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“Now, by two-headed Janus, 

Nature hath framed strange fellows in her time.” 

 
William Shakespeare, The Merchant of Venice 
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Summary 

This thesis describes the synthesis of ABC triblock terpolymers with functional moieties via 

living anionic polymerization, followed by Janus particle (JP) and multicompartment micelle 

(MCM) synthesis from the as prepared triblock terpolymers. 

JPs, bicompartmentalized, non-centrosymmetric colloids, are an important issue in today´s 

materials science. The manifold ways to synthesize them and their exceptional properties 

have become an intensively investigated field of research during recent years. A synthesis 

method that can accomplish the tasks of the preparation of spherical as well as non-

spherical JPs that are well-defined and in the nanometer size range is based on converting 

self-assembled triblock terpolymer bulk structures via selective cross-linking of the middle 

block. Until now such soft JPs were prepared mainly from polystyrene-block-polybutadiene-

block-poly(methyl methacrylate) and polystyrene-block-polybutadiene-block-poly(tert-

butyl methacrylate). However, these polymers do not offer many possibilities of chemical 

alterations and stimuli-responsive elements. 

Therefore, potential new functional monomers for the use in JP synthesis from triblock ter-

polymer bulk structures were identified and their anionic polymerization examined, p-tert-

butoxystyrene (tS) and 4-(dimethylaminomethyl)styrene (DMAMS). Polymers with low pol-

ydispersity indices could be prepared from both monomers in tetrahydrofuran (THF) with 

sec-butyllithium (sec-BuLi) as initiator. In the course of this research the first successful 

living anionic polymerization of DMAMS with a narrow molecular weight distribution in a 

sec-BuLi/THF system was conducted. This illustrates the importance of the treatment of the 

THF with sec-BuLi before the actual polymerization to eliminate residual impurities and 

form lithium alkoxides. The latter hinder the coordination of tertiary amino groups to the 

Li+ counterions which would disturb the addition of monomer and a controlled polymeriza-

tion. 

Poly(p-tert-butoxystyrene) (PtS) was hydrolyzed to poly(p-hydroxystyrene) (PHS) which is 

water-soluble at high pH values, opening the possibility to prepare water-soluble JPs. Both, 

treatment with hydrochloric acid and with trimethylsilyl iodide, were employed. Further, 

the inherent possibility of polymer functionalization due to the hydroxyl group of PHS was 

demonstrated by the successful reaction with 1,3-propanesultone and 4-pentynoic acid to 

introduce sulfonate and alkyne groups, respectively. The pH-responsive behavior of poly(4-

(dimethylaminomethyl)styrene) could be confirmed and for the first time an LCST behavior 

was documented with cloudpoints of 59.3 °C at pH 7 and 28.5 °C at pH 8. 
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PtS was then used in the preparation of two triblock terpolymers, poly(tert-butoxystyrene)-

block-polybutadiene-block-poly(tert-butyl methacrylate) (tSBT) and poly(tert-

butoxystyrene)-block-polybutadiene-block-poly(2-(dimethylamino)ethyl methacrylate) 

(tSBD). tSBT exhibited a lamella-cylinder (lc) bulk morphology with polybutadiene (PB) 

spheres surrounded by alternating lamellae of PtS and poly(tert-butyl methacrylate) 

(PtBMA). However, the bulk structure of tSBD consisted of a symmetrical lamella-lamella 

pattern that is not suitable for JP synthesis. Further, DMAMS was used to synthesize poly(4-

(dimethylaminomethyl)styrene)-block-poly(allyl methacrylate)-block-poly(tert-butyl meth-

acrylate) (DSAT). Poly(allyl methacrylate) was chosen here as cross-linkable middle block 

instead of PB as the polymerization of PDMAMS-PB could not be conducted successfully. 

However, DSAT did not exhibit a bulk morphology suitable for JPs.  

From tSBT bulk material, three different types of non-spherical JPs could be obtained. Pho-

to-cross-linking of the lamella-cylinder (lc)-morphology by co-casting a radical photo-

initiator and UV exposure resulted in the expected Janus cylinders. When the bulk material 

was first swollen in acetonitrile and cross-linked by cold vulcanization, Janus sheets were 

obtained. Swelling in acetonitrile/decane emulsion lead to a new type of JPs, Janus ribbons. 

In both cases a phase transition had occurred; in case of the Janus sheets a thin PB layer had 

formed between the original PB cylinders, resulting in an undulated-lamella morphology. 

For the formation of Janus ribbons a connecting PB phase had formed in every second inter-

space along the major axis of the cylinders. Casting a tSBT film from tert-butanol, a non-

solvent for PB, also enabled the synthesis of spherical JPs. This way, the importance and 

versatile application of swelling agents and cross-linking methods for the preparation of JPs 

from bulk structures was demonstrated. The obtained Janus cylinders were hydrolyzed to 

have one PHS and one poly(methacrylic acid) (PMAA) hemicylinder, resulting in water-

soluble particles. 

Further, solution structures of tSBD and tSBT triblock terpolymers were investigated. In 

water, tSBD formed core-corona micelles that exhibited pH-responsive and LCST behavior 

due to the responsive poly(2-(dimethylamino)ethyl methacrylate) corona. Employing the 

novel method of directed hierarchical self-assembly, “football” MCMs were obtained from 

tSBD whereas tSBT formed “clover” structures.  Cross-linking of the B block in such MCMs 

and their subsequent dissolution in a solvent for all three blocks can be used to prepare 

spherical JPs. However, as tSBD MCMs existed in water, no sufficient cross-linking method 

could be found to cross-link the organic PB phase within the aqueous solution. For tSBT 

MCMs in ethanol the standard approach of adding a photo-initiator to the MCM solution 

followed by UV exposure was successfully employed and spherical JPs were obtained. These 
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were again hydrolyzed to acquire water-soluble JPs. Apart from some isolated single Janus 

spheres, cryogenic transmission electron microscopy mainly revealed the formation of “clo-

ver” and “hamburger” oligomers possibly due to the slightly better solubility of PMAA. Here, 

the applicability of the concept of directed hierarchical self-assembly to create MCMs was 

demonstrated for two different triblock terpolymers and the corresponding method of solu-

tion-based JP synthesis was successfully conducted for tSBT. 
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Zusammenfassung 

Die vorliegende Arbeit beschreibt die Synthese von ABC Triblock-Terpolymeren mit funkti-

onellen Einheiten mittels lebender anionischer Polymerisation, gefolgt von der Synthese 

von Janus-Partikeln (JP) und Multikompartiment-Micellen (MCM) aus den hergestellten 

Triblock-Terpolymeren. 

JPs, zweigeteilte, nicht-zentrosymmetrische Kolloide, sind ein wichtiges Thema in den heu-

tigen Materialwissenschaften. Die mannigfaltigen Möglichkeiten ihrer Synthese und ihre 

außergewöhnlichen Eigenschaften sind während der letzten Jahre zu einem intensiv bear-

beiteten  Forschungsgebiet geworden. Eine Synthese-Methode, die die Herstellung von so-

wohl sphärischen als auch nicht-sphärischen, wohl-definierten JPs im Größenbereich von 

Nanometern ermöglicht, basiert auf der Umwandlung von selbstangeordneten Triblock-

Terpolymer-Bulkstrukturen über die selektive Vernetzung des Mittelblocks. Bis zum jetzi-

gen Zeitpunkt wurden derartige weiche JPs hauptsächlich aus Polystyrol-block-

polybutadien-block-polymethylmethacrylat und Polystyrol-block-polybutadien-block-

poly(tert-butylmethacrylat) hergestellt. Diese Polymere verfügen jedoch nicht über viele 

Möglichkeiten für chemische Umsetzungen und stimuli-responsive Elemente. 

Deshalb wurden potentielle neue funktionale Monomere für die Anwendung in der JP-

Synthese aus Triblock-Terpolymer-Bulkstrukturen ermittelt sowie deren anionische Poly-

merisation untersucht, p-tert-Butoxystyrol (tS) und 4-(Dimethylaminomethyl)styrol 

(DMAMS). Aus beiden Monomeren konnten in Tetrahydrofuran (THF) mit sec-Butyllithium 

(sec-BuLi) als Initiator Polymere mit niedrigen Polydispersitätindizes hergestellt werden. 

Im Zuge dieser Untersuchung wurde die erste erfolgreiche lebende anionische Polymerisa-

tion von DMAMS mit einer engen Molekulargewichtsverteilung in einem THF/sec-BuLi-

System durchgeführt. Dies verdeutlicht, wie wichtig es ist, das THF vor der eigentlichen Po-

lymerisation mit sec-BuLi zu behandeln um restliche Unreinheiten zu beseitigen und Lithi-

um-Alkoxide zu bilden. Letztere verhindern die Koordination von tertiären Amino-Gruppen 

an die Li+-Gegenionen was die Anlagerung von Monomeren und damit eine kontrollierte 

Polymerisation stören würde. 

Poly(p-tert-butoxystyrol) (PtS) wurde zu Poly(p-hydroxystyrol) (PHS) hydrolysiert, das bei 

hohen pH-Werten wasserlöslich ist und damit die Möglichkeit der Synthese von wasserlösli-

chen JPs eröffnet. Sowohl die Behandlung mit Salzsäure als auch mit Trimethylsilyliodid 

wurde dafür eingesetzt. Zusätzlich wurde die aufgrund der Hydroxyl-Gruppe inhärente 

Möglichkeit der Polymer-Funktionalisierung anhand der erfolgreichen Umsetzung mit 1,3-
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Propansulton und 4-Pentinsäure zur Einführung von Sulfonat- bzw. Alkin-Gruppen demons-

triert. Das pH-responsive Verhalten von Poly(4-(dimethylaminomethyl)styrol) konnte be-

stätigt werden und zum ersten Mal wurde ein LCST-Verhalten mit Trübungstemperaturen 

von 59,3 °C bei pH 7 und 28,5 °C bei pH 8 dokumentiert. 

Anschließend wurde PtS bei der Herstellung von zwei Triblock-Terpolymeren, Poly(tert-

butoxystyrol)-block-polybutadien-block-poly(tert-butylmethacrylat) (tSBT) und Poly(tert-

butoxystyrol)-block-polybutadien-block-poly(2-(dimethylamino)ethylmethacrylat) (tSBD), 

eingesetzt. tSBT wies eine Lamellen-Zylinder-Bulkstruktur mit Polybutadien (PB)-Kugeln 

umgeben von alternierenden PtS- und Poly(tert-butylmethacrylat) (PtBMA)-Lamellen auf. 

Die Bulkstruktur von tSBD bestand jedoch aus einem symmetrischen lamellaren Muster, das 

nicht für die Synthese von JPs geeignet ist. Weiterhin wurde DMAMS benutzt um Poly(4-

(dimethylaminomethyl)styrol-block-polyallylacrylat-block-poly(tert-butylmethacrylat) 

(DSAT) zu synthetisieren. Als vernetzbarer Mittelblock wurde an dieser Stelle anstatt PB 

Polyallylacrylat gewählt, da die Polymerisation von PDMAMS-PB nicht erfolgreich durchge-

führt werden konnte. DSAT zeigte allerdings keine für die Synthese von JPs geeignete Bulk-

morphologie. 

Aus tSBT-Bulkmaterial konnten drei verschiedene Arten von JPs gewonnen werden. Die 

Photo-Vernetzung der Lamelle-Zylinder (lc)-Morphologie durch den Einsatz eines radikali-

schen Photoinitiators und UV-Bestrahlung ergab die erwarteten Janus-Zylinder. Wurde das 

Bulkmaterial erst in Acetonitril gequollen und dann durch kalte Vulkanisation vernetzt, wa-

ren Janus-Plättchen das Ergebnis. Quellen in einer Acetonitril/Dekan-Emulsion führte zu 

einer neuen Art von JPs, Janus-Bändern. In beiden Fällen fand ein Phasenübergang statt. Im 

Fall der Janus-Plättchen hatte sich eine dünne PB-Schicht zwischen den ursprünglich vor-

handenen Zylindern gebildet, mit dem Ergebnis einer ondulierten Lamellen-Morphologie. 

Für die Bildung von Janus-Bändern hatte sich eine verbindende PB-Phase lediglich in jedem 

zweiten Zwischenraum entlang der Hauptachse der Zylinder gebildet. Das Filmgießen von 

tSBT aus tert-Butanol, einem Nicht-Lösungsmittel für PB, ermöglichte auch die Synthese von 

sphärischen JPs. Auf diese Weise wurde die Wichtigkeit und vielseitige Anwendung von un-

terschiedlichen Quell-Reagenzien und Vernetzungsmethoden bei der Herstellung von JPs 

aus Bulkstrukturen demonstriert. Die Janus-Zylinder wurden hydrolysiert um einen PHS- 

und einen Polymethacrylsäure (PMAA)-Halbzylinder und somit wasserlösliche Partikel zu 

erhalten. 

Weiterhin wurden die Lösungs-Strukturen von tSBD und tSBT Triblock-Terpolymeren un-

tersucht. In Wasser bildete tSBD Micellen mit einer Kern-Korona-Struktur, die aufgrund der 
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responsiven Poly(2-dimethylamino)ethylmethacrylat)-Korona pH-responsives und LCST-

Verhalten zeigten. Durch die Anwendung der neuartigen Methode der gerichteten hierarchi-

schen Selbstanordnung wurden aus tSBD „Fußball“-MCMs erhalten während tSBT „Klee-

blatt“-Strukturen formte. Das Vernetzen des B-Blocks in derartigen MCMs und ihre an-

schließende Auflösung in einem Lösungsmittel für alle drei Polymer-Blöcke kann für die 

Herstellung von sphärischen JPs genutzt werden. Da tSBD in Wasser vorlag konnte jedoch 

keine ausreichende Vernetzungs-Methode gefunden werden, um die organische PB-Phase 

innerhalb dieser wässrigen Lösung zu vernetzen. Bei den tSBT-MCMs in Ethanol wurde er-

folgreich die Standard-Vorgehensweise der Beimischung eines Photo-Initiators zur MCM-

Lösung gefolgt von UV-Bestrahlung benutzt und sphärische JPs wurden erhalten. Diese 

wurden wiederum hydrolysiert um wasserlösliche JPs zu erlangen. Neben einigen isolierten 

einzelnen Janus-Kugeln zeigte die Untersuchung mittels cryo-Transmissions-

elektronenmikroskopie hauptsächlich die Bildung von „Kleeblatt“- und „Hamburger“-

Oligomeren, wahrscheinlich aufgrund der geringfügig besseren Löslichkeit vom PMAA. Die 

Anwendbarkeit des Konzepts der gerichteten hierarchischen Selbstanordnung zur Herstel-

lung von MCMs wurde hier für zwei verschiedene Triblock-Terpolymere demonstriert und 

die darauf beruhende Methode der lösungs-basierten JP-Synthese erfolgreich für tSBT 

durchgeführt. 
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Glossary 

χ  Flory-Huggins interaction parameter 

λ  wavelength 

µm  micrometer 

Å  Ångström 

a.i.  arbitrary intensity 

AIBN  2,2´-azobis(isobutyronitrile) 

AMA  allyl methacrylate 

ATR   attenuated total reflection 

a.u.  arbitrary units 

bp  boiling point 

BuLi  butyllithium 

ca.  circa 

cm  centimeter 

cryo-TEM cryogenic transmission electron microscopy 

d  distance 

DCC  dicyclohexylcarbodiimide 

DLS  dynamic light scattering 

DMAc  dimethylacetamide 

DMAEMA 2-(dimethylamino)ethyl methacrylate 

DMAMS 4-(dimethylaminomethyl)styrene 

DMAP  4-(dimethylamino)pyridine 

DMF  dimethylformamide 

DMSO  dimethyl sulfoxide 

DPE  diphenylethylene 

DSAT  poly(4-(dimethylaminomethyl)styrene)-block-poly(allyl methacrylate)- 

  block-poly(tert-butyl methacrylate) 

et al.  et alii 

EtOH  ethanol 

FRP  free radical polymerization 

FT  fourier-transform  

g  gram 

h  hour(s) 

HPLC  high-performance liquid chromatography 

HSBT  polyhydroxystyrene-block-polybutadiene-block-poly(tert-butyl  
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  methacrylate) 

[I]0  initial initiator concentration 

IR  infrared spectroscopy 

JP  Janus particle 

K  Kelvin 

kV  kilovolt 

kapp  apparent first-order rate constant 

kp  propagation rate constant 

L  liter 

lc  lamella-cylinder 

LCST  lower critical solution temperature 

ll  lamella-lamella 

ls  lamella-sphere 

m  mass 

M  molar 

[M]0  initial monomer concentration 

MALS  multi angle light scattering 

mbar  millibar 

MCM  multicompartment micelle 

mg  milligram 

MHz  megahertz 

min  minute  

mL  milliliter 

mM  millimolar 

mmol  millimol 

Mn  number average molecular weight 

Mn,th  theoretical number average molecular weight 

MWCO  molecular weight cut-off 

MWD  molecular weight distribution 

N  degree of polymerization 

NIR  near-infrared 

nm  nanometer 

NMR  nuclear magnetic resonance 

PAMA  poly(allyl methacrylate) 

PB  polybutadiene 

PDEAEMA poly(2-(diethylamino)ethyl methacrylate) 

PDI  polydispersity index 
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PDMAEMA poly(2-(dimethylamino)ethyl methacrylate) 

PDMAMS poly(4-(dimethylaminomethyl)styrene) 

pHcr  critical pH value 

PHS  poly(para-hydroxystyrene) 

pKa,app  apparent pKa 

PMAA  poly(methacrylic acid) 

PMMA  poly(methyl methacrylate) 

ppm  parts per million 

PS  polystyrene 

PtBA  poly(tert-butyl acrylate) 

PtBMA  poly(tert-butyl methacrylate) 

PtS  poly(para-tert-butoxystyrene) 

PTFE  polytetrafluoroethylene 

RI  refractive index 

rpm  revolutions per minute 

RT  room temperature 

SAXS  small-angle x-ray scattering 

SBM  polystyrene-block-polybutadiene-block-poly(methyl methacrylate) 

