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S U M M A R Y  

 

Conventional polymer nanofibers have gained tremendous interest in the last years in 

the fields of catalysis as templates, in medicine as tissue engineering, in functional 

textiles as protective suits, and especially in air filtration as filter media. Generally, 

nanofibers are prepared by top-down approaches. However, these processes feature 

several disadvantages. As consequence cost-effective alternative strategies are 

required. One strategy to this problem is the bottom-up approach – the self-assembly 

of small molecules. Therefore, this thesis covers different topics with respect to the 

preparation, structure-property relations, and application of supramolecular 

nanofibers: 

To investigate the impact of the molecular structure on the stacking behavior in the 

self-assembly process, a set of pyrene-containing model compounds was synthesized. 

Here, the focus was set on the influences of sterical demanding side groups as well as 

hydrogen bonding motifs on the π-stacking of the pyrene units. These influences were, 

besides others, detected by excimer formation in dilute solution, in the aggregated 

state and in solid films. It was demonstrated that π-stacking of the pyrene units is the 

driving force of the self-assembly process in solution in this system. However, 

hydrogen bonds are required to obtain well-defined supramolecular nanofibers. The 

influence of the hydrogen bonding motif and the sterical hindrance on the pyrene 

stacking becomes more and more significant the closer the molecules are forced 

together. Hence, the columnar stacking is increasingly disturbed in solid films 

compared to solution. 

The class of 1,3,5-benzenetrisamides is one of the simplest and most-versatile motifs in 

supramolecular chemistry. Within this thesis, two different self-assembly processing 

pathways of benzenetrisamides from solution; in particular self-assembly upon cooling 

at constant concentration and self-assembly during solvent evaporation at constant 

temperature were explored. One factor that determines the actual processing 

pathway is the solubility of the benzenetrisamide molecule. Exclusive self-assembly 

upon cooling takes place when the benzenetrisamide is almost completely insoluble in 

the used solvent at room temperature. The prerequisite for self-assembly during 

solvent evaporation is certain solubility of the BTAs at room temperature. In addition, 

these self-assembly pathways were compared with respect to control the 

supramolecular nanofiber morphology in view of homogeneity, fiber diameter, and 

fiber diameter distribution. Thereby, influences of external parameters such as 

temperature, solvent, and concentration were investigated in detail. 
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Especially in air filtration industry nanofibers are an important tool because of their 

beneficial effects due to their high surface-to-volume ratio. In industry, electrospinning 

is the standard technique to post-modify nonwoven filters with conventional polymer 

nanofibers on the filter surface. However, this process is limited to the surface of the 

scaffold. In this thesis, the principle utilization of supramolecular nanofibers in air 

filtration is demonstrated for the first time. Here, a solution-based immersion process 

was developed, which allows a successful in-situ formation of supramolecular 

nanofibers in nonwoven scaffolds. This results in a stable microfiber-nanofiber 

composite. The main advantage of this process is the effective incorporation of 

nanofibers in the volume of the nonwoven fabrics. For supramolecular systems, it was 

claimed that they are too fragile to be competitive with conventional polymers. But 

the herein prepared supramolecular nanofibers possess enough stability even upon 

applied airstreams of 3.0 m/s. This stability is by far superior than it is required at 

standard vacuum cleaners which possess flow velocities of 0.25-0.40 m/s at the filter 

element. First filtration tests revealed promising filtration efficiencies. 

Building on these promising results a comprehensive study on structure-property 

relations at the preparation of microfiber-nanofiber composites in view of optimized 

filtration efficiencies was investigated. Depending on the selected benzenetrisamide, 

solvent, and concentration of the immersion solution, the filtration efficiency of the 

filters can be adjusted. By varying the thickness of the filters by means of double- and 

triple-layer filters, for supramolecular modified filters, excellent filtration efficiencies 

over 90 % were obtained for aerosol particles with the size of 0.2 µm. 

 

To summarize, different issues concerning supramolecular nanofibers were pursued in 

this thesis spanning from fundamental investigations to utilize the self-assembly 

process towards forward-looking applications in air filtration. 
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Z U S A M M E N F A S S U N G  

 

In den letzten Jahren haben konventionelle, polymere Nanofasern auf den Gebieten 

der Katalyse (als Template), der Medizin (in der Gewebetechnologie), der 

Funktionstextilien (Schutzanzüge) und insbesondere in der Luftfiltration als 

Filtermedium enormes Interesse erlangt. Im Allgemeinen werden polymere 

Nanofasern mittels Top-Down Prozessen hergestellt, allerdings weisen diese 

Methoden mehrere Nachteile auf. Daher sind kostengünstige Alternativen zwingend 

erforderlich. Ein Lösungsansatz ist die Bottom-Up Strategie – die Selbstorganisation 

von kleinen Molekülen. Aus diesen Gründen beschäftigt sich die vorliegende Arbeit mit 

verschiedenen Themengebieten hinsichtlich der Präparation, Struktur-

Eigenschaftsbeziehungen und der Anwendung von supramolekularen Nanofasern: 

Um den Einfluss der molekularen Struktur auf das Aggregationsverhalten zu 

untersuchen, wurden diverse Pyren-basierte Modellsubstanzen synthetisiert. Die 

Einflüsse von sterisch anspruchsvollen Substituenten und Wasserstoffbrücken-

bildenden Einheiten auf die π-π Wechselwirkungen der Pyreneinheiten wurden unter 

anderem durch Excimerbildung in Lösung, im aggregierten Zustand und in Filmen 

detektiert. Es wurde gezeigt, dass die Triebkraft der supramolekularen Aggregation 

dieses Systems in Lösung die π-π Wechselwirkung zwischen den Pyreneinheiten ist. 

Dennoch sind für die Ausbildung wohldefinierter Nanofasern Wasserstoff-

brückenbindungen von entscheidender Bedeutung. Je näher die Moleküle 

zusammenrücken, desto signifikanter werden die Einflüsse von sterisch 

anspruchsvollen Substituenten und Wasserstoffbrücken-bildenden Einheiten. Daher 

wird im Vergleich zur Lösung die kolumnare Aggregation der Pyrene in Filmen stärker 

gestört. 

Die Substanzklasse der 1,3,5-Benzoltrisamide ist eine der einfachsten und vielseitigsten 

Motive in der supramolekularen Chemie. In dieser Arbeit wurden zwei 

unterschiedliche Selbstorganisations-Prozesswege von Benzoltrisamiden untersucht. 

Ein Prozessweg umfasst die Selbstorganisation durch Abkühlen bei konstanter 

Konzentration. Im anderen Prozess wurde die Selbstorganisation durch Verdampfen 

des Lösungsmittels bei gleichbleibender Temperatur untersucht. Der tatsächlich 

ablaufende Prozess bei der Selbstorganisation aus Lösung wird unter anderem durch 

die Löslichkeit der Benzoltrisamidmoleküle bestimmt. Selbstorganisation durch 

Abkühlen findet statt, wenn die Benzoltrisamide bei Raumtemperatur praktisch 

unlöslich im verwendeten Lösungsmittel sind. Im Gegensatz dazu wird bei der 

Selbstorganisation durch Verdampfen des Lösungsmittels eine gewisse Löslichkeit der 
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Benzoltrisamide bei Raumtemperatur benötigt. Zusätzlich wurde die resultierende 

Morphologie der supramolekularen Aggregate im Hinblick auf deren Homogenität, 

Faserdurchmesser und deren Verteilung verglichen. Einflüsse der externen Parameter 

Temperatur, Lösungsmittel und Konzentration auf die supramolekulare Morphologie 

wurden detailliert untersucht. 

Besonders in der Luftfiltration sind Nanofasern, durch ihr großes Oberflächen-zu-

Volumen Verhältnis, ein essentielles Instrument, um die Qualität von Luftfiltern zu 

verbessern. In der Industrie wird Elektrospinning dazu benutzt, bestehende Vliese auf 

der Filteroberfläche mit konventionellen Polymernanofasern nachträglich zu 

modifizieren. Jedoch ist dieser Prozess auf die Oberfläche des Vlieses limitiert. In der 

vorliegenden Arbeit wird erstmals die Verwendung von supramolekularen Nanofasern 

in der Luftfiltration aufgezeigt. Hierbei wurde ein lösungsbasierter Tauchprozess zur 

Herstellung von stabilen Mikrofaser-Nanofaser-Kompositfiltern entwickelt. Dieser 

Prozess ermöglicht eine erfolgreiche in-situ Ausbildung supramolekularer Nanofasern 

innerhalb der Vliese. Der wesentliche Vorteil darin besteht in der effektiven 

Ausnutzung des gesamten Vlies-Volumens. Es wurde oft behauptet, dass 

supramolekulare Systeme zu instabil sind, um mit konventionellen Polymeren 

mithalten zu können. Jedoch besitzen die, in der vorliegenden Arbeit hergestellten 

supramolekularen Nanofasern hinreichende Beständigkeit. Ihre Stabilität in 

Luftströmen bis hin zu 3 m/s Anströmgeschwindigkeit ist bei weitem größer, als es zum 

Beispiel in handelsüblichen Staubsaugern erforderlich ist (0.25 - 0.40 m/s). Zudem 

zeigen erste Filtertests vielversprechende Abscheidegrade. 

Aufbauend auf diesen erfolgsversprechenden Ergebnissen werden an den 

hergestellten Mikrofaser-Nanofaser Kompositfiltern zahlreiche Struktur-Eigenschafts-

beziehungen, im Hinblick auf eine optimierte Filtereffizienz untersucht. Die Qualität 

der Filter kann durch die Wahl des Benztoltrisamids, des Lösungsmittels und der 

Konzentration der Tauchlösung eingestellt werden. Durch die Variation der Filterdicke 

mittels Verwendung von zwei- bzw. dreilagigen Filtern, wurden (für supramolekulare 

Systeme) exzellente Abscheidegrade erhalten, die bei der Filtration von 0.2 µm großen 

Aerosolpartikeln sogar 90 % übersteigen. 

 

Zusammenfassend dargestellt, werden in dieser Arbeit verschiedene Themengebiete 

rund um die supramolekulare Nanofaser vorgestellt. Diese reichen von fundamentalen 

Untersuchungen des Selbstorganisationsprozesses bis hin zu zukunftsweisenden 

Anwendungen in der Luftfiltration. 



I n t r o d u c t i o n  | 5 

 

 

 

1 .  I N T R O D U C T I O N  

 

In industrial applications, the progressive miniaturization of devices which is 

omnipresent in all kinds of industrial sectors in the last decades is not surprising. One 

of the most conspicuous examples of that trend is the computer industry with its chip-

manufacturing. Moreover, miniaturization is expected to pave the way towards more 

and more efficient devices and nano-materials with novel properties. As consequence, 

the field of nanoscience and technology is well established.[1]  

 

 

1 . 1  M i c r o -  a n d  n a n o f i b e r s  

 

Among others the field of nanoscience and technology also deals with fibers featuring 

diameters in the micro- and nanometer range. The main focus is set on the control of 

shape and dimensionality. In order to fabricate devices or structures in the nanometer 

range, two opposite concepts can be utilized – a top-down approach or a bottom-up 

approach. In Figure 1 both approaches are illustrated in the context of micro- and 

nanofibers. 

 

 
 

Figure 1. Schematic representation of nano- and microfiber preparation by top-down approaches as 
well as a bottom-up approach. 

 

Common top-down approaches utilize fiber spinning techniques of synthetic polymers 

in order to prepare micro- and nanofibers.[2] In filtration industry, for example, those 

fibers are needed in the production of nonwoven fabrics. Among the spinning 
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techniques, melt-spinning,[3] melt-blowing,[4,5] and electrospinning
[6–8] feature the most 

prominent processes. However, the limits of these top-down approaches in view of 

physical capability are almost reached. While conventional melt-spinning is not able to 

produce directly nanofibers, electrospinning is a relative slow process and cost-

intensive. Due to these reasons, in industry, melt-blowing is currently the most 

efficient process to achieve small fiber diameters. 

For classical melt-spinning the minimal achievable fiber diameter is about 10 µm.[9] 

This process, is illustrated in Figure 2. Here, the molten polymer is extruded, forced 

into a die and drawn down by aerodynamic forces. The polymer melt can be stretched 

to fibers as long as the temperature is above the glass transition temperature or 

crystallization occurs. In industrial machines multifilament dies are used to prepare 

many fibers simultaneously. In the case of nonwoven preparation, these fibers 

subsequently become entangled to each other by an airstream and are processed 

further by bonding processes.[10]  

In comparison, commercial polymer fibers produced with the melt-blowing technique 

usually exhibit fiber diameters of 2 µm to 1 µm.[11] However, research groups reported 

from fiber diameters in the nanometer range under specific conditions.[5,12] In this 

process the molten polymer is also extruded and forced into die assemblies. Directly 

after the die, a hot airstream (illustrated as primary airstream in Figure 2) converges 

with the effluent polymer melt to stretch it to thin fibers. To intensify this process a 

secondary airstream is used after the die. The main difference between melt-spinning 

and melt-blowing is the setup of the airstreams. In melt-spinning, generally no 

airstreams are included in the process. One exception is the production of nonwovens. 

Thereby the airstream is apart from the die and perpendicular to the stretched fibers. 

In contrast, melt-blowing possess two airstreams; one is located directly at the die 

orifice and the second stream flows longitudinal to the fibers, resulting in smaller fiber 

diameters compared to melt-spinning.[10]  

By means of a modification of the melt-blown process micro- as well as nanofibers can 

be produced simultaneously. Thereby, at least two dies with different diameters are 

used. Irema-Filter GmbH uses this technique to produce filters with mixed fiber sizes. 

While the coarse fibers ensure the stability of the nonwoven fabrics, the smaller fibers 

increase the filtration efficiency of small aerosol particles.[13] 

In view of small fiber diameters, electrospinning is the most effective process. Thereby, 

fiber diameters of 40 nm can be obtained.[7] Some research groups have even 

reported, that they achieved fibers with a diameter as low as 2 nm.[14] The first patent 

how to spin polymers appeared in 1934,[15] while in 1970 the first patent for the 

preparation of fibers in the sub-micron range was published.[16] However, this 

technique remained mostly unnoticed outside filter industry until the 1990s.[17] In the 

electrospinning process, voltages in the range of 5 kV to 30 kV[18] are applied between 
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a collector and a polymer solution[19] or melt[20] located in a syringe (Figure 3). By 

forcing the polymer out of the die, the solution evaporates (or the melt solidifies). 

Directly after the die, the polymer forms one straight jet, which changes due to 

instabilities into one rapidly bending, whipping strand.[8] The resulting nanofibers are 

deposited on a grounded collector. The prerequisite for melt electrospun polymers is 

their non-degradation under the applied conditions which for instance is fulfilled for 

polyethylene,[21] polypropylene,[22] poly(methyl methacrylate),[23] and several poly-

amides.[24] In comparison, solution electrospinning gained greater popularity, due to 

better processability and smaller diameters of the resulting fibers. For solution 

electrospinning, the polymers have to be soluble in the utilized solvents. Thereby, 

polymers such as polyamides,[25] polyurethane, polycarbonate,[26] polyethylene 

oxide,[27] polystyrene,[28] and polyvinylchloride[29] have already been electrospun 

beside many others. 

 

 
Figure 2. Schematic illustrations of the industrial used processing techniques for nonwoven fabrics.  
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One application of electrospinning is filtration. Up to now, electrospinning is the only 

top-down approach to post-modify existing nonwoven fabrics with polymer 

nanofibers. In this process, the nonwoven fabric moves on the collector at a roll-to-roll 

process, while nanofibers are spun on top of the surface (Figure 3). Anyhow 

electrospinning just became a niche process in filtration industry. The reasons are 

relatively slow spinning velocities of 10-300 mg/die/min, the use of high voltages, and 

in the case of solution processing the poor solubility of polymers with desirable 

properties (for instance polyolefines).[30] However, the undoubtedly greatest 

disadvantage of solution electrospinning is the usage of volatile organic compounds, 

because of the high inflammability and the explosion hazard. Nevertheless, a lot of 

research reports on electrospinning are known in fundamental research.[31] Analogous 

to melt-blowing a simultaneous preparation of heterogeneous fiber diameters (e.g. 

micro- and nanofibers) is also possible by means of electrospinning. This is called 

parallel-electospinning.[32]  

 

 
Figure 3. Schematic illustration of the electrospinning process, in which nanofibers are spun on top of a 
nonwoven fabric. 

 

In contrast, the bottom-up approach starts at the molecular size range generating 

nano- and micro-objects by self-assembly processes. This is an important domain of 

the field of supramolecular and macromolecular chemistry. In this thesis, the bottom-

up approach – self-assembly of small molecules - is investigated to prepare self-

assembled nanofibers and nanofiber webs. Here, structure-property relationships are 

developed in order to control the fiber morphology also in view of optical and air 

filtration applications. 
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1 . 2  S u p r a m o l e c u l a r  C h e m i s t r y  

 

Supramolecular chemistry is an area of chemistry of non-covalent bonds, just as 

molecular chemistry is based on covalent bonds. Supramolecular chemistry can be 

seen as the chemistry beyond the molecules and covalent bonds.[33,34]  

The synthesis of suitable molecular building blocks is achieved by organic chemistry. 

Thereby functional moieties capable to form non-covalent bonds are implemented 

into the molecular structure. In supramolecular chemistry, those bonds are tailored to 

create controlled self-assembled aggregates. The most important non-covalent 

interactions, involved in self-assembly processes are hydrogen bonds, π-π stacking, 

ionic interactions, dipole interactions, and metal coordination.[35] Furthermore, 

supramolecular chemistry involves the variation of external conditions, most 

prominently temperature, solvent, and concentration to tailor the self-assembly 

towards the desired aggregate morphology.[36] Controlling these factors well-defined 

architectures in the nano- and meso-scale can be realized in liquids and in polymer 

melts. 

In nature, many biomolecules have the extraordinary feature to self-assemble into 

well-defined and very often one-dimensional structures held together by non-covalent 

bonds. For instance, those aggregation phenomena can be found in the fauna and 

flora, in viruses and even in water. In the following, examples are briefly described. 

Human beings wouldn’t be alive without collagen which is the major extracellular 

structural element of most tissues and organs offering mechanical stability, elasticity 

and strength. A tissue, build up by collagen, consists of several hierarchical levels. 

Starting from amino acids polypeptides are formed by covalent bonds. The next 

hierarchical level consists of three self-assembled polypeptide chains, supercoiled 

around a central axis to form a triple-helix. This self-assembled structure is defined as 

collagen. The triple-helices again self-assemble into fibrillar nanofibers, which in turn 

form collagen microfibers to support cell development and tissue formation.[37] The 

hierarchical structure of protein materials is exemplarily illustrated in Figure 4 for 

tendons and bones. 
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Figure 4. Hierarchical structure of tendons and bones, both are collagen protein materials.

[38]
 

 
In the flora, the shape of a plant is determined by the position and the growth of cell 

walls, which can be seen as the “skeleton of plants”. The principal component in cell 

walls is cellulose, which self-assembles by hydrogen bonds into hierarchical structured 

networks consisting of nanofibers and microfibrils.[39] 

Self-assembly is also observed in viruses. The most famous representative is the 

tobacco mosaic virus. Its commonly known rod-like structure is formed by self-

assembled coat proteins located around a single RNA molecule.[40] The exact length of 

the one-dimensional assembly is determined by the RNA molecule itself. 

Another fascinating example of the self-assembly phenomenon in nature is the self-

aggregation of water molecules to snow crystals. These single crystals of ice are grown 

from water vapor and are held together by non-covalent hydrogen bonds. Although 

this process appears to be very simple and straight forward, the growth of snow 

crystals still feature a mostly unsolved mystery. Depending on external parameters, 

such as temperature and supersaturation different morphologies can be observed. 

Nowadays naturally formed snow crystals are classified into morphological categories 

such as plates, dendrites, and even one-dimensional columnar assemblies. In the case 

of the one-dimensional aggregates also tubular structures are known.[41] These entire 

examples highlight the enormous importance of (one-dimensional) self-assembly, 

without those, nature wouldn’t exist. 

 



I n t r o d u c t i o n  | 11 

 

 

Due to the amazing power of supramolecular chemistry in nature, chemists saw much 

potential in exploiting and imitating intermolecular non-covalent interactions to create 

materials with novel properties.[42] Besides the interest in ionic and dipole-dipole 

interactions, van der Waals forces, and metal coordination a lot of effort has been 

made to investigate systems held together by π-π stacking and hydrogen bonds.[43] 

Because of the reversibility of their non-covalent bonds supramolecular systems are 

able to respond to external stimuli.[36,44] The self-assembly as well as the disassembly 

process can be induced by changing external parameters, such as medium, 

concentration, temperature, and pH-value.[45] Switching such parameters successively 

back and forth assembly and disassembly can be indefinitely repeated. Due to this 

advantage of reversibility over molecular chemistry and the ability to realize almost 

any desired morphology, supramolecular chemistry is interdisciplinary utilized in the 

fields of chemistry, physics, biology, and material science.[35,46] 

In science supramolecular chemistry is a huge playground for all kind of scientists. Its 

very first enquiries were made by D. J. Cram, J.-M. Lehn, and C. J. Pedersen who jointly 

received the Noble Price in Chemistry in 1987 for their development and use of 

molecules with structure-specific interactions of high selectivity.[33] They were working 

on the molecular recognition of host-guest systems based on the key-lock concept.[47] 

Not only in nature, but also in systems which were artificially created, supramolecular 

nanofibers play an important role. Despite the fact that supramolecular organo-[48] and 

hydrogelators[49] consist of nanofibers which form a three-dimensional network, a 

SciFinder® search for the terms “supramolecular nanofibers” and “self-assembled 

nanofibers” as entered surprisingly results both together in just 140 references. This 

can be explained by the fact that in the past self-assembled nanofibers were just a 

means to an end for instance to obtain supramolecular gels. Just recently the 

supramolecular nanofiber itself became the focus of interest because of a more 

detailed research with respect to structural as well as to morphological aspects. The 

majority of those publications dealing with supramolecular nanofibers contain 

amphiphiles which are self-assembled or even gelled out of aqueous or organic 

solvents.[50] Because of the possibility to incorporate multiple functions, these 

nanostructures feature extremely diverse properties, thus, having potential for 

instance in bio-nanotechnology, such as in vivo imaging,[51] drug delivery,[52] and 

possessing antimicrobial effects.[53] Furthermore, supramolecular nanofibers can be 

tuned in view of their mechanical properties by means of a topochemical 

photopolymerization of diacetylene backbones within the supramolecular 

nanofibers.[54] The so modified organogelators can for example be utilized as filler 

materials in polymer nanocomposites for mechanical reinforcement.[55] 

Supramolecular chemistry itself also provides enough possibilities to adjust the 

mechanical properties of the self-assembled nano-objects. On the one hand this can 
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be realized by external factors, such as temperature, concentration, and gel-inducing 

ions.[56] On the other hand, cooperative as well as competitive combinations of several 

non-covalent intermolecular interactions result in well-defined assemblies with various 

stabilities. While a cooperative interplay of non-covalent bonds is able to promote the 

supramolecular aggregation into nanofibers,[57] competitive forces lead to 

destabilization. Therefore, it is highly important to investigate the involved non-

covalent interactions in detail in order to obtain controlled supramolecular nanofibers. 

In all these described examples, not the molecules themselves but rather their 

supramolecular assemblies as well as their intermolecular interactions are in focus of 

the investigations. Among the non-covalent forces hydrogen bonds and π-π stacking 

have been identified to be the most important ones in supramolecular chemistry. 

These two non-covalent interactions are utilized in this thesis to prepare manifold 

supramolecular nanofibers. Therefore the following sections should give a brief 

overview of those interactions with exemplary self-assembly motifs.  

In the pool of non-covalent interactions, hydrogen bonds play a superior role due to 

their moderate strength, their selectivity, and their high directionality.[45,58] Hydrogen 

bonds are created between an electron poor hydrogen atom and an electron rich 

acceptor atom. The overall bond strength is mainly dependent on the quantity of 

hydrogen bonds. The concept of multiple hydrogen bonds is exploited by various 

research groups tailoring double, triple or quadruple hydrogen bonding sites in one 

molecule.[59] Thereby very strong non-covalent interactions are developed to design 

new supramolecular, polymer-like architectures. One approach to provide quadruple 

hydrogen bonding sites is based on ureidotriazines.[60] Figure 5 exemplarily shows the 

aggregation of ureidotriazine based molecules by hydrogen bonds. The bifunctional 

compounds are able to self-assemble into one-dimensional polymer-like aggregates. In 

literature those assemblies are also termed “supramolecular polymers”. 
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Figure 5. Molecular structure of a “supramolecular polymer” held together by quadruple hydrogen 
bonding sites. Adopted from reference [60]. 
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Dyes feature extended aromatic π-systems and thus they are suitable for self-assembly 

by π-π stacking. The self-assembly of dyes into wire-like columns, seems to be a 

promising strategy for charge transport with respect to electronic applications.[61] 

Well-known arene systems are triphenylenes, perylenes, oligophenylenevinylenes, and 

pyrenes. Triphenylenes are one of the first investigated molecules that self-assemble 

by π-π stacking. They generally possess a planar aromatic unit which is capable to 

create attractive intermolecular interactions, forming rod- or worm-like aggregates. In 

order to improve solubility for a better handling aliphatic side-chains are often 

attached at the molecule periphery. Compared to hydrogen bonds, π-π stacking is 

generally unselective and relatively weak. It was shown that the intercore distances of 

triphenylarenes in supramolecular aggregates are relatively large compared to other 

systems indicating the loose and irregular stacking of the aromatic units.[62] Therefore 

the exclusive use of π-π stacking is in many cases inappropriate to control the 

morphology of supramolecular aggregates.  

The combination of π-π stacking and other non-covalent interactions such as hydrogen 

bonds, however, is a useful tool to provide supramolecular nanofibers.[63] 

Nevertheless, the combination of non-covalent interactions has to be handled with 

caution because they can operate in a cooperative as well as in a competitive manner. 

This results either in an improvement or in a contraction of the stability and 

directionality of self-assembled aggregates.[64] Therefore detailed fundamental 

research of the self-assembly process is indispensable.[65] One example of a 

cooperative combination of π-π stacking and hydrogen-bonds is reported by 

Sudhölter.[66] They used a molecular motif with a 1,3,5-benzenetricarboxamide central 

core which is connected via spacers with three triphenylene groups at its periphery 

(Figure 6). The amide groups form intermolecular hydrogen-bonds stabilizing the 

columnar self-assembly, while the triphenylenes are able to interact by π-π stacking 

and therefore facilitating charge transport. 
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Figure 6. Molecular structure (left) and schematic representation of the columnar assembly (right) of a 
triphenylene-modified 1,3,5-benzenetricarboxamide. Adopted from reference [66]. 
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E. W. Meijer and co-workers have demonstrated the significance of basic research on 

non-covalent bonds in self-assembly processes. They intensively investigated one-

dimensional fibrillar stacks of 3,3’-diamino-2,2’-bipyridine modified 

benzenetricarboxamides (Figure 7). In their initial interpretation of experimental 

results they proposed that the bipyridine units are planar and preorganized by 

intramolecular hydrogen bonds in the molecular state. During self-assembly it was 

assumed that the intramolecular hydrogen bonds would change to intermolecular 

hydrogen bonds, directing the self-assembly into a one-dimensional fibrillar fashion.[67] 

Further investigations of the non-covalent bonds of this system however showed that 

the formation of intermolecular hydrogen bonds is very unlikely in the aggregated 

state due to large intermolecular distances. Therefore the helical aggregates are only 

held together by π-π stacking (Figure 7).[68]  

This example elucidates, that the relevance and strength of all non-covalent 

interactions – intermolecular as well as intramolecular – must be considered when 

investigating supramolecular systems because small variations in the molecular 

structure can extremely influence the supramolecular assembly and therefore affect 

the aggregate morphology.  
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Figure 7. Molecular structure (left) and schematic representation of the columnar assembly (right) of a 
3,3’-diamino-2,2’-bipyridine modified C3-discotic1,3,5-benzenetricarboxamide. Adopted from 
reference [67]. 
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1.2.1 1,3,5-Benzenetrisamides – a versatile motif in supramolecular chemistry 

 

A comprehensive review about BTAs was previously published by Palmans et al.[69] 

Besides the structure and the synthesis, also the self-assembly of BTAs in dilute 

solutions as well as their applications was compiled. 

A BTA molecule consists of three different structural units, as indicated in Figure 8. The 

center is a planar 1,3,5-substituted benzene core, that implements the C3 symmetry. 

The amide moieties, the second structural subunit, can be connected to the core at 

their carbon as well as at their nitrogen atom. In addition, the solubility of these 

molecules is determined by the peripheral substituents.[70] BTAs are one of the 

simplest and most versatile motifs in supramolecular chemistry, which self-assemble 

into one-dimensional supramolecular nano-objects upon certain trigger-mechanisms, 

such as a shift in temperature,[71] concentration, medium,[72] and pH-value.[73] 

 
Figure 8. Schematic representation of the molecular structure of 1,3,5-benzenetrisamides (BTAs). 

