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Summary

A sustainable agriculture, which provides on the one hand enough yields to satisfy the food
demand, and on the other hand minimizes the impacts on ecosystem services such as provision
of high water quality, is challenging especially in regions with extreme weather conditions. In
this thesis, the current status of the dryland farming agricultural practices under monsoonal
conditions, namely plastic mulch ridge cultivation, and its impact on flow processes and nitrate
transport was investigated in detail.

A variety of field measurements and tracer experiments in combination with process-based
numerical modeling techniques were used to identify the main characteristics of soil hydrological
processes such as soil water dynamics, preferential flow, surface runoff, soil erosion and fertilizer
nitrate leaching. On hillslopes, we investigated surface and subsurface flow processes in four
plastic mulched potato fields (Solanum tuberosum L.) using a monitoring network of tensiometers
and water content sensors as well as runoff collectors in combination with flow dividers. Since
these measurements do not consider preferential flow processes, we additionally carried out tracer
experiments using the dye Brilliant Blue FCF. The datasets we obtained of matric potentials,
surface runoff and sediment concentrations were used to calibrate the HYDRUS 2/3D and the
EROSION 3D model in order to quantify drainage water fluxes, surface runoff and erosion rates
of plastic mulched ridge tillage (RTpm) compared to ridge tillage without coverage (RT) and
conventional flat tillage (CT).

Plastic mulch affects soil water dynamics dominantly during dry periods and during small
rain events, when soil in ridge positions was drier compared to furrow positions caused by the
protective function of the plastic coverage and root water uptake in ridges. Hence, pressure head
gradients induced lateral flow from furrows to ridges in the topsoil. Under RT the differences in
soil moisture were caused only by ridge topography. Thus, horizontal pressure head gradients
were weakened compared to RTpm. For CT, pressure head gradients were distinct vertically,
which forced the water to flow vertically from the topsoil to the subsoil. Under monsoonal
conditions, the differences in soil moisture between ridges and furrows were almost absent
since the soil was near saturation or fully saturated. During these events, down slope lateral
flow occurred in the coarse textured topsoil due to its higher hydraulic conductivity compared
to the subsoil. Based on the dye tracer experiments, we found that plastic mulching caused
non-infiltration zones, namely plastic mulched ridges and zones of infiltration in furrows and
planting holes, where the tracer infiltrates uniformly into the sandy topsoil matrix. Despite
management treatments, we found that lateral funnel flow above the tillage pan was the most
prominent feature. In contrast to our expectations, macropore flow via fissures and cracks in
deeper soil horizons was not detected. The field and modeling studies revealed that surface
runoff was substantially increased by plastic mulch compared to RT and CT. However, the field
topography primarily controlled surface runoff and erosion rates. The concavity of the field led
to flow accumulation and high erosion losses in the center of the field, while a convex shape
resulted in less soil erosion, because water was channeled in furrows to the field edges.

In a flat terrain, N fate under varying fertilizer rates was investigated in a plastic mulched
radish cultivation (Raphanus sativus) using a suction lysimeter study in combination with soil
water dynamics measurements and a 15N tracer experiment. Arranged in a randomized block
design, plots were treated with fertilizer rates of 50, 150, 250 and 350 kg NO−3 ha−1. Leaching was
found to be the main prominent pathway for NO−3 especially during the early season, when crops
had not yet emerged. Furthermore, the biomass production did not significantly differ between
fertilizer rates of 150 to 350 kg ha−1 . Hence, we recommend the lowest NO−3 fertilizer application
of 150 kg ha−1 in combination with a better fertilizer placement and split applications. Based on
the obtained datasets of nitrate concentrations and matric potentials we subsequently calibrated
a water flow and solute transport model using the numerical code HydroGeoSphere coupled with
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ParallelPEST. We simulated whether the given recommendations on fertilizer best management
practices (FBMPs), such as a better placement and split application, decreased NO−3 leaching
amounts. Compared to RT under conventional fertilization in ridges and furrows, the simulations
showed that NO−3 leaching can be considerably reduced up to 82% by combining RTpm, fertilizer
placement only in ridges and split applications with a total fertilizer NO−3 amount of 150 kg
ha−1.

Based on these findings, the impact of plastic mulched ridge cultivation on flow and transport
processes has to be evaluated differently depending on terrain complexity. In a flat terrain,
where surface runoff processes are absent or minimal and precipitation contributes entirely to
groundwater recharge, RTpm has several advantages. Beside functions such as weed control,
and earlier plant emergence due to higher temperatures, plastic mulching decreases drainage
water and NO−3 leaching during the growing season. Thus, RTpm enhances nutrient retention
below the plastic coverage and reduces the risk of groundwater contamination by highly mobile
agrochemical substances. In a sloped terrain, where precipitation contributes substantially to
surface runoff, plastic mulching even increases runoff processes, inducing a high risk of flooding,
soil erosion and surface leaching of agrochemicals into aquatic systems.

This thesis provides several recommendations, aiming to minimize environmental impacts
and concurrently to decrease costs of fertilizer and herbicide inputs. In order to reduce surface
runoff and soil erosion at fields on hillslopes, we suggest applying perforated plastic mulch
instead of impermeable plastic mulch and a ridge configuration following contours of the field.
Furthermore, we recommend omitting application of herbicides to furrows in order to allow weed
growth. This would lead to a higher surface roughness in furrows, which in turn slows down
runoff processes. These suggestions would obviously increase infiltration, thus, the subsurface
flow processes automatically become more important. However, preferential flow in macropores
to deeper soil layers was found to be absent, which is a good indicator for minor groundwater
contamination risk. Since funnel flow above the tillage pan was found to be the most important
preferential flow path, we propose to protect the river network from contaminant discharge
via subsurface lateral flow by the establishment of riparian buffer zones. This would also help
to reduce the discharge of sediments, fertilizers and agrochemicals via surface runoff into the
streams. Finally, fertilizer best management practices (FBMPs) such as fertilizer placement only
in ridges and split applications as well as the combination of both, were found to decrease nitrate
leaching considerably. Hence, we suggest applying FBMPs in combination with impermeable
plastic mulch in flat terrain, while on hillslopes FBMPs should be applied in combination with
perforated plastic mulch. The recommendations imply that the risk of leaching becomes more
important after harvest when the plastic mulched ridges are removed and the remaining nitrate
is prone to leaching. Therefore, we recommend to cultivate cover crops after harvest to improve
N fixation, to reduce NO−3 leaching, to increase the organic carbon content of the soils as well
as to prevent soil erosion in autumn.
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Zusammenfassung

Die heutige Landwirtschaft wird durch den Anspruch auf Nachhaltigkeit vor enorme Herausfor-
derungen gestellt. Einerseits müssen hohe Erträge erzielt werden, um die steigende Nachfrage
nach landwirtschaftlichen Produkten zu befriedigen. Andererseits sollen jedoch gleichzeitig ne-
gative Auswirkungen auf ökosystemare Dienstleitungen wie z.B. Belastungen der Grund -und
Fließgewässer minimiert werden. Diese Herausforderungen stellen sich umso dringlicher in Ge-
bieten, die Wetterextremen wie z.B. Starkregenereignissen ausgesetzt sind. In der vorliegenden
Studie wurde der Trockenfeldbau im monsungeprägten Haean Einzugsgebiet in Südkorea, der
fast ausschließlich als Dammanbau mit Plastikfolienbedeckung praktiziert wird, aus bodenhy-
drologischer Sicht detailliert auf dessen Auswirkungen auf die Fließ- und Transportprozesse
untersucht.

Um die maßgeblichen bodenhydrologischen Prozesse wie die Bodenwasserdynamik, prä-
ferentielles Fließen, Oberflächenabfluss, Bodenerosion und Nitrattransport zu identifizieren,
wurden zahlreiche Feldmessungen und Tracer-Experimente durchgeführt. Die dabei erhobenen
Datensätze dienten u.a. zur Kalibrierung prozess-basierter numerischer Modelle. Die Boden-
wasserdynamik, der Oberflächenabfluss und der Sedimenttransport wurden auf Kartoffelfel-
dern (Solanum tuberosum L.) mit typischer Dammkultivierung und Plastikfolienbedeckung
in Hanglage mittels einen Messnetzes aus Tensiometern, Wassergehaltssensoren und Ober-
flächenabflusskollektoren untersucht. Eine Erfassung von präferentiellen Fließwegen war durch
diese Messtechniken nicht möglich, sodass zusätzlich Beregnungsexperimente mit dem Tracer
Brilliant Blue FCF durchgeführt wurden. Die Modelle Hydrus 2/3D und Erosion 3D wurden
mit den erhobenen Datensätzen kalibriert, um die ober-und unterirdischen Flüsse sowie die
Erosionsraten beim Dammanbau mit Plastikfolienbedeckung zu quantifizieren und außerdem
mit anderen Anbaupraktiken wie der Dammkultivierung ohne Folie und dem konventionellen
Anbau auf ebener Oberfläche zu vergleichen. Die Untersuchungen haben gezeigt, dass die Boden-
wasserdynamik durch den folienbedeckten Dammanbau maßgeblich in trockenen Perioden bzw.
während kleinerer Regenereignisse beeinflusst wird. Die schützende Funktion der Folie sowie die
Wasseraufnahme der Wurzeln in den Dämmen verursachen horizontale Druckgradienten, die
ein laterales Fließen von den feuchteren Furchen hin zu den trockeneren Dämmen verursachten.
Diese horizontalen Druckgradienten waren unter Dammanbau ohne Folie deutlich schwächer aus-
geprägt und unter konventionellem Anbau nicht vorhanden, so dass bei einer flachen Oberfläche
ein vertikales Fließfeld charakteristisch war. Monsunale Regenereignisse führten demgegenüber
zur (fast) vollständigen Sättigung des Bodens. Die Simulationen zeigten weiterhin, dass die
grobe Textur des Oberbodens sowie dessen höhere hydraulische Leitfähigkeit gegenüber dem
Unterboden einen Zwischenabfluss auf dessen Grenzfläche verursachten.

Die Tracer-Experimente ergaben, dass der Dammanbau mit Folienbedeckung bevorzugt Zo-
nen der Infiltration (Furchen und Pflanzlöcher) hervorruft, in denen der Tracer homogen in die
sandige Bodenmatrix infiltrierte. Präferentielles Fließen in Form eines lateralen Fließens auf der
Pflugsohle trat bei allen Versuchen unabhängig von den Anbaupraktiken auf. Entgegen unserer
Erwartung wurde kein Makroporenfluss in Spalten und Rissen im Unterboden festgestellt. Insge-
samt ergaben sowohl die Feldmessungen als auch die Modellierung, dass der Oberflächenabfluss
durch den Dammfolienanbau extrem erhöht wird. Ob der Oberflächenabfluss erosionswirksam
war, hing von der jeweiligen Topografie des Feldes ab. Eine konkave Form des Feldes führte
zur Flussakkumulation in der Mitte des Feldes und verursachte dort erhebliche Bodenerosion.
Eine konvexe Form des Feldes leitete hingegen den Oberflächenabfluss in den Furchen zu den
Feldrändern, sodass hier nur geringe Erosionsraten simuliert wurden.

In der Beckenebene wurde auf einem Rettichfeld (Raphanus sativus) der Verbleib des Stick-
stoffs anhand 15N markierten Düngers sowie mit Saugkerzen, Tensiometern und Wassergehalts-
sensoren in Kombination mit vier verschiedenen Düngerraten untersucht. Die Düngerraten mit
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50, 150, 250 und 350 kg ha−1 wurden in zufällig angeordneten Parzellen appliziert. Generell
wurde festgestellt, dass die Auswaschung des Stickstoffs besonders in der frühen Wachstumspha-
se der Pflanzen die größte Rolle spielt. Außerdem ergab die Studie, dass sich die Biomasse des
Rettichs zwischen den drei höchsten Düngerraten nicht signifikant unterschied. Aufgrund dieser
Ergebnisse wurde empfohlen, die Düngerrate auf 150 kg ha−1 zu beschränken, den Dünger besser
zu platzieren und ihn in mehreren Raten aufzugeben. Die gemessenen Nitratkonzentrationen
und Matrixpotentiale wurden daraufhin verwendet, um ein Wasserdynamik-und Stofftransport-
modell zu kalibrieren und um verschiedene Düngermanagement-Szenarien zu simulieren. Die
Management-Szenarien wurden in Hinblick auf die kumulative Nitratauswaschung bewertet. Im
Vergleich zur Dammkultivierung ohne Folie und einer konventionellen Düngung in Furchen und
Dämmen, kann die Nitratauswaschung bei plastikbedeckten Dämmen, einer Gesamtdüngerrate
von 150 kg ha−1 aufgeteilt in drei Applikationen und einer Platzierung des Düngers nur in den
Dämmen um bis zu 82% reduziert werden.

In Anbetracht der erzielten Ergebnisse muss der folienbedeckte Dammanbau in Abhängigkeit
vom jeweiligen Gelände bewertet werden. In der Ebene, wo der Niederschlag fast gänzlich in-
filtriert und zur Grundwasserneubildung beiträgt, bietet die Dammkultivierung mit Plastikfo-
lienbedeckung große Vorteile. Neben den Funktionen der Unkrautkontrolle und einer früheren
Keimung infolge höherer Temperaturen unter der Folie, verringert sie die Entwässerung und
die Nitratauswaschung in der Anbauphase erheblich. Somit kann die Nährstoffverfügbarkeit
unter der Folie erhöht und gleichzeitig das Risiko einer Grundwasserkontaminierung aufgrund
hochmobiler Düngemittel und Agrochemikalien gesenkt werden. Dagegen wird in Hanglagen ein
erheblicher Teil des Niederschlages abflusswirksam. Die Plastikbedeckung auf Hängen steigert
zudem den direkten Abfluss, wodurch ein erhöhtes Risiko der Überflutung, der Bodenerosion
und des oberflächlichen Stofftransports in die Gewässernetze entsteht.

Die vorliegende Arbeit unterbreiten mehrere Vorschläge, um das Risiko von Umweltbelas-
tungen und die Kosten für Dünger und Herbizide zu reduzieren. Um den direkten Abfluss
und Bodenerosion auf den Hängen zu verringern, schlagen wir die Aufbringung einer perfo-
rierten Folie vor. Zudem sollten die Dämme exakt entlang der Feldkonturen verlaufen. Die
Oberflächenrauhigkeit der Furchen könnte durch Unkrautwachstum erhöht werden, wodurch
die Kosten für Herbizide eingespart werden könnten. Folgt man diesen Empfehlungen, so wird
auch die Infiltration erhöht, sodass den unterirdischen Fließprozessen eine größere Bedeutung
zukommen würde. Das Risiko einer Grundwasserkontamination kann dagegen aufgrund feh-
lender Makroporenflüsse im Unterboden als gering eingestuft werden. Der präferentielle Fluss
auf der Pflugsohle würde sich jedoch verstärken. Daher empfiehlt es sich, Pufferzonen zwischen
Fließgewässern und landwirtschaftlichen Flächen anzulegen, um den Eintrag von Düngemitteln
und anderen Agrochemikalien durch ober- und unterirdische Abflüsse zu minimieren. Durch
die Kombination von insgesamt niedrigeren Düngerraten mit einer besseren Platzierung des
Düngers nur in den Dämmen und einer mehrfachen Aufbringung von kleineren Düngerraten,
kann die Auswaschung der Nährstoffe erheblich reduziert werden. Wir empfehlen daher, das
Düngermanagement in Hanglagen in Kombination mit perforiertem Plastik und in der Ebene
in Kombination mit undurchlässigem Plastik zu praktizieren. Die diese Maßnahmen aber nach
der Ernte und der Entfernung der plastikbedeckten Dämme ein erhöhtes Auswaschungsrisiko
implizieren, schlagen wir vor, bodenbedeckende Zwischenfrüchte zu kultivieren, um damit sowohl
die Stickstoff-Fixierung und den Anteil an organischer Substanz im Boden zu erhöhen als auch
das Risiko der Auswaschung und der Bodenerosion im Herbst zu senken.
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Chapter 1

General introduction

1.1 Agriculture, ecosystem services and climate change

Agricultural practices have opposing effects on ecosystem services. On the one hand agriculture

delivers huge benefits in terms of food production, hunger reduction and improvement of public

health. On the other hand agricultural practices can reduce the ability of ecosystem services

to provide goods and services, due to high inputs of fertilizer and pesticides resulting in lower

water quality, water pollution and increasing costs for water purification. Nevertheless population

growth coincides with increasing food demand, which results in the necessity of an increased

agricultural output (Tilman, Fargione, et al., 2001; Tilman, Cassman, et al., 2002; Spiertz, 2010;

Swinton et al., 2007; Dale and Polasky, 2007).

In South Korea the rate of agricultural production per unit area has been sustained at a

high level due to the shortage of arable flat land (20% of the total area of Korea), but the

application of fertilizer in South Korea is higher than in most other countries. Since the 1950s,

chemical fertilizer input has increased from an application rate of 230 kg ha−1 year−1 (1980) to

450 kg ha−1 year−1 (1994) (Bashkin et al., 2002; B. Kim et al., 2001). High fertilizer rates in

combination with heavy rainfall events during the East Asian summer monsoon are critical in

relation to water pollution and eutrophication. Eutrophication of water reservoirs has become

a widely recognized problem of water deterioration in South Korea. Especially the transport of

applied phosphorus with sediments in surface runoff during monsoon events significantly impacts

South Korean reservoirs (B. Kim et al., 2001; Hwang et al., 2003; S. Kim et al., 2007). Therefore,

the frequency and intensity of the monsoon events are of great importance to agriculture, water

resources and sustainability (Hong and J. Kim, 2011). The amount and intensity of summer

monsoon rainfall have increased over the last decades resulting in high watershed exports of

1



2 CHAPTER 1. GENERAL INTRODUCTION

sediments and nutrients from agricultural areas on steep hillslopes converted from forests (Park

et al., 2010). Hence, the degradation of ecosystem services by monsoon activity reinforced by

anthropogenic factors in a changing climate is of great concern (Hong and J. Kim, 2011).

Tilman, Cassman, et al. (2002) stated that crop production must increase without an increase

of the negative environmental impacts associated with agriculture. The increase in agricultural

outputs and a decrease in environmental impacts can be achieved by so called high-precision

agriculture (Wallace, 1994) . Since only 30-50% of applied nitrogen fertilizer and 45% of phos-

phorous fertilizer is taken up by plants, further increases in fertilizer application are unlikely

to be as effective at increasing yields, because efficiency declines at a higher level of addition.

Instead, improved timing of fertilization, fertilizer application during periods of greatest crop

demand and only near the crop roots can significantly increase nutrient use efficiency (Tilman,

Cassman, et al., 2002; Spiertz, 2010; Wallace, 1994; Dale and Polasky, 2007; Kirchmann and

Thorvaldsson, 2000). Thus, precise fertilizer management can reduce substantially the risk of

leaching agrochemicals into groundwater bodies or transportation via surface runoff into rivers.

Figure 1.1 provides an overview about the services and dis-services from and to agricultural

ecosystems (Zhang et al., 2007). It is evident, that soils play a key role in providing support-

ing and regulating services such as soil fertility and soil retention, respectively. Appropriately

managed agricultural ecosystems can contribute to soil conservation and water supply, while

poorly managed systems cause negative effects on ecosystem services by high nutrient runoff

and sediment loss from agricultural fields.

1.2 Water flow and solute transport as affected by tillage

in agricultural soils

Water flow in soils is complex and depends highly on soil physical properties, topography and

agricultural management practices. In general, water flow can be distinguished between uniform

matrix flow and non-uniform preferential flow. Uniform flow is described by Green and Ampt

(1911) as a stable wetting front parallel to the soil surface, whereas non-uniform preferential

flow is characterized by irregular wetting and bypassing areas of the porous soil matrix resulting

in faster water and solute movement (Hendrickx and Flury, 2001). Preferential flow is further

classified into macropore flow, unstable flow and funnel flow. Macropore flow occurs e.g. in root

channels, earthworm burrows, fissures and cracks and is mostly related to fine textured soils.

Unstable flow is often triggered in coarser textured soils e.g. by textural layering, water repellency
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Figure 1.1: Agriculture and Ecosystem services after Zhang et al. (2007)
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and air entrapment. Funnel flow occurs due to textural boundaries and redirects water laterally

above less permeable layers (Hendrickx and Flury, 2001). The occurrence of non-uniform water

flow and solute transport is site specific and depends on the nature of the macropore network,

which in turn is determined by factors of structure formation and degradation including soil biota

activity (earthworm burrows), soil properties (textural composition), site specific factors such

as slope, drying intensity, vegetation and management (cropping, tillage, traffic). Additionally,

non-uniform preferential flow is amplified by high rain intensities (Jarvis, 2007).

Agricultural soils exhibiting preferential flow paths are highly susceptible to leach out agro-

chemicals rapidly to groundwater. However, the susceptibility of soils to leach out agrichemicals

does not only depend on soil properties and management practices, it also strongly depends

on the sorption characteristics of the applied chemicals. Phosphorous in fertilizer is known

for its strong sorption characteristics, thus the transport mainly takes place via surface runoff

and erosion and causes significant eutrophication of surface water bodies, whereas nitrate fer-

tilizer is prone to leaching due to its high mobility. The manifold compounds with differing

physico-chemical properties exclude generalization about the leaching susceptibility (Jarvis,

2007).

Tillage processes affect soil structure and hydraulic properties in the topsoil. Thus, tillage

influences flow patterns, the generation of preferential flow and chemical transport (Petersen

et al., 2001). Ridge tillage and its effect on water flow and solute transport was described by

several authors. The surface topography in ridge tilled fields was found to channel most of

the water via surface runoff into furrows. Hence, soil moisture regime is modified by surface

topography with higher soil moisture content in furrows compared to ridges (Saffigna et al., 1976;

Leistra and Boesten, 2010; Bargar et al., 1999; Clay et al., 1992). Furthermore, Bargar et al.

(1999) reported that water movement below ridges was minimized resulting in a greater solute

movement under furrows. Benjamin et al. (1990) found that fertilizer placement in ridges can

isolate chemicals from percolating water which decreased the chemical movement to groundwater.

That fertilizer injection within the ridge seems to be promising in reducing leaching and in

potentially increasing nutrient availability was also found by Jaynes and Swan (1999).

Plastic mulched ridge tillage and its effect on flow and transport processes is sparsely de-

scribed in literature. In South Korea, plastic mulched ridge tillage is a widespread method

to grow vegetables such as radish, cabbage, potatoes and beans. This agricultural method is

practiced in order to control weed growth and to induce higher temperatures below the plastic

coverage for an earlier plant emergence. Although local farmers reported that the management

system is not applied in order to control soil moisture regimes during the East Asian summer
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monsoon, plastic mulched ridge cultivation will most likely impact flow pattern and solute

transport especially under monsoonal conditions.

1.3 Methodological approaches in soil hydrology

A variety of methods exist to analyze flow processes and solute transport in soils. In field

studies, soil water dynamics is commonly investigated using tensiometers in combination with

time or frequency domain reflectometry techniques for measuring matric potentials and water

contents. Commonly, tensiometer and FDR sensors are connected to dataloggers, which record

a high resolution time series of water contents and matric potentials. Retention characteristics

(pF curves) of soils can be measured in laboratory using e.g. soil cores in combination with

ceramic pressure plates. Monitoring of solute concentrations and solute transport is normally

realized using suction lysimeters or field lysimeters. These methods allow a good insight into

subsurface water dynamics and solute transport, however, in regions affected by monsoon events,

considerably high surface runoff has to be considered as an important component of flow processes.

Runoff collectors combined with a flow divider system as described by Bonilla et al. (2006) are

valuable to measure surface runoff, sediment transport and solutes in the runoff. However, these

measurements are only punctual and cannot cover the entire variability of flow processes e.g.

preferential flow in soils. Hence, tracer studies are frequently used to visualize uniform and

non-uniform flow. Beside of isotopes tracer such as 2H, 3H, 18O, 36Cl and 37Cl, dye tracer such as

Brilliant Blue FCF was found to be ideal in compromising properties such as visibility, mobility

and toxicity in the field (Flury and Flühler, 1994; Flury and Wai, 2003).

The obtained data sets of field measurements are valuable in calibrating process-based nu-

merical models. Process-based numerical modeling techniques for simulating water flow and

solute transport in the unsaturated zone have become popular for a wide range of application

in research and management (Simunek, 2006). The need for accurate predictions of subsurface

flow and chemical transport to evaluate the effect of management practices and alternatives

for contaminant remediation increased widely due to increasing demands on groundwater re-

sources (Kool et al., 1987). Integrating small-scale measurements of soil hydraulic properties in

hydrological models that apply across different spatial scales is challenging because of the high

nonlinearity of soil hydraulic functions. Therefore the inverse modeling technique is a promising

approach to obtain effective hydraulic properties and the best attainable fit between model

predictions and observations (Woehling et al., 2008).

It is obvious, that the single application of each method will only deliver an excerpt of water
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flow and solute transport processes. Although the application of all mentioned methods is time

consuming, cost and labour intensive, their combination will lead to a comprehensive insight in

the complexity of water flow and solute transport processes.

1.4 Objective of the thesis

Integrated in the interdisciplinary research project TERRECO (Complex terrain and ecological

heterogeneity) the objective of the thesis was to analyze and model surface and subsurface water

flow and solute transport processes as affected by typical plastic mulched ridge cultivation under

monsoonal conditions. In order to get a comprehensive understanding of hydrological processes

and their effects on ecosystem services in the research area of the Haean-myun catchment, the

project was closely linked to related projects dealing with nutrient cycling, soil erosion and

catchment hydrology.

Firstly, we analyzed soil water dynamics using a monitoring network of tensiometers

and water content sensors in two hillslope potato fields which were both characterized by

plastic mulched ridge cultivation (RTpm). Subsequently we used the obtained datasets of matric

potentials to fit a numerical two-dimensional model using Hydrus2/3D. The soil hydraulic

parameters were estimated based on inverse modelling techniques. Afterwards we used the

calibrated models to run scenarios regarding water fluxes under ridge tillage without plastic

mulch (RT) and conventional tillage with a flat surface (CT). Finally we compared soil water

dynamics during drying and wetting cycles and analyzed the differences in water fluxes such as

drainage, seepage and runoff between RTpm, RT, and CT (Chapter 2). We hypothesized, that

• Soil water dynamics are strongly influenced by plastic mulching and ridge topography.

• Plastic mulching leads to an increased surface runoff.

• Plastic mulching might decrease drainage water due to higher water retention below plastic

mulched ridges.

The monitoring of matric potentials and water contents does not account for non-uniform flow

processes, also called preferential flow. Preferential flow can lead to a rapid water movement

in soils and constitutes a risk to transport agrochemicals fast into deeper soil depths and into

groundwater. To analyze whether our sites are affected by preferential flow, we carried out dye

tracer experiments using Brilliant Blue FCF at two hillslope potato fields (Chapter 3). According

to the scenario procedure in Chapter 2, we conducted four tracer experiments covering a flat
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soil surface (CT), ridge tillage without plastic mulch (RT) and plastic mulched ridges (RTpm).

Additionally we carried out a fourth experiment in the later season under RTpm with well

developed potato crops to investigate the effect of the root system on preferential flow. For

partitioning of surface runoff and amounts of infiltrated water, we additionally collected the

surface runoff under the different tillage systems (Chapter3) using an infiltration frame. We

hypothesized, that

• Preferential flow is responsible for a rapid transport of agrochemicals and fertilizers, es-

pecially highly soluble fertilizer such as nitrate (NO−3 ) through agricultural soils and to

groundwater.

• Under monsoonal conditions the rapid transport via macropore flow to groundwater is

enhanced.

• Different tillage management systems induce typical flow patterns.

• Plastic mulching leads to an increased surface runoff.

• Soil physical properties such as bulk density determine flow paths.

To date, the influence of heavy rainstorm events during monsoon season on surface runoff

and soil erosion under RTpm is not well investigated, thus we additionally observed surface

runoff and sediment transport using runoff collectors and flow dividers at the hillslope potato

fields (Chapter 4), where the monitoring network of tensiometers and water content sensors

(Chapter 2) was also installed. Observed data were used to calibrate the process-based erosion

model EROSION3D. Complementary to the modeling procedure in Chapter 2, the calibrated

model was used to simulate surface runoff and erosion rates under RTpm, RT and CT. We

hypothesized, that

• RTpm increases surface runoff and soil erosion due to its topography and impermeable

surface.

• At a higher level, the field topography controls the runoff flow patterns generated by the

ridge-furrow system and its effects on soil loss.

High mineral fertilizer inputs in combination with monsoon events require knowledge on

the fate of the fertilizer components and the main pathways. Therefore we focused on the

N leaching, N plant uptake and N soil retention in a typical plastic mulched radish
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cultivation under different fertilizer N rates. To get a comprehensive understanding of N cycle

under RTpm, we combined several methods. A 15N tracer experiment was applied to trace the

fate of N in the biomass and the N retention in the soil. Suction lysimeters, tensiometers and

FDR sensors were used to observe soil water dynamics and NO−3 leaching in seepage water

(Chapter 5). We hypothesized, that

• Plastic mulching protects the fertilizer in ridges.

• Plastic mulching increases N retention in soils.

• Nutrient use efficiency (NUE) under RTpm is enhanced.

• Despite its protective function, leaching is the prominent pathway of nitrate (NO−3 ) in a

RTpm .

• High fertilizer rates can be decreased without facing substantial losses in biomass produc-

tion

Finally, the obtained datasets of matric potential and NO−3 concentrations in the soil solution

were used to calibrate the numerical model HydroGeoSphere, which simulates fully-integrated

surface and subsurface flow and transport processes. The model was coupled to the parameter

estimation software Parallel PEST to estimate the flow and transport parameters using inverse

modelling techniques. Based on the findings in Chapter 5, we used the calibrated model to

run scenarios with respect to fertilizer best management practices such as an enhanced

placement of NO−3 fertilizer as well as split applications (Chapter 6). This modeling approach

is used to verify or falsify the following hypotheses:

• Plastic mulching has a positive effect of NO−3 leaching, thus it reduces leaching and

increases retention below the protected ridges compared to RT.

• NO−3 leaching can be significantly reduced by an appropriate placement only in ridges.

• Split applications in combination with a good timing can avoid high NO−3 leaching loss.

1.5 Study Area

The Haean-myun catchment, also called Punchbowl, (128◦1′33.101′′E, 38◦28′6.231′′N) is located

in the mountainous northeastern part of South Korea 2 km from the border to North Korea

(Figure 1.2). The total area is about 64 km2. The catchment is characterized by a bowl shape,
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which subdivides the catchment into three major land use zones. The steep hillslopes are mostly

covered by forest (58%), the moderate hillslopes are dominated by dryland farming (22%).

The most cultivated crops on the dryland fields are cabbage, radish, potatoes and beans. A

minor percentage of the dryland fields are cultivated with fruit trees, ginseng, vineyards and

codonopsis. Rice paddies (8%) are characteristic of the central flat area of the catchment. 12%

of the area is occupied by residences, grassland and field margins. The annual precipitation in

the Haean catchment is about 1577 mm (11-years average) with 50–60% of the annual rainfall

occurring during the monsoon season from June to August. Monsoon events often exceed 100

mm day−1 and generate a considerable amount of annual runoff (Park et al., 2010). Numerous

small rivers contribute to the Mandae stream, which is the main stream of the Haean catchment.

The Mandae stream in turn contributes to the Soyang Lake, which is the deepest and largest

reservoir of South Korea and the main freshwater resource for the capital area of Seoul. The

water quality of the Soyang Lake decreased in the last decades due to accelerated eutrophication

(B. Kim et al., 2001). The Haean catchment was identified as one of the main non point pollution

areas (Park et al., 2010).

The lithology of the catchment is dominated by granitic bedrock material which is strongly

weathered due to the high precipitation rates. It constitutes the parent material for Cambisols –

the most widely spread soil type. As a consequence of extreme rainfall events during the summer

monsoon, the upper soil horizons are often eroded. To compensate this high erosion loss, the

local farmers commonly bring sandy soil material at the beginning of the growing season from

outside of the catchment and distribute it on their fields.

On the dryland fields, agricultural farming usually starts between April and May depending

on the crop type. The common procedure is a primary fertilization using mineral fertilizer in

the form of granules and a subsequent ploughing to mix them into the top soil. Therefore, a

tillage pan is characteristic for most dryland farming soils. Afterwards, ridges (approx. 15 cm

height, 30 cm width) are created perpendicularly to the slope with a ridge to ridge spacing

of approx. 70 cm. Typically, the ridges are covered with a black plastic mulch (polyethylen)

perforated with planting holes (diameter 5 cm) spaced by 25–30 cm while the furrows remain

uncovered. Depending on the crop type, seeds are sowed or juvenile plants are planted after the

creation of the ridges. During the growing season herbicides and pesticides are applied several

times and fertilizers are spread a second time depending on the crop type. Finally, harvesting

usually begins in late August to September.

In order to investigate flow processes as affected by plastic mulched ridge tillage (Chapter 2

and 4) we conducted the soil water dynamics and erosion measurements on two potato fields
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Figure 1.2: Topographical map of South Korea (left), land use map of the Haean catchment (top
right): soil water dynamics, runoff and soil erosion were investigated at field sites 1 and 2, the
tracer experiments were carried out at field sites 3 and 4, N leaching experiment and modeling
of fertilizer best management practices refers to field site 5, Image of a plastic mulched ridge
cultivation (bottom right).

(Field sites 1 and 2), both with an average slope degree of approximately 9◦. The dye tracer

experiments were also conducted at two hillslope potato fields but slope degree varied among

field sites with 8◦ and 6◦ for field site 3 and field site 4, respectively (Chapter 3). The nitrate

leaching experiment (Chapter 5) was carried out on a flat field site (Field site 5) with plastic

mulched radish cultivation in the center of the Haean catchment (Figure 1.2).
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1.6 Synopsis

1.6.1 Soil water dynamics as affected by tillage management systems

(Chapter 2)

We combined field observations of soil water dynamics in a plastic mulched ridge cultivation

(RTpm) on two hillslope potato fields with a numerical modeling approach using Hydrus 2/3D

to investigate soil water dynamics under varying tillage management systems. We hypothesized

that plastic mulching has a huge effect on soil water dynamics and strongly influences subsurface

water flow because plastic coverage prevents ridges from infiltration. Furthermore, we expected

that plastic mulch supports surface runoff generation due to its impermeability. Soil water

dynamics in ridge cultivation systems without plastic mulch was previously investigated by

several authors (Saffigna et al., 1976; Leistra and Boesten, 2010; Bargar et al., 1999; Clay et al.,

1992), while plastic mulched ridge cultivation and its effect on flow processes is rarely described

in the literature. Modeling studies are even more rare in literature and most of them are related

to furrow irrigation agriculture in arid and semiarid regions. We aimed to evaluate the effect of

plastic mulch on soil water dynamics as well as to quantify surface and subsurface water fluxes

particularly under monsoonal conditions.

To investigate soil hydrological conditions under RTpm, we installed a monitoring network of

tensiometers and soil moisture sensors on both field sites in ridge and furrow positions in 15, 30

and 60 cm soil depth on the upper, middle and lower slope of the fields. The standard tensiometers

were read out manually in a two days interval. The continously recording tensiometers and FDR

sensors were connected to a DeltaT datalogger, which recorded matric potentials and water

contents half hourly. The monitoring period started from May 31 to August 24 in the growing

season 2010. Figure 1.3 shows the time series of calculated means of measured matric potentials

in ridge and furrow positions for both field sites. In general, the matric potentials were lower

with increasing soil depth. During drying cycles we found the highest matric potential on both

fields in ridge positions and 15 cm soil depth due to the root water uptake in the ridges. During

monsoon events, the matric potential was almost zero indicating the fully saturation of soils

despite of the positions and depths.

Subsequently, we used the datasets of matric potentials for a two-dimensional modeling ap-

proach using the numerical model Hydrus 2/3D. The model solves the Richard’s equation based

on the Galerkin finite element method. The inverse estimation of water retention parameters θr,

θs, α and n and the saturated hydraulic conductivity Ksat was accomplished by the Levenberg-
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Figure 1.3: Means of measured matric potentials in ridge and furrow positions in different depths
for both monitoring field sites; R: ridge, F: Furrow, 15, 30 and 60 refers to the specific soil depth.

