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Zusammenfassung

Damit zwei Menschen miteinander interagieren kénnean eine gemeinsame Aufgabe zu
erfillen, mussen sie die Erwartungen, die sie withreder Interaktion aneinander haben,
kennen. Betrachten wir das Beispiel eines Obersainéds Gastes. Kippt der Kellner eine
Flasche, um dem Gast ein Getrank anzubieten, so &arzwei mogliche Reaktionen des
Gastes erwarten. Entweder reicht ihm der GastGkis, um es fiillen zu lassen oder er zieht
es zurlick um anzudeuten, dass er kein Getrank Mallt er dem Kellner das Glas hin, so
kann dieser damit rechnen, dass der Gast seins@lasge an einem bestimmten Ort halt, bis
er das Glas flillt. Zieht der Gast dagegen das &g so rechnet er damit, dass der Kellner
sein Glas nicht fullen wird. Im Falle eines Misssténdnisses kann ein Missgeschick
geschehen. Fir fast alle Falle von Mensch-Menstdrdktion gilt, dass die Erkennung der
Absicht eine Schlisselrolle spielt. Fiur die Men&dboter-Interaktion ist sie genau so
wichtig.

Mit zunehmender Forschung auf dem Gebiet der Rblsatd und werden Roboter mehr und
mehr Teil des menschlichen Lebens. Damit Roboteredblgreicher Teil des menschlichen
Lebens werden mussen sie nutzlich fir den Mensskiem Hierflir sollen sie sich nach dem
Menschen richten. Versucht der Roboter, einem Meiszu helfen, ohne die Absicht der
interagierenden Person zu kennen, so kann der Bokeibst zu einem Problem werden, statt
die Losung der Probleme zu sein. Daher ist es nmatige dass ein Roboter die Absicht eines
Menschen, mit dem er interagieren soll um ihn ziergtiitzen, kennt.

Das Ziel dieser Arbeit ist es, eine Losung vorzlegpén, die die intuitive Mensch-Roboter-
Interaktion intuitiv macht. Um die Mensch-Robotatdraktion intuitiv zu machen sollte dem
Roboter die Absicht des Menschen bekannt sein. i&$ &n wahrscheinlichkeitsbasierter
Ansatz zur Erkennung der menschlichen Absicht difge Der Ansatz nutzt endliche
Zustandsautomaten. Jeder endliche Automat stelt mienschliche Absicht dar und besitzt
einen Wahrscheinlichkeitswert, der als Gewicht dedlichen Automaten bezeichnet wird.
Aus diesem Gewicht bestimmt der Roboter die monmengebsicht des Menschen.

Da es nicht mdglich ist, alle mdglichen Absichteie der Roboter erkennen muss, in den
Roboter einzubetten, bedarf es einer MalRnahme, tddemi Roboter neue menschliche
Absichten lernen kann. Fur diesen Zweck wird eis#n diskutiert.

Damit die Mensch-Roboter-Interaktion intelligent sollte der Roboter schnell in auf die
menschliche Absicht reagieren. Hier wird ein Andditizeine schnelle (proaktive) Reaktion
des Roboters beschrieben. Der Ansatz diskutierh ades Szenario einer mehrdeutigen
menschlichen Absicht. Dabei handelt es sich um eMpsicht, die mehr als einer
menschlichen Absicht entspricht.

Es ist moglich, dass der Mensch eine voéllig nedenition hat, die der Roboter noch nicht
kennt und auch noch nicht gelernt hat. In diesethdtat es offensichtlich keine Mensch-
Roboter-Interaktion. Fir die Bewadltigung diesesbiyms wird ein Ansatz diskutiert, der es
dem Roboter ermoglicht, eine geeignete Aktion awsihilen, um mit dem Menschen zu
interagieren.

Daruber hinaus wird ein Ansatz zur Verallgemeingrder menschlichen Absicht diskutiert.
Dadurch kann der Roboter seine Reaktion dem meankehl Willen entsprechend ausweiten.
Die Ausweitung der Reaktion bedeutet, dass der Rolubejenigen Aktionen nimmt, die er
nicht beauftragt wurde, bei einer menschlichenniinb@ zu nehmen.



Abstract

For two humans to interact with each other to perfa common task, they need to know the
expectation of each other during interaction. Faaingple if we consider an example of a
waiter and a guest. If the waiter tilts the botteoffer a drink to the guest then he may expect
two actions from the guest, i.e., either the guwektforward his glass to get it filled or he will
take his glass backward for not accepting the drhihe guest forwards his glass then the
waiter expects that the guest will keep his glass@ertain point until he pours the liquid into
the glass. Similarly if the guest takes its glamskiward then he expects from the waiter not to
pour the liquid into his glass. In any case of maerstanding an accident can occur. It
applies to almost all the instances of human-hunmé@raction. The recognition of the
intention plays a key role in human-human inteactit is equally important in human-robot
interaction.

With the increase of research in the field of ratstthe robots are and will be becoming
more and more part of human life. For the robotbdahe effective part of the human life
they should be helpful to the human. For a robobeadhelpful to the human he should act
according to the human. In case if the robot tteselp the human without knowing the
intention of the interacting human then the rokat be itself a problem rather than a solution
to the problems. Therefore it is necessary fortmtroo know the intention of the human with
whom the robot is supposed to interact to facditam.

The aim of this work is to propose a solution tokenshe human robot interaction intuitive. For
making the human-robot interaction intuitive th&emtion of the human should be known to the
interacting robot. A probabilistic approach is aduced to recognize the human intention. The
approach uses the finite state machines. Eacle fatéte machine representing a unique human
intention carries a probabilistic value that isle@lthe weight of the finite state machine. That
weight tells the robot about the current humannitioas.

Since it is not possible to embed all the possiftlentions into the robot that the robot may need
to recognize. Thus, there should be a measurdheabbot can learn new human intentions. An
approach is discussed for this purpose.

For the human-robot interaction to be intelligér@ tobot should be quick in his response towards
the human intention. An approach is described #Huairesses the issue of quick (proactive)
response of the robot. The proposed approach alsmsses the scenario concerning the
ambiguous human intention. An ambiguous intentisnai human intention that apparently
corresponds to more than one human intention.

There may be a scenario in which the human hasaliytmew intention that the robot does not
know already and also has not learned that intentiothis case, apparently there is no human-
robot interaction. In order to cope with this perbl an approach is discussed that enables the
robot to select an appropriate action to interdt tihe human.

An approach concerning the generalization of thendm intention is also discussed. By
generalizing the human intention, the robot caremdtits response according to the human
intention. The extension of the response meansthigatobot takes those actions that were not
instructed to him to be taken concerning the humgmntion.
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Chapter 1

Introduction

The active research in the field of robotics anel iticreased presence of robots among the
humans have made the Human-Robot Interaction (HRdyitable. HRI is one of the
emerging areas of robotic research, with intuitesmas an integral part of HRI. It may exist
in the situations where the tasks to be perfornreddangerous for the humans and require
situation dependent responses. The robot is ldsenable to destruction as compared to the
human thus the dangerous part of the task can thermed by the robot and supervised by
the human during HRI. In household chores, the tobmy also interact with the humans by
assisting them. HRI can be used in the situatvamsre the precise and accurate operation is
required along with the human expert knowledge. ld&i also be found in the problems
where the tasks require enormous strength andigetel decision making capabilities, i.e.,
power of the robot and intelligence of the humahe Tobots may also interact with the
humans in the tasks including rescue operationdisasters and industrial tasks, e.g., in
manufacturing industry, healthcare, e.g., surgarpugh robots, and in household chores,
e.g., service robots.

HRI is an important issue in rescue robotics [L&@scue robots can be typically employed
in the situations that are not easily accessiblthbyhuman rescue workers. The rescue related
HRI is shown in Figure 1.1. The rescue robots acgiired to intuitively comfort the injured
humans in the rescue operations. HRI is the corntibmaf multiple disciplines, i.e., robotics,
cognitive sciences, psychology, and communicatiqgeds [122].

Figure 1.1: Rescue robots. Left: All terrain res¢@24]. Right: Earthquake rescue [123]
There exist diverse forms of HRI in healthcare,.,esyirgical operations by HRI [117],

rehabilitation robotics [39], robot assisted thgrgp60], and robotized patient monitoring
systems [28]. The surgical robots operate in coatmn with the human surgeons. The
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surgical operation is performed by combining theuaacy of the robot and the knowledge of
the human surgeon. The advantages of HRI basettauoperations involve remote surgery,
minimal invasive surgery, reduced blood loss arsg [gain [46]. The demonstration of robot
assisted surgery is shown in Figure 1.2.

Figure 1.2: Robot assisted surgery [68]

There exist a few examples to date for HRI concgymiousehold chores, e.g., Roomba [128]
and Hybrid Assistive Limb (HAL) [67]. The level dfiRI is very little as Roomba is a
cleaning robot and considers the human as an dbstad avoid him during the cleaning task.
Honda’'s ASIMO is considered as a most sophisticdtechanoid, can not perform the
sophisticated household chores interacting withithman. The experiments are performed
with ASIMO for handing over the special coffee cupsa tray to the human but it is not
marketed yet. In Figure 1.3 the robots and the @kamf the HRI concerning the household
chores are shown.

Figure 1.3: Household robotics. Left: ASIMO [2]. ddile: HAL [35]. Right: Roomba [128]

Industrial robots can be found in almost all auttedamanufacturing industry. They are used
in many industrial applications, e.g., packagirgcking, casting, painting, and welding. The
industrial robots move very fast to be efficientdatus they are dangerous for persons
working around them. The working areas of the humudnots are separated by fences if the
robots are operating autonomously as shown in EBigub. The HRI safety is an active
research area. Industrial HRI may involve manipioitaof dangerous objects in the industry,
controlling of complex operations, and movemenhevy objects in combination with the
human. The robot application in industry with regp® HRI is increasing day by day [47].
Since a long time the industrial robots, especiailyotic arms have been extensively used in
the manufacturing industry including car making asgembling industry. Now the industry
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robots concerning HRI are introduced into the oil @as industry [65]. The robots can be
remotely handled by the human to avoid the harstr@mment effect on the human and to
improve the safety and efficiency [65]. The twousttial robots are shown in Figure 1.4.

Figure 1.4: Industrial robots. Right: Staeubli RX@uring HRI [159]. Left: Kuka LWR [158]

1.1 Motivation

The goal of the robotic presence among the humans make the human life as easy as
possible. The robots are supposed to assist theartsrm their activities. The provided
services are appreciated if they are offered atritjet time and need little input effort.
Interaction characteristics make a robot more es lacceptable among the humans. The
interface between the human and the robot desctitemteracting capabilities of a robot,
i.e., how much the robot is intuitive towards théeracting human. If the interacting human
needs to know prerequisites in order to interath wie robot then the level of interaction is
less acceptable as compared to the one that doelemand any prerequisite for interaction.
The capability of adaption of the robot is alsoimportant factor in HRI. The robot must
adapt to the requirements of the interacting hur&e. requirement may directly concern the
behaviour of the interacting human and / or thep&nchanges in the HRI workspace.
Similarly proactiveness of the robot also playsimportant role in the intuitiveness and
improvement in HRI. The proactiveness is the urtdading of a situation as early as
possible. The described interacting qualities @blaot with a human directly relates to the
fact that how much the robot is aware of the intenof the interacting human. The robot is
required to assist the human rather than be adsisyethe human thus the intention
recognition is inevitable for a robot interactinglwa human.

The robots exist in higher numbers in industry @ gared to the other fields of life. Most of
the robots used in the industry are the roboticsarhostly, the robots in the industry are
automated and do not interact with the humans. réason for no interaction is mostly the
issue of HRI safety as the robot moving at highegpean harm the cooperating human.
Therefore the human and robots are separated loggeas shown in Figure 1.5. There exist
seldom cases where the human and robot interalsteaith other as the robot work more or
less like a tool for the human [24].

A simple solution may be the usage of availablesses) i.e., vision sensors, range sensor,
force sensors, etc. The perception of the sensomways limited to the ability of the
algorithms or the techniques that are used topneé¢the data obtained from the sensors. The
safety solution provided by the sensors does matrenl00 % success.
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Another reason that the robots are not employatienindustry to work in cooperation with
the humans is that the robots do not take intowttcwhat the human is currently doing, what
is his task, and what he will be doing in few momserMostly robots work like simple
machines performing the already programmed taskswery little flexibility.

Figure 1.5: Industrial robots separated from huméystences [129]

For a robot to work with the human the robot netedse flexible but also needs to be aware
of what the interacting human intends to do so blmélh the human and the robot can work in
collaboration. We motivate the importance of iniemtrecognition in HRI by addressing the

following issues concerning HRI, i.e. safety in HIRIbot as a tool, adaption, and robot in
Small and Medium Enterprises (SME).

1.1.1Safety in HRI

In the industry, HRI safety is a significant isstiat restrains the human and the mighty
industrial robot from interaction. The range and tision sensors can be used to monitor the
HRI workspace. With the presence of human, thedspéehe robot may be decreased, the
robot may be completely stopped or the robot’s fraiim the source to the destination can be
reconsidered and planned to avoid human robotsamfliin HRI workspace. Decreasing the
speed of the robot or simply stopping the robaeaH the efficiency of operation. The HRI is
negatively affected due to slowing or stopping dperations of the robot. The changing and
reconsidering of the path to avoid the collisiotween the human and robot is acceptable,
but it is not risk-free. There may be a situatiomlesthe human and robot are moving in the
HRI workspace that one or more parts of human kaydyoccluded by the robot. Thus there
may be a collision between the human and the rdbetto the improper monitoring of the
HRI workspace. The situation may be improved bydjteng the human locations in HRI
workspace, i.e., the robot can anticipate the &ihwrman actions and thus the robot can plan
the path avoiding any expected collision. In oraeanticipate the future human actions, the
robot needs to know the human intention, i.e., whathuman intends to do. Then the robot
can infer in which direction the human can movaysbend, etc. Taking into account all the
virtually occupied locations the robot can planadddlision-free path. Moreover, while path
planning; the robot can consider the locationsidsally occupied that are frequently visited
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by the human during HRI. This can considerably iowprthe safety measurements but it can
not fully guarantee the risk-free safe HRI.

1.1.2Robot as a tool

In manufacturing industries, there may be tasks tbgquire enormous power, intelligent
decision making, and excellent sensors with efficimference. The robots can help the
humans with enormous power, but intelligent decisiaking and excellent sensors with
efficient inference may not always be guaranteedhleyrobots in all the cases. The human
can not perform such tasks alone too. Thereforéntimean and robot need to work together.
In almost all such cases the robot is used as labpdhe human instead of an intuitive
coworker.

As a tool the robot is very expensive unless tis& ta impossible without the robot. There
exists other less intelligent machines that caagy@ied instead of the robot, e.g., in assembly
line there exist less intelligent devices that ik coworkers to move the heavy objects, e.g.,
doors of the vehicles, dashboards, seats etc tetsieed places as shown in Figure 1.6. These
less intelligent machines are called CoBots [1hyare used to assist the human coworkers
on an assembly line.

B

Figure 1.6: CoBots. Left: Seat assembly [34]. Ridgdtor assembly [33]

The robot can only be appreciated in such conditibthe robot can perform that task with
least human input as compared to the less intalligevices, i.e., if the robot performs the
task automatically recognizing the human intenton bring him the required component
and cooperate intuitively to install that componietd the vehicle.

The tasks of moving, assembling, and installatibthe heavy components are repeatedly
performed in the manufacturing industries. Theitive execution of these tasks by the robots
cooperating in accordance with the human intentemimprove the efficiency of the human
workers. The intelligent tool behaviour of the rblsan be accepted in HRI if the robot acts
according to the human intention for a task in gheen situation. For example, consider a
robot that can perform more than one operation. rbiet interacts with the human while
performing certain task and executes the speciperations according to the human
intentions to complete the task. The robot as amtive tool with multiple capabilities is
valuable if the robot selects and switches betwtberavailable capabilities according to the
intention of cooperating human.
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1.1.3Adaption

As an intuitive and intelligent machine the robbbsld also adapt to the small changes in
HRI. The adaption may correspond to the workspdddRl and to the cooperating human.
Adaption to the workspace is to remember the kndgdegained in the workspace concerning
intuitive HRI and to apply that knowledge in thexh@IRI situations in order to be more
intuitive and helpful to the cooperating human. Theaption to the human coworker
corresponds to adapt towards the human intentiberel may be more than one aspect for
adaption towards the human intention. For exangaeption may correspond to the solution
of the conflict between the two nearly similar huma@emonstration concerning different
intentions. Similarly the adaption aspect may alsmlve the robot adaption to the routine
human tasks in the HRI workspace.

If the robot does not have the adaption capabtlign the robot needs to be explicitly
programmed or the robot requires adding or updateslated modules. In this case the
difference between an intelligent robot and a semplachine is reduced. In every robot
related industry making manual updates for smaknges in HRI workspace is less
acceptable for robots. Update for the robots vedjuire extra trained manpower, stopping of
production and extra costs. This is further prolagmif the update is required to be
performed after short intervals.

Thus the capability of adaption is necessary fomamtive robot for HRI. The capability of
adaption enables the robot to alter its responstRhwithout the explicit human clarification
and robotic expert intervention. In response tolittle changes in the HRI the robot needs to
adapt to the changes intuitively by performing adocwly.

The recognition of the human intention is the basmgredient to adapt according to the
interaction human. For example if the human hasdjriee two intentions while working in
the HRI workspace. Then the collaborating robot @aly adapt according to the human if he
can recognize both of the intentions. Next time ithigot can proactively interact with the
human based on the adaption.

1.1.4Robot in Small and Medium Enterprise (SME)

A SME consists of limited resources relating to p@amer and finances. The production rate
is also low due to the lack of resources and lessathd. There may be a few or no robot
experts in SME. The robotic tasks in the SME aré&eqdifferent as compared to big
manufacturing industries. In big manufacturing isithes the robots are mostly working as
automated machines without human interference, edsem SME almost all the tasks are
performed directly by the human workers or under direct supervision of human workers.
Thus the robot present in SME must have the capalit work in an environment
concerning HRI. In order to justify a robot to beegent in SME it must work as intelligent
and intuitive machine. It must not require reprogmang for small amendments in different
tasks, possessing the capability of adaption. Dh®trmust be adaptive towards the small
changes in the HRI workspace regarding human iiot@ent

For better HRI regarding intuition and adaptionsitould anticipate the intention of the
cooperating human. The ability of robot of beingamtive is an extra advantage for HRI in
SME. Similarly a robot with intuitive interactingapabilities with the human can act as helper
for a craftsman and mechanic in their related wuoks.
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In industry ranging from SME to big manufacturingdustry mostly the manufacturing
pattern remains the same for quite a time. In b@nufacturing industries like vehicle
industries the manufacturing setup is establisloeddinger time as compared to the SMEs.
The production speed is increased by introducirg bbots as well as less intelligent
machines. The automated robots work mostly very, faglependent from each other.
However, all the sections of the industry big oraindo not contain the automated robots.
The tasks in such sections are performed direcylytte humans or under the direct
supervision of the humans. The number of manuaissewary from industry to industry
depending on the concerning tasks in the industite employment of intuitive robots in
such sections can improve the efficiency of cogpegehumans. The intuitive robots should
be capable to recognize the intention of coopegahmman and should be able to act
accordingly. These robots can perform the taskebets compared to the less intelligent
CoBots, requiring little human inputhe CoBots require more focused human input asla to
to perform a task. The intuitive robots will worltnas a simple tool, but like an intuitive
coworker that can react according to the coopegdtuman.
The robot must know the answers of the followingsiions to be intuitive with respect to the
human requirements and thus effective during HRE Guestions are given below

1. When to do?

2. What to do?

3. Where to do?
The question what to do corresponds to the robodrain response to the human actions
while interacting with the human. For this reaste trobot needs to know the human
intention. Knowing the human intention tells thésbwhen to do what, i.e., if the robot has
recognized the human intention regarding a spetaBk. Then the robot must also know the
cooperative actions in order to respond in an iivieliand cooperative way. That corresponds
to the answer of second question that robot neelladw. The question three corresponds to
a specific situation in which the selected robdicgcis to be taken. For example, if a human
and a robot are cooperating in a HRI workspace. Ppnarlucts are manufactured in the
workspace. Manufacturing process is same for bdoghproducts except one operation. Thus
the robot needs to take care what he needs to dcevamd when in order to be effective and
intuitive.

1.2 Goals

The goal of the research work is to propose a isolutor the intuitive HRI by human
intention recognition. The robot should be awaréhefintention of the cooperating human for
intuitive HRI. The following points are consideréal make the HRI intuitive regarding the
intention of cooperating human.

Intuitive HRI by intention recognition

Intention learning by scene observation

Proactive intention estimation

Interaction in unknown human intention scenario

Rule-based intention generalization

moowz>
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1.2.1Intuitive HRI by intention recognition

The Goal A involves the proposition of a probabitisframework for intuitive HRI by
intention recognition. The apprehension of the huiméention is based on the human actions
along with the scene changes that occur due thuhean actions.
The given information corresponds to the humanoastiand the scene information of HRI
workspace concerning the problem. The requiredas¢cognition of human intention out of
the already known human intentions.
The robotic tasks involve picking and placing ofabject according to the human intention.
Experimentation with the proposed probabilistictegsinvolve the following

1. Picking and placing of an object according to thenhn intention

2. Handing over the intended object to the human

3. Pile up and unpile of objects according to the haiméention

4. Picking up an object and holding that object aratiplg the held object at a

human intended place.

1.2.2Intention learning by scene observation

The input to the problem corresponds to the huneéiores, scene information, scene change
information, and the human intentions in termsagne information. The output corresponds
to the modelling of a new human intention.

The Goal B corresponds to the inference of the mumgention from the actions performed
by the human as well as from the scene changesredcdue to the human actions. Each
newly learned human intention is modelled usinghaef state machine. The inference of the
human intention is performed based on the alreadyvk features.

The expected experiments include the arrangemédrtsecknown objects with respect to a
pattern according to the human intention. The rotesponds by recognizing the newly
learned human intention.

1.2.3Proactive intention estimation

The Goal C corresponds to quick recognition of & intention. It includes the premature
recognition of an intention in an ambiguous sitratthat may lead to two or more human
intentions.

The Goal C includes the proposition of probabibgsed approach that helps the system to
adapt towards the human behaviour and to reactcfively in the intermixed human
intentions scenario. The system can either waitdfsambiguation of the intention, requiring
extra human actions or it can proactively reacedejng on its previous knowledge about the
human behaviour.

Proactive intention estimation task includes theppsition of the mechanism to update the
intention recognition trigger states for the prabstic finite state machines that model the
human intentions. A state of a state machine igiasd as thérigger state If the trigger state

of a finite state machine is reached then the hum#antion concerning the finite state
machine is recognized. The online trigger stateatgopdorresponds to the online selection of a
state of a finite state machine as the triggeestat

The experiments involve the arrangements of objbetisrepresent different human intention
but have similar portion too, e.g., the objectethin a square pattern and the objects placed

20



along a line. There exists a pattern (placememtgatbe line pattern) that is similar in both
patterns. The objects placed in different pattamesshown in Figure 1.7.

Figure 1.7: Left: Square pattern. Middle: Line patt Right: Similarity in both the patterns

1.2.4Interaction in unknown human intention scenario

The Goal D corresponds to the solution of HRI isecd the robot does not know the human
intention, i.e., by no means the robot can recagtiie exact human intention. Based on the
current actions and the history of the actionsrtimt tries to estimate the next most likely
action. The solution corresponds to a reinforcentasted probabilistic action selection for
HRI. The HRI environment is already known to thbob
The sub tasks for the Goal D consist of the follayvi
Action hypotheses generation based on the knowonact
Prediction of the actions based on the previousmab the current task
Weighting of the predicted actions
Calculating the history support of the action hyyeses
Calculating the conditional probability (P(Actidriction:.;)) and the prior probability
(P(Action)) for the predicted actions

6. Related implementations
The experiments involve the arrangement of knowjeats with unknown human intention.
The task of the robot is to interact with the huraaoording to the estimated human action.

agrwnE

1.2.5Rule-based intention generalization

The input to this problem corresponds to the rudsrred from the human actions. The
required is the reduction of antecedents of thesridy HRI. The task in the Goal E is to
enable the robot to generalize its HRI capabilitidse robot infers rules and generalizes them
to extend its interaction capabilities with the pemting human. The extension means that
the robot performs the known actions that wereimsitucted to him to perform concerning a
human intention. The rule-based intention geneatbn is divided into the following sub
tasks

1. Rule generation

2. Rule application

3. Rule generalization
Rule generation concerns the rule inference thatrd®es an action performed on an object
having certain known characteristics. During thée rgeneration, the system knows the
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objects present in the scene, the change in theesmecurred due to the human action and
different properties / characteristics of the ot§garesent in the scene.
Rule application corresponds to the selection efdhjects on which the rule can be applied.
Rule generalization corresponds to the eliminattdnmaximum number of unnecessary
antecedents from the inferred rule.
The anticipated intention generalization experira@mgolve the following

1. Picking and placing speckled object into the corgafor the speckled object

2. Picking and placing broken object into the contaioethe broken object

3. Picking and placing non speckled object into theceoning container
Generalizing the above defined operations on theroklated (match with respect to property
| characteristic) objects will enable the robotprform a task that the robot has neither
observed nor been instructed, e.g., the robot &ntyws to place a speckled object of a
specific type into the speckled container. Aftex generalization, it can place all types of the
speckled objects into the container for the spetklejects. The generalization enables the
system to respond in an unknown situation (with vikmoobjects). Unknown means that
system is not explicitly taught that how to reactase of a certain known object.

1.3 Demarcation

HRI is a multiple domain research field. It consathe computer vision to monitor the HRI
workspace for safety reasons concerning the avoelah human robot collision. It contains
the robot path planning, revising of the previoyslgnned path, and collision avoidance for
optimal movement from source to destination. Ityraso contain image reconstruction for
scene monitoring. Along with human behaviour madgllrecognition of emotional states of
the cooperating human and related fields can begbdéine HRI. Similarly learning in HRI is
also a complete subfield of HRI. The presented @ggr does not contribute to any of the
above mentioned areas.

The presented probabilistic approach to intentemognition for HRI is general and does not
correspond to a specific environment. There is tngtsconnection between the presented
approach and any specific HRI scenario.

The presented approach does not propose an imagessing-based method for scene
understanding. The process of scene understandimgsponds to the apprehension of scene.
The approach also does not address the issue oéhsmsion of any performed human
actions, operation on the objects in the scenengihg in the scene and related scene
inferring parameters. The inferring parametersespond to the known features for inferring
the scene information. The recognition of humartuges is also not included in the focus of
the presented approach. Moreover, the presentedrotswork does not consider the issues
concerning the resource sharing in the common Hirkspace.

The proposed approach can be applied on humanodistaer robots for HRI. There is no
robot specific operation proposed along with theegi approach. There is also no sensor
specification in the presented approach. Any kihdemsor can be used to monitor the HRI
workspace. The selection of sensor depends onuirent type of HRI workspace and the
expected operations in the workspace.

There is no specification about the respective tralotions in response to the human actions.
Like the scene understanding the robotic actioarméation depends on the current robot in
HRI.
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1.4 Overview

The research work is organized as follows: Chaj@edescribes the already existing
approaches for HRI. The discussed approaches pomdsto the social issues concerning
HRI, variable autonomy HRI, HRI approaches concgyniobot as an assistant, and tactile
HRI. At the end of Chapter 2, the differences aseussed between the existing approaches
and the presented research work.

In Chapter 3 the proposed approach for intentiaogeition is described in detail. The
modelling of different human intentions using theité state machines is described in this
chapter. Chapter 3 also discusses the algorithrthéoprobabilistic intention selection. At the
end of Chapter 3, the experiments concerning tteniion recognition using the proposed
approach are described.

In Chapter 4 an online intention learning approacimtroduced. The introduced approach is
based on the intention recognition approach desdrib Chapter 3. Three types of intention
learning methods are discussed. At the end of @haptthe experiments are discussed that
are performed for online intention learning.

In Chapter 5 premature and proactive intention geimn is described. The described
approach is based on the approaches discussedapteCt8 and 4. The described approach
takes into account the HRI scenarios that are ainil an extent but lead to different human
intentions. Additionally an algorithm is introducéat the finite state machines representing
the human intentions. The algorithm enables thigefstate machines to recognize the human
intention as early as possible. At the end of Gérapt the experiments are discussed that
illustrate the proactive and premature intenticzogmition.

Chapter 6 discusses the HRI in a known environmetit unknown human intention. The
proposed algorithm hypothesizes the potential huaions and selects the most suitable
action for HRI. The robot may be corrected by tlwenan. The robot can reselect the next
most suitable action for HRI depending on the exténg human. At the end of Chapter 6, the
experiments are discussed, performed using theopeapapproach.

In Chapter 7, an approach concerning the genetiaiizaf human intention is discussed. The
approach describes the rule based human intenéioerglization. This approach corresponds
to the concept generalization. The rule-based gdination uses the approaches of Chapter 3
and 4 to implement the human intention generabmatiThe generalization procedure is
performed by HRI. The generalization methods usiRj and the rule conflict resolutions are
discussed in detail in the Chapter 7. At the en@lodpter 7, the performed experiments are
discussed that demonstrate the generalizationtr@stalined through the proposed approach.
In the end, Chapter 8 summarizes the presentedrodsaork and provides an out look on
future work.
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Chapter 2

Related work

In this chapter most of the discussed approachleseréo the HRI in which the human
interacts with a robot in the vicinity of the robdit Section 2.1 the overview of the existing
approaches concerning HRI is given. The existingr@gches are discussed with respect
different aspects of HRI, i.e., social HRI, robstam assistant, and tactile HRI. In Section 2.2,
the approaches concerning the social issues ofafRtiscussed. Section 2.3 corresponds to
the HRI in which the robot acts as assistant tahilmaan to complete the task. The discussed
approaches correspond to robot as tour guide ineumis a harvester, assistant in rescue
operation, etc. The third aspect in Section 2.4&udises different types of approaches
concerning sensors that are used for tactile HRItha types of tactile HRI. The sensor based
approaches correspond to interpretation of seretar @hd the types of application of sensors
in the tactile HRI.

2.1 Overview

HRI is a mixture of many fields, e.g., psychologggnitive science, social science, artificial
intelligence, computer science, robots, engineerargl human-computer interaction [43].
The field of HRI corresponds to the research camngrunderstanding, designing, evaluation
and the improvement of the robots that interachwlite humans. One of the core issues in
HRI is the effective communication between theriaténg human and the robot. The motive
of the HRI field is to consider all the possiblengounication channels and to improve them
for better interaction. The HRI can be broadly sifsd into two classes [60], i.e., the
teleoperation and the direct HRI. The classetdoperationcorresponds to the HRI in which
the human and the interacting robot are separdtesiseparation concerns the temporal and /
or spatial difference. In teleoperation the humad the robot are not required to exist at the
same location. Irdirect HRI the human and the robot are present at a sam&oloand
physically interact with each other.

