of OH radicals with aerosol-borne SVOCs. The 

major product has been analyzed and the possible reaction pathway is explained. The 

atmospheric implication is also being evaluated in this chapter. 

In chapter 8, some conclusions will be given.
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2. Experimental Description 

 

In this chapter, the infrastructure used in this work will be introduced. It contains the 

smog chamber and all the instruments that are used for the experiments. The materials 

are also presented, including chemical reagents, as well as equipment used for 

reactions to synthesize new chemicals for this study.  

2.1 LOw Temperature Aerosol Simulation Chamber (LOTASC) 

The LOw Temperature Aerosol Simulation Chamber (LOTASC) was first built at the 

Fraunhofer-Institute of Toxicology and Experimental Medicine in Hannover in 1982 

(Behnke et al., 1988). In 2003, it was moved to the University of Bayreuth (Figure 

2.1).  

The chamber is located in a temperature controllable room in which the temperature 

could be set from 25°C down to -25°C. The chamber consists of four cylinder sections 

made of glass (Duran, Schott, i.d. 1 m, total height 4 m), leading to a volume of 3200 

L. Two FEP Teflon foils (DuPont FEP100, 200A film) are used to cover the top and 

bottom of chamber, in order to let the UV light penetrate into the chamber (Figure 

2.2). 

The chamber was originally designed for aerosol experiments. Due to the high 

volume, the aerosol in the chamber attains long suspension times, which are useful to 

simulate chemical reactions happening in the real ambient air.  
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4 m

OH precursor and 
hydrocarbons

Temperature and 
Rel. Humidity

Aerosol 
Sampling

Gas-phase 
analysis by GC

O3 and NOx 
Analysers

Aerosol 
Generator

1 m

FEP Teflon film

FEP Teflon film 

Classifier for 
particle size 

analysis

16 Fluorescent Lamps
(Osram Eversun)

Figure 2.1 Glass chamber LOTASC (Low Temperature Aerosol Simulation 
Chamber) 

At the bottom of the chamber, 16 fluorescent lamps (Osram Eversun) are used as light 

sources for the simulation experiments. Due to the heating effects caused by the lamps, 

a vertical temperature gradient is achieved, contributing to the well mixing of the 

chamber aerosols. 

The chamber was typically cleaned after every 15 experiments by 0.1 mol/L NaOH 

solution to remove the substances sticking to the wall of chamber. The chamber is 

then flushed with deionized water. The Teflon foils are also changed during the 

cleaning process. The whole chamber is flushed with zero air until it is dry.  
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Figure 2.2 Photograph of the smog chamber with the solar simulator on 

2.2 Measurement instruments connected with the chamber 

2.2.1 Instruments 

As shown in Figure 2.1, the chamber is being monitored by various instruments. A 

GC-FID (Siemens Sichromat II) with a pre-concentrator is used for gas-phase 

hydrocarbon analysis. Detailed parameters are listed below. 

GC-FID Siemens Sichromat II: 

Column: Al2O3-PLOT Chrompack, 50 m length; inner diameter 0.32 mm  

Oven temperature: 190°C constant 

Detector temperature: 230°C 

Carrier gas: He 3 bar 
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Figure 2.3 Photograph of the GC-FID with the modified cold trap injector for 
hydrocarbons analysis 

Pre-concentrator: 

A self-designed cold trap injector is applied for monitoring the gas sample, combined 

with capillary chromatography. Detailed information has been described in previous 

papers (Behnke et al., 1987, 1988, Nolting et al., 1988). A peristaltic pump (Ismatec, 

VP Antrieb) took gas samples from the smog chamber through a glass-lined stainless 

steel tube inside the cold trap. Liquid nitrogen was used for cooling to a temperature 

of 148K in order to avoid condensation of air. The glass lined tube is then heated to 

introduce the collected hydrocarbons into the chamber.  

 

Magnetic
Valve

Magnetic
Valve 1 Magnetic

Valve 2

Temperature 
Regulator

Dewar tank 
of liquid N2

GC column

FID

Glass lined
tube

Cooling jacket

Pump
Temperature sensor

Heating control

Carrier gas
(He)

From smog
chamber

Holes to release extra N2

Figure 2.4 Schematic flowchart of the cold trap injector for gas chromatographic 
analysis of the gas phase in the smog chamber  
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O3 analyzer & NOx analyzer 

O3 analyzer: Thermo Scientific, MLU Model 49i 

NOx analyzer: ECO Physics, CLD 88P 

Aerosol particle size analyzer-classifier 

Electronic Classifier: TSI, Thermo-Systems Inc., Model 3071 

Condensation Nucleus Counter: TSI, Thermo-Systems Inc., Model 3020 

Filter extraction analysis: GC-FID Siemens Sichromat I with on-column injection 

Column: CP-SIL-5CB, 1.13 µm film thickness, i.d. = 0.32 mm, column length 50 m 

Detector: FID at 250 °C 

Carrier gas: nitrogen at 2 bar  

Temperature program: 50 °C elevated to 265 °C at 25 °C/min 

Injected volume: 5 µL 

  
Figure 2.5 Photograph of the GC-FID with on-column injector for filter sample 
analysis  

2.2.2 Solar simulator 

Fluorescent lamps were used as light source. Figure 2.6 shows the spectrum of the 

solar simulator (Gavrilov, 2007) in comparison with the sun spectrum in Europe   

(Frank and Klöpffer, 1988). In the spectrum, the usual mercury lines of the fluorescent 

lamps could be observed (313, 334, 366, 408 and 436 nm). Those lines serve for 
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calibration of the wavelength scale of the monochromator. The mercury line at 313 

nm could have an impact on the photolysis of the OH precursors, especially if 

hydrogen peroxide is used as OH precursor. 

  

Figure 2.6 Spectrum of the solar simulator (16 fluorescence lamps Osram 
Eversun), in comparison with the actual sun in Europe (taken from Gavrilov 
2007) 

2.2.3 Temperature and relative humidity sensor 

Two temperature sensors are installed onto the smog chamber in order to measure the 

temperatures in the middle of the chamber and close to the walls. They were placed in 

the middle and at the top of the chamber, respectively.  

  
Figure 2.7 Photograph of the temperature and humidity sensor (situated at the 
uppermost section of the chamber (DKRF 4001-P, Driesen und Kern) 

The sensor in the middle of the chamber is a thermistor (Epcos NTC 50K, thermal 
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time constant 3s), calibrated against a Pt100 reference resistance thermometer 

(Keithley 195A with probe 8693) from -40°C to +30°C. 

 
Figure 2.8 photograph of the temperature sensor (in the middle of the chamber) 

2.3 Aerosol coating, generation and sampling 

2.3.1 Synthesis of the silicon dioxide particles 

A system of chemical reactions has been developed which could control the growth of 

spherical silica particles to a uniform size (Stöber and Fink, 1968). This method 

employs the hydrolysis of alkyl silicates and subsequent condensation of silicic acid 

in alcoholic solutions. Ammonia is used as a morphological catalyst. By using this 

method, silica particles were synthesized with a diameter of about 160 nm with a 

standard deviation of 5 nm. 

The method used tetraethylorthosilicate (TEOS) in the presence of a 

C2H5OH/NH3/H2O mixture. The ratio between the NH3 and H2O concentration 

controlled the particle size. Particles with diameter at approximately 200 nm were 

expected.  

Reagents used for the experiments:  

C2H5OH (Merck, ≥99.9%): 188 mL 

H2O (double-distilled and deionized water): 6 mL 

NH3/H2O solution (Sigma-Aldrich, 28-30%): 8 mL 

TEOS (Sigma-Aldrich, 99.999%): 8 mL 
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Those four ingredients were added one by one into a 500 mL glass flask. The mixture 

was then stirred by a magnetic stirrer at room temperature (magnetic stirrer set at 300 

rpm). After 18 hours, the precipitated nanometer-sized silica spheres were separated 

from the solvent mixture by an induction drive centrifuge (Beckman, Model J2-21M). 

Parameters used for the centrifuge: 

Rotor speed: 5000 rpm 

Centrifuge temperature: 20 °C 

Centrifuge time: 60 minutes 

After separation from the liquid, the obtained white powder was placed in an oven at 

100 °C for 16 hours and weighed afterward. Then the powder was put back into the 

oven for another 4 hours and weighed again. If there was no mass loss found for the 

particles, it was assumed that H2O, C2H5OH or NH3 had been evaporated completely 

during this procedure.  

The mean diameter of the silica spheres was determined by a scanning electron 

microscope (Zeiss LEO1530, Field Emission-SEM) to be about 160 nm (see also 

Appendix 2). 

2.3.2 Coating of the particles with terbuthylazine 

The purpose of this step is to ensure a monolayer-coating with molecules of the 

semi-volatile organic compound TBA on the surface of the single inert particle. The 

SiO2 powder (1.0 g) was mixed with TBA powder (47 mg) in dichloromethane and 

then dried in a rotary evaporator (Edmund Bühler, Type RV2, Tübingen).  

The mass fraction of terbuthylazine on the dried particles is approximately equal to 

the mass ratio and thus defined as below: 

aerosol mass
TBA mass

TBA) offraction  mass(TBA ==F  

That leads to a mass fraction of TBA on the aerosol of F=0.047, theoretically.  
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The SiO2 powder was first weighed and then put into a 500 mL round bottom flask, 

where 50 mL CH2Cl2 was added. Then the flask was put into the ultrasonic bath for 

30 minutes. The TBA powder was weighed on a microbalance (Sartorius, type SC02) 

and transferred into the flask with SiO2 and CH2Cl2 inside, another 5 mL of CH2Cl2 

was added and the flask was put into the ultrasonic bath for 10 minutes. The flask was 

then connected with the rotary evaporator and a water bath was put around the flask to 

achieve a gentle heating (30-32 °C), thus minimizing loss of TBA. The pressure in the 

rotary evaporator was kept at 500 Torr. After all CH2Cl2 was evaporated, the white 

powder was gently milled for about 2 minutes and then stored in a 500 mL flask. The 

flask was then wrapped with aluminum foil to eliminate any photolysis effect and 

sealed with Teflon tape. According to experimental consumptions, the coated powder 

is replaced after 3-6 months.   

 

Figure 2.9 Coated powder in the rotary evaporator 

2.3.3 Structure analysis of the carrier particles 

In order to see the surface characteristics of those self-synthesized SiO2 particles, 
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SEM (Scanning Electronic Microscopy, Zeiss LEO1530, Field Emission-SEM, 

column: Gemini, Detector: InlensSEM and SE2SEM) and EFTEM (Energy Filtering 

Electron Microscope, Zeiss CEM902, for detailed parameters see appendix) were 

applied in this study. Figure 2.10 and Figure 2.11 show the images under SEM and 

EFTEM, respectively. From those images, it can be clearly seen that the 

self-synthesized SiO2 particles exist as round spheres. Figure 2.11 also shows that the 

surfaces of such spheres are very smooth. Both images indicate that the 

self-synthesized SiO2 particles have uniform size. 

The information on particle size could also be measured and labeled in the images. 

The average diameter of the self-synthesized particles is 159.8 ± 5.0 nm (see appendix 

2). 

Based on the measurement result of the diameter of the self-synthesized SiO2 particles, 

the mass specific surface area (SA) could be estimated, according to the following 

calculation: 

rrr ×
=

×××

×
=

×
×

=
×
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D
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(π
3
4

DπDπ
 

π
 = 

3

222

            2.1 

where ρ is the particle density (for fused silica, ρ=2.2 g cm-3) and D is the diameter of 

a particle. The surface area is then calculated as 

SA = 6 / (160×10-9 m×2.2×106 g m-3) = 17.05 m2 g-1 
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Figure 2.10 SEM image of the self-synthesized SiO2 particles 

 

Figure 2.11 EFTEM image of the self-synthesized SiO2 particles 
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2.3.4 Calculation of the coverage ratio of terbuthylazine on SiO2 particles 

Table 2.1 Information of terbuthylazine and SiO2 needed for the coverage ratio 
calculation. 

 Mass M (molar mass, in 

g mol-1) 

Bulk density 

(g mL-1) 

Size of 

particles (nm) 

TBA 47.078 mg 229.71 1.19  - 

SiO2 1.001 g 60.08 2.2 160 

 

One may try to estimate the surface coverage by TBA from the molecular structure for 

special orientations on the surface, starting from typical bond lengths (Allen et al., 

1987): 

A:  -C=N-C (conjugated)        1.476 Å 

B:  X3-C-Cl (X=C, H, N, O)      1.843 Å  

C:  -NH-C (overall)             1.380 Å  

 

   
Figure 2.12 Scheme of the molecule structure of terbuthylazine and calculation 
of the maximum diameter of the plane area within molecule 

The adsorption might be assumed to occur on a confined circle within the 

terbuthylazine molecule (as described above), the aromatic triazine ring . If the C-Cl 

bond is used as part of the longest radius, generating a radius RTBA (A+B) shown in 

Figure 2.12, a maximum plane circle area could be calculated as Equation 2.2: 

22
maxeTBAmolecul nmπ1102.0π ×=×=× TBARS                    2.2 

The hypothesis is made that the minimum number of adsorbed TBA molecules on the 

SiO2 sphere is caused by adsorption via the plane circle with radius of RTBA (in nm). 

A=0.1476 nm 

B=0.1843 nm 
RTBA= 0.3319 nm 

RTBA 

 



 

 

 

29 
 
 

Then if the number of overall TBA molecules in this system is less than the maximum 

number of TBA molecules that could be adsorbed by the SiO2 sphere, the TBA 

molecules adsorb to the SiO2 surface as a monolayer. 