 

The thermoreversible self-assembly process of the BTAs is displayed in Figure 9. As 

medium solvents or (in the case of supramolecular polymer additives) polymer melts 

can be used. Starting with a dissolved BTA system at elevated temperatures, 

supramolecular one-dimensional aggregation occurs upon cooling. Thereby, the BTA 

molecules self-assemble by hydrogen bond formation (of the amide groups) and π-π 

stacking (of the benzene units) into one-dimensional primary aggregates. However, the 

interactions of the central benzene cores are marginal compared to the strong 

hydrogen bonds. By further association of the primary aggregates, bundled filaments 

are formed, which subsequently self-assemble into one-dimensional supramolecular 

nano-objects in turn. Length and diameter of the supramolecular aggregates depend 

on the molecular structure and external parameters (self-assembly conditions). Among 

these, the medium, the BTA concentration, and the temperature profile mainly 

influence the self-assembly process and the resulting supramolecular morphology.[45,74] 

In this thesis, these influences are examined in detail on exemplary BTA/solvent 
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systems. Besides the well-known self-assembly upon cooling (Figure 9), a second self-

assembly process which occurs during solvent evaporation is also investigated and 

characteristic parameters influencing the self-assembly are pointed out.  

 
Figure 9. Schematic representation of the thermoreversible self-assembly process of BTAs. 

 

Due to the simplicity of this self-assembly concept behind, 1,3,5-benzenetrisamides 

gained a lot of interest in academic research.[69] 

Semi empirical calculations of supramolecular aggregates of BTAs revealed a staggered 

orientation of the peripheral substituents. Furthermore, the theoretical calculations 

showed a macro dipole formation within one supramolecular column when the C=O 

groups of the amides point into the same direction. A comparison between BTAs with 

aromatic and aliphatic cores results in differences in the quantity of the macro dipole 

in the aggregates.[75] Investigations regarding the structural clarification of the 

aggregates of BTAs were also done by NMR-crystallography combined with 13C isotope 

marking of the carbonyl groups. The results revealed accordance with the semi 

empirical calculations of Albuquerque et al. (reference [75]) in view of the dipole 

moments in one column.[76] Furthermore, it was found, that the crystal structure of the 

BTAs strongly depends on the peripheral substituents. While methyl- and ethyl-

substituents direct the self-assembly into sheet-like aggregates, propyl-rests force the 

self-assembly into primitive cubic three-dimensional networks.[77] However, BTAs with 

longer alkyl chains exhibit columnar structures forming hexagonal lattices.[71] In the 

case of 3-pyridyl substituents, the BTAs form three different crystalline forms from the 

same solvent system held together by non-covalent bonds (including polymorphic 

monohydrates).[78]  
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The class of BTAs is also investigated because of a mesophase behavior of some BTA 

derivatives. Certain alkyl substituents of the BTAs lead to a thermotropic liquid 

crystalline behavior in bulk in a broad temperature range. In addition, it was shown, 

that small columnar aggregates were still existent in the optical isotropic melt.[79] The 

columnar mesophases are mainly stabilized by the presence of the amide groups 

yielding strong hydrogen bond formation.[80]  

Astonishing applications of BTAs are their usage as polymer additives for nucleation 

and clarification of polyolefins and semi crystalline polymers. Thereby, BTAs with 

short, bulky alkyl substituents were used in the case of nucleating isotactic 

polypropylene.[81] BTAs with a 2,4,6-trimethyl-1,3,5-triamino benzene cores even 

feature better thermal stability compared to BTAs with unsubstituated cores.[82] Semi 

crystalline polymers such as polyvinylidenfluoride[83] and polybutylene 

terephthalate[84] can also be nucleated by BTAs. In polybutylene terephthalate the 

supramolecular aggregates of the BTA additive could be visualized after alkaline 

hydrolysis of the polymer matrix. Therefore, it could be demonstrated that the 

diameter of the supramolecular nano-objects is dependent on the concentration and 

the cooling rate. Furthermore, not only polymeric bulk materials but also polymer 

foams can be nucleated by BTAs. The advantage hereby is the fact, that the processing 

window in injection molding is not affected compared to the neat polymer.[85] In 

addition, BTAs are also utilized in order to improve the electret performance of 

polypropylene.[86]  

However, BTA nano-objects are not only investigated in polymer matrices. 

Supramolecular nanofibers of BTAs were further prepared by self-assembly in solution. 

The mechanical stability of those isolated supramolecular nanofibers is of great 

interest due to possible future applications. Single fibers, self-assembled from solution 

were investigated by three-point bending tests by means of an atomic force 

microscope. Within these investigations, structure-property relations between the 

molecular structure of the BTA and the mechanical stability of supramolecular BTA 

nanofibers were determined. In these investigations, E-moduli of 3-5 GPa were 

detected.[87] In addition, entanglements of supramolecular nanofibers prepared from 

solution can result in the formation of three-dimensional networks. Hence, this class of 

molecules can also act as organo-[88] and hydrogelators.[89]  

Furthermore, it is possible to obtain supramolecular nanofibers of BTAs by 

electrospinning from columnar, nematic phases and isotropic melts. The 

supramolecular morphology of electrospun BTA nanofibers is dependent on the 

thermal properties of the BTAs, the spinning temperature, and the applied electric 

field.[90] A comparison between the self-assembled BTA fibers from solution and 

electrospun fibers showed, that differences in the supramolecular morphology are 
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existent, however, both sort of fibers feature mechanical stabilities in the same order 

of magnitude.[91] 

 

 

1.2.2  Pyrene in supramolecular chemistry 

 

Supramolecular aggregation can be detected with various methods, such as UV-Vis, IR, 

and photoluminescence spectroscopy. As prerequisite for photoluminescence 

measurements, the molecular building blocks have to be labeled with 

photoluminescent units. In this thesis pyrene is used as chromophore, because its 

optical behavior is well understood.[92] The photoluminescence of pyrene is sensitive to 

the environment. Monomer fluorescence can be detected at molecular dissolved 

pyrene molecules. In solution and in condensed matter such as amorphous films and 

crystals pyrene monomer fluorescence changes into excimer emission under certain 

circumstances.[93] An excimer may be considered as a pair of molecules that, in the 

ground state, are far apart from each other, and that absorb light as monomers, but 

that reorient in the excited state and then fluoresce as dimers.[94] The excimer 

fluorescence is broad, unstructured and red shifted compared to monomer 

fluorescence, and the emission again leads to two monomers in the ground state.[95]  

Several examples exist in which the excimer emission is indirectly used to detect the 

aggregation process.[96,97] These characteristic properties have been employed in the 

investigation of pyrene-based tweezer molecules[98] and multimolecular aggregates of 

micelles and membranes,[99] the gelation detection of organic low-molecular weight 

compounds,[100] the inspection of the active sites of enzymes,[101] the molecular 

recognition process of artificial receptors and DNA sequences[102] and in the detection 

of nitroaromatic explosives.[103] 

In addition to the indirect detection of aggregation processes, pyrene containing 

molecules themselves are able to self-assemble into supramolecular nanoparticles as 

well as nanofibers,[97] and are also able to form supramolecular organo- and 

hydrogels.[104] 
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1 . 3   F i l t r a t i o n
[10,105,106] 

 

The filtration and separation and, as a result, the isolation of contaminants are 

omnipresent in all areas of our lives. Filtration technologies are applied in many 

industrial fields to meet the requirements of the product or to improve worker 

protection. The most appropriate definition of the term filtration is given by the 

Association of the Nonwovens Fabrics Industry: “Filtration is a mechanism or device for 

separating one substance from another. Filtration may be used to separate 

contaminants from a fluid, or separate value-added materials such as minerals, 

chemicals, or foodstuffs in a process operation.”[107] As fluid, gases as well as liquids 

are considered.[108] Filtration can be classified into two main segments, the gas 

filtration and the liquid filtration.[10] In the field of gas filtration aerosol particles are 

mainly filtered from air. Additionally, the purification of gaseous fuels such as natural 

gas and propane embody an application in this sector.[109] Liquid filtration is used in all 

separation purposes of liquid substances and solvents. 

The segments of air filtration and liquid filtration can be divided into subsectors by 

their applications according to Mayman and Homonoff.[110] The segment of air 

filtration comprises the building industry, the transportation sector, industrial 

processes, personal protection, vacuum cleaner bags, and special applications. 

Filtration in the building industry has to ensure the quality of indoor air in 

households,[111] for instance in air conditioning systems[112] or fume hoods in the 

kitchen.[113] In the transportation sector a significant amount of filters is required in the 

automotive industry.[114] For instance, in each car more than 20 filters and separators 

are implemented ranging from diesel soot filters to cabin air filters.[115] In industrial 

processes such as power generation and mining, filters are also crucial.[116] A lot of 

efforts have been made for personal protection filters for instance in breathing 

protection[117] or protective clothing against contaminants in industrial processes or 

biological and chemical warfare.[118] The field of vacuum cleaner bags is an example for 

filters in daily life.[119] Furthermore, there are highly specialized sectors such as 

microchip and pharmaceutical industry, which demand for a very low particulate 

concentration in air. In microchip industry during production of electronic devices 

particulate matter can cause severe damages or malfunctions of the device. Similarly, 

in the pharmaceutical sector in which filters are mainly used to reduce germs or 

bacteria in air.[120] 

The liquid filtration segment is divided into the liquid cartridge, transportation, 

machining and metalworking, and food sector.[110] Filter processes in the chemical and 

pharmaceutical industry are located in the liquid cartridge sector.[121] Besides the 

applications of air filters in the transportation sector (automobile industry or in the 

aviation), the filtration of liquids such as oil, fuel or hydraulic fluids is important to 
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improve life-time.[122] While machining and metal working processes need particulate-

free coolants, also the food sector, with the dairy,[123] brewery[124] and nutritional oil 

industry[125] requires filtration steps for product purification or waste water filtration. 

The coffee filter is probably the most known example in the food sector. 

The broad field of filter applications is expected to grow in the next years because of 

issues such as fine dust and new tasks in environmental protection. Therefore, new 

filter media with improved properties are required. In the following general remarks, 

theoretical considerations concerning air filtration are addressed in detail. 

 

An aerosol is a binary mixture consisting of solid particles or liquid droplets in a gas 

phase.[126] The suspended particles are called aerosol particles. These aerosol particles 

can cover all sizes ranging from the nano- to the macro-scale. Figure 10 shows the sizes 

of the different contaminants in air, categorized in natural and artificial origins. In 

contrast to natural contaminants, artificial airborne pollutants are created by mankind, 

especially since industrialization. Artificial pollutants, such as smog, diesel soot, carbon 

black, and tobacco smoke are predominant in the nanometer scale. Aerosol particles in 

this size range are called respirable dust and are accumulated in the human lung and 

are suspected to cause several diseases.[127] Thus, these contaminants represent the 

most dangerous form of aerosols. The steadily increasing amount of artificial 

pollutants and demands to clean air is the driving force to develop improved filter 

media with high filtration efficiency.  
 

 
Figure 10. The size range of airborne contaminants. Natural origin contaminants are colored light gray, 
artificial generated contaminants dark gray. Adopted from reference [10]. 
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1.3.1 Filtration mechanisms and theory 

 

According to Sutherland and Purchas[128] there are four different filtration types: 

surface straining, depth straining, cake filtration and depth filtration. Depending on the 

filter architecture a mixture of all can be involved in the filtration process. Typically, 

one of the four types is predominant. 

Surface straining is the separation of aerosol particles by size exclusion on the surface 

of woven meshes with uniform pore size. Only aerosol particles whose dimensions are 

larger than the pore size are filtered off, particles with smaller sizes penetrate through 

the filter. Typically, the filters consist of membranes or woven fabrics.[10]  

Depth straining exists in filters whose pores are getting progressively smaller from top 

to bottom. An aerosol particle with particular size is penetrating through the filter as 

long as its size is smaller compared to the pore size. Within the filter, the pore size is 

getting smaller than the particle size, thus, the aerosol particle is separated. These two 

filtration types are based on sieving effects. The filters are based on felts or 

nonwovens with large fiber diameter compared to the voids. Several definitions are 

existing, describing the term nonwoven fabric. However, one of the most appropriate 

definitions has its origin in the Man-Made Fiber and Textile Dictionary,[129] whose 

authors describe a nonwoven fabric as “an assembly of textile fibers held together by 

mechanical interlocking in a random web or mat, by fusing of the fibers (in the case of 

thermoplastic fibers), or by bonding with cementing medium such as […] glue”.[10]  

In cake filtration (or surface filtration), the particle separation occurs on or near the 

surface of the filter. At the beginning of the filtration process a filter cake composed of 

aerosol particles is developed on top of a filter due to its specific architecture. The 

filter itself can be regarded as support and the filtration of aerosols is mainly 

performed by the filter cake. Thus, clogging occurs so that the differential pressure of a 

filter is progressively increasing. After a certain time interval a threshold value in the 

throughput is reached and the filter has to be cleaned from the filter cake. Generally, 

this is achieved by a reverse air pulse.[105] This kind of filter media is typically based on 

surface modified needle felts. 

The fourth filtration type is the depth filtration. In contrast to depth straining, aerosols 

in the depth filtration are also filtered when their particle sizes are smaller than the 

pores of the filter. The filtration of particles is attributed to three different filtration 

mechanisms if electrostatic interactions are excluded (Figure 11).  
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Figure 11. Illustration of depth filtration mechanisms depending on particle sizes and electrostatic 
effects represented at a fiber cross section with flow streamlines around. Adopted from reference [10].  

 

Depending on their particle size, contaminants can be captured by various mechanisms 

in depth filtration, namely inertial impaction, interception, and diffusion.[130] Because 

of their inertia large aerosols are not able to follow the airstream, which flows around 

the fiber of the filter. Therefore, these particles hit the fiber and thus are deposited on 

the surface by inertial impaction. This filtration mechanism is predominant for aerosol 

particles of sizes between 0.5 µm and 5 µm. In contrast, Brownian diffusion is the 

predominant filtration mechanism for small aerosol particles (smaller than 0.1 µm[131] 

or 0.5 µm[10]). Because of this random “zig zag”-motion, the probability of the aerosol 

particle to contact the fiber and being filtered is drastically increased. Contaminants, 

which are too small to be filtered by inertia and which are too large to be deposited by 

the Brownian diffusion follow the air streamlines around a fiber. If the aerosols pass 

the fiber surface within a distance equal or less of their radii, the particles are captured 

by the fiber. This mechanism is called interception. The probability of particle 

deposition by interception decreases with decreasing particle diameter. The filtration 

efficiency of a fibrous material (based on depth filtration) over all particle sizes is the 

sum of all filtration mechanisms. This is shown in Figure 12 for diffusion and 

interception as well as inertial impaction. For a typical nonwoven filter the overall 

filtration efficiency feature a minimum which is located between 0.1 µm to 0.5 µm. 

This minimum is called most penetrating particle size (MPPS).[132] The location of the 

MPPS and the amount of particles which penetrate the filter at the MPPS depend on 
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the nature of the filter, the fiber diameter, the kind of aerosol and the filtration 

conditions.  

Furthermore, a special but efficient mechanism in depth filtration is based on 

electrostatic attraction. Here, the electric or electrostatic charge of the aerosol 

particles leads to an attraction to the fiber. This mechanism is exploited in electret 

filters.[8,26]  

 

 
Figure 12. Schematic representation of the filtration efficiency of different filtration mechanisms. The 
sum of the individual efficiencies yields the overall filtration efficiency of a filter (red). This efficiency 
typically features a minimum, called most penetrating particle size (MPPS). 

 

To overcome the challenge of low filtration efficiencies for aerosol particles in the 

range of 0.1 µm – 0.5 µm (MPPS region) many efforts have been made. Nowadays the 

most promising attempts are filters which are modified with nanofibers.[133,134] There 

are basically two beneficial reasons for nanofiber utilization: a) the increase of 

filtration efficiency and b) the reduction of the differential pressure. Theoretical 

calculations on the benefit of nanofibers in filtration were investigated by Stechina and 

Pich, who confirmed the expected positive effect.[135] 

The first benefit of nanofibers can be explained by their surface-to-volume-ratio. Due 

to the facts, that the surface area of a fiber scales inversely with its diameter and that 

the volume of a fiber decreases inversely proportional to the square of the diameter, 

the resulting surface-to-volume-ratio increases with decreasing fiber diameter. This 

additional surface area is also available for aerosol particle removal.[11,136] As 

consequence, the use of nanofibers provides an improvement: shifting the MPPS to 

smaller particle sizes while simultaneously leading to enhanced filtration efficiencies 

for all particle sizes.[137] 
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A second effect is the reduction in differential pressure if nanofibers are used. This is 

attributed to the slip-flow effect at the fiber surface (Figure 13). In the case of 

microfibers, the flow velocity on the surface of the fiber is zero (defined as non slip-

flow).[138] However, at fibers possessing diameters below 500 nm, this changes to slip 

flow conditions. Hence, the airstream at the nanofiber surface is non-zero. That means 

that a larger amount of air penetrates in the same time interval around a nanofiber 

compared to a microfiber and thus the air drag of a nanofiber is smaller, resulting in a 

lower differential pressure.[139] 
 

 
 

 

Figure 13. Schematic representation of non slip-flow conditions at a microfiber (left) and slip-flow 
conditions at a nanofiber (right). 

 

 

The filtration efficiency and the differential pressure are important parameters 

particular in view of the quality of a filter. In Figure 14, a typical air filtration procedure 

is illustrated. In this process, a defined amount of aerosol particles is applied to a filter 

by an airstream (upstream side). Some of the particles are captured at the filter, others 

are penetrating through (downstream side).  
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Figure 14. Schematic filtration process of aerosol particles. 

 

In order to quantify the quality of different filters, two parameters have to be 

measured in those tests, in particularly the filtration efficiency and the differential 

pressure. 

 

The filtration efficiency is defined as 

 

FE	�%�	�x	 
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	 ∙ 100 

 

, with  

 

FE =  filtration efficiency,  

cup =  upstream aerosol particle concentration, 

cdown =  downstream aerosol particle concentration, 

x =  aerosol particle size. 

 

Because filters separate aerosol particles of various sizes with distinct quality, the 

filtration efficiency is dependent on the aerosol particle size. A properly designed filter 

has to assure high efficiency of the removal of aerosol particles of any size.[132] 
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The differential pressure is defined as 

 

∆�	���� 
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, with 

 

Δp =  differential pressure, 

pup =  pressure at the upstream side, 

pdown =  pressure at the downstream side of the filter. 

 

The differential pressure originates from the air drag of a filter and implies its 

throughput quality. The smaller the differential pressure, the lower are the processing 

and energy costs during the filtration process.  

 

Thus, an “ideal filter” has a filtration efficiency of 100 % for all particle sizes, a 

differential pressure of 0 Pa, lasts forever, is infinitively small, and doesn’t cost 

anything. In reality this is not realizable. An enhancement in filtration efficiency is 

typically accompanied by an increase in differential pressure. Therefore, compromises 

have to be made, which are localized either at the side of high filtration efficiency or at 

the side of low differential pressure depending on the preference of the application.[10]  

 

The quality of a filter can be determined by means of the quality factor, which is 

defined as 

 

�� 
	
� ln�1 − ��)

∆�
 

 

, with 

QF =  quality factor, 

FE =  filtration efficiency, 

Δp =  differential pressure. 

 

A filter with enhanced filtration efficiency and/or lower differential pressure possesses 

a higher quality factor, meaning that the overall quality is improved compared to other 

filters.[133] 
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1.3.2 Filter classification and test standards 

 

Depending on their filtration efficiency, commercial air filters are divided into several 

classes. Filters with very low average efficiency are called Coarse Filters and are 

accordingly divided into the classes G1-G4. Air filters with higher filtration efficiency 

are defined as Medium Filters M5-M6 and Fine Filters F7-F9, classified corresponding 

to their filtration efficiency at 0.4 µm particle size. The most efficient air filters are 

HEPA (High-Efficiency Particulate Air) and ULPA (Ultra-Low Penetration Air) filters, 

which can also be divided into several sub-classes (Table 1). These filters are classified 

according to their overall average filtration efficiency as well as to their minimum 

filtration efficiency (MPPS). The particle size range, where the MPPS is located varies 

for several filters, thus the local filtration efficiency value of each HEPA and ULPA filter 

is determined at its “personal” minimum. 

Originally, HEPA filters were developed for military gas masks to protect mankind from 

toxic smokes of chemical and biological warfare. The first filters consist of asbestos 

fibers, developed in Germany. During World War II, the United States developed these 

filters further. Since then, US military standards were the world wide filter guideline. 

This changed as HEPA filters found more and more use in non-military applications, 

such as clean rooms in electronics industry and in hospital operating rooms. 

Meanwhile, HEPA filters are built of glass microfibers and found their way into “daily 

life applications” for protection against allergens and harmful microbes in the 

automobile industry and office buildings. Nowadays, HEPA filters are even 

implemented in vacuum cleaners.[10] 

 

 
Table 1. Filter classification of HEPA and ULPA filters. Adopted from reference [10].  
 

Filter  

class 
Overall filtration efficiency [%] 

Local filtration efficiency 

(at MPPS) [%] 

   

H10                        85  

H11                        95  

H12                        99.5  

H13                        99.95                  99.75 

H14                        99.995                  99.975 

U15                        99.9995                  99.9975 

U16                        99.99995                  99.99975 

U17                        99.999995                  99.999975 
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Commercial air filters have to be tested subject to different standards. The 

International Organization for Standardization defines the ISO norms, which are 

internationally valid. European standards (EN norms) are defined by the European 

Committee for Standardization and the “Deutsches Institut für Normung” is 

responsible for German DIN standards. In the United States several organizations 

define filtration standards. One of them is the ASHRAE (American Society of Heating, 

Refrigerating and Air-Conditioning Engineers). Among hundreds of different norms, 

some of the most important air filtration standards are ISO 5011, ISO/TS 11155-1, EN 

1822, EN 779, and ASHRAE 52.2, including different fields of industrial applications and 

their specific test requirements. 

The type of aerosol is also embedded in the standards, because of the variation of the 

filtration efficiency depending on the used aerosol. While the test aerosol Iso fine dust 

(Arizona road dust) is used in ISO 5011 (Inlet air cleaning equipment for internal 

combustion engines and compressors) and ISO/TS 11155-1 (Road vehicles - Air filters 

for passenger compartments), DEHS (diethylhexylsebacate) is taken as aerosol 

particles in the EN 1822 standard for HEPA and ULPA filters. EN 779 (Particulate air 

filters for general ventilation) and ASHRAE 52.2 (Method of Testing General Ventilation 

Air-Cleaning Devices for Removal Efficiency by Particle Size) are the European and 

American standards for air filters in general ventilation systems, respectively. 

According to both standards, the tested filter is loaded with ASHRAE test dust 

composed of Iso fine dust, carbon black, and cotton linters. The filtration efficiency of 

such a loaded filter is afterwards tested with potassium chloride. 

The downside of these complex standardization systems is that each filter supplier is 

allowed to test their filters at different standards and therefore the comparability of 

various filters is getting lost in many cases.[10] 
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1.3.3 Supramolecular chemistry in combination with a support in view of filtration 

applications 

 

In contrast to the top-down approaches mentioned above, existing nonwoven fabrics 

can further be modified with supramolecular nanofibers by a bottom-up approach. 

However, in literature very less is known about this in view of filtration applications. 

One of the few research groups, which is working in this research field is using 

fluorinated urea and amide gelators to modify surfaces of nonwoven polymer fabrics. 

In the porous supports the organic molecules self-assemble to supramolecular 

nanofibers to increase the surface roughness as well as to provide improved water- 

and oil-repellence.[140] Further investigations of this group also disclose the potential 

usage of these composite materials as filters for gaseous and liquid media. Thereby, 

the authors mentioned their gelation based preparation, but they do not present any 

example of filter test according to their stability and filtration efficiency.[141] Another 

research group shows by means of a three weeks lasting immersion process of 

aluminium coated meshes in alkylphosphonic acids that self-assembled nanofiber 

networks which cover pores of 4 µm diameter can be created.[142] Furthermore, in 

literature it was reported about a supramolecular glycol-lipid hydrogel which is strong 

enough to entrap polymer nano beads in its three-dimensional nanofiber network.[143] 

Recently, Krieg et al. reported on a supramolecular organogel, which was deposited on 

top of a scaffold to obtain an ultrafiltration membrane.[144] Upon the prerequisite of a 

never dehydrated supramolecular specimen, this kind of filter is suitable to separate 

gold nanoparticles from an aqueous solution. 

However, up to now supramolecular solutions for air filtration applications were not 

reported. This issue is an objective in this thesis to efficiently modify polymer filters 

with inexpensive supramolecular nanofibers. 
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1 . 4  O b j e c t i v e  o f  t h i s  t h e s i s  

 

The objective of this thesis is the investigation of supramolecular nanofibers, 

particularly their preparation, structure-property relations and applications. Herein, 

four different issues concerning supramolecular nanofibers are pursued: 

The first part of this thesis targets the investigation of the influence of hydrogen 

bonding as well as sterical demanding substituents on the π-stacking of pyrene-

containing small molecules in different states of matter. A set of pyrene substituted 

monoamides and monoesters have to be synthesized and their self-assembly behavior 

have to be characterized by different methods, such as fluorescence spectroscopy, 

temperature-dependent FT-IR investigations, dynamic light scattering (DLS) and 

polarization optical microscopy (POM). In order to get a more detailed insight into the 

aggregation behavior, further physical investigations and theoretical calculations have 

to be performed in cooperation with Prof. Dr. Anna Köhler and Prof. Dr. Rodrigo Q. 

Albuquerque. 

The second part of this thesis is concerned with fundamental investigations of two self-

assembly processing pathways, the self-assembly upon cooling at constant 

concentration and the self-assembly during solvent evaporation at constant 

temperature. In order to tailor the supramolecular nanofiber morphology of 1,3,5-

benzenetrisamides (BTAs) detailed structure-property relations have to be established. 

For this purpose, the influence of the molecular structure and of external parameters 

such as concentration, temperature, and solvent have to be examined and 

understood. 

The third part of this thesis aims for an application of supramolecular nanofibers in air 

filtration. In this field the materials of choice recently changed from micro- to 

nanofibers because of quality aspects. However, an adequate process how to 

efficiently incorporate nanofibers inside existing nonwoven filters is not available up to 

now. Herein, this issue is addressed by means of supramolecular chemistry. A simple, 

solution-based immersion process in which supramolecular nanofiber webs are formed 

in-situ in nonwoven scaffolds have to be developed. In order to proof the applicability 

of supramolecular nanofibers in air filtration processes, first filtration tests have to be 

performed. 

The fourth part of this thesis is based on the promising results of the previous chapter. 

Here, the focus is set on the establishment of several structure-property relations in 

order to optimize the surface area, the mechanical as well as the thermal stability, and 

the overall filter quality. For this purpose, variations of the molecular structure, the 

solvent, the concentration, the kind of aerosol, and the filter setup have to be 

investigated. 
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2 .  S Y N O P S I S  

 

The present thesis addresses the preparation and application of supramolecular 

nanofibers. In a series of four manuscripts different issues concerning supramolecular 

nanofibers were investigated and detailed structure-property relations established. 

The first part of this thesis deals with fundamental questions regarding the aggregation 

behavior of pyrene-containing small molecules. With a set of four model compounds, 

the influence of H-bonding and bulky substituents on the π-π-stacking of pyrene was 

investigated in dilute solution, in the aggregated state, and in solid films. Depending on 

the state of matter, the impact of H-bonding and bulky substituents on the π-π-

stacking of pyrene varies in quantity. 

In the second part the focus is set on the preparation of supramolecular nanofibers. In 

this part, two different self-assembly processing pathways from solution were 

compared in order to tune the nanofiber morphology with respect to homogeneity, 

fiber diameter, and fiber diameter distribution. Depending on the solubility of the 

molecular building blocks different self-assembly pathways can be realized, leading to 

various supramolecular morphologies. Furthermore, a comprehensive study on 

structure-property relations with respect to different morphologies of supramolecular          

(nano-)fibers was conducted. Thereby, parameters such as the molecular structure, 

the concentration, the solvent, and the cooling rate were varied. The fundamental 

knowledge obtained from these chapters represents the basis for the more applied 

developments. 

In the third part, we show for the first time, that supramolecular nanofibers can be 

used in air filtration applications. By a solution-based immersion process 

supramolecular nanofiber webs were prepared in-situ in nonwoven scaffolds resulting 

in microfiber-nanofiber composites. Furthermore, air filtration tests revealed suitable 

filtration efficiencies. 

Building on these results, the fourth part of this thesis goes one step further 

investigating detailed structure-property relations in view of the network density, the 

stability of the nanofiber webs as well as the overall filtration performance of the 

composite materials. Thereby, variations of the molecular structure, the used solvent, 

the concentration, the kind of aerosol, and the filter setup were investigated. 

In the following, the highlights of each manuscript are presented in a brief summary. 
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2 . 1  C o n t r o l l i n g  t h e  π - s t a c k i n g  b e h a v i o r  o f  p y r e n e  d e r i v a t i v e s :  

I n f l u e n c e  o f  H - b o n d i n g  a n d  s t e r i c  e f f e c t s  i n  d i f f e r e n t  s t a t e s  

o f  a g g r e g a t i o n *  

 

In the first manuscript of this thesis, the influence of the molecular structure on the 

stacking behavior of pyrene derivatives was investigated. Therefore, a set of well-

defined ester derivatives 1a, 1b and their corresponding amide compounds 2a, 2b 

were synthesized (Figure 1, A). From the structural point of view, the ester molecules 

are only able to self-assemble via π-stacking of the pyrene units, while the amides 

compounds can aggregate by π-stacking combined with hydrogen bonding of the 

amide groups. In addition, sterical variations were implemented into the molecular 

structures by means of a non-sterical demanding hydrogen substituent (1a, 2a) and a 

sterical demanding tert-butyl rest (1b, 2b). In this chapter, these molecules were 

investigated in dilute solution, in the aggregated state as well as in solid films. 

