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Some remarks in advance… 
This doctoral thesis follows the widespread international standard of PhD 
theses and is structured in independent chapters which together build a closed 
unity, yet can be read separately without having read preceding chapters 
(cumulative design). Nevertheless, accompanying chapters shall help the 
reader to gain further concomitant information and give the whole thesis 
coherence.  
In Chapter one I give a general introduction on social caterpillars and a first 
overview of the present state of research as well as an outline of the thesis 
including the formulation of the questions and hypotheses addressed. Chapters 
two and three mainly include literature basics and show only few original data. 
They give an overview of the species investigated and some additional 
information on physical details of thermoregulation which might be helpful for 
those readers who have not yet dealt with this subject.  
Chapters four to thirteen all show original data and follow the general 
appearance of scientific papers since the majority of these chapters has been 
published yet (Chapters 4,5,6,7) or are presently under review (Chapters 
8,10,11). I decided to accompany each chapter with its own references. 
Although this means partial redundancy of references, readers who are only 
interested in partial aspects of this thesis benefit from the integrity of each 
chapter. 
In a last chapter, the synopsis, I merge the contents of all chapters to provide 
general discussion and conclusions about the significance of the data for 
caterpillar sociality.  
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General Introduction 

Present state of research 

Butterflies and moths (i.e. the order Lepidoptera) probably represent the best 

known taxon among the phytophagous insects. However, there is a deep gap in 

our knowledge about the ecology of the predominant number of species which 

is not only true for tropical species, but even for many of the most common 

species of our local fauna. This particularly holds for the larval stages of most 

Lepidoptera. Hence, the larval ecology is only well understood for a rather small 

number of species which are of economic interest as they are forest or 

agricultural pests. 

The larval stages of the majority of the about 160,000 described species of 

butterflies and moths show solitary life styles. In contrast, only about 300 

species are known so far which exhibit gregarious or ‘social’ life-styles for at 

least part of their larval development (for a general discussion of terms see: 

Costa & Fitzgerald 1996, Costa & Pierce 1997). Even though this list is certainly 

incomplete because of the nearly complete lack of knowledge of life-history 

traits of most tropical species it seems obvious that evolution favors solitary life-

styles in most cases investigated because of the high costs related to social life. 

The costs of larval societies are obvious: Caterpillars are slow moving insects 

and suffer great losses from predators and parasitoids which could be even 

more pronounced in groups of larvae that are more conspicuous to their 

enemies (Costa 1993, Knapp & Casey 1986, Stamp & Bowers 1988). Besides, 

groups of caterpillars have a higher risk of being infected by pathogens 

(Hochberg 1991) and may rapidly overexploit their larval resources because of 

competition for food within a colony which may result in the inability to finish 

development and sometimes the death of the whole offspring of a female 

(Tsubaki 1995).  
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Five factors acting singly or in combination are commonly regarded to be 

responsible for the fact that despite strong selective pressures against larval 

communities such systems may evolve and persist over time: 

1. The inability of the imago to ingest food favors egg clustering 

Comparative investigations revealed that a reduction of the proboscis in 

imagines frequently makes for clustering eggs in large clutches because of 

energetic constraints (Miller 1996, Tammaru & Haukioja 1996, Hebert 1983). 

Caterpillars hatching from an egg cluster immediately leave their siblings in 

most species. Nevertheless, egg clustering is obligatory for evolving social life-

styles in caterpillars and gregarious larvae are significantly more frequent in 

species that do not feed as adults (Hunter 1991). 

2. Aposematic coloration and collective defense against natural enemies is 

more effective in groups 

Aposematically colored caterpillars that are generally supposed to be 

unpalatable have an advantage over solitary caterpillars because of enhanced 

signaling efficiency and more rapid avoidance learning by predators (Gagliardo 

& Guilford 1993, Gamberale & Tullberg 1998). Aggregations therefore can be 

found especially in aposematically colored caterpillars (for butterflies: Sillén-

Tullberg 1988, 1993). In addition, some caterpillars show special group defense 

displays (e.g. synchronized regurgitation) and are thus able to deter 

invertebrate predators and parasitoids more effectively than solitary individuals 

(Peterson et al. 1987, Stamp 1984). 

