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Zusammenfassung 
 
Damit zwei Menschen miteinander interagieren können, um eine gemeinsame Aufgabe zu 
erfüllen, müssen sie die Erwartungen, die sie während der Interaktion aneinander haben, 
kennen. Betrachten wir das Beispiel eines Obers und eines Gastes. Kippt der Kellner eine 
Flasche, um dem Gast ein Getränk anzubieten, so kann er zwei mögliche Reaktionen des 
Gastes erwarten. Entweder reicht ihm der Gast sein Glas, um es füllen zu lassen oder er zieht 
es zurück um anzudeuten, dass er kein Getränk will. Hält er dem Kellner das Glas hin, so 
kann dieser damit rechnen, dass der Gast sein Glas solange an einem bestimmten Ort hält, bis 
er das Glas füllt. Zieht der Gast dagegen das Glas weg, so rechnet er damit, dass der Kellner 
sein Glas nicht füllen wird. Im Falle eines Missverständnisses kann ein Missgeschick 
geschehen. Für fast alle Fälle von Mensch-Mensch-Interaktion gilt, dass die Erkennung der 
Absicht eine Schlüsselrolle spielt. Für die Mensch-Roboter-Interaktion ist sie genau so 
wichtig. 
Mit zunehmender Forschung auf dem Gebiet der Robotik sind und werden Roboter mehr und 
mehr Teil des menschlichen Lebens. Damit Roboter ein erfolgreicher Teil des menschlichen 
Lebens werden müssen sie nützlich für den Menschen sein. Hierfür sollen sie sich nach dem 
Menschen richten. Versucht der Roboter, einem Menschen zu helfen, ohne die Absicht der 
interagierenden Person zu kennen, so kann der Roboter selbst zu einem Problem werden, statt 
die Lösung der Probleme zu sein. Daher ist es notwendig, dass ein Roboter die Absicht eines 
Menschen, mit dem er interagieren soll um ihn zu unterstützen, kennt. 
Das Ziel dieser Arbeit ist es, eine Lösung vorzuschlagen, die die intuitive Mensch-Roboter-
Interaktion intuitiv macht. Um die Mensch-Roboter-Interaktion intuitiv zu machen sollte dem 
Roboter die Absicht des Menschen bekannt sein. Es wird ein wahrscheinlichkeitsbasierter 
Ansatz zur Erkennung der menschlichen Absicht eingeführt. Der Ansatz nutzt endliche 
Zustandsautomaten. Jeder endliche Automat stellt eine menschliche Absicht dar und besitzt 
einen Wahrscheinlichkeitswert, der als Gewicht des endlichen Automaten bezeichnet wird. 
Aus diesem Gewicht bestimmt der Roboter die momentane Absicht des Menschen. 
Da es nicht möglich ist, alle möglichen Absichten, die der Roboter erkennen muss, in den 
Roboter einzubetten, bedarf es einer Maßnahme, damit der Roboter neue menschliche 
Absichten lernen kann. Für diesen Zweck wird ein Ansatz diskutiert. 
Damit die Mensch-Roboter-Interaktion intelligent ist sollte der Roboter schnell in auf die 
menschliche Absicht reagieren. Hier wird ein Ansatz für eine schnelle (proaktive) Reaktion 
des Roboters beschrieben. Der Ansatz diskutiert auch das Szenario einer mehrdeutigen 
menschlichen Absicht. Dabei handelt es sich um eine Absicht, die mehr als einer 
menschlichen Absicht entspricht. 
Es ist möglich, dass der Mensch eine völlig neue Intention hat, die der Roboter noch nicht 
kennt und auch noch nicht gelernt hat. In diesem Fall gibt es offensichtlich keine Mensch-
Roboter-Interaktion. Für die Bewältigung dieses Problems wird ein Ansatz diskutiert, der es 
dem Roboter ermöglicht, eine geeignete Aktion auszuwählen, um mit dem Menschen zu 
interagieren. 
Darüber hinaus wird ein Ansatz zur Verallgemeinerung der menschlichen Absicht diskutiert. 
Dadurch kann der Roboter seine Reaktion dem menschlichen Willen entsprechend ausweiten. 
Die Ausweitung der Reaktion bedeutet, dass der Roboter diejenigen Aktionen nimmt, die er 
nicht beauftragt wurde, bei einer menschlichen Intention zu nehmen. 
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Abstract 
 
For two humans to interact with each other to perform a common task, they need to know the 
expectation of each other during interaction. For example if we consider an example of a 
waiter and a guest. If the waiter tilts the bottle to offer a drink to the guest then he may expect 
two actions from the guest, i.e., either the guest will forward his glass to get it filled or he will 
take his glass backward for not accepting the drink. If the guest forwards his glass then the 
waiter expects that the guest will keep his glass at a certain point until he pours the liquid into 
the glass. Similarly if the guest takes its glass backward then he expects from the waiter not to 
pour the liquid into his glass. In any case of misunderstanding an accident can occur. It 
applies to almost all the instances of human-human interaction. The recognition of the 
intention plays a key role in human-human interaction. It is equally important in human-robot 
interaction. 
With the increase of research in the field of robotics, the robots are and will be becoming 
more and more part of human life. For the robots to be the effective part of the human life 
they should be helpful to the human. For a robot to be helpful to the human he should act 
according to the human. In case if the robot tries to help the human without knowing the 
intention of the interacting human then the robot can be itself a problem rather than a solution 
to the problems. Therefore it is necessary for a robot to know the intention of the human with 
whom the robot is supposed to interact to facilitate him. 
The aim of this work is to propose a solution to make the human robot interaction intuitive. For 
making the human-robot interaction intuitive the intention of the human should be known to the 
interacting robot. A probabilistic approach is introduced to recognize the human intention. The 
approach uses the finite state machines. Each finite state machine representing a unique human 
intention carries a probabilistic value that is called the weight of the finite state machine. That 
weight tells the robot about the current human intention. 
Since it is not possible to embed all the possible intentions into the robot that the robot may need 
to recognize. Thus, there should be a measure that the robot can learn new human intentions. An 
approach is discussed for this purpose.  
For the human-robot interaction to be intelligent the robot should be quick in his response towards 
the human intention. An approach is described that addresses the issue of quick (proactive) 
response of the robot. The proposed approach also discusses the scenario concerning the 
ambiguous human intention. An ambiguous intention is a human intention that apparently 
corresponds to more than one human intention. 
There may be a scenario in which the human has a totally new intention that the robot does not 
know already and also has not learned that intention. In this case, apparently there is no human-
robot interaction. In order to cope with this problem an approach is discussed that enables the 
robot to select an appropriate action to interact with the human. 
An approach concerning the generalization of the human intention is also discussed. By 
generalizing the human intention, the robot can extend its response according to the human 
intention. The extension of the response means that the robot takes those actions that were not 
instructed to him to be taken concerning the human intention. 
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Chapter 1 
 
Introduction 
 
 
The active research in the field of robotics and the increased presence of robots among the 
humans have made the Human-Robot Interaction (HRI) inevitable. HRI is one of the 
emerging areas of robotic research, with intuitiveness as an integral part of HRI. It may exist 
in the situations where the tasks to be performed are dangerous for the humans and require 
situation dependent responses. The robot is less vulnerable to destruction as compared to the 
human thus the dangerous part of the task can be performed by the robot and supervised by 
the human during HRI. In household chores, the robots may also interact with the humans by 
assisting them.  HRI can be used in the situations where the precise and accurate operation is 
required along with the human expert knowledge. HRI can also be found in the problems 
where the tasks require enormous strength and intelligent decision making capabilities, i.e., 
power of the robot and intelligence of the human. The robots may also interact with the 
humans in the tasks including rescue operations in disasters and industrial tasks, e.g., in 
manufacturing industry, healthcare, e.g., surgery through robots, and in household chores, 
e.g., service robots.  
HRI is an important issue in rescue robotics [107]. Rescue robots can be typically employed 
in the situations that are not easily accessible by the human rescue workers. The rescue related 
HRI is shown in Figure 1.1. The rescue robots are required to intuitively comfort the injured 
humans in the rescue operations. HRI is the combination of multiple disciplines, i.e., robotics, 
cognitive sciences, psychology, and communication experts [122]. 
 

   
Figure 1.1: Rescue robots. Left: All terrain rescue [124]. Right: Earthquake rescue [123] 

 
There exist diverse forms of HRI in healthcare, e.g., surgical operations by HRI [117], 
rehabilitation robotics [39], robot assisted therapy [160], and robotized patient monitoring 
systems [28]. The surgical robots operate in combination with the human surgeons. The 
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surgical operation is performed by combining the accuracy of the robot and the knowledge of 
the human surgeon. The advantages of HRI based surgical operations involve remote surgery, 
minimal invasive surgery, reduced blood loss and less pain [46]. The demonstration of robot 
assisted surgery is shown in Figure 1.2. 

 
Figure 1.2: Robot assisted surgery [68] 

 
There exist a few examples to date for HRI concerning household chores, e.g., Roomba [128] 
and Hybrid Assistive Limb (HAL) [67]. The level of HRI is very little as Roomba is a 
cleaning robot and considers the human as an obstacle and avoid him during the cleaning task. 
Honda’s ASIMO is considered as a most sophisticated humanoid, can not perform the 
sophisticated household chores interacting with the human. The experiments are performed 
with ASIMO for handing over the special coffee cups in a tray to the human but it is not 
marketed yet. In Figure 1.3 the robots and the example of the HRI concerning the household 
chores are shown.  
 

  
Figure 1.3: Household robotics. Left: ASIMO [2]. Middle: HAL [35]. Right: Roomba [128] 

 
Industrial robots can be found in almost all automated manufacturing industry. They are used 
in many industrial applications, e.g., packaging, stacking, casting, painting, and welding. The 
industrial robots move very fast to be efficient and thus they are dangerous for persons 
working around them. The working areas of the human robots are separated by fences if the 
robots are operating autonomously as shown in Figure 1.5. The HRI safety is an active 
research area.  Industrial HRI may involve manipulation of dangerous objects in the industry, 
controlling of complex operations, and movement of heavy objects in combination with the 
human. The robot application in industry with respect to HRI is increasing day by day [47]. 
Since a long time the industrial robots, especially robotic arms have been extensively used in 
the manufacturing industry including car making and assembling industry. Now the industry 
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robots concerning HRI are introduced into the oil and gas industry [65]. The robots can be 
remotely handled by the human to avoid the harsh environment effect on the human and to 
improve the safety and efficiency [65]. The two industrial robots are shown in Figure 1.4. 

   
Figure 1.4: Industrial robots. Right: Staeubli RX130 during HRI [159]. Left: Kuka LWR [158] 

1.1 Motivation 
The goal of the robotic presence among the humans is to make the human life as easy as 
possible. The robots are supposed to assist the humans in their activities. The provided 
services are appreciated if they are offered at the right time and need little input effort. 
Interaction characteristics make a robot more or less acceptable among the humans. The 
interface between the human and the robot describes the interacting capabilities of a robot, 
i.e., how much the robot is intuitive towards the interacting human. If the interacting human 
needs to know prerequisites in order to interact with the robot then the level of interaction is 
less acceptable as compared to the one that does not demand any prerequisite for interaction. 
The capability of adaption of the robot is also an important factor in HRI. The robot must 
adapt to the requirements of the interacting human. The requirement may directly concern the 
behaviour of the interacting human and / or the simple changes in the HRI workspace. 
Similarly proactiveness of the robot also plays an important role in the intuitiveness and 
improvement in HRI. The proactiveness is the understanding of a situation as early as 
possible. The described interacting qualities of a robot with a human directly relates to the 
fact that how much the robot is aware of the intention of the interacting human. The robot is 
required to assist the human rather than be assisted by the human thus the intention 
recognition is inevitable for a robot interacting with a human. 
The robots exist in higher numbers in industry as compared to the other fields of life. Most of 
the robots used in the industry are the robotic arms. Mostly, the robots in the industry are 
automated and do not interact with the humans. The reason for no interaction is mostly the 
issue of HRI safety as the robot moving at high speed can harm the cooperating human. 
Therefore the human and robots are separated by fences as shown in Figure 1.5. There exist 
seldom cases where the human and robot interact with each other as the robot work more or 
less like a tool for the human [24].  
A simple solution may be the usage of available sensors, i.e., vision sensors, range sensor, 
force sensors, etc. The perception of the sensors is always limited to the ability of the 
algorithms or the techniques that are used to interpret the data obtained from the sensors. The 
safety solution provided by the sensors does not ensure 100 % success. 



 
 

16 

Another reason that the robots are not employed in the industry to work in cooperation with 
the humans is that the robots do not take into account what the human is currently doing, what 
is his task, and what he will be doing in few moments. Mostly robots work like simple 
machines performing the already programmed tasks with very little flexibility.  
 

 
Figure 1.5: Industrial robots separated from humans by fences [129] 

 
For a robot to work with the human the robot needs to be flexible but also needs to be aware 
of what the interacting human intends to do so that both the human and the robot can work in 
collaboration. We motivate the importance of intention recognition in HRI by addressing the 
following issues concerning HRI, i.e. safety in HRI, robot as a tool, adaption, and robot in 
Small and Medium Enterprises (SME). 

1.1.1 Safety in HRI 
In the industry, HRI safety is a significant issue that restrains the human and the mighty 
industrial robot from interaction. The range and the vision sensors can be used to monitor the 
HRI workspace. With the presence of human, the speed of the robot may be decreased, the 
robot may be completely stopped or the robot’s path from the source to the destination can be 
reconsidered and planned to avoid human robot collision in HRI workspace. Decreasing the 
speed of the robot or simply stopping the robot effects the efficiency of operation. The HRI is 
negatively affected due to slowing or stopping the operations of the robot. The changing and 
reconsidering of the path to avoid the collision between the human and robot is acceptable, 
but it is not risk-free. There may be a situation while the human and robot are moving in the 
HRI workspace that one or more parts of human body are occluded by the robot. Thus there 
may be a collision between the human and the robot due to the improper monitoring of the 
HRI workspace. The situation may be improved by predicting the human locations in HRI 
workspace, i.e., the robot can anticipate the future human actions and thus the robot can plan 
the path avoiding any expected collision. In order to anticipate the future human actions, the 
robot needs to know the human intention, i.e., what the human intends to do. Then the robot 
can infer in which direction the human can move, stay, bend, etc. Taking into account all the 
virtually occupied locations the robot can plan its collision-free path. Moreover, while path 
planning; the robot can consider the locations as virtually occupied that are frequently visited 
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by the human during HRI. This can considerably improve the safety measurements but it can 
not fully guarantee the risk-free safe HRI. 

1.1.2 Robot as a tool 
In manufacturing industries, there may be tasks that require enormous power, intelligent 
decision making, and excellent sensors with efficient inference. The robots can help the 
humans with enormous power, but intelligent decision making and excellent sensors with 
efficient inference may not always be guaranteed by the robots in all the cases. The human 
can not perform such tasks alone too. Therefore the human and robot need to work together. 
In almost all such cases the robot is used as a tool by the human instead of an intuitive 
coworker. 
As a tool the robot is very expensive unless the task is impossible without the robot. There 
exists other less intelligent machines that can be applied instead of the robot, e.g., in assembly 
line there exist less intelligent devices that help the coworkers to move the heavy objects, e.g., 
doors of the vehicles, dashboards, seats etc to the desired places as shown in Figure 1.6. These 
less intelligent machines are called CoBots [11]. They are used to assist the human coworkers 
on an assembly line.  
 

   
Figure 1.6: CoBots. Left: Seat assembly [34]. Right: Door assembly [33] 

 
The robot can only be appreciated in such conditions if the robot can perform that task with 
least human input as compared to the less intelligent devices, i.e., if the robot performs the 
task automatically recognizing the human intention and bring him the required component 
and cooperate intuitively to install that component into the vehicle. 
The tasks of moving, assembling, and installation of the heavy components are repeatedly 
performed in the manufacturing industries. The intuitive execution of these tasks by the robots 
cooperating in accordance with the human intention can improve the efficiency of the human 
workers. The intelligent tool behaviour of the robot can be accepted in HRI if the robot acts 
according to the human intention for a task in the given situation. For example, consider a 
robot that can perform more than one operation. The robot interacts with the human while 
performing certain task and executes the specific operations according to the human 
intentions to complete the task. The robot as an intuitive tool with multiple capabilities is 
valuable if the robot selects and switches between the available capabilities according to the 
intention of cooperating human. 
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1.1.3 Adaption 
As an intuitive and intelligent machine the robot should also adapt to the small changes in 
HRI. The adaption may correspond to the workspace of HRI and to the cooperating human. 
Adaption to the workspace is to remember the knowledge gained in the workspace concerning 
intuitive HRI and to apply that knowledge in the next HRI situations in order to be more 
intuitive and helpful to the cooperating human. The adaption to the human coworker 
corresponds to adapt towards the human intention. There may be more than one aspect for 
adaption towards the human intention. For example, adaption may correspond to the solution 
of the conflict between the two nearly similar human demonstration concerning different 
intentions. Similarly the adaption aspect may also involve the robot adaption to the routine 
human tasks in the HRI workspace.  
If the robot does not have the adaption capability then the robot needs to be explicitly 
programmed or the robot requires adding or update of related modules. In this case the 
difference between an intelligent robot and a simple machine is reduced. In every robot 
related industry making manual updates for small changes in HRI workspace is less 
acceptable for robots. Update for the robots will require extra trained manpower, stopping of 
production and extra costs. This is further problematic if the update is required to be 
performed after short intervals. 
Thus the capability of adaption is necessary for an intuitive robot for HRI. The capability of 
adaption enables the robot to alter its response in HRI without the explicit human clarification 
and robotic expert intervention. In response to the little changes in the HRI the robot needs to 
adapt to the changes intuitively by performing accordingly. 
The recognition of the human intention is the basic ingredient to adapt according to the 
interaction human. For example if the human has one of the two intentions while working in 
the HRI workspace. Then the collaborating robot can only adapt according to the human if he 
can recognize both of the intentions. Next time the robot can proactively interact with the 
human based on the adaption. 

1.1.4 Robot in Small and Medium Enterprise (SME) 
A SME consists of limited resources relating to manpower and finances. The production rate 
is also low due to the lack of resources and less demand. There may be a few or no robot 
experts in SME. The robotic tasks in the SME are quite different as compared to big 
manufacturing industries. In big manufacturing industries the robots are mostly working as 
automated machines without human interference, whereas in SME almost all the tasks are 
performed directly by the human workers or under the direct supervision of human workers. 
Thus the robot present in SME must have the capability to work in an environment 
concerning HRI. In order to justify a robot to be present in SME it must work as intelligent 
and intuitive machine. It must not require reprogramming for small amendments in different 
tasks, possessing the capability of adaption. The robot must be adaptive towards the small 
changes in the HRI workspace regarding human intention. 
For better HRI regarding intuition and adaption it should anticipate the intention of the 
cooperating human. The ability of robot of being proactive is an extra advantage for HRI in 
SME. Similarly a robot with intuitive interacting capabilities with the human can act as helper 
for a craftsman and mechanic in their related workshops. 
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In industry ranging from SME to big manufacturing industry mostly the manufacturing 
pattern remains the same for quite a time. In big manufacturing industries like vehicle 
industries the manufacturing setup is established for longer time as compared to the SMEs. 
The production speed is increased by introducing the robots as well as less intelligent 
machines. The automated robots work mostly very fast, independent from each other. 
However, all the sections of the industry big or small do not contain the automated robots. 
The tasks in such sections are performed directly by the humans or under the direct 
supervision of the humans. The number of manual section vary from industry to industry 
depending on the concerning tasks in the industry.  The employment of intuitive robots in 
such sections can improve the efficiency of cooperating humans. The intuitive robots should 
be capable to recognize the intention of cooperating human and should be able to act 
accordingly. These robots can perform the task better as compared to the less intelligent 
CoBots, requiring little human input. The CoBots require more focused human input as a tool 
to perform a task. The intuitive robots will work not as a simple tool, but like an intuitive 
coworker that can react according to the cooperating human.  
The robot must know the answers of the following questions to be intuitive with respect to the 
human requirements and thus effective during HRI. The questions are given below 

1. When to do? 
2. What to do? 
3. Where to do? 

The question what to do corresponds to the robot actions in response to the human actions 
while interacting with the human. For this reason the robot needs to know the human 
intention. Knowing the human intention tells the robot when to do what, i.e., if the robot has 
recognized the human intention regarding a specific task. Then the robot must also know the 
cooperative actions in order to respond in an intuitive and cooperative way. That corresponds 
to the answer of second question that robot needs to know. The question three corresponds to 
a specific situation in which the selected robot action is to be taken. For example, if a human 
and a robot are cooperating in a HRI workspace. Two products are manufactured in the 
workspace. Manufacturing process is same for both the products except one operation. Thus 
the robot needs to take care what he needs to do where and when in order to be effective and 
intuitive. 

1.2 Goals 
The goal of the research work is to propose a solution for the intuitive HRI by human 
intention recognition. The robot should be aware of the intention of the cooperating human for 
intuitive HRI. The following points are considered to make the HRI intuitive regarding the 
intention of cooperating human. 

A. Intuitive HRI by intention recognition 
B. Intention learning by scene observation 
C. Proactive intention estimation 
D. Interaction in unknown human intention scenario 
E. Rule-based intention generalization 
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1.2.1 Intuitive HRI by intention recognition 
The Goal A involves the proposition of a probabilistic framework for intuitive HRI by 
intention recognition. The apprehension of the human intention is based on the human actions 
along with the scene changes that occur due to the human actions. 
The given information corresponds to the human actions and the scene information of HRI 
workspace concerning the problem. The required is the recognition of human intention out of 
the already known human intentions.  
The robotic tasks involve picking and placing of an object according to the human intention. 
Experimentation with the proposed probabilistic system involve the following 

1. Picking and placing of an object according to the human intention 
2. Handing over the intended object to the human 
3. Pile up and unpile of objects according to the human intention 
4. Picking up an object and holding that object and placing the held object at a 

human intended place. 

1.2.2 Intention learning by scene observation  
The input to the problem corresponds to the human actions, scene information, scene change 
information, and the human intentions in terms of scene information. The output corresponds 
to the modelling of a new human intention.  
The Goal B corresponds to the inference of the human intention from the actions performed 
by the human as well as from the scene changes occurred due to the human actions. Each 
newly learned human intention is modelled using a finite state machine. The inference of the 
human intention is performed based on the already known features. 
The expected experiments include the arrangements of the known objects with respect to a 
pattern according to the human intention. The robot responds by recognizing the newly 
learned human intention. 

1.2.3 Proactive intention estimation 
The Goal C corresponds to quick recognition of a human intention. It includes the premature 
recognition of an intention in an ambiguous situation that may lead to two or more human 
intentions.  
The Goal C includes the proposition of probability-based approach that helps the system to 
adapt towards the human behaviour and to react proactively in the intermixed human 
intentions scenario. The system can either wait for disambiguation of the intention, requiring 
extra human actions or it can proactively react depending on its previous knowledge about the 
human behaviour. 
Proactive intention estimation task includes the proposition of the mechanism to update the 
intention recognition trigger states for the probabilistic finite state machines that model the 
human intentions. A state of a state machine is assigned as the trigger state. If the trigger state 
of a finite state machine is reached then the human intention concerning the finite state 
machine is recognized. The online trigger state update corresponds to the online selection of a 
state of a finite state machine as the trigger state.  
The experiments involve the arrangements of objects that represent different human intention 
but have similar portion too, e.g., the objects placed in a square pattern and the objects placed 
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along a line. There exists a pattern (placement along the line pattern) that is similar in both 
patterns. The objects placed in different patterns are shown in Figure 1.7. 
 

         
Figure 1.7: Left: Square pattern. Middle: Line pattern Right: Similarity in both the patterns 

1.2.4 Interaction in unknown human intention scenario 
 

The Goal D corresponds to the solution of HRI in case if the robot does not know the human 
intention, i.e., by no means the robot can recognize the exact human intention. Based on the 
current actions and the history of the actions the robot tries to estimate the next most likely 
action. The solution corresponds to a reinforcement based probabilistic action selection for 
HRI. The HRI environment is already known to the robot. 
The sub tasks for the Goal D consist of the following 

1. Action hypotheses generation based on the known actions 
2. Prediction of the actions based on the previous action in the current task 
3. Weighting of the predicted actions 
4. Calculating the history support of the action hypotheses 
5. Calculating the conditional probability (P(Actiont | Actiont-1)) and the prior probability 

(P(Actiont)) for the predicted actions 
6. Related implementations 

The experiments involve the arrangement of known objects with unknown human intention. 
The task of the robot is to interact with the human according to the estimated human action. 

1.2.5 Rule-based intention generalization 
 

The input to this problem corresponds to the rules inferred from the human actions. The 
required is the reduction of antecedents of the rules by HRI. The task in the Goal E is to 
enable the robot to generalize its HRI capabilities. The robot infers rules and generalizes them 
to extend its interaction capabilities with the cooperating human. The extension means that 
the robot performs the known actions that were not instructed to him to perform concerning a 
human intention. The rule-based intention generalization is divided into the following sub 
tasks  

1. Rule generation 
2. Rule application 
3. Rule generalization     

Rule generation concerns the rule inference that describes an action performed on an object 
having certain known characteristics. During the rule generation, the system knows the 
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objects present in the scene, the change in the scene occurred due to the human action and 
different properties / characteristics of the objects present in the scene. 
Rule application corresponds to the selection of the objects on which the rule can be applied. 
Rule generalization corresponds to the elimination of maximum number of unnecessary 
antecedents from the inferred rule. 
The anticipated intention generalization experiments involve the following 

1. Picking and placing speckled object into the container for the speckled object 
2. Picking and placing broken object into the container for the broken object 
3. Picking and placing non speckled object into the concerning container  

Generalizing the above defined operations on the other related (match with respect to property 
/ characteristic) objects will enable the robot to perform a task that the robot has neither 
observed nor been instructed, e.g., the robot only knows to place a speckled object of a 
specific type into the speckled container. After the generalization, it can place all types of the 
speckled objects into the container for the speckled objects. The generalization enables the 
system to respond in an unknown situation (with known objects). Unknown means that 
system is not explicitly taught that how to react in case of a certain known object. 

1.3 Demarcation 
HRI is a multiple domain research field. It contains the computer vision to monitor the HRI 
workspace for safety reasons concerning the avoidance of human robot collision. It contains 
the robot path planning, revising of the previously planned path, and collision avoidance for 
optimal movement from source to destination.  It may also contain image reconstruction for 
scene monitoring. Along with human behaviour modelling, recognition of emotional states of 
the cooperating human and related fields can be part of the HRI. Similarly learning in HRI is 
also a complete subfield of HRI. The presented approach does not contribute to any of the 
above mentioned areas. 
The presented probabilistic approach to intention recognition for HRI is general and does not 
correspond to a specific environment. There is no strict connection between the presented 
approach and any specific HRI scenario.  
The presented approach does not propose an image-processing-based method for scene 
understanding. The process of scene understanding corresponds to the apprehension of scene. 
The approach also does not address the issue of apprehension of any performed human 
actions, operation on the objects in the scene, changing in the scene and related scene 
inferring parameters. The inferring parameters correspond to the known features for inferring 
the scene information. The recognition of human gestures is also not included in the focus of 
the presented approach. Moreover, the presented research work does not consider the issues 
concerning the resource sharing in the common HRI workspace. 
The proposed approach can be applied on humanoids and other robots for HRI. There is no 
robot specific operation proposed along with the given approach. There is also no sensor 
specification in the presented approach. Any kind of sensor can be used to monitor the HRI 
workspace. The selection of sensor depends on the current type of HRI workspace and the 
expected operations in the workspace. 
There is no specification about the respective robot actions in response to the human actions. 
Like the scene understanding the robotic action information depends on the current robot in 
HRI. 
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1.4 Overview 
The research work is organized as follows: Chapter 2 describes the already existing 
approaches for HRI. The discussed approaches correspond to the social issues concerning 
HRI, variable autonomy HRI, HRI approaches concerning robot as an assistant, and tactile 
HRI. At the end of Chapter 2, the differences are discussed between the existing approaches 
and the presented research work. 
In Chapter 3 the proposed approach for intention recognition is described in detail. The 
modelling of different human intentions using the finite state machines is described in this 
chapter. Chapter 3 also discusses the algorithm for the probabilistic intention selection. At the 
end of Chapter 3, the experiments concerning the intention recognition using the proposed 
approach are described.  
In Chapter 4 an online intention learning approach is introduced. The introduced approach is 
based on the intention recognition approach described in Chapter 3. Three types of intention 
learning methods are discussed. At the end of Chapter 4, the experiments are discussed that 
are performed for online intention learning. 
In Chapter 5 premature and proactive intention recognition is described. The described 
approach is based on the approaches discussed in Chapter 3 and 4. The described approach 
takes into account the HRI scenarios that are similar to an extent but lead to different human 
intentions. Additionally an algorithm is introduced for the finite state machines representing 
the human intentions. The algorithm enables the finite state machines to recognize the human 
intention as early as possible. At the end of Chapter 5, the experiments are discussed that 
illustrate the proactive and premature intention recognition. 
Chapter 6 discusses the HRI in a known environment with unknown human intention. The 
proposed algorithm hypothesizes the potential human actions and selects the most suitable 
action for HRI. The robot may be corrected by the human. The robot can reselect the next 
most suitable action for HRI depending on the interacting human. At the end of Chapter 6, the 
experiments are discussed, performed using the proposed approach. 
In Chapter 7, an approach concerning the generalization of human intention is discussed. The 
approach describes the rule based human intention generalization. This approach corresponds 
to the concept generalization. The rule-based generalization uses the approaches of Chapter 3 
and 4 to implement the human intention generalization. The generalization procedure is 
performed by HRI. The generalization methods using HRI and the rule conflict resolutions are 
discussed in detail in the Chapter 7. At the end of Chapter 7, the performed experiments are 
discussed that demonstrate the generalization result obtained through the proposed approach.  
In the end, Chapter 8 summarizes the presented research work and provides an out look on 
future work. 
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Chapter 2 
 
Related work    
 
 
In this chapter most of the discussed approaches relate to the HRI in which the human 
interacts with a robot in the vicinity of the robot. In Section 2.1 the overview of the existing 
approaches concerning HRI is given. The existing approaches are discussed with respect 
different aspects of HRI, i.e., social HRI, robot as an assistant, and tactile HRI. In Section 2.2, 
the approaches concerning the social issues of HRI are discussed. Section 2.3 corresponds to 
the HRI in which the robot acts as assistant to the human to complete the task. The discussed 
approaches correspond to robot as tour guide in museum, a harvester, assistant in rescue 
operation, etc. The third aspect in Section 2.4 discusses different types of approaches 
concerning sensors that are used for tactile HRI and the types of tactile HRI. The sensor based 
approaches correspond to interpretation of sensor data and the types of application of sensors 
in the tactile HRI. 

