Rhizodeposition

and its effects on C fluxes in the soil

Dissertation

submitted to the Faculty of Biology, Chemistry and Earth Science of the University of Bayreuth to attain the degree of Dr. rer. nat.

> by Johanna Pausch born February 3, 1983 in Kronach

Bayreuth, May 2012

The present study was prepared between April 2009 and May 2012 under the direction of Prof. Dr. Yakov Kuzyakov at the Department of Agroecosystem Research, University of Bayreuth.

The work was financially supported by the German Research Foundation (DFG; KU 1184/13) and the University of Bayreuth.

This is a full reprint of the dissertation submitted to attain the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Faculty of Biology, Chemistry and Earth Science of the University of Bayreuth.

Date of submission: May 9, 2012

Date of defense (disputation): September 13, 2012

Dean: Prof. Dr. Beate Lohnert

Doctoral Committee:

Prof. Dr. Yakov Kuzyakov, Dept. of Agroecosystem Research, University of Bayreuth (1st reviewer)

Prof. Dr. Egbert Matzner, Dept. of Soil Ecology, University of Bayreuth (2nd reviewer)

Prof. Dr. Eckhard George, Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren (3rd reviewer)

Prof. Dr. Bernd Huwe, Dept. of Soil Physics, University of Bayreuth (Chairman)

Prof. Dr. Gerhard Gebauer, Laboratory of Isotope Biogeochemistry, University of Bayreuth

Prof. Dr. John Tenhunen, Dept. of Plant Ecology, University of Bayreuth

Summary

Plants modify the chemical, physical and biological properties of the soil environment surrounding their roots. Organic compounds released from living roots (rhizodeposits) are easily available sources of energy for microorganisms strongly affecting soil organic matter (SOM) dynamics. Although, rhizodeposition is a key driver of microbially mediated processes in the soils, it still remains the most uncertain component of the terrestrial carbon (C) cycle.

The general aim of the thesis was to gain a more comprehensive understanding of rhizodeposition and its effects on C fluxes in soil by assessing biotic and abiotic factors influencing the rhizodeposition and by providing estimates on the total amounts of rootreleased C inputs into an agroecosystem with maize.

The input of C into the soil through rhizodeposition occurs in temporal and spatial hotspots. The objective of the first Study was to determine the dynamics of hotspots of recently assimilated C in roots of ryegrass. Shoots were pulse labeled with ¹⁴CO₂ and the allocation patterns at increasing time intervals were visualized by ¹⁴C phosphor imaging. We could show a very quick translocation of assimilated C to the roots. Strong ¹⁴C hotspots were detected at the root tips already 6 hours after the labeling. The hotspots remained active for at least 2 days. However, 11 days after assimilation the hotspots at the root tips had disappeared, and the ¹⁴C distribution was much more even than after 6 hours and 2 days.

Through the availability of rhizodeposits, hotspots create preferred habitats for microbes. Rhizodeposits are an important primary source of carbon and energy for soil microorganisms stimulating their growth and activity. Thereby, roots of living plants can influence the rate of native SOM decomposition in the rhizosphere. This rhizosphere priming effect (RPE) was reported to be plant-species specific. Therefore, we hypothesized that also plant inter-species interactions, like the competition for nutrients and water, affect the RPE.

In Study 2, we used continuous ¹³CO₂ labeling to investigate the RPE of monocultures and mixtures of typical agricultural crops. The RPE was consistently positive for all

monocultures and mixed cultures with an increase of 43% to 136% above the unplanted soil. Of particular interest was the result that plant inter-species interactions between sunflower and wheat significantly reduced the RPE in contrast to the other mixtures which included soybean as a legume. It was suggested that priming in the rhizosphere of the sunflower-wheat mixture was reduced through a more severe competition for nitrogen (N), whereas, due to the N-rich rhizodeposits of the legume and its lower demand for soil mineral N the RPE of the legume containing mixtures remained unaffected.

Besides potential differences in the quality and quantity of rhizodeposits, the C allocation pattern in plant and soil pools may also differ between non-legumes and legumes due to high root respiration tied to N₂-fixation. However, not only the plant species may affect rhizodeposition, also photosynthesis could largely control root exudation because of the fast transport of recently assimilated C to belowground processes. Taking both factors into account, in Studies 3 and 4 the effect of limited photosynthesis on the distribution of recently assimilated C, of stored C and of N was investigated. Based on ¹³C, ¹⁴C and ¹⁵N labeling of a legume and a non-legume we could demonstrate that high C and N demands of regrowing shoots after clipping led to a remobilization of stored C and N to the shoots for both plant species. Additionally, recently assimilated C was retained in the regrowing shoots. Particularly, in agricultural pasture systems limited photosynthesis after defoliation by grazing may significantly affect belowground C allocation.

Shading, on the other hand, did not induce a remobilization of stored C, since recently assimilated C obviously covered the demand of the shoots with lower growth rates. For both treatments lower amounts of recently assimilated C were observed in the below-ground pools emphasizing the importance of the tight coupling of assimilation and belowground processes. Furthermore, different responses of clipping and shading of the legume and the non-legume species could be detected for root-derived CO_2 .

In Studies 1-4 we demonstrated the importance of various factors on the rhizodeposition of different agricultural crops under controlled conditions. Under field conditions, however, there is still a great degree of uncertainty about the total quantity of rhizodeposition, primarily because of high and rapid losses of released rhizodeposits through microbial decomposition. Therefore, the quantitative importance of rhizodeposition at field scale was determined in Study 5. We proposed a new approach for an improved quantification of rhizodeposition under field conditions taking into account the decomposed fraction of rhizodeposits. Based on a ${}^{14}CO_2$ pulse labeling experiment under controlled conditions a rhizodeposition-to-root ratio was calculated and was applied to the root biomass of the field. The root biomass C of maize, sampled in July 2009, was 298±64 kg C ha⁻¹. Gross rhizodeposition was found to amount to 166±53 kg C ha⁻¹.

With aging of SOM, the availability of C for microbial decomposition declines. In Study 6 the availability of younger relative to older C sources was assessed. The natural isotope abundances of ¹³C and ¹²C of SOM and CO₂ were analyzed after a C₃ to C₄ vegetation change. The contribution of younger C, originating from the belowground C input by maize in the previous year, and that of older C sources, derived from the former C₃ vegetation, to SOM and CO₂ was determined. Comparing the proportions of younger and older C in SOM with that in CO₂, we found that the younger C of maize was seven times more available for microbial decomposition than older C pools.

In summary, this thesis extends the understanding of factors affecting rhizodeposition and of processes occurring at the soil-root interface. Furthermore, it presents a new method to quantify gross rhizodeposition at field scale. Although, we could gain insight in temporal changes of the availability of C pools for microbes, the ecological importance of C fluxes in the rhizosphere requires future research on this topic with regard to spatial and temporal predictions.

Zusammenfassung

Pflanzen verändern die chemischen, physikalischen und biologischen Eigenschaften der Bodenumgebung ihrer Wurzeln. Organische Verbindungen, die von lebenden Wurzeln abgegeben werden (Rhizodeposite), sind eine leicht verfügbare Energiequelle für Mikroorganismen und können damit die Dynamik der organischen Bodensubstanz (OBS) stark beeinflussen. Obwohl die Rhizodeposition eine der treibenden Kräfte für die mikrobiellen Prozesse im Boden darstellt, ist sie doch einer der am wenigsten erforschten Faktoren im terrestrischen Kohlenstoffkreislauf.

Das Hauptziel der vorliegenden Arbeit war es, ein umfassenderes Verständnis der Rhizodeposition und ihrer Effekte auf Kohlenstoffflüsse im Boden zu gewinnen. Dabei sollten biotische und abiotische Faktoren, die die Rhizodeposition beeinflussen, bewertet und darüber hinaus die Mengen an Kohlenstoff (C), die über Maiswurzeln in ein Agrarökosystem gelangten, quantifiziert werden.

Der Eintrag von C in den Boden über Rhizodeposition erfolgt in zeitlich und räumlich variierenden Hotspots. In der ersten Studie sollte die Dynamik der Hotspots von neu assimiliertem C in den Wurzeln von Weidelgras untersucht werden. Nach einer ¹⁴CO₂-Pulsmarkierung des Sprosses wurden die Verteilungsmuster in der Pflanze in größer werdenden Zeitabständen mit Hilfe der ¹⁴C-Phosphor-Imaging-Methode sichtbar gemacht. Wir konnten eine sehr schnelle Verlagerung des assimilierten C in die Wurzeln zeigen. Starke ¹⁴C Hotspots konnten bereits 6 Stunden nach der Isotopen-Markierung an den Wurzelspitzen nachgewiesen werden. Diese Hotspots blieben für mindestens 2 Tage aktiv. Elf Tage nach der Assimilation waren die Hotspots an den Wurzelspitzen verschwunden, und es zeigte sich eine gleichmäßigere ¹⁴C-Verteilung als nach 6 Stunden bzw. 2 Tagen.

Durch die verfügbaren Rhizodeposite bilden Hotspots bevorzugte Habitate von Mikroorganismen. Rhizodeposite sind eine wichtige C- und Energiequelle für Bodenmikroorganismen und wirken sich stimulierend auf ihr Wachstum und ihre Aktivität aus. Die Wurzeln lebender Pflanzen können dadurch die Intensität des Abbaus der OBS in der Rhizosphäre beeinflussen. Es ist bekannt, dass dieser Rhizosphäre-Priming-Effekt (RPE) von der Pflanzenart abhängt. Deshalb stellten wir die Hypothese auf, dass sich auch Interaktionen zwischen verschiedenen Pflanzenarten, wie z.B. die Konkurrenz um Nährstoffe und Wasser, auf den RPE auswirken.

In der zweiten Studie wurde mit Hilfe kontinuierlicher ¹³CO₂-Markierung der RPE von Mono- und Mischkulturen typischer landwirtschaftlicher Nutzpflanzen untersucht. Sowohl für die Monokulturen als auch für die gemischten Kulturen waren die RPE mit 43% bis 136% höheren Werten in Bezug auf den unbepflanzten Boden durchwegs positiv. Besonders interessant war das Ergebnis, dass bei der Kultur aus Sonnenblume und Weizen im Gegensatz zu den anderen Mischkulturen, die jeweils die Leguminose Sojabohne enthielten, der RPE durch Interaktionen zwischen den Pflanzenarten signifikant reduziert war. Es wird angenommen, dass eine stärkere Stickstoffkonkurrenz in der Rhizosphäre der Sonnenblume-Weizen-Kultur für den niedrigeren RPE verantwortlich ist, während die stickstoffreichen Rhizodeposite der Leguminose und deren niedrigerer Bedarf an mineralischem Stickstoff (N) aus dem Boden den RPE der anderen Mischkulturen im Vergleich dazu nicht beeinflussten.

Neben potenziellen Unterschieden in Qualität und Quantität der Rhizodeposite können sich Leguminosen und Nicht-Leguminosen, aufgrund der hohen Wurzelatmung verbunden mit der N2-Fixierung, auch in ihrem C-Verteilungsmuster zwischen den Pflanzenund Bodenpools unterscheiden. Jedoch nicht nur die Pflanzenart kann sich auf die Rhizodeposition auswirken. Durch den schnellen Transport von neu assimiliertem C in den Boden kann auch die Photosynthese die Wurzelexsudation stark beeinflussen. Unter Berücksichtigung dieser beiden Faktoren wurde in Studie 3 und in Studie 4 der Effekt einer limitierten Photosynthese durch Abschneiden und Beschattung der Pflanzen auf die Verteilung von neu assimiliertem C, von gespeichertem C und von N untersucht. Durch ¹³C-, ¹⁴C- und ¹⁵N-Markierung einer Leguminose und einer Nicht-Leguminose konnten wir zeigen, dass der hohe C- und N-Bedarf des nachwachsenden Sprosses nach dem Schneiden in beiden Pflanzenarten zu einer Remobilisierung von gespeichertem C und von N in den Spross führte. Zusätzlich wurde neu assimilierter C im Spross zurückgehalten. Besonders bei landwirtschaftlichen Weideflächen könnte eine limitierte Photosynthese durch Beweidung zu signifikanten Effekten bei der C-Allokation im Boden führen.

Durch die Beschattung wiederum kam es zu keiner Remobilisierung von gespeichertem C. Offensichtlich konnte der neu assimilierte C aufgrund der verringerten Wachstumsrate des Sprosses dessen Bedarf decken. Sowohl beim Schneiden als auch bei Beschattung wurden geringere Mengen von neu assimiliertem C in den unterirdischen Pools beobachtet, was die Bedeutung der engen Kopplung von Assimilation und Bodenprozessen unterstreicht. Darüber hinaus konnten für wurzelbürtiges CO₂ unterschiedliche Reaktionen auf Schneiden und Beschattung von Leguminose und Nicht-Leguminose festgestellt werden.

In den Studien 1-4 wurde die Bedeutung einzelner Faktoren für die Rhizodeposition verschiedener landwirtschaftlicher Nutzpflanzen unter kontrollierten Bedingungen aufgezeigt. Betrachtet man die Rhizodeposition im Feld, so herrscht jedoch über deren Gesamtmenge aufgrund der hohen und schnellen Verluste der Rhizodeposite durch mikrobiellen Abbau weitestgehend Unklarheit. Deshalb wurde in Studie 5 die quantitative Bedeutung der Rhizodeposition unter Feldbedingungen ermittelt. Wir entwickelten einen neuen Ansatz für eine verbesserte Quantifizierung der Rhizodeposition unter Feldbedingungen, der den Anteil der mikrobiell abgebauten Rhizodeposite mit berücksichtigt. Basierend auf einer $^{14}CO_2$ -Pulsmarkierung unter kontrollierten Bedingungen wurde ein Rhizodepositions-Wurzel-Quotient berechnet und auf die Wurzelbiomasse im Feld übertragen. Die Wurzelbiomasse von Mais, die im Juni 2009 beprobt wurde, hatte einen C-Gehalt von 298±64 kg C ha⁻¹. Die Gesamt-Rhizodeposition betrug 166±53 kg C ha⁻¹.

Mit zunehmendem Alter der OBS nimmt die Verfügbarkeit von C für den mikrobiellen Abbau ab. In Studie 6 wurde die Verfügbarkeit von jüngeren im Vergleich zu älteren C-Quellen untersucht. Hierzu wurde die natürliche Häufigkeit von ¹³C und ¹²C nach einem C_3/C_4 -Nutzungswechsel analysiert. Es wurde der Beitrag des jüngeren C, der im Vorjahr durch Mais unterirdisch eingetragen wurde, sowie des älteren C, der aus der vorherigen C₃-Vegetation stammte, zur OBS und zum CO₂ bestimmt. Beim Vergleich der Anteile des jüngeren und des älteren C in der OBS und im CO₂ stellten wir fest, dass der jüngere C aus dem Mais sieben Mal mehr verfügbar war als C aus den älteren Pools.

Mit der vorliegenden Arbeit konnte das Verständnis wichtiger Faktoren, die die Rhizodeposition beeinflussen, sowie der Prozesse in der Rhizosphäre erweitert werden. Darüber hinaus wurde eine neue Methode zur Quantifizierung der Gesamt-Rhizodeposition auf Feldebene vorgestellt. Obwohl wir Einblick gewinnen konnten, wie sich die Verfügbarkeit von C-Pools für Mikroorganismen mit der Zeit ändert, sind aufgrund der ökologischen Bedeutung der C-Flüsse in der Rhizosphäre weitere Untersuchungen erforderlich, die räumliche und zeitliche Voraussagen zulassen.

Acknowledgements

The present work would not have been possible without the support of many people to whom I am very grateful.

I would like to thank my supervisor Prof. Dr. Yakov Kuzyakov for the possibility to carry out this thesis at the Department of Agroecosystem Research at the University of Bayreuth, for his guidance, his patience, hours of fruitful discussions, for encouraging me to develop my own concepts and his continuous support during the last three years.

A special thanks to Prof. Dr. Weixin Cheng and to the colleagues of the Department of Environmental Studies at the University of California, Santa Cruz, who offered me the opportunity to conduct a very fruitful study at their department. Dr. Biao Zhu introduced me to the complex method of continuous labeling and was always open for encouraging discussions.

I am thankful to the members of the Laboratory of Isotope Biogeochemistry (Bay-CEER) of the University of Bayreuth, headed by Prof. Dr. Gerhard Gebauer, for carrying out the stable isotope analyses.

My colleagues at the Department of Agroecosystem Research supported me in many ways. I am especially grateful to Dr. Guido Wiesenberg for his support and his willingness to answer any question at any time, to Dr. Martina Gocke for her valuable advice and comments on the manuscripts, to Dr. Yasser Awad for beneficial collaboration and to Tian Jing, who contributed to an important part of the experimental work. A special thanks to all student assistants who did a great job and who made it possible to finish this work in time. I want to express my gratitude to Ilse Thaufelder for her technical and analytical support.

I am very grateful to Andreas Schmitt who largely contributed to this work not only by preparing two publications in the context of his diploma thesis, but also by assisting with field and laboratory work.

I would like to thank my friends Maria Borlinghaus, Martin Rimmler and Michael Riederer who shared work, stress and fun with me. Micha, it was a real pleasure to work with you! I would like to thank my family for their support and patience, most of all I am grateful to my mother for comments on the manuscripts and hours of scientific discussions.

Finally, I would like to thank my husband Hannes and my little son Xaver to whom this thesis is dedicated. Thank you for your support and encouragement throughout the last years and for reminding me that it is not all about work.

Table of Contents

Sumr	nary	I	
Zusa	mmenfassung	IV	
Ackn	AcknowledgementsVIII		
Table	e of Contents	X	
List o	of Tables	XV	
List o	of Figures	XVII	
Abbr	g	VVI	
ADDI		АЛ	
Ι	Extended Summary	0	
1	Introduction	1	
1.1	Carbon fluxes into and out of the soil	1	
1.2	Rhizodeposition	2	
1.3	The rhizosphere priming effect	4	
1.4	Factors affecting rhizodeposition	5	
1.5	Belowground C input at field scale and its microbial availability	7	
1.6	Objectives		
2	Materials and Methods	9	
2.1	Isotope approaches	9	
2.2	Experimental site for field studies		
2.3	Sampling and analyses		
3	Results and discussion	16	
3.1	Hotspots of rhizodeposition along the root segments (Study 1)		
3.2	Plant inter-species effects on rhizosphere priming (Study 2)		
3.3	Response to limited photosynthesis (Studies 3, 4)	19	
3.4	Quantifying rhizodeposition at field scale (Study 5)		
3.5	Microbial availability of younger and older C sources (Study 6)		
4	Rhizodeposition: Conclusion and outlook		
5	Contributions to the included manuscripts		

Refer	References	
II	Manuscripts	39
1	Photoassimilate allocation and dynamics of hotspots in roots visualized by $^{14}\mathrm{C}$ phosphor imaging	40
Abstra	act	41
1.1	Introduction	42
1.2	Materials and methods	44
1.2.1	Soil properties and plant growth conditions	44
1.2.2	Labeling of plants in a ¹⁴ CO ₂ atmosphere	45
1.2.3	Tracer detection by phosphor imaging	46
1.3	Results	47
1.3.1	Distribution of ¹⁴ C in the shoots	47
1.3.2	Evenness of the ¹⁴ C distribution within the roots and identification of ¹⁴ C hotspots	47
1.3.3	Longitudinal ¹⁴ C allocation in individual roots	50
1.4	Discussion	51
1.4.1	Applicability of ¹⁴ C phosphor imaging for visualizing and tracing below- ground C allocation	. 51
1.4.2	Relative carbon allocation in shoots and roots	53
1.5	Conclusions	55
Ackno	owledgements	56
Refer	ancas	57
Kelen		57
2	Plant inter-species effects on rhizosphere priming of soil organic matter decomposition	61
Resea	rch Highlights	62
Graph	ical Abstract	62
Abstra	act	63
2.1	Introduction	65
2.2	Materials and methods.	67
2.2.1	Experimental set-up	67
2.2.2	Measurements	69
2.2.3	Calculations	70
2.2.4	Statistics	73
2.3	Results	75
2.3.1	Plant biomass, plant $\delta^{13}C$ and microbial biomass C	75
2.3.2	CO ₂ efflux partitioning	78

2.3.3	Rhizosphere priming effect	. 79
2.3.4	Effect of inter-species interactions	. 80
2.4	Discussion	. 82
2.4.1	Plant species and plant phenology effects on the RPE	. 82
2.4.2	Plant inter-species interactions modify RPE	. 83
2.5	Conclusions	. 86
Ackno	wledgments	. 87
Refere	ences	. 88
3	Effect of clipping and shading on C allocation and fluxes in soil under ryegrass and alfalfa estimated by ¹⁴ C labeling	92
Abstra	ict	. 93
3.1	Introduction	. 95
3.2	Materials and Methods	98
3.2.1	Soil properties and plant growing conditions	. 98
3.2.2	¹⁴ C labeling procedure	. 99
3.2.3	Clipping and light reduction	. 99
3.2.4	Sampling	100
3.2.5	Sample analysis	100
3.2.6	Calculations and statistics	101
3.3	Results	102
3.3.1	Plant biomass production	102
3.3.2	Distribution of ¹⁴ C in plant and soil pools	103
3.3.3	Total CO_2 and ¹⁴ C efflux from soil	106
3.4	Discussion	109
3.4.1	C allocation by <i>Lolium perenne</i> and <i>Medicago sativa</i>	109
3.4.2	Redistribution of stored C in plant pools	109
3.4.3	Redistribution of stored C in soil and soil CO ₂	113
3.5	Conclusions	116
Ackno	owledgements	117
Refere	ences	118
Supple	ementary material	125
4	C and N allocation in soil under ryegrass and alfalfa estimated by ¹³ C and ¹⁵ N labeling	127
Abstra		128
4.1	Introduction	130
4.2	Materials and Methods	132
4.2.1	Soil properties and plant growing conditions	132
	1 I F F F F F F F F F F F F F F F F F F	

4.2.2	¹³ C and ¹⁵ N labeling	. 133
4.2.3	Clipping and shading	. 133
4.2.4	Sampling and analysis	. 134
4.2.5	Calculations and statistics	. 135
4.3	Results	. 136
4.3.1	Plant biomass production	. 136
4.3.2	Effect of clipping and shading on ¹³ C distribution in plant and soil	. 137
4.3.3	Effect of clipping and shading on total CO ₂ and ¹³ C efflux from soil	. 138
4.3.4	Distribution of ¹⁵ N in plant and soil	. 140
4.4	Discussion	. 142
4.4.1	Effect of plant species	. 142
4.4.2	Effect of clipping	. 142
4.4.3	Effect of shading	. 144
4.5	Conclusion	. 146
Ackno	wledgments	. 147
Refere	ences	. 148
=	Estimation of white demonstrian of field apples are calling of a ¹⁴ C labeling	
5	Estimation of rnizodeposition at field scale: upscaling of a C labeling study	. 153
Abstra	ict	. 154
5.1	Introduction	. 155
5.2	Materials and Methods	. 158
5.2.1	Determination of rhizodeposition-to-root ratio (R) under controlled conditions	. 158
5.2.2	Root biomass measurements in the field - experimental design and root	163
5.2.3	Upscaling: Root biomass C and total C from rhizodeposition in the field	. 165
5.2.4	Statistics	. 164
53		
1	Results	165
5.3.1	Results	. 165 . 165
5.3.1 5.3.2	Results	. 165 . 165 . 168
5.3.1 5.3.2 5.3.3	Results ¹⁴ C pulse labeling under controlled conditions Root biomass in the field Upscaling: Root biomass C and total C from rhizodeposition in the field	. 165 . 165 . 168 . 170
5.3.1 5.3.2 5.3.3 5.4	Results	. 165 . 165 . 168 . 170 . 171
5.3.1 5.3.2 5.3.3 5.4 5.4.1	Results ¹⁴ C pulse labeling under controlled conditions Root biomass in the field Upscaling: Root biomass C and total C from rhizodeposition in the field Discussion Root biomass determination in the field	. 165 . 165 . 168 . 170 . 171 . 171
5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2	Results ¹⁴ C pulse labeling under controlled conditions Root biomass in the field Upscaling: Root biomass C and total C from rhizodeposition in the field Discussion Root biomass determination in the field Factors affecting root biomass and/or rhizodeposition	. 165 . 165 . 168 . 170 . 171 . 171 . 172
5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.4.3	Results ¹⁴ C pulse labeling under controlled conditions ¹⁴ C pulse labeling under controlled conditions Root biomass in the field Upscaling: Root biomass C and total C from rhizodeposition in the field Discussion Root biomass determination in the field Factors affecting root biomass and/or rhizodeposition ¹⁴ C-Partitioning	. 165 . 165 . 168 . 170 . 171 . 171 . 172 . 173
5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4	Results ¹⁴ C pulse labeling under controlled conditions Root biomass in the field Upscaling: Root biomass C and total C from rhizodeposition in the field Discussion Root biomass determination in the field Factors affecting root biomass and/or rhizodeposition ¹⁴ C-Partitioning Rhizodeposition at field scale	. 165 . 165 . 168 . 170 . 171 . 171 . 172 . 173 . 174
5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.5	Results ¹⁴ C pulse labeling under controlled conditions Root biomass in the field Upscaling: Root biomass C and total C from rhizodeposition in the field Discussion Root biomass determination in the field Factors affecting root biomass and/or rhizodeposition ¹⁴ C-Partitioning Rhizodeposition at field scale Conclusion	. 165 . 165 . 168 . 170 . 171 . 171 . 172 . 173 . 174 . 177

Refere	References	
6	Soil organic carbon decomposition from recently added and older sources estimated by $\delta^{13}C$ values of CO_2 and organic matter	184
Resear	rch Highlights	185
Graph	ical Abstract	185
Abstra	ıct	186
6.1	Introduction	187
6.2	Materials and Methods	189
6.2.1	Experimental design	189
6.2.2	Soil air samplers	190
6.2.3	Sampling and analysis	191
6.2.4	Calculations and statistics	191
6.3	Results	194
6.3.1	Isotopic composition of soil CO ₂ and removal of atmospheric CO ₂ admixture	194
6.3.2	Contribution of recently added C to total soil CO ₂ and SOM and relative availability of younger and older C	197
6.4	Discussion	200
6.4.1	Dynamics of isotopic composition of soil CO ₂	200
6.4.2	Application of the Miller/Tans model to determine the isotopic composition of soil CO ₂	201
6.4.3	Contribution of recently added C to total soil CO ₂	202
6.4.4	Relative availability of younger and older C	203
6.5	Conclusions	205
Ackno	owledgments	206
Refere	ences	207
Previo	ous own publications	211
Declar	ration	212
Erklärung		212

List of Tables

Table I.2/1: Overview of approaches, plant species and applied treatments used in Studies 1-6	15
Table I.3/1: Synthesis of methodological innovations and main innovative results of Studies 1-6	16
Table II.1/1: Basic characteristics of the soil sampled from the Ah horizon of a fine loamy gleyic Cambisol from a pasture in the Allgäu (S Germany) (FC, field capacity (pF=1.8); AWC, available water capacity (pF 1.8-4.2)) (Kleber, 1997).	44
Table II.2/1: End member values (\pm SEM) used in two-source isotopic mixing models in order to calculate the contribution of SOM-derived CO ₂ to total soil CO ₂ of the planted treatments.	72
Table II.2/2: Plant biomass (±SEM), δ^{13} C values (±SEM) and microbial biomass C (±SEM) compiled at the end of the experiment. N=4 for the monocultures; N=6 for the mixed cultures except for root δ^{13} C and microbial biomass C of the mixed cultures for which N=3.	76
Table II.2/3: Observed minus expected values (±SEM) of RPE at T2 (N=6), MBC(N=3), mineral soil N (N=3), and root-derived CO2 (N=6).	81
Table II.3/1: Basic characteristics of the soil sampled from the A _p horizon of a haplic Luvisol near Göttingen (Germany) (Kramer et al., 2012). CEC: Cation exchange capacity; BS: Base saturation	98
Table II.3/2: Root-to-shoot (R:S) ratio (±SEM) of <i>L. perenne</i> and <i>M. sativa</i> 10 days after clipping and shading. The statistical analyses showed no significant differences between the results.	03
Table II.3/3: Review of sources and amounts of C relocated in the newly grown shoots after clipping of grassland species. 1	11
Table II.3/4: Statistical analysis (Newman-Keuls test) of significance of treatment effects (clipping or shading) on ¹⁴ C specific activity and ¹⁴ C recovery	25
Table II.3/5: Statistical analysis (Newman-Keuls test) of significance of treatment effects (clipping or shading) on plant biomass and the cumulative belowground respiration at the last day of the experiment	26
Table II.4/1: Basic characteristics of the soil sampled from the A _p horizon of a haplic Luvisol originated from loess near Göttingen (Germany, Kramer et al., 2012). CEC: Cation exchange capacity: BS: Base saturation	32
Table II.5/1: Model parameters of belowground C fluxes fitted by experimental data of ¹⁴ C distribution, total ¹⁴ CO ₂ efflux and its dynamics	62
Table II.5/2: ¹⁴ C budget calculated as % of ¹⁴ C recovered in all pools at each sampling date (±SEM). Different letters indicate significant differences between the treatments. Note that the difference to 100% represents the portion of the CO ₂ efflux from soil	65
Table II.5/3: Net rhizodeposition-to-root ratio calculated based on ¹⁴ C labeling studies with maize (recalculated and modified after Amos and Walter, 2006).	76

- Table II.6/1: Selected properties (±SEM) of the haplic Luvisol determined before the start of the experiment (Kramer et al., 2012, modified). Significant differences between the horizons are indicated by different letters (P<0.05)... 190

List of Figures

Figure	I.1/1: Sources of biogenic CO_2 efflux from soil, ordered by the turnover rate and mean residence time of C in soil (after Kuzyakov, 2006)
Figure	I.1/2: Origin of different types of rhizodeposits (after Dennis et al., 2010)
Figure	I.2/1: Experimental set-up of labeling approaches. A: Pulse labeling of plants in a ${}^{13}CO_2$ or ${}^{14}CO_2$ atmosphere. B: Greenhouse for continuous ${}^{13}C$ labeling after the approach developed by Cheng and Dijkstra (2007) 11
Figure	I.2/2: Total organic C content and its δ^{13} C signature in 0-10 cm depth. Dashed lines: grid established for the soil survey; solid lines: experimental plots
Figure	I.3/1: ¹⁴ C images of roots 6 hours, 2 days and 11 days after labeling. Hotspots of ¹⁴ C activity are visible at the root tips 6 hours after labeling and the ¹⁴ C activity at the tips decreased with time. The red color indicates the highest activity
Figure	I.3/2: Observed minus expected rhizosphere priming effect. * indicates significant differences from zero
Figure	I.3/3: Cumulative CO_2 efflux from soil (±SEM) under <i>Medicago sativa</i> (A) and under <i>Lolium perenne</i> (B) from the start of clipping and shading 20
Figure	I.3/4: Significant differences of the ¹⁴ C recovery (C_{old}) (Study 3), the ¹³ C recovery (C_{new}) and ¹⁵ N recovery (N) (Study 4) in plant and soil pools in comparison to the control (vertical axis). The position of the respective symbols expresses a higher recovery, a lower recovery or no changes (vertical axis) compared to the control. The recoveries under <i>Medicago sativa</i> are shown in green color; that under <i>Lolium perenne</i> are red colored 21
Figure	I.3/5: Measured (circles; \pm SEM) and fitted (solid line) cumulative ${}^{14}CO_2$ efflux from the soil and simulated separation of the total ${}^{14}CO_2$ efflux in root respiration and rhizomicrobial respiration
Figure	I.3/6: C allocation and rhizodeposition of maize in the field. The amounts of root biomass C and C released by roots via rhizodeposition correspond to a soil depth of 50 cm, a plant population of 25,000 and a growing period from April to July 2009. The fate of rhizodeposits in the soil 16 days after ¹⁴ CO ₂ pulse labeling under controlled conditions is shown as percentage of total rhizodeposition. The availability of recently introduced C relative to older C pools, estimated in Study 6, is presented
Figure	I.3/7: The Miller/Tans model is based on the linear regression between the product of CO_2 concentration and its $\delta^{13}C$ value plotted against the CO_2 concentration. The isotopic composition of pure CO_2 from the soil is equivalent to the slope of a regression line. The Miller/Tans model is exemplarily shown for the C_3 reference at 10 cm soil depth
Figure	I.3/8: Contribution of younger and older C sources to total CO_2 and SOM at the C ₄ /fallow and C ₄ /C ₄ treatment and the C ₄ -to-C ₃ ratios of SOM and CO ₂ for the 10 cm depth of the C ₄ /fallow treatment. Significant differences between the depths and treatments are marked by different letters (P<0.05) 26

Figure	II.1/1: Phosphor images of a shoot 6 h (A) and of roots 6 h (B), 2 d (C) and 11 d (D) after labeling in ${}^{14}CO_2$ atmosphere. ${}^{14}C$ activity expressed as digital light units (DLU). The insets for Fig. II.1/2 are marked by a black rectangle 4	8
Figure	II.1/2: Relationship between the relative frequency of 1 mm x 1 mm squares and their ¹⁴ C activity at increasing time after tracer application: 6 h, 2 d and 11 d. Note the logarithmic scale of relative frequency. The insets from Fig. II.1/1 show enlarged hotspots at the root tips 6 h after labeling and decreasing ¹⁴ C activity (DLU) at the tips with time	9
Figure	II.1/3: Relationship between the mean relative ${}^{14}C$ activities per mm ² (%) and the distance from the root tip (mm)	0
Figure	II.2/1: N concentration (\pm SEM) of A: shoots (N=4 for the monocultures; N=6 for the mixtures) and B: roots (N=4 for the monocultures; N=3 for the mixtures). C: soil mineral N (NH ₄ ⁺ + NO ₃ ⁻) (N=4 for the monocultures; N=3 for the mixtures). Bars followed by the same lowercase letter are not significantly different at P=0.05	7
Figure	II.2/2: Root-derived (A) and SOM-derived CO_2 (B) (±SEM) at T1 and T2. Significant differences between T1 and T2 within a treatment are presented as †: P<0.1 and *: P<0.05. Bars followed by different lowercase letters indicate significant differences between the treatments at T1 (P<0.05). Significant differences between the treatments at T2 are marked by different uppercase letters (P<0.05). N=4 for the unplanted soil and the monocultures; N=6 for the mixed cultures	9
Figure	II.2/3: Rhizosphere priming effect (\pm SEM) calculated for T1 and T2. Significant differences between T1 and T2 within a treatment are presented as \dagger : P<0.1 and \ast : P<0.05. Bars followed by different lowercase letters indicate significant differences between the treatments at T1 (P<0.05). Significant differences between the treatments at T2 are marked by different uppercase letters (P<0.05). For the monocultures N=4, for the mixed cultures N=6	0
Figure	II.2/4: Observed and expected RPE (\pm SEM). Significant differences between the observed values are marked by different uppercase letters (P<0.05). Bars followed by different lowercase letters indicate significant differences between the expected RPE (P<0.05)	1
Figure	II.3/1: Aboveground and belowground plant dry mass (\pm SEM) of 60 days old <i>L. perenne</i> and <i>M. sativa</i> 10 days after clipping or shading. LSD values (P<0.05) are presented as whisked segments	2
Figure	II.3/2: ¹⁴ C recovery (\pm SEM) in the above- and belowground plant parts 10 days after clipping or shading of 60 days old <i>L. perenne</i> and <i>M. sativa</i> presented as portions of ¹⁴ C recoveries. LSD values (P<0.05) are presented as whisked segments	4
Figure	II.3/3: ¹⁴ C specific activity (\pm SEM) of aboveground and belowground plant parts for different treatments 10 days after clipping or shading. LSD values (P<0.05) are presented as whisked segments	5
Figure	II.3/4: ¹⁴ C recovery (\pm SEM) in soil (A) and microbial biomass (B) under <i>L. perenne</i> and M. <i>sativa</i> 10 days after clipping or shading. LSD values (P<0.05) are presented as whisked segments. Soil of shaded <i>L. perenne</i> was completely rooted and therefore no data for bulk soil are available	6

Figure	II.3/5: Cumulative C-CO ₂ efflux (\pm SEM) from soil under <i>L. perenne</i> (A) and <i>M. sativa</i> (B) beginning after the first ¹⁴ C labeling and the effect of clipping and shading on the CO ₂ efflux.	107
Figure	II.3/6: ¹⁴ C recovery (\pm SEM) in CO ₂ efflux from soil under <i>L. perenne</i> and <i>M. sativa</i> , calculated from the cumulated ¹⁴ C efflux (A), and mean value of ¹⁴ C specific activity (\pm SEM) of the soil CO ₂ under <i>L. perenne</i> and <i>M. sativa</i> measured from clipping or shading until harvest (B). LSD value (P<0.05) is presented as whisked segment.	108
Figure	II.4/1: ¹³ C recovery (\pm SEM) in shoots and roots 10 days after clipping or beginning of shading of 60 days old <i>L. perenne</i> and <i>M. sativa</i> . Significant differences are marked by different letters (P<0.05).	137
Figure	II.4/2: ¹³ C recovery (\pm SEM) in the soil and in soil CO ₂ (top), and in DOC and microbial biomass (bottom) under <i>L. perenne</i> and <i>M. sativa</i> 10 days after clipping and beginning of shading. Significant differences are marked by different letters (P<0.05).	138
Figure	II.4/3: Cumulative CO ₂ efflux from soil (\pm SEM) under <i>L. perenne</i> (top) and <i>M. sativa</i> (bottom) beginning at clipping or start of shading and the effect of clipping and shading on the CO ₂ efflux. Significant differences at the end of the experiment are marked by different letters (P<0.05).	139
Figure	II.4/4: ¹⁵ N recovery (\pm SEM) (top) in shoots and roots 10 days after clipping or beginning of shading of 60 days old <i>L. perenne</i> and <i>M. sativa</i> . Significant differences are marked by different letters (P<0.05).	140
Figure	II.4/5: ¹⁵ N recovery (\pm SEM) in soil (top), and in DON and microbial biomass (bottom) of <i>L. perenne</i> and <i>M. sativa</i> 10 days after clipping or beginning of shading. Significant differences are marked by different letters (P<0.05).	141
Figure	II.5/1: Measured (circles; \pm SEM) and fitted (solid line) ¹⁴ CO ₂ efflux from the soil and simulated separation of the total ¹⁴ CO ₂ efflux in root respiration and rhizomicrobial respiration. A: Cumulative ¹⁴ CO ₂ efflux; B: ¹⁴ CO ₂ efflux dynamics.	167
Figure	II.5/2: Determination of the rhizodeposition-to-root ratio (R). The ${}^{14}C$ activity (±SEM, kBq) of roots and of total rhizodeposition is shown. The allocation of root released C to different pools is presented as percentage of total rhizodeposition.	168
Figure	II.5/3: Vertical and horizontal root biomass C distribution (\pm SEM) of maize sampled in July 2009. Different letters indicate significant differences (P<0.05) of root biomass C between the depths (vertical). The samples of a single depth did not differ significantly between different positions (horizontal). The sampling design is shown bottom left	169
Figure	II.5/4: Rhizodeposition at field scale. Weighted maize root biomass C $(\pm SEM, \text{kg C ha}^{-1})$ measured in July 2009 and C released by roots via rhizodeposition $(\pm SEM, \text{kg C ha}^{-1})$ during the growing season 2009. The extrapolated values, shown in the frame, correspond to a soil depth of 50 cm, a plant population of 25,000 and a growing period from April to July 2009. Different letters indicate significant differences between the depths	170

Figure II.6/1: Top: CO ₂ concentration (mean ±SEM, N=4) and bottom: δ^{13} C values (mean ±SEM, N=4) of total soil CO ₂ during the growing season 2010 at 10 cm, 40-50 cm and 60-70 cm depth at the C ₃ reference (left), the C ₄ /fallow (middle) and the C ₄ /C ₄ (right) treatment. Raw data without purification from the admixture of atmospheric CO ₂ are presented. The soil water content at 48 cm depth under the C ₃ reference is shown in gray color.	195
Figure II.6/2: Miller/Tans models for the C ₃ reference, the C ₄ /fallow and the C ₄ /C ₄ treatment at 10 cm, 40-50 cm and 60-70 cm soil depth. The slope of the regression line is equivalent to the δ^{13} C of pure soil CO ₂ without admixture of atmospheric CO ₂ . Since the samples were taken over one growing period (2010), the slope represents a seasonally integrated δ^{13} C value. Note: for a better visualization (not for the calculations), the x-axis was truncated at 30,000 ppm, as only 5 points were higher.	196
Figure II.6/3: A: δ^{13} C values (±SEM) of soil CO ₂ calculated by Miller/Tans models for the C ₃ reference, the C ₄ /fallow and the C ₄ /C ₄ treatment at 10 cm, 40-50 cm and 60-70 cm depth, and B: contribution of younger and older C sources to total CO ₂ at the C ₄ /fallow and C ₄ /C ₄ treatment at 10 cm, 40-50 cm and 60-70 cm soil depth. Significant differences between the depths and treatments are marked by different letters (P<0.05)	197
Figure II.6/4: Contribution of older and younger C to SOM and soil CO ₂ at the 10 cm depth of the C ₄ /fallow treatment, and calculation of relative availability of recently added and older C. The seasonally integrated δ^{13} C value of CO ₂ at this treatment and depth was -26.2±0.4‰. The δ^{13} C value of SOM was -26.3±0.1‰. The contribution of C ₄ -derived C to total CO ₂ or SOM was calculated based on the following isotopic composition of the C ₃ and C ₄ sources: -27.0±0.2‰ and -11.4±0.2‰ for SOM in a pure C ₃ system and a pure C ₄ system, respectively; -31.4±0.5‰ and -12.2±0.2‰ for CO ₂ in a	100
pure C_3 system and maize roots, respectively	199

Abbreviations

ANOVA	Analysis of variance
ANU	Australian National University sucrose
AWC	Available water capacity
BS	Base saturation
¹³ C	Stable carbon isotope with atomic mass 13
^{14}C	Radioactive carbon isotope with atomic mass 14
C ₃	C ₃ photosynthetic metabolisms
C_4	C ₄ photosynthetic metabolisms
CEC	Cation exchange capacity
CL	Continuous labeling
Corg	Organic carbon
Ct	Total carbon
CV.	Cultivar
DAG	Days after germination
DAL	Days after labeling
DAP	Days after planting
DLU	Digital light units
DOC	Dissolved organic carbon
DON	Dissolved organic nitrogen
DW	Dry weight
EA	Elemental analyzer
FC	Field capacity
GC	Gas chromatograph
HAL	Hours after labeling
IRGA	Infrared gas analyzer
IRMS	Isotope ratio mass spectrometry
L.	Carl Linnaeus

LSC	Liquid scintillation counter
LSD	Least significant difference
MBC	Microbial biomass carbon
MBN	Microbial biomass nitrogen
¹⁵ N	Stable nitrogen isotope with atomic mass 15
N _{min}	Mineral nitrogen
N _{tot}	Total nitrogen
OM	Organic matter
PAR	Photosynthetic active radiation
PE	Priming effect
PL	Pulse labeling
RB	Root biomass
RMR	Rhizomicrobial respiration
RPE	Rhizosphere priming effect
RR	Root respiration
SEM	Standard error of means
SOC	Soil organic carbon
SOM	Soil organic matter
ssp.	Subspecies
TOC	Total organic carbon
WHC	Water holding capacity
PU	Polyurethane
V-PDB	Vienna Pee Dee Belemnite
WRB	World Reference Base for Soil Resources

I Extended Summary

1 Introduction

1.1 Carbon fluxes into and out of the soil

Soils are the largest reservoir of organic carbon (C) in terrestrial ecosystems (Amundson, 2001). It is estimated that soils globally contain about 1,500 Gt of C, which is approximately double the amount of the atmospheric pool and almost three times more than stored in the terrestrial biosphere (Schlesinger, 1997). Annually, land plants assimilate about 120 Gt of C from the atmospheric CO_2 through photosynthesis (Schlesinger, 1997; Lal, 2008). Half of it is transferred from the biosphere into the soil, either as root and shoot litter after plant death or as C released from living roots (Paterson et al., 2009). Again about 60 Gt of C are annually returned back as CO_2 from the soil to the atmosphere (Schlesinger, 1997; Lal, 2008). The soil CO_2 efflux is one of the largest fluxes in the global C cycle (Schlesinger and Andrews, 2000; Amundson, 2001). As such, it is increasingly becoming a focus of scientific interest in the context of climate change, since small alterations in the efflux rate may lead to detectable changes in the atmospheric CO_2 level (Schlesinger and Andrews, 2000; Amundson, 2001).

Figure I.1/1: Sources of biogenic CO_2 efflux from soil, ordered by the turnover rate and mean residence time of C in soil (after Kuzyakov, 2006).

The two main sources contributing to the CO₂ efflux from the soil are plant-derived CO₂ and CO₂ from the decomposition of soil organic matter (SOM) (Fig. I.1/1). Plantderived CO₂ includes mineralization of dead plant residues as well as root-derived CO₂, i.e. root respiration (RR) and CO₂ from microbial decomposition of root-released substances (rhizomicrobial respiration; RMR) (Kuzyakov, 2006). The contribution of the different sources is highly variable for different ecosystems depending on a wide range of plant, soil and environmental factors. Reported contributions of root-derived CO₂ range, for instance, from 10%-90% depending on the type of study and the respective ecosystem (Hanson et al., 2000; Kuzyakov and Gavrichkova, 2010).