 

 

Figure 1. (A) Molecular structures of investigated ester (1a, 1b) and amide (2a, 2b) compounds.              

(B) Photoluminescence intensities of the monomer peak at 375 nm (left axis) and the absorption ratio of 

A(0-0)/A(1-0) (right axis) of compounds 1a and 2a at different concentrations. The shaded area depicts 

the concentration range in which the formation of supramolecular aggregates starts to occur. (C) SEM 

micrographs of freeze-dried supramolecular aggregates of ester 1a and amide 2a prepared from dioxane 

solutions (concentration: 1·10
-2

 mol/L). 

 

*  Manuscript published in: ChemPhysChem 2013, 14, 1818. 

 Full manuscript can be found in Chapter 3.2 
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Concentration-dependent photoluminescence measurements were performed in 

solution. The emission characteristics of the herein utilized pyrene units are dependent 

on their environment. Thus, monomer and excimer emission, which differ in energy, 

can be observed at distinct circumstances. At a minimal threshold concentration of 

2·10
-5

 mol/L monomer emission was quenched for all investigated compounds (Figure 

1, B). This result, combined with the fact, that no excimer emission can be observed in 

this concentration range indicates that a non-emissive intermediate species is formed. 

Excimer emission can only be observed at concentrations of more than 6·10
-4

 mol/L. 

Furthermore, dynamic light scattering (DLS) and UV-Vis experiments revealed 

supramolecular aggregation in this concentration range for the ester as well as the 

amide compounds (Figure 1, B). Thus, formation of excimers requires a kind of ground 

state stabilization that is only available in the environment provided by supramolecular 

aggregates. A significant influence of the structural variations, namely the linker (ester 

or amide) and the sterical effect of the substituent (hydrogen or tert-butyl substituent) 

can not be observed. Therefore, we conclude that π-stacking of the pyrene 

chromophores is the driving force of the aggregation in solution. The rate of excimer 

formation reveals an influence of the H-bonding and the steric demanding groups. 

While the excimer formation rate in the ester compound 1a is comparable to that of 

unsubstituted pyrene, excimer formation proceeds slower with the amide linker of 

compound 2a, and is reduced even more by the bulky substituents of 1b and 2b. In 

order to illustrate the morphology of the supramolecular aggregates, freeze-drying of 

dioxane solutions of 1·10
-2

 molL
-1

 was performed. Figure 1, C exemplarily shows the 

supramolecular morphologies of the aggregates of ester 1a and amide 2a. The amides 

form nanofibers while for the ester compounds rod-like morphologies could be 

observed. According to FT-IR investigations, the nanofibers of both amides 1a, 1b were 

stabilized by hydrogen bonds in the freeze-dried state. 

Furthermore, crystallization of spin-coated films of the ester and amide compounds 

was evaluated by photoluminescence spectroscopy, FT-IR analysis, and polarized 

optical microscopy (POM). Each of the freshly prepared films featured exclusively 

excimer fluorescence (exemplarily shown for amide 2a in Figure 2, A). Even though 

optically clear films were observed in POM, the excimer formation was attributed to 

the existence of supramolecular nano-aggregates. Upon crystallization due to 

annealing or aging effects excimer formation becomes suppressed while monomer 

emission can be observed. Here, the mobility of the pyrene units in the crystalline 

state was restricted and thus the pyrene shift necessary for excimer formation was 

constrained. In order to elucidate the development of hydrogen bonds during 

crystallization of the films of both amides, FT-IR analysis was performed featuring a 

shift of the N-H and the carbonyl stretching vibration to lower wave numbers 

(exemplarily shown for amide 2a, Figure 2, B) accompanied by a sharpening of the 
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peak. However, the sterical demanding tert-butyl group of amide 2b weakened the 

strength of the hydrogen bonds compared to 2a. 

Crystalline films were investigated at low temperature by photoluminescence 

spectroscopy. The obtained results were compared with those of computational 

studies to detect the disturbance of structural variations on the π-stacking of the 

pyrene units. The compounds 1a, 2a and 2b feature monomer emission at low 

temperatures. Thus, the structural order in the crystalline state increases the 

activation energy necessary for excimer formation, which is not available at low 

temperatures (exemplarily shown for 1a, Figure 2, C). In contrast, for ester 1b, excimer 

emission was observed at all temperatures, indicating the most disordered crystallite 

structure upon the investigated compounds (Figure 2, D). As result we found, that the 

columnar stacking is increasingly disturbed by the introduction of the amide and the 

tert-butyl moiety. 

 
Figure 2. (A) Photoluminescence spectra including corresponding POM images and (B) FT-IR analysis of a 

spin-coated film of amide 2a directly after processing and after different time periods. (C+D) 

Temperature dependent photoluminescence spectra of aged films including geometry optimized dimers 

of ester 1a (C) and of ester 1b (D). 
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2 . 2  S u p r a m o l e c u l a r  n a n o f i b e r s  –  A  s t u d y  o n  d i f f e r e n t  

p r o c e s s i n g  p a t h w a y s *  

 

In this chapter, the class of 1,3,5-benzenetrisamides (BTAs) were utilized, whose 

driving force for their self-assembly are hydrogen bonds. From solution these 

molecules are able to self-assemble into supramolecular nanofibers. Herein, different 

self-assembly processing pathways and related structure-property relations were 

foregrounded. With that knowledge, the supramolecular nanofiber morphology can be 

controlled with respect to homogeneity, fiber diameter, and fiber diameter 

distribution. 

The first investigated pathway is based on self-assembly upon cooling at a constant 

concentration and subsequent evaporation of a solvent. Here, we investigated two 

different BTA/solvent systems: one at room temperature (mainly) insoluble system, 

which is based on BTA 1 and 2,2,4,4,6,8,8-heptamethylnonane (HMN) (at 

concentrations ranging from 0.005 wt% - 0.06 wt%) and one more soluble system 

consisting of BTA 2 and 2-butanone (at a concentration of 1.0 wt%) (Figure 3, A and B). 

In order to obtain initially optical clear solutions, both BTAs were dissolved at the 

boiling point of the solvent. Subsequent cooling under controlled conditions leads to 

supramolecular aggregation in both systems. After solvent evaporation, the 

supramolecular aggregates were investigated by scanning electron microscopy (SEM). 

For BTA 1 at a concentration of 0.02 wt%, we obtained supramolecular nanofibers with 

an homogeneous fiber diameter distribution (Figure 3, A), while for BTA 2 fibers with a 

bimodal morphology could be observed with average fiber diameters of 0.23 µm and 

1.46 µm (Figure 3, B). The distinct supramolecular morphologies can be explained by 

different solubilities of the BTA/solvent systems after cooling. The residual solubility of 

BTA 1 in HMN at room temperature is almost zero. Consequently, the self-assembly is 

completed after cooling and mainly all BTA molecules are aggregated. During solvent 

evaporation no additional self-assembly occurs anymore. In contrast, the residual 

solubility of BTA 2 in butanone was determined to 0.6 wt%. Therefore, 0.4 wt% (of the 

initial concentration of 1.0 wt%) self-assembles upon cooling resulting in the observed 

microfibers (shaded grey in the histogram in Figure 3, B). During subsequent solvent 

evaporation the residual dissolved BTA 2 molecules (0.6 wt%) self-assemble to 

supramolecular nanofibers.    

Furthermore, the lateral dimensions of the supramolecular aggregates can be 

influenced by the choice of self-assembly conditions. Utilizing this self-assembly 

pathway, the influence of the BTA concentration and the influence of the cooling rate 

on the resulting supramolecular morphology were investigated. The lower the 

concentration of the initial solution and the faster the cooling rate, the smaller are the 

*  Manuscript draft intended for submission to Journal of Supramolecular Chemistry 

 Full manuscript can be found in Chapter 3.3 
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diameters of the nanofibers, ranging from 2.19 µm to 190 nm. The power of self-

assembly by the triple hydrogen bonding motif is emphasized by quenching 

experiments in liquid nitrogen. Also at this high cooling rate defined one-dimensional 

nanofibers were obtained, pointing out a very fast self-assembly. 

 

Self-assembly upon cooling and subsequent solvent evaporation 

 A     

               

 B     

  

 

Self-assembly during solvent evaporation  

C     

  
Figure 3. (A) Molecular structure of 1,3,5-benzenetrisamide (BTA) 1 and the SEM micrograph as well as 

the corresponding histogram of the supramolecular nanofibers of BTA 1 obtained from self-assembly 

upon cooling and subsequent solvent evaporation (solvent: HMN, concentration: 0.02 wt%, cooling rate: 

60 °C/min). (B) Molecular structure of BTA 2 and the SEM micrograph as well as the corresponding 

histogram of supramolecular aggregates of BTA 2 obtained from self-assembly upon cooling and 

subsequent solvent evaporation (solvent: butanone, concentration: 1.0 wt%). (C) Molecular structure of 

BTA 2 and the SEM micrograph as well as the corresponding histogram of supramolecular aggregates of 

BTA 2 obtained from self-assembly during solvent evaporation (solvent: butanone, concentration: 

0.6 wt%). 
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The second investigated self-assembly pathway is the self-assembly during solvent 

evaporation. As shown, BTA 2 is soluble in butanone at room temperature up to a 

threshold concentration of 0.6 wt%. Due to this fact, a BTA 2/butanone system with a 

concentration of 0.6 wt% is able to aggregate into supramolecular nanofibers by self-

assembly during solvent evaporation (Figure 3, C). Thereby, solvent evaporation leads 

to oversaturation effects, which induces the self-assembly. The obtained 

supramolecular nanofibers feature an average fiber diameter of 0.22 µm. These results 

are in agreement with the findings on higher concentrated BTA-solutions, where a very 

similar morphology was formed. Furthermore, at the self-assembly during solvent 

evaporation, structure-property relations regarding the influences of the solvent as 

well as the molecular structure on the resulting supramolecular morphologies were 

investigated. 

In summary, we found, that the solubility of the utilized BTA/solvent system is the key 

factor which determines the self-assembly processing pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 |   S y n o p s i s  

 

 

 

2 . 3  S u p r a m o l e c u l a r  n a n o f i b e r  w e b s  i n  n o n w o v e n  s c a f f o l d s  a s  

p o t e n t i a l  f i l t e r  m e d i a *  

 

In this part of the thesis a solution-based method to prepare polymer-

microfiber/supramolecular-nanofiber composites was developed. Supramolecular 

nanofibers of BTA 1 (molecular structure shown in Figure 4, A) were formed in-situ in 

viscose/polyester nonwoven fabrics, which were used as scaffolds to ensure 

mechanical stability. The fabrics were dipped into BTA/butanone solutions with 

concentrations of 0.4-1.0 wt% of BTA 1 at elevated temperatures. At solvent 

evaporation, the molecules self-assemble to supramolecular nanofibers in the 

openings and voids of the polymer nonwoven scaffold to yield the composites, 

consisting of supramolecular nanofibers and polymer microfibers (Figure 4, B). 

Depending on the concentration of BTA 1 in the starting immersion solution, the 

fraction of filled openings in the fabric as well as the nanofiber density within the 

supramolecular fiber webs can be adjusted. However, the influence on the 

morphology of the supramolecular webs, the nanofiber diameter, and the distribution 

thereof is marginal. 

In Figure 4, C and Figure 4, D the resulting microfiber-nanofiber composites prepared 

from a 0.4 wt% and a 1.0 wt% BTA/butanone solution are shown exemplarily. Starting 

from a 0.4 wt% butanone solution a nanofiber content of 2.8 wt% was obtained in the 

composite, while a BTA/butanone solution of 1.0 wt% resulted in a content of 7.0 wt%. 

The specimen with a content of supramolecular nanofibers of 2.8 wt% reveals an 

uneven filling of the openings by the self-assembled nanofibers, which are rather 

located in individual voids, instead of homogeneously distributed all over the fabric. It 

is remarkable that the supramolecular nanofibers have the tendency to strongly 

adhere to and even wind around the polymer microfibers. The composite with 7.0 wt% 

nanofibers exhibit a much denser nanofiber web compared to the ones with lower 

nanofiber contents. In addition, most of the openings of the nonwoven are filled with 

nanofibers. With increasing amount of supramolecular nanofibers in the scaffolds, the 

surface of the microfiber-nanofiber composites was increased as proven by BET 

measurements of all investigated specimens. In comparison to the blank nonwoven 

fabric, the surface of the composite with a nanofiber content of 7.0 wt% was increased 

fourfold. 

 

 

 

 

 

*  Published in: Small 2013, 9, 2053. 

 Full publication can be found in Chapter 3.4 
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Figure 4. (A) Molecular structure of BTA 1 utilized to prepare the microfiber-nanofiber composites.       

(B) Schematic representation of the in situ formation process of supramolecular nanofibers via self-

assembly resulting in microfiber-nanofiber composites. Blue fibers: nonwoven scaffold; red dots: 

dissolved supramolecular building units; blue dots: solvent; red fibers: supramolecular nanofibers.  

(C+D) SEM micrograph of the microfiber-nanofiber composites obtained from a 0.4 wt% (C) and a 

1.0 wt% (D) concentrated BTA/butanone solution. 

 
The mechanical stability of the supramolecular nanofibers is an important question, 

especially in view of their use as potential filter media. Therefore, different stability 

experiments were conducted at a filter test rig. Hereby, an airstream with a flow 

velocity of 3.0 m/s was applied to the composites and the nanofiber stability was 

determined on the one hand by continuous differential pressure measurements and 

on the other hand by a particle analyzer localized after the filter media to detect fiber 

fragments which might originate from the specimen. In addition, SEM micrographs 

were recorded before and after the test to investigate possible changes in morphology 

microscopically. It was found that all investigated microfiber-nanofiber composites 

were stable at the applied conditions. For supramolecular systems, their stability upon 

an airstream of 3.0 m/s is immense, especially when compared to standard flow 

velocities of vacuum cleaners of 0.25-0.40 m/s at the filter element.  
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A first proof of concept in view of air filtration capability was investigated. Thereby, 

test aerosol particles were applied onto the microfiber-nanofiber composites and the 

filtration efficiency was investigated. While the blank polymer microfiber fabric does 

only separate aerosol particles of 0.2-1.0 µm size to 5 %, the composites feature 

improved filtration efficiencies. The higher the mass fraction of supramolecular 

nanofibers in the investigated concentration regime, the better is the filtration 

efficiency of the specimens. As consequence, filtration efficiencies of up to 85 % for 

1.0 µm sized aerosol particles were achieved with the microfiber-nanofiber composite 

with a content of supramolecular nanofibers of 7.0 wt%. 

 

To conclude, the in-situ preparation of microfiber-nanofiber composites is a beneficial 

alternative compared to established top-down processes (for instance electrospinning) 

to prepare nanofiber-modified filters. The most eminent advantage of the herein 

developed preparation process is the post hoc incorporation of nanofibers in the 

volume of nonwoven fabrics. Further benefits of this process are its simplicity and its 

variability. 
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2 . 4  S t r u c t u r e - p r o p e r t y  r e l a t i o n s  o f  s u p r a m o l e c u l a r  n a n o f i b e r s  

i n  n o n w o v e n  s c a f f o l d s  a s  m e d i a  f o r  a i r  f i l t r a t i o n  

a p p l i c a t i o n s *  

  

The development of improved air filters with supramolecular nanofibers is pushed 

forward in the last part of this thesis. Thereby, nonwoven fabrics were modified with 

several BTAs (Figure 5) under different conditions by means of the immersion process 

which was investigated in the previous manuscript. In this chapter, the focus is set on 

structure-property relations, in particular between the nanofiber morphology and the 

filtration efficiencies. Here, the influence of different concentrations, chemical 

structures, solvents, and different filter setups on the nanofiber web morphology, the 

filtration quality as well as the temperature stability was investigated. Depending on 

the chemical structure of the BTA the nanofiber diameter as well as the density and 

the porosity of the supramolecular networks differ, which in turn affects the filtration 

efficiency and the differential pressure of the filters. The microfiber-nanofiber 

composite with nanofibers of BTA 1 separates aerosol particles most efficiently, while 

the filtration efficiency is reduced to BTA 2 and further to BTA 3. However, the filter 

with BTA 1 nanofibers possesses a relatively high differential pressure and thus the 

following investigations were conducted with BTA 2. 
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Figure 5.  Chemical structures of BTAs 1-3 used to prepare supramolecular nanofiber-modified filters. 

 

Among other structure-property relations, the influence of solvent is discussed here 

for filters modified with BTA 2 nanofibers in detail (Figure 6). The filter prepared from 

ethanol possesses supramolecular fibers with diameters in the micrometer range. 

Furthermore, the voids of the scaffold were filled insufficiently (Figure 6, A). This leads 

to poor filtration efficiency (Figure 6, C). In contrast, homogeneous and fine-pored 

supramolecular nanofiber webs were obtained for the filter prepared from a butanone 

solution (Figure 6, B). As a consequence, this filter features improved filtration 

efficiency, namely almost 80 % for 1 µm-sized aerosol particles. Taking into account 

that the filter thickness is 0.15 mm, the filtration efficiency of the filter prepared from 

butanone is very promising. 

 
 

*  Manuscript draft intended for submission to Journal of Materials Chemistry  

 Full manuscript can be found in Chapter 3.5 
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Figure 6. Top: SEM micrographs of the filters with BTA 2 nanofibers prepared from a butanone (A) and 

an ethanol (B) solution with concentrations of 1.0 wt%, respectively. (C) Filtration efficiencies and 

pressure drops of the prepared filters shown in (A) and (B). Parameters in the filter tests: filter area: 

28.3 cm
2
; flow velocity: 25 cm/s; test aerosol: Iso fine dust (aerosol concentration: about 

6000 particles/cm
3
); testing time: 30 s. 

 

Further, it was demonstrated that the filtration efficiency of the supramolecular 

modified filters could be optimized with increasing filter thickness. Therefore, triple-

layer specimens, which are comprised of three single filters stacked upon each other, 

were investigated (Figure 7, A). SEM micrographs from the top surface of each layer of 

a dust-loaded triple-layer filter (nanofiber content in each layer: 7.6 wt%) are shown in 

Figure 7, B. The micrographs show that coarse dust is separated mainly on the top 

layer of the filter while at the center and bottom layer only fine dust particles can be 

observed. For this triple-layer filter the filtration efficiency was determined to 90 % for 

0.2 µm sized aerosol particles and even 99.4 % for 1.0 µm sized aerosol particles with a 

differential pressure of 894 Pa (Figure 7, C). By decreasing the nanofiber content in 

each layer of the triple-layer filter from 7.6 wt% to 5.8 wt% and further to 4.4 wt%, the 

differential pressure is successively reduced about 90 %. The filtration efficiency, 

however, is just declined about 28 %.  
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Figure 7. (A) Schematic representation of a triple-layer filter in the filter test and (B) SEM micrographs 

taken at the top surface of each layer. The SEM micrographs exemplarily show the dust-loaded surface 

of each layer of the triple-layer filter with mass fractions of supramolecular nanofibers of BTA 2 of 

7.6 wt%, respectively. (C) Filtration efficiencies and pressure drops of the triple-layer filters with mass 

fractions of supramolecular nanofibers of BTA 2 of 7.6 wt%, 5.8 wt%, and 4.4 wt% in each layer. As 

reference, the single-layer filter with a mass fraction of supramolecular nanofibers of BTA 2 of 7.6 wt% is 

shown. Parameters in the filter tests: filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test aerosol: Iso fine 

dust (aerosol concentration: about 6000 particles/cm
3
); testing time: 30 s. 
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In comparison to the single-layer filter with 7.6 wt% nanofibers of BTA 2, the triple-

layer filter with a nanofiber content of 4.4 wt% in each layer possesses similar filtration 

efficiency. But the differential pressure of the triple-layer filter is one third less 

compared to the single-layer filter. Therefore, higher throughputs could be obtained 

with the triple-layer filter resulting in a much less cost-intensive filtration process. 

 

In summary, the filtration efficiency was successfully optimized by means of a 

comprehensive study on structure property relations. Upon the investigated filters, the 

triple-layer filter with the best filtration efficiency even reaches values of HEPA filters. 

By further optimization, supramolecular nanofiber modified filters could be serious 

competitors to conventional prepared filters in industrial air filtration applications. 



P u b l i c a t i o n s  a n d  m a n u s c r i p t s  | 57 

 

 

3 .  P U B L I C A T I O N S  A N D  M A N U S C R I P T S  

 

 

3 . 1  I n d i v i d u a l  c o n t r i b u t i o n s  

 

The work presented in this thesis was carried out at the chair of Macromolecular 

Chemistry I of the University of Bayreuth under the supervision of Prof. Dr. Hans-

Werner Schmidt. In the following, the individual contributions to the publications and 

manuscripts of this thesis are presented. 

 

Controlling the π-stacking behavior of pyrene derivatives: Influence of H-bonding 

and steric effects in different states of aggregation 

Andreas T. Haedler, Holger Misslitz, Christian Buehlmeyer, Rodrigo Q. Albuquerque, 

Anna Köhler, and Hans-Werner Schmidt 

ChemPhysChem 2013, 14, 1818. 

 

The work behind this manuscript was carried out in close cooperation with Christian 

Buehlmeyer and Prof. Dr. Anna Köhler (University of Bayreuth, Experimental Physics II) 

and Prof. Dr. Rodrigo Albuquerque (University of Bayreuth, Experimental Physics IV). 

The synthesis of the model compounds was performed by myself with assistance of 

Doris Hanft and Irene Bauer (technical assistants at the University of Bayreuth). 

Andreas Haedler performed the UV-Vis measurements in solution. The FT-IR 

measurements and the optical microscopy investigations were jointly done with 

Christian Buehlmeyer (EP II) in the framework of his diploma thesis. The time 

correlated single photon counting (TCSPC) measurements and the absorption as well 

as the photoluminescence experiments on the solid films were done by Christian 

Buehlmeyer. Prof. Dr. Rodrigo Albuquerque conducted the simulations. All other 

experimental work (characterization of the compounds, investigation of the thermal 

properties, concentration dependent photoluminescence measurements in solution, 

and SEM investigations of supramolecular aggregates) was performed by myself. The 

draft of the manuscript was equally written by Andreas Haedler and myself. Prof. Anna 

Köhler and Prof. Dr. Hans-Werner Schmidt were involved in interpretations, 

discussions and the finalization of this manuscript. 
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Supramolecular nanofibers - A study on different processing pathways 

Holger Misslitz, Frank Abraham, Klaus Kreger, and Hans-Werner Schmidt  

Manuscript draft intended for submission to Journal of Supramolecular Chemistry 

 

The experimental work presented in this manuscript was performed by Frank Abraham 

(Macromolecular Chemistry I) and myself. Frank Abraham investigated the influences 

of the concentration and the cooling rate on the self-assembly upon cooling. All other 

experiments were conducted by myself, with the exception of the focused ion beam 

experiments, which were performed as service by Werner Reichstein (Bayreuth 

Institute of Macromolecular Research). The interpretations were performed by myself. 

It was also me who wrote the first draft of this manuscript. Dr. Klaus Kreger and Prof. 

Dr. Hans-Werner Schmidt were involved in discussions and the finalization of this 

manuscript in the present form. 

 

Supramolecular nanofiber webs in nonwoven scaffolds as potential filter media  

Holger Misslitz, Klaus Kreger, and Hans-Werner Schmidt  

Small 2013, 9, 2053. 

 

The experimental work and the first interpretation of the data in this manuscript were 

performed by myself with the exception of the BET measurements, which were done 

by Lena Geiling (University of Bayreuth, Inorganic Chemistry I). The first draft of the 

manuscript was written by myself and jointly finalized with Dr. Klaus Kreger and 

Prof. Dr. Hans-Werner Schmidt. 

 

Structure-property relations of supramolecular nanofibers in nonwoven scaffolds as 

media for air filtration applications 

Holger Misslitz, Klaus Kreger, and Hans-Werner Schmidt  

Manuscript draft intended for submission to Journal of Materials Chemistry 

 

The experiments as well as the evaluation of the acquired data were carried out by 

myself. The manuscript was also written by myself. Dr. Klaus Kreger and Prof. Dr. Hans-

Werner Schmidt were involved in discussions and the finalization of this manuscript in 

the present form. 
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Abstract: The performance of opto-
electronic devices built from low 
molecular weight dye molecules 
depends crucially on the stacking 
properties and the resulting coupling of 
the chromophoric systems. In this 
paper we investigate the influence of 
H-bonding amide and bulky 
substituents on the π-stacking of 
pyrene-containing small molecules in 
dilute solution, as supramolecular 
aggregates, and in the solid state. A set 
of four pyrene derivatives was 
synthesized in which benzene or 4-tert-
butyl benzene was linked to the pyrene 
unit either via an ester or an amide. All 
four molecules form supramolecular 
H-aggregates in THF solution at 
concentrations above 1·10-4 molL-1. 
These aggregates were transferred on a 
solid support and crystallized. We 
investigate: the excimer formation 

rates within supramolecular 
aggregates; the formation of H-bonds 
as well as the optical changes during 
the transition from the amorphous to 
the crystalline state and; the excimer to 
monomer fluorescence ratio in 
crystalline films at low temperatures. 
We reveal that in solution 
supramolecular aggregation depends 
predominantly on the pyrene 
chromophores. In the crystalline state, 
however, the pyrene stacking can be 
controlled gradually by H-bonding and 
steric effects. These results are further 
confirmed by molecular modeling. This 
work bears fundamental information 
for tailoring the solid state of functional 
optoelectronic materials. 
 

Keywords: self-assembly • kinetics • 
chromophores • fluorescence • 
molecular modeling 
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Introduction 

 

Supramolecular chromophoric or multichromophoric systems are envisioned to serve 

as active materials in opto-electronic devices, in particular for organic photovoltaics 

(OPVs).[1] For those applications π-conjugated aromatic systems are promising 

candidates. They can transfer charge and energy, and their absorption and 

photoluminescence wavelength can be tuned comparatively easily.[2] Transport as well 

as the optical properties and thus the device performance depend largely on the 

electronic coupling of the π-conjugated systems.[3] Therefore, the distance between 

and the relative orientation of the chromophores are crucial and need to be adjusted 

thoroughly by fine-tuning the molecular structure.[4] To solve this difficult task, tools 

and concepts of supramolecular chemistry are utilized. However, a good 

understanding of the interplay of non-covalent intermolecular interactions like ionic-, 

dipole- or Van-der-Waals interactions and combinations thereof is needed.[5] Especially 

H-bonding, hydrophilic-hydrophobic interactions, and steric repulsion are widely used 

in this context.[6] Furthermore, the influence of those intermolecular interactions on 

the π-π stacking of the active chromophoric system depends also on the state of 

matter and aggregation. 

A well-established chromophore is needed to investigate the complex relationship 

between the molecular structure, the relative orientation of the π-conjugated systems 

and the resulting optic and electronic properties. Pyrene is a suitable candidate as its 

optical behavior is well understood in solution, the aggregated and the solid state.[7] 

Förster assigned the quenching of fluorescence in pyrenes to the formation of 

excimers already in 1955, and Birks later investigated this excimer formation in 

detail.[8] An excimer may be considered as a pair of molecules that, in the ground state, 

are bound together only weakly (e.g. in the solid) or not at all (e.g. in solution), and 

that absorb light as monomers, but that reorient in the excited state and then 

fluoresce as dimers. [9,10] The excited dimer (= excimer) fluorescence is broad, 

unstructured and bathochromically shifted from the monomer fluorescence, and it 

leads to the two monomers in their ground state.[11–13] The strong tendency of pyrene 

to form excimers prevails both in solution and in condensed matter such as amorphous 

films, liquid crystals and crystals.[9,14] Note that in the condensed phase, the pyrene 

chromophores are usually already in close proximity and often, e.g. in the crystal, 

arranged in sandwich-type pairs. However, for the excimer formation, a displacement 

leading to closer and/or differently oriented arrangement is still needed. This excimer 

emission can also be indirectly used to detect the aggregation process of pyrene 

derivatives.[10,15,16] These characteristic properties have been employed in the 

investigation of pyrene-based tweezer molecules[17] and multimolecular aggregates of 

micelles and membranes[18], the gelation detection of organic low-molecular-weight 



P u b l i c a t i o n s  a n d  m a n u s c r i p t s  | 61 

 

 

compounds[19], the inspection of the active sites of enzymes[20], the molecular 

recognition process of artificial receptors[21] and DNA sequences,[22] and in the 

detection of nitroaromatic explosives.[23]  

Herein, we use pyrene derivatives to study the influence of H-bonding and steric 

effects on the coupling behavior of the chromophores in different phases. For that 

purpose a set of four compounds was synthesized comprising of a benzene or a 

4-tert-butyl benzene group connected to the pyrene via a methylene-ester or -amide 

linker (Figure 1). The methylene group breaks the conjugation between the dye and 

the rest of the molecule, hence, the optical properties of the pyrene is not directly 

influenced by the linker and the benzene substituent. However, indirect influence is 

possible due to the potential formation of H-bonds in the case of the amide 

compounds and due to steric effects arising from the additional tert-butyl group.  