The described classes can be further classifiedsiab classes taking into account the design
issues, application fields, nature of informatiotleange, level of the autonomy required in
the HRI, emotions based HRI, control issues, etc.

A survey based on teleoperation is available ir2[Ed [69]. The survey in [132] discusses
the teleoperation based on supervisory control ldochan-machine interaction. A survey
concerning the control theory of teleoperation iseg in [69]. The space oriented
teleoperation is surveyed by NASA given in [116].

The here presented literature focuses on the @seeork in the field of direct HRI. The
direct HRI has two important aspects that may axisimost all the categories of direct HRI,
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i.e., short term HRI and long term HRI. A HRI in ieh the human and the robot interact for
short time and are not required to interact agathagain is termed ahort term HRIIf the
human and the robot interact with each other mangdg then it is termed dsng term HRI
In case if the robot has to perform long term iatdons with a human as a part of his
personal life then the robot is required to spemahccording to the interacting person [41].
An extensive survey is performed for direct HRI ceming social interaction capabilities of
the robots in [54]. The robots that engage the msnscially and interact with them to be
helpful need to possess complex social skills arahkthe social values.
The survey performed in [61] discusses the robols as an assistant to the human. The HRI
survey in [60] mainly focuses on autonomy of robatcerning the robot’s role as an assistant
to the human. The robots may be required to inteman assistant with one or more than one
person. There exist certain applications, e.g.otiokdour around the museum [154], mobile-
robot guide in the hospital [135], etc.
The survey provided in [6] discusses the HRI byngknto account tactile interaction. The
article discusses the tactile HRI with respectio aspects, i.e., type of direct HRI in tactile
HRI and the sensors used in tactile HRI. The rebeaork performed in the area of HRI is
discussed according to the following topics. Thade correspond to different perspectives of
HRI.

2.2Social HRI

2.3Robot as an assistant

2.4Tactile HRI

2.2 Social HRI

The survey article [54] focuses different aspeétsozial HRI. The socially motivated design
concerns the development of robot for interactiohwhe human. The robots can be
developed based on the two types of objectives, hielogical inspirations and functional
design. The biologically inspired robots internadiynulate or mimic the social intelligence
present in the living creatures. The biologicapiretion is based on two arguments. The first
argument describes that a robot must possessrcetaracteristics for interaction with the
human. The outlook of the robot should be naturelisThe robot should mimic the
perception capabilities of the human [170]. Theosecargument corresponds to the testing
and refining of concerning scientific theories [10dJhe functionally designed robots are
required to have socially intelligent outlook. Ieens that the appearance of the robot should
be according to the social context. The designoisraquired to have basis in science. It
means the actions of the robot should correspondhéo artificial social agent for the
concerning task. The internal mechanism is notirequto be the same as in the living
creatures. The mechanism corresponds to the remsarapability of the robot. The
functionally designed robots for HRI have constedinoperational and performance
objectives as compared to the biologically inspieubts.

The humans are expert in social interaction. Thertelogy that adheres to the expectation of
human makes the HRI intuitive and easy for the msxja21]. Therefore the anthromorphic
robots are applied in situations that expect théol of the robot like a human. The robots
are equipped with the speech recognition, facegmtion, gaze tracking, and other such
capabilities. These capabilities help the robomike the HRI as human-human interaction
[42]. The embodiment of the robot plays an impdrtarte in the concerning HRI scenario

26



[54]. The embodiment of a robot corresponds to i@ phological aspects of the robot
including anthropomorphic, zoomorphic, and caricediu If a robot is supposed to imitate like
a human then it must have the anthropomorphic chipe[18].

Emotions have significant importance in the humaman communication. They are closely
related to the context [7]. There exist literatoomcerning emotions embedded into electronic
games, toys, and software agents [16]. In HRI thetens play also an important role for
social communication [29] [114]. Suzuki investightbe HRI based on emotions in [142]. A
mobile robot was used with the artificial emotioffihe emotion states of the robot are
changed by the interaction with the humans. Thexghan the emotional states of the robot
causes the change in its actions. In [26] detailBrmation is provided over the robot named
Kismet. Kismet is a robot that is specially des@yt@ interact emotionally with the human. A
detailed discussion of software and hardware is glovided. The emotional system of
Kismet is described concerning the influence of #oms on the motivational system of
Kismet and affect of this on interaction with humahe robot Kismet is shown in Figure 2.1.
In Section 2.2, most of the described approachgshasize on the appearance of the robot to
positively affect the social issues of HRI. Alongwthe appearance, the understanding of the
intention of the interacting person can also pesiyi affect the social HRI.

. - — 7

Figure 2.1: Emotion-based HRI by facial expressifitg

2.3 Robot as an assistant

There exist many examples in which the robot ack &sol for the interacting human [23].
The examples vary based on the difference of agpdics as well as the robot autonomy
while interacting with the human or along with tkeman. Horiguchi [70] proposed a force
feedback based HRI in teleoperation of robots.

The HRI discussed in [27] corresponds to the appba of a harvester robot along with the
human. The experiment was performed for harvestiayons. A variable level of robot
autonomy was applied during HRI. The detection saté melons were increased by
collaborative harvesting. The success rate of Ising also depends on the complexity of
situation.
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The task of the robot described in [156] corresgotad teleoperation. The robot operation
concerns the placement of radioactive waste im&ralestorage. The robot is taught the task.
The teaching is performed through the teleoperat#ofunctional architecture is proposed in
[156]. The robot is monitored while performing akaThe human can interrupt the robot if a
new situation arises while the robot operation. Tdt#ot can only perform what he has been
taught but can not react intuitively in an unknowsituation. For this purpose the human
guides the robot.

In [73] the level of autonomy of the robot is siamilas discussed in the [156]. The robot
patrols a nuclear plant. The robot works autononyonsthe normal situations. The normal
situations correspond to the situations in whiarbbot knows how to react. In an unknown
situation the robot is guided by the human to sdahe problem. In unknown situation the
level of autonomy is zero and the robot totally elegls on the human instructions. In known
situation the robot is fully autonomous in perfongnithe tasks.

There exist research work on HRI in the domainrbbn search and rescue (USAR). Mostly
the mobile robots are used in USAR. The robotsuaezl as a tool to search and rescue the
humans. The situations awareness plays an impaxnin USAR [167]. The USAR issue
discussed in [102] concerns the operator situadareness and HRI. The variation in the
level of autonomy between the human operator aedrtibot is discussed in [31]. The
approaches in [143] and [146] proposed that witb tise of an overhead camera and
automatic mapping techniques the situational avem®rcan be improved by reducing the
navigational errors.

Another teleoperation approach is discussed in ][1lt3this approach multiple operators
present at different locations control multiple etbin a collision free collaborative manner in
a common working environment. The collision canuraue to the fact that the operators are
separately located from each other and do not kim@nintention of each other. A graphic
display is used to avoid the collisions. In thetewmtion of work in [113], the time delay for
the sent commands to the robots was handled byltameously sending to the graphic
display and the robots [30]. These commands are asevirtual force feedback by the
operators to avoid the collisions.

Autonomy is a significant aspect in HRI. The lewdl autonomy varies between fully
autonomous to teleoperation, based on the fragditgy the delicacy of the task and the
working environment. It also depends on the aréfimtelligence present in the robot and the
nature of the working environment. The nature & torking environment describes that
with which likelihood the new conditions can arise.
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Figure 2.2: Levels of robot autonomy in HRI [63]
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The autonomy corresponds to the mappings of enwienrt input to the actuator movements
or the representational schemas [61]. The autonmayrobot is the amount of time a robot
can be neglected [31]. The term neglected meanapendgsed. The levels of autonomy
discussed in [147] are divided in different levélsm total dependence to total autonomy.
The overview of levels of autonomy can be descridgmedhown in Figure 2.2.

Fong [55] discussed the variability of autonomyHRI. The robot operates autonomously
until it faces a problem that can not be solvedhiny. The robot requests teleoperation in case
of problem. The performance of the robots dependshe numbers of the robots and the
teleoperators. If one human operator is preseninfore robots then the performance of the
robots declines.

Autonomy is enabled in the robots with the helpadifficial intelligence, signal processing,
control theory, cognitive science, linguistics, ahe situation dependent algorithms [61].
There existed different approaches for autonomgy,, esense-plan-act of decision-making
[108] and behaviour-based robotics [8].

A mobile robot named Sage interacts with the peapla tour guide in a museum [111]. The
change in the modes of the robot due to the HRligsussed in [111]. The change in the
mode of Sage causes the change in his behaviolr th# interacting humans. The
communication channels utilized by Sage in HRIudel speech and emotions. Sage interacts
with the humans through a LCD screen and auditvesrs in Figure 2.3. The robot stops and
asks for help in a troubled situation during HRI.

Figure 2.3: A museum guide mobile robot Sage [111]

A humanoid robot interacts with the humans usingesh, gesture, and gaze tracking [81].
The robot works as a guide. The experiment withrthet showed the importance of gaze in
the HRI. The interacting people spent more than dfathe interacting time focusing on the

robot’s face.
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In [87] a study is performed on HRI where the rohots as a guide to the human. It is
discussed in the study that only speech can nqt tiel robot to predict the future events
concerning HRI. It is also important to understahd body language of the interacting
human. The gaze of interacting human also givdseaabout his interest.

In [71] the importance of robot feedback is desmlilbluring HRI. The robot feedback means
that the robot acknowledges during HRI. The expents showed that the robot feedback
produced ease in HRI. The robot is designed toanten office environment with the people
having physical disabilities. The results of thg@exments correspond to the fact that speech
alone is not enough for human-robot communication.

The penguin robot interacts with the human as @ Hakl]. It is emphasized that a robot
should not only exhibit gestures, but also interphe gestures of interacting human. The
robot uses the two channels of communication,vision and speech. The robot monitors the
conveyed messages to the human by tracking theajdmenan.

Inagaki proposed HRI by perception, recognition entention inference [75]. They used time
dependent information along with the fuzzy rulesH®I. The approach in [75] is specialized
with respect to the application of time dependafdrmation in HRI. The human and robot
cooperate to achieve a common goal.

Morita emphasized on the dialogue based HRI [1Thgir robot carries an object from one
location to another location based on visual andicainputs. Tversky [157] discussed the
importance of understanding the spatial referencédRI. Tenbrink [152] proposed a spatial
understanding based HRI method. The robot is gtheninteraction commands through a
keyboard. The interaction commands given to thetrobnsidered the robot’s perspective.
Rani [120] proposed and performed the experimentsxerning HRI that considers the
human anxiety while HRI. The physiological knowleds used to generalize the anxiety
state of the interacting human. The anxiety setedependent of the age, culture, and gender
of interacting human.

Fernandez [50] proposed HRI based on intentiong®ition. The experiments correspond to
the transportation of a rigid object by human am&lrobot. They used spectral patterns in the
force signal measured in the gripper arm.

The approaches in Section 2.3 discussed the udatjfevent communication channels and
the levels of autonomy as the robot works as aistags to the human. Only one approach
[75] considered the intention of the interactingspa that is also time dependent.

2.4 Tactile HRI

Tactile interaction is also an important aspectHétl. The physical contact between the
human and the robot is considered from differemgflem In case of HRI safety the contact
between the human and the robot is avoided. ftasifcally important for an industrial robot
interacting with the human [43]. In case of a hunmaaraction with a humanoid, the human
touches the robot to guide the robot [4]. The egitiesearch work in the area of tactile HRI is
described in two categories [4]. The first categooyresponds to the sensors that are used in
tactile HRI. The second category corresponds totdble HRI. The sub categories in the
second category correspond to different objectihas are achieved by physically touching
the robot.
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2.4.1Skin sensors

There exist many approaches for interpreting tlcéléaresponse from the sensor. The data
analysis approaches differ from each other basetth@sensor and the data analysis method.
The data analysis approaches for tactile respoosemny correspond to the binary detection
of contact but also the location of contact, magiet of force of concerning contact. The
sensor data may also correspond to orientation, engnvibration and temperature. The
tactile sensor used in HRI involve force / torquensors, force sensing registers (FSR),
electric field sensor, capacitive sensing arragsistive sensing arrays, temperature sensors,
potentiometers, photoreflectors, etc. The sub caileg concerning the tactile sensors
correspond to the mechanisms that use the comtamafi tactile sensors to infer the touch
response in HRI. The combination mechanism corredpdo hard skin, soft skin, and
alternative to skin-based approaches.

A) Hard Skins

The hard skins correspond to the installation ofila sensor under the hard and bumper-
based cover in the shape of robot body. The éasBhsors that can be installed under the
hard skins involve force / torque sensors, FSRslatometers, and the deformations sensors.
More than one sensor is installed under the hairts sknd the collective response of sensor
can be obtained by interpolation. One draw backad skin cover is the restriction of
obtained measurement types and resolution. Thedkand are commonly used to detect the
unexpected collisions. The arms of the 52 degrdeeetlom humanoid WENDY are covered
by a hard plastic having force / torque and FSR&@enunderneath [76]. An industrial robotic
arm uses the deformation sensors in rubber thplarsed under a metal sheet of the robot
[56].

B) Soft Skins

The soft skins correspond to the installation atika sensors under the flexible cover. The
sensors that can be used for soft skins involventmmeters, FSRs, capacitance sensors,
temperature sensors, electric field sensors, antbpdflectors. Multiple different sensors can
be installed under the soft skins. The soft skirevipe the soft contact while HRI and the
contact with soft skin are near to the human skisimilarity. The tactile sensors are arranged
in the form of arrays in soft skins. The soft skieisable to detect the tactile sensation
performed on an area that is not directly covenrethb installed sensors. The tactile operation
performed on those areas causes the deformatite isoft skin. The deformation propagates
the tactile signal to a tactile sensor. The spatablution of array-based soft skins is in
millimeter. The soft skin used in the humanoidsoilwe [74][160][97]. The soft skin in the
humanoid in [74] corresponds to patches of pressemsitive conductivity rubber. The seal
robot in [160] contains the soft skin of tactilensers under its synthetic fur. The child sized
android in [97] has the skin of silicone that cavitgs whole body.

C) Alternative to skin approaches

The tactile sensors are either placed inside thetrbody or the sensors are placed on the
body of the robot. There exist no explicit coverfogthe sensors. The skinless tactile sensor-
based approaches place the sensors on the surfacthio the joints of the robot. The used
sensors involve pressure-sensitive conductivitypempand commercial tactile sensing pads
[6]. The sensors can also be placed in the fornarcdys on the robot body. The tactile
information that can be obtained from the instal&thless sensors is small, e.g., the spatial
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resolution with respect to tactile sensation igejlow. The absence of skin can be handled
with the installation of arrays of tactile sensdrke robots having the tactile sensors installed
inside are mostly the industrial robot arms. In][@% location and the tactile force of the
human are sensed by the torque sensors installing gbints of the light weight robot arm.
There exist many approaches concerning the instadlaf tactile sensors on the body of the
robot, e.g., entertainment robot SDR-4X Il (QRIBGB], dog robot [133], cat robot [134], the
robotic creature [168]. In [86] the tactile sensars used to detect the pinch operation at all
the joints of the robot. In [133] the balloon mee sensor is used to interact with the human.
In [134] the piezoelectric force sensors are itestiabn different parts of the robot to detect
hitting and touching on the cat robot. There e@B3tFSR sensors under the fur of the rabbit
looking robotic creature to detect the human cdrjteg8].

2.4.2Tactlle HRI

The physical HRI with respect to the existing t@csiensing approaches is divided into three
categories [6]. In the first category the consideapproaches correspond to the unexpected
contact between the human and the robot. It méetsither the human or the robot interfere
with each other while operation. The tactile segsiarresponds to the safety involved in the
HRI, in the first category. The tactile HRI in teecond category corresponds to the expected
contact between the human and the robot. The pdlysomtact between the human and the
robot is used as a communication channel to guiderdébot to execute behaviour. In this
category the human contact works as a trigger b&weur of the robot. The third category
corresponds to the human contact to the robotisheged to refine and build the behaviours in
the robot. The human contact can also be usedteatdhe robot behaviour.

A) Interfering interactions with the robots

It is considered that unexpected human-robot ctgtae unavoidable as the presence of
robots in the human community increases day by[@lay he existing approaches provide the
reacting solutions in the result of a physical eohtthat can occur with a human. In [56]
reactive control strategies are proposed. The pegatrategies use a bumper-based skin to
detect the unexpected human contact. The redurdigrees of freedom present in light
weight robotic arm are used for evasive motionhaf tobot in physical contact. During the
evasive motion the orientation of the tool cent@inpis maintained [62]. In [165] a robot arm
of 8 degrees of freedom evades the human contaictgdthe motion. The forces from the
tactile sensors are measured in motion vectorstla@desulting motion vectors are super
imposed for the joint velocities. In [76] a prediet approach is described with respect to
interfering interaction. The effects of the humabet contacts are predicted and the
concerning response are encoded into the robowlmhiaThe collision tolerance in the end-
effector control is implemented by modelling thengdiance in the viscoelastic trunk of the
robot [90]. In [90] no explicit tactile sensingpsrformed.

B) Deliberated tactile interaction with the robot

In this tactile HRI the robot expects the touchiirthe human. The human touch contributes
to the robot behaviour. The contact is used as diume of communication between the
human and the robot. There can be two kinds obdrdie tactile HRI. In first case the human
contact correspond to guide the robot. In this ¢hsehuman contact is linked to the robot
state. In the other case the human contact istosemhvey the information about the human.
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The case is linked to the human state. The cormdkxihe HRI is important in deliberated
interaction with the robot concerning the robotesta

There exist approaches that consider the tap segquerselect the robot behaviour. In [160] a
tactile HRI is proposed that focus the industryatoand non-robot expert human user. The
tactile interaction corresponds to the human cartddhe end-effector of the robot. The
human contacts are mapped to the known trajecRifferent human touches correspond to
different trajectories. In [165] the tap sequenoeresponds to different alphabets that are
used to select the behaviour of robot. In [145]tirfuiger touch is used to infer the alphabets
for teleoperation and robot behaviour.

The deliberate human contact is also used by thetrm interpret the human state. These
human touches correspond to the contact that omamwses while interacting with the other
humans. The other human estimates the state ofhiimman from the contact. In [109] the
robot classifies the five different human touchBse touch corresponds to slap, stroke, pat,
scratch, and tickle. The approach proposed in [&8jsiders the contact-time, repetition,
force, and contact area in order to interpret thedn touch corresponding to hit, beat, and
push. In [82] the humanoid interprets the humarhan different HRI scenarios, e.g., while
executing a behaviour, co-execution, and reactelebiour. In [100], the pose and position
of human is estimated by the human touch. The agtidnpose is used in reactive behaviour.
A robotic bear [140] touches the human in respdaagbe human touch. The robot orientates
itself to the direction of human touch. The typésioman touches are classified to estimate
the human state.

In [151] the tactile HRI corresponds to the intéi@t between the human and ballroom
partner robot. In this HRI the human touches gufderobot behaviour and the robot also
estimates the human state from the human contactar to follow the human while dancing
task. The contact with the human is used by thetrtd predict the next dance step of the
human. The force of the human contact is usedtectthe human stride.

C) Robot behaviour development by tactile HRI

In this HRI the robot expect the human touch fa torrection and development of robot
behaviour. The human contact is used to communtbatentended human correction to the
robot. The behaviour development is to produce atieptive and compliant robots. The
human contacts are expected while behaviour derredap but not at the time execution of
the developed behaviour.

The robot behaviour development by tactile HRI tedato the paradigm of “teaching by
touching”. There exist different approaches fostharadigm. In [40] the behaviour of the
robot is developed by human touch. The robot behawtorresponds to the pose change of
the robot according to the human touch. If the pdeange is not according to the human then
direct manipulation of robot pose is performed. Apping is learned between the human
touch and the directly manipulated robot pose.4nthie translating finger touch is used to
change the pose of the robot. The pose changeafermed while the robot manipulates the
objects. The tactile feedback is used to move dustmial robot arm for the demonstration of
task. The task corresponds to the insertion ofopig62]. In [97] the idea of “motor
development with physical help” is introduced. Tégeriments are performed with a child
sized android CB2. In experiments the human proypidgsical help to the robot for going
from prostrate state to the standing state. Thetrobnimizes the supporting force provided
from the human and also learns the resulting motion
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2.5 Conclusion

HRI is a vast field covering many aspects from tbleot side and the human side. It is a
multidisciplinary field involving human-computerteraction, artificial intelligence, robotics,
natural language understanding, and social sciehtése literature of HRI multiple aspect of
the research are quite heavily explored. For exarmptial human robot interaction, robot as
an assistant, autonomy-based issues in HRI, taldit¢ vision based safe HRI, HRI for
teaching the robot, i.e., Programming by DemonstiaiPbD), etc. The area of intuitive HRI
specifically by intention recognition is not expdrconsiderably.

For intuitive HRI the robot needs to know the hunraention. The human intention can be
estimated by multiple ways, e.g., language undedstg, monitoring, by guessing using the
prior knowledge about the human, by combining tlescdbed aspects, etc. There exist
different approaches for intention recognition e tliterature. The existing approaches
[75][101][50] focus on specialized solutions basedthe problem at hand. There exist a
couple of generalized approaches [139][149] fogntibn recognition but the inference in the
proposed architecture requires a large numbersaf @gnd conditional probabilities [98]. The
corresponding modelling required for the genertrition recognition approach is quite large
that there exist approaches to reduce the model8dyy There exists another concerning
approach that corresponds to the intention recmgnés an observer without letting the robot
to actively take part in HRI [125]. The modellingucture used for the approach in [125]
requires a relatively large state space [98]. Aotbcal approach also exists that deals with
intention recognition without taking into accouhietintuitive HRI [169]. There exist also
another approach concerning intention recognitiah the approach does not consider the
existence of robot in the discussed idea. The destrapproach relates to the existing
literature of plan recognition [98].

Similarly for proactive nature of HRI there existsiltiple approaches but they do not strictly
correspond to the direct HRI. Either they correshbtimteleoperation or involve the mobile-
robot navigating in an environmem.couple of approaches concerning direct proadtizs
exist that require that the specific number ofnititen estimates that should be given already
[131][77]. In [77] the experiments do not involveyahuman rather a simulation is used and
proactivity is achieved by the application of eplyo

Furthermore, they are not extensible in the sehaethey can be used online to add new
intentions understanding to increase the interactiapability of the robot. Similarly the
generalization of the human intention is also natilable in these approaches. Moreover in
the existing literature of HRI the intuitive HRI an unknown human intention scenario is not
explored considerably.

In this research work we introduce a simple apgrdac intention recognition. The approach
is also applied in the areas pointed out, i.einenhtention learning and generalization where
the existing approaches do not provide an expdicitition. Additionally the research work
also discusses an approach for HRI in a scenatleihuman intention is not known to the
robot.
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Chapter 3

Intention recognition

With the era of modern technologies, machines amiming necessary part of the human
life. More specifically, the presence of robots amdhe humans is increasing day by day [6].
The goal is to provide the services to the humahs. robots that are intuitive in providing
the required services will be preferred to the maeh that require considerable input for
providing the required service. Intuitiveness isassary for a robot to exist as a service
provider, amongst the humans. Therefore, a robeti:i@o recognize the intention of an
interacting human. Recognizing the human intentiba,robot can smoothly cooperate with
the human. There are many working scenarios, destin Chapter 1, where the intelligence
of a human and the efficiency of a robot can belmoed to provide a better output. Intention
recognition of the interacting human is the keyirtuitive HRI. It guides the robot by
answering him the questions about what to do inRd ttorkspace. For recognizing the
human intention, different methods can be emplogegl, the human may be directly asked
about his intention, the intention can be presurfrech the daily strict routines of the
interacting human, the human actions along with HW®Irkspace can be monitored to
estimate the human intention, etc.

In this chapter we describe a novel approach [b2]iritention recognition based on the
human action and / or changes in the HRI workspHais. chapter is organized as follows: In
Section 3.1, intention recognition is motivatedhwihe examples of HRI and the problem
discussed in Chapter 3 is defined. In SectiontBeJiterature review of the existing intention
recognition approaches is provided. The descripticthe human intention modelling is given
in Section 3.3. Each human intention is modelleidgia Finite State Machine (FSM). The
formal description of a FSM is given in Section.3[Be approach for intention recognition is
discussed in Section 3.4. The approach describ&gation 3.4 uses the intention hypotheses
to recognize the actual human intention. The erpemis performed using the proposed
approach, are described in Section 3.5. SectiosBnarizes the chapter.

3.1 Problem definition and Motivation

The discussed problem corresponds to the recognifoa human intention. The robot is
required to recognize the human intention by thermation from the HRI workspace and the
human actions A= {ai, a, ag, ..., an}, m € IN. The robot already knows the human
intentions 1= {iy, iy, i3, ..., I}, N € IN. The robot can recognize the human intention by th
commanding actions (gestures) performed by the humbe robot can also recognize the
human intention by the human actions performedhenabjects present in HRI workspace.
The human is allowed to switch between his intergtiavithout completing the actions
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concerning an intention. The human is also allow@dperform unrelated actions while
performing the actions concerning an intention. Tt to the problem involves the human
actions, scene information, the scene change idoom and the human intentions. The
output corresponds to the recognition of a humaeniion out of the already known human
intentions.

The effectiveness of intention recognition in HRImotivated with the help of Figure 3.1.
The interaction of a humanoid and a human is shiaviiigure 3.1 left. The humanoid offers a
tray of coffee cups to the human. An accident cacup if the human and robot do not
understand each others intention. If the human doésntend to take the tray and the robot
does not recognize the human intention. Then #ne riray fall down. The interaction of an
industrial robot and a human is shown in FigurerBiddle. The human piles up the objects.
In order to interact intuitively the robot needsrézognize the human intention pifeup of
objects. The interaction of an industrial robotl @shuman is shown in Figure 3.1 right. The
human holds the object grasped by the robot. Thetneeeds to recognize if the human wants
to take the object from the robot or wants to daémnit in a direction. If the human intends to
orientate it and the robot releases the objectnTigect will fall down as the robot does not
interact intuitively. The robot can only assist theman if it can understand the human
intention. Thus recognition of human intention ngvitable for effective HRI. Moreover, in
industrial HRI, safety of the interacting humararsimportant issue. The human intention can
be used to predict the future position of the hutmaimprove the safety in HRI. The robot
can use the human intention to plan his collisiee trajectory.

Figure 3.1: Left: Humanoid HRI [1], Middle: Labdoay HRI, Right: Industrial HRI [127]

3.2 Related work

Youn and Oh presented an approach in [169] forntida recognition, using a graph
representation. They used three layered approacimtEntion recognition. The three layers
include action layer, proposition layer, and thalg& intention layer. The action layer has
action nodes, the proposition layer has state nates goal & intention layer has goal and
intention nodes. The presented approach makesorehtps amongst the action, state, and
goal & intention nodes. The connected nodes reptese intention graph. Each state node
represents a ground literal. A ground literal isaamic formula. It is assumed that any
condition not mentioned in the state is false. Atiaam is represented by a set of preconditions
and a set of effects. The preconditions corresgorttie conjunction of literals that must be
true for the concerning action to be executed. Séteof effects correspond to the conjunction
of literals concerning the state changes. The &fface generated in result of the executed
action. A goal consists of the desired states amohed as goal descriptors. An intention
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corresponds to goal conditions and related usdil@rdhe nodes in action, states, goals, and
intention are connected to each other with sixed#iht kinds of edges in an intention graph.
The intention recognition process consists of twage, i.e. goal recognition and intention
recognition. It is a theoretical approach that sle@ith intention recognition without taking
into account the intuitive HRI. There exist no esipents that are performed with this
approach.

In [149] Tahboub proposed cycle elimination in Dyna Bayesian Networks (DBN) for
intention recognition. The approach in [149] ddsesi that the cycles are generated due to the
feedback from the sensed states to the intentatesstand the actions states. The proposed
solution for cycle elimination considers the feedbaf sensed states from the previous time
slice instead of the current time slice [149]. Tinéerence in the proposed architecture
requires a large number of prior and conditionabbabilities [98]. The corresponding
modelling required for the intention recognitionge large that there exist approaches to
reduce the modelling [84].

Mao and Gratch [98] have proposed an intentiongeition method based on expected utility
[48]. The intentions of the agent are representedhb plans that an agent may have. The
expected utilities of the plans are calculated anglan with maximal expected utility
represents the estimated intention of the agenplaf is represented probabilistically. The
actions concerning the plan may have conditionalval as non-deterministic effects. The
utility values represent the desirability of actieffiects. The actions have success or failure
probabilities. The actions may be primitive or ast A primitive action corresponds to an
action that can be directly executed. An abstratiom can be decomposed into further
abstract actions or primitive actions. The prestaigproach emphasizes on the desirability of
the outcome of the intended task. The outcome takk corresponds to the utility value of
that task. According to this approach the agentsehatention is to be recognized, tries to
maximize the expected utility. Thus the resultstioé plan / intention recognition are
influenced by the already defined utility valuestiod plan / intentions as the agent will try to
maximize the utility. The approach concerns intentecognition but the approach does not
consider the existence of a robot in the discusdeal The described approach relates to the
existing literature of plan recognition [98].

Richard proposed an approach in [125] for undedstanthe human intention. They used
Hidden Markov Models (HMMs) to recognize the humatention. The experiments are
performed with a mobile robot equipped with lasensor and a camera. The performed
experiments involved the human intentions includiailow, Meet, Pass by, Drop off, and
Pick up. These intentions correspond to the inbastibbetween two humans that may follow
each other, meet each other, cross without meatidgdropping or picking some thing. For
each intention a HMM is designed. These modeldrareed by the Baum-Welch algorithm.
The described novelty in [125] corresponds to tloelehs that focus on dynamic interacting
properties of an agent, i.e., Meeting, PassingDOrppping, and Picking up. The selected
visible variable for HMM corresponds to the changethe position and angle of the
interacting agents. The introduced approach haspavts, i.e., activity modelling and intent
recognition. In activity modelling, the already gged HMMs are trained. To train the
models concerning Following, Meeting, Passing bgkiRg up an object, and Dropping off
an object, the robot executes these activities withinteracting human. The transition
probabilities concerning HMM are estimated usinguiBaWelch algorithm while activity
execution. In the intent recognition part, the itohcts as an observer and evaluates the intent
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of different interacting humans using the alreathined HMMs. In recognition part the
variables corresponding to the observed statesaoelated differently as compared to the
activity modelling. The Forward algorithm is uded the calculation of most likely sequence
of observation. The Viterbi algorithm is used tded¢ the most probable sequence of hidden
states. The approach corresponds to the intenéicognition as an observer without letting
the robot to actively take part in HRI. The modwilistructure used for the approach in [125]
requires relatively large state space [98].