Agroecosystems, in particular, are characterized by short-term and long-term changes in the soil CO_2 efflux through alterations in root-derived CO_2 and in SOM-derived CO_2 , respectively, based on agricultural management practices (Gavrichkova, 2009). Since cropland and grassland cover 30% of the earth's land surface (Buyanovsky and Wagner, 1998) our knowledge of the soil CO_2 efflux from these ecosystems is central for understanding the global C exchange between soil and atmosphere.

Due to the high turnover rate of root-released substances, rhizomicrobial respiration is of key importance for the soil CO_2 efflux (Fig. I.1/1). In contrast to C inputs by plant litter, C released from living roots remain, however, a large factor of uncertainty in the C cycle.

The present thesis, therefore, focuses on C inputs into the soil by living roots of crop and grassland species.

1.2 Rhizodeposition

The rhizosphere, a term introduced by Lorenz Hiltner in 1904, is defined as the volume of soil affected by the presence of living roots (Darrah, 1993; Uren, 2007). It describes a complex, unique habitat with chemical, physical and biological conditions different from those of the bulk soil. As plant roots grow, longitudinal and radial gradients between the root surface and the bulk soil are created (Uren, 2007) mainly as a result of nutrient and water uptake and of rhizodeposition, i.e. the release of organic substances by living roots (Nguyen, 2003). Rhizodeposits originate from root exudates of intact cells, which can either be released passively by diffusion or actively by secretion, from

lysates of sloughed-off cells and dead tissues, and from mucilage (Fig. I.1/2; Neumann and Römheld, 2007; Dennis et al., 2010).

Plants translocate about half of the assimilated C to belowground pools (Lynch and Whipps, 1990; Kuzyakov and Domanski, 2000) and up to 40% of the fixed C can be lost through rhizodeposition (Lynch and Whipps, 1990). Root exudates, dominated by low molecular weight solutes such as sugars, carboxylic acids and amino acids, serve as a source of easily available energy for microorganisms in the rhizosphere, stimulating their growth and activity (Merbach et al., 1999; Nguyen, 2003; Jones et al., 2004). In turn, microbes decompose SOM and thereby release plant available nutrients (Paterson, 2003). Rhizodeposition is thus the most important link between plant growth and microbial mediated processes in soils.

Figure I.1/2: Origin of different types of rhizodeposits (after Dennis et al., 2010)

Rhizodeposition is not homogeneously distributed along the root segments (McDougall and Rovira, 1970; Nguyen, 2003; Dennis et al., 2010). Organic substances are rather released in distinct areas. These hotspots are characterized as small soil volumes rich in easily available organic substrate for microorganisms. Fig. I.1/2 summarizes the origin of different types of rhizodeposits and shows that hotspots mainly occur at root tips (Dennis et al., 2010).

Although it is known that root exudation is mainly supplied from recently assimilated C allocated belowground (Craine et al., 1999; Kuzyakov and Cheng, 2001), the dynamics of hotspots in the rhizosphere remain poorly understood.

Study 1 – Photoassimilate allocation and dynamics of hotspots in roots visualized by ${}^{14}C$ phosphor imaging – aimed to identify recently assimilated C in roots of Lolium perenne presuming that its distribution and dynamics reflect the hotspots in the rhizosphere, since it is the recently assimilated C that mainly fuels rhizosphere processes (Kuzyakov and Cheng, 2001). It was hypothesized that ${}^{14}C$ hotspots in the roots occur shortly after the assimilation and are highly dynamic.

1.3 The rhizosphere priming effect

Providing root exudates as energy source for microorganisms, plants influence microbial activity and consequently affect the SOM turnover in the rhizosphere. Changes in the rate of SOM turnover in the presence of living roots are referred to as 'rhizosphere priming effects' (RPE; Kuzyakov, 2002; Cheng and Kuzyakov, 2005). It was found that already small amounts of easily decomposable root exudates can provoke a SOM turnover much higher than would be predicted from the amounts of material added (Kuzyakov, 2002; Paterson, 2003; Cheng and Kuzyakov, 2005). On the other hand, N shortages in the rhizosphere may intensify the competition between plant roots and microorganisms which could inhibit microbial growth and activity and therefore suppress SOM decomposition (Schimel et al., 1989; Van Veen et al., 1989; Wang and Bakken, 1997; Bottner et al., 1999). The rhizosphere priming effect can, hence, be either positive or negative (Kuzyakov, 2002; Cheng and Kuzyakov, 2005).

The RPE was shown to be plant-species specific, since species differ in the quality and quantity of root-released organic compounds (Fu and Cheng, 2002; Cheng et al., 2003).

Also plant diversity may have an impact on the RPE. Higher plant diversity leads to higher diversity of litter quality and quantity entering the soil (Stephan et al., 2000). This could stimulate microbial-mediated processes and consequently increase the potential for positive priming. In contrast, with higher plant richness belowground resources are complementarily and thus more completely consumed. A higher competition for N between microbes and plants may result in a reduced RPE.

Therefore, and because of plant inter-species competition for nutrients and water, it is likely that the RPE is affected by inter-species interactions.

Study 2 – *Plant inter-specific effects on rhizosphere priming of soil organic matter decomposition* – was based on the hypothesis that plant inter-species interactions modulate the RPE, and that the modulation is specific to the plant species composition.

1.4 Factors affecting rhizodeposition

Rhizodeposition is influenced by various biotic and abiotic factors in the plant-soil system (Jones et al., 2004). The soil environment can affect rhizodeposition and especially root exudation through physical aspects (e.g. water availability, temperature, soil texture) and chemical conditions (e.g. pH, availability of nutrient ions), as well as through the activity and diversity of microbial populations (Lynch et al., 2002). One of the most important plant-mediated factors is the plant species (see above) (Vancura, 1964; Van der Krift et al., 2001; Kuzyakov, 2002; Cheng et al., 2003).

Depending on the plant species the amount and composition of rhizodeposits can vary. Legumes, for instance, showed higher N concentrations in the root tissue than non-legume species, which can potentially be released into the soil (Uselman et al., 1999; Paynel et al., 2001). Also the allocation pattern of recently assimilated C differs between legumes and non-legumes, since legumes use a higher proportion of assimilated C for root respiration due to the high energy requirements for N_2 fixation (Warembourg et al., 2003).

Not only the plant species but also environmental factors may have an effect on the quality and quantity of root exudates (e.g. Rovira, 1959; Graystone et al., 1998; Paterson et al., 1996). The C supply to rhizosphere processes via exudation depends to a large extent on the belowground allocation of recently assimilated C and thus on the

intensity of photosynthesis. High transport rates of assimilates from the leaves into the roots and into root exudates has been reported (Gregory and Atwell, 1991; Cheng et al., 1993; Kuzyakov et al., 1999). Thus, belowground C allocation, the release of exudates and the CO_2 efflux from the soil are largely governed by photosynthesis (Craine et al., 1999; Kuzyakov and Cheng, 2001; Kuzyakov, 2002).

In pasture ecosystems periodical partial defoliation occur through grazing which may cause changes in the C fluxes belowground. Results of isotopic labeling experiments under controlled conditions are, however, contradicting and show positive, neutral or negative effects of clipping (simulating grazing or defoliation) on C fluxes in the plantsoil system (Paterson et al., 2005). Besides clipping, also shading may provoke effects on C fluxes belowground. It could, for instance, be demonstrated that shading reduced root-derived respiration (Kuzyakov and Cheng, 2001).

Due to the high C and N demand of regrowing shoots after clipping, we hypothesized that clipping and shading provoke different responses with respect to the remobilization of stored C, the allocation of recently assimilated C, and the uptake and remobilization of N.

Study 3 – Effect of clipping and shading on C allocation and fluxes in soil under ryegrass and alfalfa estimated by ¹⁴C labeling – was conducted to investigate how a reduction of the photosynthetic activity, either by clipping (grazing) or shading, affects the allocation of stored C and the CO₂ efflux. We hypothesized that (1) clipping and shading show different responses with respect to the redistribution of stored C in plant and soil pools, and that (2) legumes respond differently to limited photosynthesis than nonlegume species.

In Study 4 – *C* and *N* allocation in soil under ryegrass and alfalfa estimated by ${}^{13}C$ and ${}^{15}N$ labeling – the allocation of recently assimilated C, the N uptake by plants and the remobilization of plant-stored N after reduced photosynthesis was investigated. The hypothesis was that a limitation of photosynthesis alters the distribution of recently assimilated C but also the N distribution in the plant and soil system, and that the magnitude of alteration depends to a large extend on the plant species and on the approach of photosynthetic restriction (clipping or shading).

1.5 Belowground C input at field scale and its microbial availability

As shown in the previous chapters, rhizodeposition is a process of major importance for carbon and nutrient cycling in the soil. However, it is challenging to reliably quantify rhizodeposition, mainly due to the fast decomposition of rhizodeposits (Fig. I.1/1). There is a lack of suitable methods to estimate rhizodeposition at field scale taking into account the fraction of C released from roots that is mineralized (Nguyen, 2003).

The methodological objective of Study 5 – *Estimation of rhizodeposition at field scale: extrapolation of a* ^{14}C *labeling study* – was to provide a new approach for the estimation of rhizodeposition in the field. This approach is based on the determination of a rhizodeposition-to-root ratio through a $^{14}CO_2$ pulse labeling experiment under controlled conditions and the subsequent application of this ratio to field root biomass data. Maize was planted on an arable field and the root biomass C was determined to estimate rhizodeposition.

It is well established that C that entered the soil recently is more easily decomposable by microorganisms than older, more recalcitrant C pools (e.g. Von Lützow et al., 2006; Jastrow et al., 2007). However, only very few approaches allow for a quantitative estimation of the availability of C in relation to the time it entered the soil.

Study 6 – Soil organic carbon decomposition from recently added and older sources estimated by δ^{13} C values of CO₂ and organic matter – aimed to determine the microbial availability of younger relative to older C sources. We hypothesized, that the δ^{13} C values of soil CO₂ and the δ^{13} C values of SOM after a change from C₃ (wheat) to C₄ (maize) vegetation can be used to estimate the relative availability of C sources of different ages.

1.6 Objectives

In summary, the main objectives of the present work were to

- (1) identify hotspots of recently assimilated C in roots of *L. perenne* and to determine their dynamics (Study 1),
- (2) investigate plant inter-species effects on rhizosphere priming of soil organic matter decomposition (Study 2),
- (3) assess the influence of limited photosynthesis on the redistribution of stored C within the plant-soil systems of a legume and a non-legume (Study 3),
- (4) assess the influence of limited photosynthesis on the redistribution of recently assimilated C and mineral N within the plant-soil systems of a legume and a nonlegume (Study 4),
- (5) suggest an approach for the determination of rhizodeposition at a field scale and quantify rhizodeposition of maize (Study 5),
- (6) estimate the relative availability of younger C compared to older C for microbial decomposition (Study 6).

2 Materials and Methods

2.1 Isotope approaches

The main challenges for the investigation of rhizodeposition are its occurrence only within a narrow zone around the roots, the fast decomposition of root-released organic C by soil microorganisms and its much lower content compared to other organic substances in the soil (Kuzyakov and Domanski, 2002). To gain a better understanding of rhizosphere processes, stable and radioactive isotope based labeling techniques are applied to differentiate between plant-derived organic C and native SOM. The most common methods are (1) pulse labeling, (2) continuous labeling, and (3) the utilization of natural differences in the isotopic signature between plant C and SOM (Paterson et al., 2009).

For pulse labeling used in Studies 1, 3, 4, 5 the plants were exposed to the isotope-tracer ($^{14}CO_2$ and/or $^{13}CO_2$) in a Plexiglas chamber for a short period of time (several hours), whereas for continuous labeling used in Study 2 the plants were grown in a greenhouse in a tracer atmosphere from the emergence of the first leaf till harvest. Fig. I.2/1 shows the two different experimental set-ups, technical details are provided in the respective studies (Chapter II).

The third method is based on a vegetation change of plants with different photosynthetic pathways, introducing a distinct isotopic signature into the soil (Balesdent and Mariotti, 1987). Depending on the photosynthetic pathways plants differ in their ¹³C discrimination during photosynthesis, resulting in a higher ¹³C depletion of C₃ plants compared to C₄ plants (Farquhar et al., 1989). Therefore, when growing C₄ plants on soil originally formed in areas of C₃ vegetation (or vice versa), root- and soil-derived C can be differentiated based on their isotopic differences (Balesdent and Mariotti, 1987). This approach was used in a field experiment in Study 6 (Chapter 2.2).

The three methods fundamentally differ from each other in the resulting distribution of the tracer within the plant and soil (Meharg, 1994), and hence, the choice of the respective method depends on the research question. Pulse labeling provides information on the relative allocation of recently assimilated C to different C pools and allows studying the dynamics of C translocation between pools (Rattray et al., 1995). The allocation pattern, however, strongly depends on the stage of plant growth, and the results obtained by pulse labeling cannot directly be transferred to the whole growing period (Kuzyakov and Domanski, 2000). Since the tracer is not evenly distributed within the plant after pulse labeling, C fluxes and pools can only roughly be quantified (Lynch and Whipps, 1990; Paterson et al., 2009). Continuous labeling, on the other hand, produces uniformly labeled plant material. The advantage of continuous labeling is that it enables to quantitatively separate root-derived C from native SOM-derived C in soil as well as in soil CO₂ (Lynch and Whipps, 1990; Meharg, 1994). However, the special equipment required for continuous labeling is expensive and the complex experimental set-up cannot easily be adapted to field experiments. Therefore, a vegetation change from C_3 to C_4 plants (or vice versa) has commonly been applied to continuously introduce a natural tracer into a system (Balesdent and Mariotti, 1987). Shortcomings of this method are that different isotopic fractionations may occur between C₃ and C₄ plants which may bias the picture of plant-derived C incorporated into a certain C pool (Hobbie and Werner, 2004; Zhu and Cheng, 2011), and that experiments using the vegetation change are restricted to places where environmental conditions allow to grow C₄ plants on C₃ soil (or vice versa) (Kuzyakov and Domanski, 2000).

In addition to the C isotope labeling approaches, in one study (Study 4) a 15 N labeling was performed by adding dissolved K 15 NO₃ to the soil surface shortly before the 13 CO₂ labeling.

Table I.2/1 gives an overview of the different isotope labeling methods and of the treatments applied to the plant cultures. Detailed descriptions are provided in the respective studies (Chapter II).

Figure I.2/1: Experimental set-up of labeling approaches. A: Pulse labeling of plants in a ${}^{13}CO_2$ or ${}^{14}CO_2$ atmosphere. B: Greenhouse for continuous ${}^{13}C$ labeling after the approach developed by Cheng and Dijkstra (2007).

2.2 Experimental site for field studies

The investigations of rhizodeposition at field scale (Study 5) and of the microbial availability of younger and older C sources (Study 6) were carried out on an arable field near Göttingen, Germany (51°33′36.8′N, 9°53′46.9′E). The field has been under agricultural use at least since the late 18^{th} century with long-term C₃ vegetation. The soil was classified as a haplic Luvisol (IUSS, 2007). The main soil properties are presented in detail by Kramer et al. (2012).

Before starting the experiment in April 2009, a soil survey was conducted to determine the variability of the isotopic composition and organic C (C_{org}) content of SOM and to identify optimal locations with comparable conditions for establishing the experimental plots. Samples were taken from the upper 10 cm. The field site had a mean C_{org} content of 11.63±0.2 mg C g_{soil}^{-1} and showed δ^{13} C values typical for C₃ vegetation with a variability of less than 2.2 ‰ (Fig. I.2/2). Overall, the soil survey showed that all plots had comparable isotopic compositions at the start of the experiment.

Figure I.2/2: Total organic C content and its δ^{13} C signature in 0-10 cm depth. Dashed lines: grid established for the soil survey; solid lines: experimental plots.

The experimental plots were established in two rows of 10 plots (24 x 24 m) each (Fig. I.2/2; Kramer et al., 2012). In 2009, one row of plots was planted with the C_4 plant ma-

ize (*Zea mays* L. cv. Ronaldinio) and the second row was used as reference with the C_3 plant winter wheat (*Triticum aestivum* L. cv. Julius). The wheat was harvested in August and the maize in early November. In 2010, in the second year of the study, maize (*Zea mays* L. cv. Fernandez) and summer wheat (*Triticum aestivum* L. cv. Melon) were replanted on the respective plots and on one former maize plot a bare fallow was established. In July 2009 root biomass samples of maize were taken for Study 5 and in 2010 soil CO₂ and soil were sampled during May and November for Study 6.

2.3 Sampling and analyses

Sampling was conducted at defined time intervals after labeling (Table I.2/1).

In the greenhouse and chamber experiments with continuous and pulse labeling (Fig. I.2/1) soil CO₂ was trapped from sealed pots by circulating the soil air through NaOH solution (Studies 2, 3, 4, 5). The total C concentration of the NaOH samples was measured either by titration with HCl against phenolphthalein (Study 3, 4) or by means of a TOC analyzer (Study 2, 5). To measure the ¹⁴C activity of CO₂, aliquots of NaOH samples were mixed with a scintillation cocktail and analyzed by a liquid scintillation counter (LSC; Studies 3, 5). In order to determine the δ^{13} C value, CO₂ trapped in NaOH was precipitated as SrCO₃ after the addition of SrCl₂ solution (Harris et al., 1997), and analyzed by coupling an elemental analyzer to an isotope ratio mass spectrometer (EA-IRMS; Studies 2, 4).

In the field experiment (Study 6) the method for soil CO₂ sampling was based on the exchange of soil air with the air inside a silicon tube by diffusion (Kammann et al., 2001; Knorr et al., 2008). The tube was buried in the soil at various depths and was gastight fitted to a stopcock with a cannula to allow for aboveground air sampling. The δ^{13} C value and concentration of CO₂ was determined using a gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS).

To determine the ¹⁴C activity of plants (roots and shoots) and soils (Studies 3, 5), the samples were combusted in a combustion unit and the released CO_2 was trapped in NaOH. The ¹⁴C activity was measured with a LSC and the total C content with a TOC analyzer. To analyze the distribution pattern of ¹⁴C (Study 1), shoots and roots were prepared as herbariums and the ¹⁴C activity was visualized by phosphor imaging. To

obtain the δ^{13} C and δ^{15} N values and total C and N contents, plant and soil materials were analyzed by means of EA-IRMS (Studies 2, 4, 6).

The microbial biomass C (MBC) and the microbial biomass N (MBN) were determined by the chloroform fumigation extraction method using the approach of Vance et al. (1987) with modifications. Soil samples were either directly extracted with K₂SO₄ solution or fumigated with CHCl₃ before extraction. The difference between the C or N concentrations of extracts of fumigated and unfumigated samples gives the amount of MBC and MBN. As a measure for the fraction of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) the C and N concentrations of the unfumigated samples were used. To determine the ¹⁴C activity of MBC and DOC, the extracts were directly measured by means of a LSC (Studies 3, 5). The δ^{13} C and δ^{15} N values of MBC/MBN and DOC/DON were determined in dried extracts using an elemental analyzer coupled to an IRMS (Study 4).

Soil mineral N (N_{min} ; $NO_3^- + NH_4^+$) was extracted with KCl solution and the extracts were analyzed for NO_3^- and NH_4^+ by a flow injection analyzer (Study 2).

Study	Species	Treatment	Time of sampling ¹	Approach ⁴	Type of study
1	Lolium perenne	-	6 HAL 2 DAL 11 DAL	¹⁴ C PL	Growth chamber
2	Triticum aestivum Glycine max Helianthus an- nuus	Monocultures 2-species mixture 3-species mixture Unplanted soil	30 DAP 56 DAP	¹³ C CL	Greenhouse + additional lighting
3	Lolium perenne Medicago sativa	Clipping Shading	1 DAL ² 3 DAL ² 5 DAL ²	¹⁴ C repeated PL	Growth chamber
4	Lolium perenne Medicago sativa	Clipping Shading	1 DAL ² 3 DAL ² 5 DAL ² 6 DAL ³ 8 DAL ³ 11 DAL ³ 13 DAL ³ 15 DAL ³	¹³ C repeated PL ¹⁵ N PL	Growth chamber
5	Zea mays	-	2 DAL 5 DAL 10 DAL 16 DAL July 2009	¹⁴ C PL Root biomass	Growth chamber Field
6	Zea mays Triticum aestivum	C_4/C_4 : 2 years maize $C_4/fallow$: bare fallow after 1 year maize C_3 reference: Long- term wheat	Growing period 2010	sampling $\delta^{13}C$ after C_3/C_4 vegetation change	Field

Table I.2/1: Overview of approaches, plant species and applied treatments used in Studies 1-6.

⁻¹ HAL: hours after labeling; DAL: days after labeling; DAP: days after planting.

² After each pulse.

³ After the last pulse.

⁴ PL: pulse labeling; CL: continuous labeling.

3 Results and discussion

The methodological innovations and main results of Studies 1-6 are shown in Table I.3/1. The results of the individual studies are summarized in the following chapters.

Table I.3/1: Synthesis of methodological innovations and main innovative results of Studies 1-6.

Study	Aim	Type of study	Methodological innovations	Main innovative results ¹
1	Identification of hotspots of recently assimilated C in roots and determina- tion of their lifetime	Growth chamber	Statistical analysis of digita- lized ¹⁴ C images	Hotspots occurred already 6 HAL and disappeared 11 DAL
2	Effects of plant in- ter-species interac- tions on RPE	Greenhouse + additional lighting	Separation of root systems of individual plants grown in mixtures and consideration of ¹³ C fractionations between roots and root-derived CO ₂	RPE is affected by plant inter- species interac- tions
3/4	Effects of limited photosynthesis on allocation of stored C, recently assimi- lated C, N of a le- gume and a non- legume	Growth chamber	Pulse labeling with 3 isotopes ¹⁴ C, ¹³ C, ¹⁵ N	Allocation de- pends on the approach of photosynthetic restriction
5	Estimation of rhizo- deposition at field scale	Growth chamber + Field	Coupling of ¹⁴ CO ₂ pulse labe- ling in a growth chamber with root biomass sampled in field	Rhizodeposition of maize in the field is 166±53 kg C ha ⁻¹
6	Determination of the availability of younger and older C sources for microbial decomposition	Field	Application of Miller/Tans models to purify soil CO ₂ from the atmospheric admix- ture Application of a new approach for mixing models which con- siders isotopic fractionation	Younger C is seven times more available than older C sources for mi- crobial decom- position

¹ HAL: hours after labeling; DAL: days after labeling.

3.1 Hotspots of rhizodeposition along the root segments (Study 1)

Hotspots of rhizodeposition were visualized by ¹⁴C phosphor imaging, which proofed to be a promising tool for the investigation of processes at the root-soil interface. The results of Study 1 showed that ¹⁴C assimilates are allocated to the root tips of *Lolium perenne* which is in accordance with former findings that the majority of exudates are released at the most active root parts, near the root cap, at the meristematic root region (Marschner, 1995; Dennis et al., 2010). Exudation is supplied with recently assimilated C through a fast translocation of assimilates from the leaves to the roots (Gregory and Atwell, 1991; Cheng et al., 1993; Kuzyakov et al., 1999). In the current study hotspots at the roots tips occurred already within 6 hours after ¹⁴CO₂ labeling of the shoots (Fig. I.3/1). Similar results were reported for *Brassica napus* (Dennis and Jones, 2006).

Figure I.3/1: ¹⁴C images of roots 6 hours, 2 days and 11 days after labeling. Hotspots of ¹⁴C activity are visible at the root tips 6 hours after labeling and the ¹⁴C activity at the tips decreased with time. The red color indicates the highest activity.

Hotspots along the roots varied in time and space, existing at least for 2 days after labeling (Fig. I.3/1). 11 days after labeling the former hotspot at the tips had disappeared. With continuing root growth new spots are likely to occur at the tips but are no longer visible through ¹⁴C imaging since they were supplied with unlabeled assimilates.

Hotspots within the root tips are assumed to correspond to that of exuded C in the rhizosphere. Evidence for this assumption was given by Dennis and Jones (2006) who compared spots in the roots with that of root exudation captured by filter paper which was exposed to the imaging plate afterwards. Therefore, the fast availability of recently assimilated C at the root tips, as shown in this study, may be decisive for the rhizos-phere priming effect.

3.2 Plant inter-species effects on rhizosphere priming (Study 2)

The rhizosphere priming effect was investigated by continuous ¹³C labeling of sunflower, soybean and wheat grown as monocultures or as mixtures. A consistently positive RPE was found for all monocultures and for all mixtures, the increase above the unplanted soil ranged from 43%-136%. This is explained by the stimulation of microbial growth and activity through rhizodeposition. The higher microbial biomass carbon (MBC) for the two-species mixtures compared to the unplanted soil and to the monocultures suggests that microorganisms were additionally stimulated by the heterogeneity of rhizodeposits originating from different plant species. The MBC of the mixed cultures was, however, lower than would have been expected from the value calculated based on the sum of the MBC of the individual monocultures weighted by their root biomass.

To evaluate plant inter-species effects on rhizosphere priming, an expected RPE was calculated for the mixtures based on the RPE of the monocultures weighted by root biomass and compared to the RPE measured. If the observed value is lower than the expected value, RPE was negatively influenced by inter-species interactions

All mixed cultures showed a tendency towards a reduced RPE through plant interspecies interactions (Fig. I.3/2). However, a significant effect was only observed for the sunflower-wheat mixture. This could be explained by the competition between plant roots and microorganisms for nutrients, especially for N. The competition may be higher in mixed cultures, since plants grown together are able to utilize limited resources more completely (Tilman et al., 1996; Hopper and Vitousek, 1997). A lower mineral N content in the soil of the sunflower-wheat mixture compared to the expectations from the monocultures supports this assumption. With an enhanced competition microbial activity in the rhizosphere may decrease resulting in a reduced RPE (Dijkstra et al., 2010).

Figure I.3/2: Observed minus expected rhizosphere priming effect. * indicates significant differences from zero.

Interestingly, the RPE was not significantly affected in mixtures with soybean, a N_2 -fixing plant. We suggest lower competition for mineral N in these cultures because of the relatively N-rich rhizodeposition of soybeans (Cheng et al., 2003) and because of N sparing, i.e. mineral N not consumed by the legumes (Temperton et al., 2007).

In summary, plant inter-species interactions modulate the rhizosphere priming, and our data provided clear evidence that modulation depends on the species composition.

3.3 Response to limited photosynthesis (Studies 3, 4)

Any change in the photosynthetic activity influences the C allocation in the plant-soil system (Kuzyakov and Cheng, 2001). Aiming to investigate the effect of limited photosynthesis on stored C, a legume and a non-legume were labeled with ¹⁴CO₂. After the ¹⁴C distribution between plant and soil pools was mostly completed, the plants were subjected to clipping and shading and the redistribution of stored ¹⁴C was analyzed (Study 3). In contrast, Study 4 focused on recently assimilated C. Plants were labeled with ¹³CO₂ after clipping and shading to assess the effects of limited photosynthesis on

the allocation of recently assimilated C. Furthermore, Study 4 aimed to investigate the effect of a reduced photosynthetic activity on the N distribution in plant and soil pools after ¹⁵N labeling.

It was found that the cumulative CO₂ efflux from soil was higher under the legume *M*. *sativa* compared to *L. perenne* (Fig. I.3/3), which is explained by the high energy requirement of legumes for N₂ fixation. As reported, 6 mg C are necessary to fix 1 mg N (Vance and Heichel, 1991). The CO₂ efflux decreased after clipping and shading for both species compared to the control due to the lower assimilate supply (Fig. I.3/3). An increase to the level of the control could, however, be detected for clipped *M. sativa* at the end of the experiment, likely due to an enhancement of the nodule respiration to restore the N₂ fixation (Ta et al., 1990).

Figure I.3/3: Cumulative CO₂ efflux from soil (±SEM) under *Medicago sativa* (A) and under *Lolium perenne* (B) from the start of clipping and shading.

Figure I.3/4: Significant differences of the ¹⁴C recovery (C_{old}) (Study 3), the ¹³C recovery (C_{new}) and ¹⁵N recovery (N) (Study 4) in plant and soil pools in comparison to the control (vertical axis). The position of the respective symbols expresses a higher recovery, a lower recovery or no changes (vertical axis) compared to the control. The recoveries under *Medicago sativa* are shown in green color; that under *Lolium perenne* are red colored.

After clipping, the distribution of stored ¹⁴C, recently assimilated ¹³C and ¹⁵N was driven by the high C and N demand of the regrowing shoots. In particular, 5% and 8% of stored ¹⁴C was remobilized and allocated to regrowing shoots of *L. perenne* and *M. sativa*, respectively. Moreover, clipping provoked a reduced allocation of recently assimilated ¹³C belowground, since it was retained in the regrowing shoots (Fig. I.3/4).

For *L. perenne* the contribution of recently assimilated ¹³C to CO₂ was not affected by clipping (Study 3), whereas stored ¹⁴C contributes more to CO₂ compared to the control (Fig. I.3/4; Study 4). This demonstrates that *L. perenne* compensates a low assimilate supply by a higher utilization of stored C for maintenance respiration. The ¹³C and ¹⁴C recovery of CO₂ under *M. sativa* was not affected by clipping.

After shading, there is no need for remobilization of stored C, hence, the ¹⁴C recovery of the shoots and roots did not differ significantly from that of the control (Fig. I.3/4; Study 3). The plant growth under reduced light is restricted by the low supply of recent assimilates. A reduced growth leads to a lower C and N demand of the shoots. Recently assimilated ¹³C was preferentially retained in the shoots and is sufficient to cover the low C demand of the shaded plants (Fig. I.3/4; Study 4).

The findings of these studies (Studies 3 and 4) led to the conclusion that the distribution of stored C, recently assimilated C and N after limited photosynthesis depends on the plant species but even more on the approach of photosynthetic restriction (clipping and shading).

3.4 Quantifying rhizodeposition at field scale (Study 5)

Despite the high number of studies in the last years that have been focusing on rhizodeposition, there is still considerable uncertainty regarding the amount of organic C released by living roots especially under field conditions (Nguyen, 2003). The main reason for this uncertainty is that a significant portion of rhizodeposits is rapidly lost (within hours or even minutes) through rhizomicrobial respiration (Jones et al., 2009), and thus hardly measurable in field studies. To overcome this shortcoming, a new approach for an improved estimation of rhizodeposition in the field based on laboratory and field data was developed in Study 5.

A ¹⁴C pulse labeling experiment with maize (*Zea mays* cv. Ronaldino) was conducted under controlled conditions, the ¹⁴CO₂ efflux from the soil was measured and the data entered into a simulation model (Kuzyakov et al. 1999; 2001; Kuzyakov and Domanski, 2002). The model allows to differentiate rhizomicrobial and root respiration. The partitioning of root-derived CO₂ into root and rhizomicrobial respiration is essential for research focusing on the impact of rhizodeposition on microbial mediated processes in the soil, since SOM turnover is only affected by rhizomicrobial C, while root respiration biases the picture of SOM turnover (Kuzyakov et al., 1999; Nguyen, 2003).

Figure I.3/5: Measured (circles; \pm SEM) and fitted (solid line) cumulative ¹⁴CO₂ efflux from the soil and simulated separation of the total ¹⁴CO₂ efflux in root respiration and rhizomicrobial respiration.

It was shown that rhizomicrobial respiration and root respiration contributes 57% and 43% to root-derived CO_2 , respectively (Fig. I.3/5).

The ¹⁴C activity of total rhizodeposition was then calculated as the sum of the ¹⁴C activity of rhizomicrobial respiration, i.e. of the rhizodeposits decomposed, and that of the rhizodeposits remaining in the soil. A rhizodeposition-to-root ratio of 0.56 ± 0.2 was determined by relating the ¹⁴C activity of total rhizodeposition to the ¹⁴C activity of the roots.

Maize (*Zea mays* cv. Ronaldinio) was cultivated in a field study (Chapter 2.2) and the root biomass was sampled in July 2009. To estimate the total rhizodeposition at a field scale a new approach was used based on the rhizodeposition-to-root ratio from the laboratory experiment which was applied to the root biomass determined in the field.

Maize (25,000 plants ha⁻¹) allocated about 464 kg C ha⁻¹ to belowground pools. A total amount of 298±64 kg C ha⁻¹ was determined in the roots at harvest. It was found that total rhizodeposition in the field accounted for 166±53 kg C ha⁻¹(Fig. I.3/6).

In addition, the fate of rhizodeposits in the soil was investigated in the current ¹⁴C labeling study. $30.6\pm1.5\%$ of the rhizodeposits remained in the soil, $7.3\pm1.1\%$ were incorpo-

rated into microbial biomass (MBC) and $0.3\pm0.1\%$ were detected in dissolved organic carbon (DOC). The main portion of rhizodeposits (61.8±2.1%), however, was decomposed by microorganisms within 16 days after labeling.

The results underline the necessity to consider the portion of rhizodeposits which are quickly mineralized in order to reliably estimate total rhizodeposition. Compared to previous studies, reporting only on the portion of rhizodeposits which remained in the soil (net rhizodeposition), the present study provides an improved approach that offers the possibility to estimate gross rhizodeposition at field scale.

Figure I.3/6: C allocation and rhizodeposition of maize in the field. The amounts of root biomass C and C released by roots via rhizodeposition correspond to a soil depth of 50 cm, a plant population of 25,000 and a growing period from April to July 2009. The fate of rhizodeposits in the soil 16 days after ¹⁴CO₂ pulse labeling under controlled conditions is shown as percentage of total rhizodeposition. The availability of recently introduced C relative to older C pools, estimated in Study 6, is presented.

3.5 Microbial availability of younger and older C sources (Study 6)

The previous results showed a belowground allocation of 464 kg C ha⁻¹ for maize (Chapter 3.4), 36% of which was released by living roots. The main part of rhizodeposits could be detected in the CO_2 efflux shortly after their input into the soil (Chapter 3.4). The turnover rate of young C pools is much higher compared to older pools, and decreased with time after the C entered the soil (Von Lützow et al., 2006).

Study 6 aimed to estimate the microbial availability of C introduced during one growing season of maize relative to older C sources. After a change from C_3 to C_4 vegetation, the isotopic composition of soil CO₂ and SOM was determined for three treatments: C_3 reference (long-term C_3 vegetation), C_4/C_4 (two years of maize cropping), and C_4 /fallow (bare fallow after one year of maize cropping).

A main problem we had to deal with was the admixture of atmospheric CO_2 to soil CO_2 , resulting in a biased isotopic composition. The Miller/Tans model (Miller and Tans, 2003) was successfully applied to obtain an annually integrated isotopic composition of soil CO_2 , purified from atmospheric CO_2 (Fig. I.3/7).

Figure I.3/7: The Miller/Tans model is based on the linear regression between the product of CO₂ concentration and its δ^{13} C value plotted against the CO₂ concentration. The isotopic composition of pure CO₂ from the soil is equivalent to the slope of a regression line. The Miller/Tans model is exemplarily shown for the C₃ reference at 10 cm soil depth.

Soil CO₂ and SOM were partitioned for younger (C₄) and older (C₃) C sources based on their isotopic composition by applying linear two source isotopic mixing models.

These models revealed that young (C₄) C contributes 27% and 49% to soil CO₂ at the 10 cm depth of the C₄/fallow and the C₄/C₄ treatment, respectively (Fig. I.3/8). The C₄/C₄ treatment showed a higher contribution of younger C compared to the C₄/fallow treatment since root-derived CO₂ contributes to total soil CO₂. Even at a depth of 60-70 cm the contribution of young C to soil CO₂ was high for both treatments with 16% for the C₄/fallow and 43% for the C₄/C₄ treatment. Due to the lower content and slower turnover of SOM at this depth compared to the upper horizons, small amounts of young C highly contributed to CO₂. Despite the high contribution of young C to soil CO₂, its contribution to SOM did not exceed 5%.

Figure I.3/8: Contribution of younger and older C sources to total CO_2 and SOM at the C₄/fallow and C₄/C₄ treatment and the C₄-to-C₃ ratios of SOM and CO₂ for the 10 cm depth of the C₄/fallow treatment. Significant differences between the depths and treatments are marked by different letters (P<0.05).

Estimates of the relative availability of younger and older C pools for microbial decomposition were gained by comparing the C₄-to-C₃ ratio of CO₂ (0.37) to that of SOM (0.05) at the 10 cm depth of the C₄/fallow treatment. The results of Study 6 indicate that younger C that entered the soil during one vegetation period is seven times more available for microbial decomposition relative to older C pools (Fig. I.3/8).

4 Rhizodeposition: Conclusion and outlook

The present thesis leads to the following conclusions:

- (1) Hotspots of recently assimilated C quickly appear at the root tips within several hours after the assimilation. These hotspots already disappear within a few days after the assimilation.
- (2) Plant inter-species competition reduces rhizosphere priming effects.
- (3) Photosynthesis is a key driver for rhizodeposition. The allocation pattern of C and N within the plant-soil system strongly depends on the approach of photosynthetic restriction and on the plant species.
- (4) The comparison of δ^{13} C values of CO₂ and of SOM after a C₃ to C₄ vegetation change allows for a quantitative estimation of the relative availability of younger and older C sources.
- (5) The quantity of gross rhizodeposition at field scale can be estimated by applying a rhizodeposition-to-root ratio determined under controlled conditions to the root biomass sampled in the field.

These conclusions are of particular relevance for future investigations, for the following reasons:

- (1) Our study of hotspots of recently assimilated C in roots demonstrates the necessity to link rhizodeposition to root morphology. Root branching, the number of root tips and the root diameter are expected to largely impact rhizodeposition. With root growth the tips are moving through the soil and new regions become hotspots of recently assimilated C. There is a need to analyze microbial activity in rhizosphere hotspots. SOM turnover in the hotspots may, for instance, even last longer than available C is present since parts of microorganisms may remain active beyond the period of exudation (Kuzyakov, 2002).
- (2) Hotspots of rhizodeposition and rhizosphere priming effects will gain increasing importance in the context of climate change in the future, because it was shown that elevated CO₂ concentrations in the atmosphere stimulate root growth and enhance

root exudation (Dorodnikov et al., 2009). A higher input of C through exudation occurring in hotspots is expected to lead to accelerated SOM turnover through positive priming effects. The higher input can thus be counterbalanced by increasing CO_2 emissions from soils. This calls for further investigations on the response of rhizosphere processes to elevated CO_2 .

- (3) Rhizosphere priming effects will play an important role in the context of sustainable agriculture and organic farming. The shift towards systems with a low external input of fertilizers increases the dependence of plants on nutrient release from SOM due to RPE.
- (4) Substrate availability is a major limiting factor for microbial activity and thus for the CO₂ efflux from soils. Through the tight coupling of assimilation and exudation, photosynthesis is of key importance for microbially mediated processes in the rhizosphere. As we could show, restriction of photosynthesis by clipping does not only evoke a remobilization of stored C in the plant, but also a retention of recently assimilated C in the shoot. Clipping experiments, used to simulate grazing, are valuable for predictions of C fluxes in the soil of agricultural pasture ecosystems and for the assessment of management practices.
- (5) There is a critical need for new methods allowing to estimate rhizodeposition under field conditions. Most of the previous methods greatly underestimated rhizodeposition since they do not account for the fraction of rhizodeposits which is fast decomposed by microorganisms. The new approach provided in this thesis is based on the rhizodeposition-to-root ratio determined under controlled conditions. If the ratio is known for particular plants, this approach offers a promising method to estimate rhizodeposition on ecosystem scale as a huge data base of root biomass distributions already exists in the literature.

5 Contributions to the included manuscripts

This Ph.D. thesis comprises five published and one submitted manuscripts which were elaborated in cooperation with various co-authors. The co-authors listed on the manuscripts contributed as follows:

Study 1: Photoassimilate allocation and dynamics of hotspots in roots visualized by ¹⁴C phosphor imaging

- Status: Published in Journal of Plant Nutrition and Soil Science, 2011, Vol. 174, Page 12-19
- J. Pausch: 70% (experimental design, accomplishment of experiment, laboratory analyses, data preparation, manuscript preparation)
- Y. Kuzyakov: 30% (discussion of experimental design and results, comments to improve the manuscript)

Study 2: Plant inter-species effects on rhizosphere priming of soil organic matter decomposition

Status: Published in Soil Biology and Biochemistry, 2013, Vol. 57, Page 91-99

- J. Pausch: 60% (experimental design, accomplishment of experiment, laboratory analyses, data preparation, manuscript preparation)
- B. Zhu: 20% (discussion of experimental design and results, comments to improve the manuscript)
- Y. Kuzyakov: 10% (discussion of experimental design and results, comments to improve the manuscript)
- W. Cheng: 10% (discussion of experimental design and results, comments to improve the manuscript)

Study 3: Effect of clipping and shading on C allocation and fluxes in soil under ryegrass and alfalfa estimated by ¹⁴C labeling

- Status: Submitted to Applied Soil Ecology; date: November 11, 2011, resubmitted: February 19, 2012
- A. Schmitt: 60% (experimental design, accomplishment of experiment, laboratory analyses, data preparation, manuscript preparation)
- J. Pausch: 25% (discussion of experimental design, analyses and results, comments to improve the manuscript)
- Y. Kuzyakov: 15% (discussion of experimental design and results, comments to improve the manuscript)

Study 4: C and N allocation in soil under ryegrass and alfalfa estimated by ¹³C and ¹⁵N labeling

Status: Published in Plant and Soil, 2012, DOI: 10.1007/s11104-012-1536-5

- A. Schmitt: 60% (experimental design, accomplishment of experiment, laboratory analyses, data preparation, manuscript preparation)
- J. Pausch: 25% (discussion of experimental design, analyses and results, comments to improve the manuscript)
- Y. Kuzyakov: 15% (discussion of experimental design and results, comments to improve the manuscript)

Study 5: Estimation of rhizodeposition at field scale: upscaling of a ¹⁴C labeling study

- Status: Published in Plant and Soil, 2012, DOI: 10.1007/s11104-012-1363-8
- J. Pausch: 70% (experimental design, accomplishment of experiment, laboratory analyses, data preparation, manuscript preparation)
- J. Tian: 10% (laboratory analyses, comments to improve the manuscript)
- M. Riederer: 10% (laboratory and field work, comments to improve the manuscript)
- Y. Kuzyakov: 10% (discussion of experimental design and results, comments to improve the manuscript)

Study 6: Soil organic carbon decomposition from recently added and older sources estimated by δ^{13} C values of CO₂ and organic matter

Status: Published in Soil Biology and Biochemistry, 2012, Vol. 55, Page 40-44

- J. Pausch: 80% (experimental design, accomplishment of experiment, laboratory analyses, data preparation, manuscript preparation)
- Y. Kuzyakov: 20% (discussion of experimental design and results, comments to improve the manuscript)

References

- Amundson, R., 2001. The carbon budget in soils. Annual Review of Earth and Planetary Sciences 29, 535-562.
- Balesdent, J., Mariotti, A., 1987. Natural ¹³C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry 19 (1), 25-30.
- Buyanovsky, G.A., Wagner, G.H., 1998. Changing role of cultivated land in the global carbon cycle. Biology and Fertility of Soils 27, 242-245.
- Bottner, P., Pansu, M., Sallth, Z., 1999. Modelling the effect of active roots on soil organic matter turnover. Plant and Soil 216, 15-25.
- Cheng, W., Coleman, D.C., Carroll, C.R., Hoffman, C.A, 1993. In situ measurement of root respiration and soluble carbon concentrations in the rhizosphere. Soil Biology and Biochemistry 25, 1189-1196.
- Cheng, W., Dijkstra, F.A., 2007. Theoretical proof and empirical confirmation of a continuous labeling method using naturally ¹³C-depleted carbon dioxide. Journal of Integrative Plant Biology 49 (3), 401-407.
- Cheng, W., Johnson, D.W., Fu, S., 2003. Rhizosphere effects on decomposition: Controls of plant species, phenology, and fertilization. Soil Science Society of America Journal 67, 1418-1427.
- Cheng, W., Kuzyakov, Y., 2005. Root effects on soil organic matter decomposition, in: Zobel, R.W., Wright, S.F. (Eds.), Roots and Soil Management: Interactions between Roots and the Soil. ASA-SSSA, Madison, Wisconsin, pp. 119-143.
- Craine, J.M., Wedin, D.A., Chapin III., F.S., 1999. Predominance of ecophysiological controls on soil CO₂ flux in a Minnesota grassland. Plant and Soil 207, 77-86.
- Darrah, P.R., 1993. The rhizosphere and plant nutrition: a quantitative approach. Plant and Soil 155/156, 1-20.
- Dennis, P.G., Jones, D.L., 2006. ¹⁴C pulse labelling and allocation imaging, in: Luster, J., Finlay, R. (Eds.) Handbook of Methods Used in Rhizosphere Research, Swiss Federal Research Institure WSL, Birmensdorf, Switzerland.