 
Figure 2.13 Illustration diagram of adsorption of TBA molecule to the SiO2 
surface 

Based on the surface area data of SiO2 particles, the minimum number of TBA 

(NTBA-monolayer) that could be adsorbed onto the SiO2 surface as a monolayer coating is 

calculated as below (Equation 2.3):  

molecule109.4
m10π1102.0

g001.1/gm05.17 19
218

2

maxeTBAmolecul

SiO
monolayerTBA

2 ´=
´

´
=

´
= -

×
- S

mSA
N     2.3 

The total number of TBA molecules in 47mg is calculated in Equation 2.4: 

molecule101.2mol/molecule1002.6
l229.71g/mo

mg47 2023
A

TBA

TBA
TBA ´=´´=´= N

M
m

N  2.4 

In this case, the NTBA is slightly bigger than NTBA-monolayer, indicating a possibility of 

molecular agglomeration of TBA molecules on the SiO2 surface. However, the 

lone-pair electrons of the amino groups of TBA can interact with the protons on the 

hydrophilic aerosol surface to form hydrogen bonds. This would enable the molecule 

to stand upright (with a possibly lower area demand), forming an ordered, 

quasi-crystalline monolayer. Considering about this effect, the aerosol coating in this 

work is regarded as monolayer coating. 
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2.3.5 Generating aerosols in the chamber 

The aerosol is introduced into the smog chamber through a motor-driven syringe 

(Perfusor Secura, Braun) through a nozzle (Schlick S8), see Figure 2.14. The size 

distribution of the aerosol suspensions inside the chamber was then measured by an 

electrostatic classifier (TSI, model 3071) and a condensation nuclei counter (TSI, 

model 3020). 

 
Figure 2.14 Motor-driven syringe and nozzle for injection of the suspension into 
the chamber 

 
Figure 2.15 Photograph of the electrostatic classifier and condensation nucleus 
counter  
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2.3.6 Sampling of particles 

As shown in Figure 2.16, the aerosol sampling device consists of a glass tube (L=160 

cm, i. d. =16 mm, o. d. =20 mm, reaching the middle of the chamber), a filter holder 

(Figure 2.17), and a vacuum pump. Those parts are connected by Teflon tubes. A gas 

meter is used to record the air flow. Filter samples are taken on Teflon filters 

(Satorious, PTFE filter, d = 25 mm, pore size = 0.2 µm). 

Smog
Chamber

Teflon tube

Gas meterExhaust

Glass tubeFilter holder

Vacuum Pump

 

Figure 2.16 Schematic diagram of the aerosol sampling device. A glass tube was 
connected to the smog chamber, followed by a filter holder connected by a short 
Teflon tube. Aerosols were pumped out from the chamber by a vacuum pump. 
The sampling volume was measured by a gas meter.  

 

Figure 2.17 Photograph of the filter holder with inserted Teflon filter 
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2.4 Reagents in the experiments 

2.4.1 Chemicals and materials 

 

Hydrocarbons: 

n-Pentane (Grüssing, 99%) 

n-Heptane (Fluka AG, UV Spectroscopy grade, >260nm, >99%) 

2,2-Dimethylbutane (Janssen Chimica, 96%) 

2,2,4-Trimethylpentane (Janssen Chimica, 99+%) 

2,2,3,3-Tetramethylbutane (Sigma-Aldrich) 

Toluene (Carl Roth, RotiSolv HPLC) 

Inert standard: 

n-Perfluorohexane (Sigma-Aldrich, 99%) 

Solvents: 

Dichloromethane (Sigma-Aldrich, Chromasolv, >99.8%) 

2.4.2 Synthesis of methyl nitrite 

Materials: 

H2SO4: Analytical reagent grade, S. G. 1.83 (>95%), Fischer Scientific 

Methanol: RotiSolv HPLC, ≥99.9%, Carl Roth 

NaNO2: p.a. ≥99%, Grüssing 

NaOH: p.a. ≥99%, Merck 

CaCl2 · 2H2O: p.a. ACS, ≥99%, Carl Roth 

Procedure: 
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20 g NaNO2 and 200 mL methanol were added into a 500 mL 3-necked flask one after 

another, N2 was used as carrier gas (0.5 L/min, after the first 3 minutes the flow could 

be less). The flask was then placed inside an ice bath, and a magnetic stirrer was 

applied during the reaction. Slowly adding 100g 50% H2SO4 solution within 3 min 

generated the methyl nitrite. After passing through NaOH solution and dehydrating 

agent (CaCl2), the methyl nitrite was collected in a cold trap. After the reaction was 

finished, the liquid methyl nitrite was transferred into a 2 mL vial and stored in a 

Dewar tank in liquid nitrogen (see Figure 2.18 and 2.19).  

 

Figure 2.18 Schematic diagram of the synthesis of methyl nitrite  
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Figure 2.19 Photograph of the system for the synthesis of methyl nitrite  
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3. Kinetics of heterogeneous reactions 

3.1 Langmuir-Hinshelwood mechanism 

The pioneers Langmuir (Langmuir, 1918) and Hinshelwood (Hinshelwood, 1940) first 

raised the mechanism on solid catalyzed reactions, explaining how the gas phase 

reactions could happen with the assistance of a solid as catalyst. The mechanism and 

the Langmuir-Hinshelwood equations have been widely used to explain the 

photocatalytic processes (Turchi and Ollis, 1990, Jenny and Pichat, 1991, Sun and 

Pignatello, 1995, Lin and Gurol, 1998, Sauer et al., 2002, Sobczyński et al., 2004, 

Konstantinou and Albanis, 2004, Okitsu et al., 2005). Recently this mechanism has 

been applied to explain the heterogeneous reaction with O3 on atmospheric particles 

(Alebić-Juretić et al., 2000, Kwamena et al., 2006, Kahan et al., 2006, Pflieger et al., 

2009, Yang et al., 2010). 

Two molecules are adsorbed 
onto the surface. 

They diffuse across the 
surface, interact and react 

when they are close. 

A product molecule is 
formed and remains on 

surface or desorbs. 

Figure 3.1 An illustration of molecules reacting according to the Langmuir- 

Hinshelwood mechanism 

In case of this work, the terbuthylazine (refers to reactant B) molecules were adsorbed 

to the SiO2 particles through rotary evaporation instead of gas-particle adsorption 

equilibrium; the general mechanism which illustrates the reaction pathways is 

described below (A refers to the OH radical): 
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            (I) 

The global reaction rate is: 

BSSBSAS
A CCkCCk

dt
dC

r ×××=××=-= q                 3.1 

Here r is the reaction rate, in molecule m-2 s-1, k is the reaction rate constant, in m2 

molecule-1 s-1, CAS, CBS are the surface concentrations of sites occupied by A and B, in 

molecule m-2, θ is the surface coverage by A, dimensionless, CS is the total number of 

sites (occupied or not), in molecule m-2, t is the time, in s.    

The rate of adsorption of the reactant A is proportional to the fraction of unoccupied 

surface and the partial pressure. After the adsorptive equilibrium of A is achieved, the 

adsorbed molecules react with each other when they have come close to each other by 

diffusion. The reaction rate between the adsorbed compounds is proportional to the 

amounts on the surface. After the reaction, the product molecules could be desorbed 

from the surface when there are no longer bonds linked with the surface.  

If we apply the steady state approximation to AS, then 

ASA'BSASSAA
AS )(0 CkCCkXCCk

dt
dC

×-××--×××== q          3.2 

Here kA and kA’ are the adsorption and desorption rates of A, and X is the fraction of 

available sites after B has been adsorbed onto the surface; Equation 3.2 is then 

transformed to Equation 3.3: 

0)( SA'BSSSAA =××-×××--××× CkCCkXCCk qqq             3.3 

So 

A'BSAA

AA

kCkCk
XCk

+×+×
××

=q                             3.4 

Equation 3.1 is then expressed as below: 



 

 

 

37 
 
 

A'BSAA

BSSAAA

kCkCk
CCXCkk

dt
dC

r
+×+×
×××××

=-=                     3.5 

If the limiting step is the reaction, then k<< kA·CA, kA’, and kI
max=k·X·CS·CBS is the 

maximum reaction rate constant in case that all the available surface sites are 

occupied by A and the reaction happens between adsorbed species A and B. With 

KA=kA/kA’, Equation 3.5 is then transformed into Equation 3.6 as below: 

1AA

AA
I
max

+×
××

=
CK

CKk
r                         3.6 

Currently, most research focused on the heterogeneous reaction of semi-volatile 

compounds with gas-phase ozone. However, there are only a few adsorption sites that 

are involved in the saturation of the surface (Ammann et al., 2003). Within the 

experimental conditions, as the OH precursor is introduced into the chamber 

continuously and thus resulting a circumstance with constant OH radicals, the rate of 

the reaction becomes independent of the OH concentration. In this work, Equation 3.6 

is specified as below: 

OHOH
OHOH

OHOH
I
maxI

obs )1(
Ck

CK
CKk

k ´=
×+
××

=                3.7 

Here kI
obs is the experimental pseudo-first-order rate constant, in s-1, I

maxk  is the 

maximum rate constant that would be observed at high OH radical concentrations, in 

s-1, KOH is the OH radical gas-to-surface equilibrium constant, in cm3 molecule-1, kOH 

is the OH radical reaction rate constant, in cm3 molecule-1 s-1, COH is the gas-phase 

OH radical concentration, in molecule cm-3  

 

If the OH level remains constant during the experiment period, Equation 3.7 can be 

converted to the following expression: 

)1( OHOH

OH
I
max

OH CK
Kk

k
×+

×
=                            3.8 

From Equation 3.8, the parameters kI
max and KOH can be obtained by applying a 
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nonlinear least-squares fit or a linear fit to 1/kOH. 

Reactions on surfaces with reactive organic species: 

In some cases, there could be organic species adsorbed onto the surface of the particle. 

Since Bertram et al. (2001) have determined the reaction probability of OH with a 

methyl-terminated monolayer in a flow reactor to be larger than 0.29, those adsorbed 

state organic species can also react with OH radicals in the following way: 

productsorganicsA other
(ads)(ads) ¾¾ ®¾+ k

                (II) 

kother is the reaction rate of substance A with organic impurities on the particle surface. 

Following the same calculation process, the reaction rate is calculated as below: 

A'

organicother
AA

AA
I
max

organicotherA'BSAA

BSSAA

1
'

k

Ck
CK

CKk
CkkCkCk

CCXCkk
r

×
++×

××
=

×++×+×
×××××

=         3.9 

kI
max remains the same, and r’ < r. If there are organic impurities on the surface, the 

apparent reaction rate is found to be lower than that on the pure surface, until the 

maximum reaction rate is reached. Bertram et al. (2001) found that the reaction 

probability of OH radicals had slightly differences on difference organic surfaces, 

which were caused by the kother value.  

Gas-particle adsorption equilibrium on both reactant molecules: 

If the gas-particle adsorption equilibrium is also relevant to the terbuthylazine 

molecule, reaction mechanism I is changed into reaction mechanism III 

A(ads) + B(ads) Products k

A(g) Product (g)⇌

kA' kA

B(g)⇌

kB' kB

⇌

                       (III) 

kB and kB’ are adsorption and desorption rates of B (terbuthylazine), the rate law is: 

2
SBA Ckr ×××= qq                                           3.10 

Proceeding as before, we get 

BSA'

EAA
A q

qq
××+

××
=

Ckk
Ck

                                     3.11 

Here θE is the fraction of empty sites, then θA+ θB+ θE= 1. The hypothesis is made that 
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the rate limiting step is the reaction of the adsorbed molecules (the probability of two 

adsorbed molecules colliding is low), then EA1 qq ××= CKA . With adsorption 

constants KB=kB/kB’, the reaction rate becomes 

BBAA

EBBAA
2
S

1 CKCK
CKCKCk

r
×+×+

××××××
=

q
                            3.12 

In this work, the desorption of terbuthylazine to the gas phase is supposed to be very 

slow, so KB·CB<<1, KA·CA, and kI
max=k·CS

2· θE ·KB·CB (all empty surface sites are 

occupied by reactants), Equation 3.12 is then transformed to the same expression as 

Equation 3.6. 

3.2 Eley-Rideal mechanism 

The Eley-Rideal mechanism was proposed by Eley and Rideal (1941) more than 70 

years ago. Unlike the Langmuir-Hinshelwood mechanism, the Eley-Rideal 

mechanism assumes that only one of the molecules adsorbs on the surface and the 

other one directly reacts with it from the gas phase, instead of adsorbing: 

A(g) + S(ads) → AS(ads)        (IV) 

AS(ads) + B(g) → Products     (V) 

 

One molecule is adsorbed 
onto the surface. 

Another molecule passes by 
which interacts with the one 

on the surface. 

A product molecule is 
formed and remains on 

surface or desorbs. 
Figure 3.2 An illustration of the reaction procedure during an Eley-Rideal 
mechanism 

Under the experimental conditions of this work, the OH precursor methyl nitrite was 

introduced into the chamber continuously, and the OH level was in surplus with 

regard to the adsorbed pesticides. In this case, the dynamics of the reactions could be 
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assumed as a pseudo-first order reaction. The following equation is then generated.   

OHOH
TBA(ads)t

TBA(ads)0I
obs ln

1
Ck

C

C

t
k ×=÷

÷
ø

ö
ç
ç
è

æ
×=                         3.13 

CTBA(ads)0 and CTBA(ads)t represent the adsorption state concentration of terbuthylazine 

at initial time and time t, respectively; COH is the gas phase OH radical concentration. 