In [139] Schrempf and Hanebeck introduce a gensradel based on Hybrid Dynamic
Bayesian Network (HDBN) for the estimation of humatention in a HRI scenario. They
have emphasized the importance of hybridity fortigots operating in the real world. The
hybridity corresponds to the continuous-valued drstrete-valued states. The continuous
states are described for the sensor measuremehts.s&nsor measurements and the
probabilities concerning the measurements are ttjreelated to the continuous scales. The
human aspect, e.g., human intentions is mostlyritbest by discrete values. The proposed
HDBN contains the intention variables that are espnted by the discrete values and the
sensor measurements that are represented by theuows values. Once again the inference
in the proposed architecture requires a large nurab@rior and conditional probabilities
[98]. The corresponding modelling required for thiention recognition is so large that there
exist approaches to reduce the modelling [84].

Our approach provides a novel frame work for intantrecognition [12]. It considers the
possible intentions as particle and provides aigharfilter based intention recognition. The
particles representing the intentions are modelisitig FSMs. The presented approach is
discussed in detail in Chapter 3.3. The presenpgdoach [12] models the human intentions
as discussed in [84].

3.3 Finite State Machines (FSMs)

It is fairly difficult to come up with a straighbfward mathematical state prediction model
that can predict the next human action or nexesthhuman, i.e., next posture of the human
body or part of the human body concerning the humgamtion while performing a task. For
example if the human has a glass in his hand arabpmaches toward the beverages then it
can not be mathematically predicted that he wik&ecola, water, wine, juice, etc from the
beverages. These are all hypotheses. If we cant@se hypotheses as complete action
sequences for performing different possible tabks these sequences can be represented by
different models that will represent different intiens of the human.

The action sequences considered as strings will bgotrobust due to intolerant string
matching, e.g., IIABCD is the target string and the experienced strin§BEDE then the
result of comparison will be negative. THe may be due to false recognition or
unintentionally performed action.

If all the action sequences are considered as a tR8Mthe state transition will become very
complex. The FSM may require multiple start and states due to distinct starting and
ending action sequences. A state transition prolohey occur if the human changes its action
sequence (intention) without completing it, e.dg.the human performs actions and B
corresponding to an intention but switches itsritig and performs an actida If there is

no state transition at the state (reached afteora&) corresponding to actiok then no
transition will occur. Thus the changed human actiequence will not be recognized. If there
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IS an action sequence that is completely irreleesrn other action sequences then this
situation may result in unconnected states in tB&FTherefore each action sequence
corresponding to a human intention is modelled bglistinct FSM. Different FSMs are
designed regarding different human intentions. EBRS8M represents the flow of different
human actions one after another concerning the humtention.

The FSM models the human intention by considerlmg doncerned action sequence. The
performed actions concerning an action sequence {me estimate of current human
intention. During the execution of actions of ati@t sequence concerning an intention, if
the human reverses the last performed action. There may be different reasons. For
example, he can take the same action again witkildescorrection, he can start performing
the actions of a totally different action sequeroacerning another intention, he can stop
performing further actions, he can keep on revgrtie actions, etc. The term reverse means
that if the human performs an actidnthen he can reverse that actidarby performing the
action -A. If the human reverses an action then it is nkériacare by the FSM model. The
reason is that it is assumed that an action sequemesponds to the concernihgman
intention The action sequence must be performed in a sequenthe concerning intention
to be recognized. Therefore if the human reversesction but does not change his intention
then that action will be taken again by the hum&lne intention corresponds to different
action sequences then different FSMs can be usedde! the same human intention.

It is assumed that an action sequence is attachibe tconcerning intention. Thus an intention
is defined by an action sequence concerning thention. A FSM modelling a human
intention has a single start state. The start s@atesponds to the start of the action sequence.
The discussed probabilistic FSM model does not idenanultiple start states. There are
different disadvantages of having multiple staates. The disadvantages exist with respect to
the human intention recognition and intuitive HEl.we consider more than one FSMs
having multiple start states then it may be theedhast an actiom\ existing as one of the
initial actions of a FSM also belongs to the fination of another FSM. If the human intends
a task that has the actidnas one of initial action but as it exist as theafiaction in another
FSM the false human intention will be recognizee thuthe multiple start states. Similarly if
the human starts performing the actions beginnirigeastart stat&, and in-between switches
to another action sequence beginning at the sedS of the same FSM then the concerned
human intention will not be recognized if the stat@nsition does not exist between the
concerning states.

During work the human workers may perform the atithat are not directly related to their
working intention. For example a human worker caratesh somewhere on his body, drink,
divert his intention from work, talk to some othmrman, perform some unintentional task
due to anxiety, etc. A human working on a task parform arbitrary actions that are not
related to the current task. The arbitrary actidasot emphasize that the human intends to
change his intention concerning the current tasie dhange of intention means that he is not
interested to perform that task any more. There bmyhe case that the human wants to
suspend the task for some time. Afterwards, thedmmvorker may start performing the
actions concerning the intention. Similarly a humean switch between two tasks
corresponding to two different intentions. He mayne back to the previous task and starts
performing the actions corresponding to that intent He may also continue with the
switched task concerning another intention. Theay tve multiple reasons that a human can
perform arbitrary actions while having the intentiof performing a specific task. Thus it is
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significant to take care of the arbitrary actioristtee human while recognizing the human
intention. This is taken care automatically by phesented FSM model.

A FSM is shown in Figure 3.2. Each unique humaenhon is represented by a distinct
FSM. A FSM models the action sequence correspondirggunique human intention. Each
FSM carries a probabilistic weight. The weight e=@nts how closely the FSM represents the
human intention. If the weight is high then the F8Mdsely relates to the currently estimated
human intention and vice versa. Each actigrhas a probability valué®(a; |§) at a state

S.,i=1,...,nandj ={1,....m} \ kwith KO{L...m} Ck #Z j. Then € IN represents the number

of states in a FSM anth € IN represents the number of transition conditions. &Gtate
S thej can have all the values from 1roexcept one valuk, kO{l...mCk# j. Thekis

variable and it is not required to be the samenfstiates of a FSM.

Figure 3.2. A FSM with n states, i.e4,.S,S. Each state Si=1,...n (n € IN) has m
transition conditions (actions / scene change®,, iaj,...,an, m € IN. For each state ;S
i=1,...n, itis defined that . {1,...,m}\ kwithk e {1,...,n} A k#]. If &; is observed at state
S then no state transition occurs. The transitiohyarccurs if @ is observed at statg. S he k
is variable and it is not required to be the samerf states of a FSM

The probability valud’(ay | S ) describes how likely an acti@y is for the state§ of a FSM
andx = {1,...,m}. The actionay represents an action that has highest probaPBi{ay | S ) for

the state§ and the state transition only occursfis observed as shown in Figure 3.2. The
actionay; is not required to be the same for thstates of a FSM. The formal description of a
FSM is given below in Figure 3.3.

FSM=(Q,%,q,.F,d)

Q={ $55...9
>={aa.a,.al
vV § e Q it holdsthat iP(aXi |1S)=1

x=l,a,e X,

VS:da.e X: ‘; a, it hoIdsthat[P(a\ki |S)> P(a; |S)

i=1, j*k

5:Qx3~ Q
5(S.2,)=S andé(S,a,) =S, i =1..n
%=S

Figure 3.3: A formal description of a FSM. It deibas that a FSM is a tuple of five elements
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EachFSM= <Q, 2, q, Fg> is a tuple that contains t={S;, $, S;,..., §} that represents
the number oh states in a FSM. The set= {a,, a, ag,..., an} represents the possible actions
for a state§ € Q. The sum of probabilities of all the actiopisp(a, |5) for a stat§ € Q
addsupto 1, i.e. N =Laey
VSe Q it holdsthat Y P(a,|S)=1
x=1,a,e %,
For each stat§ € Q there exists an actia such that the probability of the actiBfexi | S)
is greater than all the other actlcirji,xk P(a, |S) i.e.
m 1
¥S:da,e X a it holdsthat[P(a, |S) > P(a, |S)]
=1 j*k
If the actiong; occurs at a statg € Q then the transition occurs to the same state 0.5,
agj) = S. If the actiona, occurs at a stat§ € Q then the transition occurs to the next state,
i.e., 6 (S, ai) = S+1. The actiorgy; is not required to be the same for thetates of FSM. The
start state and the final state of a FSM are reptes byg, = S andF = S, respectively. The
general flow of the algorithm for probabilistic @mtion recognition using FSMs is shown in
Figure 3.4.

Initialization of finite state machines ———

Observation €———
Weighting of the finite state machines

Observation Likelihood for a finite state machine
Low ¥ High

State transition in the
finite state machine

Y

No

Final state of a finite state machine reached
yes
Weight of the finite state machine$>
High

Intention recognized

Figure 3.4: The flow diagram describes that inityadll the FSMs are in their start state. On

each new observation the weights of the FSMs adatep. A currently active state of a FSM
is a state whose previous states are travesredthadhext states are not traversed. If the
observation corresponds to the action that hashilghest probability value for the currently

active state of a FSM. Then a state transition ogc¢n that FSM. The state transiton can
occur in more than one FSMs if the obseraction esponds to the highest probability value
actions at the currently active states of the conmog FSMs. The intention of the human is
considered recognized if the concerning FSM hasipeest weight and that FSM reaches its
end state

1 The model is well defined that an action that caube transition from a staf to the next stat&,; has the highest
probability as compared to the other actions asthteS.
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The HRI can be of two types, in the first type tweman can command the robot to perform a
task and the human communicates his intention @iplin the second type the human does
not command the robot but communicates his intaniip performing a task. In the second
type the human communicates his intention implibiyintiating a task.

3.3.1Recognition of explicitly communicated intentions

In real life the humans can communicate with eatfirerousing different gestures, e.g.,
pointing, stopping, etc. The humans also use tleedp along with other communication
channels to convey their message to other humamggsture corresponds to a human action
that is used by the human to convey his messadggedtion 3.3.1 the gestures are considered
for human-robot communication.

Explicitly communicated intentions correspond te tasks in which the human performs only
gestures without performing an operation on theceamng objects, existing in the HRI. The
robot performs the intended operation on the camiegrobjects in the HRI workspace. The
explicitly communicated intentions are represertgdthe FSMs. The state transition for a
state in the FSMs corresponds to the different murgastures. The different FSMs
representing different explicitly communicated humatentions are shown in Figure 3.5.

Figure 3.5: The top FSM represents the pickingofipa pointed object and placing that
object at the intended place. The middle FSM repressthe human intention of placing a
passed object at the intended place. The bottom EEpksents the human intention of taking
an intended object
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The sequence of the states in the FSM represemtsqae human intention. Different state
transitions concerning different human gestureshgifferent values in a state of a FSM.
The state transition that has high likelihood / higth likelihood / low likelihood for a state
will have high / not high / low value for that stae.g., the start state of FSM shown in Figure
3.5 (top) represents theckandplaceintention. The pointing actioppeint has high value as
compared to the open hand actimge for taking an objectobject in hand actioyass for
giving an object.

3.3.2Recognition of implicitly communicated intentions

The sequence of the states in a FSM representfisgpd@nges in the scene along with the
specific human actions concerning a unique impliaitman intention. Different human
actions and the related scene change informatiga tdferent probability values for a state
in the FSM. Human actions and the related scenegehaformation correspond to the state
transitions in a FSM.

The FSMs for implicitly communicateduman intention use the scene change information
and / or the human actions as the transition comdit For example, there exist multiple
known objects scattered in HRI workspace. The hupieks an object (that is already placed
on another object) and places that object in the Wdétkspace. The robot observes that the
number of unpiled objects changes along with thedruaction of picking and placing of the
object. The FSM that models the unpile intentionthed human will consider the pick and
place actions of the human as the transition cawrdit The place action corresponds to the
placement of the unpiled object. The related sofa@ge information is the increment in the
unpiled objects. The FSMs shown in Figure 3.6 wh the scene information and the human
actions to model an implicit human intention.

Figure 3.6 Two FSMs are used to demonstrate theogeition of the implicitly
communicated intentions of pileup (top) and unfiettom). The likelihood of pick action is
the same for both of the FSMs, i.e., pileup FSM amgile FSM. The unpileplace action has
high likelihood at the unpile state of unpile FS$Imilarly the pileplace action has high
likelihood for the pile state of pileup FSM
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The ppick corresponds to the human pick action and theeglatene change information. The
Prileplace COrresponds to the human place action and theetettene change information. This

scene change information corresponds to the dexieathe number of objects in (2D) the

scene as the objects are piled. Similarly ghgiepiace COrresponds to the place human action
with the increase in the objects in (2D) the scene.

3.4 Intention recognition algorithm

At the beginning, each FSM representing a uniqugli@tty / implicitly communicated
human intention has the same weight, i.e., theghilibes of human intentions represented
by the FSMs are equal. An observation is made &edhuman actions along with the
concerning scene information are extracted. Thggiof the FSMs are updated based on
the observation (Line 5, Figure 3.8) and normaligedhat they add up to 1 (Line 14, Figure
3.8). The weight of a FSM is directly related t@ tbhbservation. The FSM for which the
observation is most probable gets high weight anpewved to the other FSMs. If an
observation is equally probable for more than osMFRhen those FSMs get the same
normalized weight. After each observation, alonghwiveight update the important data
values necessary for HRI can also be determingd, @lculating the pointed object to be
picked or to calculate the pointed place to plaeedbject.

After an observation, state transition occurs imagycone or more FSMs (Lines 6-9, Figure
3.8). If an irrelevant human action is observedthe state transition occurs in any FSM. If a
relevant human action is observed then it is cheéd&e the currently active states of all the
FSMs. If the observation has the highest probaldiit the currently active state then the state
transition will occur in that FSM.

Action,

Action, Action,

Finite State Machine 1 Finite State Machine 2  Finite State Machine 3

Figure 3.7 : If the Actionis observed than the state transtion will onlywadn FSM 1. If the
Action, is observed than the state transtion will occuF®M 2 & 3

If the observation is highly probable for more th@are FSM (currently active state) then the
state transition will occur in more than one FSMother FSMs no state transition will occur,

i.e., it will loop back to the same state. It i®®im in Figure 3.7.

The advantage of making transition in only the mastbable FSMs is that if the human

changes his intention in-between then this sitnatian be easily handled, e.g., if the human
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has an intention and performs an action then theermed FSM (intention) gets a high
weight and only in that FSM a state transition escif the human changes his intention then
the new action sequence can be evaluated witretated FSM and the changed intention can
be easily recognized.
A non sequential FSM that represents a human intecan be split into multiple sequential
FSMs that represent the same human intention. Tdexpeential FSMs describe that a human
can represent his single intention using diffegation sequences. The human performs a task
following one of the action sequences concernisggle intention. If the human switches to
another action sequence that relates to the samion then the recognition process will be
handled by the concerning sequential FSM.
Now we consider a non sequential FSM that represartuman intention having multiple
concerning action sequences. If the human perfartask following one action sequence but
switches to another action sequence then it majifbeult to recognize the switch if a state
transition is not defined for that in the non segis# FSM. This case can be easily handled by
the split sequential FSMs as discussed above.
The disadvantage may be if the sequence of acperfermed concerns an intentibnand
before completing the sequence the human changasthintion tol,. The human performs
an actionA concerning the intention. That actionA also exists in the FSMmodellingl, and
leads the FSMto the end state. If the currently active state®M, requires actior to reach
the end state and the human performs the adiaoncerning the intentioi, then false
intention will only be recognized if FSjvhas the highest weight.
If the end state of a FSM is reached and the FS&highest weight then that intention is
recognized and FSMs are reinitialized (Lines 17Rdure 3.8). If the end state is reached but
the weight is not the highest then all the FSMsraneitialized without intention recognition
(Line 17, 21, Figure 3.8). The defined intentionagnition algorithm is given in Figure 3.8.
As described earlier that the FSMs work as the mumgention hypotheses. This algorithm
updates the intention hypotheses using the cuotesgrvation. At Line 1 and 2 the FSMs are
initialized once with the equal weights, i.e.,
w=2li=1..N

N

The termw, represents the weight of tAe=SM. The ternN represents the total number of
FSMs.S' represents this set at titniee.,

ST ={(fMm) [i=1...,N}
It contains the pairs of FSM and the concernlng;hrtau e.(s.w) . The weight of the FSM
S represents how closely the hypothesis represtdmd actual human intention. Line 5
describes how the weights of FSMs are updated ditgpto observation probabilities, i.e.,

\NiHl = \Nlt * p(ztlsti,statet)

The observation probabilitiesP(Z|S] g, ) cepend to the likelihood of different human
actions for the current statete  of a F&M he Btep 6 checks if the current observation is
equal to the transition condition of a F§M & durrently active statgate , i.e.,

(P(S e ==argma<p(z|sistatq)>]

If yes then a state transition occurs, |$estatel W= S state+1  Otherwise no state transitioours,
t+1 . At Line 1letsetSis updated, i.e.,

e, S statem_ S state;
St+l D{(sﬁllv\llt-fl)}
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The symbol U means that thé" FSM at timet is updated with respect to the weight and
currently active state at tintel. The weights of the machines are normalized at i, i.e.,
w
wt =

1 N

W
=1

1- S® ={(Lw) |i=1,...N}

2-w =L |i=1..N
N

3- while(Running do
4- for (i=1toN)do
5 W EW e p(ZISigag)

i,state

6= If (IS ) == ArOMAP(ZI ) then
7- Sti,+s]£atet+1 = Sti,statgﬂ

8- else

9- ijrs];i«lte,,,1 = Sti,statel

10- endif

11_ St+l - St+1U {(SH:L,V\[EL)}

12- endfor

13- for (i=1toN)do

10 we= N

1 N

2w

i=1

15- endfor

16- for (i=1toN)do

17- if (Sti;]iatqﬂ == §, nat ) then

18- if (wW== argma><wi‘*l>) then
19- output Intention(s}¢,. )
20- endif

21- reintialize

22- endif

23- endfor

24- end while

Figure 3.8: Intention recognition using the FSMaick FSM carries a weight. The weight of
a FSM represents how closely the current humanniite corresponds to the intention
modelled by the FSM
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From Lines 16 to 22 it is checked if any FSM hached its final state then it is checked that
if the state machine has the highest weight thenctincerned intention is output and the
FSMs are reinitialized. Otherwise the FSMs are §mginitialized.

3.5 Experiments

The experiments have been performed with a rolaotitc The human and the robot interact
in a HRI workspace shown in Figure 3.9.

Figure 3.9: The HRI workspace. It consists of al@abith known objects on the table. The
robot interacts with the human by performing thenan intended task. The HRI workspace
is monitered with an over head camera

The video data is captured with a FireWire digt@era with the standard frame size of 640
X 480 pixels. Human-robot collaboration and imagealgsis is implemented using
Programming language C++. The robot reactions @aézed using the robot Programming
language V++ for the robotic arm. The robot is stiet cooperative instructions using the
TCP/IP connection for assigning different operatiery., pick, place and move to a certain
location, etc. Skin detection [161] and Fourier aliggors [171] are used for the image
analysis. In order to evaluate the human-robot emn by recognizing the explicitgnd
implicitly communicatechuman intentions, different scenarios are conseai€erbe interaction
activities corresponding to the fiexplicitly and twoimplicitly communicated intentions are
discussed.
The explicitly communicated intentions are
1. Picking and placing intention of an obje@the human intends to move an object from
one place to another place in the human-robot lootition workspace. The human
explicitly communicates his intention by performitige corresponding actions. The
human first points to the object that is to be pithy the robot and then points to the
desired location where the object is to be plagethbé robot.
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2. Passing intention of the humamhe human has the intention of passing an olgect
the robot and performs the concerning action. Timadn gives an object to the robot
by offering an object on his hand.

3. Placing intention of the humahe robot places the already picked up objed at
specific place according to the human intentione Tiaman points with his pointing
finger to the desired location. The robot places #iready picked object at that
location.

4. Picking and holding intention of an obje@he human intends that the robot picks up
a specific object in the human-robot collaboratimrkspace. The human points to the
specific object in the HRI workspace and perforhesgick up gesture.

5. Taking a pointed object intentioiihe robot provides the human the intended object
that exists in the human-robot collaboration woda The human points to an object
in HRI workspace and performs the taking gesture.

The above described intentions from 1 to 5 wertetewith 3 persons. The results of the
number of tested intentions and the number of ssfalty recognized intention for the
explicitly communicated intentions are given in freble 1.

Tested Recognized intention
Intentions | |nt1 | Int2 | Int3| Int4| Int5| Experiments
Intl 19 0 0 0 0 20
Int2 0 20 0 0 0 20
Int3 0 0 18| O 0 20
Int4 0 0 0| 20| O 20
Int5 0 0 0 0 20 20

Table 1 : The result of explicitly communicatectiion

The implicitly communicated intentions are desatlilas under
1. Pile up of the objects
Human comes into the scene and starts working witeagaging the robot actively.
The human starts to pile up the objects. The relstimates the human intention by
observing the human actions and the changes oegurrithe HRI workspace. After
understanding the human intention of pile up, tigot collaborates with the human
by performing the operation of pile up of the oltgec
2. Unpile of the objects
Human comes in the human-robot collaboration waakspand starts the operation of
unpile of the objects without engaging actively tbeot. The robot understands the
human intention and unpiles the objects.
The results of the number of tested intentions #oed number of successfully recognized
intention for the implicitly communicated intent®are given in the Table 2.
The false results shown in the Tables 1 and 2 aeetd the unrecognized human hand
gesture, e.g., the pointing hand gesture showngir8 20 (left) is recognized as pointing hand
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while the hand gesture in Figure 3.10 (right) i$ m@ognized as the pointing hand. In case if
no expected action sequence is observed thenemtion is recognized.

Tested Recognized Intentions
Intention Int1 Int2 Experiments
Intl 7 0 10
Int2 0 9 10

Table 2 : The result of implicitly communicateckimions

Figure 3.10: Extracted outlines of pointing handspoe

The presented approach recognizes the exact humtantion using the probabilistic
representation of action sequence, e.g., if theamperforms a non-related action during
explicit intention communication then the FSM camieg the non-related action gets low
weight and the FSM concerning the actual humanniide gets high weight due to the
completely performed action sequence.

The Figures 3.11, 3.12, 3.13, and 3.14 represemtthe weights of the intentions represented
by different FSMs change during the intention regtogn process. In the start all the
intentions have normalized equal weight as showth@intention graphs in Figures 3.11,
3.12, 3.13, and 3.14. At Step 1 an action of hummarserved. The FSMs for which currently
active state has high probability for the curreamian action get high weight and the others
get low weight. If the end state of a FSM is reachad the weight of that FSM is also high
then the concerned intention is recognized as tingan intention.

The graph in Figure 3.11 describes the intenti@mogaition of picking an object from one
place and placing that object at another placeth&t start all the intentions have equal
probabilities as shown at Observation 0 in Figurel3 An observation can be an action
performed by the human and / or scene change iafttom The first observation made is not
directly related to any particular intention of theman. Therefore all the intentions get
almost the same weight at Observation 1. The humaltes a pointing action to an object that
he wants to be operated by the robot. The performedan action has high observation
probability for pickup pickandplaceand take intentions. Therefore the weights of these
intentions go up and the weights of others go daivthe Observation 2 as shown in Figure
3.11. The state transitions occur in the FSMs fhictv the observed human action is highly
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probable. Therefore state transitions occupickup pickandplaceand take FSMs. At the
Observation 3 the perceived human action was umtiotglly performed human action. It
was due to the fact that the human unintentior@gdgned his hand while moving it to another
location. The unintentional action stance may odtar human changes his actions stance
from one action to another. At Observation 3 the@ged human action has high probability
for placeintention. Therefore the intention weight folace goes up and weights for others
goes down. The state transition only occurs inplaee FSM. The human now points to a
place where he wants the object to be placed byadibet. The performed human action has
high probability forpickandplaceand low probability for others at the ObservattbnThus
the state transition only occurs in thiekandplaceFSM and the weight of the intention also
increases. The final state of theekandplaceFSM is reached and it has also has the high
weight as compared to others. Thus the intentigriaddandplaces recognized.

1 T T T T
take ——
pive —f—
pickandplace ———
place
8.8 pickup :‘_g': ]

unpile —x—

Intention Probabilities

Observations

Figure 3.11: The graph represents the change invibghts of FSMs concerning take, give,
pickandplace, place pickup, and unpile intentiorne Tgraph shows the recognition of
pickandplace intention

The graph in Figure 3.12 describes the recogntiogpickup intention. The intention weights
are equal at Observation 0. At Observation 1 omga@nathe human action stance does not
corresponds mainly to any intention. Therefore ititention weights of all the intentions
remain almost the same. The human once again nth&gsointing action to an object. At
Observation 2 the performed human action has higibgbility for take pickup and
pickandplaceintentions and low for others. At Observation & therceived human action
does not corresponds mainly to any intention. Tioeeethere is no significant change in the
intention weights. The human makes a makes an upmation of his open hand for picking
up of the pointed object. At Observation 4 the genied human action corresponds mainly to
the pickup intention. Therefore the intention weight incresagar this intention as shown in
Figure 3.12. The state transition occurs in the F8lslting to theickupintention and the end
state of the FSM is reached. The weighpiakupis the highest and the end state is reached.
Thus thepickupintention is recognized.
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I take e
give —F—
pickandplace ———
place
0.8 - pickup :‘_g': i
e

unpile

Intention Probabilities

Observations
Figure 3.12 : The graph represents the change éwikeights of FSMs concerning take, give,
pickandplace, place pickup, and unpile intentiohe Graph shows the recognition of pickup
intention

I take ——
pive —F—
pickandplace —=—
place
8.8 - pickup :‘_g': 1

unpile —+—

Intention Probabilities

a 1 2 3 4 ]

Observations
Figure 3.13 : The graph represents the change éwvikeights of FSMs concerning take, give,
pickandplace, place pickup, and unpile intentiohegraph shows the recognition of take
intention

The graph in Figure 3.13 describes the recognitiotake intention. The human points to an
object that he wants to be provided by the robatOAservation 2 the intention weights of
take, pickandplacandpickupincrease and others decrease. The state trassdaur in the
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corresponding FSMs. At Observation 3 and 4 thegreed human actions do not correspond
mainly to any intention. Therefore there is no gigant change in the intention weights is

observed. The human opens his hand and keepsthtisnposition. At Observation 5 the

performed human action mainly corresponds tot#ke intention. Therefore the weight of

intention increases significantly and the stataditeon only occurs in the FSM relating to

take intention. The end state of the FSM is reachedthadwveight is the highest. Thus the
takeintention is recognized.

pickandplace —=—
place
pickup :‘_g':

8.8 unpile —+<— -

Intention Probabilities

a 1 2 3 4 L]
Observations

Figure 3.14 : The graph represents the change éwikeights of FSMs concerning take, give,
pickandplace, place pickup, and unpile intentiohe Graph shows the recognition of unpile
intention

The intention graph shown in Figure 3.14 descriibe recognition of implicitly
communicated intention of unpile of the objectse ftuman grabs an object that is placed on
the pile of objects. At Observation 2 the recogdiheman action mainly corresponds to the
unpile intention. Thus the weight dfinpile intention increases and the weights of other
intentions decrease. While considering an obsenv#ite scene information is also taken into
account as the human actions correspond to anaiiypltommunicated intention. The human
picks the object from the pile and places it ondhdace of the table. At Observation 3 along
with the human action, the scene information i alspected to check the increase or
decrease in the unpiled objects. The human actiwh the scene information relates
significantly to theunpile intention. Therefore the state transition occurghie concerning
FSM and the intention weight increases significanilhe state transition at Observation 3
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bringsunpile FSM in the end state and the weight of timpile intention is also the highest.
Thusunpileintention is recognized.

3.6 Summary

In this chapter we presented a probabilistic FSsell intention recognition algorithm. A
human intention is modelled by a FSM. A FSM coroggjs to a human action sequence and /
or the concerning changes in the HRI workspacepéciéic human action sequence and / or
the concerning changes in HRI workspace directigtes to a human intention. Each FSM
carries a probabilistic value that is called thegheof the FSM. The weight of the FSM
describes how closely the FSM represents the humtantion. The FSM with highest weight
corresponds to the best estimated human intenhdrnvice versa. The weights of the FSMs
are updated at each new observation in HRI workspabe FSM that carries the highest
weight and reaches its end state represents tligmeed human intention. The suggested
solution is applicable for both explicitly and ingilly communicated intention recognition.
Explicit intention communication addresses to ladl situations where the human commands
the robot and implicit intention communication aglkBes to all the situations where human
does not engage the robot but robot actively stdmés cooperation by recognizing the
intention through scene information and human asticAddressing both explicitly and
implicitly communicated intentions recognition make human-robot collaboration intuitive.
The approach presented in Chapter 3 has differdneesParticle Filter and HMM. Particle
Filter is mostly used in the problems in which tymamics of problem can be mathematically
modelled, e.g., in robot localization the motiondabof the robot is used for prediction of
next potential position of the robot. In the cutreroblem the FSMs are used to model the
human intention that is totally different from a tiom model of the robot. In the normal
Particle Filter the resampling is performed to gatee new particles and eliminate old
particles with less weight. In the presented apgra@o resampling is required. The normal
particle filter applications hypothesize the pokesibolution that is similar to the approach
discussed in Chapter 3. In the HMM each hiddenesistconsidered to have different
observation probabilities and the different seqeenaf observations correspond to different
sequences of the hidden states. In the discusgebamh in Chapter 3 the sequence of
observations corresponds to a human intention.
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Chapter 4

Intention Learning

A human has his intentions depending on the sagntdreé goal, and the tasks that he is to
perform in the current situation and in the neduret A human has different intentions at
different places. It is difficult to model all th@ossible human intentions as the total number
of human intentions can be huge. In advance thetrcdn not anticipate all the services that
may be required and should be provided by the robbat is why Programming by
Demonstration (PbD) is introduced and extensivetpl@&ed. The approach of PbD is
different from online intention learning. In PbDethuman commands the robot based on the
demonstration. In online intention learning theablkearns the new human intention that is
used afterwards by the robot to interact with thenan. Learning the new human intentions
from the human actions and the scene informationhedp the robots to collaborate with the
humans more intuitively.

In this chapter an approach [14] concerning onlimention learning is discussed. The chapter
is organized as follows: In Section 4.1 the probl#honline intention learning is motivated
and defined. In Section 4.2 the approaches conmggiearning are discussed. In Section 4.3
three intention learning cases are introduced aisduslsed in detail. In Section 4.4
experimental results of the three intention leagnoases are presented. In Section 4.5 the
conclusions of chapter on online intention learrang given.