 

 
Figure 1. Pyrene derivatives consisting of different linker and substituents separated by a methylene 
group from the chromophore. 

 

 

Results and Discussion 

 

Synthesis and thermal properties 

The synthetic routes to pyrene-based ester derivatives 1a-b and their corresponding 

amide derivatives 2a-b are shown in Scheme 1. (1-Pyrenyl) methanol was reacted with 

benzoic acid chloride or p-(tert-butyl) benzoic acid chloride in chloroform and 

triethylamine as base to obtain the two ester compounds 1a-b. For the amide 

compounds 2a-b the same acid chlorides were reacted with (1-pyrenyl) methylamine 

in dry N-methyl-2-pyrrolidone (NMP) and pyridine as base. All products are insoluble in 

apolar solvents and show moderate solubility in THF, chloroform, dioxane and DMSO. 
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Scheme 1. Synthesis of pyrene derivatives with ester linker 1a-b and amide linker 2a-b. i) chloroform, 

triethylamine, DMAP, 60 °C; ii) NMP, pyridine, 80 °C. 

 

The thermal properties of compounds 1a-b and 2a-b were determined by differential 

scanning calorimetry (DSC). Upon first heating, the ester compounds 1a and 1b exhibit 

melting points (Tm) at 133°C and 140°C, respectively. Both compounds do not 

crystallize upon cooling forming a vitrified supercooled liquid. Consequently, upon 

second heating 1a and 1b feature glass transitions with temperatures (Tg) at 4°C and 

23°C. On further heating, only 1a recrystallizes at 70°C and subsequently melts at 

130°C. As expected, the glass transition temperature is shifted to higher temperatures 

for compound 1b due to the bulky tert-butyl-group. In contrast, the amide compounds 

2a and 2b possess a more pronounced crystalline behavior. Upon first heating the 

melting points were detected at 199°C and 248°C, respectively; while upon cooling 

both compounds crystallize at 123°C and 178°C. Upon second heating 2a features a 

glass transition at 54°C and recrystallize at 114°C indicating incomplete crystallization 

upon cooling. In contrast, compound 2b exhibits complete crystallization upon cooling. 

Hence, to determine its glass transition temperature, an amorphous sample was 

prepared by rapid quenching from the molten state. The first heating curve reveals the 

Tg at 77°C. Similar to the ester compounds, the Tg and the Tm increase with the 

introduction of the tert-butyl-group. A significant difference between the ester and the 

amide compounds are higher Tm (70°C to 100°C) and Tg (50°C) values for the latter. This 

result is a consequence of the formation of intermolecular H-bonds by the amide units. 

A similar shift of Tg and Tm to higher temperatures by substituting ester with amide 

linkages was recently also reported for trisazobenzene derivatives.[24] 
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Table 1. Thermal properties of amide and ester compounds determined from DSC measurements 
(Heating and cooling rate: 20 °Cmin-1 under N2) 

 
Tm / °C 

(first/second heating) 

Tcryst / °C 

(cooling) 

Trecryst / °C 

(second heating) 

Tg / °C 

(on heating) 

1a 133/130 - 70   4[a] 

1b 140/ - - - 23[a] 

2a 199/196 123 114 54[a] 

2b 248/245 178 - 77[b] 

[a] Determined from second heating. 
[b] Determined upon first heating of a previously quenched sample. 

 

Structural influences on the pyrene interaction in diluted to concentrated THF 

solution 

In this section we first focus on discussing the photophysical properties inherent to all 

four pyrene-derivative before then considering the differences resulting from the 

substitutents. The UV-Vis absorption spectra were recorded at different concentrations 

in THF solution and are shown in Fig. 2 exemplary for 1a and for all compounds in the 

supporting information Figure S1. For all absorption measurements 1 mm cuvettes 

were used to account for the high concentrations at which the measurements were 

performed keeping the maximum OD values below 3. All four compounds show almost 

identical absorption characteristics (1a-b, 2a-b), which proves the electronic 

decoupling of the chromophore from the substituent by the methylene spacer. The 

absorption closely resembles that of pyrene. It shows a very weak feature at about 375 

nm and two intense bands, one in the 350-300 nm range and one from 280-240 nm. By 

comparison with the pyrene spectrum these features can be readily assigned. The 

weak 375nm feature is the symmetry-forbidden S0→S1 transition in pyrene, the first 

intense band with a (0-0) peak at 344 nm and vibronic replicas at 326 nm, 313 nm and 

301 nm corresponds to the pyrene S0→S2 transition and the peak at 278 nm is due to 

the pyrene S0→S3 (0-0) transition, with vibronic replicas at shorter wavelength.[25] 

Those characteristics are likewise reported in literature for similar pyrene 

derivatives.[15] 
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An interesting detail concerns the relative intensities of the vibrational peaks at 

different concentrations. The curves in Figure 2 are normalized to the peak maximum 

of the (0-1) transition of S2 at 326 nm, which enables a comparison of the absorption 

intensities originating from the different vibrational transitions A(0-0), A(0-1), A(0-2), and so 

forth. With increasing concentration, A(0-0)/A(0-1) decreases while the ratio of the (0-1) 

transition to higher transitions is almost identical. A similar behavior is also seen for 

the vibrational structure of the third electronic excitation. This is unusual. A relative 

reduction of the 0-0 peak intensity compared to the 0-1 has been reported for the S1 

state of perylene bisimide dyes and of the polymer P3HT. In both cases, it has been 

taken as indication for the formation of weakly interacting H-aggregates.[26,27] Higher 

electronic excitations have not been considered explicitly so far in this framework. For 

the best of our knowledge, this is the first experimental report explicitly describing 

such behavior in the excitation of two higher electronic states. We note, though, that 

Winnik, in a review article, also noticed a reduction in relative 0-0 peak height with 

increasing degree of pyrene association.[10] Winnik assessed this by considering the 0-0 

peak height and comparing it to the intensity of the minimum between the 0-0 and the 

0-1 vibrational peak. In view of todays knowledge on electronic interactions between 

molecules,[26,28] we consider that the reduction of the 0-0 peak in S2 and S3 in the 

pyrene derivatives may be taken to indicate the formation of such a weakly interacting 

H-aggregate, i.e. associations of pyrene molecules that electronically interact already 

in the ground state.  

 

Figure 2. UV-Vis absorption spectra of compound 1a at different concentrations from 1·10-4 to 
1·10-3 molL-1 in THF normalized to the (0-1) transition at 326 nm; the enlargement shows the 10 times 
magnified transition to the first electronically excited state for the concentration of 1·10-4 molL-1. 
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In the same concentration range (1·10-4 molL-1 - 1·10-3 molL-1), dynamic light scattering 

(DLS) measurements were conducted to obtain an indication for the size of the 

aggregates. We used a laser beam of 632.8 nm wavelength to avoid the excitation of 

the pyrene units during the measurements. For all compounds (1a-b, 2a-b) the 

obtained scattering signal implies that at a concentration of 1·10-4 molL-1 in THF, the 

size of any supramolecular aggregates is below the detection threshold, whereas 

particles of at least a few tens of nm in size are detected at concentrations above 

1·10-3 molL-1. From the DLS measurements we cannot give a reliable size-distribution 

of the particles as the supramolecular aggregates are non-spherical in all cases. The 

morphology of the supramolecular aggregates at concentrations of 1·10-2 molL-1 was 

visualized by (SEM) using freeze-dried samples from dioxane (Figure S2.1 and S2.2). 

The steady state photoluminescence (PL) spectra of the compounds in THF were 

investigated at different concentrations ranging from 6·10-6 to 6·10-2 molL-1. The 

spectra are displayed in Figure 3. The evolution of the monomer fluorescence intensity 

and the relative A(0-0)/A(0-1) absorption peak height with concentration is shown in 

Figure 4. All compounds (1a-b, 2a-b) show the same concentration-dependent PL 

properties. At low concentrations, the PL spectrum shows a vibrational structure that 

is characteristic for the S1→S0 fluorescence of molecularly dissolved pyrenes.[29] With 

increasing concentration, a broad unstructured emission appears, centered at around 

470 nm, that is typical for the excimer fluorescence of pyrene. All four compounds 

(1a-b, 2a-b) show an identical excimer fluorescence at a concentration of 6·10-2 molL-1, 

which confirms the formation of the same excimer species in all cases (Figure S3). This 

excimer fluorescence is first barely discernible at a concentration of 6·10-4 molL-1 (and 

more clearly visible at 1·10-3 molL-1) and then increases in intensity with concentration. 

In contrast, when considering the intensity of the monomer fluorescence, the intensity 

increases with concentration until, at 2·10-5 molL-1, it reaches its maximum and then 

reduces drastically. The ratio of A(0-0)/A(0-1) in absorption remains constant up to a 

concentration of 3·10-4 molL-1 and then drops steeply. 

For the interpretation of this data it is important to recall that the three spectroscopic 

signatures, i.e. the monomer fluorescence, the excimer fluorescence and the A(0-0)/A(0-

1) absorption peak height indicate distinct photophysical processes. (i) The sudden 

decrease of the A(0-0)/A(0-1) ratio in absorption gives the concentration at which ground 

state association begins to occur. In Fig. 4, this is highlighted by a grey shading. In 

contrast, (ii) the fluorescence quenching at a much lower concentration marks the 

regime where some interaction takes place in the excited state of the molecule, 

leading to a non-emissive species. This species cannot be the sandwich-type pyrene 

excimer identified by Birks[11] for the following reason. The quantum yield of emission 

of the pyrene monomer and the pyrene excimer observed by Birks are comparable, 

e.g. in cyclohexane solution being 0.65 for the monomer and 0.75 for the excimer and 
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in toluene solution being 0.52 and 0.55, respectively.[25] If the excited monomer were 

to result in an excimer, according to the reaction M+M*→E* (E* denotes the excimer 

(M+M)*), the reduction of monomer fluorescence should be accompanied by a 

concomitant growth of excimer fluorescence. In the experiment, this is, however, not 

the case. We therefore come to the conclusion that the quenching of monomer 

fluorescence in the intermediate concentration regime (1·10-5 molL-1-3·10-4 molL-1) 

indicates the formation of a non-emissive precursor-type species. At this stage, we can 

only speculate on the nature of this species. It is conceivable that the molecular 

approach and orientation required for the formation of an emissive excimer is 

impeded in compounds 1 and 2 by the substituents, so that only a non-emissive 

precursor can be formed. (iii) We now focus our attention on the experimental 

observation that excimer fluorescence is only observable at concentrations in excess of 

6·10-4 molL-1, yet not at lower concentration. From the A(0-0)/A(0-1) ratio we know that 

ground-state associates prevail in this regime, and the DSL measurements tell us these 

evolve into supramolecular aggregates of a few tens of nm for concentrations above 

1·10-4 molL-1. This implies that for the pyrene-derivatives 1 and 2, the formation of 

emissive excimers requires a kind of ground state stabilization that is only available in 

the environment provided by supramolecular aggregates. 

 

Figure 3. Photoluminescence spectra of compound 2b at different concentrations from 6·10-6 to 
6·10-2 molL-1 normalized at 434 nm. 
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Figure 4. Photoluminescence intensities of the (0-0) transition at 375 nm (left) and the ratio of A(0-0)/A(1-0) 
(right) of compounds 1a and 2a at different concentrations. The shaded area depicts the concentration 
range in which the formation of starts to occur. 

 

While the decay of the monomer fluorescence with increasing concentration is almost 

identical for all compounds, a small variation in the ratio of monomer to excimer 

fluorescence intensity can be observed for the different substituents. In order to 

evaluate how the excimer formation is affected by chemical modification, we have 

determined the excimer formation rates using time-resolved photoluminescence 

measurements and analyzing the associated rate equations analogous to the approach 

taken by Birks et al. in 1963. Birks and coworkers described excimer formation as a 

process of the type M+M*⇌E* that takes place with a concentration-dependent rate 

kFM[M] for the forward reaction (excimer formation) and a concentration-independent 

rate kME for the back reaction (excimer dissociation).[12] Here, [M] is the concentration 

of monomers. In addition, the deactivation processes M*→M and E*→M+M are 

considered with rates kM and kE, respectively. After pulsed excitation, the decay of M* 

and E* is then described by the rate equations d[M*]/dt=−(kM+kEM[M])[M*]+kME[E*] 

and d[E*]/dt=−(kE+kME)[E*]+kEM[M*]. These two coupled differential equations can be 

solved to give two concentration-dependent decay constants λ1 and λ2 from which the 

excimer formation rate kEM can be extracted by a linear fit to the concentration-

dependence since λ1+λ2=kM+kE+kME+kEM[M].[12]
 

For the pyrene derivatives investigated here, we need to consider that the excimer is 

evidently not formed by the association of two monomers but that it is preceded by 

the formation of ground-state associates. As we have no experimental information on 

the number of electronically interacting molecules in these associates, we take the 

heuristic approach of considering dimers. The excimer formation is then described as 

D+D*⇌E*+D with kED[D] and kDE being the forward and back reaction rate. The 
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deactivation processes are D*→D and (E*+D)→(D+D) with rates kD and kE, respectively. 

The decay rates can be formulated and analyzed analogously to the Birks-1963 model, 

d[D*]/dt=−(kD+kED[D])[D*]+kE[(E*+D)] and d[(E*+D)]/dt=−(kE+kDE)[(E*+D)]+kE[D*]. The 

signals to monitor as function of concentration are then the fluorescence of the (dimer 

stabilized) excimer (E*+D) at 470 nm and the fluorescence of the excited dimer D*. 

What is the spectral signature of the dimer fluorescence? Since the dimer is of a 

weakly interacting H-aggregate type, as suggested by the absorption spectra, the 

emission is at the same spectral position than the monomer emission, albeit of a 

different, i.e. weaker oscillator strength. The signal to monitor is therefore the 

emission at 400 nm.  

We have thus measured the photoluminescence decay of the compounds in THF at 

different concentrations ranging from 2·10-4 molL-1 to 6·10-2 molL-1 using a time-

correlated single photon counting (TCSPC) set up. The chromophores were excited 

with a 375 nm laser and the time-dependent spectra were recorded at 400 nm and at 

485 nm. The typical change in the fluorescence decays with increasing concentration is 

shown in Figures 5 for compound 2a, along with the concentration-dependence 

obtained for the decay constants λ1 and λ2. The decay curves show a build-up of the 

excimer emission (grey curve) at short times, e.g. below 50 ns at 5.7·10-4 molL-1 and 

below 10 ns at 6·10-2 molL-1, followed by a mono-exponential decay. The dimer 

emission at 400 nm (black curve) also decays mono-exponentially. The decay of the 

dimer fluorescence (black curve) becomes faster with increasing concentration as the 

formation of excimers gets more likely. The excimer fluorescence (grey curve) 

increases in the beginning due to the time-delayed formation of the excimer species 

after the initial excitation of the monomer. The excimer fluorescence reaches, as 

expected, its maximum faster with increasing concentration. From those curves, the 

decay constants λ1 and λ2 can be determined and can be plotted against the 

concentration of monomers (= twice the dimer concentration) (Figure 5). The 

dependence of their sum on the concentration agrees well with the linear relationship 

suggested by the kinetic model and gives, a posteriori, further support to the heuristic 

approach taken. Fitting the data with the equations from Birks et al. yields the relevant 

values of kED (Table 2). The entire approach is portrayed in more detail in the 

supporting information (Figure S4, S5).[12] 

The excimer formation rates (kED) found in this way for all four compounds (1a-b, 2a-b) 

for the formation of excimers from pre-existing dimers are between 6.9·109 and 

3.9·109 Ls-1mol-1. This agrees well with the value of 6.7·109 Ls-1mol-1 determined by 

Birks et al. for the formation of excimers from individual monomers in the unaltered 

pyrene[12]. Within the four compounds the ones with the bulky tert-butyl group 1b and 

2b show the lowest excimer formation rates of approximately 3.9·109 Ls-1mol-1. We 

attribute this to sterical hindrance. For both, the –H and –tBu substituted compounds 
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the one with the ester linker 1a and 1b show higher excimer formation rates than the 

corresponding amide compound 2a or 2b. Hence, the amide linker does not favor the 

formation of an excimer but hinders it. 

 

 

Figure 5. Time resolved photoluminescence transients of compound 1a at 5.7·10-4 molL-1 (left) and 
6·10-2 molL-1 (middle) showing the fall-off of the emission at 400 nm (black) and at 485 nm (grey). Right 
top: Fall-off rates �� and �� of the emission at 485 nm (□) and at 400 nm (■) at different concentrations 
for compound 1a fitted according to Birks. Right bottom: Sum of λ� and λ� plotted against the 
concentration yielding the expected linear dependency. 

 

Table 2. The excimer formation rates for pyrene and the four compounds 1a-b and 2a-b determined 
from the TCSPC measurements. 

 
Pyrene

[a]
 1a 2a 1b 2b 

kED
 

[109· Ls-1mol-1] 
6,7 6,88 5,34 3,96 3,96 

[a] Value was determined by Birks et al.[12] 

 

We now summarize the insight gained from the spectroscopic investigations in 

solution. At low concentrations, i.e. below 1·10-5 molL-1, the four compounds (1a-b, 

2a-b) are molecularly dissolved in THF. In an intermediate concentration range ( about 

1·10-5 molL-1- 3·10-4 molL-1), non-emissive intermediate species are formed. They 

quench the monomer fluorescence yet do not impinge on the absorption spectra, 

implying that they may be viewed as a non-emissive precursor to an excimer state. At 

increased concentrations, i.e. above 3·10-4 molL-1 weakly interacting ground state H-

aggregates are formed. In contrast to unaltered pyrene, in the compounds (1a-b, 2a-b) 
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with the comparatively large side chains, the formation of emissive excimers requires a 

stabilization evidently provided by the aggregate. A significant influence of the 

structural variations, namely the linker moiety (ester or amide) and the sterical 

hindrance of the substituted benzene unit on the optical and aggregation properties in 

THF cannot be observed. Therefore, we conclude that the pyrene chromophores, 

which are coherently present in all compounds, are the crucial and determining part of 

the compounds in this concentration regime. Only a closer look at the excimer 

fluorescence and the excimer formation rates reveal the influence of the variable 

substitutions on the pyrene chromophore. The ester compound 1a is most feasible to 

form excimers. The introduction of the tert-butyl group strongly hinders the excimer 

formation. The same effect is observed much weaker when the ester group is replaced 

with an amide linker. The influence of the linker and the bulky tert-butyl group on the 

pyrene chromophore is just secondary and only observable at concentrations where 

supramolecular aggregates are present. 

 

Structural influences on the pyrene interaction in thin films 

Thin films were prepared as detailed below and investigated in two morphologies, 

an optically isotropic one and a crystalline one, by using polarized optical microscopy 

(POM), absorption and fluorescence spectroscopy, and in the case of the amide 

compounds also by FT-IR spectroscopy. The POM images of the crystalline films are 

presented in the supporting information (Figure S7). 

Optically isotropic films: All compounds (1a-b, 2a-b) were spin coated from THF 

solution at a concentration of 5·10-2 molL-1. At this concentration supramolecular 

aggregates are present in solution as previously demonstrated in DLS experiments. 

The fresh films were optically transparent and no crystalline structure could be 

observed by POM. The absorption spectra are similar for all compounds (Figure S6) 

and closely resemble that observed in concentrated solution, except for a slight red-

shift. Interestingly, the A(0-0)/A(0-1) ratio is slightly lower in concentrated solution 

(about 1.0 for concentrations of 1·10-3 molL-1 and above) than in the thin film (about 

1.1). This implies that electronic coupling within aggregates is slightly stronger in 

solution than in the film, presumably because the local geometry can be optimized 

more in solution as compared to film. The room-temperature photoluminescence 

spectra of the fresh films of all investigated compounds do not show any monomer 

fluorescence. Instead, they show only the same excimer fluorescence that was 

already observed in concentrated solution, except that the center wavelength shifts 

from 470 nm in solution to 500 nm in the film due to the different dielectric constant 

(Figure S8).  

From the solution measurements we know that, in contrast to unsubstituted pyrene, 
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the substituted derivatives (1a-b, 2a-b) only show excimer emission when the 

excimer geometry is stabilized within a ground state associate. Thus we can interpret 

the thin film PL data such as to indicate the presence of aggregates in the film. This is 

not surprising. For example, for the polymers poly(9,9’-dioctyl-fluorene) (PFO) and 

poly(3-hexylthiophene) (P3HT), it is well known that aggregate formation is enhanced 

in thin films upon spin-coating when aggregates already existed in the solution used. 
[30] The absence of any monomer fluorescence suggests that either no monomers are 

present, or, any excited monomer state is quenched by energy transfer either to non-

emissive states such as the states observed in solution at intermediate concentration 

or to emissive excimers.  

Crystalline films: The PL spectra are different when the films are processed such as to 

obtain a crystalline structure. To induce crystallization, the fresh films of amide 2a and 

amide 2b were annealed above Tg at 80°C and 130°C. The observation of light 

transmission under crossed polarizers in an optical microscope confirms the presence 

of crystalline structures in the film (Figure S7). To obtain further insight into the 

structural changes associated with the crystallization process, FT-IR studies were 

performed on the films of the amide compounds (2a-b) in the isotropic and crystalline 

state. For both compounds, a shift of the N-H and the carbonyl stretching vibration to 

lower wave numbers as well as an increase in the IR absorption intensity is observed 

during the crystallization process. Both changes in the FT-IR spectra strongly indicate 

the formation of strong hydrogen-bonds.[31] The shift of the N-H and carbonyl 

stretching vibration from 3312 cm-1 to 3281 cm-1 and from 1637 cm-1 to 1629 cm-1, 

respectively, is shown exemplarily for compound 2a in Figure 6. Amide 2b exhibits the 

same trend but much less pronounced. This indicates weaker hydrogen-bonds due to 

the steric hindrance of the tert-butyl group (Figure S10). 

For the ester compounds, a different approach needed to be taken to obtain 

crystalline films. Unlike the amide compounds, the fresh films of the ester compounds 

exhibited dewetting at elevated temperatures. Therefore, they were aged at room 

temperature in the dark for several months to induce crystallization, as confirmed by 

POM. Hence, in all cases we were able to convert the optically isotropic fresh film into 

one containing crystallites. The aging and annealing processes were conducted until a 

stable state was achieved and no further changes could be observed in the POM, FT-IR 

and photoluminescence spectra at room temperature. 

For all compounds except 1b, the photoluminescence spectra change upon 

crystallization. During this process, the excimer emission is reduced and 

simultaneously a structured higher-energy emission rises. This is exemplarily shown in 

Figure 7 for ester 1a. 
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Figure 6. Enlargements of the relevant parts of the FT-IR spectra of a thin film of compound 2a during 
the aging process resembling different degrees of crystallization; the N-H stretching vibration (left: 
around 3300 cm-1) and the carbonyl stretching vibration (right: around 1630 cm-1) are represented. 

 

 

Figure 7. Absorption (right) of a amorphous thin film of compound 1a directly after spin coating and
photoluminescence spectra (left) of a thin film of compound 1a during the aging process resembling 
different degrees of crystallization. 
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relative fraction of excimer emission compared to the higher energy emission is higher 

in compounds 1b and 2b containing the sterically demanding tert-butyl group 

compared to compounds 1a and 2a, that only contain a –H atom instead. The relative 

amount of excimer emission is also higher in the ester-containing compounds (1a and 

1b) compared to the amide-containing compounds (2a and 2b). 

To understand the changes that take place in the electronic structure upon 

crystallization, let us first recall that compound 2a allows for the most ordered 

structure due to the effect of the H-bonding amide moieties. On the other hand, the 

sterically demanding tert-butyl group and the absence of the stabilizing amide group 

implies that compound 1b is likely to have the least ordered structure. This correlates 

with the fact that compound 2a shows the lowest relative amount of excimer emission 

while 1b exhibits purely excimer emission. Evidently, excimer formation is prevented 

upon crystallization, while it is promoted by aggregates. This is different to the 

situation in unsubstituted pyrene, where excimers are formed in the crystalline state. 

In fact, in pyrene crystals, the basis of the unit cell is formed by sandwich-type dimer 

pairs of pyrene-molecules that slip horizontally upon photoexcitation to form an 

excimer.[9,25] 

How can we understand the absence of excimer emission in crystallites of the 

substituted pyrene-derivatives? The aggregates prevailing in the optically isotropic film 

and the crystallites in the films evidenced by the POM patterns differ in the degree of 

structural order. We propose that the aggregates that are formed in solution or in the 

non-equilibrium structure of a spin-cast film will be subject to a certain amount of 

structural variation with regard to molecular orientation or distance. Further, 

intermolecular distance between two pyrenes may vary at the interface between the 

ends of two aggregates. Some of these local geometries may be suitable for excimer 

formation after photoexcitation. As mentioned above, the fact that in freshly spun 

films only excimer fluorescence is observed implies that there is an excimer-site within 

the exciton diffusion range of any photoexcited chromophore. In contrast, the 

structure within the crystallites is, by definition, more regular and, as experiment tells 

us, of a kind that does not allow for excimer formation. It seems that the horizontal 

slip movement that results in excimers in unsubstituted crystalline pyrene is impeded 

by the large sidechain in substituted crystallized pyrene. Thus, upon crystallization, the 

number of sites that allow for excimer formation therefore reduces, as manifested in 

Figure 7.  
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Figure 8. Photoluminescence spectra at different temperatures from room temperature to 5 K of the 
four compounds 1a (A), 1b, (B), 2a (C) and, 2b (D) in crystallized thin films. For a comprehensive 
representation, graph A was normalized at 2.73 eV, graph B at the maximum intensity, graph C at 
2.78 eV and, graph D at 2.93 eV. For compound 1a the decrease of the excimer fluorescence and the 
increase in monomer fluorescence with reduced temperature are indicated with arrows. This is also 
commonly observed for compounds 2a and 2b. 

 

In this framework, we can interpret the results of Figure 8. For compound 1b, which is 

structurally most disordered, excimer emission is observed at all temperatures even 

when the light transmission in the POM indicates that crystallites have been formed. 

This leads to two conclusions. First, in this compound, the remaining structural 

inhomogeneity is sufficient to result in sites for excimer formation and / or monomer 

quenching within the exciton diffusion range of each chromophore. Second, since 

excimer emission occurs at 5 K, it does not require any activation energy. This confirms 

that sites with molecules already in the excimer geometries must be pre-existing. In 

passing we point out that the increasing blue-shift of the high-energy emission tail with 

increasing temperature is an exceptionally nice example for the increase in thermal 

equilibrium energy in a Gaussian density of states.[32] We now turn to compounds 1a, 

2a and 2b. At 5 K, these compounds show a structured emission with a 0-0 peak at 

400 nm and a 0-1 peak at about 425 nm. The relative intensity of the vibrational peaks 

varies between the compounds. This emission can be attributed to the pyrene 
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monomer unit, possibly slightly modified by weak H-type interaction. (Since the S1→S0

transition in pyrene is symmetry-forbidden, one cannot distinguish whether the 0-0 

peak height is modified due to symmetry-selection rules or due to weak H-type 

interaction). At 5 K, spectral diffusion of singlet excitons is reduced. Evidently, 

structural order in the crystalline compounds 1a, 2a and 2b is increased such that 

there are no sites with excimer geometry within reach at 5 K. At elevated 

temperatures, the exciton diffusion range increases so that some excimer sites can be 

populated and a spectrum showing both, monomer and excimer fluorescence results. 

 

Structural influences on the pyrene interaction – Molecular Modeling 

The conclusions drawn so far on the basis of spectroscopic data are well supported by 

molecular modeling of the crystallite structure. In order to assess, how the molecules 

pack, the geometry of the monomers of the esters 1a, 1b and the amides 2a, 2b were 

optimized using the B3LYP functional and basis set 6-31G. The optimized structures, 

together with the predicted partial charges, were used to build and optimize the 

structure of the aggregates by means of Molecular Mechanics (MM), from which 

qualitative results could be obtained (Figure 9).  

As expected, the π-π stacking of the pyrene moieties is the dominant driving force 

towards self-aggregation. This can be seen from the almost parallel orientation of the 

chromophores in all cases. The distance between the pyrene units is approximately 

3.50 Å in the calculated hexamer aggregates, which is in good agreement with crystal 

structure data of stacked pyrenes featuring a distance of 3.53 Å.[29] In the case of the 

amide compounds 2a and 2b additional H-bonds are observed in the MM calculations 

with O-H distances of 1.92 Å and 2.17 Å, respectively. The longer O-H distance of 

compound 2b indicates weaker H-bonds than in the case of compound 2a which can 

be attributed to the additional bulky tert-butyl group. This is in perfect agreement with 

the previous results from the FT-IR measurements. Furthermore, the sterically 

demanding tert-butyl group of compound 2b enforces a slight twist in the molecular 

structure within the calculated hexamer aggregate. 
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Figure 9. Molecular mechanics geometry optimization of hexamer aggregates of the esters 1a (A) and 1b 
(B) and the amides 2a (C) and 2b (D) with the corresponding top views of two stacked molecules. The 
two orange lines represent the twist of two adjacent pyrene chromophores. Additionally, the distance 
between two pyrene chromophores and in the case of the amide compounds 2a-b the O-H distance of 
the H-bonding amide moieties are stated. The geometry of the monomers was optimized with DFT. 