In the actual calculation applied in this study, we use the following equation for 

variable COH: 

dtCktCk
C

C t
××=××=÷

÷
ø

ö
ç
ç
è

æ
ò0 OHOHOHOH

TBA(ads)t

TBA(ads)0ln               3.14 

If we plot )ln(
TBA(ads)t

TBA(ads)0

C

C
 as a function of the time integral OH gas phase 

concentration, we get a linear plot, with kOH as slope.  

In this work, both the Langmuir-Hinshelwood mechanism and the Eley-Rideal 

mechanism are used for the calculation of experimental data. The results show that the 

application of each mechanism has been in association with the level of OH radical 

concentration and the characteristics of carrier particles. The Eley-Rideal mechanism 

corresponds to a Langmuir-Hinshelwood mechanism for the limit of low COH.
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4. Production of OH radicals in the chamber 

In this chapter, the ways to produce OH radicals will be described below. OH radicals 

could be generated through chemical reactions with / without the presence of a light 

source. Based on the spectrum of solar simulator, some precursors have limitation and 

could not be used in this study. The detailed reaction mechanism will also be 

described in this chapter. 

4.1 Sources of OH radicals 

In chamber simulation experiments, the OH radicals were produced by chemical 

reactions in the presence of a light source or during dark period. Photolysis of 

precursors is used more often to generate OH radicals. An efficient OH production 

method is the photolysis and consecutive photochemical reactions of H2O2, O3, 

HONO or methyl nitrite (see Figure 4.1). 
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Figure 4.1 Overlap of the solar simulator spectrum with the spectra of ozone, 
hydrogen peroxide, HONO and methyl nitrite (a. Voigt et al. 2001; b. Sander et 
al., 2002; c. Bongartz et al., 1991; d. Taylor et al., 1980) 
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Methyl nitrite: 

NOOCHhνONOCH 33 +®+    

HCHOHOOOCH 223 +®+  

22 NOOHNOHO +®+  

HCHOhνHCHO +®+   

COHOOCHO 22 +®+  

CHOOHOHHCHO 2 +®+  

As the other precursors have small overlap with light source (see Figure 4.1), methyl 

nitrite is used as precursor in existence of light, and a high concentration of OH 

radicals could be obtained (~ 107 molecule cm-3). However, ozone and NOx 

compounds are also produced as byproducts in the system. The ozone level can build 

up to a few ppm by the end of the photolysis. 

Ozone can be formed by photolysis of NO2: 

OHNONOHO 22 +®+   

ONONO hν
2 +¾®¾  

MOMOO 32 +®++  (the Leighton relationship, see Finlayson-Pitts and Pitts Jr., 

2000).  

H2O2:  

2OHhνOH 22 ®+   

2222 OOHOHOH +®+  

Beside the above two methods, there are two more pathways to generate OH radical 

under photochemistry conditions: (1) photolysis of ozone; (2) chemical reactions 

initiated by nitrogen dioxide (or photochemical reaction of HONO) in the presence of 

humid aerosols (Lammel and Cape, 1996). 

Ozone: 

2
1

3 OD)O(hνO +®+  
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2OHOHD)O( 2
1 ®+  

Nitrogen dioxide/HONO: 

3
surface

22 HNOHONOOH2NO +¾¾ ®¾+  

NOOHhνHONO +®+  

One possible OH source is the photolysis of water vapour (Ung, 1974): 

Π)OH(XS)H(1242nm)(λ hνOH 22
2 +®£+  

However, in this spectral region, our lamps do not irradiate. As a result, there are no 

hydroxyl radicals produced. 

OH radicals can also be produced through the dark reaction of ozone with olefins 

(trans-2-butene) (Orzechowska and Paulson, 2005) or hydrazine (Tuazon et al., 1983).  

trans-2-Butene 

×+®+ OOHCOHCOHC 4242384  

productsother OHCOHOOHC 3242 +×+®×  

H2NNH2: 

The reaction of hydrazine with O3 follows a chain mechanism, from which N2H3, 

N2H2 and OH act as chain carrier. (Tuazon et al., 1981, Atkinson and Carter, 1984). It 

is used for some experimental runs as OH precursor. 

Initiation: 

22322 OOHHNNHONNHH ++®+
·

 

Propagation: 

OHHNNHOHNNHH 2222 +®+
·

 

222 HONHHNOHNNH +=®+
·

 

23 OOHNHNONHHN ++=®+=
·

 

Termination: 

OHNHNOHNHHN 2+=®+=
·

 

Product formation: 
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222 HONONHN +®+=
·

 

22222 OOHHOHO +®+  

4.2 OH radical production 

In this study, the methyl nitrite is used as main OH precursor to provide radicals 

inside the chamber, in the presence of fluorescence lamps as solar simulator. In some 

experiments, the dark reaction of hydrazine with ozone is used to generate OH 

radicals in the chamber, in order to validate the experimental results with methyl 

nitrite.  

A twin of gas containers is used to introduce methyl nitrite into the smog chamber 

(Figure 4.2 and 4.3). By this means, a fairly constant dosage of methyl nitrite could be 

achieved for almost 20 h (see Figure 4.4). The real OH concentration in the smog 

chamber is adjustable by the air flow rate and by the amount of methyl nitrite injected 

inside. During our experiments, the concentration of OH radical in smog chamber 

ranged from 2 to 28×106 molecule cm-3. 

Gas collecting container 1
V = 1300 cm3

C0=  750  vpm

Gas collecting container 2
V = 1280 cm3

C0=  500  vpm
Smog chamber

 
Figure 4.2 Schematic diagram of gas-collecting containers used to introduce 
methyl nitrite into the smog chamber 

 
Figure 4.3 Photo of the twin of gas containers, used to introduce methyl nitrite 
into the smog chamber 
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Figure 4.4 Comparison of the introduction of methyl nitrite into the smog 
chamber, using only one gas collecting container and twins’ gas collecting 
container, respectively (Gavrilov, 2007) 

4.3 Determination of the OH radical concentration in the chamber  

The absolute concentration of OH radicals could be measured by a sensitive 

absorption technique: Cavity ring-down spectroscopy (CRDS, Meijer et al., 1994, 

Cheskis et al., 1998), laser-induced fluorescence (LIF) combined with fluorescence 

assay with gas expansion (FAGE) (Schlosser et al., 2009), long-path 

Differential-Optical-Absorption Spectroscopy (DOAS, Hausmann et al., 1997, Fuchs 

et al., 2012), and recently developed Proton-Transfer-Reaction Mass Spectrometry 

(PTR-MS) measurement (Barmet et al., 2012). However, in most cases, the OH 

radical concentration is monitored via relative measurement. The steady-state 

methods were used in which the reaction goes on in competition with a reference 

reaction, involving a compound whose reactivity with OH is known from absolute 

measurements. In our experiments, three to four hydrocarbons were used as reference 

compounds to calculate the OH concentration in the chamber. As the air inside the 

chamber was sucked out for aerosol sampling, the dilution of the chamber was 

calculated by using an inert standard. The analysis of the inert standard and the 

hydrocarbons will be discussed in the following chapter.  
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5. Calculation of the apparent rate constant of the 

heterogeneous reaction of terbuthylazine with OH 

radicals 

 

5.1 Calculation of the OH radical concentration from hydrocarbons 

In the gas phase, the reaction of hydrocarbons with OH radicals follows a second 

order reaction as below:   

productsOHrbon)HC(hydroca ¾®¾+               5.1 

Since OH concentration is almost constant, reaction 5.1 actually follows pseudo-first 

order kinetics. The concentration of a hydrocarbon during the experiment is then 

described as below: 

HCdilutionHCOHOH
HC CkCCk

dt

dC
×-××-=                                5.2 

CHC is the hydrocarbon concentration, kOH is the second order reaction rate constant 

for the reaction with OH radicals, COH is the OH radical concentration, kdilution is the 

loss rate caused by dilution. Perfluorohexane (PFH) is considered to be chemically 

inert. In fact, the hydrocarbon concentrations are affected by the dilution process. 

Therefore, a standardization procedure is applied here to calculate the concentrations 

using perfluorohexane. For each single hydrocarbon, the peak area of the FID signal 

is normalized as shown below: 

iFPH,FPH,0iHC,iHC(norm), / CCCC ×=                    5.3 

CHC(norm),i is the normalized hydrocarbon peak area at time i, CHC,i is the peak area 

calculated from measurement at time i, CPFH,0 is the initial measured FID peak area of 

perfluorohexane, CPFH,i is the measured FID peak area of perfluorohexane at time i. It 

is applicable to all reference hydrocarbons used for the smog chamber.  
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tkdtCk
C

C t
×-××-= ò other0 OHOH

HC(norm),0

tHC(norm), )ln(     (for constant kother)      5.4 

In Equation 5.4, CHC,t and CHC,0  are the concentrations of the hydrocarbons at time t 

and initial time, respectively, kOH is the second order reaction rate constant, COH is 

gas-phase OH radical concentration in the chamber, and kother is the loss of 

hydrocarbons caused by other reasons, such as dilution or wall effect. A plot of the 

logarithm of the relative concentration of hydrocarbons at time t versus OH rate 

constants could yields the integral OH concentration as the slope. 

The mean OH concentration in the chamber is obtained from the slope of the linear 

regression of integral OH concentration versus time. An average OH concentration 

value is taken from the calculation result for all hydrocarbons.   

5.2 Calculation of the rate constant of terbuthylazine with OH 

radical 

In this work, the semi-volatile compound is supposed to undergo a heterogeneous 

reaction with the OH radical. The reaction then happens with terbuthylazine in the 

adsorbed state. 

productsOHTBA(ads) ¾®¾+                 5.5 

It is supposed that the second order reaction 5.5 could also be described using 

pseudo-first-order kinetics (here the reactant refers to terbuthylazine which was 

adsorbed on the surface of the particles; the OH radicals exist in the gas phase 

(according to the Eley-Rideal mechanism). The concentration of the aerosol-borne 

terbuthylazine is then described as: 

TBA(ads)OHOH
TBA(ads) CCk
dt

dC
××-=             5.6 

A monoexponential depletion of terbuthylazine (TBA) was found for reaction 5.5. In 

this study, the precursor was continuously flushed into chamber by air stream, thus a 

constant OH concentration could be obtained in the chamber as Equation 5.7: 

tCk
C

C
××-= OHOH

TBA(ads),0

tTBA(ads), )ln(                       5.7 
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6. Analysis of the compounds in the smog 

chamber  

6.1 Analysis of the gas phase compounds 

6.1.1 Introduction of the hydrocarbons into smog chamber 

A gas storage container (Figure 6.1) was prepared as hydrocarbon storage source. 

Three or four hydrocarbons were used as reference compounds to calculate the OH 

level in the smog chamber. After mixing, 50 mL gas was taken out of the gas storage 

container and then introduced into the smog chamber through a leak-tight syringe 

(Figure 6.2). A ventilator inside the chamber was used to achieve a homogeneously 

dispersion. 

 

Figure 6.1 Photo of the gas storage container 
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Figure 6.2 Photo of the syringe to inject gas into chamber 

Perfluorohexane is used as dilution indicator due to its inert characteristics. As to the 

other hydrocarbons, the OH rate constants are known from the literature (Atkinson, 

2003, shown in Table 6.2). The gas storage container needs to be renewed after every 

10 experiments. The amount of hydrocarbons used for the gas storage container is 

shown in Table 6.1. Equation 6.1 and 6.2 are used to calculate the concentration of 

hydrocarbons in the smog chamber (60 ppb for each).  

3200L
50mL

1.3L
24Lmol 1

HC

liquidHC,liquidHC,
chamberHC, ´´

´
=

-

M

V
C

r
          6.1 

3200L
50mL

1.3L
24Lmol 1

HC

solidHC,
chamberHC, ´´=

-

M

m
C             6.2 

VHC, liquid is the liquid volume for the gas storage container (µL), ρHC, liquid is the 

density of liquid hydrocarbon (g cm-3), MHC is the molar mass of hydrocarbon (g 

mol-1), mHC, solid is the measured mass for solid hydrocarbon (mg), the molar volume 

of ideal gas is 24L mol-1, volume of the gas storage container is 1.3 L. During the 

experiment, 50 mL gas from the gas storage container was injected into the smog 

chamber. 
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Table 6.1 Amount of hydrocarbons corresponding to a concentration of 60 ppb in 

the smog chamber 

Name of hydrocarbons Source & purity Amount for gas 

storage container 

Perfluorohexane Aldrich, 99% 45.0 µL 

n-Pentane Grüssing GmbH, 99% 26.0 µL 

n-Heptane  Fluka AG, UV Spectroscopy grade, 

>260nm, >99% 

32.5 µL 

2,2-Dimethylbutane Janssen Chimica, 96% 24.5 µL 

2,2,4-Trimethylpentane Janssen Chimica, 99+% 37.0 µL 

2,2,3,3-Tetramethylbutane Sigma-Aldrich, ≥94% 25.45 mg 

Toluene Carl Roth, RotiSolv HPLC, ≥99.8% 23.5 µL 

Table 6.2 Rate constant for the reaction with OH radicals with reference 

compounds a 

Name of 

hydrocarbons 

1012×k  

(cm3 molecule-1 s-1) 

at 298 K 

1012×k  

(cm3 molecule-1 s-1) 

at 279.5 K 

1012×k  

(cm3 molecule-1 s-1) 

at 263 K 

Perfluorohexane b 0 0 0 

n-Pentane 3.80 c c 

n-Heptane  6.76 c c 

2,2-Dimethylbutane 2.23 1.87 1.56 

2,2,4-Trimethylpent-

ane 
3.34 3.03 2.77 

2,2,3,3-Tetramethyl-

butane 
0.97 0.82 0.70 

Toluene d 6.16 6.44 7.25 

a (Atkinson, 2003) 

b Nonreactive 

c These hydrocarbons were not used in those experiments 

d (Atkinson, 1986) 
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6.1.2 Sampling and analysis of the hydrocarbons from the chamber 

A GC-FID (Simens Sicromat II), combined with a self-designed cold trap injector, 

was used for hydrocarbon on situ analysis (detailed information is described in 

chapter 3). The gas phase hydrocarbons are sampled automatically from the chamber 

every 30 minutes.  