- Dennis, P.G., Miller, A.J., Hirsch, P.R., 2010. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbial Ecology 72, 313-327.
- Dijkstra, F.A., Morgan, J.A., Blumenthal, D., Follett, R.F., 2010. Water limitation and plant inter-specific competition reduce rhizosphere-induced C decomposition and plant N uptake. Soil Biology and Biochemistry 42, 1073-1082.
- Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., Kuzyakov, Y., 2009. Stimulation of microbial extracellular enzyme activities by elevated CO₂ depends on soil aggregate size. Global Change Biology 15, 1603-1614.
- Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503-537.
- Fu, S., Cheng, W., 2002. Rhizosphere priming effects on the decomposition of soil organic matter in C₄ and C₃ grassland soils. Plant and Soil 238, 289-294.
- Gavrichkova, O., 2009. Drivers of soil respiration of root and microbial origin in grasslands. Dissertation.
- Grayston, S.J., Wang, S., Campbell, C.D., Edwards, A.C., 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry 30 (3), 369-378.
- Gregory, P.J., Atwell, B.J., 1991. The fate of carbon in pulse labelled crops of barley and wheat. Plant Soil 136, 205-213.
- Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115-146.
- Harris, D., Porter, L.K., Paul, E.A., 1997. Continuous flow isotope ratio mass spectrometry of carbon dioxide trapped as strontium carbonate. Communications in Soil Science and Plant Analysis 28, 747-757.
- Hiltner, L., 1904. Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98, 59-78.

- Hobbie, E.A., Werner, R.A., 2004. Intramolecular, compound-specific, and bulk carbon isotope patterns in C₃ and C₄ plants: a review and synthesis. New Phytologist 161, 371-385.
- Hooper, D.U., Vitousek, P.M., 1997. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302-1305.
- IUSS Working Group WRB, 2007. World Reference Base for Soil Resources, 2006, first update 2007. World Soil Resource Reports No. 103. FAO, Rome.
- Jastrow, J.D., Amonette, J.E., Bailey, V.L., 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80, 5-23.
- Jones, D.L., Hodge, A., Kuzyakov, Y., 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163, 459-480.
- Jones, D.L., Nguyen, C., Finlay, R.D., 2009. Carbon floe in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil 321, 5-33.
- Kammann, C., Grünhage, L., Jäger, H.-J., 2001. A new sampling technique to monitor concentrations of CH₄, N₂O and CO₂ in air at well-defined depths in soils with varied water potential. European Journal of Soil Science 52, 297-303.
- Knorr, K.-H., Oosterwoud M.R., Blodau C., 2008. Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen. Soil Biology and Biochemistry 40, 1781-1791.
- Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Schoene, J., Scheunemann, N., Schmalwasser, A., Totsche, K.U., Walker, F., Scheu, S., Kandeler, E., 2012. Carbon flow into microbial and fungal biomass as a basis to understand the belowground food web in an agroecosystem. Pedobiologia 55, 111-119.
- Kuzyakov, Y., 2002. Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165, 382-396.
- Kuzyakov, Y., 2006. Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38, 425-448.

- Kuzyakov, Y., Cheng, W., 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry 33, 1915-1925.
- Kuzyakov, Y., Domanski, G., 2000. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163, 421-431.
- Kuzyakov, Y., Domanski, G., 2002. Model for rhizodeposition and CO₂ efflux from planted soil and its validation by ¹⁴C pulse labelling of ryegrass. Plant and Soil 239, 87-102.
- Kuzyakov, Y., Ehrensberger, H., Stahr, K., 2001. Carbon partitioning and below-ground translocation by *Lolium perenne*. Soil Biology and Biochemistry 33, 61-74.
- Kuzyakov, Y., Gavrichkova, O., 2010. Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology 16, 3386-3406.
- Kuzyakov, Y, Kretzschmar, A, Stahr, K, 1999. Contribution of *Lolium perenne* rhizodeposition to carbon turnover of pasture soil. Plant and Soil 213, 127-136.
- Lal, R., 2008. Sequestration of atmospheric CO₂ in global carbon pools. Energy and Environmental Science 1, 86-100.
- Lynch, J.M., Whipps, J.M., 1990. Substrate flow in the rhizosphere. Plant and Soil 129: 1-10.
- Lynch, J.M., Brimecombe, M.J., de Leij, F.A.A.M., 2002. Rhizosphere, in: John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000403.pub2.
- Marschner, H, 1995. Mineral nutrition of higher plants. 2nd edn. Academic Press, London.
- McDougall, B.M., Rovira, A.D., 1970. Sites of exudation of ¹⁴C-labelled compounds from wheat roots. New Phytologist 69, 999-1003.
- Merbach, W., Mirus, E., Knof, G., Remus, R., Ruppel, S., Russow, R., Gransee, A., Schulze, J., 1999. Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. Journal of Plant Nutrition and Soil Science 162, 373-383.

- Merharg, A.A., 1994. A critical review of labelling techniques used to quantify rhizosphere carbon-flow. Plant and Soil 166, 55-62.
- Miller, J.B., Tans, P.P., 2003. Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus 55B, 207-214.
- Neumann, G., Römheld, V., 2007. The release of root exudates as affected by the plant physiological status, in: Pinton, R., Varanini, Z., Nannipieri, P. (Eds.), The Rhizosphere. Biochemistry and organic substances at the soil-plant interface. CRC press, Boca Raton, pp 23-72.
- Nguyen, C., 2003. Rhizodeposition of organic C by plant: mechanisms and controls. Agronomie 23, 375-396.
- Paterson, E., 2003. Importance of rhizodeposition in the coupling of plant and microbial productivity. European Journal of Soil Science 54, 741-750.
- Paterson, E., Rattray, E.A.S., Killham, K., 1996. Effect of elevated atmospheric CO₂ concentration on C-partitioning and rhizosphere C-flow for three plant species. Soil Biology and Biochemistry 28 (2), 195-201.
- Paterson, E., Midwood, A.J., Millard, P., 2009. Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytologist 184, 19-33.
- Paterson, E., Thornton, B., Midwood, A.J., Sim, A., 2005. Defoliation alters the relative contributions of recent and non-recent assimilate to root exudation from *Festuca rubra*. Plant, Cell and Environment 28, 1525-1533.
- Paynel, F., Murray, P.J., Cliquet, J.B., 2001. Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant and Soil 229, 235-243.
- Rattray, E.A.S., Paterson, E., Killham, K., 1995. Characterisation of the dynamics of Cpartitioning within *Lolium perenne* and to the rhizosphere microbial biomass using ¹⁴C pulse chase. Biology and Fertility of Soils 19, 280-286.
- Rovira, A.D., 1959. Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plant, light, temperature, and calcium nutrition on exudation. Plant and Soil 11 (1), 53-64.

- Schimel, J.P., Jackson, L.E., Firestone, M.K., 1989. Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a California annual grassland. Soil Biology and Biochemistry 21 (8), 1059-1066.
- Schlesinger, W., 1997. The global carbon cycle, in: Schlesinger, W., (Ed.), Biogeochemistry: An analysis of global change. Academic press, San Diego, pp. 358-382.
- Schlesinger, W.H., Andrews, J.A., 2000. Soil respiration and the global carbon cycle. Biogeochemistry 48, 7-20.
- Stephan, A., Meyer, A.H., Schmid, B., 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology 88, 988-998.
- Ta, T.C., MacDowell, F.D.H., Faris, M.A. 1990. Utilization of carbon and nitrogen reserves of alfalfa roots in supporting N₂-fixation and shoot regrowth. Plant and Soil 127, 231-236.
- Temperton, V.M., Mwangi, P.N., Scherer-Lorenzen, M., Schmid, B., Buchmann, N., 2007. Positive interactions between nitrogen-fixing legumes and four different neighboring species in a biodiversity experiment. Oecologia 151, 190-205.
- Tilman, D., Wedin, D., Knops, J., 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718-720.
- Uren, N.C., 2007. Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants, in: Pinton, R., Varanini, Z., Nannipieri, P. (Eds.), The Rhizosphere. Biochemistry and organic substances at the soil-plant interface. CRC press, Boca Raton, pp. 1-21.
- Uselman, S.M., Qualls, R.G., Thomas, R.B., 1999. A test of a potential short cut in the nitrogen cycle: The role of exudation of symbiotically fixed nitrogen from roots of a N-fixing tree and the effects of increased atmospheric CO₂ and temperature. Plant and Soil 210, 21-32.
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19 (9) 703-707.
- Vance, C.P., Heichel, G.H., 1991. Carbon in N₂ fixation: Limitation or exquisite adaption Ann Rev. Plant Physiology 42, 373-392.

- Vancura, V., 1964. Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant and Soil 21, 231-248.
- Van der Krift, T., Kuikman, P.J., Möller, F., Berendse, F., 2001. Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant and Soil 228, 191-200.
- Van Veen, J.A., Merckx, R., Van De Geijn, S.C., 1989. Plant- and soil related controls of the flow of carbon from root through the soil microbial biomass. Plant and Soil 115, 179-188.
- Von Lützow, M., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. European Journal of Soil Science 57, 426-445.
- Wang, J.G., Bakken, L.R., 1997. Competition for nitrogen during decomposition of plant residues in soil: Effect of spatial placement of N-rich and N-poor plant residues. Soil Biology and Biochemistry 29, 153-162.
- Warembourg, F.R., Roumet, C., Lafont, F., 2003. Differences in rhizosphere carbonpartitioning among plant species of different families. Plant and Soil 256, 347-357.
- Zhu, B., Cheng, W., 2011. ¹³C isotope fractionation during rhizosphere respiration of C₃ and C₄ plants. Plant and Soil 342, 277–287.

II Manuscripts

1 Photoassimilate allocation and dynamics of hotspots in roots visualized by ¹⁴C phosphor imaging

Johanna Pausch¹, Yakov Kuzyakov^{1*}

Published in Journal of Plant Nutrition and Soil Science, 2011,

Vol. 174, Page 12-19.

¹ Department of Agroecosystem Research, BayCEER, University of Bayreuth, Germany * Corresponding author Universitätsstr. 30, 95440 Bayreuth, Germany Phone: +49 921 55 2292 Fax: +49 921 55 2315 kuzyakov@uni-bayreuth.de

Abstract

Understanding photoassimilate allocation into the roots and the release of organic substances from the roots into the rhizosphere is an important prerequisite for characterizing the belowground C input, the spatial and temporal distribution of carbon, and the interactions between plants and soil microorganisms. Based on ¹⁴C phosphor imaging, we visualized the allocation of assimilates into *Lolium perenne* roots and estimated the life time of hotspots at the root tips.

Lolium shoots were labeled in a ¹⁴CO₂ atmosphere, and herbariums of roots and shoots were prepared 6 h, 2 d and 11 d after the ¹⁴C pulse. The ¹⁴C distribution in roots and leaves revealed that pulse labeling does not yield homogeneously labeled plant material. The spatial distribution of assimilate allocation was evaluated based on the ¹⁴C specific activity expressed as digital light units (DLU mm⁻²) of the imaging plates. Areas with high relative ¹⁴C specific activity were classified as hotspots. Strong ¹⁴C hotspots were detected mainly at the root tips already 6 h after the ¹⁴C assimilation and they remained active for at least 2 d. Eleven days after the ¹⁴C assimilation the hotspots at the root tips disappeared and the ¹⁴C distribution was much more even than after 6 h or after 2 d.

¹⁴C phosphor imaging proved to be a promising tool to visualize the allocation of photoassimilates into the roots and the rhizosphere and can be used to identify hotspots and their dynamics.

Keywords: Rhizodeposition, ¹⁴C labeling, hotspots, autoradiography, *Lolium perenne*, rhizosphere.

1.1 Introduction

Although the volume of the rhizosphere is typically < 1% of the total soil volume, the importance of the rhizosphere within the global C cycle is enormous (Hinsinger et al., 2005). The rhizosphere is a complex habitat in which conditions differ from those in the bulk soil. Root-derived C forms a localized source of easily available energy for microbial activity. This leads to a unique biological niche within the soil environment characterized by a high abundance, activity, and diversity of microorganisms. Understanding the allocation of photoassimilates into the roots and the rhizosphere is crucial to provide insight into the complex interactions between soil, microorganisms, and plants. However, investigating root-derived C including rhizodeposition is complicated because roots release organic compounds similar to those already present in the soil and because rhizosphere microorganisms rapidly decompose rhizodeposits. To overcome these problems, most methods for analyzing the distribution of C released by roots in various soil pools are based on applying the C isotopes ${}^{14}C$ and ${}^{13}C$ and on quantifying the total ${}^{14}C$ radioactivity or ¹³C content in the soil surrounding the roots. This enables distinguishing the root-derived C from the native soil organic compounds (Whipps, 1990; Buyanovsky et al., 1994). A very few studies also applied the short lived ¹¹C to show the translocation of photoassimilates (Farrar et al., 1994; Keutgen et al., 1995). For isotope applications, continuous labeling (e.g. Johnen and Sauerbeck, 1977; Whipps, 1987; Meharg, 1994) or pulse labeling (e.g. Warembourg and Billes, 1979; Meharg and Killham, 1990; Cheng et al., 1993; Swinnen et al., 1994; Nguyen et al., 1999; Kuzyakov et al., 1999; 2001) was used. The advantages and disadvantages of these labeling approaches were reviewed in several publications (Whipps, 1990; Kuzyakov and Domanski, 2000; Nguyen, 2003; Kuzyakov and Schneckenberger, 2004; Werth and Kuzyakov, 2008).

Based on these labeling techniques, total rhizodeposition was estimated for various plants, although most studies focused on agricultural cereals. Therefore, much less is known about pasture plants. The absolute C input is similar for pasture plants and for agricultural cereals (1,500 kg C ha⁻¹ y⁻¹) when the same growth period is considered (Jensen, 1993; Swinnen et al., 1995b). Nevertheless, the relative C translocation into soil is higher for pasture plants than for agricultural cereals. In order to determine the allocation of assimilates, ¹⁴C or ¹³C pulse labeling of *Lolium perenne* was used (Meharg,

1994; Swinnen et al., 1994; Tinker et al., 1994; Meharg, 1994). Studies based on the application of C isotopes can help evaluate: 1) the total belowground <u>budget</u> of assimilated C, 2) the <u>dynamics</u> of assimilated C in various belowground pools, and 3) the <u>loca-lization</u> of C allocation. Most of the previous studies focused on the first two items – budget and dynamics – while the present study concentrates on the allocation of 14 C assimilates and their dynamics within the root system.

¹⁴C can be detected using autoradiography. In recent years, the traditional autoradiographic technique using X-ray films has been replaced by the so-called phosphor imaging approach, which is based on photoinduced chemiluminescence. Compared to traditional autoradiography, phosphor imaging is about two orders more sensitive to β- and γ -rays, it has a wider radioactivity range for imaging, a wider linear dynamic range between the intensity of the image and the activity of the isotope, it avoids handling chemicals necessary for film development, and it reduces the exposure time (Hamaoka, 1990).

The present study was designed to prove the suitability of phosphor imaging for visualizing the allocation of ¹⁴C labeled assimilates. As a first step towards more detailed information about the complex interactions between plants and soil, we investigated the allocation of C assimilates in roots of ryegrass (*Lolium perenne* L., ssp. Gremie) and identified the ¹⁴C hotspots in these roots.

1.2 Materials and methods

We studied the distribution pattern of the radiotracer ¹⁴C in ryegrass at three different time intervals: 6 h, 2 d and 11 d after start of assimilation of ¹⁴CO₂ via the shoots of the plants. The ¹⁴C distribution pattern was visualized using phosphor imaging of leaves and roots. The main focus of this study was on the ¹⁴C distribution in roots.

1.2.1 Soil properties and plant growth conditions

The experiments were conducted with *Lolium perenne* grown on a fine loamy gleyic Cambisol. The soil samples were taken from the Ah horizon (top 10 cm) of a long-term pasture in Allgäu (S Germany). Basic characteristics of the soil are shown in Table II.1/1.

Table II.1/1: Basic characteristics of the soil sampled from the Ah horizon of a fine loamy gleyic Cambisol from a pasture in the Allgäu (S Germany) (FC, field capacity (pF=1.8); AWC, available water capacity (pF 1.8-4.2)) (Kleber, 1997).

Parameter	Value
pH (CaCl ₂)	5.2
Corg %	4.7
Nt %	0.46
C/N	10.0
Clay (<2 µm) %	28.4
Silt (2-<63 µm) %	47.1
Sand (63-2000 $\mu m)$ %	24.5
FC %	50.0
AWC %	23.0
CaCO ₃ %	0.0

The wet soil samples were air dried, homogenized, and passed through a 2 mm sieve to separate large roots and stones. An amount of 1.6 kg of dried soil with a final density of 1.2 g cm⁻³ was filled into each pot (height 10 cm, inner diameter 14 cm). One prevenalized seedling of ryegrass was grown per pot. The plants were grown at temperatures of 26°C-28°C (day) and at 22°C-23°C (night) with a day length of 14 h and light

intensity of $\approx 800 \ \mu\text{mol m}^{-2} \text{ s}^{-1}$. The soil water content of each pot was measured gravimetrically and was adjusted daily to $\approx 60\%$ of the available field capacity.

1.2.2 Labeling of plants in a ¹⁴CO₂ atmosphere

For ¹⁴C labeling a perspex chamber previously described by Kuzyakov et al. (1999) was used. The airtight chamber consisted of two compartments. The lower compartment (height 200 mm, inner diameter 138 mm) contained the soil, and the upper compartment (height 300 mm, inner diameter 138 mm) was used for the tracer application to the leaves. Both compartments were separated from each other by a perspex lid with drilled holes (inner diameter 8 mm) for the plants. The day before labeling, the holes were sealed at the base using silicone paste (NG 3170, Thauer & Co., Dresden) (Gregory et al., 1991; Swinnen et al., 1995 a). The seals were tested for air leaks. All plants were labeled simultaneously. 381 kBq of ¹⁴C as Na₂¹⁴CO₃ solution were put in a 2 cm³ Eppendorf micro test tube placed in the upper compartment of the chamber. Then the chamber was closed and 1 ml of 5 M H₂SO₄ was added to the solution through a pipe. Assimilation took place within 2 h after the ¹⁴CO₂ pulsing, but most of the ¹⁴CO₂ was assimilated within the first 30 min. After labeling, the CO₂ from the upper compartment was trapped to remove the remaining non-assimilated ¹⁴CO₂. Finally, the top of the chamber was removed and the plants were grown under normal conditions.

After opening the labeling chamber, the CO_2 evolving from the lower compartment was trapped in a 20 mL solution of 0.5 M NaOH by continuous pumping (100 cm³ min⁻¹) with a membrane pump. This removes the ¹⁴CO₂ respired by roots and microorganisms and avoids possible re-uptake of ¹⁴C from the soil solution by roots.

The plants were harvested at three different times after start of labeling: 6 h, 2 d and 11 d. This was done by cutting the plants at the base and opening the bottom compartment of the chamber. Finally, the soil was pulled out. Roots were carefully separated from the soil by handpicking. All picked roots were gently washed in 400 mL of deionized water to remove the soil adhering to the roots. The leaf material and the roots were distributed on a white paper, prepared as a herbarium and dried at 60°C.

1.2.3 Tracer detection by phosphor imaging

The distribution pattern of the ¹⁴C within leaves and roots was determined by Cyclone-Plus Storage Phosphor System (Perkin Elmer, Germany). Each herbarium (6 h, 2 d, 11 d) with roots or shoots was exposed to a sensitive imaging plate in the dark for 1 or 3 weeks. The plate was then scanned by CyclonePlus (Perkin Elmer, Germany) and digitalized by OptiQuant software (Perkin Elmer, Germany). We used two approaches to demonstrate the distribution pattern of assimilated ¹⁴C within the roots: 1) evaluation of the evenness of the ¹⁴C distribution within the roots and identification of ¹⁴C hotspots and 2) visualization of the longitudinal allocation in individual roots.

1.2.3.1 Evenness of the ¹⁴C distribution within the roots and identification of ¹⁴C hotspots

To verify the visual findings of the image-plate pictures, the evenness of the ¹⁴C distribution within the roots was calculated and hotspots were identified by applying a grid to each image (241 columns, 122 rows, square width 1 mm, square length 1 mm, center to center spacing: columns 1 mm, rows 1 mm). The ¹⁴C activities of the single squares were added up and set as the total activity of the grid. The activity per square expressed as digital light units (DLU) per mm² was then put in reference to the total activity. The resulting relative activities were categorized into 39 size ranges with the statistical package Statistica7 for Windows. The smallest range with a relative activity of ≤ 0.006 (> 82% of the image area) was set up as background and excluded from the evaluation.

1.2.3.2 Longitudinal ¹⁴C allocation in individual roots

Within each image, 10 roots were selected and squares (1 mm x 1 mm) were applied to the individual roots in longitudinal direction up to 19 mm. The squares along each root were numbered starting at the root tip. Subsequently, the mean out of all squares of #1, #2, etc. per image was calculated and the data were normalized with reference to the square with the maximum DLU value out of all images. In this approach we used another reference to normalize the data because, despite the same root length, the area around the roots differs and thus cannot be normalized as described under section 1.2.3.1.
1.3 Results

1.3.1 Distribution of ¹⁴C in the shoots

The evenness of the ¹⁴C distribution within the shoots (and roots) was estimated based on the number of DLU per area of the phosphor image, with the red color indicating the highest ¹⁴C activity (Fig. II.1/1). Hotspots of ¹⁴C activity within the image of the shoot 6 h after labeling (Fig. II.1/1A) are located at the growing parts at the leaf base and in the highly photosynthetically active tissue at the tips. Two days and eleven days after labeling, the redistribution of ¹⁴C within the shoots was weak (images not presented) and changes in the distribution were minimal. We therefore did not further evaluate the ¹⁴C distribution in shoots. Note that 6 h after labeling, the total ¹⁴C activity in the shoots was more than 10 times higher than that in the roots (compare DLU scale for shoots and roots).

1.3.2 Evenness of the ¹⁴C distribution within the roots and identification of ¹⁴C hotspots

The root image-plate pictures of ryegrass harvested 6 h, 2 d and 11 d after labeling (Fig. II.1/1B, C, D) showed a shift of the ¹⁴C spots with increasing time after the ¹⁴C pulse. Six hours after labeling (Fig. II.1/1B), substantial amounts of ¹⁴C were allocated to the youngest parts, i.e., to the root tips. In contrast, 11 d after labeling (Fig. II.1/1D) tracer accumulations were also found in the adventitious roots (black arrows in Fig. II.1/1D).

Figure II.1/1: Phosphor images of a shoot 6 h (A) and of roots 6 h (B), 2 d (C) and 11 d (D) after labeling in ${}^{14}CO_2$ atmosphere. ${}^{14}C$ activity expressed as digital light units (DLU). The insets for Fig. II.1/2 are marked by a black rectangle.

To verify the visual findings of Figure II.1/1, the evenness of the ¹⁴C distribution in the roots was statistically evaluated (Fig. II.1/2). If ¹⁴C was evenly distributed, Figure II.1/2 would show a constant line parallel to the x-axis. However, the ¹⁴C distribution obtained consisted of many points with low or very low relative ¹⁴C activity and few points with high activity. Up to the threshold of 0.126, the frequency strongly decreased with increasing relative ¹⁴C activity (Fig. II.1/2). We defined hotspots as regions with low frequency and high relative ¹⁴C activity (> 0.126). The threshold can clearly be identified through the change of the slope of the relative frequency line. Although the number of ¹⁴C hotspots was generally low, their frequency after 11 d was higher than after 6 h or after 2 d. Nevertheless, the number of hotspots at the root tips 11 d after ¹⁴C photoassimilation clearly decreased.

Figure II.1/2: Relationship between the relative frequency of 1 mm x 1 mm squares and their ¹⁴C activity at increasing time after tracer application: 6 h, 2 d and 11 d. Note the logarithmic scale of relative frequency. The insets from Fig. II.1/1 show enlarged hotspots at the root tips 6 h after labeling and decreasing ¹⁴C activity (DLU) at the tips with time.

1.3.3 Longitudinal ¹⁴C allocation in individual roots

In order to better understand the heterogeneity and dynamics of the ¹⁴C activity along the roots, individual parts of ryegrass roots prepared 6 h, 2 d and 11 d after labeling were analyzed for ¹⁴C allocation. Due to root growth, the tracer accumulation zone changed continuously over the 11 d after the ¹⁴C pulse. At the first harvest, ¹⁴C activity was highest mainly in the first millimeters from the root tips, and it decreased with increasing distance from the tips (Fig. II.1/3). Two days later, the maximum of ¹⁴C enriched tissue still occurred within the first 2 mm from the root tips. The maximum peak shifted 11 d after labeling. The highest activity was now located \approx 10 mm from the tips. After ¹⁴C application, the apical meristem grew mainly with unlabeled C. This resulted in unlabeled tissue at the root tip and explains the shift.

Figure II.1/3: Relationship between the mean relative 14 C activities per mm² (%) and the distance from the root tip (mm).

1.4 Discussion

1.4.1 Applicability of ¹⁴C phosphor imaging for visualizing and tracing belowground C allocation

Significant amounts of the C allocated belowground are released as organic C *via* rhizodeposition into the rhizosphere (Marschner, 1995). Previously, Meharg and Killham (1990) found that the net photosynthetic C allocated to the roots of *Lolium perenne* ranges from 14%-67%. Recent studies showed an allocation of \approx 48% of the total assimilated ¹⁴C (Domanski et al., 2001). An amount of 10%-15% of the total fixed C is respired by roots, and a further 15%-25% is released *via* exudation (Domanski et al., 2001). In comparison, Farrar et al. (2003) reported that the exudation rate of soil-grown plants, detected in ¹⁴C labeling investigations, ranges between 5% and 10% of the net assimilated C. Depending on the level of nutrient supply, Werth and Kuzyakov (2006) recovered 0,4%-0,8% ¹⁴C in exudates and 15,1%-16,9% in respired CO₂. It was shown that plants growing in nutrient solution lost only 0.5%-1.5% of the fixed C. Under field conditions, plants import more C belowground than laboratory-grown plants (Meharg and Killham, 1990). Our investigations were carried out with ryegrass grown on a Cambisol, which is closer to field conditions than investigations with plants grown in nutrition solution.

¹⁴C can either be released as exudates or CO₂ into the rhizosphere, or can be stored as a relatively stable fraction in growing tissues at the root tips and the lateral root emergence (Henry et al., 2005). The C translocated belowground is not released evenly by the roots, but in distinct areas, thus creating a gradient of rhizodeposits along each root axis. The ¹⁴C labeling technique allows distinguishing between root-borne C and C components that are already present in the soil. To date, one approach – the two-compartment rhizobox – was known to identify the gradient of rhizodeposition and thus the active microbial zones. In this rhizobox, the root-containing soil is separated from the root-free soil by gauzes with different hole sizes (0...30 μm). After labeling the shoots in a ¹⁴CO₂ atmosphere, the soil compartment without roots is, after a certain period of time, cut into thin slices by a microtome, and the ¹⁴C activity in the different slices is determined (Sauer et al., 2006). Sauer et al. (2006) found maximum ¹⁴C accu-

mulation within 2 mm of the root mat at the gauze. This was explained by the 0.08 to 2 mm long root hairs (Esau, 1965; Zhu et al., 2005) penetrating through the 30 μ m gauze into the root-free soil. However, in the model of Jones et al. (1996), based mainly on diffusion of organic acids, the maximum distance for the recovery of organic acids was < 1 mm from the root surface.

The main shortcoming of this approach is the creation of a root mat at the gauze, followed by an overestimation of root effects due to specific conditions at the mat, undefined numbers of root layers, as well as variation in age and physiological development. Moreover, root effects may be underestimated due to solute mixing, sorption, and microbial metabolism (Wenzel et al., 2001). To avoid these problems, Wenzel et al. (2001) tested a novel rhizobox design: Plants were grown in a soil plant compartment with roots penetrating through a slit into a soil-free compartment consisting of an acrylic window that moves horizontally when root growth pressure is exerted. This allows root growth, distribution, and morphology to be monitored. A membrane separates the soilfree compartment from the root-free soil compartment in which the rhizodeposition gradient can be determined afterwards. An important advantage of this design is the possibility to measure the exact root biomass. This approach enables the diffusion of exudates from the root compartment to be traced, but provides no information on the allocation of assimilated C along and within individual roots. To overcome this problem and to visualize the allocation of photoassimilates in individual roots, another approach based on ¹⁴C phosphor imaging can be applied.

Phosphor imaging had already been used to visualize the allocation and the movement of labeled P (32 P and 33 P) in leaves of *Vicia faba* (Hüve et al., 2007). At the same time, 14 C pulse labeling coupled with phosphor imaging was used to investigate the C flux of assimilated 14 C from *Pinus sylvestris* seedlings to the ectomycorrhizal mycelium (Leake et al., 2001) and between the seedlings of *Pinus densiflora* via ectomycorrhizal mycelia (Wu et al., 2001). This approach helps to visualize and quantify the spatial and temporal patterns of the allocation of 14 C assimilates.

In the present study, the ¹⁴C phosphor imaging approach enabled us to use the imageplate pictures to statistically evaluate the ¹⁴C distribution. The methodology we used in preparing the herbariums did not include measuring rhizodeposition and CO₂ but focused on the ¹⁴C allocation within the roots. The limitations of this approach are mainly linked to the preparation of the root herbariums. Firstly, after carefully extracting the roots, their separation from mineral soil material and washing may lead to a significant loss of fine roots. Secondly, root exudates and rhizodeposits are completely lost during the washing procedure. Therefore, very fine roots, rhizodeposits, and exudates cannot be determined with this approach. Thirdly, the preparation of root (and shoot) herbariums may cause some parts of the roots to overlap (Fig. II.1/1B, C, D). Such overlapping of 2-3 roots could locally increase the ¹⁴C specific activity of the area (DLU mm⁻²), thus overestimating hotspots. The energy of β^{-} particles released by ¹⁴C decay, however, is very low ($E_{max} = 0.156$ MeV), and the probability that they will penetrate the overlapped roots is very small. We therefore assume that the number of hotspots is not overestimated by the image of ¹⁴C on the imaging plates.

The three shortcomings described above (loss of fine roots, loss of exudates, and overlapping) could be overcome using a specially constructed, thin rhizobox with a removable front wall. Placing the boxes in tilted position $(20^{\circ}-30^{\circ}$ vertical) causes roots to grow along this wall. The front wall can be removed after labeling. Then, after drying or freezing the roots and the soil in the rhizobox, the phosphor imaging plate can be placed instead of the wall to prepare the root image. After developing the image, the roots can be carefully removed, and the phosphor imaging plate can be placed again to the soil. This yields an image of rhizodeposition without roots.

1.4.2 Relative carbon allocation in shoots and roots

We compared the allocation of assimilated C in shoots with the allocation in roots based on the intensity of DLU mm⁻². The amount of assimilates in the shoots 6 h after labeling was ≈ 10 times higher than in the roots. Surprisingly, this ratio did not strongly decrease within 2 or 11 d after labeling. Other authors have also reported this interesting phenomenon (Hill et al., 2007). Similar results were frequently obtained for ¹³C pulselabeling experiments based on higher ¹³C enrichment in shoots versus roots (Kastovska and Santruckova, 2007). The difference cannot be adequately explained by less total assimilates allocated to roots compared to shoots: considering the ratio of ¹⁴C shoot to ¹⁴C roots of ≈ 10 (Fig. II.1/1A, B), the total shoot mass should also be ≈ 10 times higher. This phenomenon can be explained either by label storage in pools of the shoots with a long turnover time, or by a much higher turnover of roots compared with shoots and thus a much higher replacement of ${}^{14}C$ (or ${}^{13}C$) from the pulse by subsequent unlabeled C.

Another surprising result clearly visualized by the ¹⁴C distribution was the high inhomogeneity of the C allocation within the shoots. Even within a single leaf, the ¹⁴C activity can differ by 5-7 times (compare parts of individual leaves in Fig. II.1/1A). This shows that it is impossible to produce homogeneously labeled plant biomass by pulse labeling (¹⁴C or ¹³C). Probably, repeated pulse labeling will also be insufficient to produce plant biomass with a homogeneous distribution of the label.

1.5 Conclusions

¹⁴C labeling, coupled with phosphor imaging, can provide detailed insights into the C flows into and through plant roots. The spatial distribution pattern of allocated ¹⁴C was already visible 6 h after assimilation. The spatial distribution of the C allocation in the roots was uneven: up to 2 d after assimilation, it was associated with the root tips, whereas 11 d after assimilation the ¹⁴C allocation to the hotspots at the root tips disappeared. Moreover, it was impossible to produce homogeneously labeled shoot or root biomass by pulse labeling.

¹⁴C phosphor imaging is a promising tool for visualizing C translocation in both plants and rhizosphere. This technique will yield further progress in describing and interpreting soil-root interactions.

Acknowledgements

We are greatly thankful to Oxana Biryukova for the preparation of the herbariums of *Lolium* roots. Financial support for this work was provided by the DFG.

References

- Buyanovky, G.A., Aslam, M., Wagner, G., 1994. Carbon turnover in soil physical fractions. Soil Science Society of America Journal 58, 1167-1173.
- Cheng, W., Coleman, D.C., Carroll, C.R., Hoffman, C.A., 1993. In situ measurements of root respiration and soluble C concentrations in the rhizosphere. Soil Biology and Biochemistry 25, 1189-1196.
- Domanski, G., Kuzyakov, Y., Siniakina, S.V., Stahr, K., 2001. Carbon flow in the rhizosphere of ryegrass (*Lolium perenne*). Journal of Plant Nutrition and Soil Science 164, 381.387.
- Esau, K., 1965. Plant Anatomy. John Wiley & Sons, New York.
- Farrar, J.F., Minchin, P.E.H., Thorpe, M.R., 1994. Carbon import into barley roots- stimulation by galactose. Journal of Experimental Botany 47, 17-22.
- Farrar, J., Hawes, M., Jones, D., Lindow, S., 2003. How roots control the flux of carbon to the rhizosphere. Ecology 84, 827-837.
- Gregory, P.J., Atwell, B.J., 1991. The fate of carbon in pulse labelled crops of barley and wheat. Plant and Soil 136, 205-213.
- Hamaoka, T., 1990. Autoradiography of a new era replacing traditional X-ray film. Cell Technology 9, 456-462.
- Henry, F., Nguyen, C., Paterson, E., Robin, A.S., Robin, C., 2005. How does nitrogen availability alter rhizodeposition in Lolium multiflorum Lam. during vegetative growth? Plant and Soil 269, 181–191.
- Hill, P.W., Marshall, C., Williams, G.G., Blum, H., Harmens, H., Jones, D.L., Farrar, J.F., 2007. The fate of photosynthetically-fixed carbon in *Lolium perenne* grassland as modified by elevated CO₂ and sward management. New Phytologist 173, 766-777.
- Hinsinger, P., Gobran, G.R., Gregory, P.J., Wenzel, W., 2005. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist 168, 293-303.

- Hüve, K., Merbach, W., Remus, R., Lüttschwager, D., Wittenmayer, L., Hertel, K., Schurr, U., 2007. Transport of phosphorus in leaf of *Vicia faba* L. Journal of Plant Nutrition and Soil Science 170, 14-23.
- Jensen, B., 1993. Rhizodeposition by ¹⁴CO₂-pulse-labelled spring barley grown in small field pots on sandy loam. Soil Biology and Biochemistry 25, 1553-1559.
- Johnen, B.G., Sauerbeck, D., 1977. A tracer technique for measuring growth, mass and microbial breakdown of plant roots during vegetation, in Lohm, U., Persson, T.: Soil Organisms as Components of Ecosystems. Ecological Bulletins, Stockholm 25, pp. 366-373.
- Jones, D.L., Darrah, P.R., Kochian, L.V., 1996. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil 180, 57–66.
- Kastovska, E., Santruckova, H., 2007. Fate and dynamics of recently fixed C in pasture plant-soil system under field conditions. Plant and Soil 300, 61-69.
- Keutgen, N., Roeb, G.W., Minchin, P.E.H., Fuhr, F., 1995. Use of transfer function and compartmental analysis to quantify ¹¹C-labelled photoassimilate export from wheat leaves. Journal of Experimental Botany 46, 489-496.
- Kleber, M., 1997. Carbon exchange in humid grassland soils. Hohenheimer Bodenkundliche Hefte, 41.
- Kuzyakov, Y., Domanski, G., 2000. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163, 421-431.
- Kuzyakov, Y., Ehrensberger, H., Stahr, K., 2001. Carbon partitioning and below-ground translocation by *Lolium perenne*. Biology and Biochemistry 33, 61-74.
- Kuzyakov, Y., Kretzschmar, A., Stahr, K., 1999. Contribution of *Lolium perenne* rhizodeposition to carbon turnover of pasture soil. Plant and Soil 213, 127-136.
- Kuzyakov, Y., Schneckenberger, K., 2004. Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Archives of Agronomy and Soil Science 50, 115-132.
- Leake, J.R., Donnelly, D.P., Saunders, E.M., Boddy, L., Read, D.J., 2001. Rates and quantities of carbon flux to ectomycorrhizal mycelium following ¹⁴C pulse labeling

of *Pinus sylvestris* seedlings: effects of litter patches and interaction with a wooddecomposer fungus. Tree Physiology 21, 71-82.

- Marschner, H., 1995. Mineral nutrition of higher plants. Academic Press, London.
- Meharg, A.A., 1994. A critical review of labelling techniques used to quantify rhizosphere carbon flow. Plant and Soil 166, 55-62.
- Meharg, A.A., Killham, K., 1990. Carbon distribution within the plant and rhizosphere in laboratory and field grown *Lolium perenne* at different stages of development. Biology and Biochemistry 22, 471-477.
- Nguyen, C., 2003. Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23, 375-396.
- Nguyen, C., Todorovic, C., Robin, C., Christophe, A., Guckert, A., 1999. Continuous monitoring of rhizosphere respiration after labelling of plant shoots with ¹⁴CO₂. Plant and Soil 212, 191-201.
- Sauer, D., Kuzyakov, Y., Stahr, K., 2006. Short Communication Special distribution of root exudates of five plant species as assessed by ¹⁴C labeling. Journal of Plant Nutrition and Soil Science 169, 360-362.
- Swinnen, J., Van Veen, J.A., Merckx, R., 1994. ¹⁴C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biology and Biochemistry 26, 171-182.
- Swinnen, J., Van Veen, J.A., Merckx, R., 1995 a. Carbon fluxes in the rhizosphere of winter wheat and spring barley with conventional vs. integrated farming. Soil Biology and Biochemistry 27, 811-820.
- Swinnen, J., Van Veen, J.A., Merckx, R., 1995 b. Root decay and turnover of rhizodeposits in field-grown winter wheat and spring barley estimated by ¹⁴C pulselabelling. Soil Biology and Biochemistry 27, 211-217.
- Tinker, P.B., Durrall, D.M., Jones, M.D., 1994. Carbon use efficiency in mycorrhizas: theory and sample calculations. New Phytologist 128, 115-122.
- Warembourg, F.R., Billes, G., 1979. Estimation carbon transfers in the plant rhizosphere, in Harley, J.L., Russell, R.S.: The Soil-Root Interface. Academic Press, London, pp. 183-196.

- Wenzel, W.W., Wieshammer, G., Fitz, W.J., Puschenreiter, M., 2001. Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant and Soil 237, 37-45.
- Werth, M., Kuzyakov, Y., 2006. Assimilate partitioning affects ¹³C fractionation of recently assimilated carbon in maize. Plant and Soil 284, 319-333.
- Werth, M., Kuzyakov, Y., 2008. Root-derived carbon in soil respiration and microbial biomass determination by ¹⁴C and ¹³C. Soil Biology and Biochemistry 40, 625-637.
- Whipps, J.M., 1987. Carbon loss from the roots of tomato and pea seedlings grown in soil. Plant and Soil 103, 95-100.
- Whipps, J.M., 1990. Carbon Economy, in Lynch, J.M.: The Rhizosphere. Wiley, Chichester, pp. 59-97.
- Wu, B., Nara, K., Hogetsu, T., 2001. Can ¹⁴C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytologist 149 (1), 137-146.
- Zhu, J.M., Kaeppler, S.M., Lynch, J.P., 2005. Mapping of QTL controlling root hair length in maize (*Zea mays* L.) under phosphorus deficiency. Plant and Soil 270, 299-310.

2 Plant inter-species effects on rhizosphere priming of soil organic matter decomposition

Johanna Pausch^{1,3*}, Biao Zhu², Yakov Kuzyakov³, Weixin Cheng²

Published in Soil Biology and Biochemistry, 2013,

Vol. 57, Page 91-99.

¹ Department of Agroecosystem Research, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.

² Department of Environmental Studies, University of California, Santa Cruz, CA 95064, USA.

³ Department of Soil Science of Temperate Ecosystems, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.

* Corresponding author

Universitätsstr. 30, 95440 Bayreuth, Germany

Phone: +49 921 55 2177

Email: johanna.pausch@uni-bayreuth.de

Research Highlights

- We studied effects of plant-plant interactions on rhizosphere priming effects (RPE).
- Sunflower, soybean and wheat were grown as monocultures or as mixtures.
- RPE was studied by continuous ¹³C labeling of the monocultures and of the mixtures.
- All planted treatments induced positive RPE (43%-136% of the unplanted control).
- Inter-species interactions can reduce the intensity of priming on SOM decomposition.

Graphical Abstract

Abstract

Living roots and their rhizodeposits can stimulate microbial activity and soil organic matter (SOM) decomposition up to several folds. This so-called rhizosphere priming effect (RPE) varies widely among plant species possibly due to species-specific differences in the quality and quantity of rhizodeposits and other root functions. However, whether the RPE is influenced by plant inter-species interactions remains largely unexplored, even though these interactions can fundamentally shape plant functions such as carbon allocation and nutrient uptake.

In a 60-day greenhouse experiment, we continuously labeled monocultures and mixtures of sunflower, soybean and wheat with ¹³C-depleted CO₂ and partitioned total CO₂ efflux released from soil at two stages of plant development for SOM- and root-derived CO₂. The RPE was calculated as the difference in SOM-derived CO₂ between the planted and the unplanted soil, and was compared among the monocultures and mixtures.

We found that the RPE was positive under all plants, ranging from 43% to 136% increase above the unplanted control. There were no significant differences in RPE at the vegetative stage. At the flowering stage however, the RPE in the soybean-wheat mixture was significantly higher than those in the sunflower monoculture, the sunflower-wheat mixture, and the sunflower-soybean mixture. These results indicated that the influence of plant inter-specific interactions on the RPE is case-specific and phenologydependent. To evaluate the intensity of inter-specific effects on priming, we calculated an expected RPE for the mixtures based on the RPE of the monocultures weighted by their root biomass and compared it to the measured RPE under mixtures. At flowering, the measured RPE was significantly lower for the sunflower-wheat mixture than what can be expected from their monocultures, suggesting that RPE was significantly reduced by the inter-species effects of sunflower and wheat. In summary, our results clearly demonstrated that inter-species interactions can significantly modify rhizosphere priming on SOM decomposition. *Keywords:* Priming effect, ¹³C-continuous labeling, soil respiration, microbial biomass, nitrogen competition, biodiversity, plant-microbial competition.

2.1 Introduction

Soil organic carbon (C) functions as both an important source and a sink of atmospheric CO₂. Many uncertain parameters of the global C cycle are associated with complex soil processes and biological communities, which are both difficult to measure and highly sensitive to disturbance (Moyes et al., 2010). Soil CO₂ mainly consists of (1) rootderived CO₂, including root respiration and microbial decomposition of rhizodeposits from living roots (rhizomicrobial respiration), and (2) CO₂ derived from microbial decomposition of soil organic matter (SOM) (Kuzyakov, 2006). Both sources are linked through the rhizosphere priming effect (RPE) which describes changes in the rate of SOM decomposition in the presence of living roots (Kuzyakov, 2002; Cheng and Kuzyakov, 2005). Plant roots can alter microbial activities by providing organic substances (rhizodeposits) (Paterson, 2003), by competing with microorganisms for mineral nutrients (Schimel et al., 1989; Wang and Bakken, 1997), and by changing the physical and chemical conditions in the rhizosphere (e.g. water, pH) (Shields and Paul, 1973; Jenkinson, 1977). These alterations can lead to either stimulation (positive RPE) or retardation (negative RPE) of SOM decomposition with rates ranging from 70% reduction to as high as 330% increase compared to an unplanted control (Cheng and Kuzyakov, 2005). The direction and magnitude of RPE on SOM decomposition depend on both the plant and the soil. The amount of decomposable organic C and the mineral nitrogen (N_{min}) content of the soil have been identified as two of the main soil factors that significantly influence RPE (Liljeroth et al., 1994; Cheng and Johnson, 1998; Bottner et al., 1999; Kuzyakov, 2002). On the other hand, plant species and their developmental stages (Fu and Cheng, 2002; Cheng et al., 2003) also strongly influence the RPE, possibly through differences in the quality and quantity of rhizodeposits (Van der Krift et al., 2001; Nguyen, 2003; Jones et al., 2004).