SBT   polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) 

sec  seconds 

SEC  size exclusion chromatography  

SEM  scanning electron microscopy 

SFM  scanning force microscopy 

TBAB  tetrabutylammonium bromide 

tBMA  tert-butyl methacrylate 

TCl  cloudpoint 

TEM  transmission electron microscopy 

THF  tetrahydrofuran 

TMSI  trimethylsilyl iodide 

TPO  2,4,6-trimethylbenzoyldiphenylphosphine oxide 

tSBD  poly(tert-butoxystyrene)-block-polybutadiene-block-poly(2-(dimethyl- 

  amino)ethyl methacrylate) 

tSBT   poly(tert-butoxystyrene)-block-polybutadiene-block-poly(tert-butyl  

  methacrylate) 

ul  undulated-lamellar 

UV  ultraviolet 

wt  weight 
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1 Introduction 

1.1 Synthesis of triblock terpolymers 

In modern materials science and nanotechnology a key issue is the preparation of highly 

ordered, defect-free structures of nano- or micro-size which are mostly prepared by bot-

tom-up approaches such as self-assembly. This calls for building blocks with a precisely de-

fined size and shape to ensure specific and predictable interactions and assembly prod-

ucts.1,2 In the field of polymer science AB and ABA di- and triblock copolymers and ABC 

triblock terpolymers are perfect materials for this purpose as they offer control over length 

scale, morphology and domain functionality.3 For the synthesis of linear triblock terpoly-

mers, living anionic polymerization by sequential monomer addition stays a common syn-

thetic approach.3 When its inherent problems like suitable addition order of the monomers 

or tolerance against functional groups can be overcome, it leads to the well-defined poly-

meric materials we desire for controlled self-assembly. However, by the development and 

improvement of other “living”/controlled polymerization methods, the synthesis of tailor-

made triblock terpolymers with specific chemical composition and functionality and low 

molecular polydispersity and heterogeneity is also possible by group transfer polymeriza-

tion (GTP), cationic polymerization, atom transfer radical polymerization (ATRP), reversible 

addition-fragmentation chain-transfer (RAFT) polymerization and sometimes a combina-

tion of these methods.4 

 

1.2 Self-assembly of triblock terpolymers in the bulk 

While the investigation of morphologies of AB block copolymers and ABA block terpolymers 

as well as (AB)n starblock copolymers dates back to the seventies and early eighties of the 

last century, the exploration of morphologies of ABC triblock terpolymers came into view 

only in the nineties.5 The phase behavior of diblock copolymers is driven by an unfavorable 

mixing enthalpy and a small mixing entropy, while the covalent bond connecting the blocks 

prevents macroscopic phase separation. The latter depends on the Flory-Huggins interac-

tion parameter χAB, a measure of the incompatibility between the two blocks, the volume 

fractions of the blocks, fA (fB = 1-fA), as well as the total degree of polymerization N. The de-

gree of microphase separation is determined by the segregation product χN. Three different 

regimes are distingushed: the weak-segregation limit  (WSL) for χN ≤ 10, the intermediate 

segregation region (ISR) for 10 < χN ≤ 50 and the strong segregation limit (SSL) for             

χN → ∞.6 As a function of composition, AB block copolymers in general adopt four different 
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morphologies, spheres, cylinders, double gyroid and lamellae (Figure 1-1).7 Additionally, the 

existence of a perforated lamellar phase was discussed.8,9 

 

 

Figure 1-1. Schemes of the different stable morphologies in binary block copolymers (from left 

to right: spheres, cylinders, double gyroid, lamellae). Reprinted with permission from Ref [7]. 

 

While the physical concepts to describe the phase behavior stay the same, naturally, triblock 

terpolymers have a higher number of experimental parameters than diblock copolymers. 

For a given triblock terpolymer system, there are three different Flory-Huggins interaction 

parameters χAB, χBC and χAC. Further, for each particular polymer there are three additional 

independent parameters: the volume fraction of blocks A and B, fA and fB, and the degree of 

polymerization, N. Altogether, there are six parameters that determine the equilibrium 

structure of a given triblock terpolymer. Therefore, the number of possible morphologies, 

compared to the four for AB diblock copolymers, increases dramatically. Figure 1-2 shows 

possible morphologies of a linear ABC triblock terpolymer. They are also influenced by the 

block order in the triblock terpolymer and change for other terpolymer architectures. Here, 

especially miktoarm stars are an evolving field of investigation,10-12 however not a topic of 

this thesis. 
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Figure 1-2. Overall schematic of the most predominant morphologies observed in ABC linear 

terpolymers. Reprinted with permission from Ref [3]. 

 

The exploration of triblock terpolymer bulk morphologies takes place through the combina-

tion and interplay of theoretical3,13-15 and experimental studies. An extremely significant 

contribution to the latter was made by Stadler and collaborators.3 They did a lot of work on 

the morphological behaviour of especially polystyrene-block-polybutadiene-block-

poly(methyl methacrylate) (SBM) triblock terpolymers.5,7,16-21 Figure 1-3 shows a ternary 

phase diagram of SBM at room temperature with some of the discovered morphologies. 
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Figure 1-3. Scheme of the different morphologies known from SBM triblock copolymers. Re-

printed from Ref [7]. 

 

1.3 Self-assembly of triblock terpolymers in solution 

In analogy to their bulk behavior, diblock copolymers and triblock terpolymers also self-

assemble in block-selective solvents.6  Like in the case of bulk structures, the number of pos-

sible structures in solution is considerably enhanced for triblock terpolymers in comparison 

to diblock copolymers. Triblock terpolymers in which two incompatible blocks are insoluble 

in the respective solvent form micelles with a compartmentalized core and a homogenous 

corona; if only one block is insoluble, it will form the homogenous core while the other two 

build the corona. Within the latter, if the middle block is the insoluble one, either no chain 

segregation (mixed corona) or lateral chain segregration (Janus micelle) can take place; if 

one of the outer blocks is the insoluble one, the corona will consist of AB diblock copolymer 

arms (radially segregated corona). Moreover, triblock terpolymers may form vesicles in 

solution.22 Figure 1-4 shows the schemes of all mentioned structures. 
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Figure 1-4. Schematic representation of different types of micelles formed by ABC triblock ter-

polymers. Core-shell-corona micelles with a compartmentalized core (a), micelles with a mixed 

corona (no chain segregation) (b), core-shell-corona micelles with a compartmentalized corona 

(radial chain segregation) (c), Janus micelles with an asymmetric corona (lateral chain segrega-

tion) (d), and vesicles (e). Adapted with permission from Ref [22]. 

 

A recent review by Wyman and Liu23 offers a detailed insight into micellar structures of 

triblock terpolymers. In the following the main types and selected examples are presented. 

 

1.3.1 Multicompartment micelles with a compartmentalized core 

Micelles with a compartmentalized core were the first investigated examples of micelles 

from triblock terpolymers. They are characterized by the so-called “core-shell-corona” 

structure (sometimes called “onion” or “three-layers” structure) with a core of the insoluble 

block A, surrounded by the also collapsed, insoluble block B and a corona formed by the 

soluble block C (Figure 1-4a).24 Early examples were reported by Kriz,25 Eisenberg26 and 

Ishizone.27 In most cases, micellization is induced in an aqueous phase for triblock terpoly-

mers with hydrophobic blocks A and B and a hydrophilic outer block C. An example in or-

ganic solvent is the work of Liu and Liu.28 Here, a poly(glyceryl methacrylate)-block-poly(2-

cinnamoyloxyethyl methacrylate)-block-poly(allyl methacrylate) (PGMA-PCEMA-PAMA) 

polymer formed core-shell-corona structures in methanol/tetrahydrofuran (THF) and tolu-

ene/methanol solvent mixtures. While PCEMA formed the shell in both cases, depending on 

the solvent mixture either PAMA or PGMA built the core, the respective other block the co-

rona. In pure methanol, the polymer formed branched cylindrical micelles. Manners et al. 

used a poly(ferrocenylphenylphosphine)-block-poly(ferrocenyldimethyl-silane)-block-

poly(dimethylsiloxane) (PFP-PFS-PDMS) triblock terpolymer to produce micelles with an 

organometallic core.29 In hexane, a selective solvent for PDMS, spherical micelles were 

formed for polymers with a sufficiently long PFP block that prevented crystallization of PFS. 

For shorter PFP blocks (DP ≤ 6) PFS crystallized during micelle formation and resulted in 
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cylindrical micelles. However, the exact location of the incompatible PFP and PFS domains 

in the spherical micelles could not be revealed.  

While all the given examples exhibit the classical core-shell-corona structure, also morpho-

logies with a non-continuous shell exist. A prominent example is the sphere-on-sphere or 

“raspberry” morphology Laschewsky et al. showed for a poly(4-methyl-4-(4-

vinylbenzyl)morpholin-4-ium chloride)-block-polystyrene-block-poly(pentafluorophenyl-4-

vinylbenzyl ether) (PVBM-PS-PVBFP) triblock terpolymer in water.30 The hydrophobic PS 

block formed a core decorated with spherical domains of PVBFP, surrounded by the hydro-

philic PVBM-corona (Figure 1-5a,b,c). In a follow-up work the group presented another 

triblock terpolymer with a lipophilic-hydrophilic-fluorophilic block order that also resulted  

in a sphere-on-sphere morphology at a first glance, but consisted of fluorocarbon-rich do-

mains that were not exclusively located on the surface of the hydrophobic core domain, but 

interpenetrated the same as shown by cryo-electron tomography.31 Further, the group of 

Laschewsky demonstrated the importance of block order when the same type of triblock 

terpolymer was changed to a hydrophilic-lipophilic-fluorophilic block order and then re-

sulted in a core-shell-corona structure.32 

Apart from materials with fluorocarbon-rich or other extraordinary block materials, for-

mation of multicompartment core micelles with a non-continuous shell can also be observed 

for triblock terpolymers consisting of simple, common monomers, like polybutadiene-block-

poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) (PB-P2VP-PtBMA).33 Schacher et 

al. reported, when the polymer was dissolved in acetone, a non-solvent for polybutadiene, 

the formation of micelles with a PB core and a corona consisting of P2VP and PtBMA was 

expected. However, the procedure resulted in rather well-defined micelles with a sphere-

on-sphere multicompartment core and a PtBMA corona (Figure 1-5d,e). The polymer was 

further examined after hydrolysis of the last block to PMAA.34 At high pH, PB-P2VP-PMAA 

formed core-shell-corona micelles with a continuous shell of P2VP. However, at pH 4 partial 

intramicellar interpolyelectrolyte complex (im-IPEC) formation between P2VP and PMAA 

resulted in a patchy, collapsed shell. This was even more pronounced for the quaternized 

analog, PB-P2VPq-PMAA, which forms aggregates also exhibiting a non-continuous, patchy 

shell. Similar multicompartment micelles with a patchy shell due to im-IPEC formation were 

also reported for polybutadiene-block-poly(tert-butyl methacrylate)-block-poly(2-

(dimethylamino)ethyl methacrylate)35 and polybutadiene-block-poly(1-methyl-2-vinyl pyr-

idinium)-block-poly(sodium methacrylate)36 by Schacher and coworkers. 
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Figure 1-5. Cryo-TEM images (a,c) and a schematic representation (b) of the structure of multi-

compartment micelles obtained by self-assembly of the triblock copolymer PVBM-PS-PVBFP in 

aqueous medium. The corona of the micelles is not visible. The scale bars correspond to 50 nm. 

Adapted with permission from Ref [30]. TEM image of a single MCM of PB-P2VP-PtBMA (d) and 

proposed solution structure of the micelle (e). Adapted with permission from Ref [33]. Copyright 

2009 American Chemical Society. 

 

For some applications, it is desirable to preserve the micelle structure by cross-linking of 

one of its compartments.24 This way, their dynamic structure can be fixated to facilitate the 

transfer of such aggregates into non-selective solvents or to stabilize them even below the 

critical micellar concentration.33,37 Cross-linking can be achieved through a variety of strate-

gies, cold vulcanization or radical cross-linking of PB-domains,33 UV-induced cross-linking of 

cinnamoyl methacrylates,28,38,39 amidation of PAA40 or the use of a bifunctional alkyl iodide 

to cross-link amino-methacrylate groups.41 Recent approaches include the employment of 

Click-chemistry42 and a temperature-responsive polymeric NHS-PNIPAM-NHS (NHS = N-

hydroxysuccinimidyl ester, PNIPAM = poly(N-isopropylacrylamide)) cross-linking agent.43 

Indeed, stimuli-responsive multicompartment micelles are another important issue in the 

field. They can be used as sensors, for the stimuli-controlled release of drugs or stabilization 

of pigments, etc.22 Typical stimuli-responsive blocks are pH-sensitive such as PAA, P2VP and 

P4VP and thermoresponsive like PNIPAM.23 The group of McCormick synthesized pH-

(a) 

(b) (c) 

(d) 

(e) 
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responsive α-methoxypoly(ethylene oxide)-block-poly[N-(3-aminopropyl)methacrylamide]-

block-poly[2-(diisopropylamino)ethyl methacrylate] (mPEO-PAPMA-PDPAEMA) triblock 

terpolymers that self-assembled into micelles consisting of PDPAEMA cores, PAPMA shells, 

and mPEO coronas above pH 6.0. After cross-linking of the PAPMA shells, the size of the 

shell-cross-linked micelles (SCLMs) increased with decreasing solution pH due to the swell-

ing of the PDPAEMA block.43 Other examples of pH-responsive SCLMs from triblock terpol-

ymers were shown by the group of Liu.39,42 One possible application for them is controlled 

drug-release. This is also possible with non-cross-linked micelles that release the drug upon 

dissociation at a certain pH value as shown for monomethoxy-capped poly(ethylene glycol)-

block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(di-ethylamino)ethyl meth-

acrylate) polymer.44 Triblock terpolymers that show intramicellar IPEC formation do so at a 

certain pH value or in a certain pH range during  which the IPEC forming blocks carry the 

relevant charges.34,35,45 However, under different pH or salinity conditions they can also 

form different morphologies, like core-shell-corona or flower-like micelles.35 Tsitsilianis et 

al. could prepare a whole plethora of nanostructured particles and hydrogels from poly(2-

vinylpyridine)-block-poly(acrylic acid)-block-poly(n-butyl methacrylate) (P2VP-PAA-

PnBMA) block terpolymer in aqueous solutions.46 The multiresponsive molecule demon-

strated a unique diversity of structural organizations caused by the combination of the P2VP 

and PAA building blocks and the deriving variety of interactions (either intra- or intermo-

lecular), such as hydrophobic and electrostatic (either attractive or repulsive), among the 

three polymeric segments. The group found conditions for the formation of thermosensitive 

centrosymmetric core-shell-corona micelles, compact spheres, polyelectrolyte flowerlike 

micelles, a charged pH-sensitive 3D network, toroidal nanostructures, and finite size clus-

ters (microgels). Apart from triblock terpolymers with one or two stimuli-responsive 

blocks, also triple-responsive polymers were synthesized and their micellization and aggre-

gation behavior thoroughly examined by the groups of Aoshima,47 Zhu48 and Laschewsky.49 

 

1.3.2 Multicompartment micelles with a compartmentalized corona 

Compared to the diversity of multicompartment micelles with a compartmentalized core, 

the examples of multicompartment micelles with a compartmentalized corona are few. This 

is already indicated by the fact that very often the term “multicompartment micelles” 

(MCMs) is used when the exact denomination was “multicompartment core micelles”. In-

deed many triblock terpolymers with two solvophilic outer blocks result in a core-corona 

structure with a non-segregated corona; a micellar structure related to the ones formed by 
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AB diblock copolymers22 which will not be discussed here. However, there are also some 

very interesting investigations into multicompartment micelles with a compartmentalized 

corona. 

The group of Liu has explored a number of micelle-like aggregates (MAs) with segregated 

corona compartments.50-52 The micellization behavior of poly(tert-butyl acrylate)-block-

poly(2-cinnamoyloxyethyl methacrylate)-block-poly(glyceryl monomethacrylate) (PtBA107-

PCEMA193-PGMA115) was examined in pyridine/methanol mixtures.50 While pyridine is a 

solvent for all three blocks, methanol is selective for PtBA and PGMA. With increasing meth-

anol content, the polymer first formed spherical, then cylindrical micelles with mixed coro-

nas and then vesicular and tubular MAs again with PCEMA in the core but with segregated 

PtBA patches in the PGMA corona (Figure 1-6a). 

 

      

Figure 1-6. Cross-sectional schematics of structures of vesicular and tubular MAs of PtBA-

PCEMA-PGMA (a), schematic of the chain packing in the cylindrical MAs and twisted cylinders of 

PGMA-PCEMA-PtBA (b) and TEM image thereof (c, stained with RuO4). Adapted with permission 

from Ref [50,51]. Copyright 2008 American Chemical Society. 

 

The same blocks in a different composition (PGMA310-PCEMA130-PtBA110) were dissolved in 

water where the polymer formed core-shell-corona cylinders with the insoluble PtBA and 

PCEMA blocks making up the core and shell and the soluble PGMA block forming the corona. 

Then the solution was dialyzed against methanol and the cylinders with PCEMA cores twist-

ed in water/methanol with high methanol contents, e.g., >90 vol%, probably to create more 

space to accommodate the segregated PGMA chains, which were longer, better solvated, and 

more crowded than the PtBA chains.51 For a PtBA-PCEMA-PDMAEMA triblock terpolymer 

(c) 
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similar chain segregation and twisting was observed in the first stages of the morphological 

evolution when water was added to a solution of the polymer in methanol.52 

From polystyrene-block-polyethylene-block-poly(methyl methacrylate) (PS-PE-PMMA) cy-

lindrical micelles with a crystalline PE core and a patched corona formed by microphase-

separated PS and PMMA chains were obtained in organic media.53 The patchy corona could 

be clearly visualized by selective staining in transmission electron microscopy. The worm-

like micelles can be formed by seeded growth of triblock terpolymer unimers from spherical 

crystalline-core micelles and even subsequent epitaxial growth to triblock co-micelles can 

take place.54  

Du and Armes used a primary amine based triblock terpolymer, poly(ethylene oxide)-block-

poly(3-caprolactone)-block-poly(2-aminoethyl methacrylate) (PEO-PCL-PAMA), to prepare 

patchy multicompartment micelles by dissolution  in purely aqueous solution at pH 7.55 At 

lower pH (pH 5) a mixture of patchy MCMs and even Janus micelles (complete lateral segre-

gation) was obtained.  