4.1 Problem definition and Motivation

The intention learning corresponds to the modelbhga new human intention that can be

used by the robot for HRI. It is assumed that thend&in only performs the actions concerning
a human intention during the intention learninge tuman performs the concerning actions
in a sequence. The human completes an action ssgjummcerning a human intention

without switching to another action or action setpge The robot knows the human actions
and the information of HRI workspace. The modellmgchanism is provided the human

actions and scene information from HRI workspacentmlel the human intention. The input

to the problem is the human actions, scene infaomascene change information, and the
human intentions in terms of the scene informatidhe output corresponds to a FSM

concerning the new human intention.

For intuitive HRI all the concerning human intemigocan not be known to the robot in

advance. Thus the robot is required to possesaltitiey to learn the human intention online

to increase its intuitive interaction capability.eVdiscuss three example scenarios of HRI to
motivate the intention learning problem. The exaa@re
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1. (House hold example) Consider a robot collaboratity the human for washing the
utensils in a house. The robot is provided withadbeamon human intentions specific
for the purpose. For example the robot knows wbhadld with the dirty and clean
utensils according to the human intention but hesdwt know what to do if a utensil
is broken, old, useless, etc. Therefore in ordemtwease the intuitive interaction
capabilities of a robot the robot needs to leaenrtbw human intentions online.

2. (Laboratory example) The scenario for HRI is shownFigure 4.1. The human
intentions correspond to the arrangements of thecthin a specific pattern.

Figure 4.1. Organization of the objects in a specipattern according to human
intention. Left: Organization of objects in a sgegrattern. Middle: Organization of
objects in a longitudinal pattern Right: Organizati of objects in a diamond pattern

The human intention of arranging the objects iruFegd.1 left and middle are known
to the robot. The robot can recognize the humaentidn and interact intuitively
regarding the arrangements of the objects. If tmdn has the intention of arranging
the objects shown in Figure 4.1 right. Then theotaian not respond intuitively. The
robot is required to learn the new human intenf@mintuitive interaction in case of
Figure 4.1 right.

3. (Industry example) For HRI in industrial workspaite robot is provided with the
information of standard human intentions concerrheg specific HRI workspace. If
any unknown event occurs in the HRI workspace tienrobot can not intuitively
interact with the human according to his intentibm.order to improve the robot’s
intuitive interaction capability the robot is reced to learn the new human intention
online. We consider an HRI scenario in Figure 4.2.

Figure 4.2: Exemplary industrial HRI [88]

The robot knows the human intention about holding ieeleasing the object but if the
human intends to orientate the object then thetrahid not interact and release the
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object. Thus the robot needs to have the capabditgarn the new human intention
online.

4.2 Related work

In literature, there exist multiple solutions foesgure and action recognition. There exist
HMM based gesture understanding solutions [89}H8} require the Baum-Welch algorithm
to train the Markov models. They deal with the gration of actions and gestures but not
with the intention of a human. The available apphas for action recognition consider the
image-processing as a core issue. There exist mamgan action recognition methods based
on feature tracking [49] [79], intensity or gradieand silhouette [163]. The human actions
can be recognized based on the pose primitiveg.[T3® approach [96] uses 2D poses for
3D human pose recovery to recognize the humanract®imilarly the approach in [106] uses
local motion appearance features to recognize tineah action. The action recognition using
HMM corresponds to different phases or key posdb@human while performing an action.
These key poses are considered as the hidden efaitédM [118]. The main focus of the
above described approaches is the recognitiontofitgc action / gestures. The recognition
of intention is not considered and it can be egthdrom the activity / actions. Other related
information can also be used, e.g., different dttarsstics of entities present in the
concerning environment. The intention may corregpmnmore than one activity or an action
sequence. There is another significant differeretgvéen intention recognition and action /
gesture / activity recognition. The difference esponds to the fact that activity / gesture /
action can only be recognized if the concerningoact gesture / activity is completely
performed [125]. On the other hand, the intentienognition can only be helpful if the
intention is recognized before the concerning actiequence is completely performed [125].
A multitude of research work already exists in fieédd of PbD in the direction of intention
recognition. But the research work does not diyetlate to the human-robot collaboration;
because it commands the robot an action based erdemonstrated program [5]. The
solutions present in the area of PbD use reinfoecgnhearning [126] [139] [80], neural
networks [91] [17] and also HMM [166].

In the literature, there exist multiple approaclies intention recognition. The approach
proposed in [150] uses DBN, in [139] uses HDBN. &pproach proposed in [77] [169] [98]
use Ontology, Graph and Utility based intentiorogggtion. The approach [125] uses a novel
formulation of HMM to recognize the human intentidrhe intention recognition approach
introduced in [12] uses probabilistic state mackirkEhe described approaches recognize the
human intention if the human intentions are alrelaggwn and modelled. In case if the new
intention is to be recognized then that has to loelatled explicitly by the human. The
proposed approach [14] describes how a new hum@mtion can be added without the
explicit modelling by the human.

To the best of our knowledge, there exists no gmiubr online intention learning in the area
of human-robot collaboration by intention recogmti The presented approach [14] has vital
differences to gesture and action recognition. @approach does not focus on single action
rather an action sequence concerning the humantiorte Further the core issue is not image-
processing concerning modelling of different hunpaorses. It models the action sequence
concerning the human intention. The sequence coimgean intention may also involve the
environment information along with the actions.
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In the presented approach, a mapping is perforreegdden the observations (action and / or
scene sequences) and the human intentions. Onceagiy@ng is performed then it can be
used to understand the human intention for intelitgllaboration. There exists a hidden state
concerning an observation in HMM. In the presemteproach, the whole action sequence is
modelled to represent the human intention, i.eldém state.

4.3 Intention learning

In this section different intention learning metbate described. The input to these methods
varies but the output of all the methods is the R@cerning the human intention. The input
to the methods involves the scene information, e objects present in the scene, the human
actions, and / or the learning parameters. [Eaening parametersre the features which are
specific to the given scene, and enable the rolsystem to infer the scene changes. The
scene changat a human-robot workplace corresponds to the fications that can occur in
the scene by the human actions. For example, i€avsider the scene containing different
number of objects then the shape of the objeatsdigtance among the objects, the number of
objects, the types of objects, and the arrangenadritee objects, etc can be used as learning
parameters. Learning parameters are different fiberednt applications depending on the
nature of the scene. For example a mechanic working garage has different tools and
objects around him along with the different intens as compared to the craftsman working
at his workplace. Therefore it is necessary to ktlosvlearning parameters, prior to learn the
new intention.

The three different intention learning methods espond to the mappings between the
human intention and the observations (action amdstene sequences). The mappings differ
from each other based on the given informationeatsjin the scene, human actions, scene
changes occurred due to the human actions, andutiman intentions in terms of the scene
information. This given information is used as ihfar the learning and recognition system.
Generally, the input can not be specified as tipaitiepends on the problem at hand. The
mapping performed between the human intention hrdobservation sequence is formally
described in the following text.

The intentioni; € |, | = {iy, i, i3, ..., I}, ] = 1,...,pandp € IN, corresponds to the scene
information concerning the human intention. Tieservation sequenag € O, O ={04, 0y,

03 ..., 0n}, K=1,...,gandg € IN, consists of the human actions and / or the sckarges
occurred due to the human actidvh.is the mapping from the observed sequemce O to

the concerning intention € 1, i.,e, M : O — I. In the Case 1, the human actions, scene
changes, objects in the scene, and different pedsibnan intentions, j = 1,...,pin terms of

the scene information relating to the human-robotksapace are given. The human intention
is learned by mapping the observed sequepe@d the given intentior, i.e.,M(0y) =i;. The
observed sequenag corresponds to the human actions and / or scearagels. The intention

is recognized from the scene information. The radam is performed by the analysis of the
already known information concerning the intentioa | and the information obtained from
the current observation. In the Case 2, the giméormation consists of the human actions,
the objects in the scene and the learning parametghout the prior information of the
human intention. The output of the method is thepnay between the observed sequence
and the newly learned scene information (intentipa) |. The scene information is produced
by the changes occurred in the scene due to therped human action sequence. The new
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intentioni; € | (scene information) is understood using the |e@rmparameters. In the Case
3, the given information includes the objects pnése the scene and the learning parameters
and the output is the mapping between the obsesggdence, and new intentioy € | in
terms of the scene information. The prior informmatof the human intention and the human
actions are not given. The observed sequepaaly consists of the scene changes occurred
due to the human actions. In the Case 3, the mgppiperformed between the sequenge
(scene changes) and the last scene change tratdslered as the human intention, iies

I. The scene changes except the last change arele@usas the steps that may lead to a
specific human intention described by the last sadrange. The input and output concerning
the three cases are given concisely in the Talile 4.

| nput Output
Human action,
Casel human intention, FSM

scene information
Human action,

Case?2 scene information, FSM
learning parameter

Scene change
Case3 information, FSM
learning parameters
Table 4.1: The inputs and the outputs concerningeCl 2 and 3

[2)

4.3.1Finite State Machine Construction

A FSM is constructed from the intentigre |, j = 1,...,pand observed sequenags O, k =
1,...,qthat may comprise either the performed human @€t the observed scene changes
or both of them (Figure 3.2). At each scene chaageurred due to the human action a state
S of a FSM is created.he scene change does not strictly correspondiiogle event but can
represent a single event. Therefore a state camespto an observation that may comprise
one or more than one event occurring at the same, te.g., a state may represent pileup
operation of boxes that represents human actigrlaging the box and reduction of boxes in
number, observable in 2D. The number of statesconstructed FSM is equal to the number
of scene changes occurred due to the human actions.

4.3.2Mapping actions to the intention

The human teaches the robot his intention onlireedéks this by performing different actions
in a sequence. Each action sequence correspomie tspecific human intention. The action
sequence and the corresponding scene informat®meseived from the camera input to
construct a FSM out of it. The human actions amdhiiman intentions in terms of the scene
information are known to the system beforehand.

This is the simplest case of online intention leagnA mapping is performed between the
human actions and the human intention modellechbyRSM as shown in Figure 4.3. It is
assumed that the human performs only those adtiantsre related to the intention.

The functionycreate-start-starenerates the start state of the FSM. The fungtigQvaionreturns
true if a known human action with the concerningrecchange information is observed. The
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function w-current-action returns a known human action that is not curreothgerved. The
function yereate-ransiionCreates a new transition by the actdifrom the current state of FSM
to the stateS i.e., yereate-transiion: A, current-state—» S The current state corresponds to the
state for which the transition conditions are aedaflhe stat& may correspond to the current
state or the newly created state (next to the nustate). The functioprcreate-new-staireates a
new state of the FSM. The functi@menion Maps the scene information to the known human
intentions. The functioWend-state@SSigns the newly created state (in the end)eaerid state

of the FSM. The functiofcurent-statel€turns current state and the functigpu-satereturns the
newly constructed state.

Input : Humanaction,Humanintention, Scenanformation
Output :FSM corresponihg to thehumanintention
Procedure :

1- Y create-stat-state

2- Loop

3- if Wopsenvaia) theN

4- for all . . encacion 9O

5- Y create-transiion (7 CUITENt = BCHON ¢ reny-siare)
6- end for

7= Y create-new-state

8- Y create-ransition (CUTTEN= BCHON 101y g1a0e)

9- end if

10- Until l//intention

11- W eng-state

Figure 4.3: Mapping the human actions to the hunma@ntion

The HRI workspace is observed in which the humafopas the concerned actions (Line 3,
Figure 4.3). The observation corresponds to the amuractions and the scene change
information. If yopservationf€turns true then a new state is constructed (Zjrfégure 4.3). The
performed human action and the scene change infammare considered as the transition
condition to the new state (Line 8, Figure 41)e not observed action¥ tcurrent-action

are considered as transitions to the current dtaites 4-6, Figure 4.3). The process continues
until a known human intention (in terms of scerferimation) is diagnosed.

The human intentions are extracted from the saeige, at the start, objects of similar type are
placed randomly apart from each other. If the hupiaks one object and places the object on
other similar object then the system observes itle gnd place action. As the pile operation
is performed, the number of objects decreases i@bdein 2D). The extracted action
sequence along with the scene information will kwd,ppile and decrease in the number of

objects. Place Unpile  Place Unpile
Pickup e Pile
Pile Pickup

Figure 4.4: FSM built from action sequence of pjzleund pile
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The already known scene information of decreasehjects corresponds to the pileup
intention. The end state of the FSM shown in Figureis already known since the different
human intentions in terms of the scene informa#oa given. The restriction in this type of
intention learning is that the image processingesysshould be powerful to recognize the
human actions performed by the different humans different persons can perform the
same action with some variation. It is difficultr fmost of the image processing systems to
recognize an action that is performed differentlg., variation in the posture while
performing the action.

4.3.3Mapping actions to the scene information

In this type of intention learning, the input tetlearning system includes the human actions
along with the learning parameters. The learningampaters are specific to a specific
application, e.g., in industry scenario the leagrnparameters may correspond to the assembly
of two specific objects, in household scenariold@ning parameters may correspond to the
specific place of the specific objects, etc.

The scene information changed due to the humaorects understood through the learning
parameters. The learning parameters representutinarhintention concerning the observed
human actions. The mapping of the human actionesezuand the intention is performed as
described in Section 4.3.2. The only differencth& the human intention is inferred from the
learning parameters. The process of action sequexicaction stops if for a specific period of
time the human does not perform an action.

In order to explain we consider an example, ifethere exist four objects of different types
placed randomly in the working area and the legrparameters correspond to the distance
and orientation of the objects with respect to eattter. The human picks and places the
objects near each other in a group. Thus the owlacted scene information will be
concerning the distance and orientation betweermlbjects. The scene change will represent
the change in the distance and orientation of tieats. The scene change, i.e., the distances
and orientations between the objects is storedh@stman intention. The system does not
know exactly that the human intention is of grogpihe objects but the system only observes
the distance and orientation change and storebhg. final state corresponds to the final
change in the distance and orientation of the ptesljects. The robot uses that final state
information to react. The FSM built from the actisaquence (extracted out of observed
human action sequence) and the final scene chargj@wn in Figure 4.5.

Pickup Pickup

Unpile Pile Unpile

(s Placey @

o ©® ° M
Place&, Placex, PlaceXx .PlaceSDn

Place<;

Figure 4.5: FSM built from the action sequencelatpSG and the scene change
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The actiorplaceSG x =1,...n corresponds to the specific placement of the ohyab respect
to the already placed objects. The specific placgmé the objects corresponds to specific
distance and orientation between the placed objects

4.3.4Mapping using the scene changes

It is very difficult to understand the human ac8ar human activity depending on the shape,
size, orientation, etc of the human body partss \tery difficult to model a complete set of a
specific human action (perceived from any possjmespective) with the help of visual
descriptors. It gets more complex if the human qrens the same action but the related
human has completely unexpected shape, orientadine, etc. It is comparatively easy to
recognize the objects using their features. Theeeibis easy to recognize changes occurred
in the scene, related to the objects, due to thmahnuactions. The human actions can be
indirectly recognized from the scene changes. isttethod, the learning parameters are used
to infer the human actions as well as the humaentrans. If the human performs a sequence
of actions and each action causes a change ircéme shat can be uniquely recognized by the
system. Then the complete change sequence remdbenhuman action sequence and the
scene change at the end represents what the huteawls to achieve. All the scene changes
are used to infer the human actions and humantiateasing the learning parameters.

The difference between the mapping in Section 4481 4.3.3 is the information required to
construct the FSM and to recognize the human illenising the FSM. The transition
conditions of the FSMs discussed in Section 4.3ahiy correspond to the human actions.
The transition conditions of the FSMs in Sectio.4. correspond to the scene change
information produced due to the human action.

It is considered that human performs actions ireguence. Each action performed in the
sequence corresponds to a scene chanhg8that can be understood by learning parameters.
The setS={A,B,C,D,..¢y} consists of all the scene changes that can oemitaithe human

action and the set S is already known to the systdran the sequence of scene changes is
observed and a FSM is built online from the obsgisequence as described in Section 4.3.2.
If ABCD is the online-observed sequence of scenangbs then the constructed FSM is
shown in Figure 4.6. The last scene change D reptesvhat the human intends to do. The
scene change D is used by the robot to react ponse to the recognized intention by the
scene change sequence ABC. The scene changesaAd B, are given maximum observation
probabilities as compared to other scene chang&l a2 and S3 respectively. The state
transitions occur at S1, S2 and S3 due to highredtaple observations (scene changes), i.e.,
A, B and C respectively.

Figure 4.6: FSM built from sequence ABCD
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4.4 Experimental results

The experiments are performed with a robotic arnsiaf degrees of freedom. The HRI

workspace is shown in Figure 3.9. The workspacaistsof a table with objects. The buttons
for Learn, Play, Pause, Stop and Reset are usatetact with the robot, shown in Figure 4.7

right. An overhead FireWire camera is used to oleséine scene. In order to evaluate the
intention learning, different experiments were parfed with three different persons (fifteen

times for each phase) with respect to the thresudged cases in Section 4.3.

Figure 4.7: Workspace for HRI. Left: The robot resamtuitively after recognizing the human
intention. Right: The human places the hand orLéen button to start the learning phase

All the experiments have two phases, i.e., theniegrphase and testing phase. In the learning
phase, the human teaches the robot his intentigreldgrming different actions in a sequence
and completing the task. In the testing phase,rtf®t reacts by recognizing the learned
intention and completes the intended task. Forfits¢ case, the performed experiments
involved pile up of the objects, scattering of fhked objects, and placing the objects in a
tray. In the first experiment, for pile up of thbjects the human starts the robot’s learning
phase by placing the hand on the Learn button asrshn Figure 4.7 right. The human
performs the actions of pile up of the boxes onet. In the testing phase, the human starts
the testing by pressing the Play button.

The human piles up and the robot recognizes tleaiioin of pile up and reacts by performing
the pile up operation for the rest of the boxemilarly for the scattering the piled objects and
placing the objects into the tray, the human tiesiches the robot his intention and afterwards
he tests the learned intentions. The human ingtitlte interaction by taking an action with
respect to the intention and the robot reacts bggeizing the intention and completes the
human intended task. The robot reacts by complethy last action concerning the
recognized human intention. The robot reacts ateognizing the human intention (Section
3.4). In Case 1 the robot is given how to readrakcognizing the human intention. In Case
2 and 3 the human intention is inferred using gearing parameters. The robot uses these
learning parameters in order to react after recggithe human intention. The robot utilizes
the learning parameters in order to complete teeHaman action (in the action sequence)
according to the recognized human intention.

In the following Figures 4.8, 4.9, 4.10, 4.12, 4.4B8d 4.14, the red line represents the average
result of the performed experiments. The red lg@@esents the success or failure rate of the
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performed experiments. The more the line is ne#ndovalue 1 at a point the more successful
and vice versa.

success rate

02 L persont ()

person2

person3 /_\

0 oy R o N e Aavergged\ 8
7 pa=s pa=s

2 4 53 3 10 12 14

number of experiments

Figure 4.8: Learning phase for Case 1

The successful experiments are represented byna gitdihe value of 1 and O otherwise in the
following graphs. A successful experiment means tina expected results are obtained. The
expected result in case of teaching the systemmahuntention means the construction of the
corresponding FSM. The expected result in caseesting a human intention means the
recognition of the concerning human intention by slgstem.

In case of testing, the robot is required to reacording to the human intention. If the robot
reacts according to the human intention then tipeement is considered successful and vice
versa. Each point represents one result of expatsyd a person. Fluctuations in the average
line represent the success and the failure dugetwdriance of the action postures by different
humans with respect to the same action task. Tleeess rate is the ratio between the
successful experiments with respect to the totahbmrs of experiments in one phase of a
case.

success rate

04 |

02 L persont ()
person2
person3 /_\

oL » ‘ & . veraged ——
2 4 5] 8 10 12 14

number of experiments

Figure 4.9: Testing phase for Case 1
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The success rate is high as the average line reraaithe value 1 and vice versa. The average
success rate in the learning phases is 73 % atte itesting phase the average success rate is
87 % for the Case 1. The fluctuation of the avetagedescribes that mostly for each point of
experiment, two persons performed successfullghasn in Figure 4.8.
The graph in Figure 4.9 describes the experimesuli®in the testing phase of Case 1. The
fluctuation in the average line of Figure 4.9 isslavith respect to Figure 4.8. It is due to the
fact that few actions are required to recognize thenan intention and the robot reacts
afterwards.
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Figure 4.10: Learning phase for Case 2

The reason for the difference in success rateantébting and learning phases is due to the
fact that the system has to perform more imagegssing in learning phase as compared to
the testing phases. In the learning phase all¢hers and the human intention are processed
and in testing phase only the initial action se@eeis processed. Using very simple image-
processing (Fourier descriptor for contour recagnitand skin detection), an action
performed with unexpected human body part postikess likely to be detected.

For Case 2 and 3 the performed experiments invtieeplacing of objects in a human
intended pattern as shown in Figure 4.11.

Figure 4.11: Different human intentions regardinggement of objects in a specific pattern
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The average line in Figure 4.10 represents thastigeess rate is almost equal to the success
rate shown in Figure 4.8. The success rate ofrempats is 69 % shown by the average line
in Figure 4.10. The success rate of experimentashy the average line in Figure 4.12 is 80
%. The difference between the success rates ofriexgets shown in Figure 4.10 and in
Figure 4.12 is almost the same as in experimem®isin Figure 4.8 and in Figure 4.9, due to
the same reasons discussed for Case 1.
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Figure 4.12: Testing phase for Case 2

The success rates of experiments shown by the gevdirees in Figure 4.13 and 4.14 are 100
% and 95 %. The reason of 100 % success rate ifodhe fact that the action sequence was
considered in terms of the scene changes perfobyetie human, i.e., it is observed the
result of what the human has performed rather blmanthe human has performed the action.
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Figure 4.13: Learning phase for Case 3
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Figure 4.14: Testing phase for Case 3

The ditches in the average line in Figure 4.14 desdhe fact that the human has performed
an action and in response to that scene changemafton the human intention was not
recognized. Then the human made an appropriate dameati to his action and due to that
correction the intention was recognized. This factepresented by the dotted line part in
Figure 4.14.

4.5 Summary

In this chapter we have discussed three casedaftion learning. The cases discussed the
mapping of human intention to the correspondingeoleion sequence. The mechanism used
for intention recognition consists of the probaitit FSMs, described in Section 3.4. For
online intention recognition a FSM regarding tgadfic intention is constructed online. The
online intention learning contributes to the inwet HRI capability of the robot. The
experiments were performed for all the three cadesnline intention learning. During the
learning phase the intention is conveyed once bfopring the concerned action sequence.
It was observed that the Case 3 is more flexibtec&pturing the human actions and human
intention and robust in results. The reason of amap/e success for capturing human
actions is the simple image processing, in the Gadéhe results in Case 1 and Case 2 are
also acceptable. In Case 1 and Case 2 the reamguwitithe action sequences are performed
by recognizing the human actions. For this purpthgeimage analysis corresponds to the
processing of the different human gestures. Thegmition of gestures focuses on different
body parts of the human. The specific orientatiohghe human body parts are used to
recognize the human gestures. For this purpose d&Xection [161] and Fourier descriptors
[171] are used. A human can perform a same gestiinedifferent orientation of the same
body part. Moreover the structure of the body paftthhe humans also varies, e.g., a person
may have long hands and others may have wide hetedg herefore the recognition of the
human actions based on the image processing abdtg parts is difficult. In Case 3 the
recognition of the human actions is performed basethe scene changes occurred due to the
human actions. It is comparatively easy to recagritee human actions based on scene
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change information as compared to the analysib@bbdy parts. For example if the human
picks an object and places that object at somea piaee then it is easy to recognize the pick
and place action by the scene change informatiearoed in the presence of the human as
compared to the image processing of the conceroey fparts.
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Chapter 5

Proactive interaction

Proactivity is an important aspect for effectiveoperation. The proactivity is defined as the
quick response of the robot during HRI. It mearst titne robot can recognize the human
intention as early as possible to quickly start ithteraction with the human. The humans
working on a common task are required to intuigvedllaborate with each other. They are
required to be proactive towards each other faitine collaboration.

Intuitive HRI requires the robot to attain a higivél of understanding of the collaborating
human. Therefore it is equally important in the HiRat the robot should be proactive
according to the collaborating human, dependinthercurrent situation. For being proactive,
the robot needs to recognize the intention of boltating human as early as possible. The
collaborating robot is also required to adapt ® tiuman in the ambiguous situations to be
proactive.

Being proactive is not an easy job even for the dmsn The humans take into account
multiple aspects for a proactive interaction. Thaspects may correspond to the interaction
situation, social indications, personal profile;.dilsing all these they may be wrong in their
decision about the selection of proactive initiatiihus they are also required to adapt in
their proactive behaviours.

The approach [13] introduced in this chapter dessrithe FSM based method for proactive
interaction. The FSM based intention recognitior2][1s discussed in Chapter 3. The
proactiveness corresponds to the recognition of ithention as early as possible. The
remainder of the chapter is organized as followmsSéction 5.1, the problem of proactive
interaction is defined and motivated. The existapproaches concerning the proactivity of
the robot are discussed in Section 5.2. The pn&gtitention recognition is discussed in
Section 5.3. Section 5.4 describes the adaptiorability of robot according to human
intention for proactive HRI in almost similar scena. The experiments performed using the
current approach, are discussed in Section 5.5i.08€%6 summarizes the chapter.

5.1 Problem definition and Motivation

The problem of proactive HRI corresponds to the faat the robot can quickly start the
interaction with the human. The robot can also deedan an ambiguous situatidathat may
lead to two or more different human intentions,, fe— {is,...,in}, Mm>2,me N . In case of
quick HRI, the robot knows the human intentidns {ij,...,in}, n € N and the robot is
required to recognize the current human inteniigrn: € |1 quickly without confusing with
the other known human intentions. In case of degisnaking, the robot is provided with an
ambiguous situation in which the robot is requitecchoose a human intention for HRI. In
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both the cases the robot is given the actions padd by the human, the scene information,
the scene change information, and the human iotentiThe output in both the cases
corresponds to the selection of a human intention.
Proactivity is an important aspect of intuitive drdaction. Along with many other
characteristics for intuitive interaction, the huragpossess the capability of proactiveness.
The capability of proactiveness helps the humaredse the interaction and causes the
reduction of explicit commands for communicatiorneThumans practice the capability of
proactiveness by the different kinds of indicatidram each other [22]. The capability of
proactiveness in the humans concerns the earlgn&gmn of the intention of the cooperating
person with the help of available indications.
We consider an example of interaction between tothen and the young children. Before the
children start playing at a place, the mother detnat place and removes all the harmful
objects proactively. The removal of harmful objests keep the children unharmed and safe.
Similarly the example of a waiter serving drinksagbarty. The waiter observes the guests in
the party and proactively offers the drinks to huests. The waiter takes proactive decisions
depending on the social cues from the guests. Tdieemadapts its proactive behaviour with
respect to the responses from the guests.
The significance of proactiveness in HRI is disedsi® the following two examples, i.e.

A. Safety in HRI

B. Improvement of intuitiveness in HRI

5.1.1Safety in HRI

We consider the HRI in an industrial scenario shawfRigure 5.1. The robotic arm and the
human interact to complete a common task. The @l interacts intuitively with the
human according to his intention. The robot plaigsniotion path to interact and perform the
tasks according to the human intention. There neag bollision between the human and the
robot. The chance of collision can be reduced & tbbot can proactively anticipate the
human intention and plan its motion path accorging|

Figure 5.1: [148] Human and robot working on a coommtask in a workspace. The robot
can avoid any potential collision by anticipatifgetfuture human intentions proactively. The
robot then plans its collision free trajectory bdsen the estimated future locations of the
human

For example the human is performing an operatiorceming a task. The robot is given the
information about the complete task, i.e., whatthe sequence of different operations
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concerning the task. The robot can also learnmtexaction profile of the interacting human
or it can be given to the robot. With this inforioat the robot can predict the future locations
of the human taking into account the left over afiens and the interaction profile. More
parameters influencing the human location can lmsidered to predict the human locations
for more accurate results.

5.1.2Importance of proactiveness in intuitive HRI

Proactivity is an important aspect for intuitive HR intuitive HRI the proactivity of the
robot can correspond to the recognition of humdeniion as early as possible even if the
intention of the human is not obvious.

In a motor mechanic’s workshop, the robot can preely recognize the intention for
repairing the specific problem and can operate lm ¢oncerning areas of the vehicle
performing the necessary initial tasks. In the litghens, the robot can proactively perform
the necessary operations concerning the taskseirkitohen, e.g., if the cook intends to
prepare a specific dish then the robot can proalgtiperform actions in order to ready the
necessary ingredients. The robot interacting iiviely with the craftsman can prove to be the
third hand of the craftsman. The proactivity of tlebot may correspond to different robot
operation concerning different tasks during HRIr FExample the robot can grasp and
orientate the surface of the object on which treteman intends to perform. Proactivity in
the rescue robots may correspond to the necessstrgifl actions that should be taken by the
rescue robots depending on the situation and thditton of the victim.

A man-machine interaction in a close contact tcheatber on the vehicle assembly line is
shown in Figure 5.2. The humans have the task sifliing different accessories into the
vehicle. The accessories may include the doordh thasrd, seats, steering wheel, wind
screen, etc. The robot can help by the bringinghid objects that are to be assembled after
the object that is currently being assembled.

In an industrial HRI the proactivity of robot cancrease the output of the assembly line
workers, e.g., by providing the necessary artiddgsthe early recognition of the human
intention and the HRI workspace. ProactivenesssetieHRI and increases the intuitiveness
in HRI. In case of correction from the human thbatocan rectify its proactive behaviour
according to the human intention.

Figure 5.2: The assembly line workers are fixing thind screen on a vehicle. The wind
screen is carried by a device and guided to itscekacation by the human workers [72]. In
case of intuitive HRI the robot can create easeadfigation by slowly moving in the guided
direction and proactively cooperating in the neadks
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5.2 Related work

Proactiveness corresponds to the early anticipatiothe future actions of the interacting
person and their application. It is mostly appliadthe business to anticipate the business
trends and take the anticipated actions that anefimgal. In robotics, there exist also the
approaches that apply the proactiveness in roliatks. The application mostly exists in
mobile robots. In robot navigation the term of mtdaty is used in the context of planning,
e.g., in [105] the term proactivity is used for gl planning and execution of navigation
operations. In [103] proactivity is used for plamgpia safe trajectory for a mobile robot. The
safety corresponds to the selection of the robe¢gdpo avoid collisions.