Marquardt non-linear minimization method. Afterwards, we used the calibrated models to run

scenarios regarding ridge tillage without plastic mulch (RT) and conventional tillage with a

flat surface (CT). Evapotranspiration (ET) was included in the model based on the empirical

dual crop coefficient approach FAO56 (Allen et al., 1998). To get an deeper understanding, how

and to which extend cumulative water fluxes are influenced by ET, we carried out a sensitivity

analysis using varying potential ET rates. A dynamic root development was not implemented

in the model, thus, we additionally performed a sensitivity analysis using different root depths

and investigated the effect on water storage and cumulative water fluxes such as surface runoff

and drainage.

To evaluate the models, we used different evaluation coefficients such as the coefficient of

determination (R2), the Nash-Sutcliffe efficiency (NSE), and the percentage bias (Pbias). The

comparison of observed and simulated pressure heads showed a good agreement for field site

1 (R2=0.79, NSE=0.79, Pbias=2%), whereas the agreement for field site 2 was less sufficient

(R2=0.58, NSE=0.48, Pbias=12%).

During dry periods, the plastic mulch affected soil water dynamics only in the topsoil. The

pressure head gradients in this soil horizon were distinct horizontally and forced the water to

move laterally from wetter furrows to drier ridges under RTpm. This phenomenon occurred

due to the root water uptake and the plastic coverage, which intensified the drying-out of the
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ridge soil. The horizontal pressure head gradients were less distinct under RT, where only the

topography led to wetter furrow soil compared to ridges. These results coincide with the results

of Leistra and Boesten (2010), who investigated soil moisture patterns under RT and found

that runoff from ridges resulted in higher soil moisture in furrow positions. The lateral water

movement from furrows to ridges was also found by Bargar et al. (1999), who investigated

soil water recharge in an uncropped ridges-furrow system. Under CT, vertical pressure head

gradients were characteristic, which supported a vertical downward water movement. During

monsoon events, the pressure head gradients were not distinct anymore due to the full saturation

of the soils. This led to a vertical water movement except for field site 2 under RTpm, where the

soil remained slightly unsaturated. Nevertheless, the soil below the plastic coverage was also

near saturation at field site 2. Therefore, the weak pressure head gradient did not affect the

flow direction as during dry conditions (Figure 1.4).

Additionally, we analyzed simulated flow velocities during a monsoon event and found

considerable differences between flow velocities in the topsoil and in the subsoil at field site 1. In

the coarse textured topsoil, which was characterized by a high saturated hydraulic conductivity

(103 cm d−1), the velocity reached up to 40 cm d−1. In comparison, the saturated hydraulic

conductivity in the subsoil were lower (29.4 cm d−1) and flow velocities during the monsoon

event reached only 8 cm d−1. The upper part of the ridge was also characterized by low flow

velocities about 4-8 cm d−1 caused by the protective function of the plastic mulch. These results

imply that interflow occurred at field site 1 above the interface between the topsoil and subsoil.

At field site 2, the velocities were much smaller due to a finer soil texture and a lower hydraulic

conductivity in the topsoil (2.9 cm d−1) and the subsoil (15.4 cm d−1).

Furthermore, we investigated the variation of cumulative water fluxes among different tillage

treatments and found about 40% higher evaporation rates under RT and CT compared to RTpm.

The differences are related to the uncovered surfaces of RT and CT. Transpiration rates as

well as cumulative seepage water fluxes were similar between the tillage treatments. Notable

differences were found in cumulative drainage and runoff water fluxes. Drainage was 16% less

and runoff was 65% higher under RTpm compared to RT and CT.

A dynamic root development was not implemented in the model and a constant average

root depth of 30 cm had to be used for model calibration. To analyze, whether the cumulative

water fluxes are sensitive to varying rooting depths, we accomplished a sensitivity analysis by

varying the rooting depth from 10 cm to 60 cm and analyzed the effect on cumulative water

fluxes. The results showed that cumulative seepage, drainage and runoff water fluxes were only

slightly affected by varying root depths. The cumulative water fluxes as well as the ratio of
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Figure 1.4: Direction of water movement (arrows) in a ridge cultivation system during dry and
wet periods, note that during wet periods water movement strongly depends on soil physical
and geological properties.

water fluxes between the tillage treatments were found to be robust to varying rooting depths.

Moreover, we tested whether the cumulative water fluxes were sensitive to varying potential

ET rates. Therefore, the potential ET rates were changed percentagewise by maintaining the

calculated ratio between E and T. The sensitivity analysis showed that the cumulative seepage

water flux at field site 1 was most sensitive to the variation of potential ET. By reducing the ET

to 0%, the cumulative seepage water flux increased between 56-65% dependent on the tillage

treatment, whereas a 100% increase of ET led to a decrease of cumulative seepage water of 39%.

Runoff was not sensitive to the ET variations and changed merely between 3-6%. The increase

of cumulative drainage water was only 14-15% by a ET reduction to zero.

We conclude that soil water dynamics is influenced by plastic mulch mainly during dry

periods and small rain events. The important findings are that during drier periods water

movement is laterally distinct from furrows to ridges in the top layer due to pressure head

gradients, which results from intensive root water uptake in ridges and intensified drying in

ridges due to the plastic coverage. During monsoon events the soil was near saturation or fully

saturated despite of the tillage management. We found that interflow above the subsoil layer

occurred during monsoon events if the granitic bedrock underlays the subsoil (Field site 1),

which forced the water to flow laterally downhill. The application of coarse sandy textured

soil to the agricultural fields to compensate erosion loss is another important factor, which

influence water flow by inducing interflow at the interface between the topsoil and subsoil. This

coarse soil texture is associated with a high saturated hydraulic conductivity. Ploughing even

more supports the structural differences between both horizons. At field site 2, interflow was
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not simulated since the soil was deeper developed and the texture of both horizons was finer

compared to field site 1. Therefore a low hydraulic conductivity of both horizons resulted in a

vertical flow direction (Figure 1.4).

The sensitivity analyses revealed that the cumulative water fluxes and also the ratio of

cumulative water fluxes between the tillage treatments were relatively robust to changes in

rooting depth and potential ET rates. Thus, we conclude that plastic mulched ridge cultivation

reduces drainage water up to 16% and concurrently increases surface runoff up to 65%. This has

important ecological implications in particular under monsoonal conditions. While the reduced

drainage water under RTpm might also reduce nitrate leaching, the increased surface runoff

results in runoff peak flow, flood risk, erosion. Beside of soil hydrological aspects, RTpm helps to

avoid weed growth around the crops and increases the temperature below the plastic coverage

which induces a earlier plant emergence.

Considering the advantages and disadvantages of RTpm, we recommend the use of perforated

and biodegradable plastic mulch for ridge cultivation systems in areas affected by monsoon

season. This seems to be the most promising method to avoid not only high amounts of surface

runoff and the decrease of drainage water but also assures a early plant emergence and the

suppression of weed growth.

1.6.2 Preferential flow as affected by tillage management systems

(Chapter 3)

Flow processes in agricultural soils are highly influenced by tillage, soil properties and surface

topography. In the previous chapter we showed that ridge tillage and plastic mulching affects

soil water dynamics. However, the observations of soil water dynamics does not account for

non-uniform flow processes. Preferential flow like macropore flow is a well known phenomenon,

which supports a quick transport of agrochemicals into groundwater. Therefore, the knowledge

about the effect of management operations on preferential flow is essential in order to assess its

impact on groundwater quality.

Analogously to the modeling procedure in the previous chapter, in which we investigated the

effect of management practices like CT, RT and RTpm on soil water dynamics, we conducted four

tracer experiments on hillsloped potato fields in the Haean catchment. The first experiment was

carried out before ridges were created. This conditions represented conventional tillage (CT).

Subsequently the second experiment was conducted at the same field site after the creation of

the ridges (RT). In the third and fourth experiment we assessed the influence of plastic mulch
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and root systems on preferential flow, so that the third experiment represented RTpm in the

early season without crops, while the last experiment were conducted in the later season, when

the potato crops were well-developed (RTpm+crops).

We used the dye tracer Brilliant Blue FCF, which is known for its low toxicology, high mobility

and good visibility in the soil (Flury and Flühler, 1995) and irrigated the tracer solution with a

sprinkler machine to plots of 2 m2. In order to investigate how the applied water contributes

to surface runoff and infiltration, we installed a infiltration frame, which channeled the surface

runoff in buckets outside of the plot. Additionally we installed soil moisture sensors in 5 and

20 cm soil depth for monitoring the changes in soil water contents during irrigation. After 24

hours, we excavate soil profiles in a distance of approx. 10 cm and photographed them with a

metal frame, Kodak color scales and a calibration plate.

Subsequently we rectified the obtained profile images using the software of HALCON ver. 10

(MVTec Software GmbH, Munich, Germany) and converted them into two binary images. The

first binary image classified the stained parts of the profiles into black pixels and the non-stained

parts into white pixels. The second binary image were coded such that the entire soil profile

were coded black and the background was coded white. To analyze flow patterns, we calculated

image index functions, namely dye coverage (ID), Euler number (IE), fragmentation (IF), metric

entropy (IME8) and maximum of run length (IMAX) based on both binary images. Besides of the

dye coverage function (ID), these new image index functions were recently introduced by Trancón

y Widemann and Bogner (2012) and allow a comprehensive interpretation of image features

derived from dye tracer experiments. The commonly used (ID) represents the percentage of

stained pixels compared to the total number of pixels in a image row. The IE express the number

of runs, which are defined by a continuous sequence of stained pixels normalized by the maximum

of possible runs, while the IMAX describes the distribution of run lengths by its maximum. The

IF index describes the fragmentation of an image row. The index can be calculated by the

inversion of the contiguity index (IC). Finally, the IME8 originate from information theory and

gives the entropy of pixels in words of length 8. Thus, the metric entropy is high, when pixels

in words are uncorrelated. The steps of image processing towards the image index functions are

shown in Figure 1.5.

In relation to the partitioning of surface runoff and amounts of infiltrated water, we found

highest infiltration rates (79%) and lowest surface runoff (21%) under CT. The infiltration rates

decreased to 62% and the surface runoff increased to 38% caused by the ridge topography under

RT. This trend was amplified under RTpm, when both, infiltration and surface runoff accounted

for 50%. These results verified our hypothesis, that plastic mulching of the ridges substantially
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Figure 1.5: Steps of image processing from profile images taken in the field towards image index
functions.
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increase surface runoff due to the ridge topography and the impermeable black plastic cover.

In the later season, when potato crops were already developed, we found a reversed trend with

69% accounting for infiltration and 31% for surface runoff. This was related to the interception

of irrigation water in the crop canopy, the throughfall as well as the stemflow, which channeled

the water directly into the planting holes.

The soil water content during irrigation under CT increased primarily in 5 cm depths and

about 15 min later in 20 depths, which indicates a homogeneous infiltration front caused by

the flat surface of the plot. The sensors which were located downslope of the plot registered

higher soil moisture. At the beginning of the experiment, the soil moisture in furrow positions

was already higher than in ridge positions under RT. This was presumably due to previous rain

events, when water infiltrated preferentially in furrows because of the topography. The water

content increased firstly in furrow positions in 5 cm depth because irrigation water accumulated

in the depression. The overall increase of soil moisture in 20 cm depth was only small. Under

RTpm the soil moisture firstly increased in furrow positions similar to RT. These findings are

supported by the research of Leistra and Boesten (2010) and Saffigna et al. (1976), who found

also higher water contents in furrow positions due to runoff from ridges to furrows. However,

the FDR sensor in 20 cm depth in ridge position showed an increase of soil moisture before

the soil moisture increased in 5 cm depth in ridge positions. We relate this finding to water,

which infiltrated primarily in furrow positions and moved afterwards laterally to ridges due to

horizontal pressure head gradients between wetter furrows and drier ridges. The lateral water

movement from furrows to ridges was also confirmed by the field measurements and the modeling

study in Chapter 2 and by Bargar et al. (1999).

For all four experiments, the IE was calculated to be approx. 0.1, which expressed the huge

contiguous flow pattern, namely the infiltration in furrows and planting holes. The maximum

of 1 would indicate the permanent alternation of black and white pixels in an image row, which

is opposed to our findings with a few number of vertical flow pattern. All calculated indices

declined to zero in 25-35 cm soil depth. This revealed that the tillage pan was the most important

feature in the agricultural soil despite of the management. The tracer solution did not infiltrate

deeper than the tillage pan, which is a result of absent macropores and a significantly higher

bulk density of the subsoil (p<0.05). Moreover, the water was funneled laterally above the tillage

pan in slope direction. Larger fragmentation and metric entropy indices of RT compared to

CT showed clearly the topography effects on flow pattern, namely the infiltration in furrows

and planting holes alternating with unstained parts of the ridges. Furthermore, the effect of

plastic much became evident by comparing the ID and IMAX of RT to RTpm. The homogeneous
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infiltration under RT in the uppermost cm of the soil resulted in a dye coverage of 1 and an

IMAX of 0.75 , whereas the ID and IMAX of RTpm was largest in approx. 20 cm soil depth. The

influence of the root system on flow pattern was well represented in larger ID in the rooting

depth under RTpm+crops compared to RTpm. Further, the root system led to a redirection of

water, which primarily infiltrated in furrows. While water was funneled laterally above the tillage

pan in slope direction under RTpm, water flow occurred from furrows to ridges and reversed to

the slope direction. This phenomenon can be explained by lower pressure heads in ridge caused

by root water uptake.

The findings have important ecological implications for water quality and erosion aspects.

On the one hand, the artificial soil layering induced by the application of coarse textured topsoil

as well as ploughing activities results in uniform flow through the sandy soil matrix and funnel

flow above the tillage pan. Funnel flow above the tillage pan was found to be most important

in the early season, when the root water uptake was absent. This implies that the leaching risk

of agrochemicals via the interface between topsoil and subsoil is crucial and that the field sites

directly next to the rivers are critical locations for discharge of pollutants into the river network.

On the other hand, we found that macropore flow in the subsoil was absent, which in turn

implies a relative low risk of groundwater pollution by agrochemicals under these specific soil

physical properties. Furthermore, we found a substantially increased runoff generation under

plastic mulched ridge cultivation. Hence, the management practice supports especially the risk

of soil erosion and particle-bound phosphorous leaching via surface runoff. These results are

supported by the finding of B. Kim et al. (2001), who reported that the eutrophication of the

Soyang Lake originates dominantly from phosphorous and sediment discharge of agricultural

fields on steep hillslopes.

We conclude that the impact of plastic mulching on subsurface flow processes is relatively

low although it creates respective zones of infiltration and non-infiltration. In contrast, the

impact on runoff generation is very high and increases the risk for leaching and soil erosion.

Therefore we recommend using perforated plastic mulch. This would retain the positive effects

of plastic mulch on weed control and concurrently decreases surface runoff. Additionally, we

propose to establish riparian buffer zones to decrease the risk of leaching via lateral subsurface

flow above the tillage pan as well as leaching via surface runoff into the river network.
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1.6.3 Surface runoff and soil erosion as affected by tillage manage-

ment systems (Chapter 4)

In this chapter, we assess the influence of a plastic mulched ridge cultivation system in combina-

tion with field topography effects on runoff pattern and soil erosion rates using field observations

and a process-based modeling approach. The results of several authors, who investigated soil

erosion and runoff pattern in plastic mulched plots under varying crop types, contradict tremen-

dously. On the one hand, the authors found that ridge cultivation and plastic mulching increases

surface runoff and soil erosion substantially (Wan and El-Swaify, 1999; Rice, McConnell, et al.,

2001; Gascuel-Odoux et al., 2001). In contrast, Stevens et al. (2009) did not detect any dif-

ferences in soil erosion and runoff between plastic covered and uncovered strawberry cropping

systems. Lee et al. (2010) reported even lower runoff and erosion rates under plastic mulched

potato and cabbage cultivation. All mentioned studies are limited to the plot scale with similar

topography.

In order to investigate the influence of the topographical complexity of the fields but also

the topography of the ridge-furrow system on soil erosion loss and runoff, we installed runoff

collectors connected to multislot flow dividers at two plastic mulched potato fields. The runoff

collectors in combination with multislot flow dividers were designed based on Bonilla et al.

(2006) and Pinson et al. (2004). Runoff was observed from July 5 to August 9, 2010. During the

observation period seven significant rain events occurred. The collected runoff in the buckets

was subsequently sampled to analyze sediment concentrations. To get a high resolution digital

elevation map of the field sites, we surveyed intensively the elevation at numerous points in the

fields using a tachymeter (Tachymat WILD TC1000). Additionally we measured soil properties

such as bulk density, soil texture and organic carbon content in the laboratory.

The process-based, spatial distributed erosion model EROSION 3D (Schmidt, 1991), which

requires relatively few input parameters, were calibrated to the observed runoff and erosion

rates . Apart from the measured variables, we additionally implemented the initial soil moisture

based on simulated values of HYDRUS 2/3D (Chapter 2). The surface roughness (Manning’s n)

was estimated separately for plastic covered ridges and uncovered furrows based on recommen-

dations in the literature. Additionally we estimated soil coverage by images taken during the

measurement period. The parameters skin factor and erodibility were used for model calibration

. In accordance to the modeling procedure in Chapter 2, we used the EROSION 3D model to

simulate runoff and erosion rates of a ridge tilled field without plastic cover (RT) and a field

with a conventional flat surface (CT). The scenarios were subsequently compared to the results
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of calibrated model, which considered plastic mulched ridge cultivation (RTpm).

By comparing both field sites, we found differences in measured runoff and soil erosion rates

due the variability in rainfall characteristics. The highest daily precipitation amount of 102.5

mm was observed at field site 2, while at field site 1 the highest precipitation event accounted

for 76.5 mm. During the observation period, field site 1 received less precipitation (165.2 mm)

in total than field site 2 (242.7 mm). The total observed runoff was 80.3 l m−2 and 94.1 l m−2

for field site 1 and 2, respectively. The measured soil loss differed substantially between both

field sites. For field site 1 the overall soil loss was calculated to be 3646.7 kg ha−1, while the

total soil loss at field site 2 was only 626.5 kg ha−1. Since the soil properties, slopes and crop

management were similar, we address the differences to variations of the field topography and

the orientation of the plastic mulched ridges.

The models were evaluated using the RMSE-observation standard deviation ratio(RSR),

the Nash-Sutcliffe efficiency (NSE) and the percentage bias (Pbias). For runoff, the NSE was >

0.91, RSR was <0.293 and Pbias was < -13.46%. For soil loss, the NSE was > 0.803 and RSR

was <0.444. The Pbias for soil loss was negative for field site 1 indicating an overestimation of

soil loss, whereas a positive Pbias at field site 2 showed an underestimation of soil loss. With

reference to Moriasi et al. (2007), the agreement between observed and simulated runoff ans

soil loss was satisfying for both field sites.

The comparison of different management practices showed that simulated runoff was highest

under RTpm. The simulated runoff was 81.3 l m−2 and 106.8 l m−2 for field site 1 and field site 2,

respectively. Under RT and CT, runoff was 36% and 44% less compared to RTpm. The reduction

of surface runoff corresponded to the rainfall intensities and varied strongly between rainfall

events. Accordingly, the highest soil loss was also simulated for RTpm accounting for 4178.1 kg

ha−1 at field site 1 and 545.8 kg ha−1 at field site 2. The scenario RT showed a reduction of 41%

and 32% soil loss for field site 1 and field site 2, respectively. Conventional tillage CT showed

also lower amounts of soil loss, which equaled a reduction of soil loss by 76% at field site 1. In

contrast, the reduction of soil loss under CT at field site 2 was only 14% less compared to RTpm.

The comparison of soil loss showed that the variation among management practices induced

by different flow properties due to field topography and ridge orientation was considerably

high. RT and RTpm forced water to flow in furrows, while water was triggered to follow the

steepest flow paths under CT. Since field site 1 was characterized by a concave shape, the flow

accumulation and sediment transport was highest in the depression located in the center of

the field, which caused ridge breakovers and the development of a deep erosion rill. In contrast,

a convex shape was characteristic for field site 2. These properties resulted in a dominating
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flow direction along furrows under RT and RTpm to the field margins. At the bottom of the

field site the highest erosion rates were simulated caused by the largest ridge length. Under

CT, erosion rates at field site 2 were higher compared to ridge-furrow tillage. These results

verified the hypothesis, that the field topography was the most important controlling factor

for soil erosion. Thus, ridge-furrow tillage at the concave field site even increased soil erosion,

whereas the convex field topography in combination with ridge-furrow tillage led to decreased

soil erosion rates.

Based on the findings, we conclude that the configuration of ridge-furrow tillage in order

to reduce erosion loss heavily depends on the field topography. Therefore, the topography of

the field should be considered before ridge-furrow tillage is practiced. Furthermore, we recom-

mend orientating the ridges exactly along contours and towards the field edges to avoid flow

accumulation in field depressions. Additionally, high water flow rates in furrows implies a better

protection against soil erosion by decreasing the flow velocities in furrows. This can be achieved

by omitting herbicide application in furrows. This was also suggested by Rice, Harman-Fetcho,

et al. (2007), who introduced grass cultivation in furrows as ”in-field buffers”, which increases

surface roughness and infiltration rates and reduces flow velocities in furrows.

1.6.4 N fate in a plastic mulched ridge cultivation system (Chap-

ter 5)

In this chapter we determine the N fate in a plastic mulched ridge cultivation system affected

by extreme rain events. In contrast to the previous studies, the N fate was investigated in a

flat ridge cultivation with radish crops and different soil properties. The study focused on N

pathways such as crop N uptake, N retention and N leaching in the soil by using 15N as a tracer.

Additionally, soil water dynamics were monitored using a monitoring network of tensiometers

and water content sensors. N concentrations in seepage water were determined using suction

lysimeters.

The experiment was conducted at a field site in the flat center of the catchment. Prior to the

experiment, the field was fallow over several years. Hence, a basic fertilization of 56 kg NO−3 ha−1

was applied prior to the experimental set up. Afterwards, the field was sectioned into 16 subplots.

Four fertilizer rates of 50 (A), 150 (B), 250 (C) and 350 (D) kg NO−3 ha−1 were additionally

applied resulting in 4 subplots per fertilizer rate. After the fertilization, fertilizer granules were

mixed into 15 cm soil depth by ploughing. Subsequently the ridges were created and covered

with black plastic mulch and radish seed were sown. The suction lysimeters were installed in
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Figure 1.6: Time schedule of the field management, NO−3 measurements and precipitation rate
during experiment period 2010.

15 cm and 45 cm in ridges and 30 cm in furrows of the respective surface. In Figure 1.6 the

management procedure, the measurement dates of NO−3 in seepage and precipitation rates of the

observation period are chronologically shown. At day 25, 50 and 75 after sowing radish plants

were partially harvested to determine biomass, total N and 15N. Accordingly, soil samples were

analyzed on total N and 15N. In an approx. interval of 1 week, soil water samples of the suction

lysimeters were measured on NO−3 concentrations using a photometric nitrate test (Nitrate

photometric test, Spectroquant, Merck, South Korea). Soil water potential were observed in a

two days interval.

15N uptake by plants showed that uptake rates during the first 25 days of the growing season

were low, while the uptake increased significantly during day 25-50 for all fertilizer rates. For

the fertilizer rates A and B, the highest 15N was detected at day 50. After day 50, the only

significant increase of 15N uptake was characteristic for fertilizer rate D. Generally, the mean

fertilizer use efficiency (FNUE) at day 25 ranged between 1.7% and 3.8%. Up to day 50, the

FNUE increased to 19-36% with a maximum of FNUE for the lowest fertilizer rate A. At harvest

day 75, the FNUE was lower and ranged in dependence of fertilizer rates between 20-32%. The

biomass production was assumed to increase with increasing fertilizer rates, however, under

fertilizer rate B, C and D the biomass production did not significantly differ at the day of final

harvest. Hence, the results implies that a similar biomass production can be achieved with the

fertilizer rate B of 150 kg NO−3 ha−1. This results coincide with the fact, that the 15N uptake

did not increase significantly between day 50 and day 75. Therefore, it is most likely to assume

that fertilizer N for growth was taken up until day 50. Afterwards, the fertilizer N was primarily
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accumulated in the root. Furthermore, the low N use efficiency < 4% in the first third of the

growing season implicates, that the leaching risk is particularly high during this early stage of

growth.

The overall 15N retention in soil, averaged for all sampling depths, was similar for all fertilizer

rates (p>0.05) and ranged between 10-14%. The 15N retention in ridge positions was higher

compared to furrow positions. In total, at all three sampling days, decreasing 15N retention was

found with increasing soil depth. Due to the repetitive application of coarse sandy soil, low

water and nutrient retention was characteristic for the field site. These soil properties increased

the risk of 15N leaching into deeper soil layers especially under heavy rainfall. A low N retention

in other disturbed ecosystems was also confirmed by Peterjohn and Correll (1984). The higher

N retention in the ridge soil was expected since the plastic mulch protected the ridge soil from

infiltration. These findings are in accordance to Cannington et al. (1975) who reported that

plastic mulch permits a more efficient nutrient use in the root zone.

The mean NO−3 concentrations in seepage during the season significantly differed among

fertilizer rates with A(53 mg l−1), B (67 mg l−1), C (119 mg l−1) and D (122 mg l−1). The mean

nitrate concentrations between fertilizer rates differed significantly especially at the end of the

experiment from 5-64 mg l−1 (p< 0.05). At the beginning of the experiment, NO−3 concentrations

in seepage were similar ranging between 138-179 mg l−1. For fertilizer rates A and B, the NO−3

concentrations in seepage were < 10 mg l−1 at the day of final harvest, while > 10 mg l−1

was characteristic for fertilizer rates C and D. Based on the nitrate concentrations and the

measured pressure heads, a modeling study was carried out using Hydrus 2/3D. The modeling

study exhibited the following limitations. Firstly the calibration was based on only one plot

replicate. Secondly, Hydrus 2/3D was not capable to simulate integrated surface-subsurface

flow and transport processes directly, so that the precipitation rates for furrow positions were

multiplied by a factor of 2 to consider the surface runoff from ridges. Furthermore, it was

assumed that the fertilizer was solved from the beginning of the growing season, neglecting that

the application was done with fertilizer granules. Finally, the root water uptake parameters

for radishes had to be estimated since radish was absent in the crop database of Hydrus 2/3D.

Although the agreement between simulated and observed pressure heads was reasonable, the

solute transport model resulted in a poor agreement between observed and simulated NO−3

concentrations. The model showed very high cumulative nitrate leaching rates below the root

zone in 45 cm soil depth with A (86 kg NO−3 ha−1) < B (180 kg NO−3 ha−1) < C (260 kg NO−3

ha−1) < D (387 kg NO−3 ha−1) which was equivalent to approximately 95% of the total applied

fertilizer, although denitrification and root water uptake was simulated. The low N uptake by
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plants in the simulation was related to the plant uptake parameters, which had to be estimated.

The denitrification was also simulated to be very low accounting for < 2%. Organic carbon as

well as anoxic conditions is necessary to initiate denitrification processes by microorganisms.

The low denitrification rates were reliable due to the very low organic carbon content and the

high hydraulic conductivity of the coarse textured soil, which in turn led to a quick drainage.

Subsequently, the fate of 15N was determined by calculating the overall budget for each

fertilizer rate. Crop 15N uptake accounted for 31.7% (A), 28.1% (B), 20.0% (C) and 29.1% (D).

Soil 15N retention was calculated to be 15.1% (A), 11.0% (B), 10.2% (C) and 8.8 % (D). Hence,

the remaining percentages constituted the 15N loss, which was 53.2% (A), 60.9% (B), 69.8%

(C) and 62.1% (D). The calculated 15N loss contradicted with the simulated high NO−3 leaching

rates. However, the calculated 15N budget as well as the simulated leaching rates revealed, that

leaching was the dominant N loss pathway.

Considering the previous findings, it was concluded that 150 kg NO−3 ha−1 should be aimed

for a maximum total fertilizer NO−3 application. Additionally it was recommended to apply the

fertilizer in 3-4 applications to meet the crop N needs and to avoid high NO−3 losses especially

at the beginning of the growing season. Finally, it was suggested to distribute the fertilizer only

in ridges and to enhance water and nutrient retention by increasing the organic matter content

by placing plant residues such as rice straw or soil additives in furrows.

The Hydrus 2/3D model exhibited some limitation in terms of solving surface flow processes,

however, in a plastic mulched ridge cultivation system the surface runoff from ridges to furrows

plays an important role. Moreover, the agreement between observed and simulated NO−3 concen-

trations was not satisfying. Thus, we decided to simulate the NO−3 leaching experiment using

the HydroGeoSphere code, which is capable to solve fully-integrated surface-subsurface water

flow and solute transport problems.

1.6.5 Fertilizer best management practices for reducing nitrate leach-

ing: A modeling study (Chapter 6)

The ability of representing physical processes such as surface and subsurface water flow as well

as solute transport in a variable saturated media is an advantage of process-based numerical

models. In the last decades, it has become a progressively used tool for impact and risk assessment

in the field of environmental issues. Therefore, numerical models provide often the basis for

conservation planning and decision making. Environmental impacts such as pollution of aquatic

systems caused by excessive use of fertilizers, pesticides and herbicides in agriculture constitutes
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an increasing problem worldwide. Particularly in South Korea, where the monsoon season

coincides with the main growing season, the risk of leaching during heavy monsoon events is

amplified compared to other regions.

In this chapter we assess the impact of ridge tillage and plastic mulching on nitrate leaching as

well as the potential to decrease the risk of groundwater NO−3 contamination by applying fertilizer

best management practices (FBMPs). High-precision agriculture as proposed by Wallace (1994)

includes the correct leveling, draining and contouring of the fields as well as a right timing of

application and right placement of fertilizers. The application of FBMPs can therefore be a

useful tool to achieve both, economical and environmental benefits.

Based on the NO−3 leaching experiment as described detailed in the previous section, we

carried out a three-dimensional modeling study using the HydroGeoSphere code (Therrien et al.,

2010). This code integrates surface-subsurface flow and transport processes and is therefore most

suitable to simulate water flow and solute movement in a plastic mulched ridge cultivation system.

The datasets of measured pressure heads and NO−3 concentrations were used to calibrate the

water retention and solute transport parameters. We coupled HydroGeoSphere with the powerful

parameter estimation software ParallelPEST (Doherty, 2005) to optimize these parameters based

on the Gauss-Marquardt-Levenberg non-linear estimation technique. The model was set up with

no flux conditions at the left and right hand boundary and a free drainage boundary at the

bottom of the flow domain to induce a dominating vertical flow fields. The boundary conditions

were chosen based on the assumption, that flat field conditions lead to dominating vertical flow

processes and that lateral flow processes are minimal or even absent.

The water flow model was calibrated for the observation period from June 17 to August 27.

Since the NO−3 concentration measurements started approximately one month after the fertilizer

application, the calibration period for solute transport was much shorter. We calibrated the solute

transport model starting on the day of highest NO−3 concentrations (July 10). For simulating

the for different fertilizer rates with 50 (A), 150 (B), 250 (C) and 350 (D) kg NO−3 ha−1, however,

we assumed that the fertilizer, which was applied as granules on May 31 and June 1, had to

be solved latest with the first significant rain event, which occurred on June 12 with 38.4 mm

day−1. Hence, we implemented the initial NO−3 concentration in the model beginning on June

13. Fertilizer application was done prior to the creation of the ridges resulting in fertilizer

distribution in ridges and furrows. Thus, we set up the initial NO−3 concentration in the upper

24 cm from the ridge surface in the model domain.

To evaluate the effect of plastic mulch on NO−3 dynamics and NO−3 leaching loss below

the root zone, we compared the simulation of the calibrated model, which accounts for plastic
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mulched ridge cultivation (RTpm), with a simulation of ridge cultivation without coverage (RT).

The effect of FBMPs we simulated as follows: Fertilizer placement only in ridges was simulated

for all fertilizer rates (A-D). We increased the NO−3 concentration in the ridges such that the

total initial mass (kg NO−3 ) in the model was equivalent to the previous simulations of fertilizer

placement in ridges and furrows. The split application scenarios were all based on a total amount

of 150 kg NO−3 ha−1 as it was recommended in the previous chapter. Based on the findings of the

field study, that fertilizer application should be splitted and that the first application amount

should be small due to a low fertilizer use efficiency, we set up the split application scenarios

as given in Table 1.2. We assumed that the combination of plastic mulch, fertilizer placement

and split application will lead to multiplicative effects in reducing NO−3 leaching below the root

zone. Hence, we finally simulated the combination of the FBMPs.

The analysis of simulated NO−3 concentration pattern differed strongly between RT and

RTpm. While the NO−3 concentration under RT declined fast and relatively homogeneously

throughout the soil profile, the concentration pattern under RTpm was clear separated into

parts of low concentrations in furrows and planting holes and high concentrations below the

plastic coverage. Therefore, the simulation revealed the protection function of plastic mulch,

which led to a maximum in NO−3 concentrations below it, while decreasing NO−3 concentrations

were characteristic in unprotected furrows and planting holes. The finding are in accordance to

Locascio et al. (1985) and Cannington et al. (1975), who also reported an enhanced fertilizer

retention below the plastic coverage. The protective function of the plastic mulch was also

evident by comparing the cumulative NO−3 leaching loss between RT and RTpm below the root

zone (Table 1.1). For all fertilizer rates, the amounts of leached NO−3 was considerably lower

under RTpm compared to RT. Expressed in percentages, the reduction of NO−3 leaching was

26% less under RTpm and conventional fertilization with NO−3 fertilizer distributed in ridges

and furrows.

The root system of radishes is characterized by the dominating main root and only few

fine roots. Hence, we assumed that the fertilizer, which is distributed in furrows, cannot be

taken up by the plants and is therefore prone to leaching. Thus, we hypothesized that a better

fertilizer placement has the potential to decrease NO−3 leaching especially when it is placed solely

in ridges below the plastic coverage. When fertilizer was placed only in ridges, the simulated

total leaching loss was reduced by 15% under RT. Under RTpm, the fertilizer placement only

in ridges led to 36% lower leaching rates. Finally, a better fertilizer placement resulted in 44%

lower NO−3 leaching rates under RTpm compared to RT. A decrease of fertilizer leaching by

placing the fertilizer only in the elevated part of the ridge was also found in other studies
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Table 1.1: Simulated cumulative NO−3 leaching rates (kg NO−3 ha−1)
below the root zone as affected by plastic mulch and fertilizer placement.

A B C D
50 kg ha−1 150 kg ha−1 250 kg ha−1 350 kg ha−1

RTa+ CFc 23.61 45.83 68.09 90.31
RTpm

b+ CFc 17.56 34.08 50.66 67.18
RTa+ FPd 20.07 38.96 57.90 76.90
RTpm

b+ FPd 11.19 21.71 32.27 42.79

a ridge tillage without coverage
b ridge tillage with plastic mulch
c conventional fertilization in ridges and furrows
d fertilizer placement only in ridges

Table 1.2: Fertilizer split application scenarios. All values are given in kg NO−3 ha−1.

Application 1 Application 2 Application 3

Scenario 1 150 - -
Scenario 2a 75 75 -
Scenario 2b 50 100 -
Scenario 2c 30 120 -
Scenario 3a 50 50 50
Scenario 3b 30 60 60
Scenario 3c 20 80 50

(Hamlett et al., 1990; Waddell and Weil, 2006). Considering the low fertilizer use efficiency at

the beginning of the growing season, we reduced successive the fertilizer amount of the first

application, but concurrently maintained the total amount of 150 kg NO−3 ha−1 for the split

application scenarios (Table 1.2). The influence of split applications in combination with plastic

mulch on NO−3 leaching loss under conventional fertilization in ridges and furrows are shown

in (Table 1.3). It was evident, that splitting the fertilizer application reduced NO−3 leaching

considerably. The lowest simulated leaching amount was achieved by applying fertilizer three

times throughout the growing season with 20/80/50 kg NO−3 ha−1 (Scenario 3c). This was a

maximum total reduction of 59% compared to one-time application (Scenario 1).

As expected, the combination of plastic mulch, split applications and fertilizer placement

only in ridges resulted in the lowest NO−3 leaching loss. Considering the simulation RT and

conventional fertilization as the reference (45.83 kg NO−3 ha−1), the combination of FBMPs

resulted in a minimum of 8.14 kg leached NO−3 ha−1 (Scenario 3c). This was equivalent to total

reduction of 82%.

We conclude, that a suitable total amount of 150 kg NO−3 ha−1 as well as each management
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Table 1.3: Simulated cumulative NO−3 leach-
ing rates (kg NO−3 ha−1) below the root
zone as affected by plastic mulch, split ap-
plications and fertilizer placement.