Fang et al. presented micelles with a compartmentalized corona prepared from poly(4-tert-

butoxystyrene)-block-polybutadiene-block-poly(tert-butyl methacrylate) (PtS-PB-PtBMA).56 

For this purpose the PB block was fluorinated so that in dioxane this block was insoluble 

and formed the core of the micelles with initially a mixed corona of PtS and PtBMA. During 

annealing a rearrangement occurred that resulted in micelles with different degrees of chain 

segregation, from various patchy to again even some Janus micelles (Figure 1-7). Further, 

bamboo-like, undulated cylindrical assemblies were obtained by stacking of the micelles in 

ethanol, which is a selective solvent for PtBMA. 

Walther et al. investigated the extent of compartmentalization in micelles formed by a series 

of bishydrophilic block terpolymers with two outer water-soluble segments, PEO-PnBA-

PNIPAM.57 Here, the LCST behavior of PNIPAM was used to artificially increase the incom-

patibility within the corona-forming blocks. Consequently, phase separation of the corona 

was triggered by the collapse of the PNIPAM blocks via temperature raise. Repeating heat-

ing cycles increased the extent of phase separation, but regardless of the length of the ther-

moresponsive block, a full transition to Janus micelles could not be induced. This was at-

tributed to the energetic penalties in the core and the very minor energetic differences be-

tween multicompartment and Janus micelles inside the corona, which cannot counterbal-

ance the entropic penalty.  
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Figure 1-7. Preparation of micelles with compartmentalized corona from PtS-PB-PtBMA by fluor-

ination of the PB block and solvent annealing. Reprinted with permission from Ref [56]. 

 

Recently, Borisov and Zhulina presented a theoretical paper about the self-assembly of 

triblock terpolymers in selective solvent towards corona-compartmentalized (Janus) mi-

celles,58 in which they examined the interplay of the many variables that influence chain 

segregation in multicompartment corona micelles. 

 

1.3.3 Multicompartment micelles by precise hierarchical self-assembly 

While a vast variety of MCMs has been presented so far, the lack of a general understanding 

of what governs MCM morphologies prepared from linear triblock terpolymers and a 

straightforward concept how to manipulate their formation and their hierarchical 

superstructures becomes apparent.23,59 This gap has been closed to a certain extent by 

Müller and coworkers who introduced a concept of directed self-assembly via pre-

assembled subunits and the sequential reduction of the degrees of freedom.59 It largely 

contrasts most of the other present approaches that use one-step dissolution or direct 

dialysis. Here, the ABC triblock terpolymers are first dissolved in a non-solvent for B which 

yields well-defined micellar subunits with a collapsed but dynamic B core and a mixed or 

compartmentalized corona of blocks A/C (first reduction of conformational freedom). 

Subsequently, the micelle solution is dialysed against a non-solvent for A. The collaps of A 

happens slowly during dialysis and due to the thus increased phase separation of A and C, 

rearrangements, possible because of the dynamic core, occur. Finally, the soluble C blocks 
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cannot solubilize the rearranged subunits anymore and consequently they aggregate into 

hierarchical MCMs to reduce the exposure of the A domains to the surrounding solvent 

(second reduction of conformational freedom).  In the resulting MCMs the collapsed block A 

forms the core, the B block forms the patches at the surface of the central core and the C 

block forms the corona (Figure 1-8).  

 

 

Figure 1-8. Detailed mechanism for the preparation and directed hierarchical self-assembly of 

well-defined MCMs. Reprinted with permission from Ref [59]. 

 

The formation of different MCM structures like “football”, “clover”, “hamburger” and 

“double-burger” MCMs, is governed by different factors such as the volume (V) ratio of the 

core-forming A and B blocks, the solvent quality for the C block and the length of the corona-

forming C chains. In particular, spherical or linear MCMs occur when VA/VB is greater or less 



1 Introduction 
__________________________________________________________________________________________________________________________________________________ 

 

22 
 

than unity, respectively and the number of patches increases with increasing VA/VB ratio. 

This concept was verified for a range of triblock terpolymers differing in block components, 

polarity of the final solvent and dynamics of the middle block (Tg varying from -51 to +100 

°C). Thus, it is a truly general concept, allowing the prediction and manipulation of MCM 

structures. Compared to other approaches clear advantages of the step-wise procedure are 

the rapid preparation (in contrast to protocols with equilibration times up to days) and the 

access to unique architectures with highly homogenous populations. Further, the control 

over the hierarchical step-growth polymerization of MCMs into micron-scale segmented 

supracolloidal polymers was also demonstrated. In a follow-up work it could be shown, how 

two additional steps, cross-linking of the B block in the MCMs and subsequent dispersion of 

the thus fixated micelles in a good solvent for all three blocks, open up the possibility of 

Janus sphere preparation with controllable corona ratios.60 

 

1.4 Janus particles 

A special subclass of MCMs are Janus particles (JPs). They are bicompartmentalized, non-

centrosymmetric colloids. Their two sides or surfaces are different in terms of their chemi-

cal and/or physical properties and they were named after the two-faced Roman god Ja-

nus.61,62 First synthesized by Casagrande et al. in 1989,63 the term “Janus” became popular 

after deGennes mentioned “Janus grains” in his Nobel lecture about soft matter in 1991.64 

Now JPs have gained much interest during the last years. Several general reviews65-69 and 

ones concerning their synthesis,70,71 supramolecular organization72,73 and with a special 

focus on inorganic74 or polymeric JPs72,75 appeared in recent years.  

 

1.4.1 Synthesis of Janus particles 

In contrast to other anisotropic morphologies the synthesis of JPs remains more challeng-

ing.1 However, a whole range of possible Janus synthesis protocols exists today. They can be 

divided into three main categories: masking techniques, phase separation approaches and 

self-assembly (Figure 1-9).66 
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Figure 1-9. Scheme illustrating the three main strategies for the preparation of Janus particles: 

masking, phase separation and self-assembly. Reprinted with permission from Ref [66]. 

 

Masking processes mostly consist of the desymmetrization of spherical homogeneous parti-

cles in the micro- and nanometer range.  For this purpose the particles are often adsorbed 

on a solid surface.66 The deposited particles can then be chemically functionalized and re-

leased, if desired also functionalized on the hemisphere inaccessible before.76  Instead of 

chemical functionalization also metal deposition on the absorbed particles is often em-

ployed.72 Apart from a planar surface, particles can also be adsorbed on larger particles, for 

example PAA coated nanoparticles that were electrostatically adsorbed onto positively 

charged silica beads and then functionalized on their non-masked hemispheres.77 Nie et al. 

used hybrid nanotubes as the desymmetrization tool that were coated with crosslinked 

divinylbenzene spheres in situ. On the sphere surface exposed to the surrounding solution, 

NIPAM polymerization took place.78 A very important masking approach was developed by 

the Granick group. It is based on the formation of an oil-in-water Pickering emulsion of silica 

particles, using a paraffin wax as the oil phase. Again, the exposed hemispheres of the silica 

particles can be functionalized and the Janus particles easily obtained after dissolution of 

the wax.66,79,80 Amounts on the gram scale can be prepared with this method that was also 

used by other groups, e.g. Perro et al.81 

The concept of JP synthesis by phase separation is applied for the preparation of purely in-

organic, polymeric-inorganic and purely polymeric particles. The synthesis of so-called 

“heterodimers” consisting of two inorganic materials to combine their different properties 

is a wide scientific field with many different mechanisms and many accessible particle mor-

phologies, among them a number of Janus-like ones, such as dumbbell or matchstick 

shapes.66,82-84 Polymer-inorganic heterodimers can be synthesized by techniques like 
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miniemulsion polymerization,85 dewetting processes86 and simple approaches like adding 

inorganic colloids during the polymerization.87 In all cases, the incompatibility of the poly-

meric and the inorganic component lead to Janus morphologies. For purely polymeric JPs, 

phase separation processes are the essential characteristic in electrohydrodynamic co-

jetting of polymer solutions88 and photopolymerization or photolithographic polymerization 

in microfluidic devices.72 Another interesting approach is oil-in-water miniemulsion, where 

the oil phase consisted of two immiscible polymers.  After emulsification, the solvent was 

evaporated, leading to phase separation of the two polymers.66,89 The group of Shimomura 

explored a variety of morphologies prepared by a similar protocol. Two polymers or diblock 

copolymers with a common block were first dissolved in organic solvent and subsequently 

precipitated in water under stirring to remove the solvent resulting in spherical particles 

with e.g. lamellar or Janus structure depending on the employed polymers and their respec-

tive concentrations.90,91  

Self-assembly resulting in JPs can occur for diblock copolymers and triblock terpolymers. 

Pairs of diblock copolymers either have a common block to form the Janus micelle core92 or 

two compatible blocks like PAA and poly(2-methylvinylpyridinium iodide) (P2MVP). In a 

mixture of P2MVP-b-PEO and PAA-b-PAAm (polyacrylamide), electrostatic interactions be-

tween the negatively charged PAA blocks and the positively charged P2MVP lead to the self-

assembly of disc-like Janus micelles with PAA and P2MVP in the core and phase- separated 

PEO and PAAm as the hemispheres.93,94 Two approaches of solution-self-assembly of 

triblock terpolymers that partly yielded Janus micelles population were already introduced 

in section 1.3.2.55,57 Sfika et al. observed intermediate Janus micelles during the ageing of 

P2VP-PMMA-PAA particles in aqueous solution at low pH.95 Dupont and Liu utilized the ag-

gregation of a triblock terpolymer with a photo-cross-linkable middle block into “hamburg-

er” micelles and core-segregated cylinders to cross-link block B, followed by dissolution of 

the aggregates to yield JPs. As already presented in section 1.3.3, Gröschel et al. used a simi-

lar approach when they cross-linked the B domains in MCMs assembled from Janus-like 

triblock terpolymer subunits and subsequently dispersed the particles in a solvent for all 

three blocks to gain the according JPs.60 

A self-assembly method that successfully accomplished both tasks, the synthesis of spherical 

as well as non-spherical JPs and of particles in the nanometer range is based on converting 

triblock terpolymer bulk structures via selective crosslinking of the middle block.96-98 The 

self-assembly of triblock terpolymers has already been discussed in section 1.2. Among the 

multitude of possible bulk morphologies three, namely lamella-sphere (ls), lamella-cylinder 

(lc) and lamella-lamella (ll), are most suitable for JP synthesis. The non-centrosymmetric 
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orientation of the terminal blocks A and C can be preserved by cross-linking of the inner 

block B. Subsequent dissolution of the bulk material yields the according JPs. For cylinders 

and discs, originating from lc and ll morphologies, the additional step of ultrasound-

sonication might be necessary to break down large particles (Scheme 1-1).99 The concept 

was first used by the groups of Ishizu100 and Müller.96 Ishizu and coworkers synthesized 

spherical JPs by cross-linking the P2VP microdomains of the ls-morphology of a PS-P2VP-

PtBMA triblock terpolymer with 1,4-diiodibutane while Müller and coworkers prepared 

spherical micelles from a PS-PB-PMMA triblock terpolymer by cross-linking the PB domains 

in the ls-morphology by cold vulcanization with S2Cl2 and radical cross-linking (by co-

casting of radical initiator in the polymer film). Apart from spherical particles,96 the Müller 

group also produced cylinders101,102 and sheets or discs.73,103 The accessible particle sizes 

depend on the total molecular weights of the precursor triblock terpolymers and are be-

tween 10 and 50 nm for the cross-section of the resulting colloids.99 The molecular weight 

fraction of the inner block is responsible for the resulting particle shape. While the symmet-

rical volume fractions of the outer blocks maintain the overall lamellar structures, the in-

crease in the volume fraction of the inner block causes the phase transitions from ls to lc to 

ll. 

 

 

Scheme 1-1. Overview of the pathway for the preparation of different Janus particles via selec-

tive crosslinking of microphase-segregated structures of triblock terpolymers. Reprinted with 

permission from Ref [97]. 
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Further, external influences, e.g. the film-casting solvent, the addition of swelling solvents or 

cross-linking agents, can also trigger changes in the structure. However, this can be utilized 

in certain cases when these influences help to tailor the microphase-segregated structure 

into a desirable non-equilibrium morphology.99 The resulting JPs are rather monodisperse 

in size due to their origin in defined bulk morphologies and can be produced on a multigram 

scale. 

 

1.4.2 Applications of Janus particles 

Their non-centrosymmetric architecture provides JPs with unique properties not accessible 

for homogeneous analogs. For instance, the broken symmetry leads to the formation of a 

variety of complex superstructures,65,73,102,104 which cannot be obtained from simple parti-

cles, thus representing fascinating building blocks for the constructions of hierarchical as-

semblies and materials. Further, they have a high tendency to adsorb and assemble at inter-

faces due to their bicompartment character, thereby lowering interfacial tension significant-

ly further as compared to homogenous particles or block copolymers.105,106,107 This en-

hanced interfacial adsorption capabilities of JPs were first predicted by Binks and Fletch-

er.108 They predicted an up to threefold stronger adsorption of JPs compared to homoge-

nous particles.99 These predictions were confirmed by Glaser et al.105 who examined the oil-

water interfacial tension via pendant drop tensiometry and observed a remarkable reduc-

tion caused by bimetallic JPs compared to homogenous metallic gold or iron oxide nanopar-

ticles. In further studies Walther et al.103 and Ruhland et al.106,109 studied the interfacial be-

havior of polymeric Janus spheres, discs and cylinders, examining the influence of their 

shape and their performance compared to linear non-crosslinked precursor triblock terpol-

ymers compared to which the JPs are significantly more powerful in reducing the interfacial 

tension.99 The same supremacy of JPs compared to their linear precursor triblock terpoly-

mers was observed in the utilization as compatibilizer for polymer blends.107 With their 

enhanced adsorption due to their biphasic particle character, JPs remained located exclu-

sively at the interface of the two polymer phases despite high temperature and shear condi-

tions while also providing a smaller domain size of the dispersed phase. The same  polymer-

ic JPs were also successfully employed as stabilizers in emulsion polymerization.110 Janus 

micelles synthesized via cross-linking of MCMs60 proved to be well suited as supracolloidal 

dispersants for carbon nanotubes.111 Inorganic JPs have been investigated for their unique 

optical, magnetic and catalytic properties.66,82 For instance, Au/MgO heterodimer crystals 

presented a catalytic activity higher than that of the traditional catalyst.112,113 The different 
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compartments make JPs also attractive for biological applications. Hosting different en-

zymes or metal nanoparticles they could be used as (bio)nanoreactors58 or for drug delivery 

of two different drugs to achieve synergistic effects.112 Already reported applications include 

polystyrene-magnetite JPs that combined optical detection by a fluorescent dye in the PS 

compartment with magnetolytic therapy67,114 and silver-maghemite JPs coated with silica to 

use as biocompatible cellular biomarkers that unite optical detection and magnetic recov-

ery.115 A real hands-on application was shown by Synytska et al. who coated poly(ethylene 

terephthalate)-based textile fibers with amphiphilic JPs to render them water-repellent.116 

 

1.5 Objective of this thesis 

The general objective of this thesis is the synthesis of triblock terpolymers with functional 

moieties via living anionic polymerization, followed by the multicompartment micelle and 

Janus particle synthesis from the prepared triblock terpolymers. 

Up to now Janus particles synthesized via selective cross-linking of microphase-segregated 

bulk structures of triblock terpolymers were mainly prepared from polystyrene-block-

polybutadiene-block-poly(methyl methacrylate) and polystyrene-block-polybutadiene-

block-poly(tert-butyl methacrylate). In terms of chemical alterations and stimuli-

responsiveness these offer only the possibility of hydrolysis of the C block to yield water-

soluble PMAA. Therefore, new suitable monomers with more functionality and stimuli-

responsiveness have to be identified, their suitability for anionic polymerization tested and 

the resulting building blocks characterized. The next step is their application in the synthe-

sis of triblock terpolymers and investigation of the derived bulk morphologies. 

Where applicable, Janus particles are to be synthesized from the bulk structures via selec-

tive cross-linking of the middle block by cold vulcanization and radical cross-linking. 

Further, solution structures of the triblock terpolymers will be investigated. Here, especially 

the new concept of multicompartment micelles by precise hierarchical self-assembly will be 

used. This pathway will be further utilized for the synthesis of spherical Janus particles via 

cross-linking of multicompartment micelle domains. 

First results of the solution properties of obtained particles will also be included in this   

thesis. 
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2 Experimental Part and Methods 

2.1 Materials 

4-(tert-butoxy)styrene, tert-butyl methacrylate and  2-(dimethylamino)ethyl methacrylate 

(all Aldrich) were degassed, treated with dibutyl magnesium (tert-butoxystyrene), trialkyl-

aluminium (tert-butyl methacrylate) or tri-n-octylaluminium (2-(dimethylamino)ethyl 

methacrylate) and distilled or condensed, respectively.102 4-(dimethylaminomethyl)styrene 

(90 %, Acros) was isolated via column chromatography, dried over calcium hydride, de-

gassed and purified with n-dibutylmagnesium via destillation. Tetrahydrofuran for anionic 

polymerization (≥99.9 %, Sigma-Aldrich) was refluxed three times over calcium hydride and 

three times over potassium. 1,1-Diphenylethylene (98 %, Acros) was destilled from sec-

butyllithium under reduced pressure. 2,2´-azobis(isobutyronitrile) (AIBN, Aldrich, 98 %) 

was recrystallized twice from methanol prior to use. Sec-butyllithium (1.4 M in cyclohexane, 

Aldrich and 1.4 M in cyclohexane, Acros), benzene (p.a. grade, Sigma Aldrich), N,N´-

dicyclohexylcarbodiimide (≥99 %, Fluka), 4-(dimethylamino)pyridine (≥99 %, Aldrich), 4-

pentynoic acid (98 %, ABCR), 1,4-butanesultone (purum ≥99 %, Sigma Aldrich), 1,3-

propanesultone (98 %, Aldrich), dimethylformamide (waterfree 99.8 %, Sigma-Aldrich), 

calcium hydride (≥95 %, Fluka), n-dibutylmagnesium (1.0 M in heptane, Aldrich), n-hexane 

(98.9 %, AnalaR NORMAPUR), ethyl acetate (>99.5 %, Sigma-Aldrich), methanol (≥99.8 %, 

Fisher Scientific), buffer solution (pH 2 – 8, AVS Titrinorm), hydrochloric acid (32 wt%, Sig-

ma-Aldrich and 37 wt%, Grüssing), sodium hydroxide (1.0 M, Fluka; 0.1 M, Merck; pellets, 

Riedel de Haën), acetonitrile (anhydrous 99.8 %, Aldrich), chloroform (p.a. grade, Fisher 

Scientific), 1,4-dioxane (p.a. grade, Fisher Scientific and Riedel de Haën), tert-butanol (p.a. 

grade, Merck), tetrahydrofuran (technical grade for soxhlet extraction; p.a. grade, VWR; 99.9 

% AnalaR NORMAPUR), dimethylacetamide (≥99 %, Roth),  ethanol (technical grade), di-

chloromethane (technical grade), sulphur monochloride (98 %, Aldrich), photoinitiator 

2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin® TPO (kindly provided from 

BASF)), trimethylsilyl iodide (purum ≥ 98%, Fluka and 97%, Aldrich) and dialysis mem-

branes (Spectra/Por) were used as received. Water was purified with a Milli-Q water purifi-

cation system by Millipore. 
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2.2 Instrumentation 

Nuclear magnetic resonance (NMR). 1H-NMR spectra were obtained either with a Bruker 

AC 250-spectrometer at an operating frequency of 250 MHz or with a Bruker Ultrashield-

300 at 300 MHz. Various deuterated solvents from Deutero GmbH were used depending on 

the solubility of the samples and tetramethylsilane was used as internal standard. The data 

was evaluated using the programs 1D WIN-NMR and SpinWorks 3. 