Armano, Cherchi, and Vargin proposed an agent phgnin a dynamic environment [3]. The
agent is created to act in the virtual world desdyfor a computer game. They described a
layered approach for agent actions in the dynammrenment. Each layer consists of
deliberative, proactive, and reactive modules. fhi@®retical description is not given in detall
and no related experiments or simulation is perémtm

Finzi and Orlandini have proposed a control architee for rescue robots using HRI. It
shows the combination of decision processes wighftimctional process of the robot. HRI
introduced in the approach [51] corresponds tanhesd initiative planning. The term mixed
initiative means that along with the human the toten also proactively react. The mixed
initiative based approach described in [51] does awrespond to a HRI in which robot
responds proactively understanding the human iioieiof the victims to be rescued.

Dee proposed the use of internal states in orddestgn the proactive embodied agents [44].
The difference between the reactive and proactiméoglied agents is the application of
internal state. The proactive agents develop tiernal states by integrating the sensory-
motor information with respect to time. Afterwarttee agent can use the internal state to
apply the stored motor modulation information. Thetor reaction is the function of sensory
information of the internal state and the curremti®nment state. The internal states are
modelled using different variations of neural netkgo The authors described that the
understanding of internal states can help to devieédter proactive agents.

The simulating robot “Embodied Proactive Human fidee” named “PICO-2” described in
[85] is an interactive interface. The idea corregj®to the two humans communicating over
a telephone line. Instead of using the telephohe,rbbots communicate the information
between the two persons. The robot communicatesngssage by performing the gestures
demonstrating the intention of the remote persdr fbbot works as an Avatar of the remote
person. To our understanding “PICO-2” is the derratisn of the recognized intention of
the remote person. The proactiveness of the rabtita current scenario may correspond to
the capability of the robot if the robot can angate the future response of the remote person
and indicate the anticipation in current messagbe Tnessage is conveyed by the
corresponding robot gestures.

Cesta proposed the proactive behavior of the rbpatctivity monitoring [28]. The proposed
approach focuses on the elder care by the robdastass Two ways of interactions are
described namely, On-Demand interaction and Pra&adtiteraction. Proactive interaction
corresponds to the activity monitoring and constrbased proactive and warning giving
response. An abstract algorithm is described falirgdand removing the constraints while
monitoring the activities. The elder care projecai its beginning as described by the authors.
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The described behavior appears warning or remindingome operation forgotten by the
humans.

Jeon, Kim, and Choi have presented Ontology basediatention recognition in [77]. Their
focus is on the planning given the user intentibime user intention is recognized using the
rule-based RuleML approach. The experiments artomeed with a simulated robot. The
system is implemented using DBN. To our understamydhe DBN is used to model the plan
concerning the actions to be performed given ageieed intention using RuleML. The
experiments in [77] do not involve any human rathesimulation is used and proactivity is
achieved by the application of entropy. All thepoaisly discussed approaches do not relate
exactly to direct HRI.

The proactive action selection proposed in [1313cdees the proactive robot response
concerning HRI. The robot selects actions concegrrilre known human intention. The
proactive action selection is performed given thingate of the human intention. The number
of given intention estimates are represented Iby. JAn action tendency value is assigned to
each action selected for proactive reaction. IIif || = O then all the action get zero action
tendency value. If the number of estimated interstics greater than threshadd then once
again the action tendency is zero. The value da@stiolde is used 3. If [ | = 1 then the
actions related to the intention get the conceraeitbn tendency values. These values are
assigned by the human experts. Then an actionlasted using Lorenz’s psycho-hydraulic
model [95]. In case if 1 < T[ | < ® then action selection is performed using conditiona
entropy, expected success rate, valence valuetysadquirement and most likely action
sequence.

The proactive reaction in [131] given the intentiestimate is related in its concept to the
research presented here [13]. However, there &k differences between both approaches.
The approach presented in [131] assumes that tleation estimates are given, uses a
threshold number of intention for proactive reattifocuses on the actions rather on the
proactive action selection and considers all thenions without considering them any
relevance with respect to the current situatiore phesented approach [131] also does not
provide a confusion resolution if the intentionimesites consists of conflicting intentions.

All in all, the proactive reaction of robot is stilovel when the human and robot are in strict
cooperation with each other. The proactive resparisiae robot means that the robot can
quickly recognize the human intention and reactoatingly. The robot recognizes the
intention implicitly by the human actions and thareunding environment. Although the
safety is an issue for autonomous HRI; that is wie/ proactiveness of robot is still in its
beginning with respect to strict HRI especiallyindustrial robotics where big and power full
robotic arms work at considerably high speed.

5.3 Trigger state determination

Proactive and in-time reactions from the robotiamgortant for intuitive HRI. The procedure
given in Figure 5.3 describes the method to enthi@eobot to respond as quickly as possible
end state which corresponds to the state thathBsighe intention recognition process. The
intention recognition process [12] is discussedd#@tail in Chapter 3. The FSMi=1...n
represent the human intentions. The input to tleequiure in Figure 5.3 consists of all the
previous FSMand FSM.; that may be added to a group of Finite State Mesh(FSMs).
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1= Yigger-sael FSM,,,, StartStatg [ Trigger sate assigment
2- for FSM i=1..,n do

3-

for all the j statesof FSM,,, do

4= i (j <@g (FSM)) then

5- if (Match (/o FSMya, J), Yo FSM, }))) then

6- incr j

7- else

8- Wrigger-statedW starll FSMya1, 1)) /[Trigger sate assigment
9- endif

10- if (] > Uingel@return-wigger-siaiel FSM)) then

11- W_igger-siate@retum-uigger-siall FSM)) 1/ Converttrigger to normalstate
12- Wyigger-siaed@oae FSM, 1)) I Trigger sate assigment
13- break Il exit loop at step3

14- end if

15- else

16- Wyigger-staeW st FSM, (@4, (FSM) -1)))  //Trigger sate assigment
17- wtrigger—state(wstate(FSMn+1! (wsize(FSMi) _1))) //Trigger sate aSSigment
18- break I/ exitloop at step3

19- end if

20— endfor //Go backto step3

21~ if (] ==l FSM,1) || | ==05,o(FSM)) then

22- if (] == e FSM,..) & & | ==4f/,,,(FSM)) then

23— delete FSM,,,

24— break [/l exit loop at step2

25— end if

26— for all the k Groups do

27~ if (FSM O G,) then

28— assignFSM,,, to Group G,

29— update priors of G,

30- break /I exit loop at step 2

31- endif

32- endfor /I Go back to step 26.
33- if (FSM O G,) then

34— assignFSM and FSM,,, to G,,,

35— assign priors tothe G,,,

36— break Il exitloop at step2

37- end if

38- endif

39- endfor /I Go back to step2

Figure 5.3: Trigger state determination algorithm
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The trigger state of FSM,; is selected with respect to all the already exigst#EM. The
output of the procedure corresponds to the possie groups oFSMs, discussed later in
this section and the update of the trigger statth@fFSM within the exiting groups and / or
without the groups. The trigger state is represkbieS;igger. IN Figure 5.3, the functiopingex
maps the stat8 to its index | in a FSM, i.eyingex : S— | .The index | corresponds to the
position of the stat&in a FSM. Similarly the functiomsi,e maps a FSM to the number of
states, i.eN, present in the FSM, i.eysize: FSM— N. The functionysiaie maps a FSM to its
stateS at the position, i.e.,ysae: FSM,] — § . The functionpigger-state@SSigns a statgof a
FSM as the trigger stafigger Of the FSM, i.€.yigger-state: S— Srigger - The functiony_igger-
state dOES the reverse @higgerstate i.€., it converts the trigger stad@gger iNto a normal stat&.
The functionyretum-trigger-stater€tUrNs the trigger stat&igger of a FSM.

In this procedure, the FSM is added by comparing with all the already existigM.
Initially the start state of FSM; is considered as the trigger state (Line 1). Thaparison
between FSM.; and FSMis performed by comparing the transition conditiofghe states
of both the FSMs, i.e., FSMi and FSM in a sequence (Lines 2-20). If during the
comparison of FSIMl; and FSM (Line 4) the state indexof FSM,.; increases than the size
of FSM then update of trigger state is performed for ESMand FSM (Lines 16-17). If
FSM belongs to a groufsy, discussed later in Section 5.3, i.e., FSM5k then FSM.; is
added to that group (Lines 27-30). The intentioiorpvalues of the FSMs belonging to the
groupGy are updated. Thiatention priorscorrespond to the prior probabilities of concegnin
FSMsGy. If FSM; does not belong to a group then a new group a&tedgLines 33-37). If a
mismatch occurs (Line 5) then the trigger statégassent is performed for the FSM (Line

8). The trigger state of the FSN4 also updated if necessary (Lines 10-14). Ifdiate index
corresponding to the last successful comparisondsst FSMand FSM., is greater than the
current trigger state index of FSKLine 10) then the update is performed for thegeigstate
for FSM. Otherwise no update of trigger state is perfornaditie FSM The trigger state
always moves toward the actual end state of F&Ming the process of comparison. The
lines 22-25 correspond to the situation if FSMand FSM are same and are of same size
then FSM., is removed and procedure exits (Line 24). Thedifl, 26-37 correspond to the
situation if FSM.; and FSM are same and one is of bigger in size form therotiihe
procedure stops if initial part of FSivhatches to complete FSM or vice versa and if there
exists a grousy such that FSMOGy (Line 27) then FSM.; is assigned to that group.
Otherwise a new grou@y.; is created and FSM; and FSMare assigned to that group. The
matching of initial part of FSMo FSM,:; means that the sequence from the start state of
FSM to some intermediate state of FSWhtches to FSM; from the start state to the end
state with respect to the state transition conastid’ he matching can also occur in the reverse
manner, i.e., initial part of FS\; matches to a complete F&M

A groupG of FSMs is only created if there is a Fvid FSM.; such that they exactly match
with each other and one is bigger than the othdradmeady no group exists (Lines 33-37). In
case, if a group already exists then RSNk simply added to that group (Lines 27-31). If a
group is constructed then a common trigger stat®isinated for the group that is the actual
end state of the smallest FSM in the group. If thgger state is reached then the intention
selection in the group is performed depending anithention priors of the FSMs in the
group, i.e., FSM$1G. Initially if the intention priors are uniform (he 35) then the intention
selection is performed randomly and the switch ketwthe different intentions (represented
by different FSMs1Gy) in the group is performed by the human interuptiAfter an
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intention is recognized the intention priors arelatpd accordingly, e.g., if we suppose there
are three FSM# a groupGy that initially have the uniform priors of 1/|[FSMkEn if the
intention concerning FSMout of three in the group is recognized then therp will be
updated as given in Figure 5.4. The term |FSMsksponds to the number of FSMs. In the
update step (Figure 5.4) the prior of the FSM camog the recognized intention (FgMs
increased. The increment is performed by adding whdorm prior. Afterwards the
normalization is performed. The time complexitytbis algorithm is given below where
is the total number of the existing finite statechiaes FSMs andh is the number of the
states of FSM.;.

T(n) = n.(m-2
The best case occurs if FgMalready exist or it belongs to some already engstjroup. The
normal case involves FSM that does not belong to any existing group. Thestvoase
occurs if all the state machines FShve the same initial part as the FSMill the second
last state of FSM ;.

1 1 1

FSM, = , FSM, = , FSM;=———
| FSMs| | FSMs| | FSMs|
Updation:
FSM, = 1 + 1 -2
|FSMs| |FSMs| | FSMs|
Normalizaton :
2 . 1 N 1 _ 4
|FSMs| |FSMs| |FSMs| | FSMs|
M, = 2 4 , FSM, = L 4 , FSM, = 1 4
|FSMs|/ | FSMs| |FSMs|/ | FSMs| |FSMs|/ | FSMs|
FSM, =1, FSM, =1, FSM, _
2 4 4

Figure 5.4: Update of the intention priors

The Figure 5.5 shows the recognition of the intamtiepending upon the priors of the FSMs
in case if common end state relating to a groupashed.

Initialization of finite state machines<

Observation €————

Weighting of the finite state machines

I

Observation Likelihood'for a finite state machine
Low ¥ High

State transition in the
finite state machine

No

Final state of a finite state machine reached
yes

Weight of the finite state machine Low >

High
No Yes

More than one FSM
— FSM with Righest Prior
PE—

Intention recognized

Figure 5.5: Updated flow of intention recognitiolgarithm
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5.4 Online update of transition weight

The transition weightscorrespond to the weights assigned to the transitonditions in a
FSM, i = 1,...,n. The weights are used to control the transitiondd@mns. The transition
weights help the robot to take the premature imeiitlecision for intention recognition. The
robot response becomes quick (proactive) by takwegdecision prematurely. The robot can
decide in an ambiguous situation that may leaevtodr more different human intentions.

In this section different aspects existing in asesisation are focused. The observation has
the highest probability for the state and causes dfate transition. Thebservation is
decomposed into multiple aspects of the observateach aspect of the observation
corresponds to a transition conditiokl the transition conditions (observation aspe@s
equally assigned the high transition probabilityttzes transition conditions correspond to the
highly likely observation for the state. The obseion aspects that are unique to the
observation (unique transition conditions) get theaximum transition weight. The
observation aspects that are common among theratiffobservations (common transition
conditions) get uniform transition weight with resp to the number of observations. It is
explained with example concerning Figure 5.6 and Bhe transition weights are calculated
for the transition conditions that are common amdifigrent FSMs. Every unique transition
condition is given the maximum transition weighe.,i 1 that is not common among a group
of FSMs. Here the common transition conditions minconditions that are common with
respect to the observation’s specification andsthée’s place, i.e., the states are equally apart
from the start state and previous transition coowl, if exist, are the same. These FSMs are
grouped together based on the common transitioditons. The group of FSMs is not the
same as described earlier in Figure 5.3 (Lines2648 Section 5.3. In the previous grouping
only one transition condition is considered amdrgygtates and the grouping is performed on
the basis of similar sequence of transition coadgi In this grouping the focus is on the
common transition conditions that exist along wather unique transition conditions among
the states. The characteristics of common and entgansition conditions are explained
through Figure 5.6. In Figure 5&, b and ¢; represent the observation aspects (transition
conditions) of observatiors b, andc.

Figure 5.6: FSM and FSM representing the common transition conditions

The unique transition conditiorss, by, bs, by, bs, ¢1, Co, C3, C4 get the transition weight of 1
and the transition conditidop get initially the uniformly distributed transitiomeights among
the common transition condition, i.e., 0.5. Thegiiof b, is updated with the recognition of
the intention represented by the FSMs relatinigoto
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At the construction time of the FSM different prbbiies are assigned to the transition
conditions between the states. The transition ¢mmdthat is highly likely to occur at the
state and leads to the next state gets the higla@sition probability. This highest probability
is used as a threshold for the state transitiom fitee state to the next state [12] [14].
There may be the case as shown for F&Ml FSM in Figure 5.6 that some of the highly
likely transition conditions are common among ddéf@ FSMs. These common transition
conditions among the FSMs, in a group, are ingtiadsigned the uniform transition weights.
The update of the weights is performed by the adivf 1/|FSMs| to the weight of transition
condition that belongs to the FSM representingrdoognized intention and then doing the
normalization as shown in Figure 5.8. The |[FSMt{asgnts the number of FSMs having the
common transition condition in a group. Since fdraasition to occur between the states the
observed transition condition should have the ttemsvalue greater or equal to the threshold
value. The common transition condition that wasli@amunique and had the maximum
transition weight and had the maximum observatimbability could trigger the transition.
However, as a common transition condition the iteoms weight is reduced to LFSMs].
Thus the assigned maximum transition probabilityhaf common observation, multiplied by
the transition weight can not trigger the transitto the next state. It will take very long that
the weight of the common transition is updated vezgr to one and the weight of the other
related common transition conditions near to zd&twen that common transition condition
with updated weight near to 1, multiplied by thansition probability may cause the
transition. For the purpose of the faster incremanthe update of transition condition’s
weight an adaption fact@ris introduced. That is also multiplied by thens@ion weight and
transition probability to calculate the transitiealue. The adaption factérmay be changed
in order to adjust the adaption rate. The adagtotor used for different no of FSNis given
below
FSM =2 0=1.3
FSM > 3 o= |FSM '\FSMUFSI\/I\ i
2 3 4

&
FSM, u

o

Figure 5.7: FSMs with common transition condition

FSM,

The transition weights are further explained byexample using two FSMs These two
FSMs have one common transition condition as showikigure 5.7. There exist three
transition conditionsy, a;, andag in FSMy. FSM; has transition conditiona,, a4, andas for
the states Sto S,+1. The transition conditiora, is common among the FSMs. Therefore,
initially the transition conditiom, in both the FSMs get the uniform transition wejgl., 0.5



and all the other transition condition get the legfhtransition weight, i.e., 1. Now, whenever
the observation oy, as, a4, as occurs then a transition occurs from the s&t® S,.;. As the
observations that are highly likely for a state gieen the high observation probability for
that state. Therefore the transition conditi@asa,, as, as, as have the highest transition
probability. The adaption factor for all the unigtransition conditions is 1. Therefore
calculating the transition value for the transiticonditiona;, as, a4, as will give the value
equal to the transition threshold for the concersiades. The transition threshold is equal to
the highest transition probability between the eonsive states. The transition due to a
transition condition only occurs if the calculatiednsition value for that transition condition
is greater or equal to the transition thresholdlierstate. In case of transition conditanno
state transition will occur in both the FSMs. Altiylh the transition probability initially
assigned t@; in both the FSMs is equal to the threshold vaBig.the transition weight is 0.5
and the adaption factor is 1.3. Thus the calculatadsition value will be less than the
transition threshold value as shown below

= 0bxtransition_valuex13

= 065xtransition_value
threshold_value
If the human performs an action and the observatgtates to one of the unique transition
condition of a FSM and the concerned intentioneisognized then the transition weights of
all the common transition conditions are incread®eadoncerned FSM and for the other FSMs
are decreased.

N

s, =FSM,,, s,=FSM,,, 6@ =adaptionfactor=13
Transition_value =77
Step 1:
Updation
s, =05+ 05, s, =05
2
T=)s=1+05=15
i=1
Normalizaton

_S
=2 = 0.66667
Y

s, = % =0.33333

fxargmax(s,s,) = 13x0.66667=0.86667xm < 1T
Step 2:
Updation
s, =0.66667+ 0.5, s, =0.33333
2
T=)'5=1667+033333=15

i=1
Normalizaton

_S_
=21 =0.77780
27T

-S_
=-2=022222
= T

fxargmax(s,s,) = 13x0.77780=10111xm =7
Figure 5.8: Update and Normalization of transitis@ights for common transition conditions
using the adaption factd
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Now if a unique observation relating F$NFigure 5.7) at stat&, occurs and intention
regarding FSM is recognized then the transition weight &fin FSM; (Figure 5.7) is
increased and intention weight af in FSM, (Figure 5.7) is decreased. The update is
performed by the addition of FSMs|, i.e., the average value of the numbers dMFHFaving
the common transition condition.

In the above described example there are two FSMm&p one common transition condition.
The transition weight is multiplied with the adaptifactor to calculate the transition value as
shown in Figure 5.8. The intention related to RS{Aigure 5.7) is recognized thus the
transition weight ofa, in FSM, (Figure 5.7) is increased by 0.5. The adaptionofaé
increases the transition weight to the extent ghabmmon transition condition in a specific
FSM is triggered as shown in the calculation, giwerFigure 5.8. For that intention to be
recognized the human produces the unique transdmrdition relating to the concerned
FSM. The common transition condition causes thesitn between the states for a specific
FSM that represent the recognized human intention.

If 6 is selected as |FSM|/2 then the adaption rata fammon transition conditiosy (at fh
state of ' FSM) of FSM becomes 2 for [FSM| > 3. The adaption rate of anmehat if an
intention represented by FSM recognized 2 times consecutively with respedither FSMs

in a group having the common transition conditidhgs assumed that the transition weights
are uniform. Then the transition weight &f of FSM is increased and the weights of other
related common transition conditions in the groUpMs are decreased. The two times
consecutive increments of transition weightagfand the scaling performed with |[FSMs|/2
causes the state transition duedor [FSMs| > 3. If |FSMs| = 3 then three timesseautive
increments in the transition weight & is required to trigger tha; state transition. Similarly,

if & =|FSM$/3 then the specific increment in the transitiongherequires 3 steps for |FSMs
> 7. In case if 5 |FSMsK 7 then 4 steps are required. The Table in 5.1rdescthe number
of steps required with respect to the |FSMs|@and

0 No of Steps |[FSM |
| FSMg/2 2 > 3
| FSMq/2 3 =3
| FSMY/3 3 > 7
| FSM$/3 4 > 5
| FSMY/3 5 > 3
| FSMg/4 4 > 11
| FSM9g/4 5 > 8
| FSMg/4 6 > 6

Table 5.1: Description of with respect to |FSM| and no of steps

The transition weights are calculated in terms /F3Ms|as shown in Figure 5.9 and 5.10.
The calculation is so performed that the transiti@ightmy is increased at each step by £/
1/| FSMs|. At each stepy is updated (increased byn)/and then normalized. The six step
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update and normalization is performed figytransition weights in Figure 5.9 and 5.10.

my increases anah, ,decrease.

m Local transition weight i= 1,23...,n
n Number of FSM, with common condition

1 ”
== |Initiall
m n y

Stepl:
Weightupdation

1,12
e

Normalizaton

n+1

__+n -Dx—=——
Zm ( )n -
2 1 1 1

nen ™ e ™ ™ T

r’r‘![ =
Step2:
Weightupdation
2 1 _ 3+l
n +1 n n(n +1)
Normalizaion

m =

Z": _ 3n+1 +(n-1)x 1 _n+1
o n(n+1) n+l n
_3n+1 _n N
T T e ey
Step3:
Weightupdation
_ 3n+1 +£:4n2+3n+1
(n+D)*> n  n(n+1)?
Normalizaton

N An*+3n+1 n
Ym=T o e
= n(n+1) (n+1)
_n®+3n*+3n+1
n(n+1)*
_ 4n"+3n+1
n’+3n°+3n+1
n’ n’

T n®+3n2 +3n+1""’mn T nP+3n2+3n+1

Figure 5.9: Calculated Transition weights
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Step4:

. 5n+6n*+4n+1
n*+4n®+6n*+4n+1
n3

n*+4n*+6n*+4n+1

m,...m, =
Step5:

_ 6n* +10n®* +10n? +5n+1
n° +5n* +10n®* +10n®> +5n+1
n4

n° +5n* +10n*+10n* +5n+1

m,..m, =
Step6:
_ 7n® +15n* +20n® +15n° +6n +1
n® +6n° +15n* +20n® +15n* + 6n +1
n5
n® +6n° +15n* + 20n* +15n* + 6n +1

m,...,m, =

Figure 5.10: Calculated Transition weights

Therefore it can be easily checked by multiplyihg & with my at different steps that how
many consecutive steps (weight increments) arenedjtor increment ofry such thatm can
cause state transition, e.g., if we tégke |FSM/2 and [FSNE 3 my can cause state transition,
results are shown in Figure 5.11.

It is also mentioned above in the Table 5.1 rowd &t Step 3 the transition weight (updated
and normalized) multiplied by causes the state transition. That value multipligth the
transition probability &) will not decrease the calculated transition vane will cause the
state transition.

n=|FSMs|=3
2 n 2
Stepl:m =——x—=—x15=0.7/5<1
AL:m n+l 2 4
+ +
Stepz:m = 01 N33+ ) 5o 093750<1
(n+D)° 2 (3+))
4n*+3n+1 n 36+9+1
Step3:m = Xx—=——_"x15
p3:m N°+3n*+3n+1 2 64
= 1.0781>1

Figure 5.11: Consecutive increment of a transitreeight
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5.5 Experiments

The experiments have been performed with a rolatic of six degrees of freedom. The
human and the robot interact in a HRI workspacenshm Figure 3.9. The work space
consists of a table with objects and buttons ortabk along with the robotic arm. The video
data is captured with an overhead FireWire digiahera with the frame size of 640 x 480
pixels. The camera provides video data at the spée30 frames / sec. HRI and image
analysis is implemented using Programming language. The robot reactions are realized
using the robot Programming language V++ for tHeotic arm. The robot is communicated
the cooperative instructions using the TCP/IP eation for assigning different operation,
e.g., pick, place and move to a certain locatior, @ommon Skin detection, Edge detection
algorithms and Fourier descriptors are used forrtltage analysis.

The buttons on the table include Stop, Learn, Pa&isg, and Reset as shown in Figures 5.12,
5.13, and 5.14. These buttons are used by the mdaracommunication with the robot
during HRI. If the human wants to teach the rolmiwa his intention then the human puts the
hand on the Learn button. Afterwards the humanopers the intended task. The Stop button
is used by the human if the human wants to stopdhet from performing a task and undo
the current robot action. The robot temporarilypstds activity if the Pause button is used. If
the Play button is used then the robot starts mzog the known intentions and after
recognizing an intention the robot reacts accoiglinthe Reset button is used to remove all
the known intentions that are stored as FSMs.

Figure 5.12: Intention for placing the boxes inquare pattern

The perception of human intention is performed Base Case 3 discussed in Chapter 4, i.e.,
the human actions and intention is recognized ftbenscene changes occurred due to the
human action. For performing the experiment regaydhe arrangements of objects on the
table, different human intentions are taught tortieot as discussed in Chapter 4. The two
taught human intentions are shown in Figure 5.12%h3.
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Figure 5.13: Intention for placing the boxes in gitudinal pattern

The Figure 5.14 shows the similarity of the sitoat{ellipse) for which the robot needs to
decide for premature action selection. First thentons relating to Figure 5.12 and 5.13 are
taught to the robot. Then the robot is presentedsituation shown in Figure 5.14. The robot
can not decide how to react in the situation shawfigure 5.14. The robot waits for the

human to disambiguate the situation.

Figure 5.14: Human robot interaction workspace

Now, if the human performs the action regardingne of the intentions as shown in Figure
5.12 and 5.13 then the transition weight of the mmm transition condition in concerned
FSM is increased and for the other F&Wecreased. Initially, the ambiguous case assho
in Figure 5.14, if a task is disambiguated congeelyt two times and third time the robot is
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faced with the ambiguous situation then the rokatts accordingly, i.e., the robot performs
the most likely human intended task in that situati

intention! ——
intention? ————

Local Transition Weight

0 1 2 3 4 5 B 7
No of Interactions

Figure 5.15: Transition weights with out adapti@ctor

The graph in Figure 5.15 corresponds to the tramsitveights in two FSMs with one
common transition condition as shown in Figure 5d® 5.13. Initially, at Step O the
transition weights are uniform, i.e., 0.5 for bdtire common transition conditions. The
transition weight represented by red line represiaattransition condition whose concerning
intention is selected consecutively three timesusTthne red line rises and green line falls. In
spite of rise in the red line, the transition weifled line) is less than 1 at the Step 2 and 3 as
shown in Figure 5.15.

1.2

intention! ———

1 intention? ———

ption Factor

\.'
=
(=)}

Local Transition Weight x Ada
o
T

0] 1 2 3 4 5 5] 7
No of Interactions

Figure 5.16: Transition weights with adaption facto

The transition weight scaled with adaption fact@® reaches the value 1 at Step 2, as shown
in Figure 5.16 and causes the state transitiormF2tep 3-7 the transition weight of transition
condition (green line) is increased due to the eouBve selection of the concerning intention
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as shown in Figure 5.15 and 5.16. At Step 7, thesition weight (green line) in combination
with adaption factor can cause transition.

Similarly in the case of trigger state determinatiand update the premature intention
recognition is performed with the help of priorfi€lrobot reacts according to the intention of
highest prior FSM in the group. If the human inteath FSM with lower prior then the robot
switches to the next intention (FSM) with the néighest prior. The priors of FSMs are
updated such that the prior of intention (FSM) ikaguccessfully applied is increased and the
priors of the others are decreased. The priotsvofFSMs in a group are shown in Figure
5.17. The graph in Figure 5.17 represents thafifstr 11 interactions an intention is selected
consecutively and for the rest of 9 interactioresdther intention is selected consecutively.

1

intention? ———
intention2 ————
0.8
o 0a
g
& 04
02
D L L
0 5 10 15 20

No of Interactions

Figure 5.17: Priors alternating due to the intentiswitch after 18 interaction.

5.6 Summary

In this chapter we presented a probabilistic pigacapproach for the intuitive HRI in the
ambiguous situation. Two cases were discussedéarcpive robot response for intuitive HRI.
For making the robot interactions as quick as fbssirigger state selection algorithm is
discussed that describes how the trigger statesedeeted in case of similar state sequence of
different FSMs. In this algorithm FSM is compared with all the already existing FSiM=
1,..., n. During the comparison the F§M can be added to the already existing group of
FSMs. A new group can also be made concerning 8,k and already existing FSMA
group of FSMs is only created if there is an alyeexisting FSMand FSM;; such that they
exactly match with each other and one has higherbeu of states than the other. In case of
groups the intention priors concerning the FSMsaeated or updated. The increment and
decrement of the intention priors is performednifiatention concerning a FSM that belong to
a group is recognized. In this case the intentioor wf the FSM concerning the recognized
intention is increased by 1/ |FSMs|. The téf$Ms| corresponds to the number of FSMs in

the group. After increment in the intention priditiee concerned FSM, all the intention priors
are normalized. Thus the intention priors of otR&Ms concerning other intentions in the
group are decreased.
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In the second case, the proactive nature of HRisisussed at lower level, i.e., the ambiguous
(leading to two or more different human intentiof®)man action performed by the
interacting human is probabilistically handled fotoactive HRI. The ambiguous human
intention case is handled by the transition weigltge transition weights correspond to the
weights assigned to the transition conditions @ BSMs. The transition conditions that are
common in different FSMs are assigned the unifaandition weight. A common transition
condition with uniform transition weight can notusa the state transition. Although the
transition probability of the common transition ddion is high but multiplied with the
uniform transition weight the state transition doest occur. If the recognized intention
corresponds to a FSM that has common transitioditon then the transition weight for that
common transition condition is increased and fdneotconcerning common transition
conditions the transition weights are decreased.adaption factord is used to quickly
increase the transition weight of a common tramsitcondition. The adaption factor is
multiplied by the transition weight to increase taue of the transition weight.

If the robot has proactively responded accordingh® human intention then the human
intention does not change. In case if the proaatgponse is not exactly according to the
human intention then the human intention may chaegg, if the human intended to drink
cola but he was offered water then he may chang@tention to drink water. If the robot’s
proactive response is totally different from thertan intention then the human intention may
not change and the robot’s reaction can be rejebbtethe human. If the human has no
specific intention then a proactive action by thbat may induce the intention (concerning
the robot’s proactive action) in the human.
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Chapter 6

Interaction In unknown scenarios

A robot as a machine can not extend its interaathmulel to adapt to the changing human
intention that is not already known to the rolder a robot to be intuitive, it should possess
the capability to interact with the human everhd tntention of the human is not known.