RTpm
a+ CFb RTpm + FPc

Scenario 1 34.1 21.71
Scenario 2a 23.7 14.25
Scenario 2b 19.2 12.25
Scenario 2c 15.7 9.99
Scenario 3a 19.4 11.3
Scenario 3b 23.7 9.13
Scenario 3c 13.9 8.14

a ridge tillage with plastic mulch
b conventional fertilization in ridges and fur-

rows
c fertilizer placement only in ridges

practice, namely plastic mulching, split applications or fertilizer placement, resulted in lower

NO−3 leaching rates, while the lowest leaching rate was achieved by combining all FBMPs.

Therefore, the application of combined FBMPs can lead to economic benefits in terms of lower

costs for external fertilizer inputs. On the other hand, environmental benefits can be achieved

by reducing considerably NO−3 leaching to groundwater. Furthermore, we conclude, that these

positive aspects of plastic mulching are valid for a flat terrain, where the total amount of

precipitation contributes to groundwater recharge. Under different topographical conditions

such as described in Chapter 2–4, the fertilizer placement and split applications might also be

a valuable tool to decrease the risk of NO−3 leaching. However, plastic mulching on hillslopes

increased substantially surface runoff, which in turn may constitute the dominating pathway

for leaching fertilizer and other agrochemicals directly into the aquatic systems such as rivers

and lakes. Hence, we propose to apply FBMPs in combination with perforated plastic mulch

on hillslopes.
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1.6.6 Concluding remarks and further research

This study was embedded in an interdisciplinary research project, which aimed to evaluate the

status of the dryland agriculture in terms of environmental impacts from several perspectives.

The combination of manifold field measurements and process-based modeling studies led to

a comprehensive insight of flow and transport processes on dryland agricultural fields in the

Haean catchment.

The thesis provides several recommendations for improving the sustainability of agricultural

practices, which are dominantly based on the modeling studies. Modeling approaches always

simplify the variability of natural systems. In all modeling studies in this thesis, the crop canopy

structure e.g. had not been taken into account, which neglects important processes such as

stemflow and interception. In the HYDRUS2/3D modeling study the surface runoff could not

been directly simulated. This was in contrary an advantage of the HydroGeosphere model, which

in turn shows weaknesses in the plant module e.g. solute uptake by plants. Hence, all models

have strengths and weaknesses and the outputs are only a more or less good approximation

of the reality. The coupling of a crop and root architecture model, the EROSION 3D and

the HydroGeoSphere model would therefore be a huge step but also a sophisticated approach

towards a better approximation of flow and transport processes in agricultural systems.

Focusing on the dryland agricultural fields and based on the recommendations, it it con-

ceivable, to carry out further field experiments, which test for example the impact of fertilizer

best management practices on nitrate leaching. The comparison of flow processes under RTpm,

RT and CT is based on modeling scenarios. Further research could also be done e.g. by plot

experiments considering these different management practices.

This research and also the linked projects were focusing on dryland farming fields. Since 8%

of the total area is occupied by rice paddies, the hydrology of the rice paddies in the catchment

should be further investigated. It would be interesting, how and to which extend the rice paddies

contribute e.g. to discharge of nutrients into groundwater. However, land use change was found

to occur rapidly during the last three years showing a trend for the cultivation of cash crops

such as ginseng. In 2011 a considerable area of Haean was covered by ginseng fields, which are

roofed. It is obvious, that these ginseng cultivation systems will affect the flow and transport

processes. A detailed field study in combination with hydrological modeling of ginseng fields

would be interesting.
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Abstract

Intensive agricultural land use in combination with heavy rain storm events during

the summer monsoon season plays a key role in groundwater pollution by nutrients

and agrochemicals in agricultural catchments in South Korea. A widespread measure

for weed control in this region is plastic mulched ridge cultivation. However, it is

not well understood, how and to which extent the water flow regime in sloped

fields is hereby modified. To evaluate the effect of plastic mulched ridge cultivation

(RTpm) on soil water dynamics, we carried out a two-dimensional process-based

modeling study using the numerical model Hydrus 2/3D. Subsequently, RTpm was

1Correspondence to: Marianne Ruidisch, Soil Physics Group, BayCEER, University of Bayreuth, 95440
Bayreuth, Germany.
E-mail: ruidisch@uni-bayreuth.de
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compared to model simulations of ridge cultivation without plastic cover (RT) and flat

conventional tillage without ridges and without plastic cover (CT). Datasets of soil

water potentials obtained by field measurements at two plastic mulched potato fields

(Solanum tuberosum L.) provided the basis for optimizing soil hydraulic parameters

inversely by the Levenberg-Marquardt algorithm. We found, that plastic mulching

induced horizontal pressure head gradients and forced soil water to move laterally

from furrows to ridges under normal weather conditions. During monsoon events,

soils were fully saturated and interflow occurred in coarse textured and ploughed

topsoil. Further, the water balance of the different model scenarios showed that

plastic mulching reduced drainage water up to 16% but concurrently increased the

surface runoff up to 65%. The consequences are an increase in runoff peak flow,

flood risk and erosion. Therefore, we recommend the application of perforated and

biodegradable plastic mulch in regions affected by summer monsoon.

Keywords: Polyethylene film, ridge-furrow tillage, extreme rain events, Hydrus 2/3D, potato

crop, hillslopes

2.1 Introduction

Agricultural management practices, soil properties and field topography lead to a high variability

in soil water movement, solute transport and leaching of nutrients and agrochemicals. In South

Korea, ridge tillage with impermeable black plastic mulch covering the ridges is the most common

practice for dryland crops such as radish (Raphanus sativus), cabbage (Brassica rapa susp.

Pekinensis (lour.),Hanelt, Brassica aleracea convar. Capitata var. alba), beans (Glycine max.

(L.) Merr.) and potatoes (Solanum tuberosum L.), which are predominately grown on slopes.

Intense fertilization together with heavy rainfalls during summer monsoon season poses a high

risk of groundwater pollution in the Haean catchment. Additionally, the discharge of phosphorus

associated with sediments from agricultural areas causes eutrophication and deterioration of

water quality in downstream reservoirs in South Korea (Kim et al., 2001). This is of major

significance because the river system of Haean contributes to the Soyang Lake, which is a major

source of freshwater for the metropolitan area of Seoul.

The effect of flat row-interrow cultivation on soil water dynamics was investigated for soybean

and corn crops in previous studies (Timlin et al., 2001; Wesenbeeck and Kachanoski, 1988;

Paltineanu and Starr, 2000). The findings showed increased soil moisture in row positions due
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to interception and stemflow. The same effect was also found for potato crops cultivated in

ridges (Saffigna et al., 1976), but with the addition of concurrently higher water contents in

furrows because of surface runoff from ridges and leaf drip from the outer foliage. Soil and

plant biological effects of the plastic mulch were studied by Gürsoy et al. (2011) and Lazlo

and Gyuricza (2004), who found favorable physical soil conditions and improved growth and

yield of maize and corn crops. Previous research on plastic mulched ridge cultivation focused

mainly on rain water harvesting in combination with irrigation techniques in semiarid and arid

regions, in which the plastic covered ridges induce runoff to the planted furrow area, leading

to an increased crop yield and water availability (Wang et al., 2008; X. Y. Li and Gong, 2002;

X.-Y. Li et al., 2008; Tian et al., 2003; Mahajan et al., 2007). In contrast, dryland crops in

South Korea are planted in the plastic covered ridges to suppress weed growth and to support

early plant emergence due to increased soil temperature in the ridges.

Only a few modeling studies about ridge cultivation systems exist. Solute transport of

pesticides in an irrigated potato ridge cultivation system was investigated by Leistra and

Boesten (2010). They demonstrated that the risk of pesticide leaching in furrow soil can be

substantially higher than in corresponding level field soil. Abbasi et al. (2004) simulated water

flow in a long furrow system with furrow irrigation using Hydrus 2/3D to estimate inversely

soil hydraulic properties and transport parameters. Dusek et al. (2010) used the S1D and S2D

models to simulate water flow and solute transport in a drip irrigated plastic mulched pineapple

cultivation.

Since there are no modeling studies about plastic mulched ridge cultivation in mountainous

areas affected by extreme rain events, the aim of this study was to evaluate the effect of

plastic mulched ridge cultivation on soil water dynamics under a summer monsoonal climate.

Therefore, we used a monitoring network of tensiometers and FDR sensors in two potato

fields in the mountainous Haean basin in South Korea to observe soil water dynamics in

ridge and furrow positions. The field data sets of standard tensiometers were used to estimate

soil hydraulic parameters using an inverse modeling approach based on Levenberg-Marquardt

nonlinear minimization algorithm. Subsequently we used the optimized parameters of the water

flow model to run scenarios regarding ridge tillage without plastic mulch and flat conventional

tillage. The comparison of plastic mulched ridge tillage (RTpm, ridge tillage without plastic

coverage (RT) and a flat conventional tillage (CT) allows a better understanding of soil water

dynamics and water movement influenced by the plastic mulch.
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2.2 Materials and methods

2.2.1 Study area

The agriculturally used Haean catchment is located in Gangwon Province in the North-eastern

part of South Korea (Figure 2.1). While rice paddies are dominating in the flat parts of the basin,

dryland farming is practiced in the hillsloped areas of the catchment. The annual precipitation

sum in Haean basin is about 1577 mm (11-years average) with 50-60% of the annual rainfall

occurring during summer from June to August. The Korean peninsula is characterized by

two rainfall peaks, one in July and one in August. The maximum rainfall, however, shifted in

the recent decades from July to August Lee et al. (2010). The precipitation during the 2010

observation period is shown in Figure 2.3.

Plastic mulched ridge cultivation is the common practice to cultivate dryland crops in Haean

catchment. Ridges (35 cm width and 15 cm height) are covered with an impermeable black

polyethylene film and alternate with uncovered furrows (35 cm width). Planting holes (diameter

5 cm) in the plastic cover are located at the top of the ridges with a plant-to-plant spacing of

25 cm.

Cambisols developed on the granitic bedrock material are widespread over the catchment.

Due to high erosion rates, however, the application of sandy soil material before the growing

season is a commonly used method to compensate for soil loss. Thus, highly disturbed soil

profiles are characterized by light-textured, permeable and ploughed top layers, which are prone

to nutrient and pesticide leaching and subjacent B horizons.

Measurements were carried out at two different potato fields (Solanum tuberosum L.) within

the Haean catchment, each with plastic mulched ridges and similar planting dates as well as

slope degrees. The average slope gradient was 11◦ and 10◦ at field sites 1 and 2, respectively. Seed

potatoes were planted on 5 May at field site 1 and on 10 May at field site 2. Plastic coverage

caused higher temperature in soils and therefore crops emerged rapidly. At both field sites

plants emerged before the first measurement day (31 May 2010). Mineral fertilizer was applied

as granules and mixed into the topsoil layer before ridges were built. During the observation

period pesticides were sprayed twice throughout the field sites. Field site 1 was characterized

by a granitic bedrock layer at 1 m depth. At field site 2 the soil was deeper developed and the

underlaying bedrock layer could not been detected by excavation down to 130 cm. Soil physical

properties of the experimental sites are given in Table 2.1.
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Table 2.1: Soil physical properties of the experimental sites.

Horizon Sand Silt Clay Bulk density Soil texture class
(WRB) (%) (%) (%) (g cm−3) (USDA)

Field site 1 Ap 65.72 26.78 7.50 1.28(±0.02) Sandy loam
Bw 39.30 51.60 9.10 1.18(±0.05) Silt loam

Field site 2 Ap 42.65 41.15 16.20 1.27(±0.04) Loam
Bwb 22.00 52.90 25.10 1.31(±0.03) Silt loam

Figure 2.1: Topographical map of South Korea (left), land use map of the Haean catchment
(top right) and picture of field site 1 (bottom right).



44 CHAPTER 2. SOIL WATER DYNAMICS

Figure 2.2: Monitoring network of standard tensiometers, continuously recording tensiometers
and FDR sensors; subplots a, b and c refers to different slope locations (a: upper slope, b:
middle slope, c: lower slope), 1: field site 1 and 2: field site 2. The distance between subplots
was approximately 15 and 30 m on field site 1 and 2, respectively.

2.2.2 Field measurements

A field-monitoring network of standard tensiometers, continuously recording tensiometers and

FDR sensors (Decagon 10HS moisture sensors at 15 and 30 cm depths, DeltaT ThetaProbe

ML2X in 60 cm depths) was set up in the two potato fields on hillslopes on 28 May 2010. At

each field site we installed the sensors in three subplots accounting for different slope position

(upper, middle and lower slope). In each ridge and each furrow, monitoring devices were installed

at 15, 30 and 60 cm depth from the respective soil surface. The location of the respective depth

in a ridge or furrow was chosen randomly. The distance between sensors in ridges and furrows

was 2 m. All FDR sensors and continuously recording tensiometers were connected to a DeltaT

logger, which logged soil water contents and soil water potential in a 30-min interval. Standard

tensiometers were read out with a manual pressure reader in a 2-d interval from 31 May to 24

August, 2010. We used only the standard tensiometer data sets for the modeling approach to

run simulations on a daily time step. The design of the monitoring set up at both field sites is

shown in Figure 2.2.
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2.2.3 Modeling approach

2.2.3.1 Governing flow equations

The ability of representing physical processes such as subsurface water flow in variable saturated

media is an advantage of process-based numerical models. Previous tracer studies at the selected

field sites (unpublished) have shown that preferential flow paths were negligible for soil water

movement. Such uniform flow processes can be described using the Richards’ equation. Based

on the Galerkin finite element method, Hydrus 2/3D solves the Richards’ equation for two-

dimensional water flow in a variably saturated porous media. The extended Richards’ equation

incorporates a sink term, which considers the water uptake by roots (Equation (2.1)). All

following equations are described in Sejna et al. (2011).

δθ

δt
=

δ

δxi

[
K

(
KA

ij

δh

δxj

+KA
iz

)]
− S (2.1)

where θ is the volumetric water content (cm3 cm−3), h is the pressure head (cm), S is a sink

term (cm d−1), xi (i=1,2) are the spatial coordinates (cm), t is time (days), KA
ij are components

of a dimensionless anisotropy tensor KA, and K is the saturated hydraulic conductivity function

(cm d−1) given by

K(h, x, y, z) = Ks(x, y, z) Kr(h, x, y, z) (2.2)

where Kr is the relative hydraulic conductivity andKs is the saturated hydraulic conductivity

(cm d−1). The sink term S in (1), represents the volume of water removed per unit time from a

unit volume of soil due to plant water uptake. Equation (2.3) shows the definitions of the sink

term S by Feddes et al. (1978).

S(h) = α(h)Sp (2.3)

where the water stress response function α(h) is a prescribed dimensionless function of the

soil water pressure head (0 ≤ α ≤ 1), and Sp is the potential water uptake rate (d−1). According

to Wesseling et al. (1991) root water uptake of potatoes is assumed to be zero if the flow domain

is close to saturation (> -10 cm) and if the pressure head becomes lower than the wilting point

(< -16000 cm). Water uptake of potatoes is considered optimal for pressure heads between -25

and -320 cm. Within this range, water uptake decreases (or increases) linearly with h. Sp is equal

to the water uptake rate during no water stress when α(h) = 1. Based on field observations,

root water uptake was considered down to 30 cm soil depth. The unsaturated soil hydraulic
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properties as well as the hydraulic conductivity are described by the soil hydraulic function

model of Genuchten (1980) in equations (2.4) and (2.5).

θ(h) =


θr +

θs − θr

[1 + |αh|n]1−1/n
for h < 0

θs for h ≥ 0

(2.4)

where θ(h) is soil water retention, θr is the residual water content (cm3 cm−3), θs is the

saturated water content (cm3 cm−3), α and n are empirical shape parameters

K(h) = KsS
l
e

[
1−

(
1− S1/(1−1/n)

e

)1−1/n
]2

(2.5)

where K(h) is hydraulic conductivity (cm d−1), Ks is the saturated hydraulic conductivity

(cm d−1), l is the pore connectivity parameter, which was estimated to be about 0.5 (Mualem,

1976).

2.2.3.2 Model parameterization

Two weather stations, both located approximately 750 m from the respective field site, provided

daily precipitation data and additional weather parameters for the calculation of soil evaporation

and crop transpiration (Figure 2.3). Due to its exposed position in the catchment, field site

2 received approximately 15-20% more precipitation than field side 1. Precipitation data was

multiplied by 2 to include the surface runoff from the plastic mulched ridges. This factor was

calculated by assuming a permeable area (furrows and planting holes) of 50% of the total area

and a plastic covered area (ridges) of 50% in a two-dimensional profile (Dusek et al., 2010). For

the model scenario without plastic mulch, the original precipitation data was used.

Soil evaporation and crop transpiration were calculated with the FAO Penman-Monteith

equation for potato crops using weather parameters such as solar radiation, air temperature,

wind speed, humidity and air pressure, which were measured by the weather stations. A detailed

description of the dual crop coefficient approach for separately calculating soil evaporation and

crop transpiration is given by Allen et al. (1998). In Figure 2.3, soil evaporation and crop

transpiration for both field sites are given separately. Different weather, soil and management

conditions at field site 2 lead to lower evaporation and transpiration rates compared to field

site 1.

The Van Genuchten parameters saturated and residual water content θs , θr, α , n and the

saturated hydraulic conductivity Ksat were initially estimated based on texture and bulk density
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Figure 2.3: Daily precipitation, evaporation and transpiration rates during the growing season
2010; a) Field site 1 and b) Field site 2.

using the neural network pedotransfer functions of Rosetta lite module (Schaap et al., 2001),

which is implemented in Hydrus 2/3D. Inverse estimation of soil hydraulic properties are based

on time series datasets of pressure heads, which we read out with standard tensiometers. We ran

the simulations on a daily timestep with 264 data points in the objective function, which equates

44 pressure head values at each observation point in the model. These 44 pressure head values

at each observation point in the model (e.g. ridge 15 cm depth) represented the calculated mean

of 7 and 6 tensiometers, which were installed at the same depth (e.g. 15 cm soil depth) and same

location (e.g. ridge) at field site 1 and field site 2, respectively. As a first step we fitted the soil

hydraulic parameters θs and θr. Afterwards α, n and Ksat were optimized simultaneously. The

optimization approach was based on Levenberg-Marquardt non-linear minimization method.

Initially estimated soil hydraulic parameters and α, n, θs and θr and the saturated hydraulic

conductivity Ksat for both field sites are given in Table 2.3.

2.2.3.3 Initial and boundary Conditions

Pressure head values measured on 31 May 2010 reflecting the beginning of the observation

period (31 May to 24 August 2010) were used to adjust the initial conditions in the water

flow domain. Surface boundary conditions were set to atmospheric conditions in furrows and

planting holes, whereas plastic mulched areas were set to no flux conditions (Figure 2.4). For the

scenarios without coverage of the ridges (RT) and flat conventional tillage (CT) atmospheric

boundary conditions were applied to the entire surface boundary.

Although the diameter of the planting holes was in fact 5 cm, it was necessary to scale it

down to 1 cm width in the two-dimensional model in order to keep the correct dimension, when
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Figure 2.4: Boundary conditions of the model simulations; note that the bottom boundary varies
between the two field sites; vertical meshlines F1-3 and R1-3 were included to calculate lateral
water fluxes (Figure 2.9); for simulation of ridges without coverage (RT) and conventional tillage
(CT) atmospheric boundary conditions were implemented at the entire surface.

calculating, e.g. drainage water fluxes per m2. The upper left hand boundary was set to no flux,

which marks the transition from the plowed agricultural field to a compacted farm track. The

bottom boundary was defined as no flux conditions (field site 1) due to granite parent rock

in 1 m depth. At field site 2, free drainage conditions were applied to the bottom boundary,

because a soil excavation showed a deeper soil development than 1 m depth. The lower right

hand boundary was defined as seepage face. For the calculation of water fluxes at the transition

from ridges to furrows and vice versa, meshlines (F1-3 and R1-3) were included in the model.

Meshlines F1-3 reflect water fluxes coming from furrows but contribute to ridges. In contrast,

meshlines R1-3 represent the transition from ridges to furrows in slope direction (Figure 2.4).

2.2.3.4 Model evaluation statistics

Different statistical techniques such as Pearson’s correlation coefficient (R), coefficient of de-

termination (R2), Nash-Sutcliffe efficiency (NSE), model bias (e) and percentage bias (Pbias)

were used to evaluate the models. A comprehensive overview of the evaluation statistics for

hydrological models is provided by Moriasi et al. (2007). Pearson‘s correlation coefficient and the

coefficient of determination range from 0 to 1, where 1 indicates a perfectly linear relationship.

The Nash-Sutcliffe coefficient (Equation (2.6)) determines the relative magnitude of the residual
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variance compared to the observed data variance. The coefficient of efficiency varies between

−∞ and 1, where 1 indicates a perfect model. Model performance is unacceptable when the

value is < 0.

NSE = 1−
[ ∑n

i=1(Y obs
i − Y sim

i )2∑n
i=1(Y obs

i − Y mean)2

]
(2.6)

McCuen et al. (2006) noted that NSE values also depend on sample size, bias of magnitude

and outliers. Therefore he recommended reporting always the bias (Equation (2.7)), in the unit

of the variable) along with the NSE, which is computed by

e =
1

n

n∑
i=1

(Y sim
i − Y obs

i ) (2.7)

The percentage bias (Pbias) is easier to interpret and is determined by the ratio of the bias

(e) to the mean of the measured values (Y mean) multiplied by 100. In the case of soil water

potentials (negative values), a negative percentage bias indicates higher simulated pressure

heads in comparison to observed pressure heads.

2.2.3.5 Sensitivity analysis

Dynamic root development is not implemented in Hydrus 2/3D. Therefore we assumed based

on field observations an average rooting depth of 30 cm during the entire simulation period for

the model fitting procedure. Plant development to adult stage occurred relatively quickly within

approximately 4 weeks after emergence. Within this time period the differing spatial distribution

of roots in the soil has an effect on root water uptake and soil water status. We analyzed the

sensitivity of the water balance components such as seepage, runoff and drainage water fluxes

to differing rooting depths by varying the root depth from 10 cm to 60 cm in an interval of

10 cm. Although the calculation of the FAO56 dual crop coefficients includes actual weather

data information, the estimation of evaporation and transpiration rates is empirical and only an

approximate determination. We additionally applied a sensitivity analysis of the water balance

by changing the evaporation and transpiration rates inputs. Thus we maintained the original

calculated ratio of evaporation and transpiration but varied both rates in percentage terms.

Therefore we increased the original calculated values up to 100 %. Accordingly we reduced

the evaporation and transpiration rates to 0 %. The sensitivity analysis regarding both, root

development as well as evaporation and transpiration rates was accomplished for all surface

managements RTpm, RT and CT.
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Table 2.2: Model evaluation coefficients R, R2, Nash-Sutcliffe efficiency (NSE), bias (e) and
percentage bias (Pbias) for simulations of both field sites.

R R2 NSE e Pbias

Field site 1 0.89 0.79 0.79 -1.78 2%
Field site 2 0.76 0.58 0.48 -13.10 12%

Table 2.3: Initial estimates (est.) and optimized (opt.) van Genuchten parameters and saturated
hydraulic conductivity (Ksat) for both field sites.

θr θs α n Ksat

(cm3 cm−3) (cm3 cm−3) (cm−1) (-) (cm d−1)
est. opt. est. opt. est. opt. est. opt. est. opt.

Field site 1 Material 1 0.0402 0.071 0.4217 0.313 0.0266 0.046 1.452 1.408 102.9 103.0
Material 2 0.0471 0.138 0.4121 0.346 0.0057 0.006 1.641 1.2 81.94 29.4

Field site 2 Material 1 0.0574 0.134 0.419 0.301 0.0082 0.014 1.566 1.403 31.02 2.9
Material 2 0.0767 0.037 0.443 0.393 0.0065 0.006 1.599 1.2 19.13 15.4

2.3 Results

2.3.1 Model evaluation and parameter optimization

The comparison between observed and simulated pressure heads (Figure 2.5) showed a good

agreement at field site 1, whereas the agreement at field site 2 was less satisfactory. While, wet-

ting events in particular were simulated reasonably well, the low pressure heads during drying

cycles at the beginning of the observation period were underestimated, especially at field site 2.

The evaluation coefficients for both field sites are given in Table 2.2.

The optimization of the water retention parameters (Table 2.3) showed an initial overestima-

tion of the saturated water content θs, while the residual water content θr was underestimated.

The n values, which configure the steepness of the water retention curves, were smaller as initially

estimated, resulting in a flatter curve characteristic for all horizons at both field sites. Therefore,

the water holding capacity was higher in all four horizons and drainage occurred within a wider

range of pressure heads. The saturated hydraulic conductivity Ksatchanged to lower values in

the subjacent B-horizon at field site 1 and in both horizons at field site 2.
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Figure 2.5: Observed vs. simulated pressure heads in different depth for (a) field site 1 and (b)
field site 2; limits of gray area = ± standard deviation of the observed data, black solid line =
simulated pressure heads.
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2.3.2 Soil water dynamics

Figure 2.6 shows the pressure heads and water contents in the flow domain on day 21 of the

simulation period (June 20, 2010) of the growing season. After a dry period of 1 week, a rain

event with 8.4 mm and 11 mm at field site 1 and field site 2, respectively, occurred on this

day. Pressure heads in the top layer and in ridge positions are lower than in comparable furrow

positions under RTpm and RT, indicating that the soil is drier due to intense water uptake by

plants during the main growing stage. Differences in pressure heads in the top layer between

ridges and furrows are about -70 to -100 cm at field site 1, whereas pressure heads at field

site 2 differ between -200 and -40 cm. At both field sites, pressure head gradients are distinct

horizontally, which forces soil water to flow laterally from the furrows to the ridges. At field site

1, where the soil texture changes between the A- (sandy loam) and B- (silty loam) horizon, the

differences in pressure heads between ridge and furrow positions and the resulting horizontal

water flow is only characteristic for the A-horizon. In the subjacent B-horizon the effect of

RTpm and RT on pressure heads is negligible. At field site 2, where the A- (loam) and B- (silt

loam) horizon are fine-textured, the differences in pressure heads are distinct even in deeper

soil layers. Water flow from furrows to ridges due to almost horizontal pressure head gradients

was observed down to 50- 60 cm soil depth. Under conventional tillage, pressure head gradients

are distinctly vertical to the soil surface at both field sites, which causes a main vertical water

flow from the top layer to the sublayer. The differences in pressure heads between the top layer

and the sublayer are small at field site 1, whereas at field site 2 differences range between -40

and -160 cm. Although, the simulation of day 21 represents soil hydraulic conditions after a dry

period of 7 days, the B-horizons at both field sites are characterized by a high water content

ranging between 0.32 cm3 cm−3 and 0.36 cm3 cm−3. Due to an extreme rain event at day 13

and 14 of the simulation with a total amount of precipitation of 43 mm at field site 1 and 33.4

mm at field site 2, drainage processes occurred very slowly due to the finer soil texture of the

subsoils.

In comparison to the dry conditions, Figure 2.7 represents soil hydraulic conditions in the

flow domain during a monsoon event on simulation day 75 (August 13, 2010) with a total

precipitation amount of 50.4 mm and 50.6 mm at field site 1 and field site 2, respectively.

The comparison of pressure heads under the different management strategies at field site 1

shows no discrepancy in pressure heads between the ridge and the furrow positions due to the

high hydraulic conductivity Ksatin the A-horizon. The soil water is quickly and homogeneously

distributed in the soil volume. Pressure head gradients are distinct vertically in the soil profile.



2.3. RESULTS 53

However, the effect of plastic mulching on pressure heads during a monsoon event is more evident

at field site 2. Due to a lower hydraulic conductivity in the top layer, soil water distribution

occurs more slowly compared to field site 1 and a part of the soil remains unsaturated below

the plastic film in the top layer as well as in the sublayer of the ridges. RT leads to a more

homogeneous infiltration, resulting in a saturated B-horizon and in isolines, which are distinctly

parallel to the soil surface.

The simulation showed higher pressure heads at the beginning and at the end of the growing

season in the furrow positions, which reflects a smaller transpiration rate in the initial phase

of the plant development and in the senescence stage before harvesting, when most of the

aboveground plant parts had already died. Smaller transpiration rates coincide with higher

evaporation rates resulting in a reversed water flow directed from the ridges to the furrows.

However, these simulation results could not be confirmed by field observations. On the contrary,

the field measurements revealed that pressure heads in the ridge positions were lower at the

beginning as well as at the end of the growing season than in the furrow positions.

2.3.3 Flow velocities

Figure 2.8 shows the effect of tillage management on flow velocities at both field sites. Affected by

the bottom boundary conditions, main flow direction is aligned laterally at field site 1 caused by

the granite layer at 1 m depth. Field site 2, however, shows a vertical flow direction representing

a deeper developed soil. At field site 1, the coarser soil texture of the top layer and the high

saturated hydraulic conductivity of 103 cm d−1 implicate high flow velocities and interflow

above the finer textured subsoil. The bottom of the ridges is only slightly affected by the high

velocities. Protected by the plastic coverage, velocities in the entire ridge area are <8 cm d−1,

while the soil water velocities in the top layer below the ridge are 4 to 6-times higher. In general,

flow velocities are increasing in slope direction. The flow velocities found at the field site 2 are

generally lower than at field site 1. Due to a similar low saturated hydraulic conductivity as

well as a similar soil texture in the A- and B-horizon at field site 2, the layer border does not

act as an interflow basis. Highest flow velocities (10 cm d−1) are reached at the transition from

furrows to ridges. Plastic mulching induces low flow velocities (0-1.6 cm d−1) in the ridge area

down to 50 cm depth (from top of the ridge surface).
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Figure 2.6: Pressure head (h) and water content (θ) under different management strategies at
day 21 for (a) field site 1 and (b) field site 2.
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Figure 2.7: Pressure head (h) and water content (θ) under different management strategies at
day 75 during a monsoon event for (a) field site 1 and (b) field site 2.
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Figure 2.8: Flow velocity during a monsoon event (day 75) under different management systems
at (a) field site 1 and (b) field site 2, black arrows indicate the main flow direction.

2.3.4 Water fluxes

To investigate the effect of the different management strategies on water fluxes, cumulative water

fluxes at the transitions from furrows to ridges as well as at the transition from ridges to furrows

were determined (Figure 2.9). Depending on unequal bottom boundary conditions, cumulative

water fluxes varied strongly between both field sites due to different dominant flow directions.

At field site 1, where subjacent granite bedrock material forced water to move laterally in slope

direction, plastic mulching led to a reduction of water fluxes, whereas water fluxes in simulations

without coverage and with a flat surface were high. However, the total amount of water fluxes at

R3 after the simulation period only differed slightly between management strategies. In contrast

to field site 1, water percolated at the bottom boundary of field site 2, which induced a main

vertical water movement, resulting in positive water fluxes at the transition from furrows to

ridges and negative water fluxes at the transition from ridges to furrows in slope direction as

a result of lower pressure heads below the plastic coverage. Without coverage (RT) the effect

was diminished. Under conventional tillage (CT) all values were negative representing the high

influence of free drainage conditions at the bottom.

The water balance of the calibrated model with cumulative water fluxes in and out of the flow

domain after the simulation period of 86 days is shown in Table 2.4. The water balance error

of all simulations was considerably low (< 0.5%). As mentioned before, the differing boundary

conditions of both field sites resulted also in large differences in the cumulative water fluxes. At
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field site 1 seepage was the only subsurface outflow and the bottom boundary of the model was

set to no flux conditions (granitic bedrock). This combination strongly supported the lateral

subsurface downhill flow resulting in high seepage water fluxes. On the contrary, the bottom

boundary of field site 2 was defined as a free drainage boundary (deeper developed soil), which

resulted in a dominating vertical water movement and therefore in high cumulative drainage

water fluxes compared to seepage. The runoff was calculated from the amount of water, which

ponded theoretically at the surface when the infiltration capacity was exceeded. The difference

in runoff rates between both field sites was caused by varying saturated hydraulic conductivity.

The transpiration and evaporation rates differed between both field sites because the potential

evaporation and transpiration was calculated based on different weather stations (Figure 2.3).

Since the potential evaporation and transpiration rates were already low due to a very high

average humidity (average humidity of 75% for field site 1 and 91% for field site 2), the actual

transpiration rates was determined from the potential ET rates and the soil water status. When

the soil was saturated or near saturation in the monsoon season, the root water uptake became

zero (Equation (2.3)). The initial and final water content of both field sites were comparable,

so that the change in water storage was very low after the simulation period of 86 days.

The comparison among the tillage treatment showed that seepage water was lowest under

RT compared to RTpm and CT at field site 1, while the lowest seepage water amount was

characteristic for RTpmat field site 2. The simulation at field site 1, however, showed that the

differences in seepage water amount were almost negligible, only the flat conventional tillage led

to higher amounts of seepage water. Drainage water at field site 2 was about 16% higher without

coverage than with coverage. The evaporation rate was 40% higher without coverage at field

site 1 and 48% at field site 2, respectively. The transpiration, however, did not vary across the

different management strategies. As expected, plastic mulching increased surface runoff. Low

runoff rates at field site 1 reflected the high saturated hydraulic conductivity (103 cm d−1) in

the top soil. At field site 2, surface runoff was reduced to 65% under RT compared to RTpm.

2.3.5 Sensitivity analysis

A dynamic root development is not implemented in the Hydrus 2/3D model so that the impact

on water balance outputs by increasing root water uptake in the first stage of growth could

not be captured. Therefore, we analyzed the impact of differing rooting depths on cumulative
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Figure 2.9: Cumulative water fluxes at the transition from furrows to ridges (F1-3) and from
ridges to furrows (R1-3) in slope direction, see also the graphical implementation in Figure 2.4.
Due to different bottom boundary conditions at both field sites, only positive cumulative water
fluxes are simulated at field site 1 due to mainly lateral water movement, at field site 2 the main
vertical water movement results in positive and negative water fluxes: (a) field site 1 and (b)
field site 2.

Table 2.4: Water balance of the model flow domain after the simulation period of 86
days. Note that seepage is the only outflow of the flow domain at field site 1 and free
drainage is the bottom boundary only at field site 2. P: precipitation (varies between
treatments because of differing atmospheric boundary lengths), WCinitial: initial water
content (varies between treatments because of differing model volumes), WCfinal: final
water content, T: transpiration, E: evaporation, S: seepage, R: runoff, D: drainage, rel.
err.: relative error of the water balance; All values are given in liter and related to the
xyz-dimension of the model, the values in braces are associated with an area of m2 for
P, T, E, S, R, D and with a volume of m3 for WCinitial and WCfinal.

P WCinitial WCfinal T E S R D rel.err.
%

Field site 1 RTpm
a 20.03 14.37 13.96 5.82 1.69 12.65 0.15 - 0.33

(992) (324) (315) (141) (41) (1183) (4)
RTb 20.49 14.37 13.83 5.79 2.78 12.23 0.044 - 0.49

(992) (324) (312) (140) (67) (1143) (1)
CTc 20.49 14.28 13.71 5.80 2.63 12.79 0.029 - 0.47

(992) (321) (308) (140) (64) (1306) (1)
Field site 2 RTpm 23.85 16.81 15.22 2.06 0.64 0.002 7.66 14.99 0.23

(1178) (379) (343) (50) (15) (0) (185) (367)
RT 24.39 16.81 15.18 1.99 1.21 0.094 4.98 17.76 0.03

(1178) (379) (342) (48) (29) (8) (120) (434)
CT 24.39 16.77 15.11 2.00 1.11 0.015 5.56 17.30 0.19

(1178) (377) (340) (48) (27) (1) (134) (408)

a ridge tillage with plastic mulch
b ridge tillage without plastic mulch
c conventional tillage with a flat surface
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water fluxes such as seepage, drainage, runoff and water storage by varying the rooting depth

from 10 cm to 60 cm (Table 2.5). As expected, with increasing rooting depth the cumulative

drainage water fluxes decreased under all tillage management systems due to an increased root

water uptake. Furthermore, the increased root depth led to a decrease in seepage water only

at field site 1, while the seepage water at field site 2 was consistent. The cumulative runoff did

not show a clear trend. At field site 1 seepage water was mostly affected by changes of rooting

depth, however, the overall change in seepage water and the influence on water balance was

estimated to be low. This was also true for the water balance outputs of field site 2, where

cumulative drainage, seepage and runoff water fluxes at the end of the simulation period of 86

days showed only marginal changes as affected by differing rooting depths. Water storage was

less after the simulation period, however, the varying rooting depths influenced the change in

water storage only marginally. In general, the water balance outputs were robust against varying

rooting depths. Further, the ratio between different treatments was also relatively robust. The

cumulative runoff under RT at field site 1 was between 64% and 74% less compared to RTpm

under varying rooting depth. The difference in runoff between CT and RTpm was about 51 –

81%. At field site 1 the cumulative seepage water fluxes differed only up to 4% between the

different treatments. At field site 2 the varying rooting depth affected the total amount of

cumulative drainage water only slightly. The ratios between the treatments were constant and

the total amount of cumulative drainage water under RTpm was about 15-16% and 13-14% less

compared to RT and CT, respectively. The runoff rates at field site 2 were constant as affected

by variation of rooting depth.