Size exclusion chromatography (SEC). SEC measurements in THF were performed with a 

set of 30 cm SDV-gel columns of 5 µm particle size having pore sizes of 105, 104, 103, and 102 

Å with a refractive index (RI) and UV (λ = 260 nm) detection. THF containing toluene as in-

ternal standard was used as eluent (flow rate 1 mL min-1). Data evaluation was carried out 

with WinGPC using a polystyrene calibration. Measurements in DMAc were performed at 60 

°C using a SEC system with a set of PSS GRAM columns (7 μm particle size with pore sizes of 

102 and 103 Å). The Agilent 1200 system was equipped with RI and UV (λ = 260 nm) detec-

tion. DMAc containing 0.5 M LiBr was used as eluent (flow rate 0.7 mL min-1). Data evalua-

tion was carried out with WinGPC using a polystyrene-poly(methyl methacrylate)-poly(2-

(dimethylamino)ethyl methacrylate) calibration. Poly(tert-butoxystyrene)-block-polybuta-

diene-block-poly(2-(dimethylamino)ethyl methacrylate) and (for comparison) its precur-

sors were characterized with a system using THF with additional 0.25 wt% tetrabu-

tylammonium bromide (TBAB) as eluent. (flow rate 0.5 mL min-1). The Waters instrument 

was equipped with PSS SDV gel columns (30 x 8 mm, 5 µm particle size) with 105, 104, 103, 

102 Å pore sizes, using RI and UV (λ = 254 nm) detection. Data evaluation was carried out 

with WinGPC using a polystyrene calibration. 

Size exclusion chromatography - multi angle light scattering (SEC-MALS). Measure-

ments were performed at room temperature using a SEC system with three 30 cm PSS SDV 

columns (104, 105, 106 Å), equipped with a Wyatt DAWN HELEOS light scattering detector 

(50 mW solid state laser; λ = 658 nm) and an Agilent HPLC-assembly. THF was used as elu-

ent (flow rate 0.8 mL min-1). Data evaluation was carried out with the Astra Software. 

Small-angle X-ray scattering (SAXS). Measurements of a solvent cast free-standing poly-

mer film of tSBT of ca. 200 nm thickness were performed with a rotating anode Bruker Mi-

crostar microfocus X-ray source (Cu Kα radiation, λ = 1.54 Å) with Montel Optics with a 

measurement time of 4 h. The beam was further collimated with four sets of slits, resulting 

in a beam area of about 1 × 1 mm at the sample position. Scattering intensities were meas-

ured using a Bruker AXS 2D area detector. The sample-to-detector distance was 1.5 m.  SAXS 

measurements of solvent-cast films of tSBD were performed on a Bruker AXS Nanostar 
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(Bruker, Karlsruhe, Germany), equipped with a microfocus X-ray source (Incoatec IµSCu 

E025, Incoatec, Geesthacht, Germany), operating at λ = 1.54 Å. A pinhole setup with 750 µm, 

400 µm, and 1000 µm (in the order from source to sample) was used and the sample-to-

detector distance was 107 cm. Samples were mounted on a metal rack and fixed using tape. 

The scattering patterns were corrected for the beam stop and the background (Scotch tape) 

prior to evaluations. Measurement time was 4 h. 

Photo-cross-linking. Cross-linking was induced with a HOENLE UVA HAND 250 lamp (cut-

off < 350 nm). 

Sonication. Treatment was performed with a Branson model-250 digital sonifier with a 1/8 

inch diameter tapered microtip (200 watt at 100% amplitude). 

Scanning force microscopy (SFM). Images were taken on a Veeco Digital Instruments Inc. 

Dimension 3100 closed loop microscope in tapping mode. Offline data processing was done 

using the Nanoscope Software V6.14R1. 

Transmission electron microscopy (TEM). Images were recorded in bright field mode 

with a Zeiss CEM 902 transmission electron microscope operated at 80 kV and a LEO 922 

OMEGA transmission electron microscope operated at 200 kV. Polymer films were cut into 

thin sections at room temperature using a Reichert-Jung Ultracut E microtome equipped 

with a diamond knife. Data evaluation and processing was carried out with Soft Imaging 

Viewer, Digital Micrograph 365 Demo software and Image Tool. 

Scanning electron microscopy (SEM). For SEM investigations, samples were fixed via a 

double-sided adhesive conductive carbon tape on a SEM sample holder and carbon-coated 

utilizing a MED 010 coating machine from Baltzer. SEM micrographs were recorded using a 

Zeiss 1530 FESEM equipped with an Inlens detector (acceleration voltage: 5 kV). 

Fourier transform infrared spectroscopy (FTIR). Measurements were performed with a 

Perkin Elmer Spectrum 100 FT-IR Spectrometer in ATR modus. After four background 

measurements the sample was analyzed four times between 650 cm-1 and 4000 cm-1.  

Near-infrared spectroscopy (NIR). Measurements were performed with a ZEISS ECCU 

MCS611 NIR 2,0 HR CLH600 spectrometer. The change of absorbance of the overtone vibra-

tion of the vinyl groups at 1630 nm was measured by using the program ZEISS procXplorer 

Version 1.3. After recording a background measurement of the solvent and injection of (4-

dimethylamino)methylstyrene measurements were started when adding sec-BuLi. The pro-

gram Aspect Plus was used for the evaluation of the data and the raw data were corrected. 
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Turbidity measurements. Measurements were performed with an 809 Titrando from 

Metrohm at 25 °C working with the program Tiamo 1.3. Changes of the pH value were ascer-

tained under stirring via a micro-pH electrode and changes of the transmission via a turbidi-

ty sensor Spectrosense 523 nm from Metrohm. During temperature dependent measure-

ments, an Aquatrode Plus sensor from Metrohm was used to measure changes of tempera-

ture and pH. Here, the solutions were heated with a heating rate of 1 K min-1. 

Dynamic light scattering (DLS). DLS measurements were performed on an ALV DLS/SLS-

SP 5022F compact goniometer system with an ALV 5000/E cross-correlator and a He–Ne 

laser (λ = 632.8 nm). The measurements were carried out in cylindrical scattering cells (d = 

10 mm) at an angle of 90° and a temperature of 20 °C. For temperature-dependent meas-

urements, the temperature of the decaline bath of the instrument was controlled using a 

LAUDA Proline RP 845 thermostat. The temperature was increased in steps of 2 K followed 

by an equilibration time of 5 min prior to each measurement. The CONTIN algorithm was 

applied to analyze the obtained correlation functions. Apparent hydrodynamic radii were 

calculated according to the Stokes–Einstein equation.  

 

2.3 Methods 

Anionic polymerization of tert-butoxystyrene. Living anionic polymerization is mean-

while a standard method and the general procedure of this polymerization technique is de-

scribed in detail elsewhere.102 In short, poly(tert-butoxystyrene) was synthesized in tetra-

hydrofuran at -78 °C. The calculated amounts of tert-butoxystyrene and sec-butyllithium 

were injected to the cooled solvent. After the polymerization was finished, one milliliter 

degassed methanol was added. The solution was concentrated, precipitated in water and 

dried in vacuo. 

Free radical polymerization of tert-butoxystyrene in bulk. 5.6 mL destilled tert-

butoxystyrene (29.7 mmol) and the respective amount of AIBN (30.8 mg (0.19 mmol) and 

15.6 mg (0.095 mmol)) were stirred at 70 °C under inert gas for 16 h.117 Afterwards, the 

polymer was dissolved in tetrahydrofuran and precipitated in water. Then the colorless 

polymer was filtered off and dried in vacuo at 80 °C overnight. 

Free radical polymerization of tert-butoxystyrene in solution. 5.6 mL destilled tert-

butoxystyrene (29.7 mmol) and 15.6 mg AIBN (0.095 mmol) were stirred in 10 mL benzene 

at 70 °C under nitrogen atmosphere for 13 h.118 The solution was dialyzed against 1,4-



2 Experimental Part and Methods 
__________________________________________________________________________________________________________________________________________________ 

 

32 
 

dioxane (regenerated cellulose Spectra/Por membrane, MWCO = 1000 g mol-1) and freeze-

dried. 

Hydrolysis of poly(tert-butoxystyrene) with HCl. 1250 mg PtS (7.1 mmol) were dissolved 

in 1,4-dioxane. 2.5 mL hydrochloric acid (37 %, 3*10-2 mol) were added under stirring. Then 

the solution was stirred under reflux at 120 °C for 24 h. The colorless polymer solution was 

then concentrated (to ca. 50 mL), precipitated in water and dried in vacuo at 80 °C over-

night. 

Hydrolysis of poly(tert-butoxystyrene) with TMSI. 400 mg PtS (2.3 mmol) were dis-

solved in CDCl3. After degassing for approximately 20 minutes, a 1.3-fold excess of trime-

thylsilyl iodide (TMSI) regarding the amount of addressed tert-butoxy groups was intro-

duced to the solution with a syringe under nitrogen. Afterwards, the mixture was stirred for 

2 h at room temperature and for 2.5 h at 60 °C and then treated with few mL of basic MilliQ-

water (pH 12-14, addition of NaOH). Subsequent dialysis against 1,4-dioxane, water/1,4-

dioxane (1/1) and water of different pH values was used for the work up.  

Etherification of PHS with 1,3-propanesultone. 50.2 mg NaOH (1.3 mmol) were dissolved 

in 38.5 mL methanol. 100 mg PHS (0.8 mmol) were added and the solution was stirred for 

30 min. Then, a solution of 1.1 ml 1,3-propanesultone (1.3 mmol) in 1.6 ml 1,4-dioxane was 

added and the resulting solution was refluxed at 91 °C for 48 h. Afterwards, the polymer 

product was precipitated in dichloromethane, filtered off and washed with dichloro-

methane. The remaining solid was dried in vacuo, thoroughly washed again with water and 

dried in vacuo overnight. 

Esterification of PHS with 4-pentynoic acid. 100 mg PHS (80.8 mmol) were dissolved in a 

mixture of 5 mL THF and 2.5 ml DMF and degassed with argon. 4-pentynoic acid, DCC and 

DMAP were added under stirring (see Table 2-1 for the respective amounts). 

Table 2-1. Used amounts of reagents for esterification of PHS. 

sample m (4-pentynoic acid) [mg] m (DCC) [mg] m (DMAP)[mg] 

1 424.9 (4.3 mmol) 903.3 (4.4 mmol) 56.4 (0.5 mmol) 

2 112.1 (1.1 mmol) 247.9 (1.2 mmol) 15.1 (0.1 mmol) 

 

The solution was stirred at RT for 48 h. Then, precipitated DCC urea was filtered off and the 

THF was removed under vacuum. The remaining suspension containing newly precipitated 
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DCC urea was filtered with a 0.45 µm PTFE syringe filter. Then the polymer solution was 

precipitated in water to remove the excess pentynoic acid and the polymer was filtered off. 

After redissolving in THF the polymer was precipitated in n-hexane to remove the excess 

DCC and DCC urea and again filtered off.119 

Purification of DMAMS. 4-(dimethylaminomethyl)styrene was purified via column chro-

matography with silica gel (size: 0.063 mm – 0.200 mm) and an ethyl acetate/n-hexane 

(1:3) solution as eluent. After evaporation of the solvent DMAMS was dried over calcium 

hydride overnight and distilled: bp 60 °C – 66 °C [10-4 mbar]. N-dibutylmagnesium was add-

ed to the distilled monomer until the solution became yellow and the distillation of DMAMS 

was repeated. 

Anionic polymerization of DMAMS. In short, poly(4-(dimethylaminomethyl)styrene) was 

synthesized in THF at -72 °C. The calculated amounts of 4-(dimethylaminomethyl)styrene 

and sec-butyllithium were injected to the cooled solvent. After the polymerization was fin-

ished, one milliliter degassed methanol was added. The solution was concentrated, dialyzed 

against 1,4-dioxane (regenerated cellulose Spectra/Por membrane, MWCO = 1000 g mol-1) 

and freeze-dried. 

Preparation of PDMAMS solutions for temperature dependent turbidity measure-

ments. For solutions of pH 6, 7 and 8, an acidic PDMAMS solution of pH 3 was prepared 

first. Then buffer solutions of pH 6, 7 or 8, respectively, were added until the desired pH 

value was reached. Before measurements, all solutions were degassed in vacuo to prevent 

the generation of bubbles at higher temperatures. 

Synthesis of poly(tert-butoxystyrene)-block-polybutadiene-block-poly(tert-butyl 

methacrylate) (tSBT), poly(tert-butoxystyrene)-block-polybutadiene-block-poly(2-

(dimethylamino)ethyl methacrylate) (tSBD),  poly(4-(dimethylamino)methyl)-

styrene)-block-poly(allyl methacrylate)-block-poly(tert-butyl methacrylate) (DSAT). 

tSBT, tSBD and DSAT were synthesized via living anionic polymerization. Having become a 

standard method by now, the general procedure of this polymerization technique is de-

scribed in detail elsewhere.102 In short, for tSBT the calculated amount of sec-butyl lithium 

initiator (0.22 mL, 0.31 mmol) was added to the tert-butoxystyrene solution in THF at -78 

°C, and after 1 h butadiene was added to the mixture at -78 °C and polymerized at -30 °C for 

5 h. Thereafter, the reaction mixture was treated with a 5-fold excess of 1,1-

diphenylethylene (DPE) relative to the amount of initiator before the addition of tBMA at   

60 °C and subsequent polymerization at -40 °C for 2 h. For tSBD the calculated amount of 

sec-BuLi initiator (0.23 mL, 0.29 mmol) was added to the tert-butoxystyrene solution in THF 
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at -75 °C, and after 1.5 h butadiene was added to the mixture at -75 °C and polymerized at 

10 °C for 6 h. Then the reaction mixture was treated with a 3-fold excess of DPE relative to 

the amount of initiator at -50 °C. After 1 h DMAEMA was added at -70 °C and subsequently 

polymerized at -40 °C for 1.5 h. For DSAT the calculated amount of sec-BuLi initiator (0.10 

mL, 0.14 mmol) was added to the DMAMS solution in THF at -72 °C, and after 7 minutes a 

10-fold excess of DPE relative to the amount of initiator was added to the mixture. After 2 h 

AMA was added and polymerized at the same temperature. Subsequently, tBMA was added 

and polymerized overnight at -50 °C. All polymerizations were terminated with 1 mL of de-

gassed methanol and the solutions concentrated. tSBT was then precipitated in water and 

dried in vacuo, while tSBD and DSAT were dialyzed against 1,4-dioxane and subsequently 

freeze-dried. 

Film casting. The respective amount of triblock terpolymer (with Lucirin® TPO) was dis-

solved in the desired solvent in a crystallization dish or small glass vial. After that, evapora-

tion of the solvent took place for two weeks (crystallization dish) or several days (vial) at 

room temperature and the films were dried in vacuo for 24 h at room temperature.  

Photo-cross-linking with Lucirin® TPO. Polymer films, co-cast with 30 wt% of Lucirin® 

TPO, were exposed to the radiation of a UV-lamp for 3.5 h.  

Cross-linking with sulphur monochloride (S2Cl2). A piece of polymer film was swollen in 

acetonitrile for one day. 5-10 vol% of S2Cl2 were added via a syringe and the cross-linking 

took place at room temperature overnight. In the case of Janus ribbons, films were swollen 

in an acetonitrile/decane emulsion that needed constant, not too strong stirring (ca. 130 

rpm) to avoid large-scale demixing of the two solvents for 14 h. Cross-linking time was 7 h. 

After the reaction, the films were washed three times with aprotic solvents acetonitrile and 

1,4-dioxane and purified via Soxhlet extraction with THF for 1-3 days.  

Sonication. Cross-linked material was dispersed in dioxane to give dispersions of an ap-

proximate concentration of 1 g L-1. Portions of about 20 mL were then treated with an ultra-

sound sonication tip under water cooling. The typical settings were a pulse of 2 sec, 5 to 10 

sec of pause, sonication time of 30 to 90 sec and amplitude of 30 %. Afterwards, the solu-

tions were filtrated using a 5 µm PTFE filter and freeze dried. 

Hydrolysis of Janus cylinders. Janus cylinders were dissolved in CHCl3 to give a solution of 

ca. 1.5 wt%. After degassing for approximately 20 minutes, a 1.3-fold excess of trimethylsilyl 

iodide (TMSI) regarding the amount of addressed tert-butoxy groups was introduced to the 

solution with a syringe under nitrogen. Afterwards, the mixture was stirred for 3 h at 60 °C 
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and then treated with few mL of basic MilliQ-water (pH 12-14, addition of NaOH). Subse-

quent dialysis against 1,4-dioxane, water/1,4-dioxane (1/1) and water of different pH val-

ues was used for the work up. A regenerated cellulose Spectra/Por dialysis membrane with 

molecular weight cut-off of 50000 was used.  

Preparation of tSBD micelles. Solutions of tSBD in 1,4-dioxane were prepared with a con-

centration of 1 or 10 g L-1 and dialyzed against water of the desired pH value. 

Preparation of multicompartment micelles. tSBD and tSBT were dissolved in DMAc with 

an initial concentration of 1 g L-1 to form the subunits with collapsed PB cores. Then, the 

resulting solutions were dialyzed against a selective solvent for the corona block, MilliQ-

water in the case of tSBD and EtOH for tSBT. 