In this chapter an approach is introduced to HRa& iknown scenario with unknown human
intention. Initially, the robot reacts by copyinigethuman action. Before each reaction, the
robot hypothesizes its potential actions and sglece that is found most suitable. The robot
may also use the HRI history to hypothesize themal actions. Along with the history, the
robot also considers the action randomness anonagtedictions to hypothesize the potential
actions. As solution, a general Reinforcement Liegr(RL) based algorithm is proposed that
suggests learning of HRI in an unknown human inmb@nscenario. A Particle Filter (PF)
based algorithm is proposed to support the proigébilaction selection for HRI. The
experiments for HRI are performed by a robotic anvolving the arrangement of known
objects with unknown human intention. The taskha tobot is to interact with the human
according to the estimated human action.

The remainder of this chapter is organized as\i@ldn Section 6.1 the problem of HRI with
unknown human intention is defined and motivateae @pproaches related to the discussed
problem are described in Section 6.2. In Sectidhageneral RL based HRI algorithm is
proposed. In Section 6.4 the process of probaisilesttion selection is explained in detail.
Section 6.5 describes the experiments performedgutie proposed approach. Finally,
Section 6.6 summarizes the chapter.

6.1 Problem definition and Motivation

The problem corresponds to HRI in an unknown humégmtion scenario. The human can
has an intentione I', I' ={iy,...,in}, N € IN while working in the HRI workspace. The robot
does not knowl". The robot also does not know how to react. TH®td&nows the HRI
workspace and the actio = {a,,...,an}, m€ IN that can be performed by the human in
HRI workspace. The input to the problem correspaldthe scene information, the scene
change information, and the understanding of huawions. The robot is required to select
an actioma,, k € {1,..., m} for interaction with the human. It is assumedtttiaring the HRI
the human only performs the actions that are relténis current intention.

The humans possess the capability of respondirtget@roblem in an unknown or unseen
situation. This is a significant difference betweemachine and a man. A machine can only
perform the task that it is made to perform. A miaehcan usually not perform in a new
situation. On the contrary the human has builtapability to interact with another human
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without knowing his intention. The interacting humadapts himself as he interacts with the
other human whose intention is not known to him. dgeuss two cases in which one human
interacts with another human in a situation thatititention of the other human is unknown
to him. In first case, we consider a hunmfathat is working in an industrial workplace with
some machines along with another human co-woBkeFhe humarB picks and places the
objects to perform an operation on them with thip loé machines. The humakcan interact
with B by placing the objects without knowing the openatthatB wants to perform on the
objects (with the help of the machines). The humdacan also correct himself by the
correcting response froB The correcting response may be the type of abjbett should be
picked and placed. In the second case, two hunmaesact in a household scenario. The
second human does not know the intention of fitsh&n. The first human has the intention
of tidy up the things. The second human performshasobserves the first human and
maintains a record about the actions of the fitsh&an and the estimated intention. As the
interaction between both the humans proceedsettwng human interacts more intuitively by
repeating the previously performed actions.

Figure 6.1: Intuitive HRI in a scenario where thenhan intention is unknown to the robot. In
the top left figure the human starts the HRI byspineg (putting the hand on) the interaction
button and picks and places an object accordingisointention. In the top middle figure the
robot makes a hypothesis (red cross) to reacttingly and places the object in the top right
figure. The human corrects the robotic reactiontle bottom left figure. The robot once
again makes hypotheses (red crosses) in the batimdle figure. The robot performs the
action according to the most suitable action hypsta in the bottom right figure.

The actions of the second human may also be cedeoy the first human. It is very
important property of the humans that they carrautein a situation if they are not given the
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intention of the cooperating humans. This prope&tgqually important for HRI, i.e., if the
robot does not know the intention of the interagtimman then he must respond intuitively.
We discuss a simple example for HRI in which theotadoes not know the human intention.
The HRI workspace consists of objects on the tablshown in Figure 6.1. The human has
the intention of arranging the objects in a speaifider on the table that is not known to the
robot. The human initiates its actions accordingpiintention. The robot reacts by copying
the human actions and changes its action on carneloy the cooperating human as shown in
Figure 6.1.

6.2 Related work

The section describes the related approaches.idnstction the differences between the
presented approach and the related approachesoisliatussed. A large amount of literature
exists for RL. In RL the agent learns the optimaliqy for performing a task [78] without
focusing the human and its intention. In the litera of RL many solutions exist with no
human input. In some of RL-based solutions, humantiexist, e.g., [94] and [22]. These are
required to be trained. The presented solutiomigeguired to be trained. In [4] RL is used to
refine (teach) the robot behaviour.

With a significant deviation from the basic focdgle HRI, there exist a lot of such solutions
under the umbrella of Programming by DemonstrafinD) that is almost a complete field
in itself. The approaches [126][139][137][9] apdRL to PbD. Artificial Neural Networks
(ANN) are used in [91][17], Hidden Markov Model (HW) is used in [166] for PbD. The
approaches in PbD try to enable the robot to repredvhat has been performed in front of
the robot without focusing HRI.

In the area of intention recognition for HRI, theexist a number of approaches
[150][139][125] that use HMM, Dynamic Bayesian Netk, and Hybrid Dynamic Bayesian
Network to recognize the human intention. The apphes described in [77][98][169]
perform Ontology, Utility-and Graph-based intentioecognition. The HRI based on the
probabilistically weighted Finite State MachinesS{F) is described in [12]. Each FSM
represents a potential human intention that isadifeknown to the system. The described
intention recognition approaches can only recogtiizealready modelled human intentions
for intuitive HRI. In case of a new (not modelledjtention the described intention
recognition approaches can not be used by the fobdidRI. The approaches described in
[131] [13] deal with the proactive recognition dfiet premature human intention. The
approaches [131] [13] can not be used if the camegrhuman intention is not modelled.
More specifically [14] describes how to handle tto#ally new situation in intention
recognition based HRI. The approach described 4j flbes not suggest the robot how to
react in the totally unseen situation. Rather ggasts first to learn how to react and then to
interact in that situation.

In the literature of intuitive HRI, the topic oftuitive HRI in an unknown human intention
scenario is not considerably explored. The propagsoroach corresponds to HRI in the
known HRI scenario with an unknown human intentibhe known scenario means that the
objects present in the scene are known to the imbgstem. The changes in the scene along
with the associated human actions are also knowinetoobot. Theinknown human intention
describes what the human intends about the scehthahis not known already to the robot.
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6.3 Interaction in an unknown intention scenario

The presented approach proposes a probabilistigi@ol for the HRI with the unknown
human intention. In the proposed solution, the tabteracts with the human by selecting a
suitable action. If the selected action is accaydim the human’s intention then the robot
continues. Otherwise, the human may correct théopeed robotic action or may ask the
robot to select another action. The robot hypo#tessall the possible seen actions and selects
an action that is probabilistically suitable and lgaod history support if it exists.

An algorithm is proposed on the basis of RL fowuitite HRI in the unknown intention
scenario. In this algorithm, the robot interactsthking into account the human response
while interacting with the human. The robot’s réaas become pertinent by the passage of
time as the robot interacts more and more withhtlmean with respect to an intention. This is
the point where the algorithm has resemblance whn RL paradigm as the robot’s
interacting capability improves as the robot intgsavith the human. As RL allows the agent
to decide what action to take in a specific stapethding on a reward function, similarly in
this algorithm the robot decides for an action deligg on three factors that are: The
randomness of that action, the history supporhaf &ction, and the weight of the that action.
The reason for proposing a new RL-based algorithuiue to the fact that in the current RL
algorithms [78], the agent (robot) interacts witle £nvironment and gets the reward against
his action. In the proposed algorithm, the rewaads directly given by the human. The
human either gives reward to guide the robot to eanalbetter reply or simply corrects the
agent’s action. Therefore, this is also semi-supedvapproach in this sense that the agent
may be corrected by the human but not necessarigvery case. Another reason that the
proposed algorithm deviates from the core idea lofifkthat the human can not wait for a
long time for the agent to learn the optimal actimial then perform that action. The algorithm
is given in Figure 6.2.

Initially the action sefA and state se$ are empty. Each actica, . rnis characterized by
different feature$,..., Fn. The state se® consists of 3-tuple element. Each 3-tuple contains
the states before the action and the statg after the action and the actian,. . rnsuch that
Fi,...,Fn have specific values for the actiap, .
interaction and the robot responds. Therefore dhetrwaits for the human action. It is also
reasonable to wait for the human action as thenfie of the human is not known to the
robot.

After the human has performed an action, a 3-tigokedded to seb, i.e., states (before the
human has performed the action), the performed huactionag,, ..., r, and the statg.;
(after the human has performed the action) (Line T¥)e robot reacts after making an
educated guess. The educated guess corresponks selection of the appropriate action.
The process of selecting an appropriate reactialsussed in Section 6.4. If the reaction is
according to the human intention and accepted éyhtlhman then another 3-tuple is added to
the setS (Line 16). If the human asks to change the actimm tthe robot acts with the next
likely action (Line 14), if there exist one. In eathat the human performs the correction then
the 3-tuple is added to the setnd the actioras; ., IS added to the sét if the action is
newly performed by the human (Lines 8-12). The tngfuthe algorithm involves the human
feedback concerning the robot action. The outpuhefalgorithm given in Figure 6.2 is the
setS The seScan be used to construct a probabilistic FSM [IHje process continues until
the goal state is reached. The goal state is reatladl the objects present in the scene are
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acted upon by the human and robot and the humamotiperform any further action. The
goal state is also reached if the human stopsottnat from further interaction.

Input :humanactions,humanfeedback

Output :SetS of 3-tupleelements

1- SetA={} [/ contain thehumanaction
2-SetsS={}, i=1 /l contain the3- tuple elements
3- Wait for humanactiona; .

4- Add thetakenaction toA,i.e., A= All{a; .}

5- Adds, s andag , toS,

ie,S=S0{(s.a r S)}

n

6- repeat
7-  React withhighly likely action
8- if "thehumancorrectstheaction"then
9- if (ag, ¢ UA)then // new humanaction
10- Add thehumanaction to A,
e, A =A0{a ¢}
11- end if

12- Adds,a  ands,, toS e,

S=SU{(s:a, f, S}

i=i+1
13- eseif "humanasksto changetheaction"then
14- React withthenext highly likely action
15- ede
16- Adds,a; ¢, s, toS,ie,

i=i+1
17- endif
18- until thegoalstateis reached.
Figure 6.2: Reinforcement-based HRI algorithm

6.4 Probabilistic action selection

We motivate the problem of probabilistic actionestibn for intuitive HRI in an unknown
human intention scenario by an example of intevachetween two perfect strangers. They
do not know a common language to communicate wattheother. The persof is totally
new to the work area, joins to collaborate with pleesonB who is already experienced with
the tasks in the work area. At each new task, gdiegmA observes persdd and tries to help
him by copying his action and amends his own astioy the correction performed by the
personB. Afterwards the perso® may analyze the similarities in the action seqeenc
performed in the new task and the action sequeped®rmed previously. The similarity
corresponds to the fact that how many times aftaaciiona the actiorb was performed.
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Depending on the similarities, persAmay select an action to collaborate. The pefsaray
select an action finding the similarity between tirevious and current task. The pergon
keeps track of the complete action sequence coimgeam intention of persoB, for later use
for the interaction in the unknown intention cases.
We replace the persaghwith the robot and assume that the robot is alregekn the features
that characterize the actions of the human (peBornThus the robot can understand the
human actions as well as correction with respetiiédeatures. The scene information is also
known to the robot, i.e., the objects that existhi@ scene. In order to collaborate intuitively
with the human, the robot needs to follow the patef human activities simulating him.
Similarly, at the start of each new task correspogto unknown human intention, the robot
repeats the human action. For simulating the huaralysis of action selection, the robot
needs to know how many timé&%a;) an actiong; is performed, how many timéXa; | a) an
actiong; is performed after actiog, what kind of action sequences are performed @yrea
while collaboration, and what action should be @mefd. The following aspects are
considered in order to interact with the humarhsunknown human intention case:

A. Action probability

B. Action prediction

C. Weighting of the predicted actions

D. History-based action prediction

E. Combination of action aspects

6.4.1Action probability

The action probabilities tell about the probahitistuitability of an action. The conditional
probability P(a; | &) describes the uncertainty involved in the perfedmactions; with respect

to the previously performed acti@ The robot first tries to find out if the actioasanda
have already occurred in the same sequence andmaw times. In case that the robot
cannot find an already existing sequence of ther@Es anda;, then it simply tries to find
out the prior probabilityP(a;) of the actiong;, i.e., how many times the acti@n has been
performed by the human with respect to other astidrne robot uses one of these values
while selecting an action for reaction.

6.4.2 Action prediction

The actions performed by the human and the accepieat actions are used as input to
predict the future actions. Each action correspdods set of known features, il,,...,F.
The future actions are predicted based on the humeéions and accepted robot actions,
observed during the HRI. After an action is perfednall the previously performed actions
are considered for further action prediction.

If the robot action is accepted then all the presiactions are used for new action prediction
with respect to the performed action, shown in Feg6.3 (left). If the robot’'s action is
corrected by the newly performed human action ttiext action is added as new action
hypothesis to the previously existing hypotheaad newly created hypotheses, shown in
Figure 6.3 (right). The Figure 6.3 (left & righ® further explained in next subsection with
respect to weighting of actions.

The prediction of actions is the performed aftecheddRI step. The interaction step
corresponds to the action performed by the robbe ihteraction step is completed if the
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human accepts the robot action. Otherwise it isptetad by the correction performed by the
human.

6.4.3Weighting of the predicted actions

All the expected scene changes produced due t@ribdicted actions are considered as
hypotheses. Initially all the hypotheses are wadhiniformly. In Figure 6.3 (left & right),
the predicted hypotheses are represented by thecledcdots. The simple dots represent the
acted upon hypotheses that were accepted.

>

§

Figure 6.3: Generation and weighting of potentialtian hypotheses, a dot represents a
performed action hypothesis, an encircled dot repngs the result of a previously created
action hypothesis, a triangulated dot represents thsult of a currently created action

hypothesis and the lines represent the action lded to result of that action, i.e., encircled

dot and triangulated dot. Left: Generation of hypexes if robot action is accepted Right:
Generation of hypotheses if robot action is coreect

In case if the robot reaction is accepted by th@mdmthen the further action hypotheses are
created only with respect to the that action, showhigure 6.3 (left). All the newly created
hypotheses (represented as green) are weightedwlhiiglrespect to the previously existing
hypotheses. The accepted action represented asrbkigure 6.3 (left) gets higher weight
with respect to the newly generated (green) hymethelt is assumed that an action can be
repeated while performing a task, e.g., there maynbltiple objects and the same action is
required to be performed on them.

In case if the human rejects the robot’s respomskecarrects the action performed by the
robot. Then the hypotheses are generated and apddtethe addition of the new (correction
by human) action, shown in Figure 6.3 (right). Tiew action (shown red in Figure 6.3
(right)) is added to the previously generated hgpsés (update) with comparatively higher
weight from the already exiting hypotheses. The hgpotheses are generated with respect to
the correction and get higher weight with respedhe previous hypotheses (shown green in
Figure 6.3 (right)). In new hypotheses the newlgieataction (shown red) gets higher weight
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with respect to newly generated hypotheses. Thieehigieight is due to the assumption that
an action can be repeated while performing a task.

6.4.4History-based actions prediction

As descried earlier that a human intention consibts sequence of actions. Each action can
be characterized by a setrofeatures. It means that each action can be regezbas a point

in the n dimensional space. Thus each intention consisthga sequence of action
(represented as point in thelimensional space) is represented as an orderedl saints.

A complete action sequence concerning an intentepresents arnntention trajectory
Graphically an intention can be represented asjactory in then dimensional space as
shown in Figure 6.4.

(X12:X21,X31

Figure 6.4: Action sequence trajectory concerninigugnan intention, each dot represents an
action and a complete trajectory represents a @skcerning a human intention

Using the trajectories of the different intenticdhge similarities between different intentions

can be found. The future action hypotheses canvhkiaed with respect to the previous

trajectories. It is explained with the help of @lling Figure 6.5.

The green trajectories represent the already peddraction sequences concerning the
human intentions. The blue trajectory represergsctirrent interaction action sequence. The
predicted action hypotheses are placed as blackwitih dotted lines. The hypothesis with

significant historical support gets higher weiglithwespect to others.

Figure 6.5: Hypothesis evaluation using previougition trajectories
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6.4.5Combination of action aspects

The final selection out of all the action hypotrese made by considering the randomness,
history support, and the weight of each hypotheB history support and randomness of
each action hypothesis is weighted by the hyposhesight. For each action hypothesis a
value is calculated by adding the weighted hissugport value/v’t p(A! ¢{{H) and weighted
action randomness’ - p(A'{|Ac), i.e.,Wy- p(A']Ar1) +W,- p(A'y|H). The calculated actions are
stored in descending order with respect to thdinac/alues. The top action in the action list
is selected for the robotic reaction. The next lowa&ue actions are selected if the human
asks the robot to switch its reaction. The comimmadf the history support, randomness and
the hypotheses weight is shown in Figure 6.6.

actions

Hypotheses

«I

’Hist[oryl IRandomnessl IWeightl
[

Action’s Tray

Figure 6.6: Final action selection for HRI by themnsbination of history support and
randomness of each action hypothesis with the weilgtihe hypothesis, resulting in a value,
the action hypotheses are arranged in descendidgrawith respect to the resulting value

6.5 Particle Filter based action selection

The mechanism used in Particle Filter (PF) considéirthe possible solutions as particles. PF
is an iterative algorithm and operates in two pbhase., prediction and update. In the
prediction phase each particle is modified accaydim the given prediction model. Each
particle has weight that represents the signifieaotcthe particle. In the update phase the
particle weights are updated based on the incorsérgory information. According to the
weight the particles are re-sampled [45]. Using pleticles the distribution of solution is
estimated. PF is used to track and estimate tfliéi@o of a problem with respect to time. The
current problem of the robotic reaction in the umkn human intention scenario also
corresponds to the prediction and update of theentibelief of the reacting agent about the
unknown human intention. The robot uses its histargwledge as well as the immediate
previous human action or the previous acceptedradf the robot to predict the action for
HRI. The update is performed on the basis of humemponse. If the human accepts the
reaction then the accepted action is predicted mibne likelihood (Figure 6.3 left). In case if
the human responds by simply correcting the robaction. Then the corrected human
action (new human action) is predicted with mokellhood (Figure 6.3 right).

The difference between the application of PF atbarifor the current problem and problems
where PF is usually applied is spatial. As PF istigoapplied in the robot localization and
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usually the state space involves the two dimensi@i2) space in which the robot exist. For
more accuracy the orientation of the robot is abergd. In the current case the state space
corresponds to the human actions. If the humarmrstare represented in a n-dimensional
space. Then the future actions can not be prediziedd on the location of the current action.
There is no action model for human action predicés the motion model for robots. Thus
we have to assume all the possible actions as hgpes and then the evaluation of the
hypotheses can be performed on the basis of clyrpatformed action and the history of
performed action sequences concerning the intenod the actions probabilities. Therefore
the PF algorithm can not be applied directly tocheent problem.

Initialization()

Input :humaractions

Output : Set§ of actionparticles
1-S=¢

2-for i=1.ndo

3- SampleA’ from p(AJA,,)

4- 8= 0{<AYn 0>
5-endfor
Figure 6.7: Initialization of the action particles

The algorithm is described in Figures 6.7, 6.8, &l 6.10. In the initialization phase, all the
action particles are created with equal weightshemvn in Figure 6.7. The elements of Set
(Line 4) correspond to a tuple of action partidgie weight and action value (discussed later in
this section). In the probabilistic action selextaescribed in Figure 6.8 the action values of
all the existing action particles are calculatedslswn in Line 3. The value of each action
particle is calculated by multiplying the conditadrprobability of the action and historical
support with the weight and adding them. In cagkeafconditional probability of a predicted
action with respect to the previously performedcecis not available then the prior of that
action is used.

At the Line 5 all the expected actions are sortétl vespect to their values and stored. The
highest value action is selected for reaction. $istem loops from Line 6 to 20 until a
suitable action is selected or all the actionstiéee or the human performs a correction. If the
robotic reaction is accepted, i.e., the robot pema suitable action then the particles are
generated with respect to the performed action mitther weight as compared to the
previously existing particles (Lines 10-11), Figuée3 left (green lines). The particle
corresponding to the accepted action gets higheghtvéhan the newly generated particles. It
is shown in Figure 6.3 left (blue).

If the robotic reaction is not accepted then the&i may ask the robot to change its reaction.
The robot selects the next highest value actiomeaction (Lines 12-13).

The human may also correct the robotic reactiorhaut asking the robot to change its
reaction. If the human correction belongs to theo$ehe predicted action then the particles
are created with respect to that action with higherght as compared to the exiting action
particles (Lines 15-16), Figure 6.3 left (greerefh The particle corresponding to the human
correction gets higher weight than the newly geteerparticles, Figure 6.3 left (blue).
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S ={ <Al,Wl,V1>,<A2,WZ,V2>,...,<An,Wn,Vn>}

Input :S§,humanactionshumanfeedback

Output : Selectionofanactionfor therobot toreact

Algorithm Particle_flter(S)

1- n=0 index=0

2- for inti=1...,ndo

3- v, =w (A, |AL)+W (A, |H) //action valiecalculation

4- end for

5- A = DescendingOrder(§.v) I storingtheactionswith respect taction valie
6- dof

7- A=Aat(index™).A lIselectingtheaction with highestaction valie
8- ExecuteA //roboticreaction

9- if (Acceptqu))then /I performedrobotactionis accepted

10- SampleA ¥, from p(A,.JA)

11- S =S D{< Al Wog, >}

12- dseif (ChangQA))then /[robotis askedto changethereaction

13- A = Aat(index™).A

14- elseif (A uman comecion J/A) then — //humancorrectionis alreadyknown torobot
15- SampleA, from p(A,JA uman coresion)

16- S=§ D{<A:(+1!Whigh >}

17- elseif (A ,man comecion D7) then //humancorrectionisnotknown torobot

18- Re_Initialzation(A;,an correction )

19- end if

20- }Whlle(A I= Aoptimal ”A == ¢” Ahuman_correction);

Figure 6.8: Probabilistic action selection for HRI

In case if the human corrected action does notnigefo the set of predicted actions (Line 17-
18, Figure 6.8) then re-initialization of the peldis is performed, described in Figure 6.9. The
human correction is represented byi\ Figure 6.9. The new action is added to thedist
known actions and new action particles are creafiidl respect to the newly added action.
The new patrticles are created for the newly adadidrawith respect to previously existing
actions with high weight as compared to the preslpexiting particles (Lines 2-5, Figure
6.9), Figure 6.3 (right) (red line along with blaktkes). The new action particles are also
created using the previous actions with respetheonewly added action (Lines 6-7, Figure
6.9).

The weight of these new action particles is higtmen the previously created (Lines 2-5,
Figure 6.9) new action particles. The newly creapatticles (Lines 6-7, Figure 6.9)
correspond to the green lines in Figure 6.3 (righhje new action particle representing the
repetition of newly added action Figure 6.3 (rigirBd line among green lines) is given the
highest weight with respect to the all newly crdatarticles.
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Re_lInitialzation(A, S)
Input :§ (Setof actionparticles) A (newhumaraction(correctia))
Ouput :§ updatedvith respect taheA,
1- n=0
2- for i=1l.mdo /i correspondtothepreviouslyexistingactionparticles
3-  SampleAl, from p(A A )
4- §=§0{<AlLW05} /Iw>w
5- endfor
6- SampleAf, from p(A,,|A,)
7- St:StD{<Atk+1’W2’O>} //W2>W1
8- for i=1.n do //n>m nisthetotalnumberf actionparticles
9- n=w+zg
10- endfor
11- for i=1.n do //n>m
12- w=w/p
13- endfor
Figure 6.9: Creation and weighting of the new actparticles

previous_particles

Afterwards the particles weight is normalized (lsr&13, Figure 6.9). The high weighting of
the latest actions biases the robotic reaction tdsvéhe currently performed action. The re-
sampling of the particles is described in FigurBD6A threshold value is selected between
0 and 1 / (total number of the particles), inclgdih/ (total number of the particles). If the
weight of a particle is less thanthen that particle is eliminated. The other pagschre kept.
Then the weights of the particles are normalized.

Input :S
Output:S,SOS
1-S=¢n=0
2-for i=1...ndo
3- if (w >7)then r0,1/n]
4-  SO{<A,w,v >}
5- endif
6- endfor
7-for i=1...mdo m<n
8- n=n+w
9- endfor
10-for i=1...mdo
11- w=w/n
12-endfor
Figure 6.10: Re-sampling of the action particles
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6.6 Experiments

The experiments are performed with a robotic aritin wix degrees of freedom. The human
and the robot interact in a HRI workspace showhkigure 3.9. The HRI workspace consists
of a table with the objects on the table. The vidata is captured by an overhead FireWire
digital camera with the standard frame size of 8480 pixels at a frame rate of 30 frames /
sec. HRI and image analysis are implemented usiogr@mming language C++. The robot
reactions are realized using the robot programranguage V++ for the robotic arm. The
human actions are inferred from the scene changasred due to the human actions. The
performed experiments involve actions that are attarized by two features, i.e., the
distance between the objects and the orientatidheobbjects with respect to each other. The
objects in the experiments involve the boxes ontdlde as shown in Figures 6.11 and 6.12.
The performed experiments concern different arrareges of the objects according to the
human intention.

Each task representing a human intention is destrily a trajectory (Section 6.4.4). In 2D
case the trajectory is drawn in a plane havingadst between the objects and orientation as
axes. Each action is represented as a point ipldre. For a trajectory the angle concerning
the slope of the line passing through the two imiatedconnected-points (Figure 6.4) is
calculated.

Thus for each trajectory, there exists a set oleangetween the consecutive action points.
For trajectory comparison the difference is calmdabetween the related sets of two
concerning trajectories. The difference correspdoddifferent angle values in the two sets.
The difference between the current (incomplete) kRjectory and the previous (complete
task representing a human intention) trajectorgakulated. The trajectory, for which the
difference is least, is used to evaluate the ptediaction hypotheses.

For spaces more than two dimensions, the diresator between the two n-dimensional (n
> 2) points of the intention trajectory can be oédted by subtracting second point from the
first point, i.e., if (x,x,,....x,) @nd (x,;,%,,,....x,,) are two points then the direction vector will

be calculated ag=[x,, - x,,, X,, = X,,,....%,, - X,,|- Now the comparison between the two direction

vectors can simply be performed by calculating dhgle between the two direction vector
using the dot product of the vectors, i.e.,

8= COS_1< VitV >
AlA

First the anatomy and reasons for selecting a iogadh the experiments is explained.
Afterwards the results of the performed experimeate discussed. The following
experiments are considered for explaining the r@actelection mechanism. The unknown
human intentions correspond to the arrangementefobjects. The considered unknown
human intentions involve the arrangement of theedbjin vertical and horizontal pattern,
arrangements of the objects in a square pattemh,tlam arrangement of the objects in a
diamond pattern. The arrangements of the objectsrding to the above described unknown
human intentions are shown below in Figures 6.1lGah2.

At the start the boxes are placed randomly ondb&t The human picks and places the box
at a point on the table as shown in Figure 6.18bybox at (235, 150). Afterwards the human
places another box vertically near the previoushcgd box as shown in Figure 6.13 by the
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box at (235, 208). The system infers the humarmoaas the distance and angle between the
two vertically placed boxes, i.e?; andd;. A hypothesis is created based on the observed
action, i.e., the place to put the next box, showrrigure 6.13 by the green circle. The
hypotheses weights (Figure 6.9), action probaédifiSection 6.4.1), and the history support
(Section 6.4.4) are considered for the estimatich@action.

Figure 6.11: Unknown human intentions for arrangthg boxes

Figure 6.12: Unknown human intentions for arrangthg boxes

For the very first reaction there exist no conditibprobability value and historical support
value. In such case the prior probability of thetian is used. In case of absence of historical
support of action sequence all the predicted astion the current HRI are given uniform
weight. Therefore the system has the only highaktevavailable reaction, i.e., placement of

the box in the vertical pattern at the next logatd an angl@; and distance;. The weight of
the hypothesis is represented by red cross airbextaction step in Figure 6.14.

Now if the humanintercepts and corrects the robot reaction thensiystem updates its
possible actions by adding the corrected actioit i new and updates the conditional
probability tables and the prior probability tabld$he system also appends the corrected
action in the current human robot interaction acgequence.

The human accepts the robot reaction and the sygbelates its table without adding any new
actions in its action table. Now the robot onceimgeeates the hypothesis as shown in Figure
6.13 by the blue circle. Till now the robot has efved one action thus it only creates one
hypothesis which is the next place in the vertpzgtern.
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Figure 6.13: Hypotheses graph for intention showirigure 6.11 left
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Figure 6.14: Weight graph for intention shown irg&ie 6.11 left

That robotic reaction is also accepted by the humarhe has the similar intention of
arranging the boxes in vertical pattern. After eaomplete interaction the system stores the
action sequence separately. The sequence confsthis ltuman action, human correction and
accepted robot reactions.

In the hypotheses weight graph if a hypothesistgpted as a reaction then that hypothesis is
removed by making its value zero as shown in Figutd at interaction Step 2, i.e., the red
line goes to zero.

In the next HRI experiment the human intends tarage the boxes in a horizontal order. The
boxes are once again placed randomly on the t&hke human picks a box and places it at a
point on the table as shown in Figure 6.15 by tive dtt (156, 193). Now the system creates a
hypothesis based on the known action, #igandd; represented as green circle in Figure 6.15
and the robot reacts by picking and placing anatioer at the anglé; and distancel;. This
time the human has the intention of placing thedsdxorizontally.
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Figure 6.15: Hypotheses graph for intention showirigure 6.11 right
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Figure 6.16: Weight graph for intention shown irg&ie 6.11 right

Therefore the human corrects the robotic reactrmhcks and place the box (placed by the
robot) at an anglé, and distancel, as shown in Figure 6.15 by the box (238, 193). Nosv
system adds the new action to its action tableuptthtes the conditional probability as well
as prior probability tables.