Table 2.6 shows the cumulative water fluxes after a simulation period of 86 days resulting

from the percentage variation of the evapotranspiration (ET) rate. Generally the amounts of

cumulative runoff at field site 1 and cumulative seepage at field site 2 were negligible. As we

expected, the increase of the ET rate to 100% resulted in decreased cumulative seepage water

fluxes at field site 1 and decreased runoff and drainage water fluxes at field site 2. As affected

by the variation of ET rates the most sensitive component of the water balance was seepage

water at field site 1. By reducing ET to 0%, cumulative seepage increased by 56%, 65% and 61%

under RTpm, RT and CT, respectively, whereas the increase of ET to 100% led to a decrease

in seepage water up to 39% under RTpm and CT and 41% under RT. By reducing ET to 0%,

cumulative drainage water at field site 2 increased between 14% and 15% under all treatments.

In the case of increasing ET by 100% the seepage water was reduced to 12-13% under all

treatments. Significant runoff rates after a simulation period of 86 days occurred only at field

site 2. The results revealed that cumulative runoff was not sensitive to the variation of ET
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rates. By reducing ET to 0% the maximum change in runoff was only 3% under all treatments,

whereas a 100% increase of ET led to a reduced runoff of 3% under RTpm and RT and 6% under

CT. The ratio of the amounts of cumulative water fluxes between the different treatments was

also not sensitive to the variation of ET at field site 2. The ratio of cumulative drainage and

runoff rates at field site 2 differed only slightly to a maximum of 2%. By increasing ET rates at

field site 1, the ratio of seepage water fluxes under RT and RTpm increased from 2% to 8% and

from 1% to 6% between RT and CT.

2.4 Discussion

The modeling study showed that the simulation for field site 1 predicted the measured pres-

sure heads reasonably well, whereas pressure head measurements at field site 2 were not well

represented by the model simulation.

As the Hydrus 2/3D code does not calculate surface runoff directly, it was necessary to

multiply the precipitation data by a factor of 2 for indirectly simulating runoff from plastic

mulched ridges to the permeable furrows. This simplified method does not reflect the real field

conditions, because ridges were often uneven and small depressions at the top of the ridges

support the development of water storage in puddles. However, simulation results between

observed and simulated pressure heads showed that the multiplication method was adequate to

overcome the problem in calculating surface runoff. This was confirmed by Dusek et al. (2010),

who also found that field conditions are better reflected by increased precipitation in comparison

to the original data.

Additionally, the simulation neglected that interception on the crop canopy reduces the

amount of infiltration water, which plays a relevant role especially during the main growing

stage. Field observation showed that the potato canopy covered up to 80% of the surface area.

Timlin et al. (2001) confirmed the great influence of water redistribution, which can be caused

by crop canopies and suggested to simulate canopy architecture and flow processes.

Finally, root development during growing season could not be simulated and might result in an

overestimated root water uptake at the beginning of the growing season. However, the sensitivity

analysis revealed the low impact of different rooting depths on water balance components such as

drainage, runoff and seepage. The calculation of evaporation and transpiration rates was based

on the FAO dual crop coefficient approach by Allen et al. (1998), which uses empirical crop

coefficients. It is evident, that this procedure can only be an approximation of evaporation and
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transpiration rates, however, the sensitivity analysis of water balance components on percentage

changes of evaporation and transpiration rates showed that cumulative seepage water flux was

sensitive, while drainage and runoff rates were relatively robust. The ratio of cumulative seepage,

drainage and runoff water fluxes between the different treatments was also robust to changes

in root depth and evaporation and transpiration rates.

During dry periods pressure head gradients were found to deviate horizontally in the case

of RTpm indicating a lateral flow direction from the furrows to the ridges in the top layer.

These patterns were weakened under RT as only the topography affected soil moisture pattern.

Pressure head gradients under RT deviated more vertically, which forced water to flow in a

more enhanced vertical than lateral direction. Under conventional tillage (CT), pressure head

gradients were found to be exactly vertical to the soil surface inducing a clearly vertical soil

water movement.

During monsoon events, however, the dominating flow directions were not as pronounced as

during dry conditions. At field site 1, where the top layer was characterized by a coarse sandy

loam, ridges were fully saturated in the root zone, even in the case of RTpm. At field site 2, the root

zone was protected against full saturation in the case of RTpm because of a less coarse textured

top layer and a lower hydraulic conductivity. While drainage in the root zone accelerated, when

the topsoil consisted of a coarser-textured material and full saturation occurred only for short

after the rain event, the less coarse-textured topsoil was close to full saturation for a much

longer time period. However, it has to be considered that monsoon events in the measurement

period 2010 were indeed comparatively small with a maximum daily precipitation amount of

<80 mm and a relatively low intensity. Precipitation observations of former years indicated that

monsoonal events can reach up to 100-150 mm d−1. Taking even higher precipitation amounts

into account, even a finer textured top layer would be fully saturated. Hence, the application of

sandy soils with a coarse texture, which equals the local method, ensures a rapid drainage of

the root zone.

The analysis of flow velocities during monsoon events showed that an interflow phenomenon

occurs, when the topsoil is characterized by a coarse soil texture, a high saturated hydraulic

conductivity and additionally overlies finer textured subsoil with an underlying compact bedrock

material. These conditions are enhanced by ploughing and application of sandy soil material

before growing season. Based on these soil properties, flow velocities in the topsoil were simulated

to be 6-8 times higher than in the overlying ridge and in the underlying subsoil. Therefore the

high flow velocities in the topsoil assure a quick drainage of the root zone particularly at sloped

field sites but concurrently might increase the risk of leaching via interflow. In contrast, the soil
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properties differed at field site 2 and interflow was not evident in the simulation. A generally

finer soil texture in the top layer slows down the drainage process in the root zone but decreases

the risk of leaching via interflow.

The comparison of drainage water under different management strategies showed that plas-

tic mulching reduces the amount of drainage water up to 16% and consequently reduces the

contribution to the groundwater. Accordingly, plastic coverage might reduce the conservative

transport of nitrate to groundwater and might temporally extend the nitrate availability in the

root zone below the plastic coverage, but further research on leakage of fertilizer and agrochem-

icals under plastic mulched ridge cultivation is necessary. Concurrently, the modeling study

showed that RTpm increases surface runoff up to 65% compared to RT and CT, which supports

a quick water contribution to the river network in the catchment. A substantially increased

runoff generation in a plastic mulched pineapple culture was also found by Wan and El-Swaify

(1999). The high impact of plastic mulched ridge cultivation in agricultural fields on hillslopes by

increasing significantly surface runoff, exacerbates the problem of phosphorous transportation

with sediments via overland flow to the stream networks. This is supported by Kim et al. (2001),

who found that the discharge of phosphorous associated with sediments from agricultural areas

causes eutrophication and deterioration of water quality in downstream reservoirs in South

Korea.

2.5 Conclusions

In this study, a combination of field measurements and process-based model simulations was

used to evaluate the effect of plastic mulched ridge cultivation in comparison to ridge cultivation

without plastic coverage and conventional flat tillage management on soil water dynamics. It

was demonstrated that plastic mulching induces typical soil moisture patterns mainly in the

topsoil during dry periods compared to the other tillage systems, whereas the impact of tillage

management on soil water dynamics in the subsoil was low. During monsoon events, however,

no significant soil moisture patterns caused by tillage management could be detected since the

soil profile was almost fully saturated, depending on the soil texture.

Summarizing the advantages and disadvantages of the three different management systems

on hillslopes in a monsoon climate, conventional tillage (CT) is inadvisable due to the higher

amounts of seepage water and the higher rates of surface runoff compared to RT. In addition, a

flat surface is predestined for erosive denudation. RTpm was found to have the lowest amount

of drainage water and the highest runoff rates. Ridge tillage without coverage (RT) showed
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higher amounts of drainage water compared to RTpm as well as the lowest runoff rates of all

management practices. Therefore, ridge tillage without coverage (RT) was evaluated as the best

management strategy to avoid high amounts of surface runoff. In order to reduce drainage water

amounts, however, ridge tillage with plastic mulch (RTpm) showed the best results.

Additionally, it has the advantages of earlier plant emergence and weed control as reported by

local farmers. To combine the advantages of both treatments as well as to diminish the negative

effects of both, we conclude that the application of perforated and biodegradable plastic mulch

seems to be the most promising method in agricultural dryland farming affected by monsoonal

climate.
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Chapter 3

Effects of ridge tillage on flow processes

in the Haean catchment, South Korea
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Abstract

The intense agricultural land use has a considerable impact on water quality world-

wide. A detailed understanding of the transport of agrochemicals requires knowledge

about flow processes and how they are affected by agricultural management oper-

ations like tillage. This is especially important in regions influenced by extreme

rainstorm events. We carried out four dye tracer experiments on two sloped agricul-

tural dryland fields in South Korea to compare flow processes under (i) conventional

tillage, (ii) ridge tillage, (iii) ridge tillage with plastic mulch and (iv) plastic mulched

ridge tillage with well developed potato crops. We found that the ridge topography

enhanced the infiltration in depression zones like furrows and planting holes. Deeper

in the soil the water flow was funnelled preferentially above the tillage pan, however,

preferential macropore flow to greater depths was absent. Furthermore, we found sub-

stantially higher surface runoff under ridge tillage with plastic mulch before the crop

1Correspondence to: Marianne Ruidisch, Soil Physics Group, BayCEER, University of Bayreuth, 95440
Bayreuth, Germany.
E-mail: ruidisch@uni-bayreuth.de
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canopy was developed. Therefore, to reduce surface runoff, we suggest to encourage

crop production in ridge cultivation with perforated plastic mulch. Additionally, to

reduce the leaching risk of agrochemicals and fertilizers via subsurface flow above the

tillage pan we propose the establishment of riparian buffer zones between dryland

fields and the river network.

Keywords: agricultural soils; dye tracers; preferential flow; flow patterns; ridge cultivation;

tillage management

3.1 Introduction

Worldwide, intense agriculture is accompanied by increasing use of fertilizers, pesticides and

herbicides to meet the food demand of a growing population. This trend has a considerable

impact on ecosystem services. In regions like East Asia that are characterized by seasonal

extreme rainstorm events, leaching of agrochemicals plays a key role in pollution of freshwater

resources. Over the last decades, a substantial increase of extreme rainfall during the summer

monsoon has been observed for western, southwestern, and southern parts of China and South

Korea (Zhai, Sun, et al., 1999; Zhai, X. Zhang, et al., 2005; Park et al., 2010). Non-point-source

pollution like intensified export of sediments and nutrients from agricultural land in combination

with these increasing amounts and intensities of precipitation strongly affects the fresh water

resources of lakes and reservoirs and results in water quality degradation in these regions (Park

et al., 2010; W. Zhang et al., 1996).

To determine the pathways of agricultural pollutants, we have to identify the dominant

flow processes in agricultural soils. In general, two major types of water flow in soils can be

distinguished: uniform and non-uniform (i.e. preferential) flow. The latter is characterized by

water and solute movements bypassing a fraction of the porous soil matrix and can further

be classified into a) macropore flow occurring in root channels, earthworm burrows, fissures

or cracks, b) unstable flow induced by textural layering, water repellency, air entrapment, or

continuous non-ponding infiltration and c) funnel flow describing lateral redirection and funneling

of water caused by textural boundaries (Hendrickx and Flury, 2001). Preferential flow paths are

responsible for rapid water movement and solute transport to greater soil depths or groundwater

(Bogner, Gaul, et al., 2010; Gish et al., 1998; Simunek et al., 2003). Their occurrence in soils

depends on soil texture, soil structure, topography, surface microrelief and management as well

as on the initial soil water content and the intensity and duration of rainfall (Bachmair et al.,



3.1. INTRODUCTION 71

2009; Jarvis, 2007).

Preferential flow is all the more important when intense agriculture is practiced under the

influence of monsoon climate. In South Korea, for instance, a considerable amount of chemical

fertilizer of up to 450 kg ha−1 is applied yearly on dryland farming fields (Statistics of Korea).

Although high rainfall intensities strongly support preferential flow in macropores, the leaching

of a particular agrochemical agent depends on its sorption characteristics, nature of biological

transformations and the form of its application (Jarvis, 2007).

Agricultural management practices like ploughing, harrowing, drilling and wheel traffic have

been identified to strongly affect water flow and infiltrability (Bogner, Mirzaei, et al., 2012;

Kulli et al., 2003; Petersen et al., 2001). Both, Bogner, Mirzaei, et al. (2012) and Petersen et al.

(2001) found that the tillage pan could initiate water funnelling and disconnect macropores

situated below from processes in the ploughed horizon. Furthermore, Kulli et al. (2003) noted

in their study that wheel traffic caused soil compaction along with decreased permeability and

macroporosity and supported water ponding in the compacted parts of the soil.

Ridge cultivation is another common management practice for example in vegetable produc-

tion and was found to have positive effects on crop yield and weed control when using plastic

mulch (Lament, 1993). Its effects on water flow and solute transport, however, has rarely been

investigated and most of the studies concentrated on soil water dynamics in ridge cultivation

systems without plastic mulch. Leistra and Boesten (2010), for instance, reported that runoff

from ridges to furrows (i.e. induced by surface topography) led to higher soil moisture in furrows.

Thus, water movement occurred laterally from furrows to ridges and vertical water flow and

solute movement under ridges was minimized (Bargar et al., 1999). However, the effect of plastic

mulched ridge cultivation systems on non-uniform flow regimes has not been considered in the

literature so far.

In our study, we used the food dye tracer Brilliant Blue FCF to directly visualize flow

patterns in irrigation experiments under (i) flat conventional tillage, (ii) ridge tillage, (iii) ridge

tillage with plastic mulch and (iv) ridge tillage with plastic mulch cropped with potato plants.

Brilliant Blue is often used in tracer studies in soil hydrology and is well known for its low

toxicity, relatively high mobility and good visibility against most soil colors (Flury and Flühler,

1995). Our objectives were (i) to compare infiltration and surface runoff under different tillage

management systems, (ii) to investigate the effect of ridge tillage, plastic mulch and the crop

root system on flow patterns qualitatively using binary images and index functions and (iii) to

evaluate the sustainability of the ridge cultivation systems in terms of pollutant transport.
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3.2 Materials and methods

3.2.1 Study site

The Haean-myun catchment, also called Punchbowl, (128◦1′33.101′′E, 38◦28′6.231′′N) is located

in the mountainous northeastern part of South Korea and is approximately 64 km2 large. The

bowl shape is characteristic and subdivides the catchment into three major land use zones. The

steep hillslopes are mostly forested (58%) and the more gentle ones are dominated by dryland

farming (22%). Rice paddies (8%) are characteristic for the central area of the catchment and

the remainder is occupied by residences, grassland and field margins. The annual precipitation

in the Haean catchment is about 1577 mm (11-years average) with 50–60% of the annual rainfall

occurring during the monsoon season from June to August.

The geology of the catchment is dominated by granite bedrock material which is strongly

weathered due to the high precipitation rates. It constitutes the parent material for Cambisols –

the most widely spread soil type. As a consequence of extreme rainfall events during the summer

monsoon, the upper soil horizons are often eroded. To compensate this high erosion loss, the

local farmers commonly bring sandy soil material at the beginning of the growing season from

outside of the catchment and distribute it on their fields.

On the dryland fields agricultural farming usually starts between April and May depending

on the crop type. The common procedure is a primary fertilization using mineral fertilizer in

form of granules and a subsequent plouhging to mix them into the top soil. Therefore, a tillage

pan is characteristic for the most dryland farming soils. Afterwards, ridges (approx. 15 cm height,

30 cm width) are created perpendicularly to the slope with a ridge to ridge spacing of approx.

70 cm. Typically, the ridges are covered with a black plastic mulch (polyethylen) perforated

with planting holes (diameter 5 cm) spaced by 25–30 cm while the furrows remain uncovered.

Depending on the crop type, seeds are sowed or juvenile plants are planted after the creation of

the ridges. During the growing season herbicides and pesticides are applied several times and

fertilizers spread a second time depending on the crop type. Finally, harvesting usually begins

in late August to September.

3.2.2 Experimental set up

We carried out four irrigation experiments at two potato fields (Solanum tuberosum L.) on

hillslopes. Field site 1 (128◦6′32.625′′E, 38◦18′4.148′′N) was located in a distance of approx. 830

m from field site 2 (128◦6′54.803′′E, 38◦17′43.254′′N). Both soils can be characterized as strongly
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Table 3.1: Soil physical properties of the experimental sites.

Horizon
(WRB)

Deptha

(cm)
Clay (%) Silt (%) Sand (%) Soil texture

class
Bulk density
(g cm−3)

Site 1
Ap 0–25 3.2 16.4 80.3 Loamy sand 1.43
2Apbb 25–50 20.2 53.4 26.4 Silt loam 1.45
Bwb 50–100 24.8 46.6 28.6 Loam 1.38

Site 2
A1 0–35 1.9 14.5 83.6 Loamy sand 1.41
A2 35–45 8.1 28.9 63.0 Sandy loam 1.66
A3 45–55 7.6 27.9 64.5 Sandy loam 1.61
2Apb 55–70 20.9 58.2 20.9 Silt loam 1.28
2Bwb 70–100 13.6 38.9 47.5 Loam 1.56

a approximate depth
b horizon continuous in the second experiment (RT) only.

anthropologically modified Cambisols with eroded A-Horizons. Indeed, intense fertilization

and application of pesticides and herbicides have altered the soils chemically. Additionally,

allochtonous sandy soil material was spread several times on top of the fields. The soils were

classified as a terric Cambisol and a terric Anthrosol over haplic Cambisol (IUSS Working Group

WRB, 2006) with a slope of 8◦ and 6◦ on field site 1 and 2, respectively. We selected these fields

because their slope degrees and soil physical properties were comparable (Table 3.1).

We carried out the first two experiments on field site 1 and the last two at field site 2. The

first experiment (CT) took place after ploughing and before ridges were created, so that the

soil surface was flat and represented conventional tillage management. The second one (RT)

was carried out after the creation of ridges. At field site 2 potato crops were planted in ridges

covered with black plastic mulch, and we conducted the third experiment (RTpm) in the early

season when seed potatoes were just sowed. Finally, the last irrigation (RTpm+crops) followed in

the later season when potato crops and their root system were already well developed. In the

following we use CT, RT, RTpm and RTpm+crops to refer to the corresponding experiments or

plots.

Before irrigation we installed soil moisture sensors (Decagon devices, Inc., Pullman, WA-

99163, USA) to monitor the volumetric water content θV . These sensors measure the dielectric

constant based on frequency domain technology. On CT, they were placed in 5 and 20 cm depth

from the flat soil surface. In experiments RT and RTpm, two sensors were situated in furrows in

5 and 20 cm depth from the furrow surface and another two in ridges in 5 and 20 cm depth from

the ridge surface. Due to technical problems, the fourth experiment was carried out without

any soil moisture sensors. We recorded the values of soil moisture in a 2 minutes interval on a

data logger (Decagon devices, Inc., Pullman, WA-99163, USA).
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We irrigated a surface of 2 m2 with a tracer solution containing 5 g l−1 of Brilliant Blue

FCF using an automated sprinkler. Because this tracer can be retarded compared to infiltrating

water (Flury and Flühler, 1995), we added 5 g l−1 potassium iodide on plots CT and RTpm as a

reference tracer. To calculate the amount of surface runoff the irrigation area was equipped with

an infiltration frame. It channelled the surface runoff via internal tubes into buckets outside of

the frame. The total time and amount of irrigation varied among experiments due to technical

problems with blocked sprinkler jets. However, the experiments were still comparable (Table 3.2).

One day after the irrigation we excavated 8–10 soil profiles of 1 × 2 m spaced by 10 cm on

each plot. For visualization of the iodide tracer, an indicator solution with iron (III) nitrate and

starch was prepared (Lu and Wu, 2003) and sprayed onto the excavated soil profiles. All profiles

were equipped with a metallic frame of 2 m2 and a Kodak color scale and photographed with a

digital single lens reflex camera (Canon EOS 1000D). Only the parts of the profiles surrounded

by the frame were analyzed.

The soil profiles were sampled systematically in Brilliant Blue stained and non-stained areas

to determine soil physical properties. We carefully scraped soil material from different profiles

and analyzed the texture in a laser particle size analyzer (Mastersizer S ’MAM 5044’, Malvern

instruments GmbH, Herrenberg, Germany). Additionally, we took undisturbed samples with

small soil core rings (diameter 2.8 cm, height 1 cm) in stained and non-stained parts. They were

weighted, dried for 24 hours at 105◦C in a drying oven and weighed again to calculate the bulk

density.

3.2.3 Statistical analysis

The tillage pan was a prominent feature observed on all experimental sites and might influence

the soil physical properties. Therefore, we tested whether the bulk density varied significantly

above and below the tillage pan. There were no indications that the distribution of the data

was non-normal (quantile-quantile plot and the Shapiro–Wilk test) or that the variance varied

from plot to plot (Bartlett’s test). Because the sample size differed between soil horizons we

performed the Welch t-test. All statistical tests were done in R (R Core Team, 2012).

3.2.4 Image processing

We corrected the images for perspective and radial distortion such that they corresponded to

pictures taken by an ideal camera looking perpendicularly onto the profiles. The transformation
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Figure 3.1: Images processing from a) rectified dye tracer image to b) background image and c)
binary image used to calculate image indices.

was calculated by

~v =
1

1 + κ · 〈~u, ~u〉
· ~u (3.1)

where the parameter κ is the magnitude of the radial distortion, ~u are coordinates of a point

in the original image and ~v are coordinates in the corrected one and the brackets 〈〉 indicate

the inner product. If κ is negative, the distortion is barrel-shaped, while for positive κ it is

pincushion-shaped (Steger et al., 2008). The parameter κ is obtained in a camera calibration

procedure with a special calibration plate. Subsequently, we transformed the images from RGB

to HSI (hue, saturation, intensity) color space and classified them into Brilliant Blue stained

(black) and non-stained (white) parts resulting in a binary image. Indeed, the HSI color space is

more suitable for color-based segmentations of images taken under varying illumination. More

details on image transformation and classification are given in Bogner, Gaul, et al. (2010). For

the experiments RT, RTpm and RTpm+crops we additionally produced a second binary background

image, where soil was coded black and the background between ridges white (Figure 3.1). The

correction of distortion and color segmentation were done in Halcon ver. 10.0 (MVTec Software

GmbH, Munich, Germany).

3.2.5 Image index functions

We used the binary images to assess differences between the tillage management systems. The

first two experiments (CT and RT) show the influence of soil surface topography on flow patterns
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in general. By comparing the experiments RT and RTpm, we can infer the effect of plastic mulch.

Finally, we can extract information about the impact of the potato root system on flow patterns

by comparing the images on plot RTpm with those on RTpm+crops.

To effectively analyze the flow patterns in binary images, we calculate image index functions.

An index function is a real-valued function of a row ~r of length m in a binary image (i.e. of

a binary vector). These functions are constructed such that they are independent of spatial

scale and resolution of the image and confined to the interval [0, 1]. They summarize different

features of a binary image row by row. Indeed, because the vertical direction is the primary

direction of water movement in the vadose zone, these functions summarize the horizontal and

emphasize the vertical configuration of patterns. For a detailed mathematical description see

(Trancón y Widemann and Bogner, 2012) who we follow closely in the description of image

index functions stated below. In the following, we identify stained pixels with the integer 1 and

non-stained with 0.

The dye coverage is a well-known index function in dye tracer studies. It shows the proportion

of stained pixels:

ID(~r) =
1

m

∑
iri (3.2)

We define contiguous sequences of stained pixels as runs. Their lengths represent the width

of stained objects in an image row and their number is called the Euler number. Normalized by

the maximum number of possible runs (i.e. m/2) gives:

IE(~r) =

∣∣R1(~r)
∣∣

dm / 2e
(3.3)

where R1 is a function that calculates the sequence of run lengths and the brackets de are

the ceiling function that rounds up to the nearest integer. IE(~r) is small if the patterns are

dominated by large stained objects and attains its maximum of 1 for a regular sequence of

alternating stained and non-stained pixels.

The distribution of run lengths can be summarized by their minimum, maximum and median.

In our experiments, however, we only used the maximum for the analysis because it was the

most suitable index to distinguish between the different tillage managements

IMAX =
1

m
max

(
R1(~r)

)
(3.4)
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Furthermore, we can measure how contiguous the runs are by defining:

IC(~r) =
〈
R1(~r),R1(~r)

〉 / (∑
iri
)2

(3.5)

The indeterminate case where there are no stained pixels in a row is set to 1. IC can be

interpreted as the reciprocal of a non-integer measure of the number of stained objects weighted

by their size. It behaves differently compared to the other index functions because it is 1 for

completely stained and completely non-stained rows. Therefore, for an easier interpretation we

used 1− IC (i.e. we flipped it horizontally) and called this new index function fragmentation

IF(~r) = 1− IC(~r) (3.6)

In an image row where large stained objects dominate (i.e. contiguous runs), IF will be

smaller compared to an image row with smaller stained objects given the same proportion of

staining (i.e. equal ID). Furthermore, IF equals 0 for completely stained and non-stained image

rows.

Last but not least, we want to assess the information contained in an image row ~r via

the metric entropy, a version of the famous Shannon’s entropy. Shannon (1948) defined the

information content of an outcome x of a discrete random variable as h(x) = − log2 p(x), p(x)

being the probability of occurrence of the outcome x. It is measured in bits. The average

information content (i.e. Shannon’s entropy) is defined as

H(X) = −
∑
x∈X

p(x) · log2 p(x) (3.7)

for a set of events X with probability of occurrence p(x1), p(x2), . . . , p(xn). Among all dis-

tributions with n possible events, H attains its maximum of log2 n for the uniform distribution.

This is intuitively clear for the average information content is equivalent to our uncertainty

about which event will occur. In other words Shannon’s entropy measures how much information

is “produced” by the random variable. For an event that will certainly occur H is equal to 0.

Now let’s consider the staining of a pixel as realization of a binary random variable (i.e.

possible outcomes are stained or non-stained). In this case H is maximum for p(1) = p(0) = 0.5

and is called the binary entropy function. Replacing the theoretical probabilities in (3.7) by

empirical frequencies, p(0) and p(1) we can calculate Shannon’s entropy via

H(~r) = −
(
p(0) · log2 p(0) + p(1) · log2 p(1)

)
(3.8)
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Often, it is more informative to consider the entropy of substrings or words (~w) of length L

in a binary vector (Ebeling1995 ). Normalizing by L yields the metric entropy:

IMEL(~r) =
1

L
·H
(
WL(~w)

)
(3.9)

where H is the generalization of Shannon’s entropy for words of length L. In other words, the

random variable X from equation (3.7) is defined to pick an arbitrary word of length L from

~r. For our images we chose L = 8. WL is a sliding window function that moves through the

image row ~r to produce the different words. The metric entropy gives useful values only if

m� L. Compared to Shannon’s entropy in equation (3.7), the metric entropy allows to assess

the correlation structure inside words. Indeed, metric entropy attains its maximum when single

pixels in the words are uncorrelated and decreases for correlated pixels. For binary sequences

IMEL is confined to the interval [0, 1].

Special care should be taken when calculating image index functions for soils with an uneven

soil surface. Therefore, to differentiate between soil and non-soil on the ridged surface of RT,

RTpm and RTpm+crops, we used the background binary images (Figure 3.1b). Areas identified

as non-soil were omitted. Additionally, we discarded the first and the last profiles completely

because of edge effects and used 8 images for CT, RT and RTpm and 5 images for RTpm+crops.

The image index functions were calculated in R (R Core Team, 2012).

The interpretation of differences in tillage management systems is based on median values

of image index functions. To better understand which features of flow patterns are reflected

by these functions we first give an example of a single profile from RTpm (Figure 3.2). As

indicated by circles and arrows, the index functions are sensible to different relevant features

and complement each other. In fact, the dye coverage ID increases when the stained objects

become larger (red arrow), however, it is not sensitive to different pattern configurations. By

contrast, IF increases when smaller stained objects appear and the pattern is fragmented. The

metric entropy IME 8 indicates that at the scale of 8 pixels we find a strong correlation in our

patterns. In other words, there are only few different words of length 8 (namely predominantly

those with 1s only or 0s only) because large stained and non-stained areas alternate.
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Figure 3.2: Left to right: Example of a binary image and three index functions: dye coverage
ID, fragmentation IF and metric entropy IME 8. The gray background represents the soil profile
and the dye stained patterns are shown in black. For explanation of circles and arrows see
section 3.2.5.

3.3 Results and discussion

3.3.1 Water balance and water content

We observed the largest infiltration and the smallest runoff on plot CT (Table 3.2). The amount

of infiltrated water decreased and the surface runoff increased from CT to RT and further to

RTpm due to the surface topography and plastic mulching of the ridges. In experiment RTpm,

approx. 50% of the total amount of irrigation water contributed to the runoff. By contrast, on

RTpm+crops the infiltration increased again and the surface runoff decreased to 31% compared

to RTpm probably due to the well developed crop canopy. Indeed, interception and throughfall

of irrigated water might have reduced the formation of surface runoff. Our results agree well

with Saffigna et al. (1976) who investigated non-uniform infiltration patterns caused by hilling

and potato canopy. These authors also found an increased runoff from ridges.

At the beginning of experiment CT the water content in 5 cm depth was lower compared to

20 cm depth (Figure 3.3). Approx. 15 minutes after the start of irrigation, the sensors placed

in 5 cm depth registered an increase of water content, while the dynamics in 20 cm depth was

delayed. Although flat the soil surface was inclined which explains larger soil moisture values

measured by the FDRs situated downslope (FDR 2 and FDR 4).

On plots RT and RTpm we found higher water contents in furrows at the beginning of irriga-

tion. This was probably caused by previously preferentially infiltrated water due to topography

effects. Indeed, higher soil moisture in furrows due to runoff from ridges was also found by
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Table 3.2: Total amount of irrigation and its partitioning into
surface runoff and infiltration.

Experiment Total amount of Infiltration Runoff
irrigated water (l) (l) (%) (l) (%)

CTa 87 69 79 18 21
RTb 74 46 62 28 38
RTpm

c 81 41 50 41 50
RTpm+crops

d 91 63 69 28 31

a Conventional flat tillage
b Ridge tillage
c Ridge tillage with plastic mulch
d Ridge tillage with plastic mulch and potato crops

Leistra and Boesten (2010) and Saffigna et al. (1976). In 5 cm depth in RT the water content

went up first in furrows, since the runoff from the ridges accumulated here, and then in ridges.

It increased only slightly in 20 cm depth.

In experiment RTpm the dynamics was comparable to RT except on ridges that were covered

with plastic mulch. The increase in water content in ridges in 20 cm depth was probably related

to water which infiltrated primarily in the furrows and was subsequently funnelled laterally above

the tillage pan to the ridges. Furthermore, the initial soil moisture differed between furrows and

ridges so that pressure head gradients caused lateral water movement from furrows to ridges

(Ruidisch et al., 2012). These findings are in accordance with results by Bargar et al. (1999).

They investigated soil water recharge and infiltration patterns in an uncropped ridge–furrow

formation without plastic mulch and found lateral water flow from furrows to ridges.

3.3.2 Analysis of flow patterns

The experiments revealed that firstly, tillage produced zones of preferential infiltration, namely

furrows and planting holes and zones of no infiltration, namely plastic mulched ridges (Figure 3.4).

Therefore, the patchiness of the patterns and the occurrence of preferential flow is a result of the

soil surface topography. Figure 3.5 shows the image index functions. In all four experiments IE

was approx. 0.1, which is quite small and reflects the few vertically stained patterns. Secondly,

the tillage pan was the most important feature for water movement in these agricultural soils

which was clearly evident by the decrease of all the indices to zero in approx. 25–35 cm depth.

Furthermore, we found that the bulk density differed significantly (p < 0.05) above and below

the tillage pan on RTpm and RTpm+crops (i.e. between the horizons Ap and Bwb and between

the horizons Ap1 and Ap2, respectively). However, we could not detect any difference (p > 0.05)
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between Ap and 2Apb on RT despite the visible funnel flow (Figure 3.4) due to textural

differences (Table 3.1). Thirdly, the shape of the index curves shows that in our experiments

water flow occurred in the topsoil and was funneled preferentially above the tillage pan. Indeed,

the vertical propagation to the deeper soil horizons via macropores was absent. This was

also confirmed by comparing the Brilliant Blue stained patterns to the iodide patterns. The

propagation of the iodide tracer solution was exactly equivalent to that of Brilliant Blue FCF.

This result contradicts the findings by Flury and Flühler (1995) who reported that Brilliant Blue

FCF was retarded by a factor of 1.2 compared to the iodide tracer. We explain this disagreement

by the sandy texture of the top soil and thus its large hydraulic conductivity.

The effect of the ridge topography in experiment RT was well represented by the indices

ID, IF, IME 8 and IMAX. Both, IF(max = 0.64) and IME 8(max = 0.35) were larger on RT compared

to CT (max(IF) = 0.48 and max(IME 8) = 0.21), which reflected the typical dye pattern induced

by topography effects. Indeed, the alternation between stained furrows, stained inner parts of

the ridges due to infiltration in planting holes and unstained parts on the inner sides of the

ridges are the prominent features (Figure 3.4). The index IMAX with a maximum of 1 reflected

the homogeneous and continuous infiltration on CT. It remained large down to the depth of the

tillage pan indicating homogeneous matrix flow. Similarly, looking at the uppermost cm of RT,

where the tracer infiltrated homogeneously as well, we also find a large IMAX (max = 0.75).

The effect of plastic mulch can be best extracted by comparing ID and IMAX on RT and RTpm.

On RT, ID was largest (max = 1) in the uppermost cm as a result of homogeneous infiltration.

In contrast, ID on RTpm increased to a maximum of 0.53 in 20 cm soil depth reflecting the high

surface runoff rates from the plastic mulched ridges into furrows where most of the irrigated

water infiltrated preferentially. Additionally, the blockage of tracer infiltration caused by plastic

mulch was well mirrored by IMAX. In fact, the homogeneous matrix flow in the upper cm of RT

was reflected by a large IMAX (max = 0.75), whereas the largest IMAX (max = 0.22) on RTpm

marked the depth of laterally funnelled water above the tillage pan.

The effect of the root system on dye patterns was only slightly apparent in larger ID in approx.

20 cm soil depth on RTpm+crops compared to RTpm. The stem flow funnelled the irrigation water

to the planting holes and therefore caused an additional ponding. After infiltration the tracer

solution was preferentially channelled along living roots, which resulted in a maximum of ID

(0.66) in the root zone depth. In contrast, the maximum of ID on RTpm without crop roots

occurred in the depth of the tillage pan (0.53). Similarly, the largest IMAX on RTpm (0.22) and

RTpm+crops (0.25) reflected the funnel flow above the tillage pan under RTpm and the highly

stained root zone on RTpm+crops, respectively. We observed another important factor which was
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best visible in the profile pictures (Figure 3.4). On RTpm+crops water movement in slope direction

was not longer pronounced compared to RTpm. Instead, water was primarily redirected from

furrows to ridges (i.e. up slope). We attribute this lateral flow to the hydraulic gradient with

lowest pressure heads found in the inner part of the plastic mulched ridges where root water

uptake took place. A similar phenomenon was observed by Ruidisch et al. (2012), who found

that plastic mulched ridge cultivation led to lateral flow driven by a pressure head gradient

between furrows and the relatively drier ridges.

3.3.3 The effect of tillage management on flow processes and its

ecological implications

First we want to highlight the tillage operations, which take place regardless of ridge cultivation

with or without plastic mulch, namely the distribution of sandy soil material on agricultural

fields prior to planting and the subsequent ploughing. Indeed, the distribution of sandy soil

material to counterbalance erosion loss in the Haean catchment strongly influences the flow

processes. This management practice leads to an artificial layering with different soil physical

properties. A cohesive, denser and finer textured subsoil is overlain by a topsoil consisting of

a non-cohesive and coarse material. As a result an important textural boundary is created

with clearly contrasting hydraulic conductivities between the horizons above and below it.