Preparation of Janus spheres from tSBT MCMs. To a solution of tSBT MCMs in EtOH 2 

equivalents of the photo-cross-linker Lucirin® TPO per double bond were added and thor-

oughly dissolved. Then the solution was irradiated with a UV-lamp for 8 h. Afterwards it was 

dialyzed against 1,4-dioxane to break up the MCMs into single Janus particles. 

Hydrolysis of Janus spheres from tSBT MCMs. A solution of Janus spheres in 1,4-dioxane 

of a concentration of about 0.5 g L-1  was degassed for about 30 min and then a 5-fold excess 

of hydrochloric acid (32 %) relative to the amount of present tert-butoxy groups was added 

under stirring. Then the solution was stirred under reflux at 120 °C for 24 h and subse-

quently dialyzed against 1,4-dioxane.  

Preparation of TEM samples. Microtome-cut ultrathin film sections were exposed to OsO4 

vapour for 60 sec for preferential staining of the polybutadiene block (appears black). Li-

quid TEM samples were solvent evaporated from solutions with a concentration of 1 g L-1 on 

carbon-coated copper grids. For aqueous solutions, grids were rendered hydrophilic via a 

plasma treatment and the sample was blotted after 30 sec. For cryogenic transmission elec-

tron microscopy (cryo-TEM) studies, a drop of the sample, dissolved in water or toluene, 

was put on a lacey carbon-coated copper grid, where most of the liquid was removed with 

blotting paper, leaving a thin film stretched over the lace. The specimens were instantly vit-

rifed by rapid immersion into liquid ethane (aqueous samples) or nitrogen (toluene) and 

cooled to approximately 90 K by liquid nitrogen in a temperature controlled freezing unit 

(Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, Germany). The temperature was monitored 

and kept constant in the chamber during all of the sample preparation steps. After freezing 

the specimen it was inserted into a cryo-transfer holder (CT3500, Gatan, München, Germa-
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ny) and transferred to the Zeiss LEO 922 OMEGA TEM. Examinations were carried out at 

temperatures around 90 K. 
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3 Building Blocks 

3.1 Poly(tert-butoxystyrene) 

3.1.1 Anionic and free radical polymerization 

In contrast to its skeletal analog styrene, 4-tert-butoxystyrene (for convenience called tert-

butoxystyrene in the following) has a functional group attached to the benzene ring. This 

tert-butoxy unit itself does not yet dramatically change the monomer´s properties. The in-

teresting feature is the possibility of hydrolysis after polymerization, which yields polyhy-

droxystyrene (PHS).117 Unlike polystyrene (PS) and poly(tert-butoxystyrene) (PtS), PHS is 

water-soluble at high pH.117 Therefore, if it is used as a building block in triblock terpoly-

mers, it opens up the possibility to synthesize water-soluble and amphiphilic Janus particles 

(JPs).  

Tert-butoxystyrene is a monomer suitable for all types of polymerization. Reports about free 

radical,117,120 controlled radical,121,122 and cationic123-125 polymerization exist while the pre-

dominantly chosen method is living anionic polymerization in tetrahydrofuran 

(THF).117,126,127 Consequently, it is perfectly suitable to serve in the synthesis of triblock ter-

polymers via living anionic polymerization just like styrene.  

With the living anionic polymerization technique in THF, using sec-butyllithium (sec-BuLi) 

as initiator, we were able to synthesize PtS with polydispersity indices (PDIs) as low as 1.01 

(Table 3-1 and Figure 3-1). However, to synthesize PtS homopolymers for the execution of 

model hydrolysis and functionalization reactions, we used free radical polymerization (FRP) 

with 2,2´-azobis(isobutyronitrile) (AIBN) as initiator as alternative method with less pre-

parative effort.118 While FRP in bulk resulted in bimodal polymers with accordingly high 

PDIs, FRP in benzene, combined with dialysis against dioxane as work-up, yielded a polymer 

with a satisfying PDI of 1.51 (Figure 3-1). The NMR spectrum (Figure 3-2) reveals that re-

sidual monomer is present. However, the amount is in the range of a molar fraction of 8% 

and therefore was not expected to disturb the model reactions. 

Table 3-1 shows a comparison of the conditions and results of the living anionic and free 

radical polymerization of PtS. 
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Table 3-1. Anionic and free radical polymerization of PtS. 

  

[I]0 x 10
3
      

[mol L
-1

] 
[M]0 [mol L

-1
] Mn,th x 10

-3 
[g mol

-1
] Mn x 10

-3 
[g mol

-1
] PDI 

PtS      

(anionic) 0.52 0.18 60 53.8
a
 1.01

a
 

PtS (radi-

cal) 9.5 2.97 - 52.8
a
 1.51

a
 

a) SEC in THF, PS calibration 

22 24 26 28 30 32

elution volume [mL]

 PtS (anionic)

 PtS (radical)

 

Figure 3-1. SEC traces of PtS synthesized via anionic (black) and free radical polymerization (red). 
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Figure 3-2. NMR spectra of PtS synthesized via anionic (black) and free radical polymerization 

(red).  

 

3.1.2 Hydrolysis 

As mentioned above, PtS can be hydrolyzed to polyhydroxystyrene (PHS), a pH-sensitive 

weak polyelectrolyte. In contrast to PS, PHS is soluble in water at high pH and as such repre-

sents a stimuli-responsive segment.128,129 Some isolated reports exist on the utilization of 

PHS in the field of block copolymers and for stimuli-responsive micelles because of this in-

teresting property.128-136  

The simplest method for the hydrolysis of PtS is refluxing with hydrochloric acid in dioxane. 

Figure 3-3 shows the NMR spectra of PtS and of PHS prepared by this procedure, Figure 3-4 

the accordant IR spectra. The NMR of PHS exhibits the signal of the hydroxyl group at 8.9 

ppm while the tert-butoxy signal around 1.3 ppm has vanished. In the IR, a large water-

signal around 3318 cm-1 that is caused by the hydroxyl group is visible and at 1365 cm-1 the 

tert-butoxy signal is largely diminished. 

 

O

n

a

b

c

O

H

H

H

d

e

f

g

h

i



3 Building Blocks 
__________________________________________________________________________________________________________________________________________________ 

 

40 
 

                                       

8 6 4 2 0

 PtS

 PHS

a

chemical shift [ppm]

a

c

H
2
O

DMSO-d
6

CDCl
3

b

bd

 

Figure 3-3. NMR spectra of PtS (black) and its hydrolyzed analog PHS (red). 
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Figure 3-4. IR spectra of PtS (black) and PHS (red). 

 

However, when we intended to use the same approach for Janus cylinders with a PtS and a 

poly(tert-butyl methacrylate) (PtBMA) hemisphere, the reflux at high temperatures (~110 
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°C) in only a small batch volume (~ 5 mL) caused a significant amount of material to decom-

pose and stick at the side of the reaction vessel.  

So, as alternative route we chose the hydrolysis with trimethylsilyl iodide (TMSI) that takes 

place at room temperature. This reaction was introduced in 1977 by Jung and Lyster for 

esters137 as well as ethers.138 As it is tolerant of a lot of functional groups, e.g. amines, amides 

or ketones, it remains an important mild and efficient hydrolysis method in organic synthe-

sis to this day.139 The principle of this method is the treatment of the ester or ether with 

TMSI, resulting in a silyl ester or ether, followed by the actual hydrolysis with water or 

methanol. In the field of polymer chemistry it has been successfully used for the hydrolysis 

of poly(tert-butyl acrylate) (PtBA)140 and PtBMA.141 
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Figure 3-5. NMR spectra of PtS (black) and its corresponding silyl ether (red) after reaction with 

TMSI. 

 

3.1.3 Functionalizations 

As a main benefit, the hydroxyl group of PHS allows chemical modifications in different di-

rections, which further increases the versatility of this polymer. Two examples from litera-

ture are the functionalization with 1,3-propanesultone to obtain a polymer with sulfonate 

groups 142 and with propargylbromide to introduce alkyne groups (Scheme 3-1).143 
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Scheme 3-1. Possible functionalization reactions of PHS. 

 

A polymer with sulfonate groups is a strong anionic polyelectrolyte. Further, the sulfonate 

groups can be hydrolyzed to thiol groups or esterified with alcohols (after transformation to 

sulfonic acid with HCl). The alkyne group can be used for “Click” reactions with azides.144,145 

For the reaction with sultone we followed a procedure described by Dimitrov et al.142 shown 

in Scheme 3-2. First, we used the less toxic 1,4-butanesultone for our functionalization reac-

tion, but could only reach degrees of functionalization under 5%. Consequently, we switched 

back to the original instruction of the etherification using 1,3-propanesultone. 
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Scheme 3-2. Etherification of PHS with 1,3-propanesultone. 

 

Figure 3-6 shows the NMR spectrum of the etherified polymer clearly exhibiting the signals 

of the methylene groups at 2.0 ppm, 2.6 ppm and 3.95 ppm. However, also the signal of the 

unfunctionalized hydroxyl groups is clearly visibly. A calculation shows that a degree of 
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functionalization of still only 20.4 % was reached while 100 % have been described in litera-

ture.142 
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Figure 3-6. NMR spectrum of PHS etherified with 1,3-propanesultone. 

 

The incomplete functionalization is also qualitatively visible in the IR spectrum (Figure 3-7). 

The broad water signal around 3318 cm-1 is caused by the remaining hydroxyl groups while 

the sulfonic group is visible through its symmetrical and asymmetrical O=S=O valence oscil-

lations at 1036 cm-1 and 1170 cm-1. 
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Figure 3-7. IR spectrum of PHS etherified with 1,3-propanesultone. 

 

A general method to introduce a wide range of functional groups into the PHS polymer is the 

esterification of the hydroxyl groups with carboxylic acids or carboxylic acid halides. The 

Steglich esterification is a mild method at room temperature that uses dicyclohexylcar-

bodiimide (DCC) as coupling reagent and 4-(dimethylamino)pyridine (DMAP) as catalyst to 

accomplish the reaction.146 After the unsuccessful attempt to introduce an alkyne group via 

a Williamson-type etherification with propargyl bromide,143 PHS was esterified with 4-

pentynoic acid via the Steglich method to insert alkyne groups.119 Using a 5-fold excess of 4-

pentynoic acid and DCC, PHS could be functionalized successfully. 
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Scheme 3-3. Steglich esterification of PHS with 4-pentynoic acid. 
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Figure 3-8 shows the NMR spectra of the esterified PHS. The characteristic signals of the 4-

pentynoic moiety can be seen in the range of 2.30 to 2.85 ppm. Further, the signal of the 

hydroxyl group is gone. The degree of functionalization calculated from the spectrum is   

100 %. This fact is proven further by the IR spectrum of the esterified sample (Figure 3-9). 

Here, the O-H valence oscillation at 3318 cm-1 does no longer exist. Instead, new signals of 

the C-H valence oscillation at 3290 cm-1 and of the C=O valence oscillation of the ester bound 

at 1750 cm-1 are visible. 

A second batch with only a 1.5-fold excess of 4-pentynoic acid and DCC resulted in a degree 

of functionalization of 88.8 %, demonstrating the importance of a sufficient excess of the 

pentynoic acid. 
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Figure 3-8. NMR spectrum of PHS esterified with 4-pentynoic acid. 
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Figure 3-9. IR Spectrum of PHS esterified with 4-pentynoic acid. 

 

Other attempted Steglich esterifications included reactions with succinic anhydride (to in-

troduce acidic groups), 3-(tritylthio)propionic acid (for thiol groups) and different amino 

acids. However, problems occurred regarding the solubility of the according products and 

consequently a thorough characterization was prevented. 

 

3.1.4 Conclusion 

We could successfully synthesize PtS with a very low PDI of 1.01 via living anionic polymeri-

zation in THF with sec-BuLi as initiator. With less preparative effort, we obtained PtS with a 

PDI of 1.51 via free radical polymerization in benzene. It contained around 8 mol% of resid-

ual monomer, which however did not influence its suitability for model reactions. A fitting 

hydrolysis method for PtS is refluxing with hydrochloric acid in dioxane. It is less applicable 

for very small reaction volumes. Here, a good alternative is provided by the hydrolysis via 

reaction with TMSI. Hydrolyzed PtS was successfully functionalized with 1,3-

propanesultone to incorporate sulfonate groups and with 4-pentynoic acid to introduce 

alkyne groups suitable for “Click”-reactions. However, a desired larger library of funtional-

ized PtS was not achieved due to solubility and consequential characterization problems. 

 



3 Building Blocks 
__________________________________________________________________________________________________________________________________________________ 

 

47 
 

3.2 Poly(4-(dimethylaminomethyl)styrene) 

3.2.1 Anionic polymerization 

Monomers suitable for anionic polymerization must not carry any acidic protons. Therefore, 

many functional groups, e.g. hydroxyl and carboxyl groups, have to be protected during the 

polymerization process. In contrast, tertiary amino styrenes like 4-

(dimethylaminomethyl)styrene (DMAMS) combine a polymerizable vinyl group with an 

interesting functional unit while not carrying any labile protons that would cause the termi-

nation of the living ends during an anionic polymerization.147 The resulting polymer, poly(4-

(dimethylaminomethyl)styrene) (PDMAMS), shows pH-responsive behavior148-150 and can 

be quaternized to obtain strong cationic polyelectrolytes.151  

The anionic polymerization of DMAMS has been reported by Se et al.147,152 and Higo et al..151 

Se et al. polymerized DMAMS using THF as solvent and n-butyllithium as initiator. The re-

sulting polymers showed broad MWDs with PDIs higher than 1.38. Se et al. claimed that the 

polymerization process was disturbed by the amino groups of tertiary amines participating 

in the solvation of lithium ions during the polymerization. Therefore, they switched to the 

less nucleophilic initiators cumyl potassium and cumyl cesium and could succesfully synthe-

size PDMAMS with PDIs as low as 1.05. Higo et al. used benzene as solvent and sec-BuLi as 

initiator. They report that PDMAMS with a sharp molecular weight distribution can be ob-

tained with this system provided the monomer concentration is as low as 3 wt%. Polymeri-

zations with higher monomer concentration did not follow a first-order law during the 

whole process, leading to broadening of the MWD. Polymerization in THF led to PDMAMS 

with broad MWD. Higo et al. assumed that a presumably very small dissociation constant of 

the ion-pairs in THF is the reason for this. Hence, no satisfactory reports exist of successful 

DMAMS polymerization in THF with sec-BuLi as initiator. In contrast to the already de-

scribed polymerizations of DMAMS in benzene151 or with cumyl initiators152,147 this well-

established system combines a less dangerous solvent with a commercially available initia-

tor. Further, THF is used for polymerization of polybutadiene (PB) with a high fraction of 

1,2-PB that allows for efficient cross-linking of the resulting polymer. Therefore, we reat-

tempted the polymerization of a narrowly distributed DMAMS polymer under these very 

conditions. Prior to the actual polymerization reaction 1 mL sec-BuLi per 100 mL solvent 

was added to the THF solution at -20 °C and then aged overnight. Beside the elimination of 

residual impurities,153 this practice leads to the formation of lithium alkoxides.153,154 After 

thorough purification of the DMAMS monomer it was polymerized in the prepared THF so-
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lution at -72 °C using sec-BuLi as initiator. Used concentrations and characteristics of the 

resulting polymer are shown in Table 3-2. 

Table 3-2. Polymerization of DMAMS and styrene.  

 

Mn,th x 10
-3            

[g mol
-1

] 

Mn x 10
-3               

[g mol
-1

] 
PDI kapp x 10

2 
[s

-1
] kp 

 
[L s

-1
mol

-1
] 

PDMAMS 10.2 9.8
a
 1.03

a
 3.59 29.67 

PS 6.6 6.3
b
 1.03

b
 10 82.64 

[I]0 x 10
3
 = 1.21mol L

-1
 and [M]0 = 0.079 mol L

-1 
for both polymerizations 

a) SEC in DMAc, PS-PMMA-PDMAEMA calibration 

b) SEC in THF, PS calibration 

 

The NMR and SEC data of the synthesized polymer demonstrate the successful synthesis of 

PDMAMS with a narrow MWD and a PDI of 1.03 (Figure 3-10). 
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Figure 3-10.
1
H-NMR spectrum (in CDCl3) and SEC curve for PDMAMS. 

 

To follow the kinetics of the polymerization reaction we used near-infrared (NIR) fibre op-

tics inline spectroscopy and monitored the signal of the overtone vibrations of the DMAMS 

vinyl groups at the wavelength of 1630 nm. For comparison, we also monitored the 

polymerization of styrene under the same reaction conditions. Figure 3-11a shows the rapid 

exponential decrease of the NIR-signal for DMAMS (black) and PS (red).  
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Figure 3-11. Time-dependent decrease of absorbance of the overtone vibration of the vinyl 

groups depending on time during the polymerization of DMAMS (black) and PS (red) (a). First-

order kinetics plots for DMAMS (closed circles) and PS (open circles) polymerization (b). 

 

While the polymerization of DMAMS was finished after 120 seconds with a half life of about 

20 seconds, the polymerization of styrene was even faster and took about 55 seconds with a 

half life of about 7.5 seconds. Thus, in the sec-BuLi/THF system the polymerization of PS in 

THF is about 2.79 times as fast as the polymerization of DMAMS. The corresponding appar-

ent rate constants kapp were determined from the slope of the first-order kinetic plots 

(Figure 3-11b and Table 3-2).  

In comparison to earlier attempts to polymerize DMAMS, the two main differences in our 

approach are the monomer concentration and the pretreatment of the solvent with sec-BuLi. 

For DMAMS polymerization in THF, Se et al. used monomer concentrations around 0.2 mol 

L-1.152 Higo et al. report that the success of DMAMS polymerization in benzene depends on a 

low monomer concentration of around 3 wt% which equals 0.18 mol L-1.151 In contrast, we 

used a monomer concentration as low as 0.079 mol L-1. More important, the polymerization 

took place in the presence of alkoxides, which were generated on purpose by addition of sec-

BuLi to the THF on the day before polymerization. Lithium alkoxides, except linear ones, 

generally slow down the polymerization reaction while stabilizing the living chain end 

through complexation.153,155 Apart from Se´s assumption that the polymerization process of 

DMAMS was disturbed by the amino groups of tertiary amines participating in the solvation 

of lithium ions during the polymerization,152 there is also a report about the polymerization 

of (dialkylamino)isoprenes which suggests that in polar solvents like THF the tertiary amino 

groups strongly coordinate to the Li+ counterion at the living chain end and therefore hinder 
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the addition of monomer.156 Consequently, the presence of alkoxides is vital for the succesful 

anionic polymerization of narrowly distributed PDMAMS in the sec-BuLi/THF system.    