 

Although in general π-π stacking of the pyrene moieties is present in all calculated 

hexamer aggregates, slight differences can be observed in the relative orientation of 

the chromophores. While ester compound 1a features an almost perfect π-π stacking 

of the pyrene units an increasing parallel offset is observed for compound 2a and 2b. 

Additionally, in the hexamer aggregate of compound 1b a rotational twist of adjacent 

pyrene units is present (orange lines Figure 9). In compound 1a the π-π stacking of the 

pyrene chromophores is the only intermolecular interaction. The columnar stacking is 

increasingly disturbed by the introduction of the amide and the tert-butyl moiety. The 

results from the molecular modeling calculations are in good agreement with the 

previous discussion on thin film properties, whereas the solution properties differ. In 

the film the steric demand and disorder introduced by the tert-butyl group 

(Figure 9B,D) correlates well with the enhanced propensity to form excimers which 
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was already observed in the low temperature photoluminescence measurements 

(Figure 8B,D). Compound 1b, which has, as already assumed previously, the least 

ordered structure is unique in two ways - it exhibits a strong rotational twist of 

adjacent pyrene chromophores and shows exclusively excimer fluorescence even after 

crystallization and at very low temperatures. On the other hand, H-bonding amide 

groups as well as the lack of the sterically demanding tert-butyl group promote a more 

ordered structure reducing the propensity to form excimers in the crystalline state. 

Note that in the crystalline state, unlike the unchanged pyrene, the investigated 

molecules (1a-b, 2a-b) do not arrange in a sandwich-type structure but seem to exhibit 

equidistance. 

 

Conclusion 

In conclusion, we were able to understand the influence of H-bonding amide linkers 

and sterically demanding tert-butyl groups on the π-stacking of pyrene chromophores 

in different states of matter. This was achieved by carefully studying a set of four 

pyrene derivatives exhibiting either an ester or amide linker and with or without a 

bulky tert-butyl substituent. The four compounds were investigated from molecularly 

dissolved solutions up to concentrations where supramolecular aggregates are formed, 

as well as in spin-cast films in a virgin and in a crystallized state. 

The influence of the linker and the steric hindrance on the pyrene stacking gets more 

significant the closer the molecules are forced together. In dilute solution up to the 

threshold concentration for the formation of aggregates the molecular behavior is 

independent of the variable groups, as all four compounds show identical spectra and 

behavior. The four compounds differ, however, from unsubstituted pyrene. Whereas 

unsubstituted pyrene readily forms excimers in solution from monomers, in the 

substituted derivatives excimer formation requires additional stabilization within 

aggregates. The rate of excimer formation depends on the nature of the sidechain. 

While the excimer formation rate in the ester compound 1a is comparable to that of 

unsubstituted pyrene, excimer formation proceeds slower with the amide linker of 

compound 2a, and is reduced even more by the bulky substituents of 1b and 2b.  

In thin films we find that excimers are readily formed within the supramolecular 

aggregates present in freshly spin-cast films, yet that excimer formation becomes 

suppressed by crystallization. Such crystallization can be induced by heating the amide-

containing compounds, which develop intermolecular H-bonds, as well as by aging at 

room temperature in the case of the ester compounds. The amount of structural order 

in the crystalline state is strongly dependent on the variable groups. H-bonding amide 

groups in contrast to ester groups promote a more ordered structure, while the 

sterically demanding tert-butyl substituent hinders a highly ordered packing of the 
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molecules. In the case of compound 1b this leads to a strong rotational twist of 

adjacent pyrene moieties and an enhanced propensity to form excimers in the 

crystalline structure. Compound 2a on the other hand favors a highly ordered packing 

resulting in the least amount of excimer fluorescence of all compounds. 

With this variety of experiments we were able to understand the molecular behavior 

and the influence of the variable groups on the pyrene stacking in different states of 

matter in great detail. This study clearly points out how crucially the molecular design 

can affect the performance of chromophoric systems. 

 

Experimental Section 

Materials and methods:  

Solvents were distilled and when necessary dried according to standard procedures. All 

starting materials were obtained from Aldrich, Alfa Aesar, Fluka or Riedel-de Haën and 

used without further purification. 1H-NMR spectra were recorded on a Bruker Avance 

300 spectrometer. Mass spectra were recorded on a Finnigan MAT 8500 apparatus (EI, 

70 eV) using direct injection mode. Elemental analysis (C, H, N) was carried out with an 

EA 3000 instrument (HEKAtech). 

General synthetic route to pyrenyl substituted esters 1a-b:  

1-Pyrenyl-methanol (2.5 g, 10.8 mmol) were dissolved in chloroform in a schlenk tube 

under inert gas. Triethylamine (1.8 mL) and 4-dimethylaminopyridine (DMAP) (50 mg) 

were added. The solution was cooled to 0°C and benzoic acid chloride (12.0 mmol) was 

added dropwise. The reaction mixture was boiled for 15 h. After cooling to room 

temperature, the yellow mixture was filtered (Alox N) and washed with chloroform. 

The solvent was evaporated and the raw product was dissolved in dichloromethane 

and extracted subsequently with aqueous HCl (2N), aqueous NaHCO3 (5 %) and water. 

The solution was dried over Na2SO4 and the solvent was evaporated in vacuum.  

1a: Yield 2.9 g of a yellow powder (92 %, 8.9 mmol); Rf=0.76 (Hexane/THF 2:1);        

m.p. 133°C; 1H NMR (300 MHz, [D6]DMSO, 25°C, TMS): δ=6.11 (s, 2H), 7.50 (m, 1H), 

7.64 (m, 1H), 7.98 (m, 1H), 8.08-8.49 ppm (m, 9H); IR: ν˜=1709 cm-1 (C=O); UV/Vis 

(THF): λmax (ε)=344 nm (31924 mol-1dm3cm-1); elemental analysis calcd (%) for C24H16O2 

C 85.69, H 4.79, O 9.51; found: C 85.55, H 5.07, O 9.17. 

1b: Compound 1b was recrystallized from toluene. Yield 1.8 g of a yellowish powder 

(43 %, 4.6 mmol); Rf=0.83 (Hexane/THF 2:1); m.p. 140°C; 1H NMR (300 MHz, 

[D6]DMSO, 25°C, TMS): δ=1.52 (s, 9H), 6.09 (s, 2H), 7.50 (d, J=8.4 Hz, 1H), 7.90             

(d, J=8.4 Hz, 1H), 8.08-8.46 ppm (m, 9H); IR: ν˜=1717 cm-1 (C=O); UV/Vis (THF):          
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λmax (ε)=344 nm (32819 mol-1dm3cm-1); elemental analysis calc (%) for C28H24O2:            

C 85.68, H 6.16, O 8.15; found: C 85.66, H 5.95, O 8.39. 

General synthetic procedure to pyrenyl substituted amides 2a-b:  

1-Pyrenyl-methyl-amine-hydrochloride (2.5 g, 9.4 mmol) was suspended in N-methyl-

2-pyrrolidone (NMP) in a schlenk tube under inert gas. Dry pyridine (20 mL) and LiCl 

(0.05 g) was added and the mixture was stirred for 30 min. The solution was cooled to 

0°C and benzoic acid chloride (9.4 mmol) was added dropwise and the reaction 

mixture was stirred for 2 h at 70 °C to yield a yellowish solution. After cooling to room 

temperature, the mixture was precipitated in ice water (600 mL). The mixtures were 

filtered to retrieve the solid, which was washed with water and dried under vacuum at 

80°C. 

2a: Compound 2a was recrystallized from ethyl acetate/hexane mixture (1:1). Yield 

3.1 g of a white powder (98 %, 9.2 mmol); Rf=0.22 (THF/Toluene 1:20); m.p. 199°C; 1H 

NMR (300 MHz, [D6]DMSO, 25°C, TMS): δ=5.24 (d, J=5.6 Hz, 2H), 7.45-7.54 (m, 3H), 

7.93-7.96 (m, 2H), 8.04-8.54 (m, 9H), 9.25 ppm (t, J=5.6Hz, 1H); IR: ν˜=1625 (C=O), 

3266 cm-1 (N-H); UV/Vis (THF): λmax (ε)=344 nm (29098 mol-1dm3cm-1); elemental 

analysis calcd (%) for C24H17NO: C 85.95, H 5.18, N 4.18, O 4.77; found: C 85.91, H 5.07, 

N 3.79, O 5.04. 

2b: Compound 2b was recrystallized from toluene. Yield 2.6 g of a white powder (71 %, 

6.6 mmol); Rf=0.31 (THF/Toluene 1:20); m.p. 248°C; 1H NMR (300 MHz, [D6]DMSO, 

25°C, TMS): δ=1.29 (s, 9H), 5.24 (d, J=5.7 Hz, 2H), 7.49 (d, J=8.2 Hz, 2H), 7.89                 

(d, J=8.2 Hz, 2H), 8.06-8.53 (m, 9H), 9.18 ppm (t, J=5.7 Hz, 1H); IR: ν˜=1633 (C=O), 3311 

cm-1 (N-H); UV/Vis (THF): λmax (ε)=344 nm (31324 mol-1dm3cm-1); elemental analysis 

calcd (%) for C28H25NO: C 85.90, H 6.44, N 3.58, O 4.09; found: C 85.51, H 6.07, N 3.70, 

O 4.76. 

Differential Scanning Calorimetry (DSC):  

The thermal properties were investigated by DSC measurements with a PERKIN-ELMER 

DSC7 (standard heating rate: 20 K/min) utilizing 10 mg of the compounds.  

Dynamic Light Scattering (DLS):  

DLS was performed on an ALV DLS/SLS-SP 5022F compact goniometer system with an 

ALV 5000/E cross-correlator and a He-Ne laser (632.8 nm). All measurements were 

performed at concentrations of 1·10-4 molL-1, 1·10-3 molL-1, and 1·10-2 molL-1 of the 

four compounds 1a-b and 2a-b in THF. 

Thin film preparation:  

THF solutions (concentration: 5·10-2 molL-1) of the four compounds were spin coated 

on spectrosil or silicon wafer substrates (30 s, 1020 rpm). 
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UV-Vis spectroscopy:  

UV-Vis spectra on solution and thin film samples were recorded on a JASCO V-670 

spectrophotometer. For the measurements in THF the path length of the cuvettes was 

1 mm. The extinction coefficient of the 0-0 transition to the S2 state was for all 

compounds about 5·104 Lmol-1cm-1 in the molecularly dissolved state at 1·10-4 molL-1 

which results in an OD of 0.5. The further increase of the concentration aggregation 

occurs and the extinction coefficient is substantially reduced so that the OD values are 

still below 3. Note also that only the extinction coefficients of the two 0-0 transitions 

to the S2 and S3 states are reduced due to aggregation at higher concentrations, while 

the others remain unchanged. 

Photoluminescence spectroscopy in solution:  

For the photoluminescence study THF solutions of the compounds were prepared and 

investigated with a FluoroMax 3 spectrometer at an excitation wavelength of 344 nm. 

Photoluminescence spectroscopy on thin films:  

The photoluminescence measurements of the thin films were performed on a home-

built setup. An argon laser (Coherent Innova 300C) with wavelengths of 354 nm and 

361 nm was used for the excitation and a CCD-camera (Andor iDus DU420) was used as 

detector. 

Time-correlated single photon counting (TCSPC) measurements:  

The TCSPC measurements were conducted on a FluoTime 200 setup from PicoQuant. 

The samples were excited with 375 nm laser pulses and the resulting fluorescence was 

detected with a MCP-PMT detector from Hamamatsu. 

Optical microscopy:  

The spin coated thin films were investigated between crossed polarizers on an optical 

microscope (Leica DMRX) equipped with a hot-stage (Mettler, model FP82TM). 

Preparation of freeze dried samples:  

Supramolecular aggregates of the four compounds were prepared in dioxane 

(concentration: 1·10-2 molL-1) by heating to dissolution and subsequent cooling to 

room temperature. One drop of the mixture was given on a DSC pan, frozen in liquid 

nitrogen/pentane mixture and subsequently dried at high vacuum (0.007 mbar). 

Scanning electron microscopy (SEM):  

The samples were coated using platinum (about 1.4 nm) in a Cressington sputter 

coater 208HR. The SEM micrographs were recorded on a LEO 1530 FE-SEM (Zeiss, 

Jena) with Schottky-field-emission cathode and an in-lens detector. 
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FT-IR spectroscopy:  

The infrared measurements were performed on a Perkin Elmer FT-IR Spectrum 100 

spectrometer. The solution measurements were conducted in THF solutions at 1·10-2 

molL-1 using a NaCl cell of 0.5 mm diameter. For the measurements on thin films, the 

films had to be spin coated on silica wavers (30 s, 1020 rpm). The resulting films were 

measured at the ATR unit of the spectrometer. 

Modeling:  

Initially a conformational search was carried out to know the most probable 

conformation of the molecules 1a, 1b, 2a and 2b. DFT calculations were carried out for 

those compounds using the functional B3LYP and basis set 6-31G for all atoms and the 

program Gaussian03 was used. No constraints in the geometry optimizations were 

applied. The optimized geometries were checked by calculation of the vibrational 

spectra, where no negative frequencies were found. The optimized geometries and the 

partial charges obtained from the DFT calculations were used in order to build 

aggregates containing 6 monomers each. The geometries of the aggregates were then 

optimized using the Molecular Mechanics and considering explicitly the atomic charges 

(MM+ force field, Hyperchem 7.5 program). 
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Figure S1. Absorption spectra of the four pyrene derivatives 1a-b and 2a-b in THF at 6·10-4 molL-1 
exhibiting the excitation from the electronic ground state to the 1st and 2nd excited state with respective 
vibrational fission. 
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Figure S2.1. Scanning electron microscopy images of supramolecular structures from dioxane solutions 
after freeze-drying (concentration: 1·10-2 molL-1) of the esters 1a (left: A, B) and 1b (right: C, D); the 
bottom micrographs show a fivefold higher magnification. 
 

 
Figure S2.2. Scanning electron microscopy images of supramolecular structures of dioxane solutions 
after freeze-drying (concentration: 1·10-2 molL-1) of the amides 2a (left: A, B) and 2b (right: C, D); the 
bottom micrographs show a fivefold higher magnification. 
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Figure S3. Excimer fluorescence spectra of the four compounds 1a-b and 2a-b at 6·10-2 molL-1 in THF. 
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Figure S4. Time resolved photoluminescence spectra of compound 1a (left) and 2a (right) at different 
concentrations 5.7·10-4 molL-1 (top), 1.2·10-2 molL-1 (middle) and, 6·10-2 molL-1 (bottom) shown for the 
monomer (black) and the excimer fluorescence (grey). For compound 2a the fits are shown from which 
λ1 and λ2 are derived. 
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Figure S5. Left: Excimer (□) and monomer (■) fluorescence fall-off rates at different concentrations for 
compound 1a-b and 2a-b (from top to bottom) fitted according to Birks. Right: Sum of the two fall-off 
rates plotted against the concentration yielding the expected linear dependence. 
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Figure S6. Absorption spectra of the four compounds 1a-b and 2a-b in optically transparent thin films. 
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Figure S7. Optical micrographs taken between two crossed polarizers of the ester compounds 1a and 1b 
after aging at room temperature for two months (top) and the amide compounds 2a and 2b after 
annealing at 80°C and 130°C (bottom). 
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Figure S8. Excimer fluorescence of the fresh prepared thin films exemplarily shown for compound 1a 
(___) compared with the corresponding fluorescence spectrum in THF at 6·10-3 molL-1 (……). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2
700 650 600 550 500 450 400

1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4

 

N
or

m
al

iz
ed

 in
te

ns
ity

 1a Spincoated film
 1a THF solution (c=6⋅10-3mol/l)

Wavelength / nm

Energy / eV



94 |   P u b l i c a t i o n s  a n d  m a n u s c r i p t s  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S9. Photoluminescence spectra of thin films of compound 1b directly after processing and after 
10 days at room temperature (top left), of compound 2a directly after processing and after 1 h at 80°C 
(top right), and of compound 2b directly after processing and after 1.5 h at 180°C (bottom). 
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Figure S10. Enlargements of the relevant parts of the FT-IR spectra of a thin film of compound 2b during 
the aging process directly after processing, after 2 h and, after 7 h at 140°C resembling different degrees 
of crystallization; the N-H stretching vibration (left: around 3300 cm-1) and the carbonyl stretching 
vibration (right: around 1630 cm-1) are represented. 
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Abstract: 1,3,5-Benzenetrisamides 

(BTAs) are one of the simplest and well 

investigated motifs in supramolecular 

chemistry. It is known that the resulting 

supramolecular morphologies can be 

varied by several self-assembly 

conditions. However, detailed studies 

how to control the self-assembly of 

BTAs towards desired morphologies are 

rarely investigated. In order to control 

the nanofiber morphology of BTAs, 

herein, we compare two different self-

assembly processing pathways from 

solution. Self-assembly upon cooling at 

a constant concentration and 

subsequent solvent evaporation 

represents the first pathway. In this 

part, two BTA/solvent systems, which 

differ in solubility, were compared. The 

second pathway is the self-assembly 

during solvent evaporation at constant 

temperature. We found out, that the 

key factor which mainly determines the 

occurring self-assembly is the solubility 

of the BTA/solvent system. 

Furthermore, a comprehensive study 

on structure-property relations with 

respect to different morphologies of 

supramolecular (nano-)fibers was 

conducted. Thereby, parameters such 

as the molecular structure, the 

concentration, the solvent, and the 

cooling rate were varied. The 

fundamental knowledge obtained in 

this work represents the indispensable 

basis for further applications in which 

self-assembly of BTAs is involved. 

 

Keywords: supramolecular chemistry • 

self-assembly • nanofibers • structure-

property relations  

 



98 |   P u b l i c a t i o n s  a n d  m a n u s c r i p t s  

 

 

 

Introduction 

 

In the last years, the class of 1,3,5-benzenetrisamides (BTAs) gained huge interest in 

many research fields.
[1]

 Besides others, the reasons for this deep interest are that BTAs 

are one of the simplest motifs in supramolecular chemistry and their synthesis is quite 

straight forward. BTAs are able to self-assemble into supramolecular aggregates.
[2]

 The 

self-assembly of BTAs is achieved under certain conditions, which can be induced by 

several triggers mechanisms, such as a shift in temperature,
[3]

 concentration, 

medium,
[4]

 and pH-value.
[5]

 The driving force for supramolecular aggregation of BTAs is 

hydrogen bond formation between the amide groups of the single molecules.
[6]

 

Because of the directionality of the hydrogen bonds, the self-assembly of BTAs can be 

utilized to prepare supramolecular nanofibers.
[7]

 It is known, that within one 

supramolecular column a macro dipole is formed
[8]

 and due to this reason BTA 

aggregates can be aligned in electric fields.
[9]

 However, the overall macro dipole of the 

supramolecular structure is compensated by neighboring columns, whose macro 

dipoles are aligned anti parallel.
[10]

 Furthermore, it was found, that the crystal 

structure of the BTAs strongly depends on the peripheral substituents. While methyl- 

and ethyl-substituents direct the self-assembly into sheet-like aggregates, propyl-rests 

force the self-assembly into three-dimensional networks with a primitive cubic crystal 

lattice.
[11]

 BTAs with longer alkyl chains exhibit columnar structures forming hexagonal 

lattices. In the case of 3-pyridyl substituents, the BTAs form three different crystalline 

forms from the same solvent system held together by non-covalent bonds (including 

polymorphic monohydrates).
[12]

 The class of BTAs is also investigated because of their 

complex mesophase behavior.
[13]

 As the supramolecular aggregates, also the columnar 

mesophases are mainly stabilized by strong hydrogen bond formation.
[14]

 Depending 

on the alkyl substituents, certain BTAs exhibit a thermotropic liquid crystalline 

behavior in bulk in a broad temperature range. In addition, it was shown, that small 

columnar aggregates were still existent in the optical isotropic melt.
[15]

 

Astonishing applications of BTAs are their usage as polymer additives for nucleation 

and clarification of polyolefins and semi crystalline polymers. Thereby, BTAs with 

short, bulky alkyl substituents were used in the case of nucleating isotactic 

polypropylene.
[16]

 BTAs with 2,4,6-trimethyl-1,3,5-triamino benzene cores even feature 

better thermal stability compared to BTAs with unsubstituted ones.
[17]

 Semi crystalline 

polymers such as polyvinylidenfluoride
[18]

 and polybutylene terephthalate
[19]

 can also 

be nucleated by BTAs. In polybutylene terephthalate the supramolecular aggregates of 

the BTA additive could be visualized after alkaline hydrolysis of the polymer matrix. As 

consequence, it could be demonstrated that the diameter of the supramolecular nano-

objects is dependent on the concentration and the cooling rate. In addition, BTAs are 

also utilized in order to improve the electret performance of polypropylene.
[20]
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However, BTA nano-objects are not only investigated in polymer matrices. 

Supramolecular nanofibers of BTAs were further prepared by self-assembly in solution. 

The mechanical stability of those isolated supramolecular nanofibers is of great 

interest due to possible future applications. Single fibers, self-assembled from solution 

were investigated by three-point bending tests by means of an atomic force 

microscope. Within these investigations, structure-property relations between the 

molecular structure of the BTA and the mechanic stability of self-assembled BTA 

nanofibers were determined. Hereby, E-moduli of 3-5 GPa were detected.
[21]

 

Furthermore, entanglements of supramolecular nanofibers prepared from solution can 

result in the formation of three-dimensional networks. Hence, this class of molecules 

can also act as organo-
[22]

 and hydrogelators.
[23]

 

In addition, it is possible to obtain supramolecular nanofibers of BTAs by 

electrospinning from the isotropic melt and the columnar, hexagonal phase. Besides 

the thermal properties of the BTAs, the supramolecular morphology of the nanofibers 

is also dependent on the spinning temperature and the applied electric field.
[24]

 A 

comparison between the self-assembled BTA fibers from solution and electrospun 

fibers showed, that differences in the supramolecular morphology are existent, 

however, both sort of fibers feature mechanical stabilities in the same order of 

magnitude.
[25]

 

Furthermore, it has to be noted, that the self-assembly of BTAs in all the above 

described applications is dependent on several factors. The supramolecular 

morphology can be influenced by the molecular structure of the BTAs as well as the 

external parameters used at the self-assembly process, such as the medium, the 

cooling window and rate, the evaporation window, and the concentration.
[12]

 By 

changing these conditions, the supramolecular morphology can be highly controlled 

(Scheme 1). 
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Scheme 1. Influences by which the morphology of supramolecular aggregates can be controlled. 

The paper compares two self-assembly processing pathways of BTAs from solution in 

order to control the nanofiber morphology with respect to homogeneity, fiber 

diameter, and fiber diameter distribution. The first pathway is based on self-assembly 

upon cooling at a constant concentration and subsequent evaporation of a solvent. For 

this, two BTAs with different solubility will be compared. The second self-assembly 

pathway is the direct evaporation at constant temperature. Furthermore, for both self-

assembly processing pathways structure-property relations with respect to the 

supramolecular morphology were investigated. 

Results and Discussion 

The first self-assembly pathway combines self-assembly upon cooling at a constant 

concentration and subsequent evaporation of the solvent at room temperature. In this 

part, we compare two different BTA/solvent systems (Figure 1). The first system 

consists of BTA 1, which is based on a triaminobenzene core and bulky t-butyl 

substituents and 2,2,4,4,6,8,8-heptamethylnonane (HMN) as solvent. HMN is a non-

polar, high-boiling solvent, in which in general the dissolution concentration of BTAs 

with short aliphatic substituents is fairly below 1 wt% near the boiling point of 240 °C. 

In the system 1 and HMN, the upper dissolution concentration at 240 °C is in the range 

of 0.06 wt%, whereas solubility at room temperature of 1 is almost negligible. The 

second system consists of BTA 2 and the more polar solvent 2-butanone. 2 is based on 

a trimesic acid core and features longer aliphatic substituents. Both, the larger 

substituent and the more polar solvent increase the solubility of BTAs significantly. 

Obviously, the substituents have also an influence on the thermal properties. 1 is a 

crystalline compound with an orthorhombic metric, in which the molecules feature a 

pseudohexagonal rod packing. 1 sublimes at 374 °C. 2 with longer aliphatic side chains 
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possess a columnar hexagonal plastic mesophase at room temperature, a columnar 

hexagonal ordered phase at 240 °C and become isotropic at 291 °C. 

 

Figure 1. Chemical structures of N,N',N''-1,3,5-Benzenetriyltris[2,2-dimethyl-propanamide] (1) and 

N
1
,N

3
,N

5
-Tris(6-methylheptyl)- 1,3,5-benzenetricarboxamide (2) utilized to investigate the first self-

assembly pathway. 

In Scheme 2 the self-assembly pathway for BTA/solvent systems with low BTA 

solubility, i.e. 1 in HMN is illustrated. In the first step the BTA was dissolved at high 

temperatures. Upon cooling the solution the BTA self-assembles into one-dimensional 

supramolecular aggregates. At room temperature, the residual solubility of 1 in HMN is 

almost zero, hence, the self-assembly is completed and mainly all BTA molecules are 

aggregated. Subsequently, the solvent is evaporated and finally we obtain the dried 

supramolecular aggregates. In this drying step, no additional self-assembly occurs 

anymore. 

 
Scheme 2. Schematic representation of the self-assembly process upon cooling in a simplified 

temperature/composition diagram. Three stages (A-C) are schematically depicted in the diagram. (A): 

BTA solution with blue dots representing solvent molecules and red dots the BTA molecules. (B) self-

assembled BTA aggregates in suspension. (C): supramolecular aggregates. 
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The morphology of supramolecular aggregates is highly influenced by several factors. 

For this BTA/solvent system, the influence of the cooling rate and the influence of the 

concentration are exemplarily discussed in the following. In Figure 2 the structure-

property relation between the cooling rate and the resulting supramolecular 

morphology of 1 is shown. As concentration 0.06 wt% was chosen. For all samples, all 

processing parameters were set constant except the cooling rate. Two BTA/HMN 

samples were cooled at defined cooling rates of 10 °C/min and 60 °C/min, respectively. 

A third specimen was quenched in liquid nitrogen, in order to obtain an extraordinary 

high cooling rate. In each case very homogeneous supramolecular fibers with huge 

aspect ratios were obtained, which are exemplarily illustrated by the scanning electron 

microscopy (SEM) micrographs in Figure 2. As can be seen in the micrographs the fiber 

diameter decreases from low to high cooling rates. At a cooling rate of 10 °C/min the 

lateral dimensions of the aggregates exhibit a large average diameter of 2.19 µm and a 

broad fiber diameter distribution. By increasing the cooling rate to 60 °C/min, the 

average fiber diameter (1.11 µm) as well as the width of the distribution of the 

resulting lateral dimensions is reduced. An even faster cooling rate is reached by 

quenching the specimen in liquid nitrogen. Thereby, the thinnest supramolecular fibers 

were obtained with an average fiber diameter of 0.40 µm. In this case, the fiber 

diameter distribution is significantly narrower compared to higher cooling rates. It is 

remarkable, that such fast cooling does not prohibit the self-assembly process. As 

consequence, the intermolecular hydrogen bonds have to be developed very rapidly, 

enabling the accurate one-dimensional self-assembly. 
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Figure 2. SEM micrographs and the corresponding histograms of self-assembled nanofibers of 1 

prepared by applying different cooling rates (HMN, 0.06 wt%). 

 

In addition, the structure-property relation between the starting concentration of the 

BTA/HMN solution and the resulting supramolecular morphology was investigated 

(Figure 3). Because of low solubility of 1, we used concentrations between 0.005 wt% 

and 0.06 wt%. As cooling rate 60 °C/min was chosen. As can be seen in the 

micrographs, nanofibers with huge aspect ratios were again obtained in each case. 

Depending on the concentration, the diameter of the nanofibers differs. The higher the 

concentrations of the starting solutions, the thicker are the supramolecular fibers. At a 

concentration of 0.06 wt% the average fiber diameter is located at 1.11 µm and a 

broad diameter distribution is obtained. By decreasing the concentration to 0.03 wt% 

and further to 0.02 wt%, the average fiber diameter is reduced to 0.48 µm and 

0.26 µm, respectively. Also the fiber diameter distributions are getting narrower 

compared to higher concentration. At the lowest investigated solution concentration 
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of 0.005 wt% supramolecular nanofibers with the lowest average fiber diameter of 

0.19 µm are obtained. Also the corresponding fiber diameter distribution exhibits the 

narrowest distribution of the investigated samples. 

 

 
Figure 3. SEM micrographs and the corresponding histograms of self-assembled nanofibers of 1, 

prepared from different concentrations (HMN solution, cooling rate 60 °C/min). 
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In addition, we studied the inner morphology of the supramolecular fibers. In order to 

get access to the fiber cross-sections focused ion beam (FIB) cutting was done. This 

was possible, because the fibers of 1 are stable up to high temperatures. Two different 

supramolecular fibers of 1 with diameters of 120 nm and 1.2 µm were cut 

perpendicular to their longitudinal axis. The resulting cross sections are represented in 

Figure 4. As can be seen in the micrograph, the supramolecular aggregates of 1 with 

small diameters feature solid cores. However, it has to be mentioned, that the ion 

beam could modify the morphology of the aggregates. Thus possible holes could be 

molten down. In the case of aggregates with larger diameters hexagonal cross sections 

featuring a hollow core were observed. In the tubular assembly, the walls are 300-

400 nm thick, while the hole possesses a diameter of about 500-600 nm. A surface 

structure can be observed at the inner side of the walls indicating that they consist of 

several smaller fibrillar aggregates attached parallel to each other. 