2.1 Overview 
HRI is a mixture of many fields, e.g., psychology, cognitive science, social science, artificial 
intelligence, computer science, robots, engineering, and human-computer interaction [43]. 
The field of HRI corresponds to the research concerning understanding, designing, evaluation 
and the improvement of the robots that interact with the humans. One of the core issues in 
HRI is the effective communication between the interacting human and the robot. The motive 
of the HRI field is to consider all the possible communication channels and to improve them 
for better interaction. The HRI can be broadly classified into two classes [60], i.e., the 
teleoperation and the direct HRI. The class of teleoperation corresponds to the HRI in which 
the human and the interacting robot are separated. The separation concerns the temporal and / 
or spatial difference. In teleoperation the human and the robot are not required to exist at the 
same location. In direct HRI the human and the robot are present at a same location and 
physically interact with each other.  
The described classes can be further classified into sub classes taking into account the design 
issues, application fields, nature of information exchange, level of the autonomy required in 
the HRI, emotions based HRI, control issues, etc. 
A survey based on teleoperation is available in [132] and [69].  The survey in [132] discusses 
the teleoperation based on supervisory control and Human-machine interaction. A survey 
concerning the control theory of teleoperation is given in [69]. The space oriented 
teleoperation is surveyed by NASA given in [116].  
The here presented literature focuses on the research work in the field of direct HRI. The 
direct HRI has two important aspects that may exist in almost all the categories of direct HRI, 
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i.e., short term HRI and long term HRI. A HRI in which the human and the robot interact for 
short time and are not required to interact again and again is termed as short term HRI. If the 
human and the robot interact with each other many times then it is termed as long term HRI. 
In case if the robot has to perform long term interactions with a human as a part of his 
personal life then the robot is required to specialize according to the interacting person [41].  
An extensive survey is performed for direct HRI concerning social interaction capabilities of 
the robots in [54]. The robots that engage the humans socially and interact with them to be 
helpful need to possess complex social skills and know the social values. 
The survey performed in [61] discusses the robot’s role as an assistant to the human. The HRI 
survey in [60] mainly focuses on autonomy of robot concerning the robot’s role as an assistant 
to the human. The robots may be required to interact as an assistant with one or more than one 
person. There exist certain applications, e.g., robotic tour around the museum [154], mobile-
robot guide in the hospital [135], etc. 
The survey provided in [6] discusses the HRI by taking into account tactile interaction. The 
article discusses the tactile HRI with respect to two aspects, i.e., type of direct HRI in tactile 
HRI and the sensors used in tactile HRI. The research work performed in the area of HRI is 
discussed according to the following topics. The topics correspond to different perspectives of 
HRI. 

2.2 Social HRI 
2.3 Robot as an assistant 
2.4 Tactile HRI 

2.2 Social HRI 
The survey article [54] focuses different aspects of social HRI. The socially motivated design 
concerns the development of robot for interaction with the human. The robots can be 
developed based on the two types of objectives, i.e., biological inspirations and functional 
design. The biologically inspired robots internally simulate or mimic the social intelligence 
present in the living creatures. The biological inspiration is based on two arguments. The first 
argument describes that a robot must possess certain characteristics for interaction with the 
human. The outlook of the robot should be naturalistic. The robot should mimic the 
perception capabilities of the human [170]. The second argument corresponds to the testing 
and refining of concerning scientific theories [10]. The functionally designed robots are 
required to have socially intelligent outlook. It means that the appearance of the robot should 
be according to the social context. The design is not required to have basis in science. It 
means the actions of the robot should correspond to the artificial social agent for the 
concerning task. The internal mechanism is not required to be the same as in the living 
creatures. The mechanism corresponds to the reasoning capability of the robot. The 
functionally designed robots for HRI have constrained operational and performance 
objectives as compared to the biologically inspired robots.  
The humans are expert in social interaction. The technology that adheres to the expectation of 
human makes the HRI intuitive and easy for the humans [121]. Therefore the anthromorphic 
robots are applied in situations that expect the outlook of the robot like a human.  The robots 
are equipped with the speech recognition, face recognition, gaze tracking, and other such 
capabilities. These capabilities help the robot to make the HRI as human-human interaction 
[42]. The embodiment of the robot plays an important role in the concerning HRI scenario 
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[54]. The embodiment of a robot corresponds to the morphological aspects of the robot 
including anthropomorphic, zoomorphic, and caricatured. If a robot is supposed to imitate like 
a human then it must have the anthropomorphic capabilities [18]. 
Emotions have significant importance in the human-human communication. They are closely 
related to the context [7]. There exist literature concerning emotions embedded into electronic 
games, toys, and software agents [16]. In HRI the emotions play also an important role for 
social communication [29] [114]. Suzuki investigated the HRI based on emotions in [142]. A 
mobile robot was used with the artificial emotions. The emotion states of the robot are 
changed by the interaction with the humans. The change in the emotional states of the robot 
causes the change in its actions. In [26] detailed information is provided over the robot named 
Kismet. Kismet is a robot that is specially designed to interact emotionally with the human. A 
detailed discussion of software and hardware is also provided. The emotional system of 
Kismet is described concerning the influence of emotions on the motivational system of 
Kismet and affect of this on interaction with human. The robot Kismet is shown in Figure 2.1. 
In Section 2.2, most of the described approaches emphasize on the appearance of the robot to 
positively affect the social issues of HRI. Along with the appearance, the understanding of the 
intention of the interacting person can also positively affect the social HRI. 
 

 
Figure 2.1: Emotion-based HRI by facial expressions [25] 

2.3 Robot as an assistant 
There exist many examples in which the robot act as a tool for the interacting human [23]. 
The examples vary based on the difference of applications as well as the robot autonomy 
while interacting with the human or along with the human. Horiguchi [70] proposed a force 
feedback based HRI in teleoperation of robots. 
The HRI discussed in [27] corresponds to the application of a harvester robot along with the 
human. The experiment was performed for harvesting melons. A variable level of robot 
autonomy was applied during HRI. The detection rates of melons were increased by 
collaborative harvesting. The success rate of harvesting also depends on the complexity of 
situation.  
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The task of the robot described in [156] corresponds to teleoperation. The robot operation 
concerns the placement of radioactive waste in a central storage. The robot is taught the task. 
The teaching is performed through the teleoperation. A functional architecture is proposed in 
[156]. The robot is monitored while performing a task. The human can interrupt the robot if a 
new situation arises while the robot operation. The robot can only perform what he has been 
taught but can not react intuitively in an unknown situation. For this purpose the human 
guides the robot.  
In [73] the level of autonomy of the robot is similar as discussed in the [156]. The robot 
patrols a nuclear plant. The robot works autonomously in the normal situations. The normal 
situations correspond to the situations in which the robot knows how to react. In an unknown 
situation the robot is guided by the human to solve the problem. In unknown situation the 
level of autonomy is zero and the robot totally depends on the human instructions. In known 
situation the robot is fully autonomous in performing the tasks. 
There exist research work on HRI in the domain of urban search and rescue (USAR). Mostly 
the mobile robots are used in USAR. The robots are used as a tool to search and rescue the 
humans. The situations awareness plays an important role in USAR [167]. The USAR issue 
discussed in [102] concerns the operator situation awareness and HRI. The variation in the 
level of autonomy between the human operator and the robot is discussed in [31]. The 
approaches in [143] and [146] proposed that with the use of an overhead camera and 
automatic mapping techniques the situational awareness can be improved by reducing the 
navigational errors.  
Another teleoperation approach is discussed in [113]. In this approach multiple operators 
present at different locations control multiple robots in a collision free collaborative manner in 
a common working environment. The collision can occur due to the fact that the operators are 
separately located from each other and do not know the intention of each other. A graphic 
display is used to avoid the collisions. In the continuation of work in [113], the time delay for 
the sent commands to the robots was handled by simultaneously sending to the graphic 
display and the robots [30]. These commands are used as virtual force feedback by the 
operators to avoid the collisions. 
Autonomy is a significant aspect in HRI. The level of autonomy varies between fully 
autonomous to teleoperation, based on the fragility and the delicacy of the task and the 
working environment. It also depends on the artificial intelligence present in the robot and the 
nature of the working environment. The nature of the working environment describes that 
with which likelihood the new conditions can arise.  
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Figure 2.2: Levels of robot autonomy in HRI [63] 
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The autonomy corresponds to the mappings of environment input to the actuator movements 
or the representational schemas [61]. The autonomy of a robot is the amount of time a robot 
can be neglected [31]. The term neglected means unsupervised. The levels of autonomy 
discussed in [147] are divided in different levels from total dependence to total autonomy. 
The overview of levels of autonomy can be described as shown in Figure 2.2. 
Fong [55] discussed the variability of autonomy in HRI. The robot operates autonomously 
until it faces a problem that can not be solved by him. The robot requests teleoperation in case 
of problem. The performance of the robots depends on the numbers of the robots and the 
teleoperators. If one human operator is present for more robots then the performance of the 
robots declines. 
Autonomy is enabled in the robots with the help of artificial intelligence, signal processing, 
control theory, cognitive science, linguistics, and the situation dependent algorithms [61]. 
There existed different approaches for autonomy, e.g., sense-plan-act of decision-making 
[108] and behaviour-based robotics [8]. 
A mobile robot named Sage interacts with the people as a tour guide in a museum [111]. The 
change in the modes of the robot due to the HRI is discussed in [111]. The change in the 
mode of Sage causes the change in his behaviour with the interacting humans. The 
communication channels utilized by Sage in HRI include speech and emotions. Sage interacts 
with the humans through a LCD screen and audio as shown in Figure 2.3. The robot stops and 
asks for help in a troubled situation during HRI.  
 

 
Figure 2.3: A museum guide mobile robot Sage [111]  

 
A humanoid robot interacts with the humans using speech, gesture, and gaze tracking [81]. 
The robot works as a guide. The experiment with the robot showed the importance of gaze in 
the HRI. The interacting people spent more than half of the interacting time focusing on the 
robot’s face.  
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In [87] a study is performed on HRI where the robot acts as a guide to the human. It is 
discussed in the study that only speech can not help the robot to predict the future events 
concerning HRI. It is also important to understand the body language of the interacting 
human. The gaze of interacting human also gives a clue about his interest.  
In [71] the importance of robot feedback is described during HRI. The robot feedback means 
that the robot acknowledges during HRI. The experiments showed that the robot feedback 
produced ease in HRI. The robot is designed to interact in office environment with the people 
having physical disabilities. The results of the experiments correspond to the fact that speech 
alone is not enough for human-robot communication.  
The penguin robot interacts with the human as a host [144]. It is emphasized that a robot 
should not only exhibit gestures, but also interpret the gestures of interacting human. The 
robot uses the two channels of communication, i.e., vision and speech. The robot monitors the 
conveyed messages to the human by tracking the gaze of human. 
Inagaki proposed HRI by perception, recognition and intention inference [75]. They used time 
dependent information along with the fuzzy rules for HRI. The approach in [75] is specialized 
with respect to the application of time dependent information in HRI. The human and robot 
cooperate to achieve a common goal.  
Morita emphasized on the dialogue based HRI [101]. Their robot carries an object from one 
location to another location based on visual and audio inputs. Tversky [157] discussed the 
importance of understanding the spatial reference for HRI. Tenbrink [152] proposed a spatial 
understanding based HRI method. The robot is given the interaction commands through a 
keyboard. The interaction commands given to the robot considered the robot’s perspective.  
Rani [120] proposed and performed the experiments concerning HRI that considers the 
human anxiety while HRI. The physiological knowledge is used to generalize the anxiety 
state of the interacting human. The anxiety state is independent of the age, culture, and gender 
of interacting human.  
Fernandez [50] proposed HRI based on intention recognition. The experiments correspond to 
the transportation of a rigid object by human and the robot. They used spectral patterns in the 
force signal measured in the gripper arm.  
The approaches in Section 2.3 discussed the usage of different communication channels and 
the levels of autonomy as the robot works as an assistant to the human. Only one approach 
[75] considered the intention of the interacting person that is also time dependent.  

2.4 Tactile HRI 
Tactile interaction is also an important aspect of HRI. The physical contact between the 
human and the robot is considered from different angles. In case of HRI safety the contact 
between the human and the robot is avoided. It is specifically important for an industrial robot 
interacting with the human [43]. In case of a human interaction with a humanoid, the human 
touches the robot to guide the robot [4]. The exiting research work in the area of tactile HRI is 
described in two categories [4]. The first category corresponds to the sensors that are used in 
tactile HRI. The second category corresponds to the tactile HRI. The sub categories in the 
second category correspond to different objectives that are achieved by physically touching 
the robot.  
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2.4.1 Skin sensors  
There exist many approaches for interpreting the tactile response from the sensor. The data 
analysis approaches differ from each other based on the sensor and the data analysis method. 
The data analysis approaches for tactile response not only correspond to the binary detection 
of contact but also the location of contact, magnitude of force of concerning contact. The 
sensor data may also correspond to orientation, moment, vibration and temperature. The 
tactile sensor used in HRI involve force / torque sensors, force sensing registers (FSR), 
electric field sensor, capacitive sensing arrays, resistive sensing arrays, temperature sensors, 
potentiometers, photoreflectors, etc. The sub categories concerning the tactile sensors 
correspond to the mechanisms that use the combination of tactile sensors to infer the touch 
response in HRI. The combination mechanism corresponds to hard skin, soft skin, and 
alternative to skin-based approaches. 

A) Hard Skins 
The hard skins correspond to the installation of tactile sensor under the hard and bumper-
based cover in the shape of robot body.  The tactile sensors that can be installed under the 
hard skins involve force / torque sensors, FSRs, accelerometers, and the deformations sensors. 
More than one sensor is installed under the hard skins and the collective response of sensor 
can be obtained by interpolation. One draw back of hard skin cover is the restriction of 
obtained measurement types and resolution. The hard skins are commonly used to detect the 
unexpected collisions. The arms of the 52 degree of freedom humanoid  WENDY are covered 
by a hard plastic having force / torque and FSR sensors underneath [76]. An industrial robotic 
arm uses the deformation sensors in rubber that is placed under a metal sheet of the robot 
[56]. 

B) Soft Skins 
The soft skins correspond to the installation of tactile sensors under the flexible cover. The 
sensors that can be used for soft skins involve potentiometers, FSRs, capacitance sensors, 
temperature sensors, electric field sensors, and photoreflectors. Multiple different sensors can 
be installed under the soft skins. The soft skins provide the soft contact while HRI and the 
contact with soft skin are near to the human skin in similarity. The tactile sensors are arranged 
in the form of arrays in soft skins. The soft skins enable to detect the tactile sensation 
performed on an area that is not directly covered by the installed sensors. The tactile operation 
performed on those areas causes the deformation in the soft skin. The deformation propagates 
the tactile signal to a tactile sensor. The spatial resolution of array-based soft skins is in 
millimeter. The soft skin used in the humanoids involve [74][160][97]. The soft skin in the 
humanoid in [74] corresponds to patches of pressure-sensitive conductivity rubber. The seal 
robot in [160] contains the soft skin of tactile sensors under its synthetic fur. The child sized 
android in [97] has the skin of silicone that covers its whole body.  

C) Alternative to skin approaches 
The tactile sensors are either placed inside the robot body or the sensors are placed on the 
body of the robot. There exist no explicit covering for the sensors. The skinless tactile sensor-
based approaches place the sensors on the surface or within the joints of the robot. The used 
sensors involve pressure-sensitive conductivity rubber, and commercial tactile sensing pads 
[6]. The sensors can also be placed in the form of arrays on the robot body. The tactile 
information that can be obtained from the installed skinless sensors is small, e.g., the spatial 
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resolution with respect to tactile sensation is quite low. The absence of skin can be handled 
with the installation of arrays of tactile sensors. The robots having the tactile sensors installed 
inside are mostly the industrial robot arms. In [62] the location and the tactile force of the 
human are sensed by the torque sensors installed at the joints of the light weight robot arm. 
There exist many approaches concerning the installation of tactile sensors on the body of the 
robot, e.g., entertainment robot SDR-4X II (QRIO) [86], dog robot [133], cat robot [134], the 
robotic creature [168]. In [86] the tactile sensors are used to detect the pinch operation at all 
the joints of the robot.  In [133] the balloon pressure sensor is used to interact with the human. 
In [134] the piezoelectric force sensors are installed on different parts of the robot to detect 
hitting and touching on the cat robot. There exist 60 FSR sensors under the fur of the rabbit 
looking robotic creature to detect the human contact [168]. 

2.4.2 Tactile HRI 
The physical HRI with respect to the existing tactile sensing approaches is divided into three 
categories [6]. In the first category the considered approaches correspond to the unexpected 
contact between the human and the robot. It means that either the human or the robot interfere 
with each other while operation. The tactile sensing corresponds to the safety involved in the 
HRI, in the first category. The tactile HRI in the second category corresponds to the expected 
contact between the human and the robot. The physical contact between the human and the 
robot is used as a communication channel to guide the robot to execute behaviour. In this 
category the human contact works as a trigger of behaviour of the robot.  The third category 
corresponds to the human contact to the robot that is used to refine and build the behaviours in 
the robot. The human contact can also be used to correct the robot behaviour. 

A) Interfering interactions with the robots 
It is considered that unexpected human-robot contacts are unavoidable as the presence of 
robots in the human community increases day by day [6]. The existing approaches provide the 
reacting solutions in the result of a physical contact that can occur with a human. In [56] 
reactive control strategies are proposed. The proposed strategies use a bumper-based skin to 
detect the unexpected human contact. The redundant degrees of freedom present in light 
weight robotic arm are used for evasive motion of the robot in physical contact. During the 
evasive motion the orientation of the tool center point is maintained [62]. In [165] a robot arm 
of 8 degrees of freedom evades the human contact during the motion. The forces from the 
tactile sensors are measured in motion vectors and the resulting motion vectors are super 
imposed for the joint velocities. In [76] a predictive approach is described with respect to 
interfering interaction. The effects of the human-robot contacts are predicted and the 
concerning response are encoded into the robot behaviour. The collision tolerance in the end-
effector control is implemented by modelling the compliance in the viscoelastic trunk of the 
robot [90]. In [90] no explicit tactile sensing is performed. 

B) Deliberated tactile interaction with the robot 
In this tactile HRI the robot expects the touch from the human. The human touch contributes 
to the robot behaviour. The contact is used as a medium of communication between the 
human and the robot. There can be two kinds of deliberate tactile HRI. In first case the human 
contact correspond to guide the robot. In this case the human contact is linked to the robot 
state. In the other case the human contact is used to convey the information about the human.  
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The case is linked to the human state. The context of the HRI is important in deliberated 
interaction with the robot concerning the robot state. 
There exist approaches that consider the tap sequence to select the robot behaviour. In [160] a 
tactile HRI is proposed that focus the industry robot and non-robot expert human user. The 
tactile interaction corresponds to the human contact at the end-effector of the robot. The 
human contacts are mapped to the known trajectory. Different human touches correspond to 
different trajectories. In [165] the tap sequence corresponds to different alphabets that are 
used to select the behaviour of robot. In [145] multi-finger touch is used to infer the alphabets 
for teleoperation and robot behaviour.  
The deliberate human contact is also used by the robot to interpret the human state. These 
human touches correspond to the contact that one human uses while interacting with the other 
humans. The other human estimates the state of first human from the contact. In [109] the 
robot classifies the five different human touches. The touch corresponds to slap, stroke, pat, 
scratch, and tickle. The approach proposed in [83] considers the contact-time, repetition, 
force, and contact area in order to interpret the human touch corresponding to hit, beat, and 
push. In [82] the humanoid interprets the human touch in different HRI scenarios, e.g., while 
executing a behaviour, co-execution, and reactive behaviour. In [100], the pose and position 
of human is estimated by the human touch. The estimated pose is used in reactive behaviour. 
A robotic bear [140] touches the human in response to the human touch. The robot orientates 
itself to the direction of human touch. The types of human touches are classified to estimate 
the human state. 
In [151] the tactile HRI corresponds to the interaction between the human and ballroom 
partner robot. In this HRI the human touches guide the robot behaviour and the robot also 
estimates the human state from the human contact in order to follow the human while dancing 
task. The contact with the human is used by the robot to predict the next dance step of the 
human. The force of the human contact is used to detect the human stride. 

C) Robot behaviour development by tactile HRI 
In this HRI the robot expect the human touch for the correction and development of robot 
behaviour. The human contact is used to communicate the intended human correction to the 
robot. The behaviour development is to produce the adaptive and compliant robots. The 
human contacts are expected while behaviour development but not at the time execution of 
the developed behaviour.  
The robot behaviour development by tactile HRI relates to the paradigm of “teaching by 
touching”. There exist different approaches for this paradigm. In [40] the behaviour of the 
robot is developed by human touch. The robot behaviour corresponds to the pose change of 
the robot according to the human touch. If the pose change is not according to the human then 
direct manipulation of robot pose is performed. A mapping is learned between the human 
touch and the directly manipulated robot pose. In [4] the translating finger touch is used to 
change the pose of the robot. The pose change is performed while the robot manipulates the 
objects. The tactile feedback is used to move an industrial robot arm for the demonstration of 
task. The task corresponds to the insertion of piston [62]. In [97] the idea of “motor 
development with physical help” is introduced. The experiments are performed with a child 
sized android CB2. In experiments the human provide physical help to the robot for going 
from prostrate state to the standing state. The robot minimizes the supporting force provided 
from the human and also learns the resulting motion.  
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2.5 Conclusion 
HRI is a vast field covering many aspects from the robot side and the human side. It is a 
multidisciplinary field involving human-computer interaction, artificial intelligence, robotics, 
natural language understanding, and social sciences. In the literature of HRI multiple aspect of 
the research are quite heavily explored. For example social human robot interaction, robot as 
an assistant, autonomy-based issues in HRI, tactile HRI, vision based safe HRI, HRI for 
teaching the robot, i.e., Programming by Demonstration (PbD), etc. The area of intuitive HRI 
specifically by intention recognition is not explored considerably.  
For intuitive HRI the robot needs to know the human intention. The human intention can be 
estimated by multiple ways, e.g., language understanding, monitoring, by guessing using the 
prior knowledge about the human, by combining the described aspects, etc. There exist 
different approaches for intention recognition in the literature. The existing approaches 
[75][101][50] focus  on specialized solutions based on the problem at hand.  There exist a 
couple of generalized approaches [139][149] for intention recognition but the inference in the 
proposed architecture requires a large numbers of prior and conditional probabilities [98]. The 
corresponding modelling required for the general intention recognition approach is quite large 
that there exist approaches to reduce the modelling [84]. There exists another concerning 
approach that corresponds to the intention recognition as an observer without letting the robot 
to actively take part in HRI [125]. The modelling structure used for the approach in [125] 
requires a relatively large state space [98]. A theoretical approach also exists that deals with 
intention recognition without taking into account the intuitive HRI [169]. There exist also 
another approach concerning intention recognition but the approach does not consider the 
existence of robot in the discussed idea. The described approach relates to the existing 
literature of plan recognition [98]. 
Similarly for proactive nature of HRI there exists multiple approaches but they do not strictly 
correspond to the direct HRI. Either they correspond to teleoperation or involve the mobile-
robot navigating in an environment. A couple of approaches concerning direct proactive HRI 
exist that require that the specific number of intention estimates that should be given already 
[131][77]. In [77] the experiments do not involve any human rather a simulation is used and 
proactivity is achieved by the application of entropy.  
Furthermore, they are not extensible in the sense that they can be used online to add new 
intentions understanding to increase the interaction capability of the robot. Similarly the 
generalization of the human intention is also not available in these approaches. Moreover in 
the existing literature of HRI the intuitive HRI in an unknown human intention scenario is not 
explored considerably. 
In this research work we introduce a simple approach for intention recognition. The approach 
is also applied in the areas pointed out, i.e., online intention learning and generalization where 
the existing approaches do not provide an explicit solution. Additionally the research work 
also discusses an approach for HRI in a scenario if the human intention is not known to the 
robot. 
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Chapter 3 
 
Intention recognition 
 
 
With the era of modern technologies, machines are becoming necessary part of the human 
life. More specifically, the presence of robots among the humans is increasing day by day [6].  
The goal is to provide the services to the humans. The robots that are intuitive in providing 
the required services will be preferred to the machines that require considerable input for 
providing the required service. Intuitiveness is necessary for a robot to exist as a service 
provider, amongst the humans. Therefore, a robot needs to recognize the intention of an 
interacting human. Recognizing the human intention, the robot can smoothly cooperate with 
the human. There are many working scenarios, described in Chapter 1, where the intelligence 
of a human and the efficiency of a robot can be combined to provide a better output. Intention 
recognition of the interacting human is the key to intuitive HRI. It guides the robot by 
answering him the questions about what to do in a HRI workspace. For recognizing the 
human intention, different methods can be employed, e.g., the human may be directly asked 
about his intention, the intention can be presumed from the daily strict routines of the 
interacting human, the human actions along with HRI workspace can be monitored to 
estimate the human intention, etc.  
In this chapter we describe a novel approach [12] for intention recognition based on the 
human action and / or changes in the HRI workspace. This chapter is organized as follows: In 
Section 3.1, intention recognition is motivated with the examples of HRI and the problem 
discussed in Chapter 3 is defined. In Section 3.2, the literature review of the existing intention 
recognition approaches is provided. The description of the human intention modelling is given 
in Section 3.3. Each human intention is modelled using a Finite State Machine (FSM). The 
formal description of a FSM is given in Section 3.3. The approach for intention recognition is 
discussed in Section 3.4. The approach described in Section 3.4 uses the intention hypotheses 
to recognize the actual human intention. The experiments performed using the proposed 
approach, are described in Section 3.5. Section 3.6 summarizes the chapter.  

3.1 Problem definition and Motivation 
The discussed problem corresponds to the recognition of a human intention. The robot is 
required to recognize the human intention by the information from the HRI workspace and the 
human actions A =  {a1, a2, a3, …, am}, m ∈ ℕ. The robot already knows the human 
intentions I =  { i1, i2, i3, …, in}, n  ∈ ℕ. The robot can recognize the human intention by the 
commanding actions (gestures) performed by the human. The robot can also recognize the 
human intention by the human actions performed on the objects present in HRI workspace. 
The human is allowed to switch between his intentions without completing the actions 
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concerning an intention. The human is also allowed to perform unrelated actions while 
performing the actions concerning an intention. The input to the problem involves the human 
actions, scene information, the scene change information, and the human intentions. The 
output corresponds to the recognition of a human intention out of the already known human 
intentions. 
The effectiveness of intention recognition in HRI is motivated with the help of Figure 3.1.  
The interaction of a humanoid and a human is shown in Figure 3.1 left. The humanoid offers a 
tray of coffee cups to the human. An accident can occur if the human and robot do not 
understand each others intention. If the human does not intend to take the tray and the robot 
does not recognize the human intention. Then the tray may fall down. The interaction of an 
industrial robot and a human is shown in Figure 3.1 middle. The human piles up the objects. 
In order to interact intuitively the robot needs to recognize the human intention of pileup of 
objects.  The interaction of an industrial robot and a human is shown in Figure 3.1 right. The 
human holds the object grasped by the robot. The robot needs to recognize if the human wants 
to take the object from the robot or wants to orientate it in a direction. If the human intends to 
orientate it and the robot releases the object. Then object will fall down as the robot does not 
interact intuitively. The robot can only assist the human if it can understand the human 
intention. Thus recognition of human intention is inevitable for effective HRI. Moreover, in 
industrial HRI, safety of the interacting human is an important issue. The human intention can 
be used to predict the future position of the human to improve the safety in HRI. The robot 
can use the human intention to plan his collision free trajectory. 
 