 

3.2.2 Solution properties of PDMAMS 

For PDMAMS pH-responsiveness has been reported148-150 while any temperature-responsive 

properties have not yet been communicated. Yet, it bears a tertiary amino group like poly(2-

(dimethylamino)ethyl methacrylate) (PDMAEMA) and the structurally similar poly(2-

(diethylamino)ethyl methacrylate) (PDEAEMA) which both show pH- as well as tempera-

ture-responsive behavior.157 Thus, for PDMAMS we expected LCST behavior like exhibited 

by PDMAEMA and PDEAMA at least in a certain pH range.  

To verify the pH-responsive behavior an acidic (pH = 2.5) PDMAMS solution (1 g L-1) was 

titrated with 0.1 M NaOH to pH 10. The titration process was monitored via a turbidity sen-

sor. At a critical pH value, pHcr, the polymer became insoluble and a significant change in the 

transmittance could be observed (Figure 3-12a). The critical pH value was defined as the 

intercept of the tangents at the onset of turbidity and was 7.1. The apparent pKa value could 

be determined from the titration curve (Figure 3-12b) analogous to the method used by 

Plamper et al.158 and pKa,app was 6.8.  
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Figure 3-12. pH dependent turbidity titration (a) and titration curve of PDMAMS (b).      

This is in the same range as reported values pKa,app = 7.3 and 7.1 for a random and a block 

copolymer of PDMAMS with poly((ar-vinylbenzyl)trimethylammonium chloride)149 and 

corresponds with the theory that the protonated block copolymer behaves as a stronger 

acid than the random copolymer because the protonated DMAMS units are more densely 

confined to a limited space in the block copolymer than in the random copolymer and 
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should be even more so in a homopolymer. Consequently, the pKa value for PDMAMS homo-

polymer is even lower than for the mentioned block copolymer. 

To investigate a possible LCST behavior of PDMAMS, several temperature-dependent tur-

bidity measurements were performed. PDMAMS solutions (1 g L-1) with the pH values of 2, 

3, 4 and 6 were heated with a heating rate of 1 K min-1. No significant change of transmit-

tance could be observed for these samples up to a temperature of 85 °C. PDMAMS could also 

be dissolved in buffer solutions of pH 7 and even 8. The temperature-dependent changes of 

transmittance for the pH 7 solution are shown in Figure 3-13a.  
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Figure 3-13. (a) Temperature-dependent change of transmittance for PDMAMS with initial pH of 

7. (b) pH-dependent cloud points for (Λ) (PDEAMAn)x stars, (ξ) PDMAMS61, (,,,,) (PDMAEMA170)18, 

(!!!!) (PDMAEMA100)3.1, (7777) PDMAEMA108. Cloud points of (PDEAMAn)x stars are independent of Mn 

and arm number x. 

 

The cloud point was defined as the intercept of the tangents at the onset of turbidity. For pH 

7 the cloud point is 59.3 °C. At pH 8 PDMAMS is less protonated than at pH 7. Consequently, 

the cloud point is significantly lower, namely 28.5 °C.  

Interestingly, Figure 3-13b shows that the cloud points of PDMAMS determined at pH 7 and 

8 are located between the corresponding cloud points of PDEAEMA and PDMAEMA. There-

fore, PDMAMS containing a benzene ring is more hydrophobic than PDMAEMA.  

 

3.2.3 Conclusion 

In conclusion, we conducted the first successful living anionic polymerization of DMAMS 

with a narrow MWD (PDI 1.03) in a sec-BuLi/THF system. Besides using even lower mono-
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mer concentrations than in previous anionic polymerizations of DMAMS, the important fea-

ture in our polymerization is the presence of alkoxides. They hinder the coordination of the 

tertiary amino groups to the Li+ counterions which would otherwise disturb the addition of 

monomer. Now it is possible to synthesize well-defined homo- and block copolymers of 

PDMAMS. The latter is especially interesting as in THF PB polymerizes with a high 1,2-PB 

content that allows for the synthesis of cross-linkable polymers. Triblock terpolymers con-

taining both PDMAMS and 1,2-PB could be used for the synthesis of Janus particles from 

bulk morphologies.159 This is interesting due to the pH- and temperature-responsive behav-

ior of PDMAMS. We could affirm the pH-responsive behavior and now for the first time also 

show the LCST behavior of the homopolymer with cloudpoints of 59.3 °C at pH 7 and 28.5 °C 

at pH 8. 
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4 Triblock Terpolymers: Synthesis and Bulk Morphologies 

After determining suitable building blocks for the preparation of JPs from bulk structures, 

the polymerization of the triblock terpolymers was the next step. Living anionic polymeriza-

tion was the method of choice because it leads to block copolymers with high molecular 

weights and very narrow molecular weight distributions.160 Most important is the fact that 

for the crucial step of fixation of the JPs, a cross-linkable middleblock is inevitable. PB car-

ries cross-linkable double bonds in both its 1,2- and 1,4-type; the 1,2-structure is preferred 

as its pendant vinyl groups can be cross-linked more efficiently than the double bonds with-

in the 1,4-structure. Consequently, the polymerizations of the triblock terpolymers were 

conducted in the polar solvent THF.161 However, attempts to synthesize a polymer with 

PDMAMS and PB as the first two blocks were not succesful; polymerization of the PB block 

stopped after about 10 % conversion, possibly due to some unclear termination reactions of 

the chain end with the PDMAMS block. As a substitute, allyl methacrylate was used. During 

anionic polymerization it grows via the methacryloyl moiety while the allyl groups do not 

react.162 Therefore, the latter can be used for cross-linking of the corresponding polymers. 

The poly(tert-butoxystyrene) was used as first block in two different terpolymers, poly(tert-

butoxystyrene)-block-polybutadiene-block-poly(tert-butyl methacrylate) (tSBT) and 

poly(tert-butoxystyrene)-block-polybutadiene-block-poly(2-(dimethylamino)ethyl methac-

rylate) (tSBD). PDMAMS was used for poly(4-(dimethylaminomethyl)styrene)-block-

poly(allyl methacrylate)-block-poly(tert-butyl methacrylate) (DSAT). 

 

4.1 Poly(tert-butoxystyrene)-block-polybutadiene-block-poly(tert-butyl methacry-

late) (tSBT) 

The triblock terpolymer tSBT was modeled after the already investigated polystyrene-block-

polybutadiene-block-poly(tert-butyl methacrylate) (SBT). SBT has succesfully been used for 

the synthesis of Janus sheets and discs.103 The PtBMA block can be hydrolyzed to water-

soluble poly(methacrylic acid). While this lead to amphiphilic colloidal particles in the case 

of SBT Janus discs,73 with PtS in its hydrolyzed form, PHS ,the synthesis of water-soluble JPs 

from triblock terpolymer bulk structures is possible for the first time. 

Size exclusion chromatography combined with multi-angle light scattering (SEC-MALS) 

showed a molecular weight of 163,000 g mol-1 and a PDI of 1.01 for the tSBT terpolymer 
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(Figure 4-1b). The weight fractions of the three blocks were calculated from NMR (Figure 

4-1a) to be tS46B16T38 and degrees of polymerization are tS425B482T430. 
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Figure 4-1. NMR spectrum (a) and SEC curve (b) of tSBT.  

 

After film-casting from chloroform, we examined the resulting bulk structure of tSBT by 

transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Figure 

4-2 shows a TEM-micrograph of an OsO4-stained ultrathin section of tSBT. The PB cylinders 

(appearing black) are surrounded by alternating lamellae of PtS (gray) and poly(tert-butyl 

methacrylate) (PtBMA) (white). The PtBMA phase appears white due to electron-beam in-

duced degradation. The diameter of the polybutadiene cylinders is 14 ± 1.8 nm and the dis-

tance between the centers of two cylinders is in the range of 22 nm while the long period of 

the lamellar structure is 68 nm. Note that the TEM micrograph may not reflect the absolute 

dimensions as staining and electron-induced degradation of the PtBMA may alter the exact 

distances to some extent. With respect to the following results, it is important to note that a 

morphology with undulated lamellae, as shown in Figure 4-2c, could not be observed. The 

magnified image (see Figure 4-2d) does not indicate any thin lamellar connections between 

the PB cylinders.  
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Figure 4-2. TEM micrographs (a and d) of ultrathin sections of a tSBT film stained with OsO4 (PB 

appears black, PtS gray and PtBMA white) and two cartoons displaying a lamella-cylinder (b) and 

an undulated lamellar morphology (c). Reprinted with permission from Ref [159]. Copyright 2011 

American Chemical Society. 

 

The result of the SAXS measurements is in agreement with the observed lamella-cylinder 

(lc) morphology. Figure 4-3 depicts the scattering curve of tSBT exhibiting the typical inte-

ger reflexes of a lamellar morphology. Additionally, the 200 peak is rather broad and exhib-

its a shoulder. Its deconvolution results in three peaks that can be assigned to the 200 and 

300 reflexes and the primary reflex of the correlation distance between the cylinders. This 

characteristic spacing can be calculated to 21.8 nm. The calculated long period is 60 nm. In 

comparison, the values measured in TEM micrographs are 22 nm for the cylinder distance 

and 68 nm for the long period and therefore in good agreement. 
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Figure 4-3. SAXS curve of tSBT (a) with a characteristic shoulder indicated by the arrow. Close-up 

(b)  shows the deconvolution of the shoulder revealing the underlying correlation distance of the 

cylinders. Adapted with permission from Ref [159]. Copyright 2011 American Chemical Society. 

 

4.2 Poly(tert-butoxystyrene)-block-polybutadiene-block-poly(2-

(dimethylamino)ethyl methacrylate) (tSBD) 

For the second triblock terpolymer poly(2-(dimethylamino)ethyl methacrylate) (PDMAE-

MA) instead of PtBMA was used. It is a weak polyelectrolyte that exhibits LCST behavior.158 

Further, its tertiary amino groups can be quaternized to result a strong polyelectrolyte.35 

The weight fractions of the three blocks as calculated from the NMR (Figure 4-4a) were 

tS48B16D36 at a molecular weight of 116,000 g mol-1 (calculated from NMR and SEC of PtS-

precursor) and degrees of polymerization are tS316B343D267. The PDI was 1.1 due to a small 

amount of termination reactions (compare shoulders in Figure 4-4b). 



4 Triblock Terpolymers: Synthesis and Bulk Morphologies 

__________________________________________________________________________________________________________________________________________________ 

 

57 
 

              

7 6 5 4 3 2 1 0

i

h

g

c

d
fe

b

chemical shift [ppm]

a

 

Figure 4-4. NMR spectrum (a) and SEC curve (b) of tSBD and its precursors. 

 

Film-casting from chloroform, dioxane and THF always resulted in a lamellar morphology 

(Figure 4-5). This morphology did not consist of alternating phases of the three blocks 

(“ABCBABC”) as desired for Janus particle synthesis, but instead showed a symmetrical 

“ABCBABCBA” motif. Ultrathin sections of a tSBD film were stained with OsO4 for PB to ap-

pear black. Figure 4-5 shows that the PB lamella forms the core lamella “C” of the pattern.  

 

   

Figure 4-5. TEM micrographs of ultrathin sections of a tSBD film cast from dioxane (a) and THF 

(b) stained with OsO4 (PB appears black), table of the respective χ-parameter and scheme of the 

morphology pattern. 
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Usually, when a methacrylate is present in the morphology it appears as the lightest colored 

phase in the TEM due to electron-beam induced degradation. Here this would hint that 

PDMAEMA resembles phase A and PtS remains to be phase B in the ABCBA motif. However, 

as the structure of the triblock terpolymer is PtS-PB-PDMAEMA, the PB phase cannot be 

exclusively neighbored by PtS. It is not possible for the chains to align in such fashion. 

Therefore, phase B has to be a mixed phase of PDMAEMA and PtS. Indeed, calculations of the 

respective χ-parameter show that χtSD is 0 and therefore these two blocks are miscible while 

χtSB and χBD are positive and the corresponding blocks undergo phase separation. As the PtS 

block exceeds the PDMAEMA block in volume, phase A has to consist of PtS. 

The long period of this lamellar structure can be narrowed down to be in the range of 30 to 

50 nm. Due to cutting artefacts (compressions and extensions of the film) a more accurate 

statement is not possible. However, the long period can also be calculated from SAXS meas-

urements. Figure 4-6 depicts the scattering curves for the tSBD films cast from all three sol-

vents. As expected, they exhibit the integer reflexes of a lamellar morphology. The 100 reflex 

is at the same scattering vector position for all three films. The long period calculated from it 

is 55 nm and therefore in satisfactory agreement with the measurement made in TEM mi-

crographs. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

(300)

(200)

(a
.i
.)
 

q [nm-1]

 THF

 CHCl
3

 dioxane

(100)

 

Figure 4-6. SAXS curve of tSBD films cast from different solvents exhibiting the integer reflexes 

typical for a lamellar morphology. 
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4.3 Poly(4-(dimethylaminomethyl)styrene)-block-poly(allyl methacrylate)-block-

poly(tert-butyl methacrylate) (DSAT) 

DSAT aimed to combine the pH- and newly reported thermo-responsivity of PDMAMS with 

an inherent acidic group through the use of PtBMA. Figure 4-7a shows the NMR spectrum of 

the polymer which results in a weight composition of DS42A11T47. However, the SEC curves 

(Figure 4-7b) reveal a significant amount of termination for the diblock PDMAMS-PAMA 

possibly due to impurities in the tBMA. Therefore, the polymer composition DS42A11T47 actu-

ally refers to a polymer mixture of the actual triblock and the precursor diblock. A more 

detailed analysis of the SEC data shows that the mixture consists of 67 wt% of DS30A8T62120 

and 33 wt% DS79A2146. This equals 44 mol% DSAT and 56 mol% DSA.  
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Figure 4-7. NMR spectrum (a) and SEC curves for DSAT polymerization (b). 

 

For the precursor PDMAMS as well as the precursor diblock, the PDI is 1.03. As expected, 

the overall PDI of the resultant mixture of tri- and diblock rises dramatically and is 1.51.  

The analysis of the bulk structures, stained with OsO4 to give the highest contrast to 

poly(allyl methacrylate) (PAMA), shows a lamellar morphology at first sight (Figure 4-8); 

but a closer look into the darker domains also shows black spheres. Consequently, we as-

sume a lamellar morphology of PDMAMS (gray) and PtBMA (lightest phase due to electron 
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beam irradiation) with PAMA spheres (black appearance due to OsO4) in the PDMAMS la-

mella. 

 

  

Figure 4-8. TEM micrographs of ultrathin sections of a DSAT film cast from CHCl3 stained with 

OsO4 (PAMA appears black). 

 

4.4 Conclusion 

The newly introduced building block for triblock terpolymers, tert-butoxystyrene was suc-

cessfully employed in the synthesis of the two triblock terpolymers tSBT and tSBD. tSBT has 

a very narrow PDI of 1.01 and exhibits a lamella-cylinder morphology as its bulk structure. 

The latter is interesting because when PS instead of PtS was used for the same triblock ter-

polymer, an lc-morphology, or an lamella-sphere (ls)-morphology for very little PB content, 

could never be realized for SBT.97 The PB-cylinders are surrounded by alternating lamellae 

of PtS and PtBMA, therefore making tSBT an ideal precursor material for Janus particles. 

tSBD has a slightly broadened PDI of 1.1 due to a small amount of termination reactions. Its 

bulk morphology is a lamella-lamella (ll) one. Unfortunately, in contrast to other terpoly-

mers with an ll-morphology, e.g. SBT, the bulk structure of tSBD consists of a symmetrical 

pattern. Due to a χ-parameter value of 0 for tS and D, the two blocks built a centrosymmetric 

mixed phase on both sides of the PB lamellae. Excess PtS gives the third type of lamella. 

With this symmetrical structure, tSBD is not suitable for the JP synthesis from bulk material. 

The synthesis of a triblock terpolymer with PDMAMS as the first block followed by PB was 

not possible. Instead PAMA was employed as cross-linkable middle block. However, a signif-

200 nm200 nm200 nm200 nm200 nm200 nm200 nm200 nm
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icant amount of termination took place after the polymerization of the DSA diblock. Conse-

quently, the resulting polymer is merely a mixture of diblock and triblock. Although this in 

itself was not a hindrance for JP synthesis, the bulk material does not exhibit a clear and 

suitable morphology. 
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5 Janus Particles from tSBT Bulk Structures 

Major parts of this chapter were published in Macromolecules 2011, 44, 9221-9229 under 

the title: “Janus Triad: Three Types of Nonspherical, Nanoscale Janus Particles from One 

Single Triblock Terpolymer” by Andrea Wolf, Andreas Walther and Axel H. E. Müller 

(http://pubs.acs.org/doi/full/10.1021/ma2020408). Text and respective figures are 

adapted and reprinted with permission. Copyright 2011 American Chemical Society. The 

actual preparation of the particles was performed during the precedent diploma thesis and 

is repeated as the base of the further detailed examinations.163 

 

5.1 Preparation of Janus particles 

After thorough investigation of the bulk morphology of tSBT, which was lamellar-cylindrical, 

we expected to be able to prepare the according Janus cylinders from the bulk material by 

cross-linking of PB followed by dissolution in THF.  

Two different approaches were used to cross-link the PB domains and prepare Janus parti-

cles. Photo-cross-linking was performed using 2,4,6-trimethylbenzoyldiphenylphosphine 

oxide (Lucirin® TPO) as radical initiator, which was co-cast with the polymer. The incorpo-

ration of Lucirin® TPO does not alter the lc-morphology of tSBT-films as concluded from 

TEM images of the bulk structures (Figure 5-1). The other method employed sulphur mono-

chloride, S2Cl2, as cross-linking agent. Here, the polymer film was swollen in acetonitrile 

before the introduction of the cross-linking agent.  

 

   

Figure 5-1. TEM micrographs of a tSBT film with 30 wt% of Lucirin® TPO , stained with OsO4 (PB 

appears black, PtS gray and PtBMA white).  
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Photo-cross-linking resulted in well-defined Janus cylinders after dispersing the polymer 

film in THF, a good solvent for all three blocks of the terpolymer (Figure 5-2a). To decrease 

the length and thus to enhance the solubility of the resulting particles, the cylinders were 

sonicated (Figure 5-2b). These and all following TEM images are non-stained if not stated 

otherwise. 