Additionally, ploughing activities create a tillage pan and thus further support the structural

differences between the horizons. We identified these structural features to be responsible for

the initiation of the rather uniform flow through the sandy toplayer as well as for the funnel

flow on the tillage pan.

Several authors reported that fissures, cracks and earthworm burrows could act as preferential

flow paths especially in fine textured subsoils (Weiler and Naef, 2003; Bachmair et al., 2009).

Although ploughing activities lead to a discontinuity of macropores between topsoil and subsoil

(Gjettermann et al., 1997), preferential flow paths in the deeper subsoil can still conduct water

(Bogner, Mirzaei, et al., 2012). In our experiments, we could not detect any macropore flow neither

in the topsoil nor in the subsoil. This can be related to the fact that the non-cohesive sandy

toplayer does not have any macropores even before ploughing. Simultaneously, the denser and

finer textured subsoil lacked macropores like fissures or cracks which could initiate preferential

flow. Additionally, we did not observe any soil fauna on our field sites, which could build a

network of macropores.

Ecologically our findings imply that the risk of a vertical propagation of agrochemicals to
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Figure 3.4: Example images of excavated soil profiles and their binary images. From top to
bottom: CT, RT, RTpm and RTpm+crops. Note that the slope orientation differs between field site
1 (CT and RT, slope oriented to the left) and field site 2 (RTpm and RTpm+crops, slope oriented
to the right). In the colour image of RTpm+crops, the white feature on the right hand ridge is a
potato cut in half.
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groundwater is generally relatively low. On the other hand the lateral downhill water flow above

the tillage pan seems to be the most crucial process to which we should pay particular attention.

Especially during the East Asian summer monsoon, when rain events can reach more than 100

mm per day, the fast flow through a coarse textured top soil laterally down the slope seems to

play a key role in the transport of agrochemicals. Therefore, the field sites which are located

next to the river system should be recognized as critical locations for pollutants entering the

water bodies.

Additionally, the temporal aspect plays an important role. We found that in the later season

the developed potato crop canopy decreased surface runoff due to interception and throughfall.

Additionally a developed root system has the potential to interrupt the subsurface funnel flow

above the tillage pan because root water uptake induced pressure head gradients and therefore

influenced water movement. Hence, the leaching risk via surface runoff and subsurface water

flow is reduced in the adult stage of the crop development. On the other hand it means that

the leaching risk is especially high at the beginning of the growing season when the plants are

juvenile and the fertilizers are recently applied, because in this juvenile stage the interception

and root water uptake are very low. However, the potential for interrupting lateral subsurface

flow due to pressure head gradients depends presumably on the intensity and amount of rainfall.

We can relate the occurrence only to the irrigation rates which equaled moderate rain events of

37–45 l m−2.

Our results suggest that differences between tillage management systems have to be consid-

ered when evaluating the impact of agricultural land use on ecological services. The important

amount of runoff generated under ridge tillage cultivation with plastic mulching can increase the

risk of surface water pollution and soil erosion. In fact, even in the later season, when the crop

canopy was well developed, the runoff still constituted one third of the total irrigation in our

experiments. Arnhold (personal communication) compared CT, RT and RTpm plots using the

process-based model EROSION 3D (von Werner, 1995) and found the highest runoff and erosion

rates under ridge tillage with plastic mulching. Additionally, we assume that the widespread

usage of plastic mulching in combination with heavy monsoon events is partly responsible for

higher phosphorous leaching in the Haean catchment, which is predominately transported via

surface runoff. This is supported by Kim et al. (2001) who found that eutrophication and

deterioration of water quality in in downstream reservoirs in South Korea is associated with

discharge of phosphorous.
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3.4 Conclusions

Different tillage management practices created typical infiltration zones (i.e. furrows and planting

holes) and non-infiltration zones (i.e. plastic covered ridges). However, the impact of ridge

cultivation with or without plastic mulch on the predominant subsurface flow processes is

relatively low compared to the impact on surface runoff generation. Therefore, to reduce surface

runoff, we suggest (i) to encourage crop production in ridge cultivation with perforated plastic

mulch. On the one hand, perforated plastic mulch should decrease the amount of surface runoff

and thus diminish the risk of erosion and leaching of agrochemicals, especially in the early season

when crops are juvenile. On the other hand, it maintains a positive effect on crop yield and

weed control. Furthermore, particular attention should be payed to the lateral leaching risk of

agrochemicals and fertilizers above the tillage pan particularly on field sites located directly

next to the stream network. Hence, we propose (ii) to promote the establishment of riparian

buffer zones between dryland farming fields and the rivers.
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Abstract

Plastic covered ridge furrow systems can substantially influence runoff and soil

erosion on agricultural land. However, the impact of this management practice in

combination with a complex farmland topography has not been thoroughly inves-

tigated and is still poorly understood. The goal of this study was to identify how

topography influences the runoff patterns and erosion rates of plastic covered ridge-

furrow systems. We measured runoff and sediment transport on two mountainous

fields in South Korea, one with a concave and one with a convex topography, during

monsoonal rain events. We used the EROSION 3D model to compare flow and sedi-

ment transport differences between the plastic covered system, uncovered ridges, and

a smooth soil surface. We found the highest runoff and erosion rates from both of the

1Correspondence to: Sebastian Arnhold, Soil Physics Group, BayCEER, University of Bayreuth, 95440
Bayreuth, Germany.
E-mail: sebastian.arnhold@uni-bayreuth.de
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plastic covered fields, due to the impermeable surface. For the uncovered ridges, we

identified a 140% higher erosion compared to the smooth surface on the concave field,

although a reduction of 20% on the convex field. The simulated sediment transport

patterns showed that the ridge-furrow system concentrated the flow on the concave

field resulting in high erosion rates. On the convex field, the ridge-furrow system

prevented flow accumulation and erosion. Our results demonstrate that the effect

of ridge-furrow systems on erosion is controlled primarily by the topography. These

results have practical consequences for watershed conservation planning and the

application of large-scale erosion models. Nevertheless, further research is needed to

fully understand the impact of this management system on erosion on mountainous

farmland.

Keywords: Complex landscape; Erosion; Furrows; Korea; Plastic mulch; Ridges; Runoff; To-

pography

4.1 Introduction

Intensive agriculture in mountainous landscapes can cause severe soil erosion, resulting in

irreversible loss of fertile farmland soil and decrease water quality in streams and lakes. Tillage

and crop cultivation practice instituted by the farmers has a substantial influence on the amount

of erosion on steep farmland areas. Important cultivation practices for vegetable production

are ridge-furrow systems covered with plastic films (plastic mulch) accounting for 3 to 4 million

hectares worldwide (Dilara and Briassoulis, 2000), with an increasing trend, particularly in

China (Esṕı et al., 2006). Plastic mulch has increased crop yields, reduced evaporation losses,

reduced nutrient leaching, and limited weeds (Lament, 1993). Plastic mulching is a common

management practice on most of the agricultural areas in South Korea (except for rice paddies).

Agricultural areas in mountainous landscapes, such as the Kangwon Province in the northeast

of South Korea, are cultivated predominantly by cash crops like cabbage, radish and potato

(S. Kim et al., 2007; Lee et al., 2010b; Y. S. Park et al., 2010). These mountainous agricultural

areas are characterized by steep slopes and complex field topographies. The ridge-furrow system

is predominantly oriented perpendicular to the main slope direction of field sites, but often not

parallel with the contours. In many cases, the tillage directions vary across individual field sites.

The distance between the center of two ridges is approximately 70 cm and the ridges are usually

between 30 to 40 cm wide and 15 cm higher than the furrows. The ridges are covered with a
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black plastic film with regularly spaced, 5 cm diameter, planting holes, and the film is buried

on either side of the ridge several centimeters deep. Furrows are conventionally treated with

herbicides in order to eliminate weeds during the growing season. Therefore the soil surface

between the ridges typically remains uncovered until crops reach their adult stage and start

covering parts of the furrows. During rain events, ridge-furrow systems basically drain runoff

from ridges into the furrows, producing concentrated overland flow with higher erosive power

than without ridges (Wan and S. El-Swaify, 1999). The impermeable plastic film produces

higher surface runoff and can therefore, intensify the concentrated flow. Even though the plastic

cover protects the surface from raindrop impacts and eliminates ridge erosion, the remaining

exposed soil surface in the furrows can have significantly increased erosion losses due to elevated

runoff amounts (Wolfe et al., 2002).

Several studies have previously investigated the effect of plastic covered ridge-furrow systems

on runoff and soil erosion for a variety of different crops. Wan and S. El-Swaify (1999) analyzed

plastic mulch pineapple plantations by using rainfall simulator experiments on field plots. They

found substantially higher runoff generation and soil erosion on plastic mulch plots relative

to bare plots. Although the authors also observed that plastic mulch in combination with a

vegetative crown reduces runoff and soil loss, because water is ponded in the pineapple crowns

and funneled into the planting holes. Rice, McConnell, et al. (2001) measured the amount of

runoff, sediment and pesticides from tomato plots with plastic mulch in comparison to vegetative

mulch. They found increased runoff and at least three times higher soil loss for plastic mulch

plots. In another example higher surface runoff contributed to four times higher erosion rates

for corn cultivation with plastic mulch than without plastic during field experiments (Gascuel-

Odoux et al., 2001). Stevens et al. (2009) measured runoff, soil loss, transported pesticides, and

nitrogen in plot experiments for a variety of strawberry cultivation practices including plastic

mulch. In contrast to the other studies, they did not identify large differences in surface runoff

between plastic mulch and uncovered management strategies. Moreover, they found that plastic

mulch significantly reduced soil erosion during select rainfall events. In lysimeter plot studies

in South Korea, Lee et al. (2010a) analyzed the effect of contour farming with plastic mulch on

runoff, soil losses and nutrient losses for cabbage and potato. They found that both, runoff and

erosion was reduced by plastic mulch compared to the non-covered plots.

These studies showed that plastic mulch can have contrary effects, which may be a result of

crop type or different ridge-furrow system design and dimension. In addition, these studies also

varied in their experimental design, particularly in plot size and orientation of the ridge-furrow

system in relation to the plot direction. However, each of the described studies used plots or
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delimited sections of a field site with a defined size and uniform topographical conditions. Com-

plex topography, which dominates in mountainous areas of South Korea, remains particularly

absent in the literature. The combination of the ridge-furrow system and the shape of a field

with its internal topographical variations influence overland flow patterns and can affect the

overall soil loss from a field. Runoff flows along the furrows to lower areas in the field where ridge

breakovers can occur (Renard et al., 1997). Wischmeier and Smith (1978) have described that

for high slope lengths, the soil loss from a contoured field can exceed that from a field without

contouring, because of concentrated flow due to breakovers. Higher erosion damage caused by

the breakover of contour ridges has also been reported by Stocking (1972), S. A. El-Swaify

et al. (1982), and Hagmann (1996). Plastic mulch is typically resistant to raindrop impact and

overland flow and provides ridge protection. Although, our field observations indicated, that

during peak events, concentrated flow can also wash out the plastic film and erode the ridges.

Concentrated overland flow and breakovers within a field, primarily depends on the topography

(convex or concave slopes, plains, depressions) and the orientation of the ridge-furrow system. In

order to evaluate those systems in complex landscapes, the entire field site should be considered

to take into account all possible flow paths that contribute to concentrated overland flow.

The goal of this study was to investigate the role of plastic covered ridge-furrow management

on runoff patterns and soil erosion in two mountainous agricultural fields in South Korea.

Therefore, we quantified runoff and erosion from fields with plastic mulch, and subsequently

applied a model to simulate the response without plastic and ridges. We implemented a novel

measurement method, which is not limited to defined plot dimensions and is able to better

represent the complex structure of those fields. We used a process-based erosion model, which

describes the spatial runoff and erosion patterns affected by ridge-furrow systems and terrain

topography.

4.2 Materials and methods

Study Area

This study was conducted in the Haean-Myeon catchment in the Kangwon Province in the

northeast of South Korea (Figure 4.1). The catchment is part of the watershed of Soyang Lake,

which is the largest reservoir in South Korea (B. Kim et al., 2000). The Haean catchment is a

key contributor of agricultural water pollution with substantial impacts on the trophic state of

the lake (J.-H. Park et al., 2010). Total catchment area is 64 km2 with 58% of the catchment
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Figure 4.1: Location of the Haean-Myeon catchment on the Korean peninsula (a) and within the
Soyang Lake watershed (b) with locations of the experimental sites conducted for this study (c)
(”seminatural areas” include grassland, field margins, riparian areas, small roads and channels).

classified as forested mountains and 30% as agricultural areas (22% dryland fields and 8%

rice paddies). The remaining 12% are residential and seminatural areas including grassland,

field margins, riparian areas, small roads and channels. The soil landscape is dominated by

Cambisols formed from weathered granite. Soils are strongly influenced by human disturbance,

especially on cropland through replenishment with excavated soils from nearby mountain slopes

(J.-H. Park et al., 2010). Haean average annual precipitation of 1514 mm (2009 and 2010) was

approximately 200 mm higher than the average precipitation of the Soyang Lake watershed

described in J.-H. Park et al. (2010). Nearly 65% of the total rainfall in Haean is concentrated

in July, August and September.

We selected two typical dryland fields on steep slopes located in the northeastern and

western part of the catchment (Figure 4.1c). The topographical shape of field 1 was concave,

characterized by a depression line going through the field’s center and field 2 was convex without

topographical depressions. Both fields had an average slope of about 9 degrees. The soil type

of field 1 was a haplic Cambisol (Ap-Bw-BwC-C) and the soil of field 2 was a leptic terric

Cambisol (Ap-2Apb-2Bwb-2C), both formed from weathered granite material. The total area
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of field 1 was 2133 m2 and the total area of field 2 1825 m2. The crop type planted during our

study period for each of the fields was potato Solanum tuberosum L., which was conventionally

cultivated with plastic mulch.

4.2.1 Observation of Runoff ans Soil Erosion

The experimental design for runoff and erosion measurement is shown in Figure 4.2. On each

field site we installed three runoff samplers designed according to Bonilla et al. (2006). Each

sampler consisted of a runoff collector (RC) connected with a PVC pipe to a multislot flow

divider designed by Pinson et al. (2004) (Figure 4.2 only shows the positions of the collectors).

The runoff collectors were located at positions where large amounts of runoff from the field

sites were expected, without artificial enclosure of the contributing areas. The only variations

from the Bonilla et al. (2006) design were that the collector width was changed to exactly five

meters and no mesh at the transition between the collector and the PVC pipe was used to

prevent blockage. For the flow divider, the ”mid-size-fields” configuration after Bonilla et al.

(2006) was used, which included four 20-Liter buckets, one with a 1:12 divisor head and two

with 1:24 divisor heads and one without a head, resulting in a total runoff sampling capacity

of 144 m3 for each collector. The flow dividers were installed in buried wooden boxes similar

to those described in Bonilla et al. (2006). A PVC pipe was buried and connected to the

bottom of the wooden box for removal of excessive water to the field’s edge. After a rainfall

period we measured the water level and calculated the runoff volume for each bucket. We took

samples from each bucket (three replicates with 0.12 L) of the homogenized suspension and

determined the sediment concentration by evaporation and weight measurement. The sediment

concentration was calculated as the average of three replicates. For very high sediment yields

during peak events the sediment concentration of bucket 1 was estimated from the sediment

level. The dry bulk density was estimated through a general relationship between bulk density

and organic carbon content for sediments (Avnimelech et al., 2001). Organic carbon content

was estimated by measuring the weight loss after organic matter destruction in the laboratory.

The total runoff sampled by each collector was calculated by the following equation (modified

after Bonilla et al., 2006),

R = V1 + 12 · V2 + 288 · V3 + 6912 · V4 (4.1)

where R is the total runoff volume (L) and V1 to V4 the volumes (L) collected in the buckets

1 to 4, respectively. The associated sediment mass was than calculated by (modified after Bonilla
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Figure 4.2: Experimental design to measure runoff and soil erosion by installation of three runoff
collectors (RC) on field 1 and field 2. Fields topography and runoff collector drainage areas were
calculated based on surface elevation measurements and generation of digital terrain models of
both fields.

et al. (2006))

S = V1 · C1 + 12 · V2 · C2 + 288 · V3 · C3 + 6912 · V4 · C4 (4.2)

where S is the total sediment mass (kg) and C1 to C4 the sediment concentration (kg L−1)

measured for bucket 1 to 4, respectively.

Observation time was within the Korean summer monsoon period from 5 July to 9 August

2010. We measured seven rainfall periods with different rainfall characteristics over variable

time intervals (Figure 4.3). On each of the field sites we installed rain gauges, which recorded

precipitation during all seven rainfall periods at 10 minute resolution. Due to limited rain gauge

malfunctions, gap filling was completed to generate continuous precipitation data sets. The

rainfall records of adjacent Haean weather stations displayed linear correlations to our field

data. These records were multiplied by the slope of the linear regression functions and added to

our data sets to fill those gaps. Total amount of rainfall, rainfall intensity and rainfall erosivity

(EI30) calculated after Renard et al. (1997) for each period were derived.

To transform the total sediment mass measured at each collector to the soil loss per area, it

was necessary to define the size of the drainage area for each collector. We used a tachymeter

(Tachymat WILD TC1000) to create a gridded mesh of elevation points at approximately two by

two meter intervals over the entire field area. Furthermore, we counted the number of ridges and
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Figure 4.3: Daily precipitation on field 1 and field 2 during the observation time from 5 July to
9 August 2010. The arrows indicate the sampling dates for the associated rainfall periods.

measured their orientation and dimensions (average height, width and spacing) on both fields.

In a first step, the elevation points were interpolated to create surfaces representing the basic

field topography (indicated by the contours in Figure 4.2). In a second step, we added ridges to

the interpolated surfaces assuming semicircular ridge profiles with the same dimensions (15 cm

high and 40 cm wide) throughout the field area. Finally, we created two digital terrain models

(DTMs) with 25 cm spatial resolution for the fields, one representing the basic topography with

a smooth surface and one representing the actual field shape with ridges. By using those DTMs

we could delineate the drainage area to each collector and calculate the area (Figure 4.2). The

fields were enclosed by elevated mounds and drainage ditches, which minimized the probability

of an additional runoff contribution from outside. Nevertheless, in two cases ditch overflow and

external runoff contribution was observed. Therefore, the measured runoff and sediment mass

during these periods were eliminated from the data set. In all other cases, runoff and soil loss

per unit area was quantified by calculating the quotient of runoff volume and sediment mass

and the drainage area at each collector. To quantify the mean runoff and soil loss from each

field site, the single values for the collectors were averaged and weighted to the drainage area

size. The weighted average was used instead of the normal average to account for a higher field

representation of RCs covering large areas and for reducing the effect of RCs covering only a

small part (e.g. Field 1 RC 2). Because of external runoff contributions and additional damages

caused by intense rain events, we could not measure all rainfall periods with all three runoff

collectors. In those cases the mean runoff and soil loss rates were calculated only based on the

available data of the functioning collectors.
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4.2.2 Simulation of Runoff and Soil Erosion

We used the EROSION 3D model (von Werner, 1995) to compare runoff and soil erosion for

the plastic covered ridge-furrow management (RP - Ridges with Plastic) to the runoff and

erosion for ridge-furrow cultivation without plastic film covers (RU - Ridges Uncovered), and

cultivation using a smooth soil surface (SS - Smooth Surface) as it is usually applied for grain

crops in many countries. EROSION 3D is a process-based, spatially distributed, erosion model

based on the physical principles developed by Schmidt (1991). EROSION 3D describes overland

flow distribution and diversion as affected by terrain morphology, as well as the associated

erosion and sediment transport. Compared to other process-based erosion models such as WEPP

(NEARING1989 ) or LISEM (Roo et al., 1996), EROSION 3D requires a relatively small

number of input variables (Wickenkamp et al., 2000), and most of them are directly related to

measured soil, slope and rainfall properties (Schmidt, 1991). Nevertheless, the relatively simple

physical approach has some limitations. Soil erodibility and surface roughness, which can vary in

the course of rain events, are assumed to be constant throughout the calculations (Wickenkamp

et al., 2000). EROSION 3D does not differentiate between rill and inter-rill detachment and

when applied to small spatial resolutions, can therefore overestimate soil erosion rates (von

Werner, 1995).

The EROSION 3D input parameters can be summarized into three groups, relief parame-

ters, precipitation parameters and soil-surface parameters (Schmidt et al., 1999). For the relief

parameters we used the measured 25 cm resolution DTMs. We used the DTM including ridges

for the RP and RU scenarios and we used the measured base DTM without ridges to represent

a smooth soil surface (SS). Precipitation parameters for each of the seven rainfall periods were

provided by the on-site rain gauge records at 10 minute resolution. Soil and surface parameters

used for the simulations are shown in (Table 4.1). Layer thickness, texture, bulk density and

organic carbon content for the different soil horizons were derived from field measurements and

laboratory analysis. For the different management practices the parameters in (Table 4.1)were

assigned as follows. For RP, parameters specified for ”plastic film” were applied for ridges, and

parameters specified for ”soil surface” were used for the furrows. For RU and SS the parameters

specified for ”soil surface” were applied to the entire field area (ridges, furrows as well as the

smooth surface). The initial soil moisture at the beginning of each rainfall period was derived

from HYDRUS 2/3D (Šimůnek et al., 2011) simulations. The HYDRUS 2/3D model was cali-

brated to pressure heads measured from May to August 2010 on field 1 and field 2 and used to

analyze soil water dynamics due to plastic mulch management. Surface roughness (Manning’s n)
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was obtained from recommended literature values. Huggins and Monke (1966) (cited in Vieux,

2001, p. 129) give Manning’s n values for row crops of 0.07 to 0.2 s m−1/3 and the EROSION

3D parameter catalogue (Michael et al., 1996) recommend values for potato fields of 0.08 to 0.09

s m−1/3. These recommendations represent average field conditions including the roughness of

the soil surface and the roughness caused by plant stems and leaves. To take into account the

different surface conditions between the plastic covered ridges and the uncovered furrows, plastic

film and soil surface were treated separately. For the plastic film cover a Manning’s n value of

0.01 s m−1/3 was selected (Montes, 1998; Chanson, 2004). Potato stems are embedded in small

planting holes within the plastic film on the top of the ridges and rarely influence flow along

the ridge flanks. For the bare sandy soil surface Engman (1986) (cited in Vieux, 2001, p. 130)

recommend values of 0.01 to 0.016 s m−1/3. Nevertheless, due to the fact that potatoes were at

a mature stage during our observations and their leaves partially touched the ground, we used

a Manning’s n value for the soil surface of 0.035 s m−1/3 (Chow, 1959), cited in Sturm, 2001,

p. 118, Vieux, 2001, p. 130). Percentage soil cover during each rainfall period was estimated

by photographs taken during the field measurements. Plastic covered ridges were considered to

cover the soil to 100%. Although the plastic film contains planting holes, it was assumed that

they were completely covered by crop leaves.

EROSION 3D was calibrated to observed runoff and erosion rates for the plastic covered

ridge-furrow system and then used to simulate runoff and erosion for the other management

practices (RU and SS). The two last parameters in Table 4.1(skin factor and erodibility) were

used for the calibration. The skin factor is used in EROSION 3D to manipulate the infiltration

capacity, as predicted by an empirical approach after Campbell (1985) in order to take into

account preferential flow and soil surface conditions, such as crusting. The skin factor for plastic

film was defined as 1.3% of the soils value to consider the planting holes which made up

approximately 1.3% of the ridge’s area. The plastic itself was considered as impermeable. The

erodibility parameter is defined as the critical momentum flux, which has to be exceeded by

the momentum flux of rainfall and overland flow to generate erosion (Schmidt, 1991) and was

calibrated only at the soil surface. The plastic film material was considered as non-erodible (1000

N m−2). We used three performance statistics as evaluation criteria for the quality of model

calibration, the Nash-Sutcliffe efficiency (NSE), the RMSE-observations standard deviation

ratio (RSR) and the Percent bias (Pbias). According to Moriasi et al. (2007) satisfactory model

performance can be assumed if NSE is larger than 0.5, RSR smaller or equal to 0.7, and if

Pbias ±25% or less. Positive values of Pbias indicate model underestimation, and negative

values indicate model overestimation (Gupta et al., 1999).



4.2. MATERIALS AND METHODS 101

T
ab

le
4.

1:
S

oi
l

an
d

su
rf

ac
e

p
ar

am
et

er
va

lu
es

u
se

d
fo

r
th

e
E

R
O

S
IO

N
3D

si
m

u
la

ti
on

s,
d

iv
id

ed
in

to
u

n
co

ve
re

d
p

ar
ts

of
th

e
fi
el

d
(s

oi
l

su
rf

ac
e)

an
d

co
ve

re
d

p
ar

ts
(p

la
st

ic
fi
lm

).
T

h
e

th
ir

d
ro

w
sh

ow
s

th
e

h
or

iz
on

n
am

es
of

th
e

so
il

p
ro

fi
le

s
of

b
ot

h
fi
el

d
s

(a
cc

or
d
in

g
to

F
A

O
,

20
06

).

F
ie

ld
1

F
ie

ld
2

S
oi

l
su

rf
ac

e
P

la
st

ic
fi

lm
S

oi
l

su
rf

ac
e

P
la

st
ic

fi
lm

In
p

u
t

p
ar

am
et

er
s

A
p

B
w

B
w

C
A

p
B

w
B

w
C

A
p

2A
p

b
2B

w
b

A
p

2A
p

b
2B

w
b

S
o
il

p
a
ra

m
et

er
s:

L
ay

er
th

ic
k
n

es
s

(m
)

0
.2

0
0.

80
0.

10
0.

20
0.

80
0.

10
0.

20
0.

08
0.

62
0.

20
0.

08
0.

62
C

la
y

(%
)

9
9

9
9

9
9

11
24

25
11

24
25

S
il

t
(%

)
3
3

55
38

33
55

38
36

59
57

36
59

57
S

a
n

d
(%

)
5
8

36
53

58
36

53
53

17
18

53
17

18
B

u
lk

d
en

si
ty

(k
g

m
−

3
)

1
2
79

11
78

11
83

12
79

11
78

11
83

12
69

11
46

13
09

12
69

11
46

13
09

O
rg

an
ic

ca
rb

on
(%

)
1
.8

0.
0

0.
0

1.
8

0.
0

0.
0

1.
7

2.
0

0.
0

1.
7

2.
0

0.
0

In
it

ia
l

m
o
is

tu
re

(%
)

P
er

io
d

1
33

36
37

26
36

37
32

44
44

29
40

44
P

er
io

d
2

27
36

36
23

36
36

28
39

44
26

37
44

P
er

io
d

3
28

36
37

23
36

36
29

40
44

26
38

44
P

er
io

d
4

27
36

36
23

35
36

28
39

44
26

37
44

P
er

io
d

5
24

35
36

22
35

36
27

37
43

24
35

43
P

er
io

d
6

27
36

36
23

35
36

29
41

46
28

41
46

P
er

io
d

7
25

35
36

23
35

36
29

42
46

28
40

46

S
u

rf
ac

e
p

ar
am

et
er

s:

R
o
u

g
h

n
es

s
(s

m
−

1
/
3
)

a
0.

03
5

0.
01

0
0.

03
5

0.
01

0
S

oi
l

co
ve

r
(%

)
P

er
io

d
1

65
10

0
90

10
0

P
er

io
d

2
73

10
0

95
10

0
P

er
io

d
3

75
10

0
95

10
0

P
er

io
d

4
79

10
0

95
10

0
P

er
io

d
5

85
10

0
95

10
0

P
er

io
d

6
75

10
0

98
10

0
P

er
io

d
7

50
10

0
90

10
0

S
k
in

fa
ct

or
(-

)
b

0.
00

25
0

0.
00

00
3

0.
01

00
0

0.
00

01
3

E
ro

d
ib

il
it

y
(N

m
−

2
)

b
0.

07
10

00
.0

0
0.

11
10

00

a
M

an
n

in
g
’s

ro
u

gh
n

es
s

co
effi

ci
en

t
d

er
iv

ed
fr

om
li

te
ra

tu
re

va
lu

es
(C

h
ow

,
19

59
;

M
on

te
s,

19
98

;
V

ie
u

x
,

20
01

;
C

h
an

so
n

,
20

04
)

b
S

k
in

fa
ct

or
a
n
d

er
o
d

ib
il

it
y

va
lu

es
op

ti
m

iz
ed

af
te

r
m

o
d

el
ca

li
b

ra
ti

on
to

to
ta

l
ob

se
rv

ed
ru

n
off

vo
lu

m
e

an
d

se
d

im
en

t
m

as
s



102 CHAPTER 4. RUNOFF AND SOIL EROSION

4.3 Results and Discussion

4.3.1 Observed Runoff and Soil Erosion

The measured runoff and soil erosion was highly variable during the observation time due to the

rainfall characteristics and varied strongly between field 1 and field 2 (Table 4.2). Precipitation

amounts ranged from 2.6 mm to 76.5 mm on field 1 and from 3.0 mm to 102.5 mm on field

2. Total precipitation over all periods of field site 2 (242.7 mm) was higher than field site 1

(165.2 mm). The highest precipitation was recorded for the periods 5 and 7 on both fields. Even

though precipitation amounts were similar in both periods, rainfall erosivity was much higher

in period 7, due to higher rainfall intensities. On both fields, two of the seven rainfall periods

(2 and 3) did not produce appreciable runoff and sediment and the associated soil loss rate

for those periods was zero. As expected, runoff and transported sediment correlated positively

with precipitation and the highest amounts of runoff and sediment were found on both field

sites in periods 5 and 7. The soil loss rate predominantly corresponded with rainfall erosivity

within each field, although, the magnitude of difference between fields was large. Even though

erosivity was usually higher on field 2, soil loss was always higher on field 1, except during

period 3 (Table 4.2). The largest difference between both field sites was observed for period 7.

The total observed runoff over all seven rainfall periods was 80.3 L m−2 on field 1 and 94.1 L

m−2 on field 2. The ratio of total runoff to the amount of rainfall was higher on field 1 (0.49)

compared to field 2 (0.39), indicating a lower infiltration capacity of field 1. Total soil loss was

3646.7 kg ha−1 on field 1 and 626.5 kg ha−1 on field 2. The large differences in soil loss may not

be explained by the soil characteristics, slope and crop conditions only, which were relatively

similar for both fields. It is expected that soil loss may be affected primarily by the differences

in the field topography and the orientation of the ridge-furrow system.

4.3.2 Simulated Runoff and Soil Erosion

The optimized values for the skin factor resulting in the best fit between observed and simulated

runoff were 0.0025 for field 1 and 0.01 for field 2 for soil surface, and 0.00003 and 0.00013

for plastic film, respectively (Table 4.1). The optimized values for soil surface erodibility with

the best fit between observed and simulated soil loss was N m−2 for field 1 and 0.11 N m−2

for field 2 (Table 4.1). The optimized values of erodibility were relatively high and out of

the range suggested by Michael et al. (1996). These high values indicate a strong erosion

overestimation of the model due to the high DTM resolution (von Werner, 1995), which had
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Figure 4.4: Simulated and observed runoff for field 1 (a) and field 2 (b).

to be compensated during the calibration. However, the comparison between simulated and

observed runoff (Figure 4.4) and soil loss (Figure 4.5) shows acceptable results. For runoff the

model performance was slightly better for field 1 (NSE = 0.943, RSR = 0.239) than for field

2 (NSE = 0.914, RSR = 0.293). The model overestimated runoff for both fields with higher

magnitude for field 2 (Pbias = -13.462) compared to field 1 (Pbias = -1.275). Also for soil loss

the model performed better for field 1 (NSE = 0.976, RSR = 0.154) than for field 2 (NSE =

0.803, RSR = 0.444). The percent bias values showed an overestimation of soil loss for field 1

(Pbias = -14.571) and an underestimation of soil loss for field 2 (Pbias = 12.879). Satisfactory

representations were achieved for both, runoff and soil loss for field 1 and field 2 (Moriasi et al.,

2007).

Among the three different management practices, we found the highest simulated runoff for

both fields for the ridges with plastic cover (RP) over each rainfall period (Figure 4.6). The

total runoff simulated for RP for field 1 and field 2 over all seven rainfall periods was 81.3 L m−2

and 106.8 L m−2 , respectively. Without plastic cover, the total runoff was reduced to 52.1 L

m−2 (36%) on field 1 and 60.2 L m−2 (44%) on field 2. The higher runoff amounts for RP are a

direct result of the high spatial area associated with the impermeable plastic film. This was also

found by HYDRUS 2/3D simulations at both fields, which calculated up to 70% more runoff

for plastic mulch than without plastic cover. For all periods, EROSION 3D predicted the same

runoff amount for RU and SS, because soil properties were not changed between the management

practices. For both RU and SS, the model estimated the same hydraulic conductivity, resulting

in the same runoff amount from the entire field. Only the runoff distribution changed due to
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Figure 4.5: Simulated and observed soil loss for field 1 (a) and field 2 (b).

different surface conditions. The amount of runoff reduction by removal of the plastic cover

largely varied between the different rainfall periods, and corresponded with the rainfall intensity.

The lowest runoff reduction was simulated for period 1 (10% reduction for field 1 and 21%

reduction for field 2). Period 1 was characterized by one very short rain event with average

intensities of 7.2 mm h−1 and 7.4 mm h−1 on field 1 and field 2, respectively. For period 7

with average intensities of 4.3 mm h−1(field 1) and 4.5 mm h−1(field 2) runoff was reduced

by 23% on field 1 and 28% on field 2. The highest runoff reduction was predicted for field 1

(79%) for period 6 (average intensity of 2.7 mm h−1) and for field 2 (61%) for period 5 (average

intensity of 3.3 mm h−1). For small rainfall intensities lower than the infiltration capacity of

the soil the impermeable plastic cover largely increases the total runoff of the field sites. For

high intensities exceeding the soil’s infiltration capacity this effect is much smaller, because of

high runoff generation on both, plastic and bare soil. This effect was previously described also

by Wolfe et al. (2002). Nevertheless, canopy interception and stem flow were not considered in

the simulations, because we did not have information about the infiltration amounts caused by

stem flow on plastic covered ridge-furrow systems. After plant emergence, stem flow leads to

local infiltration of precipitation water around the stems (Leistra and Boesten, 2010; Saffigna

et al., 1976) and Jefferies and MacKerron (1985) cited in Leistra and Boesten (2010) found

that for potato plants, the percentage of stem flow of the above-crop rainfall can account for

up to 46% and 87%, respectively. During the mature crop stage, stem flow could potentially

result in higher infiltration and less soil erosion (Wan and S. El-Swaify, 1999). Therefore, the

runoff effect of plastic mulch may be slightly overestimated for the rainfall periods throughout

this study. However, stem flow is only relevant for infiltration rates, when a high covering crop
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Figure 4.6: Simulated runoff for all rainfall periods for field 1 (a) and field 2 (b) for different
management practices (RP: ridges with plastic cover, RU: uncovered ridges, SS: smooth soil
surface).

crown is developed. For the time between field preparation and maturity and after senescence,

when most of the aboveground biomass is dead, the stem flow effect is negligible. Therefore, we

believe that the model assumptions are reasonable for evaluating the principle effects of plastic

mulch on runoff and erosion over the season.

The highest soil loss was simulated for ridges with plastic cover (RP) at both fields caused by

the higher rate of surface runoff compared to RU, but for SS we found contrary effects between

the fields (Figure 4.7). The total soil loss simulated for RP for field 1 and field 2 over all seven

rainfall periods was 4178.1 kg ha−1 and 545.8 kg ha−1, respectively. Total soil loss was reduced

to 2469.9 kg ha−1(41%) on field 1 and 371.7 kg ha−1(32%) on field 2 by removal of plastic from

the ridges (RU). The highest reduction was predicted for both fields for period 6 with 79% on

field 1 and 82% on field 2. The lowest soil loss reduction was simulated for field 1 for period

1 (30%) and field 2 for period 7 (25%). For smooth soil surface conditions (SS), the model

predicted an additional soil loss reduction for field 1 to 1017.3 kg ha−1(76% reduction compared

to RP), but for field 2 an increase in soil loss compared to RU to 467.5 kg ha−1, which is only

14% reduction compared to RP. Soil loss reduction by SS on field 1 and the soil loss increase

on field 2 compared to RU was predicted for all periods. The highest soil loss reduction for

SS occurred during period 6 at both fields with 89% reduction compared to RP on field 1 and

42% reduction compared to RP on field 2. The lowest soil loss reduction for field 1 was period

1 (72% compared to RP) and for field 2 period 5 (9% compared to RP). Correlation between

measured rainfall characteristics and the effects of the three management practices as described

for surface runoff and rainfall intensity were not detected.