   

Figure 3.1:  Left: Humanoid HRI [1], Middle: Laboratory HRI, Right: Industrial HRI [127] 

3.2 Related work  
Youn and Oh presented an approach in [169] for intention recognition, using a graph 
representation. They used three layered approach for intention recognition. The three layers 
include action layer, proposition layer, and the goal & intention layer. The action layer has 
action nodes, the proposition layer has state nodes, and goal & intention layer has goal and 
intention nodes. The presented approach makes relationships amongst the action, state, and 
goal & intention nodes. The connected nodes represent an intention graph. Each state node 
represents a ground literal. A ground literal is an atomic formula. It is assumed that any 
condition not mentioned in the state is false. An action is represented by a set of preconditions 
and a set of effects. The preconditions correspond to the conjunction of literals that must be 
true for the concerning action to be executed. The set of effects correspond to the conjunction 
of literals concerning the state changes. The effects are generated in result of the executed 
action. A goal consists of the desired states and termed as goal descriptors. An intention 
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corresponds to goal conditions and related user profile. The nodes in action, states, goals, and 
intention are connected to each other with six different kinds of edges in an intention graph. 
The intention recognition process consists of two phase, i.e. goal recognition and intention 
recognition. It is a theoretical approach that deals with intention recognition without taking 
into account the intuitive HRI. There exist no experiments that are performed with this 
approach. 
In [149] Tahboub proposed cycle elimination in Dynamic Bayesian Networks (DBN) for 
intention recognition. The approach in [149] describes that the cycles are generated due to the 
feedback from the sensed states to the intention states and the actions states. The proposed 
solution for cycle elimination considers the feedback of sensed states from the previous time 
slice instead of the current time slice [149]. The inference in the proposed architecture 
requires a large number of prior and conditional probabilities [98]. The corresponding 
modelling required for the intention recognition is so large that there exist approaches to 
reduce the modelling [84]. 
Mao and Gratch [98] have proposed an intention recognition method based on expected utility 
[48]. The intentions of the agent are represented by the plans that an agent may have. The 
expected utilities of the plans are calculated and a plan with maximal expected utility 
represents the estimated intention of the agent. A plan is represented probabilistically. The 
actions concerning the plan may have conditional as well as non-deterministic effects. The 
utility values represent the desirability of action effects. The actions have success or failure 
probabilities. The actions may be primitive or abstract. A primitive action corresponds to an 
action that can be directly executed. An abstract action can be decomposed into further 
abstract actions or primitive actions. The presented approach emphasizes on the desirability of 
the outcome of the intended task. The outcome of a task corresponds to the utility value of 
that task. According to this approach the agent whose intention is to be recognized, tries to 
maximize the expected utility. Thus the results of the plan / intention recognition are 
influenced by the already defined utility values of the plan / intentions as the agent will try to 
maximize the utility.  The approach concerns intention recognition but the approach does not 
consider the existence of a robot in the discussed idea. The described approach relates to the 
existing literature of plan recognition [98]. 
Richard proposed an approach in [125] for understanding the human intention. They used 
Hidden Markov Models (HMMs) to recognize the human intention. The experiments are 
performed with a mobile robot equipped with laser sensor and a camera. The performed 
experiments involved the human intentions including Follow, Meet, Pass by, Drop off, and 
Pick up. These intentions correspond to the intentions between two humans that may follow 
each other, meet each other, cross without meeting and dropping or picking some thing. For 
each intention a HMM is designed. These models are trained by the Baum-Welch algorithm. 
The described novelty in [125] corresponds to the models that focus on dynamic interacting 
properties of an agent, i.e., Meeting, Passing by, Dropping, and Picking up. The selected 
visible variable for HMM corresponds to the change in the position and angle of the 
interacting agents. The introduced approach has two parts, i.e., activity modelling and intent 
recognition. In activity modelling, the already designed HMMs are trained. To train the 
models concerning Following, Meeting, Passing by, Picking up an object, and Dropping off 
an object, the robot executes these activities with an interacting human. The transition 
probabilities concerning HMM are estimated using Baum-Welch algorithm while activity 
execution. In the intent recognition part, the robot acts as an observer and evaluates the intent 
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of different interacting humans using the already trained HMMs. In recognition part the 
variables corresponding to the observed states are calculated differently as compared to the 
activity modelling.  The Forward algorithm is used for the calculation of most likely sequence 
of observation. The Viterbi algorithm is used to detect the most probable sequence of hidden 
states. The approach corresponds to the intention recognition as an observer without letting 
the robot to actively take part in HRI. The modelling structure used for the approach in [125] 
requires relatively large state space [98]. 
In [139] Schrempf and Hanebeck introduce a generic model based on Hybrid Dynamic 
Bayesian Network (HDBN) for the estimation of human intention in a HRI scenario. They 
have emphasized the importance of hybridity for the robots operating in the real world. The 
hybridity corresponds to the continuous-valued and discrete-valued states. The continuous 
states are described for the sensor measurements. The sensor measurements and the 
probabilities concerning the measurements are directly related to the continuous scales. The 
human aspect, e.g., human intentions is mostly described by discrete values. The proposed 
HDBN contains the intention variables that are represented by the discrete values and the 
sensor measurements that are represented by the continuous values. Once again the inference 
in the proposed architecture requires a large number of prior and conditional probabilities 
[98]. The corresponding modelling required for the intention recognition is so large that there 
exist approaches to reduce the modelling [84]. 
Our approach provides a novel frame work for intention recognition [12]. It considers the 
possible intentions as particle and provides a particle filter based intention recognition. The 
particles representing the intentions are modelled using FSMs. The presented approach is 
discussed in detail in Chapter 3.3. The presented approach [12] models the human intentions 
as discussed in [84]. 

3.3 Finite State Machines (FSMs) 
It is fairly difficult to come up with a straight forward mathematical state prediction model 
that can predict the next human action or next state of human, i.e., next posture of the human 
body or part of the human body concerning the human intention while performing a task. For 
example if the human has a glass in his hand and he approaches toward the beverages then it 
can not be mathematically predicted that he will select cola, water, wine, juice, etc from the 
beverages. These are all hypotheses.  If we consider these hypotheses as complete action 
sequences for performing different possible tasks then these sequences can be represented by 
different models that will represent different intentions of the human. 
The action sequences considered as strings will not be robust due to intolerant string 
matching, e.g., if ABCD is the target string and the experienced string is ABCDE then the 
result of comparison will be negative. The E may be due to false recognition or 
unintentionally performed action. 
If all the action sequences are considered as a FSM then the state transition will become very 
complex. The FSM may require multiple start and end states due to distinct starting and 
ending action sequences. A state transition problem may occur if the human changes its action 
sequence (intention) without completing it, e.g., if the human performs actions A and B 
corresponding to an intention but switches its intention and performs an action E. If there is 
no state transition at the state (reached after action B) corresponding to action E then no 
transition will occur. Thus the changed human action sequence will not be recognized. If there 
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is an action sequence that is completely irrelevant from other action sequences then this 
situation may result in unconnected states in the FSM. Therefore each action sequence 
corresponding to a human intention is modelled by a distinct FSM. Different FSMs are 
designed regarding different human intentions. Each FSM represents the flow of different 
human actions one after another concerning the human intention.  
The FSM models the human intention by considering the concerned action sequence. The 
performed actions concerning an action sequence give the estimate of current human 
intention. During the execution of actions of an action sequence concerning an intention, if 
the human reverses the last performed action. Then there may be different reasons. For 
example, he can take the same action again with possible correction, he can start performing 
the actions of a totally different action sequence concerning another intention, he can stop 
performing further actions, he can keep on reversing the actions, etc. The term reverse means 
that if the human performs an action A then he can reverse that action A by performing the 
action ¬A. If the human reverses an action then it is not taken care by the FSM model. The 
reason is that it is assumed that an action sequence corresponds to the concerning human 
intention. The action sequence must be performed in a sequence for the concerning intention 
to be recognized. Therefore if the human reverses an action but does not change his intention 
then that action will be taken again by the human. If one intention corresponds to different 
action sequences then different FSMs can be used to model the same human intention. 
It is assumed that an action sequence is attached to the concerning intention. Thus an intention 
is defined by an action sequence concerning the intention. A FSM modelling a human 
intention has a single start state. The start state corresponds to the start of the action sequence. 
The discussed probabilistic FSM model does not consider multiple start states. There are 
different disadvantages of having multiple start states. The disadvantages exist with respect to 
the human intention recognition and intuitive HRI. If we consider more than one FSMs 
having multiple start states then it may be the case that an action A existing as one of the 
initial actions of a FSM also belongs to the final action of another FSM. If the human intends 
a task that has the action A as one of initial action but as it exist as the final action in another 
FSM the false human intention will be recognized due to the multiple start states. Similarly if 
the human starts performing the actions beginning at the start state S1 and in-between switches 
to another action sequence beginning at the start state S2 of the same FSM then the concerned 
human intention will not be recognized if the state transition does not exist between the 
concerning states.  
During work the human workers may perform the actions that are not directly related to their 
working intention. For example a human worker can scratch somewhere on his body, drink, 
divert his intention from work, talk to some other human, perform some unintentional task 
due to anxiety, etc. A human working on a task can perform arbitrary actions that are not 
related to the current task. The arbitrary actions do not emphasize that the human intends to 
change his intention concerning the current task. The change of intention means that he is not 
interested to perform that task any more. There may be the case that the human wants to 
suspend the task for some time. Afterwards, the human worker may start performing the 
actions concerning the intention. Similarly a human can switch between two tasks 
corresponding to two different intentions. He may come back to the previous task and starts 
performing the actions corresponding to that intention. He may also continue with the 
switched task concerning another intention. There may be multiple reasons that a human can 
perform arbitrary actions while having the intention of performing a specific task. Thus it is 
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significant to take care of the arbitrary actions of the human while recognizing the human 
intention. This is taken care automatically by the presented FSM model. 
A FSM is shown in Figure 3.2. Each unique human intention is represented by a distinct 
FSM. A FSM models the action sequence corresponding to a unique human intention. Each 
FSM carries a probabilistic weight. The weight represents how closely the FSM represents the 
human intention. If the weight is high then the FSM closely relates to the currently estimated 
human intention and vice versa. Each action jia has a probability value )|( iji SaP
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Figure 3.2:  A FSM with n states, i.e., S1,…,Sn. Each state Si  i= 1,…,n (n ∈ ℕ) has m 
transition conditions (actions / scene changes), i.e., a1i,…,ami, m ∈ ℕ. For each state Si  
i= 1,…,n, it is defined that j  = {1 ,…,m} \ k with k ∈ {1 ,…,m} ∧ kj. If aji is observed at state 
Si then no state transition occurs. The transition only occurs if aki is observed at state Si. The k 
is variable and it is not required to be the same for n states of a FSM  

 
The probability value P(axi | Si ) describes how likely an action axi 

is for the state Si of a FSM 
and x = {1,…,m}. The action aki represents an action that has highest probability P(aki | Si ) for 
the state Si and the state transition only occurs if aki is observed as shown in Figure 3.2. The 
action aki is not required to be the same for the n states of a FSM. The formal description of a 
FSM is given below in Figure 3.3.  
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Figure 3.3: A formal description of a FSM. It describes that a FSM is a tuple of five elements 
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Each FSM =  <Q, Σ, q, F,δ>  is a tuple that contains set Q = {S1, S2, S3,…, Sn} that represents 
the number of n states in a FSM. The set Σ = {a1, a2, a3,…, am} represents the possible actions 
for a state Si ∈ Q. The sum of probabilities of all the actions              for a state Si ∈ Q      
adds up to 1, i.e. 

 
 
For each state Si ∈ Q there exists an action aki such that the probability of the action P(aki | Si)               
is greater than all the other actions,                         i.e. 
                                                                     

                                                                                                                                                                1 
 

    

If the action aji occurs at a state Si ∈ Q then the transition occurs to the same state, i.e.,  (Si, 
aji) = Si. If the action aki occurs at a state Si ∈ Q then the transition occurs to the next state, 
i.e.,  (Si, aki) = Si+1. The action aki is not required to be the same for the n states of FSM. The 
start state and the final state of a FSM are represented by q0 = S1 and F = Sn respectively. The 
general flow of the algorithm for probabilistic intention recognition using FSMs is shown in 
Figure 3.4.  
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Figure 3.4: The flow diagram describes that initially all the FSMs are in their start state. On 
each new observation the weights of the FSMs are updated. A currently active state of a FSM 
is a state whose previous states are travesred and the next states are not traversed. If the 
observation corresponds to the action that has the highest probability value for the currently 
active state of a FSM. Then a state transition occurs in that FSM. The state transiton can 
occur in more than one FSMs if the obseraction corresponds to the highest probability value 
actions at the currently active states of the concerning FSMs. The intention of the human is 
considered recognized if the concerning FSM has the highest weight and that FSM reaches its 
end state 
 
 1 The model is well defined that an action that causes the transition from a state Si to the next state Si+ 1 has the highest 
probability as compared to the other actions at the state Si. 
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The HRI can be of two types, in the first type the human can command the robot to perform a 
task and the human communicates his intention explicity. In the second type the human does 
not command the robot but communicates his intention by performing a task. In the second 
type the human communicates his intention implicity by intiating a task. 

3.3.1 Recognition of explicitly communicated intentions 

In real life the humans can communicate with each other using different gestures, e.g., 
pointing, stopping, etc. The humans also use the speech along with other communication 
channels to convey their message to other humans. A gesture corresponds to a human action 
that is used by the human to convey his message. In Section 3.3.1 the gestures are considered 
for human-robot communication. 
Explicitly communicated intentions correspond to the tasks in which the human performs only 
gestures without performing an operation on the concerning objects, existing in the HRI. The 
robot performs the intended operation on the concerning objects in the HRI workspace. The 
explicitly communicated intentions are represented by the FSMs. The state transition for a 
state in the FSMs corresponds to the different human gestures. The different FSMs 
representing different explicitly communicated human intentions are shown in Figure 3.5.  

 

 

 
Figure 3.5:  The top FSM represents the picking up of a pointed object and placing that 
object at the intended place. The middle FSM represents the human intention of placing a 
passed object at the intended place. The bottom FSM represents the human intention of taking 
an intended object 
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The sequence of the states in the FSM represents a unique human intention. Different state 
transitions concerning different human gestures have different values in a state of a FSM.  
The state transition that has high likelihood / not high likelihood / low likelihood for a state 
will have high / not high / low value for that state, e.g., the start state of FSM shown in Figure 
3.5 (top) represents the pickandplace intention. The pointing action ppoint has high value as 
compared to the open hand action ptake for taking an object, object in hand action ppass for 
giving an object.  

3.3.2 Recognition of implicitly communicated intentions 

The sequence of the states in a FSM represents specific changes in the scene along with the 
specific human actions concerning a unique implicit human intention. Different human 
actions and the related scene change information have different probability values for a state 
in the FSM. Human actions and the related scene change information correspond to the state 
transitions in a FSM.  
The FSMs for implicitly communicated human intention use the scene change information 
and / or the human actions as the transition conditions. For example, there exist multiple 
known objects scattered in HRI workspace. The human picks an object (that is already placed 
on another object) and places that object in the HRI workspace. The robot observes that the 
number of unpiled objects changes along with the human action of picking and placing of the 
object. The FSM that models the unpile intention of the human will consider the pick and 
place actions of the human as the transition conditions. The place action corresponds to the 
placement of the unpiled object.  The related scene change information is the increment in the 
unpiled objects. The FSMs shown in Figure 3.6 use both the scene information and the human 
actions to model an implicit human intention.  

 
 

 
Figure 3.6: Two FSMs are used to demonstrate the recognition of the implicitly 
communicated intentions of pileup (top) and unpile (bottom). The likelihood of pick action is 
the same for both of the FSMs, i.e., pileup FSM and unpile FSM. The unpileplace action has 
high likelihood at the unpile state of unpile FSM. Similarly the pileplace action has high 
likelihood for the pile state of pileup FSM 
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The ppick corresponds to the human pick action and the related scene change information. The 
ppileplace corresponds to the human place action and the related scene change information. This 
scene change information corresponds to the decrease in the number of objects in (2D) the 
scene as the objects are piled. Similarly the punpileplace corresponds to the place human action 
with the increase in the objects in (2D) the scene. 

3.4 Intention recognition algorithm 
At the beginning, each FSM representing a unique explicitly / implicitly communicated 
human intention has the same weight, i.e., the probabilities of human intentions represented 
by the FSMs are equal. An observation is made and the human actions along with the 
concerning scene information are extracted. The weights of the FSMs are updated based on 
the observation (Line 5, Figure 3.8) and normalized so that they add up to 1 (Line 14, Figure 
3.8). The weight of a FSM is directly related to the observation. The FSM for which the 
observation is most probable gets high weight as compared to the other FSMs. If an 
observation is equally probable for more than one FSM then those FSMs get the same 
normalized weight. After each observation, along with weight update the important data 
values necessary for HRI can also be determined, e.g., calculating the pointed object to be 
picked or to calculate the pointed place to place the object. 
After an observation, state transition occurs in none, one or more FSMs (Lines 6-9, Figure 
3.8). If an irrelevant human action is observed then no state transition occurs in any FSM. If a 
relevant human action is observed then it is checked for the currently active states of all the 
FSMs. If the observation has the highest probability for the currently active state then the state 
transition will occur in that FSM.  
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Figure 3.7 : If the Action4 is observed than the state transtion will only occur in FSM 1. If the 
Action2 is observed than the state transtion will occur in FSM 2 & 3 

 
If the observation is highly probable for more than one FSM (currently active state) then the 
state transition will occur in more than one FSM. In other FSMs no state transition will occur, 
i.e., it will loop back to the same state. It is shown in Figure 3.7. 
The advantage of making transition in only the most probable FSMs is that if the human 
changes his intention in-between then this situation can be easily handled, e.g., if the human 
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has an intention and performs an action then the concerned FSM (intention) gets a high 
weight and only in that FSM a state transition occurs. If the human changes his intention then 
the new action sequence can be evaluated with the related FSM and the changed intention can 
be easily recognized.   
A non sequential FSM that represents a human intention can be split into multiple sequential 
FSMs that represent the same human intention. These sequential FSMs describe that a human 
can represent his single intention using different action sequences. The human performs a task 
following one of the action sequences concerning a single intention. If the human switches to 
another action sequence that relates to the same intention then the recognition process will be 
handled by the concerning sequential FSM. 
Now we consider a non sequential FSM that represents a human intention having multiple 
concerning action sequences. If the human performs a task following one action sequence but 
switches to another action sequence then it may be difficult to recognize the switch if a state 
transition is not defined for that in the non sequential FSM. This case can be easily handled by 
the split sequential FSMs as discussed above. 
The disadvantage may be if the sequence of actions performed concerns an intention I1 and 
before completing the sequence the human changes his intention to I2. The human performs 
an action A concerning the intention I2. That action A also exists in the FSM1 modelling I1 and 
leads the FSM1 to the end state. If the currently active state of FSM1 requires action A to reach 
the end state and the human performs the action A concerning the intention I2 then false 
intention will only be recognized if FSM1 has the highest weight.  
If the end state of a FSM is reached and the FSM has highest weight then that intention is 
recognized and FSMs are reinitialized (Lines 17-21, Figure 3.8). If the end state is reached but 
the weight is not the highest then all the FSMs are reinitialized without intention recognition 
(Line 17, 21, Figure 3.8). The defined intention recognition algorithm is given in Figure 3.8. 
As described earlier that the FSMs work as the human intention hypotheses. This algorithm 
updates the intention hypotheses using the current observation. At Line 1 and 2 the FSMs are 
initialized once with the equal weights, i.e.,  
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The observation probabilities                 correspond to the likelihood of different human 
actions for the current state       of a FSM    . The Step 6 checks if the current observation is 
equal to the transition condition of a FSM    at the currently active state         , i.e.,  
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The symbol ∪ means that the i th FSM at time t is updated with respect to the weight and 
currently active state at time t+1. The weights of the machines are normalized at Line 14, i.e.,  
 

 
 
 

while end

for end

endif 

endif 

thenif 

thenif

dofor

for end

dofor

for end 

endif

else

thenif

dofor

dowhile

  - 24

       -23

         -22

 ereintializ               -21

              -20

) Intention(output                        -19

)argmax (              -18

        )    (          -17

 )  to1(     -16

     -15

           -14

                   )  to1(     -13

    -12

})({∪         -11

         -10

                     -9

            -8

                       -7

 )p(argmax  )p(           -6

)p(           -5

      ) to1(      -4

 )(   -3

1
1

  -2

}  1)({  -1

1

11

1

1

1

1111

1

1
1

1

000

1 

1 

 1 

 1 

  

 

∑

+

++

+

=

+

++++

+

+
+

+

=

+

+

+

+

==

==
=

=

=

=

=

=

==

•=
=

==

==

t
statei,

t
i

w

t
i

finali,
t

statei,

N

i

t
i

t
it

i

t
i

t
i

tt

t
statei,

t
statei,

t
statei,

t
statei,

t
statei,

z

t
statei,

t

t
statei,

tt
i

t
i

i

ii
t

t

t

tt

tt

tt

t

s

ww

ss

Ni

w

w
w

Ni

,wsSS

s  s

ss

|sz|sz

|szww

N i

Running

,...,N | i
N

w

,...,N | i,wsS

 

 
Figure 3.8: Intention recognition using the FSMs. Each FSM carries a weight. The weight of 
a FSM represents how closely the current human intention corresponds to the intention 
modelled by the FSM  
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From Lines 16 to 22 it is checked if any FSM has reached its final state then it is checked that 
if the state machine has the highest weight then the concerned intention is output and the 
FSMs are reinitialized. Otherwise the FSMs are simply reinitialized. 

3.5 Experiments 
The experiments have been performed with a robotic arm. The human and the robot interact 
in a HRI workspace shown in Figure 3.9.  
 

 

Working 
area

Over head 
camera

Working 
area

Over head 
camera

 
Figure 3.9: The HRI workspace. It consists of a table with known objects on the table. The 
robot interacts with the  human by performing the human intended task. The HRI workspace 
is monitered with an over head camera  

 

The video data is captured with a FireWire digital camera with the standard frame size of 640 
x 480 pixels. Human-robot collaboration and image analysis is implemented using 
Programming language C++. The robot reactions are realized using the robot Programming 
language V++ for the robotic arm. The robot is sent the cooperative instructions using the 
TCP/IP connection for assigning different operation, e.g., pick, place and move to a certain 
location, etc. Skin detection [161] and Fourier descriptors [171] are used for the image 
analysis. In order to evaluate the human-robot cooperation by recognizing the explicitly and 
implicitly communicated human intentions, different scenarios are considered. The interaction 
activities corresponding to the five explicitly and two implicitly communicated intentions are 
discussed.  
The explicitly communicated intentions are  

1. Picking and placing intention of an object: The human intends to move an object from 
one place to another place in the human-robot collaboration workspace. The human 
explicitly communicates his intention by performing the corresponding actions. The 
human first points to the object that is to be picked by the robot and then points to the 
desired location where the object is to be placed by the robot. 
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2. Passing intention of the human: The human has the intention of passing an object to 
the robot and performs the concerning action. The human gives an object to the robot 
by offering an object on his hand.  

 
3. Placing intention of the human: The robot places the already picked up object at a 

specific place according to the human intention. The human points with his pointing 
finger to the desired location. The robot places the already picked object at that 
location.  

4.  Picking and holding intention of an object: The human intends that the robot picks up 
a specific object in the human-robot collaboration workspace. The human points to the 
specific object in the HRI workspace and performs the pick up gesture. 

5. Taking a pointed object intention: The robot provides the human the intended object 
that exists in the human-robot collaboration workspace. The human points to an object 
in HRI workspace and performs the taking gesture. 

The above described intentions from 1 to 5 were tested with 3 persons. The results of the 
number of tested intentions and the number of successfully recognized intention for the 
explicitly communicated intentions are given in the Table 1. 
 
 

 
 
 
 
 
 
 
 
 

Table 1 : The result of explicitly communicated intention 
 

The implicitly communicated intentions are described as under 
1. Pile up of the objects: 

Human comes into the scene and starts working without engaging the robot actively. 
The human starts to pile up the objects. The robot estimates the human intention by 
observing the human actions and the changes occurring in the HRI workspace. After 
understanding the human intention of pile up, the robot collaborates with the human 
by performing the operation of pile up of the objects. 

2. Unpile of the objects: 
Human comes in the human-robot collaboration workspace and starts the operation of 
unpile of the objects without engaging actively the robot. The robot understands the 
human intention and unpiles the objects. 

The results of the number of tested intentions and the number of successfully recognized 
intention for the implicitly communicated intentions are given in the Table 2. 
The false results shown in the Tables 1 and 2 are due to the unrecognized human hand 
gesture, e.g., the pointing hand gesture shown in Fig 3.10 (left) is recognized as pointing hand 

Recognized intention Tested 
Intentions Int1 Int2 Int3 Int4 Int5  Experiments 

Int1 19 0 0 0 0 20 

Int2 0 20 0 0 0 20 

Int3 0 0 18 0 0 20 

Int4 0 0 0 20 0 20 

Int5 0 0 0 0 20 20 
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while the hand gesture in Figure 3.10 (right) is not recognized as the pointing hand. In case if 
no expected action sequence is observed then no intention is recognized. 
 
 
 
 

 
 
 
 

Table 2 : The result of implicitly communicated intentions  
                                                       

             
Figure 3.10: Extracted outlines of pointing hand posture 

 
The presented approach recognizes the exact human intention using the probabilistic 
representation of action sequence, e.g., if the human performs a non-related action during 
explicit intention communication then the FSM concerning the non-related action gets low 
weight and the FSM concerning the actual human intention gets high weight due to the 
completely performed action sequence. 
The Figures 3.11, 3.12, 3.13, and 3.14 represent how the weights of the intentions represented 
by different FSMs change during the intention recognition process. In the start all the 
intentions have normalized equal weight as shown in the intention graphs in Figures 3.11, 
3.12, 3.13, and 3.14. At Step 1 an action of human is observed. The FSMs for which currently 
active state has high probability for the current human action get high weight and the others 
get low weight. If the end state of a FSM is reached and the weight of that FSM is also high 
then the concerned intention is recognized as the human intention. 
The graph in Figure 3.11 describes the intention recognition of picking an object from one 
place and placing that object at another place. At the start all the intentions have equal 
probabilities as shown at Observation 0 in Figure 3.11. An observation can be an action 
performed by the human and / or scene change information. The first observation made is not 
directly related to any particular intention of the human. Therefore all the intentions get 
almost the same weight at Observation 1. The human makes a pointing action to an object that 
he wants to be operated by the robot. The performed human action has high observation 
probability for pickup, pickandplace and take intentions. Therefore the weights of these 
intentions go up and the weights of others go down at the Observation 2 as shown in Figure 
3.11. The state transitions occur in the FSMs for which the observed human action is highly 

Recognized Intentions Tested 
Intention Int1 Int2 Experiments 

Int1 7 0 10 

Int2 0 9 10 
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probable. Therefore state transitions occur in pickup, pickandplace and take FSMs. At the 
Observation 3 the perceived human action was unintentionally performed human action. It 
was due to the fact that the human unintentionally opened his hand while moving it to another 
location. The unintentional action stance may occur if a human changes his actions stance 
from one action to another. At Observation 3 the perceived human action has high probability 
for place intention. Therefore the intention weight for place goes up and weights for others 
goes down. The state transition only occurs in the place FSM. The human now points to a 
place where he wants the object to be placed by the robot. The performed human action has 
high probability for pickandplace and low probability for others at the Observation 4. Thus 
the state transition only occurs in the pickandplace FSM and the weight of the intention also 
increases. The final state of the pickandplace FSM is reached and it has also has the high 
weight as compared to others. Thus the intention of pickandplace is recognized. 
 

 
Figure 3.11: The graph represents the change in the weights of FSMs concerning take, give, 
pickandplace, place pickup, and unpile intention. The graph shows the recognition of 
pickandplace intention 

 
The graph in Figure 3.12 describes the recognition of pickup intention. The intention weights 
are equal at Observation 0. At Observation 1 once again the human action stance does not 
corresponds mainly to any intention. Therefore the intention weights of all the intentions 
remain almost the same. The human once again makes the pointing action to an object. At 
Observation 2 the performed human action has high probability for take, pickup and 
pickandplace intentions and low for others. At Observation 3 the perceived human action 
does not corresponds mainly to any intention. Therefore there is no significant change in the 
intention weights. The human makes a makes an upward motion of his open hand for picking 
up of the pointed object. At Observation 4 the performed human action corresponds mainly to 
the pickup intention. Therefore the intention weight increases for this intention as shown in 
Figure 3.12. The state transition occurs in the FSM relating to the pickup intention and the end 
state of the FSM is reached. The weight of pickup is the highest and the end state is reached. 
Thus the pickup intention is recognized. 
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Figure 3.12 : The graph represents the change in the weights of FSMs concerning take, give, 
pickandplace, place pickup, and unpile intention. The graph shows the recognition of pickup 
intention 

 
Figure 3.13 : The graph represents the change in the weights of FSMs concerning take, give, 
pickandplace, place pickup, and unpile intention. The graph shows the recognition of take 
intention 
 
The graph in Figure 3.13 describes the recognition of take intention. The human points to an 
object that he wants to be provided by the robot. At Observation 2 the intention weights of 
take, pickandplace and pickup increase and others decrease. The state transitions occur in the 
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corresponding FSMs. At Observation 3 and 4 the perceived human actions do not correspond 
mainly to any intention. Therefore there is no significant change in the intention weights is 
observed. The human opens his hand and keeps it in this position. At Observation 5 the 
performed human action mainly corresponds to the take intention. Therefore the weight of 
intention increases significantly and the state transition only occurs in the FSM relating to 
take intention. The end state of the FSM is reached and the weight is the highest. Thus the 
take intention is recognized.  
 