For the next reaction, the robot has three hypethéssed on the two actions (green circle
and blue crosses Figure 6.15). The hypothesisuctstg the robot to place the next box
horizontally with respect to the previously placedx (238,193) gets highest weight
according to the hypothesis weighting mechanisncridsesd earlier with respect to the other
two hypotheses. The hypothesis (320, 193) has itjeest weight at interaction Step 2,
represented by blue star in Figure 6.16. The reactalue is calculated using the conditional
probability or prior probability, historical suppgaand the hypotheses weight. As there is no
historical support for the currently predicted ant thus all the hypotheses based on the
predicted actions get equal weight. There existsconditional probability value for the
currently predicted actions. Thus the prior probibiis used instead of conditional
probability.
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As the prior probability of vertical box placingtam is high therefore the hypotheses value
for placing the box vertically gets higher valuescampared to the horizontal placement of
the box.

Thus the robot reacts by placing the box vertictibt is rejected by the human as the human
intends to place the boxes horizontally. Now dodhie rejection of the human the robot
resorts to next highest value action that is orgaraplacing the box vertically at another
location which is once again rejected by the huni&e. robot resorts to next available action
that is placing the box horizontally with respeatthe lastly placed box at (320, 193). The
reaction is accepted by the human. It is not setetr reaction for the first time due to the
low prior of the concerning action (horizontal acii. The robot creates the new hypotheses
(represented as purple stars in Figure 6.15) fernixt reaction for placing the fourth box.
This time the robot reacts by placing the box hartally with respect to the lastly placed
box. This time placing the box horizontally has Hagt conditional probability of 1 and
highest weight as compared to the priors for valtiydocated hypotheses with low weight. It
is shown by the black box in Figure 6.16 at intetisa Step 3.

In the next HRI experiment the human intends taelide boxes in a squared pattern, Figure
6.12 left. Once again the human places the box thedrobot generates the reaction
hypotheses based on the previously observed actiepgesented as green circles in Figure
6.17. The hypotheses get the same action valuegtaltize same hypothesis weight, same
history weight and same prior probability. The roptaces the box (318, 156) in horizontal
pattern and that is accepted by the human dueetsithilar intention. Next time the robot
once again places the box on the horizontal pa#srine action has highest value due to the
high hypothesis weight and history support for #tttion as the current pattern matches to
more to the horizontal placement than vertical @taent.
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Figure 6.17: Hypotheses graph for intention showirigure 6.12 left

The reaction is rejected and the robot resorteit highest value reaction, i.e., place the box
orthogonal to previously placed box (236, 156) ¢adimg to the squared pattern intention,
Figure 6.12 left) at (236, 207) which is acceptifierwards the robot reacts by placing the
box on the fourth corner of the square (Figure 6ef} due to the high value for that action
(blue triangle in Figure 6.17). That high actioueis due to highest hypothesis weight and

105



highest prior probability as compared to other higpses, represented as cyan colour box in
Figure 6.18.
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Figure 6.18: Weight graphs for intention shown igute 6.12 left

The next interaction corresponds to the placemérhe boxes in a shape of diamond as
shown in Figure 6.12 right. In this case, the hunpdeces the first box. The reaction
hypotheses (green circles in Figure 6.19) are edebased on the known actions. The robot
reacts by placing the box at (402, 155) which jgated. The selection of this action is
performed due to the high prior probability valseadl the other factors have the same value.

— y-axis of plane
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Figure 6.19: Hypotheses graph for intention showirigure 6.12 right

The human intercepts and corrects the robot readiio placing the box at (299, 206) as
shown in Figure 6.19. The system creates new mrabtypotheses. That comprises the green
circles and blue triangles as shown in Figure 6Tt& robot once again reacts by placing the
box in horizontal pattern and rejected. The highesghted reaction is represented by brown
triangle (360, 255) in Figure 6.20 at interactida@B2 and blue triangle in Figure 6.19 at (360,
255). The selection of horizontal box placementoacis mainly contributed due to the high
prior value.
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Figure 6.20: Weight graph for intention shown irgéie 6.12 right

The human corrects the robotic reaction by pladimgy box at (237, 259) that is near to
comparatively low weighted hypothesis, i.e., (25B)2 represented as blue triangle in Figure
6.19. The robot recreates the hypotheses incluitieghewly created purple star hypotheses
shown in Figure 6.19.

The very first reaction is selected due to thednyssupported value of the hypothesis (308,
298) as the current action sequence closely mattietaction trajectory of squared pattern as
compared to other action trajectories. That reaci® rejected. After 3 rejections the
hypothesis that closely relates to the human irgdrattion, i.e., (176, 208) is accepted.

The hypothesis (176, 208) is represented by blemésdn Figure 6.20 at intersection Step 3.
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Figure 6.21: Robot reaction in unknown human intamscenario

The graph shown in Figure 6.21 describes the Xérdift interaction tasks, independent from
each other. The horizontal axis of the graph reprssthe numbers of interaction steps and
vertical axis represents the number of action switg (Lines 13-14, Figure 6.2) requested by
the human during the HRI. The graph in Figure @l@4cribes the fact that 73% of the robotic
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reactions were accepted by the human and 27% obbwic reactions were corrected. Out of
27% corrections almost half of the corrections weerformed at the second step of
interaction. Out of 73% accepted reactions, 45%ti@as involved maximum switching of
three actions, 21% reactions involved maximum svitg of five actions and 7 % involved
maximum switching of seven actions.

6.7 Summary

In this chapter, we presented a probabilistic apgnofor the robotic reaction in the HRI
scenario with unknown human intention. The appraamhesponds to a RL based interaction
algorithm. In which the robot performs the estindagetion in order to cooperate with the
human without knowing the human intention. If thetian performed by the robot
corresponds to the human intention then the rotttdrais accepted by the human. Otherwise
the human rejects the robot action and expect tframobot to act differently. The human can
either wait for the expected action from the rotwohe can simply correct the robot according
to his expected action. The most suitable actidecten is performed probabilistically. The
robot considers the human actions and the accepteot actions for action prediction
(Section 6.4.2), weighting of the predicted acti¢Bsction 6.4.3), action probability (Section
6.4.1), and the history support of the action (®ec6.4.4). The value of all the action
hypotheses is calculated using the described asg8ettion 6.4.5). The actions are sorted
with respect to their calculated value. The actiath highest value is selected for robotic
reaction.

The performed experiments can be applied to otheperation scenarios where the action
may involve other than picking and placing of olbgece.g., washing, opening, closing,
pouring, etc. It is explained with examples. Wesidar the placement of the kitchen utensils
in a cupboard on each other, e.g., plate, jug, glasls. The robot is required to place the
objects in the right order on each other. The oaddahe objects is used to hypothesize the
new human actions. Similarly another interactioraregple between intelligent cutting-
machine and the human worker is discussed. Theawvamkends to cut the objects (metal rod,
sheet etc) of variable length. The intelligent maelcan adapt itself to the human worker to
provide the predicted length for cutting. In thesse the length can be used to hypothesize
different human actions. In the discussed experismére distance and orientation was used to
hypothesize the human actions. More complex tasks ke modelled using one or more
complex features (given) concerning the human astio

The reaction can be more effective if biased wespect to the already given domain
knowledge, e.g., in the presented experiments dade potential box arrangements are
already known then the reaction can be more rofdim.domain knowledge can be used to
weight the action hypotheses according to the sed&mown arrangement. This can reduce
the weight for insignificant hypotheses and inceett®e weight for significant hypotheses.
The domain knowledge can also improve the acticediption by predicting the action
hypotheses that robot does not know. In case ihtiman performs totally new actions during
HRI then the new actions can not be estimated éydhot as the actions are unknown to the
robot. The robot can react in that case intuitivktize robot is given the domain knowledge.
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Chapter 7

Intention generalization

Generalization of a concept corresponds to thecatemtuof the number of conditions present
in the selection criterion of the concept [15]. Tésser the conditions in the selection criterion
of a concept the more general is the concept arel wersa. Generalization of the concept is
one of the basic capabilities of the humans and ihe fundamental element of the logical
reasoning. With the help of generalization a hurmam extend his knowledge with respect to
various aspects. For example, if a human is askediace the objedh at the placd then he
will make a rule for placing the objects matchinghe objectA at the place likd. This rule
can be further purified for that human if he isreacted while applying that rule. The
generalization capabilities of the human enable tanextend his knowledge very fast. The
extended knowledge corresponds to the actionsenspecific situations. This extension is
made by logical inference of the human. The germatadn capability enables the human to
perform in the unknown situations.

Robots are becoming more and more part of the huaotvities, specifically in the industry
[47]. The presented approach [15] is confinedht® generalization relating to the reduction
of the concept criterion as described earlier. dpglication of these generalized rules in the
intuitive HRI aims to improve the interaction capiles of the robot as the robot can interact
more intelligently by performing the actions thes aot explicitly taught to the robot.

The remainder of this chapter is organized as WidloThe generalization capability is
motivated and defined in Section 7.1. In Sectidh the existing approaches are discussed.
The approaches concerning generalization in tHeé &ierobotics are also discussed. Section
7.3 describes the online rule induction and geiratbn approach. Section 7.4 discusses the
rule conflict resolution. Section 7.5 describes ¢ixperiments performed using the proposed
approach. At the end of Chapter 7, Section 7.6 samzes the chapter.

7.1 Problem definition and Motivation

The discussed problem corresponds to the gendrahzaf the human intention. The term

generalization means to infer the important critesi of the human intention and discard the
non important criterions, concerning the perfornimesinan action. The important criterions

mean that due to these criterions the human intengsrform the action. The human performs
an actiona concerning the intention with the complete set of criteriong = {ci, ¢, C3, ...,

cn}, N € IN. After the process of intention generalization they becomesy such thaty
C . In case if the criterioy concerning the perceived action is already geizedhithen
there will be no generalization, i.€Z = (. The input to this problem is the human action,
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scene information, scene chanigéormation, and the human feedback. The outputhes
generalized human intention concerning the hum#arac
The capability of generalization possessed by tihedn can enable him to take appropriate
decisions in almost all fields of life. The humamsctice this capability without noticing.
Many examples concerning the application of gerea@bn capability of human can be
described, e.g.,

1. Household tasks

2. Office tasks

3. Common workplace tasks
The generalization helps the human to take decisian unknown situation. The unknown
situation corresponds to the situation that the dmunhas not experienced before. The
household tasks concerning generalization can wevible following

1. Tidying up of things

2. Washing tasks

3. Gardening tasks

4. Repairing tasks

5. Cooking tasks, etc
The application of generalization in household $askexplained using two humans. In case
of tidying up of the things, first human picks thigjects and places at the specific places. The
second human observes the actions of the first huamal generalizes the information for
placing specific objects at specific places. Theegalization helps the second human to place
the objects that the first human did not placeramf of the second human. Similarly in case
of washing, gardening, repairing, cooking, etc twcond human can generalize the
information to act in the situations for which hasmot observed from the first human. The
Office tasks concerning generalization can be tflewing

1. Solving specific tasks

2. Interacting with the colleagues, etc
The human takes into account the necessary chaséicte of the tasks that are solved with
the known solutions. Then he observes the charsiotsrof the new task. If the problem has
the necessary characteristics that are same tmeabessary conditions of the previously
known solution then he applies the previous sofuto the new task. He generalizes the
information of one specific solved task and triesolve similar tasks. Similarly the humans
generalize the successful interaction experientanad from one colleague to the other
colleague for generally similar interaction sceogri
The generalization involved in the common workspas&s concerns the following

1. Assembly, making, and fabrication of different &a8 (vehicles, machines, electrical

appliances, etc)

2. Building and construction tasks

3. Repairing and dismantling tasks, etc
There exists general information concerning specifiorkspaces tasks. The humans
generalize the information concerning the worksp@asis and apply the information from
one solved / observed task to a new task to bengaeshed.
Similarly generalizing capability present in a rblban improve the intuitiveness in HRI. For
making the robot intuitive with respect to genezatiion, the robot must be able to generalize
the intention of the interacting person. With thaliey of generalization, the robot can
perform such operations that are not explicitlytimsted to the robot. In HRI, with the
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generalization ability the robot can generalize thenan intention and interact with the
human intuitively. The term intuitive means thae trobot performs the known operation
during HRI that was not explicitly instructed him perform. The ability of intention
generalization instructs the robot to perform soparation.

The intention generalization is discussed in a BniRI scenario as shown in Figure 7.1.
The human picks and places a speckled object iitaya The robot generalizes the human
intention and picks and places all the speckleédaibjinto the tray.

Suneeny e
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Figure 7.1: The HRI workspace concerning intentgeneralization consists of triangles,
pentagons, and square objects. Some of the olijewts speckle on them, some objects are
without speckles, and some objects have hole aadkkgs on them. In top left figure the
objects and two racks can be seen. The human shtetstention generalization based HRI
by pressing the hand on Play as shown in top mifigilze. In the top right figure, the human
picks and places a speckled object (square) intoréitk. The robot generalizes the human
intention and picks and places the speckled objettsthe tray as shown in the bottom left,
middle, and right figures.

7.2 Related work

There exist concepts related to generalization, applying the knowledge obtained from one
case to another case and transferring the knowletdtgned from one scenario to another.
This relates to Case Based Reasoning (CBR) [21]karamvledge Transfer (KT) [57], [64]
which are the examples of Lazy Learning algorithEsch case in CBR consists of at least
two parts, i.e., the problem description part amel golution part. Each case is marked by a
number of characteristics. These characteristicg imdude the case numbers, justification,
and evaluation. The characteristic of justificatidefines steps from the problem to the
solution. The evaluation characteristic correspandhe quality and reusability of the case.
The steps discussed in the CBR cycle mainly cansistase retrieval, case adaption and case
retaining. The case retrieval corresponds to searoklated case with respect to the target
case that is to be solved. The adaption of theexetd solution may be performed by tuning a
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few parameters or by the application of knowledgeell problem solution. The retaining of a
learned case is performed by storing successfuliyatlapted case to the target problem [21].
The CBR may use different feature representati@ng,, Rough Sets [138]. The Lazy
Learning algorithms use different kinds of distarfo@ctions to calculate the similarity
between cases [164]. Traditionally nearest neighlsmproaches are used that compute
similarity between the stored cases and the neescdmsed on the features and the weights
of cases [38]. The distance function in CBR is u$smdcase comparison. The distance
function does not consider the concept generatizatnd HRI.

Lutz Formberger describes the learning of KT fanegalizing the navigational capabilities of
a mobile robot [57]. An agent-centered qualitatigpatial representation is used for
generalization and KT. The author claims that #eered strategies become robust using the
described representation. The robustness correspionthe ability of the robot to cope up
with the environment noise and imprecise world kieolge. A simulated indoor robot is used
for experimentation. The task of the robot is trhea goal directed path finding strategy. The
generalization is described by the abstract stseesselection mechanism [57].

Association based rule learning in Data Mining [99B6], [36] requires a data set of huge
amount to generate rules with certain probabilistieasures. An association rule can be
represented by the expression=X Y. The symbols X and Y represent sets of iteme fLie
describes that if the transaction of X occurs thentransaction of Y will also occur [66].
There exist several generalizations of the ruleblerm in Data Mining [66], e.g., [59]
proposed generalized rule induction using probstitlirules. The data mining approaches
require huge amount of data and no HRI is involved.

Learning from Demonstration (LfD) [19], [110] useetterm generalization for the robot to
learn comprehensively from many times performedatestration in different conditions for a
certain task. An approach proposed in [58] dessribat correction based HRI gives better
results in LfD. HRI is used to correct the taskfpened by the robot [4], for behaviour
adaption [104], and to learn the environment dyrarfil8].

The approach in [4] introduces a tactile policyreotion algorithm. Initially, a policy is
derived from LfD technique. Afterwards through tteetile interface, the human teacher
indicates the relative refinement in the robot pdde robot adjusts its poses according to the
human tactile input. The corrected robot pose spoads to the new training data for the
policy generated by the tactile input. The tadtileut from human helps the robot to refine its
demonstrations. The experiments are performed witiumanoid. The HRI concerns the
touching of human at the tactile interfaces of rii@ot to adjust the robot pose. The learning
performed by robot during HRI corresponds to theotts pose. The focus of the HRI-based
approach is correction and not generalization.

Mitsunaga, Smith, and Kanda introduce the behavadaption based on policy gradient
reinforcement learning [104]. They use HRI to adaptards the human behaviour. The focus
of the approach is the interaction-distance betwisen human and the robot. The robot
monitors the repositioning count of the human ideorto estimate the human discomfort
during HRI. The robot also considers the gaze agenf the human. Both of the values are
used as rewards that are minimized in the poliadignt reinforcement learning algorithm.
The robot adapts towards the human behaviour diHiRig

There exist generalization approaches for mobileotoe.g., [20] describes navigational
generalization based on evolutionary algorithmse Tacus of the approach is general
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behaviour of mobile robot for navigation, conceghwbstacle avoidance. The approach [20]
corresponds to a feed-forward neural network inlmoation with evolution strategies.

The presented work focuses on Piagetian schem@&s. [Ihe dynamics of environment are
estimated. The model anticipates the step forwallles of the chosen variables. The
variables relates to the dynamics of environmehe anticipation is performed by the current
state of sensors and taken actions. The model asstimat the world is deterministic. The
HRI occurs in a simulated experiment. The humagrauts by clicking on the cart target
location on the interface. The interface displays 2D physical system. The approach in
[115] discussed Differential Equations based matkill generalization. All the above
described approaches do not consider generalizasi@oncept generalization.

The most related approach to concept generalizaiolescribed in [99]. It is also known as
Version Space strategy. This approach can be ssfatlgsapplied in classification. A version
space can be represented by two sets. One seinsontast specific consistent hypotheses
and the other set contains the most general censidtypotheses. The most specific
consistent hypotheses correspond to the hypothtes¢scontain the smallest number of
conditions that are necessary to select a postiigming example. The most general
consistent hypotheses contain the conditions shehro negative training example can be
selected. The approach in [99] considers genetalizas a search problem. The HRI based
concept generalization can not be performed ud€8g¢ [Since [99] does not suggest what to
do if a correction is performed by the human durtdBl. Similarly, [99] also does not
explicitly describe the rule conflict resolution.

In the concept generalization, the generated gkredarules may face conflict with each
other. There exist approaches for conflict resohtie.g., [32] uses the classification
frequencies of the rules (that cover the exampleetolassified) with respect to the classes to
classify a conflicting example. For example, coasié class A and class B with two
conflicting rules R and R. The samples X that belong to both the classesdABaare needed
to be classified. For this purpose, the numbeldagsified examples of a class with respect to
all the conflicting rules are summed. This is perfed for both the classes. The class that has
higher number of examples is assigned to the sample

The approach proposed in [37] uses the productriof probability of the class with the
product of conditional probabilities of the ruletivrespect to that class. The class with higher
value is selected. The Rule Discovery System pmrgas [37] applies the naive Bayes
classifier to resolve the rule conflict. The pomteprobability of a class with respect to all the
conflicting rules is determined. Since the jointopmprobability of the rules in conflict does
not influence thus it is ignored. It is assumed #&ch conflicting rule is independent from
each other. The posterior of each class is detegnifihe class with higher maximum value is
assigned to the sample X that belongs to more dm@nclass. In [130] each conflicting rule
votes for its predicted class with a weight. Theghts of all the classes are summed up and
the class with the highest weight is selected lier 4amples X that belong to more than one
class. The approach in [92] is the same as [37héire is no training example in the
intersection of the conflicting rules. If it exidtsen it uses the conditional probabilities of the
intersecting rules with respect to the class. Toebte induction approach in [93] proposed
the new induction of rules from the examples thrat @vered by the rules in conflict. The
idea introduced in [93] suggested that there isdnghance to find rules that can classify the
classes by concentrating on a small subspace eixdr@ple space in conflict.
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The above described approaches discuss the resohiticonflict using probability and the
frequency of the class and by inducing new rules. &pproach tries to focus on the
antecedents of the rule that influence classificatAlong with concept based generalization,
the conflict resolution of rules is also suggesteted on the importance of individual
antecedents of the rule.

The presented approach [15] is the generalizatmmcearning the reduction of a concept
criterion by HRI. A conflict resolution is also grosed that is based on the importance of the
antecedents of the generalized rule. The appbicadf the generalized rules in the intuitive
HRI improves the interaction capabilities of thbat

7.3 Rule generalization

We introduce an approach to human intention geizetadn based on the rule generalization.
The rule generalization corresponds to the gerzatabdin of the transition conditions of FSMs
discussed in detail in Chapters 3 and 4. The tiianstonditions correspond to the acti@s
for the FSMs, discussed in Section 3.2 of Chapt&agh transition condition corresponds to
a rule that is generalized using HRI. After recagrg the human intention the robot also
reacts according to the generalized rules.

The rules are induced online during HRI. The rideeayalization is performed by HRI, based
on the idea of concept generalization. The roboegdizes the human intention by applying
the known action on a group of related objects. Gtap of objects corresponds to those
objects that are similar to the object in some eespn which the human has performed the
operation. The process of intention generalizat®operformed according to the following
steps

Grouping of the objects

Online rule induction

Rule application

Rule generalization

Transition pool

moowz>

7.3.1 Grouping of the objects

The procedure describes the construction of thesekafrom the available objects such that
the characteristics of all the objects are simikwr example, if we have a group of the
following objects, i.e., jug, plate, bowl, book,tabook, shirt and trousers. Then the jug, plate
and bowl will fall into one class, book and notekauaill fall into second class and shirt and
trousers will fall into third class. The reasontl@t the jug, plate and bowl have similar
characteristics of being broken along with othearabteristics. The book, note book, shirt
and trousers do not have the characteristics aifgbleioken. Similarly shirt and trousers can
be dirty and book and note book can not be dirtyer€ may be more than one different
characteristics present in the different classég. grocedure of classifying the objects based
on their characteristics is described in Figure hitially the setS of classes is empty. Each
classC contains the elements having similar type of ottarastics.
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[ nput :nknown objets Owith knowncharacterstics

Output  :SetSof all classe, i=1...m
1- s={} c={}

2- C,=C, 00, AddingobjectQ, to setC,
3- S=s0Oc¢C,

4- for all the ohectsO; j >1do

5- if (COMPAREO,,0;)) then
6- C, =C, 00,

7- else

8- CLASSIFYO,)

9- end if

10- end for

Figure 7.2: Objects classification based on thekiaracteristics

At start (Lines 2-3, Figure 7.2), an object is slfed into a clas<C;. Other objectO are
compared with the characteristics of the obje¢heexisting class (Line 5, Figure 7.2).

1-COMPARE(QO,,0,)
2~ for all charactersticsCh, of O, do
3- for all charactersticsCh, of O, do

4- if notSimilar(Ch,,Ch,) then
5- returnfalse

6- end if

7- endfor

8- endfor

9- returntrue
Figure 7.3: Comparison of objects based on thkaracteristics

If the objectO; is similar to an object of clag then it is added to the cla€s(Line 6, Figure
7.2). The objects are compared with respect to dteracteristics (feature) that are already
known, shown in Figure 7.3.

The types of characteristics of the obje©tsre compared with each other (Line 4, Figure
7.3), e.g., if an objedD; has the characteristics of a cl&si =1,... m then for the other
objectOx it is checked O also has the same characteristic of clas# Oy does not has the
characteristics then it is classified into anotbkass (Line 8, Figure 7.2). The objedt is
checked against an object of all the exiting clas@anes 4-5, Figure 7.4). If it matches to an
object of exiting class then it is added to thassl (Line 6, Figure 7.4). The objddf is
classified into a new class if it does not matckhwhe objects of the existing classes (Line
11, Figure 7.4). The newly created class is adddde seS (Line 12, Figure 7.4). In case of
the object classification, if the sBhas only one element (Line 3, Figure 7.4) thep\& dlass
Cn+1 for O is created and added to the Sétines 14-16, Figure 7.4).
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1- CLASSIFY(O)

2- N=|S| numberof classe<,; i =1....m
3- if (N>1)then

4- for i=1...,Ndo

5- if (COMPARE(O,00C,)) then
6- C =00C

7- exit

8- endif

9- endfor

10- C,,, =new(Clasg
11- G, =G, U0
12- S=s0OC,,
13-ese

14- C,,, =new(Clasg
15- C,=C,,00
16— S=S0OC,,
17-endif

Figure 7.4: Classification of objects into concergiclasses

7.3.2 Online rule induction

The procedure of online induction is given in FgU.5. Then objects present in the scene
are known to robot. The objects may belongtolasses which are already known. The robot
also understands the human actions and the chamgjes scene occurred due to the human
action. The characteristics nfobjects present in the scene are known to thet.robo
If an action comprehensible by the robot is perfednby the human on an objegdt with
characteristich, then the robot induces a rule considering theattaristicsChy of object
O, as the antecedents and the performed action asotisequent of the rule (Lines 1-8,
Figure 7.5).

Input : nknown objets Oin the scenebelongingto mClasses

Changesin scenadueto humanactionare known

CharactersticsCh, of theobjectsO; in the sceneare known
A performedhumanaction
Output : Ruledescribingan actionon ObjectO; with charactersticsCh,
1- while (true) do
2- if (actionPerbrmed(O;,)) then

3- RuleConsequent Action(O;)

4- for all charactersticsCh, of O, do
5- RuleAntecedent Ch

6- end for

7- endif

8- end while
Figure 7.5: Online rule induction

116



7.3.3 Rule application

For generalization based on HRI, the robot inifaby applying the induced rules on the
suitable objects present in the scene. The suitdtjkcts are determined using the procedure
given in Figure 7.6. The input of the procedureludes then objects along with their
characteristics present in the scene. The numbémduced rules are also available from the
previously performed stefthe output of the procedure given in Figure 7.8 &tS={(L, R,
O)1,..., (L, R, O)n}. The setSconsists oh hypotheses. Each hypothedisR, O); consists of

a listL;, a ruleR,, and object a®;. The ListL; corresponds to a set of characteristics that are
similar in the objecO; present in the scene and the antecedents oRyule the hypothesis

The ListL; is obtained by the intersection of the set of abtaristics of the obje€®; and the
set of antecedents of the riRe(Figure 7.9). The hypotheses are constructed mpeoing all

the given rules and the known objects presenterstiene. The objeQ, and the ruldr. are
matched and if found similar then a hypothesiisstructed (Lines 3-4, Figure 7.6).

Input :nknown objets Oin thescenéelongingto mClasses
Numberr of Rules

L, containsghecommorcharactersticsCh of ObjectO,
and RuleR in a hypothesis, i =1...,h

1- for all r RuleR do

2- for all 0 ObjectO, do

3- if (MATCH(O,,R L)) then
4- S=SO(L,RO) .

5- endif

6- endfor

7- endfor

Figure 7.6: Selection of object for rule applicatio

The similarity is checked by comparing each antened, of the RuleR with each
characteristicChy. If a characteristi€h, found similar with antecedewt, then it is added to

the listL (Lines 2-8, Figure 7.7).
INTERSECTL,R)

1-for all i antecedergtof R do
2- for all j charactersticsof L do

3- if (equakR;, L ;)) then
4- Q=Q0R,

5- break

6- end if

7- endfor

8-endfor

9-return Q

Figure 7.9: Intersection between the antecederdasdlist L of characteristics
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If the ListL contains one or more than one element theare is returned (Lines 9-10, Figure
7.7) to construct a hypothesis (Line 4, Figure .7I6)ho similarity is found between the
antecedentg\, of rule R and the characteristi€Sh, of objectO thenFalse is returned (Line
12, Figure 7.7) and no hypothesis is constructed.

1- MATCH (O,R, L)

2—- for all k CharactersticsCh, of ObjectO do

3- for all a AntecederstA, of RuleRdo

4- if match(A,,Ch,) then
5- add(Ch,, L)

6- end if

7- endfor

8- endfor

9- if notEmpty(L) then
10— return True
11- else

12— return False

Figure 7.7: Matching the objects with respect te thles

7.3.4 Rule generalization

In the process of generalization the robot applies rule R, to the objectOy of the h
hypothesis in ses={(L,R0),,...(L,R0) }. The robot expects the human's feedback on the

application of ruleR, to the objecy. Generalization is performed based on the humaorac
in response to robot’s rule application. The robgpects three kinds of responses from the
human. The human can accept, reject or correct. ggmeralization algorithm is given in
Figure 7.8. The input of the algorithm includes$et hypotheses that is generated in the rule
application step (Figure 7.6). The robot can recsythen objects present in the scene and
their related characteristics. The human feedbadkilae changes occurred in the scene due to
the human actions are also known to the robot. dutput of the algorithm is the possible
generalization of the rules in the hypothesesSséthe algorithm in Figure 7.8 proceeds by
applying the consequent part of rig on the objecO;, for each hypothesid., R, O), in the
setS (Lines 1-2, Figure 7.8). If the human accepts thieot's action the rul&, is updated
(Line 4, Figure 7.8) by replacing the antecedemntsile R, with the listLy, (Lines 1-2, Figure
7.10). The listl;, is produced by the intersection of set of charattes of O, and the set of
antecedents d®, (Figure 7.9). All the necessary antecedents comgithe consequent &,
exist in the listL,. Since the application of rulR, on the objectO, is accepted thus the
necessary antecedents are also present in thé cedracteristics of objec;,. If the robot’s
action is rejected by the human (Line 6, Figurg teén the difference between the ride
and thel; is performed (Line 7, Figure 7.8). The rejectioreans that the necessary
antecedent / antecedents for the application ofuteeR, do not exist in set of characteristics
of the objecOy.

1- RULE_UPDATE(L,R)

2- RAntecedent L

Figure 7.10: Update of the antecedents of rule Mgt
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Input :Human feethack
n knownobjectsO in the scene
Changesin scenedue to human action are known
Characteristicsof the objectsin the scene
s={(L,RO),,..(L,RO) }
Hypothesegyeneratedin rule application section

Output : PossibleGeneralizaion of rules

1- for all h Hypotheseslo

2—- Exectug¢ConsequentR,),0,)

3- if Reward(Accepted then

4- RULE_UPDATE(L,.R,)

5- endif

6- if Reward(Rejected then

7- L=R_DIFFEREE(R,L,)

8-  RULE_UPDATE(L,R,)

9- endif

10- if Reward(Rejected+ Corrected) then

11- L =RC_DIFFERECE(R,,O,)

12-  RC_RULE_UMATE(L,R,, Acorecion: On)

13- endif

14-end for

Figure 7.8: HRI based rule generalization

The necessary antecedents exist in theRyl&hus a difference is performed betwégrand
Ly in order to find out the necessary antecedents.difference betweeR, andLy, results in a
list L that contains the elements that belongtdout do not belong tby, (Lines 1-13, Figure
7.11).