3. Possibility to build large silk webs 

Some social caterpillars build silken structures that can be formed as loose 

webs or dense ‘tents’ (cf. Costa & Pierce 1997). Webs or tents are 

multifunctional structures with different tasks such as giving shelter from 

desiccation, or protection from invertebrate predators and parasitoids (Stamp 

1981). Furthermore the tent may transfer vibrations which could enhance 

synchronized group behavior (Costa 1997) and serve as effective material for 

thermoregulation (Breuer & Devkota 1990, Joos et al. 1988) (cf. point 5). 
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4. Social feeding facilitation  

Social behavior can be advantageous for foraging in many ways which include 

communal overcoming of plant defense structures (Clark & Faeth 1997, Denno 

& Benrey 1997, Matsumoto 1989), optimal exploitation of resources (Tsubaki & 

Shiotsu 1982), or (in the case of patchily distributed food resources) the 

development of highly sophisticated, pheromone based communication systems 

which enable caterpillars to find high quality food resources quickly (Fitzgerald 

& Peterson 1988, Peterson 1987 and references therein). Indeed, the latter may 

also be a consequence of overexploitation of food resources in large groups of 

caterpillars. This means that highly evolved communication systems may rather 

have evolved as a consequence of social behavior and did not initiate it. 

5. Thermoregulation in groups 

Solitary caterpillars are able to elevate their body temperature by exposing their 

preferably dark colored bodies to the radiation of the sun, which enhances 

digestion rate and consequently the developmental rate (Casey et al. 1988). 

Temperature gains are usually only in the range of a few Kelvin. In 

aggregations, caterpillars multiply their effective body mass which results in 

much larger temperature gains than in solitary larvae (Casey 1993, Knapp & 

Casey 1986, Stevenson 1985a,b). Furthermore, if caterpillars build tents, these 

structures may enhance temperature gains even further (Breuer et al. 1989, 

Casey et al. 1988, Joos et al. 1988). Nevertheless, the physical features of such 

tents have almost never been tested experimentally and thus the real 

mechanism of the heating function of the tent remains unclear. It is noticeable 

that sociality in caterpillars combined with tent building predominantly occurs in 

species that develop in early spring or late autumn where thermal conditions are 

very restrictive for ectothermic insects.  

Larval societies are thence communities of mutual benefit for all group 

members driven by morphological constraints of the adults or by ecological 

constraints directly affecting development and survival of the caterpillars. 

Caterpillar societies will only evolve or persist if every individual within the group 

may benefit from the presence of the colony mates and therefore from its 
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staying in the colony (Hamilton 1971). In contrast to the well known social 

systems of ‘eusocial’ insects (e.g. ants, bees, or termites) aspects of kin 

selection (Hamilton 1964) are of no importance for larval societies. Kin 

discrimination seems to be non-existent in social caterpillars (Costa & Ross 

1993) and intraspecific as well as interspecific mixed colonies regularly occur in 

the field (Fitzgerald 1995, Ebert 1994) or can easily be maintained in the 

laboratory. Studying social communities which are not determined by 

reproductive division of labor may help to analyze extrinsic ecological factors 

like advantages of communal search for food, defense against natural enemies 

or thermoregulation and to assess their importance for the evolution of social 

systems. 

The factors promoting sociality in caterpillars defined under point 1 are usually 

investigated by comparative phylogenetic studies. In contrast, factors 

mentioned in points 2 to 5 permit the formulation of clear hypotheses, testing 

them experimentally and thus make advantages or costs of social life-styles 

measurable. 

Although there is a considerable amount of studies on different lepidopteran 

species with social caterpillars (for a general review see Fitzgerald 1995, Costa 

1997), most studies deal with one single aspect of the caterpillars’ pattern of life 

(e.g. enhanced survival in gregarious larvae). Only chemical aspects of trail-

based communication were studied more intensively in several species, but 

only one species has been investigated very well, the highly social caterpillars 

of the Nearctic eastern tent caterpillar Malacosoma americanum (Lepidoptera, 

Lasiocampidae) (reviewed in Fitzgerald 1995). Nevertheless, even after over 30 

years of research numerous questions remain to be answered in this particular 

species of considerable economic importance. 

Levels of complexity in caterpillar sociality 

Unlike eusocial insects caterpillars do neither exhibit cooperative brood care, 

nor reproductive division of labor, and there is no contact between generations. 

However, as in any other social systems the complexity of sociality is rather 
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different between species. Although a lot of factors may be useful to categorize 

social caterpillars the classification by foraging behavior has become widely 

accepted and will therefore be used in this thesis. Of course, social caterpillars 

use a wide variety of foraging strategies that build a continuum. Nevertheless it 

seems useful to broadly classify them as either patch-restricted, nomadic or 

central-place foragers (Fitzgerald & Peterson 1988; Fig. 1).  

 

Fig. 1 – Manifestation of sociality in caterpillars. Terminology after Fitzgerald & 
Peterson (1988). 
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Patch restricted foragers represent the simplest form of sociality. These species 

usually stay at the same location throughout the larval stage, typically within 

constructed shelters and feed on leaves incorporated within these webs. Webs 

are continually expanded so that sometimes large composite webs emerge that 

cover entire trees or hedgerows (e.g. Hoebke 1987). Communicative abilities 

are low and mainly serve group cohesion. 