 
Figure 3.14 : The graph represents the change in the weights of FSMs concerning take, give, 
pickandplace, place pickup, and unpile intention. The graph shows the recognition of unpile 
intention 
 
The intention graph shown in Figure 3.14 describes the recognition of implicitly 
communicated intention of unpile of the objects. The human grabs an object that is placed on 
the pile of objects. At Observation 2 the recognized human action mainly corresponds to the 
unpile intention. Thus the weight of unpile intention increases and the weights of other 
intentions decrease.  While considering an observation the scene information is also taken into 
account as the human actions correspond to an implicitly communicated intention. The human 
picks the object from the pile and places it on the surface of the table. At Observation 3 along 
with the human action, the scene information is also inspected to check the increase or 
decrease in the unpiled objects. The human action and the scene information relates 
significantly to the unpile intention. Therefore the state transition occurs in the concerning 
FSM and the intention weight increases significantly. The state transition at Observation 3 
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brings unpile FSM in the end state and the weight of the unpile intention is also the highest. 
Thus unpile intention is recognized. 
 

3.6 Summary 
In this chapter we presented a probabilistic FSMs based intention recognition algorithm. A 
human intention is modelled by a FSM. A FSM corresponds to a human action sequence and / 
or the concerning changes in the HRI workspace. A specific human action sequence and / or 
the concerning changes in HRI workspace directly relates to a human intention. Each FSM 
carries a probabilistic value that is called the weight of the FSM. The weight of the FSM 
describes how closely the FSM represents the human intention. The FSM with highest weight 
corresponds to the best estimated human intention and vice versa. The weights of the FSMs 
are updated at each new observation in HRI workspace. The FSM that carries the highest 
weight and reaches its end state represents the recognized human intention. The suggested 
solution is applicable for both explicitly and implicitly communicated intention recognition. 
Explicit intention communication addresses to all the situations where the human commands 
the robot and implicit intention communication addresses to all the situations where human 
does not engage the robot but robot actively starts the cooperation by recognizing the 
intention through scene information and human actions. Addressing both explicitly and 
implicitly communicated intentions recognition make the human-robot collaboration intuitive.  
The approach presented in Chapter 3 has differences from Particle Filter and HMM. Particle 
Filter is mostly used in the problems in which the dynamics of problem can be mathematically 
modelled, e.g., in robot localization the motion model of the robot is used for prediction of 
next potential position of the robot. In the current problem the FSMs are used to model the 
human intention that is totally different from a motion model of the robot. In the normal 
Particle Filter the resampling is performed to generate new particles and eliminate old 
particles with less weight. In the presented approach no resampling is required. The normal 
particle filter applications hypothesize the possible solution that is similar to the approach 
discussed in Chapter 3. In the HMM each hidden state is considered to have different 
observation probabilities and the different sequences of observations correspond to different 
sequences of the hidden states. In the discussed approach in Chapter 3 the sequence of 
observations corresponds to a human intention. 
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Chapter 4 
 
Intention Learning 
 

 
A human has his intentions depending on the scenario, the goal, and the tasks that he is to 
perform in the current situation and in the near future. A human has different intentions at 
different places. It is difficult to model all the possible human intentions as the total number 
of human intentions can be huge. In advance the robot can not anticipate all the services that 
may be required and should be provided by the robot. That is why Programming by 
Demonstration (PbD) is introduced and extensively explored. The approach of PbD is 
different from online intention learning. In PbD the human commands the robot based on the 
demonstration. In online intention learning the robot learns the new human intention that is 
used afterwards by the robot to interact with the human. Learning the new human intentions 
from the human actions and the scene information can help the robots to collaborate with the 
humans more intuitively. 
In this chapter an approach [14] concerning online intention learning is discussed. The chapter 
is organized as follows: In Section 4.1 the problem of online intention learning is motivated 
and defined. In Section 4.2 the approaches concerning learning are discussed. In Section 4.3 
three intention learning cases are introduced and discussed in detail. In Section 4.4 
experimental results of the three intention learning cases are presented. In Section 4.5 the 
conclusions of chapter on online intention learning are given. 

4.1 Problem definition and Motivation 
The intention learning corresponds to the modelling of a new human intention that can be 
used by the robot for HRI. It is assumed that the human only performs the actions concerning 
a human intention during the intention learning. The human performs the concerning actions 
in a sequence. The human completes an action sequence concerning a human intention 
without switching to another action or action sequence. The robot knows the human actions 
and the information of HRI workspace. The modelling mechanism is provided the human 
actions and scene information from HRI workspace to model the human intention. The input 
to the problem is the human actions, scene information, scene change information, and the 
human intentions in terms of the scene information. The output corresponds to a FSM 
concerning the new human intention. 
For intuitive HRI all the concerning human intentions can not be known to the robot in 
advance. Thus the robot is required to possess the ability to learn the human intention online 
to increase its intuitive interaction capability. We discuss three example scenarios of HRI to 
motivate the intention learning problem. The examples are 
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1. (House hold example) Consider a robot collaborating with the human for washing the 
utensils in a house. The robot is provided with the common human intentions specific 
for the purpose. For example the robot knows what to do with the dirty and clean 
utensils according to the human intention but he does not know what to do if a utensil 
is broken, old, useless, etc. Therefore in order to increase the intuitive interaction 
capabilities of a robot the robot needs to learn the new human intentions online. 

2. (Laboratory example) The scenario for HRI is shown in Figure 4.1. The human 
intentions correspond to the arrangements of the objects in a specific pattern. 

 

         
Figure 4.1: Organization of the objects in a specific pattern according to human 
intention. Left: Organization of objects in a square pattern. Middle: Organization of 
objects in a longitudinal pattern Right: Organization of objects in a diamond pattern  
 
The human intention of arranging the objects in Figure 4.1 left and middle are known 
to the robot. The robot can recognize the human intention and interact intuitively 
regarding the arrangements of the objects. If the human has the intention of arranging 
the objects shown in Figure 4.1 right. Then the robot can not respond intuitively. The 
robot is required to learn the new human intention for intuitive interaction in case of 
Figure 4.1 right. 

3. (Industry example) For HRI in industrial workspace the robot is provided with the 
information of standard human intentions concerning the specific HRI workspace. If 
any unknown event occurs in the HRI workspace then the robot can not intuitively 
interact with the human according to his intention. In order to improve the robot’s 
intuitive interaction capability the robot is required to learn the new human intention 
online. We consider an HRI scenario in Figure 4.2.  

 

 
Figure 4.2: Exemplary industrial HRI [88] 

 
The robot knows the human intention about holding and releasing the object but if the 
human intends to orientate the object then the robot will not interact and release the 
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object. Thus the robot needs to have the capability to learn the new human intention 
online. 

4.2 Related work 
In literature, there exist multiple solutions for gesture and action recognition.  There exist 
HMM based gesture understanding solutions [89] [9] that require the Baum-Welch algorithm 
to train the Markov models. They deal with the recognition of actions and gestures but not 
with the intention of a human. The available approaches for action recognition consider the 
image-processing as a core issue. There exist many human action recognition methods based 
on feature tracking [49] [79], intensity or gradient, and silhouette [163]. The human actions 
can be recognized based on the pose primitives [153]. The approach [96] uses 2D poses for 
3D human pose recovery to recognize the human actions. Similarly the approach in [106] uses 
local motion appearance features to recognize the human action. The action recognition using 
HMM corresponds to different phases or key poses of the human while performing an action. 
These key poses are considered as the hidden states of HMM [118]. The main focus of the 
above described approaches is the recognition of activity / action / gestures. The recognition 
of intention is not considered and it can be estimated from the activity / actions. Other related 
information can also be used, e.g., different characteristics of entities present in the 
concerning environment. The intention may correspond to more than one activity or an action 
sequence. There is another significant difference between intention recognition and action / 
gesture / activity recognition. The difference corresponds to the fact that activity / gesture / 
action can only be recognized if the concerning action / gesture / activity is completely 
performed [125]. On the other hand, the intention recognition can only be helpful if the 
intention is recognized before the concerning action sequence is completely performed [125]. 
A multitude of research work already exists in the field of PbD in the direction of intention 
recognition. But the research work does not directly relate to the human-robot collaboration; 
because it commands the robot an action based on the demonstrated program [5]. The 
solutions present in the area of PbD use reinforcement learning [126] [139] [80], neural 
networks [91] [17] and also HMM [166]. 
In the literature, there exist multiple approaches for intention recognition. The approach 
proposed in [150] uses DBN, in [139] uses HDBN. The approach proposed in [77] [169] [98] 
use Ontology, Graph and Utility based intention recognition. The approach [125] uses a novel 
formulation of HMM to recognize the human intention. The intention recognition approach 
introduced in [12] uses probabilistic state machines. The described approaches recognize the 
human intention if the human intentions are already known and modelled. In case if the new 
intention is to be recognized then that has to be modelled explicitly by the human. The 
proposed approach [14] describes how a new human intention can be added without the 
explicit modelling by the human.  
To the best of our knowledge, there exists no solution for online intention learning in the area 
of human-robot collaboration by intention recognition. The presented approach [14] has vital 
differences to gesture and action recognition. The approach does not focus on single action 
rather an action sequence concerning the human intention. Further the core issue is not image-
processing concerning modelling of different human poses. It models the action sequence 
concerning the human intention. The sequence concerning an intention may also involve the 
environment information along with the actions.  
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In the presented approach, a mapping is performed between the observations (action and / or 
scene sequences) and the human intentions. Once the mapping is performed then it can be 
used to understand the human intention for intuitive collaboration. There exists a hidden state 
concerning an observation in HMM. In the presented approach, the whole action sequence is 
modelled to represent the human intention, i.e., hidden state. 

4.3 Intention learning 
In this section different intention learning methods are described. The input to these methods 
varies but the output of all the methods is the FSM concerning the human intention. The input 
to the methods involves the scene information, i.e., the objects present in the scene, the human 
actions, and / or the learning parameters. The learning parameters are the features which are 
specific to the given scene, and enable the robotic system to infer the scene changes.  The 
scene change at a human-robot workplace corresponds to the modifications that can occur in 
the scene by the human actions. For example, if we consider the scene containing different 
number of objects then the shape of the objects, the distance among the objects, the number of 
objects, the types of objects, and the arrangements of the objects, etc can be used as learning 
parameters. Learning parameters are different for different applications depending on the 
nature of the scene. For example a mechanic working in a garage has different tools and 
objects around him along with the different intentions as compared to the craftsman working 
at his workplace. Therefore it is necessary to know the learning parameters, prior to learn the 
new intention. 
The three different intention learning methods correspond to the mappings between the 
human intention and the observations (action and / or scene sequences). The mappings differ 
from each other based on the given information: objects in the scene, human actions, scene 
changes occurred due to the human actions, and the human intentions in terms of the scene 
information. This given information is used as input for the learning and recognition system. 
Generally, the input can not be specified as the input depends on the problem at hand. The 
mapping performed between the human intention and the observation sequence is formally 
described in the following text. 
The intention i j ∈ I, I = { i1, i2, i3, …, ip} , j = 1,…,p and p ∈ ℕ, corresponds to the scene 
information concerning the human intention. The observation sequence ok ∈ O, O = { o1, o2, 
o3, …, on},  k = 1,…,q and q ∈ ℕ, consists of the human actions and / or the scene changes 
occurred due to the human action. M is the mapping from the observed sequence ok ∈ O to 
the concerning intention i j ∈ I, i.e., M : O → I.  In the Case 1, the human actions, scene 
changes, objects in the scene, and different possible human intentions i j, j = 1,…,p in terms of 
the scene information relating to the human-robot workspace are given. The human intention 
is learned by mapping the observed sequence ok and the given intention i j, i.e., M(ok) = i j. The 
observed sequence ok corresponds to the human actions and / or scene changes. The intention 
is recognized from the scene information. The recognition is performed by the analysis of the 
already known information concerning the intention i j ∈ I and the information obtained from 
the current observation. In the Case 2, the given information consists of the human actions, 
the objects in the scene and the learning parameters without the prior information of the 
human intention. The output of the method is the mapping between the observed sequence ok 
and the newly learned scene information (intention) i j ∈ I. The scene information is produced 
by the changes occurred in the scene due to the performed human action sequence. The new 
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intention i j ∈ I (scene information) is understood using the learning parameters. In the Case 
3, the given information includes the objects present in the scene and the learning parameters 
and the output is the mapping between the observed sequence ok and new intention i j ∈ I in 
terms of the scene information. The prior information of the human intention and the human 
actions are not given. The observed sequence ok only consists of the scene changes occurred 
due to the human actions. In the Case 3, the mapping is performed between the sequence ok 
(scene changes) and the last scene change that is considered as the human intention, i.e., i j ∈ 
I. The scene changes except the last change are considered as the steps that may lead to a 
specific human intention described by the last scene change. The input and output concerning 
the three cases are given concisely in the Table 4.1. 
 

 Input Output 

Case 1 
Human action, 

human intention, 
scene information 

FSM 

Case 2 
Human action,  

scene information, 
learning parameters 

FSM 

Case 3 
Scene change 
information,  

learning parameters 
FSM 

Table 4.1: The inputs and the outputs concerning Case 1, 2 and 3 

4.3.1 Finite State Machine Construction 
A FSM is constructed from the intention i j ∈ I,  j = 1,…,p and observed sequence ok ∈ O, k = 
1,…,q that may comprise either the performed human actions or the observed scene changes 
or both of them (Figure 3.2). At each scene change, occurred due to the human action a state 
Si of a FSM is created. The scene change does not strictly correspond to a single event but can 
represent a single event. Therefore a state corresponds to an observation that may comprise 
one or more than one event occurring at the same time, e.g., a state may represent pileup 
operation of boxes that represents human action of placing the box and reduction of boxes in 
number, observable in 2D. The number of states in a constructed FSM is equal to the number 
of scene changes occurred due to the human actions. 

4.3.2 Mapping actions to the intention 
The human teaches the robot his intention online. He does this by performing different actions 
in a sequence. Each action sequence corresponds to one specific human intention. The action 
sequence and the corresponding scene information are received from the camera input to 
construct a FSM out of it. The human actions and the human intentions in terms of the scene 
information are known to the system beforehand. 
This is the simplest case of online intention learning. A mapping is performed between the 
human actions and the human intention modelled by the FSM as shown in Figure 4.3. It is 
assumed that the human performs only those actions that are related to the intention.  
The function ψcreate-start-state generates the start state of the FSM. The function ψobservation returns 
true if a known human action with the concerning scene change information is observed. The 
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function ψ¬current-action returns a known human action that is not currently observed. The 
function ψcreate-transition creates a new transition by the action A from the current state of FSM 
to the state S, i.e., ψcreate-transition : A, current-state → S. The current state corresponds to the 
state for which the transition conditions are created. The state S may correspond to the current 
state or the newly created state (next to the current state). The function ψcreate-new-state creates a 
new state of the FSM. The function ψintention maps the scene information to the known human 
intentions.  The function ψend-state assigns the newly created state (in the end) as the end state 
of the FSM. The function ψcurrent-state returns current state and the function ψnew-state returns the 
newly constructed state. 
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Figure 4.3: Mapping the human actions to the human intention 
 

The HRI workspace is observed in which the human performs the concerned actions (Line 3, 
Figure 4.3). The observation corresponds to the human actions and the scene change 
information. If ψobservation returns true then a new state is constructed (Line 7, Figure 4.3). The 
performed human action and the scene change information are considered as the transition 
condition to the new state (Line 8, Figure 4.3). The not observed actions (∀¬current-action) 
are considered as transitions to the current state (Lines 4-6, Figure 4.3). The process continues 
until a known human intention (in terms of scene information) is diagnosed. 
The human intentions are extracted from the scene, e.g., at the start, objects of similar type are 
placed randomly apart from each other. If the human picks one object and places the object on 
other similar object then the system observes the pick and place action. As the pile operation 
is performed, the number of objects decreases (observed in 2D). The extracted action 
sequence along with the scene information will be pick, pile and decrease in the number of 
objects.  

 
 
 
 
 
 

Figure 4.4: FSM built from action sequence of pickup and pile 
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The already known scene information of decrease in objects corresponds to the pileup 
intention. The end state of the FSM shown in Figure 4.4 is already known since the different 
human intentions in terms of the scene information are given. The restriction in this type of 
intention learning is that the image processing system should be powerful to recognize the 
human actions performed by the different humans. The different persons can perform the 
same action with some variation. It is difficult for most of the image processing systems to 
recognize an action that is performed differently, i.e., variation in the posture while 
performing the action. 

4.3.3 Mapping actions to the scene information 

In this type of intention learning, the input to the learning system includes the human actions 
along with the learning parameters. The learning parameters are specific to a specific 
application, e.g., in industry scenario the learning parameters may correspond to the assembly 
of two specific objects, in household scenario the learning parameters may correspond to the 
specific place of the specific objects, etc.  

The scene information changed due to the human actions is understood through the learning 
parameters. The learning parameters represent the human intention concerning the observed 
human actions. The mapping of the human action sequence and the intention is performed as 
described in Section 4.3.2. The only difference is that the human intention is inferred from the 
learning parameters. The process of action sequence extraction stops if for a specific period of 
time the human does not perform an action. 
In order to explain we consider an example, i.e., if there exist four objects of different types 
placed randomly in the working area and the learning parameters correspond to the distance 
and orientation of the objects with respect to each other. The human picks and places the 
objects near each other in a group. Thus the online-extracted scene information will be 
concerning the distance and orientation between the objects. The scene change will represent 
the change in the distance and orientation of the objects. The scene change, i.e., the distances 
and orientations between the objects is stored as the human intention. The system does not 
know exactly that the human intention is of grouping the objects but the system only observes 
the distance and orientation change and stores it. The final state corresponds to the final 
change in the distance and orientation of the present objects. The robot uses that final state 
information to react. The FSM built from the action sequence (extracted out of observed 
human action sequence) and the final scene change is shown in Figure 4.5. 
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Figure 4.5: FSM built from the action sequence of placeSCx and the scene change 
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The action placeSCx x =1,…,n corresponds to the specific placement of the object with respect 
to the already placed objects. The specific placement of the objects corresponds to specific 
distance and orientation between the placed objects. 

4.3.4 Mapping using the scene changes 
It is very difficult to understand the human actions or human activity depending on the shape, 
size, orientation, etc of the human body parts. It is very difficult to model a complete set of a 
specific human action (perceived from any possible perspective) with the help of visual 
descriptors. It gets more complex if the human performs the same action but the related 
human has completely unexpected shape, orientation, size, etc. It is comparatively easy to 
recognize the objects using their features. Therefore, it is easy to recognize changes occurred 
in the scene, related to the objects, due to the human actions. The human actions can be 
indirectly recognized from the scene changes. In this method, the learning parameters are used 
to infer the human actions as well as the human intentions. If the human performs a sequence 
of actions and each action causes a change in the scene that can be uniquely recognized by the 
system. Then the complete change sequence represents the human action sequence and the 
scene change at the end represents what the human intends to achieve. All the scene changes 
are used to infer the human actions and human intention using the learning parameters.  
The difference between the mapping in Section 4.3.4 and 4.3.3 is the information required to 
construct the FSM and to recognize the human intention using the FSM. The transition 
conditions of the FSMs discussed in Section 4.3.3 mainly correspond to the human actions. 
The transition conditions of the FSMs in Section 4.3.4 correspond to the scene change 
information produced due to the human action. 
It is considered that human performs actions in a sequence. Each action performed in the 
sequence corresponds to a scene change Ss∈ that can be understood by learning parameters. 
The set { }ψ,...,,, DCBAS =  consists of all the scene changes that can occur due to the human 
action and the set S is already known to the system. Then the sequence of scene changes is 
observed and a FSM is built online from the observed sequence as described in Section 4.3.2.  
If ABCD is the online-observed sequence of scene changes then the constructed FSM is 
shown in Figure 4.6. The last scene change D represents what the human intends to do. The 
scene change D is used by the robot to react in response to the recognized intention by the 
scene change sequence ABC. The scene changes A, B, and C are given maximum observation 
probabilities as compared to other scene changes at S1, S2 and S3 respectively. The state 
transitions occur at S1, S2 and S3 due to highest probable observations (scene changes), i.e., 
A, B and C respectively. 
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Figure 4.6: FSM built from sequence ABCD 
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4.4 Experimental results 
The experiments are performed with a robotic arm of six degrees of freedom. The HRI 
workspace is shown in Figure 3.9. The workspace consists of a table with objects. The buttons 
for Learn, Play, Pause, Stop and Reset are used to interact with the robot, shown in Figure 4.7 
right. An overhead FireWire camera is used to observe the scene. In order to evaluate the 
intention learning, different experiments were performed with three different persons (fifteen 
times for each phase) with respect to the three discussed cases in Section 4.3. 

 

 
Figure 4.7: Workspace for HRI. Left: The robot reacts intuitively after recognizing the human 
intention. Right: The human places the hand on the Learn button to start the learning phase 

 
All the experiments have two phases, i.e., the learning phase and testing phase. In the learning 
phase, the human teaches the robot his intention by performing different actions in a sequence 
and completing the task. In the testing phase, the robot reacts by recognizing the learned 
intention and completes the intended task. For the first case, the performed experiments 
involved pile up of the objects, scattering of the piled objects, and placing the objects in a 
tray. In the first experiment, for pile up of the objects the human starts the robot’s learning 
phase by placing the hand on the Learn button as shown in Figure 4.7 right. The human 
performs the actions of pile up of the boxes one by one. In the testing phase, the human starts 
the testing by pressing the Play button. 
The human piles up and the robot recognizes the intention of pile up and reacts by performing 
the pile up operation for the rest of the boxes. Similarly for the scattering the piled objects and 
placing the objects into the tray, the human first teaches the robot his intention and afterwards 
he tests the learned intentions. The human initiates the interaction by taking an action with 
respect to the intention and the robot reacts by recognizing the intention and completes the 
human intended task. The robot reacts by completing the last action concerning the 
recognized human intention. The robot reacts after recognizing the human intention (Section 
3.4). In Case 1 the robot is given how to react after recognizing the human intention. In Case 
2 and 3 the human intention is inferred using the learning parameters. The robot uses these 
learning parameters in order to react after recognizing the human intention. The robot utilizes 
the learning parameters in order to complete the last human action (in the action sequence) 
according to the recognized human intention. 
In the following Figures 4.8, 4.9, 4.10, 4.12, 4.13, and 4.14, the red line represents the average 
result of the performed experiments. The red line represents the success or failure rate of the 
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performed experiments. The more the line is near to the value 1 at a point the more successful 
and vice versa.  

 
Figure 4.8: Learning phase for Case 1 

 
The successful experiments are represented by a point at the value of 1 and 0 otherwise in the 
following graphs. A successful experiment means that the expected results are obtained. The 
expected result in case of teaching the system a human intention means the construction of the 
corresponding FSM. The expected result in case of testing a human intention means the 
recognition of the concerning human intention by the system.  
In case of testing, the robot is required to react according to the human intention. If the robot 
reacts according to the human intention then the experiment is considered successful and vice 
versa. Each point represents one result of experiments of a person. Fluctuations in the average 
line represent the success and the failure due to the variance of the action postures by different 
humans with respect to the same action task. The success rate is the ratio between the 
successful experiments with respect to the total numbers of experiments in one phase of a 
case.   

 
 Figure 4.9: Testing phase for Case 1 
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The success rate is high as the average line remains at the value 1 and vice versa. The average 
success rate in the learning phases is 73 % and in the testing phase the average success rate is 
87 % for the Case 1. The fluctuation of the average line describes that mostly for each point of 
experiment, two persons performed successfully, as shown in Figure 4.8.  
The graph in Figure 4.9 describes the experiment results in the testing phase of Case 1. The 
fluctuation in the average line of Figure 4.9 is less with respect to Figure 4.8. It is due to the 
fact that few actions are required to recognize the human intention and the robot reacts 
afterwards. 

 
Figure 4.10: Learning phase for Case 2 

 
The reason for the difference in success rate in the testing and learning phases is due to the 
fact that the system has to perform more image processing in learning phase as compared to 
the testing phases. In the learning phase all the actions and the human intention are processed 
and in testing phase only the initial action sequence is processed. Using very simple image-
processing (Fourier descriptor for contour recognition and skin detection), an action 
performed with unexpected human body part posture is less likely to be detected.   
For Case 2 and 3 the performed experiments involve the placing of objects in a human 
intended pattern as shown in Figure 4.11. 
 

   
Figure 4.11: Different human intentions regarding placement of objects in a specific pattern 
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The average line in Figure 4.10 represents that the success rate is almost equal to the success 
rate shown in Figure 4.8.  The success rate of experiments is 69 % shown by the average line 
in Figure 4.10. The success rate of experiments shown by the average line in Figure 4.12 is 80 
%. The difference between the success rates of experiments shown in Figure 4.10 and in 
Figure 4.12 is almost the same as in experiments shown in Figure 4.8 and in Figure 4.9, due to 
the same reasons discussed for Case 1.  
 

 
Figure 4.12: Testing phase for Case 2 

 
The success rates of experiments shown by the average lines in Figure 4.13 and 4.14 are 100 
% and 95 %. The reason of 100 % success rate is due to the fact that the action sequence was 
considered in terms of the scene changes performed by the human, i.e., it is observed the 
result of what the human has performed rather than how the human has performed the action. 
 

 
Figure 4.13: Learning phase for Case 3 
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Figure 4.14: Testing phase for Case 3 

 
The ditches in the average line in Figure 4.14 describe the fact that the human has performed 
an action and in response to that scene change information the human intention was not 
recognized. Then the human made an appropriate amendment to his action and due to that 
correction the intention was recognized. This fact is represented by the dotted line part in 
Figure 4.14. 

4.5 Summary 
In this chapter we have discussed three cases of intention learning. The cases discussed the 
mapping of human intention to the corresponding observation sequence. The mechanism used 
for intention recognition consists of the probabilistic FSMs, described in Section 3.4. For 
online intention recognition a FSM regarding to a specific intention is constructed online. The 
online intention learning contributes to the intuitive HRI capability of the robot. The 
experiments were performed for all the three cases of online intention learning. During the 
learning phase the intention is conveyed once by performing the concerned action sequence.  
It was observed that the Case 3 is more flexible for capturing the human actions and human 
intention and robust in results. The reason of comparative success for capturing human 
actions is the simple image processing, in the Case 3. The results in Case 1 and Case 2 are 
also acceptable. In Case 1 and Case 2 the recognition of the action sequences are performed 
by recognizing the human actions. For this purpose the image analysis corresponds to the 
processing of the different human gestures. The recognition of gestures focuses on different 
body parts of the human. The specific orientations of the human body parts are used to 
recognize the human gestures. For this purpose Skin detection [161] and Fourier descriptors 
[171] are used. A human can perform a same gesture with different orientation of the same 
body part. Moreover the structure of the body parts of the humans also varies, e.g., a person 
may have long hands and others may have wide hands etc. Therefore the recognition of the 
human actions based on the image processing of the body parts is difficult. In Case 3 the 
recognition of the human actions is performed based on the scene changes occurred due to the 
human actions. It is comparatively easy to recognize the human actions based on scene 
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change information as compared to the analysis of the body parts. For example if the human 
picks an object and places that object at some other place then it is easy to recognize the pick 
and place action by the scene change information occurred in the presence of the human as 
compared to the image processing of the concerned body parts. 
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Chapter 5 
 
Proactive interaction 
 
 
Proactivity is an important aspect for effective cooperation. The proactivity is defined as the 
quick response of the robot during HRI. It means that the robot can recognize the human 
intention as early as possible to quickly start the interaction with the human. The humans 
working on a common task are required to intuitively collaborate with each other. They are 
required to be proactive towards each other for intuitive collaboration. 
Intuitive HRI requires the robot to attain a high level of understanding of the collaborating 
human. Therefore it is equally important in the HRI that the robot should be proactive 
according to the collaborating human, depending on the current situation. For being proactive, 
the robot needs to recognize the intention of collaborating human as early as possible. The 
collaborating robot is also required to adapt to the human in the ambiguous situations to be 
proactive. 
Being proactive is not an easy job even for the humans. The humans take into account 
multiple aspects for a proactive interaction. These aspects may correspond to the interaction 
situation, social indications, personal profile, etc. Using all these they may be wrong in their 
decision about the selection of proactive initiative. Thus they are also required to adapt in 
their proactive behaviours.  
The approach [13] introduced in this chapter describes the FSM based method for proactive 
interaction. The FSM based intention recognition [12] is discussed in Chapter 3. The 
proactiveness corresponds to the recognition of the intention as early as possible. The 
remainder of the chapter is organized as follows: In Section 5.1, the problem of proactive 
interaction is defined and motivated. The existing approaches concerning the proactivity of 
the robot are discussed in Section 5.2. The proactive intention recognition is discussed in 
Section 5.3. Section 5.4 describes the adaption capability of robot according to human 
intention for proactive HRI in almost similar scenarios. The experiments performed using the 
current approach, are discussed in Section 5.5. Section 5.6 summarizes the chapter. 