The sampling time for the gas phase was 2 minutes. 20 mL of each gas sample were 

cryofocussed onto the glass-lined tube in the cold trap during the cooling stage 

(-120°C in liquid nitrogen). A magnetic valve was used to switch the gas flow 

between the chamber and the carrier gas. The glass-lined tube was then heated to 

about 100 °C and the hydrocarbon samples were then injected into the FID column. 
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Figure 6.3 Chromatograms of hydrocarbons used in the chamber run 

Figure 6.3 shows the GC-FID chromatogram of hydrocarbons. The peak areas are 

manually integrated. 

6.2 Analysis of the particle-borne compounds 

6.2.1 Aerosol injection into the chamber 

A suspension containing coated particles was injected into the chamber before 
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hydrocarbons were injected. Around 37.0 mg aerosol materials were suspended in 50 

mL double distilled water (dilution 1:1350). The suspension was then treated in an 

ultrasonic bath (Bandelin, Sonorex RK 255H) for 30 minutes in order to prevent 

agglomeration. Right after the preparation, the suspension was filled into a 

motor-driven syringe and sprayed by zero air through a nozzle (see chapter 2). In the 

subsequent glass cylinder, the aerosol droplets dry and form SiO2 aerosol. The flow 

rate of the suspension is 22 mL/h and the air flow is 25 L/min.  

6.2.2 Characterization of aerosol mass, size distribution and residence time  

Figure 6.4 shows the size distribution of SiO2 particles inside the chamber. There was 

a major peak of particles whose size was around 160 nm. According to the observed 

diameter of the SiO2 spheres (159±2 nm, measured by SEM, see chapter 2), there is a 

great portion of single SiO2 particles existing in the smog chamber (sharp peak at 

about 170 nm). The other peak around 240 nm and extending to more than 1000 nm 

consist of agglomerated particles. Those agglomerates are formed inside the storage 

flask of coated particles, and the ultrasonic process can not separate them very well. 

Particle size / nm

20 40 60 200 400 600 2000100 1000

N
 / 

ch
an

ne
l c

m
-3

0

200

400

600

800

1000

1200

1400

 
Figure 6.4 Size distribution of SiO2 particles suspended in the chamber 

To evaluate the residence time of particles limited mainly by sedimentation in the 

chamber, the particle concentrations were measured. The relation of sedimentation 

rate with particle concentrations is described in Equation 6.3. 
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tkCC ×-= sediep,0p                    6.3 

Cp is the accumulative particle concentration at time t, Cp,0 is the initial particle 

concentration, ksedi is the sedimentation rate of particles. Figure 6.5 shows a 

measurement of Cp versus time. The residence time of the particles in the chamber 

could then be calculated from the slope of the linear regression of the semilogarithmic 

plot: 

τparticle=1/ksedi=24.3 h                6.4 
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Figure 6.5 Concentration of suspended particles versus time t 

6.3 Sampling and extraction of the aerosol samples 

The aerosols were collected on a FTPE filter through a sampling device (see chapter 

2). Four filters were regarded as weighing filters (one under dark conditions, three 

filters during the experiment). They were kept below a discharging unit (β radiation) 

for ≈24 hours. The aerosol mass was then determined by a microbalance (Sartorius, 

type SC02). 4-6 filters, treated as analysis filters, were put inside a 2 mL vial with 1 

mL dichloromethane, then put in an ultrasonic bath (Sonorex RK 255H) for 5 minutes 

for extraction. The aerosol suspension was then removed by a centrifuge (Heraeus, 
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Biofuge A, 6000 U/min) for 3 minutes. The final solution was analyzed by gas 

chromatography with a flame ionization detector, employing on-column injection. 

Tow injections were made to check the reproducibility. Figure 6.6 shows a FID 

chromatogram from the filter extract.  
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Figure 6.6 FID Chromatogram of the extract from a filter sample. (extraction 
from filter 0 for experiment D111115 at 25°C) 
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7. Results and discussion  

 

In this chapter, the results of different experiments will be described and discussed. 

All experiments were performed with freshly prepared aerosol suspensions (see 

chapter 6 for detailed information). Two days were required for each single 

experiment: during the first day, the gas samples were analyzed continuously during 

the aerosol chamber run, and the filter samples were taken; during the second day, all 

filter samples were analyzed (both the weighing filters and the analysis filters).  

Temperature and relative humidity of the air inside the chamber were monitored 

continuously during the experiment at two measuring sites in the chamber: one was 

close to the chamber wall on the top; the other was right in the middle of the chamber 

(see Figure 7.1).  

The concentrations of ozone and nitrogen oxides inside the chamber were also 

monitored continuously.  

The experiments were performed in the smog chamber at three different temperature 

levels (25 °C, 6.5 °C and -10 °C) in order to determine the temperature dependence of 

such heterogeneous reactions.  

7.1 Monitoring of temperature and relative humidity in the smog 

chamber 

There were two temperature sensors inside the smog chamber in order to monitor the 

temperature at different positions inside the chamber. The sensor close to the top of 

chamber measured the air temperature and humidity. The sensor in the middle of 

chamber measured the air temperature at the central axis of the chamber. Figure 7.1 

shows the position of the temperature sensors. 
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Figure 7.1 Illustration of the position of the temperature sensors in the chamber 
(the sensor on top of the chamber is close to the wall and 400 mm from the top, 
the sensor in the middle of the chamber is 130 mm from the chamber wall at a 
height of 1200 mm from the bottom of chamber) 

7.1.1 Results of the temperature and relative humidity measurement at 25 °C  

Figure 7.2 shows the data of temperatures observed by both sensors during a dark 

experiment. It can be seen from the data that the air temperature close to the chamber 

walls are greatly affected by temperature within the room (the steps in the curve for 

TTOP and relative humidity (R.H.) are given by the digital resolution). The temperature 

control of the cooling was switched off during this run. The convex decrease of 

humidity is caused by the dilution of chamber air due to the filter sampling process 

and the synchronous dry air supply to the chamber. 
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Figure 7.2 Performance of temperature and humidity in the smog chamber at 
25°C during a run in darkness (D111105). Ttop and Tmiddle represent the 
temperature obtained by sensor on top and middle of the smog chamber, 
respectively; R. H. and A. H. mean the relative and absolute humidity. 

During a typical experiment with photochemical production of OH radicals by UV 

radiation from the solar simulator, the air in the middle of the chamber was heated up, 

leading to an increase of the temperature by ΔT=7.8 °C (see Figure 7.3). 
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Figure 7.3 Performance of temperature and relative humidity in the smog 
chamber at 25°C during an experimental run of the OH reaction with the solar 
simulator on (D111005). Ttop and Tmiddle represent the temperature obtained by 
sensor on top and middle of the smog chamber, respectively. R. H. and A. H. 
mean the relative and absolute humidity. The sharp spikes are an electronic 
interference from the relay of the temperature control.  

y=4.67*exp(-t/8.30h)+2.08 
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7.1.2 Results of the temperature and relative humidity measurement at 6.5 °C and 

-10°C 

In this work, in order to investigate the impact of temperature on the chemical kinetics, 

the chamber experiments were also performed at 6.5 °C and -10 °C. Figure 7.4 and 

Figure 7.5 show the temperature trend inside the chamber at 6.5 °C and -10 °C, 

respectively. At lower temperature, the change of the temperature was small compared 

to the results at 25 °C. It was caused by different cooling power set: lower cooling 

power at 25°C and high at other lower temperature. 
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Figure 7.4 Temperature and absolute humidity in the smog chamber at 6.5 °C 
during an experimental run under dark conditions, where the temperature 
control was about to reach equilibrium (D121226) (a) and with the solar 
simulator switched on (D120113) (b). Ttop and Tmiddle represent the temperature 
obtained by sensor on top and middle of the smog chamber, respectively. A. H. 
means the absolute humidity. 

In Figure 7.4, graph (a) and graph (b) show the temperature and absolute humidity 

result at 6.5 °C in darkness and in the presence of light, respectively. The noises of 

temperature on top of the chamber was strongly influenced by the cooling system. 

However, the air temperature in the middle of the chamber has no big variations. 
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(ΔT=1.7 °C in darkness and ΔT=0.6 °C with solar simulator on). At 6.5 °C, the 

humidity remains constant during the whole experimental run, because the air inside 

the chamber is saturated with water vapour and the filter sampling process does not 

have any influence on the humidity change. 
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Figure 7.5 Temperatures and absolute humidity in the smog chamber at -10 °C 
during an experimental run under dark conditions (D120415) (a) and with solar 
simulator on (D120405) (b)  

Figure 7.5 graph (a) and graph (b) show the temperatures and relative humidity 

observed at -10 °C in darkness and in the presence of light, respectively. The higher 

frequency of spikes is caused by the strong cooling power. When the solar simulator 

is switched on, the air temperature in the middle of the chamber remains stable during 

the experimental period (ΔT=0.7 °C with solar simulator on). At -10°C there is ice on 

the wall of chamber, so the absolute humidity is lower than that at 6.5°C. 

7.2 Measurements of the concentrations of ozone and nitrogen oxides 

in the smog chamber 

The concentrations of NOx and ozone are monitored in the chamber by the ozone 
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analyzer and the NOx analyzer (detailed description in chapter 3). The concentrations 

of NOx and ozone can be regarded as reference data. 

7.2.1 Results of NOx and ozone measurement in the experiment at 25°C 

During an experiment with methyl nitrite as OH precursor, the levels of NOx and 

ozone increased after the solar simulator was switched on (shown in Figure 7.6). 

Within the experimental period of around 5 hours, the ozone level builds up to 450 

ppb.  
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Figure 7.6 Ozone and NOx monitoring during an experiment with OH radical in 
the smog chamber at 25 °C (solar simulator on, D111012)  

According to the Leighton ratio (Leighton, 1961), the photo stationary state Ф is 

defined as: 

[ ]
[ ][ ]3)O(NO

2NO

ONO

NO

3

2

+

=
k

J
f           7.1 

2NOJ  is the photolysis frequency of NO2, in s-1; )O(NO 3+k  is the 

temperature-dependent rate constant for the reaction between NO and O3, in ppb-1 s-1 

(Junkermann et al., 1989). A steady state is assumed, and Ф => 1 (Rohrer et al., 1998), 
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then the ratio of 
[ ]

[ ][ ]3

2

ONO
NO

 should be a constant during one experiment with stable 

irradiation (constant= )ONO( 3+k /
2NOJ ). Figure 7.7 shows the ratio of 

[ ]
[ ][ ]3

2

ONO
NO

 during 

an experimental run at 25 °C, the value of this ratio is 0.64±0.28, in ppb-1. 
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Figure 7.7 The ratio [NO2] / ([NO]×[O3]) during an experiment with OH radicals 
in the smog chamber at 25 °C (solar simulator on, D111012)  

7.2.2 Results of NOx and ozone measurement in the experiment at 6.5 °C 

The monitoring result of NOx and ozone during an experiment at 6.5 °C (Figure 7.8) 

also showed an accumulation of the concentrations of NOx and ozone with time.  

The sum of the concentration levels of NOx and ozone were a bit smaller than at 25°C 

(approximately 140 ppb NOx and 70 ppb ozone after 4 hours).  
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Figure 7.8 Ozone and NOx monitored during an experiment with OH radicals in 
the smog chamber at 6.5 °C (solar simulator on, D120113). The Leighton ratio is 
0.56±0.10, in ppb-1(see Figure 7.10).  

7.2.3 Results of NOx and ozone measurement in the experiment at -10 °C 

Figure 7.9 shows the levels of NOx and ozone in the smog chamber at -10°C. The NOx 

concentration builds up in a fashion similar to the experiments 25°C and 6.5°C, 

together with a slight increase of the NO level. The ozone level has an increase from 0 

to approximately 70 ppb, and then decreases slowly as the photochemistry goes on. 

One possible explanation is that there could be ice particles on the chamber wall, 

which could cause the ozone depletion in existence of light and NOx (Tolbert et al., 

1988). However, it is not clear to what degree such reactions could happen in the 

smog chamber. 
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Figure 7.9 Ozone and NOx monitored during an experiment with OH radicals in 
smog chamber at -10 °C (solar simulator on, D110405). The Leighton ratio is 
0.10±0.04, in ppb-1(see Figure 7.10). 
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Figure 7.10 The ratio of [NO2]/([NO]×[O3]) during experiments with OH radicals 
in the smog chamber at 25 °C, 6.5 °C, and -10 °C, respectively 

The ratios of 
][NO][O

][NO

3

2  at different temperatures are given in Figure 7.10. From the 
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figure, it can be seen that this value remains constant for experiments at different 

temperatures. The ratios are similar at 25 °C and 6.5 °C (0.64±0.28 at 25 °C and 

0.56±0.10 at 6.5 °C, in ppb-1), which are higher than the value at -10 °C (0.10±0.04, 

in ppb-1). This could be caused by the slower reaction of ozone with NO at lower 

temperatures (Clough and Thrush, 1966). 

7.3 Coating efficiency during the aerosol coating process 

After the SiO2 particles were coated by terbuthylazine, the initial mass fractions on 

the dispersed aerosol were determined. The results showed a value of FTBA=0.045. 