Since the RPE is plant-species specific (Fu and Cheng, 2002; Cheng et al., 2003), it may also vary with plant inter-species interactions. It was proposed that with higher plant diversity the diversity of root exudates may also increase (Lavelle et al., 1995; Hooper et al., 2000). This wider spectrum of root exudates from mixed plant species may support a higher microbial biomass and activity in the rhizosphere (Hooper et al., 2000; Spehn et al., 2000; Stephan et al., 2000) whereby, the production of extracellular enzymes can be enhanced. Consequently, the potential for a positive RPE may increase (Fontaine et al., 2003). In contrast, Dijkstra et al. (2010) suggested a plant-diversityinduced decrease in SOM decomposition for systems with low water availability. With higher plant richness, belowground resources, especially N, are being complementarily used (Hooper and Vitousek, 1997; von Felten et al., 2009). This may result in a lower availability of belowground resources and thus, in a decline in the decomposition of SOM (Dijkstra et al., 2010).

In this study monocultures and mixtures of sunflower, soybean and wheat were continuously exposed to ¹³C-depleted CO₂. The soil CO₂ efflux was measured at an early stage of plant development (day 29-30 after planting), and at flowering of sunflower and soybean (day 55-56 after planting). Based on its δ^{13} C values the total soil CO₂ efflux was separated into root- and SOM-derived CO₂. The RPE was calculated as the difference in SOM-derived CO₂ between planted and unplanted treatments. To our knowledge, up to now the experimental work of Dijkstra et al. (2010) is the only study investigating the effect of plant diversity on the RPE, although inter-specific effects on carbon allocation belowground (Sanaullah et al., 2012) and on the activity of microorganisms (Sanaullah et al., 2011) are known. Although the results of Dijkstra et al. (2010) provide evidence that plant-plant interactions modify RPE, no firm conclusions on general patterns could be drawn, which necessitates future research on this topic.

Therefore, the aim of this study was to gain a more comprehensive understanding of modified RPE due to plant inter-species interactions. We hypothesized that the modulation of RPE by inter-species interactions is specific to the plant species composition and dependent on plant developmental stage.

2.2 Materials and methods

2.2.1 Experimental set-up

Monocultures of sunflower (Sun) (Helianthus annuus L.), soybean (Soy) (Glycine max L. Merr.) and spring wheat (Wh) (Triticum aestivum L.) and mixed cultures of sunflower/soybean (Sun/Soy), sunflower/wheat (Sun/Wh), soybean/wheat (Soy/Wh) and sunflower/soybean/wheat (Sun/Soy/Wh) were grown in PVC pots (15 cm diameter, 40 cm height, equipped with an inlet tube at the bottom for aeration and soil CO₂ trapping) with four replicates of the monocultures and six replicates of the mixed cultures. Including two-species mixtures in our study allowed investigation of possible patterns of individual species' influence on RPE when they were grown in mixtures. In addition four unplanted pots were prepared. A nylon bag filled with 1500 g sand was placed at the bottom of each PVC pot to improve air circulation. The pots were then filled with 7.9 kg of air-dried, sieved (<4mm) soil taken from the plough horizon (top 30 cm) of a sandy loam from a farm on the campus reserves of the University of California, Santa Cruz. Air drying and sieving allowed us to achieve a high degree of soil homogeneity and reduced the variability among the treatments and replicates. The soil contained 1.1% organic C and 0.1% N, had a δ^{13} C value of -26.0‰ and a pH value of 5.8. All filled pots were wetted to 20% gravimetric soil moisture content (equivalent of 80% of the water holding capacity) with deionized water.

Seeds were presoaked over night in deionized water before planting. For the mixed cultures we used one individual plant of each species. For all monocultures we used two individual plants per pot to establish comparable growing conditions for all treatments. To get one individual plant, six seeds of wheat, two of sunflower and three of soybean were planted and thinned to one after seedling emergence. The soil moisture content was measured gravimetrically and adjusted daily to 80% of the water holding capacity. To maintain homogeneous soil moisture and good soil structure, water was added through perforated tubes (inner diameter 0.32 cm, total length 180 cm, buried length approximately 140 cm) as described by Dijkstra and Cheng (2007). The location of the pots in the greenhouse was changed weekly by mixing them randomly to guarantee similar growing conditions for the plants. The experiment was conducted from January to March 2011 in a greenhouse equipped with continuous labeling by ¹³C-depleted CO₂ at the University of California, Santa Cruz. Plants were continuously, i.e. from the emergence of the first leaf till harvest, exposed to 13 C-depleted CO₂ (-15‰). The continuous labeling technique allows us to quantitatively differentiate root-derived CO₂ from native SOM-derived CO₂ since both C pools differ in their isotopic composition after labeling (Table II.2/1). During plant growth the day time air temperature inside the greenhouse was maintained at 28°C by two AC units. The night time temperature was kept above 18°C. Artificial lighting (1100W lights, P.L. Light Systems, Beamsville, ON) was used when the natural light intensity was less than 900 W m⁻². The photoperiod was set from 6AM to 6PM. The relative air humidity was kept at 45% by a dehumidifier (Kenmore Elite 70 pint, Sears, Chicago, IL, USA). We continuously labeled the plants with naturally 13 C-depleted CO₂ using the method described in detail by Cheng and Dijkstra (2007). Briefly, a constant CO₂ concentration of 400±5 ppm and a constant δ^{13} C value (see below) was maintained inside the greenhouse by regulating the flow of pure, ¹³C-depleted CO₂ (99.9% CO₂, -35‰) from a tank and setting CO₂-free air flow rate proportional to the leakage rate of the greenhouse (Zhu and Cheng, 2012). The CO₂-free air was produced from compressed air passed through six soda lime columns (20 cm diameter, 200 cm length) filled with approximately 40 kg soda lime each. The CO₂-free air flow was set at 120 L/min. The leakage rate of the greenhouse (300 L/min) was determined without plants shortly before the start of the experiment. This was done, after closing all inputs (CO₂free air, tank CO_2), by raising the CO_2 concentration inside the greenhouse to a certain level and monitoring the decrease of the concentration which is proportional to the leakage rate. The CO₂ concentration inside the greenhouse was continuously monitored by an infra red gas analyzer (Model LI-820, Li-COR, Lincoln, NE, USA) and stabilized at 400 ± 5 ppm by computer controlled CO₂ injection from the tank. A fan was used to ensure a uniform distribution of the CO_2 inside the greenhouse. For the duration of the experiment the δ^{13} C value of the greenhouse air was measured every three days during the light period by pumping air through a glass airstone immersed in 50 mL of 0.5 M NaOH solution. The CO₂ trapping efficiency was nearly 100% as checked by an infra red gas analyzer (Model LI-6262, Li-COR, Lincoln, NE, USA). An aliquot of the sample was precipitated with SrCl₂ as SrCO₃ using the method described by Harris et al. (1997) and analyzed for δ^{13} C (relative to PDB standard) using a PDZ Europa ANCA-

GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer. The mean δ^{13} C value of the greenhouse air was -15.2‰ with a day-to-day variability of <0.7‰.

The inlet tube at the bottom of each pot was connected to an aquarium pump (Elite 802, Hagen Corp., Mansfield, MA, USA) to aerate the pots. This was done two times during the dark period (from 6:30PM to 7PM and from 12AM to 1AM) to avoid contamination of the greenhouse δ^{13} C signal with that of soil-derived CO₂ during the assimilation period. Before the start of each photoperiod the isotopic composition of the greenhouse CO₂ returned to equilibrium.

2.2.2 Measurements

Soil CO₂ efflux was measured on day 29-30 after planting (T1) when the plants were still at vegetative stage and on day 55-56 after planting (T2) during the flowering of sunflower and soybean by means of a closed-circulation CO₂ trapping system (Cheng et al. 2003). Briefly, a Plexiglas lid with holes for the shoots was placed direct on the soil surface. A plastic tube was attached to the lid for CO₂ trapping. The holes around the shoots and between the lid and the rim of the pot were sealed with non-toxic silicone rubber (GI-1000, Silicones Inc., NC, USA). The pots were checked for airtightness. The CO₂ inside the pots was removed by circulating the isolated air through a soda lime column (3 cm diameter, 50 cm length) for 40 min. Then CO₂ produced in the sealed pot was trapped for 24 h in 400 ml of 0.5 M NaOH solution. Four blanks were included to correct the total inorganic C content for possible contamination from carbonate in the NaOH stock solution and from sample handling. An aliquot of each NaOH solution was analyzed for total inorganic carbon using a Shimadzu TOC-5050A Total Organic Carbon Analyzer. Another aliquot was precipitated as SrCO₃ (Harris et al., 1997) and analyzed for δ^{13} C by means of a continuous flow isotopic ratio mass spectrometer (see description above).

At the end of the experiment the pots were destructively sampled. The shoots were cut at the base, dried at 60°C and weighed. Three out of the six replicates of the mixtures were used to determine the root dry weight of each individual plant. All the soil in each pot was pulled out and soaked in deionized water for 24 h. All soil was washed away and the roots of each single plant were carefully separated in a water bath with tweezers, dried at 60°C and weighed. The shoot-to-root ratio was determined and used to calculate the root biomass of each individual plant for the three remaining replicates based on their shoot biomass. Careful and accurate separation of roots of individual plant species in the mixtures was required to compare RPE of the mixtures with expected RPE calculated for the respective monocultures in a reliable manner (see below). Furthermore, to obtain root-free soil the roots of the three remaining replicates of each mixed treatment as well as the roots of all monocultures were separated from soil by hand-picking. The monoculture roots were rinsed with deionized water, dried as described above and weighed. A part of the soil remaining after root-picking of all treatments as well as of the soil from the unplanted pots was dried at 60°C for three days. All dried samples were ground in a ball mill and analyzed for C%, N% and δ^{13} C using a Carlo Elba 1108 elemental analyzer interfaced to a ThermoFinningan Delta Plus XP isotope ratio mass spectrometer.

Soil microbial biomass C (MBC) was determined on all remaining soil samples by the chloroform fumigation extraction method described by Vance et al. (1987) with the modification that fumigated and unfumigated soil samples (30 g fresh soil) were extracted for 2 hours with 60 mL of 0.5 M K₂SO₄ solution. The samples were filtered and the extracts analyzed for total organic carbon by means of a Shimadzu TOC-5050A Total Organic Carbon Analyzer. The difference between the extracts of fumigated and unfumigated samples corrected for a k_{EC} factor of 0.45 (Wu et al., 1990) gives the total amount of microbial biomass C.

Furthermore, soil mineral N (N_{min} ; $NO_3^- + NH_4^+$) was extracted from 30 g fresh soil with 60 ml of 2 M KCl solution. Samples were shaken for 2 hours, filtered and the extracts were analyzed for NO_3^- and NH_4^+ by a flow injection analyzer (Lachat QuikChem 8000, Milwaukee, WI).

2.2.3 Calculations

The contribution of CO₂ derived from SOM decomposition ($C_{SOM-DERIVED}$, mg C day⁻¹ kg soil⁻¹) to total soil respiration was calculated using a linear two-source isotopic mixing model:

$$C_{SOM-DERIVED} = C_{TOTAL} \cdot \frac{\delta^{13} C_{TOTAL} - \delta^{13} C_{ROOT-DERIVED}}{\delta^{13} C_{SOM-DERIVED} - \delta^{13} C_{ROOT-DERIVED}}$$
(1)

$C_{ROOT-DERIVED} = C_{TOTAL} - C_{SOM-DERIVED}$

where C_{TOTAL} is the total CO₂ efflux of the planted treatment (mg C day⁻¹ kg soil⁻¹) and $\delta^{13}C_{TOTAL}$ the corresponding δ^{13} C value (‰). $\delta^{13}C_{SOM-DERIVED}$ is the δ^{13} C value of CO₂ from SOM decomposition measured in the unplanted pots (‰). $C_{ROOT-DERIVED}$ is the root-derived CO₂ in the planted pot (mg C day⁻¹ kg soil⁻¹) with $\delta^{13}C_{ROOT-DERIVED}$ as the corresponding δ^{13} C value (‰).

(2)

The separation of root- and SOM-derived CO₂, as a prerequisite to calculate RPE, often involves the assumption that the net isotopic fractionation during respiration processes is negligible (e.g. Buchmann and Ehleringer, 1998; Rochette et al., 1999; Søe et al., 2004). A recent study by Zhu and Cheng (2011a), however, reported a ¹³C-depletion of rhizosphere respiration compared to the isotopic composition of roots or shoots. Furthermore, a review of ¹³C fractionation at the root-microorganisms-soil interface showed that the mean difference between δ^{13} C of root-derived CO₂ and that of roots was –2.3‰ for C₃ plants and –1.3‰ for C₄ plants, by variation of more than ±2.0‰ (Werth and Kuzyakov, 2010). Moreover, it has been discussed by Dijkstra et al. (2010) that a 1‰ deviation in the isotopic composition of the plant tissue may result in variations of up to 40% in the RPE in their particular experimental configuration.

In order to minimize the influence of isotopic fractionation on the RPE results, we investigated target species for which the fractionation between roots and root-derived CO₂ (f) was determined recently. Accounting for ¹³C fractionations associated with rhizosphere respiration by using directly-measured species-specific data in our calculations of SOM-derived CO₂ and root-derived CO₂ eliminates a major uncertainty or possible erroneous conclusions. The f factors were taken from an earlier study by Zhu and Cheng (2011a) and are -1.01‰ for sunflower, -1.71‰ for soybean and -0.87‰ for wheat. We kept the conditions as similar as possible by using the same seeds, soil, and equipment with similar growing conditions (Zhu and Cheng, 2011a). By doing so we accounted for the effect of isotopic fractionation on the RPE results.

 $\delta^{13}C_{ROOT-DERIVED}$ was differently calculated for monocultures and mixed cultures.

 $\delta^{13}C_{ROOT-DERIVED}$ of the monocultures was calculated by correcting the δ^{13} C value of the root ($\delta^{13}C_{ROOT}$) by a fractionation factor (*f*):

$$\delta^{13}C_{ROOT-DERIVED} = \delta^{13}C_{ROOT} + f \tag{3}$$

For mixed cultures we calculated a root biomass weighted $\delta^{13}C_{ROOT-DERIVED}$ value:

$$\delta^{13}C_{ROOT-DERIVED} = \sum (\delta^{13}C_{ROOT,i} + f_i) \cdot a_i \tag{4}$$

where a_i is the percentage of root dry weight of species i on total root dry weight per pot.

Note: Because root biomass was analyzed at the end of the experiment only, the calculation (Eq. 4) involves the assumption that a_i does not change between T1 and T2. We examined the sensitivity of this assumption by changing a_i from 0 to 100% and found that variations of $C_{SOM-DERIVED}$ and $C_{ROOT-DERIVED}$ did not exceed 15% and 19%, respectively for the treatments including soybean and were even smaller than 5% for the Sun/Wh treatment.

The isotopic composition of root-derived CO_2 and SOM-derived CO_2 from the unplanted soil used as end members of the linear two-source isotopic mixing models are given in Table II.2/1.

Table II.2/1: End member values (\pm SEM) used in two-source isotopic mixing models in order to calculate the contribution of SOM-derived CO₂ to total soil CO₂ of the planted treatments.

Treatment	Root-derived CO ₂ [‰]	SOM-derived CO ₂ of the unplanted soil [‰]
Sun	-39.6 ± 0.09	T1
Soy	-37.0 ± 0.3	-23.9 ± 0.2
Wh	-39.4 ± 0.4	T2
Sun/Soy	-39.2 ± 0.1	-23.7 ± 0.1
Sun/Wh	-39.6 ± 0.06	
Soy/Wh	-39.4 ± 0.2	
Sun/Soy/Wh	-39.1 ± 0.07	

The RPE on SOM decomposition (observed RPE) was calculated by subtracting the CO₂-C flux of the unplanted treatment ($C_{SOM-DERIVED}(UP)$) from the SOM-derived CO₂-C flux of the planted treatment ($C_{SOM-DERIVED}(P)$) and was denoted as mg C day⁻¹ kg soil⁻¹.

$$RPE = C_{SOM-DERIVED}(P) - C_{SOM-DERIVED}(UP)$$
(5)

Since changes of root biomass may have occurred when plants were grown in mixed cultures and because the RPE as well as the MBC, N_{min} and the root-derived CO₂ can be positively related to root biomass (Dijkstra et al., 2006), we calculated expected values (*EXP*) for the mixtures:

$$EXP = \sum RB_{mix,i} \cdot \frac{OBS_{mono,i}}{RB_{mono,i}}$$
(6)

 $RB_{mix,i}$ is the root dry weight of species *i* in the mixture (g pot⁻¹), $OBS_{mono,i}$ is the observed value of species *i* growing in monoculture, denoted as mg C day⁻¹ kg soil⁻¹ for the RPE and the root-derived CO₂, as mg C kg soil⁻¹ for the MBC and as mg N kg soil⁻¹ for N_{min}. $RB_{mono,i}$ is the root dry weight of species *i* in the monoculture (g pot⁻¹).

To estimate the effect of plant inter-species interactions, the expected values were subtracted from the observed values. If the observed value is lower than the expected value, RPE, root-derived CO₂, MBC or N_{min} was negatively influenced by inter-species interactions.

2.2.4 Statistics

The values presented in the figures and tables are given as means \pm standard errors of the means (\pm SEM). Significant differences in total microbial biomass C, shoot and root N content, soil mineral N, shoot and root dry matter and in their isotopic composition between the treatments were obtained by a one-way analysis of variance (ANOVA) in combination with a *post hoc* unequal N HSD test, a modification of the Tukey HSD test. A one-way ANOVA was also conducted to test for significant differences in rootderived and SOM-derived CO₂ and RPE between the treatments by calculating the ANOVA separately for each sampling date. The significance of differences between individual means was obtained by the unequal N HSD test. To test for significant differences in root- and SOM-derived CO_2 and RPE within each treatment but between T1 and T2 (phenological effects) a dependent (paired) t-test was used.

Before calculating the RPE, as difference in SOM-derived CO_2 between a planted treatment and the unplanted control, we further tested for significant differences in SOM-derived CO_2 between the unplanted control and each single treatment and sampling day using an independent t-test. The unplanted control always showed significant (P \leq 0.05) lower values in comparison to the planted treatments (statistics are not presented in the figures).

Moreover, observed minus expected values were tested for significant deviation from zero by a t-test. All statistical analyses were performed with the statistical package STA-TISTICA for Windows (version 7.0; StatSoft Inc., OK, USA).

2.3 Results

2.3.1 Plant biomass, plant δ^{13} C and microbial biomass C

Sunflower grown in monoculture produced a significantly higher shoot biomass per pot than soybean and wheat, whereas wheat developed the highest root biomass (data not presented). The root biomass per wheat plant was significantly lower in the monoculture compared to that of wheat grown in the mixtures (Table II.2/2). In contrast, sunflower as well as soybean produced similar root biomass in all treatments independently of the neighboring plants.

The plant biomass of sunflower and wheat was significantly depleted in ¹³C compared to that of soybean (Table II.2/2). Wheat and sunflower showed similar isotopic compositions of their plant tissue.

Planting increased the microbial biomass C (Table II.2/2). The lowest microbial biomass C was found in the unplanted control with values of about 118 mg C kg soil⁻¹. While the wheat monoculture showed a significant higher microbial biomass C than the control, only a slightly but not significantly higher microbial biomass was detected for the monocultures of sunflower and soybean. Compared to the unplanted control, all mixed croppings had significantly higher microbial biomass C, with values ranging from 188 mg C kg soil⁻¹ for the Sun/Soy treatment to 212 mg C kg soil⁻¹ for the Sun/Wh treatment. The microbial biomass C of the three-species mixture (172 mg C kg soil⁻¹) was, however, significantly lower than that measured for the Sun/Wh treatment.

Table II.2/2: Plant biomass (\pm SEM), δ^{13} C values (\pm SEM) and microbial biomass C (\pm SEM) compiled at the end of the experiment. N=4 for the monocultures; N=6 for the mixed cultures except for root δ^{13} C and microbial biomass C of the mixed cultures for which N=3.

				Plant Biomass		δ ¹³ C		Microbial biomass C
Cultures	Treatment	Species	Shoot	Root	Shoot/Root	Shoot	Root	
			[g _{DW} plant ⁻¹]	[g _{DW} plant ⁻¹]		[‰]	[‰]	[mg kg soil ⁻¹]
	Unplanted soil							117.7±7.9a
Monoculture	Sun	H. annuus	27.9±3.7a ¹	2.7 ± 0.3 abdf ¹	10.5±1.1	-38.9±0.1ab	-38.6±0.1a	136.7±5.9ab
	Soy	G. max	$17.0{\pm}1.7{b}^{1}$	$2.0{\pm}0.2abdf^1$	8.7±1.0	-35.4±0.2b	-35.1±0.3b	140.0±8.8ac
	Wh	T. aestivum	$10.9\pm0.7bc^1$	$5.0\pm0.5abg^1$	2.2±0.1	-39.8±0.2acd	-38.6±0.4a	165.7±6.5bcd
	Sup/Soy	H. annuus	35.8±1.7a	5.0±0.4a	7.3±1.0	-38.8±0.2ad	-38.9±0.2a	1075 7 1 dof
Mixed Culture	5un/50y	G. max	8.5±0.9bc	2.0±0.2bdf	4.2±0.7	-36.3±0.6b	-35.8±0.1b	187.3±7.10e1
	Sun/Wh	H. annuus	31.2±1.1a	3.4±0.3abdf	9.5±1.4	-39.0±0.2d	-38.8±0.2a	211.5±4.1f
		T. aestivum	8.9±0.4bc	11.5±1.0c	0.8±0.1	-40.1±0.0c	-38.7±0.2a	
	Soy/Wh	G. max	10.6±2.6bc	1.3±0.4dfh	8.7±1.5	-35.8±0.1b	-35.9±0.3b	207.0±6.9fg
		T. aestivum	13.3±1.3b	9.6±1.0ce	1.4 ± 0.1	-40.3±0.1c	-38.8±0.2a	
	Sun/Soy/Wh	H. annuus	28.9±1.7a	2.9±0.4ah	10.3±1.7	-39.0±0.0ad	-38.8±0.1a	
		G. max	5.0±1.1c	1.2±0.3f	4.1±0.5	-36.1±0.3b	-35.6±0.2b	172.4±5.5bceg
		T. aestivum	7.7±0.4bc	7.8±0.8eg	1.0±0.2	-40.2±0.1ac	-38.3±0.2a	

¹ dry weight per pot divided by two because two individual plants were grown in these pots.

The legume soybean showed consistently higher root N concentrations than the nonlegume species (Fig. II.2/1). The N concentration of the wheat roots increased when grown in combination with soybean compared to the wheat monoculture. However, the root N concentration of sunflower was approximately 8 mg N g_{dw}^{-1} regardless of treatments and did not increase with a neighboring soybean.

Because of plant uptake, the mineral N ($NH_4^+ + NO_3^-$) content in the soil was roughly one order of magnitude lower for all planted treatments compared to the unplanted control at harvest (Fig. II.2/1C). There were no significant differences in soil mineral N content between any planted treatments.

Figure II.2/1: N concentration (\pm SEM) of A: shoots (N=4 for the monocultures; N=6 for the mixtures) and B: roots (N=4 for the monocultures; N=3 for the mixtures). C: soil mineral N (NH₄⁺ + NO₃⁻) (N=4 for the monocultures; N=3 for the mixtures). Bars followed by the same lowercase letter are not significantly different at P=0.05.

2.3.2 CO₂ efflux partitioning

The contributions of SOM- and root-derived sources to total soil CO₂ efflux were calculated based on a linear two source isotopic mixing model (Fig. II.2/2). Since the δ^{13} C values of the roots differed among the species (Table II.2/2), we assumed that the rate of root-derived CO₂ per unit of root dry weight for each species was the same in monoculture and in all mixtures in order to calculate the species-weighed $\delta^{13}C_{ROOT-DERIVED}$ of the mixtures (Dijkstra et al., 2010). A significant positive correlation (R²=0.86, N=12, P<0.001) between root-derived CO₂ and root biomass of the monocultures measured at T2 actually supported this assumption (data not shown).

Root-derived CO₂ varied between the treatments at T1 as well as at T2, probably due to varying root biomass (as indicated for T2 in Table II.2/2) (Fig. II.2/2A). A species effect was detected with low rates of root-derived CO₂ at T1 for the soybean and high rates for the sunflower monoculture. A combination of soybean and wheat resulted in a low rate of root-derived CO₂. At T2 wheat showed a very high rate of root-derived CO₂ when grown in monoculture, mainly because of its high root biomass (Table II.2/2). The species composition effect was mainly influenced by the presence of wheat, leading to high rates of root-derived CO₂. When comparing T1 with T2, the root-derived CO₂ decreased for the sunflower and soybean monoculture as well as for the mixture of both species (Sun/Soy). In contrast, the root-derived CO₂ significantly increased for the wheat monoculture and the Soy/Wh treatment. The Sun/Wh and Sun/Soy/Wh treatments did no differ significantly between T1 and T2.

SOM-derived CO₂ did not differ between the planted treatments at T1 (Fig. II.2/2B). Likewise, there is no statistically significant difference between the planted treatments in SOM-derived CO₂ at T2 with the exception of the Soy/Wh treatment showing higher values of about 15 mg C day⁻¹ kg soil⁻¹ compared to Sun/Soy and Sun/Wh mixtures, the sunflower monoculture and the unplanted control. When comparing T1 with T2 SOM-derived CO₂ decreased significantly for the Sun and the Sun/Wh treatment but increased for the Soy/Wh treatment. No statistically significant differences between T1 and T2 could be observed for the other treatments.

Figure II.2/2: Root-derived (A) and SOM-derived CO₂ (B) (\pm SEM) at T1 and T2. Significant differences between T1 and T2 within a treatment are presented as \dagger : P<0.1 and \ast : P<0.05. Bars followed by different lowercase letters indicate significant differences between the treatments at T1 (P<0.05). Significant differences between the treatments at T2 are marked by different uppercase letters (P<0.05). N=4 for the unplanted soil and the monocultures; N=6 for the mixed cultures.

2.3.3 Rhizosphere priming effect

All planted treatments resulted in stimulation of SOM decomposition and hence, we found a consistently positive RPE (Fig. II.2/3). The primed C at T1 ranges from 60% of SOM-derived CO₂ of the unplanted control for the Soy treatment to 98% for the Sun/Soy/Wh treatment. At T2 the values showed a broader range from 43% of SOM-derived CO₂ of the unplanted control for the Sun treatment to 136% for the Soy/Wh mixture. The RPE did not differ significantly between the planted treatments at T1 (Fig. II.2/3). However, at T2 the Soy/Wh treatment showed a significantly higher RPE compared to Sun/Soy and Sun/Wh mixtures and sunflower monoculture. When comparing T1 with T2 no significant difference in the RPE could be detected for most treatments,

except that the Soy/Wh treatment showed a significantly higher RPE at T2 compared to T1, and that the RPE decreased significantly for the sunflower monoculture and the Sun/Wh treatment from T1 to T2.

Figure II.2/3: Rhizosphere priming effect (\pm SEM) calculated for T1 and T2. Significant differences between T1 and T2 within a treatment are presented as \ddagger : P<0.1 and \ddagger : P<0.05. Bars followed by different lowercase letters indicate significant differences between the treatments at T1 (P<0.05). Significant differences between the treatments at T2 are marked by different uppercase letters (P<0.05). For the monocultures N=4, for the mixed cultures N=6.

2.3.4 Effect of inter-species interactions

The observed RPE was compared to an expected value calculated for the mixtures (Fig. II.2/4). The expected RPE was always slightly higher compared to the observed, but significantly higher only for the Sun/Wh treatment (Table II.2/3). Modulations of RPE by plant inter-species interactions were specific to the plant species composition and tended to inhibit the RPE. However, the replicates of the treatments showed high variations. All combinations that contained the legume soybean did not show a significant effect of inter-species interactions on the RPE suggesting that available N may be an important factor modulating RPE. In contrast to that, the rhizosphere induced decomposition of SOM was significantly inhibited when growing sunflower and wheat together.

Similar to the RPE we estimated the effect of plant inter-species interactions on MBC, N_{min} and root-derived CO₂ by comparing the observed values with the expected values (Table II.2/3). The MBC was negatively affected by mixed-cropping with the exception

of the Soy/Wh treatment where no influence could be detected (Table II.2/3). A significantly negative effect on N_{min} by mixed cropping occurred for the Sun/Soy and the Sun/Wh treatments. Root-derived CO₂ was also significantly and negatively affected by most mixed-croppings (Table II.2/3).

Figure II.2/4: Observed and expected RPE (\pm SEM). Significant differences between the observed values are marked by different uppercase letters (P<0.05). Bars followed by different lowercase letters indicate significant differences between the expected RPE (P<0.05).

Table II.2/3: Observed minus expected values (\pm SEM) of RPE at T2 (N=6), MBC (N=3), mineral soil N (N=3), and root-derived CO₂ (N=6).

Observed minus expected values (±SEM)							
Treatment	RPE [mg C day ⁻¹ kg soil ⁻¹]	MBC [mg C kg soil ⁻¹]	N _{min} [mg N kg soil ⁻¹]	Root-derived CO ₂ [mg C day ⁻¹ kg soil ⁻¹]			
Sun/Soy	$\textbf{-1.1}\pm0.9$	-21.6 ± 10.1 †	$-3.5 \pm 0.3*$	$\textbf{-0.9} \pm 0.7$			
Sun/Wh	$-7.4 \pm 1.0^{*}$	-74.7 ± 21.9*	$-5.4 \pm 0.7*$	$-14.4 \pm 1.8^{*}$			
Soy/Wh	-0.3 ± 0.4	-4.1 ± 12.6	-1.3 ± 0.7	$-4.8 \pm 1.2^{*}$			
Sun/Soy/Wh	-3.2 ± 1.9	-84.3 ± 15.6*	0.5 ± 0.7	$-6.6 \pm 2.4*$			

* Significant difference from zero: P<0.05. † Significant difference from zero: P<0.1.

2.4 Discussion

2.4.1 Plant species and plant phenology effects on the RPE

The type of plant species did not significantly affect the RPE on SOM decomposition, as shown by the similar RPEs of the monocultures (Fig. II.2/3). Even after normalization for root dry weight, an equivalent RPE was measured for the monocultures despite slight variations in the root biomass per pot (data not presented). However, the high variability between the replicates of one treatment (sunflower monoculture) might have masked the differences between plant species at T2. The absence of significant plant specific differences seemed contradictory to recent results which revealed a species specific effect on the RPE (Fu and Cheng, 2002; Cheng et al., 2003). Fu and Cheng (2002) reported a stronger priming effect under soybean, a N_2 -fixing plant, compared to sunflower. A more pronounced RPE of soybean was also detected compared to wheat (Cheng et al., 2003). However, both studies compared the cumulative primed C over the whole growing period, which was, with more than 100 days, much longer than in our experiment. When considering only the first CO₂-trapping during the vegetative growth stage, the previous studies did not detect any effect of the plant species on RPE either. During the early stages of plant development, exudates, as a source of easily available C, may stimulate the growth and activity of rhizosphere microorganisms resulting in an increased rate of SOM decomposition ('Microbial activation hypothesis' Kuzyakov, 2002; Cheng and Kuzyakov, 2005). At later stages of plant development, other mechanisms controlling the RPE may gain increasing significance, such as the competition between roots and microorganisms for mineral N which may explain a negative RPE ('Competition hypothesis' Dormaar, 1990; Kuzyakov, 2002; Cheng and Kuzyakov, 2005).

Therefore, the plant age itself governs the amount of primed C in the rhizosphere due to changes of the exudation intensity with the growth stages (Kuzyakov, 2002; Cheng et al., 2003). The stage of plant development controls C translocation belowground, in addition to the type of plant species (Kuzyakov and Domanski, 2000). Young plants translocate more carbon to the roots, whereas older plants preferably allocate the newly assimilated C to the shoots (Keith et al., 1986; Gregory and Atwell, 1991; Palta and
Gregory, 1997) thus, leading to reduced C inputs per root biomass into the soil via exudation at older stages (reviewed by Nguyen, 2003). We found significantly higher $(P \le 0.1)$ root-derived CO₂ of the sunflower and the soybean monocultures at the vegetative stage (T1) compared to the flowering stage (T2; Fig. II.2/2). In contrast, wheat was still at the vegetative stage at the second CO₂ trapping and showed a strong increase of root-derived CO₂ as compared to the first CO₂ trapping (Fig. II.2/2). It has been reported that the rhizodeposition of annual plants increased until the end of tillering because the decrease of the exudation intensity with age is, at this stage of development, slower than the root growth (Kuzyakov, 2002). However, we found no phenological effect of wheat on the amount of primed soil C (Fig. II.2/3), likely because an increased nutrients uptake intensifies the competition between roots and microorganisms. In an experiment where the plants had developed over a longer period, a strong reduction of RPE after flowering of wheat has been reported (Cheng et al., 2003). We detected a phenology effect on RPE only for sunflower (Fig. II.2/3). The priming for sunflower was lower (P \leq 0.1) during flowering compared to the vegetative stage, likely due to a higher need of assimilates for flower development and hence, a lower C allocation belowground.

2.4.2 Plant inter-species interactions modify RPE

The RPE was consistently positive for all planted treatments (Fig. II.2/3). The increase in the SOM decomposition rates in the planted treatments was likely induced by inputs of organic substances via rhizodeposition, which often stimulate, as a source of easily available C, the growth of microorganisms in the rhizosphere (Kuzyakov, 2002; Cheng and Kuzyakov, 2005). Moreover, it could be assumed that with higher species richness the types of organic compounds released by plants into the soil might have increased. This would further stimulate the microbial biomass and its activity, resulting in a greater diversity of extracellular enzyme production which subsequently contributed to positive priming (Hooper et al., 2000; Spehn et al., 2000; Stephan et al., 2000; Fontaine et al., 2003; Dijkstra et al., 2010). Our results partly support this line of reasoning since all planted treatments generally resulted in higher microbial biomass C than the unplanted control, and the two-species mixtures showed higher MBC values than the monocultures. However, the three-species mixture has lower MBC compared to the Sun/Wh treatment (Table II.2/2). Our results indicate that plant inter-species interactions can significantly modify the rhizosphere priming effect on SOM decomposition (Table II.2/3) with a tendency of reducing the root-biomass-adjusted RPE than what could be expected from their monocultures. A similar trend was also reported for five semi-arid grassland species when grown in mixture compared to monocultures even though no significant treatment differences could be detected because of their high experimental variability (Dijkstra et al., 2010). Plant species may differ in their nutrient acquisition. More diverse plant communities may better utilize limited resources such as available N (Tilman et al., 1996; Hopper and Vitousek, 1997). Hence, the plant-microbial competition, especially for mineral N, may increase with higher plant diversity leading to partial reduction of microbial activity, which is accompanied with a decrease of the RPE (Dijkstra et al., 2010).

We suggest that the competition hypothesis applies for the mixture containing sunflower and wheat, the only treatment where a significantly lower root-biomass-adjusted RPE was observed than expected (Table II.2/3). This is further supported by the lower N_{min} content of the Sun/Wh treatment than expected (Table II.2/3). An increasing competition for mineral N between roots and microorganisms may also cause the lower observed microbial biomass C compared to the expected (Table II.2/3). Moreover, the decreasing N_{min} content with time was accompanied with the reduced RPE at T2 compared to T1 (Fig. II.2/3), despite the fact that the root-derived CO₂, reflecting exudation intensity, remained constant (Fig. II.2/2). On the other hand, root-derived CO₂ was also significantly influenced by mixed cropping for all treatments containing wheat (Table II.2/3). Therefore, the intensified competition for mineral N and the lower than expected exudation intensity together suppressed the RPE of the Sun/Wh mixture compared to the monocultures. However, the exact mechanisms behind these findings remain unknown.

Our results demonstrated for the first time that mixed cropping of typical agricultural plants may reduce the decomposition of SOM compared to monocultures. Generally, this result indicates that on a longer-term C storage may be reduced through the cultivation of plants in monocultures. However, it has to be considered that the RPE strongly depends on soil properties, mainly on the organic C and mineral N content (Kuzyakov, 2002; Cheng and Kuzyakov, 2005). Agricultural soils are characterized by low contents

of decomposable C and high mineral N contents through fertilization. It was hypothesized that microorganisms, not limited in N, can switch from the decomposition of SOM to the decomposition of rhizodeposits which provide easily available energy and C for microbial activity and growth (Kuzyakov, 2002; Cheng and Kuzyakov, 2005). Thus, RPE in agricultural soils are largely controlled by this preferential substrate utilization (Kuzyakov, 2002). However, rhizosphere priming will gain increasing importance in the future in the context of sustainable agriculture and organic farming. The shift towards systems with a low external input of fertilizers increases the dependence of plants on nutrient release from SOM due to RPE (Paterson, 2003).

Apart from the agricultural point of view, inter-species interactions have implications on C and N cycling in natural ecosystems with high plant diversity, not only through altered productivity and litter inputs but also through altered RPE. The reduced priming measured in this study may contribute to a long-term increase in SOC in mixed cultures compared to monocultures.

2.5 Conclusions

During the early stage of plant development the RPE was not specific to the plant species and was positive for all planted treatments. The modulation of RPE by plant interspecies interactions was specific to the species composition. The RPE was significantly reduced for the sunflower-wheat mixture compared to the monocultures. Our data provided clear evidence that plant species composition affects the RPE. Future research is needed to identify mechanisms and clarify the role of inter-species interactions, especially among plant functional groups, on RPE.

Acknowledgments

We would like to thank Amy Concilio and Dr. Xueyong Pang for their help during the conduction and sample preparation of this experiment, and Drs. Dyke Andreasen and Joy Matthews for ¹³C isotope analysis. Thanks also to Michael Riederer for suggestions on the earlier version of the manuscript. The financial support for this project was provided by the German Academic Exchange Service, by a grant from the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (#2006-35107-17225), and by a grant from the U.S. Department of Energy's Office of Science through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University (#DE-FC02-06ER64158).

References

- Bottner, P., Pansu, M., Sallth, Z., 1999. Modelling the effect of active roots on soil organic matter turnover. Plant and Soil 216, 15-25.
- Buchmann, N., Ehleringer, J.R., 1998. CO₂ concentration profiles, and carbon and oxygen isotopes in C₃ and C₄ crop canopies. Agricultural and Forest Meteorology 89, 45-58.
- Cheng, W., Dijkstra, F.A., 2007. Theoretical proof and empirical confirmation of a continuous labeling method using naturally ¹³C-depleted carbon dioxide. Journal of Integrative Plant Biology 49 (3), 401-407.
- Cheng, W., Johnson, D.W., 1998. Elevated CO₂, rhizosphere processes, and soil organic matter decomposition. Plant and Soil 202 (2), 167-174.
- Cheng, W., Johnson, D.W., Fu, S., 2003. Rhizosphere effects on decomposition: Controls of plant species, phenology, and fertilization. Soil Science Society of America Journal 67, 1418-1427.
- Cheng, W., Kuzyakov, Y., 2005. Root effects on soil organic matter decomposition, in: Zobel, R.W., Wright, S.F. (Eds.), Roots and Soil Management: Interactions between Roots and the Soil. ASA-SSSA, Madison, Wisconsin, pp. 119-143.
- Dijkstra, F.A., Cheng, W., 2007. Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biology and Biochemistry 39, 2264-2274.
- Dijkstra, F.A., Cheng, W., Johnson, D.W, 2006. Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biology and Biochemistry 38, 2519-2526.
- Dijkstra, F.A., Morgan, J.A., Blumenthal, D., Follett, R.F., 2010. Water limitation and plant inter-specific competition reduce rhizosphere-induced C decomposition and plant N uptake. Soil Biology and Biochemistry 42, 1073-1082.
- Dormaar, J.F., 1990. Effect of active roots on the decomposition of soil organic materials. Biology and Fertility of Soils 10, 121-126.

- Fontaine, S., Mariotti, A., Abbadie, L., 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry 35, 837-843.
- Fu, S., Cheng, W., 2002. Rhizosphere priming effects on the decomposition of soil organic matter in C₄ and C₃ grassland soils. Plant and Soil 238, 289-294.
- Gregory, P.J., Atwell, B.J., 1991. The fate of carbon in pulse-labelled crops of barley and wheat. Plant and Soil 136, 205-213.
- Harris, D., Porter, L.K., Paul, E.A., 1997. Continuous flow isotope ratio mass spectrometry of carbon dioxide trapped as strontium carbonate. Communications in Soil Science and Plant Analysis 28, 747-757.
- Hooper, D.U., Bignell, D.E., Brown, V.K., Brussard, L., Dangerfield, J.M., Wall, D.H.,
 Wardle, D.A., Coleman, D.C., Giller, K.E., Lavelle, P., Van der Putten, W.H., De
 Ruiter, P.C., Rusek, J., Silver, W. L., Tiedje, J.M., Wolters, V., 2000. Interactions
 between aboveground biodiversity in terrestrial ecosystems: Patterns, mechanisms,
 and feedbacks. BioScience 55 (12), 1049-1061.
- Hooper, D.U., Vitousek, P.M., 1997. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302-1305.
- Jenkinson, D.S., 1977. Studies on decomposition of plant material in soil. 5: Effects of plant cover and soil type on loss of carbon from C-14-labeled ryegrass decomposing under field conditions. Journal of Soil Science 28, 424-434.
- Jones, D.L., Hodge, A., Kuzyakov, Y., 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163, 459-480.
- Keith, H., Oades, J.M., Martin, J.K., 1986. Input of carbon to soil from wheat plants. Soil Biology and Biochemistry 18, 445-449.
- Kuzyakov, Y., 2002. Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165, 382-396.
- Kuzyakov , Y., 2006. Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38, 425-448.
- Kuzyakov, Y., Domanski, G., 2000. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163, 421-431.

- Lavelle, P., Lattaud, C., Trigo, D., Barois, I., 1995. Mutualism and biodiversity in soils. Plant and Soil 179, 23-33.
- Liljeroth, E., Kuikman, P., Van Veen, J.A., 1994. Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant and Soil 161, 233-240.
- Moyes, A.B., Gaines, S.J., Siegwolf, R.T.W., Bowling, D.R., 2010. Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration. Plant, Cell and Environment 33, 1804-1819.
- Nguyen, C., 2003. Rhizodeposition of organic carbon by plant: Mechanisms and controls. Agronomie 23, 375–396.
- Palta, J.A., Gregory, P.J., 1997. Drought affects the fluxes of carbon to roots and soil in ¹³C pulse-labelled plants of wheat. Soil Biology and Biochemistry 29 (9/10), 1395-1403.
- Paterson, E., 2003. Importance of rhizodeposition in the coupling of plant and microbial productivity. European journal of Soil Science 54, 741-750.
- Rochette, P., Flanagan, L.B., Gregorich, E.G. 1999: Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Science Society of America Journal 63, 1207-1213.
- Sanaullah, M., Blagodatskaya, E., Chabbi, A., Rumpel, C., Kuzyakov, Y., 2011. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depending on plant community composition. Applied Soil Ecology 48, 38-44.
- Sanaullah, M., Chabbi, A., Rumpel, C., Kuzyakov, Y., 2012. Carbon allocation in grassland communities under drought stress followed by ¹⁴C pulse labelling. Soil Biology and Biochemistry 55, 132-139.
- Schimel, J.P., Jackson, L.E., Firestone, M.K., 1989. Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a California annual grassland. Soil Biology and Biochemistry 21 (8), 1059-1066.
- Shields, J.A., Paul, E.A., 1973. Decomposition of ¹⁴C-labeled plant material under field conditions. Canadian Journal of Soil Science 53, 297-306.

- Søe, A.R.B., Giesemann, A., Anderson, T.-H., Weigel, H.-J., Buchmann, N., 2004. Soil respiration under elevated CO₂ and its partitioning into recently assimilated and older carbon sources. Plant and Soil 262, 85-94.
- Stephan, A., Meyer, A.H., Schmid, B., 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology 88, 988-998.
- Tilman, D., Wedin, D., Knops, J., 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718-720.
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19 (9) 703-707.
- Van der Krift, T., Kuikman, P.J., Möller, F., Berendse, F., 2001. Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant and Soil 228, 191-200.
- Von Felten, S., Hector, A., Buchmann, N., Niklaus, P.A., Schmid, B., Scherer-Lorenzen, M., 2009. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology, 90, 1389-1399.
- Wang, J.G., Bakken, L.R., 1997. Competition for nitrogen during decomposition of plant residues in soil: Effect of spatial placement of N-rich and N-poor plant residues. Soil Biology and Biochemistry 29, 153-162.
- Werth, M., Kuzyakov, Y., 2010. ¹³C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies. Soil Biology and Biochemistry 42, 1372-1384.
- Wu, J., Jörgensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement of soil microbial biomass-C by fumigation-extraction – an automated procedure. Soil Biology and Biochemistry 22, 1167-1169.
- Zhu, B., Cheng, W., 2011. ¹³C isotope fractionation during rhizosphere respiration of C₃ and C₄ plants. Plant and Soil 342, 277–287.