R_DIFFERENCHR, L)

1- for all i antecedergof R do

2- ADD =True

3- for all j charactersticsof L do
4- if (equal(R;,L;)) then
5- ADD =False

6- break

7- end if

8- end for

9- if (ADD) then

10- Q=Q0R,

11- endif

12- endfor

13- returnQ

Figure 7.11: Relative complement of L with resped®

119



The ruleR;, is updated (Line 8, Figure 7.8) by replacing theeaedents of rul&, with the list

L (Lines 1-2, Figure 7.10). The liktis produced at Line 7, Figure 7.8. In case iflthenan
not only rejects the robot action but also correhts robot reaction (Line 10, Figure 7.8).
Then once again the difference between the Rylandthe list Oy, is performed (Line 11,
Figure 7.8). The rejection and correction corresisaio the fact that the antecedents in Ryle
are not exactly related to the characteristics lté bbject On. Therefore only those
characteristics are considered as antecedentg obilh that exist IO, but do not exist ifR..
The consequent of the rule is changed with theection performed by the human. The
difference between thig, andO;, results in a list containing the elements that belongJip
but do not belong t&, (Lines 1-13, Figure 7.12).

RC_DIFFERENCE(R,O)
1- for all i charactersticsof O do
2- ADD =True

3- for all j antecedergof R do
4- if (equal(R;,0;)) then
5- ADD =False

6- break

7- end if

8- end for

9- if (ADD) then

10- Q=Q00,

11- endif

12- endfor

13- returnQ

Figure 7.12: Relative complement of R with respe ¢t

The ruleR, is updated (Line 12, Figure 7.8) by replacing déinéecedents of rulB, with the
list L (Lines 1-4, Figure 7.13). The listis produced at Line 11, Figure 7.8.

1- RC_RULE_UPDATE(L,R,AC)

2- RAntecedent =L

3- RConcequent =A

4- RIR.Antecedent C, RIRConsequent A

Figure 7.13: Update of the antecedents and consequent oRaled the Induced rule IR

The consequent of rulB, is replaced by the human correction (Line 3, Fegidrl3). The
Induced Rule (IR) for the newly constructed rul@lso updated (Line 4, Figure 7.13). The IR
corresponds to the rule induced from the humamaat by the human correction.

The rules that are generalized by the process JERE and REJECT plus CORRECT are
tested before they are moved into the transitiasl (8ection 7.3.5).

The intermediate generalized ruld$GRs) are the rules that are produced by theltresgu
ACCEPT, REJECT or REJECT plus CORRECT, performethbyhuman during the process
of generalization in Figure 7.8. Each IGR has asesponding IR
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The IGRs generalized by REJECT may lead to falseigdized rule. There can be two cases
of false generalizations. In Case 1, if the IRppleed on an object of another class then the
intermediate generalized rule (IGR) will be falsengralization. For example, if IR and the
characteristics of the object are as under

IR . IF {Plate Dirty, Intact} THEN W.B(Wash Basih

Object :  £hirt, Dirty, Good

Then the IGR due to REJECT (Lines 6-9, Figure Wifl)be as under

IGR : IF {Plate Intactt THEN W.B

The objectsPlate andShirt belong to two different classes. The IGR is agajeneralization
as the robot will put &late that isintactinto theW.Bwithout taking into account if it iBirty

or not. In Case 2, if IR is applied on the objettle same class and if the IGR does not
contain all the necessary antecedents then IGRo@il false generalization. For example, if
IR and the characteristics of the object are agund

IR . IF{A, B, C,D} THEN 4
Object: A B, D}

Then the IGR due to REJECT (Lines 6-9, Figure Wi8)be as under
IGR : IF{C} THEN 2

If B andC are the necessary antecedents with respect tactien 4 then IGR is a false
generalization.

Similarly in case of REJECT plus CORRECT, theresexwo cases. In Case 1, if IR is
applied on an object of another class then the WdRbe a false generalization. For example,
if IR and the characteristics of the applied obperet as under

IR . IF {Plate Dirty, Intact} THEN W.B
Object :  £hirt, Dirty, Good

Then the IGR due to REJECT plus CORRECT (Lines 3,0Figure 7.8) will be as under

IGR : IF {Shirt, Good THEN W.M(Wash Maching
IR : IF{Shirt Dirty, Good THEN W.M

The IGR is a false generalization as the robot mt a Shirt that isGood into the W.M
without taking into account if it iBirty or not.

In Case 2, if the necessary antecedents are naidevad then the IGR will be a false
generalization. For example, if IR and the charisties of the object are as under

IR . IF{A, B,C,D} THEN A
Object: {A,B,D, B

Then the IGR due to REJECT plus CORRECT (Lines 3,0Figure 7.8) will be as under

IGR : IF{E} THEN A

IR . IF{A, B, D, B THEN A

If B andE are the necessary antecedents with respect tactien A then IGR is a false
generalization. Therefore the IGRs are first testegd the procedure given in Figure 7.14 and
then moved into the transition pool (Section 7.3T%)e input to the procedure given in Figure
7.14 is the setGR. Each IGR i=1,..., M has its corresponding IR. The output of the
procedure in Figure 7.14 is the set of IGRs withrecxted generalization problems. All the
IGRs are tested for all the related objects (Lin@ Figure 7.14) present in the scene. The
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related object with respect to an IG#rresponds to the object that has all the chamatits
concerned to the IGR

After IGR; is applied (Line 3, Figure 7.14), the human resisohy accepting, rejecting or
rejecting and correcting the robot reaction. If theman accepts the robot reaction then
intersection is performed between the #encerned to IGRand the characteristics of the
objectO; and IGRis updated (Figure 7.10) with the results of is¢etion (Lines 4-6, Figure
7.14). The intersection (Line 5, Figure 7.14) isfpened due to the fact that it results in all
the necessary antecedents. For example, if we demtie example of Case 2 in REJECT
case described earlier, i.e.

IR : IF{A B, C,D} THEN 4
IGR, : IF{C} THEN 4
o : {EB,GFG

Input :SetlGR of Intermediae Generalize Rule(IGR)
concernednducedRule(IR)

Output : Intermedide Generalizel Rule

1-for all Intermedide Generalizé RulelGR do

2~ for all applicableObjectsO; for IGR do

3= ApplyIGR onQ;,

4- if (REWARD=="ACCEPT") then

5- L =INTERSECTCharacterstic§0O, ), IGR.IR)

6- RULE_UPDATE(L,IGR)

7- €eseif (REWARD=="REJECT) then

8- L =R_DIFFEENCE (IGR.IR,Characterstic§0O;))

9- RULE_UPDATHEL O IGR.Anteceders IGR)

10- dseif (REWARD=="REJECT+ CORRECT) then

11- L =RC_DIFFERENCHIGR .IR,CharactersticqO;))

12-  RC_RULE_UPATE(L,IGR,, Acyecion CharactersticO, )

13- endif

14— endfor

15-endfor

Figure 7.14: Evaluation of IGRs for false generatian

The objectO; will contain all the necessary antecedents asthien is accepted fdd;. After
acceptance (Lines 4-6, Figure 7.14) the |@R be as under

IGR : IF{B, C THEN 4

The IGR updated in the result of ACCEPT (Lines 4-6, Figar#4) is added to the transition
pool (Section 7.3.5).

In case if the human rejects the robot reactiom ttne difference given in Figure 7.11 is
performed (Lines 7-8, Figure 7.14). The differen@sults in unconsidered necessary
antecedents that are added to |GRne 9, Figure 7.14). For example, if we onceaiag
consider the example of Case 2 with different aijgen REJECT case discussed earlier, i.e.
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IRi : IF{A B,C,D} THEN 4

IGR; : IF {C} THEN 4

O : {A,D,G,F, G

The difference (Line 8, Figure 7.14) will resulttime necessary antecedent and the; MaRR
be updated (Line 9, Figure 7.14). The I®HI be as under

IGR : IF{B, C THEN 4

If B andC are the necessary antecedents then the geneaasimperformed but ifA is also

the necessary antecedent then the; IR be a false generalization. Therefore the upda
IGR; is once again made available to thel§&R to be tested if more necessary antecedents
do not exist in the IGR

In case if an IGRgenerated due to REJECT plus CORRECT and resnlta false
generalization. Then that IGR corrected by adding the necessary antecedéntsexample,

if we consider the Case 1 in REJECT plus CORREGE dascribed earlier.

IR . IF {Shirt, Dirty, Goodd THEN W.M

IGR; : IF {Shirt Good THEN W.M

O : {Shirt, Good Clear}

After (Lines 7-9, Figure 7.14) the IGRIll be as under
IGR; {Shirt, Dirty, Good — W.M

If the human rejects the robot reaction and cosrda reaction then an IGR updated (Lines
11-12, Figure 7.14). This rule is once again madelable to the setGR to be tested. The
IGR.IR corresponds to the characteristicOpandAcorrecion(Line 12, Figure 7.14).

The advantage of REJECT and REJECT plus CORREHigure 7.14 corresponds to the
fact that next time the robot will test the rule more suitable objects. The suitability means
that the chances of rejection or rejection andemion will be less as the IGR is updated due
to REJECT or REJECT plus CORRECT. The objectsdstirig the rule are selected on the
basis of IGR as described earlier.

7.3.5 Transition pool

The IGRs are added to the transition pool. Each; [is&sent in the transition pool is matched
against another IGRIf both the rules match, i.e., the consequerttath the rules IGRand
IGR; are similar and at least one antecedent in balrutes is similar. Then intersection of
the antecedents of the both the rules is perforied,

1-for all i antecederstof IGR, do

2- for all j antecederstof IGR, do

3- if (equallGR;,IGR))) then

4- IGR, = IGR,
5- end if

7- endfor
8-endfor

9-IGR,.consequent IGR .consequent

The process of generalization of IGRs is shownigufe 7.15. The rules IGRnd IGR are
dissolved into another rule IGRvith the similar consequent and possibly witHdithtumber
of antecedents as compared to |@fd IGR.
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If the rule is completely generalized then it isv@d into pool of generalized rules otherwise
it is sent back to the pool of intermediate geneedl rules, shown in Figure 7.15. The IGRs
are kept in the transition pool until they are ctéetgly generalized. There are two cases in
which the rules are considered completely genedliZhe Case 1 corresponds to the rules
that have only one antecedent left. The Case 2gponds to the rules that can not be further

generalized afteC cycles of generalization in the transition pool.g&neralization cycle
corresponds to the fact that an IGiRthe transition pool once again comes into thadition
pool, shown in Figure 7.15. For the generalizedsuih Case 2, one copy of the rule is kept in
the transition pool for possible generalizationeTase 2 rules are available for use like Case
1. In case if any further generalization occurstfe copy of Case 2 rule kept in transition
pool. Then the corresponding generalization is teutian the concerning applied rule.

Transition
Pool of
IGRs

- =

Comparison
of Rules

Intersection
of two Rules

\Generalized /
Pool
Figure 7.15: Further generalization of IGRs in tsation pool

7.4 Rule conflict resolution

The proposed approach generalizes the human ioitelnyi generalizing the concept related to
the human intention during HRI. The generalizatbra concept corresponds to the creation
of a generalized rule for a specific human intemtibhat rule is used to recognize the human
intention as well as to interact after the intemtieecognition. The problem arises if the
conflict occurs in the robotic reaction due to gemeralized rule. The conflict corresponds to
different robotic reactions according to differentes on an object. The robot performs a
specified action on the objects according to theegalized rule. The reason of the conflict
corresponds to the presence of more than one ¢hastics of an object. One characteristic
relates to one generalized rule and other charsiiterelates to another generalized rule. The
robot is required to interact intuitively takingtanaccount the generalized rule related to the
recognized intention and the characteristics ofdlbjects on which the concerned action is to
be applied.

In the rule based classification, all the antecexleri a rule are considered without any
distinction. Similarly for conflict resolution, alhe approaches discussed earlier (Section 7.2)
consider all the antecedents of a rule and decidbapilistically in most of the cases to
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classify the result for two conflicting rules. Theposed approach for rule conflict resolution
takes into account the significance of each anwtedf a rule to resolve the conflict. An
antecedent of a rule corresponds to a known clarsints of a known object observed in the
scene. The significance of an antecedent is temsdtieimportance factar The importance
factor of an antecedent can have the value in aerval of 1 and O, ie.,
ImportanceFactor (A) O [LO]. The importance factor of an antecedent is catedlas under

o
ImportanceFactor = a

o : Numberof Timesa charactersticsis selected
Q: Numberof Timesa charactersticsis considered
Each characteristic known to the robot is assigaedmportance factor. The importance
factors of the concerning characteristics are em@dalong with the antecedents while
online rule induction. The importance factors of ttharacteristics are updated during HRI.
For example, an object has characteristizs ch, andchs and the robot has performed an
actionA on that object according to the IR, i.e.,
IR :IF {ch,ch,ch} THEN A
Object: {ch ,ch,,ch}
If the human has accepted the acthahen the rule will b@eneralized as under
IGR:IF ch,ch, THEN A

The considered@ ) characteristics are the antecedents correspomalitigg induced rule, i.e.,
chy, chp andchs. The selectedd ) characteristics correspond to the antecedentsdhaain in
the rule, i.e.chhandch.
The conflict resolution using importance factoreigplained with an example. The robot
knows two generalized rules, i.e.,

RL:IF Ch THEN A

R2:IF Ch, THEN A,

There exist different objects with one or more tloae characteristics, i.eby, ch, andchs.
Initially all the characteristics will have the sammportance factor, i.e., 1. During
generalization by HRI, ifch; is considered three times and selected two timobs,is
considered two times and selected one time,chgs considered two times and selected two
times then the importance factorabi, ch, andchs will be 0.66667, 0.5, and 1 respectively.

If the robot has recognized a generalized intentwth respect to the rulRl, given above,
then it will apply the action on the objects whéme chy is true. There is an object that has
more than one characteristic, i.ey andch, then both the rules are applicable on the object.
The robot uses the importance factor to resolvectimdlict for rule application. The rula,;

will be applied as the importance factorabi is greater than the importance factorcbf. In
case if an object has the characteristics,dte.andchs then ruleA; will not be applied as the
importance factor ofhs is greater than the importance factocb.

In case if the generalized rule has more than otecadent then the antecedent with highest
importance factor is used for conflict resolutidie highest importance factor antecedent is
also used to select the objects for the generafidedapplication.
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7.5 Experiments

The experiments are performed with a robotic armixfdegrees of freedom. The workspace
regarding the experiments consists of a table ditferent known objects on the table as
shown in Figure 3.9. The workspace is observednbgvarhead Firewire camera that delivers
the video frame of size 640 x 480 pixels at a spEe®D frames / sec. The robot operations
are implemented using robot programming language.\image processing is performed
using common Edge and Skin detection [161] algor#land Fourier descriptors [171]. HRI
based experiments are performed by performing reéiffie known actions and using the
buttons shown in Figures 7.16 (a-j). The buttonshentable include Stop, Learn, Pause, Play,
and Reset. The Stop button is used to stop a relgtion. The Learn button is used to start
the learning of a human intention and generalimagipocedure. The learning corresponds to
learning a human intention in terms of a Finitet&tdachine. The Learn button is also used
as reject button during the HRI. The Pause buttmsed to temporarily stop the robot
reaction. The Play button is used to test the gdmation performed during the HRI. The
Reset button is used to remove the learned andaemse human intention in terms of Finite
State Machine. The learning and generalization quore is explained with one of the
performed experiments, as shown in Figure 7.16.Hiberes from 7.16(a) to 7.16(f) describe
the learning and the performed generalization. Flgure 7.16(a) shows different objects
present in the scene. The objects belong to orss @lad one characteristic is significant for
the concerning action. Therefore the procedureigare 7.14 is not considered. The objects
include two squares, two pentagons, and two comtsinOne container is labelled as
SPECKLE OBJECTS and other is labelled as BROKEN EXBIS. One box and pentagon
have speckles on them and additionally that pemtdgs a hole (broken) in the centre.

The other box and pentagon are intact and withpetides. The human starts the learning
phase by putting the hand on Learn button. The hypieks and places the speckled box into
the speckle container as shown in Figure 7.16(ffjerévards the robot induces a rule and
starts generalizing that rule. The robot picks ares$ to place the intact and without speckle
square into the speckle container, as shown inr&igul6(c). The human rejects the robot
reaction by putting the hand on Learn button asvehia Figure 7.16(c). The robot undoes the
reaction and tries to pick and place the intact aitdout speckle pentagon into the speckle
container as shown in Figure 7.16(d). The humare again rejects the robot reaction by
putting the hand on Learn button as sown in Figui&(d). The robot once again does the
possible generalization. Next the robot picks tpeckled pentagon with the hole in the
pentagon and tries to place into to speckle coetaifhat is also rejected by the human and
robot undoes the reaction. The human performs theection by placing the speckled and
broken pentagon into the broken container as showvagure 7.16(f). The robot also updates
the importance factors along with the rule geneadilbn. In the testing phase, the human
starts by putting the hand on the Play button. Aitnman picks and places the speckled and
intact square into the speckle container, as showfrigure 7.16(g). The robot reacts
according to the generalized human intention. et picks and places the speckled square,
pentagon and triangle into the speckle containeshasvn in Figures 7.16(h), 7.16(i) and
7.16()).

The robot does not pick and place the speckledagent with hole in the center due to the
high importance factor of broken characteristiccampared to the speckle. It is shown in
Figure 7.16()).

126



BROKENS
ORTECT

SPECKI ] ‘ <
QBILCTS]

(a) Speckled and non speckled objects (b) Pick and place of speckled object

/

N
DETECTY

- .
GROREN] —
| OOTECTY

SPECKLT] < SPECKLT] e
OBJECTS OBIECTS

(e) Robot picks a speckled Pentagor(f). Human correction concerning robot reaction

SPECKLT] S : Gl
QBIECTS | OBIECTS

(g) Pick and place of speckled object (h) Robot places a speckled object in response

127



SPECKLT] <
OBJECTS]

Sprcglh g
| OBILCTS

(): Placement of speckled object in respongp: Placement of speckled object in response

Figure 7.16: Intention generalization by HRI

The graph in Figure 7.17 represents the generaizatapability of the robot. The
generalization axis represents the number of abgctied upon by the robot while reacting to
the recognized human intention. The green baresept the results with generalization and
red bars represent without generalization.
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Figure 7.17: Graph for intention generalization BRI
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The experiments were performed on the objects showagures 7.16 (a-f). The experiments
number 1 in Figure 7.17 corresponds to the placemiespeckled objects into the speckled
tray. The human picks and places a speckled sguévethe speckled tray. In a non
generalized HRI, the robot picks and places anatheare that is speckled into the speckled
tray and stops. In the generalized HRI, the robhckspand places all the speckled objects
other than the objects that have hole in them. ®bgcts that have hole in them are
considered broken. The objects having speckle emthre considered dirty and without
speckle are considered clean. The antecedent @taastic) of broken has high importance
factor as compared to the dirty. Therefore a dittject that is also broken is not operated as
the HRI corresponds to picking and placing theydobjects into the speckled tray. The
second experiment corresponds to the placemenntatti objects, the third experiment
corresponds to the placement of clean objects tladourth experiment corresponds to the
placement of broken objects.
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The graph in Figure 7.18 shows the rule conflisutes. The RDS [37] , CN2 [32] and C5.0
[130] produce false results as they resolve ugngpability and do not consider the
individual antecedents as importance factor does.

The success axis in Figure 7.18 represents theybstale, i.e., either all the expected objects
are acted upon or a few are left. If all the expéatbjects according to the human intention
are operated then the result is considered 1 amithéywise. The first experiment shown in
Figure 7.18 corresponds to the resolution of th&lmb concerning the objects with the hole
(broken) and the objects with the speckles (dioty)them. In the generalized HRI, using the
importance factor the robot takes into account thgportance factor of individual
characteristics of each object while applying thke rof placing the speckled object (dirty)
into the container of speckled object (wash badihg robot does not pick and place a dirty
object that is broken. The importance factor ofkerois greater than that of dirty. It means
that a dirty object can be washed for reuse astpposed to be placed in the wash basin. A
dirty and broken object is not required to be pthicethe wash basin because it is broken and
thus useless. The RDS, CN2, and C5.0 use the ghtpaiathout taking into account the
significance of individual antecedents and thusdpoe false results. Similarly the second
experiment corresponds to the conflict resoluti@wieen the dirty and different shaped
objects, i.e., triangles, squares, and pentagdms.rdbot is supposed to pick and place all the
dirty objects no matter of which shape into the hvhasin. Using the importance factor, the
robot picks and places all the dirty objects ifte wash basin. Using the probabilistic conflict
resolution approaches RDS, CN2, and C5.0 the rdbes not pick and place all the dirty
objects. Similarly the third experiment correspondsthe placement of no speckle object
(clean) into the concerned container. Using theoitgmce factor the robot picks and places
all the clean objects and using the probabilisgpraaches specific shaped objects are left.
The probabilistic approaches RDS, CN2, and C5.Gvatoperform well due to the fact that
they decide probabilistically and do not considstividual antecedents of the rule with the
concerning significance.

C50

1L | Importace Factor
cn2

RDS

success

i Noqof exéerimesnts )

Figure 7.18: Graph for conflict resolution in intéon generalization by HRI
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7.6 Summary

In this chapter we have introduced a generalizaapproach for the human intention
generalization. The focus of the approach is iM&iHRI by human intention generalization.
The intention generalization corresponds to theewstdnding of the key concept of the
human intention and to react accordingly to thatcept. The approach describes the rule
generalization by HRI. This rule is then embedd#d the probabilistic FSM, discussed in
detail in Chapter 3. That is used to recognize dhaeral human intention and to react
generally. The experiments performed with the rabatm demonstrated the usefulness of
generalization approach, i.e., the robot reactegdly according to the human intention. For
example, if the human has intention of puttingspeckled objects into the speckled container
then the human picks and places a speckled sqoerethe speckle container. The robot
recognizes the generalized human intention of pgkind placing the speckled objects into
the speckled container. The robot places all thecldpd objects into the speckle object
container. The robot also takes into account thpomance factor and does not places an
object into speckle object container that is spsttlkdnd also broken.

The approach enables the robot to react intuitirely known scenario that was not explicitly
instructed to the robot. The known scenario c@wads to the known objects present in the
scenario and the known related actions. The gematian capability of robot increases the
range of intuitive reactions.

The false generalization problem is resolved byirtgseach IGR The solution provided for
false generalization resolves the problem but iy mat produce the optimal generalization.
The optimality of the resolution of false generatian depends on the present objects. The
objects are used to resolve the generalizationl@gmbThe optimality of generalization with
respect to the objects is explained using two cdse&3ase 1, the false generalization does not
consider the necessary antecedents. For exampisideo IGR with concerned IRand the
available objecO; that is used to resolve the false generalization.

IR : IF{A B, C, D} THEN 4
IGR, : IF{C} THEN 4
O : {ABGFG¢G

After resolving the generalization problem (LineFggure 7.14) IGRbecomes as under

IGR; : IF{A, B, G THEN 2

If B andC are the necessary antecedents then the geneaairatsolved. The antecedeft
decreases the optimality of generalization as inisecessary antecedents for actiormhus

the optimality of the generalization depends ondhgct used for generalization. The IGR
may be optimized in the transition pool. If all tbhbjects present in the scene are of diverse
characteristics then the generalization can ber@btand vice versa.

In Case 2 the false generalization (l3Rproduced due to the different class object, is
discussed. For example, consider the ji@Rh concerned IRand available objed®; that is
used to resolve the false generalization.

IR . IF {Shirt, Dirty, Goodd THEN W.M
IGR; : IF {Shirt Good THEN W.M
O . {Pants Dirty, Good

The generalization problem IGR resolved by ACCEPT, given in Figure 7.14.
IGR; : IF {Dirty, Good THEN W.M
The resolved IGRs generalized differently if th@; is as under
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O : {Shirt, Dirty, Good

Then the IGRresolved would be as under

IGR; : IF {Shirt, Dirty, Goodt THEN W.M

These resolved IGRs are moved to the transitioh fbdere the IGRs are further generalized.
Moreover, if the objects available for generali@aatiare properly classified and one
characteristic is significant for the concernedacthen the algorithm in Figure 7.14 is not
required.

Furthermore, the robot needs to distinguish betwibensituations when he needs to react
based on the generalization or based on specializatcording to the human intention.
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Chapter 8

Conclusions

In this chapter, in Section 8.1, 8.2, 8.3, 8.4 8rilthe presented work is concluded. Section
8.6 provides an outlook with respect to the presgnésearch work.

In the presented research work, five contributitmthe area of intuitive HRI are discussed.
The discussed contributions mainly correspond eéartkention of the cooperating human, i.e.,
how the robot can improve its intuitive interactith the human based on different aspects
of the human intention. The following intention asfs of the interacting human are
considered to improve the intuitive HRI.

A. Intuitive HRI by intention recognition

B. Intention learning

C. Proactive HRI

D. Interaction in unknown scenarios

E. Intention generalization

8.1 Intuitive HRI by intention recognition

The recognition of the human intention plays a kel¢ in human-human interaction. It is
equally significant for HRI. An intention recogrti approach based on probabilistic FSMs is
proposed. A FSM represents a human intention. Thil Eorresponds to a human action
sequence and / or the concerning scene changas iARI workspace. Each FSM carries a
probabilistic value that is called the weight of thSM. The weight of the FSM describes how
closely the FSM represents the human intention.H3M with highest weight corresponds to
the best estimated human intention and vice vdisa.weights of the FSMs are updated at
each new observation in HRI workspace. The sugdestdution is applicable for both
explicitly and implicitty communicated intentionsExplicit intention communication
addresses to all the situations where the humammemds the robot and implicit intention
communication addresses to all the situations wtierdnuman does not engage the robot but
robot actively starts the cooperation by recogmime intention through scene information
and human actions.

8.2 Intention learning

It is quite difficult to anticipate all the reahte situations a robot may encounter. Therefore
the capability of extension is inevitable for a eabThree different cases are discussed to
learn the new human intentions. The cases discuksechapping of human intention to the
corresponding observation sequence. The discussseé € corresponds to the mapping
between the sequence of the known actions and ribeirk human intention. The known
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human intention corresponds to the scene informatithe Case 2 corresponds to the
situation in which the actions are known to theotdiut the human intention is inferred using
the learning parameters. In the Case 3 the humi@gonacand the human intentions are not
given. The robot infers the human actions fromdtene changes and the human intention is
also inferred from the scene information. The madrma used for intention recognition
consists of the probabilistic FSMs. For online imien recognition a FSM regarding to a
specific intention is constructed online.

The capability of learning the new intention canrbade more intelligent. The intelligence
corresponds to the fact that the robot can takeasidn about the human intention. The
decision corresponds to the fact that the humaniitn is already known to the robot or not.
If not then the robot is supposed to learn the haman intention. The robot should also be
intelligent enough to recognize the start and ehthe sequence of action and / or scene
changes concerning the new human intention. Moretbverobot must also be able to decide
if the human actions correspond to an intentiothey are just random actions. The random
actions correspond to the actions that are performmntentionally by the human.

8.3 Proactive HRI

Proactivity is also an important aspect in intw@tidRI. For a robot to be proactive in HRI, he
needs to quickly recognize the human intention.prébabilistic approach for the intuitive
HRI in an ambiguous situation is presented. Twesase discussed for quick robot response
for intuitive HRI. In first case, trigger state sefion algorithm is discussed that describes how
the trigger states are selected in case of simsiiaie sequence of different FSMs. In the
second case the proactive nature of HRI is discuaséwer level, i.e., the robot is required
to prematurely decide in an ambiguous situation iy lead to two or more different human
intentions. The ambiguous human intentions are lednddy the transition weights that
correspond to the weights assigned to the transitbmditions in the FSMs.

The robot can extend its capability of proactivenbyg taking into account the daily routine
work and concerning intentions of the interactingnian. The robot can consider which tasks
are most probable, which tasks are least probaide,Similarly the robot can consider the
habits of the interacting human and customizefisetording to them for being proactive.
The domain information about the HRI workplace e#so improve the proactive behaviour
of the robot. The domain information can help thieat in quick decision making.

8.4 Interaction in unknown scenarios

In reality a human can encounter the situation evimteracting with other human that he does
not know the intention of the other human. The hmntan either intuitively interact
depending on the previous experiences or he cgnysesk about the unknown intention. The
presence of this capability in robots is also int@ot for HRI. A probabilistic approach for
the robotic reaction in the known scenario with mmkn human intention is presented. The
approach corresponds to a RL-based interactiorritign In which the robot performs the
most suitable action in order to cooperate with tluenan without knowing the human
intention. If the action performed by the robotregponds to the human intention then the
robot action is accepted by the human. Otherwisehiiman rejects the robot action and
expect from the robot to act differently. The huntam either wait for the expected action
from the robot or he can simply correct the robmtoading to his expected action. The most
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suitable action selection is performed probabdaty. The robot considers the predicted
action, weight of the predicted action, action @daibty, and the history support of the action.
The value of all the action hypotheses is calcdlagng the considered aspects.

The capability of the robot for interaction withethuman without knowing his intention can
be improved by providing the domain knowledge te tiobot. The domain knowledge
corresponds to the end results of the known taskserning the unknown human intention.
Similarly the interaction can also be improved hg tagreed upon procedures. The agreed
upon procedures correspond to the gestures thatramen the robot and the human. The
human can guide and convey his message to the usbrag the agreed upon procedures.

8.5 Intention generalization

A generalization approach for the human intent®miroduced. The intention generalization
corresponds to the understanding of the key conogphe human intention and to react
according to that concept. The approach describesule generalization by HRI. A rule is
induced online and then that rule is generalizeddigoving the unnecessary antecedents
according to the human intention during HRI. Thiger is then embedded into the
probabilistic FSM. This rule is used to recognike general human intention and to react
according to the general intention.

The robot can extend the range of its intuitiveefiattion with the human by the intention
generalization. For being intelligent partner o tuman in HRI, the robot must distinguish
the situations in which he should generalize amdsituations in which he should specialize
the human intention. The robot should also custeniigelf according to the interacting
human with respect to its intention generalizatiapability.

8.6 Outlook

The presented research work can be extended inpiewtays as described in Section 8.2,
8.3, 8.4 and 8.5. The extension mainly correspaodke human intention with applications
in the HRI workspace.

The robot possessing the capabilities of intentiecognition, proactivity, and intention
generalization may interact more safely with thenho in a HRI workspace. The safety in
HRI can be improved based on the intuitive HRI. Thkot can anticipate the current and
future human intentions. The robot can predictftiiare locations of the human. The robot
divides the HRI workspace into cells. The curreatmln location along with the future
possible locations can be considered as the oatuge#ls. The robot planes its motion
trajectory by taking into account the occupiedscédl avoid human robot collision. The robot
can differentiate between the virtually occupiedalions with respect to the probability of
being occupied. The robot can also consider ths @eth low occupancy probability for its
path planning to be efficient in its motion. Théob can also ignore the cells with more than
zero occupancy probability in order to improve saéety in HRI.
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