Compared to the initial mass fraction of TBA on aerosol (FTBA,0=0.047), the loss 

during the coating procedure is about 4%. It is probably caused by the adsorption of 

TBA on the surface of glass walls in the aerosol generator. 

7.4 Summary of experiments in the smog chamber 

Experiments were performed in the smog chamber at 25°C, -6.5°C, and -10°C. At 

each temperature, there were blank experiments in which the light or OH precursor 

were absent in order to understand the impact of the smog chamber on the reactions. 

The duration of all experiments and OH precursors used are summarized in the 

following tables.
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Table 7.1 Summary of aerosol smog chamber experiments performed at 25 °C  

Experiments  
No. 

OH 
precursor

τaero (h) C OH  (×106 

cm-3)

k OH  ( ×10-12  

cm3 s-1)

k I
obs (×10-5 

s-1)

Comments

D110831 none 8.20±0.13 0.89±0.35 8.8±0.76 0.79±0.31

D110902 methyl nitrite 7.71±0.29 5.74±0.31 4.5±1.3 2.56±0.73

D110905 methyl nitrite 8.33±0.69 22.4±1.3 2.88±0.03 6.44±0.37

D110907 none (dark) / / / / perfusor error

D110909 methyl nitrite / / / / perfusor error

D110915 methyl nitrite 8.55±0.10 2.59±0.17 6.71±0.89 1.74±0.30

D110919 methyl nitrite 7.25±0.16 22.9±1.2 2.37±0.33 5.44±0.82

D110927 methyl nitrite 10.42±0.87 15.89±0.68 3.49±0.13 5.55±0.36

D110929 methyl nitrite 7.17±0.87 22.47±0.85 2.95±0.90 6.6±2.0

D111005 methyl nitrite 9.80±0.87 12.93±0.25 3.91±0.30 5.05±0.41

D111010 methyl nitrite 6.58±0.35 27.39±0.69 2.66±0.30 7.28±0.85

D111012 methyl nitrite 7.14±0.51 15.35±0.54 3.51±0.27 5.38±0.48

D111105 none (dark) 16.39±2.69 0.86±1.36 / 1.9±3.7

D111107 none  9.26±0.09 1.41±0.63 11.03±2.0 1.6±1.2

D111112 methyl nitrite / / / / perfusor error

D111115 methyl nitrite 9.17±0.25 15.08±0.21 3.49±0.23 5.27±0.36

D111208 N2H4+O3
/ / / / perfusor error

D111211 N2H4+O3
/ / / / perfusor error

D111215 N2H4+O3
/ / / / perfusor error

D111216 N2H4+O3
/ / / / perfusor error

D111222 N2H4+O3
/ / / / perfusor error

D111223 N2H4+O3
/ / / / perfusor error

D120423 N2H4+O3
11.63±1.08 34.06±1.66 0.84±0.07 2.86±0.30

 

* dark experiment
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Table 7.2 Summary of aerosol smog chamber experiments performed on Aerosil 

200 particles at 25°C 

Experiments 
No.

OH 
precursor

τaero(h) C OH (×106 

cm-3)

k OH (×10-12 

cm-3s-1)

k I
obs  (×10-5 

s-1)
Comments

D111020 none (dark) 16.67±2.78 0.59±0.38 / 0.72±0.48
D111023 none (dark) 9.35±0.79 1.12±0.22 18.1±1.3 2.03±0.55
D111028 methyl nitrite 12.20±0.30 7.52±0.56 13.16±0.87 9.9±1.0
D111121 methyl nitrite 13.51±2.56 11.89±0.75 11.5±1.2 13.7±1.7
D111206 methyl nitrite 13.33±0.53 18.57±0.73 8.09±0.18 15.03±0.70  

* dark experiment 

Table 7.3 Summary of aerosol smog chamber experiments performed at 6.5 °C 

Experiments
No. 

OH
precursor

τaero (h) C OH   ( × 106 

 cm-3)

k OH (×10-12  

cm3 s-1)

k I
obs   ( × 10-5 

s-1)

Comments

D111226 none (dark) 12.50±1.56 0.53±1.16 / 0.88±1.9

D111228 none  11.49±0.92 0.81±0.80 13.5±1.4 1.09±1.28

D111230 methyl nitrite 11.76±0.83 16.73±1.11 3.23±0.22 5.40±0.56

D120102 methyl nitrite 11.11±1.23 20.17±0.42 2.69±0.22 5.43±0.47

D120104 methyl nitrite 13.16±0.52 18.92±1.51 2.77±0.29 5.24±0.73

D120106 methyl nitrite 17.24±2.08 20.52±7.00 2.60±0.27 5.34±0.60

D120109 methyl nitrite 13.16±0.87 16.26±0.65 3.35±0.41 5.45±0.71

D120111 methyl nitrite 10.64±1.02 14.10±0.67 2.70±0.51 3.81±0.75

D120113 methyl nitrite 12.20±1.19 24.72±0.99 2.43±0.09 6.00±0.35

D120116 N2H4+O3 13.33±2.67 2.34±0.55 6.35±1.81 1.49±0.70

D120121 N2H4+O3 / / / / cancelled

D120425 N2H4+O3 11.49±0.26 2.94±0.34 5.39±0.77 1.59±0.36

 

* dark experiment
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Table 7.4 Summary of aerosol smog chamber experiments performed at -10 °C 

Experiments
No. 

OH 
precursor

τaero (h) COH  (106  ×

cm-3)

kOH (×10-12

cm3 s-1)

kobs (×10-5

s-1)

Comments

D120415 none (dark) 8.77±0.69 0.5±1.1 / 0.6±1.2
D120325 none  9.09±0.83 0.78±0.29 6.2±1.5 0.48±0.21
D120327 methyl nitrite 16.67±2.78 8.60±0.83 2.77±0.48 2.38±0.47
D120329 methyl nitrite 9.09±0.83 2.85±0.33 5.0±1.4 1.43±0.43
D120401 methyl nitrite 10.87±1.06 14.88±0.55 1.75±0.07 2.60±0.14
D120403 methyl nitrite 10.75±0.35 18.22±0.48 1.77±0.07 3.23±0.15
D120405 methyl nitrite 12.05±0.73 14.30±0.25 1.83±0.40 2.62±0.57
D120408 methyl nitrite 11.11±1.23 10.10±0.32 2.37±0.51 2.40±0.52
D120410 methyl nitrite 10.87±0.35 23.06±1.59 1.57±0.27 3.62±0.66
D120427 N2H4+O3 8.31±0.44 5.09±0.23 3.59±0.49 1.83±0.26

 
* dark experiment 

7.5 Heterogeneous degradation of terbuthylazine on SiO2 at 25 °C. 

The duration of each chamber experiment was typically two days. During the first day, 

after the hydrocarbons and aerosol suspension were injected into the smog chamber 

and well mixed, the OH precursor was injected into the chamber. The reaction started 

when the solar simulator was turned on. The concentrations of hydrocarbons were 

measured every 30 minutes (see chapter 2) and the filter samples were taken. During 

the second day, the extracts of the analysis filters were evaluated by GC-FID and the 

weighing filter were measured (for detailed information see chapter 6). 

7.5.1 Calculation of the OH concentration 

According to Equation 5.4 (see above), the integral OH concentration at time t, can be 

calculated based on the measured FID peak areas of each hydrocarbon. A plot of the 

integral OH concentration versus time t, yields the OH concentration in the chamber 

as the slope. Figure 7.11 shows the integral OH concentration derived from different 

hydrocarbons in experiment D111012 versus time.  
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Figure 7.11 Integral OH concentration derived from different hydrocarbons in 
experiment D111012 versus time. The linear regression shown in this figure 
yields the mean OH concentration from the slope ((15.35±0.54)×106 cm-3) 

 

In Figure 7.11, the intercept of the regression line does not start from zero. This 

phenomenon could be explained by the experimental procedure to generate OH 

radical in the smog chamber: Methyl nitrite was injected continuously about 2-3 

minutes before the solar simulator was turned on. When the methyl nitrite started to 

photolyse to generate OH radicals, the OH concentration could reach a high level 

instantaneously and then fall to a constant value (as shown in Figure 7.12). The 

deviation of intercept of the hydrocarbons in Figure 7.11 is caused by a lack of time 

resolution and the amount of consumed hydrocarbons by this "pulse OH radical" 

based on their reaction rate with OH radicals. 
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Figure 7.12 OH concentration calculated from different hydrocarbons versus 
time (D111012). The high level of OH concentration was caused by the methyl 
nitrite accumulated before the light was turned on. 

7.5.2 Calculation of the TBA concentration adsorbed on aerosol 

To calculate the aerosol concentration CAe, the filter weight and sampled air volume 

are needed: 

CAe = mf / Vf                                7.2 

where CAe is the aerosol concentration in the smog chamber, in mg cm-3, mf is the 

weight of aerosol masses collected on the filter, in mg, and Vf is the volume of air 

which was taken for the filter sampling, in cm-3.  

At the same time, the dilution factor should also be evaluated for every filter sample. 

It can be calculated from the filter sampling volume and the chamber volume 

)3200/exp( dilv Vd =                            7.3      

Where dV is the dilution factor and Vdil is the sampling volume which caused the 

dilution, in L. The chamber volume is 3200 L. The interpolated aerosol concentration 

C'Ae (mg cm-3) can thus be corrected by dV: 
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VAe
'
Ae dCC ×=                                             7.4 

During each experiment, 4 weighing filters were taken to determine the aerosol 

concentration at different time. As the aerosol concentration follows an exponential 

decay, the aerosol mass of the analysis filter samples can be interpolated from the 

weighing filter results. Since the aerosol concentration decreases exponentially, the 

analysis samples, which are taken between the aerosol concentration samples, can be 

interpolated to obtain the aerosol mass for the other filter samples. A plot of the 

logarithm of the aerosol concentration at time t versus corresponding time yields the 

initial aerosol concentration CAe,0 from the intercept and the time constant b of the 

aerosol deposition from the slope. From Equation 7.3, the aerosol concentrations CAe 

for time t can be calculated for every experiment. Figure 7.13 shows the trend of 

aerosol concentration for the weighing filters and the interpolated analysis filter 

during an experimental run. 

tCC ×-×= b
Ae,0Ae e                          7.5  
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Figure 7.13 Decrease of the aerosol mass concentration of SiO2 coated with 
terbuthylazine in an experiment at 25 °C (D111012). The solid circles represent 
the measured results for weighing filters; the hollow triangles show the 
interpolated aerosol concentrations from Equation 7.5  

τaerosol=7.14±0.51 
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7.5.3 Determination of the OH rate constant of terbuthylazine 

The filter extracts were analyzed by GC-FID (detailed description see chapter 3). As 

only the relative concentrations were needed to calculate the rate constant of 

terbuthylazine (Equation 6.7), the peak areas from the FID peaks were used for the 

calculation.  
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Figure 7.14 Chromatograms of experiment D111012. The lines represent filter 
samples taken at different exposure times of the coated aerosol particles.  

Following Equation 5.7, a plot of the logarithm of the terbuthylazine concentration on 

the aerosols versus the integral OH concentration is made and the linear regression 

yields the rate constant kOH from the slope.  

In Figure 7.14, there is a sharp decrease of the terbuthylazine peak from filter 0 to 

filter 1; Figure 7.15 clearly shows the trend. This phenomenon is caused by the high 

instantaneous OH radical concentration when the solar simulator was switched on (as 

shown in Figure 7.12). After that, the terbuthylazine on the aerosol reacts 

continuously with OH radicals at a constant level, and the decay rate could be 
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calculated based on the known OH radical concentration. So in this study, the 

experimental point of filter 0 in the darkness is excluded, and only the remaining 

filters are used for the calculation. 

0.0 5.0e+10 1.0e+11 1.5e+11 2.0e+11 2.5e+11

[ T
B

A
 ] 0/

[ T
B

A
 ] t

0.1

1

ò[OH] dt   /   cm-3 s

Figure 7.15 Relative ratios of TBA on the aerosol versus integral OH 
concentration in an experiment at 25°C (D111012). The solid points represent the 
filter sample data points after the solar simulator was switched on; the hollow 
point represents the first analysis filter (F0), which was excluded from the 
regression as discussed above. 

From Figure 7.15, the rate constant for the reaction of terbuthylazine with OH radicals 

is obtained from the slope of linear regression of the semilogarithmic diagram. The 

kOH in experiment D111012 is calculated to be (4.25 ± 0.27) × 10-12 cm3 s-1.  

7.5.4 Application of the Langmuir-Hinshelwood and Eley-Rideal mechanisms on 

the experimental data at 25°C 

Table 7.1 (see Chapter 7.4) gives a summary of the results of the experimental runs 

performed at 25°C. The data of experiment D111105 (dark) follows the same 

calculation procedure. All experimental results have been corrected by the kI
obs value 
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obtained in the dark experiment, and the kOH was recalculated after the correction. 

Considering the small surface area of self-synthesized SiO2 particles, a possible loss 

path of terbuthylazine in the dark might be desorption from the aerosol.  

A plot of the second order rate constants versus the OH concentrations (Figure 7.16) 

shows that kOH decreases with increasing OH radical concentration. As described in 

chapter 3, the Langmuir-Hinshelwood mechanism could explain this negative 

dependence of kOH on OH concentration (see Equation 3.8 in chapter 3). 