Nomadic foragers move in groups from one food patch to the next. Depleted 

sites are regularly abandoned. Nomads do not construct three-dimensional 

silken shelters but often build silken pads for resting or molting. Communication 

is used for cohesion, group defense and the spatial orientation between feeding 

and resting sites. 

The most complex system of sociality in caterpillars is represented by central- 

place foragers. These species usually construct shelters but unlike patch 

restricted foragers they feed outside these constructions in the surrounding 

vegetation. As feeding sites become more and more scattered during the 

course of the caterpillars’ development, it is indispensable to evolve a 

sophisticated communication system which includes group cohesion, group 

defense, spatial orientation, and the exchange of information about feeding-

sites. 

Research gaps and outline of this thesis 

Much research remains to be done by studying further species of social 

Lepidoptera to gain deeper insight in the general validity of some conclusions 

drawn from the study of only few ‘model’ species. Furthermore, some 

interesting topics that remain virtually untouched need to be studied in more 

detail. 

In order to benefit from some advantages provided by sociality, e.g. 

thermoregulation, communal tent building and group foraging, it seems crucial 

for caterpillars to synchronize their activity (Casey et al. 1988). Synchronized 

activity periods and foraging bouts have been studied in Malacosoma 

americanum (Fitzgerald 1980, Fitzgerald et al. 1988) and in the caterpillars of 
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the European small eggar moth, Eriogaster lanestris (Lasiocampidae) (Ruf et al. 

2001) but these studies were thus far limited to the description of foraging 

patterns. Thus, it is crucial to understand how caterpillars manage to 

synchronize or coordinate their activities. Synchronicity necessarily implies 

costs, because needs of individuals (e.g. feeding) must be suppressed 

temporarily. Furthermore, analyses of more species are necessary to test if 

behavioral synchronicity is really essential for social caterpillars. 

Several studies have dealt with the benefits of using a tent for behavioral 

thermoregulation (Breuer & Devkota 1990, Joos et al. 1988) and thermal 

budgets of single and grouped caterpillars have been analyzed in detail. It was 

suggested that the tent may function like a greenhouse (Joos et al. 1988) but 

the physical features of the tent have never been investigated and the spectral 

features like transmittance of the silk layers are almost totally unknown. 

Thermoregulation in ectotherms is generally supposed to be bound to the 

absorption of solar energy, but hints in the literature allow for the assumption 

that there also a metabolic component of social thermoregulation in caterpillars 

could exist (Mosebach-Pukowski 1937). However, this hypothesis has never 

been tested experimentally.  

Against this background the present work has three main purposes and aims: 

1. Description and measurement of advantages of social life-styles and 

enhancement of existing knowledge on caterpillars of other species. This 

includes measurements of physiological and ecological consequences of social 

behavior like thermal budgets of social caterpillars under different climatic 

conditions as well as investigations of life-history traits of different species and 

group size effects. 

2. Analysis of ethological preconditions which make it possible to benefit from 

these advantages. Here I attach special importance to the synchronicity of 

foraging bouts and its influencing factors as well as communicative abilities of 

the caterpillars. 

3. Analysis of mechanisms to understand how behavioral patterns work, or 

which physical background is responsible for the measurements made. For this 
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purpose I investigated several aspects of trail following and trail marking to 

understand how decision making in individuals works and how the trail marker 

is applied. Furthermore I analyzed physical features of the silk of the tent (see 

above) and surveyed the temporal change in vibrations of the tent to better 

understand mechanisms underlying synchronized foraging bouts. 

The main emphasis of this thesis I put on the investigations of the social 

caterpillar of the small eggar moth Eriogaster lanestris. The small eggar is one 

of the few species with a highly evolved social system. Its larvae stay together 

until the end of the last instar and leave their tent only a short time before 

pupation (Pro Natura 2000). E. lanestris is well comparable with M. americanum 

with regard to life history (univoltine, early spring species), tent construction 

(multi-layered, dense silk structure), host plant requirements (polyphagous on 

several shrubs and trees) and group size (female lays all its eggs in one 

cluster). One chapter of this thesis also focuses on a comparison of E. lanestris 

with its congener Eriogaster catax and the confamilial species Malacosoma 

neustria. 

In addition to these highly social, central-place foraging species I furthermore 

investigated caterpillars of the map butterfly Araschnia levana. Social cohesion 

is weak in this species and caterpillars only stay together until the end of their 

third instar. They build no tent, do not thermoregulate communally, and 

aggregate on the underside of the leaves of their only host plant, the nettle, 

Urtica dioica. Groups are smaller as females only allocate parts of their egg 

load into each egg cluster. Therefore, I expect advantages of sociality to be less 

pronounced in this species. 
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General life-history traits of the species 
investigated 
In this thesis four different Lepidopteran species were used for the experiments. 