5.1 Problem definition and Motivation 
The problem of proactive HRI corresponds to the fact that the robot can quickly start the 
interaction with the human. The robot can also decide in an ambiguous situation A that may 
lead to two or more different human intentions, i.e., A → { i1,…,im}, m ≥ 2, m ∈ ℕ . In case of 
quick HRI, the robot knows the human intentions I = { i1,…,in}, n ∈ ℕ and the robot is 
required to recognize the current human intention icurrent ∈ I quickly without confusing with 
the other known human intentions. In case of decision making, the robot is provided with an 
ambiguous situation in which the robot is required to choose a human intention for HRI. In 
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both the cases the robot is given the actions performed by the human, the scene information, 
the scene change information, and the human intentions. The output in both the cases 
corresponds to the selection of a human intention.  
Proactivity is an important aspect of intuitive interaction. Along with many other 
characteristics for intuitive interaction, the humans possess the capability of proactiveness. 
The capability of proactiveness helps the human to ease the interaction and causes the 
reduction of explicit commands for communication. The humans practice the capability of 
proactiveness by the different kinds of indications from each other [22]. The capability of 
proactiveness in the humans concerns the early recognition of the intention of the cooperating 
person with the help of available indications.  
We consider an example of interaction between the mother and the young children. Before the 
children start playing at a place, the mother cleans that place and removes all the harmful 
objects proactively. The removal of harmful objects will keep the children unharmed and safe. 
Similarly the example of a waiter serving drinks at a party. The waiter observes the guests in 
the party and proactively offers the drinks to the guests. The waiter takes proactive decisions 
depending on the social cues from the guests. The waiter adapts its proactive behaviour with 
respect to the responses from the guests.  
The significance of proactiveness in HRI is discussed in the following two examples, i.e. 

A. Safety in HRI 
B. Improvement of intuitiveness in HRI 

5.1.1 Safety in HRI 
We consider the HRI in an industrial scenario shown in Figure 5.1. The robotic arm and the 
human interact to complete a common task. The robotic arm interacts intuitively with the 
human according to his intention. The robot plans his motion path to interact and perform the 
tasks according to the human intention. There may be a collision between the human and the 
robot. The chance of collision can be reduced if the robot can proactively anticipate the 
human intention and plan its motion path accordingly.  

 

Figure 5.1: [148] Human and robot working on a common task in a workspace. The robot 
can avoid any potential collision by anticipating the future human intentions proactively. The 
robot then plans its collision free trajectory based on the estimated future locations of the 
human  

For example the human is performing an operation concerning a task. The robot is given the 
information about the complete task, i.e., what is the sequence of different operations 
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concerning the task. The robot can also learn the interaction profile of the interacting human 
or it can be given to the robot. With this information, the robot can predict the future locations 
of the human taking into account the left over operations and the interaction profile. More 
parameters influencing the human location can be considered to predict the human locations 
for more accurate results. 

5.1.2 Importance of proactiveness in intuitive HRI 
Proactivity is an important aspect for intuitive HRI. In intuitive HRI the proactivity of the 
robot can correspond to the recognition of human intention as early as possible even if the 
intention of the human is not obvious. 
In a motor mechanic’s workshop, the robot can proactively recognize the intention for 
repairing the specific problem and can operate on the concerning areas of the vehicle 
performing the necessary initial tasks. In the big kitchens, the robot can proactively perform 
the necessary operations concerning the tasks in the kitchen, e.g., if the cook intends to 
prepare a specific dish then the robot can proactively perform actions in order to ready the 
necessary ingredients. The robot interacting intuitively with the craftsman can prove to be the 
third hand of the craftsman. The proactivity of the robot may correspond to different robot 
operation concerning different tasks during HRI. For example the robot can grasp and 
orientate the surface of the object on which the craftsman intends to perform. Proactivity in 
the rescue robots may correspond to the necessary first aid actions that should be taken by the 
rescue robots depending on the situation and the condition of the victim.  
A man-machine interaction in a close contact to each other on the vehicle assembly line is 
shown in Figure 5.2. The humans have the task of installing different accessories into the 
vehicle. The accessories may include the doors, dash board, seats, steering wheel, wind 
screen, etc. The robot can help by the bringing the next objects that are to be assembled after 
the object that is currently being assembled.  
In an industrial HRI the proactivity of robot can increase the output of the assembly line 
workers, e.g., by providing the necessary articles by the early recognition of the human 
intention and the HRI workspace. Proactiveness eases the HRI and increases the intuitiveness 
in HRI. In case of correction from the human the robot can rectify its proactive behaviour 
according to the human intention. 
 

 
Figure 5.2: The assembly line workers are fixing the wind screen on a vehicle. The wind 
screen is carried by a device and guided to its exact location by the human workers [72]. In 
case of intuitive HRI the robot can create ease of navigation by slowly moving in the guided 
direction and proactively cooperating in the next tasks  
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5.2 Related work 
Proactiveness corresponds to the early anticipation of the future actions of the interacting 
person and their application. It is mostly applied in the business to anticipate the business 
trends and take the anticipated actions that are beneficial. In robotics, there exist also the 
approaches that apply the proactiveness in robotic tasks. The application mostly exists in 
mobile robots. In robot navigation the term of proactivity is used in the context of planning, 
e.g., in [105] the term proactivity is used for parallel planning and execution of navigation 
operations. In [103] proactivity is used for planning a safe trajectory for a mobile robot. The 
safety corresponds to the selection of the robot speed to avoid collisions.  
Armano, Cherchi, and Vargin proposed an agent planning in a dynamic environment [3]. The 
agent is created to act in the virtual world designed for a computer game. They described a 
layered approach for agent actions in the dynamic environment. Each layer consists of 
deliberative, proactive, and reactive modules. The theoretical description is not given in detail 
and no related experiments or simulation is performed. 
Finzi and Orlandini have proposed a control architecture for rescue robots using HRI. It 
shows the combination of decision processes with the functional process of the robot. HRI 
introduced in the approach [51] corresponds to the mixed initiative planning. The term mixed 
initiative means that along with the human the robot can also proactively react. The mixed 
initiative based approach described in [51] does not correspond to a HRI in which robot 
responds proactively understanding the human intention of the victims to be rescued. 
Dee proposed the use of internal states in order to design the proactive embodied agents [44]. 
The difference between the reactive and proactive embodied agents is the application of 
internal state. The proactive agents develop the internal states by integrating the sensory-
motor information with respect to time. Afterwards the agent can use the internal state to 
apply the stored motor modulation information. The motor reaction is the function of sensory 
information of the internal state and the current environment state. The internal states are 
modelled using different variations of neural networks. The authors described that the 
understanding of internal states can help to develop better proactive agents.  
The simulating robot “Embodied Proactive Human Interface” named “PICO-2” described in 
[85] is an interactive interface. The idea corresponds to the two humans communicating over 
a telephone line. Instead of using the telephone, the robots communicate the information 
between the two persons. The robot communicates the message by performing the gestures 
demonstrating the intention of the remote person. The robot works as an Avatar of the remote 
person. To our understanding “PICO-2” is the demonstration of the recognized intention of 
the remote person. The proactiveness of the robot in the current scenario may correspond to 
the capability of the robot if the robot can anticipate the future response of the remote person 
and indicate the anticipation in current message. The message is conveyed by the 
corresponding robot gestures. 
Cesta proposed the proactive behavior of the robot by activity monitoring [28]. The proposed 
approach focuses on the elder care by the robot assistant. Two ways of interactions are 
described namely, On-Demand interaction and Proactive interaction. Proactive interaction 
corresponds to the activity monitoring and constraint-based proactive and warning giving 
response. An abstract algorithm is described for adding and removing the constraints while 
monitoring the activities. The elder care project is at its beginning as described by the authors. 
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The described behavior appears warning or reminding of some operation forgotten by the 
humans. 
Jeon, Kim, and Choi have presented Ontology based user intention recognition in [77]. Their 
focus is on the planning given the user intention. The user intention is recognized using the 
rule-based RuleML approach. The experiments are performed with a simulated robot. The 
system is implemented using DBN. To our understanding, the DBN is used to model the plan 
concerning the actions to be performed given a recognized intention using RuleML. The 
experiments in [77] do not involve any human rather a simulation is used and proactivity is 
achieved by the application of entropy. All the previously discussed approaches do not relate 
exactly to direct HRI. 
The proactive action selection proposed in [131] describes the proactive robot response 
concerning HRI. The robot selects actions concerning the known human intention. The 
proactive action selection is performed given the estimate of the human intention. The number 
of given intention estimates are represented by | Г |. An action tendency value is assigned to 
each action selected for proactive reaction. If | Г | = 0 then all the action get zero action 
tendency value. If the number of estimated intentions is greater than threshold ω then once 
again the action tendency is zero. The value of threshold ω is used 3. If | Г | = 1 then the 
actions related to the intention get the concerned action tendency values. These values are 
assigned by the human experts. Then an action is selected using Lorenz’s psycho-hydraulic 
model [95]. In case if 1 <  | Г | < ω then action selection is performed using conditional 
entropy, expected success rate, valence value, safety requirement and most likely action 
sequence.  
The proactive reaction in [131] given the intention estimate is related in its concept to the 
research presented here [13]. However, there are vital differences between both approaches. 
The approach presented in [131] assumes that the intention estimates are given, uses a 
threshold number of intention for proactive reaction, focuses on the actions rather on the 
proactive action selection and considers all the intentions without considering them any 
relevance with respect to the current situation. The presented approach [131] also does not 
provide a confusion resolution if the intention estimates consists of conflicting intentions.   
All in all, the proactive reaction of robot is still novel when the human and robot are in strict 
cooperation with each other. The proactive response of the robot means that the robot can 
quickly recognize the human intention and react accordingly. The robot recognizes the 
intention implicitly by the human actions and the surrounding environment. Although the 
safety is an issue for autonomous HRI; that is why the proactiveness of robot is still in its 
beginning with respect to strict HRI especially in industrial robotics where big and power full 
robotic arms work at considerably high speed. 

5.3 Trigger state determination 
Proactive and in-time reactions from the robot are important for intuitive HRI. The procedure 
given in Figure 5.3 describes the method to enable the robot to respond as quickly as possible 
by selecting the earliest possible trigger states of the FSMi, ni ,...,1= . The trigger state is the 
end state which corresponds to the state that finishes the intention recognition process. The 
intention recognition process [12] is discussed in detail in Chapter 3. The FSMi, ni ,...,1=  
represent the human intentions. The input to the procedure in Figure 5.3 consists of all the 
previous FSMi and FSMn+1 that may be added to a group of Finite State Machines (FSMs).  
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Figure 5.3: Trigger state determination algorithm
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The trigger state of FSMn+1 is selected with respect to all the already existing FSMi. The 
output of the procedure corresponds to the possible new groups of FSMs, discussed later in 
this section and the update of the trigger state of the FSMi within the exiting groups and / or 
without the groups. The trigger state is represented by Strigger. In Figure 5.3, the function ψindex 

maps the state S to its index I in a FSM, i.e., ψindex : S → I .The index I corresponds to the 
position of the state S in a FSM. Similarly the function ψsize maps a FSM to the number of 
states, i.e., N, present in the FSM, i.e.,  ψsize : FSM → N. The function ψstate maps a FSM to its 
state S at the position j, i.e., ψstate : FSM, j → Sj . The function ψtrigger-state assigns a state S of a 
FSM as the trigger state Strigger of the FSM, i.e., ψtrigger-state : S → Strigger . The function ψ¬trigger-

state does the reverse of ψtrigger-state ,i.e., it converts the trigger state Strigger into a normal state S. 
The function ψreturn-trigger-state returns the trigger state Strigger of a FSM. 
In this procedure, the FSMn+1 is added by comparing with all the already existing FSMi. 
Initially the start state of FSMn+1 is considered as the trigger state (Line 1). The comparison 
between FSMn+1 and FSMi is performed by comparing the transition conditions of the states 
of both the FSMs, i.e., FSMn+1 and FSMi, in a sequence (Lines 2-20). If during the 
comparison of FSMn+1 and FSMi (Line 4) the state index j of FSMn+1 increases than the size 
of FSMi then update of trigger state is performed for FSMn+1 and FSMi (Lines 16-17). If 
FSMi belongs to a group Gk, discussed later in Section 5.3, i.e., FSMi ∈Gk then FSMn+1 is 
added to that group (Lines 27-30). The intention prior values of the FSMs belonging to the 
group Gk are updated. The intention priors correspond to the prior probabilities of concerning 
FSMs ∈Gk. If FSMi does not belong to a group then a new group is created (Lines 33-37). If a 
mismatch occurs (Line 5) then the trigger state assignment is performed for the FSMn+1 (Line 
8). The trigger state of the FSMi is also updated if necessary (Lines 10-14). If the state index j 
corresponding to the last successful comparison between FSMi and FSMn+1 is greater than the 
current trigger state index of FSMi (Line 10) then the update is performed for the trigger state 
for FSMi. Otherwise no update of trigger state is performed for the FSMi.  The trigger state 
always moves toward the actual end state of FSMi during the process of comparison. The 
lines 22-25 correspond to the situation if FSMn+1 and FSMi are same and are of same size 
then FSMn+1 is removed and procedure exits (Line 24).  The lines 21, 26-37 correspond to the 
situation if FSMn+1 and FSMi are same and one is of bigger in size form the other. The 
procedure stops if initial part of FSMi matches to complete FSMn+1 or vice versa and if there 
exists a group Gk such that FSMi ∈Gk (Line 27) then FSMn+1 is assigned to that group Gk. 
Otherwise a new group Gk+1 is created and FSMn+1 and FSMi are assigned to that group. The 
matching of initial part of FSMi to FSMn+1 means that the sequence from the start state of 
FSMi to some intermediate state of FSMi matches to FSMn+1 from the start state to the end 
state with respect to the state transition conditions. The matching can also occur in the reverse 
manner, i.e., initial part of FSMn+1 matches to a complete FSMi.  
A group G of FSMs is only created if there is a FSMi and FSMn+1 such that they exactly match 
with each other and one is bigger than the other and already no group exists (Lines 33-37). In 
case, if a group already exists then FSMn+1 is simply added to that group (Lines 27-31). If a 
group is constructed then a common trigger state is nominated for the group that is the actual 
end state of the smallest FSM in the group. If that trigger state is reached then the intention 
selection in the group is performed depending on the intention priors of the FSMs in the 
group, i.e., FSMs ∈Gk. Initially if the intention priors are uniform (Line 35) then the intention 
selection is performed randomly and the switch between the different intentions (represented 
by different FSMs∈Gk) in the group is performed by the human interruption. After an 
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intention is recognized the intention priors are updated accordingly, e.g., if we suppose there 
are three FSMs in a group Gk that initially have the uniform priors of 1/|FSMs| then if the 
intention concerning FSM1 out of three in the group is recognized then the priors will be 
updated as given in Figure 5.4. The term |FSMs| corresponds to the number of FSMs. In the 
update step (Figure 5.4) the prior of the FSM concerning the recognized intention (FSM1) is 
increased. The increment is performed by adding the uniform prior. Afterwards the 
normalization is performed. The time complexity of this algorithm is given below where n                                                     
is the total number of the existing finite state machines FSMs and m is the number of the 
states of FSMn+1.  

)1(.)( −= mnnT  
The best case occurs if FSMn+1 already exist or it belongs to some already existing group. The 
normal case involves FSMn+1 that does not belong to any existing group. The worst case 
occurs if all the state machines FSMi have the same initial part as the FSMn+1 till the second 
last state of FSMn+1. 
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Figure 5.4: Update of the intention priors 
 

The Figure 5.5 shows the recognition of the intention depending upon the priors of the FSMs 
in case if common end state relating to a group is reached. 
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Figure 5.5: Updated flow of intention recognition algorithm  
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5.4 Online update of transition weight 
The transition weights correspond to the weights assigned to the transition conditions in a 
FSMi, i = 1,…, n. The weights are used to control the transition conditions. The transition 
weights help the robot to take the premature intuitive decision for intention recognition. The 
robot response becomes quick (proactive) by taking the decision prematurely. The robot can 
decide in an ambiguous situation that may lead to two or more different human intentions. 
In this section different aspects existing in an observation are focused. The observation has 
the highest probability for the state and causes the state transition.  The observation is 
decomposed into multiple aspects of the observation. Each aspect of the observation 
corresponds to a transition condition. All the transition conditions (observation aspects) are 
equally assigned the high transition probability as the transition conditions correspond to the 
highly likely observation for the state. The observation aspects that are unique to the 
observation (unique transition conditions) get the maximum transition weight. The 
observation aspects that are common among the different observations (common transition 
conditions) get uniform transition weight with respect to the number of observations. It is 
explained with example concerning Figure 5.6 and 5.7. The transition weights are calculated 
for the transition conditions that are common among different FSMs. Every unique transition 
condition is given the maximum transition weight, i.e., 1 that is not common among a group 
of FSMs. Here the common transition conditions mean the conditions that are common with 
respect to the observation’s specification and the state’s place, i.e., the states are equally apart 
from the start state and previous transition conditions, if exist, are the same. These FSMs are 
grouped together based on the common transition conditions. The group of FSMs is not the 
same as described earlier in Figure 5.3 (Lines 26-37), in Section 5.3. In the previous grouping 
only one transition condition is considered among the states and the grouping is performed on 
the basis of similar sequence of transition conditions. In this grouping the focus is on the 
common transition conditions that exist along with other unique transition conditions among 
the states. The characteristics of common and unique transition conditions are explained 
through Figure 5.6. In Figure 5.6 ai, bi and ci represent the observation aspects (transition 
conditions) of observations a, b, and c.  
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Figure 5.6: FSM1 and FSM2 representing the common transition conditions 

The unique transition conditions a1, b1, b3, b4, b5, c1, c2, c3, c4 get the transition weight of 1 
and the transition condition b2 get initially the uniformly distributed transition weights among 
the common transition condition, i.e., 0.5. The weight of b2 is updated with the recognition of 
the intention represented by the FSMs relating to b2.  
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At the construction time of the FSM different probabilities are assigned to the transition 
conditions between the states. The transition condition that is highly likely to occur at the 
state and leads to the next state gets the highest transition probability. This highest probability 
is used as a threshold for the state transition from the state to the next state [12] [14].  
There may be the case as shown for FSM1 and FSM2 in Figure 5.6 that some of the highly 
likely transition conditions are common among different FSMs. These common transition 
conditions among the FSMs, in a group, are initially assigned the uniform transition weights. 
The update of the weights is performed by the addition of 1/|FSMs| to the weight of transition 
condition that belongs to the FSM representing the recognized intention and then doing the 
normalization as shown in Figure 5.8. The |FSM| represents the number of FSMs having the 
common transition condition in a group. Since for a transition to occur between the states the 
observed transition condition should have the transition value greater or equal to the threshold 
value. The common transition condition that was earlier unique and had the maximum 
transition weight and had the maximum observation probability could trigger the transition. 
However, as a common transition condition the transition weight is reduced to 1/| FSMs|. 
Thus the assigned maximum transition probability of the common observation, multiplied by 
the transition weight can not trigger the transition to the next state. It will take very long that 
the weight of the common transition is updated very near to one and the weight of the other 
related common transition conditions near to zero. Then that common transition condition 
with updated weight near to 1, multiplied by the transition probability may cause the 
transition. For the purpose of the faster increment in the update of transition condition’s 
weight an adaption factor θ is introduced.  That is also multiplied by the transition weight and 
transition probability to calculate the transition value. The adaption factor θ may be changed 
in order to adjust the adaption rate. The adaption factor used for different no of FSMs is given 
below 
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Figure 5.7: FSMs with common transition condition 

The transition weights are further explained by an example using two FSMs.  These two 
FSMs have one common transition condition as shown in Figure 5.7. There exist three 
transition conditions a1, a2, and a3 in FSM1. FSM2 has transition conditions a2, a4, and a5 for 
the states Sn to Sn+1. The transition condition a2 is common among the FSMs. Therefore, 
initially the transition condition a2 in both the FSMs get the uniform transition weight, i.e., 0.5 
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and all the other transition condition get the highest transition weight, i.e., 1. Now, whenever 
the observation of a1, a3, a4, a5 occurs then a transition occurs from the state Sn to Sn+1. As the 
observations that are highly likely for a state are given the high observation probability for 
that state. Therefore the transition conditions a1, a2, a3, a4, a5 have the highest transition 
probability. The adaption factor for all the unique transition conditions is 1. Therefore 
calculating the transition value for the transition condition a1, a3, a4, a5 will give the value 
equal to the transition threshold for the concerned states. The transition threshold is equal to 
the highest transition probability between the consecutive states. The transition due to a 
transition condition only occurs if the calculated transition value for that transition condition 
is greater or equal to the transition threshold for the state. In case of transition condition a2, no 
state transition will occur in both the FSMs. Although the transition probability initially 
assigned to a2 in both the FSMs is equal to the threshold value. But the transition weight is 0.5 
and the adaption factor is 1.3. Thus the calculated transition value will be less than the 
transition threshold value as shown below 
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Figure 5.8: Update and Normalization of transition weights for common transition conditions 
using the adaption factor θ 
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Now if a unique observation relating FSM1 (Figure 5.7) at state Sn occurs and intention 
regarding FSM1 is recognized then the transition weight of a2 in FSM1 (Figure 5.7) is 
increased and intention weight of a2 in FSM2 (Figure 5.7) is decreased. The update is 
performed by the addition of 1/| FSMs|, i.e., the average value of the numbers of FSMs having 
the common transition condition.  
In the above described example there are two FSMs having one common transition condition. 
The transition weight is multiplied with the adaption factor to calculate the transition value as 
shown in Figure 5.8. The intention related to FSM1 (Figure 5.7) is recognized thus the 
transition weight of a2 in FSM1 (Figure 5.7) is increased by 0.5. The adaption factor θ 
increases the transition weight to the extent that a common transition condition in a specific 
FSM is triggered as shown in the calculation, given in Figure 5.8. For that intention to be 
recognized the human produces the unique transition condition relating to the concerned 
FSM. The common transition condition causes the transition between the states for a specific 
FSM that represent the recognized human intention.

 

If θ is selected as |FSM|/2 then the adaption rate for a common transition condition aij (at ith 
state of jth FSM) of FSMj becomes 2 for |FSM| > 3. The adaption rate of 2 means that if an 
intention represented by FSMj is recognized 2 times consecutively with respect to other FSMs 
in a group having the common transition conditions. It is assumed that the transition weights 
are uniform. Then the transition weight of aij of FSMj is increased and the weights of other 
related common transition conditions in the group FSMs are decreased. The two times 
consecutive increments of transition weight of aij and the scaling performed with |FSMs|/2 
causes the state transition due to aij for |FSMs| > 3. If |FSMs| = 3 then three times consecutive 
increments in the transition weight of aij is required to trigger the aij state transition. Similarly, 
if θ = |FSMs|/3 then the specific increment in the transition weight requires 3 steps for |FSMs| 
> 7. In case if 5 ≤ |FSMs| ≤ 7 then 4 steps are required. The Table in 5.1 describes the number 
of steps required with respect to the |FSMs| and θ. 
 

θ No of Steps |FSM| 
| FSMs|/2 2 >  3 

| FSMs|/2 3 =  3 

| FSMs|/3 3 >  7 

| FSMs|/3 4 ≥  5 

| FSMs|/3 5 ≥  3 

| FSMs|/4 4 >  11 

| FSMs|/4 5 ≥  8 
| FSMs|/4 6 ≥  6 

   

Table 5.1: Description of θ with respect to |FSM| and no of steps 

The transition weights are calculated in terms of 1/|FSMs| as shown in Figure 5.9 and 5.10. 
The calculation is so performed that the transition weight m1 is increased at each step by 1/n =   
1/| FSMs|. At each step m1 is updated (increased by 1/n) and then normalized. The six step 
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update and normalization is performed for mn transition weights in Figure 5.9 and 5.10. Thus 
m1 increases and m2...n decrease.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: Calculated Transition weights  
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Figure 5.10: Calculated Transition weights  

 
Therefore it can be easily checked by multiplying the θ with m1 at different steps that how 
many consecutive steps (weight increments) are required for increment of m1 such that m1 can 
cause state transition, e.g., if we take θ = |FSM|/2 and |FSM|= 3 m1 can cause state transition, 
results are shown in Figure 5.11. 
It is also mentioned above in the Table 5.1 row 2 that at Step 3 the transition weight (updated 
and normalized) multiplied by θ causes the state transition. That value multiplied with the 
transition probability (aj) will not decrease the calculated transition value and will cause the 
state transition.  
 
 
 
 
 
 
 
 

 
 

Figure 5.11: Consecutive increment of a transition weight 
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5.5 Experiments 
The experiments have been performed with a robotic arm of six degrees of freedom. The 
human and the robot interact in a HRI workspace shown in Figure 3.9. The work space 
consists of a table with objects and buttons on the table along with the robotic arm. The video 
data is captured with an overhead FireWire digital camera with the frame size of 640 x 480 
pixels.  The camera provides video data at the speed of 30 frames / sec. HRI and image 
analysis is implemented using Programming language C++. The robot reactions are realized 
using the robot Programming language V++ for the robotic arm. The robot is communicated 
the  cooperative instructions using the TCP/IP connection for assigning different operation, 
e.g., pick, place and move to a certain location, etc. Common Skin detection, Edge detection 
algorithms and Fourier descriptors are used for the image analysis. 
The buttons on the table include Stop, Learn, Pause, Play, and Reset as shown in Figures 5.12, 
5.13, and  5.14. These buttons are used by the human for communication with the robot 
during HRI. If the human wants to teach the robot about his intention then the human puts the 
hand on the Learn button. Afterwards the human performs the intended task. The Stop button 
is used by the human if the human wants to stop the robot from performing a task and undo 
the current robot action. The robot temporarily stops its activity if the Pause button is used. If 
the Play button is used then the robot starts recognizing the known intentions and after 
recognizing an intention the robot reacts accordingly. The Reset button is used to remove all 
the known intentions that are stored as FSMs. 

 

Figure 5.12: Intention for placing the boxes in a square pattern 

The perception of human intention is performed based on Case 3 discussed in Chapter 4, i.e., 
the human actions and intention is recognized from the scene changes occurred due to the 
human action. For performing the experiment regarding the arrangements of objects on the 
table, different human intentions are taught to the robot as discussed in Chapter 4. The two 
taught human intentions are shown in Figure 5.12 and 5.13. 
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Figure 5.13: Intention for placing the boxes in longitudinal pattern 

The Figure 5.14 shows the similarity of the situation (ellipse) for which the robot needs to 
decide for premature action selection. First the intentions relating to Figure 5.12 and 5.13 are 
taught to the robot. Then the robot is presented the situation shown in Figure 5.14. The robot 
can not decide how to react in the situation shown in Figure 5.14. The robot waits for the 
human to disambiguate the situation.  

 

Figure 5.14: Human robot interaction workspace 

Now, if the human performs the action regarding to one of the intentions as shown in Figure 
5.12 and 5.13 then the transition weight of the common transition condition in concerned 
FSM is increased and for the other FSM is decreased.  Initially, the ambiguous case as shown 
in Figure 5.14, if a task is disambiguated consecutively two times and third time the robot is 
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faced with the ambiguous situation then the robot reacts accordingly, i.e., the robot performs 
the most likely human intended task in that situation. 

 

Figure 5.15: Transition weights with out adaption factor  

The graph in Figure 5.15 corresponds to the transition weights in two FSMs with one 
common transition condition as shown in Figure 5.12 and 5.13. Initially, at Step 0 the 
transition weights are uniform, i.e., 0.5 for both the common transition conditions. The 
transition weight represented by red line represent the transition condition whose concerning 
intention is selected consecutively three times. Thus the red line rises and green line falls. In 
spite of rise in the red line, the transition weight (red line) is less than 1 at the Step 2 and 3 as 
shown in Figure 5.15. 

 

Figure 5.16: Transition weights with adaption factor 

The transition weight scaled with adaption factor 1.3 reaches the value 1 at Step 2, as shown 
in Figure 5.16 and causes the state transition. Form Step 3-7 the transition weight of transition 
condition (green line) is increased due to the consecutive selection of the concerning intention 
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as shown in Figure 5.15 and 5.16. At Step 7, the transition weight (green line) in combination 
with adaption factor can cause transition.  
Similarly in the case of trigger state determination and update the premature intention 
recognition is performed with the help of priors. The robot reacts according to the intention of 
highest prior FSM in the group. If the human intends an FSM with lower prior then the robot 
switches to the next intention (FSM) with the next highest prior. The priors of FSMs are 
updated such that the prior of intention (FSM) that is successfully applied is increased and the 
priors of the others are decreased.  The priors of two FSMs in a group are shown in Figure 
5.17. The graph in Figure 5.17 represents that for first 11 interactions an intention is selected 
consecutively and for the rest of 9 interactions the other intention is selected consecutively. 

 

Figure 5.17: Priors alternating due to the intention switch after 10th interaction. 