 

cOH / molecule cm-3

0 1e+7 2e+7 3e+7 4e+7

k 
O

H
 /c

m
3  m

ol
ec

ul
e-1

 s
-1

0.0

2.0e-12

4.0e-12

6.0e-12

8.0e-12

1.0e-11

1.2e-11

1.4e-11

Experimental points
Langmuir-Hinshelwood regression

 

Figure 7.16 Experimental second order rate constant, kOH, versus OH radical 
concentration in the heterogeneous reaction of OH radicals with terbuthylazine 
adsorbed on home-made SiO2 particles in the LOTASC chamber  

The experimental pseudo-first-order rate constant, kI
obs, was also plotted versus the 

OH radical concentration (see Figure 7.17), in order to verify this hypothesis. As can 

be seen in Figure 7.17, the kI
obs values approach a plateau at higher OH concentrations, 

which shows a likelihood of following the Langmuir-Hinshelwood mechanism.  
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Figure 7.17 Experimental pseudo-first-order rate constant k I
obs versus the OH 

radical concentration in the heterogeneous reaction of OH radicals with 
terbuthylazine, adsorbed on home-made SiO2 particles in the LOTASC chamber 

In order to obtain the KOH and kI
max values for the Langmuir-Hinshelwood mechanism 

(Equation 3.8) from a simple linear regression, the reciprocal of kOH was employed. 

Equation 7.6 is derived from Equation 3.8: 

I
max

OH

OH
I
maxOH

11
k
C

Kkk
+

×
=     7.6 

Such a regression of 1/kOH versus COH then yields 1/kI
max as slope and 1/ (k I 

max· KOH) 

as intercept. For those experiments at 25°C with the self-synthesized SiO2 particles as 

carrier particles, Figure 7.18 shows the linear regression according to Equation 7.6. 

The parameters for the Langmuir-Hinshelwood regression are derived as below: 

KOH=(9.4±1.6) ×10-7 cm3 molecule-1 

kI
max=(9.24±0.84) ×10-5 s-1.  

From these results and according to the Langmuir-Hinshelwood mechanism (see 
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Equation 3.7), a regression line was generated in Figure 7.17 and the fitting equation 

is shown as below: 

kI
obs=8.6×10-12 COH / (1+9.4×10-8 COH)                  7.7 

The data points in Figure 7.17 could also be used to obtain the parameters of the 

Eley-Rideal mechanism. The limiting slope for the Eley-Rideal mechanism should be 

taken at COH=>0, and then based on Equation 3.8 the kOH (Eley-Rideal) equals to kI
max × 

KOH and yields (8.6±1.2) ×10-12 cm3 molecule-1 s-1. 
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Figure 7.18 Reciprocal of kOH versus OH radical concentration for all 
experiments. 

7.5.5 Comparison with experiments of the OH radical reaction of terbuthylazine 

adsorbed on Aerosil 200 particles 

In order to understand the impact of the characteristics of the particulate matter, the 

results from this work were compared with previous work by Palm et al. (1997). To 
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understand to what extent the systematic error (volume of chamber, methodology of 

aerosol injection, different OH precursors, etc.) would affect the results, several 

experiments with Aerosil 200 particles, coated with terbuthylazine, were performed in 

the LOTASC chamber. Figure 7.19 shows the experimental second order rate constant 

kOH versus OH concentration on SiO2 particles in this work, the results from Palm et 

al. (1997), and the results on Aerosil 200 in this work, respectively. It can be clearly 

seen that the Aerosil 200 experimental points correspond to the previous data quite 

well. 
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Figure 7.19 Experimental second order rate constant kOH versus the OH radical 
concentration in the heterogeneous reaction of OH radicals with terbuthylazine 
adsorbed on home-made SiO2 particles in the LOTASC chamber 

Figure 7.20 gives the results of the pseudo-first-order rate constant (kI
obs) versus the 

OH radical concentration on Aerosil 200 particles and on the self-synthesized 

particles. From the previous results from Palm et al. (1997), the data points give a 

good linear regression, which indicates a domination of the Eley-Rideal mechanism. 
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The repetitive experiments with Aerosil 200 as carrier particles in this work also meet 

the fitting line. However, combined with experimental results on Aerosil 200 from 

this work, an estimation of Langmuir-Hinshelwood mechanism can also be made as 

below: 

KOH (Aerosil 200)=(8.4±1.4) ×10-8 cm3 molecule-1 

kI
max (Aerosil 200)=(2.65±0.34) ×10-4 s-1 

The experimental data on SiO2 particles follows the Langmuir-Hinshelwood 

mechanism very well. Even more so, based on the above discussions, the limiting 

value for low OH concentrations gives a second order rate constant based on the 

Eley-Rideal mechanism of kI
max × kOH. For the results on SiO2 particles, kOH (Eley-Rideal) 

is (8.6±1.2) ×10-12 cm3 molecule-1 s-1, in reasonable agreement with the previous 

results on Aerosil 200: kOH=(1.1±0.2) ×10-11 cm3 molecule-1 s-1 (Palm et al., 1997). In 

this point, the heterogeneous reaction of gas phase OH radicals with aerosol-borne 

terbuthylazine follows similar kinetics on both Aerosil 200 particles and 

self-synthesized SiO2 particles. The appearance of either a Langmuir-Hinshelwood or 

an Eley-Rideal mechanism is possibly caused by the characteristics of particles: The 

specific surface area of Aerosil 200 is 200 m2 g-1, which is much higher than that of 

the self-synthesized SiO2 particles (calculated to be 17 m2/g, see chapter 2), in this 

case, the OH radical can be adsorbed sufficiently around the terbuthylazine molecule 

on the Aerosil 200 surface. The OH radicals could react freely with the adsorbed 

terbuthylazine on the aerosol surface, like the gas phase reactions. That could explain 

the domination of Eley-Rideal mechanism for experiments on Aerosil 200.  
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Figure 7.20 Experimental pseudo-first-order rate constant kI

obs versus OH 
radical concentration, in comparison with experiments with Aerosil 200 as 
carrier particles.  

From the Eley-Rideal regressions both on Aerosil 200 particles 

(kI
obs=9.98×10-12×COH+2.18×10-5) and on the self-synthesized SiO2 particles 

(kI
obs=8.6×10-12×COH), the results are quite similar. It shows that other factors do not 

have a big impact on the chemical kinetics of the heterogeneous reaction of OH 

radicals with aerosol-borne terbuthylazine, such as the volume of the smog chamber, 

type of solar simulator, and source of OH radicals.  

Behnke et al. (1987b) reported the second order rate constant for the heterogeneous 

reaction of OH radicals with di-(2-ethylhexyl-)phthalate, which was adsorbed on 

different metal oxide aerosols. Their results confirmed that there was a higher 

heterogeneous OH reactivity on aerosols which had high surface areas (more than 100 

m2 g-1), while the rate constant decreased about 40% for reactions on coal fly ash, 

whose surface areas was only 8 m2/g. Sørensen et al., (2002) have proposed that, for 



 

 

 

80 
 

volatile organic compounds, different types of aerosol have no effect on the rate for 

reaction of OH radicals with gaseous organic compounds. However, their work 

mainly focused on gas-phase kinetics, so it is not relevant to heterogeneous kinetics. 

Considering that there have been only a few studies about heterogeneous atmospheric 

reactions of OH radical with SVOCs, further investigations are urgently needed.  

7.5.6 Result of an experiment at higher OH level 

In this study, an attempt of applying higher OH concentration to the system was made. 

During one experimental run, hydrazine and ozone were used as OH precursor (for 

the detailed mechanism, see chapter 4) and a high level of OH radicals was achieved 

((3.41±0.17) ×107 molecule cm-3). The second order rate constant for heterogeneous 

reaction was expected to follow the Langmuir-Hinshelwood regression as well. 

However, the result showed a deviation from the regression line obtained before (see 

Figure 7.21). The calculated rate constant kOH appeared to be quite low and did not 

follow the Langmuir-Hinshelwood regression at 25 °C. This data point seemed to be 

an outlier. 

When we compare our result with other experimental study, which was performed at 

Marseille (Pflieger et al., 2013) in flow reactors at higher OH concentration ((9.0 ± 

4.0) ×107 molecule cm-3), it shows that the rate constant obtained from Pflieger 

(k=(1.5 ± 0.8) ×10-13 cm3 molecule-1 s-1) was much too low to follow the 

Langmuir-Hinshelwood regression derived from experimental data in this study (see 

Figure 7.22, Figure 7.23). 
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Figure 7.21 Experimental results of the heterogeneous reaction of OH radical 
with terbuthylazine adsorbed on SiO2 particle at high OH concentration. a) 
Second order rate constant kOH versus OH radical concentration; b) 
pseudo-first-order rate constant k I

obs versus OH radical concentration 
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Figure 7.22 Second order rate constant kOH versus OH radical concentration in 
the LOTASC chamber, shown in combination with results from other studies at 
higher OH concentration. Experiment with hydrazine and O3 as precursor on 
self-synthesized SiO2 particles, result from Pflieger et al. (2013) 

Thinking about the concentration of OH radicals, one has to define the apparent OH 

concentration and the actual OH concentration which really takes part in the 

heterogeneous reaction. From Equation 3.7, a new formula could be derived as 

Equation 7.8: 

)1( OHOH

OHOH
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Figure 7.23 Experimental pseudo-first-order rate constant kI
obs versus OH 

radical concentration, in combination with results from other studies at higher 
OH concentration. Experiment with hydrazine and O3 as precursor on 
self-synthesized SiO2 particles, result from Pflieger et al. (2013) 

In Equation 7.3, the OH concentration only occurs in the denominator, so that kI
obs has 

a positive correlation with COH. In this case, a low kI
obs

 value could be probably 

related to a low OH concentration, which actually participates in the heterogeneous 

reaction. In the work of Pflieger et al. (2013), although they reported a very high OH 

concentration ((9.0 ± 4.0) ×107 molecule cm-3), it only represents an "apparent" OH 

concentration, the OH radicals which really take part in the heterogeneous reaction 

could be very few. The result from Pflieger et al. (2013) is not relevant to the 

Langmuir-Hinshelwood mechanism. What's more, due to the small volume of the 

flow reactor, the OH radicals are probably not homogeneously dispersed inside, which 

will absolutely cause different kinetics on the aerosol surfaces. From this point, the 

uncertainty of measurement is greatly increased. Considering the differences of flow 

reactor and smog chamber studies, further investigations are needed to understand 

more about the mechanism of heterogeneous kinetics on aerosol surfaces.  
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Table 7.5 Comparison of experimental conditions of different terbuthylazine 

experiments 

 Palm et al. (1997) This work Pflieger et al., (2013) 

Device Smog chamber 

(2400L) 

Smog chamber 

(3200L) 

Flow reactor (~230 

cm3) 

Carrier 

particle-Silica 

Aerosil 200 Self-synthesized 

SiO2 

Aerosil R812 

OH precursor H2O2, O3, NO2 Methyl nitrite 

 

2,3-Dimethyl-2-butene 

(ozonolysis) 

Light source Osram, 

HMI-Metallogen 

Osram Eversun 

(16) 

None 

OH concentration 105-107 cm-3 105-3×107 cm-3 (9.0 ± 4.0) × 107 cm-3 

Relative humidity 42-50% 20-30% 0.7% 

Table 7.5 shows the different experimental conditions applied in the previous work 

from Palm et al. (1997) and Pflieger et al. (2013). According to the conclusions in 

Chapter 7.5.5 that the source of OH and volume of smog chamber have no impact to 

the chemical kinetics; only the characteristics of particle would affect the mechanism 

and rate of heterogeneous reactions. Table 7.6 lists the comparison of Aerosil 200 and 

Aerosil R812 particles. 

Table 7.6 comparison of particle characteristics of Aerosil 200 and Aerosil R812 

Type Aerosil 200 Aerosil R812 

Particle size 12 nm 7 nm 

Hydrophobicity Hydrophilic Hydrophobic 

Specific surface area  

(m2 g-1) 

200 260 

The surfaces of Aerosil R812 particles are occupied by methyl groups (Bode et al., 

1967). Those organic groups have moderate reactivity to OH radicals (1.0×10-12 cm3 

molecule -1 s-1, Atkinson, 1991), which will consume most of the OH radicals in the 
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gas phase and suppress the reaction of OH with adsorbed terbuthylazine, especially in 

the narrow flow reactor system. According to Equation 3.9, this could be a reasonable 

explanation why the result from Pflieger et al. (2013) is far away from the results of 

Palm et al. (1997) and also the results from this work.  
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=          3.9 

During the process to synthesize SiO2 particles, there could also be precursors 

(Si(OC2H5)4) left on surface of the monodisperse silica particles. Those organic 

groups would also have some impact on the heterogeneous rate constant.   

The special distribution of OH radicals also raises a question. In smog chamber 

experiments, with the ventilator, the OH precursor was dispersed in the chamber 

before the solar simulator was switched on; however, this question remains unclear 

whether the OH radicals in the flow tube could also be evenly dispersed. Suppose the 

OH radicals accumulated more close to the inlet of the flow tube and could not reach 

inside, the coated terbuthylazine molecules then had less chance to react with high 

concentration of OH radicals. In such a case, the observed heterogeneous reactivity 

would be quite low.   

Another possible explanation is that the relative humidity varied in the different 

studies (42% on Aerosil 200, Palm et al., 1997; 32% on self-synthesized SiO2, this 

study; and 0.7% on silica, Pflieger et al., 2013), which could have an impact on the 

heterogeneous reaction on particle surfaces. Previous research on oxidation of 

aerosol-borne SVOCs by ozone has shown some results on the impact of relative 

humidity to the heterogeneous kinetics. Kwamena et al. (2004) reported that at higher 

relative humidity the kinetics could be accelerated. However, in another study from 

their group (Kwamena et al., 2006), there was no change for the kinetics at different 

relative humidities. There are also studies in which decreased PAH reactivity was 

observed at higher relative humidity, especially from the work by Pitts et al. (1986). 