 

 

Figure 5-2. TEM micrographs of Janus cylinders before (a) and after (b) sonication and SFM 

height image of Janus cylinders (c) with corresponding cross-sections (d).  

 

The evaluation of the core diameter of the core-corona structures visible in the TEM images 

yields values in the range of 22 nm. This value exceeds the measured diameter of the PB 

cylinders of 14 ± 1.8 nm in the bulk structure. Furthermore, the heights of the structures by 

scanning force microscopy (SFM) are in the range of 15 nm (Figure 5-2d). Considering the 

presence of additional corona on top and below of the PB cylinder (Figure 5-2a), a slightly 

flattened appearance of the PB cylinder is indicated when adsorbed onto surfaces. 



5 Janus Particles from tSBT Bulk Structures 
__________________________________________________________________________________________________________________________________________________ 

 

64 
 

In contrast to photo-cross-linking, the procedure of using S2Cl2 as cross-linker involves a 

previous swelling of the polymer film in acetonitrile. After addition of S2Cl2, during the so-

called cold vulcanization process, disulfide-bonds between the polybutadiene double bonds 

form. Similar to the case of photo-cross-linking, we expected the formation of Janus cylin-

ders because of the lc-morphology. Surprisingly however, after cross-linking through cold 

vulcanization followed by sonication, two-dimensional Janus sheets instead of cylinders 

were obtained. Interestingly, the TEM micrographs show that the PB lamella is not of uni-

form thickness. Instead, clear, well-spaced undulations can be observed (Figure 5-3b). PB 

cylinders (darkest areas) can be observed that are connected by a PB layer, clearly thinner 

than the cylinders themselves (consequently brighter in the TEM image). Therefore, a phase 

transition in the morphology has occurred.  

 

 

Figure 5-3. TEM images of Janus sheets obtained from tSBT after one (a) and five (b) days of 

swelling in acetonitrile, cross-linked with S2Cl2, with (d) analysis of the cross section indicated in 

micrograph (b). The schematic drawing (c) indicates the line of sight onto the Janus sheets.  
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The structure developing during the process is best described as an undulated-lamellar (ul) 

morphology. A section analysis further visualizes this structure (Figure 5-3d). The cross 

section is based on the gray scale originating from the contrast variations within the sample. 

The thicker and darker cylinders can clearly be distinguished from the thinner and brighter 

connecting PB parts. The gray-scale analysis shows a diameter of the cylinders of ca. 23 nm 

and a width of the connecting PB parts in the range of 30 to 32 nm, thus exhibiting slightly 

larger dimensions than the cylinder packing in the bulk structure. The process of swelling 

and adding S2Cl2 obviously causes an increase of the volume of the PB domains, which is 

reflected in the final dimensions of a Janus sheet structure. We observed that this transition 

is solely caused by the reaction with S2Cl2 and not already upon addition of the swelling sol-

vent as confirmed by a detailed TEM study (Figure 5-4). The concurrent volume increase of 

the PB phase during incorporation of the bulky S2Cl2 and altered interfacial tensions among 

the various blocks trigger this phase transition. 

 

 

Figure 5-4. TEM micrographs of tSBT bulk morphologies after one day of swelling in acetonitrile 

(a) and additional treatment with S2Cl2 (b), the inset shows the formed PB lamellae in higher 

magnification). Samples are stained with OsO4 (PB appears black, PtS gray and PtBMA white).  

 

As the thinner parts of the PB layer are prone to fracture, most of the sheets have very clear 

particle edges along the cylinder lines and favor rectangular materials upon prolonged soni-

cation. The sheet-like character of the Janus particles is also well visible in SEM pictures 

where stacks of sheets can be observed (Figure 5-5a). Again, the alternating thicker and 

thinner parts within the PB layer are clearly visible (Figure 5-5b). 
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Figure 5-5. SEM images of Janus sheets. 

 

With the aim of achieving a continuous PB lamella to increase the stability of the Janus 

sheets, we added other solvents (e.g. decane) that have a better ability to swell the PB phase 

than acetonitrile. However, tSBT is soluble in decane. To prevent the complete dissolution of 

tSBT while still keeping decane as a good swelling agent for PB, a mixture of decane and 

acetonitrile was used in a ratio of 1:1. The two solvents are not fully miscible, but form an 

emulsion upon stirring. After 14 hours of swelling in the steadily stirred acetonitrile/decane 

emulsion, tSBT was cross-linked with S2Cl2 for seven hours. Surprisingly, instead of continu-

ous Janus sheets, a totally new type of Janus particle was obtained, i.e. Janus ribbons (Figure 

5-6). Therein, exactly two Janus cylinders are connected along their major axis via a thin PB 

layer, forming a ribbon-type structure. The population is fascinatingly homogeneous with 

respect to the exclusive connection of only two cylinders. Individual Janus cylinders are 

nearly absent and trimeric cylinders do not exist. Additionally, the ends of both connected 

cylinders terminate at similar distance, indicating that the bands extend throughout the 

complete domain of the microsphase-segregated morphology and that sonication chops 

fully extended Janus ribbons into shorter pieces.  

Unlike in the case of Janus sheets, where a complete phase transition from an lc- to an ul-

morphology takes place, a different phase transition occurs during the formation of the Ja-

nus ribbons. A connecting PB layer is formed only in every second interspace of the original 

PB cylinders. Therefore, we suggest that the precise PB layer formation might be influenced 

by a wave function-like instability occurring during the structure formation in the stirred 

emulsion. Such hydrodynamic instabilities might be assisted by the shear forces caused by 

the steady stirring of the emulsion. For cylindrical particles like polymer threads sinusoidal 

distortions, which lead to a break-up of the particles into spheres, are also known to be 

caused by Rayleigh-Plateau instabilities.164  
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Figure 5-6. TEM images of dried Janus ribbons (a, b) including a scheme of one Janus ribbon (in-

set in b) and cryo-TEM images in vitrified toluene (c, d) with analysis of the cross section indica-

ted in micrograph (d).  

 

Further investigation of the synthesis pathway showed that a sufficient swelling time is nec-

essary for a complete phase transition. After only seven hours of swelling and subsequent 

cross-linking TEM micrographs indicate the development of only few Janus ribbons whereas 

mainly Janus cylinders are present (Figure 5-7). 
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Figure 5-7. TEM micrographs of Janus cylinders transforming into Janus tapes. Sample obtained 

after seven hours of swelling in acetonitrile/decane and cross-linking with S2Cl2.  

 

This observation together with the TEM images of tSBT (Figure 4-2) which show an lc-

morphology supports the above described pathway and opposes the possibility that the 

Janus ribbons originate from an initially formed undulated lamellar morphology which is 

then broken in every second interspace. Additionally, the formation of ribbons in acetoni-

trile/decane emulsion, in contrast to sheet formation in pure acetonitrile (stirred and un-

stirred), illustrates the strong influence of the swelling agent and the hydrodynamic forces. 

Strikingly, despite the challenging conditions, the Janus ribbon synthesis proved to be highly 

reproducible, thus corresponding to a remarkably defined and robust pathway for the phase 

transition. This points to the fundamentally important discovery of a defined intermediate 

phase during the phase transition from a lamella-cylinder to an undulated-lamella morphol-

ogy. 

To gain further insight into the structure of the Janus ribbons and their behavior in solution 

they were also investigated by cryogenic transmission electron microscopy (cryo-TEM) in 

toluene solution. Figure 5-6c and d show micrographs taken of a sample of Janus ribbons in 

toluene and a cross section analysis for one ribbon. The gray scale analysis visualizes the 

structure of the PB layer of the Janus ribbons with two limiting cylinders at the boundaries 

(darker in the image, lower gray value) connected by a thinner layer of PB (lighter in the 

image). It indicates a diameter of 12 to 15 nm for the cylinders and 36 nm for the interspace. 

Due to swelling and lower contrast in cryo-TEM, the dimensions of the cylindrical parts at 

the lateral boundaries of the ribbon can be underestimated. In comparison, lateral cylinders 

of the ribbons in TEM of a dried sample (Figure 5-6a and b) are 24 ± 7 nm and their inter-

spaces 37 ± 9 nm. These ribbon dimensions are similar to the dimensions of the Janus sheets 
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in TEM of a dried sample (cylinders ≈ 23 nm, interspaces ≈ 31 nm). These were also swollen 

and treated with S2Cl2, thus illustrating that both structures, ribbons and sheets, originate 

from the same lc-morphology. Consequently, the higher radius of the cylinders in the final 

ribbons compared to the bulk phase and the radically cross-linked Janus cylinders is due to 

the incorporated S2Cl2 similar to the case of Janus sheets. The different structure of the two 

2-D Janus objects cylinders and ribbons is also visible in SEM images (Figure 5-8). While the 

Janus cylinder itself appears lightly colored with dark edges, the ribbons exhibit white edges 

caused by the Janus cylinders in these lateral positions. 

 

  

Figure 5-8. SEM micropgraphs of a Janus cylinder (a) and a Janus ribbon (b). 

 

As Janus sheets (with all original cylinders connected) result after swelling in pure acetoni-

trile and the Janus ribbons develop in a mixture of acetonitrile (A) and decane (D) in the 

ratio A/D = 1/1, we wondered whether it is possible to influence the number of merging 

cylinders by increasing the acetonitrile content. We followed the same procedure as for Ja-

nus ribbon synthesis with solvent ratios of A/D = 6/4, A/D = 7/3 and A/D = 9/1. However, 

in all cases the resulting particles more or less resembled sheet-like structures (Figure 5-9). 

For A/D = 6/4, neither real continuous sheets nor Janus ribbons were present in the sample, 

instead the increase in acetonitrile amplified the swelling of PB in a way that resulted in 

holey sheet structures. For A/D = 7/3 and A/D = 9/1 also such holey sheets albeit with less 

holes are present while also continuous sheets are found (not shown in Figure 5-9). Unsur-

prisingly, with the portion of acetonitrile increasing from 7 to 9, also the amount of con-

tinous sheets increases. 
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Figure 5-9. Particles from tSBT films swollen in A/D emulsions of the ratios 6/4 (a), 7/3 (b) and 

9/1 (c) followed by cross-linking with S2Cl2. 

 

The susceptibility of the lamella-cylinder equilibrium bulk morphology to phase transitions 

also prompted us to explore whether suitable solvent casting could be used to obtain the 

lamella-sphere (ls) morphology suitable for the fabrication of Janus spheres. Indeed, it 

turned out that tert-butanol, a good solvent for both end blocks, PtS and PtBMA, and a non-

solvent for PB, leads to the development of spherical PB domains at the interface of an over-

all lamellar structure. Obviously, the strong ability to swell the end blocks of the tSBT 

triblock terpolymer, while being a non-solvent for the middle block, leads to the develop-

ment of the ls bulk structure, which is a defined non-equilibrium state that cannot relax into 

the lc phase due to the slow dynamics in the bulk state. The ls-morphology was present after 

film casting without and with TPO (Figure 5-10a and b). Further investigations revealed that 

micelles with a PB core and a mixed corona of the soluble blocks PtS and PtBMA do already 

form during the dissolution of tSBT in tert-butanol (Figure 5-10c). The outer blocks then 

undergo phase separation during the evaporation of tert-butanol and the final ls-

morphology is formed.  In a TEM sample stained with OsO4 the PB core of the observed mi-

celles is visible and has the same size as the PB domains in the later bulk morphology, 17±3 

nm. After photo-cross-linking, the PB core of the obtained Janus micelles in dioxane is 21±6 

nm. The size is slightly increased now because PB is no longer collapsed in a non-solvent, 

but swollen in dioxane. 
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Figure 5-10. TEM micrographs stained with OsO4 of tSBT bulk ls-morphologies without (a) and 

with TPO (30 wt%, b), tSBT micelles formed in tert-butanol (c) and tSBT Janus micelles after pho-

to-cross-linking and dissolution in dioxane (d). 

 

In summary, we were able to synthesize nanosized JPs with three different non-spherical 

topologies from one single tSBT triblock terpolymer, which are Janus cylinders, Janus rib-

bons and structured Janus discs, in addition to spherical Janus beads. This represents a sig-

nificant simplification of the production of different Janus architectures. We accomplished 

that by the careful adjustment of pre-treatment and cross-linking conditions of its bulk 

morphology. Photo-cross-linking without prior swelling led to Janus cylinders. This was 

expected because tSBT showed an lc-morphology after film-casting from chloroform. How-

ever, if the polymer film was swollen in acetonitrile prior to cross-linking with S2Cl2, the 

morphology changed to an undulated-lamella one in which the original cylinders still exist 
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in the form of thicker parts in the newly formed PB lamella. After cross-linking and soni-

cation, this morphology results in sheet-like JPs. Most surprising is the discovery of the nov-

el topology of Janus ribbons (with a flattened dimension compared to cylinders). They 

formed when the original polymer film was swollen in a stirred acetonitrile/decane emul-

sion. Exclusively two cylinders became connected by a newly developed PB-layer. This rib-

bon-like structure was then preserved by cold vulcanization.  

 

5.2 Hydrolysis and solution structure of Janus cylinders 

Apart from the versatility of the tSBT triblock terpolymer concerning the synthesis of differ-

ent Janus structures, it also features the interesting PtS block, which was chosen for the pos-

sibility of hydrolysis into pH-responsive PHS. The pKa of linear PHS is reported at approxi-

mately 10,129,165 and Janus particles with a pH-dependent water-soluble PHS side can be 

created. Furthermore, the hydrolysis of PtBMA results in poly(methacrylic acid) (PMAA) 

hemicylinders, which are well water-soluble at pH ≥ 4. Consequently, HSBT Janus particles 

made from tSBT are potentially water-soluble and pH-responsive which extends the range 

of self-assembly and enables applications in aqueous media. Additionally, the hydroxyl 

group allows further functionalization of the Janus particles. In the following we focus on 

the solution properties of the Janus cylinders. 

When we attempted to hydrolyze them by the standard protocol of refluxing in dioxane with 

HCl, a significant amount of material decomposed and stuck at the side of the reaction ves-

sel; probably due to the small batch volume (~ 5 mL). Therefore, we chose the reaction with 

trimethylsilyl iodide (TMSI) as alternative. This mild method can be used for esters and 

ethers and works already at room temperature or at slightly elevated temperatures.137,138 

First, the tert-butoxy group is converted to a silyl ester (PtBMA) or ether (PtS), respectively, 

by TMSI, then the actual hydrolysis follows through addition of water or methanol.  

Figure 5-11 presents the 1H-NMR spectra of Janus cylinders before and after reaction with 

TMSI at 60 °C, yet before the final hydrolysis took place. 
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Figure 5-11. 
1
H-NMR spectra illustrating the hydrolysis of Janus cylinders recorded in CDCl3:  

before hydrolysis (a) and after addition of TMSI and three hours at 60 °C (b).  

 

The spectra clearly show the substitution of the tert-butoxy group to a near quantitative 

degree, which then hydrolyze fully upon addition of aqueous methanol. Both peaks corre-

sponding to the tert-butyl groups are strongly diminished and only signals of the polymer 

backbone remain. A comparison of the silyl ester/ether signal f/f´ with the signals of the 

aromatic units results in a conversion of above 90 %. The very sharp peak at 1.36 ppm in 

the spectra (b) originates from residual water.  

To investigate the solution structure of these hydrolyzed Janus cylinders, cryo-TEM images 

in water (pH ≈ 10 and pH ≈ 13) in the presence of 100 mM CsCl were recorded. Cryo-TEM 

has the distinct advantage that the extent of staining with heavy ions depends on the degree 

of ionization of the polyelectrolyte brushes, their brush density and thus the overall tenden-

cy to confine counterions within the brush. This is the reason why poly(ethylene oxide) or 

other non-ionic water-soluble polymer coronas (of micelles or particles) can often not be 

visualized due to the unfavorable staining behavior and contrast, whereas strong polyelec-

trolyte brushes are rather easy to resolve using appropriate ionic additives. We herein ap-

plied this principle with the aim to visualize the biphasic character of fully water-soluble 
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Janus cylinders at appropriate pH values, where both corona sides are differently stained 

simply for their different degrees of ionization.   

Figure 5-12 displays images of the Janus cylinders at pH 10, where the PHS block only car-

ries a minor fraction of charges, in particular compared to the basically quantitatively 

deprotonated PMAA side. Various unimolecularly dispersed cylinders can be observed in 

which a corona is solely visibly on one side. Figure 5-12c and d display a further close up on 

one cylinder and the complementing cross-sectional gray-scale analysis. The Janus character 

of the cylinders is remarkably well visible.  At the lower side of the well-visible dark cylinder 

in Figure 5-12c, a corona part with condensed Cs+ counterions is evident, whereas no corona 

can be observed at the upper side. Given the large difference of the pKa values of PMAA and 

PHS, we can reasonably suggest that the visible corona consists of the completely deproto-

nated PMAA. Due to its high charge density at pH 10, a large amount of Cs+ counterions is 

condensed inside its corona. In contrast, PHS with its pKa around 10 is far less ionized, espe-

cially as it was shown that the pKa can increase for brush-like structures as compared to 

linear analogous. This behavior was found earlier for multi-arm star-shaped polyanions.166 

Thus, at pH 10, the fraction of deprotonated PHS units is small and consequently very little 

Cs+ ions can accumulate within the PHS corona. Therefore, it is not visible adjacent to the 

dark PB core and PMAA corona. It is also important to note that the calculated diameter of 

the dark cylinder only amounts to 23 ± 3 nm. This corresponds to the PB cylinder alone and 

further indicates that the PHS part is dissolved and not part of the dark cylindrical core. 
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Figure 5-12. Cryo-TEM images of hydrolyzed Janus cylinders at pH ≈ 10 (a,b,c) with gray-scale 

analysis (d) of the cross section indicated by blue line in the micrograph (c). Dotted line in micro-

graph (c) visualizes the boundary of the PMAA corona.  

 

The exclusive visibility of the PMAA corona at one side of the cylinder represents one of the 

most convincing real-space proofs of the biphasic character of water-soluble polymeric Ja-

nus nanoparticles. It furthermore establishes that the phase segregation is fully retained 

during the transfer of the cross-linked bulk structure into solution and does not vanish due 

to a potential entropically favored chain mixing of the two sets of brush arms on the cross-

linked PB cylinder. The PMAA corona can be found at the cylinders in all four directions 

with respect to the image (Figure 5-12, blue arrows). This confirms the absence of any arti-

facts of the imaging process. Cylinders that seem to have a corona on both sides are simply 

imaged from the top (red arrows), because of the rotational freedom of the cylinders within 

the thin water film.  