Due to field topography and ridge orientation, both fields show totally different flow char-
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Figure 4.7: Simulated soil loss for all rainfall periods for field 1 (a) and field 2 (b) for different
management practices (RP: ridges with plastic cover, RU: uncovered ridges, SS: smooth soil
surface).

acteristics, which caused the differences in soil loss for RP, RU and SS. Figure 4.8 shows the

flow patterns and spatial distribution of the simulated sediment concentrations. The magnitude

of increase in sediment concentration represents the amount of erosion at a particular location.

Runoff flow direction (indicated by the arrows) for RP and RU is primarily controlled be the

ridges. Therefore water is routed in the furrows parallel to ridges instead of moving along the

steepest flow paths. The spatial patterns of erosion for RP and RU are basically the same. With

increasing flow length sediment concentration becomes higher. The reason is the increasing

runoff rate, which provides higher erosive energy in the furrows (Wolfe et al., 2002). The RU

scenario shows slightly higher sediment concentration than RP because of additional soil erosion

from the uncovered ridges. The total sediment mass transported from the field sites was higher

for RP because of higher amounts of runoff. Water is flowing along the furrows until it reaches

the field’s edge or a topographical depression. On field 1, runoff is trapped and accumulating in

such depressions due to the field concavity and routed across the ridges. As a consequence, lines

of concentrated flow are formed perpendicular to the ridge orientation, especially in the field’s

center and on the bottom (Figure 4.8). For those concentrated flow lines, the model predicted

much higher soil erosion rates than for the surrounding areas. During our field measurements,

we observed ridge breakovers with a deep erosion rill formed by concentrated flow in the center

of field 1 (Figure 4.9). The plastic film was washed out and ridges were destroyed by water flow,

forming a permanent channel partially deeper than 10 cm. On field 2, such concentrated flow

lines were not formed because of its convex shape. Water was routed along the furrows and

leaving the field at its edge without accumulation. Row lengths are relatively high especially

at the field bottom, which results in higher erosion rates at the lower parts of the furrows.
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Figure 4.8: Simulated sediment concentration over all rainfall periods for field 1 and field 2 for
different management practices including main % flow directions (RP: ridges with plastic cover,
RU: uncovered ridges, SS: smooth soil surface).

Nevertheless, the predicted sediment concentration at those locations remained lower than for

the concentrated flow lines on field 1. Management without ridges (SS) produced entirely dif-

ferent runoff flow patterns and erosion rates. For the SS scenario, water was routed directly

along the steepest flow paths and solely controlled by field topography. Runoff was more evenly

distributed over the surface without high flow concentration. For field 1, part of the runoff was

still accumulating in the field’s center and at the edges, although with less erosive power than

predicted for RP and RU, as indicated by lower sediment concentrations for SS throughout

the field. The absence of ridges on field 2 resulted in routing along a steeper slope and flow

accumulation at field’s edges where higher erosion was predicted.

These results demonstrate that the effect of the ridge-furrow system on erosion is controlled

primarily by the topography of the fields. Because of its concave shape, field 1 generated a 140%

higher erosion for the ridge-furrow system compared to a smooth surface due to ridge breakovers,

as previously described (Wischmeier and Smith, 1978; Stocking, 1972; S. A. El-Swaify et al.,

1982; Hagmann, 1996). The ridge-furrow system on the convex field 2 separated runoff and

constrained flow to the furrows, which prevented flow accumulation and resulted in 20% lower

soil erosion rates.
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Figure 4.9: Observed erosion rill formed by ridge breakovers and concentrated flow in the
depression line in the center of field 1.
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4.4 Summary and Conclusions

In this study, we analyzed the effect of plastic covered ridge-furrow systems on runoff and

erosion in combination with the complex field topography of a mountainous landscape in South

Korea. We installed runoff collectors on two field sites managed with plastic mulch and measured

runoff and sediment loss during monsoonal rain events in 2010. The measured differences in

soil loss between both fields suggested that soil erosion may be primarily affected by the field’s

topography and the orientation of the ridge-furrow system. We used observed field data to

calibrate the EROSION 3D model and subsequently applied the model to investigate runoff

and erosion for an uncovered ridge-furrow system and a smooth soil surface on the same fields.

Model performance statistics demonstrate that EROSION 3D can be applied successfully on

high spatial resolutions when calibrated to available measured data.

The model results for different management practices showed much higher surface runoff

produced by plastic film covers. The percent difference between plastic mulch and uncovered

management was strongly influenced by the average intensities of the rain events. Simulated

soil loss was also highest on both fields for plastic mulch ridges as a result of higher runoff

rate produced by the impermeable plastic film. The effect of the plastic film on surface runoff

may be slightly overestimated for the rainfall periods throughout this study, because stem flow

effects on the infiltration rate were not considered. However, for evaluating the principle effects

of plastic mulch on runoff and erosion, we believe that the model assumptions were reasonable.

Nevertheless, additional research is necessary in order to identify the effect of interception and

stem flow on the infiltration rate in plastic mulch systems for different crops during the growing

season.

The effect of the ridge-furrow system on soil erosion compared to the smooth soil surface was

very different between fields. The ridge-furrow system increases soil erosion of field 1, however,

it potentially prevents erosion on field 2 when not covered with plastic film. The predicted

flow patterns and spatial distribution of sediment concentration demonstrated that the effect is

primarily controlled by the field topography. Because of the concave shape of field 1, ridges lead

to flow accumulation causing breakovers and concentrated flow with high erosive power and

resulting in higher total erosion from the field. Although ridges on convex field 2 prevent runoff

routing along the steepest slope and accumulation at the edges, which resulted in reduced total

erosion from the field. These results show that ridge-furrow systems can increase soil erosion

dramatically on one field, but have contrary effects on another field, simply depending on the

topography.
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Our results have practical consequences for planning and implementation of best management

practices for watersheds. Especially in mountainous areas, where the topography within and

between fields can be strongly variable, ridge-furrow cultivation should be performed carefully.

The ridge-furrow system should be preferable located parallel with the contours, or oriented

towards the edges in order to drain runoff away from depressions and to prevent concentrated

flow within fields. To prevent flow accumulation and high erosion rates at the field edges, also

the transition zones between the field and the surrounding margins have to be considered. Our

results show that in any case the furrows between the ridges need to be better protected against

soil erosion. Conventional herbicide applications eliminate the development of a plant cover in

the furrows. Even though the vegetative cover of adult crops can protect soil from raindrop

impact, the furrows remain susceptible to erosion by overland flow during the entire growing

season. In order to reduce soil erosion on crop fields in South Korea we recommend organic

farming practices without herbicide application, which supports the development of weeds in

the furrows. Another effective erosion control measure can be cereal grass cultivation in the

furrows as suggested by Rice, Harman-Fetcho, et al. (2007). Vegetative-covered furrows are

functioning as ”in-field buffers”, which can increase infiltration capacity and reduce runoff flow

velocity due to higher surface roughness (Rice, Harman-Fetcho, et al., 2007). Reducing the

runoff flow rate along the furrows could also help to prevent the severe damages caused by

ridge breakovers. Another important issue is the application of large-scale erosion models to

those areas dominated by ridge-furrow cultivation. Erosion prediction on watershed-scale is

usually conducted on the basis of relatively course digital elevation models and often do not

account for special tillage and cropping systems and their orientation. The models can strongly

over- and underestimate soil erosion rates especially for complex landscapes and should be

corrected for ridge-furrow systems. However, this study analyzed only two field sites with a

specific topography and ridge orientation. In order to identify general patterns, which can be

used for large-scale model applications, additional research studies are necessary to account for

a variety of different field topographies and ridge-furrow systems.
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Šimůnek, J., M. Šejna, and M. Van Genuchten (2011). The Hydrus software package for simulat-

ing two- and three-dimenional movement of water, heat, and multible solutes in a variably-

saturated media: Technical Manual. 2.0. Prague and Czech Republic.

http://dx.doi.org/10.1016/j.cageo.2009.11.005
http://dx.doi.org/10.1021/jf062107x
http://dx.doi.org/10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4
http://dx.doi.org/10.1016/S0341-8162(99)00032-6


REFERENCES 115

Stevens, M., B. Black, J. Lea-Cox, A. M. Sadeghi, J. Harman-Fetscho, E. Pfeil, P. Downey,

R. Rowland, and C. J. Hapeman (2009). “A comparison of three cold-climate strawberry

production systems: environmental effects”. In: HortScience 44.2, pp. 298–305.

Stocking, M. (1972). “Aspects of the role of man in Rhodesia”. In: Zambezia 2.2, pp. 1–10.

El-Swaify, S. A., E. W. Danglar, and C. L. Armstrong (1982). Soil Erosion by Water in the

Tropics. Honolulu, USA: College of Tropical Agriculture and Human Resources, University

Hawaii.

Vieux, B. (2001). Distributed hydrological modeling using GIS. Dordrecht, The Netherlands:

Kluwer Academic Publisher.

von Werner, M. (1995). “GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung

von Bodenerosion in kleinen Einzuggebieten”. PhD thesis. Berlin, Germany: Free University

of Berlin, Department of Earth Science.

Wan, Y. and S. El-Swaify (1999). “Runoff and soil erosion as affected by plastic mulch in a

Hawaiian pineapple field”. In: Soil & Tillage Research 52.1-2, pp. 29–35.

Wickenkamp, V., R. Duttmann, and T. Mosimann (2000). A multiscale approach to predicting

soil erosion on cropland using empirical and physically based soil erosion models in a geo-

graphic information system: in: Soil erosion. Application of physically based models. Berlin:

Springer, pp. 109–134.

Wischmeier, W. H. and D. D. Smith (1978). Predicting rainfall erosion losses. A guide to

conservation planning: Agricultural Handbook 537. Washington D.C., USA.

Wolfe, M. L., B. B. Ross, J. F. Diem, T. A. Dillaha, and K. A. Flahive (2002). Protecting water

quality: best management practices for row corn crops grown on plastic mulch in Virginia.

Blacksburg, USA.



116 CHAPTER 4. RUNOFF AND SOIL EROSION



Chapter 5

Fate of fertilizer 15N in intensive ridge

cultivation with plastic mulching under

a monsoon climate
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Abstract

Reduction of nitrogen (N) leaching to groundwater requires an improved under-

standing of the effect of microtopography on N fate. Because of the heterogeneity

among positions, ridge tilled fields, frequently used in intensive agriculture, should

be treated as two distinct management units. In this study, we identified N dynam-

ics for plastic-mulched ridges and bare furrows with the goal of developing more

sustainable agricultural practices with optimal gains, namely crop production versus

1Correspondence to: Janine Kettering, Department of Agroecosystem Research, BayCEER, University of
Bayreuth, 95440 Bayreuth, Germany.
E-mail: janine.kettering@uni-bayreuth.de
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limited impacts on water quality. We investigated: (1) biomass production; (2) crop

N uptake; (3) N retention in soil; and (4) N leaching using 15N fertilizer in a radish

cultivation. Broadcast mineral N fertilizer application prior to planting resulted in

high total leaching losses (up to 390 N kg ha−1). The application of plastic mulch in

combination with local fertilizer management did not help to reduce N leaching. At

all fertilizer N rates, the mean nitrate concentrations in seepage water were found

to be above the WHO drinking water standard of 50 mg NO−3 l−1. To reduce nitrate

leaching, we recommend: 1) decreasing the fertilizer N rates to a maximum of 150 kg

N ha−1; 2) applying fertilizer N in 3 to 4 split applications according to the plant’s

N needs; 3) applying fertilizer N to the ridges (after their formation) to avoid losses

from the furrows; and 4) increasing the soil organic matter content to enhance the

water and nutrient retention by covering the furrows with plant residues, i.e., rice

straw or soil additives.

Keywords: N leaching ; N retention ; sandy soil ; N use efficiency ; stable isotope ; suction

lysimeter

5.1 Introduction

N leaching from agricultural fields is considered a major source of water pollution (Buczko et al.,

2010; Zotarelli et al., 2007) and considerable levels can be reached, especially in intensively

cultivated areas with high precipitation and coarse-textured soils. N leaching depends on the

amount of water percolating through the soil and the N concentration in the seepage water

(Sieling and Kage, 2006), which is strongly influenced by local factors such as climate (arid

< humid), soil type (fine-textured soil < coarse-textured soil), and land use system (natural

system < agricultural system) (Boumans et al., 2005; Di and Cameron, 2002). N leaching is

difficult to control because it is often derived from large areas of land and losses mostly occur

intermittently with rainfall events (Barton and Colmer, 2004). Another factor that complicates

the measurement and the interpretation of N leaching, however, is the soil structure, which

might induce preferential flow. This uneven and often fast flow of water and solutes through the

soil causes that a small fraction of the media participates in most of the flow, allowing much

faster transport of nutrients. N leaching processes have been measured using different methods

in various crop systems and pastures that had a relatively homogenous spatial distribution of

water and N (Di and Cameron, 2002; Nyamangara et al., 2003; Zotarelli et al., 2007).
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Figure 5.1: Scheme of a typical ridge cultivation system with plastic mulching in a temperate
South Korean area with summer monsoon. Shown are the water fluxes and the distribution of
fertilizer N in the system.

Polyethylene (PE) mulch has been used to cover soil surfaces in South Korea for ridge

cultivation of vegetable crops (Figure 5.1). When this method is practiced, the ridges are cov-

ered with a plastic film, but the furrows are left uncovered which should diminish N leaching

(Henriksen et al., 2006; Islam et al., 1994; Romic et al., 2003). However, the soil surface mi-

crotopography associated with this practice involves a non-uniform distribution of water and

N. Previous studies focused on comparing total N leaching amounts between flat tillage, ridge

cultivation, and/or ridge cultivation with plastic mulching (Drury et al., 1993; Romic et al.,

2003; Vázquez et al., 2005). The potential differences in N fate between plastic-mulched ridges

and bare furrows in dryland agriculture have not been extensively evaluated. Many processes,

such as water flow and solute transport, are different in the ridge and furrow zones. Additionally,

such a microrelief might even increase the total leaching as both sites are interrelated, and the

water volume in furrows increases in the presence of ridges (Leistra and J. Boesten, 2008). The

PE mulch protects the ridges from direct infiltration, and hence, the fertilizer N beneath the

ridge is protected against percolation with seepage water. It consequently intensifies percolation

in the furrows (Bargar et al., 1999; Henriksen et al., 2006; Islam et al., 1994), which in turn

can lead to water ponding on the furrow surface after heavy rainfall. However, due to the lower

fertilizer N concentrations in the furrows, the total amount of N leaching is assumed to decrease.

Consequently, N retention in ridge soil and N uptake by plants is expected to increase.

In the mountainous highlands of Gangwon Province in South Korea, the agricultural systems

have shifted over the last 40 years towards intensive management that depends heavily on high
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mineral N fertilizer inputs. Recommendations for highland summer radishes provided by the

Rural Development Administration of South Korea (RDA) amounted to 252 kg N ha−1 (RDA,

2006), while local farmers have adopted N application rates of up to 400 kg N ha−1.

Due to the high soil erosion loss from mountainous cropland areas, local farmers use a

management practice of frequently adding sandy soil to the top layer of agricultural fields to

compensate for soil loss. Excessive N fertilization and the predominantly sandy soils, together

with heavy summer monsoon rainfalls, result in high N losses, which lead to surface and ground-

water pollution in many of the thousands of small agricultural watersheds in South Korea.

Our study site, Haean Catchment, is a subcatchment of the Lake Soyang watershed, which is

a major drinking water reservoir in South Korea and is known as a hot spot of agricultural

non-point pollution (Jung et al., 2009; Kim et al., 2006). It is a typical basin with representative

characteristics of South Korean agricultural areas such as the following: (1) high N inputs

exceeding crop demands; (2) cultivation on sandy soils; (3) dependence on monsoon rainfall; (4)

a high percentage of vegetable production; and (5) specific management practices such as ridge

cultivation with black PE mulch.

The purpose of this study was to identify the N dynamics for plastic-mulched ridges and bare

furrows with the goal of developing more sustainable agricultural practices to reduce non-point

pollution of water resources. Using 15N, we investigated the budget of fertilizer N, including

the following: (1) the N uptake by crops; (2) the N retention in soil; and (3) the N downward

movement with percolation in a radish (Raphanus sativus L.) system under conventional local

management. 15N isotopes are an invaluable tool to trace the fate of fertilizer N in soil/plant sys-

tems (Xu et al., 2008) because 15N undergoes the same chemical and microbial transformations

as 14N in the soil. Hence, analysis of the 15N content in plant parts and soil was evaluated at

selected times during the growing season, and 15N content was used as a measure of the actual

15N recovery and 15N loss derived from the fertilizer (Buresh et al., 1982; Vlek and Byrnes, 1986).

To evaluate the effect of plastic mulched ridges on N leaching, a two-dimensional process-based

modeling study was carried out using the numerical model Hydrus 2/3D. To assess productivity

implications versus environmental impacts of N fertilizer use, namely impacts on water quality,

N dynamics were examined at fertilizer N application rates from 50 to 350 kg N ha−1 on top of

the basal fertilization rate of 56 kg N ha−1. Because N leaching was absent during the dry and

cold winter, we conducted the field and the modeling study only during the growing season.
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Table 5.1: Physical properties of soils at the experimental field site in the Haean Catchment in
2010. Shown is the sand, silt, and clay content of the soil in %. The texture of the soil taken
from the World Reference Base from the IUSS Working Group (2007). The standard error of
the mean is given in the parentheses.

Soil depth Sand Silt Clay Texture Bulk density
cm % % % g cm−3

0-20 81 (±0.8) 16 (±0.7) 3.0 (±0.2) Loamy sand 1.22(±0.07)
20-40 77 (±1.5) 19 (±1.2) 3.6 (±0.3) Loamy sand 1.43(±0.06)
40-60 73 (±1.5) 22 (±1.2) 4.4 (±0.4) Sandy loam 1.27(±0.01)

5.2 Materials and methods

5.2.1 Study site

The field experiment was conducted on a typical Korean terric cambisol or even anthrosol (WRB,

2007) (Table 5.1) because of the artificial long-term addition of sandy soil on the top of the fields

at the Punchball Tongil Agricultural Experimental Farm (38.3◦N, 128.14◦E, 420 masl) in the

Haean-myun Catchment in Yanggu County, Gangwon Province, South Korea. The experiment

went from June 1 to August 28, 2012.

The study area falls within the East-Asian monsoon climate and has an 11-year (1999-2009)

average annual air temperature of 8.5◦C and an annual precipitation of approximately 1577 mm,

with 70% of the precipitation occurring as heavy rainfall between June and August (Figure 5.2).

In recent decades, a shortening of the monsoon season, as well as an increase in the amount of

precipitation, and the number of heavy rainfall days, was observed (Chung et al., 2004). However,

the months of June and July in 2010 had precipitation amounts of only 67 mm and 216 mm,

respectively, which were exceptionally low compared to the 11-year averages. Very dry periods,

each with less than 20 mm precipitation in total, were observed from June 14 to July 1, July 6 to

July 15, and from July 19 to August 1. In contrast, the months of August and September were

extremely wet, with precipitation amounts of 458 mm and 415 mm, respectively. The heaviest

rainfall during the experiment was 150 mm in the three days from August 13 to 16. Although

no runoff was observed throughout the experimental period, water sometimes ponded on the

furrow surface after a heavy rainfall. However, rainfall events in the experiment period (2010)

were comparatively small, with a maximum daily precipitation of less than 70 mm. For March,

April and May, the temperature was colder than the 11-year mean. This led to a delay in the

start of cropping by approximately two to four weeks.
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Figure 5.2: Mean daily temperature (◦C), II. Mean total precipitation amount (mm) for the
years 2009 and 2010 as well as the 11-year mean (1999-2009) of the Haean Catchment. Daily
precipitation amounts and temperature data have been monitored with an automatic weather
station (WS-GP1, Delta-T Devices, Cambridge, UK ).

5.2.2 Experimental design

Before the experiment started, commonly used fertilizer (30% mineral NPK fertilizer with 4.2-2-

2, 70% organic fertilizer with C/N ratio 50:1, SamboUbi, South Korea) was applied as granules

at the rate of 56 kg NO−3 ha−1 on May 31, 2010, and mixed in the top 0.15 m of the soil to

enhance soil fertility of the previously fallow field. On June 1, NO−3 was applied as a one-time

top dressing (mineral NPK fertilizer 11-8-9 +3MgO+0.3B, KG Chemicals, South Korea) at four

fertilizer N rates: N50, N150, N250, and N350, reflecting the application of 50, 150, 250, and

350 kg NO−3 ha−1. The N250 treatment satisfied the recommendations for highland radishes

provided by the RDA (RDA, 2006). Each treatment was applied to a plot (7x7 m) and replicated

three times at the field site. A randomized block design was used for the experimental layout.

On June 9, the top 0.2 m of the soil was ploughed, and the ridge system (35 cm width and

10-15 cm height) was implemented with a distance of 70 cm between the rows. The 15N labeling

experiment was performed in microplots (125x75 cm), each containing one bare furrow and one

ridge with six labeled radish plants. Each plot included three microplots, one for each sampling

day (day 25, 50, and 75). K15NO−3 (10 at%) was applied as a tracer to the microplots on June

10. After application of the tracer, the ridges were covered with impervious black PE mulch on

June 11. Finally, radishes were sowed on the top ridges on June 14 at a plant density of 25 cm

(Hungnong Seeds, South Korea). June 14, the day of the planting, is therefore set as day 0 of the

experiment. Weeding during the experiment was performed manually without the application
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of herbicides. The plots were harvested after 75 days of growth on August 28.

5.2.3 Study of soil water dynamics

To estimate N loss in seepage water, suction lysimeters combined with a soil hydrological

monitoring network of standard tensiometers were installed. The suction lysimeters consisted

of a ceramic cup, a PVC tube, and a PE suction tube. The latter was connected to samplers

(brown glass bottles), which were connected through a network of high-density tubing to a

vacuum pump (KNF Neuberger, Type N86KNDCB 12v, Freiburg i.Br., Germany). In each

microplot, two suction lysimeters were placed in the ridge (15 cm and 45 cm from the top of

the ridge), and one was placed in the furrow (45 cm from the top of the ridge). The suction

lysimeters were installed by following the recommendations of DGFZ and HLUG (2004) and

UMS GmbH (2008). Quantifying N losses with downward percolation is highly challenging due

to uncertainties associated with estimating drainage fluxes and solute concentrations in the

seepage (Van der Laan et al., 2010). Suction lysimeters can be used to determine the nitrate

concentrations in seepage but provide no information on water fluxes. Hence, a process-based

numerical model was used for the inverse simulation of water flow and the estimation of N

leaching (Hydrus 2/3D, (Simunek, 2006)). The ability of representing physical processes such as

subsurface water flow in variable saturated media is an advantage of process-based numerical

models. Uniform flow processes in a variably saturated porous media without preferential flow

pathways can be described using the extended Richards’ equation based on the Galerkin linear

finite element method. The extended Richards’ equation for water flow incorporates a sink

term, which considers the root water uptake. We used the data defined for sugar beet from the

Hydrus 2/3D data base because radish data was not available. Surface boundary conditions

were set to atmospheric conditions in furrows and planting holes, whereas plastic mulched areas

were set to no flux conditions. Soil evaporation and crop transpiration were calculated with the

FAO-56 dual crop coefficient approach using weather parameters such as solar radiation, air

temperature, wind speed, humidity and air pressure, which were measured by the weather station

at the experiment site. The amount of precipitation was multiplied by 2 to include the surface

runoff from the plastic mulched ridges to the furrows (Dusek et al., 2010). The Van Genuchten

parameters, the saturated and the residual water content θs, θr, α and n, and the saturated

hydraulic conductivity (Ksat) were initially estimated based on texture and bulk density using

the Rosetta lite DLL module, which is implemented in Hydrus 2/3D. The optimization of the

Van Genuchten parameters was performed based on the Levenberg-Marquardt algorithm using
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the measured pressure head values in the field, which is a parameter estimation technique for

inverse estimation of selected soil hydraulic and/or solute transport and reaction parameters

from measured data.

Hydrus 2/3D numerically solves Fickian-based advection-dispersion equations for solute

transport in variably saturated porous media using the Galerkin linear finite element method.

To solve the advection-dispersion equations, water content and volumetric flow need to be

defined. Therefore, Hydrus 2/3D first solves the Richards’ equation and subsequently simulates

the solute transport. To adjust the simulation of the solute transport to the measured nitrate

concentrations in the seepage water, the solute reaction parameters longitudinal dispersion DL

and denitrification rate k were inverse optimized. Because Hydrus 2/3D is not able to invers

simulate several solutes at the same time, the simulation was kept fairly simple and was carried

out only for nitrate. Other N forms were therefore not included in the simulation. N uptake

by crops takes place passively in the simulation and is linked to the water uptake by crops.

The nitrate concentration at the start of the simulation was calculated from the N application

rates N50, N150, N250, and N350 and defined up to the soil depth of 24 cm. For the solute

transport simulation, we assumed that a) all applied fertilizer N was applied as nitrate, b) N

mineralization, N fixation, and atmospheric N deposition during the 75 days of growth were

negligible, and c) the N fertilizer granules were directly dissolved in the soil water all at once.

Denitrification, however, was included in the simulation because the soil in a depth of 50 cm

and deeper was often saturated and anaerobic conditions were assumed. Denitrification was the

only unmeasured sink term for nitrate in soil and was simulated invers as a first order kinetic

process. The simulation of the water flow as well as of the solute transport was carried out for

one of the three replicates of each N application rate.

The simulation of the water flow was carried out for 74 days and started at the time of planting

at June 14, 2010 (day 0). The simulation of the nitrate transport, however, was carried out for 78

days and started at June 10, 2010. Different statistical techniques such as Pearson’s correlation

coefficient (R), coefficient of determination (R2) and Nash-Sutcliffe efficiency (NSE) were used

to evaluate the models. The water flow models achieved a good agreement between measured

and simulated pressure heads (Table 5.2). To examine the influence of differing Van Genuchten

parameters or differing saturated hydraulic conductivities on the amount of percolated water,

we tested the simulations with two methods (Monte Carlo simulation with random combinations

of the parameters and gradually modified parameters). The sensitivity analysis showed that the

water fluxes were robust against changes in the hydraulic parameters.

The inverse simulation of the nitrate transport, however, showed a less good agreement
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Table 5.2: Statistical parameters for the evaluation of the simulation of the soil water dynamics.
R2 = coefficient of determination. R = Pearson’s correlation coefficient. NSE = Nash-Sutcliffe
efficiency. STDV = standard deviation of the mean.

N application rate R2 (-) R (-) NSE (-) STDV (-)

N50 0.6366 0.7979 0.6026 7.4884
N150 0.6483 0.8052 0.5216 10.833
N250 0.7385 0.8594 0.6122 8.8381
N350 0.6654 0.8157 0.6325 11.436

Table 5.3: Statistical parameters for the evaluation of the simulation of the nitrate transport.
R2 = coefficient of determination. R = Pearson’s correlation coefficient. NSE = Nash-Sutcliffe
efficiency. STDV = standard deviation of the mean.

N application rate R2 (-) R (-) NSE (-) STDV (-)

N50 0.3174 0.5634 0.2451 3.13 · 10−5

N150 0.5033 0.7094 0.3927 -1.42 · 10−5

N250 0.3508 0.5923 -0.034 4.69 · 10−5

N350 0.1354 0.3680 -0.1817 0.61 · 10−5

between the measured and the simulated nitrate concentrations in seepage water (Table 5.3)

and underestimated the nitrate concentrations at the fertilizer application rates N50, N250, and

N350 and overestimated the nitrate concentrations at the fertilizer N application rate N150,

respectively.

5.2.4 Sampling and Analysis

Above-ground and below-ground biomass was measured gravimetrically in each microplot at day

25, 50, and 75 after sowing. Four 15N labeled plants in each plot were harvested to determine the

fresh weight (FW) and dry weight (DM) of shoots and roots (Wu et al., 2012) and to analyze

15N excess (at%). Immediately after separation of the plant parts, the FW was measured, and

DM was determined after drying at 70◦C for at least 48 h. An aliquot of each plant part was

ground with a ball mill (¡ 0.25 mm) (Brinkman Retsch, MM2 Pulverizer Mixer Mill, Germany) for

isotopic analysis and stored until further analysis. Soil samples (0-20, 20-40, 40-60 cm) with three

replicates each were collected at day 25, 50, and 75 after sowing with a soil corer (diameter: 5 cm).

Soil sampling and analysis were conducted separately for ridges and furrows. The soil samples

were dried at 60◦C, mixed, and sieved (< 2 mm). An aliquot of each soil sample was ground with

a ball mill (< 0.25 mm) (Brinkman Retsch, MM2 Pulverizer Mixer Mill, Germany) for isotopic

analysis and stored until further analysis. Total N content and 15N in soil and plant samples
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were determined using an elemental analyzer (NC 2500, CE Instruments, Italy) coupled with an

isotope mass spectrometer (delta plus, Thermo Fisher Scientific, Germany) through a ConFlo

III open split interface (Thermo Fisher Scientific, Germany) as further specified in Bidartondo

et al. (2004). To determine N loss through seepage water, the soil water samplers at each

depth (15 cm, 45 cm) and position (ridge, furrow) were separately sampled for chemical analysis

approximately on a weekly basis (30.06.2010, 05.07.2010, 10.07.2010, 22.07.2010, 29.07.2010,

04.08.2010, 14.08.2010, 23.08.2010). Samples were refrigerated at 5◦C within 2 h of collection

and analyzed within 24 h in the field laboratory with Spectroquant R© quick tests based on

the photometric method (Nitrate test photometric, DMP 0.10 - 25.0 mg/l NO−3 -N 0.4 - 110.7

mg/l NO3 Spectroquant R©, MERCK, South Korea) and by using a photometer (LP2W Digital

Photometer, Dr. Lange, Germany).

5.2.5 15N calculations and tracer recovery

15N concentration in dry plant and soil material (15N/14N at%) was corrected for natural 15N

abundance (at%). 15N concentrations were then converted to an area basis (mg 15N m−2) using

in equations (5.1), (5.2) and (5.3) (Buchmann et al., 1995):

[15N] = 15N/14N at%/ 100 ∗ [N] (5.1)

with [N] = N concentration.

Plant samples : 15N g m−2 = [15N] ∗ bio g m−2 (5.2)

with bio m−2 = biomass (g) per unit ground area (m−2)

Soil samples : 15N g m−2 = [15N] ∗ dB ∗ s (5.3)

with dB = bulk density of each soil layer, s = soil volume of soil horizon in m3.

A 15N budget was calculated for each fertilizer N level. The 15N uptake by crops was expressed

as the percentage of applied 15N fertilizer taken up by the above- and below-ground plant parts

and reflects the fertilizer N use efficiency of the plants. The 15N retention in soil was described

as the percentage of applied 15N fertilizer recovered in the top 60 cm of the soil profile. Only the

upper 60 cm of the soil was used for the calculations because more than 90% of the roots were

found in the upper 30 cm and N that leached deeper than 60 cm was lost to groundwater. 15N

recovery was calculated as the percentage of 15N uptake by plants and the 15N retention in soil.
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The 15N loss was calculated by subtracting the uptake by plants and retention in soil from 100.

5.2.6 Statistical analysis

Statistical analysis was carried out using the statistical software R (version 2.13.2), with a

significance level of p ≤ 0.05. All variables were tested for normal distribution. Mean values are

presented in the figures, if not stated differently. Differences in the central location (median) of

independent samples (DM, crop N uptake, 15N uptake) were analyzed using the Kruskal-Wallis

non-parametric analysis of variance and pairwise comparisons using the Wilcoxon rank sum test

with Bonferroni correction. Differences in the central location (median) for dependent samples

(seepage nitrate concentration, 15N retention) were analyzed using the Friedman non-parametric

ANOVA and pairwise comparisons using the Wilcoxon matched pair test. Different statistical

techniques such as Pearson’s correlation coefficient (R), coefficient of determination (R2) and

Nash-Sutcliffe efficiency (NSE) were used to evaluate the models.

5.3 Results

5.3.1 Plant biomass and 15N uptake in crops

The total DM at final harvest increased with an increase in the fertilizer N application rate, with

a significantly lower DM at the N application rate N50 (p < 0.05). The maximum DM production

was achieved at N350 (5.5 Mg ha−1). For N50, a significantly lower final DM production was

observed (4 Mg ha−1). While the DM increased significantly from day 25 to day 50 at all N

application rates, it did not increase at all at any N application rate for the last 25 days of the

growth period (Figure 5.3).

The highest 15N uptake by crop was observed at N50 and was 36% at day 50. The N

application rate N150 was also at its highest at day 50. Over the entire 75 days of growth, the

15N uptake by crop increased only for the higher fertilizer N rates (N250, N350). In addition,

the increase in 15N from day 25 to day 50 was significant at all N application rates. However,

the increase for the last 25 days was only significant at N350. At day 75, the total crop 15N

uptake ranged between 20% (N250) and 32% (N50), and this difference was significant. The

15N uptake by crops reflects the fertilizer N use efficiency of the plants. At the first sampling

day, the order of the mean fertilizer N use efficiency was as follows: 3.8% (N150) > 3.7% (N50)

> 2.7% (N250) > 1.7% (N350). The mean fertilizer N use efficiency of all fertilizer N rates at

final harvest was found to be 27%.
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Figure 5.3: a)15N uptake by plants (% of 15N applied), b) total crop N uptake (kg N ha−1) and c)
dry matter production (kg ha−1) at the four fertilizer N rates after 75 days of growth. Standard
error of the mean is given.

The total crop N uptake increased linearly with an increase in the fertilizer N application

rate at day 75 (R2 = 0.97), while in the first 50 days of the growing period, the N application

rates N150 and N250 were still within the same range. The crop N uptake at the two lower

fertilizer N rates (N50, N150) stagnated from day 50 to day 75, whereas the uptake continued

to increase at the two higher N application rates, leading to the highest final crop N uptake of

all four N application rates. The increase in N uptake by crops, however, was only significant

from day 25 to day 50 at all four N application rates.

5.3.2 15N retention in soil

The order of the final 15N retention (% of 15N applied), averaged for all sampling depths, was

as follows: 14% (N50) > 13% (N250) > 11% (N150) > 10% (N350), and these differences were

not statistically significant. Ridges showed higher soil 15N retention than furrows but again no

significant differences were found (p>0.05) (Figure 5.4). In the ridge position as well as in the

furrow position, the final soil 15N retention decreased with increasing soil depth at all three

sampling days (p>0.05) (Table 5.4).
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Figure 5.4: Mean soil 15N retention (% of 15N applied) averaged for all three depths at day
75 of growth. Standard error of the mean are shown. Results are given for furrows and ridges
separately and in total for the four fertilizer N rates.

Table 5.4: Soil 15N retention (% of 15N applied) in different sampling depths in the ridges and
the furrows at day 75 of the growth. The standard error of the mean is given in the parentheses.

N application rate Ridge Ridge Ridge Furrow Furrow
0-20cm 20-40cm 40-60cm 0-20cm 20-40cm

N50 9.19 (0.84) 6.81 (0.75) 3.67 (1.00) 2.71 (0.63) 0.53 (0.11)
N150 3.7 (0.25) 0.96 (0.95) 0.51 (0.16) 4.70 (0.15) 1.15 (0.43)
N250 8.29 (2.82) 1.28 (0.68) 0.97 (0.27) 3.12 (0.55) 0.52 (0.12)
N350 5.03 (0.54) 1.12 (0.86) 0.57 (0.10) 3.18 (1.26) 0.63 (0.14)
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Figure 5.5: Simulated daily seepage water fluxes (l m−2 d−1) at a depth of 45 cm during the 75
day growth period. Daily seepage water was simulated for one plot replicate of each fertilizer N
application rate only.