In this regard, it is not clear what effect relative humidity would have on the 
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heterogeneous kinetics on aerosol surface. 

7.6 Experimental results of the heterogeneous reaction of OH 

radicals with terbuthylazine adsorbed on SiO2 particles at different 

temperatures 

In this work, chamber experiments were also performed at low temperatures (6.5°C 

and -10°C), in order to understand the temperature dependence of the heterogeneous 

reaction. Results were also evaluated with the Langmuir-Hinshelwood and 

Eley-Rideal mechanisms. 

7.6.1 Experiments at 6.5°C for the reaction of OH radical with terbuthylazine on 

SiO2 particles 

Table 7.3 (see Chapter 7.4) summarizes the experimental results performed at 6.5°C. 

Data points are plotted in Figure 7.24 and Figure 7.25. Results at 6.5°C have shown a 

similar trend as those at 25°C. The Langmuir-Hinshelwood and Eley-Rideal 

regression lines are shown in the figures. 
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Figure 7.24 Experimental results of second order rate constant kOH versus OH 
radical concentration on the self-synthesized SiO2 particle at 6.5 °C 
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Following the previous calculation procedure (described in chapter 7.5.4), kI
max

 and 

KOH could be obtained from the linear regression of reciprocal of kOH versus COH (see 

Figure 7.26). The calculation results of kI
max

 and KOH are shown below: 

kI
max = (7.89±0.89)×10-5 s-1 

KOH = (1.07±0.24)×10-7 cm3 molecule-1 

The expression of the Langmuir-Hinshelwood regression is given in Equation 7.9: 

kI
obs=8.5×10-12 COH / (1+1.07×10-7 COH)              7.9 
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Figure 7.25 Experimental results of the pseudo-first-order rate constant kI
obs 

versus OH radical concentration on the self-synthesized SiO2 particle at 6.5°C 

Based on the discussion in Chapter 7.5.4, the Eley-Rideal regression can be obtained 

from kI
max × kOH, for COH=>0 from Equation 3.8. The kOH (Eley-Rideal) then equals to kI

max 

× kOH and yields (8.5±1.6) ×10-12 cm3 molecule-1 s-1.  
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Figure 7.26 Reciprocal of kOH versus OH radical concentration for all 
experiments at 6.5°C . 

7.6.2 Comparison with previous experiments on the reaction of OH radicals with 

TBA adsorbed on filters at 6.5°C 

Filter experiments of terbuthylazine adsorbed on Aerosil 200 were performed 

previously at 6.5°C in the smog chamber by exposing filter samples of coated 

particles to OH radicals. The procedure of how to prepare the filter samples was 

described in detail in Palm et al. (1998). Results from this work and those from 

Krüger (2001) were plotted together in Figure 7.27, 7.28 and 7.29. 
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Figure 7.27 Experimental results of second order rate constant kOH versus OH 
radical concentration on the self-synthesized SiO2 particle at 6.5 °C (in 
combination with previous data from Krüger et al., (2001)  

Previous results at 6.5 °C (Krüger, 2001) have shown that the second order rate 

constants on Aerosil 200 particles on filter samples are higher than the results from 

reactions on aerosol-borne SiO2 particles. From Figure 7.28, it can be seen that 

experiments on filter samples with Aerosil 200 follow the Eley-Rideal mechanism. A 

linear regression of kI
obs versus OH concentration yields the second order rate constant 

kOH as the slope. kOH(filter)=(5.84±0.75)×10-12 cm3molecule-1s-1 for previous filter 

experiments (r2=0.94, as shown in Figure 7.28). This value is lower than the 

kOH(Eley-Rideal) value from the experimental results on SiO2 particles ((8.5±1.6) ×10-12 

cm3s-1), which means that if compressed on filter samples, the kinetic reactivity could 

be reduced because of steric hindered access to the OH radicals.  
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Figure 7.28 Experimental results of pseudo-first-order rate constant kI
obs versus 

OH radical concentration on the self-synthesized SiO2 particle at 6.5°C 

From Figure 7.28, it can be clearly seen that for the heterogeneous reaction on the 

self-synthesized SiO2 particles, the heterogeneous kinetics follows mainly the 

Langmuir-Hinshelwood mechanism. The Eley-Rideal regression obtained from this 

work could be a model for the gas phase. Results from filter samples at 6.5°C give a 

lower kOH(Eley-Rideal) value ((5.84±0.75)×10-12 cm3molecule-1s-1), in comparison with 

the aerosol experimental results with Aerosil 200 at room temperature (Palm et al., 

1997). The explanation could be that either the reactivity on aerosol surfaces would be 

reduced at lower temperature or the compressed state of aerosols on filters could 

prevent the access of OH radicals to the aerosol-borne terbuthylazine, in comparison 

with conditions on free aerosols in the smog chamber.  
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Figure 7.29 Reciprocal of kOH versus OH radical concentration for all 
experiments at 6.5°C. 

7.6.3 Experiments at -10°C for the reaction of OH radical with terbuthylazine on 

SiO2 particles 

Table 7.4 (see Chapter 7.4) summarized the experimental results at -10°C for reaction 

of OH radical with aerosol-borne terbuthylazine. Results at -10°C (Figure 7.30 and 

Figure 7.31) follow mainly the Langmuir-Hinshelwood mechanisms. In Figure 7.31, 

the Eley-Rideal mechanism estimation is also given. From the linear regression of the 

reciprocal of kOH versus COH (see Figure 7.32), kI
max

 and KOH are calculated as below: 

kI
max

 = (4.33±0.38) ×10-5 s-1 

KOH = (1.40±0.26) ×10-7 cm3 molecule-1 

The expression of Langmuir-Hinshelwood mechanism is shown in Equation 7.10: 

kI
obs=6.08×10-12 COH / (1+1.40×10-7 COH)                 7.10 

According to the previous discussion, the Eley-Rideal regression can be obtained 

from kI
max × kOH, in condition of COH=>0 from Equation 3.8. The kOH(Eley-Rideal) then 

equals to kI
max × kOH and yields (6.08±0.97) ×10-12 cm3 molecule-1 s-1. 
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Figure 7.30 Experimental results of second order rate constants kOH versus OH 
radical concentrations on the self-synthesized SiO2 particle at -10°C  
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Figure 7.31 Experimental results of the pseudo-first-order rate constants, kI
obs, 

versus the OH radical concentrations on the self-synthesized SiO2 particles at 
-10°C 
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Figure 7.32 Reciprocal of kOH versus OH radical concentration at -10°C. 

7.7 Temperature dependence of the heterogeneous reaction on 

self-synthesized SiO2 particles 

Figure 7.33 shows all experimental data points at 25°C, 6.5°C and -10°C. In order to 

understand to what extent the temperature would have an impact on the kinetics of the 

heterogeneous reaction; experimental data from different temperatures are plotted 

versus the inverse absolute temperature (K-1) in Figure 7.34. It can be seen that there 

is a slight temperature dependence of kI
max and KOH (based on the 

Langmuir-Hinshelwood mechanism calculation). However, considering the difference 

of reactivity caused by particle characteristics (kOH = (1.1±0.2) ×10-11 cm3 molecule-1 

s-1 for Aerosil 200, and kOH = (1.42±0.35) ×10-11cm3 molecule-1 s-1 for self-synthesized 

SiO2 particle) at 25 °C, the thermodynamic factor has little impact on the reaction 

mechanism.
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Figure 7.33 Experimental pseudo-first-order rate constants, kI
obs, versus OH 

radical concentrations at different temperatures 
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Figure 7.34 Comparison of kI
max and KOH at different temperatures.  
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According to the Arrhenius plot in Equation 7.11: 

)ln(
1

R
)ln( a A

T
E

k +
-

=          7.11 

Here k is the second order rate constant of a chemical reaction (cm3 molecule-1 s-1), T 

is the absolute temperature (K), Ea is the activation energy (J mol-1), R is the universal 

gas constant (8.314 J mol-1 K-1) and A is the pre-exponential factor. 

In Figure 7.35, the natural logarithm of second rate constant k (derived from the 

Eley-Rideal mechanism) is plotted versus the reciprocal of temperature (absolute 

temperature, in K), in order to obtain an idea about the activation energy/heat of 

adsorption of OH. From the linear regression, Ea is calculated to be (6.6±3.3) kJ mol-1, 

and A is calculated to be 1.3×10-10. Figure 7.36 shows the relation of natural logarithm 

of equilibrium constant KOH versus the reciprocal of temperature. The adsorption heat 

is then calculated to be (7.6±4.2) kJ mol-1. 
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Figure 7.35 ln kOH(Eley-Rideal) versus the reciprocal of temperature (T).  
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Figure 7.36 ln KOH versus the reciprocal of temperature (T). 

7.8 Product analysis 

The product peaks were identified with GC-FID (Siemens I, Sichromat, on 

column-injection) (Figure 7.37). The filter extraction was then analyzed by GC-MS 

(Varian Saturn GC/MS 2000, desethylterbuthylazine was determined as one product 

(Figure 7.39). The 1,3,5-triazine-2,4-diamine,6-chloro-N,N'-bis (1-methylethyl)- 

(propazine) was also detected on the filter sample (Figure 7.41). However, it is also 

observed to be an impurity in the terbuthylazine sample (see Figure 7.37). 
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Figure 7.37 Chromatogram of filter sample extracts of GC-FID, showing the 
information of product peaks 

 

Parameter of GC-MS for product analysis: 

Column: Rxi-1ms (fused silica), 0.24 µm film, i.d. = 0.25 mm, column length 30 m; 

Carrier gas: He  

Table 7.8 Temperature program of the Varian Saturn GC/MS 2000 

Temp 

(°C) 

Rate 

(°C/min) 

Hold 

(min) 

Total 

(min) 

60  0.0 5.00  5.00 

320 20.0 2.00 20.00 

 

Kinetics of product formation during the photochemical transformation 

During the experimental run, the peak at around 11.9 min from the GC-FID 

chromatogram has been identified as desethylterbuthylazine. Figure 7.38 shows the 

kinetics of the observed product peak together with the concentration change of 

terbuthylazine. 
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Figure 7.38 Relative concentrations of terbuthylazine and one product at 11.9 
min (D111115). The sum of TBA and product is also shown in the figure.  
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Figure 7.39 GC-MS spectrum of product information: desethylterbuthylazine 

Figure 7.39 shows the MS spectrum of product information. Desethylterbuthylazine is 

observed as the main product. However, compared with previous Aerosil 200 

experiments (Palm et al., 1997), 2-chloro-4-tert- butylamino-6- acetamido-s-triazine 

(TBA-ACE, Figure 7.40) was also identified as one product, which was not found in 

this work. 

 

Figure 7.40 Structure of TBA-ACE 

In this work, the product information shows that there is less oxidation level during 

the reaction. The explanation could be that on a spherical SiO2 particle with small 

surface area, the gas phase OH radical has less reactivity with adsorbed semi-volatile 

compounds, in comparison to reactions happened on Aerosil 200 particles.  

1,3,5 - triazine -2,4 - diamine, 6 - chloro - N,N' - bis (1-methylethyl)- (propazine) was 

also observed (Figure 7.41). However, this compound is always regarded as impurity 

in the terbuthylazine (European Food Safety Authority, 2011).  
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Figure 7.41 GC-MS spectrum 1,3,5 - triazine -2,4 - diamine, 6 - chloro - N,N' - bis 

(1-methylethyl)- (propazine) 

7.9 Possible reaction pathway analysis 

The reaction pathway to forming desethylterbuthylazine is shown in Figure 7.42. The 

secondary C-H bond of the ethyl groups is attacked by OH radical, and after the 

following the reaction with oxygen and NO, desethylterbuthylazine is finally formed, 

releasing acetyl radicals. 

O ▪

▪OH ▪

+O2

OO ▪

+NO

O ▪

+ NO2

+  CH3CO▪

 

Figure 7.42 Possible reaction pathways to generate desethylterbuthylazine from 
terbuthylazine 
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7.10 Atmospheric implications  

The rate constants obtained in this work were used to calculate the atmospheric 

lifetime towards reaction with OH radicals. Taking the OH concentration of 

(9.4±1.3)×105 molecule cm-3 (Prinn et al., 2001), and (as an over simplification) that 

the atmospheric lifetime towards OH radicals is given by: τ=1/(kOH×COH) of the 

Eley-Rideal theory, and by: τ=1/kI
obs according to the Langmuir-Hinshelwood 

mechanism (Finlayson-Pitts and Pitts Jr., 2000), the following half-lives at the three 

temperatures are obtained and summarized in table 7.7. 

Table 7.7 Summary of parameters for the Langmuir-Hinshelwood and 
Eley-Rideal mechanism at different temperatures of the heterogeneous reaction 
of TBA with OH radical  

Temperature (°C) 25 6.5 -10 
kI

max (s-1) (9.24±0.84) ×10-5 (7.89±0.89) ×10-5 (4.33±0.38) ×10-5 
KOH  (cm3) (9.4±1.6) ×10-8 (1.07±0.24) ×10-7 (1.40±0.26) ×10-7 
kOH obtained from 
Eley-Rideal mechanism 

(8.6±1.2) ×10-12 (8.5±1.6) ×10-12 (6.08±0.97) ×10-12 

Half-life (h) 
(Eley-Rideal theory) 

23.6  24.3  34.0  

Half-life (h) 
(Langmuir-Hinshelwood 
theory) 

25.6 26.3  38.1  

In this study, the lifetimes calculated from the Langmuir-Hinshelwood and 

Eley-Rideal mechanisms have shown an agreement. Suppose the reaction with OH 

radicals is the main degradation pathway in the atmosphere, the average half-life of 

terbuthylazine is less than 2 days at room temperature. According to the Stockholm 

Convention, pesticides with a half-life of more than 2 days could be defined as POPs 

(Persistent Organic Pollutants). The modeling work also proves that terbuthylazine is 

not persistent in the atmosphere. The EUSES (Mackay-type) model gave a half-life of 

41 hours of terbuthylazine in air (Beyer and Matthies, 2002). Results obtained from 

this study give the same conclusion as the gas phase reaction that TBA is not regarded 

as POP.  