3 Effect of clipping and shading on C allocation and fluxes in soil under ryegrass and alfalfa estimated by ¹⁴C labeling

Andreas Schmitt¹, Johanna Pausch^{1,2}, Yakov Kuzyakov^{2,3,*}

Submitted to Journal of Applied Soil Ecology

Date of submission: November 11, 2011

Resubmitted to Journal of Applied Soil Ecology

Date of resubmission: February 19, 2012

¹ Department of Agroecosystem Research, BayCEER, University of Bayreuth, Germany

² Department of Soil Science of Temperate Ecosystems, University of Göttingen, Germany

³ Department of Agropedology, University of Göttingen, Germany

* Corresponding author

Büsgenweg 2, 37077 Göttingen, 95440 Bayreuth, Germany

Phone: +49 551 39 9765

kuzyakov@gwdg.de

Abstract

Photosynthesis of higher plants drives carbon (C) allocation belowground and controls the supply of assimilates to roots and to rhizosphere microorganisms. To investigate the effect of limited photosynthesis on C allocation, redistribution and reutilization in plant and soil microorganisms, perennial grass *Lolium perenne* and legume *Medicago sativa* were clipped or shaded. Plants were labeled with three ¹⁴C pulses to trace allocation and reutilization of C assimilated before clipping or shading. Five days after the last ¹⁴C pulse, plants were clipped or shaded and the total CO₂ and ¹⁴CO₂ efflux from the soil was measured. ¹⁴C in above- and belowground plant biomass and bulk soil, rhizosphere soil and microorganisms was determined 10 days after clipping or shading.

After clipping, 2% of the total assimilated ¹⁴C originating mainly from root reserves were detected in the newly grown shoots. This corresponded to a translocation of 5% and 8% of total ¹⁴C from reserve organs to new shoots of *L. perenne* and *M. sativa*, respectively. The total CO₂ efflux from soil decreased after shading of both plant species, whereas after clipping, this was only true for *L. perenne*. The ¹⁴CO₂ efflux from soil did not change after clipping of both species. An increased ¹⁴CO₂ efflux from soil after shading for both plants indicated that lower assimilation was compensated by higher utilization of the reserve C for root and rhizomicrobial respiration.

We conclude that C stored in roots is an important factor for plant recovery after limiting photosynthesis. This stored C is important for shoot regrowth after clipping, whereas after shading, it is utilized mainly for maintenance of root respiration. Based on our results as well as on a review of several studies on C reutilization for regrowth after clipping, we conclude that because of the high energy demand for nitrogen fixation, legumes use a higher portion (9% to 10%) of stored C for regrowth compared to grasses (5% to 7%). The effects of limited photosynthesis were of minor importance for the exudation of the reserve C and thus, have no effect on the uptake of this C by microorganisms. *Keywords:* Carbon allocation and partitioning, isotope labeling, grazing effects, assimilate reutilization, shoot regrowth, CO_2 sources, photosynthesis reduction, rhizosphere processes.

3.1 Introduction

Belowground translocation of carbon (C) by plants and its turnover in soils are important processes affecting the global C cycle. Thus, in the last decades, many studies have investigated the distribution and dynamics of assimilates in the plant-soil system, their utilization by microorganisms and contribution to carbon dioxide (CO₂) efflux. It has been shown that pasture plants translocate 30% to 50% of assimilated C belowground. Approximately half of this C is incorporated into the root biomass, 12% remains in the soil and microbial biomass, and 36% is respired by roots or microorganisms, whereby about 5% of the fixed C is respired by mycorrhizas (Johnson et al., 2002; Kuzyakov and Domanski, 2000; Leake et al., 2006). Roots contribute 30% to 70% of the soil CO₂ efflux (Schlesinger, 1977; Subke et al., 2006), which is the second largest C flux in terrestrial ecosystems and accounts for 60% to 90% of ecosystem respiration (Goulden et al., 1996; Longdoz et al., 2000). Rhizodeposition is an important driver for many processes in terrestrial ecosystems, such as nutrient availability for plants, activity and turnover of microbes (Blagodatskaya et al., 2010) in addition to turnover of soil organic matter (Merbach et al., 1999).

The belowground translocation of recently assimilated C is a very rapid process. The highest exudation rate of photosynthates by wheat roots is reached 2 to 3 hours after fixation, declining to a third of the maximum after 5 hours (Dilkes et al., 2004). Also for the grass *Nardus stricta* a fast transport of recent assimilates to soil and DOC has been reported (Johnson et al., 2011). In a tree girdling experiment, a large decrease in soil respiration was observed after disrupting assimilate transport to the roots (Högberg et al., 2001). These studies indicate that current photosynthesis and the supply of recent assimilates to roots are the main drivers for rhizodeposition and soil respiration (Kuzyakov and Gavrichkova, 2010). Thus, any alteration in environmental factors affecting photosynthetic activity, and thereby influencing availability of recent assimilates, is assumed to influence fast C pools and fluxes of plant-derived C, such as dissolved organic matter, soil CO₂ or microbial biomass. Defoliation by grazing (Detling et al., 1979) and shading are factors that reduce the photosynthesis rate due to lower leaf surface areas and less available light, respectively. It has been shown that defoliation increases the sink strength of regrowing leaves and, therefore, reduces C allocation be-

lowground (Detling et al., 1979; Mackie-Dawson, 1999). On the contrary, Holland et al. (1996) found a positive relationship between herbivory and belowground C allocation for *Zea mays*. Defoliation by grazing affects plant biomass and soil respiration, depending on the grazing intensity, history and composition of vegetation (Cao et al., 2004; Milchunas and Lauenroth, 1993). Thus, grazing management can play an important role in C economy of grasslands.

Less is known about the effect of shading on the redistribution of C reserves. A rapid reduction of C reserves under low light conditions due to limited C supply has been observed (Merlo et al., 1994). Low light intensity decreased the root-to-shoot ratio (R:S) of *Zea mays* (Lambers and Posthumus, 1980), whereas an increase was observed for *Lolium perenne* (Hodge et al., 1997). To compensate temporary limited photosynthesis by defoliation or shading, plants are able to store C. Although both defoliation and reduced light intensity lead to reduced assimilation, it is assumed that because of the removal of plant biomass caused by defoliation, they have different impacts on the redistribution of stored C and thus on the C input into the soil and the C availability for soil microorganisms.

C allocation in plant and soil is also affected by plant properties. During plant development, the portion of C stored in shoots increases, leading to a decrease in belowground translocation (Gregory and Atwell, 1991; Keith and Oades, 1986; Meharg and Killham, 1990). Furthermore, C allocation patterns differ between plant species. The relative belowground translocation of C of perennial plants is higher compared to annual plants. This indicates a higher C storage in roots of perennial plants, whereas annual plants allocate more C in aboveground parts, especially grains (Kuzyakov and Domanski, 2000). Warembourg et al. (2003) investigated the C input into the rhizosphere of 12 Mediterranean plants. They found significant species-dependent differences in the belowground allocation of assimilated C, with portions ranging from 41% to 76%. Among functional plant groups, legumes use the highest C portion for rhizosphere respiration compared to grasses and especially to non-legume forbs (Warembourg et al., 2003). This is because of the high energy requirement and consequently high C demand for N₂ fixation by symbiotic rhizobia (Philips, 1980). Estimations give evidence that about 6 mg of C are necessary to fix 1 mg of nitrogen (N) (Vance and Heichel, 1991). The respiration losses tied to N₂ fixation can account for up to 70% of total root respiration (Witty et al., 1983). Thus, because of the high C costs for N_2 fixation, we hypothesized that changing rates of photosynthesis provoked different effects between a legume species (*Medicago sativa* L.) and a non-legume species (*Lolium perenne* L.) regarding the distribution of assimilates.

Using repeated 14 CO₂ labeling of two plant species, *M. sativa* and a *L. perenne*, we investigated how defoliation (simulated grazing) and shading affected C allocation within the plant, belowground C translocation and reutilization of stored C. The specific questions were:

- (1) How does clipping and shading affect biomass production and ¹⁴C distribution between various pools?
- (2) Which plant parts provide C for growth of new shoots after clipping?
- (3) How does limited photosynthesis after clipping or shading alter the redistribution of stored C in plant, soil, microorganisms and soil CO₂?
- (4) Do clipping and shading induce different responses with respect to the redistribution of stored C in the plant and soil pools?

3.2 Materials and Methods

3.2.1 Soil properties and plant growing conditions

Plants were grown on an arable loamy haplic Luvisol developed on loess. This soil was collected near Göttingen (Germany, 51°33′36.8′′N, 9°53′46.9′′E) from the upper 10 cm of the Ap horizon. The basic characteristics of the soil are shown in Table II.3/1.

Seeds of ryegrass (*Lolium perenne* L.) and alfalfa (*Medicago sativa* L.) were germinated on wet filter paper in Petri dishes. After 5 (*M. sativa*) and 8 days (*L. perenne*), the seedlings were transferred to pots (inner diameter 7 cm, height 20 cm), each filled with 700 g of air-dried, sieved (≤ 2 mm) soil. For *M. sativa*, each pot contained 3 plants and for *L. perenne* 5 plants, because of the lower biomass of *L. perenne*. In total 12 pots per plant species were prepared for the experiment. The pots were closed with a plastic lid with holes for shoots. The plants were grown at 26° to 28°C day temperature and at 22° to 23°C night temperature with a day-length of 14 h and a light intensity of approximately 211 µmol m⁻²s⁻¹. Thus, the cumulative daily radiation was approximately in the range of field conditions. The soil water content was measured gravimetrically and adjusted daily to 70% of the available field capacity.

Parameter	Value
N _{tot} (mg g ⁻¹)	1.200
$C_{org} (mg g^{-1})$	11.700
C/N	9.76
NO_3^{-1} (mg g ⁻¹)	0.083
$P (mg g^{-1})$	0.160
$S (mg g^{-1})$	0.009
CEC (mmol _c kg ⁻¹)	108.000
BS (%)	99.700
Texture ¹	
clay/silt/sand (% w/w))	7.0/87.2/5.8
pH (H ₂ O)	6.600
pH (CaCl ₂)	6.000

Table II.3/1: Basic characteristics of the soil sampled from the A_p horizon of a haplic Luvisol near Göttingen (Germany) (Kramer et al., 2012). CEC: Cation exchange capacity; BS: Base saturation.

¹Texture according to the German classification system.

3.2.2 ¹⁴C labeling procedure

Repeated ¹⁴C pulse labeling was used to evaluate C reutilisation and C input into the soil. All plants of one species (12 pots) were labeled simultaneously in a ¹⁴CO₂ atmosphere on days 35, 40 and 45 after planting. The day before the first labeling, holes in the plastic lids were sealed around the shoots with silicone paste (NG 3170, Thauer & Co., Dresden) and checked for air tightness. For labeling, the plants were placed in an acryl glass chamber. The chamber and the labeling technique are described in detail elsewhere (Werth and Kuzyakov, 2008). Briefly, the chamber was connected by tubing with a flask containing 10 ml of diluted Na₂¹⁴CO₃ (ARC Inc., USA) solution with 1.67 MBq. ¹⁴CO₂ was released into the chamber by adding 3 ml of 5 M H₂SO₄ to the labeling solution. Plants were labeled during 3 hours in the ¹⁴CO₂ atmosphere. Thereafter, the air from the chamber was pumped through 15 ml of 1 M NaOH solution for 2 hours to trap the remaining unassimilated ¹⁴CO₂. Finally, plants were removed from the chamber and grown under normal conditions until the next ¹⁴CO₂ pulse.

3.2.3 Clipping and light reduction

Both plant species were subjected to reduced light or clipping 5 days after the last ${}^{14}CO_2$ pulse because it was assumed that after this period, the distribution of assimilated C between above- and belowground pools was mostly complete (Domanski et al., 2001). Consequently, the translocated ${}^{14}C$ found in the various pools after shading or clipping was considered as remobilized reserve C. This is in agreement with Danckwerts and Gordon (1987) who found that assimilated ${}^{14}C$ reached its final destination within 4 to 6 days and termed this ${}^{14}C$ as reserve C. For clipping, the shoots were cut 4 cm above the soil surface for *L. perenne* and 8 cm for *M. sativa*. We used 4 replicates for each species. Different clipping heights were applied to achieve a similar stubble biomass of both plant species. Subsequently, plants continued growth under normal conditions. For shading, 4 planted pots of both species were exposed to a reduced light intensity of about 17 µmol m⁻² s⁻¹ for 10 days. In addition, 4 pots per species were kept under normal conditions and used as controls with untreated plants (no reduced light and no clipping). All pots, including the controls, were harvested 10 days after the clipping or the beginning of light reduction.

3.2.4 Sampling

At harvest, aboveground biomass of all treatments was divided into 'shoot' (biomass above the cutting height of 4 cm or 8 cm) and 'stubble' (biomass between cutting height of shoots and soil surface). Furthermore, the shoots of the clipped plants were divided into 'clipped shoots' (the shoots already cut 5 days after labeling) and 'regrown shoot' (the shoots cut at harvest). Roots were separated from the soil by tweezers. To separate rhizosphere soil and bulk soil, the roots were slightly shaken and the remaining soil attached to the roots was accepted as rhizosphere soil.

To determine the impact of clipping and shading on the dynamics of soil CO_2 efflux, the soil air was trapped in 15 ml of 1 M NaOH solution by pumping with a membrane pump. Sampling of CO_2 started directly after the first ¹⁴CO₂ pulse. The NaOH solution was changed 3 times after each labeling (day 1, 3 and 5 after each labeling) and 6 times after clipping or the beginning of the light reduction (day 1, 3, 5, 6, 8 and 10 after the treatments).

3.2.5 Sample analysis

All plant and soil samples were dried at 65°C for 3 days, weighed and ground in a ball mill. Prior to liquid scintillation counting (LSC) for ¹⁴C analyses, the solid samples (50 mg of plant material, 500 mg of soil) were combusted in an oxidizer unit (Feststoffmodul 1300, AnalytikJena, Germany) at 900°C. The CO₂ released during combustion was trapped in 10 ml of 1 M NaOH. 2 ml aliquots of the NaOH solution were mixed with 4 ml of the scintillation cocktail Rotiszint Eco Plus (Carl Roth, Germany). After decay of chemiluminescence, the ¹⁴C activity was measured by means of LSC (LS 6500 Multi-Purpose Scintillation Counter, 217 Beckman, USA). The ¹⁴C activity of ¹⁴CO₂ trapped in NaOH solution during the experiment was measured in 1 ml aliquots added to 2 ml scintillation cocktail Rotiszint Eco Plus (Carl Roth, Germany) after decay of chemiluminescence. The ¹⁴C measurements were carried out with an LSC (MicroBeta TriLux, 205 Perkin Elmer Inc., USA). The total C content in trapped CO₂ was determined by titration of the NaOH solution with 0.01 M HCl against Phenolphthalein after addition of 1.5 M BaCl₂ solution. Total C and ¹⁴C incorporated into the microbial biomass in the bulk soil and rhizosphere soil during the experiment were analyzed by the chloroform-fumigation extraction method (CFE) (modified after Vance et al., 1987). 5 g of fresh soil were extracted with 20 ml of 0.05 M K₂SO₄ solution. Another 5 g of soil were first fumigated with ethanol-free chloroform for 24 hours and then extracted in the same way. Both extracts were shaken for 1 h at 200 rpm and then centrifuged for 10 min at 3070 rpm. The extracts were frozen until analysis of total C and ¹⁴C. The total C content in the extracts of the fumigated and unfumigated soil samples was measured using an N/C analyzer (Multi N/C 2100, AnalytikJena, Germany). The ¹⁴C activity of the extracts was measured by means of an LSC (LS 6500 Multi-Purpose Scintillation Counter, 217 Beckman, USA) as described for plant and soil material.

3.2.6 Calculations and statistics

The ¹⁴C activity in shoots, stubbles, roots, bulk soil, rhizosphere soil, microbial biomass and in CO₂ efflux are presented as percentage of total recovered ¹⁴C. Specific ¹⁴C activities are expressed as kBq g⁻¹ dry weight for shoots, stubbles, roots and soil samples, and as kBq g⁻¹ C for CO₂ and microbial biomass. The total C and ¹⁴C in microbial biomass was calculated by dividing the microbial C flush (difference between extractable C from fumigated and unfumigated soil samples) with a k_{EC} factor of 0.45 (Wu et al., 1990).

The experiment was conducted with 4 replicates for all treatments. All results are presented as mean values with standard errors of the mean. If the standard error exceeded the mean by more than 10%, the replicate with the highest deviation was not considered. Significances between the treatment and the plant species were obtained by a two-factor analysis of variance (ANOVA) in combination with a *post hoc* Newman-Keuls test as least significant differences between the means (LSD; P<0.05).

3.3 Results

3.3.1 Plant biomass production

Plants of *M. sativa* produced significantly more shoot biomass as well as stubble biomass compared to *L. perenne* (Fig. II.3/1). Only after shading the stubble biomass was the same for both plant species. *M. sativa* had slightly higher root biomass compared to *L. perenne*, resulting in a slightly higher R:S ratio by *L. perenne* (Table II.3/2).

Figure II.3/1: Aboveground and belowground plant dry mass (\pm SEM) of 60 days old *L*. *perenne* and *M. sativa* 10 days after clipping or shading. LSD values (P<0.05) are presented as whisked segments.

R:S ratio				
	Lolium perenne	Medicago sativa		
Control	1.12±0.06	0.85±0.25		
Clipping	1.00 ± 0.60	0.61 ± 0.10		
Shading	1.23±0.14	0.84 ± 0.12		

Table II.3/2: Root-to-shoot (R:S) ratio (\pm SEM) of *L. perenne* and *M. sativa* 10 days after clipping and shading. The statistical analyses showed no significant differences between the results.

Clipping caused an increase in shoot biomass (including clipped shoots) of *M. sativa* after 10 days of regrowth. These results indicate faster regrowth of *M. sativa* compared to *L. perenne*. For the stubble biomass, a significant decrease after clipping was observed only for *L. perenne*, while there was no change for *M. sativa*. Shading for 10 days reduced the biomass of the stubbles of both plant species (Fig. II.3/1). The amount of root biomass showed no significant differences between the different treatments, and thus, also the R:S ratio was unaffected (Table II.3/2).

3.3.2 Distribution of ¹⁴C in plant and soil pools

The amount of C allocated into shoots, stubbles, roots, bulk soil and rhizosphere soil was determined as percentage of total ¹⁴C recovery and as ¹⁴C specific activity. The ¹⁴C specific activity of a pool allowed comparison of C allocation with respect to the pool size, while ¹⁴C recovery within this pool showed the allocation of total C after the start of labeling and thus reflected the effect of clipping and shading.

About 50% of the recovered ¹⁴C was found in the aboveground biomass for both plant species (Fig. II.3/2). Except for the control plants, where the ¹⁴C recovery in the shoots was higher for *M. sativa* than *L. perenne* there was no difference in the shoot ¹⁴C recovery between both plant species. The ¹⁴C recovery in the roots reached about 20% for *M. sativa* and, depending on the treatment, between 6% and 15% for *L. perenne* (Fig. II.3/2). ¹⁴C recovery for the stubbles was nearly identical for both species as well as between the treatments and ranged from about 10% to 15%.

Translocation of reserve C to newly grown shoots after clipping was measured by ¹⁴C in the regrown shoots. The reserve C used for shoot regrowth contributed about 2% of total ¹⁴C recovery for both plants. After clipping, there was no significant change of ¹⁴C recovery and ¹⁴C specific activity in the stubbles and in the roots (Fig. II.3/2 and II.3/3). However, a relative ¹⁴C decrease in the roots of *L. perenne* was observed, indicating that roots are a probable source of reused C reserves after clipping.

Figure II.3/2: ¹⁴C recovery (\pm SEM) in the above- and belowground plant parts 10 days after clipping or shading of 60 days old *L. perenne* and *M. sativa* presented as portions of ¹⁴C recoveries. LSD values (P<0.05) are presented as whisked segments.

There was no effect of shading on the ¹⁴C recovery as compared to the controls (Fig. II.3/2). However, due to lower amounts of aboveground biomass (Fig. II.3/1) and a lower assimilation of new C compared to plants grown under control conditions, ¹⁴C specific activity of the stubble and shoots of *L. perenne* grown under reduced light was higher than under normal light conditions. For *M. sativa*, however, this increase was only observed for the stubbles (Fig. II.3/3). There was no change in the ¹⁴C specific activity in roots.

In the control and the shaded plants, higher portions of ¹⁴C were recovered in the rhizosphere of *L. perenne* compared to *M. sativa* (Fig. II.3/4A). Clipping and shading showed no significant effects on ¹⁴C recovery in the soil pools of both plants compared to their respective control plants (Fig. II.3/4B). ¹⁴C recovery and specific activity in the microbial biomass was similar for both plant species and was unaffected by clipping and shading (Fig. II.3/4A).

Figure II.3/3: ¹⁴C specific activity (\pm SEM) of aboveground and belowground plant parts for different treatments 10 days after clipping or shading. LSD values (P<0.05) are presented as whisked segments.

Figure II.3/4:¹⁴C recovery (\pm SEM) in soil (A) and microbial biomass (B) under *L. perenne* and M. *sativa* 10 days after clipping or shading. LSD values (P<0.05) are presented as whisked segments. Soil of shaded *L. perenne* was completely rooted and therefore no data for bulk soil are available.

3.3.3 Total CO₂ and ¹⁴C efflux from soil

The cumulative CO_2 efflux from soil under *L. perenne* was highest for the control treatments (Fig. II.3/5A). The reduced availability of assimilates after clipping or shading decreased the CO_2 efflux, with a larger decrease after clipping. For *M. sativa*, soil CO_2 efflux was also reduced after clipping or shading (Fig. II.3/5B). However, after clipping this was only observed for 5 days and after 10 days, it reached the same level as that of control plants. The lowest amounts of soil CO_2 for *M. sativa* were observed

after shading. Comparing both plant species, total soil CO_2 efflux was higher for *M*. *sativa* than for *L*. *perenne*.

The percentage of ¹⁴C recovery in the CO₂ efflux increased in response to clipping under *L. perenne*, whereas it showed no significant change after reducing light (Fig. II.3/6A). ¹⁴C specific activity, calculated as mean of the time between the beginning of treatment and harvest, was higher under *M. sativa* than under *L. perenne* for clipped plants and shaded plants (Fig. II.3/6B). Clipping increased the ¹⁴C specific activity of the soil CO₂ efflux under *M. sativa*, whereas there was no effect under *L. perenne*. After shading, an increase in ¹⁴C specific activity of CO₂ was observed for both plant species. In contrast to clipping, the remobilization of reserve C may play a more important role in maintaining respiration after shading.

Figure II.3/5: Cumulative C-CO₂ efflux (\pm SEM) from soil under *L. perenne* (A) and *M. sativa* (B) beginning after the first ¹⁴C labeling and the effect of clipping and shading on the CO₂ efflux.

Figure II.3/6: ¹⁴C recovery (\pm SEM) in CO₂ efflux from soil under *L. perenne* and *M. sativa*, calculated from the cumulated ¹⁴C efflux (A), and mean value of ¹⁴C specific activity (\pm SEM) of the soil CO₂ under *L. perenne* and *M. sativa* measured from clipping or shading until harvest (B). LSD value (P<0.05) is presented as whisked segment.

3.4 Discussion

3.4.1 C allocation by Lolium perenne and Medicago sativa

The biomass of the aboveground plant parts and roots was higher for *M. sativa* than for *L. perenne* (Fig. II.3/1). These results are in accordance with the higher ¹⁴C recovery found in shoots of the control of *M. sativa* compared to *L. perenne* (Fig. II.3/2). The lower R:S ratio of *M. sativa* showed that this legume allocates more C in its aboveground biomass, whereas C allocation in roots is higher for the non-legume *L. perenne*. This is also supported by the higher specific ¹⁴C activity of the roots of *L. perenne*. The higher ¹⁴C recovery found in the soil under *L. perenne* compared to *M. sativa* (Fig. II.3/4) can be explained by a higher investment of *L. perenne* for rhizodeposition since an enhanced rhizodeposition leads to increased nutrient availability for roots (Kuzyakov, 2002), which is of more importance for non-legumes than for legumes. On the other hand, legumes have higher C costs for N₂ fixation estimated as between 4% and 12% of photosynthesis (Lambers, 1987), resulting in higher root and rhizomicrobial respiration. Thus, the higher soil CO₂ efflux of *M. sativa* compared to the non-legume *L. perenne* (Fig. II.3/5) can be explained by higher root respiration to maintain N₂ fixation.

3.4.2 Redistribution of stored C in plant pools

The results of 28 studies investigating the effect of defoliation on growth of grasses and herbs were reviewed by Ferraro and Oesterheld (2002). Most plant species decrease their biomass production after defoliation, depending on (a) the recovery period after the last defoliation, (b) the time interval between defoliation events and (c) N availability. In our study, the aboveground biomass (including clipped shoots) of *L. perenne* was reduced after clipping, whereas that of *M. sativa* was increased (Fig. II.3/1). A trend of biomass reduction of *L. perenne* roots was observed after clipping because of higher herbivory tolerance of *L. perenne* compared to *M. sativa* (Counce et al., 1984). For herbivory-tolerant grass species, defoliation-induced reduction of root growth was a consequence of allocation of assimilates to support shoot regrowth (Guitian and Bardgett, 2000). The decreased R:S ratio of both plant species indicated assimilate translocation from roots to shoots after clipping (Table II.3/2).¹⁴C was found in the newly grown shoots of both species. This is supported by many other studies that have labeled grasses

with ¹⁴C or ¹³C (Johansson, 1993; Kuzyakov et al., 2002; Morvan-Bertrand et al., 1999). The ¹⁴C in the shoot must have been translocated from the stubbles or roots left after clipping. The translocation of C is very important for the growth of new tissue since 91% of the C in these plant parts is derived from reserves (Morvan-Bertrand et al., 1999). Five and 8% of ¹⁴C in L. perenne and M. sativa, respectively, were translocated from storage pools to newly grown shoots. The remobilization was, however, too low to cause significant changes in ¹⁴C recovery in the stubble or roots. A greater use of stored C by *M. sativa* can be explained by a faster growth of the new shoots compared to *L*. perenne. However, higher ¹⁴C specific activity in newly grown shoots of L. perenne indicated a higher use of stored C related to biomass increase compared to M. sativa. Since L. perenne is more herbivory-tolerant, it is better adapted to the removal of biomass by means of a higher ability to use reserve C as compared to M. sativa. A trend for reduced portion of recovered ¹⁴C was determined in roots of *L. perenne* but not in its stubbles, indicating remobilization of stored C from roots rather than from the stubble. In contrast, no difference in ¹⁴C recoveries was observed between clipped and control treatments, neither in roots nor in stubbles of M. sativa (Fig. II.3/2 and II.3/3). The results of *M. sativa* were surprising since no source of the 14 C in the new shoot could be found. However, a decrease in reserve C in the root by translocation to the shoots could be counterbalanced by a reduced proportion of reserve C in root respiration (discussed below).

We reviewed several studies focusing on the effects of clipping (simulated grazing) on the portion of C translocated to the newly grown shoots of grassland species (Table II.3/3). Legumes use significantly higher portion of C (10%) for support of the new shoots as compared to grasses (7%). However, the reviewed studies did not allow conclusions about the absolute amount of C reutilization since the amount of stored C was not measured nor presented. The source of C reutilized by grasses and legumes for shoot regrowth was mainly roots (Table II.3/3). The relative amount of translocated reserve C in newly grown shoots depends on the period after defoliation (Briske et al., 1996). During the first three days after defoliation, the most important C source for the elongation and maturation zone is stored C (Schnyder and de Visser, 1999). However, when comparing the reviewed studies, plant species and clipping height is more important than the time of regrowth.

Plant species	Approach	Source of retranslocated C	Days after clipping	Clipping height [cm]	C retrans- located [%]	Reference
Medicago sativa	¹³ C pulse	Roots (ta- proots, lateral roots), Stubble stem	30	6	5	Avice et al., 1996
	¹⁴ C pulse	Roots (stubbles were not measured)	28	5	12	Ta et al., 1990
	¹⁴ C pulse	np*	28		19	Pearce et al.,1969
	¹⁴ C continuous	Stubbles and Roots		5	9	Smith and Marten, 1969
	Repeated ¹⁴ C pulse	Roots	10	8	8	This study
	$^{14}C + ^{13}C$ continuous	Stubbles	23	5		Crawford et al., 2000
Medicago truncatula	¹⁴ C pulse to a single leaf	At the begin- ning stolons after 5 days roots	10	Removing of all meristems and leaves	11	Danckwerts and Gordon, 1989
Trifolium repens		np		Removing of all meristems and all, except two, leaves	5-6	
Legumes		Mainly roots			9 / 9.9	Median / average

Table II.3/3: Review of sources and amounts of C relocated in the newly grown shoots after clipping of grassland species.

Grasses						
Agropy- ron- Koeleria association	¹⁴ C continuous	Roots (stubbles were not measured)	120		6	Warembourg and Paul, 1977
Festuca pratensis	$^{14}C + ^{13}C$ continuous	Stubbles and Root	15	1.5	21	Johansson, 1993
Panicum maximum	¹⁴ C continuous	Crowns and Roots	19	8		Bushby et al., 1992
	Repeated ¹⁴ C pulse	Roots	10	4	5	This study
	¹³ C continuous	Elongated leaf bases, sheaths of stubble	28	4	1	Morvan- Bertrand et al., 1999
	Repeated ¹⁴ C pulse	Predominantly stubbles	15	4	2.4 - 4.7	Kuzyakov et al., 2002
Lolium perenne	¹⁴ C pulse to a single leaf	Stem bases (stubbles)	10	2		Danckwerts and Gordon, 1987

Table II.3/3 continued:

*np data were not presented in the paper.

Shading allows the sole investigation of the effect of limited photosynthesis on the redistribution of reserve C, without the effect of C translocation to support shoot regrowth, as is the case after clipping. This study showed that low light reduced the amount of dry matter in aboveground biomass and roots but had no effect on the R:S ratio of *M. sativa* and *L. perenne* (Fig. II.3/1 and Table II.3/2). This indicates that the C stored in shoots and roots was used for maintenance proportional to the weight of the plant parts. A positive relationship between plant biomass and light intensity has also been observed in many other studies (Lambers and Posthumus, 1980; Zagal, 1994). In comparison to clipped plants, plants grown under low light showed a higher R:S ratio and the ¹⁴C recovery in roots was higher after shading for *L. perenne*. Thus, clipped plants rely more on translocated C for regrowth compared to shaded plants. ¹⁴C specific activity in the aboveground biomass of *L. perenne* was higher after shading compared to control plants and clipped plants (Fig. II.3/3). This is because lower photosynthesis after shading led to less dilution of ¹⁴C by unlabeled assimilates. For *M. sativa*, biomass production and ¹⁴C specific activity were less affected by shading compared to *L. perenne*. This indicate a better strategy of *M. sativa* to cope with low light conditions.

3.4.3 Redistribution of stored C in soil and soil CO₂

Many studies investigated the effect of clipping on root exudation, however, with contradicting results. An increase (Hamilton et al., 2001; Paterson and Sim, 1999), no change (Kuzyakov et al., 2002; Murray et al., 2004; Todorovic et al., 1999) or decrease (Mikola and Kytöviita, 2002) of exudation after defoliation have been noted. These differences depend on plant species and methods used in the studies (Mikola and Kytöviita, 2002). Paterson and Sim (1999) measured the release of total organic C and hypothesized that an increase in exudation after defoliation was a consequence of the remobilization of storage compounds in roots, increasing the concentration of diffusible exudates in the root system. In our study, an increased ¹⁴C recovery rate, indicating a remobilization of stored C was only found in the rhizosphere soil under *M. sativa*. This is caused by a higher exudation and/or an increased root senescence. However, this was not found in any of the other investigated soil pools (bulk and rhizosphere soil) under both plants (Fig. II.3/4A). The increase in total root exudation lasts only two days after defoliation (Paterson et al., 2005), which may explain that no effects were detected 10 days after clipping.

Many authors observed an increase in soil microbial biomass after defoliation (Butenschoen et al., 2008; Guitian and Bardgett, 2000). It is assumed that plants are able to stimulate rhizodeposition to enhance nutrient availability by promoting the activity of microbial populations (Blagodatskaya et al., 2010; Hamilton et al., 2001; Lambers et al., 2009). In our study the results of the ¹⁴C recovery and the ¹⁴C specific activity (data not shown) indicates that there is no effect of clipping on the availability and uptake of plant-stored C by microorganisms (Fig. II.3/4B).

Rhizodeposits are an important driver for soil CO_2 efflux, as their microbial decomposition is an important source for soil CO_2 (Kuzyakov, 2006). After clipping, a decrease in total CO₂ efflux was observed for *L. perenne*, confirming the results from previous studies (Craine et al., 1999; Detling et al., 1979; Kuzyakov et al., 2002). This decrease is caused by reduced root respiration and microbial respiration after clipping (Gavrichkova et al., 2010) and indicates a strong connection between photosynthesis and soil respiration (Kuzyakov and Gavrichkova, 2010). Lower assimilation after clipping leads to less available C for belowground translocation and thus, reduces soil CO₂ efflux. The unaltered CO₂ efflux under *M. sativa* (Fig. II.3/5B) by clipping was unexpected. Like *L. perenne*, a lower CO₂ efflux from soil was assumed due to a lower photosynthesis after clipping. A high energy demand for N₂ fixation by legumes may lead to an increase in root and rhizomicrobial respiration after clipping, diminishing the effect of limited photosynthesis. The ¹⁴C specific activity of soil CO₂ increased after clipping of *M. sativa* (Fig. II.3/6). C stored in nodules plays an important role in supporting N₂ fixation after defoliation of *M. sativa* (Ta et al., 1990). Thus, in contrast to *L. perenne*, *M. sativa* showed increased ¹⁴C specific activity of the CO₂ efflux after clipping.

In former studies a limited photosynthesis after reduced light intensity decreases root exudation (Hill et al., 2007). This leads to a reduced incorporation of exuded C into microorganisms and decreased microbial growth (Zagal, 1994). In the present study, no change in the ¹⁴C specific activities (data not shown) and ¹⁴C recoveries of the soil and microbial biomass were observed (Fig. II.3/4A, B).

Root respiration and rhizomicrobial respiration are very closely linked to the supply of assimilates (Kuzyakov and Gavrichkova, 2010). In grassland, shading reduces the soil CO_2 flux by 40% (Craine et al., 1999). Our results also showed a decrease in the CO_2 efflux after shading (Fig. II.3/5). The higher ¹⁴CO₂ efflux (Fig. II.3/6) seems to contradict the decreasing total CO_2 efflux from soil for *L. perenne* and for *M. sativa*. This effect of low light conditions was also observed for wheat and maize (Kuzyakov and Cheng, 2001; 2004). The authors of these studies explained the effects on the need for recently assimilated C for maintaining respiration, increasing ¹⁴C efflux, and also because of the reduced photosynthesis, decreasing the total CO_2 efflux from soil. Our results demonstrate that the respired CO_2 was not only composed of recently assimilated C but also of translocated reserve C (¹⁴C). Indeed, respiration of old C was closely related to maintenance, which dominated the respiratory costs when relative growth rate was low, e.g., after shading (Lötscher et al., 2004). Changing respiration regimes (in-

creased maintenance respiration after shading and increased growth respiration after clipping) with their different demands on stored C and newly assimilated C influence the relative amount of reserve C in the root respiration.

3.5 Conclusions

Limited photosynthesis after clipping or shading alters C allocation in grassland plants. Shading reduced the total biomass of both *L. perenne* and *M. sativa*, whereas the response to clipping was different between the two species. While the biomass of *L. perenne* decreased, the biomass of *M. sativa* increased by regrowth after clipping. The redistribution of reserve C after clipping was governed not only by the lower photosynthesis but also by the C demand for the regrowth of new shoots. In particular, clipping induced a higher demand of reserve C for newly growing shoots. In contrast, only the lower photosynthesis, without the regrowth of shoots, determined the redistribution of reserve C after shading. The main effect after shading was a higher utilization of stored C for maintaining respiration. These differences indicate that the removal of biomass after clipping is more important for the translocation of stored C than limited photosynthesis.

The CO₂ efflux from soil declined by *L. perenne* after shading. The decrease of the CO₂ efflux is more pronounced after clipping compared to shading because of a higher C demand for the newly growing shoots. For *M. sativa*, a decrease in soil CO₂ efflux was observed only after shading but not after clipping. This indicates that the non-legume *L. perenne* and the legume *M. sativa* have different mechanisms to cope with clipping. While *L. perenne* uses stored C mainly for shoot regrowth, *M. sativa* has also a high C demand for N₂ fixation compared to the nutrient uptake of non-legumes.

The results show that C storage by plants is a very important mechanism to overcome stress periods like grazing or limited light availability. This C can be useful to recover from the removal of biomass by supporting the regrowth of new shoots or to obtain vital functions like respiration or the N_2 fixation of legumes.

Acknowledgements

We are very thankful for German Research Foundation (DFG) for the support of this study.

References

- Avice, J.C., Ourry, A., Lemaire, G., Boucaud, J., 1996. Nitrogen and carbon flows estimated by ¹⁵N and ¹³C pulse-chase labeling during regrowth of alfalfa plant. Plant Physiology 112, 281–290.
- Blagodatskaya, E., Blagodatsky, S., Dorodnikov, M., Kuzyakov, Y., 2010. Elevated atmospheric CO₂ increases microbial growth rates in soil: results of three CO₂ enrichment experiments. Global Change Biology 16, 836–848.
- Briske, D.D., Boutton, T.W., Wang, Z., 1996. Contribution of flexible allocation priorities to herbivory tolerance in C4 perennial grasses: an evaluation with ¹³C. Oecologia 105, 151-159.
- Bushby, H.V.A., Vallis, I., Myers, R.J.K., 1992. Dynamics of C in a pasture grass (*Panicum maximum* var. Trichoglume) soil system. Soil Biology and Biochemistry 24, 381-187.
- Butenschoen, O., Marhan, S., Scheu, S., 2008. Response of soil microorganisms and endogeic earthworms to cutting of grassland plants in a laboratory experiment. Applied Soil Ecology 38, 152-160.
- Cao, G., Tang, Y., Mo, W., Wang, Y., Li, Y., Zhao, X., 2004. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry 36, 237-243.
- Counce, P.A., Bouton, J.H., Brown, R.H., 1984. Screening and characterizing alfalfa for persistence under mowing and continuous grazing. Crop Science 24, 282-285.
- Craine, F.M., Wedin, D.A., Chapin III, F.S., 1999. Predominance of ecophysiological controls on soil CO₂ flux in a Minnesota grassland. Plant and Soil 207, 77-86.
- Crawford, M.C., Grace, P.R., Oades, J.M., 2000. Allocation of carbon to shoots, roots and rhizosphere respiration by barrel medic (*Medicago truncatula*) before and after defoliation. Plant and Soil 227, 67-75.
- Danckwerts, J.E., Gordon, A.J., 1987. Long-term partitioning, storage and remobilization of ¹⁴C assimilated by *Lolium perenne* (cv. Melle). Annals of Botany 59, 55-66.
- Danckwerts, J.E., Gordon, A.J., 1989. Long-term Partitioning, Storage and Remobilization of ¹⁴C Assimilated by *Trifolium repens* (cv. Blanca). Annals of Botany 64, 533-544.
- Detling, J.K., Dyer, M.I., Winn, D.T., 1979. Net photosynthesis, root respiration, and regrowth of *Bouteloua gracilis* following simulated grazing. Oecologia 41, 127-134.
- Dilkes, N.B., Jones, D.L., Farrar, J., 2004. Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiology 134, 706-715.
- Domanski, G., Kuzyakov, Y., Siniakina, S.V., Stahr, K., 2001. Carbon flows in the rhizosphere of ryegrass (*Lolium perenne*). Journal of Plant Nutrition and Soil Science. 164, 381–387.
- Ferraro, D.O., Oesterheld, M., 2002. Effect of defoliation on grass growth. A quantitative analysis. OIKOS 98, 125-133.
- Gavrichkova, O., Moscatelli, M.C., Kuzyakov, Y., Grego, S., Valentini, R., 2010. Influence of defoliation on CO₂ efflux from soil and microbial activity in a Mediterranean grassland. Agriculture, Ecosystems and Environment 136, 87-96.
- Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C., Wofsy, S.C., 1996. Exchange of carbon dioxide by a deciduous forest: response of interannual climate variability. Science 271, 1576–1578.
- Gregory, P.J., Atwell, B.J., 1991. The fate of carbon in pulse labelled crops of barley and wheat. Plant and Soil 136, 205-213.
- Guitian, R., Bardgett, R.D., 2000. Plant and soil microbial responses to defoliation in temperate semi-natural grassland. Plant and Soil 220, 271–277.
- Hamilton, E.W., Frank, D.A., 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82, 2397-2402.
- Hill, P., Kuzyakov, Y., Jones, D., Farrar, J., 2007. Response of root respiration and root exudation to alterations in root C supply and demand in wheat. Plant and Soil 291, 131-141.

- Hodge, A., Paterson, E., Thornton, B., Millard, P., Killham, K., 1997. Effects of photon flux density on carbon partitioning and rhizosphere carbon flow of *Lolium perenne*. Journal of Experimental Botany 48, 1797-1805.
- Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Högberg, M.N., Nyberg, G., Ottosson-Löfvenius, M., Read, D.J., 2001 Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789-79.
- Holland, J.N., Cheng, W., Crossley, D.A.J., 1996. Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using ¹⁴C. Oecologia 107, 87-94.
- Johansson, G., 1993. Carbon distribution in grass (*Festuca pratensis* L.) during regrowth after cutting-utilization of stored and newly assimilated carbon. Plant and Soil 151, 11-20.
- Johnson, D., Leake, J.R., Ostle, N., Ineson, P., Read, D.J., 2002. *In situ* ¹³CO₂ pulselabelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist 153, 327-334.
- Johnson, D., Vachon, J., Britton A.J., Helliwelli R.C., 2011. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. New Phytologist 190, 740-749.
- KA5, 2005. Bodenkundliche Kartieranleitung. Ad-Hoc-Arbeitsgruppe Boden:5. verbesserte und erweiterte Auflage, ISBN 978-3-510-95920-4, E.Schweizerbart Science Publishers.
- Keith, H., Oades, J.M., 1986. Input of carbon to soil from wheat plants. Soil Biology and Biochemistry 18, 445-449.
- Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Schoene, J., Scheunemann, N., Schmalwasser, A., Totsche, K.U., Walker, F., Scheu, S., Kandeler, E., 2012. Carbon flow into microbial and fungal biomass as a basis to understand the belowground food web in an agroecosystem. Pedobiologia 55, 111-119.
- Kuzyakov, Y., 2002. Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 16, 382-396.

- Kuzyakov, Y., 2006. Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38, 425-448.
- Kuzyakov, Y., Domanski, G., 2000. Carbon inputs into soil. Review. Journal of Plant Nutrition and Soil Science 163, 421-423.
- Kuzyakov, Y., Cheng, W., 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry 33, 1915-1922.
- Kuzyakov, Y., Cheng, W., 2004. Photosynthesis controls of CO₂ efflux from maize rhizosphere. Plant and Soil 263, 85-99.
- Kuzyakov, Y., Biryukova, O.V., Kuznetzova, T.V., Molter, K., Kandeler, E., Stahr, K., 2002. Carbon partitioning in plant and soil carbon dioxide fluxes and enzyme activities as affected by cutting ryegrass. Biology and Fertility of Soils 35, 348–358.
- Kuzyakov, Y., Gavrichkova, O., 2010. Time lag between photosynthesis and carbon dioxide efflux from soil: a review. Global Change Biology 16, 3386-3406.
- Lambers, H., 1987. Growth, respiration, exudation and symbiotic associations: The fate of carbon translocated to the roots, in: Gregory P.J., Lake J.K., Rose D.A. (Eds.), Root development and function. DA Cambridge University Press, Cambridge, pp. 125-145.
- Lambers, H., Posthumus, L., 1980. The effect of light intensity and relative humidity on growth rate and root respiration of *Plantago lanceolata* and *Zea mays*. Journal of Experimental Botany 31, 1621-1630.
- Lambers, H., Mougel, C., Jaillard, B., Hinsinger, P., 2009. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil 321, 83-115.
- Leake, J.R., Ostle, N., Rangel-Castro, J.I., Johnson, D., 2006. Carbon fluxes from plants through soil organisms determined by field ¹³CO₂ pulse-labelling in an upland grassland. Applied Soil Ecology 33, 152–175.
- Longdoz, B., Yernaux, M., Aubinet, M., 2000. Soil CO₂ efflux measurements in a mixed forest: impact of chamber distances, spatial variability and seasonal evolution. Global Change Biology 6, 907-917.
- Lötscher, M., Klumpp, K., Schnyder, H., 2004. Growth and maintenance respiration for individual plants in hierarchically structured canopies of *Medicago sativa* and *He*-

lianthus annuus: the contribution of current and old assimilates. New Phytologist 164, 305-316.