The situation looks different when studying cryo-TEM images of hydrolyzed Janus cylinders 

at pH 13 (recorded in the presence of 100 mM CsCl). Figure 5-13 shows two typical images. 
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As anticipated, in contrast to the cylinders shown above, every cylinder displays a corona on 

both sides, fully surrounding the central PB cylinder. This is due to the fact that now not 

only PMAA, but also PHS is deprotonated to a high degree and therefore binds large 

amounts of Cs+ ions. The average diameter of the cylindrical cores is 22 ± 2 nm and there-

fore the same as for pH 10. This underlines the fact that the PHS corona is soluble for both 

pH values, it just remains invisible at pH 10 because of insufficient counterion capture at 

lower ionization. 

 

   

Figure 5-13. Cryo-TEM images of hydrolyzed Janus cylinders at pH 13. 

 

5.3 Conclusion 

We have demonstrated how the careful choice of solvent and cross-linking conditions can be 

used to manipulate triblock terpolymer bulk structures in a way that allows synthesizing 

three different types of non-spherical Janus particles as well as spherical ones from one sin-

gle triblock terpolymer. We were able to obtain Janus sheets, Janus cylinders and an inter-

mediate new structure, Janus ribbons. The successful preparation of all these structures 

relies on a thorough understanding of how to manipulate the bulk morphologies into equi-

librium and non-equilibrium structures. The intermediate fraction of PB of 16 wt% facili-

tates transformations into spherical and lamellar domains that would usually be only stable 

at much smaller or larger weight fractions (at moderate interfacial tension/incompatibility 

between A and C), respectively. Selective solvent casting proved useful to access the non-

equilibrium ls-morphology and generate Janus spheres. On the other hand, the surprising 
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observation of Janus ribbons points to the fundamentally important discovery of a defined 

intermediate phase during the phase transition from the lamella-cylinder to the undulated-

lamella morphology. Overall, this beneficial and simple way to tune bulk morphologies dras-

tically simplifies the access routes towards asymmetric soft Janus particles with nanometer 

dimensions on the multigram scale. We expect that the considerations herein can be applied 

to other terpolymer systems and allow to generate Janus particles of higher functionality 

from a single triblock terpolymer with moderated efforts.  We also introduced the use of 

poly(tert-butoxystyrene) instead of polystyrene in the synthesis, which can be hydrolyzed 

to polyhydroxystyrene, featuring stimuli-responsiveness and water-solubility and opening 

possibilities for the modification of the PHS hydroxy group towards tailored functionalities 

in the future. The water-solubility and stimuli-responsiveness expand possible fields of ap-

plication for such Janus particles to aqueous media. 
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6 Solution Structures of tSBD and tSBT 

6.1 Stimuli-responsive micelles from tSBD 

Poly(2-(dimethylamino)ethyl methacrylate) is a water-soluble polymer which is thermo-

responsive due to its balance of hydrophilicity and hydrophobicity and pH-responsive be-

cause of its tertiary amino-group. Above a certain transition temperature hydrated DMAE-

MA segments undergo dehydration which leads to precipitation of the polymer. This critical 

point of phase separation is called cloud point and is dependent on the polymer concentra-

tion. At a critical concentration we find the cloud point with the lowest temperature. This 

temperature is defined as lower critical solution temperature (LCST). As for pH, with a 

higher amount of protonated tertiary amino groups, the polymer hydrophilicity as well as 

the electrostatical repulsion increases and consequently the cloud point increases with de-

creasing pH value.167,168  

When tS316B343D267, completely dissolved in dioxane, is dialyzed against water, the PtS and 

PB block become insoluble and micelles with a core of PtS and PB held in solution by a coro-

na of PDMAEMA were expected. Because of PDMAEMA´s described properties, the micelles 

were supposed to be pH- and thermo-responsive.  

After complete dissolution of tSBD in dioxane, a solvent for all three blocks, dialysis against 

water with pH 5 took place. As expected this resulted in the formation of micelles (Figure 

6-1) which were observed with TEM and cryo-TEM. The size of the visible core is 26 ± 3 nm 

in TEM micrographs and 27 ± 4 nm in the cryo-TEM. In both cases the core of collapsed PtS 

and PB is visible while PDMAEMA does not contribute to the contrast. For the core, phase 

separation of PtS and PB was exspected as already observed in tSBT and tSBD bulk struc-

tures (see chapter 4). Due to the block sequence a core of PtS should be surrounded by a PB 

shell. However, the TEM micrographs only show a uniform core, probably due to the low 

thickness of the PB shell. To gain information about the full hydrodynamic radius of the mi-

celles, it was measured with DLS and was 110 nm, clearly showing the large corona of well-

protonated PDMAEMA (around 95 nm) (Figure 6-2).  
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Figure 6-1. TEM (a) and cryo-TEM (b) micrographs of tSBD micelles at pH 5. The TEM micrograph 

is stained with OsO4 (PB appears black). 

 

10 100 1000

rh intensity weightes [nm]

 pH 5

 pH 10

 

Figure 6-2. DLS CONTIN plot of tSBD micelles at pH 5 (black) and pH 10 (red) showing the hydro-

dynamic radius rh. 

 

For pH 10 the particle sizes in TEM and cryo-TEM are 28 ± 3 and 34 ± 3 nm (Figure 6-3). In 

DLS measurements a hydrodynamic radius of only 50 nm was observed. The differences in 

size of core and corona are due to the different degree of protonation. While at pH 5 

PDMAEMA is partially protonated, it is deprotonated at pH 10. Therefore, no more repulsive 

interactions due to charged polymer chains exist in the corona and between tSBD molecules. 

Consequently, the aggregation number of the micelles rises which causes an increase in core 

size. At the same time the corona size decreases.169 It is now only around 35 nm, only about 
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37 % of the original 95 nm at pH 5. For the TEM sample this leads to some aggregation of 

the micelles during the drying process of the sample preparation while the cryo-TEM micro-

graph shows that they are still existent as single particles in solution. 

 

  

Figure 6-3. TEM (a) and cryo-TEM (b) micrographs of tSBD micelles at pH 10. TEM micrograph is 

stained with OsO4 (PB appears black). 

 

To detect the cloud points of the tSBD micelles, we measured DLS temperature ramps for 

micelles in buffer solutions of pH 8, 9 and 10. The results are shown  in Figure 6-4. Here, we 

can observe the same decrease of the Tcl with increasing pH as reported for linear and star-

shaped PDMAEMA by Plamper et al.158 
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Figure 6-4. pH dependent cloud points for linear and star-shaped PDMAEMA , (!) PDMAEMA108, 

(7777) (PDMAEMA100)3.1, (ξ) (PDMAEMA170)18 and for (−)tSBD micelles. Adapted with permission 

from Ref [158]. Copyright 2007 American Chemical Society. 

 

6.2 Multicompartment micelles from tSBD 

Apart from micelle formation by a one-step dialysis procedure, also multicompartment-core 

micelles could be obtained from tSBD. This was achieved by directed self-assembly by step-

wise reduction of the degree of freedom of the multicompartment micelle (MCM) formation 

of triblock terpolymers.59 In this two-step process first pre-assembled subunits are formed 

by dissolution of the terpolymer in a non-solvent for the middle-block or dialysis against 

such a solvent, followed by dialysis against a non-solvent for both the middle block and one 

of the outer blocks to obtain the final multicompartment micelles. Accordingly, tSBD was 

first dissolved in dimethylacetamide (DMAc), a non-solvent for PB, then the solution was 

dialyzed against untreated Milli-Q water (pH 5), so that PtS collapsed as well while the wa-

ter-soluble PDMAEMA built the corona. The volume ratio of  the A and B block, VPtS/VPB is 

2.62 which should result in spherical MCMs like in all cases where VA/VB > 1.59 The large 

value further suggests an MCM structure with more than three subunits, so-called “football” 

MCMs (Figure 1-8).60 Indeed, Figure 6-5 shows the obtained MCMs with their football-like 

shape. Dialysis against pH 3 and 4 instead of 5 resulted in the same structures. 
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Figure 6-5. MCMs of tSBD at pH 5, stained with OsO4; visible is the multicompartment core of 

PtS and PB (darker areas indicating PB). 

 

Gröschel et al. were succesful in the self-assembly of different MCMs (inverse “hamburger”, 

“double-burger”, linear MCMs) from the same poly(tert-butyl methacrylate)-block-poly(2-

(cinnamoyloxy)ethyl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate) 

(TCD) by varying the pH of the solution against which the final dialysis was performed.59 

Like in tSBD, PDMAEMA is the corona-block for these different MCMs. Due to its pKa at 

6.2,158 it is fully protonated at pH = 3, partially protonated at pH = 6 and sparsely charged at 

pH = 8; consequently, the size of the PDMAEMA corona decreases in this order. To keep the 

micelles solubilized, their assembly changes from inverse “hamburger” to “double-burger” 

to linear MCMs as this way the surface area that has to be covered by the contracting corona 

is decreased.  

We investigated whether the decrease in size of the PDMAEMA corona also leads to different 

MCM formation in the case of tSBD MCMs. For this purpose MCMs were examined with TEM 

and cryo-TEM after the dialysis against pH 6 and pH 8 (Figure 6-6 and Figure 6-7). In con-

trast to the TEM micrographs of MCMs at pH 5 (Figure 6-5), at pH 6 merged MCMs are visi-

ble albeit no distinctive pattern is recognizable. At pH 8 similar objects are visible in the 

TEM micrograph. However, when investigated with cryo-TEM, only single (“football”) MCMs 

are observed. Consequently, the size of the corona decreases with increasing pH which 

causes increased aggregation of the individual MCMs during the drying process in the sam-

ple preparation for conventional TEM; but it does not lead to a real merging of the MCMs 
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and formation of MCMs shaped differently from the original “football” micelles. Only in some 

isolated spots, large linear MCMs are visible in the TEM samples at pH 8 (Figure 6-7a). 

 

  

Figure 6-6. TEM (a) and cryo-TEM (b) micrographs of tSBD MCMs at pH 6. TEM micrograph is 

stained with OsO4 (PB appears black). 

 

  

Figure 6-7. TEM (a) and cryo-TEM (b) micrographs of tSBD MCMs at pH 8. TEM micrograph is 

stained with OsO4 (PB appears black). 
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The next step was the cross-linking of the tSBD MCMs. Cross-linking of the B compartments 

in MCMs fixates the phase segregation of blocks A, B and C as present in the MCMs and sub-

sequent dissolution in a good solvent for all three blocks results in Janus particles (Figure 

6-8).60 

 

Figure 6-8. Self-assembly of ABC triblock terpolymers into multicompartment micelles and sub-

sequent disassembly into Janus particles. Reprinted with permission from Ref [60]. Copyright 

2012 American Chemical Society. 

 

In the most common case where MCMs with a PB compartment are present in organic sol-

vents, the photo-cross-linker Lucirin® TPO can be added to the solution and cross-linking of 

the PB domains takes place under UV light. However, the tSBD MCMs could only be obtained 

in aqueous solution and Lucirin® TPO is therefore not soluble. On the other hand, a water-

soluble UV-cross-linker has no affinity to the lipophylic PB domains so that no sufficient 

cross-linking of that phase can take place.  Therefore, we chose to first dissolve tSBD and the 

cross-linking agent in THF or acetone, then slowly add DMAc to induce the collapse of PB, at 

the same time incorporating the lipophilic cross-linker, followed by the usual dialysis step 

against water for the MCM assembly. Apart from TPO (in different ratios from equimolar to 

excess), also AIBN and AIBN/TRIS (trimethylolpropane mercaptopropionate, should lead to 

a strong and quantitative cross-linking as it acts as chain transfer agent and is able to react 

with 1,4-PB in a thiol-ene reaction97) were used for cross-linking. However, none of the 

mentioned approaches resulted in a successful cross-linking process. Only hardly cross-

linked and ill-defined structures were the result. 
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6.3 Multicompartment micelles from tSBT  

For the preparation of MCMs from tSBT by directed self-assembly, the terpolymer first had 

to be dissolved in DMAc to cause the collapse of PB. The subunits then formed MCMs when 

the DMAc solution was dialyzed against ethanol (EtOH), in which the PtS collapses while 

PtBMA remains in solution. Due to the volume ratio of VPtS/VPB = 2.51 spherical MCMs were 

expected. Although only having a slightly smaller VPtS/VPB ratio than tSBD (VPtS/VPB = 2.62), 

here, “clover” MCMs with three subunits instead of “football” micelles assembled. Only some 

isolated inverse “double burgers” could be observed (Figure 6-9). 

 

  

Figure 6-9. Multicompartment micelles of tSBT obtained after dissolution in DMAc and subse-

quent dialysis against EtOH. TEM micrographs are stained with OsO4 (PB appears black, PtS 

gray). 

 

6.4 Janus spheres from tSBT multicompartment micelles 

In contrast to the tSBD MCMs, tSBT MCMs exist in an organic solvent, EtOH in this case. Con-

sequently, for cross-linking of the PB domain to prepare Janus particles as depicted in Fig-

ure 6-8, the photo-cross-linker Lucirin® TPO could simply be added to the MCM solution. 

The cross-linked MCMs were then dialyzed against dioxane, a solvent for all three blocks, to 

obtain dissolved Janus spheres. The Janus particles are well visible in the TEM after staining 

with OsO4 (Figure 6-10). The thus visible PB cores have a diameter of 23 ± 2 nm compared 

to PB domains of 21 ± 3 nm in the prior MCMs. DLS measurements of the Janus particles in 
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dioxane result in a hydrodynamic radius rh of 42 ± 0, consequently a diameter of about 80 

nm. Accordingly, the obtained Janus spheres have a core of around 20 nm in diameter and a 

corona that is about 30 nm thick. 

 

                  

Figure 6-10. TEM micrograph (stained with OsO4, PB appears black) and scheme of Janus mi-

celles from tSBT in dioxane and DLS plots in dioxane (black) and THF (red). 

 

In contrast to the TEM micrographs in dioxane where we can observe single JPs by their 

visible PB core, the JPs have a tendency to aggregate in THF (Figure 6-11). The slightly 

worse soluble PtS aggregates and this way is now visible in the micrographs due to the 

higher local concentration. The stained PB cores are 22 ± 2 nm in size and confirm that in 

dioxane only the core is visible. Although in some places even raspberry-like particles are 

present (Figure 6-11a), DLS measurements prove that the aggregation solely takes place 

during the drying process on the TEM grid. DLS measurements show a hydrodynamic radius 

of 45 ± 1 nm (Figure 6-10). 
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Figure 6-11. TEM micrographs of tSBT JPs in THF stained with OsO4 (PB appears black, PtS gray). 

 

The obtained tSBT Janus spheres were then hydrolyzed with HCl and afterwards dialyzed 

against aqueous solutions of pH 5 or 14. At pH 5, the polyhydroxystyrene that resulted from 

hydrolysis of PtS is fully protonated and therefore insoluble in contrast to the 

poly(methacrylic acid) that resulted from PtBMA, which is soluble under these conditions. 

Consequently, we expect aggregation of the JPs due to the collapsed PHS coronas. Indeed, 

apart from large areas where the JPs aggregated in large numbers probably during the dry-

ing process, JPs aggregated into “clovers” as well as “hamburgers” could be observed (Figure 

6-12). 
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Figure 6-12. TEM micrographs of hydrolyzed Janus spheres in pH 5 showing large aggregates (a) 

and oligomer formation (b). TEM micrographs are stained with OsO4 (PB appears black). 

 

In pH 14, both PHS and PMAA should be soluble and single JPs present. However, the TEM 

micrographs do show only largely aggregated JPs (Figure 6-13). In contrast to pH 5 where a 

tendency to form burgers and clovers was noticeable, a specific pattern is not noticeable 

here. 

 

  

Figure 6-13. TEM micrographs of hydrolyzed Janus spheres in pH 14 showing differently sized 

aggregates. TEM micrographs are stained with OsO4 (PB appears black). 
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As consequence, the sample was also measured under cryo-TEM conditions. Here, together 

with indeed a small number of single JPs, again trimeric “clovers” and dimeric “hamburgers” 

were observed. This could be attributed to the slightly better solubility of PMAA. Besides, 

aggregation even in good solvents has also been reported for SBM Janus micelles96 and SBT 

Janus discs.103 

 

  

Figure 6-14. Cryo-TEM micrographs of hydrolyzed Janus spheres in pH 14 showing “clover” and 

“hamburger” formation as well as isolated single JPs. 

 

6.5 Conclusion 

By simple dialysis against water (pH 5), micelles with a PtS/PB core and PDMAEMA corona 

were obtained from dissolved tSBD. Their behavior is characterized by the pH- and temper-

ature-responsive properties of PDMAEMA. Consequently, an increase in pH leads to a con-

traction of the corona due to the less protonated PDMAEMA. Further, the micelles showed 

LCST behavior. The observed cloud points were of the same magnitude and followed the 

same decrease as reported for linear and star-shaped PDMAEMA.158 With the novel method 

of directed self-assembly59 it was possible to also create football-like MCMs in water from 

tSBD. We investigated whether the pH-responsive PDMAEMA corona results in different 

MCM formation depending on the pH like it was observed for TCD.59 However, this was not 

the case and football MCMs were observed for all pH values. In principle, the cross-linking of 

the PB domains present in the “football” MCMs results in Janus spheres. However, the aque-

ous solution prevented the use of the hydrophobic photo-initiator Lucirin® TPO and no oth-
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er sufficient cross-linking method was found. The MCMs of tSBT are clover-shaped and exist 

in EtOH. Here, photo-cross-linking with TPO was successfully used for the preparation of 

Janus spheres which were investigated with TEM and DLS. They were hydrolyzed to JPs 

consisting of a PHS and a PMAA hemisphere. In pH 5 the particles showed the expected ag-

gregation due to the insoluble PHS part of the corona. “Clover” and “hamburger” MCMs were 

observed. Although at pH 14 solubility of both hemispheres and consequently single JPs 

were anticipated, cryo-TEM investigations showed only isolated single particles while the 

main amount of particles was assembled in trimeric “clovers” and dimeric “hamburgers” 

possibly due to the slightly better solubility of PMAA. Besides, aggregation even in good sol-

vents has also been reported for SBM Janus micelles96 and SBT Janus discs.103 
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