 
Figure 4. SEM micrographs of the cross sections of focused ion beam cut fibers of 1 prepared from HMN 

solutions. Left: 0.01 wt% starting concentration, right: 0.06 wt% starting concentration. 

 

In order to investigate the self-assembly upon cooling by means of a higher soluble 

BTA/solvent system, 2 was used in butanone. Due to the fact of better solubility of 2, 

much higher concentrations can be realized (up to 2.0 wt%). Herein, we focused on a 

concentration of 1.0 wt%. For the self-assembly, the samples were prepared the same 

way as the BTA/solvent system 1/HMN (heating, cooling, and drying). The resulting 

supramolecular aggregates of 2 are represented in Figure 5. Surprisingly, we do not 

observe fibers with homogenous fiber diameters in the micrograph. Instead a 

combination of thick and thin fibers was obtained. The corresponding histogram 

reveals a bimodal fiber distribution with average diameters of 0.23 µm and 1.46 µm, 

respectively. While the diameters of the nanofibers feature a narrow distribution, the 

lateral dimensions of the thicker fibers are broadly distributed. One possible 

explanation for the bimodal fiber diameter is a high residual solubility of 2 in butanone 

after cooling.  
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Figure 5. SEM micrograph and the corresponding histogram of supramolecular fibers of 2 prepared out 

of a butanone solution (initial concentration: 1.0 wt%). 

 

In order to reveal the reason for a bimodal fiber diameter distribution we further 

conducted the following experiments (Figure 6): 2 was dissolved in butanone with an 

initial concentration of 1.0 wt% at elevated temperature. Cooling leads to the 

development of supramolecular assemblies. These aggregates are separated with a 

syringe filter (0.2 µm) and are subsequently analyzed by SEM. Supramolecular fibers 

with an average diameter of 1.00 µm and a broad fiber distribution are obtained (see 

Figure 6). Subsequently, the BTA/butanone solution remaining after the filtration step 

(filtrate) is left at ambient conditions to evaporate the solvent. The thereby resulting 

supramolecular aggregates are also visualized by SEM whereby supramolecular 

nanofibers featuring an average fiber diameter of 0.25 µm with a small diameter 

distribution are observed. Evidently, the thicker fibers originate from self-assembly 

upon cooling while the thinner nanofibers arise from self-assembly during solvent 

evaporation due to high residual solubility of 2 in butanone after cooling. In addition, 

the amount of nanofibers self-assembled during solvent evaporation is determined 

gravimetrically. The result corresponds to a solution concentration of 0.6 wt%. Taking 

the initial BTA concentration of 1.0 wt% into account, the amount of fibers self-

assembled upon cooling has to be the remaining 0.4 wt%. As consequence, for this 

BTA/solvent system (2/butanone) an exclusive self-assembly during solvent 

evaporation should be achievable up to a threshold concentration of 0.6 wt% under 

the applied conditions. Above this value, always combinations of self-assembly during 

solvent evaporation and self-assembly upon cooling are obtained. 
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Figure 6. Top: Schematic representation of the separation process of the self-assembled aggregates 

derived upon cooling and during solvent evaporation. Bottom: SEM micrographs and the corresponding 

histograms of supramolecular fibers of 2. The fibers were prepared out of a butanone solution with an 

initial concentration of 1.0 wt%. 

 

In addition, the crystal structures of the supramolecular aggregates were determined 

by XRD measurements. Figure 7 shows the XRD diffractograms of the supramolecular 

aggregates obtained from self-assembly upon cooling and from self-assembly during 

solvent evaporation. Both diffractograms feature comparable peaks indicating the 

same crystal structure of both assemblies. The first four peaks located in the small-

angle region feature spacings in the reciprocal ratio of 1:√3:2:√7 indicaNng a columnar 
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hexagonal packing. The intercolumnar distances are determined by means of the 

Bragg’s law. In both cases the intercolumnar distances feature about 1.7 nm. The large 

quantity of peaks in the spectra points to a three-dimensional order, which is realized 

in a crystalline phase. However, we observe a waxy behavior in bulk, which indicates a 

plastic phase. Therefore both sort of fibers assemble in a columnar hexagonal plastic 

mesophase. Detailed investigations on the phase behavior of the BTA molecules are 

previously published by our group.
[15]

  

 
Figure 7. XRD diffraction patterns of supramolecular nanofibers of 2 self-assembled upon cooling (top, 

black) and during solvent evaporation (bottom, grey), respectively. 

 

Now we further want to proof our assumption made above, that supramolecular 

nanofibers of 2 in butanone can be achieved up to a threshold concentration of 

0.6 wt% by exclusive self-assembly during solvent evaporation at constant 

temperature. The utilized self-assembly processing pathway is shown in a 

temperature/composition diagram in Scheme 3. The starting prerequisite of complete 

solubility of the BTA/solvent system at room temperature is ensured by the long 

peripheral alkyl substituents of BTA 2 in combination with an appropriate 

concentration (≤ 0.6 wt%) in a polar solvent (butanone) (A). During solvent 

evaporation this pre-adjusted BTA concentration increases. By traversing the “phase 

boundary” an oversaturation is reached and the excessive BTAs self-assemble into 

supramolecular nanofibers (B). This is continued until all solvent is evaporated and 

only supramolecular BTA fibers are left (C). 
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Scheme 3. Schematic representation of the self-assembly process during solvent evaporation in form of 

a temperature/composition diagram. (A): dissolved BTA molecules in polar solvents, blue dots: solvent 

molecules, red dots: dissolved BTA molecules. (B) self-assembled BTA aggregates in suspension; (C): 

dried supramolecular aggregates.  

 

In the following, structure property relations between the resulting supramolecular 

morphology and the used solvent as well as the molecular structure are pointed out. 

Due to the concentration increase during solvent evaporation in the actual self-

assembly process, the investigation of the influence of different concentrations is 

redundant. In order to study the influence of solvent, 2/butanone and 2/ethanol 

solutions with concentrations of 0.6 wt% were prepared. Besides the different 

solvents, all processing parameters at the preparation were set constant. At first view, 

the morphologies of the aggregates self-assembled in butanone and in ethanol are 

quite similar (Figure 8). However, the fibers prepared in butanone are very thin, which 

can be also seen in the corresponding histogram. Some of the fibers even have 

diameters less than 100 nm. The mean fiber diameter is determined to 0.22 µm, which 

is in good agreement with the average fiber diameter of the nanofibers obtained from 

exclusive self-assembly during solvent evaporation in the combined self-assembly 

process represented in Figure 5 and Figure 6. In contrast, the BTA fibers prepared in 

ethanol are thicker, featuring an average fiber diameter of 0.53 µm. Even though both 

solvents have almost the same boiling point, they possess different vapor pressures 

(butanone: 105 hPa; ethanol: 58 hPa). Because of this, butanone evaporates faster. 

Hence, the various supramolecular morphologies could origin from different self-

assembly velocities. 
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Figure 8. SEM micrographs and the corresponding histograms of self-assembled nanofibers of 2 

prepared from a butanone and an ethanol solution with an initial concentration of 0.6 wt%, respectively. 

 

The resulting supramolecular aggregates, self-assembled during solvent evaporation 

from butanone and ethanol, respectively, possess further differences in view of their 

cross sections. Under the applied conditions, we always observed solid cores of the 

supramolecular fibers prepared from butanone solution. In contrast, fibers prepared 

from ethanol both solid as well as hollow fibers could be obtained under distinct 

conditions. For fibers with diameters in the nanometer range, only solid cores were 

observed. However, with increasing diameter more and more hollow fibers emerge. 

Exemplarily, for supramolecular fibers of 2 prepared in ethanol, a solid nanofiber end 

as well as a hollow microfiber which was broken during sample preparation is shown in 

Figure 9. The cross sections of both fibers feature hexagonal dimensions. The hole of 

the tubular assembly is about 1 µm in diameter while its walls are 400-600 nm thick. 

Due to the structuring at the walls of the hollow fiber, it can be assumed, that the walls 

consist of several smaller aggregates which are parallel aligned along their longitudinal 

axis. 
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Figure 9. SEM micrographs of the cross sections of a self-assembled solid nanofiber (left) and a hollow 

microfiber (right), prepared from an ethanol solution of 2. 

 

Since the peripheral alkyl substituents of the BTAs are responsible for solubility 

properties, the self-assembly can also be influenced by the molecular structure. To 

identify this structure-property relation, BTA-dependent self-assembly studies were 

performed (Figure 10). The molecular structures of 2 and 3 do not vary dramatically. 

As only difference, the methyl groups are located at the C-6 positions at compound 2, 

while at 3 they are located at the C-1 positions. As can be seen in the SEM 

micrographs, the supramolecular fibers of 2 are lying randomly on top of each other, 

while the fibers of 3 seem to be connected at nodal points forming a three-

dimensional network. In the corresponding histograms, diverse widths of the diameter 

distributions as well as different average fiber diameters of 0.22 µm (2) and 0.45 µm 

(3) are obtained. Evidently, subtle changes in the molecular structure influence the 

supramolecular morphology. 
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Figure 10. SEM micrographs and the corresponding histograms of self-assembled nanofibers of 2 and 3 

(N
1
,N

3
,N

5
-Tris(1-methylheptyl)-1,3,5-benzenetricarboxamide) prepared from butanone solutions (initial 

concentration: 0.6 wt%). 

 

 

Conclusion 

 

In summary, we investigated different self-assembly pathways for various BTA/solvent 

systems. We found, that the solubility of the utilized BTA/solvent system is the key 

factor which determines the occurring self-assembly processing pathway. Thereby, we 

distinguish between two different BTA/solvent systems: I.) BTAs with short 

substituents in combination with apolar solvents, which result in (mainly) insoluble 

systems at room temperature. II.) BTAs with long alkyl chains as substituents combined 

with polar solvents, such as ethanol or butanone which possess complete solubility at 

room temperature in a certain concentration range. While the insoluble systems self-

assemble exclusively upon cooling, highly soluble systems at room temperature 

assemble during solvent evaporation. As consequence, BTA/solvent systems which are 
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just partially soluble at room temperature assemble in a combination of self-assembly 

upon cooling and self-assembly during solvent evaporation resulting in a bimodal fiber 

morphology. By means of separating both sort of supramolecular aggregates, we were 

able to determine their origins in view of the self-assembly processing pathways. 

Despite their different origins, XRD measurements reveal the same crystal structure for 

both sort of supramolecular fibers. Furthermore, we demonstrated a comprehensive 

study of structure-property relations by means of variations in the molecular structure 

as well as external parameters such as medium (solvent), concentration, and cooling 

rate in order to control the supramolecular nanofiber morphology. 
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Experimental Section 

 

Materials:  

Tris(2,2-dimethylpropionylamino)-1,3,5-benzene 1 was synthesized according to 

standard procedures.
[26]

 The synthesis and characterization of N,N’,N’’-Tris(6-

methylheptyl)-1,3,5-benzenetricarboxamide 2 and N,N’,N’’-Tris(2-methylheptyl)-1,3,5-

benzenetricarboxamide 3 were previously described by us.
[15]

  

All solvents were purchased from Aldrich. 2,2,4,4,6,8,8-heptamethylnonane was 

freshly distilled under reduced pressure (15 mbar) prior to use. All other solvents were 

used as received. 

 

Sample preparation for aggregates obtained from self-assembly upon cooling:  

Four suspensions with different concentrations (0.06, 0.03, 0.02, and 0.005 wt%) were 

prepared by adding 1 to 6 g of HMN. For further homogenization these suspensions 

were heated to reflux (240 °C) and subsequently stirred under argon for 15 min to 

dissolve the BTA. Cooling to room temperature while stirring gave slightly turbid 

suspensions. About 0.5 ml of these suspensions were filled into home-made high 
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pressure pans, transferred in the Dropping Point Cell FP83HT from Mettler Toledo 

(controlled with the Mettler Toledo Central Processor FP90), heated to 240 °C, and 

subsequently cooled to room temperature with defined cooling rates of 60 °C/min and 

10 °C/min, respectively. In case of liquid nitrogen cooling, the filled high pressure pan 

was removed out of the dropping point apparatus at 240 °C, immediately put into 

liquid nitrogen for 15 min, and equilibrated at room temperature. About 10 µl of each 

suspension was transferred onto an aluminum disk, the HMN was evaporated under 

high vacuum at room temperature, and the samples were examined by SEM. 

 

Sample preparation for aggregates obtained from self-assembly during solvent 

evaporation:  

The samples were prepared by adding 2 and 3 to 20 ml of the solvent butanone or 

ethanol, respectively, resulting in clear solutions at concentrations of 0.6 wt%. About 

10 µl of each solution was then transferred onto an aluminum disk and the solvent was 

removed at ambient conditions. Final drying was done under high vacuum for 15 min. 

Subsequently, the samples were examined by SEM. 

 

Sample preparation for aggregates obtained from a combination of self-assembly upon 

cooling and self-assembly during solvent evaporation:  

The samples were prepared by adding 2 to 20 ml of butanone, resulting in a mixture 

with a total amount of 1.0 wt% of 2. For homogenization these suspensions were 

heated to reflux until clear solutions were obtained, and the samples were 

subsequently cooled to room temperature. About 0.5 ml of these suspensions was 

filled into home-made high pressure pans. In the Dropping Point Cell FP83HT from 

Mettler Toledo the different samples were heated to 75 °C and afterwards cooled to 

room temperature with a defined cooling rate (10 °C/min). About 10 µl of the sample 

was then transferred onto an aluminum disk and the solvent was removed at ambient 

conditions. Final drying was done under high vacuum for 15 min. Subsequently, the 

samples were examined by SEM. 

 

Scanning electron microscopy (SEM):  

For SEM investigations, samples were fixed via a double-sided adhesive conductive 

carbon tape on a SEM sample holder. Subsequently, the samples were sputtered with 

platinum (1.5 nm) by a Cressington Sputter Coater 208HR. SEM micrographs were 

recorded using a Zeiss 1530 FESEM equipped with an In-lens detector. Focused ion 

beam experiments were carried out on a Zeiss 1540 EsB CrossBeam. 
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Fiber diameter histograms:  

In each analyzed SEM micrograph, fiber diameters of 100 different positions were 

determined utilizing measureIT software from Olympus. The histograms were 

prepared with intervals of 100 nm steps. In case of micrographs with less than 100 

objects several SEM micrographs were used to determine the lateral dimensions. 

 

Gravimetrical detection of the concentration of the BTA responsible for self-assembly 

upon cooling and self-assembly during solvent evaporation:  

10 ml of five butanone suspensions (initial concentration: 1.0 wt%) of 2 were prepared 

in vials. The samples were heated to reflux until optically clear solutions were obtained 

and cooled to room temperature. After 12 h the formed aggregates were filtered with 

a commercial syringe filter (PTFE, 0.2 µm). The syringe filters were opened and the 

filter with the supramolecular aggregates on top were fixed on a SEM sample holder 

and analyzed by SEM. The remaining filtrates were dried at ambient conditions. The 

amount of the resulting dry nanofibers remaining in the vials was determined 

gravimetrically for each vial and an average value was calculated. The obtained 

nanofibers were fixed on a SEM sample holder to be investigated by SEM.  

 

XRD analysis:  

The XRD-measurements in the angle range of θ = 0.5° - 15° were carried out on a 

Huber Guinier diffractometer 600 equipped with a Huber germanium monochromator 

611 to get Cu Kα1 radiation (λ = 154.051 pm). An extra slit diaphragm reduces the 

broadening of the primary beam due to scattering in air. The obtained dry nanofibers 

were prepared in soda mark tubes (2 mm diameter). 
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Microfiber-nanofiber composites are prepared by in situ formation of supramolecular 

nanofiber webs based on 1,3,5-benzenetricarboxamides in polymer nonwoven 

scaffolds. These composites are sufficiently stable to be suited for air filtration 

applications. The image shows supramolecular nanofibers strongly fixed to the 

nonwoven microfibers. 
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Self-assembly phenomena and supramolecular concepts are of keen interest in 

manifold scientific areas.[1–3] For example, self-assembly of small molecules into 

supramolecular nanofibers in organic liquids or water has been demonstrated and is 

utilized to efficiently prepare thermoreversible organo-[4–7] and hydrogels.[8–12] 

However, very little is known about the formation of stable nanofiber webs and the 

intrinsic stability in the dried state. Both issues are of key relevance for fibrous 

materials in applications, such as filtration. Only very few publications in this area exist. 

For instance, Raghavanpillai et al. demonstrated the formation of supramolecular 

nanofiber webs with organogelators in combination with a porous support, but no 

filter experiments were reported.[13] Krieg et al. have shown recently that a deposited 

supramolecular membrane on top of a supporting syringe filter is suitable to separate 

gold nanoparticles of different size from solution.[14,15]  

Although many examples of compounds are known which are capable of forming 

supramolecular nanofibers, one of the simplest and well-established structural motif is 

based on 1,3,5-benzenetrisamides (BTAs).[6,16–19] Self-assembly of BTAs into columnar 

stacks driven by directed hydrogen bond formation results in a broad variety of 

morphologies.[20] The formed morphology depends on the molecular structure of the 

BTA, the solvent, the concentration, and the applied processing conditions. As a 

consequence of this complexity, BTAs have to be tailored towards specific applications. 

Successful examples are supramolecular additives for nucleation[21–29] and 

clarification[21] of thermoplastic semi-crystalline polymers or as additives to improve 

the electret performance of polypropylene.[30–32]  

Recently, we have shown by AFM force mapping methodology that single self-

assembled BTA-nanofibers feature a remarkable mechanical stability with Young’s 

moduli in the low GPa range[33,34] demonstrating that supramolecular nanofibers can 

withstand certain mechanical stress. These findings encouraged us to explore the in 

situ formation of supramolecular nanofiber webs in nonwoven scaffolds with the 

emphasis to prepare sufficiently stable polymer-microfiber/supramolecular-nanofiber 

composites, also in view of filter applications.  

This communication reports on the feasibility of this approach and demonstrates for 

the first time the overall stability and principle applicability in air filtration. In nanofiber 

technology for filter purposes, electrospun polymer nanofibers are generally used in 

combination with a support.[35] Fiber deposition is conducted typically on top of this 

support. In contrast, we present here a bottom-up approach in which the formation of 

supramolecular nanofibers is carried out inside the scaffold. This in situ process can be 

easily accomplished by dipping a nonwoven fabric (physically or chemically connected 

sheet of fibers with openings and voids) into an immersion solution at elevated 

temperatures. At this temperature the supramolecular building units are dissolved. 

The immersion solution penetrates the fabric through the openings and voids. After 
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removing the soaked scaffold and during solvent evaporation the small molecules self-

assemble into supramolecular nanofibers within the nonwoven (Scheme 1). 

 

 
Scheme 1. Schematic representation of the in situ formation process of supramolecular nanofibers via 
self-assembly resulting in microfiber-nanofiber composites. Blue fibers: nonwoven scaffold; red dots: 
dissolved supramolecular building units; blue dots: solvent; red fibers: supramolecular nanofibers.  

 

As a nonwoven, a commercially available, 0.15 mm thick viscose/polyester fabric with 

a uniform fiber diameter of 13 µm and a basis weight of 32.2 g/m2 was used (see 

supporting information, Figure S1). In screening experiments evaluating different BTAs 

in different solvents, the compound N,N’,N’’-Tris(2-ethylhexyl)-1,3,5-

benzenetricarboxamide 1 in 2-butanone has been proven to be a suitable system. It 

should be mentioned that BTA 1 is not a gelator for 2-butanone, which is an advantage 

for the here employed process. Taken into account that the solvent uptake in the 

nonwoven fabric is approximately the seven to eightfold weight of the fabric, the 

concentration of 1 in the immersion solution was investigated only up to 1.0 wt% in 

order to avoid too dense filling of the fabric with supramolecular nanofibers. Screening 

experiments revealed that the interesting concentration range of the immersion 

solution is between 0.4 wt% and 1.0 wt%. In order to vary the final amount of the 

nanofibers in the composite, four concentrations (0.4 wt%, 0.6 wt%, 0.8 wt%, and 

1.0 wt%) were used. The influence of the concentration of the immersion solution on 

the resulting morphology of the nanofiber-microfiber composite and on the nanofiber 

diameter and distribution is discussed in the following. The content of the 

supramolecular nanofibers in the nanofiber-microfiber composite was determined by 

weighing samples with and without supramolecular nanofibers. We found an average 

nanofiber content in the composites of 2.8 wt%, 4.4 wt%, 6.4 wt%, and 7.0 wt% 

correlating with the increasing concentration of the immersion solution and solution 

uptake. The morphology of the microfiber-nanofiber composites was investigated by 

means of scanning electron microscopy (SEM). Figure 1 compares SEM pictures in an 

overview and in a ten times higher magnification of nonwovens with different 

nanofiber content. The thick fibers correspond to the nonwoven microfibers (see 

supporting information, Figure S1) and the thin fibers to the self-assembled 

nanofibers. These nanofibers are located on top and between the microfibers.  
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Figure 1. SEM micrographs of the microfiber-nanofiber composites A-D with increasing amount of 
nanofibers (A: 2.8 wt%; B: 4.4 wt%; C: 6.4 wt%, and D: 7.0 wt%) prepared from four concentrations of 1 
in the immersion solutions (0.4 wt%, 0.6 wt%, 0.8 wt%, and 1.0 wt%). The corresponding histograms 
(100 nm intervals) of the nanofiber diameters on the basis of more than 90 fibers are shown on the 
right.  
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At the lowest investigated concentration of the immersion solution at 0.4 wt% the 

overview SEM picture (A, left) reveals an uneven filling of the openings by the self-

assembled nanofibers inside the nonwoven fabric. The supramolecular nanofibers are 

rather located in individual voids. This phenomenon was generally observed for low 

concentrations and is attributed to the complex drying process within the nonwoven. 

It seems that during solvent evaporation at the final stages only some openings are 

covered. This would not happen if the BTA would form a gel. In such a case an 

interpenetrating and evenly distributed network structure would be expected. At a 

higher magnification (A, right) the supramolecular nanofiber web is clearly visible. It is 

remarkable that the supramolecular nanofibers have a strong tendency to self-fixate to 

the polymer microfibers and even seem to wind around the microfibers. These findings 

are unexpected and different from known morphologies of xerogels prepared from 

supramolecular fibrillar gels, where typically homogenous collapsed networks are 

observed. On the right of Figure 1 the fiber diameter histograms are presented, which 

are based on evaluating more than 90 fibers from representative sections of a larger 

area of the sample. For the microfiber-nanofiber composite A with a supramolecular 

fiber amount of 2.8 wt%, about 93% of the fiber diameters are below 1 µm. The 

average diameter of this fraction of the supramolecular nanofibers is 484 nm ± 177 nm 

with a minimum of 160 nm. At a higher concentration of the immersion solution 

(0.6 wt%), resulting in a content of 4.4 wt% of supramolecular nanofibers in the 

composite B, the overview image confirms that more of the openings are closed. The 

picture at higher magnification shows also much denser nanofiber webs, which are 

fixed in a similar manner as found above strongly to the polymer microfibers. About 

95% of the fibers are below 1 µm. Here the average fiber diameter is 472 nm ± 189 nm 

with a minimum of 150 nm. In addition, the supramolecular nanofiber web contains a 

few larger fibers with diameters above 1 µm. Remarkably, the overall thickness and 

the distribution of the nanofibers is very similar as discussed before. At the next higher 

concentration of the immersion solution (0.8 wt%), corresponding to a nanofiber 

content of 6.4 wt% (C), more openings are filled and the same morphology of the 

supramolecular fiber webs is present (average nanofiber diameter: 471 nm ± 180 nm; 

minimum: 220 nm). At the highest investigated immersion solution concentration 

(1.0 wt%), resulting in a final supramolecular fiber content of 7.0 wt% in composite D, 

most of the openings of the nonwoven are filled with nanofibers. Again the same 

morphology of the supramolecular fiber web with about 93% of fiber diameters below 

1 µm and some larger fibers is observed (average nanofiber diameter: 

426 nm ± 170 nm; minimum: 160 nm). All experiments and investigations were 

performed several times and proved to be reproducible. These results clearly show 

that at least for this BTA compound in the investigated concentration range the 

influence of the concentration on the morphology of the supramolecular fiber web, 
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nanofiber diameter and distribution thereof is marginal. However, concentration 

changes strongly influence the fraction of filled openings in the nonwoven. In addition, 

it determines the nanofiber density within the supramolecular fiber webs. 

Nanofibers feature a beneficially high surface area to volume ratio, since the specific 

surface area scales inversely with the diameter. Hence, nanofibers are very promising 

for filtration applications, as the probability of a particle deposition on the filter media 

is increased with increasing specific surface area resulting in improved efficiencies.[36] 

Therefore, Brunauer-Emmett-Teller (BET) surface area analyses were conducted on 

microfiber-nanofiber composite A - D and on the nonwoven as reference (Figure 2). 

The untreated nonwoven exhibits a BET surface area of 0.12 m2/g, whereas the surface 

area of the composite materials is increasing up to a value of 0.47 m2/g.  

 

 
 

Figure 2. BET surface area of the nonwoven scaffold (solid square) and the microfiber-nanofiber 
composites A - D (open squares).  

 

The overall mechanical stability of the supramolecular nanofibers is an important 

question, particularly in view of their use as potential filter media. We have conducted 

three experiments to gain more insight into the stability of the nanofiber web within 

the microfiber-nanofiber composite: (i) monitoring the differential pressure during an 

airstream test, (ii) monitoring possible fragments originating from the supramolecular 

nanofibers during the test, and (iii) SEM investigations before and after such an 

experiment. For these experiments, the microfiber-nanofiber composite D with the 

highest nanofiber content was subjected to an airstream test in a filter test rig at a 

flow rate of 3 m/s for a time period of 24 h. During these experiments the differential 

pressure, which is defined as the difference in pressure before and after a filter (see 

supporting information Figure S2), was monitored (Figure 3). The microfiber-nanofiber 
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composite D causes a differential pressure of about 1900 Pa. This value is more than a 

magnitude of order higher than the differential pressure of the microfiber scaffold 

without supramolecular nanofiber web (156 Pa). This large difference proves that the 

entire exposed area of 9.4 cm2 of the microfiber-nanofiber composite D is uniformly 

covered by supramolecular nanofibers and no large pathways, holes or cracks exist. 

Most important is that during this experiment the pressure drop is constant for 24 h 

proving that the composite D remains intact. The filter test rig also allows the 

detection of particles in the size range of 0.2 µm to 10 µm by means of a particle size 

analyzer behind the microfiber-nanofiber composite. Thus, it is possible to detect 

fragments originating from the supramolecular nanofibers. During the entire 24 h 

airstream test, no fragments were monitored. This result is of critical importance, as it 

proves that the supramolecular nanofibers are robust enough and do not break up 

during such an experiment. The results are confirmed by SEM investigations (Figure 4) 

showing no significant difference of the morphology of the composite before and after 

the airstream test. 

 
Figure 3. Temporal evolution of the differential pressure during an airstream test with microfiber-
nanofiber composite D at a flow rate of 3.0 m/s. The exposed area was 9.4 cm

2
. Measurements were 

taken in one hour steps. 
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Figure 4. SEM micrographs of the microfiber-nanofiber composite D (containing 7.0 wt% of nanofibers) 
before and after the airstream test. 

 

To validate the applicability of supramolecular nanofiber webs in the nonwoven 

scaffold as filtration medium, filtration tests were performed with ISO fine test dust, a 

fine particulate matter. The particle size distribution in the range of 0.2 µm to 1.0 µm is 

shown in the supporting information, Figure S2. The filtration efficiency is defined as 

the percentage of the particles removed by the filter medium and depends on the size 

of the particulate matter (Figure S2). The filter test experiments were conducted in a 

filter test rig with an airstream at a constant flow rate of 0.25 m/s and an aerosol 

particle concentration of about 6000 particles/cm3. For each microfiber-nanofiber 

composite composition, three individual samples were prepared and subjected to the 

filter test. The deviations of the filtration efficiencies of the individual composites are 

below ± 10 % proving that the composite preparation is highly reproducible (see 

supporting information, Figure S3). The averaged filtration efficiencies for a particle 

range of 200 - 1000 nm of the microfiber-nanofiber composites and of the untreated 

nonwoven are shown in Figure 5. As expected, the filtration efficiency of the 

nonwoven is poor and in the investigated range the efficiency is around 5% to 6% with 

a differential pressure of 9 Pa. For the microfiber-nanofiber composite A with only 

2.8 wt% of nanofibers, the filtration efficiency is more than doubled. The filters are 

capable of retaining 12% of 0.2 µm particles and 15% of 1 µm particles. The differential 

pressure is only slightly increased to 13 Pa. The filtration efficiency is further improved 

for the microfiber-nanofiber composite B with 4.4 wt% of nanofibers. A slightly better 

performance for bigger particles is noticeable, namely 21% for 0.2 µm particles and 

32% for 1.0 µm particles. The value of differential pressure of 28 Pa is still low. In the 

case of the composites C and D, a significant performance improvement is apparent. 