5.6 Summary 
In this chapter we presented a probabilistic proactive approach for the intuitive HRI in the 
ambiguous situation. Two cases were discussed for proactive robot response for intuitive HRI. 
For making the robot interactions as quick as possible, trigger state selection algorithm is 
discussed that describes how the trigger states are selected in case of similar state sequence of 
different FSMs. In this algorithm FSMn+1 is compared with all the already existing FSMi, i = 
1,…, n. During the comparison the FSMn+1 can be added to the already existing group of 
FSMs. A new group can also be made concerning the FSMn+1 and already existing FSMi. A 
group of FSMs is only created if there is an already existing FSMi and FSMn+1 such that they 
exactly match with each other and one has higher number of states than the other. In case of 
groups the intention priors concerning the FSMs are created or updated. The increment and 
decrement of the intention priors is performed if an intention concerning a FSM that belong to 
a group is recognized. In this case the intention prior of the FSM concerning the recognized 
intention is increased by 1/ |FSMs|. The term |FSMs|  corresponds to the number of FSMs in 
the group. After increment in the intention prior of the concerned FSM, all the intention priors 
are normalized. Thus the intention priors of other FSMs concerning other intentions in the 
group are decreased. 
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In the second case, the proactive nature of HRI is discussed at lower level, i.e., the ambiguous 
(leading to two or more different human intentions) human action performed by the 
interacting human is probabilistically handled for proactive HRI. The ambiguous human 
intention case is handled by the transition weights. The transition weights correspond to the 
weights assigned to the transition conditions in the FSMs. The transition conditions that are 
common in different FSMs are assigned the uniform transition weight. A common transition 
condition with uniform transition weight can not cause the state transition. Although the 
transition probability of the common transition condition is high but multiplied with the 
uniform transition weight the state transition does not occur. If the recognized intention 
corresponds to a FSM that has common transition condition then the transition weight for that 
common transition condition is increased and for other concerning common transition 
conditions the transition weights are decreased. An adaption factor θ is used to quickly 
increase the transition weight of a common transition condition. The adaption factor is 
multiplied by the transition weight to increase the value of the transition weight. 
If the robot has proactively responded according to the human intention then the human 
intention does not change. In case if the proactive response is not exactly according to the 
human intention then the human intention may change, e.g., if the human intended to drink 
cola but he was offered water then he may change his intention to drink water. If the robot’s 
proactive response is totally different from the human intention then the human intention may 
not change and the robot’s reaction can be rejected by the human. If the human has no 
specific intention then a proactive action by the robot may induce the intention (concerning 
the robot’s proactive action) in the human. 
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Chapter 6 
 
Interaction in unknown scenarios 
 
 
A robot as a machine can not extend its interaction model to adapt to the changing human 
intention that is not already known to the robot. For a robot to be intuitive, it should possess 
the capability to interact with the human even if the intention of the human is not known. 
In this chapter an approach is introduced to HRI in a known scenario with unknown human 
intention. Initially, the robot reacts by copying the human action. Before each reaction, the 
robot hypothesizes its potential actions and selects one that is found most suitable. The robot 
may also use the HRI history to hypothesize the potential actions. Along with the history, the 
robot also considers the action randomness and action predictions to hypothesize the potential 
actions. As solution, a general Reinforcement Learning (RL) based algorithm is proposed that 
suggests learning of HRI in an unknown human intention scenario. A Particle Filter (PF) 
based algorithm is proposed to support the probabilistic action selection for HRI. The 
experiments for HRI are performed by a robotic arm involving the arrangement of known 
objects with unknown human intention. The task of the robot is to interact with the human 
according to the estimated human action. 
The remainder of this chapter is organized as follows: In Section 6.1 the problem of HRI with 
unknown human intention is defined and motivated. The approaches related to the discussed 
problem are described in Section 6.2. In Section 6.3 a general RL based HRI algorithm is 
proposed. In Section 6.4 the process of probabilistic action selection is explained in detail. 
Section 6.5 describes the experiments performed using the proposed approach. Finally, 
Section 6.6 summarizes the chapter. 

6.1 Problem definition and Motivation 
The problem corresponds to HRI in an unknown human intention scenario. The human can 
has an intention i ∈ ,  = { i1,…,in}, n ∈ ℕ while working in the HRI workspace. The robot 
does not know . The robot also does not know how to react. The robot knows the HRI 
workspace and the actions  = {a1,…,am}, m ∈ ℕ that can be performed by the human in 
HRI workspace. The input to the problem corresponds to the scene information, the scene 
change information, and the understanding of human actions. The robot is required to select 
an action ak, k ∈ {1,…, m} for interaction with the human. It is assumed that during the HRI 
the human only performs the actions that are related to his current intention.  
The humans possess the capability of responding to the problem in an unknown or unseen 
situation. This is a significant difference between a machine and a man. A machine can only 
perform the task that it is made to perform. A machine can usually not perform in a new 
situation. On the contrary the human has built-in capability to interact with another human 
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without knowing his intention. The interacting human adapts himself as he interacts with the 
other human whose intention is not known to him. We discuss two cases in which one human 
interacts with another human in a situation that the intention of the other human is unknown 
to him. In first case, we consider a human A that is working in an industrial workplace with 
some machines along with another human co-worker B. The human B picks and places the 
objects to perform an operation on them with the help of machines. The human A can interact 
with B by placing the objects without knowing the operation that B wants to perform on the 
objects (with the help of the machines). The human A can also correct himself by the 
correcting response from B. The correcting response may be the type of objects that should be 
picked and placed. In the second case, two humans interact in a household scenario. The 
second human does not know the intention of first human. The first human has the intention 
of tidy up the things. The second human performs as he observes the first human and 
maintains a record about the actions of the first human and the estimated intention. As the 
interaction between both the humans proceeds, the second human interacts more intuitively by 
repeating the previously performed actions.  
 

   

   

Figure 6.1: Intuitive HRI in a scenario where the human intention is unknown to the robot. In 
the top left figure the human starts the HRI by pressing (putting the hand on) the interaction 
button and picks and places an object according to his intention. In the top middle figure the 
robot makes a hypothesis (red cross) to react intuitively and places the object in the top right 
figure. The human corrects the robotic reaction in the bottom left figure. The robot once 
again makes hypotheses (red crosses) in the bottom middle figure. The robot performs the 
action according to the most suitable action hypothesis in the bottom right figure. 
 
The actions of the second human may also be corrected by the first human. It is very 
important property of the humans that they can interact in a situation if they are not given the 
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intention of the cooperating humans. This property is equally important for HRI, i.e., if the 
robot does not know the intention of the interacting human then he must respond intuitively. 
We discuss a simple example for HRI in which the robot does not know the human intention. 
The HRI workspace consists of objects on the table as shown in Figure 6.1. The human has 
the intention of arranging the objects in a specific order on the table that is not known to the 
robot. The human initiates its actions according to his intention. The robot reacts by copying 
the human actions and changes its action on correction by the cooperating human as shown in 
Figure 6.1. 

6.2 Related work 
The section describes the related approaches. In this section the differences between the 
presented approach and the related approaches is also discussed. A large amount of literature 
exists for RL. In RL the agent learns the optimal policy for performing a task [78] without 
focusing the human and its intention. In the literature of RL many solutions exist with no 
human input. In some of RL-based solutions, human input exist, e.g., [94] and [22]. These are 
required to be trained. The presented solution is not required to be trained. In [4] RL is used to 
refine (teach) the robot behaviour.  
With a significant deviation from the basic focus of the HRI, there exist a lot of such solutions 
under the umbrella of Programming by Demonstration (PbD) that is almost a complete field 
in itself. The approaches [126][139][137][9] apply RL to PbD. Artificial Neural Networks 
(ANN) are used in [91][17], Hidden Markov Model (HMM) is used in [166] for PbD. The 
approaches in PbD try to enable the robot to reproduce what has been performed in front of 
the robot without focusing HRI.  
In the area of intention recognition for HRI, there exist a number of approaches 
[150][139][125] that use HMM, Dynamic Bayesian Network, and Hybrid Dynamic Bayesian 
Network to recognize the human intention. The approaches described in [77][98][169] 
perform Ontology, Utility-and Graph-based intention recognition. The HRI based on the 
probabilistically weighted Finite State Machines (FSM) is described in [12]. Each FSM 
represents a potential human intention that is already known to the system. The described 
intention recognition approaches can only recognize the already modelled human intentions 
for intuitive HRI. In case of a new (not modelled) intention the described intention 
recognition approaches can not be used by the robot for HRI. The approaches described in 
[131] [13] deal with the proactive recognition of the premature human intention. The 
approaches [131] [13] can not be used if the concerning human intention is not modelled.  
More specifically [14] describes how to handle the totally new situation in intention 
recognition based HRI. The approach described in [14] does not suggest the robot how to 
react in the totally unseen situation. Rather it suggests first to learn how to react and then to 
interact in that situation.  
In the literature of intuitive HRI, the topic of intuitive HRI in an unknown human intention 
scenario is not considerably explored. The proposed approach corresponds to HRI in the 
known HRI scenario with an unknown human intention. The known scenario means that the 
objects present in the scene are known to the robotic system. The changes in the scene along 
with the associated human actions are also known to the robot. The unknown human intention 
describes what the human intends about the scene and that is not known already to the robot. 
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6.3 Interaction in an unknown intention scenario 
The presented approach proposes a probabilistic solution for the HRI with the unknown 
human intention. In the proposed solution, the robot interacts with the human by selecting a 
suitable action. If the selected action is according to the human’s intention then the robot 
continues. Otherwise, the human may correct the performed robotic action or may ask the 
robot to select another action. The robot hypothesizes all the possible seen actions and selects 
an action that is probabilistically suitable and has good history support if it exists. 
An algorithm is proposed on the basis of RL for intuitive HRI in the unknown intention 
scenario. In this algorithm, the robot interacts by taking into account the human response 
while interacting with the human. The robot’s reactions become pertinent by the passage of 
time as the robot interacts more and more with the human with respect to an intention. This is 
the point where the algorithm has resemblance with the RL paradigm as the robot’s 
interacting capability improves as the robot interacts with the human. As RL allows the agent 
to decide what action to take in a specific state depending on a reward function, similarly in 
this algorithm the robot decides for an action depending on three factors that are: The 
randomness of that action, the history support of that action, and the weight of the that action. 
The reason for proposing a new RL-based algorithm is due to the fact that in the current RL 
algorithms [78], the agent (robot) interacts with the environment and gets the reward against 
his action. In the proposed algorithm, the rewards are directly given by the human. The 
human either gives reward to guide the robot to make a better reply or simply corrects the 
agent’s action. Therefore, this is also semi-supervised approach in this sense that the agent 
may be corrected by the human but not necessarily in every case. Another reason that the 
proposed algorithm deviates from the core idea of RL is that the human can not wait for a 
long time for the agent to learn the optimal action and then perform that action. The algorithm 
is given in Figure 6.2. 
Initially the action set A and state set S are empty. Each action aF1,…,Fn is characterized by n 
different features F1,…, Fn. The state set S consists of 3-tuple element. Each 3-tuple contains 
the state si before the action and the state si+ 1 after the action and the action aF1,…,Fn such that 
F1,…,Fn have specific values for the action aF1,…,Fn. It is assumed that the human starts the 
interaction and the robot responds. Therefore the robot waits for the human action. It is also 
reasonable to wait for the human action as the intention of the human is not known to the 
robot. 
After the human has performed an action, a 3-tuple is added to set S, i.e., state si (before the 
human has performed the action), the performed human action aF1, …, Fn and the state si+1 

(after the human has performed the action) (Line 5). The robot reacts after making an 
educated guess. The educated guess corresponds to the selection of the appropriate action. 
The process of selecting an appropriate reaction is discussed in Section 6.4. If the reaction is 
according to the human intention and accepted by the human then another 3-tuple is added to 
the set S (Line 16). If the human asks to change the action then the robot acts with the next 
likely action (Line 14), if there exist one. In case that the human performs the correction then 
the 3-tuple is added to the set S and the action aF1,…,Fn  is added to the set A if the action is 
newly performed by the human (Lines 8-12). The input of the algorithm involves the human 
feedback concerning the robot action. The output of the algorithm given in Figure 6.2 is the 
set S. The set S can be used to construct a probabilistic FSM [12].  The process continues until 
the goal state is reached. The goal state is reached if all the objects present in the scene are 
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acted upon by the human and robot and the human do not perform any further action. The 
goal state is also reached if the human stops the robot from further interaction.  
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Figure 6.2: Reinforcement-based HRI algorithm 

6.4 Probabilistic action selection 
We motivate the problem of probabilistic action selection for intuitive HRI in an unknown 
human intention scenario by an example of interaction between two perfect strangers. They 
do not know a common language to communicate with each other. The person A is totally 
new to the work area, joins to collaborate with the person B who is already experienced with 
the tasks in the work area. At each new task, the person A observes person B and tries to help 
him by copying his action and amends his own actions by the correction performed by the 
person B. Afterwards the person A may analyze the similarities in the action sequence 
performed in the new task and the action sequences performed previously. The similarity 
corresponds to the fact that how many times after an action a the action b was performed. 
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Depending on the similarities, person A may select an action to collaborate. The person A may 
select an action finding the similarity between the previous and current task. The person A 
keeps track of the complete action sequence concerning an intention of person B, for later use 
for the interaction in the unknown intention cases. 
We replace the person A with the robot and assume that the robot is already given the features 
that characterize the actions of the human (person B). Thus the robot can understand the 
human actions as well as correction with respect to the features. The scene information is also 
known to the robot, i.e., the objects that exist in the scene. In order to collaborate intuitively 
with the human, the robot needs to follow the pattern of human activities simulating him. 
Similarly, at the start of each new task corresponding to unknown human intention, the robot 
repeats the human action. For simulating the human analysis of action selection, the robot 
needs to know how many times P(ai) an action ai is performed, how many times P(aj | ai) an 
action aj is performed after action ai, what kind of action sequences are performed already 
while collaboration, and what action should be preferred. The following aspects are 
considered in order to interact with the human in the unknown human intention case:  

A. Action probability  
B. Action prediction 
C. Weighting of the predicted actions  
D. History-based action prediction 
E. Combination of action aspects  

6.4.1 Action probability  
The action probabilities tell about the probabilistic suitability of an action. The conditional 
probability P(aj | ai) describes the uncertainty involved in the performed action aj with respect 
to the previously performed action ai. The robot first tries to find out if the actions aj and ai 
have already occurred in the same sequence and how many times. In case that the robot 
cannot find an already existing sequence of the actions aj and ai, then it simply tries to find 
out the prior probability P(aj) of the action aj, i.e., how many times the action aj has been 
performed by the human with respect to other actions. The robot uses one of these values 
while selecting an action for reaction. 

6.4.2  Action prediction 
The actions performed by the human and the accepted robot actions are used as input to 
predict the future actions. Each action corresponds to a set of known features, i.e. F1,…,Fn. 
The future actions are predicted based on the human actions and accepted robot actions, 
observed during the HRI. After an action is performed, all the previously performed actions 
are considered for further action prediction. 
If the robot action is accepted then all the previous actions are used for new action prediction 
with respect to the performed action, shown in Figure 6.3 (left). If the robot’s action is 
corrected by the newly performed human action then that action is added as new action 
hypothesis to the previously existing hypotheses and newly created hypotheses, shown in 
Figure 6.3 (right). The Figure 6.3 (left & right) is further explained in next subsection with 
respect to weighting of actions.  
The prediction of actions is the performed after each HRI step. The interaction step 
corresponds to the action performed by the robot. The interaction step is completed if the 
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human accepts the robot action. Otherwise it is completed by the correction performed by the 
human.  

6.4.3 Weighting of the predicted actions 
All the expected scene changes produced due to the predicted actions are considered as 
hypotheses. Initially all the hypotheses are weighted uniformly. In Figure 6.3 (left & right), 
the predicted hypotheses are represented by the encircled dots. The simple dots represent the 
acted upon hypotheses that were accepted.  
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Figure 6.3: Generation and weighting of potential action hypotheses, a dot represents a 
performed action hypothesis, an encircled dot represents the result of a previously created 
action hypothesis, a triangulated dot represents the result of a currently created action 
hypothesis and the lines represent the action that lead to result of that action, i.e., encircled 
dot and triangulated dot. Left: Generation of hypotheses if robot action is accepted Right: 
Generation of hypotheses if robot action is corrected 

In case if the robot reaction is accepted by the human then the further action hypotheses are 
created only with respect to the that action, shown in Figure 6.3 (left). All the newly created 
hypotheses (represented as green) are weighted high with respect to the previously existing 
hypotheses. The accepted action represented as blue in Figure 6.3 (left) gets higher weight 
with respect to the newly generated (green) hypotheses. It is assumed that an action can be 
repeated while performing a task, e.g., there may be multiple objects and the same action is 
required to be performed on them.  
In case if the human rejects the robot’s response and corrects the action performed by the 
robot. Then the hypotheses are generated and updated with the addition of the new (correction 
by human) action, shown in Figure 6.3 (right). The new action (shown red in Figure 6.3 
(right)) is added to the previously generated hypotheses (update) with comparatively higher 
weight from the already exiting hypotheses. The new hypotheses are generated with respect to 
the correction and get higher weight with respect to the previous hypotheses (shown green in 
Figure 6.3 (right)). In new hypotheses the newly added action (shown red) gets higher weight 
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with respect to newly generated hypotheses. The higher weight is due to the assumption that 
an action can be repeated while performing a task.         

6.4.4 History-based actions prediction 
As descried earlier that a human intention consists of a sequence of actions. Each action can 
be characterized by a set of n features. It means that each action can be represented as a point 
in the n dimensional space. Thus each intention consisting of a sequence of action 
(represented as point in the n dimensional space) is represented as an ordered set of points. 
A complete action sequence concerning an intention represents an intention trajectory. 
Graphically an intention can be represented as a trajectory in the n dimensional space as 
shown in Figure 6.4. 
 

(x11,x21,x31,…,xn1)

(x13,x23,x33,…,xn3)

(x12,x22,x32,…,xn2)
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(x13,x23,x33,…,xn3)

(x12,x22,x32,…,xn2)

(x14,x24,x34,…,xn4)

 
 

Figure 6.4: Action sequence trajectory concerning a human intention, each dot represents an 
action and a complete trajectory represents a task concerning a human intention 
 
Using the trajectories of the different intentions the similarities between different intentions 
can be found. The future action hypotheses can be evaluated with respect to the previous 
trajectories. It is explained with the help of following Figure 6.5. 
The green trajectories represent the already performed action sequences concerning the 
human intentions. The blue trajectory represents the current interaction action sequence. The 
predicted action hypotheses are placed as black dots with dotted lines. The hypothesis with 
significant historical support gets higher weight with respect to others. 

 

 
Figure 6.5: Hypothesis evaluation using previous intention trajectories 
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6.4.5 Combination of action aspects  
The final selection out of all the action hypotheses is made by considering the randomness, 
history support, and the weight of each hypothesis. The history support and randomness of 
each action hypothesis is weighted by the hypothesis weight. For each action hypothesis a 
value is calculated by adding the weighted history support value wi

tp(A i
t|H) and weighted 

action randomness wi
tp(A i

t|At-1), i.e., wi
tp(A i

t|At-1) + wi
tp(A i

t|H). The calculated actions are 
stored in descending order with respect to their action values. The top action in the action list 
is selected for the robotic reaction. The next lower value actions are selected if the human 
asks the robot to switch its reaction. The combination of the history support, randomness and 
the hypotheses weight is shown in Figure 6.6.  
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Figure 6.6: Final action selection for HRI by the combination of history support and 
randomness of each action hypothesis with the weight of the hypothesis, resulting in a value, 
the action hypotheses are arranged in descending order with respect to the resulting value    

6.5 Particle Filter based action selection 
The mechanism used in Particle Filter (PF) considers all the possible solutions as particles. PF 
is an iterative algorithm and operates in two phases, i.e., prediction and update. In the 
prediction phase each particle is modified according to the given prediction model. Each 
particle has weight that represents the significance of the particle. In the update phase the 
particle weights are updated based on the incoming sensory information. According to the 
weight the particles are re-sampled [45]. Using the particles the distribution of solution is 
estimated.  PF is used to track and estimate the solution of a problem with respect to time. The 
current problem of the robotic reaction in the unknown human intention scenario also 
corresponds to the prediction and update of the current belief of the reacting agent about the 
unknown human intention. The robot uses its history knowledge as well as the immediate 
previous human action or the previous accepted action of the robot to predict the action for 
HRI. The update is performed on the basis of human response. If the human accepts the 
reaction then the accepted action is predicted with more likelihood (Figure 6.3 left). In case if 
the human responds by simply correcting the robot’s reaction. Then the corrected human 
action (new human action) is predicted with more likelihood (Figure 6.3 right).  
The difference between the application of PF algorithm for the current problem and problems 
where PF is usually applied is spatial. As PF is mostly applied in the robot localization and 
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usually the state space involves the two dimensional (2D) space in which the robot exist. For 
more accuracy the orientation of the robot is considered. In the current case the state space 
corresponds to the human actions. If the human actions are represented in a n-dimensional 
space. Then the future actions can not be predicted based on the location of the current action. 
There is no action model for human action prediction as the motion model for robots.  Thus 
we have to assume all the possible actions as hypotheses and then the evaluation of the 
hypotheses can be performed on the basis of currently performed action and the history of 
performed action sequences concerning the intentions and the actions probabilities. Therefore 
the PF algorithm can not be applied directly to the current problem. 
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Figure 6.7: Initialization of the action particles 
 

The algorithm is described in Figures 6.7, 6.8, 6.9, and 6.10. In the initialization phase, all the 
action particles are created with equal weights as shown in Figure 6.7. The elements of set St 
(Line 4) correspond to a tuple of action particle, its weight and action value (discussed later in 
this section). In the probabilistic action selection described in Figure 6.8 the action values of 
all the existing action particles are calculated as shown in Line 3. The value of each action 
particle is calculated by multiplying the conditional probability of the action and historical 
support with the weight and adding them. In case if the conditional probability of a predicted 
action with respect to the previously performed action is not available then the prior of that 
action is used.  
At the Line 5 all the expected actions are sorted with respect to their values and stored.  The 
highest value action is selected for reaction. The system loops from Line 6 to 20 until a 
suitable action is selected or all the actions are tried or the human performs a correction. If the 
robotic reaction is accepted, i.e., the robot performs a suitable action then the particles are 
generated with respect to the performed action with higher weight as compared to the 
previously existing particles (Lines 10-11), Figure 6.3 left (green lines). The particle 
corresponding to the accepted action gets higher weight than the newly generated particles. It 
is shown in Figure 6.3 left (blue).  
If the robotic reaction is not accepted then the human may ask the robot to change its reaction. 
The robot selects the next highest value action for reaction (Lines 12-13). 
The human may also correct the robotic reaction without asking the robot to change its 
reaction. If the human correction belongs to the set of the predicted action then the particles 
are created with respect to that action with higher weight as compared to the exiting action 
particles (Lines 15-16), Figure 6.3 left (green lines). The particle corresponding to the human 
correction gets higher weight than the newly generated particles, Figure 6.3 left (blue). 
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 )Â(A from A Sample-10

accepted isaction robot  performed//                      ))Â((-9
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Figure 6.8: Probabilistic action selection for HRI 

In case if the human corrected action does not belong to the set of predicted actions (Line 17-
18, Figure 6.8) then re-initialization of the particles is performed, described in Figure 6.9. The 
human correction is represented by At in Figure 6.9. The new action is added to the list of 
known actions and new action particles are created with respect to the newly added action. 
The new particles are created for the newly added action with respect to previously existing 
actions with high weight as compared to the previously exiting particles (Lines 2-5, Figure 
6.9), Figure 6.3 (right) (red line along with black lines). The new action particles are also 
created using the previous actions with respect to the newly added action (Lines 6-7, Figure 
6.9).   
The weight of these new action particles is higher than the previously created (Lines 2-5, 
Figure 6.9) new action particles. The newly created particles (Lines 6-7, Figure 6.9) 
correspond to the green lines in Figure 6.3 (right). The new action particle representing the 
repetition of newly added action Figure 6.3 (right) (red line among green lines) is given the 
highest weight with respect to the all newly created particles. 
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Figure 6.9: Creation and weighting of the new action particles 
 

Afterwards the particles weight is normalized (Lines 8-13, Figure 6.9). The high weighting of 
the latest actions biases the robotic reaction towards the currently performed action. The re-
sampling of the particles is described in Figure 6.10. A threshold value τ is selected between 
0 and 1 / (total number of the particles), including 1 / (total number of the particles). If the 
weight of a particle is less than τ then that particle is eliminated. The other particles are kept. 
Then the weights of the particles are normalized. 
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Figure 6.10: Re-sampling of the action particles 
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6.6 Experiments 
The experiments are performed with a robotic arm with six degrees of freedom. The human 
and the robot interact in a HRI workspace shown in Figure 3.9. The HRI workspace consists 
of a table with the objects on the table. The video data is captured by an overhead FireWire 
digital camera with the standard frame size of 640 x 480 pixels at a frame rate of 30 frames / 
sec. HRI and image analysis are implemented using programming language C++. The robot 
reactions are realized using the robot programming language V++ for the robotic arm. The 
human actions are inferred from the scene changes occurred due to the human actions. The 
performed experiments involve actions that are characterized by two features, i.e., the 
distance between the objects and the orientation of the objects with respect to each other. The 
objects in the experiments involve the boxes on the table as shown in Figures 6.11 and 6.12. 
The performed experiments concern different arrangements of the objects according to the 
human intention.  
Each task representing a human intention is described by a trajectory (Section 6.4.4). In 2D 
case the trajectory is drawn in a plane having distance between the objects and orientation as 
axes. Each action is represented as a point in the plane. For a trajectory the angle concerning 
the slope of the line passing through the two immediate connected-points (Figure 6.4) is 
calculated.  
Thus for each trajectory, there exists a set of angles between the consecutive action points. 
For trajectory comparison the difference is calculated between the related sets of two 
concerning trajectories. The difference corresponds to different angle values in the two sets. 
The difference between the current (incomplete) HRI trajectory and the previous (complete 
task representing a human intention) trajectory is calculated. The trajectory, for which the 
difference is least, is used to evaluate the predicted action hypotheses. 
For spaces more than two dimensions, the direction vector between the two n-dimensional (n 
> 2) points of the intention trajectory can be calculated by subtracting second point from the 
first point, i.e., if (

nxxx 11211 ,...,, ) and (
nxxx 22221 ,...,, ) are two points then the direction vector will 

be calculated as [ ]nn xxxxxxv 1212221121 ,...,, −−−= . Now the comparison between the two direction 

vectors can simply be performed by calculating the angle between the two direction vector 
using the dot product of the vectors, i.e., 

21

211cos
vv

vv •= −θ  

First the anatomy and reasons for selecting a reaction in the experiments is explained. 
Afterwards the results of the performed experiments are discussed. The following 
experiments are considered for explaining the reaction selection mechanism. The unknown 
human intentions correspond to the arrangement of the objects. The considered unknown 
human intentions involve the arrangement of the objects in vertical and horizontal pattern, 
arrangements of the objects in a square pattern, and the arrangement of the objects in a 
diamond pattern. The arrangements of the objects according to the above described unknown 
human intentions are shown below in Figures 6.11 and 6.12. 
At the start the boxes are placed randomly on the table. The human picks and places the box 
at a point on the table as shown in Figure 6.13 by the box at (235, 150). Afterwards the human 
places another box vertically near the previously placed box as shown in Figure 6.13 by the 
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box at (235, 208). The system infers the human action as the distance and angle between the 
two vertically placed boxes, i.e., θ1 and d1. A hypothesis is created based on the observed 
action, i.e., the place to put the next box, shown in Figure 6.13 by the green circle. The 
hypotheses weights (Figure 6.9), action probabilities (Section 6.4.1), and the history support 
(Section 6.4.4) are considered for the estimation of the action. 
 
 

  
Figure 6.11: Unknown human intentions for arranging the boxes 

 

      
Figure 6.12: Unknown human intentions for arranging the boxes 

 
For the very first reaction there exist no conditional probability value and historical support 
value. In such case the prior probability of that action is used. In case of absence of historical 
support of action sequence all the predicted actions for the current HRI are given uniform 
weight. Therefore the system has the only highest value available reaction, i.e., placement of 
the box in the vertical pattern at the next location at an angle θ1 and distance d1. The weight of 
the hypothesis is represented by red cross at first interaction step in Figure 6.14.  
Now if the human intercepts and corrects the robot reaction then the system updates its 
possible actions by adding the corrected action if it is new and updates the conditional 
probability tables and the prior probability tables. The system also appends the corrected 
action in the current human robot interaction action sequence. 
The human accepts the robot reaction and the system updates its table without adding any new 
actions in its action table. Now the robot once again creates the hypothesis as shown in Figure 
6.13 by the blue circle. Till now the robot has observed one action thus it only creates one 
hypothesis which is the next place in the vertical pattern. 
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Figure 6.13: Hypotheses graph for intention shown in Figure 6.11 left 

 
Figure 6.14: Weight graph for intention shown in Figure 6.11 left 

That robotic reaction is also accepted by the human as he has the similar intention of 
arranging the boxes in vertical pattern. After each complete interaction the system stores the 
action sequence separately. The sequence consists of the human action, human correction and 
accepted robot reactions. 
In the hypotheses weight graph if a hypothesis is accepted as a reaction then that hypothesis is 
removed by making its value zero as shown in Figure 6.14 at interaction Step 2, i.e., the red 
line goes to zero.  
In the next HRI experiment the human intends to arrange the boxes in a horizontal order. The 
boxes are once again placed randomly on the table. The human picks a box and places it at a 
point on the table as shown in Figure 6.15 by the box at (156, 193). Now the system creates a 
hypothesis based on the known action, i.e., θ1 and d1 represented as green circle in Figure 6.15 
and the robot reacts by picking and placing another box at the angle θ1 and distance d1. This 
time the human has the intention of placing the boxes horizontally.  
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Figure 6.15: Hypotheses graph for intention shown in Figure 6.11 right 

 
Figure 6.16: Weight graph for intention shown in Figure 6.11 right 

Therefore the human corrects the robotic reaction and picks and place the box (placed by the 
robot) at an angle θ2 and distance d2 as shown in Figure 6.15 by the box (238, 193). Now the 
system adds the new action to its action table and updates the conditional probability as well 
as prior probability tables.  
For the next reaction, the robot has three hypotheses based on the two actions (green circle 
and blue crosses Figure 6.15). The hypothesis instructing the robot to place the next box 
horizontally with respect to the previously placed box (238,193) gets highest weight 
according to the hypothesis weighting mechanism described earlier with respect to the other 
two hypotheses. The hypothesis (320, 193) has the highest weight at interaction Step 2, 
represented by blue star in Figure 6.16. The reaction value is calculated using the conditional 
probability or prior probability, historical support and the hypotheses weight. As there is no 
historical support for the currently predicted actions thus all the hypotheses based on the 
predicted actions get equal weight. There exists no conditional probability value for the 
currently predicted actions. Thus the prior probability is used instead of conditional 
probability.  
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As the prior probability of vertical box placing action is high therefore the hypotheses value 
for placing the box vertically gets higher values as compared to the horizontal placement of 
the box. 
Thus the robot reacts by placing the box vertically that is rejected by the human as the human 
intends to place the boxes horizontally.  Now due to the rejection of the human the robot 
resorts to next highest value action that is once again placing the box vertically at another 
location which is once again rejected by the human. The robot resorts to next available action 
that is placing the box horizontally with respect to the lastly placed box at (320, 193). The 
reaction is accepted by the human. It is not selected for reaction for the first time due to the 
low prior of the concerning action (horizontal action). The robot creates the new hypotheses 
(represented as purple stars in Figure 6.15) for the next reaction for placing the fourth box. 
This time the robot reacts by placing the box horizontally with respect to the lastly placed 
box. This time placing the box horizontally has highest conditional probability of 1 and 
highest weight as compared to the priors for vertically located hypotheses with low weight. It 
is shown by the black box in Figure 6.16 at intersection Step 3. 
In the next HRI experiment the human intends to place the boxes in a squared pattern, Figure 
6.12 left. Once again the human places the box and the robot generates the reaction 
hypotheses based on the previously observed actions, represented as green circles in Figure 
6.17. The hypotheses get the same action value due to the same hypothesis weight, same 
history weight and same prior probability. The robot places the box (318, 156) in horizontal 
pattern and that is accepted by the human due to the similar intention. Next time the robot 
once again places the box on the horizontal pattern as the action has highest value due to the 
high hypothesis weight and history support for the action as the current pattern matches to 
more to the horizontal placement than vertical placement.  