5.3.3 N content in soil solution and N leaching

The total added amount of water in the simulation consisted of precipitation amount and soil

water content at the beginning of the simulation. The amount of water, which was discharged in

the simulation, consisted of the amount of water percolated deeper than 45 cm and the amount

of water lost by transpiration and evaporation. The simulated amounts of total seepage water

percolating deeper than 45 cm during the 75 days of growth increased in the order: 774 l m−2

(N350) < 796 l m−2 (N50) < 853 l m−2 (N150) < 887 l m−2 (N250). The water dynamics

were only simulated for one plot replicate per fertilizer N application rate in the model. In the

simulation, the furrows contributed 1.5 to 3 times more than the ridges to the total amount of

seepage water (Figure 5.5). Simulated seepage water fluxes were strongly affected by rainfall

and increased considerably with each heavy rain event at all N application rates. Accordingly,

the highest seepage water fluxes were simulated on July 16, August 10, and August 13-16, 2010,

when the measured precipitation was high, while the dry periods of June 14-30 and July 25 to

August 2, 2010 showed low seepage water fluxes.
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Mean seasonal nitrate concentrations in seepage water increased with an increase in fertilizer

N rate in the following order: N50 (53 mg l−1) < N150 (67 mg l−1) < N250 (119 mg l−1) <

N350 (122 mg l−1) (p < 0.05). This order was common at all sampling depths as well as for

ridge positions and furrow positions. Differences in the mean nitrate concentrations between

the four fertilizer N rates were not significant at the beginning of the experiment (138-179 mg

NO−3 l−1) but increased at the end of the experiment (5-64 mg NO−3 l−1) (p < 0.05). Nitrate

concentrations in seepage water showed no significant differences between the two sampling

depths of 15 cm and 45 cm (p > 0.05). The nitrate concentrations separately sampled at a soil

depth of 45 cm in the ridges and in the furrows, in each case measured from the top of the ridge,

did also show no significant differences (Figure 5.6).

The continuous and quick decline of nitrate concentrations in seepage water at N50 and N150

resulted in concentrations lower than 10 mg NO−3 l−1at the end of July (day 45-50 after sowing).

In contrast, the slower and discontinuous decrease of nitrate concentrations at N250 and N350

resulted in higher concentrations at the end of July (> 40 mg l−1) and at the final harvest

(> 10 mg l−1). The concentration pattern at the beginning of the measurements was unexpected.

Although the fertilizer was applied four weeks before the first seepage water sampling, the peak

concentrations did not occur at the beginning of the seepage water measurements but around

day 21 for the ridge position at a depth of 15 cm and around day 28 for the ridge position and

furrow position at a depth of 45 cm.

Because 15N in seepage water was not measured to determine the proportion of mineral

N fertilizer that leached deeper than the rooting zone, simulation results of one plot replicate

per fertilizer N application rate from Hydrus 2/3D were used. The simulated total amount of

nitrate that leached deeper than 45 cm during the growing season increased linearly (R2=0.99)

with an increase in fertilizer N rate: 86 kg NO−3 ha−1 (N50) < 180 kg NO−3 ha−1 (N150) < 260

kg NO−3 ha−1 (N250) < 387 kg NO−3 ha−1 (N350) (Figure 5.7). Additionally, the simulation

showed that nitrate leaching was strongly affected by the amount of rainfall. The daily amount

of leached nitrate increased considerably at days with high precipitations amounts, while at days

with low or no precipitation the daily amount of leached nitrate was found to decrease and to

be fairly low. Accordingly, the peaks of high daily nitrate leaching were all found on days with

high rainfall amounts. The pattern of the daily N leaching was therefore highly consistent with

the pattern of the seepage water fluxes. The ridges and furrows, however, contributed equally

to the total amount of leached nitrate at all fertilizer N application rates.
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Figure 5.6: Mean (n=3) nitrate concentrations in seepage water (mg l−1) at ridge and furrow
positions and two soil depths (15 cm, 45 cm) at the four fertilizer N rates. a) = ridge in 15 cm
depth; b) = ridge in 45 cm depth; c) = furrow in 45 cm depth. The graphic top right shows
the location of the suction lysimeters for collecting seepage water. Standard error of the mean
is given

Figure 5.7: a) Simulated daily leached NO−3 (kg N ha−1 d−1) for the four fertilizer N rates and
b) simulated cumulative leached NO−3 (kg N ha−1) for ridges and furrows separately during the
growth period of 75 days. Daily leached nitrate was simulated for one plot replicate of each
fertilizer N application rate only.
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5.4 Discussion

5.4.1 Plant biomass and 15N uptake by crops

The results for DM production were supported by earlier findings that showed that the highest

biomass production for radishes was recorded at the highest rates of fertilizer N (Guvenc, 2002).

However, the lack of significant differences in DM production between N150, N250 and N350

indicates that similar crop yields can be achieved with lower fertilizer N rates. In contrast,

a significantly lower DM production was observed at N50 when compared to the higher N

application rates, which implies that an N fertilizer rate of 150 kg N ha−1 is adequate to achieve

maximum biomass production.

The highest 15N uptake by plants of all sampling days was observed at day 50 at the fertilizer

N rates N50 and N150, and accordingly, no significant 15N uptake occurred in the final 25 days

of growth at these rates. These findings suggest that most of the fertilizer N was either taken

up by crops or lost from the soil by day 50 and that only a small amount of 15N was taken up

by the crops after this day. A significant 15N uptake between day 50 and 75 was recorded at

the N application rate N350. However, because the fertilizer N application rate did not have a

significant effect on the final 15N crop uptake, a majority of the fertilizer N was taken up by

the plant and used for biomass production in the first 50 days of growth at all fertilizer N rates.

This was highly consistent with the fact that no significantly greater biomass production was

observed in the last 25 days of growth at any of the four N application rates. Furthermore, the

total N content of the plants increased with an increase in the N application rate, as did the

nitrate content of the radish (root) (Guvenc, 2002). According to Guvenc (2002), N taken up

after day 50 accumulated mostly in the root, rather than being used for further growth. The

final mean fertilizer N use efficiency of all 4 N application rates was as low as 27%. 15N isotopes

are an invaluable tool to estimate fertilizer N use efficiency, but studies with 15N fertilizers

have often shown that fertilizer 15N application increased plant uptake of unlabeled soil N

due to mineralization-immobilization turnover (Jenkinson et al., 1985; Kuzyakov et al., 2000).

Hence, for soils low in native N, 15N uptake by crops may be lower if immobilization of fertilizer

15N occurs to a significant extent. This pool substitution could lead to an underestimation of

the fertilizer 15N uptake by plants (Eviner et al., 2000; Vlek and Byrnes, 1986). Taking this

underestimation into account, although the effect was probably of secondary importance for

the sandy soils of the experimental field, the calculated mean fertilizer N use efficiency was still

fairly low. The low fertilizer N use efficiency of < 4% in the first third of the growing season
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was responsible for this poor performance. The crop was unable to utilize all available N at the

beginning of the growing season, and hence, the excess fertilizer N applied at the beginning of

the growing season had a high potential of being lost to the groundwater in the sandy soils.

5.4.2 N retention and N content in seepage

The percolation risk increased with increasing amounts of precipitation at the beginning of the

monsoon season, which usually starts at the end of June. In fact, the precipitation level in June

(67 mm) was exceptionally low in 2010, but a rain event with 42 mm of precipitation occurred

shortly after the tracer application. The sandy soils with their low water and nutrient retention

capacity are extremely susceptible to the rainfall events occurring early in the season, especially

when the crops have not yet emerged.

The final 15N retention in soil showed no significant differences between the four N application

rates. The final 15N retention in soil showed also no significant differences for the different

sampling depths. The coarse texture of the upper 60 cm of the homogenous sandy soils and

the poor sorption characteristics increased the risk of 15N percolating quickly to deeper layers

instead of accumulating in the soil (Shrestha et al., 2010). The low final 15N retention in soil

was consistent with that of other disturbed ecosystems (Peterjohn and Correll, 1984). A higher

15N retention was expected in the covered ridges compared to the bare furrows based on the

procedure used for the fertilizer application. While the fertilizer was uniformly distributed at

the application, a majority of the fertilizer N accumulated in the ridges during their creation. In

addition, the ridges were covered with plastic mulch, which is assumed to protect the soil from

direct infiltration of excessive precipitation and accordingly is supposed to reduce the possibility

of N loss by leaching (Leistra and J. J. T. I. Boesten, 2010; Romic et al., 2003). However, no

statistically significant differences in 15N retention were observed between the ridges and the

furrows at all N application rates at the final harvest. This unexpected behavior was most likely

due to the 15N uptake by crops in the ridges compared to no 15N uptake by crops in the furrows.

Another potential reason might be the stemflow of precipitation water through the canopy

leading to local infiltration and preferential flow in the ridge soil, which was observed in other

field studies (Leistra and J. J. T. I. Boesten, 2010; Saffigna et al., 1976). This might reverse the

protecting effect of the PE cover. A modeling study on water flow in ridges and furrows in South

Korean agriculture found another explanation. Pressure head gradients during dry periods were

found to deviate horizontally, indicating a lateral flow direction from the furrows to the ridges.

However, during monsoon events, the dominating flow directions were less pronounced because
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ridges were also fully saturated due to the high hydraulic conductivity of the soils (Ruidisch

et al., 2012). This study also showed that there is no protective function of the PE mulch during

heavy rain events or during drier periods.

Seepage water was only collected weekly. The effect of single rain events on nitrate con-

centration in seepage water, such as the rain event shortly after the tracer application, could

therefore not be captured experimentally. The nitrate concentration in seepage was highest dur-

ing the first 25-35 days of growth for all four N addition rates. We hypothesized that the nitrate

concentrations were highest at the time of the first seepage water measurements because the

seepage water sampling started 3 weeks after the tracer was applied and even 4 weeks after the

fertilizer was applied. The highest nitrate concentrations, however, were found a couple of weeks

after the first measurements. This behavior might be explained by the fact that the fertilizer N

did not dissolve in the soil water immediately and at once and therefore was not immediately

susceptible for percolation but to a later point of time. Nitrate concentration in seepage water

also decreased with an increase in soil depth in the ridges, but the differences between the

furrows and ridges in the same sampling depths were not significant (p > 0.05). This implies

that the plastic mulch, which covered the ridges, did not protect the ridges from N leaching as

we would have expected due to the assumed protection of the soil from the direct infiltration

of excessive precipitation. This, however, is highly consistent with the results presented for the

15N retention in ridges and furrows. Moreover, the PE mulch did not seem to influence the

nitrate concentrations at all because the patterns of the nitrate concentrations over the season

were identical for the ridges and the furrows. These results additionally support the assumption

that the major portion of the fertilizer N at N50 and N150 was either taken up by the crop or

lost from the soil by day 50. The decrease in nitrate concentrations in seepage water at N50

and N150 occurred quicker and more continuously than at N250 and N350, resulting in nitrate

concentrations < 10 mg l−1 around days 45-50 after sowing. In contrast, nitrate concentrations

in seepage water at N250 and N350 were still > 10 mg l−1 at day 75. However, we found that the

seasonal mean nitrate concentrations in seepage did not meet the WHO water quality standards

of 50 mg NO3 l−1 for any of the fertilizer N rates (WHO, 2011). This is even more remarkable

as the nitrate concentrations of the seepage water were stronlgy diluted by the massive rainfall.

5.4.3 Seepage water fluxes and total leached N

Simulated seepage water fluxes were highly affected by heavy rain events and increased at days

with high rainfall amounts. The furrows had a clearly higher contribution to the amount of
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seepage water than ridges at all four N application rates, because the amount of precipitation in

the furrows was multiplied by 2 to include the surface runoff from the plastic mulched ridges to

the furrows. This procedure was successfully used in other modeling studies (Dusek et al., 2010).

Several studies proved experimentally that infiltration and initial water movement occurred

largely in the furrows mainly due to surface runoff (Bargar et al., 1999; Hamlett et al., 1990;

Leistra and J. J. T. I. Boesten, 2010). Li et al. (2000) compared runoff from bare ridges to

runoff from plastic mulched ridges. Runoff from the latter showed an average runoff efficiency

(runoff/rainfall) of 87%, with the maximum efficiency being close to 100%. Additionally, the

plastic mulched ridges were able to generate runoff even under low intensity of the rainfall.

Hamlett et al. (1990) additionally observed ponding of water in the furrows, when rainfall

exceeded infiltration capacity. Ponding water in the furrows was also observed in our field study.

In addition, no water was taken up by plants in the furrows, which also led to higher seepage

water fluxes in the furrows than in the ridges. The water dynamics, however, were only simulated

for one plot replicate per fertilizer N application rate in the model. Influencing parameters like

biomass production and soil texture of the simulated plots were fairly homogeneous. While

biomass production did not show a significant difference between the N application rates N150,

N250, and N350, the soil texture was homogeneous even in soil depths up to 60 cm because of

the regular addition of sandy soil to the top layer of the field by the local farmers. The model

showed a good agreement between the measured and the simulated pressure heads. Additionally,

the sensitivity analysis showed that the water fluxes were robust against changes in the hydraulic

parameters. The simulations of the water dynamics presented therefore a good foundation for

the simulations of the nitrate transport.

In the analysis of the simulated nitrate leaching deeper than 45 cm throughout the growing

season, we observed very high values of up to 387 kg N ha−1. These N leaching losses were

extremely high and amounted up to 95% of the applied fertilizer N. To interprete these results,

one has to consider the application of the basal fertilizer at the rate of 56 kg N ha−1, which was

additionally applied prior to the start of the experiment. However, the total amounts of leached

N increased linearly with an increase in the N application rate, while biomass production did

not significantly increase with increasing fertilizer N rates. Accordingly, the negative effect of

water pollution at N250 and N350 was greater than the positive effects of the higher biomass

production, indicating high environmental costs caused by exceeding optimum fertilizer N rates.

Rapidly increasing amounts of leached N at increasing N application rates for ridge tillage on

sandy soils have also been reported in studies conducted in ridge cultivations with uncovered

ridges (Errebhi et al., 1998; Shrestha et al., 2010). In this experiment, the ridges were covered
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with PE mulch but the application of PE mulch on the ridges did not clearly prevent the linear or

rapid increase observed in the other studies. In contrast, high N leaching losses from the plastic-

mulched ridges was observed in our study despite the assumed protection from local infiltration

and preferential flow in the ridge soil. Additionally, the contribution of nitrate leaching from

the ridges and from the furrows was fairly similar at all N application rates. Previous studies

showed that fertilizer N should be placed in the active water and nutrient uptake zone and,

hence, away from the furrows (Hatfield et al., 1998; Jaynes and Swan, 1999) because all fertilizer

N, which was placed in the furrows, had a very high risk of being leached. The contribution

to the total amount of leached nitrate increased considerably in the ridges and in the furrows

during heavy rain events, especially early in the growing season. This again indicated that the

PE mulch provided little protection of the ridge soil from N leaching. However, the increase in

N leaching during heavy rain events confirmed that the excess N applied prior to planting had

a higher probability of percolating deeper than the root zone with the beginning of the summer

monsoon season. The summer monsoonal precipitation over Korea has recently increased due

to a higher occurrence of heavy rainfall (≥ 30 mm d−1) events and an increase in the total

summertime precipitation (Ho et al., 2003). This change in rainfall intensity, and total amount

as well as the high inter-annual variability (Ho et al., 2003) amplifies the N leaching problem.

However, the inverse simulation of the nitrate transport showed a less good agreement between

the measured and the simulated nitrate concentrations in seepage water than the simulation of

the water flow did. The nitrate concentrations at the fertilizer application rates N50, N250, and

N350 were underestimated, while the nitrate concentrations at the fertilizer N application rate

N150 were overestimated.

5.4.4 15N Budget and simulated budget of fertilizer N

A 15N budget of the top 60 cm soil layer was calculated for each fertilizer N treatment for the

2010 cropping season (Table 5.5). The 15N loss at the end of the cropping season averaged to

63%. The highest 15N recovery was observed at N50 (47%), followed by N150 (38%), and the fate

of the lost tracer was unaccounted for. When simulated values of leached nitrate were expressed

in relation to applied fertilizer N (basal fertilizer included), N losses with leaching amounted

to 81%, 87%, 85% and 95% at N50, N150, N250, and N350, respectively. Simulated N losses

with leaching were therefore approximately 25% higher than the N losses calculated by the 15N

budget. This difference arises from some uncertainties of the simulations. The underestimation

of plant N uptake in the simulation was for example partly responsible for the overestimation of
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Table 5.5: Fate of 15N (%) at day 75 of growth for the four fertilizer N rates.

N fate N50 N150 N250 N350

15N recovery 46.8 39.1 30.2 37.9
Crop 15N uptake 31.7 28.1 20.0 29.1
Soil 15N retention 15.1 11.0 10.2 8.8
15N loss 53.2 60.9 69.8 62.1

the N leaching losses and was consistently observed in other studies (Doltra and Muňoz, 2010).

The simulated mean N uptake by crops accounted to ∼ 15% compared to the measured mean

N uptake of 27% in our field study. This underestimation arises from the fact that the N uptake

by crops is linked to the water uptake by the crops and therefore takes place passively. An

underestimation of crop N uptake leads subsequently to higher amounts of mineral N left in

the soil, which is in turn prone to leaching. Another factor of uncertainty in the simulation is

denitrification, which is the only unmeasured sink term in the study. Denitrification accounted

for at most 2% in the simulations. This finding was not consistent with other calculations

for Korea (Bashkin et al., 2002). However, the microorganisms, which are responsible for the

denitrification processes need easily available or decomposable carbon (Corg) as an energy source.

The denitrification rate in soils with low Corg content was therefore found to be very low. As

the Corg content of the experimental field was also measured to be very low, we assume that a

low denitrification rate is in this case plausible.

To carry out the simulations we had to make some assumptions, e.g. that N fertilizer

granules were directly dissolved in the soil water all at once. The measured results of the nitrate

concentrations in the seepage water reflected that this assumption was not sustainable in the

field study. Additionally, the simulations have been carried out only for one plot replicate per N

application rate and no statistically significant differences could therefore be identified. However,

the simulation in combination with the 15N budget showed that N leaching can be definitely

seen as the dominant N loss pathway in this ridge cultivation system for both of the zones, the

ridges and furrows.

5.5 Conclusions

Excessive application of mineral N fertilizer to ridge cultivation with PE mulch on sandy soils

resulted in high N leaching losses in ridges and furrows, when fertilizer application was broadcast

prior to planting. Based on the finding that soil 15N retention and nitrate concentration in



5.5. CONCLUSIONS 139

seepage water decreased similarly for ridges and furrows during the entire growing season, we

conclude that the PE mulch had no significant effect on 15N retention in soil and on nitrate

concentration in seepage water and did therefore not effectively protect the fertilizer in the

ridges from percolation. Accordingly, the ridges and furrows contributed approximately an

equal amount of leached N to the total amount. Based on the simulation results, we observed

that the risk of N leaching during heavy rain events was pronounced in both the furrow and the

ridge zones. We therefore conclude that the PE mulch provided little protection for the fertilizer

N in the ridges during heavy rainfall. Consequently, the 15N uptake was found to be low at all N

application rates. N leaching amounts were further found to increase linearly with an increase in

N addition rate as it is well known for R/F cultivations without PE mulch. The PE mulch did

therefore not prevent the linear increase in leaching with an increase in fertilizer N addition. We

summarize that without the use of additional measures, the application of PE mulch combined

with the local fertilizer application practices did not reduce N leaching rates and groundwater

pollution in Haean Catchment. At all the fertilizer N rates, mean nitrate concentrations in

seepage water were found to be above the WHO drinking water standard of 50 mg NO3 l−1.

To reduce nitrate leaching, we recommend the following management strategies in addition

to the application of plastic mulch: 1) decreasing the fertilizer N rates to a maximum of 150 kg

N ha−1; 2) applying fertilizer N in 3 to 4 split applications according to the plant’s N needs; 3)

applying fertilizer N only to the ridges (after their formation) to avoid losses from the furrows;

and 4) increasing the soil organic matter content to subsequently enhance water and nutrient

retention by covering the furrows with plant residues, i.e., rice straw or soil additives. Splitting

the applications helps to protect the fertilizer N against the temporal and quantitative variability

of the heavy rainfalls, especially at the beginning of the growing season, when the crop N uptake

is small. However, split applications might be impractical or more costly in plastic covered

R/F cultivations because mechanical equipment is required to apply fertilizer under the PE

mulch. The proposed fertilizer N application rate of 150 kg N ha−1 equals a N reduction of 40%

compared to the current recommendation of the RDA. The N application rate N150 resulted in

a similar biomass production to those with higher fertilizer N rates, while lower nitrate amounts

in the radishes and significantly lower N leaching losses were observed.

Finally, the reasons for the high N leaching losses from covered ridges are not completely

understood. Further field studies will have to concentrate more on the proccesses in the plastic-

mulched ridges and the subsequent N fate in those ridges to further adjust the management

strategies.
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Abstract

Groundwater pollution by fertilizer NO−3 is a major problem recognized in many

parts of the world. The excessive use of mineral fertilizers to assure high yields in

agricultural production intensifies the leaching problem especially in regions affected

by a monsoon climate as in South Korea. To which extend leaching occurs, depends

on several factors such as climatic conditions, agricultural management practices,

soil properties and the sorption characteristics of fertilizers and agrochemicals. In
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the South Korean monsoon season 2010, NO−3 concentrations under varying nitro-

gen fertilizer rates were monitored in a plastic mulched ridge cultivation (RTpm)

with radish crops (Raphanus sativus L.). Based on these findings we calibrated a

three-dimensional water flow and solute transport model using the numerical code

HydroGeoSphere in combination with the parameter estimation software Paral-

lelPEST. Subsequently, we used the calibrated model to investigate the effect of

plastic mulch as well as different fertilizer best management practices (FBMPs) on

NO−3 leaching. We found that cumulative NO−3 leaching under RTpm was 26% lower

compared to ridge tillage without coverage (RT). Fertilizer placement confined to

the ridges resulted in 36% lower cumulative NO−3 -leaching rates compared to broad-

cast applied fertilizer. Splitting the total amount of 150 kg NO−3 ha−1 per growing

season into three fertilizer applications (20 kg/ 80 kg /50 kg) led to a reduction

of NO−3 leaching of 59% compared to the one-top dressing at the beginning of the

growing season. However, the combination of a fertilizer rate of 150 kg NO−3 ha−1,

plastic mulched ridges, fertilizer placement only in the ridges and split applications

of fertilizer resulted in the lowest cumulative leaching rate (8.14 kg NO−3 ha−1) dur-

ing the simulation period, which is equivalent to 5.4% of the total NO−3 fertilizer

input. Compared to RT with conventional fertilization in ridges and furrows, the

NO−3 leaching was reduced by 82%. Therefore, the combination of all FBMPs is

highly recommendable to decrease economical costs for fertilizer inputs as well as

to minimize nitrate leaching and its impact on groundwater quality. Finally, we

recommend cultivating cover crops after harvest to increase N fixation after harvest,

to increase Nmin for the following growing season and to reduce the risk of leaching

and soil erosion in autumn.

Keywords: nitrate leaching, numerical modeling, fertilizer best management practices, ridge

tillage, plastic mulch, groundwater

6.1 Introduction

Agricultural productivity is under considerable strain to meet the food demand of a growing

population. This pressure causes high external inputs such as fertilizer and pesticides into the

agricultural systems. Thus, the ongoing degradation of water resources by agricultural practices

constitutes a challenging problem worldwide (Spiertz, 2010; Danielopol et al., 2003; Tilman
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et al., 2002; Matson et al., 1997; Ongley, 1996). The risk of fertilizer and pesticides leaching via

surface runoff into rivers and lakes or percolation through the unsaturated zone into groundwater

is especially high in regions affected by East Asian summer monsoon due to the high frequency

and intensity of rainfalls. In China and South Korea, intensively used agricultural areas were

identified as hotspots of non-point pollution, which cause water deterioration and eutrophication

of important freshwater resources such as lakes and reservoirs (Park et al., 2010; Kim et al.,

2001; Zhang et al., 1996).

Apart from manifold agrochemicals, NO−3 fertilizer is one of the most critical pollutants due

to its excessive input and the low N use efficiency of crops (Spiertz, 2010). A concentration max-

imum of 50 mg NO−3 l−1 in drinking water was recommended by the World Health Organization,

while in the USA and South Korea the official regulations are even less with 10 mg NO−3 l−1

(Choi et al., 2007). Nevertheless, the worldwide observation of water quality in surface water and

groundwater showed that the NO−3 concentrations exceed the WHO recommendations by far

(Liu et al., 2005). In South Korea, especially in areas intensively used for agriculture, elevated

nitrate concentrations in groundwater often exceeding the national drinking water standard

(Min et al., 2002; Koh, Ko, et al., 2007; Koh, Chae, et al., 2009).

To minimize the leaching risk of agrochemicals, precision agriculture was found to be a

valuable tool. Wallace (1994) proposed economic and environmental benefits by an adjusted

fertilizer placement, an adapted timing of fertilizer application to the plant’s needs and an

adapted leveling, draining and contouring of agricultural fields. Furthermore, the effect of ridge

tillage on solute movement was investigated by several authors. They found, that ridge tillage

provides potential to decrease NO−3 leaching by isolating NO−3 from the percolating water,

especially if fertilizer is placed only in the upper part of the ridge (Bargar et al., 1999; Benjamin

et al., 1990; Clay et al., 1992; Hamlett et al., 1990; Jaynes and Swan, 1999; Waddell and Weil,

2006).

Plastic mulching of the ridges is practiced for many crop types worldwide for several rea-

sons. Lament (1993) found an increased temperature in the ridge soil, which in turn induces

earlier plant emergence. Furthermore plastic mulching was shown to be useful in terms of weed

suppression and reducing evaporation loss. In general an earlier and higher overall yield was

found for several crop types. Besides, Locascio et al. (1985) and Cannington et al. (1975) found

that plastic mulch protects the fertilizer from infiltrating water and consequently enhances

the nutrient retention in the ridge soil and the nutrient use efficiency of crops. Accordingly,

uncovered furrow positions are more prone to agrichemical leaching compared to ridge positions

due to higher infiltration rates caused by the surface runoff from the ridges to the furrows (Clay
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et al., 1992; Leistra and Boesten, 2010).

Intensive agriculture in the highlands of Gangwon Province, South Korea depends heavily

on high mineral N fertilizer inputs. Vegetable production in plastic mulched ridge cultivation is

practiced widespread over the region on dominating sandy soils with poor sorption characteristics

(Kettering et al., 2012). However, the influence of plastic mulched ridge cultivation in regions

affected by monsoon climates on water flow and nitrate leaching has not been investigated yet.

Based on the findings of a 15N field experiment and the monitoring of nitrate concentrations

in soil water during the growing/monsoon season 2010 in a plastic mulched radish cultivation

(Raphanus sativus L.) in the Haean catchment in South Korea (Kettering et al., in review), we

set up a three-dimensional numerical model using HydroGeoSphere (Therrien et al., 2010), which

simulates fully-integrated surface-subsurface flow and solute transport processes. The model

was coupled with ParallelPEST (Doherty, 2005) to calibrate soil hydraulic and solute transport

parameters based on the Gauss-Marquardt-Levenberg nonlinear estimation technique. Our

objective was to quantify and evaluate the potential of fertilizer best management practices to

decrease NO−3 leaching losses to groundwater under monsoonal conditions. Thus, the calibrated

model was used to run scenarios in terms of precision agriculture such as an enhanced fertilizer

placement and fertilizer split applications as well as the combination of both. We hypothesized,

that (i) plastic mulching reduces NO−3 leaching losses compared to uncovered ridge cultivation, (ii)

fertilizer placement only in ridges decreases NO−3 - leaching losses compared to the conventional

fertilization in ridges and furrows, (iii) NO−3 leaching losses could be reduced by the right timing

and the splitting of fertilizer application.

6.2 Materials and methods

6.2.1 Study site

The Haean catchment (128◦1′33.101′′E, 38◦28′6.231′′N, approx. 420-1000 masl) is located in

the mountainous northeastern part of South Korea. The basin, which is situated at the upper

reach of the Mandae stream, has been identified as a main non-point source pollution area. The

Mandae Stream contributes to the Soyang Lake (Park et al., 2010), which in turn constitutes

the main fresh water reservoir for the metropolitan area of Seoul. The annual precipitation

amount of 1577 mm (11-years average) is characteristic for the catchment. During the East

Asian summer monsoon, which occurs usually between June and August, the catchment receives

50-60% of the annual precipitation sum. Furthermore, the catchment is characterized by three
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Table 6.1: Soil physical properties of the experimental sites.

Clay Silt Sand Bulk density Soil texture class
(%) (%) (%) (g cm−3) (USDA)

Topsoil A 2.72 15.19 82.09 1.48 Loamy sand
Subsoil B 3.28 19.16 77.56 1.54 Loamy sand

major land use types, namely forested land, agriculture and residential area. The steep hillslopes

are covered by forest accounting for 58% of the total area. Dry land agriculture is practiced

mainly on moderate hillslopes with 22% of the total area. Rice paddies in the center of the

catchment occupy 8%. The remaining area of 12% constitutes of residential area, grassland and

field margins.

Depending on the crop type, the growing period starts usually between April and June. In

order to suppress weed growth and to ensure an early plant emergence, ridge tillage with plastic

mulching is a widespread practice for cultivating dryland crops such as radish (Raphanus sativus

L.), potatoes (Solanum tuberosum L.), cabbage (Brassica rapa susp. Pekinensis (lour.), Hanelt,

Brassica aleracea convar. Capitata var. alba) and beans (Glycine max. (L.) Merr.). Before

ridges are created, fertilizer is commonly applied to the fields and mixed into the upper part

of the soil by ploughing. Afterwards the ridges are created and concurrently covered by plastic

mulch. The crops are sowed as seeds or planted as juvenile plants in the planting holes at the

top of the ridges. During the growing season, herbicides and pesticides are sprayed several times

throughout the fields. The harvest normally takes place from late August to October.

Based on a soil survey, the soil type Cambisol, which is developed on weathered granite

bedrock material, was found widespread within the catchment. The physical and chemical

properties of most soils are strongly anthropogenically modified due to the repetitive application

of sandy soil material and excessive fertilizer, pesticides and herbicides input. Soil application

is a common method to compensate the erosion loss of topsoil occurring during the monsoon

season. Although the dryland crops are primarily grown on hillslopes, a flat field site in the

center of the catchment was selected for the leaching experiment in order to exclude surface

runoff (Kettering et al., unpublished data). The soil at the experimental field site was classified

as an Anthrosol (IUSS Working group WRB, 2007) due to the long-term application of sandy

soil. Soil samples for texture analysis were taken up to 2 m soil depth. Two horizons were

identified in the field mainly because of their differing soil color, but the soil texture analysis

showed only marginal differences between both horizons. In Table 6.1 the soil physical properties

of the experimental field are shown.
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6.2.2 Experimental set up

Before conducting the experiment, an automatic weather station (WS-GP1, Delta-T devices,

Cambridge, UK) was installed at the field margin of the experimental field. Weather parameters

such as precipitation, solar radiation, wind speed, air temperature, humidity and air pressure

were logged in a 5 min interval and provided the basis for calculating evapotranspiration rates

using the dual crop coefficient approach based on FAO-56 for crops. A detailed description of

the calculation procedure is given by Allen et al. (1998). In Figure 6.1 the precipitation rates

during the experiment are given. The set up of the field experiment is chronologically shown

in Figure 6.1. Before we set up the experiment, the selected field site was fallow. Therefore,

granulate mineral fertilizer of 56 kg NO−3 ha−1 was applied as a basic fertilizer to enhance soil

fertility. Afterwards the field was sectioned into 16 square subplots, each with an area of 49 m2.

Additionally to the basic fertilization, four fertilizer rates with 50 (A), 150 (B), 250 (C) and

350 (D) kg NO−3 ha−1 were applied on June 1, 2010. Each fertilizer rate was applied to 4 of

the 16 square subplots and arranged in a randomized block design. At June 9 the ridges were

created and covered with black plastic mulch. The plastic covered ridges (35 cm width, 15 cm

height) alternated with uncovered furrows with a ridge-to-ridge spacing of approximately 70 cm.

The plastic cover at the top of the ridge was perforated with planting holes (5 cm diameter)

with a plant to plant spacing of 25 cm. At June 14 radish seeds were sowed in the planting

holes. Harvesting was accomplished on August 28. For monitoring soil water dynamics, each

subplot was equipped with standard tensiometers and volumetric water content sensors (5TM

soil moisture sensors, Decacon devices, Pullman WA, USA) in plastic mulched ridges (15, 45

and 60 cm depth) and in uncovered furrows (15 and 30 cm depth). 30 cm depth in furrow

positions is equivalent to 45 cm in ridge positions. In order to measure NO−3 concentrations

in seepage, suction lysimeter were additionally installed in ridges (15 and 45 cm depth) as

well as in furrows (30 cm depth) and connected to a vaccum pump (KNF Neuberger, Type

N86KNDCB12v, Freiburg i.Br. Germany). The collected water samples were kept refrigerated

at < 5◦C and analyzed within 24 hours for NO−3 using Spectroquant quick tests (Nitrate test

photometric, MERCK, South Korea) and a photometer (LP2W Digital Photometer, Dr. Lange,

Germany). The observation period started on June 30 and ended with harvest on August 28,

2010.
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Figure 6.1: Precipitation rates, time schedule of tillage, crop management and NO−3 measure-
ments at the experimental site from May to August 2010.

6.2.3 Modeling approach

6.2.3.1 Model set up

To describe flow processes in a plastic mulched ridge cultivation system influenced by monsoonal

events, surface and subsurface flow processes have to be considered. The process-based numerical

code HydroGeoSphere is capable to solve fully-integrated surface and subsurface water flow and

solute transport problems in a variable saturated media. Due to the coarse sandy texture of

the field site, we assumed that preferential flow paths like macropore flow are negligible for soil

water movement. Absent preferential flow was confirmed by Brilliant Blue tracer experiments

at different field sites in the catchment (Ruidisch, in review). Therefore we simulated water

flow based on finite element method as an uniform flow process, which can be described by the

Richards’ equation (6.1). The dimensions of the three-dimensional model are shown in Figure 6.2.

The groundwater depth was calculated to be in approximately 4.5 m depth by interpolation of

groundwater levels measured in the surrounding fields. Thus, we set up the model with a depth

of 4.65 m. The model dimensions were chosen for several reasons. In general, we assumed that

the flat field exhibited a dominating vertical flow field. These conditions exclude lateral flow

processes such as downhill water flow. Furthermore, a high spatial resolution was necessary to

implement small features such as planting holes. The high spatial resolution required in turn

long computational time. In order to capture the most important flow and transport processes

and to save computational time, we kept the model dimensions therefore as small as possible.
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Figure 6.2: Dimensions of the three-dimensional model

6.2.3.2 Governing flow and transport equations

The governing flow and transport equations are given in Therrien et al. (2010). The units meter

[L], day [T] and kg [M] were used for the simulations. Three dimensional subsurface flow in

variable saturated porous media is described by a modified form of the Richards’ equation

(Equation (6.1)).

−O · ωm

(
−K · krO(ϕ+ z)

)
+
∑

Γex ±Q = ωm
δ

δt
(θsSω) (6.1)

where ωm [-] is the volumetric fraction of the total porosity occupied by the porous medium,

K is the hydraulic conductivity tensor [L T−1], kr is the relative permeability of the medium

[-], ϕ is the pressure head [L], z is the elevation head [L], Γex is the volumetric subsurface fluid

exchange rate with the surface domain [L3 L−3 T−1], Q is a subsurface fluid source or a sink [L3

L−3 d−1], θs is the saturated water content [-] and Sω is degree of water saturation [-].

Surface flow in HydroGeoSphere is considered by a two-dimensional depth-averaged flow

equation, which is the diffusion-wave approximation of the St. Vernant equation.

−O · (doqo)− doΓo ±Qo =
δφoho

δt
(6.2)
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where the fluid flux qo [L T−1] is given by

qo = −Ko · kroO(dozo) (6.3)

where φo is the surface flow domain porosity, ho is the water surface elevation [L] (ho= do-

zo) with do is the depth of flow [L] and zo is the land surface elevation [L], Ko is the surface

conductance [L T−1] , kro [-] is a factor that accounts for the reduction in horizontal conductance

from obstruction storage exclusion, Γo is the volumetric surface fluid exchange rate with the

subsurface domain [L3 L−3 T−1], Qo is a surface fluid source or a sink [L3 L−3 T−1].

The surface–subsurface coupling is given by the exchange term

doΓo =
krKzz

lexch

(h− ho) (6.4)

where a positive Γo represents flow from the subsurface system to the surface system [L3

L−3 T−1], ho is the surface water head [L], h is the subsurface water head [L], kr is the relative

permeability for the exchange flux [-], Kzz is the vertical saturated hydraulic conductivity of

the underlying porous medium [L T−1] and lexch is the coupling length [L].