This large improvement is assigned to a very high coverage with supramolecular 

nanofibers for both composites (see Figure 1). The nanofiber composite C exhibits a 

filtration efficiency for 0.2 µm particles of 57% and for 1.0 µm particles of 81%. The 
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nanofiber composite D results in a filtration efficiency for 0.2 µm particles of 67% and 

for 1.0 µm particles of 87%. This difference is attributed to the denser nanofiber web 

of the composite D compared to the composite C and is also reflected in the larger 

increase in differential pressure from 281 Pa for composite C to 429 Pa for      

composite D.  

 
Figure 5. Average filtration efficiencies of microfiber-nanofiber composites with different content of 
supramolecular nanofibers and of the untreated nonwoven (measuring time: 30 s; flow rate: 0.25 m/s; 
filtration area: 28.3 cm

2
, test aerosol: ISO fine test dust, upstream aerosol concentration: 

6000 particles/cm
3
). 

 

To conclude, we have demonstrated the successful in situ formation of supramolecular 

nanofiber webs based on a 1,3,5-benzentrisamide inside of nonwoven scaffolds via a 

solution-based bottom-up approach. It has been revealed that within the investigated 

BTA concentration range of the immersion solution the influence of the BTA 

concentration on the morphology of the supramolecular fiber web, nanofiber 

diameter, and the nanofiber diameter distribution is marginal. Most surprisingly, the 

supramolecular nanofibers have the tendency to strongly adhere to the polymer 

microfibers and even wind around the microfiber. This unexpected behavior together 

with the intrinsic stability of the supramolecular nanofibers contributes to the overall 

stability of the microfiber-nanofiber composites. These features in combination with 

the increased surface area make these composite materials suitable as filter media for 

air filtration. In general, the in situ preparation of supramolecular nanofibers via the 

described bottom-up approach within open porous structures is an appealing, 

beneficial alternative compared to established top-down processes such as melt-

blowing, centrifugal melt spinning, blend melt spinning, and electrospinning.  
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Experimental Section 

 

Materials: 

The synthesis and characterization of the diastereomeric mixture of N,N’,N’’-Tris(2-

ethylhexyl)-1,3,5-benzenetricarboxamide 1 is described in detail in literature.[37] The 

BTA features a columnar hexagonal plastic phase at room temperature, a columnar 

hexagonal ordered phase above 241 °C, and becomes optically isotropic at 291 °C. 

 

1 

 

2-Butanone (purity: 99.7 %) was purchased from Aldrich and used as received. 

ISO 12103-1, A2 fine test dust was received from Powder Technology Inc. As scaffold a 

commercially available viscose/polyester microfiber nonwoven fabric was used 

(source: AMPri). The fabric has a thickness of 0.15 mm and a basis weight of 32.2 g/m2. 

The nonwoven fabrics were cut into squares of 9.5 cm x 9.5 cm. 

 

Preparation of supramolecular nanofiber webs in a nonwoven fabric:  

The immersion solutions of 1 in 2-butanone were prepared with concentrations of 0.4, 

0.6, 0.8, and 1.0 wt% of 1 by suspending the corresponding amount of BTA in the 

solvent and heating to 50 °C until a clear solution was obtained. The solution was filled 

into a custom-made immersion bath, which was placed in a thermostat at a 

temperature of 50 °C. The cut nonwoven fabric was clamped into a supporting metal 

frame with an open quadratic area of 8.5 cm x 8.5 cm. The supporting frame with the 

microfiber fabric was dipped into the immersion solution for 30 s. The soaked fabric 

was removed and dried in the frame at ambient conditions for 10 min and for 30 min 

in vacuum.  

 

Scanning electron microscopy (SEM): 

For SEM investigations, samples were fixed via a double-sided adhesive conductive 

carbon tape on a SEM sample holder. Subsequently, the samples were carbon-coated 

utilizing a MED 010 coating machine from Baltzer. SEM micrographs were recorded 

using a Zeiss 1530 FESEM equipped with an Inlens detector (acceleration voltage: 

5 kV). 
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Fiber diameter histograms and average nanofiber diameter:  

In each analyzed SEM micrograph, fiber diameters of more than 90 self-assembled 

nanofibers were determined utilizing measureIT software from Olympus. The 

histograms were prepared in 100 nm steps. The average diameter of nanofibers is 

calculated for the fraction of nanofibers with diameters below 1 µm and yields for the 

microfiber-nanofiber composite A: 480 nm ± 180 nm (93%), B: 470 nm ± 190 nm (95%), 

C: 470 nm ± 180 nm (91%), and D: 430 nm ± 170 nm (93%). The fraction of the 

supramolecular nanofibers with diameters below 1 µm is given in brackets. 

 

Brunauer Emmett Teller Measurements (BET):  

All measurements were carried out on a Quantachrome Autosorb 1. Thereby, 0.5 g of 

the microfiber-nanofiber composite was put in a sample cell (9 mm) with large sphere. 

All samples were carefully degassed at 25 °C at ultra high vacuum for 12 h. Krypton 

was used as absorption gas. Seven data points within the range of 0.05 < p/p0 < 0.3 

were taken to calculate the specific surface area using the BET equation. The BET 

surface area of each sample was determined at least twice and the average thereof 

was calculated. 

 

Filter testing procedures: 

All measurements were performed utilizing a custom build filter test rig based on the 

MFP 2000 from PALAS® with a white light-scattering spectrometer Welas ® digital 2100 

(particle size detection range: 0.2 µm – 10.0 µm). 

 

Airstream test:  

The effective exposed area of the microfiber-nanofiber composite in the filter test rig 

was reduced from 28.3 cm2 to 9.4 cm2 in order to achieve a flow rate of 3.0 m/s. The 

samples were fixed via a pneumatic sample holder. A continuous air flow without 

aerosol particles was applied to the filter for a period of 24 h. The differential pressure 

was recorded every hour and particles or fragments, originating from the microfiber-

nanofiber composite, were monitored by means of a particle analyzer. 

 

Filtration test: 

As test aerosol ISO fine test dust was used. ISO fine test dust was applied to the filter 

test rig utilizing a RBG 1000 powder dispenser from PALAS®. The composites were fixed 

with a pneumatic sample holder in the filter test rig and a particle concentration of 

6000 particles/cm3 was applied at a flow rate of 0.25 m/s to the samples with an 

effective filtration area of 28.3 cm2. The measuring time was 30 s. The filtration 

efficiency was determined by recording the particle concentration without the 

composite material (upstream concentration) and with the composite material 

(downstream concentration). 
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Figure S1. SEM micrographs of the untreated viscose/polyester nonwoven fabric with a uniform fiber 
diameter of 13 µm. 
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Figure S2. Top: Particle size distribution of the test aerosol ISO fine test dust (upstream aerosol 
concentration) Middle: Schematic representation of the filtration process with microfiber-nanofiber 
composites. Bottom: Calculation of filtration efficiency. 
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Figure S3. Filtration efficiencies vs. particle size utilizing microfiber-nanofiber composites (content of 
nanofibers: A: 2.8 wt%, B: 4.4 wt%, C: 6.4 wt%, and D: 7.0 wt%). In each plot the filtration efficiencies of 
three individually prepared microfiber-nanofiber composites are shown. 
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Abstract:  

Filtration, separation, and isolation of 

contaminants are omnipresent in all 

areas of our lives. A lot of efforts have 

been made and will become even more 

important to efficiently diminish 

respirable dust in the atmosphere by 

filtration processes. However, there are 

still enormous requirements for more 

efficient filter devices. In this work, we 

report on the in situ formation of 

supramolecular nanofiber webs based 

on 1,3,5-benzenetricarboxamides 

(BTAs) in nonwoven scaffolds. The 

focus hereby is set on structure 

property relations in order to control 

the nanofiber morphology in view of 

the optimization of the filtration 

efficiency. Parameters such as the 

chemical structure of the BTA, the 

concentration, as well as the solvent 

used in the immersion process 

influence the nanofiber web 

morphology and therefore the filtration 

efficiency. In addition, the overall filter 

performance strongly varies with 

diverging filter setups, thus the quality 

of the filters can be adjusted as 

required by certain applications. By 

using triple-layer filters, the filtration 

efficiency can be improved while the 

differential pressure is decreased 

compared to single-layer filters. 

Thereby, the performance of 

supramolecular modified filters almost 

reaches HEPA standards. The presented 

results bear important information how 

to optimize microfiber-nanofiber 

composites for different kinds of air 

filtration applications. 

 

Keywords: supramolecular chemistry • 

self-assembly • nanofibers • filter • 

structure-property relations  
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Introduction 

 

Nowadays air filters can be found in manifold fields, for instance in the automotive and 

building industry, for personal protection in ABC warfare, in the medical and 

pharmaceutical industry, in the machining and metal working sector, and in the food 

industry.
[1]

 Their applications reach form standard filters e.g. ventilating and air-

conditioning systems to highly specialized filters for applications which are extremely 

sensitive towards air pollution. The requirements of a top-quality filter are high 

filtration efficiency and low differential pressure to realize high throughputs. Standard 

filters possess large porosity and are typically fabricated out of fibers with diameters in 

the micrometer scale. These filters separate particles in the micrometer dimensions 

and the low nanometer range with high efficiency. However, there is a size range 

existing, where aerosol particles are filtered out insufficiently. This aerosol particle size 

range is defined as most penetrating particle size (MPPS) and in most filters this 

minimum in filtration efficiency is located at particle sizes of 100 nm to 500 nm.
[2]

 The 

best approach until now to enhance the filter performance in the MPPS is the 

utilization of nanofibers. The term nanofiber generally refers to fibers with diameters 

below one micrometer.
[3]

 The high surface area to volume ratio of nanofibers 

enhances the probability to capture aerosol particles at the fiber surface leading to 

improved filtration efficiencies accompanied by a decrease in differential pressure.
[4]

 

Thus, in nanofiber modified filters higher throughputs can be obtained. However, 

polymer nanofibers can not be used without a nonwoven support due to stability 

reasons.
[5]

 Thereby, nanofibers are typically deposited on top of a support by top-

down approaches, such as melt-blowing and electrospinning. Melt-blown fibers 

generally possess diameters in the high nanometer to the low micrometer range,
[6]

 

while electrospun fibers feature diameters down to 40 nm.
[7]

 But the production rates 

of electrospinning are exceedingly slow and thus electrospinning emerge just as niche 

process in filtration industry. 

A completely different route to prepare microfiber-nanofiber composite filters can be 

realized by bottom-up approaches, such as self-assembly of low molecular weight 

compounds. In literature very little is known in the field of supramolecular modified 

systems suitable for filter applications. Recently, Krieg et al. reported on a deposited 

supramolecular membrane on top of a supporting syringe filter, which is suitable to 

separate gold nanoparticles of different size from solution.
[8]

 The big advantage of 

bottom-up approaches (compared to top-down strategies) is the possibility to form 

supramolecular nanofibers inside a supporting scaffold. This is exploited by 

Raghavanpillai et al. who investigated the formation of supramolecular nanofiber webs 

with organogelators in combination with a porous support, but no data regarding filter 

experiments are reported.
[9]
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One of the simplest and well-investigated structural motifs in supramolecular 

chemistry is based on 1,3,5-benzenetricarboxamides (BTAs). The amide groups form 

intermolecular hydrogen bonds, which are the driving force of the BTAs to self-

assemble in highly defined, one-dimensional aggregates.
[10]

 It is known that the 

majority of BTAs assemble in a columnar hexagonal fashion.
[11]

 However, a broad 

variety of morphologies are known depending on the molecular structure, the nature 

of solvent, concentration and processing conditions.
[12]

 As consequence of this 

complexity, the class of BTAs finds applications in far-reaching processes. Due to the 

formation of supramolecular networks a variety of organic solvents can be gelled.
[13]

 In 

addition, BTAs are used as polymer additives for nucleation and clarification of 

thermoplastic semi-crystalline polymers
[14]

 and to improve the electret performance of 

polypropylene.
[15]

 Furthermore, we have shown by atomic force microscopy (AFM) 

force mapping methodology that single self-assembled BTA nanofibers feature a 

remarkable mechanical stability with Young’s moduli in the low GPa range, 

demonstrating that supramolecular nanofibers can withstand certain mechanical 

stress.
[16]

 Based on this, we published a simple but powerful immersion process for the 

in situ formation of supramolecular BTA nanofiber webs in nonwoven scaffolds, 

resulting in polymer-microfiber/supramolecular-nanofiber composites (Scheme 1).
[17]

 

                
Scheme 1. Schematic representation of polymer microfiber/supramolecular nanofiber composites. 

 

In our previous studies, the overall mechanical stability of the nanofiber webs as well 

as the principle use of the microfiber-nanofiber composites in air filtration was already 

demonstrated.  

Building on these results, the present paper was designed to optimize the filtration 

ability of the composite materials by establishing structure property relations with 

respect to influences of different concentrations, chemical structures, solvents, and 

different filter setups affecting the nanofiber web morphology, the filtration quality as 

well as the temperature stability. 
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Results and Discussion 

 

Preparation of microfiber-nanofiber composites 

Our concept to provide polymer microfiber/supramolecular nanofiber composites for 

air filtration applications contains a solution-based immersion process for the in-situ 

formation of supramolecular nanofibers in nonwoven scaffolds. The custom made 

immersion setup is shown in the Supporting Information (Figure S1) while its 

schematic process is already presented.
[17]

 At this process, a commercially available 

viscose/polyester blended fabric with a thickness of 0.15 mm is dipped into a BTA 

immersion solution at elevated temperatures. Subsequently, the fabric is removed 

after an appropriate immersion time leading to cooling effects and solvent evaporation 

which in turn induces the self-assembly of the BTA building blocks into supramolecular 

nanofibers in the nonwoven scaffold. After a final drying step, the microfiber-nanofiber 

composite is obtained (Scheme 1). During the immersion step the nonwoven fabric 

loses about 7 % of its weight, which may be explained by the dissolution of processing 

additives as well as oligomeric units of the polymer fabric. The exact amount of 

weight-loss is dependent on the immersion solvent. However, this weight loss neither 

influences the nonwoven fabric itself nor the self-assembly process of the BTAs (see 

Supporting Information, Figure S2) and thus we decided that an additional purification 

step of the scaffolds before the immersion process is not necessary. 

Based on exemplary microfiber-nanofiber composites several structure property 

relations are demonstrated in the following, influencing the nanofiber web, the 

thermal properties and the filtration efficiency. 

In order to find the optimum BTA-system we evaluated several BTAs in screening 

experiments. Depending on the alkyl rests of the BTAs, they possess diverse behaviors 

in terms of solubility, self-assembly behavior, as well as thermal properties. BTAs with 

short alkyl substituents are too insoluble in the used solvents such as butanone, 

isopropanol, and ethanol. In contrast, BTAs with octyl substituents or longer ones are 

too soluble which leads to the fact that these BTAs do not self-assemble anymore. 

Therefore, we utilized BTAs 1-3 (Figure 1) whose solubilities are large enough and 

whose self-assemblies result in well-defined nanofibers in the microfiber scaffold. 
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Figure 1. Chemical structures of BTAs 1-3 including thermal properties. 

 

In our previous studies, microfiber-nanofiber composites which were prepared in 

immersion solutions with a concentration of 1.0 wt% turned out to be suitable for 

filtration applications.
[17]

 Therefore, in the present work this concentration is taken for 

the 2-butanone solutions, to investigate the influences of the chemical structure of the 

BTAs 1-3 on the supramolecular morphology, the thermal properties of the assemblies, 

and the filtration efficiency. Even though each nonwoven fabric was immersed into a 

1.0 wt% concentrated BTA butanone solution the resulting weight percentages of 

supramolecular nanofibers in the dried filters differ (7.0 wt% for BTA 1, 7.6 wt% for 

BTA 2, and 7.0 wt% for BTA 3).  

The structure property relation between the chemical structure and the 

supramolecular morphology is shown in Figure 2. In the overview SEM micrographs on 

the left from top to bottom it can be seen that in each case, the supramolecular 

nanofiber webs assemble within the microfiber openings. Depending on the utilized 

BTA, a few macro voids remain unfilled, while in the case of BTA 2, the most 

homogeneous filling of the openings was observed. In the middle column of Figure 2 

micrographs with higher magnification show the nanofiber webs in detail as well as 

their tendency to adhere to the microfibers, providing the required stability in view of 

air filtration applications. On the first moment, the microfiber-nanofiber composites 

are very similar. However, at a closer look the web of BTA 2 seems to be the densest 

one, followed by the one of BTA 1. The nanofiber webs of BTA 3 are slightly more 

coarse-meshed exhibiting larger pores. 
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Figure 2. SEM micrographs of the microfiber-nanofiber composites with different BTA’s 1-3 prepared 

from butanone immersion solutions with concentrations of 1.0 wt%. The corresponding histograms 

(100 nm intervals) of the nanofiber diameters on the basis of 100 fibers are shown on the right.  

 

In the right column of Figure 2 the corresponding fiber diameter histograms with 

100 nm intervals are shown. The maximum of the fiber diameter distributions of the 

three BTAs are similar, featuring values of about 400 nm. Also the average fiber 

diameters are just slightly different; 0.39 µm for BTA 2 and 0.52 µm and 0.53 µm for 

BTA 1 and 3, respectively.  

These results indicate that the influences of the chemical structure of the BTA on the 

nanofiber web and the nanofiber diameter are marginal. 

Besides the already discussed structure property relation between the molecular 

structure and the supramolecular morphology, also the thermal properties of these 

molecules are an important factor with respect to the thermal stability of the 
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composites in possible filtration applications. Due to the fact that frictional heat can be 

caused in these processes, the thermal stability of the prepared microfiber-nanofiber 

composites also has to be ensured. At these investigations, the microfiber-nanofiber 

composites were subsequently annealed at 100 °C, 120 °C, and 140 °C for one hour. 

After each annealing step, the samples were investigated by SEM. The maximum 

temperature of 140 °C was chosen due to the long-term usage temperature of 

polyester of 120-140 °C. Supramolecular nanofiber degradation of BTA 1 and 2 is 

observed at 120 °C in both cases, even though BTA 1 and 2 possess columnar 

hexagonal plastic phases from room temperature up to 241 °C (BTA 1) and 240 °C 

(BTA 2).
[18]

 This can be explained by a decrease in viscosity of both plastic mesophases. 

In Figure 3,A the results of the thermal stability investigations are exemplarily shown 

for BTA 2. At this point, however, we want to emphasize, that the majority of air 

filtration applications are operated below 120 °C. Therefore, we do not see an 

important restriction for possible industrial filter applications for BTAs possessing 

columnar hexagonal plastic phases with phase transitions in these temperature 

regions. In contrast, the nanofibers of BTA 3 are stable up to the maximum of the 

tested temperature range (Figure 3,B). At room temperature, the aggregates of BTA 3 

are crystalline, a mesophase is observed not until 211 °C. According to this thermal 

behavior, it has to be assumed that nanofibers of BTA 3 would be stable at even higher 

temperatures than the tested ones. 
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Figure 3. SEM micrographs of the microfiber-nanofiber composite filters with supramolecular nanofibers 

of BTA 2 (A) and BTA 3 (B) during thermal filter stability tests at 25 °C, 100 °C, 120 °C, and 140 °C. The 

microfiber-nanofiber composites were prepared in butanone solutions with concentrations of 1.0 wt%, 

resulting in supramolecular nanofiber contents of 7.6 wt% (BTA 2) and 7.0 wt% (BTA 3). 
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In addition, also the structure property relation between the chemical structure and 

the filtration efficiency is investigated. Hereby, three individual samples were prepared 

for each microfiber-nanofiber composite, whose filtration efficiency and differential 

pressure were determined according to standard filtration procedures at a filter test 

rig. As reference, the filter performance of the blank polymer nonwoven fabric was 

measured. 

The filtration efficiency is defined as percentage of the removed particles by the filter 

whereby the size of the separated particles is typically indicated, because aerosol 

particles of different sizes are separated with distinct quality. Therefore, the filtration 

efficiency of one filter varies for different aerosol particle sizes. By means of the ratio 

of the aerosol particle concentration of the upstream side of the filter (“dirty” 

airstream before the filter) and of the downstream side of the filter (“clean” airstream 

after the filter), the filtration efficiency can be determined in a specific particle size 

range. The differential pressure is defined as the pressure difference between the 

upstream side and the downstream side of the filter. It originates from the air 

resistance of the filter, and is dependent on the flow velocity. 

The average filtration efficiencies of the composites which were modified with 

supramolecular nanofibers of different BTAs and the one of the reference are shown in 

Figure 4. The blank scaffold separates about 5 – 10 % of the aerosol particles in the 

size range of 0.2 – 2.0 µm and features a differential pressure of 9 Pa. The 

corresponding SEM micrographs of the nonwoven fabric prior and after the filter test 

are shown in the Supporting Information Figure S3. As can be seen in Figure 4, the 

average filtration efficiencies of the different microfiber-nanofiber composites are 

highly dependent on the used BTA. The composite with nanofibers of BTA 1 separates 

70 % of the aerosol particles with a size of 0.2 µm and even 90 % of all aerosol particles 

with a diameter of 2.0 µm. In comparison, the filtration efficiency of the composite 

prepared with BTA 2 is slightly reduced, filtering aerosol particles with a size of 0.2 µm 

to 50 % and aerosol particles with a diameter of 2.0 µm to 80 %. The filtration 

efficiency of the composite of BTA 3 is even more reduced. Aerosol particles of 0.2 µm 

size are filtered to a content of 40 % and particles of 2.0 µm are separated to 65 %. The 

immense divergence in the filtration efficiencies of the composites prepared with 

different BTA nanofibers can be explained by variations in the resulting nanofiber 

webs. While the supramolecular nanofibers of BTA 1 and 2 form dense, fine-pored 

networks, the ones of BTA 3 assembles in more wide-meshed webs. 

Besides the variations in the filtration efficiencies of the composites, also the 

differential pressure varies in the tested samples. The better the filtration efficiencies, 

the higher are the differential pressures of the tested composites. The microfiber-

nanofiber composite with the lowest filtration efficiency (filter with nanofibers of 

BTA 3) has a differential pressure of 67 Pa, while the composite with the highest 
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filtration efficiency (filter with nanofibers of BTA 1) reveals a differential pressure of 

429 Pa. 

 
Figure 4. Average filtration efficiencies of the blank nonwoven scaffold as well as the microfiber-

nanofiber composites with nanofibers of BTAs 1-3 which were prepared from a 1.0 wt% butanone 

solution, respectively. Test parameters: Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test aerosol: ISO 

fine dust (upstream aerosol concentration: about 6000 P/cm
3
); testing time: 30 s. The differential 

pressures of the tested composites are 429 Pa for the composite with BTA 1, 288 Pa with BTA 2, 67 Pa 

with BTA 3, and 9 Pa for the blank nonwoven. 

 

In order to validate the overall filter quality of these composites, both the filtration 

efficiency and the differential pressure have to be taken into account. The composite 

prepared with nanofibers of BTA 1 possesses the highest average filtration efficiency of 

the tested ones. But, the relatively high differential pressure reduces the overall filter 

quality. In comparison, the filtration efficiency of the composite with nanofibers of BTA 

2 is only slightly decreased, while the differential pressure is reduced by 30 % from 

429 Pa (BTA 1) to 288 Pa (BTA 2). Therefore, the following investigations were focused 

on composites which were modified with supramolecular nanofibers of BTA 2.  

 

Influence of concentration on the morphology of the microfiber-nanofiber composite 

and the filtration efficiency 

The structure property relation between the concentration of the immersion solution 

and the morphology of the microfiber-nanofiber composites as well as their filtration 

efficiency was investigated by 2-butanone solutions of BTA 2 with different 

concentrations of 0.6 wt%, 0.8 wt%, and 1.0 wt%. Not surprisingly, we found an 

increase in the nanofiber content from 4.4 wt% to 7.6 wt% in the microfiber-nanofiber 

composites correlating with the BTA concentrations in the used immersion solutions. 

The SEM micrographs of the microfiber-nanofiber composites and the corresponding 
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fiber diameter histograms are shown in the Supporting Information Figure S4. At the 

lowest nanofiber concentration, the nanofibers assemble unevenly in the openings of 

the nonwoven fabric, while the nonwoven with the highest concentration is 

extensively permeated with supramolecular nanofibers. In the Supporting Information, 

Figure S5, Figure S6, and Figure S7, the corresponding filtration efficiencies and 

pressure drops of the composites with different nanofiber contents are shown for 

BTA 2, BTA 1, and BTA 3, respectively. The higher the concentration of the immersion 

solution at the composite preparation, the better is the filtration efficiency of the 

filters. These investigations verify our previously published results and confirm their 

reproducibility.
[17]

 Summarizing, the concentration of the immersion solution just 

slightly influences the nanofiber morphology but strongly influences the fraction of 

filled openings in the nonwoven scaffold as well as influences the filtration efficiency 

to a high extend. 

 

Influence of solvent on the morphology of the microfiber-nanofiber composite and the 

filtration efficiency 

Besides the molecular structure and the concentration, also different solvents used in 

the immersion process influence the supramolecular nanofiber webs and the filtration 

performance. In order to reveal these structure property relations, the nonwoven 

fabrics were exemplarily immersed into solutions of BTA 2 with concentrations of 

1.0 wt% in 2-butanone, isopropanol, and ethanol, respectively. Depending in the used 

solvent, not only the weight loss of the fabric at the immersion process, but also the 

content of supramolecular nanofibers in the filter differs. The dried composite 

prepared with ethanol feature a nanofiber content of 6.9 wt%, the one prepared with 

butanone has a nanofiber content of 7.6 wt%, while the filter prepared with 

isopropanol possess a nanofiber content of 10.0 wt%. A complete listing of the weight 

percentages of supramolecular nanofibers in the prepared filters is shown in the 

Supporting Information (Table S1). The resulting microfiber-nanofiber composites 

were visualized by means of SEM (Figure 5). In the left micrographs it can be clearly 

observed, that in the case of butanone, all macro voids are filled with nanofibers, while 

in the case of isopropanol and ethanol, some openings remain unfilled. In the detailed 

view (middle column of Figure 5) one can see that the density of the nanofiber webs 

decreases when using isopropanol and ethanol instead of butanone in the immersion 

process. In addition, the diameters of the supramolecular fibers increase from 

butanone to isopropanol and further to ethanol. The corresponding histograms (right 

column of Figure 5) reveal fiber diameter distributions with average diameters of 

0.39 µm for butanone, 0.56 µm for isopropanol, and 1.44 µm for ethanol. 

Furthermore, the widths of the diameter distributions of the supramolecular fibers 



148 |   P u b l i c a t i o n s  a n d  m a n u s c r i p t s  

 

 

vary. While fibers prepared in butanone and isopropanol possess narrow diameter 

distributions, fibers processed from ethanol feature a broad distribution. 

 
Figure 5. SEM micrographs of the microfiber-nanofiber composites of BTA 2 prepared from immersion 

solutions with concentrations of 1.0 wt% in butanone, isopropanol, and ethanol. The corresponding 

histograms (100 nm intervals) of the nanofiber diameters on the basis of 100 fibers are shown on the 

right. 

 

Furthermore, the solvent in the immersion process also influence the filtration 

efficiency of the prepared composites. This structure property relation is exemplarily 

displayed in Figure 6 for composites with nanofibers of BTA 2 which were prepared 

from 1.0 wt% concentrated butanone, isopropanol, and ethanol solutions, 

respectively. The filtration efficiencies decrease from the composite prepared in 

butanone, to isopropanol, and further to ethanol. The composite prepared in 

butanone separates 50 % of 0.2 µm sized aerosol particles and even 80 % of the 
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aerosol particles with a size of 2.0 µm. Even though the resulting nanofiber content in 

the composite prepared in isopropanol features a value of 10.0 wt%, its average 

filtration efficiency to separate aerosol particles with 0.2 µm size do not exceed 25 %. 

In comparison, the composite prepared from ethanol possesses slightly lower filtration 

efficiency, in particular 20 % for 0.2 µm sized aerosol particles. Not surprisingly, the 

composite prepared in butanone possesses the highest differential pressure (288 Pa), 

while those prepared from isopropanol and ethanol, exhibit differential pressures of 

21 Pa and 25 Pa, respectively. These results can be explained by the different densities 

and porosities of the supramolecular nanofiber webs in the composites as well as by 

the varying fiber diameters discussed before. 

To sum up, the solvent used in the preparation of microfiber-nanofiber composites do 

not only influence the nanofiber morphology, but also influences the filtration 

efficiency to a high extend. 