There are still discussions about the possibility of long-range transportation of 
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terbuthylazine in the atmosphere. In field studies, Hüskes and Levsen (1997) have 

discovered higher concentrations of terbuthylazine in rain water close to Hannover, 

and they concluded that there must be an additional local input from nearby 

application of the agent. Kreuger et al. (2006) also reported a detection of 

terbuthylazine (0.061 µg/L in 2005) in Sweden, possibly from the application in 

Denmark.  

 Results at -10°C in this work have shown a half-life of more than 2 days, however, 

in the Stockholm Convention, the kinetic data are only considered at room 

temperature, so the results at -10°C are not relevant for the evaluation of long-range 

transport trend. Terbuthylazine is not regarded as POP in the atmosphere. 
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8. Conclusions 

The heterogeneous reaction of gas-phase OH radicals with aerosol-borne 

terbuthylazine has been investigated in a smog chamber at three different 

temperatures. Mixing of the aerosol and the OH-precursors is accelerated by a 

ventilator inside the chamber. When operating the chamber at 25°C without cooling, 

the temperature change of air temperature inside the chamber was ΔT=7.8 °C in the 

irradiated chamber. The temperature control of the cooling chamber minimizes this 

difference to 0.6 °C and 0.7 °C, at 6.5 °C and -10 °C, respectively, with the solar 

simulator switched on. The relative humidity is 22-28 % at 25 °C and saturated at 6.5 

°C and -10 °C. 

The concentrations of NOx and ozone in the chamber are monitored during the 

experiments and establish a photostationary state (the Leighton ratio 

[NO2]/([NO][O3])) with a constant value at different temperatures: (0.64±0.28) at 

25°C, (0.56±0.10) at 6.5 °C and (0.10±0.04) at -10 °C. 

Monodisperse SiO2 particles were synthesized, which were used as carrier particles to 

be coated with terbuthylazine molecules. The particle structure was evaluated from 

scanning electron microscope images taken at the Bayreuther Institut für 

Makromolekülforschung at the Universität Bayreuth (BIMF), where the size and 

standard deviation of the particle diameter were determined to be 159.8 ± 5.0 nm. 

When the particles were injected into the chamber as a dilute aqueous suspension, a 

great portion of single particles existed in the smog chamber. This minimizes the 

impact of agglomeration and makes it easier to explain kinetic processes.  

Using photolysis of methyl nitrite or the reaction of ozone with hydrazine as OH 

source, experiments on the reaction of gas-phase OH radicals with aerosol-borne 

terbuthylazine have been performed in the smog chamber. Results at 25 °C showed 

that the heterogeneous rate constant and OH concentration could be fitted to the 

Langmuir-Hinshelwood mechanism, which indicates that OH radicals have to be 

adsorbed to the particle surface before the chemical reaction with terbuthylazine can 
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take place. A fit to the Langmuir-Hinshelwood mechanism yields a gas-to-surface 

equilibrium constant KOH for the OH radical of (9.4±1.6) × 10-7    cm3 molecule-1 

and a maximum rate constant kI
max of (9.24±0.84) ×10-5 s-1. An estimate of the gas 

phase reactivity on self-synthesized SiO2 particle, in which the Eley-Rideal 

mechanism is applicable, leads to kOH (Eley-Rideal) = (8.6±1.2) ×10-12 cm3 molecule-1 s-1. 

This value is fairly close to the results from Palm et al. (1997) on Aerosil 200 (k = 

(1.1±0.2) ×10-11 cm3 molecule-1 s-1). Additional experimental results on Aerosil 200 

from this work confirmed the trend of a kinetics following the 

Langmuir-Hinshelwood mechanism with Aerosil 200 particles at high OH 

concentrations. The results at 25 °C in this work have proved that the kinetics of 

heterogeneous reactions follows the Langmuir-Hinshelwood mechanism on 

self-synthesized SiO2 particles and the Eley-Rideal mechanism on Aerosil 200 

particles. The physical characteristics of the particles (e.g. surface area, state of 

aggregation) could have an impact on reaction mechanisms. In agreement with the 

previous study of Palm et al. (1997), desethylterbuthylazine was identified by 

GC-MS.  

Experiments were also performed at 6.5 °C and -10 °C. There is a slight temperature 

dependence of the kinetic parameters. By fitting an Arrhenius equation to the three 

data points, the activation energy Ea is calculated to be (6.6±3.3) kJ mol-1. 

The half-life of terbuthylazine in the atmosphere, based on results from this work, can 

be calculated to be less than 2 days at room temperature (both from 

Langmuir-Hinshelwood mechanism and Eley-Rideal mechanism). This result is  

consistent with the calculation results using kinetic data from the gas-phase. 

Terbuthylazine is thus not defined as a POP (Persistent Organic Pollutants) in the 

sense of the Stockholm Convention. 
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Appendix 1 
  

LIST OF ABBREVIATIONS AND SYMBOLS  

  

Latin Symbols 
 
Symbol Meaning Unit 
 A concentration of SOC in particle phase ng.m-3 
 C concentration mol L-1 
 CAe aerosol concentration in smog chamber mg cm-3 
 CAS surface concentrations of sites occupied by A m-2 
 CBS surface concentrations of sites occupied by B m-2 

 CHC concentration of hydrocarbon at different time molecule cm-3 

 Cp accumulative particle concentration at time t cm-3 

 COH gas-phase OH radical concentration molecule cm-3 

 Cs total number of sites on particle surface molecule m-2 

 CTBA(ads) 
adsorption state concentration of 
terbuthylazine 

molecule m-2 

 D diameter of a particle nm 

2SiOD  diameter of SiO2 particle nm 

 dV dilution factor of the smog chamber / 
 F concentration of SOC in gas phase ng m-3 
 FTBA mass fraction of TBA on the aerosol / 
 [HC] hydrocarbon peak area mV s 

2NOJ  photolysis frequency of NO2 s-1 

 k reaction rate constant on surface m2 s-1 
 kA adsorption rate of A m2 s-1 
 kA' desorption rate of A m2 s-1 
kdilution the loss rate by dilution s-1 

)O(NO 3+k  temperature-dependent rate constant for the 
reaction between NO and O3 

ppb-1 s-1 

3NOk  NO3 rate constant cm3 molecule-1 s-1 

 kOH 
second order reaction rate constant for the 
reaction with OH radicals 

cm3 molecule-1 s-1 

 kother  
loss of hydrocarbons caused by other 
processes 

s-1 
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3Ok  O3 rate constant cm3 molecule-1 s-1 

3OK  ozone gas-to-surface equilibrium constant cm3 molecule-1 

 kI
max maximum rate constant s-1 

 kI
obs  experimental pseudo-first-order rate constant s-1 

 OHk  OH rate constant cm3 molecule-1 s-1 

 kOH 

(Eley-Rideal) 
second order rate constant with OH radical 
according to the Eley-Rideal mechanism 

cm3 molecule-1 s-1 

 KOH 
OH radical gas-to-surface equilibrium 
constant 

cm3 molecule-1 

 Kp gas/particle partitioning coefficient m3 µg-1 

 photok  photolysis rate s-1 

 ksedi sedimentation rate of particles s-1 
 m mass of the particle g 
 mf aerosol mass collected on the filter mg 
mHC, solid measured mass for solid hydrocarbon mg 
MHC molar mass of hydrocarbon g mol-1 
 N number of molecules molecule 
NA the Avogadro constant 6.02×1023 mol−1 
 [OH] concentration of OH radicals cm-3 
 [Ozone] ozone concentration cm-3 
 P pressure Pa 
 [PFH] perfluorohexane peak area mV s 
 r reaction rate on surface m-2 s-1 
 RTBA radius of plane circle of TBA molecule nm 
 SA surface area of a particle m2 g-1 

particleSiO2
S  spherical area of SiO2 particle nm2 

 t time h 
 T temperature K 
 TSP total concentration of suspended particles µg m-3 
 τ half-life h 
 V volume L 

 Vdil 
the sampling volume which caused the 
dilution 

L 

 Vf 
the volume of air which was taken for the 
filter sampling 

cm-3 

VHC,liquid liquid volume for the gas storage container  µL 
X the fraction of available sites / 
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Greek symbols 
 

Symbol Meaning Unit 
Δ difference / 
θ surface coverage / 
ρHC, liquid density of liquid hydrocarbon g cm-3 
τ half-life hour 
Ф  diameter of SiO2 particle nm 

 
Superscripts 
 
' interpolated value 

 
Subscripts  
 
Ae aerosol 
i time point 
norm normalized value 
particle particles in the smog chamber 
0 value at initial time the experiment started 
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Appendix 2 

l GC-FID calibration process 

The GC-FID for gas phase compound detection should be calibrated when the glass-lined tube is 

changed. Gases from the storage container were added into the smog chamber at volumes of 5mL, 

5 mL, 10 mL, 10 mL, 10 mL, 10 mL. The peak areas at different concentrations were plotted 

versus concentration and the linear regression line gives the information of the sensitivity of FID. 

Table I. Parameter for GC-FID calibration 

Parameter  Comment 

Oven temperature 190 °C isothermal 

Detector temperature 220 °C  

Injector temperature - important only when liquid sample is 

added directly 

Column Al2O3-PLOT Chrompack, 

50m length; inner diameter 

0.32mm 

H2 1.4 bar, air 2 bar, pump: 335, 

capillary flow: 9.30 mL/min 

Carrier gas He 3.0 bar  

Table II. Retention time of hydrocarbon 

 

 

 

 

 

 

 

 

Table III. Preparation of gas storage container  

Gas storage container  

PFH 45 µl 

2,2-Dimethylbutane 24.5 µl 

2,2,4-Trimethylpentane 37.0 µl 

Tetramethylbutane 24.60 mg 

Toluenel 30 µl 

Table IV. Amount in the Smog chamber 

Volume from the gas 

storage container 

Concentration in the 

smog chamber 

Species 

50 mL 60 ppb PFH 

50 mL 60 ppb 2,2-Dimethylbutane 

50 mL 60 ppb 2,2,4-Trimethylpentane 

50 mL 76 ppb Tetramethylbutane 

50 mL 58 ppb Toluene 

Species Retention 

time / min 

PFH 3.828 

2,2-Dimethylbutane 4.171 

2,2,4-Trimethylpentane 13.001 

Tetramethylbutane 14.438 

Toluene 22.691 

Concentration / ppb
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concentration vs PFH 
concentration vs DMB 
concentration vs TetraMB 
concentration vs Toluene 
concentration vs TMP  Tol:

 b[0]29.2754266212
 b[1]15.4854499731

 r 2=0.9954695529

 PFH:
 b[0]1.266e+1
 b[1]2.202e+1

 r 2=0.998562523

DMB:
 b[0]1.657e+1
 b[1]1.405e+1

 r 2=0.997587394

 TetraMB:
 b[0]-3.843003413
 b[1]17.1907732141
 r 2=0.999278004

Calibration

 TMP:
 b[0]3.219112628
 b[1]19.6476678043
 r 2=0.9990907254

Figure I. FID peak area versus 

concentration for hydrocarbons 
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l Program for the cold trap injector: 

0-1 minutes: pump chamber air to flush the glass-lined tube 

1-2 minutes: pump stops, liquid nitrogen cooling starts 

2-3.9 minutes: pump chamber air through the glass lined tube and the hydrocarbons are collected 

inside the glass-line tube during the cooling procedure by liquid nitrogen 

3.9-4.5 minutes: pump stops, cooling is continued to maintain the collected hydrocarbons 

4.5-4.55 minutes: electronic heating of the glass-lined tube starts, the magnetic valves turn on and 

the carrier gas (He) flush the previously condensed hydrocarbons into the GC column.  
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Parameters and results for EFTEM:  

TEM was performed in bright-field mode with a Zeiss CEM902 EFTEM (energy 

filtering transmission electron microscope) operated at 80kV. The samples were 

prepared by placing one drop of a chloroform / particle mixture onto a carbon-coated 

copper grid. The solvent was allowed to evaporate. All micrographs were recorded 

with a CCD camera (Megaview III and iTEM software, Olympus-SiS, Münster). 

The particle size were measured using Olympus MeasureIT software and labeled 

directly in the image. The average diameter of the self-synthesized particles is 159.8 ± 

5.0 nm.   

 

 

 

Figure II. EFTEM image of the self-synthesized SiO2 particles 
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l Calculation of coating efficiency during the aerosol coating 

process: 
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Chromatogram of GC-FID for filter sample test on D111212 

Standard Curve of TBA/CH2Cl2 

C (mg/L)
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New curve:
 b[0]=17.94
 b[1]=188.82

 r 2=0.9986

 

Based on the standard curve above: Area=17.94+188.82×C, C is then calculated as 29.11mg/L. 

The mass fraction of terbuthylazine is calculated as below: 

045.0
mL1mg/L11.29mg6742.0

mL1mg/L11.29

aerosol

TBA =
´-

´
==

m
m

F
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l Experimental raw data: 

The experimental raw data have been uploaded to the data base of Eurochamp2 

http://eurochamp-database.es/Eurocha_data/index.php?table_name=data_records&function=searc

h&where_clause=&page=19&order=EXP_date&order_type=ASC 
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