Transpiration takes place within the root zone and the transpiration rate (Tp) [L T−1] based

on (Kristensen and Jensen, 1975) is estimated as follows

Tp = f1(LAI)f2(θ)RDF [Ep − Ecan] (6.5)

where f1 (LAI) is a linear function of the leaf area index [-], f2 (θ) is a function of nodal

water content [-], and RDF is the time-varying root distribution function, Ecan is the canopy

evapotranspiration [L T−1].

f2(θ) =



0 for 0 ≤ θ ≤ θwp

f3 for θwp ≤ θ ≤ θfc

1 for θfc ≤ θ ≤ θo

f4 for θo ≤ θ ≤ θan

0 for θan ≤ θ

(6.6)

where θwp , θfc, θo and θan is the moisture content [-] at the wilting point, field capacity, oxic

and anoxic limit, respectively.

The three-dimensional transport of solutes considering advection, dispersion, retardation
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and decay processes in a variably-saturated porous matrix is described in HydroGeoSphere as

follows:

−O·(ωm(qC−θsSωDOC)+[ωmθsSωRλC]par+
∑

Ωex±Qc = ωm[
δ(θsSωRC)

δt
+θsSωRλC] (6.7)

where ωm is the subsurface volumetric fraction of the total porosity [-], q is the subsurface

fluid flux [L T−1], C is the solute concentration [M L−3], θs is the subsurface saturated water

content [-], Sω is the subsurface water saturation [-], D is subsurface hydrodynamic dispersion

tensor [L2 T−1], Ωex is the mass exchange rate of solutes between subsurface and surface flow

domain and Qc is the fluid source or sink [M L3 T−1], λ is the first-order decay constant [L−1]

and R is the retardation factor [-]. In our modeling study, we only considered a conservative

transport of NO−3 and neglected retardation and decay. The hydrodynamic dispersion tensor D

is given by Bear (1972):

θsSωD = (αl − αt
qq

|q|
+ αt|q|I + θsSωτDfreeI (6.8)

where αl and αt are the longitudinal and transversal dipersivities [L], |q| is the magnitude

of the Darcy flux, τ is the matrix tortuosity [-], Dfree is the free-solution coefficient [L2 T−1] and

I is the identity tensor. The product τ Dfree represents an effective diffusion coefficient for the

matrix.

6.2.3.3 Initial and boundary conditions

The initial pressure head conditions in the model flow domain were adjusted to the observed

pressure head using a steady state solution with a constant precipitation flux of 0.04 m day−1.

The solute transport simulation started on the day of the highest measured NO−3 concentrations

(July 10). The water flow model delivered the initial pressure head conditions for this simulation

day. The initial concentration in the models was adjusted to the measured NO−3 values on July

10 for all fertilizer rates. Indeed, we fixed NO−3 concentrations with 160, 125-150, 200 and 230

NO−3 mg l−1 corresponding to the fertilizer rate A 50 kg, B 150 kg, C 250 kg and D 350 kg NO−3 -

ha−1) plus basic fertilizer (56 kg NO−3 - ha−1), respectively. The bottom boundary condition of

the models was specified as a free drainage boundary in 4.65 m depth. The left and right hand

boundary was set to no flux conditions since the flat field conditions led to a mainly vertical flow

field. For the scenarios with specified fertilizer placement we defined the initial concentration
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of the fertilizer placement scenarios in a way that the initial mass of nitrate was exactly the

same to the previous simulations regarding the different fertilizer rates. Hence, we increased

the initial concentration in the ridges, while the initial mass in the model was equivalent to the

fertilizer rates A 50 kg, B 150 kg, C 250 kg and D 350 kg NO−3 ha−1.

The split applications were implemented in the modeling approach as follows: For the first

application, the initial NO−3 concentrations related to the specific fertilizer rate were included in

the upper part of the model down to approximately 24 cm depth measured from the ridge surface.

This translates to the local method of fertilizer application in the upper 15 cm of the soil before

the ridges are created. The concentration and head conditions of June 25 were subsequently

extracted and used as initial conditions to run the scenarios with a second application. The

second application for each scenario was implemented by assuming that the fertilizer rate is solved

in 0.25 liter water and applied only to the planting holes. Therefore we defined an initial water

depth of 3.1 cm at the surface of the planting holes which equals 0.25 liter and implemented the

initial concentration for each scenario at the surface of the planting holes. The third application

for the model scenarios 3a, 3b and 3c was implemented in an analogous manner but using the

initial head and concentration outputs from July 6 of the second application simulations.

6.2.3.4 Model parameterization, calibration and evaluation

In order to estimate pressure heads and nitrate concentrations using inverse modeling techniques,

we coupled the HydroGeoSphere model with the Parallel PEST Version 12.1.0 (Doherty, 2005).

PEST uses a nonlinear estimation technique known as the Gauss-Marquardt-Levenberg method.

We derived the initial estimates of the Van Genuchten parameter based on measured texture

and bulk density data (Table 6.1) using the ROSETTA model (Schaap et al., 2001), which

estimates soil hydraulic parameters with hierarchical pedotransfer functions. The Van Genuchten

parameters α and n and saturated hydraulic conductivity Ksat were estimated simultaneously

for the measurement period of 17 June to 23 August 2010.

Based on the water flow model we subsequently implemented the solute transport. We

initially estimated the transport parameters longitudinal, transversal and vertical transversal

dispersivity based on literature values (Rausch et al., 2005) and optimized them for all fertilizer

rates A-D. Initial estimated parameters are given in Table 6.2. We estimated the longitudinal

dispersivity for both horizons in a range between 0.1 m and 1 m according to the findings of

Gelhar et al. (1985), who showed that longitudinal dispersivity is scale-dependent. According to

Pickens and Grisak (1981) the ratio of longitudinal and transversal dispersivity is between 0.01
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Table 6.2: Initial estimates of water retention and solute transport parameters with θs: saturated
water content, θr residual water content, α and n form parameters of the retention curve, Ksat

saturated hydraulic conductivity, Dl longitudinal dispersivity, Dt transversal dispersivity, Dvt

vertical transversal dispersivity.

θs θr α n Ksat Dl Dt Dvt

(m3 m−3) (m3 m−3) (m−1) [-] (m d−1) (m) (m) (m)

Topsoil A 0.3855 0.0386 4.31 1.94 1.74 0.1 0.01 0.01
Subsoil B 0.3662 0.0366 4.55 1.71 0.97 0.1 0.01 0.01

and 0.3. Therefore, we initially estimated the transversal and vertical transversal dispersivity to

be 0.01 and optimized them in a range between 0.1 and 0.001. The solute transport parameters

were estimated for the observation period from July 10 to August 23. The first two observation

dates were excluded from the optimization due to increasing concentrations at these dates. We

affiliated these conditions to the stabilization phase of the suction lysimeters because the first

two measurements were done shortly after the installation.

At the surface of the model, we implemented zones of infiltration (uncovered furrows and

planting holes) and non-infiltration zones (plastic mulched ridges) using the model parameter

coupling length. A coupling length of 0.1 m and 1000 m was defined for the infiltration zones

and non-infiltration zones, respectively. For the simulation of RT (ridge tillage without plastic

mulch) we defined a coupling length of 0.1 m for the entire surface of the model domain. The

potential evaporation and transpiration rates were calculated based on the dual crop coefficient

approach proposed by Allen et al. (1998) using the measured weather parameters like rainfall,

temperature, humidity, solar radiation and wind speed.

For the evaluation of the models we used the coefficient of determination (R2) and the

Nash-Sutcliffe-Efficiency (CE). Moriasi et al. (2007) provided a comprehensive overview of

the evaluation statistics for hydrological models. The coefficient of determination ranges from

0 to 1, where 1 indicates the total agreement between measured and simulated values. The

Nash-Sutcliffe coefficient (Equation (6.9)) determines the relative magnitude of the residual

variance compared to the observed data variance. The Nash-Sutcliffe-Efficiency varies between

−∞ and 1, where 1 indicates a perfect model. Model performance is unacceptable when the

value is < 0.

CE = 1−
[ ∑n

i=1(Y obs
i − Y sim

i )2∑n
i=1(Y obs

i − Y mean)2

]
(6.9)

where Y mean indicates the mean of the observed data, Y obs
i is the ith observation of the
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observed and Y sim
i is the ith observation of the simulated dataset, n is the total number of

observations.

6.3 Results

6.3.1 Model evaluation and parameter optimization

The simultaneous estimation of soil hydraulic parameters n, α and Ksat resulted in similar n

values compared to the initially estimated values with n=1.92 and n=1.85 for the topsoil and

subsoil, respectively. In contrast, α values were estimated to be smaller than initially estimated

with 2.89 m−1 for the topsoil and 2.97 m−1 for the subsoil. Relatively large n values lead to

a quick drainage, which is characteristic for course textured material, whereas small α values

indicate drainage under relatively low pressure head conditions, which is more common for finer

soil texture. This combination of α and n was also found in a two-dimensional simulation study

investigating water flow in sloped potato fields in the Haean catchment (Ruidisch et al., 2012).

The saturated hydraulic conductivity (Ksat) was optimized to be 2.99 m d−1 and 1.88 m d−1

for the topsoil and subsoil, respectively, which is higher than the initially estimated Ksat values

obtained by the ROSETTA model. In Figure 6.3 the comparison of simulated and measured

pressure heads in different depths of ridge and furrow positions as well as evaluation coefficients

R2 and Nash-Sutcliffe efficiency (CE) are shown. In all depths and positions, the lowest pressure

heads during drying cycles were underestimated by the model. In contrast, wet periods during

monsoon were reasonable simulated except in furrow positions (30 cm depth), where pressure

heads were underestimated during the entire simulation period.

The optimization of the solute transport parameters (longitudinal, transversal and vertical

transversal dispersivity) showed that the parameters were similar among the fertilizer rates

(Table 6.3). The highest longitudinal dispersivity was found for the lowest fertilizer rate but

in general the differences to the other fertilizer rates were small. The longitudinal dispersivity

for the subsoil was in a range between 0.012 m and 0.051 m, which was much smaller than

longitudinal dispersivity for the top soil. The transversal and vertical transversal dispersivity

for the subsoil was comparable with the optimized dispersivity for the topsoil. Due to the

similarity of optimized dispersivity among fertilizer treatments, we calculated the mean for each

parameter and used the mean parameter set for subsequent model simulations regarding the

effect of different fertilizer rates, fertilizer placement and split applications on NO−3 leaching

loss. Although the agreement between measured and simulated pressure heads of the water



158 CHAPTER 6. FERTILIZER BEST MANAGEMENT PRACTICES

Figure 6.3: Observed vs. simulated pressure heads in ridge and furrow positions in different
depths with evaluation coefficients R2 (Coefficient of determination) and CE (Nash-Sutcliffe-
coefficient), grey area limits: ± std. dev. of observed data; R and F refers to ridge and furrow
position in combination with soil depths 15, 30, 45 and 60 cm.
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Table 6.3: Optimized solute transport parameters for fertilizer rates A-D.

Dispersivity A B C D mean
(m) (50 kg ha−1) (150 kg ha−1) (250 kg ha−1) (350 kg ha−1) (m)

Topsoil A Dl
a 0.28 0.26 0.16 0.19 0.2225

Dt
b 1.0E-03 4.89E-02 1.0E-03 1.0E-02 0.01523

Dvt
c 5.57E-02 4.72E-02 5.15E-03 1.14E-03 0.02729

Subsoil B Dl 5.10E-02 1.18E-02 1.49E-02 4.98E-02 0.03188
Dt 1.0E-02 1.0E-03 8.99E-03 1.0E-02 0.0075
Dvt 6.59E-03 1.0E-02 1.0E-03 9.94E-02 0.02925

a longitudinal dispersivity
b transversal dispersivity
c vertical transversal dispersivity

flow model was not satisfying, the optimization for the solute transport model resulted in a

reasonable agreement between measured and simulated NO−3 concentrations (Figure 6.4). At all

observation points the Nash Sutcliffe coefficient (CE) was ≥ 0.50 except under fertilizer rate C

in the furrow position (30cm depth) and the coefficient of determination (R2) was ≥ 0.54 for

all observation points.

The fertilizer had been applied approximately one month before the NO−3 concentration

measurements. Hence, the measured NO−3 concentrations on July 10 did not reflect the original

applied fertilizer rates. For the subsequent modeling we therefore assumed that the applied

granule fertilizer was latest solved with the first significant rain event after the application, which

occurred on June 12 with a total precipitation amount of 38.4 mm. Hence, we implemented the

respective NO−3 concentrations on the following day (June 13) for the fertilizer rates and tested,

whether the NO−3 concentration of the simulation day 28, which equals the first measurement

day (July 10), corresponds to the measured concentrations. The simulated concentrations were

comparable to those measured on July 10. This seconds the assumption that the dissolution of

granules with the first rain event was reliable and that the solute transport parameters reflected

reasonably the distribution of NO−3 in the soil profile. In the modeling study, we simulated

a conservative transport and neglected decay processes such as denitrification. Denitrification

depends on factors such as aeration, saturation and organic carbon content. Thus, anoxic

conditions in combination with high carbon contents initiate denitrification processes. Due to

the characteristics of the experimental field site with coarse textured sandy soil, high permeability

and additionally low carbon content, denitrification processes at the experimental field site are

assumed to be minimal or even absent. Although during monsoon events the soil was saturated

short in time, the high saturated hydraulic conductivity of the soil led to fast drainage and oxic

conditions after a monsoon event so that we excluded decay as a possible N pathway.
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Figure 6.4: Observed vs. simulated nitrate concentrations in ridge and furrow positions in
different depths with evaluation coefficients R2 (coefficient of determination) and CE (Nash-
Sutcliffe-coefficient), black solid line: simulated nitrate concentrations; error bars with means
indicate the measured nitrate concentration; R15: ridge position in 15 cm soil depth, R45: ridge
position in 45 cm soil depth, F30: furrow position in 30 cm soil depth; A-D refers to the fertilizer
application rates of A 50 kg ha−1 , B 150 kg ha−1, C 250 kg ha−1, D 350 kg ha−1.
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6.3.2 The effect of plastic mulch on nitrate dynamics

To evaluate the effect of plastic mulching on nitrate dynamics, we compared the nitrate concen-

trations of the calibrated model (RTpm) with a model simulation without plastic mulch (RT)

using the fertilizer rate B (150 kg ha−1). The comparison of the NO−3 concentrations between

the management treatments RT and RTpm during the simulation period of 76 days are shown

in Figure 6.5.

NO−3 concentrations of about 2000-2200 mg l−1 at the beginning of the simulation represented

identical conditions for both treatments. Day 21 indicated the first significant rain event with

a precipitation amount of about 40 mm d−1. Under RT, the NO−3 concentration decreased

relatively homogenously within the soil profile with slightly higher NO−3 concentration in the

inner part of the ridge. Compared to these conditions, RTpm showed a clearly different behavior

for the distribution of NO−3 concentrations. The highest NO−3 concentrations remained below

the plastic coverage, while the lowest concentrations were simulated at the transition from

ridges to furrows and in the area of the planting hole. This shows clearly, that surface runoff

from the plastic covered ridge infiltrated in the furrow soil next to the ridge, which resulted

in high NO−3 leaching amounts at this part of the soil profile. In the middle part of the upper

ridge, NO−3 concentrations also decreased considerably under RTpm due to the infiltration of

water into the planting hole. At this simulation stage, only the NO−3 concentration of about

1000-1500 mg l−1 in the furrow soil was comparable between the management treatments. By

comparing the simulated concentration on day 63, it was evident that the ridge topography led

to a higher concentration of NO−3 in the ridge soil compared to the furrow soil. The concentration

front moved homogenously deeper into the soil profile. Under RTpm the NO−3 concentration

patterns at day 63 were still similar to day 21 except that the previously preferential leached

areas at the transition of furrows to ridges and in the planting hole extended and the area of

high NO−3 concentrations below the plastic coverage narrowed. Until the end of the simulation

NO−3 concentrations further decreased, but generally it remained at a high level especially under

the plastic coverage during the entire simulation.

These results showed that not only the plastic coverage but also the topography of the

ridges potentially increased the nitrate availability in the root zone since surface runoff was

channeled into the furrows and nitrate in the ridge soil was therefore protected. The results

are in accordance to Locascio et al. (1985) and Cannington et al. (1975), who found that the

plastic coverage led to enhanced fertilizer retention underneath the ridges and protected the

fertilizer from leaching.
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Figure 6.5: Comparison of simulated nitrate concentrations at days 1, 21, 63 and 75 under RT
(ridge tillage without plastic mulch) and RTpm (ridge tillage with plastic mulch).
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6.3.3 The effect of plastic mulch on nitrate leaching loss

We further assessed the daily NO−3 leaching loss in 45 cm in the soil profile for all fertilizer rates

under RT and RTpm (Figure 6.6). We assumed that this soil depth represents the zone, where

nitrate was irreversible lost for N uptake by radish crops. As expected, under both management

strategies, the daily amount of leached NO−3 increases with increasing fertilizer rates. High

nitrate fluxes below the root zone are obviously associated with the heavy rainfall events. The

simulation showed that peaks of NO−3 leaching in 45 cm soil depth occurred with a time delay

of 1-2 day after the respective rain event. The first two significant rain events occurred on day

20 and 23 both with a precipitation amount of approximately 40 mm d−1. Considering the time

shift, the total NO−3 leaching loss from day 21 to day 25 was A (2.98 kg NO−3 ha-1) < B (5.78

kg NO−3 ha−1) < C (8.58 kg NO−3 ha−1) < D (11.39 kg NO−3 ha−1) under RT. In comparison to

RT, the total NO−3 leaching loss with plastic mulch (RTpm) during this time period was 33.8%

less. The heaviest monsoon event of the cropping season occurred from August 13 to August

15, 2010 (simulation days 62-64) with a total precipitation amount of 153.6 mm. This monsoon

event led to nitrate leaching losses of A (5.15 kg NO−3 ha−1) < B (10.0 kg NO−3 ha−1) < C

(14.86 kg NO−3 ha−1) < D (19.71 kg NO−3 ha−1) under RT below the root zone regarding the

simulation days 63-66. Under RTpm the leaching rates were 33.44% less compared to RT. In

general, the highest daily NO−3 leaching amount was simulated under RT with fertilizer rate

D (350 kg NO−3 ha−1) on day 65 accounting for 6.04 kg NO−3 ha−1 d−1. Under dry weather

conditions the leaching amounts were considerably lower (< 0.1 kg NO−3 ha−1).

After the simulation period of 76 days the cumulative amount of leached NO−3 below the

root zone under RT increased as follows: A (23.61 kg NO−3 ha−1) < B (45.83 kg NO−3 ha−1)

< C (68.09 kg NO−3 ha−1) < D (90.31 kg NO−3 ha−1). Taking the basic fertilizer rate plus the

fertilizer treatment rates into account, the total amounts of leached NO−3 correspond to 22% of

the total NO−3 input. Plastic coverage of the ridges (RTpm) resulted in lower cumulative leaching

losses below the root zone with (A 17.56 kg NO−3 ha−1) < B (34.08 kg NO−3 ha−1) < C (50.66 kg

NO−3 ha−1) < D (67.18 kg NO−3 ha−1). This was equivalent to approximately 17% of the total

NO−3 input. Plastic mulching reduced the cumulative total NO−3 leaching by 26% compared to

RT.

This simulated nitrate leaching amounts corresponds to findings of Böhlke (2002), who

reported in a literature review that commonly 10-50% of applied fertilizer N contributes to

groundwater NO−3 recharge under heavily fertilized and well-drained fields. Nevertheless, it has

to be considered that the rain events in the observation period were only moderate compared to
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Figure 6.6: Precipitation rates and simulated daily nitrate leaching loss in 45 cm soil depth under
RT (ridge tillage) and RTpm (plastic mulched ridge tillage) and different fertilizer treatments
(A: 50 kg NO−3 ha−1, B: 150 kg NO−3 ha−1, C: 250 kg NO−3 ha−1, D: 350 kg NO−3 ha−1).

other years. In the northeastern part of South Korea, rain events frequently exceed 100 mm d−1

(Park et al., 2010). This supports the assumption that daily leached and cumulative leached

NO−3 can be even higher.

6.3.4 Fertilizer best management practices (FBMPs)

6.3.4.1 Enhanced fertilizer placement

Except of the primary tab root, the spreading root system of radishes is only weakly developed

with dominating short fine roots. These conditions implicate that the fertilizer, which is dis-

tributed in the furrows, is most likely dispensable and irreversible lost for root water uptake.

Therefore, we assumed that NO−3 leaching loss can be reduced by an adapted fertilizer placement.

We simulated NO−3 leaching by placing the fertilizer only in ridges. Under RT, the treatment

with fertilizer placed only in ridges led to cumulative NO−3 leaching losses below the root zone

in 45 cm depth of A (20.07 kg ha−1) < B (38.96 kg ha−1) < C (57.90 kg ha−1) < D (76.9 kg

ha−1) after the simulation period of 76 days. Compared to the simulations with nitrate fertilizer

uniformly distributed in ridges and furrows, the cumulative NO−3 leaching loss was 15% lower
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Table 6.4: Simulated cumulative NO−3 leaching rates below the root
zone as affected by plastic mulch and fertilizer placement. All values
are given in kg NO−3 ha−1.

A B C D
50 kg ha−1 150 kg ha−1 250 kg ha−1 350 kg ha−1

RTa+ CFc 23.61 45.83 68.09 90.31
RTpm

b+ CF 17.56 34.08 50.66 67.18
RT + FPd 20.07 38.96 57.90 76.90
RTpm + FP 11.19 21.71 32.27 42.79

a ridge tillage without coverage
b ridge tillage with plastic mulch
c conventional fertilization in ridges and furrows
d fertilizer placement only in ridges

and in total reduced by A (3.53 kg ha−1) < B (6.86 kg ha−1) < C (10.19 kg ha−1) < D (13.52

kg ha−1). Under RTpm, the NO−3 leaching loss below the root zone, when placing the fertilizer

only in the ridges, was A (11.19 kg ha−1) < B (21.71 kg ha−1) < C (32.27 kg ha−1) < D (42.79

kg ha−1). The total reduction of NO−3 leaching loss below the root zone by fertilizer application

only to the ridges, was therefore A (6.38 kg ha−1) < B (12.38 kg ha−1) < C (18.39 kg ha−1) <

D (24.39 kg ha−1), which is equivalent to 36% less leached NO−3 (Table 6.4).

Our results revealed that a fertilizer placement restricted to the ridges is a valuable tool to

considerably reduce NO−3 leaching losses below the root zone. The results are in accordance

with findings of Waddell and Weil (2006), who reported that the fertilizer application in the

upper portion of the ridge in a corn cultivation led to lower N leaching losses and higher yields.

Similar results were found by Clay et al. (1992), who investigated N fertilizer movement below

ridges and furrows. They found that N placement in the ridge tops reduced N movement, while

N movement in furrows increased due to the surface runoff from the ridges. Reduced nitrate

leaching by placing nitrate only in the elevated portion of the ridges was further confirmed by

Hamlett et al. (1990). These results have important economic and ecological implications. Firstly,

farmers could benefit economically by fertilizer placement in the ridges. Secondly, this enhanced

fertilizer placement could improve groundwater quality and might reduce environmental costs

for amelioration of water quality and water purification caused by nitrate contamination.

6.3.4.2 Split applications

We developed the split application scenarios based on findings of the field experiment at the same

field site (Kettering et al., unpublished data). The 15N tracer experiment showed low fertilizer

nitrogen use efficiencies (FNUE) at the beginning of the growing season because radishes had
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Table 6.5: Fertilizer split application scenarios.All values are given in kg NO−3 ha−1.

Application 1 Application 2 Application 3

Scenario 1 150 - -
Scenario 2a 75 75 -
Scenario 2b 50 100 -
Scenario 2c 30 120 -
Scenario 3a 50 50 50
Scenario 3b 30 60 60
Scenario 3c 20 80 50

not yet emerged. Accordingly, high fertilizer amounts during this early stage led to high nitrate

leaching losses. This was confirmed by Bartsch, S. (unpublished data), who observed the highest

NO−3 concentrations of 31-33 mg l−1 in the groundwater next to the experimental field site

from end of June to middle of July 2010. In the crop development stage, the FNUE increased

significantly for all fertilizer rates. The highest FNUE with 30% was observed for the fertilizer

rate B (150 kg NO−3 ha−1). Furthermore, the study showed that the biomass production at

harvest time did not significantly differ for the fertilizer rates B (150 kg ha−1), C (250 kg ha−1)

and D (350 kg ha−1) so that fertilization above 150 NO−3 ha−1 only increased the accumulation

of NO−3 in the radish root. Thus, Kettering et al. (unpublished data) recommended splitting the

fertilizer application according to the plants N needs and suggested a maximum of 150 NO−3

ha−1 in total. This was also proposed by Zhang et al. (1996), who stated that excessive fertilizer

application should be prevented and more frequent, but smaller N applications during the rainy

season with the additional use of slow-release fertilizer should help to maintain yield increase

and minimize nitrate pollution of groundwater in northern China.

Hence, all split application scenarios (Table 6.5) were developed based on the total amount

of 150 kg NO−3 ha−1. The reference scenario (Scenario 1) refers to ridge tillage with plastic

mulching (RTpm) and a fertilizer application of 150 kg NO−3 ha−1 at the beginning of the growing

season distributed in ridges and furrows. The distribution of fertilizer in ridges and furrows

for the first application was also characteristic for all other scenarios. For the scenarios 2a and

3a, we separated the fertilizer application into equal amounts. The other scenarios represent

the application of successive reduced fertilizer amounts at the beginning of the growing season.

Generally the second and third application was implemented after rainfall events.

In Figure 6.7a the cumulative nitrate leaching loss below the root zone for all scenarios

are shown. As expected, the highest cumulative leaching loss was simulated for the reference

scenario 1 (34.1 kg NO−3 ha−1). The other scenarios resulted in total cumulative NO−3 leaching
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loss per ha in the order of 2a (23.7 kg NO−3 ha−1) > 3a (19.4 kg NO−3 ha−1) > 2b (19.2 kg NO−3

ha−1) > 2c and 3b (15.7 kg NO−3 ha−1) > 3c (13.9 kg NO−3 ha−1). This was equivalent to a

reduction of 30% (2a) < 44% (3a and 2b) < 54% (2c and 3c) < 59% (3c) of the total NO−3

leaching loss in comparison to the reference scenario 1 (Table 6.6). The results indicated that a

small application at the beginning of the growing season followed by a high application rate in

the development stage of the crops and again a smaller application in the later season is most

effective in reducing nitrate leaching loss to groundwater.

6.3.4.3 Combination of plastic mulching, fertilizer placement and split applica-

tions

All three management practices, namely plastic mulching of the ridges, fertilizer placement only

in the ridges and split applications, showed that NO−3 leaching loss to groundwater can be sub-

stantially reduced. Thus, we assumed that the combination of all management practices should

lead to multiplicative effects in decreasing nitrate leaching below the root zone. Subsequently,

we combined all management practices in our modeling study to assess the positive effect on

NO−3 leaching loss. Therefore, we placed the fertilizer for the first application solely in the plastic

mulched ridges. For the second and third application we maintained the procedure of applying

solved fertilizer in planting holes after the rain events.

In Figure 6.7b the cumulative NO−3 leaching losses for all scenarios with combined manage-

ment practices are shown. By taking the results of the simulation RT (ridge tillage without

plastic coverage) and fertilizer rate B as the reference (cumulative total NO−3 leaching loss of

45.83 kg NO−3 ha−1), the combination of the three management practices resulted in leached

cumulative NO−3 amounts of 14.25 kg NO−3 ha−1 (2a) > 12.25 kg NO−3 ha−1 (2b) > 11.3 kg

NO−3 ha−1 (3a) > 9.99 kg NO−3 ha−1 (2c) > 9.13 kg NO−3 ha−1 (3b) > 8.14 kg NO−3 ha−1 (3c).

Expressed as a percentage, NO−3 leaching loss was 69% (2a) < 73% (2b) < 75% (3a) < 78%

(2c) < 80% (3b) < 82% (3c) lower compared to the reference scenario (Table 6.6).

Consequently, the results verified the multiplicative effects of combined FBMPs. The local

method of plastic mulched ridge cultivation is therefore a good step towards a sustainable

management, which can be enhanced by additional FBMPs, when focusing solely on nitrate

contamination of groundwater resources. Nevertheless, a differentiated view of the tillage practice

on ecological impacts is necessary. Other studies showed that plastic mulching in highland

agriculture vegetable production on hillslopes, especially during monsoon periods, have also

negative effects by substantially increasing surface runoff (Ruidisch et al., 2012), Arnhold,
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Figure 6.7: Simulated cumulative nitrate leaching after 76 days below the root zone for (a)
split application scenarios only and (b) combination of enhanced fertilizer placement and split
applications.

Table 6.6: Simulated cumulative NO−3 leach-
ing rates below the root zone as affected by
plastic mulch, split applications and fertil-
izer placement. All values are given in kg
NO−3 ha−1.

RTpm
a+ CFb RTpm + FPc

Scenario 1 34.1 21.71
Scenario 2a 23.7 14.25
Scenario 2b 19.2 12.25
Scenario 2c 15.7 9.99
Scenario 3a 19.4 11.3
Scenario 3b 23.7 9.13
Scenario 3c 13.9 8.14

a ridge tillage with plastic mulch
b conventional fertilization in ridges and fur-

rows
c fertilizer placement only in ridges
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unpublished data), which causes high soil erosion rates and increased transport of nutrients,

in particular phosphorous bounded on sediment particles, via surface runoff into water bodies

(Park et al., 2010; Kim et al., 2001). In a different modeling study, the surface runoff in plastic

mulched potato cultivation on hillslopes was increased up to 65%, whereas drainage water was

reduced by 16% compared to ridge tillage without plastic coverage (Ruidisch et al., 2012). Based

on these findings, it was concluded that the application of perforated plastic mulch supports

the advantages of reducing drainage water, controlling weeds and earlier plant emergence and

concurrently diminishes the negative effects such as excessive surface runoff.

In the presented modeling study, we assessed the impact of plastic mulching on N leaching

losses in RTpm in a flat terrain. Hence, an excessive runoff from fields to the river network is

not expected. Moreover, water was observed to pond at the surface during monsoon events,

when the infiltration capacity was exceeded, but percolated afterwards through the soil matrix

and contributed to groundwater. This implicates that plastic mulching under these specific

topographical conditions can be recommended, especially in combination with FBMPs such as

fertilizer placement in ridges and split applications. Indeed, FBMPs seems to be promising also

for the hillsloped dryland agricultural field, which makes up the largest part of the catchment.

The given FBMPs implicate that high NO−3 rates remain below the plastic cover unless the NO−3

was not taken up by the plants during the cropping seasing. However, in the course of harvesting,

plastic mulched ridges are destroyed, so that the protective function of the cropping system is

not longer present. This conditions result in a higher leaching risk after harvest, especially if the

rain fall variability is taken into account. In the growing season 2010 e.g., several heavy rainfall

events occurred in the middle to late September after harvest. A rotating cropping system,

which can benefit from the remaining NO−3 in the soil, is another conceivably option, which

would have several advantages. On the one hand it would improve N fixation in autumn, reduces

the NO−3 leaching risk after harvest and increases the Nmin for the following growing season. On

the other hand, the agricultural fields are currently prone to soil erosion after harvest due to

the fallowness. A cover crop would therefore additionally help to reduce the erosion risk after

harvest as well as to increase the organic carbon content (Corg) content of the soils.

6.4 Conclusion

Excessive mineral fertilizer application in combination with extreme rain event during East-

Asian summer monsoon plays a key role in leaching agrochemical contaminants to aquatic

systems. In view of the fact that high fertilizer inputs coincide with high economical cost, but
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also cause negative ecological effects, a prior prevention of ecological damages or more specifically,

the reduction of water quality degradation of groundwater and surface water bodies is therefore

urgently needed.

The simulation results showed that ridge cultivation and plastic mulching of the ridges

constitutes a valuable tool to decrease nitrate leaching in a flat terrain, where the precipitation

contributes entirely to infiltration through the unsaturated zone. In hillslope areas, however,

it increases surface runoff tremendously, which supports the transport of agrochemicals via

surface runoff directly into the rivers. Thus, topographical aspects should be considered when

plastic mulched ridge cultivation is practiced. Fertilizer best management practices (FBMPs)

include an appropriate amount of total fertilizer input, right placement and right timing of

fertilizer. Especially the timing is important in regions affected by extreme rain events, when

daily leaching amounts can be considerably high. Thus, FBMPs can help increase the nutrient

use efficiency of the crops and concurrently decrease nitrate leaching below the root zone. Our

study revealed that the combination of FBMPs can minimize nitrate leaching considerably.

Therefore, we suggest to

• reduce the total fertilizer amount to 150 kg NO−3 ha−1

• apply plastic mulch in a flat terrain and perforated plastic mulch on hillslopes

• place the fertilizer only in ridges

• and apply fertilizer three times with e.g. 20 kg/ 80 kg / 50 kg NO−3 ha−1

• plant cover crops after harvest to improve N fixation, to reduce NO−3 leaching, to increase

Corg content and to prevent soil erosion loss in autumn.

Combining those management practices will lead to economical benefits in terms of decreasing

fertilizer inputs as well as ecological benefits by reducing substantially the risk of groundwater

pollution.
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Hiermit erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern bzw. -vermittlern

weder bisher in Anspruch genommen habe, noch künftig in Anspruch nehmen werde.

Bayreuth, 28.9.2012

Marianne Ruidisch

175


	Summary
	Zusammenfassung
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	List of abbreviations
	List of symbols
	General introduction
	Agriculture, ecosystem services and climate change
	Water flow and solute transport as affected by tillage in agricultural soils
	Methodological approaches in soil hydrology 
	Objective of the thesis
	Study Area
	Synopsis
	Soil water dynamics as affected by tillage management systems (Chapter 2)
	Preferential flow as affected by tillage management systems (Chapter 3)
	Surface runoff and soil erosion as affected by tillage management systems (Chapter 4)
	N fate in a plastic mulched ridge cultivation system (Chapter 5)
	Fertilizer best management practices for reducing nitrate leaching: A modeling study (Chapter 6)
	Concluding remarks and further research

	List of manuscripts and specification of contribution

	Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon
	Introduction
	Materials and methods
	Study area
	Field measurements
	Modeling approach
	Governing flow equations
	Model parameterization
	Initial and boundary Conditions
	Model evaluation statistics
	Sensitivity analysis


	Results
	Model evaluation and parameter optimization
	Soil water dynamics
	Flow velocities
	Water fluxes
	Sensitivity analysis

	Discussion
	Conclusions

	Effects of ridge tillage on flow processes in the Haean catchment, South Korea
	Introduction
	Materials and methods
	Study site
	Experimental set up
	Statistical analysis
	Image processing
	Image index functions

	Results and discussion
	Water balance and water content
	Analysis of flow patterns
	The effect of tillage management on flow processes and its ecological implications

	Conclusions

	Plastic covered Ridge-Furrow Systems on mountainous farmlands: Runoff patterns and Soil Erosion rates
	Introduction
	Materials and methods
	Observation of Runoff ans Soil Erosion
	Simulation of Runoff and Soil Erosion

	Results and Discussion
	Observed Runoff and Soil Erosion
	Simulated Runoff and Soil Erosion

	Summary and Conclusions

	Fate of fertilizer 15N in intensive ridge cultivation with plastic mulching under a monsoon climate
	Introduction
	Materials and methods
	Study site
	Experimental design
	Study of soil water dynamics
	Sampling and Analysis
	15N calculations and tracer recovery
	Statistical analysis

	Results
	Plant biomass and 15N uptake in crops
	15N retention in soil
	N content in soil solution and N leaching

	Discussion
	Plant biomass and 15N uptake by crops
	N retention and N content in seepage
	Seepage water fluxes and total leached N
	15N Budget and simulated budget of fertilizer N

	Conclusions

	The effect of fertilizer best management practices on nitrate leaching in a plastic mulched ridge cultivation system
	Introduction
	Materials and methods
	Study site
	Experimental set up
	Modeling approach
	Model set up
	Governing flow and transport equations
	Initial and boundary conditions
	Model parameterization, calibration and evaluation


	Results
	Model evaluation and parameter optimization
	The effect of plastic mulch on nitrate dynamics
	The effect of plastic mulch on nitrate leaching loss
	Fertilizer best management practices (FBMPs)
	Enhanced fertilizer placement
	Split applications
	Combination of plastic mulching, fertilizer placement and split applications


	Conclusion