 
Figure 6.17: Hypotheses graph for intention shown in Figure 6.12 left 

The reaction is rejected and the robot resorts to next highest value reaction, i.e., place the box 
orthogonal to previously placed box (236, 156) (according to the squared pattern intention, 
Figure 6.12 left) at (236, 207) which is accepted. Afterwards the robot reacts by placing the 
box on the fourth corner of the square (Figure 6.12 left) due to the high value for that action 
(blue triangle in Figure 6.17). That high action value is due to highest hypothesis weight and 
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highest prior probability as compared to other hypotheses, represented as cyan colour box in 
Figure 6.18. 

 
Figure 6.18: Weight graphs for intention shown in Figure 6.12 left 

The next interaction corresponds to the placement of the boxes in a shape of diamond as 
shown in Figure 6.12 right. In this case, the human places the first box. The reaction 
hypotheses (green circles in Figure 6.19) are created based on the known actions. The robot 
reacts by placing the box at (402, 155) which is rejected. The selection of this action is 
performed due to the high prior probability value as all the other factors have the same value.  

 
Figure 6.19: Hypotheses graph for intention shown in Figure 6.12 right 

The human intercepts and corrects the robot reaction by placing the box at (299, 206) as 
shown in Figure 6.19. The system creates new reaction hypotheses. That comprises the green 
circles and blue triangles as shown in Figure 6.19. The robot once again reacts by placing the 
box in horizontal pattern and rejected. The highest weighted reaction is represented by brown 
triangle (360, 255) in Figure 6.20 at interaction Step 2 and blue triangle in Figure 6.19 at (360, 
255). The selection of horizontal box placement action is mainly contributed due to the high 
prior value. 
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Figure 6.20: Weight graph for intention shown in Figure 6.12 right 

The human corrects the robotic reaction by placing the box at (237, 259) that is near to 
comparatively low weighted hypothesis, i.e., (217,256), represented as blue triangle in Figure 
6.19. The robot recreates the hypotheses including the newly created purple star hypotheses 
shown in Figure 6.19. 
The very first reaction is selected due to the history supported value of the hypothesis (308, 
298) as the current action sequence closely match to the action trajectory of squared pattern as 
compared to other action trajectories. That reaction is rejected. After 3 rejections the 
hypothesis that closely relates to the human intended action, i.e., (176, 208) is accepted.  
The hypothesis (176, 208) is represented by black cross in Figure 6.20 at intersection Step 3.   

 
Figure 6.21: Robot reaction in unknown human intention scenario 

The graph shown in Figure 6.21 describes the 14 different interaction tasks, independent from 
each other. The horizontal axis of the graph represents the numbers of interaction steps and 
vertical axis represents the number of action switching (Lines 13-14, Figure 6.2) requested by 
the human during the HRI. The graph in Figure 6.21 describes the fact that 73% of the robotic 
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reactions were accepted by the human and 27% of the robotic reactions were corrected. Out of 
27% corrections almost half of the corrections were performed at the second step of 
interaction. Out of 73% accepted reactions, 45% reactions involved maximum switching of 
three actions, 21% reactions involved maximum switching of five actions and 7 % involved 
maximum switching of seven actions. 

6.7 Summary 
In this chapter, we presented a probabilistic approach for the robotic reaction in the HRI 
scenario with unknown human intention. The approach corresponds to a RL based interaction 
algorithm. In which the robot performs the estimated action in order to cooperate with the 
human without knowing the human intention. If the action performed by the robot 
corresponds to the human intention then the robot action is accepted by the human. Otherwise 
the human rejects the robot action and expect from the robot to act differently. The human can 
either wait for the expected action from the robot or he can simply correct the robot according 
to his expected action. The most suitable action selection is performed probabilistically. The 
robot considers the human actions and the accepted robot actions for action prediction 
(Section 6.4.2), weighting of the predicted actions (Section 6.4.3), action probability (Section 
6.4.1), and the history support of the action (Section 6.4.4). The value of all the action 
hypotheses is calculated using the described aspects (Section 6.4.5). The actions are sorted 
with respect to their calculated value. The action with highest value is selected for robotic 
reaction.  
The performed experiments can be applied to other cooperation scenarios where the action 
may involve other than picking and placing of objects, e.g., washing, opening, closing, 
pouring, etc. It is explained with examples. We consider the placement of the kitchen utensils 
in a cupboard on each other, e.g., plate, jug, and glass. The robot is required to place the 
objects in the right order on each other. The order of the objects is used to hypothesize the 
new human actions. Similarly another interaction example between intelligent cutting-
machine and the human worker is discussed. The worker intends to cut the objects (metal rod, 
sheet etc) of variable length. The intelligent machine can adapt itself to the human worker to 
provide the predicted length for cutting. In this case the length can be used to hypothesize 
different human actions. In the discussed experiments the distance and orientation was used to 
hypothesize the human actions. More complex tasks can be modelled using one or more 
complex features (given) concerning the human actions. 
The reaction can be more effective if biased with respect to the already given domain 
knowledge, e.g., in the presented experiments case if the potential box arrangements are 
already known then the reaction can be more robust. The domain knowledge can be used to 
weight the action hypotheses according to the nearest known arrangement. This can reduce 
the weight for insignificant hypotheses and increase the weight for significant hypotheses. 
The domain knowledge can also improve the action prediction by predicting the action 
hypotheses that robot does not know. In case if the human performs totally new actions during 
HRI then the new actions can not be estimated by the robot as the actions are unknown to the 
robot. The robot can react in that case intuitively if the robot is given the domain knowledge.  
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Chapter 7 
 
Intention generalization 
 
 
Generalization of a concept corresponds to the reduction of the number of conditions present 
in the selection criterion of the concept [15]. The lesser the conditions in the selection criterion 
of a concept the more general is the concept and vice versa. Generalization of the concept is 
one of the basic capabilities of the humans and it is the fundamental element of the logical 
reasoning. With the help of generalization a human can extend his knowledge with respect to 
various aspects. For example, if a human is asked to place the object A at the place B then he 
will make a rule for placing the objects matching to the object A at the place like B. This rule 
can be further purified for that human if he is corrected while applying that rule. The 
generalization capabilities of the human enable him to extend his knowledge very fast. The 
extended knowledge corresponds to the actions in the specific situations. This extension is 
made by logical inference of the human. The generalization capability enables the human to 
perform in the unknown situations.   
Robots are becoming more and more part of the human activities, specifically in the industry 
[47].  The presented approach [15] is confined to the generalization relating to the reduction 
of the concept criterion as described earlier. The application of these generalized rules in the 
intuitive HRI aims to improve the interaction capabilities of the robot as the robot can interact 
more intelligently by performing the actions that are not explicitly taught to the robot. 
The remainder of this chapter is organized as follows: The generalization capability is 
motivated and defined in Section 7.1. In Section 7.2, the existing approaches are discussed.  
The approaches concerning generalization in the field of robotics are also discussed. Section 
7.3 describes the online rule induction and generalization approach. Section 7.4 discusses the 
rule conflict resolution. Section 7.5 describes the experiments performed using the proposed 
approach. At the end of Chapter 7, Section 7.6 summarizes the chapter. 

7.1 Problem definition and Motivation 
The discussed problem corresponds to the generalization of the human intention. The term 
generalization means to infer the important criterions of the human intention and discard the 
non important criterions, concerning the performed human action. The important criterions 
mean that due to these criterions the human intends to perform the action. The human performs 
an action a concerning the intention  with the complete set of criterions ψ =  {c1, c2, c3, …, 

cn}, n ∈ ℕ. After the process of intention generalization the set ψ  becomes ψ  such that ψ  

⊆ ψ . In case if the criterion ψ  concerning the perceived action is already generalized then 
there will be no generalization, i.e., ψ = ψ . The input to this problem is the human action, 
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scene information, scene change information, and the human feedback. The output is the 
generalized human intention concerning the human action. 
The capability of generalization possessed by the human can enable him to take appropriate 
decisions in almost all fields of life.  The humans practice this capability without noticing. 
Many examples concerning the application of generalization capability of human can be 
described, e.g.,  

1. Household tasks 
2. Office tasks 
3. Common workplace tasks 

The generalization helps the human to take decision in an unknown situation. The unknown 
situation corresponds to the situation that the human has not experienced before. The 
household tasks concerning generalization can involve the following 

1. Tidying up of things 
2. Washing tasks 
3. Gardening tasks 
4. Repairing tasks 
5. Cooking tasks, etc 

The application of generalization in household tasks is explained using two humans. In case 
of tidying up of the things, first human picks the objects and places at the specific places. The 
second human observes the actions of the first human and generalizes the information for 
placing specific objects at specific places. The generalization helps the second human to place 
the objects that the first human did not place in front of the second human. Similarly in case 
of washing, gardening, repairing, cooking, etc the second human can generalize the 
information to act in the situations for which he has not observed from the first human. The 
Office tasks concerning generalization can be the following 

1. Solving specific tasks 
2. Interacting with the colleagues, etc 

The human takes into account the necessary characteristics of the tasks that are solved with 
the known solutions. Then he observes the characteristics of the new task. If the problem has 
the necessary characteristics that are same to the necessary conditions of the previously 
known solution then he applies the previous solution to the new task. He generalizes the 
information of one specific solved task and tries to solve similar tasks. Similarly the humans 
generalize the successful interaction experience attained from one colleague to the other 
colleague for generally similar interaction scenarios. 
The generalization involved in the common workspace tasks concerns the following 

1. Assembly, making, and fabrication of different entities (vehicles, machines, electrical 
appliances, etc) 

2. Building and construction tasks 
3. Repairing and dismantling tasks, etc 

There exists general information concerning specific workspaces tasks. The humans 
generalize the information concerning the workspace tasks and apply the information from 
one solved / observed task to a new task to be accomplished. 
Similarly generalizing capability present in a robot can improve the intuitiveness in HRI. For 
making the robot intuitive with respect to generalization, the robot must be able to generalize 
the intention of the interacting person. With the ability of generalization, the robot can 
perform such operations that are not explicitly instructed to the robot. In HRI, with the 
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generalization ability the robot can generalize the human intention and interact with the 
human intuitively. The term intuitive means that the robot performs the known operation 
during HRI that was not explicitly instructed him to perform. The ability of intention 
generalization instructs the robot to perform such operation. 
The intention generalization is discussed in a simple HRI scenario as shown in Figure 7.1. 
The human picks and places a speckled object into a tray. The robot generalizes the human 
intention and picks and places all the speckled objects into the tray. 
 

   
 

   
Figure 7.1: The HRI workspace concerning intention generalization consists of triangles, 
pentagons, and square objects. Some of the objects have speckle on them, some objects are 
without speckles, and some objects have hole and speckles on them. In top left figure the 
objects and two racks can be seen. The human starts the intention generalization based HRI 
by pressing the hand on Play as shown in top middle figure. In the top right figure, the human 
picks and places a speckled object (square) into the rack. The robot generalizes the human 
intention and picks and places the speckled objects into the tray as shown in the bottom left, 
middle, and right figures. 

7.2 Related work 
There exist concepts related to generalization, e.g., applying the knowledge obtained from one 
case to another case and transferring the knowledge obtained from one scenario to another. 
This relates to Case Based Reasoning (CBR) [21] and Knowledge Transfer (KT) [57], [64] 
which are the examples of Lazy Learning algorithms. Each case in CBR consists of at least 
two parts, i.e., the problem description part and the solution part. Each case is marked by a 
number of characteristics. These characteristics may include the case numbers, justification, 
and evaluation. The characteristic of justification defines steps from the problem to the 
solution. The evaluation characteristic corresponds to the quality and reusability of the case. 
The steps discussed in the CBR cycle mainly consists of case retrieval, case adaption and case 
retaining. The case retrieval corresponds to search a related case with respect to the target 
case that is to be solved. The adaption of the retrieved solution may be performed by tuning a 
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few parameters or by the application of knowledge based problem solution. The retaining of a 
learned case is performed by storing successfully the adapted case to the target problem [21].  
The CBR may use different feature representations, e.g., Rough Sets [138]. The Lazy 
Learning algorithms use different kinds of distance functions to calculate the similarity 
between cases [164]. Traditionally nearest neighbour approaches are used that compute 
similarity between the stored cases and the new cases, based on the features and the weights 
of cases [38]. The distance function in CBR is used for case comparison. The distance 
function does not consider the concept generalization and HRI.  
Lutz Formberger describes the learning of KT for generalizing the navigational capabilities of 
a mobile robot [57]. An agent-centered qualitative spatial representation is used for 
generalization and KT. The author claims that the learned strategies become robust using the 
described representation. The robustness corresponds to the ability of the robot to cope up 
with the environment noise and imprecise world knowledge. A simulated indoor robot is used 
for experimentation. The task of the robot is to learn a goal directed path finding strategy. The 
generalization is described by the abstract state space selection mechanism [57].  
Association based rule learning in Data Mining [59], [136], [36] requires a data set of huge 
amount to generate rules with certain probabilistic measures. An association rule can be 
represented by the expression X ⇒  Y. The symbols X and Y represent sets of items. The rule 
describes that if the transaction of X occurs then the transaction of Y will also occur [66]. 
There exist several generalizations of the rule problem in Data Mining [66], e.g., [59] 
proposed generalized rule induction using probabilistic rules. The data mining approaches 
require huge amount of data and no HRI is involved. 
Learning from Demonstration (LfD) [19], [110] use the term generalization for the robot to 
learn comprehensively from many times performed demonstration in different conditions for a 
certain task. An approach proposed in [58] describes that correction based HRI gives better 
results in LfD. HRI is used to correct the task performed by the robot [4], for behaviour 
adaption [104], and to learn the environment dynamics [118].  
The approach in [4] introduces a tactile policy correction algorithm. Initially, a policy is 
derived from LfD technique. Afterwards through the tactile interface, the human teacher 
indicates the relative refinement in the robot pose. The robot adjusts its poses according to the 
human tactile input. The corrected robot pose corresponds to the new training data for the 
policy generated by the tactile input. The tactile input from human helps the robot to refine its 
demonstrations. The experiments are performed with a humanoid. The HRI concerns the 
touching of human at the tactile interfaces of the robot to adjust the robot pose. The learning 
performed by robot during HRI corresponds to the robot’s pose. The focus of the HRI-based 
approach is correction and not generalization. 
Mitsunaga, Smith, and Kanda introduce the behaviour adaption based on policy gradient 
reinforcement learning [104]. They use HRI to adapt towards the human behaviour. The focus 
of the approach is the interaction-distance between the human and the robot. The robot 
monitors the repositioning count of the human in order to estimate the human discomfort 
during HRI. The robot also considers the gaze averting of the human. Both of the values are 
used as rewards that are minimized in the policy gradient reinforcement learning algorithm. 
The robot adapts towards the human behaviour during HRI.  
There exist generalization approaches for mobile robot, e.g., [20] describes navigational 
generalization based on evolutionary algorithms. The focus of the approach is general 
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behaviour of mobile robot for navigation, concerning obstacle avoidance. The approach [20] 
corresponds to a feed-forward neural network in combination with evolution strategies. 
The presented work focuses on Piagetian schemes [118]. The dynamics of environment are 
estimated. The model anticipates the step forward values of the chosen variables. The 
variables relates to the dynamics of environment. The anticipation is performed by the current 
state of sensors and taken actions. The model assumes that the world is deterministic. The 
HRI occurs in a simulated experiment. The human interacts by clicking on the cart target 
location on the interface. The interface displays the 2D physical system. The approach in 
[115] discussed Differential Equations based motor skill generalization. All the above 
described approaches do not consider generalization as concept generalization.  
The most related approach to concept generalization is described in [99]. It is also known as 
Version Space strategy. This approach can be successfully applied in classification. A version 
space can be represented by two sets. One set contains most specific consistent hypotheses 
and the other set contains the most general consistent hypotheses. The most specific 
consistent hypotheses correspond to the hypotheses that contain the smallest number of 
conditions that are necessary to select a positive training example. The most general 
consistent hypotheses contain the conditions such that no negative training example can be 
selected. The approach in [99] considers generalization as a search problem. The HRI based 
concept generalization can not be performed using [99]. Since [99] does not suggest what to 
do if a correction is performed by the human during HRI. Similarly, [99] also does not 
explicitly describe the rule conflict resolution.  
In the concept generalization, the generated generalized rules may face conflict with each 
other. There exist approaches for conflict resolution, e.g., [32] uses the classification 
frequencies of the rules (that cover the example to be classified) with respect to the classes to 
classify a conflicting example. For example, consider a class A and class B with two 
conflicting rules R1 and R2. The samples X that belong to both the classes A and B are needed 
to be classified. For this purpose, the number of classified examples of a class with respect to 
all the conflicting rules are summed. This is performed for both the classes. The class that has 
higher number of examples is assigned to the samples X. 
The approach proposed in [37] uses the product of prior probability of the class with the 
product of conditional probabilities of the rule with respect to that class. The class with higher 
value is selected. The Rule Discovery System proposed in [37] applies the naive Bayes 
classifier to resolve the rule conflict. The posterior probability of a class with respect to all the 
conflicting rules is determined. Since the joint prior probability of the rules in conflict does 
not influence thus it is ignored. It is assumed that each conflicting rule is independent from 
each other. The posterior of each class is determined. The class with higher maximum value is 
assigned to the sample X that belongs to more than one class. In [130] each conflicting rule 
votes for its predicted class with a weight. The weights of all the classes are summed up and 
the class with the highest weight is selected for the samples X that belong to more than one 
class. The approach in [92] is the same as [37] if there is no training example in the 
intersection of the conflicting rules. If it exists then it uses the conditional probabilities of the 
intersecting rules with respect to the class. The double induction approach in [93] proposed 
the new induction of rules from the examples that are covered by the rules in conflict. The 
idea introduced in [93] suggested that there is higher chance to find rules that can classify the 
classes by concentrating on a small subspace of the example space in conflict.   
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The above described approaches discuss the resolution of conflict using probability and the 
frequency of the class and by inducing new rules. No approach tries to focus on the 
antecedents of the rule that influence classification. Along with concept based generalization, 
the conflict resolution of rules is also suggested based on the importance of individual 
antecedents of the rule.  
The presented approach [15] is the generalization concerning the reduction of a concept 
criterion by HRI. A conflict resolution is also proposed that is based on the importance of the 
antecedents of the generalized rule.  The application of the generalized rules in the intuitive 
HRI improves the interaction capabilities of the robot. 

7.3 Rule generalization 
We introduce an approach to human intention generalization based on the rule generalization. 
The rule generalization corresponds to the generalization of the transition conditions of FSMs 
discussed in detail in Chapters 3 and 4. The transition conditions correspond to the actions aki 
for the FSMs, discussed in Section 3.2 of Chapter 3. Each transition condition corresponds to 
a rule that is generalized using HRI. After recognizing the human intention the robot also 
reacts according to the generalized rules. 
The rules are induced online during HRI. The rule generalization is performed by HRI, based 
on the idea of concept generalization. The robot generalizes the human intention by applying 
the known action on a group of related objects. The group of objects corresponds to those 
objects that are similar to the object in some respect on which the human has performed the 
operation. The process of intention generalization is performed according to the following 
steps 

A. Grouping of the objects 
B. Online rule induction 
C. Rule application 
D. Rule generalization 
E. Transition pool 
 

7.3.1 Grouping of the objects 
The procedure describes the construction of the classes from the available objects such that 
the characteristics of all the objects are similar. For example, if we have a group of the 
following objects, i.e., jug, plate, bowl, book, notebook, shirt and trousers. Then the jug, plate 
and bowl will fall into one class, book and notebook will fall into second class and shirt and 
trousers will fall into third class. The reason is that the jug, plate and bowl have similar 
characteristics of being broken along with other characteristics. The book, note book, shirt 
and trousers do not have the characteristics of being broken. Similarly shirt and trousers can 
be dirty and book and note book can not be dirty. There may be more than one different 
characteristics present in the different classes. The procedure of classifying the objects based 
on their characteristics is described in Figure 7.2. Initially the set S of classes is empty. Each 
class C contains the elements having similar type of characteristics.  
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Figure 7.2:  Objects classification based on their characteristics 

At start (Lines 2-3, Figure 7.2), an object is classified into a class C1. Other objects O are 
compared with the characteristics of the object in the existing class (Line 5, Figure 7.2).  
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Figure 7.3:  Comparison of objects based on their characteristics 
 

If the object Oj is similar to an object of class Ci then it is added to the class Ci (Line 6, Figure 
7.2). The objects are compared with respect to their characteristics (feature) that are already 
known, shown in Figure 7.3.  
The types of characteristics of the objects O are compared with each other (Line 4, Figure 
7.3), e.g., if an object Oj has the characteristics of a class Ci, i =1,…,m then for the other 
object Ok it is checked if Ok also has the same characteristic of class Ci. If Ok does not has the 
characteristics then it is classified into another class (Line 8, Figure 7.2). The object Ok is 
checked against an object of all the exiting classes, (Lines 4-5, Figure 7.4). If it matches to an 
object of exiting class then it is added to that class (Line 6, Figure 7.4). The object Ok is 
classified into a new class if it does not match with the objects of the existing classes (Line 
11, Figure 7.4). The newly created class is added to the set S (Line 12, Figure 7.4). In case of 
the object classification, if the set S has only one element (Line 3, Figure 7.4) then a new class 
CN+1 for Ok is created and added to the set S (Lines 14-16, Figure 7.4). 
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Figure 7.4: Classification of objects into concerning classes 

7.3.2 Online rule induction 
The procedure of online induction is given in Figure 7.5. The n objects present in the scene 
are known to robot. The objects may belong to m classes which are already known. The robot 
also understands the human actions and the changes in the scene occurred due to the human 
action. The characteristics of n objects present in the scene are known to the robot.  
If an action comprehensible by the robot is performed by the human on an object Oj with 
characteristics Chk then the robot induces a rule considering the characteristics Chk of object 
Oj as the antecedents and the performed action as the consequent of the rule (Lines 1-8, 
Figure 7.5). 
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Figure 7.5: Online rule induction 
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7.3.3 Rule application 
For generalization based on HRI, the robot initiates by applying the induced rules on the 
suitable objects present in the scene. The suitable objects are determined using the procedure 
given in Figure 7.6. The input of the procedure includes the n objects along with their 
characteristics present in the scene. The number r of induced rules are also available from the 
previously performed step. The output of the procedure given in Figure 7.6 is a set S = {〈L, R, 
O〉1 ,…, 〈L, R, O〉h}. The set Sconsists of h hypotheses. Each hypothesis 〈L, R, O〉i consists of 
a list Li, a rule Ri, and object an Oi. The List Li corresponds to a set of characteristics that are 
similar in the object Oi present in the scene and the antecedents of rule Ri, in the hypothesis i. 
The List Li is obtained by the intersection of the set of characteristics of the object Oi and the 
set of antecedents of the rule Ri (Figure 7.9). The hypotheses are constructed by comparing all 
the given rules and the known objects present in the scene. The object Oo and the rule Rr are 
matched and if found similar then a hypothesis is constructed (Lines 3-4, Figure 7.6).  
 

{ }

for end

for end

if end

thenif

dofor

dofor

Output

Input

−
−
−

∪=−
−
−
−

=

=

+

7

6

5

,,4

)),,(( 3

 2

 1

,...,1,

,,,...,,,:

 :

1

1

i

rO

o

r

i

ii

h

ORLSS

LROMATCH

OObjectoall

RRulerall

hiihypothesisainRRuleand

OObjectofChsticscharactericommonthecontainsL

ORLORLShypothesesofSet

RulesofrNumber

Classesmtobelongingscenetheincts Oknown objen

 

Figure 7.6: Selection of object for rule application 

The similarity is checked by comparing each antecedent Aa of the Rule R with each 
characteristic Chk. If a characteristic Chk found similar with antecedent Aa then it is added to 
the list L (Lines 2-8, Figure 7.7). 
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Figure 7.9: Intersection between the antecedents R and list L of characteristics 
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If the List L contains one or more than one element then True is returned (Lines 9-10, Figure 
7.7) to construct a hypothesis (Line 4, Figure 7.6). If no similarity is found between the 
antecedents Aa of rule R and the characteristics Chk of object O then False is returned (Line 
12, Figure 7.7) and no hypothesis is constructed. 
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Figure 7.7: Matching the objects with respect to the rules 

7.3.4 Rule generalization 
In the process of generalization the robot applies the rule Rh to the object Oh of the h 
hypothesis in set { }

h
ORLORLS ,,,...,,,

1
= . The robot expects the human’s feedback on the 

application of rule Rh to the object Oh. Generalization is performed based on the human action 
in response to robot’s rule application. The robot expects three kinds of responses from the 
human. The human can accept, reject or correct. The generalization algorithm is given in 
Figure 7.8. The input of the algorithm includes setSof hypotheses that is generated in the rule 
application step (Figure 7.6). The robot can recognize the n objects present in the scene and 
their related characteristics. The human feedback and the changes occurred in the scene due to 
the human actions are also known to the robot. The output of the algorithm is the possible 
generalization of the rules in the hypotheses setS . The algorithm in Figure 7.8 proceeds by 
applying the consequent part of rule Rh on the object Oh for each hypothesis 〈L, R, O〉h in the 
set S (Lines 1-2, Figure 7.8). If the human accepts the robot’s action the rule Rh is updated 
(Line 4, Figure 7.8) by replacing the antecedents of rule Rh with the list Lh (Lines 1-2, Figure 
7.10). The list Lh is produced by the intersection of set of characteristics of Oh and the set of 
antecedents of Rh (Figure 7.9). All the necessary antecedents concerning the consequent of Rh 
exist in the list Lh. Since the application of rule Rh on the object Oh is accepted thus the 
necessary antecedents are also present in the set of characteristics of object Oh. If the robot’s 
action is rejected by the human (Line 6, Figure 7.8) then the difference between the rule Rh 
and the Lh is performed (Line 7, Figure 7.8). The rejection means that the necessary 
antecedent / antecedents for the application of the rule Rh do not exist in set of characteristics 
of the object Oh.  
 

 

Figure 7.10: Update of the antecedents of rule R by list L 
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Figure 7.8: HRI based rule generalization 

The necessary antecedents exist in the rule Rh. Thus a difference is performed between Rh and 
Lh in order to find out the necessary antecedents. The difference between Rh and Lh results in a 
list L that contains the elements that belong to Rh but do not belong to Lh (Lines 1-13, Figure 
7.11).  