- Mackie-Dawson, L.A., 1999. Nitrogen uptake and root morphological responses of defoliated *Lolium perenne* (L.) to a heterogeneous nitrogen supply. Plant and Soil 209, 111-118.
- Meharg, A.A., Killham, K., 1990. Carbon distribution within the plant and rhizosphere in laboratory and field grown *Lolium perenne* at different stages of development. Soil Biology and Biochemistry 22, 471-477.
- Merbach, W., Mirus, E., Knof, G., Remus, R., Ruppel, S., Russow, R., Gransee, A., Schulze, J., 1999. Release of carbon and nitrogen compounds and their possible ecological importance. Journal of Plant Nutrition and Soil Science 162, 373-383.
- Merlo, L., Ferretti, M., Passera, C., Ghisi, R., 1994. Effect of decreased irradiance on N and C metabolism in leaves and roots of maize. Physiologia Plantarum 90, 72-80.
- Mikola, J., Kytöviita, M.M., 2002. Defoliation and the availability of currently assimilated carbon in the *Phleum pratense* rhizosphere. Soil Biology and Biochemistry 34, 1869-1874.
- Milchunas, D.G., Lauenroth, W.K., 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs 63, 327-366.
- Morvan-Bertrand, A., Pavis, J., Boucaud, J., Prud'homme, M.-P., 1999. Partitioning of reserve and newly assimilated carbon in roots and leaf tissues of *Lolium perenne* during regrowth after defoliation: assessment by ¹³C steady-state labelling and carbohydrate analysis. Plant, Cell and Environment 22, 1097-1108.
- Murray, P., Ostle, N., Kenny, C., Grant, H., 2004. Effect of defoliation on patterns of carbon exudation from *Agrostis capillaries*. Journal of Plant Nutrition and Soil Science 167, 487-493.
- Paterson, E., Sim, A., 1999. Rhizodeposition and C partitioning of *Lolium perenne* in axenic culture affected by nitrogen supply and defoliation. Plant and Soil 216, 155-164.

- Paterson, E., Thornton, B., Midwood, A.J., Sim, A., 2005. Defoliation alters the relative contributions of recent and non-recent assimilate to root exudation from *Festuca rubra*. Plant, Cell and Environment 28, 1525-1533.
- Phillips, D.A., 1980. Efficiency of symbiotic nitrogen fixation in legumes. Ann. Rev. Plant Physiology 31, 29-49.
- Pearce, R.B., Fissel, G., Carlson, G.E., 1969. Carbon uptake and distribution before and after defoliation of alfalfa. Crop Science 9, 756-759.
- Schlesinger, W.H., 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics 8, 51-81.
- Smith, L.H., Marten, G.C., 1969. Foliar regrowth of alfalfa utilizing ¹⁴C-labeled carbohydrates stored in roots. Crop Science 9, 146-150.
- Schnyder, H., De Visser, R., 1999. Fluxes of reserve-derived and currently assimilated carbon and nitrogen in perennial ryegrass recovering from defoliation. The regrowing tiller and its component functionally distinct zones. Plant Physiology 119, 1423-1435.
- Subke, J.-A., Inglima, I., Cotrufo, M.F., 2006. Trends and methodological impacts in soil CO₂ efflux partitioning: A metaanalytical review. Global Change Biology 12, 921-943.
- Todorovic, C., Nguyen, C., Robin, C., Guckert, A., 1999. ¹⁴C-assimilate partitioning within white clover plant–soil system: effects of photoperiod/temperature treatments and defoliation. European Journal of Agronomy 11, 13–21.
- Vance, E., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19, 703-707.
- Vance, C.P., Heichel, G.H., 1991. Carbon in N₂ fixation: Limitation or exquisite adaption Ann Rev. Plant Physiology 42, 373-392.
- Warembourg, F.R., Paul, E.A., 1977. Seasonal transfers of assimilated ¹⁴C in grassland: Plant production and turnover, soil and plant respiration. Soil Biology and Biochemistry 9, 295-301.

- Warembourg, F.R., Roumet, C., Lafont, F., 2003. Differences in rhizosphere carbonpartitioning among plant species of different plant families. Plant and Soil 256, 347-357.
- Werth, M., Kuzyakov, Y., 2008. Determining root-derived carbon in soil respiration and microbial biomass using ¹⁴C and ¹³C. Soil Biology and Biochemistry 40, 625-637.
- Witty, J.F., Minchin, F.R., Sheehy, J.E., 1983. Carbon costs of nitrogenase activity in legume root nodules determined using acetylene and oxygen. Journal of Experimental Botany 34, 951-963.
- Wu, J., Jörgensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement of soil microbial biomass-C by fumigation-extraction – an automated procedure. Soil Biology and Biochemistry 22, 1167-1169.
- Zagal, E., 1994. Influence of light intensity on the distribution of carbon and consequent effects on mineralization of soil nitrogen in a barley (*Hordeum vulgare* L.)-soil system. Plant and Soil 160, 21-31.

Supplementary material

Parameters	¹⁴ C specific activity			¹⁴ C recovery			
	LSD (P<0.05)	Between MS	df	LSD (P<0.05)	Between MS	df	
Stubble	12.09	55.064	15	2.98	2.8454	13	
Shoot	26.53	265.31	15	7.77	25.67	13	
Root	27.78	258.44	13	6.94	14.569	12	
Rhizosphere soil	0.04	0.00056	13	9.09	20.652	10	
Bulk soil	0.06	0.00042	5	8.73	13.138	7	
Microbial biomass (rhizosphere soil)	2.21	1.0289	8	4.41	0.82040	11	
Microbial biomass (bulk soil)	2.68	0.96122	5	1.73	3.0506	6	
Belowground respiration	4.93	9.1654	15	2.61	2.2859	13	

Table II.3/4: Statistical analysis (Newman-Keuls test) of significance of treatment effects (clipping or shading) on 14 C specific activity and 14 C recovery.

Table II.3/5: Statistical analysis (Newman-Keuls test) of significance of treatment effects (clipping or shading) on plant biomass and the cumulative belowground respiration at the last day of the experiment.

Parameters			
	LSD (P<0.05)	Between MS	df
stubble	0.09	0.00924	14
shoot	0.05	0.5037	17
root	0.45	258.44	13
belowground respiraion	20.30	186.45	18

4 C and N allocation in soil under ryegrass and alfalfa estimated by ¹³C and ¹⁵N labeling

Andreas Schmitt¹, Johanna Pausch^{1,2,*}, Yakov Kuzyakov^{1,2}

Published in Plant and Soil, 2012, DOI: 10.1007/s11104-012-1536-5.

¹ Department of Agroecosystem Research, BayCEER, University of Bayreuth, Germany

² Department of Soil Science of Temperate Ecosystems, University of Göttingen, Germany

* Corresponding author

Universitätsstr. 30, 95440 Bayreuth, Germany

Phone: +49 921 55 2177 Fax: +49 921 55 2315

johanna.pausch@uni-bayreuth.de

Abstract

Background and Aims

Belowground translocated carbon (C) released as rhizodeposits is an important driver for microbial mobilization of nitrogen (N) for plants. We investigated how a limited substrate supply due to reduced photoassimilation alters the allocation of recently assimilated C in plant and soil pools under legume and non-legume species.

Methods

A non-legume (*Lolium perenne*) and a legume (*Medicago sativa*) were labeled with ¹⁵N before the plants were clipped or shaded, and labeled twice with ¹³CO₂ thereafter. Ten days after clipping and shading, the ¹⁵N and ¹³C in shoots, roots, soil, dissolved organic nitrogen (DON) and carbon (DOC) and in microbial biomass, as well as the ¹³C in soil CO₂ were analyzed.

Results

After clipping, about 50% more ¹³C was allocated to regrowing shoots, resulting in a lower translocation to roots compared to the unclipped control. Clipping also reduced the total soil CO₂ efflux under both species and the ¹³C recovery of soil CO₂ under *L. perenne*. The ¹⁵N recovery increased in the shoots of *M. sativa* after clipping, because storage compounds were remobilized from the roots and/or the N uptake from the soil increased.

After shading, the assimilated ¹³C was preferentially retained in the shoots of both species. This caused a decreased ¹³C recovery in the roots of *M. sativa*. Similarly, the total soil CO₂ efflux under *M. sativa* decreased more than 50% after shading. The ¹⁵N recovery in plant and soil pools showed that shading has no effect on the N uptake and N remobilization for *L. perenne*, but, the ¹⁵N recovery increased in the shoot of *M. sativa*.

Conclusions

The experiment showed that the dominating effect on C and N allocation after clipping is the need of C and N for shoot regrowth, whereas the dominating effect after shading is the reduced substrate supply for growth and respiration. Only slight differences could be observed between *L. perenne* and *M. sativa* in the C and N distribution after clipping or shading.

Keywords: Carbon allocation, N allocation, isotope labeling, grazing effects, N_2 fixation.

4.1 Introduction

Belowground translocation of carbon (C) by plants and its turnover are important drivers for ecological processes and functions in soil. These include nutrient availability for plants, microbe activity and turnover, or the turnover of soil organic matter (SOM) (Merbach et al., 1999; Blagodatskaya et al., 2010). The amount of C allocation by plants into the soil is affected by many factors such as plant development (Gregory and Atwell, 1991; Meharg and Killham, 1999), nutrient availability (Merckx et al., 1987) or plant species and plant functional groups (Warembourg et al., 2003). Since symbiotic N₂ fixation requires abundant energy, legumes have a higher demand for the assimilated C for rhizosphere respiration than grasses and non-legume forbs (Philips, 1980; Vance and Heichel, 1991; Warembourg et al., 2003).

For grasses, rhizodeposition is an important process affecting N availability and N uptake (Frank and Groffman, 2009). Rhizodeposits enhance N mobilization by stimulating microbial activity and SOM degradation; this is termed as the 'priming effect' (Kuzyakov, 2002). Thus, we expect that alterations in the amount of C translocated belowground will trigger different responses in the N uptake between legumes and nonlegumes.

The fast translocation of assimilates belowground indicates a strong connection between current photosynthesis and root exudation (Gregory and Atwell, 1991; Cheng et al., 1993; Kuzyakov et al., 1999; Jones et al., 2004). Thus, any change in photosynthetic activity will affect the turnover processes in the rhizosphere and thus influence N availability for plants (Kuzyakov, 2002).

In this study we manipulated the photosynthetic activity by clipping or shading. After clipping (simulated grazing), photosynthesis is reduced due to a smaller leaf area (Detling et al., 1979). Clipped plants can meet their C supply for regrowth by remobilizing stored C from roots or from remaining shoot parts (Avice et al., 1996; Johansson, 1993). Despite the demand for C for regrowth, root exudation after clipping was higher in many studies (Paterson and Sim, 1999; 2000), however, also a reduced root exudation was found (Augustine et al., 2011). Some authors suggest that, besides C reserves, the remobilization of organic N compounds stored in roots or stubbles – such as amino acids or vegetative storage proteins – is also important for regrowth after clipping (Volenec et al., 1996).

In contrast, shading reduced the photosynthesis rate only at a lower light availability, without the removal of shoots. Like after clipping, C is preferentially allocated in aboveground plant parts after shading, as indicated by a decrease of the R:S ratio in *Lolium perenne* (Lambers and Posthumus, 1980). Consequently, shading leads to less rhizodeposition (Hill et al., 2007). Thus, based on the different effects of clipping and shading on rhizodeposition, and based on the high demand of N for regrowth after clipping, we hypothesize that clipping enhances N uptake by plants, whereas shading reduces it.

Using repeated ¹³CO₂ labeling of two plant species, a legume (*Medicago sativa*) and a non-legume plant (*Lolium perenne*), we investigated how a limited substrate supply after clipping and shading affected the C allocation within the plant and the belowground C translocation. Labeling with ¹⁵NO₃⁻ was carried out to investigate how the altered C allocation after limited assimilate supply affects N remobilization and N up-take by both plant species. The specific questions were:

(1) How does a limited substrate supply affect plant biomass production and alter the distribution of C in plant, soil, microorganisms and CO_2 efflux from soil?

(2) How does a limited assimilate supply affect the remobilization of plant-stored N?

(3) How does the effect of a limited substrate supply affect the N uptake by plants from soil?

(4) Do shading and clipping induce different responses with respect to the distribution of C and N in the plant and soil pools?

4.2 Materials and Methods

4.2.1 Soil properties and plant growing conditions

The soil used in the experiment was an arable loamy haplic Luvisol developed on loess, collected near Göttingen (Germany, $51^{\circ}33'36.8'$ N, $9^{\circ}53'46.9'$ E) from the upper 10 cm of the Ap-horizon. The basic characteristics of the soil are shown in Table II.4/1.

Table II.4/1: Basic characteristics of the soil sampled from the A_p horizon of a haplic Luvisol originated from loess near Göttingen (Germany, Kramer et al., 2012). CEC: Cation exchange capacity; BS: Base saturation.

Parameter	Value
$N_{tot} (mg g^{-1})$	1.200
$C_{org} (mg g^{-1})$	11.700
C/N	9.76
NO_3^{-1} (mg g ⁻¹)	0.083
$P (mg g^{-1})$	0.160
S (mg g^{-1})	0.009
CEC (mmol _c kg ⁻¹)	108.000
BS (%)	99.700
Texture ¹	
clay/silt/sand (% w/w))	7.0/87.2/5.8
pH (H ₂ O)	6.600
pH (CaCl ₂)	6.000

¹ Texture according to the German classification system.

The seedlings of ryegrass (*Lolium perenne* L.) and alfalfa (*Medicago sativa* L.) were first germinated on wet filter paper for 5 (*M. sativa*) and 8 days (*L. perenne*) and thereafter transferred to the plant pots (inner diameter 7 cm, height 20 cm), each of them filled with 700 g of air-dried, sieved (≤ 2 mm) soil. In each pot, 3 seedlings of *M. sativa* or 5 seedlings of *L. perenne* were transferred to achieve a similar biomass for both plant species. The pots were closed with a plastic lid with holes for shoots. The plants were grown at 26 to 28 °C day temperature and at 22 to 23 °C night temperature. At a day length of 14 h the light intensity was approximately 210 μ mol m⁻² s⁻¹, approximately corresponding to a cumulative daily radiation in the range of field conditions. The soil moisture was maintained at 70% of the available field capacity by daily watering with distilled water.

4.2.2 ¹³C and ¹⁵N labeling

To label the soil of all pots with ^{15}N , 16 mg of $K^{15}NO_3$ (enrichment: 52.7 atom%) were dissolved in water and added to the pots with the watering (28 days after planting).

The ¹³C labeling was conducted for the first time 50 days after planting (the day of clipping or beginning of shading). One day before ¹³C labeling, all pots were sealed with silicone paste (NG 3170, Thauer & Co., Dresden). All plants were labeled in a Plexiglas chamber as described by Werth and Kuzyakov (2008). Briefly, ¹³CO₂ was introduced to the chamber by circulating air through a flask containing 150 mg of Na₂¹³CO₃ (¹³C enrichment: 99.9 atom%) for labeling of *L. perenne* or 15 mg of the same Na₂¹³CO₃ for *M. sativa* solved in 10 ml deionized water. To produce ¹³CO₂, an excess of 5 M H₂SO₄ was added to the Na₂¹³CO₃ solution. The plants were labeled in the ¹³CO₂ enriched atmosphere for 3 h. Before opening the labeling chamber, the chamber air was pumped through 1 M NaOH solution to remove unassimilated ¹³CO₂. Since the amount of ¹³C found in the NaOH solution was negligible, it can be assumed, that all ¹³CO₂ was assimilated. Then the chamber was opened and the trapping of CO₂ evolved from the soil started. ¹³C labeling was repeated on day 55 after planting.

4.2.3 Clipping and shading

Three pots of each plant species was used for the clipping procedure or exposed to shading. Additionally, three pots of each plant species were grown under normal conditions as a control treatment. The plants were clipped or shaded 2 hours before the first ${}^{13}CO_2$ pulse. *Lolium perenne* shoots were clipped 4 cm above the soil surface, those of *M. sativa* 8 cm above the surface. Due to the different clipping heights, both plant species achieve similar stubble biomass. The clipped plants continued growth under the conditions described above. For shading, the light intensity was reduced to about 17 µmol m⁻² s⁻¹ for 10 days.

4.2.4 Sampling and analysis

Starting after the first labeling, the CO_2 evolved from soil was trapped using a closedcirculating system. The air was pumped through tubes containing 15 ml of 1 M NaOH solution. Because of the circulation there were no losses of CO_2 due to incomplete absorption by NaOH solution. The NaOH solution was changed 1, 3 and 5 days after each labeling. The pots were destructively harvested at day 60 after planting. Roots were separated from soil by handpicking. Plant and soil material was dried at 65 °C for 3 days.

To estimate total CO₂ efflux, the C content of the NaOH solution was determined by titration with 0.01 M HCl against phenolphthalein after adding 1.5 M BaCl₂ solution. For ¹³C measurements the CO₂ trapped in NaOH was precipitated as SrCO₃ with an excess of 0.5 M SrCl₂ solution. The precipitants were centrifuged at 3000 rev min⁻¹, washed with deionized water until the pH reached neutral conditions and dried at 65 °C.

Microbial biomass C and N was determined by the chloroform fumigation-extractionmethod (CFE) (modified after Vance et al. 1987). For this, the soil was separated into two samples with 5 g each. One of these samples was firstly fumigated with chloroform for 24 h. Both samples were extracted with 20 ml of 0.05 M K₂SO₄, shaken for 1 h and, thereafter, centrifuged for 10 min at 3070 rev min⁻¹. Total C and N contents of fumigated and non-fumigated soil extracts were measured using a N/C analyzer (Multi N/C 2100, AnalytikJena, Germany). The extracts of the non-fumigated samples were used to measure dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). For the determination of ¹³C and ¹⁵N in the microbial biomass, DOC and DON the extracts were oven-dried at 60 °C and measured as described below.

The ground plant and soil material (ball mill), the SrCO₃ and the dried extracts of the CFE were analyzed for their ¹³C and ¹⁵N isotope ratios. This was done using an elemental analyzer NC 2500 (CE Instruments, Milano, Italy) linked to a delta plus gas-isotope ratio mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) via a ConFlo III (Thermo Fisher Scientific, Bremen, Germany) interface.

4.2.5 Calculations and statistics

The ¹³C enrichment of a particular C pool (${}^{13}C_{excess;p}$; µg g⁻¹) was calculated as follows:

$${}^{13}C_{excess;p} = ({}^{13}C_p - {}^{13}C_{NA;p}) \cdot C_p \tag{1}$$

where ${}^{13}C_{NA;p}$ is the 13 C natural abundance of the respective pool (atom%), ${}^{13}C_p$ is the amount of 13 C of the pool after labeling (atom%), and C_p is the total amount of C in this pool (µg g⁻¹).

The ¹³C recovery in a particular C pool (${}^{13}C_{rec;p}$; %) was calculated by dividing the amount of 13 C (mg) of that particular pool (13 C enrichment multiplied by the pool mass (mg)) by the sum of the 13 C amount (mg) of all pools (shoot, root, soil, DOC, soil microbial biomass and soil CO₂):

$${}^{13}C_{rec;p} = \frac{{}^{13}C_{excess;p} \times mass_p}{\Sigma^{13}C_{excess;p} \times mass_p} \times 100$$
(2)

To determine the δ^{13} C value of microbial biomass ($\delta^{13}C_{MB}$; ‰) a mass balance equation was used:

$$\delta^{13} C_{MB} = \frac{\delta^{13} C_{fum} \cdot C_{fum} - \delta^{13} C_{nf} \cdot C_{nf}}{C_{fum} - C_{nf}}$$
(3)

where $\delta^{13}C_{fum}(\infty)$ and $\delta^{13}C_{nf}(\infty)$ are the δ^{13} C values of the fumigated and unfumigated samples, respectively, and C_{fum} (mg) and C_{nf} (mg) are the amounts of C in the fumigated and unfumigated samples, respectively.

The calculations for 15 N correspond to those for 13 C.

The experiment was conducted with 3 replicates for all treatments. The values presented in the figures and tables are given as means \pm standard errors of the means (\pm SEM). Significant differences between the treatment and the plant species were obtained by a two-factor analysis of variance (ANOVA) in combination with a post hoc Fisher LSD test.

4.3 Results

4.3.1 Plant biomass production

M. sativa produced significantly more shoot biomass per plant than *L. perenne* during 60 days (Table II.4/2). Clipping has no effects on the shoot and root biomass of *M. sati-va* and *L. perenne* when measured after 10 days of regrowth (Table II.4/2). Ten days of shading were also not sufficient to decrease the shoot or root biomass of both species. The R:S ratio decreased after clipping and shading of *L. perenne*, whereas it increased for *M. sativa* after clipping and slightly after shading (Table II.4/2).

Table II.4/2: Plant biomass (\pm SEM) and root-to-shoot ratio (R:S) (\pm SEM) of *L. perenne* and *M. sativa* 10 days after clipping or shading. Significant differences are marked by different letters (P<0.05).

			Biomass [g plant ⁻¹]			R:S	
		Shoot	Clipped Shoot	Total Aboveground	Root		
Lolium perenne	Control	0.36±0.02ac		0.36±0.02ad	0.38±0.02ab	1.08±0.09	
	Clipping	0.12±0.01a	0.13±0.02	0.25±0.03a	0.23±0.16a	1.04±0.77	
	Shading	0.24±0.01a		0.24±0.01a	0.21±0.07a	0.88±0.26	
Medicago sativa	Control	0.67±0.10b		0.67±0.10bc	0.59±0.25ab	0.82±0.30	
	Clipping	0.43±0.15b	0.45 ± 0.06	0.88±0.21b	0.78±0.18b	1.09±0.46	
	Shading	0.52±0.03abc		0.52±0.03ac	0.44±0.07ab	0.85±0.17	

4.3.2 Effect of clipping and shading on ¹³C distribution in plant and soil

In the control treatments of *L. perenne* and *M. sativa*, about 50% of ¹³C were recovered in shoots; 30% and 20% were found in the roots of *L. perenne* and *M. sativa*, respectively (Fig. II.4/1). The ¹³C recovery in CO₂ efflux, the soil, microbial biomass and DOC did not differ between both plant species (Fig. II.4/2).

Clipping increased the ¹³C recovery in the shoot by about 30% and 20% for *L. perenne* and *M. sativa*, respectively. The retention of newly assimilated C (¹³C) in the shoots resulted in a lower translocation to the roots, and thus, the ¹³C recovery of the roots of both plant species was lower compared to the respective control (Fig. II.4/1). However, the retention of ¹³C in the shoots after clipping had no effects on the ¹³C recovery in the soil (Fig. II.4/2). Also, all other belowground C pools of both plant species were not affected by clipping (Fig. II.4/2).

Shading increased the ¹³C recovery in the shoots of *L. perenne* and *M. sativa* (Fig. II.4/1). The ¹³C recovery was reduced only in the roots of *M. sativa* (Fig. II.4/1). Like after clipping, the ¹³C recovery in the soil, microbial biomass and DOC was not affected by shading (Fig. II.4/2).

Figure II.4/1: ¹³C recovery (\pm SEM) in shoots and roots 10 days after clipping or beginning of shading of 60 days old *L. perenne* and *M. sativa*. Significant differences are marked by different letters (P<0.05).

Figure II.4/2: ¹³C recovery (\pm SEM) in the soil and in soil CO₂ (top), and in DOC and microbial biomass (bottom) under *L. perenne* and *M. sativa* 10 days after clipping and beginning of shading. Significant differences are marked by different letters (P<0.05).

4.3.3 Effect of clipping and shading on total CO₂ and ¹³C efflux from soil

The total CO₂ efflux from soil was significantly higher under *M. sativa* than under *L. perenne* (Fig. II.4/3); this indicates the higher C demand in legume roots. Both treatments for reduced C assimilation decreased the CO₂ efflux from soil under *L. perenne*. This reflects the limited substrate availability, whereby the CO₂ reduction was significant only after clipping at the end of the experiment (Fig. II.4/3). Under *M. sativa*, clipping and shading significantly decreased the soil CO₂ efflux (Fig. II.4/3). After clipping,

however, this reduced CO_2 efflux from soil lasted only until day 5. Contrary to *L. perenne*, the soil CO_2 efflux under *M. sativa* was lowest after shading (Fig. II.4/3).

Clipping also significantly reduced the ¹³C recovery of the soil CO₂ efflux under *L. perenne*; because ¹³C was used for shoot regrowth (Fig. II.4/2). Shading had no effect on the ¹³C recovery in CO₂ under *L. perenne*. The ¹³C recovery of the soil CO₂ efflux under *M. sativa* was not affected by clipping or shading (Fig. II.4/2).

Figure II.4/3: Cumulative CO₂ efflux from soil (\pm SEM) under *L. perenne* (top) and *M. sativa* (bottom) beginning at clipping or start of shading and the effect of clipping and shading on the CO₂ efflux. Significant differences at the end of the experiment are marked by different letters (P<0.05).

4.3.4 Distribution of ¹⁵N in plant and soil

Under normal light conditions a higher ¹⁵N recovery was detected for the shoots of *L*. *perenne* compared to *M. sativa* (Fig. II.4/4). In the roots, the ¹⁵N recovery showed no significant differences between *M. sativa* and *L. perenne* (Fig. II.4/4).

Clipping increased the ¹⁵N recovery only in the shoots of *M. sativa*, but had no effect on the ¹⁵N recovery in the roots of both plant species (Fig. II.4/4). Also the ¹⁵N recovery in the soil, DON and microbial biomass N was unaffected by clipping (Fig. II.4/5).

The ¹⁵N recovery in the shoots and roots of *L. perenne* was not affected by shading, however, it increased in the shoots of *M. sativa* (Fig. II.4/4). In the soil, the DON and the microbial biomass under both plant species, shading showed no influence on the ¹⁵N recovery (Fig. II.4/5).

Figure II.4/4: ¹⁵N recovery (\pm SEM) (top) in shoots and roots 10 days after clipping or beginning of shading of 60 days old *L. perenne* and *M. sativa*. Significant differences are marked by different letters (P<0.05).

Figure II.4/5: ¹⁵N recovery (\pm SEM) in soil (top), and in DON and microbial biomass (bottom) of *L. perenne* and *M. sativa* 10 days after clipping or beginning of shading. Significant differences are marked by different letters (P<0.05).

4.4 Discussion

4.4.1 Effect of plant species

The distribution of ¹³C between above- and belowground pools in the control treatment was similar for *L. perenne* and *M. sativa*, with about one half of the labeled assimilates being incorporated in the shoots (Fig. II.4/1). This is in the range of earlier studies, reviewed by Kuzyakov and Domanski (2000). The roots of *L. perenne* recovered more ¹³C than *M. sativa*, whereas the portion of ¹³C found in the soil CO₂ was higher under *M. sativa* (Fig. II.4/1 and Fig. II.4/2). A higher incorporation of assimilated C was found in the roots of the legume *Trifolium repens* compared to the roots of *L. perenne* (Neergaard and Gorissen, 2004), however, in our study there was no difference between the legume species and *L. perenne*. A higher total CO₂ efflux from the soil was found under *M. sativa* compared to *L. perenne*, indicating a high energy need for N₂ fixation.

4.4.2 Effect of clipping

After clipping, both species preferentially allocated ¹³C in the aboveground biomass as shown by an increased ¹³C recovery in shoots (Fig. II.4/1). Recent studies observed an increased aboveground C allocation after clipping (Kuzyakov et al., 2002; Detling et al., 1979; Mackie-Dawson, 1999). The assumption is that regrowing shoots retain photosynthates and prevent a translocation belowground (Mackie-Dawson, 1999). This agrees with our results of less ¹³C recovery in the roots of both plants after clipping (Fig. II.4/1).

Especially on the first days after clipping, the remobilization of storage compounds is the major substrate supply for the regrowing shoots, including N compounds (Morvan-Bertrand et al., 1999; Ourry et al., 1988). This is confirmed by the higher post-clipping ¹⁵N recovery in the shoots of *M. sativa* in our study (Fig. II.4/4). The re-translocation of root N contributes substantially to the synthesis of amino acids and proteins in the regrowing tissue of *M. sativa* (Avice et al., 1996). In our study there were no indications for a re-translocation of N compounds from roots to shoots of *M. sativa*, since there was no significant decrease of the ¹⁵N recovery in the roots. However, the design of our experiment does not allow us to make any predictions about a possible retranslocation of N which is taken up by N_2 -Fixation.

It is likely that the reduced C translocation to roots has implications for root respiration and rhizodeposition, as well as for ¹³C incorporation in soil and availability for soil microorganisms. However, the unaffected ¹³C recovery in the soil shows that exudation of newly assimilated C did not change after clipping because of assimilate retention in the shoots. The increased rhizodeposition found in earlier studies (e.g. Bardgett et al., 1998) may reflect remobilization of storage compounds in roots, which would increase the release of stored C in the soil (Paterson and Sim, 1999). Our ¹³C results, however, provide no information about the total rhizodeposition has a positive effect on microbial activity, stimulates N cycling and thus enhances N availability for plant roots after defoliation (Guitian and Bardgett, 2000; Hamilton and Frank, 2001). It can be expected that this would lead to a reduced ¹⁵N recovery in the soil, however, the high variability of the results of our results makes it impossible to see these effect.

The assimilate supply is a major factor affecting root respiration (Gavrichkova et al., 2010). A reduced soil CO₂ efflux after clipping, as observed for *L. perenne* (Fig. II.4/3), was also found in many other studies (Detling et al., 1979; Craine et al., 1999; Kuzyakov et al., 2002). Since the ¹³C recovery in microbial biomass and DOC under *L. perenne* did not change after clipping (Fig. II.4/2), it can be concluded that these pools were not affected by clipping. Thus, the decrease in soil CO₂ can be ascribed to a reduced root respiration of current assimilates rather than reduced microbial respiration.

The soil processes under the legume *M. sativa* differed from those under *L. perenne*. The total CO₂ efflux under *M. sativa* decreased until day 5 after clipping and, thereafter, recovered and was approximately at the same level as observed in the control pots (Fig. II.4/3). In the same time the ¹³C recovery of the CO₂ efflux remained unchanged. Thus, the portion of newly assimilated C in the soil CO₂ is increasing after clipping. This corresponds with findings that newly assimilated C is closely related to growth respiration (Lötscher et al., 2004), which is important after clipping for the biomass production. The increasing CO₂ efflux after 5 days may point to enhanced nodule respiration to restore the N₂ fixation.

We conclude that high C and N demands of regrowing shoots after clipping led to a remobilization of N to the shoots and additionally, recently assimilated C was retained in the regrowing shoots.

4.4.3 Effect of shading

We implemented shading (besides clipping) to evaluate the effect of a limited substrate supply on the distribution of recently assimilated C and the impacts of such a limited supply on the N budget in plant and soil. In contrast to clipping, however, the effect of shading in limiting the substrate supply is not connected with the high demand for reserve C and N for shoot regrowth. The R:S ratio of *L. perenne* was reduced after shading (Table II.4/2). The increased preference for shoot versus root growth is also reflected by the higher recovery of currently assimilated C (13 C) in the shoots. After shading, more assimilates are allocated into the terminal meristems to compensate for the reduced photosynthesis rate (Ryle and Powell, 1976). For *M. sativa* the 13 C recovery in the shoots was very high after shading and was in the range of the clipped plants. Like after clipping, this took place at the expense of the 13 C translocation into the roots, however, this is significant only for *M. sativa*.

Belowground translocation of C is very closely linked to the assimilate supply (Kuzyakov and Gavrichkova, 2010). Reduced soil CO_2 efflux and rhizodeposition have been observed after shading (Craine et al., 1999; Hill et al., 2007). The present study indicates that the shading effect on the CO_2 efflux from soil of currently assimilated C depends on the plant species.

For *M. sativa* the total soil CO₂ efflux decreased, whereas the portion of ¹³C in CO₂ was not influenced by shading (Fig. II.4/2 and Fig. II.4/3). These apparently contradictory results can be explained by the need for recently assimilated C to maintain respiration (shown by the unchanged ¹³C efflux) and by the reduced substrate supply (decreasing the total CO₂ efflux from soil) (Kuzyakov and Cheng, 2001; 2004). Contrary, for *L. perenne*, the total CO₂ efflux and the ¹³C recovery in the CO₂ did not change after shading.

Plants grown under normal light conditions have a higher N demand compared to shaded plants, which can be met by a higher rhizodeposition and the resulting SOM decomposition (Frank and Groffman, 2009). The growth after shading is restricted by

low assimilation rates (Shipley, 2002), which also reduces the demand for N in the shoots. Moreover, under shaded conditions a reduced rhizodeposition causes a decreased turnover of the microbial biomass and SOM and, thus, a lower N mineralization (Zagal, 1994). In our study no change of the ¹³C recovery in the soil of both plants and no change of the ¹⁵N recovery in the shoots of *L. perenne* was observed after shading. Thus, our results show no effect of shading on the rhizodeposition or the N uptake by this species. The unchanging ${}^{13}C$ recovery at a concurrent decreasing of the total CO₂ efflux underlines the importance of recently fixed C for the legume M. sativa. M. sativa uses recently fixed C for nodule respiration and stored C for root respiration (Avice et al., 1996). The decreased CO₂ efflux, however, indicates overall that the nodule respiration and the root respiration were reduced. It was expected that M. sativa would remobilize storage N from roots to overcome this limitation of the N supply to shoots, since remobilization requires less energy than N fixation and can thus be an adequate mechanism to meet the N demand in the shoots (Bakken, 1998). The increased ¹⁵N recovery in the shoots of shaded *M. sativa* may be due to a reduced uptake of unlabeled N by the N_2 fixation after shading. However, our results cannot clarify if the origin of the increased recovery of ¹⁵N in the shoots is the remobilization of N from roots or a higher ¹⁵N uptake from soil. Both pools show a decrease of ¹⁵N after shading, however for both this decrease was not significant.

We conclude that shading has a pronounced effect on the belowground allocation of currently assimilated C for both plant species; on the other hand shading has effects on the N distribution only for *M. sativa* with a higher allocation of N in the shoots. However the origin of this N remains unclear.

4.5 Conclusion

After clipping, shoot regrowth is an important sink affecting the C distribution of newly assimilated C. To meet the demand of N for regrowth, the legume *M. sativa* increased the N allocation in the shoots. We assume that this is supported by a higher N uptake by the roots. The N pools in *L. perenne* were not affected by clipping. After shading, more C was allocated aboveground compared to normal light conditions leading to reduced translocation of assimilates in the roots of *M. sativa*. An increased need for N after shading was observed for the shoots of *M. sativa*, but the source of this N remains unclear. The results indicate that the allocation of recently assimilated C in plants and its translocation belowground is strongly influenced by the altered substrate supply after clipping and shading. However, the reduced assimilation is of minor importance for the N distribution.

Acknowledgments

We are grateful to Dr. Martina Gocke for her comments on the earlier version of the manuscript. Financial support for this work was provided by the German Research Foundation (DFG).

References

- Augustine, D.J., Dijkstra, F.A., Hamilton III., E.W., Morgan, J.A., 2011. Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO₂. Oecologia 165, 755-770
- Avice, J.C., Ourry, A., Lemaire, G., Boucaud, J., 1996. Nitrogen and carbon flows estimated by ¹⁵N and ¹³C pulse-chase labeling during regrowth of alfalfa plant. Plant Physiology 112, 281–290.
- Bakken, A.K, Macduff, J.H., Collison, M., 1998. Dynamics of nitrogen remobilization in defoliated *Phleum pratense* and *Festuca pratensis* under short and long photoperiods. Physiologica Plantarum 103, 426-436.
- Bardgett, R.D., Wardle, D.A., Yeates, G.W., 1998. Linking above-ground and belowground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry 30, 1867-1878.
- Blagodatskaya, E., Blagodatsky, S., Dorodnikov, M., Kuzyakov, Y., 2010. Elevated atmospheric CO₂ increases microbial growth rates in soil: results of three CO₂ enrichment experiments. Global Change Biology 16, 836–848.
- Cheng, W., Coleman, D.C, Carroll, C.R., Hoffman, C.A., 1993. In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biology and Biochemistry 25, 1189-1196.
- Craine, F.M., Wedin, D.A., Chapin III, F.S., 1999. Predominance of ecophysiological controls on soil CO₂ flux in a Minnesota grassland. Plant and Soil 207, 77–86.
- Detling, J.K., Dyer, M.I., Winn, D.T., 1979. Net photosynthesis, root respiration, and regrowth of Bouteloua gracilis following simulated grazing. Oecologia 41, 127-134.
- Frank, D.A., Groffman, P.M., 2009. Plant rhizospheric N processes: what we don't know and why we should care. Ecology 90, 1512–1519.

- Gavrichkova, O., Moscatelli, M.C., Kuzyakov, Y., Grego, S., Valentini, R., 2010. Influence of defoliation on CO₂ efflux from soil and microbial activity in a Mediterranean grassland. Agriculture, Ecosystems and Envionment 136, 87-96.
- Gregory, P.J., Atwell, B.J., 1991. The fate of carbon in pulse labelled crops of barley and wheat. Plant and Soil 136, 205-213.
- Guitian, R., Bardgett, R.D., 2000. Plant and soil microbial responses to defoliation in temperate semi-natural grassland. Plant and Soil 220, 271-277.
- Hill, P., Kuzyakov, Y., Jones, D., Farrar, J., 2007. Response of root respiration and root exudation to alterations in root C supply and demand in wheat. Plant and Soil 291, 131-141.
- Johansson, G., 1993. Carbon distribution in grass (*Festuca pratensis* L.) during regrowth after cutting-utilization of stored and newly assimilated carbon. Plant and Soil 151, 11–20.
- Jones, D.L., Hodge, A., Kuzyakov, K., 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist163, 459–480.
- KA5, 2005. Bodenkundliche Kartieranleitung. Ad-Hoc-Arbeitsgruppe Boden; 5. Auflage. Science Publishers.
- Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Schoene, J., Scheunemann, N., Schmalwasser, A., Totsche, K.U., Walker, F., Scheu, S., Kandeler, E., 2012. Carbon flow into microbial and fungal biomass as a basis to understand the belowground food web in an agroecosystem. Pedobiologia 55, 111-119.
- Kuzyakov, Y., 2002. Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 16, 382-396.
- Kuzyakov, Y., Kretzschmar, A., Stahr, K., 1999. Contribution of *Lolium perenne* rhizodeposition to carbon turnover of pasture soil. Plant and Soil 213, 127-136.
- Kuzyakov, Y., Domanski, G., 2000. Carbon inputs into soil. Review. Journal of Plant Nutrition and Soil Science 163, 421–423.
- Kuzyakov, Y., Cheng, W., 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry 33, 1915-1922.

- Kuzyakov, Y., Cheng, W., 2004. Photosynthesis controls of CO₂ efflux from maize rhizosphere. Plant and Soil 263, 85-99.
- Kuzyakov, Y., Biryukova, O.V., Kuznetzova, T.V., Molter, K., Kandeler, E., Stahr, K., 2002. Carbon partitioning in plant and soil carbon dioxide fluxes and enzyme activities as affected by cutting ryegrass. Biology and Fertility of Soils 35, 348–358.
- Kuzyakov, Y., Gavrichkova, O., 2010. Time lag between photosynthesis and carbon dioxide efflux from soil: a review. Global Change Biology 16, 3386-3406.
- Lambers, H., Posthumus, L., 1980. The effect of light intensity and relative humidity on growth rate and root respiration of *Plantago lanceolata* and *Zea mays*. Journal of Experimental Botany 31, 1621-1630.
- Mackie-Dawson, L.A., 1999. Nitrogen uptake and root morphological responses of defoliated *Lolium perenne* (L.) to a heterogeneous nitrogen supply. Plant and Soil 209, 111-118.
- Meharg, A.A., Killham, K., 1990. Carbon distribution within the plant and rhizosphere in laboratory and field grown *Lolium perenne* at different stages of development. Soil Biology and Biochemistry 22, 471-477.
- Merbach, W., Mirus, E., Knof, G., Remus, R., Ruppel, S., Russow, R., Gransee, A., Schulze, J., 1999. Release of carbon and nitrogen compounds and their possible ecological importance. Journal of Plant Nutrition and Soil Science 162, 373-383.
- Merckx, R., Dijkstra, A., Hartog, A., Veen, J. A., 1987. Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biology and Fertility of Soils 5, 126-132.
- Morvan-Bertrand, A., Pavis, J., Boucaud ,J., Prud'homme, M.-P., 1999. Partitioning of reserve and newly assimilated carbon in roots and leaf tissues of *Lolium perenne* during regrowth after defoliation: assessment by ¹³C steady-state labelling and carbohydrate analysis. Plant, Cell and Environment 22, 1097-1108.
- Neergaard de, A., Gorissen, A., 2004. Carbon allocation to roots, rhizodeposits and soil after pulse labelling: a comparison of white clover (*Trifolium repens* L.) and perennial ryegrass (*Lolium perenne* L.). Biology and Fertility of Soils 39, 228-234.

- Ourry, A., Boucaud, J., Salette, L., 1988. Nitrogen Mobilization from Stubble and Roots during Re-growth of Defoliated Perennial Ryegrass. Journal of Experimental Botany 39, 803-809.
- Paterson, E., Sim, A., 1999. Rhizodeposition and C partitioning of *Lolium perenne* in axenic culture affected by nitrogen supply and defoliation. Plant and Soil 216, 155– 164.
- Paterson, E., Sim, A., 2000. Effect of nitrogen supply and defoliation on loss of organic compounds from roots of *Festuca rubra*. Journal of Experimental Botany 51, 1449– 1457.
- Phillips, D.A., 1980. Efficiency of symbiotic nitrogen fixation in legumes. Annual Review of Plant Physiology 31, 29-49.
- Ryle, G.J.A., Powell, C.E., 1976. Effect of rate of photosynthesis on the pattern of assimilate distribution in the graminaceous plant. Journal of Experimental Botany 27, 189-199.
- Shipley, B., 2002. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology 16, 682-689.
- Ta, T.C., Macdowell, F.D.H., Faris, M.A., 1990. Utilization of carbon and nitrogen reserves of alfalfa roots in supporting N₂-fixation and shoot regrowth. Plant and Soil 127, 231-236.
- Vance, E., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19, 703-707.
- Vance, C.P., Heichel, G.H., 1991. Carbon in N₂ fixation: Limitation or exquisite adaption. Annual Review of Plant Physiology 42, 373-392.
- Volenec, J. J., Ourry, A., Joern, B. C., 1996. A role for nitrogen reserves in forage regrowth and stress tolerance. Physiologica Plantarum 97, 185-193.
- Warembourg, F.R., Roumet, C., Lafont, F., 2003. Differences in rhizosphere carbonpartitioning among plant species of different plant families. Plant and Soil 256, 347-357.

- Werth, M., Kuzyakov, Y., 2008. Determining root-derived carbon in soil respiration and microbial biomass using ¹⁴C and ¹³C. Soil Biology and Biochemistry 40, 625-637.
- Xu, X., Ouyang, H., Richter, A., Wanek, W., Cao, G., Kuzyakov, Y., 2011. Spatiotemporal variations determine plant–microbe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology 99, 563–571.
- Xu, X., Stange, F., Richter, A., Wanek ,W., Kuzyakov, Y., 2008. Light affects competition for inorganic and organic nitrogen between maize seedlings and soil microorganisms. Plant and Soil 304, 59-72.
- Zagal, E., 1994. Influence of light intensity on the distribution of carbon and consequent effects on mineralization of soil nitrogen in a barley (*Hordeum vulgare* L.)-soil system. Plant andSoil 160, 21-31.

5 Estimation of rhizodeposition at field scale: upscaling of a ¹⁴C labeling study

Johanna Pausch^{1,2,5*}, Jing Tian^{1,4}, Michael Riederer³, Yakov Kuzyakov^{1,5}

Published in Plant and Soil, 2012,

DOI: 10.1007/s11104-012-1363-8.

¹ Department of Soil Science of Temperate Ecosystems, University of Göttingen, Germany

² Department of Agroecosystem Research, BayCEER, University of Bayreuth, Germany

³ Department of Micrometeorology, BayCEER, University of Bayreuth, Germany

⁴ Key Laboratory of Plant-Soil Interactions, Ministry of Education; and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

⁵ Department of Agropedology, University of Göttingen, Germany

* Corresponding author

Universitätsstr. 30,

95440 Bayreuth, Germany

Phone: +49 921 55 2177 Fax: +49 921 55 2315

johanna.pausch@uni-bayreuth.de

Abstract

Background and Aims

Rhizodeposition of plants is the most uncertain component of the carbon (C) cycle. By existing approaches the amount of rhizodeposition can only roughly be estimated since its persistence in soil is very short compared to other organic C pools. We suggest an approach to quantify rhizodeposition at the field scale by assuming a constant ratio between rhizodeposited-C to root-C.

Methods

Maize plants were pulse-labeled with ${}^{14}\text{CO}_2$ under controlled conditions and the soil ${}^{14}\text{CO}_2$ efflux was separated into root and rhizomicrobial respiration. The latter and the ${}^{14}\text{C}$ activity remaining in the soil corresponded to total rhizodeposition. By relating rhizodeposited- ${}^{14}\text{C}$ to root- ${}^{14}\text{C}$ a rhizodeposition-to-root ratio of 0.56 was calculated. This ratio was applied to the root biomass C measured in the field to estimate rhizodeposition under field conditions.

Results

Maize allocated 298 kg C ha⁻¹ as root-C and 166 kg C ha⁻¹ as rhizodeposited-C belowground, 50% of which were recovered in the upper 10 cm. The fate of rhizodeposits was estimated based on the ¹⁴C data, which showed that 62% of total rhizodeposition was mineralized within 16 days, 7% and 0.3% was incorporated into microbial biomass and DOC, respectively, and 31% was recovered in the soil.

Conclusions

We conclude that the present approach allows for an improved estimation of total rhizodeposition, since it accounts not only for the fraction of rhizodeposits remaining in soil, but also for that decomposed by microorganisms and released from the soil as CO₂.