 
Figure 6. Average fractional efficiencies of the blank nonwoven scaffold as well as of the microfiber-

nanofiber composites with nanofibers of BTA 2 prepared from 1.0 wt% concentrated solutions of 

different solvents. Test parameters: Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test aerosol: ISO fine 

dust (upstream aerosol concentration: about 6000 P/cm
3
); testing time: 30 s. The differential pressures 

of the tested composites are 288 Pa for butanone, 21 Pa for isopropanol, and 25 Pa for ethanol, and 9 

Pa for the blank nonwoven. 
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Influence of different aerosols on the filtration efficiency 

In filtration applications it is often the case that filters have to separate a range of 

different aerosol dusts, which possess distinct particle sizes, charges, and physical 

conditions. In a factory for instance particulate fine dust (charged or non-charged) 

emerge in combination with oil mist originating from the machines, thus the utilized 

filters have to separate each dust most effectively. Therefore, the behavior of the 

filtration performance of the prepared composites by utilizing different aerosol dusts 

at the filter tests is also an important knowledge. In order to investigate the structure 

property relation between the aerosol dust and the filtration efficiency and to study 

the versatility of the herein prepared composites, the filter tests were conducted with 

several test dusts. In this work, ISO fine dust, DEHS (Bis(2-ethylhexyl) sebacate) and KCl 

were utilized as aerosols, which represent commonly occurring dusts with a broad 

range of properties. While ISO fine test dust represent a particulate fine dust (desert 

sand), KCl symbolizes charged particles and DEHS represent dusts in form of oil 

droplets. The filtration efficiency results conducted with these test dusts are 

exemplarily displayed in Figure 7 for a composite featuring a weight percentage of 

supramolecular nanofibers of BTA 2 of 7.6 wt%. ISO fine dust is captured most 

efficiently at small particle sizes (0.2 µm) among the used aerosols. At this aerosol 

particle size, KCl and DEHS is filtered 20 % and 30 % worse. However, compared to 

ISO fine dust, DEHS droplets were separated more efficiently at aerosol particle sizes 

above 1.4 µm. After the filter test, the ISO fine dust- and KCl-loaded composites were 

analyzed by SEM (Figure 7, bottom). DEHS droplets can not be visualized, due to its 

fast evaporation. As can be seen in the micrographs, particles of both aerosols were 

separated to high extends onto the surface of the supramolecular nanofibers. ISO fine 

dust particles possess an undefined, rough shape, while KCl forms spherical particles 

with a smooth surface. Thus, variations in the filtration efficiencies may also originate 

from different shapes of the dust particles. 
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Figure 7. Top: Average filtration efficiencies of the microfiber-nanofiber composites with 7.6 wt% 

nanofibers of BTA 2 (prepared in butanone, 1.0 wt%) tested with different aerosols. Test parameters: 

Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test aerosol: ISO fine dust, DEHS or KCl (upstream aerosol 

concentration in each case: about 6000 P/cm
3
); testing time: 30 s. The differential pressures of the 

tested composites are 288 Pa for ISO fine dust, 201 Pa for DEHS, and 201 Pa for KCl. Bottom: SEM 

micrographs of the ISO fine dust- and KCl-loaded composites after the filtration tests. 

 

 

Influence of filter setup on the filtration efficiency 

Further structure property relations between filter setups and the filtration 

performance are revealed in this section of the present paper. The filtration 

efficiencies presented so far are all based on supramolecular modified single-layer 

viscose/polyester microfiber fabrics which possess a thickness of 0.15 mm. In view of 

this slight thickness, the obtained filtration efficiencies of the prepared microfiber-

nanofiber composites are even more remarkable. However, in order to find the 

optimal compromise between high filtration efficiency and low differential pressure 

multi-layer composites of BTA 2 were designed comprised of two or three single 

composites stacked upon each other.  

The top image of Figure 8 displays the comparison of the average filtration efficiencies 

of a single-, a double-, and a triple-layer composite. Each layer of the three samples 
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exhibits a weight percentage of supramolecular nanofibers of BTA 2 of 4.4 wt%. We 

found, that the filtration efficiency is increasing with the thickness of the composites. 

At the aerosol particle size of 0.2 µm, the single-layer composite possesses the poorest 

filtration efficiency with 20 %, the filtration efficiency of the double-layer composite is 

already increased to 40 %, and the triple-layer composite possesses a filtration 

efficiency of 65 %. Also the corresponding differential pressures rise with increasing 

filter thickness. The single layer composite features a differential pressure of 56 Pa. 

This is raised to 76 Pa at the douple-layer composite and further to 102 Pa at the 

triple-layer composite. While the filtration efficiency of the triple-layer composite is 

enhanced threefold compared to the single-layer composite, the corresponding 

differential pressure is increased less than twofold. Hence, with increasing thickness of 

the composite the filtration efficiency is increasing faster than the differential pressure 

which results in a higher overall filtration performance of the multi-layer composites. 

As references, the filtration efficiencies and differential pressures of the single-, the 

double-, and the triple-layer blank nonwoven scaffolds are presented in the Supporting 

Information Figure S8. 

Furthermore, this effect is elucidated in the comparison of the single-layer composite 

with 7.6 wt% nanofibers and the triple-layer composite which possesses 4.4 wt% 

nanofibers in each layer (Figure 8, Center). The filtration efficiencies of both samples 

are comparable. However, the single-layer composite has a differential pressure of 

288 Pa, while the triple-layer composite features a differential pressure of only 102 Pa, 

even though twice the overall amount of supramolecular nanofibers is incorporated in 

the triple-layer composite. Hence, triple-layer composites possess superior quality 

compared to single-layer composites and thus higher throughputs can be acquired. 

To further improve the filtration efficiency triple-layer composites with higher contents 

of supramolecular nanofibers were investigated (Figure 8, Bottom). Thereby, the 

weight percentage of supramolecular nanofibers in each layer is successively enhanced 

from 4.4 wt% to 5.8 wt% and further to 7.6 wt%. Not unexpected, this increase leads 

to improved filtration efficiencies. The triple-layer composite containing 5.8 wt% 

nanofibers in each layer already features a filtration efficiency of 75 % for 0.2 µm sized 

aerosol particles, and for particles with 1.0 µm even 95 %. Regardless, the triple-layer 

composite with 7.6 wt% nanofibers in each layer features enormous filtration 

efficiencies for supramolecular modified filters; in particular over 90 % for 0.2 µm sized 

aerosol particles, 97 % for 0.5 µm particles, and even 99.4 % for 1.0 µm sized aerosol 

particles. The corresponding differential pressures also increase from 102 Pa for the 

sample with 4.4 wt% nanofibers in each layer to 406 Pa for 5.8 wt% nanofibers, and 

further to 894 Pa for 7.6 wt% nanofibers. 
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Figure 8. Top: Average filtration efficiencies of a single-, a double-, and a triple-layer composite with 

weight percentages of supramolecular nanofibers of BTA 2 of 4.4 wt% in each layer. The differential 

pressures of the tested samples are 56 Pa for the single-layer composite, 76 Pa for the double-layer 

composite, and 102 Pa for the triple-layer composite. Center: Average filtration efficiencies of a single-

layer composite with a weight percentage of supramolecular nanofibers of BTA 2 of 7.6 wt% and a 

triple-layer composite with weight percentages of supramolecular nanofibers of BTA 2 of 4.4 wt% in 

each layer. The differential pressures of the tested samples are 288 Pa for the single-layer composite 

and 102 Pa for the triple-layer composite. Bottom: Average filtration efficiencies of three triple-layer 

composites with weight percentages of 4.4 wt%, 5.8 wt%, and 7.6 wt% of supramolecular nanofibers of 

BTA 2 in each layer, respectively. The differential pressures of the tested samples are 102 Pa for 3 x 

4.4 wt%, 406 Pa for 3 x 5.8 wt%, and 894 Pa for 3 x 7.6 wt% nanofibers. Test parameters in each case: 

Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test aerosol: ISO fine dust (upstream aerosol concentration: 

about 6000 P/cm
3
); testing time: 30 s. 
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After the filter tests, the aerosol particle-loaded triple-layer composite containing 

7.6 wt% nanofibers in each layer is investigated by SEM (Figure 9). As can be seen in 

the micrographs, the top-layer of the composite fulfills the task of a coarse filter by 

separating mainly large aerosol particles. At the center- and the bottom-layer of the 

triple-layer composite, only small aerosol particles were found. Consequently large 

particles have to be filtered to 100 % at the top-layer.  

These investigations pave the way to future optimizations of the herein presented 

supramolecular modified specimens to obtain overall powerful filters. By utilization of 

multi-layer composites with more than three layers the filtration efficiencies of the 

microfiber-nanofiber composites could be further optimized, possibly leading to even 

more powerful filters than HEPA (High-Efficiency Particulate Air) filters. 

 

Conclusion 

 

In conclusion, we have demonstrated a simple fabrication of polymer-

microfiber/supramolecular-nanofiber composites suitable for air filtration. Based on 

exemplary composite samples, we revealed several structure property relations 

influencing the nanofiber web morphology, the thermal properties, and the filtration 

efficiency: 

The chemical structure of the BTAs used in the immersion process just slightly 

influences the nanofiber web. However, these marginal changes in the morphology are 

sufficient to affect the filtration efficiency remarkably. In addition, also the thermal 

properties of the supramolecular nanofibers vary by using different BTAs. 

The influence of the concentration of the immersion solution on the nanofiber 

morphology is marginal but it strongly influences the fraction of filled openings in the 

nonwoven scaffold as well as affects the filtration efficiency to a high extend. 

The solvent used in the preparation of the microfiber-nanofiber composites do not 

only extremely influence the nanofiber morphology, but also has a huge impact on the 

filtration efficiency. 

Depending on the aerosols utilized in the filter tests, the filtration efficiency of the 

microfiber-nanofiber composites vary. Herein we have shown versatile composites 

filtering a range of different aerosol dusts. 

Furthermore, the filter setup strongly influences the filtration performance of the 

composites. Triple-layer composites with just 7.6 wt% supramolecular nanofibers in 

each layer feature excellent filtration efficiencies for supramolecular modified filters 

reaching 99.4 % for 1.0 µm sized aerosol particles. 

This study clearly points out that the filter performance of polymer-

microfiber/supramolecular-nanofiber composites can be optimized by many adjusting 

screws leading to very adaptive filter systems suitable for each kind of air filtration 

application. 
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Figure 9. SEM micrographs of the top surface of each layer of the triple-layer composite after the filter 

test. Each layer of the composite contains a weight percentage of 7.6 wt% of supramolecular nanofibers 

of BTA 2 (prepared from a butanone immersion solution). 
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Experimental section 

 

Materials: 

The synthesis and characterization of the 1,3,5-benzenetricarboxamides 1-3 is 

described in detail in reference 
[18]

.  

As scaffold a commercially available viscose/polyester microfiber nonwoven fabric was 

used (AMPri). The fabric has a thickness of 0.15 mm and a basis weight of 32.2 g/m
2
. 

The nonwoven fabrics were cut into pieces of 9.5 cm x 9.5 cm (fabric area: 90.25 cm
2
).  

ISO 12103-1, A2 fine test dust and DEHS were received from Powder Technology Inc. 

and Palas, respectively. KCl and all solvents were purchased from Aldrich and used as 

received. 

 

Preparation of supramolecular nanofibers in a nonwoven fabric: 

The immersion solutions were prepared with concentrations of 0.4, 0.6, 0.8, and 

1.0 wt% by suspending the corresponding amount of BTA in 2-butanone, isopropanol, 

and ethanol, respectively. Subsequent heating to 50 °C leads to a clear solution, which 

was filled into a custom-made immersion bath placed in a thermostat at a temperature 

of 50 °C. The nonwoven fabric (9.5 cm x 9.5 cm) was clamped into a supporting frame, 

which reduces the effective area to 72.25 cm
2
 (8.5 cm x 8.5 cm). To equip the 

nonwoven scaffold with supramolecular nanofibers, the supporting frame with the 

microfiber fabric was dipped into the immersion bath for 30 s. The soaked fabric was 

removed from the immersion solution and dried in the frame at ambient conditions for 

10 min and subsequently in vacuum for 30 min.  

 

Evalution of weight percentage of supramolecular nanofibers in the nonwovens: 

Prior to the estimation of the weight percentage of the supramolecular nanofibers in 

the model nowoven, the received fabric was dipped into pure 2-butanone, removed 

and dried carefully. Weighing the model nonwoven before and after the dipping into 

the solvent allows the determination of the soluble amount of organic compounds 

from the fabric. In order to determine the nanofiber content, a new nonwoven fabric 

was dipped into an immersion solution (concentrations: 0.4, 0.6, 0.8, and 1.0 wt%) 
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carefully dried and weighed before and after this immersion process. The values of the 

effective area and the soluble amount from the nonwoven were considered while 

calculating the weight percentage. The values of these calculations represent the 

averages of ten individual samples.  

 

Scanning electron microscopy (SEM): 

For SEM investigations, samples were fixed via a double-sided adhesive conductive 

carbon tape on a SEM sample holder. Subsequently, the samples were carbon-coated 

utilizing a MED 010 coating machine from Baltzer. SEM micrographs were recorded 

using a Zeiss 1530 FESEM equipped with an Inlens detector (acceleration voltage: of 

5 kV).  

 

Fiber diameter histograms: 

In each analysed SEM micrograph, fiber diameters of 100 self-assembled nanofibers 

were determined utilizing measureIT software from Olympus. The histograms were 

prepared with intervals of 100 nm steps. 

 

Thermal stability test: 

The samples were fixed via a double-sided adhesive conductive carbon tape on a SEM 

sample holder. The devices were put into a drying oven at 80 °C, 100 °C, 120 °C and 

140 °C successively for 1 h, respectively. After each annealing step, the specimens 

were investigated by means of a desktop SEM (Phenom G1 from FEI). 

 

Filter testing procedures: 

All Measurements were performed utilizing a custom build filter test rig based on the 

MFP 2000 from PALAS
®
 with a white light-scattering spectrometer Welas

®
 digital 2100 

(particle size detection range: 0.2 µm – 10.0 µm). 

Airstream test: 

The samples (sample area: 9.4 cm
2
) were fixed via a pneumatic sample holder. 

Subsequently a continuous clean air flow (without aerosol particles) was applied to the 

filter. The flow velocity was set to 3.0 m/s for 24 h and the differential pressure as well 

as possible particles, originating from the microfiber-nanofiber composite, were 

recorded. 

Filtration test: 

As aerosol generator an RBG 1000 from PALAS
®
 was utilized (rotation speed of brush: 

1200 r/min, volumetric flow rate of generator: 15 L/min). In addition, an AGK 2000 

(concentration of KCl solution: 1.0 wt%) and a PLG-HEPA generator (both from PALAS
®
) 

were used for KCl and DEHS measurements, respectively. In the measurements, the 

flow velocity was set to 0.25 m/s and the measuring time to 30 s. As test aerosol ISO 
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fine dust, DEHS, and KCl was used, respectively. The samples were fixed with a 

pneumatic sample holder and a continuous air flow loaded with a particle 

concentration of 6000 particles/cm
3
 was applied to the samples with an effective 

filtration area of 28.3 cm
2
. The filtration efficiency was determined by recording the 

particle concentration without the composite material (upstream concentration) and 

with the composite material (downstream concentration). Additionally, the differential 

pressure was recorded. 
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I. Custom-made immersion setup 

 

 

 
 
Figure S1. Immersion process in the custom-made immersion bath for the in-situ formation of 

supramolecular nanofibers in nonwoven scaffolds. Polymer nonwoven scaffolds are clamped into a 

supporting frame, dipped into the immersion bath (which is filled with the BTA solution), removed out 

of the immersion solution, and finally dried to obtain microfiber-nanofiber composites. 

 

 

 

 

 

 

 

 

 

 

 

 

 



162 |   P u b l i c a t i o n s  a n d  m a n u s c r i p t s  

 

 

 

 

 

 

 

 

 

II. Reference experiments on the nonwoven fabric 

 

 

 

 
 
Figure S2. Top: Non-extracted and extracted polymer nonwoven fabric without supramolecular 

nanofibers. Bottom: Aerosol (ISO fine dust) particle-loaded polymer nonwoven fabric incorporated with 

BTA 2 nanofibers (immersed in butanone, 1.0 wt%). The nonwoven fabric in the left micrograph was 

used as received for the immersion process; the nonwoven fabric in the right micrograph was extracted 

in butanone for 5 days prior use. 
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III. SEM micrographs of the blank nonwoven fabric prior and after the filter test 

 

 

 
 
Figure S3. SEM micrographs of the blank nonwoven fabric (left) and an ISO fine dust-loaded nonwoven 

fabric after the filter test (right). 
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IV. Influence of concentration on the morphology of the microfiber-nanofiber 

composite and the filtration efficiency 

 

 

 

 
Figure S4. SEM micrographs of the microfiber-nanofiber composites with increasing amount of 

nanofibers (4.4 wt%, 5.8 wt%, and 7.6 wt%) prepared from three immersion solutions with different 

concentrations of BTA 2 (0.6 wt%, 0.8 wt%, and 1.0 wt%). The corresponding histograms (100 nm 

intervals) of the nanofiber diameters on the basis of 100 fibers are shown on the right. 
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Figure S5. Average filtration efficiencies of the blank nonwoven scaffold as well as the microfiber-

nanofiber composites with different weight percentages of supramolecular nanofibers of BTA 2 

prepared from butanone solutions. Test parameters: Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test 

aerosol: ISO fine dust (upstream aerosol concentration: about 6000 P/cm
3
); testing time: 30 s. The 

differential pressures of the tested composites are 288 Pa for 7.6 wt% nanofibers, 199 Pa for 5.8 wt%, 

and 56 Pa for 4.4 wt%, and 9 Pa for the blank nonwoven. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

20

40

60

80

100
 7.6 wt%
 5.8 wt%
 4.4 wt%
 blank nonwoven

 

 

fil
tr

at
io

n 
ef

fic
ie

nc
y 

/ %

particle size / µm

N
H

O N
H

O

N
H

O



166 |   P u b l i c a t i o n s  a n d  m a n u s c r i p t s  

 

 

 

 
Figure S6. Average filtration efficiencies of the blank nonwoven scaffold as well as the microfiber-

nanofiber composites with different weight percentages of supramolecular nanofibers of BTA 1 

prepared from butanone solutions. Test parameters: Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test 

aerosol: ISO fine dust (upstream aerosol concentration: about 6000 P/cm
3
); testing time: 30 s. The 

differential pressures of the tested composites are 429 Pa for 7.0 wt% nanofibers, 281 Pa for 6.4 wt%, 

and 28 Pa for 4.4 wt%, and 9 Pa for the blank nonwoven. 

 

 

 
Figure S7. Average filtration efficiencies of the blank nonwoven scaffold as well as the microfiber-

nanofiber composites with different weight percentages of supramolecular nanofibers of BTA 3 

prepared from butanone solutions. Test parameters: Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test 

aerosol: ISO fine dust (upstream aerosol concentration: about 6000 P/cm
3
); testing time: 30 s. The 

differential pressures of the tested composites are 67 Pa for 7.0 wt% nanofibers, 16 Pa for 5.1 wt%, and 

10 Pa for 3.8 wt%, and 9 Pa for the blank nonwoven. 
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V. Investigated composites prepared with different BTAs, solvents and concentrations 

 

 

 
Table S1. Listing of weight percentages of supramolecular nanofibers in the composites which were 

prepared with BTAs 1-3, in three different solvents (2-butanone, isopropanol, and ethanol) with various 

immersion solution concentrations, respectively. 

 

 

BTA solvent 

weight percentage 

of supramolecular 

nanofibers [wt%] 

in the composite 

prepared from 

0.6 wt% solution 

weight percentage 

of supramolecular 

nanofibers [wt%] 

in the composite 

prepared from 

0.8 wt% solution 

weight percentage 

of supramolecular 

nanofibers [wt%] 

in the composite 

prepared from 

1.0 wt% solution 

1 butanone 4.4 6.4 7.0 

 isopropanol 6.0 7.4 8.5 

 ethanol 2.7 4.4 5.5 

     

2 butanone 4.4 5.8 7.6 

 isopropanol 7.1 8.8 10.0 

 ethanol 4.1 4.5 6.9 

     

3 butanone 3.8 5.1 7.0 

 isopropanol 6.2 6.8 8.4 

 ethanol 2.5 3.7 4.2 
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VI. Filtration efficiency of the single-, the double-, and the triple-layer reference filter 

composed of the blank nonwoven scaffold 

 

 

 

 
 
Figure S8. Average filtration efficiencies of the single-, the double-, and the triple-layer blank nonwoven 

scaffolds used as references. Test parameters: Filter area: 28.3 cm
2
; flow velocity: 25 cm/s; test aerosol: 

ISO fine dust (upstream aerosol concentration: about 6000 P/cm
3
); testing time: 30 s. The differential 

pressures of the tested reference filters are 9 Pa for the single-layer filter, 15 Pa for the double-layer 

filter and 25 Pa for the triple-layer nonwoven filter. 
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4 .  A P P E N D I X  

 

Filter test rig MFP 2000 from PALAS 

 

Within the scope of this thesis, the modularly built filter test rig MFP 2000 from Palas
®
 

including the characteristic equipment had to be acquired. Thereby, the filter test rig 

had to be adapted, fitting to our specific research purposes. Within this process, the 

filter area and the adjustability of the volumetric flow rate were tailored in view of our 

required test conditions, yielding to a custom build filter test rig from Palas
®
. 

Furthermore in this work, the corresponding measuring procedures (for instance 

stability tests, pressure drop measurements, and filtration efficiency tests) had to be 

established as well as optimized with respect to our specimens. 

The filter test rig MFP 2000 with its setup is shown in Figure 1. At the test rig, the 

overall flow velocity (velocity of airstream [m/s]) at the filter can be continuously 

adjusted by two different volumetric flow rates (volume of airstream [L/min]), namely 

generator volumetric flow rate and mixed air volumetric flow rate which can be 

accessed separately by means of mass flow controllers. The air from the generator 

volumetric flow rate streams into the aerosol generator. In our laboratory, three 

different generator types can be utilized at the modularly built test rig. These are an oil 

droplet, a salt particle, and a dust generator. Each of them is able to produce a 

constant aerosol amount in a specific time interval. The mixed air volumetric flow rate 

is needed to dilute the particle-enriched airstream flowing out of the generator to 

obtain the desired flow velocity as well as the requested upstream aerosol 

concentration, which is applied to a filter. At the filter, some aerosol particles are 

separated, but others are penetrating through and are directed into the sensor. The 

sensor works with the principle of white light scattering combined with a light barrier. 

Thus the aerosol concentration as well as the aerosol particle size can be determined. 

The resulting signal is transferred to the detector and recorded by a computer.  

The filter test rig can be operated with a maximal volumetric flow rate of 170 L/min, 

which is related to a maximal flow velocity of 1.0 m/s at the filter surface of 28.3 cm
2
. 

Because the filter surface influences the flow velocity, this value can be improved to 

3.0 m/s by the reduction to one third of the original filter surface at unchanged 

volumetric flow rate. In commercial applications the flow velocities differ extremely. 

While in filters for clean rooms (0.01-0.05 m/s), cabin air filters (0.05-0.20 m/s), and 

customary vacuum cleaners (0.15-0.35 m/s) a flow velocity of 0.4 m/s is not exceeded, 

coarse filters for instance in tools such as chain saws, power packs, and lawn mowers 

are exposed to flow velocities of 1-3 m/s. Because of economic factors for instance 
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huge differential pressures, flow velocities of 0.40-1.00 m/s are rarely realized in 

industrial applications.  

 

Figure 1. Picture of filter test rig MFP 2000 and schematic representation of its setup. 

 

Various filter tests can be realized at the MFP 2000. In this work filter stability tests are 

conducted to detect the stability of the supramolecular nanofiber modified samples at 

strong airstreams. For these tests, the aerosol generator has to be removed, so that a 

clean airstream without any aerosols is applied to the filter. If the supramolecular 

fibers in the filter would be destroyed by the adjusted airstream, fiber pieces as well as 

network fragments would be broken out of the filter and would be detected. These 

tests are performed to a maximal flow velocity of 3.0 m/s. 

The second test method is the determination of the differential pressure. This test is 

also realized without any generator. Thereby, the flow velocity is successively 

increased and the differential pressure between the upstream side and the 

downstream side of the filter is detected continuously. 

At the determination of the filtration efficiency an aerosol generator is required. This 

test is divided into two experimental sections. As reference, the upstream aerosol 

concentration is measured initially without filter element. Thereby, 100 % of the 

generated particles can be detected by the sensor. At the second measuring step, the 

filter is inserted and the resulting downstream particle distribution (penetrating 
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particles which are not separated at the filter) is quantified. Both particle distributions, 

at the upstream and the downstream side are shown in Figure 2 exemplarily. 

From the ratio of the downstream aerosol concentration and the upstream aerosol 

concentration the filtration efficiency can be calculated. At the determination of the 

initial filtration efficiency of an unloaded filter the upstream aerosol concentration 

which is applied to the filter has to be chosen carefully because of the relatively low 

dust holding capacity of the plane filter. If the aerosol concentration is adjusted too 

high, the filter will be “overloaded”. As result a filter cake is established and the 

filtration efficiency of a loaded filter is detected. This value is generally higher 

compared to the initial filtration efficiency because the filter cake also acts as a filter. 

At these tests, also the differential pressure is detected at the beginning as well as at 

the end of the testing time. Due to the fact, that the differential pressure is increasing 

during measurement when a filter cake is developed, this value gives good control if 

the filtration efficiency belongs to a virgin filter or to a dust loaded filter including filter 

cake. 
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Figure 2. Upstsream and downstream aerosol particle distribution (KCl particles) with the corresponding 

filtration efficiency of a randomly selected filter. 

 

The filtration efficiency tests can be performed with various aerosols. In this work, oil 

droplets (DEHS (Di-2-ethylhexyl-sebacate)), salt particles (KCl), and dust aerosols (Iso 

fine dust) is used. Each kind of aerosol has to be prepared by a different generator and 

features distinct particle size distributions (Figure 3). To adjust the quantity of the 

aerosol particles in the measuring process, various parameters at the generators as 

well as at the test rig can be changed.  
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Figure 3. Particle size distributions of the generated test aerosols DEHS, KCl, and Iso fine dust (flow 

velocity: 25 cm/s). 

 

DEHS generator PLG HEPA 

 

The PLG HEPA generator works on the operating principle of dispersing DEHS-oil by an 

airstream. In order to ensure consistency of the upstream aerosol concentration of the 

measurements, the generator has to be operated with a minimal generator volumetric 

flow rate of 1.40 L/min. The larger the applied generator volumetric flow rate, the 

more aerosol particles are created (Figure 4). Furthermore, the overall flow velocity 

also affects the aerosol concentration. At consistent generator volumetric flow rate 

the produced aerosol particle amount is decreasing in quantity with larger flow 

velocity. This can be explained by the fact that the mixed air volumetric flow rate has 

to be enhanced when higher flow velocities are desired while the generator volumetric 

flow rate is not changed. Thus, the mixed air volumetric flow rate dilutes the aerosol 

loaded airstream of the generator. As a result of this, the ratio of generator volumetric 

flow rate and mixed air volumetric flow rate has to be adjusted carefully, when a 

specific oil droplet concentration at a given overall flow velocity is requested. 
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Figure 4. Influence of generator volumetric flow rate on the aerosol concentration at different overall 

flow velocities (flow velocities: 10 cm/s and 25 cm/s, filtration area: 28.3 cm
3
).  

 

Salt generator AGK 2000 

 

In this generator type, different salt aerosols such as KCl and NaCl can be produced. 

Thereby, the airstream entrains water droplets from an aqueous salt solution into a 

drying system. Consequently, the water of the droplets evaporates and the dried salt 

particles remain as test aerosol particles. In this generator, the aerosol concentration 

can be adjusted by the chosen salt concentration of the solution, by the value of 

generator volumetric flow rate, and by the overall flow velocity (Figure 5). This 

generator requires a minimal generator volumetric flow rate of 7.5 L/min for a 

constant aerosol concentration. 
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Figure 5. Left: Influence of generator volumetric flow rate on the aerosol concentration at different 

overall flow velocities (KCl solution concentration: 1.0 wt%). Right: Influence of the concentration of the 

salt solution utilized in the generator on the aerosol concentration at a constant generator volumetric 

flow rate (7.5 L/min) and a constant overall flow velocity (25 cm/s). Filtration area for both experiments: 

28.3 cm
3
. 

 

Dust generator RBG 1000 

 

Contrary to both generators described previously, the RBG 1000 can only ensure 

consistency in aerosol particle concentration above a minimal generator volumetric 

flow rate of 15 L/min. Therefore, a minimal overall flow velocity of about 20 m/s is 

required. The dust generator can be operated with all non-agglomerating dusts. Iso 

fine dust is one of many examples, which is used in this work. Amongst the three 

generators described here, this is the most versatile one. In the RBG 1000 the test dust 

is located in a reservoir tube and pressed towards a rotary brush by a feed piston with 

a distinct feed rate. By the rotation of the brush, the dust is dispersed into the test 

aerosol particles of various sizes. The aerosol particle concentration in the air flow at 

the upstream side of the filter is dependent on the packing density of the dust in the 

reservoir tube, the feed rate, the rotation speed of the brush, the generator volumetric 

flow rate, and the overall flow velocity. Figure 6 shows the influence of the feed rate in 

the reservoir tube, the influence of the rotation speed of the brush, and the influence 

of the generator volumetric flow rate on the aerosol concentration. By increasing one 

of the three parameters, the aerosol particle quantity is enhanced in each case. 
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Figure 6. Influences on the aerosol concentration (Iso fine dust). Top left: influence of feed rate (flow 

velocity: 25 cm/s, generator volumetric flow rate: 15 L/min, rotation speed of brush: 1200 r/min, feed 

piston: 7 mm, filtration area: 28.3 cm
3
). Top right: influence of rotation speed of brush (flow velocity: 

25 cm/s, generator volumetric flow rate: 15 L/min, feed piston: 7 mm, feed rate: 5 mm/h, filtration area: 

28.3 cm
3
). Bottom left: influence of generator volumetric flow rate (flow velocity: 25 cm/s, rotation 

speed of brush: 1200 r/min, feed piston: 7 mm, feed rate: 5 mm/h, filtration area: 28.3 cm
3
). 
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