Ω−
−
−

∪Ω=Ω−
−
−
−
−

=−

−
−

=−
−

 return

for end

if end

then if

for end

if end

break

then if

  dofor

dofor

13

12

11

R10

 ADD)(9

8

7

6

False  ADD5

))L,R((4

L3

True  ADD2

R1

)L R,(_

i

jiequal

ofsticscharacterijall

ofsantecedentiall

DIFFERENCER

  

Figure 7.11: Relative complement of L with respect to R 
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The rule Rh is updated (Line 8, Figure 7.8) by replacing the antecedents of rule Rh with the list 
L (Lines 1-2, Figure 7.10). The list L is produced at Line 7, Figure 7.8. In case if the human 
not only rejects the robot action but also corrects the robot reaction (Line 10, Figure 7.8). 
Then once again the difference between the rule Rh and the list Oh is performed (Line 11, 
Figure 7.8). The rejection and correction corresponds to the fact that the antecedents in rule Rh 
are not exactly related to the characteristics of the object Oh. Therefore only those 
characteristics are considered as antecedents of the rule that exist in Oh but do not exist in Rh. 
The consequent of the rule is changed with the correction performed by the human. The 
difference between the Rh and Oh results in a list L containing the elements that belong to Oh 
but do not belong to Rh (Lines 1-13, Figure 7.12). 
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Figure 7.12: Relative complement of R with respect to L 

The rule Rh is updated (Line 12, Figure 7.8) by replacing the antecedents of rule Rh with the 
list L (Lines 1-4, Figure 7.13). The list L is produced at Line 11, Figure 7.8. 
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Figure 7.13:  Update of the antecedents and consequent of rule R and the Induced rule IR                                 

The consequent of rule Rh is replaced by the human correction (Line 3, Figure 7.13). The 
Induced Rule (IR) for the newly constructed rule is also updated (Line 4, Figure 7.13). The IR 
corresponds to the rule induced from the human action or by the human correction. 
The rules that are generalized by the process of REJECT and REJECT plus CORRECT are 
tested before they are moved into the transition pool (Section 7.3.5).  
The intermediate generalized rules (IGRs) are the rules that are produced by the result of 
ACCEPT, REJECT or REJECT plus CORRECT, performed by the human during the process 
of generalization in Figure 7.8. Each IGR has its corresponding IR.  
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The IGRs generalized by REJECT may lead to false generalized rule. There can be two cases 
of false generalizations. In Case 1, if the IR is applied on an object of another class then the 
intermediate generalized rule (IGR) will be false generalization. For example, if IR and the 
characteristics of the object are as under 
 

IR :  IF {Plate, Dirty, Intact} THEN W.B (Wash Basin) 
Object :    {Shirt, Dirty, Good} 
 

Then the IGR due to REJECT (Lines 6-9, Figure 7.8) will be as under 
IGR :  IF {Plate, Intact} THEN W.B 
The objects Plate and Shirt belong to two different classes. The IGR is a false generalization 
as the robot will put a Plate that is Intact into the W.B without taking into account if it is Dirty 
or not. In Case 2, if IR is applied on the object of the same class and if the IGR does not 
contain all the necessary antecedents then IGR will be a false generalization. For example, if 
IR and the characteristics of the object are as under 
 

IR :  IF {A, B, C, D} THEN A 
Object :    {A, B, D} 
 

Then the IGR due to REJECT (Lines 6-9, Figure 7.8) will be as under 
 

IGR :  IF {C} THEN A 
 

If B and C are the necessary antecedents with respect to the action A then IGR is a false 
generalization. 
Similarly in case of REJECT plus CORRECT, there exist two cases. In Case 1, if IR is 
applied on an object of another class then the IGR will be a false generalization. For example, 
if IR and the characteristics of the applied object are as under 
 

IR :  IF {Plate, Dirty, Intact} THEN W.B 
Object :    {Shirt, Dirty, Good} 
 

Then the IGR due to REJECT plus CORRECT (Lines 10-13, Figure 7.8) will be as under 
 

IGR :  IF {Shirt, Good} THEN W.M (Wash Machine) 
IR :  IF {Shirt, Dirty, Good} THEN W.M 
 

The IGR is a false generalization as the robot will put a Shirt that is Good into the W.M 
without taking into account if it is Dirty or not. 
In Case 2, if the necessary antecedents are not considered then the IGR will be a false 
generalization. For example, if IR and the characteristics of the object are as under 
 

IR :  IF {A, B, C, D} THEN A 
Object :    {A, B, D, E} 
 

Then the IGR due to REJECT plus CORRECT (Lines 10-13, Figure 7.8) will be as under 
 

IGR :  IF {E} THEN A 
IR :  IF {A, B, D, E} THEN A 
If B and E are the necessary antecedents with respect to the action A then IGR is a false 
generalization. Therefore the IGRs are first tested with the procedure given in Figure 7.14 and 
then moved into the transition pool (Section 7.3.5). The input to the procedure given in Figure 
7.14 is the set IGR. Each IGRi  i=1,…, M  has its corresponding IR. The output of the 
procedure in Figure 7.14 is the set of IGRs with corrected generalization problems. All the 
IGRs are tested for all the related objects (Line 1, 2 Figure 7.14) present in the scene. The 
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related object with respect to an IGRi corresponds to the object that has all the characteristics 
concerned to the IGRi. 
After IGRi is applied (Line 3, Figure 7.14), the human responds by accepting, rejecting or 
rejecting and correcting the robot reaction. If the human accepts the robot reaction then 
intersection is performed between the IRi concerned to IGRi and the characteristics of the 
object Oj and IGRi is updated (Figure 7.10) with the results of intersection (Lines 4-6, Figure 
7.14). The intersection (Line 5, Figure 7.14) is performed due to the fact that it results in all 
the necessary antecedents. For example, if we consider the example of Case 2 in REJECT 
case described earlier, i.e. 
 

IRi :  IF {A, B, C, D} THEN A 
IGRi :  IF {C} THEN A  
Oj  :    {E, B, G, F, C} 
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 Figure 7.14: Evaluation of IGRs for false generalization 

The object Oj will contain all the necessary antecedents as the action is accepted for Oj. After 
acceptance (Lines 4-6, Figure 7.14) the IGRi will be as under 
 

IGRi :  IF {B, C} THEN A  
 

The IGRi updated in the result of ACCEPT (Lines 4-6, Figure 7.14) is added to the transition 
pool (Section 7.3.5). 
In case if the human rejects the robot reaction then the difference given in Figure 7.11 is 
performed (Lines 7-8, Figure 7.14). The difference results in unconsidered necessary 
antecedents that are added to IGRi (Line 9, Figure 7.14).  For example, if we once again 
consider the example of Case 2 with different object Oj in REJECT case discussed earlier, i.e. 
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IRi :  IF {A, B, C, D} THEN A 
IGRi :  IF {C} THEN A  
Oj  :    {A, D, G, F, C} 
 

The difference (Line 8, Figure 7.14) will result in the necessary antecedent and the IGRi will 
be updated (Line 9, Figure 7.14). The IGRi will be as under  
 

IGRi :  IF {B, C} THEN A  
 

If B and C are the necessary antecedents then the generalization is performed but if A is also 
the necessary antecedent then the IGRi will be a false generalization. Therefore the updated 
IGRi is once again made available to the set IGR to be tested if more necessary antecedents 
do not exist in the IGRi.  
In case if an IGRi generated due to REJECT plus CORRECT and results in a false 
generalization. Then that IGRi is corrected by adding the necessary antecedents.  For example, 
if we consider the Case 1 in REJECT plus CORRECT case described earlier.  
IRi  :  IF {Shirt, Dirty, Good} THEN W.M 
IGRi :  IF {Shirt, Good} THEN W.M 
Oj  :    {Shirt, Good, Clean} 
 

After (Lines 7-9, Figure 7.14) the IGRi will be as under 
 

IGRi : {Shirt, Dirty, Good} → W.M 
 

If the human rejects the robot reaction and corrects the reaction then an IGRi is updated (Lines 
11-12, Figure 7.14). This rule is once again made available to the set IGR to be tested. The 
IGRi.IR corresponds to the characteristics of Oj and ACorrection (Line 12, Figure 7.14). 
The advantage of REJECT and REJECT plus CORRECT in Figure 7.14 corresponds to the 
fact that next time the robot will test the rule on more suitable objects. The suitability means 
that the chances of rejection or rejection and correction will be less as the IGR is updated due 
to REJECT or REJECT plus CORRECT. The objects for testing the rule are selected on the 
basis of IGR as described earlier. 

7.3.5 Transition pool 
The IGRs are added to the transition pool. Each IGRi present in the transition pool is matched 
against another IGRj. If both the rules match, i.e., the consequent of both the rules IGRi and 
IGRj are similar and at least one antecedent in both the rules is similar. Then intersection of 
the antecedents of the both the rules is performed, i.e. 

consequentIGRconsequentIGR

IGRIGR

IGRIGRequal

IGRofsantecedentjall

IGRofsantecedentiall

xz

xizk

yjxi

y

x

..9

8

7

5

4

)),((3

2

1

=−
−
−
−

=−

−

−
−

for end

for end

if end

then if

            dofor

dofor

 

The process of generalization of IGRs is shown in Figure 7.15. The rules IGRi and IGRj are 
dissolved into another rule IGRz with the similar consequent and possibly with little number 
of antecedents as compared to IGRi and IGRj.  
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If the rule is completely generalized then it is moved into pool of generalized rules otherwise 
it is sent back to the pool of intermediate generalized rules, shown in Figure 7.15. The IGRs 
are kept in the transition pool until they are completely generalized. There are two cases in 
which the rules are considered completely generalized. The Case 1 corresponds to the rules 
that have only one antecedent left. The Case 2 corresponds to the rules that can not be further 
generalized after C cycles of generalization in the transition pool. A generalization cycle 
corresponds to the fact that an IGRi in the transition pool once again comes into the transition 
pool, shown in Figure 7.15. For the generalized rules in Case 2, one copy of the rule is kept in 
the transition pool for possible generalization. The Case 2 rules are available for use like Case 
1. In case if any further generalization occurs for the copy of Case 2 rule kept in transition 
pool. Then the corresponding generalization is updated in the concerning applied rule.  
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Figure 7.15: Further generalization of IGRs in transition pool 

7.4 Rule conflict resolution 
The proposed approach generalizes the human intention by generalizing the concept related to 
the human intention during HRI. The generalization of a concept corresponds to the creation 
of a generalized rule for a specific human intention. That rule is used to recognize the human 
intention as well as to interact after the intention recognition. The problem arises if the 
conflict occurs in the robotic reaction due to the generalized rule. The conflict corresponds to 
different robotic reactions according to different rules on an object. The robot performs a 
specified action on the objects according to the generalized rule.  The reason of the conflict 
corresponds to the presence of more than one characteristics of an object. One characteristic 
relates to one generalized rule and other characteristic relates to another generalized rule. The 
robot is required to interact intuitively taking into account the generalized rule related to the 
recognized intention and the characteristics of the objects on which the concerned action is to 
be applied. 
In the rule based classification, all the antecedents of a rule are considered without any 
distinction. Similarly for conflict resolution, all the approaches discussed earlier (Section 7.2) 
consider all the antecedents of a rule and decide probabilistically in most of the cases to 
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classify the result for two conflicting rules. The proposed approach for rule conflict resolution 
takes into account the significance of each antecedent of a rule to resolve the conflict. An 
antecedent of a rule corresponds to a known characteristics of a known object observed in the 
scene. The significance of an antecedent is termed as the importance factor. The importance 
factor of an antecedent can have the value in an interval of 1 and 0, i.e., 

[ ]0,1)( ∈AFactorImportance . The importance factor of an antecedent is calculated as under  

Ω
= σ

FactorImportance  

consideredissticscharacteriaTimesofNumber

selectedissticscharacteriaTimesofNumber

:

:

Ω
σ  

Each characteristic known to the robot is assigned an importance factor. The importance 
factors of the concerning characteristics are embedded along with the antecedents while 
online rule induction. The importance factors of the characteristics are updated during HRI. 
For example, an object has characteristics ch1, ch2 and ch3 and the robot has performed an 
action A on that object according to the IR, i.e.,  

}{:Object

THEN}{IF:

321

521

ch,ch,ch

Ach,ch,chIR
 

If the human has accepted the action A then the rule will be generalized as under 
Ach,chIGR  THENIF: 21  

The considered (Ω ) characteristics are the antecedents corresponding to the induced rule, i.e., 
ch1, ch2 and ch5. The selected (σ ) characteristics correspond to the antecedents that remain in 
the rule, i.e., ch1and ch2. 
The conflict resolution using importance factor is explained with an example. The robot 
knows two generalized rules, i.e., 

22

11

 THENIF:2

 THENIF:1

AChR

AChR
 

There exist different objects with one or more than one characteristics, i.e., ch1, ch2 and ch3. 
Initially all the characteristics will have the same importance factor, i.e., 1. During 
generalization by HRI, if ch1 is considered three times and selected two times, ch2 is 
considered two times and selected one time, and ch3 is considered two times and selected two 
times then the importance factor of ch1, ch2 and ch3 will be 0.66667, 0.5, and 1 respectively. 
If the robot has recognized a generalized intention with respect to the rule R1, given above, 
then it will apply the action on the objects where the ch1 is true. There is an object that has 
more than one characteristic, i.e., ch1 and ch2 then both the rules are applicable on the object. 
The robot uses the importance factor to resolve the conflict for rule application. The rule A1 
will be applied as the importance factor of ch1 is greater than the importance factor of ch2. In 
case if an object has the characteristics, i.e., ch1 and ch3 then rule A1 will not be applied as the 
importance factor of ch3 is greater than the importance factor of ch1. 
In case if the generalized rule has more than one antecedent then the antecedent with highest 
importance factor is used for conflict resolution. The highest importance factor antecedent is 
also used to select the objects for the generalized rule application.  
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7.5 Experiments 
The experiments are performed with a robotic arm of six degrees of freedom. The workspace 
regarding the experiments consists of a table with different known objects on the table as 
shown in Figure 3.9. The workspace is observed by an overhead Firewire camera that delivers 
the video frame of size 640 x 480 pixels at a speed of 30 frames / sec. The robot operations 
are implemented using robot programming language V++. Image processing is performed 
using common Edge and Skin detection [161] algorithms and Fourier descriptors [171]. HRI 
based experiments are performed by performing different known actions and using the 
buttons shown in Figures 7.16 (a-j). The buttons on the table include Stop, Learn, Pause, Play, 
and Reset. The Stop button is used to stop a robot reaction. The Learn button is used to start 
the learning of a human intention and generalization procedure. The learning corresponds to 
learning a human intention in terms of a Finite State Machine. The Learn button is also used 
as reject button during the HRI. The Pause button is used to temporarily stop the robot 
reaction. The Play button is used to test the generalization performed during the HRI. The 
Reset button is used to remove the learned and generalized human intention in terms of Finite 
State Machine. The learning and generalization procedure is explained with one of the 
performed experiments, as shown in Figure 7.16. The Figures from 7.16(a) to 7.16(f) describe 
the learning and the performed generalization. The Figure 7.16(a) shows different objects 
present in the scene. The objects belong to one class and one characteristic is significant for 
the concerning action. Therefore the procedure in Figure 7.14 is not considered. The objects 
include two squares, two pentagons, and two containers. One container is labelled as 
SPECKLE OBJECTS and other is labelled as BROKEN OBJECTS. One box and pentagon 
have speckles on them and additionally that pentagon has a hole (broken) in the centre.  
The other box and pentagon are intact and without speckles.  The human starts the learning 
phase by putting the hand on Learn button. The human picks and places the speckled box into 
the speckle container as shown in Figure 7.16(b). Afterwards the robot induces a rule and 
starts generalizing that rule. The robot picks and tries to place the intact and without speckle 
square into the speckle container, as shown in Figure 7.16(c). The human rejects the robot 
reaction by putting the hand on Learn button as shown in Figure 7.16(c). The robot undoes the 
reaction and tries to pick and place the intact and without speckle pentagon into the speckle 
container as shown in Figure 7.16(d). The human once again rejects the robot reaction by 
putting the hand on Learn button as sown in Figure 7.16(d). The robot once again does the 
possible generalization. Next the robot picks the speckled pentagon with the hole in the 
pentagon and tries to place into to speckle container. That is also rejected by the human and 
robot undoes the reaction. The human performs the correction by placing the speckled and 
broken pentagon into the broken container as shown in Figure 7.16(f). The robot also updates 
the importance factors along with the rule generalization. In the testing phase, the human 
starts by putting the hand on the Play button. The human picks and places the speckled and 
intact square into the speckle container, as shown in Figure 7.16(g). The robot reacts 
according to the generalized human intention. The robot picks and places the speckled square, 
pentagon and triangle into the speckle container as shown in Figures 7.16(h), 7.16(i) and 
7.16(j).  
The robot does not pick and place the speckled pentagon with hole in the center due to the 
high importance factor of broken characteristic as compared to the speckle. It is shown in 
Figure 7.16(j).  
 



 
 

127 

                     
 

       (a): Speckled and non speckled objects             (b): Pick and place of speckled object 
 

                     
 

          (c): Rejection of the robot reaction                   (d): Rejection of the robot reaction 
 

                     
 

        (e): Robot picks a speckled Pentagon     (f): Human correction concerning robot reaction 
 

                     
 

       (g): Pick and place of speckled object      (h): Robot places a speckled object in response  
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 (i): Placement of speckled object in response    (j): Placement of speckled object in response 
 

Figure 7.16: Intention generalization by HRI 

The graph in Figure 7.17 represents the generalization capability of the robot. The 
generalization axis represents the number of objects acted upon by the robot while reacting to 
the recognized human intention. The green bars represent the results with generalization and 
red bars represent without generalization. 

 
Figure 7.17: Graph for intention generalization by HRI 

 
The experiments were performed on the objects shown in Figures 7.16 (a-f). The experiments 
number 1 in Figure 7.17 corresponds to the placement of speckled objects into the speckled 
tray. The human picks and places a speckled square into the speckled tray. In a non 
generalized HRI, the robot picks and places another square that is speckled into the speckled 
tray and stops. In the generalized HRI, the robot picks and places all the speckled objects 
other than the objects that have hole in them. The objects that have hole in them are 
considered broken. The objects having speckle on them are considered dirty and without 
speckle are considered clean. The antecedent (characteristic) of broken has high importance 
factor as compared to the dirty. Therefore a dirty object that is also broken is not operated as 
the HRI corresponds to picking and placing the dirty objects into the speckled tray. The 
second experiment corresponds to the placement of intact objects, the third experiment 
corresponds to the placement of clean objects, and the fourth experiment corresponds to the 
placement of broken objects. 
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The graph in Figure 7.18 shows the rule conflict results. The RDS [37] , CN2 [32]  and C5.0 
[130]  produce false results as they resolve using probability and do not consider the 
individual antecedents as importance factor does. 
The success axis in Figure 7.18 represents the binary scale, i.e., either all the expected objects 
are acted upon or a few are left. If all the expected objects according to the human intention 
are operated then the result is considered 1 and 0 otherwise. The first experiment shown in 
Figure 7.18 corresponds to the resolution of the conflict concerning the objects with the hole 
(broken) and the objects with the speckles (dirty) on them. In the generalized HRI, using the 
importance factor the robot takes into account the importance factor of individual 
characteristics of each object while applying the rule of placing the speckled object (dirty) 
into the container of speckled object (wash basin). The robot does not pick and place a dirty 
object that is broken. The importance factor of broken is greater than that of dirty. It means 
that a dirty object can be washed for reuse and is supposed to be placed in the wash basin. A 
dirty and broken object is not required to be placed in the wash basin because it is broken and 
thus useless. The RDS, CN2, and C5.0 use the probability without taking into account the 
significance of individual antecedents and thus produce false results. Similarly the second 
experiment corresponds to the conflict resolution between the dirty and different shaped 
objects, i.e., triangles, squares, and pentagons. The robot is supposed to pick and place all the 
dirty objects no matter of which shape into the wash basin. Using the importance factor, the 
robot picks and places all the dirty objects into the wash basin. Using the probabilistic conflict 
resolution approaches RDS, CN2, and C5.0 the robot does not pick and place all the dirty 
objects. Similarly the third experiment corresponds to the placement of no speckle object 
(clean) into the concerned container. Using the importance factor the robot picks and places 
all the clean objects and using the probabilistic approaches specific shaped objects are left. 
The probabilistic approaches RDS, CN2, and C5.0 do not perform well due to the fact that 
they decide probabilistically and do not consider individual antecedents of the rule with the 
concerning significance.  
 

 
            

Figure 7.18: Graph for conflict resolution in intention generalization by HRI 
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7.6 Summary 
In this chapter we have introduced a generalization approach for the human intention 
generalization. The focus of the approach is intuitive HRI by human intention generalization. 
The intention generalization corresponds to the understanding of the key concept of the 
human intention and to react accordingly to that concept. The approach describes the rule 
generalization by HRI. This rule is then embedded into the probabilistic FSM, discussed in 
detail in Chapter 3. That is used to recognize the general human intention and to react 
generally. The experiments performed with the robotic arm demonstrated the usefulness of 
generalization approach, i.e., the robot reacts generally according to the human intention. For 
example, if the human has intention of putting the speckled objects into the speckled container 
then the human picks and places a speckled square into the speckle container. The robot 
recognizes the generalized human intention of picking and placing the speckled objects into 
the speckled container. The robot places all the speckled objects into the speckle object 
container. The robot also takes into account the importance factor and does not places an 
object into speckle object container that is speckled and also broken. 
The approach enables the robot to react intuitively in a known scenario that was not explicitly 
instructed to the robot.  The known scenario corresponds to the known objects present in the 
scenario and the known related actions. The generalization capability of robot increases the 
range of intuitive reactions.  
The false generalization problem is resolved by testing each IGRi. The solution provided for 
false generalization resolves the problem but it may not produce the optimal generalization. 
The optimality of the resolution of false generalization depends on the present objects. The 
objects are used to resolve the generalization problem. The optimality of generalization with 
respect to the objects is explained using two cases. In Case 1, the false generalization does not 
consider the necessary antecedents. For example, consider IGRi with concerned IRi and the 
available object Oj that is used to resolve the false generalization.  
IRi :  IF {A, B, C, D} THEN A 
IGRi :  IF {C} THEN A 
Oj  :    {A, B, G, F, C} 
After resolving the generalization problem (Line 6, Figure 7.14) IGRi becomes as under 
IGRi :  IF {A, B, C} THEN A 
If B and C are the necessary antecedents then the generalization is solved. The antecedent A 
decreases the optimality of generalization as it is unnecessary antecedents for action A. Thus 
the optimality of the generalization depends on the object used for generalization. The IGRi 
may be optimized in the transition pool. If all the objects present in the scene are of diverse 
characteristics then the generalization can be optimal and vice versa. 
In Case 2 the false generalization (IGRi), produced due to the different class object, is 
discussed. For example, consider the IGRi with concerned IRi and available object Oj that is 
used to resolve the false generalization. 
IRi :  IF {Shirt, Dirty, Good} THEN W.M 
IGRi :  IF {Shirt, Good} THEN W.M  
Oj  :    {Pants, Dirty, Good} 
The generalization problem IGRi is resolved by ACCEPT, given in Figure 7.14. 
IGRi :  IF {Dirty, Good} THEN W.M 
The resolved IGRi is generalized differently if the Oj is as under 
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Oj  :    {Shirt, Dirty, Good} 
Then the IGRi resolved would be as under 
IGRi :  IF {Shirt, Dirty, Good} THEN W.M 
These resolved IGRs are moved to the transition pool. There the IGRs are further generalized. 
Moreover, if the objects available for generalization are properly classified and one 
characteristic is significant for the concerned action then the algorithm in Figure 7.14 is not 
required.  
Furthermore, the robot needs to distinguish between the situations when he needs to react 
based on the generalization or based on specialization according to the human intention.   
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Chapter 8 

 

Conclusions  

 
In this chapter, in Section 8.1, 8.2, 8.3, 8.4 and 8.5 the presented work is concluded. Section 
8.6 provides an outlook with respect to the presented research work. 

In the presented research work, five contributions to the area of intuitive HRI are discussed. 
The discussed contributions mainly correspond to the intention of the cooperating human, i.e., 
how the robot can improve its intuitive interaction with the human based on different aspects 
of the human intention. The following intention aspects of the interacting human are 
considered to improve the intuitive HRI. 

A. Intuitive HRI by intention recognition 
B. Intention learning 
C. Proactive HRI 
D. Interaction in unknown scenarios 
E. Intention generalization 

8.1 Intuitive HRI by intention recognition 
The recognition of the human intention plays a key role in human-human interaction. It is 
equally significant for HRI. An intention recognition approach based on probabilistic FSMs is 
proposed. A FSM represents a human intention. The FSM corresponds to a human action 
sequence and / or the concerning scene changes in the HRI workspace. Each FSM carries a 
probabilistic value that is called the weight of the FSM. The weight of the FSM describes how 
closely the FSM represents the human intention. The FSM with highest weight corresponds to 
the best estimated human intention and vice versa. The weights of the FSMs are updated at 
each new observation in HRI workspace. The suggested solution is applicable for both 
explicitly and implicitly communicated intentions. Explicit intention communication 
addresses to all the situations where the human commands the robot and implicit intention 
communication addresses to all the situations where the human does not engage the robot but 
robot actively starts the cooperation by recognizing the intention through scene information 
and human actions.  

8.2 Intention learning 
It is quite difficult to anticipate all the real time situations a robot may encounter. Therefore 
the capability of extension is inevitable for a robot. Three different cases are discussed to 
learn the new human intentions. The cases discussed the mapping of human intention to the 
corresponding observation sequence. The discussed Case 1 corresponds to the mapping 
between the sequence of the known actions and the known human intention. The known 



 
 

134 

human intention corresponds to the scene information. The Case 2 corresponds to the 
situation in which the actions are known to the robot but the human intention is inferred using 
the learning parameters. In the Case 3 the human actions and the human intentions are not 
given. The robot infers the human actions from the scene changes and the human intention is 
also inferred from the scene information. The mechanism used for intention recognition 
consists of the probabilistic FSMs. For online intention recognition a FSM regarding to a 
specific intention is constructed online.  
The capability of learning the new intention can be made more intelligent. The intelligence 
corresponds to the fact that the robot can take a decision about the human intention. The 
decision corresponds to the fact that the human intention is already known to the robot or not. 
If not then the robot is supposed to learn the new human intention. The robot should also be 
intelligent enough to recognize the start and end of the sequence of action and / or scene 
changes concerning the new human intention. Moreover the robot must also be able to decide 
if the human actions correspond to an intention or they are just random actions. The random 
actions correspond to the actions that are performed unintentionally by the human. 

8.3 Proactive HRI 
Proactivity is also an important aspect in intuitive HRI. For a robot to be proactive in HRI, he 
needs to quickly recognize the human intention.  A probabilistic approach for the intuitive 
HRI in an ambiguous situation is presented. Two cases are discussed for quick robot response 
for intuitive HRI. In first case, trigger state selection algorithm is discussed that describes how 
the trigger states are selected in case of similar state sequence of different FSMs. In the 
second case the proactive nature of HRI is discussed at lower level, i.e., the robot is required 
to prematurely decide in an ambiguous situation that may lead to two or more different human 
intentions. The ambiguous human intentions are handled by the transition weights that 
correspond to the weights assigned to the transition conditions in the FSMs. 
The robot can extend its capability of proactiveness by taking into account the daily routine 
work and concerning intentions of the interacting human. The robot can consider which tasks 
are most probable, which tasks are least probable, etc. Similarly the robot can consider the 
habits of the interacting human and customize itself according to them for being proactive. 
The domain information about the HRI workplace can also improve the proactive behaviour 
of the robot. The domain information can help the robot in quick decision making. 

8.4 Interaction in unknown scenarios 
In reality a human can encounter the situation while interacting with other human that he does 
not know the intention of the other human. The human can either intuitively interact 
depending on the previous experiences or he can simply ask about the unknown intention. The 
presence of this capability in robots is also important for HRI. A probabilistic approach for 
the robotic reaction in the known scenario with unknown human intention is presented. The 
approach corresponds to a RL-based interaction algorithm. In which the robot performs the 
most suitable action in order to cooperate with the human without knowing the human 
intention. If the action performed by the robot corresponds to the human intention then the 
robot action is accepted by the human. Otherwise the human rejects the robot action and 
expect from the robot to act differently. The human can either wait for the expected action 
from the robot or he can simply correct the robot according to his expected action. The most 



 
 

135 

suitable action selection is performed probabilistically. The robot considers the predicted 
action, weight of the predicted action, action probability, and the history support of the action. 
The value of all the action hypotheses is calculated using the considered aspects.  
The capability of the robot for interaction with the human without knowing his intention can 
be improved by providing the domain knowledge to the robot. The domain knowledge 
corresponds to the end results of the known tasks concerning the unknown human intention. 
Similarly the interaction can also be improved by the agreed upon procedures. The agreed 
upon procedures correspond to the gestures that are known the robot and the human. The 
human can guide and convey his message to the robot using the agreed upon procedures. 

8.5 Intention generalization 
A generalization approach for the human intention is introduced. The intention generalization 
corresponds to the understanding of the key concept of the human intention and to react 
according to that concept. The approach describes the rule generalization by HRI. A rule is 
induced online and then that rule is generalized by removing the unnecessary antecedents 
according to the human intention during HRI. This rule is then embedded into the 
probabilistic FSM. This rule is used to recognize the general human intention and to react 
according to the general intention. 
The robot can extend the range of its intuitive interaction with the human by the intention 
generalization. For being intelligent partner of the human in HRI, the robot must distinguish 
the situations in which he should generalize and the situations in which he should specialize 
the human intention. The robot should also customize itself according to the interacting 
human with respect to its intention generalization capability.  

8.6 Outlook 

The presented research work can be extended in multiple ways as described in Section 8.2, 
8.3, 8.4 and 8.5. The extension mainly corresponds to the human intention with applications 
in the HRI workspace.  
The robot possessing the capabilities of intention recognition, proactivity, and intention 
generalization may interact more safely with the human in a HRI workspace. The safety in 
HRI can be improved based on the intuitive HRI. The robot can anticipate the current and 
future human intentions. The robot can predict the future locations of the human. The robot 
divides the HRI workspace into cells. The current human location along with the future 
possible locations can be considered as the occupied cells. The robot planes its motion 
trajectory by taking into account the occupied cells to avoid human robot collision. The robot 
can differentiate between the virtually occupied locations with respect to the probability of 
being occupied. The robot can also consider the cells with low occupancy probability for its 
path planning to be efficient in its motion. The robot can also ignore the cells with more than 
zero occupancy probability in order to improve the safety in HRI. 
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