Keywords: Isotopic methods, belowground C, root-derived C, modeling ¹⁴CO₂ efflux, microbial biomass, dissolved organic C, CO₂ partitioning, upscaling approach.
5.1 Introduction

Plants modify chemical, physical and biological properties of the soil environment surrounding the roots. Organic compounds released from living roots (rhizodeposits), originating from roots exudates of intact cells, from lysates of sloughed-off cells and dead tissues, and from mucilage (Dennis et al., 2010) represent an important carbon (C) flux into the soil. Especially root exudates are a primary source of energy for microorganisms strongly affecting soil organic matter (SOM) dynamics (Kuzyakov et al., 2007). This ecological importance calls for a better estimation of rhizodeposition, which still remains the most uncertain part of the soil C cycle (Nguyen, 2003). There are several reasons why it is difficult to reliably quantify rhizodeposition. Organic substances released by living roots occur in a much lower content than other organics in soil and are restricted to the narrow zone around the roots (Kuzyakov and Domanski, 2000). Fast decomposition of root-released organics due to their high availability for microorganisms further makes rhizodeposition difficult to assess for analytics (Jones et al., 2005).

To distinguish rhizodeposited-C from native soil organic carbon (SOC), ¹⁴C and/or ¹³C labeling of plants has commonly been applied leading to distinct isotopic differences of root- and SOC-derived C (Werth and Kuzyakov, 2008). The portion of root-released C remaining in soil (net rhizodeposition) can thus be quantified. However, these approaches largely underestimate rhizodeposition since they did not account for the amount of rhizodeposits rapidly decomposed by microorganisms (Amos and Walters, 2006; Werth and Kuzyakov, 2008). The portion of rhizodeposits mineralized to CO₂ (rhizomicrobial respiration; RMR) contributes, together with root respiration (RR), to root-derived CO₂, a main source of the soil CO₂ efflux (Cheng et al., 2003; Kuzyakov, 2006). For further partitioning of root-derived CO₂ into RMR and RR the isotopic labeling approaches reach their limit since both sources of root-derived CO₂ are labeled by the tracer. It is, however, necessary to consider them separately because C input to soil and SOM turnover is only affected by rhizomicrobial C, while root respiration biases the picture of SOM turnover.

C accumulation and consumption in soil are closely coupled with microbial activity and in turn are influenced by rhizodeposition (Kuzyakov et al., 1999). The easily available part of rhizodeposition fuels microbial activity in the rhizosphere and thus represents a direct link between roots and soil microorganisms. Despite the importance of separating rhizomicrobial from root respiration suitable approaches are rare. After ¹⁴C pulse labeling of plants, root-derived ¹⁴CO₂ can be partitioned into CO₂ coming from the decomposition of rhizodeposits and CO₂ from root respiration by means of a simulation model (Kuzyakov and Domanski, 2002; Kuzyakov et al., 1999). The model is based on the assumption that both respiration processes reach their maximum at different times after pulse labeling. While root respiration occurs immediately, rhizomicrobial respiration appears at a later stage after labeling because a chain of successive processes is passed before (exudation, microbial uptake and respiration) (Kuzyakov et al., 2001). Special experiments are necessary to determine the ¹⁴CO₂ efflux dynamics, which are applicable under controlled conditions, but hardly possible under field conditions. Thus, estimation of rhizodeposition under field conditions remains a challenge for quantification of C budget and fluxes.

Under field conditions, root biomass (RB) was measured to estimate the portion of photosynthetically fixed C allocated to belowground pools. Those measurements alone may greatly underestimate the C input by roots into the soil since rhizodeposition is ignored (Amos and Walter, 2006; Johnson et al., 2006). The portion of net photosynthetic C translocated belowground and released by living roots can even be higher as the C retained in the roots (Johnson et al., 2006). However, root biomass contributes more C to SOC than rhizodeposition, because the latter is easily decomposable by microorganisms (Johnson et al., 2006). On average 17% of net assimilated C is released by roots via rhizodeposition, with 12% of which being mineralized to CO₂ (RMR) and only 5% remaining in the soil (Nguyen, 2003). Attempts to include rhizodeposition in estimates of C inputs into the soil by roots often only very roughly assumed that the quantity of rhizodeposited C equals that of root biomass at harvest (Bolinder et al., 1999; Amos and Walter, 2006). However, reliable data on rhizodeposition under field conditions are absent.

In this paper we provide a method for an improved quantification of total rhizodeposition, including C losses by rhizomicrobial respiration, under field conditions. After ${}^{14}CO_2$ pulse labeling of maize plants under controlled conditions, we measured the rootderived ${}^{14}CO_2$ and determined the contributions of root and rhizomicrobial respiration based on model calculations. The rhizodeposition-to-root ratio determined under controlled conditions was applied to the maize root biomass measured in the field in order to estimate the rhizodeposition at a field scale.

5.2 Materials and Methods

5.2.1 Determination of rhizodeposition-to-root ratio (R) under controlled conditions

5.2.1.1 Soil and growing conditions

Intact soil cores were collected with a soil corer (inner diameter 12 cm, height 30 cm) from the upper 30 cm on the experimental site and placed in cylindrical Plexiglas pots (inner diameter 13 cm, height 30 cm, covered with dark foil). Maize seeds (*Zea mays* L. cv. Ronaldinio) were germinated on wet filter paper and transferred to the 16 pots 3 days after germination. The pots were closed with a plastic lid with holes for the shoots. The soil water content was measured gravimetrically and adjusted daily to 70% of the water holding capacity (WHC). The plants were grown at 26 to 28°C day temperature and at 22 to 23°C night temperature with a day-length of 14 h and a light intensity of about 400 μ mol m⁻² s⁻¹.

5.2.1.2 ¹⁴C pulse labeling

The plants were labeled at the tillering stage, 28 days after germination. The day before labeling, the holes in the plastic lids were sealed around the shoots with silicon paste (NG 3170, Thauer & Co., Germany) and the seals were tested for air leaks. The labeling procedure is described by Kuzyakov et al. (1999). Briefly, eight pots were placed in a Plexiglas chamber (48.1 x 48.1 x 158 cm). The chamber was connected with a flask containing 5 ml of Na₂¹⁴CO₃ (ARC Inc., USA) solution with a ¹⁴C activity of 1.2 MBq per pot. ¹⁴CO₂ was released into the chamber by addition of 10 ml of 5 M H₂SO₄ to the labeling solution. The plants were labeled during 4 h in the ¹⁴CO₂ atmosphere. Thereafter, the chamber air was pumped through 15 ml of 1 M NaOH solution to remove unassimilated ¹⁴CO₂ for 2 h. Finally, the chamber was opened and trapping of CO₂ evolved from the soil started. CO₂ produced in four sealed pots was trapped by circulating the air through 15 ml of 1 M NaOH solution. The NaOH solution was changed every two hours after labeling for the first day, then twice daily, then once every 2 days until 16 days after labeling.

5.2.1.3 Sampling

Plants and soil were sampled 2, 5, 10, and 16 days after labeling with four replicates for each sampling day. At harvest, shoots were cut at the base and roots were separated from the soil of each layer by handpicking. The soil adhering to the roots was shaken gently and termed 'rhizosphere soil'. The roots were washed with 50 ml deionized water to remove the soil still attached to the roots. The soil was sieved (< 2 mm). Shoots, roots, bulk and rhizosphere soil were dried at 60 °C, weighed and pulverized in a ball mill.

5.2.1.4 Sample analysis

The ¹⁴C activity of unassimilated ¹⁴CO₂ after labeling, trapped in NaOH, and the remaining ¹⁴C activity in the tracer solution was measured in 2 ml aliquots added to 4 ml Rothiscint scintillation cocktail (Roth, Germany) with a Liquid Scintillation Counter (LS 6500 Multi-Purpose Scintillation Counter, 217 Beckman, USA) after the decay of chemiluminescence. The ¹⁴C activity of soil CO₂ trapped in the NaOH solution was measured in the same way. The ¹⁴C counting efficiency was about 92% and the ¹⁴C activity measurement error did not exceed 2%. Total C of soil CO₂ was analyzed by an N/C analyzer (Multi N/C 2100, AnalytikJena, Germany)

50 mg of plant samples (shoots, roots) or 500 mg of soil samples (bulk and rhizosphere soil) were combusted in an oxidizer unit (Feststoffmodul 1300, AnalytikJena, Germany) and released CO₂ was trapped in 10 ml of 1 M NaOH. The radioactivity was measured by means of a Scintillation Counter (LS 6500 Multi-Purpose Scintillation Counter, 217 Beckman, USA) as described above. Total C concentrations for those samples were measured by a N/C analyzer (Multi N/C 2100, AnalytikJena, Germany)

The ¹⁴C activity of the soil microbial biomass C (MBC) was determined for the four replicates sampled on day 16 after labeling by the chloroform fumigation extraction method described by Vance et al. (1987). Briefly, 5 g fresh soil were shaken with 20 ml of 0.05 M K₂SO₄ for 1 h at 200 rev min⁻¹, centrifuged at 3000 rev min⁻¹ for 10 min, and filtrated. Another 5 g fresh soil were fumigated with chloroform for 24 h and extracted in the same way. The extracts were analyzed for total organic carbon by means of an N/C analyzer (Multi N/C 2100, AnalytikJena, Germany). The ¹⁴C activities of the ex-

tracts of unfumigated and fumigated soils were measured using a LS 6500 Multi-Purpose Scintillation Counter, 217 Beckman, USA). Measurements were conducted on 1 mL aliquots added to 6 mL scintillation cocktail Rothiscint (Roth, Germany).

5.2.1.5 Calculation of the ¹⁴C budget

A ¹⁴C budget was compiled for each sampling day separately. The percentage of ¹⁴C recovered in a C pool $(r({}^{14}C)_p, \%)$ was calculated by relating the ¹⁴C activity of the respective C pool $(a({}^{14}C)_p, \text{kBq})$ to the total ¹⁴C recovery after each harvest $(a({}^{14}C)_T, \text{kBq})$, i.e. to the sum of the ¹⁴C activity in shoot, root, bulk soil, rhizosphere soil and CO₂:

$$r({}^{14}C)_{P} = \frac{a({}^{14}C)_{P}}{a({}^{14}C)_{T}} \cdot 100$$
⁽¹⁾

Note, CO_2 measurements started directly after labeling, but only for the pots harvested 16 days after labeling. Therefore, from those pots the cumulative ¹⁴CO₂ efflux after 2, 5 and 10 days of labeling was added to the total ¹⁴C recovery on the respective day.

The ¹⁴C results obtained from the measurement of the extracts of fumigated and unfumigated soil were converted to the ¹⁴C activity in microbial biomass (¹⁴ C_{mic}) using the following equation:

$${}^{14}C_{mic} = \frac{{}^{14}C_{flush}}{0.45} \tag{2}$$

where ${}^{14}C_{flush}$ is the difference between the ${}^{14}C$ activity in fumigated and in unfumigated samples (kBq) and 0.45 is the conversion factor (Wu et al., 1990). As a measure for the fraction of dissolved organic carbon (DOC) we used the ${}^{14}C$ activity of the unfumigated soils.

The percentage of ¹⁴C recovered in MBC and DOC on day 16 after labeling was calculated using Eq. (1).

5.2.1.6 Model calculations for separating root and rhizomicrobial respiration

In order to estimate the percentage of root respiration and rhizomicrobial respiration on total ¹⁴CO₂ efflux a model approach was applied. The model design is described in detail by Kuzyakov and Domanski (2002). The ¹⁴C activity of total CO₂ $a({}^{14}C)_{CO_2}$ (kBq) was converted into percentage of total assimilated CO₂ $r({}^{14}C)_{CO_2}$ before using it in the model. The amount of total assimilated ${}^{14}C a({}^{14}C)_{TA}$ (kBq) was assumed to be equal to the ¹⁴C activity of the tracer introduced into the chamber $a({}^{14}C)_{C}$ (kBq) at the beginning of labeling minus the ¹⁴C activity remaining in the chamber $a({}^{14}C)_{RC}$ (kBq) and in the tracer solution $a({}^{14}C)_{RS}$ (kBq) after labeling (Kuzyakov and Domanski, 2002).

$$r({}^{14}C)_{CO_2} = \frac{a({}^{14}C)_{CO_2}}{a({}^{14}C)_{TA}} \cdot 100$$
(3)

$$a({}^{14}C)_{TA} = a({}^{14}C)_{C} - a({}^{14}C)_{RC} - a({}^{14}C)_{RS}$$
(4)

The model parameters (Table II.5/1) were adjusted based on 1) the ${}^{14}\text{CO}_2$ efflux rate from soil, expressed in % of assimilated per hour, and based on 2) the cumulative ${}^{14}CO_2$ efflux, expressed as % of assimilated. Thereby, the cumulative ¹⁴CO₂ efflux allows to adjust parameters responsible for the amount of respired ${}^{14}CO_2$, while the ${}^{14}CO_2$ efflux rate was used to adjust parameters responsible for the dynamics of the respiration rates (Kuzyakov and Domanski, 2002). The distribution between above- and belowground C pools was considered by the shoot-to-root ratio. The parameters shoot growth rate, short-term shoot respiration and long-term shoot respiration were not considered here since they did not affect the belowground ¹⁴C fluxes. RR and RMR were simulated (ModelKinetix, Model-maker (3)software Oxford. based on the UK; www.modelkinetix.com).

Parameter	Value [h ⁻¹]		
Assimilation rate	0.617		
Ratio: shoot/root	0.815 ^a		
Exudation rate	0.383		
Exudate mineralization	0.05		
Exudate stabilization	0.001		
Root growth	0.004		
Root respiration	0.227		
Root mineralization	0.0012 ^b		
Biomass respiration	0.35		
Biomass stabilization	0.016 ^b		
Biomass exudation	0.2		
SOM mineralization	0.0004 ^b		

Table II.5/1: Model parameters of belowground C fluxes fitted by experimental data of 14 C distribution, total 14 CO₂ efflux and its dynamics.

^a unitless: refractive index.

^b values were taken from earlier model parameterization (Kuzyakov et al., 2001).

5.2.1.7 Rhizodeposition-to-root ratio

The contribution of rhizomicrobial respiration $(r({}^{14}C)_{RMR}, \% \text{ of assimilated})$ to total root-derived ${}^{14}CO_2$, simulated by the ${}^{14}CO_2$ efflux model, was converted into the ${}^{14}C$ activity of rhizomicrobial respiration $(a({}^{14}C)_{RMR}, \text{kBq})$:

$$a({}^{14}C)_{RMR} = \frac{a({}^{14}C)_{CumCO_2} \cdot r({}^{14}C)_{RMR}}{100}$$
(5)

where $({}^{14}C)_{cumCO_2}$ (kBq) is the fitted ${}^{14}C$ activity of the cumulative ${}^{14}CO_2$ efflux at day 16 after labeling.

The rhizodeposition-to-root ratio (R) was calculated as follows:

$$R = \frac{a({}^{14}C)_{BS} + a({}^{14}C)_{RS} + a({}^{14}C)_{RMR}}{a({}^{14}C)_{Root}}$$
(6)

where $a({}^{14}C)_{BS}$ and $a({}^{14}C)_{RS}$ are the ${}^{14}C$ activities in kBq of the bulk and the rhizosphere soil, respectively, and $a({}^{14}C)_{Root}$ is the ${}^{14}C$ activity in kBq of the root.

5.2.2 Root biomass measurements in the field - experimental design and root sampling

The experimental site was established on an arable field in the north-west of Göttingen, Germany (51°33′36.8′N, 9°53′46.9′E) in 2009. The soil type was classified as a haplic Luvisol. Detailed information about soil properties and the experimental site are given by Kramer et al. (2012). Maize (*Zea mays* L. cv. Ronaldinio) was planted on a 24 x 240 m plot in April 2009 after removing wheat seedlings sown in October 2008 with a non-selective herbicide ("Round-up", Monsanto Agrar, Germany). The mean distance between the maize rows was 0.8 m and the mean distance between the plants in row was 0.5 m. Maize plants on the experimental plots were harvested in November 2009.

Root biomass was sampled in July 2009, at the silking stage of the maize plants, 12 weeks after planting. To investigate the spatial distribution of maize roots we sampled direct at the position of the maize plant, 12.5 cm and 25 cm away from the plant in row, 20 cm and 40 cm away in the inter-row and 23.5 cm and 47 cm away from the plant at the diagonal between row and inter-row. Soil samples were taken with an auger (Riverside auger, Eijkelkamp, The Netherlands) at each position up to 50 cm depth in 10 cm layers. This sampling procedure allowed to cover spatial variability of maize roots under the plant, within and between the maize rows.

Each fresh sample was weighed and a subsample of the soil (without roots) was dried for 3 days at 60°C. The water content of the subsample was used to determine the dry weight of the total sample. All roots were carefully washed free from soil using the method described by Smucker et al. (1982). The remaining non-root material was separated from the sample by handpicking. The samples were dried at 60°C for 3 days and weighed. The C content of the roots was determined on five replicates using a multi N/C 2100 S analyzer (Analytik, Jena, Germany). Root biomass was expressed as mg C per g dry soil. Note, in the present study only the portion of the root system below the soil surface was considered as root biomass and thus, the aboveground crown was not included.

5.2.3 Upscaling: Root biomass C and total C from rhizodeposition in the field

The amount of maize root C $(n(C_{Root})_F, \text{kg C ha}^{-1})$ was calculated for each 10 cm layer until 50 cm.

$$n(C_{Root})_F = z \cdot \rho \cdot n(C_{Root}) \cdot 100 \tag{7}$$

where z (cm) is the thickness of the respective soil layer (10 cm), ρ (g cm⁻³) is the bulk density of the layer and $n(C_{Root})$ is the C (mg C g_{soil}⁻¹) content of the roots. Bulk density values were taken from Kramer et al. (2012) and are 1.4±0.0 g cm⁻³ for the Ap1 horizon (0-25 cm), 1.6±0.0 g cm⁻³ for the Ap2 horizon (25-37 cm) and 1.7±0.0 g cm⁻³ for the Btw1 horizon (37-65cm).

The amount $(n(C_{RD})_F)$ of root released C in the field during one growing season was estimated by multiplying the amount of maize root C $(n(C_{Root})_F)$ with the rhizodeposition-to-root ratio (R) and was expressed as kg C ha⁻¹:

$$n(C_{RD})_F = R \cdot n(C_{Root})_F \tag{8}$$

5.2.4 Statistics

The values presented in the figures are given as means \pm standard errors of means (SEM). A one-way analysis of variance (ANOVA) was conducted to test for significant differences in root biomass C between the sampling depths. The significance of differences between the depths at individual sampling positions was obtained by the *post hoc* Tukey HSD test for unequal N, while the significance of differences for the mean root biomass C between depths was calculated by the *post hoc* Tukey HSD test. Significant differences in the ¹⁴C recovery between the sampling dates were also obtained by a one-way ANOVA in combination with a *post hoc* Tukey HSD test for unequal N. All statistical analysis were performed with the statistical package STATISTICA for Windows (version 7.0; StatSoft Inc., OK, USA).

5.3 Results

5.3.1 ¹⁴C pulse labeling under controlled conditions

5.3.1.1 Budget of assimilated ¹⁴C

The precondition for the determination of the rhizodeposition-to-root ratio at the end of the chase period was that the ¹⁴C allocation between above- and belowground C pools was mostly completed. To demonstrate this, pots were sampled 2, 5, 10 and 16 days after the labeling and the ¹⁴C budgets of the individual sampling dates were checked for statistical differences. We could not find significant differences between ¹⁴C budgets of the investigated sampling dates with the exception of the difference in the ¹⁴C recovery of the bulk soil between day 2 and 5 (Table II.5/2). Thus, the main part of the tracer was allocated to various pools already in the first two days after the labeling.

At all sampling dates about half of the tracer was incorporated into the shoot biomass and 21%-28% was recovered in the roots (Table II.5/2). While about 7% of ¹⁴C retained in the bulk soil, the ¹⁴C recovered in the rhizosphere soil was only about 0.1% because of its small volume. The missing portion of ¹⁴C in the complete balance is connected with the CO₂ efflux from soil, which was included in the calculations of the ¹⁴C recovery.

	¹⁴ C [% recovery]				
Pool	2 d	5 d	10 d	16 d	
Shoot	53.5±3.0	53.9±3.0	53.5±0.4	50.9±3.7	
Root	22.8±3.5	21.6±3.8	20.6±4.1	28.0±5.4	
Bulk soil	8.2±0.9 a	4.3±1.1 b	8.3±1.9 ab	5.2±0.3 ab	
Rhizosphere soil	0.2 ± 0.04	0.1±0.02	0.1 ± 0.01	0.1±0.03	

Table II.5/2: ¹⁴C budget calculated as % of ¹⁴C recovered in all pools at each sampling date (\pm SEM). Different letters indicate significant differences between the treatments. Note that the difference to 100% represents the portion of the CO₂ efflux from soil.

5.3.1.2 Separating root and rhizomicrobial respiration

An earlier developed model of belowground C fluxes was applied to determine the contributions of RR and RMR to total root-derived CO₂.

Cumulative ¹⁴CO₂ efflux and the ¹⁴CO₂ efflux rate measured under controlled conditions were used to fit most of the model parameters (Table II.5/1). The root growth rate (h^{-1}) was measured as root biomass increase between the sampling dates. For parameters which can be varied over a wide range we used the values from the previous model parameterization (Kuzyakov and Domanski, 2002) (Table II.5/1). A good correlation between the measured and the fitted data were obtained, for the cumulative ${}^{14}CO_2$ efflux (Fig. II.5/1A) as well as for the ${}^{14}CO_2$ efflux dynamics (Fig. II.5/1B). The model is based on the finding that the ¹⁴C activity of the CO₂ efflux after pulse labeling shows two peaks (Warembourg and Billes, 1979; Nguyen et al., 1999; Kuzyakov et al., 1999; 2001; Kuzyakov and Domanski, 2002). Warembourg and Billes (1979) assumed that the second peak of ¹⁴C activity can be attributed to the decomposition of rhizodeposits by microorganisms, and is delayed compared to root respiration because of the time necessary for roots to synthesize and release substances which are decomposed later on. We found the highest ¹⁴C activity of the CO₂ efflux already 6 hours after the start of the labeling (Fig. II.5/1). Thereafter, the ¹⁴C activity strongly decreased within the first 20 hours. The data did not show a distinctive second peak. However, the CO₂ efflux rate remained on a constant level between 20 h and 24 h after the labeling before it gradually declined. The measured kinetics is similar to that reported by Nuygen et al. (1999) and Todorovic et al. (2001). The assumption of different process rates of root and rhizomicrobial respiration allow to separate both based on the simulation model. During the 16 days after labeling about 16.2% of total assimilated ¹⁴C was detected in root-derived CO_2 (Fig. II.5/1A). Rhizomicrobial respiration accounted for 9.2% of assimilated ${}^{14}CO_2$, which equals 56.8% of total root-derived $^{14}CO_2$.

Figure II.5/1: Measured (circles; \pm SEM) and fitted (solid line) $^{14}CO_2$ efflux from the soil and simulated separation of the total $^{14}CO_2$ efflux in root respiration and rhizomicrobial respiration. A: Cumulative $^{14}CO_2$ efflux; B: $^{14}CO_2$ efflux dynamics.

5.3.1.3 Rhizodeposition-to-root ratio

The ¹⁴C activities of the bulk soil, of the rhizosphere soil and of microbially respired ¹⁴CO₂ were considered as total ¹⁴C rhizodeposition and related to the ¹⁴C activity of the roots. The respective rhizodeposition-to-root ratio was on average 0.56 ± 0.2 (Fig. II.5/2). To investigate the fate of the rhizodeposits, total rhizodeposition (16 days after labeling) was partitioned into four C fluxes. The largest portion of rhizodeposits was respired by microorganisms and released as CO₂. This portion accounted for 61.8% of total rhizodeposition. About 30.6% of the ¹⁴C released by roots retained in the soil longer than 16 days, with further 7.3% being incorporated into the microbial biomass and only 0.3% recovered in DOC.

Figure II.5/2: Determination of the rhizodeposition-to-root ratio (R). The ¹⁴C activity (\pm SEM, kBq) of roots and of total rhizodeposition is shown. The allocation of root released C to different pools is presented as percentage of total rhizodeposition

5.3.2 Root biomass in the field

Root biomass sampled directly over the plant showed a decline with depth (Fig. II.5/3). About 50% of the roots were distributed in the upper 10 cm of the Ap horizon. The decline was still present 12.5 cm away from the plant in row and 23.5 cm away on the diagonal between row and inter-row. The RB did not differ significantly at one depth between the seven sampling positions (aboveground crown not included; Fig. II.5/3). The weighted average biomass C also declined with depth, from 104 kg C ha⁻¹ at the 0-10 cm to 15 kg C ha⁻¹ at the 40-50 cm depth (Fig. II.5/4).

Figure II.5/3: Vertical and horizontal root biomass C distribution (\pm SEM) of maize sampled in July 2009. Different letters indicate significant differences (P<0.05) of root biomass C between the depths (vertical). The samples of a single depth did not differ significantly between different positions (horizontal). The sampling design is shown bottom left

5.3.3 Upscaling: Root biomass C and total C from rhizodeposition in the field

Considering the spatial variability of roots between and within the rows, the measured maize root C in the upper 50 cm was 298 ± 64 kg C ha⁻¹ (Fig. II.5/4). By applying the rhizodeposition-to-root ratio of 0.56 ± 0.2 analyzed by ¹⁴C labeling under controlled conditions (Fig. II.5/3) to the root C measured in field we estimated that 166 ± 53 kg C ha⁻¹ was released from living roots as rhizodeposits between April and July 2009 in the upper 50 cm of the soil. Half of these rhizodeposits was released into the upper 10 cm soil. The portion declined with depth (Fig. II.5/4).

Figure II.5/4: Rhizodeposition at field scale. Weighted maize root biomass C (\pm SEM, kg C ha⁻¹) measured in July 2009 and C released by roots via rhizodeposition (\pm SEM, kg C ha⁻¹) during the growing season 2009. The extrapolated values, shown in the frame, correspond to a soil depth of 50 cm, a plant population of 25,000 and a growing period from April to July 2009. Different letters indicate significant differences between the depths

5.4 Discussion

5.4.1 Root biomass determination in the field

A reliable quantification of the maize root biomass in the field, as a precondition to estimate rhizodeposition, strongly depends on 1) the sampling design and time of sampling and on 2) losses during the root washing procedure. The sampling design must cover the spatial variability of the RB to accurately extrapolate to the basis of RB per hectare. It was shown that the maize RB was highest close to the base of the plants, than decreased with distance from the plant and increased again at the mid-row position where adjacent plants contribute to the RB (Gajri et al., 1994). RB sampling at different positions in row, in inter-row and on the diagonal between row and inter-row allows to cover the spatial variability. However, in the present experiment with already developed maize plants, the RB did not differ significantly between the sampling locations (Fig. II.5/3). Furthermore, the rooting depth must be considered. The portion of roots grown deeper than the sampling depth of 50 cm was not considered and therefore, the total RB may be slightly underestimated. However, the majority of roots were allocated directly below the soil surface. The upper 30 cm contain 70%-90% of the RB of maize (reviewed by Amos and Walter, 2006). Therefore, samples were taken up to 50 cm depth included the main part of the RB. Root biomass was sampled on day 84 after planting, at the silking stage of the plant growth. This stage was chosen since it has been reported that the maize root biomass is maximal just after anthesis (Amos and Walters, 2006; Anderson, 1988).

The second source of uncertainty of RB determination may have been the washing procedure. Despite a considerable loss of root hairs and fine roots during the washing procedure (see discussion below), 93% to 96% of total maize RB has been recovered when using a sieve with a mesh size of 0.5 mm (Livesley et al., 1999), as done in the present experiment.

The root-to-shoot ratio (R/S) measured in the current study was compared with literature data. For calculating R/S, the aboveground biomass (without the crown) of nine representative maize plants was measured. The dry weight per plant was on average 173 g plant⁻¹. The average distance between maize rows (inter-row) in the field was 0.8 m and the average distance between plants in row was 0.5 m, resulting in a theoretical number of 25,000 plants ha⁻¹. Therefore, the shoot biomass accounts for 4325 kg dry weight ha⁻¹. We calculated a spatially weighted mean RB of 960 kg dry weight ha⁻¹ with reference to the upper 50 cm of soil. The resulting R/S of 0.22 is in agreement with the R/S ratios reviewed by Amos and Walter (2006). With plant age a decrease in the root-to-shoot ratio has been reported, from 0.68 at emergence to 0.16 at physiological maturity (Amos and Walter, 2006).

5.4.2 Factors affecting root biomass and/or rhizodeposition

The type of study, i.e. field or controlled conditions, may affect root biomass and rhizodeposition through differences in growth conditions. To keep the soil conditions as comparable as possible, intact soil cores from the field site were used for the controlled conditions experiment. To exclude plant genetic influences on the root system and on rhizodeposition the same maize variety as in the field was used.

The root biomass and the quantity of C released by living roots depend on the plant phenology and on environmental factors (Grayston et al., 1996; Hütsch et al., 2002; Nguyen, 2003). Plant phenology may influence root biomass as well as rhizodeposition, mainly through root growth dynamics and differences in the quantity of rhizodeposits (Vancura, 1964; Klein et al., 1988; Van der Krift et al., 2001; Jones et al., 2004). At young age, plants translocate more carbon to the roots, whereas older plants preferably retain newly assimilated C in the shoots (Keith et al., 1986; Gregory and Atwell, 1991; Palta and Gregory, 1997; Gransee and Wittenmayer, 2000) thus, leading to decreased C inputs into the soil due to a decreased assimilates allocation to the roots (reviewed by Nguyen, 2003). Aging of plants decreases the exudation intensity, however, if this decrease is slower than the root growth total rhizodeposition will increase (Kuzyakov, 2002). On the other hand an enhanced die of root material with plant age increased C inputs into the soil. It was shown that rhizodeposition is positively correlated to root biomass (Van der Krift et al., 2001). To adequately estimate the rhizodeposition under field conditions, we sampled root biomass at the maximum development stage of the root system. However, under controlled conditions the size of the pots may restrict the rooting volume and the amount of nutrients available for plants. To overcome these restrictions an earlier stage of plant development were studied under controlled conditions as compared to the field. Here we assumed that changes in the root biomass between field and controlled conditions are accompanied with the same relative changes in rhizodeposition. This assumption allows to conclude that despite the differences between the root biomass (and rhizodeposition) in field and under controlled conditions, the rhizodeposition-to-root ratio remains nearly constant and its changes are much lower than variations in the both C pools.

Furthermore, not only plant phenology but also environmental factors may alter the root growth pattern and the amount of rhizodeposition (Grayston et al., 1996; Hütsch et al., 2002; Nguyen, 2003). The release of C by living roots is driven by the allocation of recently assimilated C belowground and thus, depends to a large degree on the intensity of photosynthesis (Kuzyakov and Cheng, 2001) and growth rates of individual organs. It was suggested that plants grown under natural sunlight released a higher amount of C compared to plants grown under artificial light, the latter showing highly variable values (Amos and Walter, 2006). On the other hand, consistently lower light conditions may not only reduce the rhizodeposition of maize plants (Kuzyakov and Cheng, 2004), but may also lead to a lower root biomass (Hébert et al., 2001).

The main assumption involved in the current study was, that the ratio of rhizodeposition-to-root is much more stable than changes in the C amount of roots and rhizodeposits between field and controlled conditions.

5.4.3 ¹⁴C-Partitioning

Sixteen days after the labeling about 51% of the ¹⁴C activity was recovered in the maize shoot, 28% in the roots, 5% in the soil and 16% in the CO₂ efflux. The ¹⁴C recovery in the CO₂ efflux was within the range of 21% reported by Werth and Kuzyakov (2008) and of 14% measured by Trodorovic et al. (2001). Based on a ¹⁴CO₂ efflux model we found that root respiration accounts for 7% of total assimilated ¹⁴C and about 9.2% of assimilated ¹⁴C was released as CO₂ from rhizomicrobial respiration. These values are close to the results obtained for *Lolium perenne*, ranging 1.4%-7.6% and 0.9%-8% of assimilated ¹⁴C for RR and RMR, respectively (Kuzyakov et al., 1999; 2001; Kuzyakov and Domanski, 2002). In a further study, conducted with wheat, Cheng et al. (1993) used the isotope dilution method to separate root and rhizomicrobial respiration. This is in accordance to our value of 57% rhizomicrobial respiration on total root-derived CO₂.

5.4.4 Rhizodeposition at field scale

The main obstacle to quantify total rhizodeposition is the separation of root-derived CO_2 into root and rhizomicrobial respiration. Limitations and advantages of methods used to separate the sources of root-derived CO_2 were reviewed earlier (Hanson et al., 2000; Kuzyakov and Larinova, 2005; Sapronov and Kuzyakov, 2007). Due to methodological difficulties and various assumptions involved in the separation methods, most studies, aiming to quantify the amount of C released from living roots, are focusing on the net rhizodeposition, i.e. on the amount of rhizodeposits that remained in the soil at harvest. In order to compare our data from the ¹⁴C labeling experiment with data from the literature we calculated a net rhizodeposition-to-root ratio based on the results of eight studies conducted with maize. CO_2 from rhizomicrobial respiration was not included (Table II.5/3). Thus, net rhizodeposition is equal to the portion of ¹⁴C measured in the soil at harvest.

The net rhizodeposition-to-root ratio ranged from 0.04 to 0.84 (Table II.5/3), with a mean value of 0.34 and a median of 0.35. In our study the net rhizodeposition-to-root ratio (decomposition to CO_2 is not included) was on average 0.29. However, when including the CO_2 from RMR the ratio was almost twice as high since about 62% of released rhizodeposits were decomposed within 16 days (Fig. II.5/2).

The amounts of rhizodeposition and root biomass C are influenced by various biotic and abiotic factors in the plant-soil system (Jones et al., 2004; Amos and Walter, 2006). The soil environment can affect rhizodeposition and root biomass through physical aspects (e.g. water availability, temperature, soil texture) and chemical conditions (e.g. pH, availability of nutrient ions), as well as through the activity and diversity of microbial populations (Lynch et al., 2002). Moreover, plant-mediated factors, like the maize variety and the plant phenological stage, are influencing the root biomass and the rhizodeposition. The mentioned factors may alter the rhizodeposition-to-root ratio and thus, may provide the explanation for the variability in the literature data (Table II.5/3). This variability underlines the necessity for future experiments assessing the effects of various factors influencing rhizodeposition and/or root biomass on the robustness of the rhizodeposition-to-root ratio. In our study, however, the same plant species and variety and

the same soil as in the field was used, thus, we assumed a constant rhizodeposition-toroot ratio for controlled and field conditions.

By applying the rhizodeposition-to-root ratio of 0.56 to the root biomass determined in the field, we estimated that about 166 kg C ha⁻¹ was released by living roots into the soil in the time from planting to sampling (April to July 2009) for a theoretical plant population of 25,000 plants ha⁻¹. Amos and Walter (2006) concluded in their review, that net belowground C accounts for about $29\pm13\%$ of shoot biomass C of maize when assuming similar C contents of roots and shoots. By doing so, we found 34.6% of the shoot biomass C allocated belowground (roots + rhizodeposition). Root respiration was not included. This value, however, includes RMR and may thus slightly be higher than the reported average.

Net rhizo-					
deposition/	Time of sampling ^a	Approach ^c	Reference		
0.11	30 DAG	^{14}C continuous	Helal and Sauerbeck, 1986		
		labeling	,		
0.16	21 DAG	¹⁴ C continuous	Helal and Sauerbeck, 1989		
		labeling			
0.84 ^b	3 DAL	¹⁴ C pulse labeling	Kisselle et al., 2001		
		(field)			
0.73 ^b	13 DAL				
0.61 ^b	55 DAL				
0.37	46 DAP/ 48 DAG	¹⁴ C continuous	Martens, 1990		
		labeling			
0.40	76 DAP/ 78 DAG				
0.54	111 DAP/ 113 DAG				
0.09	21 DAG	¹⁴ C continuous	Merckx et al., 1986		
		labeling			
0.17	28 DAG				
0.06	35 DAG				
0.04	42 DAG	14			
0.54	24 DAG	¹⁴ C pulse labeling	Todorovic et al., 2001		
0.54	21 DAP/ 24 DAG	¹⁴ C pulse labeling	Tubeileh et al., 2003		
0.36	35 DAP/ 38 DAG				
0.75	42 DAP/ 45 DAG	14 ~			
0.34	9 DAG	¹⁴ C pulse labeling	Werth and Kuzyakov, 2008		
0.19	22 DAG	Repeated ¹⁴ C			
0.15	20 D A C	pulse labeling			
0.15	28 DAG				
0.24	34 DAG				
0.27	40 DAG	140 1 1 1 1			
0.37	2 DAL/ 30 DAG	C pulse labeling	Inis study		
0.20	3 DAL 33 DAG				
0.41	$\frac{10 \text{ DAL}}{38 \text{ DAG}}$				
0.19	10 DAL/ 44 DAG				
Iviedian / Iviean					
V.34 / V.33					

Table II.5/3: Net rhizodeposition-to-root ratio calculated based on ¹⁴C labeling studies with maize (recalculated and modified after Amos and Walter, 2006).

^a DAG, days after germination; DAP, days after planting; DAL, days after labeling.

^b Average across treatments.

^c All studies were conducted under light intensities between 180 and 400 μ mol m⁻² s⁻¹.

5.5 Conclusion

We showed that the combination of root biomass data from the field with the rhizodeposition-to-root ratio determined under controlled condition allow to quantify rhizodeposition at a field scale. The advantage of the present approach compared to recent estimates is that the portion of rhizodeposits, which are quickly mineralized by microorganisms (rhizomicrobial respiration), is considered. Thus, in contrast to previous studies estimating net rhizodeposition, here the gross rhizodeposition was measured and upscaled to the field. The portion of rhizodeposits decomposed to CO_2 within 16 days accounts for about 57% of total root-derived CO_2 . Therefore, including RMR led to an improved estimation of the total rhizodeposition under field conditions. Our data showed a total rhizodeposition by maize of 166 ± 53 kg C ha⁻¹. If the rhizodeposition-to-root ratio is known for particular plants, the new approach offers a promising estimation of rhizodeposition at field scale as a huge data base of root biomass distributions already exists in the literature.

Acknowledgments

We would like to thank Michaela Dippold for suggestions on the earlier version of the manuscript. This study was supported by the German Research Foundation (DFG) within the Research Unit "Carbon Flow in Belowground Food Webs assessed by Isotope Tracers".

References

- Amos, B., Walters, D.T., 2006. Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Science Society of America Journal 70, 1489-1503.
- Anderson, E.L., 1988. Tillage and N fertilization effects on maize root growth and root:shoot ratio. Plant and Soil 108, 245-251.
- Bolinder, M.A., Angers, D.A., Giroux, M., Laverdiere, M.R., 1999. Estimating C inputs retained as soil organic matter from corn (*Zea Mays* L.). Plant and Soil 215, 85-91.
- Cheng, W., Coleman, D.C., Carroll, C.R., Hoffman, C.A., 1993. In situ measurement of root respiration and soluble carbon concentrations in the rhizosphere. Soil Biology and Biochemistry 25, 1189-1196.
- Cheng, W., Johnson, D.W., Fu, S., 2003. Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization. Soil Science Society of America 67, 1418-1427.
- Dennis, P.G., Miller, A.J., Hirsch, P.R., 2010. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology 72, 313-327.
- Gajri, P.R., Arora, V.K., Kumar, K., 1994. A procedure for determining average root length density in row crops by single-site augering. Plant and Soil 160, 41-47.
- Gransee, A., Wittenmayer, L., 2000. Qualitative and quantitative analysis of watersoluble root exudates in relation to plant species and development. Journal of Plant Nutrition and Soil Science 163, 381-385.
- Gregory, P.J., Atwell, B.J., 1991. The fate of carbon in pulse-labelled crops of barley and wheat. Plant and Soil 136, 205-213.
- Grayston, S.J., Vaughan, D., Jones, D., 1996. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology 5, 29-56.

- Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115-146.
- Hébert, Y., Guingo, E., Loudet, O., 2001. The response of root/shoot partitioning and root morphology to light reduction in maize genotypes. Crop Science 41, 363-371.
- Helal, H.M., Sauerbeck, D., 1986. Effect of plant roots on carbon metabolism of soil microbial biomass. Zeitschrift f
 ür Pflanzenern
 ährung und Bodenkunde 149, 181-188.
- Helal, H.M., Sauerbeck, D., 1989. Carbon turnover in the rhizosphere. Zeitschrift für Pflanzenernährung und Bodenkunde 152, 211-216.
- Hütsch, B.W., Augustin, J., Merbach, W., 2002. Plant rhizodeposition an important source for carbon turnover in soils. Journal of Plant Nutrition and Soil Science 165, 397-407.
- Johnson, J.M.-F., Allmaras, R.R., Reicosky, D.C., 2006. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agronomy Journal 98, 622-636.
- Jones, D.L., Hodge, A., Kuzyakov, Y., 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163, 459-480.
- Jones, D.L., Kemmitt, S.J., Wright, D., Cuttle, S.P., Bol, R., Edwards, A.C., 2005. Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biology and Biochemistry 37, 1267–1275.
- Keith, H., Oades, J.M., Martin, J.K., 1986. Input of carbon to soil from wheat plants. Soil Biology and Biochemistry 18, 445-449.
- Kisselle, K.W., Garrett, C.J., Fu, S., Hendrix, P.F., Crossley Jr., D.A., Coleman, D.C., Potter, R.L., 2001. Budgets for root-derived C and litter-derived C: comparison between conventional tillage and no tillage soils. Soil Biology and Biochemistry 33, 1067-1075.
- Klein, D.A., Frederick, B.A., Biondini, M., Trlica, M.J., 1988. Rhizosphere microorganisms effects on soluble amino acids, sugars and organic acids in the root zone of *Agropyron cristatum*, A. smithii and Bouteloua gracilis. Plant and Soil 110, 19-25.

- Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Schoene, J., Scheunemann, N., Schmalwasser, A., Totsche, K.U., Walker, F., Scheu, S., Kandeler, E., 2012. Carbon flow into microbial and fungal biomass as a basis to understand the belowground food web in an agroecosystem. Pedobiologia 55, 111-119.
- Kuzyakov, Y., 2002. Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165, 382-396.
- Kuzyakov, Y., 2006. Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38 (3), 425-448.
- Kuzyakov, Y., Cheng, W., 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry 33 (14), 1915-1925.
- Kuzyakov, Y., Cheng, W., 2004. Photosynthesis controls of _{CO2} efflux from maize rhizosphere. Plant and Soil 263, 85-99.
- Kuzyakov, Y., Domanski, G., 2000. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163, 421-431.
- Kuzyakov, Y., Domanski, G., 2002. Model for rhizodeposition and CO₂ efflux from planted soil and its validation by ¹⁴C pulse labelling of ryegrass. Plant and Soil 239, 87-102.
- Kuzyakov, Y., Ehrensberger, H., Stahr, K., 2001. Carbon partitioning and below-ground translocation by *Lolium perenne*. Soil Biology and Biochemistry 33, 61-74.
- Kuzyakov, Y., Hill, P.W., Jones, D.L., 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant and Soil 290, 293-305.
- Kuzyakov, Y., Kretzschmar, A., Stahr, K., 1999. Contribution of *Lolium perenne* rhizodeposition to carbon turnover of pasture soil. Plant and Soil 213, 127-136.
- Kuzyakov, Y., Larionova, A.A., 2005. Root and rhizomicrobial respiration: A review of approaches to estimate respiration of autotrophic and heterotrophic organisms in soil. Journal of Plant Nutrition and Soil Science 168 (4), 503-520.

- Livesley, S.J., Stancey, C.L., Gregory, P.J., Buresh, R.J., 1999. Sieve size effects on root length and biomass measurements of maize (*Zea mays*) and *Grevillea robusta*. Plant and Soil 207, 183-193.
- Lynch, J.M., Brimecombe, M., De Leij, F.A.A.M., 2002. Rhizosphere, in: John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000403.pub2.
- Martens, R., 1990. Contribution of rhizodeposits to the maintenance and growth of soil microbial biomass. Soil Biology and Biochemistry 22, 141-147.
- Merckx, R., Van Ginkel, J.H., Sinnaeve, J., Cremers, A., 1986. Plant-induced changes in the rhizosphere of maize and wheat. Plant and Soil 96, 85-93.
- Nguyen, C., Todorovic, C., Robin, C., Christophe, A., Guckert, A., 1999. Continuous monitoring of rhizosphere respiration after labelling of plant shoots with ¹⁴CO₂. Plant and Soil 212, 191-201.
- Nguyen, C., 2003. Rhizodeposition of organic C by plant: Mechanisms and controls. Agronomie 23, 375-396.
- Palta, J.A., Gregory, P.J., 1997. Drought affects the fluxes of carbon to roots and soil in ¹³C pulse-labelled plants of wheat. Soil Biology and Biochemistry 29 (9/10), 1395-1403.
- Sapronov, D.V., Kuzyakov, Y., 2007. Separation of root and microbial respiration: Comparison of three methods. Eurasian Soil Science 40 (7), 775-784.
- Smucker, A.J.M., McBurney, S.L., Srivastava, A.K., 1982. Quantitative separation of roots from compacted soil profiles by the Hydropneumatic Elutriation System. Agronomy Journal 74, 500-503.
- Todorovic, C., Nguyen, C., Robi, C., Guckert, A., 2001. Root and microbial involvement in the kinetics of ¹⁴C-partitioning to rhizosphere respiration after a pulse labelling of maize assimilates. Plant and Soil 228, 179-189.
- Tubeileh, A., Groleau-Renaud, V., Plantureux, S., Guckert, A., 2003. Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system. Soil and Tillage Research 71, 151-161.
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19 (9), 703-707.

- Vancura, V., 1964. Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant and Soil 21 (2), 231-248.
- Van der Krift, T., Kuikman, P.J., Möller, F., Berendse, F., 2001. Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant and Soil 228, 191-200.
- Warembourg, F.R., Billes, G., 1979. Estimating carbon transfers in the plant rhizosphere, in: Harley, J.L., Russel, R.S. (Eds) The soil-root interface. Academic Press, London, pp 183-196.
- Werth, M., Kuzyakov, Y., 2008. Root-derived carbon in soil respiration and microbial biomass determination by ¹⁴C and ¹³C. Soil Biology and Biochemistry 40, 625-637.
- Wu, J., Jörgensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement of soil microbial biomass-C by fumigation-extraction – an automated procedure. Soil Biology and Biochemistry 22, 1167-1169.

6 Soil organic carbon decomposition from recently added and older sources estimated by δ^{13} C values of CO₂ and organic matter

Johanna Pausch^{1,2,*} and Yakov Kuzyakov¹

Published in Soil Biology and Biochemistry, 2012, Vol. 55, Page 40-44.

¹ Department of Soil Science of Temperate Ecosystems, University of Göttingen, Germany

² Department of Agroecosystem Research, BayCEER, University of Bayreuth, Germany

* Corresponding author

Universitätsstr. 30, 95440 Bayreuth, Germany

Phone: +49 921 55 2177 Fax: +49 921 55 2315

johanna.pausch@uni-bayreuth.de

Research Highlights

- The δ^{13} C signature of soil CO₂ reflects that of organics decomposed.
- The admixture of atmospheric CO₂ to soil CO₂ was removed by Miller/Tans models.
- The contribution of younger and older C to CO₂ and to SOM was compared.
- This allows to estimate microbial availability of younger relative to older C sources.
- Younger C (<2 years) is seven times more available for microorganisms than older C.

Graphical Abstract

Abstract

The production of CO_2 in soil strongly depends on the availability of organic carbon (C) for microorganisms. It is obvious, that C that entered the soil recently is more easily available for microorganisms in comparison to older C. However, only very few approaches allow for a quantitative estimation of the availability of C in relation to the time it is entering the soil. We hypothesized that δ^{13} C values of CO₂ and of soil organic matter (SOM) after a C_3 to C_4 vegetation change will enable to calculate the relative availability of younger (C4-derived) and older C (C3-derived) sources for microorganisms. Soil CO₂ was sampled over one vegetation period at depths of 10, 40-50 and 60-70 cm at three treatments: a C_3 reference (wheat), a C_4 /fallow (fallow after one year of maize cropping), and a C₄/C₄ (two years of maize cropping). Based on the δ^{13} C of CO₂ purified from the admixture of atmospheric CO₂ by the Miller/Tans model and on the δ^{13} C values of SOM, the contributions of younger and older C sources to CO₂ and SOM were assessed. Depending on the soil depth and the presence of living roots, the contribution of younger C to soil CO₂ ranged from 16 to 50%, but that to SOM was less than 5%. By comparing the contributions of older and younger C to CO₂ and SOM, we found that the relative availability of organics recently introduced into the soil (C₄-derived) was about 7 times higher than the availability of C stabilized in soil for longer than one year (C₃-derived). We concluded that simultaneous analysis of the δ^{13} C values of both SOM and of CO₂ allows not only for the quantification of the CO₂ sources, but also for the estimation of the availability of soil C pools of different age for microorganisms.

Keywords: CO_2 partitioning, Miller/Tans model, C_3/C_4 vegetation change, isotopic approaches.

6.1 Introduction

The availability of soil organic C for microbial decomposition is crucial for many processes within the C cycle since it controls the rate of CO_2 flux to the atmosphere, determines the sources contributing to soil CO_2 , affects microbial activity and composition, and reflects C sequestration. Soil organic C consists of various heterogeneous pools which differ in their stability and availability and are characterized by particular turnover rates (Von Lützow et al., 2007; Blagodatskaya et al., 2011). Older, more recalcitrant C pools are less decomposable by microorganisms in comparison to younger C pools (Von Lützow et al. 2006; Jastrow et al. 2007). According to their turnover time various C pools contribute differently to soil CO_2 as the major product of microbial decomposition.

To distinguish between C pools and to determine their contribution to soil CO₂, isotopic tracer techniques have been applied. A vegetation change from C₃ to C₄ plants results in different isotopic composition of young and old C pools, which allows for their separation (Balesdent and Mariotti, 1987). Depending on the photosynthetic pathways, different isotopic ¹³C fractionations occur during CO₂ assimilation, leading to a distinct isotopic composition of C₃ and C₄ plants (Farquhar et al., 1989). Therefore, when growing C₄ plants on soil originally formed in areas of C₃ vegetation (or vice versa), older (C₃-derived) and younger (C₄-derived) C can be differentiated based on their isotopic differences (Balesdent and Mariotti, 1987).

The first aim of this study was the partitioning of soil CO_2 and SOM into their C sources after the application of a C_3 to C_4 vegetation change. Over one vegetation period soil CO_2 was sampled at depths of 10, 40-50 and 60-70 cm at three treatments: 1) C_3 reference with long-term C_3 plant cropping; 2) C_4 /fallow with maize in the first year of the experiment, and a bare fallow in the second year; and 3) C_4/C_4 with two years' maize cropping.

A major problem for the evaluation of the isotopic composition of soil CO₂ and the subsequent determination of the contribution of various C sources, is the admixture of atmospheric CO₂ to soil air resulting in the modification of its δ^{13} C value. This strongly limits the application of δ^{13} C values of CO₂ for the estimation of CO₂ sources and for the evaluation of their availability for microorganisms (Søe et al., 2004). Removal of atmospheric CO_2 is therefore a prerequisite for analyzing the soil CO_2 . For this purpose, Keeling (1958; 1961) and Miller and Tans (2003) suggested different approaches based on two component isotopic mixing lines. When applying the commonly used Keeling plot approach, the isotopic composition of sampled air versus the inverse of the respective CO₂ concentration is used to estimate the y-axis intercept equivalent to the δ^{13} C value of pure soil CO₂. The Miller/Tans model is based on the linear regression between the product of CO₂ concentration and its δ^{13} C value plotted against the CO₂ concentration. The isotopic composition of pure CO_2 from the soil is then determined as the slope of the regression line. Although the Miller/Tans model has seldom been used before, its important advantage is that the calculated δ^{13} C values of soil CO₂ are less variable in comparison to the Keeling plot approach, especially if the measured CO₂ concentration varies across a broad range. As soil CO₂ concentrations usually do vary over a broad range (more than two orders of magnitude), we used the Miller/Tans model to remove the admixture of atmospheric CO_2 before calculating the contribution of older (C_3 derived) and younger (C₄-derived) sources to CO₂.

The C₃ to C₄ vegetation change approach has commonly been applied to determine either the sources of CO₂ or of SOM, but has very seldom been used to relate isotopic compositions of CO₂ to that of SOM in a way that allows for a quantitative estimation of the availability of C pools for microorganisms (Flessa et al., 2000; Kuzyakov, 2011). We therefore hypothesized that the purified δ^{13} C values of CO₂ and the δ^{13} C values of SOM after a C₃ to C₄ vegetation change can be used to estimate the relative availability of younger and older C sources for soil microorganisms.

6.2 Materials and Methods

6.2.1 Experimental design

The experimental site was established on an arable field in the north-west of Göttingen, Germany (51°33′36.8′′N, 9°53′46.9′′E). The soil is a haplic Luvisol the organic carbon of which originates from permanent C_3 vegetation. The main soil properties are presented in Table II.6/1.

A vegetation change in 2009 from C_3 to C_4 crops was used to introduce a distinct ¹³C signal into the soil. The experimental site and design is described in detail by Kramer et al. (2012). In the first year of the study, plots (24 x 24 m) with maize (Zea mays L. cv. Ronaldinio) and reference plots (24 x 24 m) with winter wheat (Triticum aestivum L. cv. Julius) were established. Wheat seedlings, sown in October 2008, had been removed from the maize plots with a non-selective herbicide ("Roundup", Monsanto Agrar, Düsseldorf, Germany) before sowing maize in April 2009. Wheat was harvested in August and maize in early November 2009 and the straw was removed from the plots. In the second year of the study, in April 2010, maize (Zea mays L. cv. Fernandez) and summer wheat (Triticum aestivum L. cv. Melon) were replanted. A bare fallow area (2 x 5 m) was established within one of the maize plots. This area was manually kept free from vegetation during the growing season and roots from the neighboring plants were severed with a spade up to 20 cm depth every two weeks in order to eliminate lateral root ingrowth. Maize and wheat plants were harvested in November 2010. In this paper, the treatments will be referred to as 'C₃ reference' for the plots with continuous wheat cropping, C_4/C_4 for the plots with maize cropping in the first and in the second year of the experiment, and 'C₄/fallow' for the plots with maize cropping in the first year and bare fallow in the second year.

Five soil moisture sensors (EC-5, Decagon Devices, Pullman, USA) were installed at 48 cm depth at the C_3 reference. The water content of the soil was measured every 30 minutes and displayed as daily average.

Table II.6/1: Selected properties (\pm SEM) of the haplic Luvisol determined before the start of the experiment (Kramer et al., 2012, modified). Significant differences between the horizons are indicated by different letters (P<0.05).

Hori- zon	Depth	pH (CaCl ₂)	Bulk density	C _{org}	Total N C/N	1	δ ¹⁵ N	δ ¹³ C
	[cm]		[g cm ⁻³]	[g kg ⁻¹]	[g kg ⁻¹]		[‰]	[‰]
Ap1	0-25	6.0±0.1 a	1.4±0.0 a	12.4±0.4 a	1.3±0.0 a 9.8	3 a	8.0±0.2 a	-27.4±0.1 a
Ap2	25-37	6.2±0.1 a	1.6±0.0 b	6.9±1.2 b	0.8±0.1 b 9.2	2 a	7.9±0.5 ab	-26.5±0.2 b
Btw1	37-65	6.6±0.1b	1.7±0.0 c	3.3±0.5 c	0.4±0.0 c 8.9) ab	6.4±0.3 bc	-26.1±0.1 bc
Btw2	>65	$7.0\pm0.1c$	1.6±0.0 b	1.8±0.4 c*	0.3±0.0 c 6.9) b	5.6±0.6 c	-25.5±0.3 c

* Small quantities of CaCO₃ may occur below 65 cm.

6.2.2 Soil air samplers

To sample all three treatments during the same growing season, sampling was done in 2010, in the second year of maize cropping, after establishing the bare fallow (C₄/fallow). The soil air samplers were installed in April 2010 two weeks before the first sampling, in order to reduce disturbance. The air samplers were constructed according to the principle described by Kammann et al. (2001) with the difference that we did not roll them up to a spiral. The sampler, consisting of a silicone tube (length 14.5 cm, inner diameter 10 mm, wall thickness 3 mm), was sealed at one end with a silicone stopper (length 2 cm). Teflon rings (height 5 mm, inner diameter 8 mm) were placed inside the tube to prevent compression by the overlying soil. The other end of the sampler was connected to a non-permeable polyurethane- (PU) tube (consisting of a 5 cm tube with an inner diameter of 1.8 mm) fitted with a three-way stopcock with a cannula to allow for above soil sampling (Knorr et al., 2008).

The air samplers were installed with four replicates at randomly selected positions within all three treatments (C_3 reference, C_4/C_4 , and C_4 /fallow), at three depths of 10 cm, 40-50 cm and 60-70 cm. The samplers at 40-50 cm and 60-70 cm were vertically installed into a hole made by a Pürckhauer sampler (groove width 18 mm, ecoTech, Bonn, Germany). The hole was refilled with the soil core after installation and sealed with mud at
the surface. Due to a steeper CO_2 concentration gradient in the upper soil depths, the 10 cm samplers were horizontally inserted after excavating a soil core (0.008 m³). The soil core was placed back and the soil surface was slightly compressed.

6.2.3 Sampling and analysis

Soil air samples were taken twice per month throughout the maize growing season (from May to October 2010) and once after the maize harvest in November 2010. We sampled soil air by plugging evacuated 5 ml vials into the cannula. The stopcock was carefully opened and soil air was soaked into the vial.

The relative ¹³C abundances and total C concentrations of the CO₂ in the soil air samples were measured by a gas chromatograph 5890 Series II (Hewlett-Packard, Wilmington, USA) coupled to a Delta V Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany) via a Combustion Interface II (Thermo Fisher Scientific, Bremen, Germany).

Soil from each treatment was sampled four times during the growing season (May, June, July and August 2010) from depths of 0-10 cm, 40-50 cm and 60-70 cm using a Riverside auger (inner diameter 5 cm, Eijkelkamp, Giesbeek, The Netherlands). Roots from the 0-10 cm soil depth were separated from the soil and rinsed with deionized water. Soil and root material was dried at 60 °C for three days and homogenized in a ball mill. Relative C isotope abundances and total C contents of root and soil samples were measured using an elemental analyzer (Carlo Erba 1108, Milano, Italy) coupled to a Delta S Gas-isotope Ratio Mass Spectrometer (Finnigan MAT, Bremen, Germany) through a ConFlo III interface (Thermo Fisher Scientific, Bremen, Germany). The standard gases (Australian National University sucrose (ANU) and NBS 19) were calibrated with reference to the international standard (Vienna Pee Dee Belemnite (V-PDB)).

6.2.4 Calculations and statistics

6.2.4.1 Miller/Tans model

The δ^{13} C value of pure soil CO₂ was determined by correcting the measured δ^{13} C value for the admixture of atmospheric CO₂ based on the Miller/Tans model (Miller and Tans, 2003), using a geometric mean regression (GMR) as suggested for soil CO₂ (Kayler et

al., 2010). A GMR through the individual data points of all samplings was calculated for each depth separately for the C₃ reference, C₄/fallow and C₄/C₄ treatments. The slope of the GMR is equivalent to a seasonally integrated δ^{13} C value of pure soil CO₂. Standard errors for the slope of the GMR were calculated from the respective ordinary least square regression (Sokal and Rohlf, 1995). These standard errors may not completely characterize the uncertainty (Zobitz et al., 2006).

6.2.4.2 Contribution of recently added C to total soil CO₂ and total SOM

The contributions of older (C_3 -derived) and younger (C_4 -derived) sources to total soil CO_2 or total SOM were calculated using linear two source isotopic mixing models.

$$\delta^{13}C_t \cdot C_t = \delta^{13}C_{C_3} \cdot C_{C_3} + \delta^{13}C_{C_4} \cdot C_{C_4}$$
(1)

$$C_t = C_{C_3} + C_{C_4} \tag{2}$$

$$f_{C_4} = \frac{\delta^{13}C_t - \delta^{13}C_{C_3}}{\delta^{13}C_{C_4} - \delta^{13}C_{C_3}} \tag{3}$$

$$f_{C_3} = 1 - f_{C_4} \tag{4}$$

where $\delta^{13}C_t$ is the isotopic composition of either total CO₂ or total SOM and C_t is the total CO₂ concentration or total C content of SOM. $\delta^{13}C_{C_3}$ and $\delta^{13}C_{C_4}$ are the isotopic compositions of the C₃ and C₄ sources, respectively. C_{C_3} and C_{C_4} are the CO₂ concentrations or C contents of SOM of the C₃ and C₄ sources. f_{C_3} and f_{C_4} are the proportional contributions of the C₃ and the C₄ source to total CO₂ or SOM.

The C₃ source $(\delta^{13}C_{C_3})$ was either defined by the calculated Miller/Tans δ^{13} C value of the C₃ reference soil when partitioning total CO₂, or by the δ^{13} C value of SOM of the C₃ reference soil when partitioning total SOM. For partitioning total CO₂ we used the isotopic composition of the maize roots as C₄ source $(\delta^{13}C_{C_4})$. Apparent ¹³C fractionations between roots and SOM (F_{SOM}) from the pure C₃ system were assumed to be the same in a pure C₄ system and were therefore applied to maize roots to calculate the isotopic composition of the C₄ source ($\delta^{13}C_{C_4}$) when partitioning SOM:

$$F_{SOM} = \delta^{13} C_{C_3} - \delta^{13} C_{C_3 - Root} \quad (\%)$$
(5)

$$\delta^{13}C_{C_4} = \delta^{13}C_{C_4-Root} + F_{SOM} \quad (\%) \tag{6}$$

where $\delta^{13}C_{C_3-Root}$ and $\delta^{13}C_{C_4-Root}$ are the δ^{13} C values of the wheat and the maize root, respectively.

Standard errors of f_{C_4} and f_{C_3} were calculated as described by Phillips and Gregg (2001).

6.2.4.3 Relative availability of older and younger C

The relative availability of SOM for soil microorganisms was estimated based on its δ^{13} C values and on the δ^{13} C of soil CO₂. In order to evaluate the availability of organics that entered the soil after the start of maize cropping (younger C) and to compare it with the availability of organics that had entered the soil before maize cropping (older C), the ratios of C₄- to C₃-derived C in SOM were related to that in CO₂. The respective C₄/C₃ ratios in SOM and in CO₂ were calculated using linear two source isotopic mixing models (Phillips and Gregg, 2001).

6.2.4.4 Statistics

The values presented in the figures and tables are given as means \pm standard errors of means (\pm SEM). Significant differences of the soil properties (Table II.6/1) between the horizons were obtained by a one-way analysis of variance (ANOVA) in combination with a *post hoc* unequal N HSD test. The slopes of the regression lines calculated by the Miller/Tans model showed P-values always lower than 0.001. A Fisher's z-transformation of the correlation coefficient (r) of the Miller/Tans models showed that r was always highly significant (P \leq 0.001). T-tests were used to evaluate differences between depths and treatments in the isotopic composition of CO₂ as well as of SOM and in the contribution of C₄-derived C to total soil CO₂ and SOM, respectively. Statistical analyses were performed with the statistical package STATISTICA for Windows (version 7.0; StatSoft Inc., OK, USA).

6.3 Results

6.3.1 Isotopic composition of soil CO₂ and removal of atmospheric CO₂ admixture

The raw data shows that the CO₂ concentrations of the three treatments C₃ reference, C₄/fallow and C₄/C₄ are in a similar range and display similar dynamics, i.e. the treatment itself had no impact (Fig. II.6/1). Consistently lower CO₂ concentrations were detected at the 10 cm soil depth for all treatments, in comparison to the concentrations at the 40-50 cm and at the 60-70 cm depth, where the concentrations were twice as high. In August, the CO₂ concentration increased at all depths and treatments. This increase can be explained by an increasing soil water content as shown for the C₃ reference at a depth of 48 cm (Fig. II.6/1).

The dynamics of the isotopic composition of CO₂ differed between the treatments (Fig. II.6/1). Whereas the δ^{13} C values of the C₃ reference at the 40-50 cm and at the 60-70 cm soil depths, ranging from -30‰ to -24‰, did not show a trend over time, the δ^{13} C values of the C₄/C₄ treatment increased at mid-June and reached values of up to -16‰, and decreased again in August at all depths. The δ^{13} C of CO₂ in the C₄/fallow treatment decreased over the season due to the absence of new C₄ inputs in the second year, and due to the decomposition of the C₄ organics which remained after the first year of maize cropping. At the end of the vegetation period, δ^{13} C values of -27‰ were detected, which were within the δ^{13} C range of the C₃ reference. During the vegetation period the δ^{13} C values of CO₂ of the C₃ reference soil at the depth of 40-50 cm and 60-70 cm were lower compared to the values at the C₄/fallow and the C₄/C₄ treatments. The different dynamics of the δ^{13} C values indicate changes in the contribution of C₃ and C₄ sources to total CO₂.

Figure II.6/1: Top: CO₂ concentration (mean ±SEM, N=4) and bottom: δ^{13} C values (mean ±SEM, N=4) of total soil CO₂ during the growing season 2010 at 10 cm, 40-50 cm and 60-70 cm depth at the C₃ reference (left), the C₄/fallow (middle) and the C₄/C₄ (right) treatment. Raw data without purification from the admixture of atmospheric CO₂ are presented. The soil water content at 48 cm depth under the C₃ reference is shown in gray color.

For all three treatments, the highest δ^{13} C values were found at the 10 cm depth, but with the highest variation for the C₃ reference soil. High variation of CO₂ concentrations and especially of δ^{13} C values, due to the admixture of atmospheric CO₂, confirmed that a correction for the admixture was required to determine the δ^{13} C of pure soil CO₂. Using the Miller/Tans model the single CO₂ concentration data (shown as means in Fig. II.6/1) was plotted against the δ^{13} C value multiplied by the CO₂ concentration (Miller and Tans, 2003) (Fig. II.6/2). The best correlations were found for samples taken from the C₃ reference soil because of the highest difference of δ^{13} C values of organics utilized by microorganisms and atmospheric CO₂. The slope of the regression line equals the integrated δ^{13} C value of pure soil CO₂ without atmospheric CO₂ (Fig. II.6/2, II.6/3A).

Figure II.6/2: Miller/Tans models for the C₃ reference, the C₄/fallow and the C₄/C₄ treatment at 10 cm, 40-50 cm and 60-70 cm soil depth. The slope of the regression line is equivalent to the δ^{13} C of pure soil CO₂ without admixture of atmospheric CO₂. Since the samples were taken over one growing period (2010), the slope represents a seasonally integrated δ^{13} C value. Note: for a better visualization (not for the calculations), the x-axis was truncated at 30,000 ppm, as only 5 points were higher.

Figure II.6/3: A: δ^{13} C values (±SEM) of soil CO₂ calculated by Miller/Tans models for the C₃ reference, the C₄/fallow and the C₄/C₄ treatment at 10 cm, 40-50 cm and 60-70 cm depth, and B: contribution of younger and older C sources to total CO₂ at the C₄/fallow and C₄/C₄ treatment at 10 cm, 40-50 cm and 60-70 cm soil depth. Significant differences between the depths and treatments are marked by different letters (P<0.05).

The purified δ^{13} C values of soil CO₂ consistently and strongly differed between the three treatments for all depths investigated (Fig. II.6/3A). The lowest δ^{13} C values were calculated for CO₂ produced at the C₃ reference site. The C₄/fallow treatment represented an intermediate stage and the highest δ^{13} C values were detected for the C₄/C₄ treatment. Correspondingly to the δ^{13} C of SOM (Table II.6/2) the δ^{13} C of CO₂ at the C₃ reference increased slightly with depth, from about -31‰ at the 10 cm depth to - 30‰ at the 60-70 cm depth (Fig. II.6/3A). However, there were no depth gradients for the C₄/fallow and the C₄/C₄ treatments with average δ^{13} C values of approximately -26‰ and -23‰, respectively.

6.3.2 Contribution of recently added C to total soil CO₂ and SOM and relative availability of younger and older C

Based on two component isotopic mixing lines, the contribution of younger C (C₄derived) to soil CO₂, after the removal of the admixture of atmospheric air (Fig. II.6/3B) and its contribution to SOM (Table II.6/2) were calculated. The contribution of recently added C to CO₂ at the C₄/C₄ treatment site was approximately 50% at the 10 cm depth, which was twice as high compared to the C₄/fallow treatment. This can be explained by root-derived CO₂ (root and rhizomicrobial respiration) in the presence of living roots in the C_4/C_4 soil.

The contribution of younger C to soil CO₂ decreased with depth for both C₄ treatments. At the 40-50 cm and the 60-70 cm depth of the C₄/C₄ treatment, younger C contributed about 43% to soil CO₂, while at the C₄/fallow treatment only 16% C₄-derived C was detected at the 60-70 cm depth. Despite the high contribution of recently added C to soil CO₂, even at the 60-70 cm soil depth of the C₄/fallow treatment, the bulk SOM was only slightly (< 5%) enriched by the C₄ signal after one year of maize cropping (Table II.6/2).

Table II.6/2: δ^{13} C values of SOM (±SEM) of the C₃ reference, the C₄/fallow and the C₄/C₄ treatments and the contribution of C₄-derived C to total SOM (±SEM) on C₄/fallow and C₄/C₄ treatments at 10 cm, 40-50 cm and 60-70 cm depths. The δ^{13} C values of pure C₄ soil were: -11.4±0.2‰ for 10 cm; -10.5±0.2‰ for 40-50 cm; -10.6±0.2‰ for 60-70 cm. Significant differences between the depths within a treatment are marked by different lowercase letters (P<0.05). Values followed by different uppercase letters indicate statistical differences between the treatments at a certain soil depth (P<0.05).

	δ ¹³ C [‰]			Contribution of recently added C to total SOM [%]	
Depth [cm]	C ₃ reference	C ₄ /fallow	C ₄ /C ₄	C ₄ /fallow	C ₄ /C ₄
10	-27.0±0.2 aA	-26.3±0.1 aB	-26.4±0.2 aAB	4.6±1.3 aA	3.8±1.1 aA
40-50	-26.2±0.1 bA	-26.0±0.2 abA	-26.2±0.1 aA	1.4±1.7 aA	0±1.2 bA
60-70	-26.3±0.1 bA	-25.7±0.1 bB	-26.2±0.1 aA	3.6±1.1 aA	0.6±1.0 bA

By relating the contribution of recently added C to SOM to its contribution to CO₂, the availability of younger C relative to older C was estimated. This was done only for the 10 cm depth of the C₄/fallow treatment, because of the absence of significant differences in δ^{13} C of SOM below the plough horizon at 40-50 cm between the C₃ reference and the C₄/fallow treatment (Table II.6/2) and because we cannot completely exclude the influence of carbonates at the 60-70 cm depth (see Table II.6/1). The younger C, introduced into the soil at a depth of 10 cm in the first year of maize cropping, was about 7 times more available for microbial decomposition in comparison to more recalcitrant C which was older than two years.

Figure II.6/4: Contribution of older and younger C to SOM and soil CO₂ at the 10 cm depth of the C₄/fallow treatment, and calculation of relative availability of recently added and older C. The seasonally integrated δ^{13} C value of CO₂ at this treatment and depth was -26.2±0.4‰. The δ^{13} C value of SOM was -26.3±0.1‰. The contribution of C₄derived C to total CO₂ or SOM was calculated based on the following isotopic composition of the C₃ and C₄ sources: -27.0±0.2‰ and -11.4±0.2‰ for SOM in a pure C₃ system and a pure C₄ system, respectively; -31.4±0.5‰ and -12.2±0.2‰ for CO₂ in a pure C₃ system and maize roots, respectively.

6.4 Discussion

6.4.1 Dynamics of isotopic composition of soil CO₂

The δ^{13} C values of the measured soil CO₂ of the C₄/C₄ treatment showed a clear pattern over the growing season with increasing values at mid-June (Fig. II.6/1). Similar patterns had been observed in earlier studies (Rochette and Flanagan, 1997; Rochette et al., 1999) and were explained by a higher contribution of root-derived respiration to total soil CO₂ with increasing root biomass during the growing season. At the end of the growing season, the δ^{13} C values of CO₂ declined again to the initial level due to reduced root-derived respiration.

The δ^{13} C of CO₂ in the C₄/fallow soil decreased consistently with time, and converged to the range of the δ^{13} C of CO₂ measured at the C₃ reference plot. The relative contribution of younger C to soil CO₂ at the C₄/fallow treatment decreased in the absence of new C₄ inputs, because younger (C₄-derived) organics remaining in the soil after the first year of maize cropping had higher availability and, consequently, faster decomposition rates compared to older (C₃-derived) organics. CO₂ produced at the beginning of the vegetation season mainly originated from the compounds with fast decomposition rates, while compounds with lower decomposition rates gained an increasing influence on the CO₂ with time (Werth and Kuzyakov, 2008). This led to a decrease of δ^{13} C values of soil CO₂ within the C₄/fallow treatment.

The CO₂ measured at the 10 cm depth of the C₃ reference soil was characterized by highly variable δ^{13} C values ranging from -27‰ to -19‰ (Fig. II.6/1). This high spatial (indicated by large standard errors) and temporal variability can be explained by a higher variability in soil moisture and temperature at the wheat site compared to the C₄/C₄ and to the C₄/fallow treatment, which might have led to bigger differences in microbial activity and hence in C decomposition on the wheat site. Furthermore, soil moisture is a key factor controlling the intensity of atmospheric air mixing on all three sites, because it alters the rate of gaseous diffusion (Susfalk et al., 2002). The magnitude of the atmospheric air admixture mainly depends on the decomposition rates of SOM and on the rate of gaseous diffusion within the soil (Amundson et al., 1998; Cerling, 1984; Dudziak and Halas, 1996; Susfalk et al., 2002). The δ^{13} C values at the 10 cm depth of the C₃ refer-

ence increased at the end of the vegetation period due to a higher admixture of atmospheric CO_2 as a result of a decreasing water content (Fig. II.6/1). The spatial and temporal variability of soil respiration, as well as of the effective soil porosity, led to a variation in the contribution of atmospheric air to total soil CO_2 . A contribution of up to 35% of atmospheric air to near-surface soil gas has been reported (Susfalk et al., 2002). For grassland, Millard et al. (2008) calculated contributions of even 61%.

In this study, it was not possible to determine the percentage of atmospheric air mixed to soil CO_2 because the isotopic composition of atmospheric CO_2 in the vicinity of the soil surface was not measured. The use of the atmospheric $\delta^{13}C$ value of -8‰ and a CO_2 concentration of about 390 ppm, as an average for the bulk atmosphere, is inappropriate because the air close to the surface is strongly affected by CO_2 from the soil and by gaseous exchange with the vegetation.

6.4.2 Application of the Miller/Tans model to determine the isotopic composition of soil CO₂

The isotopic signature of pure soil CO₂, without admixing of atmospheric CO₂, can be determined using two component isotopic mixing lines (Fig. II.6/2). The application of the various mixing models in combination with different regression approaches, such as ordinary least squares or GMR, was discussed in detail by Zobitz et al. (2006) and Kayler et al. (2010). For systems with broad CO₂ concentration ranges, such as soil CO₂, the application of the Miller/Tans model used with a GMR was recommended, since it provides the most accurate and precise estimate of the δ^{13} C value of purely soil-respired CO₂ (Kayler et al., 2010).

The basis of the mixing model is a mass balance equation which relies on the assumption of a simple mixing of only two gas components, soil CO₂ and atmospheric CO₂ (Pataki et al., 2003). During the sampling period, the contribution of the two components may change, but the isotope composition of the single components does not. In our experiment, besides the δ^{13} C value of the former C₃ vegetation and that of the atmospheric CO₂ mixed into the soil, a third source, with a C₄ isotopic signal, was added to soil by maize cropping. Since the contribution of the C₄ signal varied spatially and temporally, e.g. with changing root biomass and soil moisture (Fig. II.6/1), the δ^{13} C of soil CO₂ did not remain constant. Nevertheless, both C₃- and C₄-derived CO₂ were ac-

companied by high CO₂ concentrations, whereas atmospheric CO₂, strongly enriched in 13 C compared to C₃-CO₂, had constantly lower concentrations. This enabled us to distinguish between soil CO₂ and atmospheric air mixed into the soil.

Additionally, the second component of the mixing model, atmospheric CO₂, may be a source of uncertainty since its δ^{13} C values can also differ spatially and temporally. The atmospheric CO₂ in the vicinity of the soil surface did not reflect the isotopic composition of the bulk atmospheric CO₂ of -8‰ but is, as a function of the distance from the soil surface, influenced by respiration and assimilation processes and the intensity of air mixing from higher atmospheric layers. Temporal variations in the isotopic composition of atmospheric CO₂ have also been reported, with increasing δ^{13} C values during periods of high photosynthetic activity (spring and summer), and declining δ^{13} C values during periods dominated by soil respiration (fall and winter) (Amundson et al., 1998). We concluded, that despite the mixing model requirement of constant δ^{13} C values for both components being violated, in particular for treatments with a C₄ source, reasonable results can nonetheless be obtained by applying the Miller/Tans model, mainly because of the broad CO_2 concentration range and the vicinity of our data to the $\delta^{13}C$ value and concentration of CO₂ from soil CO₂. Spatial and temporal fluctuations in the $\delta^{13}C$ values of both components of the mixing model may explain variations from the defined mixing line.

6.4.3 Contribution of recently added C to total soil CO₂

The application of a two source isotopic mixing model for partitioning total soil CO₂ into younger (C₄-derived) and older (C₃-derived) sources required the δ^{13} C values of both endmembers, i.e. (1) of the CO₂ from the decomposition of SOM from a C₃ bare fallow (C₃-derived), and (2) of pure root and/or rhizosphere respiration (C₄-derived). As a C₃ endmember for the mixing models (Eq. 1) the isotopic composition of CO₂ from the C₃-reference site, obtained from the Miller/Tans models was used. This allowed accounting for ¹³C fractionation between roots and soil CO₂. However, the ¹³C fractionation between wheat roots and soil CO₂ but also ¹³C fractionation by root-derived respiration, i.e. between δ^{13} C of roots and that of root-derived CO₂. The latter may have lead to a slightly biased contribution of younger and older C to total CO₂ since ¹³C fract-

tionation by root-derived respiration should not have been accounted for in the C₃ endmember because of the absence of wheat roots at the C₄/fallow and at the C₄/C₄ treatment. To overcome this problem, the δ^{13} C of CO₂ from a bare fallow with long-term C₃ history can be used as the C₃ endmember of the mixing model.

As done in most recent studies, we assumed that the net ¹³C fractionation during respiration is negligible and, hence, the bulk isotopic composition of roots was used as the δ^{13} C value of the C₄ endmember when partitioning CO₂ (e.g. Buchmann and Ehleringer, 1998; Rochette et al., 1999, Rochette and Flanagan, 1997). Thus, this assumption may result in a slightly biased contribution of younger and older C to total CO₂ since ¹³C fractionation in the C₄ endmember (maize roots) was not accounted for. To overcome this problem root-derived CO₂ measured in hydrocultures can be used as C₄ endmember. However, this was not applicable in the present experiment.

An estimated 50% of CO₂ released at the 10 cm depth of the C₄/C₄ soil was derived from recently added C (C₄-derived). This percentage decreased with depth, because there were fewer roots in deeper soil. Furthermore, the content of SOM decreased with depth (Table II.6/1) and its turnover in deeper soil horizons is slower compared to upper horizons. Thus, the relative contribution of the roots to the CO₂ signature increased. Maize roots, and consequently rhizodeposition, are concentrated near the soil surface (Amos and Walters, 2006). The contribution of root-derived CO₂ under maize can account for up to 45% of total soil CO₂ (Rochette et al., 1999; Werth and Kuzyakov, 2009). Similar values have been reported for wheat (Kuzyakov and Cheng, 2001). Rootderived respiration explained the higher percentage of C₄-derived CO₂ for the C₄/C₄ treatment in comparison to the C₄/fallow treatment.

6.4.4 Relative availability of younger and older C

A high contribution of younger C to CO_2 was detected for the C₄/fallow as well as for the C₄/C₄ treatment at each sampling depth, whereas there was a much lower impact of younger C on SOM. This finding was confirmed by other studies. Flessa et al. (2000) reported that even after 37 years of maize cropping, the contribution of maize-derived C to SOM accounted for 15% of total C, but for about 58% of CO₂. A discussion by Kuzyakov (2011) showed that the C₄-to-C₃ ratio of SOM slowly increases and reaches saturation while it rises exponentially in CO₂ (outlined in Fig. 5 by Kuzyakov, 2011). Therefore, even a few decades after the C_3/C_4 vegetation change there will still be a high proportion of C_3 -derived C in SOM, but a low contribution to the CO₂ efflux (Kuzyakov, 2011). This reflects the availability of recent and old SOM pools and allows to calculate the relative availability of C_4 - and C_3 -derived C by relating the C_4 -to- C_3 ratio of CO₂ to that of SOM. Since root-derived CO₂ played a crucial role for the C_4/C_4 treatment, we only calculated the relative availability for the 10 cm depth of the C_4 /fallow treatment (Fig. II.6/4). While the ratio of C_4 -to- C_3 at the 10 cm soil depth was 0.05 in SOM, it was about 0.5 in CO₂ (Fig. II.6/4). Thus, the younger C, introduced into the soil in the previous year, was 10 times more available for microorganisms than the older C. The availability of soil C decreased with time as shown by the high proportion of younger C in CO₂ compared to older C and so indicated C stabilization.

6.5 Conclusions

In order to evaluate the availability of younger relative to older C for soil microorganisms a number of calculation steps were performed. In the first step – the removal of the admixture of atmospheric CO₂ and the estimation of pure soil CO₂ – the Miller/Tans model was successfully applied and provided a clear δ^{13} C signature of the soil CO₂. In the second step we estimated the contributions of younger (C₄-derived) and older (C₃derived) carbon to CO₂ and to SOM. In the last step, we compared the contributions of older and younger sources to CO₂ and to SOM, and calculated the relative availability of recent and of old C. We showed that, despite the fact that the contribution of recent C to SOM was less than 5%, the contribution of recent C to produced CO₂ was about 27% at a soil depth of 10 cm within the C₄/fallow treatment. This indicates that one year after the C input into the soil, its availability for microorganisms was about 7 times higher than the availability of C sources older than one year.

Acknowledgments

We would like to thank Nils Peter and Ilse Thaufelder for their intensive help during the field and laboratory work, and Dr. Martina Gocke and Michael Riederer for suggestions on the earlier version of the manuscript. We thank Prof. Dr. Kai-Uwe Totsche and Andreas Schmalwasser for providing the soil water content data. We further thank two unknown reviewers for detailed comments and suggestions on this manuscript. The financial support for this project was provided by the DFG, within the Research Unit "Food-Webs".

References

- Amos, B., Walters, D.T., 2006. Maize root biomass and net rhizodeposited Carbon: An analysis of the literature. Soil Science Society of America Journal 70, 1489-1503.
- Amundson, R., Stern, L., Baisden, T., Wang, Y., 1998. The isotopic composition of soil and soil-respired CO₂. Geoderma 82, 83-114.
- Balesdent, J., Mariotti, A., 1987. Natural ¹³C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry 19 (1), 25-30.
- Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., Kuzyakov, Y., 2011. Turnover of soil organic matter and microbial biomass under $C_3 C_4$ vegetation change: Consideration of ¹³C fractionation and preferential substrate utilization. Soil Biology and Biochemistry 43, 159-166.
- Buchmann, N., Ehleringer, J.R., 1998. CO₂ concentration profiles, and carbon and oxygen isotopes in C₃ and C₄ crop canopies. Agricultural and Forest Meteorology 89, 45-58.
- Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229-240.
- Dudziak, A., Halas, S., 1996. Influence of freezing and thawing on the carbon isotope composition in soil CO₂. Geoderma 69, 209-216.
- Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503-537.
- Flessa, H., Ludwig, B., Heil, B., Merbach, W., 2000. The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by ¹³C natural abundance. Journal of Plant Nutrition and Soil Science 163, 157-163.
- Jastrow, J.D., Amonette, J.E., Bailey, V.L., 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80, 5-23.

- Kammann, C., Grünhage, L., Jäger, H.-J., 2001. A new sampling technique to monitor concentrations of CH₄, N₂O and CO₂ in air at well-defined depths in soils with varied water potential. European Journal of Soil Science 52, 297-303.
- Kayler, Z.E., Ganio, L., Hauck, M., Pypker, T.G., Sulzman, E.W., Mix, A.C., Bond, B.J., 2010. Bias and uncertainty of δ^{13} CO₂ isotopic mixing models. Oecologia 163, 227-234.
- Keeling, C.D., 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta 13, 322-334.
- Keeling, C.D., 1961. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochimica et Cosmochimica Acta 24, 277-298.
- Knorr, K.-H., Oosterwoud M.R., Blodau C., 2008. Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen. Soil Biology and Biochemistry 40, 1781-1791.
- Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Schoene, J., Scheunemann, N., Schmalwasser, A., Totsche, K.U., Walker, F., Scheu, S., Kandeler, E., 2012. Carbon flow into microbial and fungal biomass as a basis to understand the belowground food web in an agroecosystem. Pedobiologia 55, 111-119.
- Kuzyakov, Y., 2011. How to link soil C pools with CO₂ fluxes? Biogeosciences 8, 1523-1537.
- Kuzyakov, Y., Cheng W., 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry 33, 1915-1925.
- Millard, P., Midwood, A.J., Hunt, J.E., Whitehead, D., Boutton, T.W., 2008. Partitioning soil surface CO₂ efflux into autotrophic and heterotrophic components, using natural gradients in soil δ^{13} C in an undisturbed savannah soil. Soil Biology and Biochemistry 40, 1575-1582.
- Miller, J.B., Tans, P.P., 2003. Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus 55B, 207-214.
- Pataki, D.E., Ehleringer, J.R., Flanagan, L.B., Yakir, D., Bowling, D.R., Still, C.J., Buchmann, N., Kaplan, J.O., Berry, J.A., 2003. The application and interpretation

of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles 17, 1022, doi:10.1029/2001GB001850.

- Phillips, D.L., Gregg, J.W., 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171-179.
- Rochette, P., Flanagan, L.B., 1997. Quantifying rhizosphere respiration on a corn crop under field conditions. Soil Science Society of America Journal 61, 466-474.
- Rochette, P., Flanagan, L.B., Gregorich, E.G., 1999. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Science Society of America Journal 63, 1207-1213.
- Søe, A.R.B., Giesemann, A., Anderson, T.-H., Weigel, H.-J., Buchmann, N., 2004. Soil respiration under elevated CO₂ and its partitioning into recently assimilated and older carbon sources. Plant and Soil 262, 85-94.
- Sokal, R.R., Rohlf, F.J., 1995. Biometry. W.H. Freeman, New York.
- Susfalk, R.B., Cheng, W.X., Johnson, D.W., Walker, R.F., Verburg, P., Fu, S., 2002. Lateral diffusion and atmospheric CO2 mixing comprise estimates of rhizosphere respiration in a forest soil. Canadian Journal of Forest Research 32, 1005-1015.
- Von Lützow, M., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. European Journal of Soil Science 57, 426-445.
- Von Lützow, M., Kogel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39, 2183-2207.
- Werth, M., Kuzyakov, Y., 2008. Root-derived carbon in soil respiration and microbial biomass determined by ¹⁴C and ¹³C. Soil Biology and Biochemistry 40, 625-637.
- Werth, M., Kuzyakov, Y., 2009. Three-source partitioning of CO₂ efflux from maize field soil by ¹³C natural abundance. Journal of Plant Nutrition and Soil Science 172, 487-499.

Zobitz, J.M., Keener, J.P., Schnyder, H., Bowling, D.R., 2006. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agricultural and Forest Meteorology 13, 56-75.

Previous own publications

First author publication:

Sommer, J., Pausch, J., Brundrett, M.C., Dixon, K.W., Bidartondo, M.I., Gebauer, G. Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids. Published in American Journal of Botany 2012, Vol. 99, Page 1133-1145.

Co-author publications:

Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Schoene, J., Scheunemann, N., Schmalwasser, A., Totsche, K.U., Walker, F., Scheu, S., Kandeler, E. Carbon flow into microbial and fungal biomass as a basis to understand the belowground food web in an agroecosystem. Published in Pedobiologia 2012, Vol. 55, Page 111-119.

Tian, J., Pausch, J., Fan, M., Li, X., Tang, Q., Kuzyakov, Y. Effect of water management on allocation and dynamics of assimilated carbon in rice-soil system. Accepted for publication in Plant and Soil, 2012, DOI: 10.1007/s11104-012-1327-z.

Awad, Y.M., Pausch, J., Ok, Y.S., Kuzyakov, Y. Effects of biochar and polyacrylamide on decomposition of soil organic carbon and ¹⁴C labeled maize rhizodeposits as evaluated by metabolic quotient and microbial biomass. To be submitted to European Journal of Soil Science.

Riederer, M., Pausch, J., Kuzyakov, Y., Foken, T. Partitioning of atmospheric C fluxes into diverse ecosystem C pools by coupling stable isotope labeling and eddy covariance technique. Submitted to Agricultural and Forest Meteorology; date: September 25, 2012.

Declaration

I hereby declare, to the best of my knowledge and belief, that this thesis contains no material previously published or written by another person, except where due reference has been made in the text of the thesis.

This thesis contains no material which has been accepted or definitely rejected for the award of any other doctoral degree at any university.

Erklärung

Hiermit erkläre ich, die vorliegende Arbeit selbst verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie alle wörtlich und sinngemäß übernommenen Stellen in der Arbeit gekennzeichnet zu haben.

Ferner erkläre ich, dass ich nicht anderweitig mit oder ohne Erfolg versucht habe, eine Dissertation einzureichen oder mich einer Doktorprüfung zu unterziehen.

Johanna Pausch

Bayreuth, den 9. Mai 2012