The first three (Eriogaster lanestris, Eriogaster catax, and Malacosoma 

neustria) belong to the moth family Lasiocampidae, whereas the fourth species 

(Araschnia levana) belongs to the butterfly family Nymphalidae. 

The most relevant feature concerning larval sociality (cf. previous chapter) is 

that all Lasiocampidae lack a functional proboscis and are thus not able to feed 

as adults. They totally rely on the energy reserves built up during their larval 

phase and adult moths are therefore very short-lived. Females often live less 

than one day since they die immediately after egg deposition which often occurs 

in the first night after eclosion. For a general overview of the family see 

Common 1990, deFreina & Witt 1987, Lemaire & Minet 1998, Scoble 1992.  

In contrast, adult butterflies of Araschnia levana have a functional proboscis and 

can often be seen nectaring on flowering plants. Under laboratory conditions 

(L:D 18:6h, 21°C from 10:00-17:00h, otherwise 12°C) mated females may thus 

live up to 35 days (mean longevity±SD=24.8±6.8d, N=17) (data from first 

laboratory bred generation. C. Ruf, unpubl. data).  

Below, I describe general life-history traits of the four species under 

consideration. All species are shown on color plates at the end of this chapter. 

Eriogaster lanestris (Linnaeus, 1758) 

The Western Palaearctic distribution of the Small Eggar, Eriogaster lanestris, 

ranges from the North of the Iberian peninsula over Southern, Western and 

Northern Europe, through Asia Minor to the South of Russia (de Freina 1999, 

Ebert 1994). In the East the species ranges to Kazakhstan, Southern Siberia, 

Jakutsk and up to the Amur region (Dubatalov & Zolotuhin 1992).  



Chapter two: Life-history traits 

12 

Eriogaster lanestris is strictly univoltine. Moths hatch in early spring (usually 

March to April in Central Europe) and caterpillars can be found predominantly in 

May and June. Mated females lay one single cluster of eggs which is wound 

several times in a close spiral around small twigs of the host plant (see below). 

As the eggs are laid the hairs from the female’s anal tuft are shed, but in such a 

way that the hairs stand out vertically from the egg mass, which, when 

completed, suggests a small piece of fur encasing the twig. This type of egg 

cluster is typical for all species of the genus Eriogaster (cf. Bolz 1998, Ortner 

1994, ProNatura 2000, Tham et al. 1986, Trawöger 1977, Talhouk 1940, 1975) 

and is not known from any other Holarctic members of the Lasiocampidae.  

Caterpillars hatching from the egg cluster start building their home web or tent 

at once, normally directly around the cluster which becomes the middle of the 

tent. This tent is continuously enlarged over the course of the caterpillars’ 

development. E. lanestris is a typical ‘central-place forager’ (term according to 

Fitzgerald & Peterson 1988). The tent is used for resting and molting and does 

not include any resources. Thus, caterpillars have to leave the tent whenever 

they want to take up food. Caterpillars remain social until the end of their last 

(fifth) instar when they finally leave the tent in search of a place for pupation. 

Prepupal Eriogaster caterpillars dramatically shrink to about one third of their 

maximum size and build a hard barrel-like cocoon which is interspersed with the 

reddish urticating hairs that can cause severe contact dermatitis (so-called 

erucism) (Hellier & Warin 1967). The pupa overwinters at least once. 

Emergence of the moth may be delayed for several years (Carlberg 1980, Van 

Nuvel 1976, Balfour-Browne 1933).   

In Europe the main habitat of the Small Eggar consists of either xeric habitats 

with the host plants blackthorn (Prunus spinosa) or hawthorn (Crataegus sp.), 

or former peat bogs with stands of birch (Betula sp.). Besides, this polyphagous 

species has been found on lime (Tilia sp.), willow (Salix sp.) or other deciduous 

trees and shrubs (Linné 1767, Ebert 1994, ProNatura 2000). Larval tents 

exclusively occur in sun-exposed conditions and never in the understorey of 

closed forests. 
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This once common moth is a declining and very local species nowadays, 

occurring in widely scattered populations throughout Europe. At the turn from 

the 19th to the 20th century this species has declined, now being absent from 

many habitats where it once was common. The large-scale destruction and 

indiscriminate annual trimming of hedgerows, on which it relies for its host 

plants and larval habitat, combined with the pollution caused by motor-vehicles 

(Stary et al. 1989) and the drift of agricultural insecticides, have all contributed 

to the serious decline of this species. Nevertheless, the Small Eggar has only 

premonition status in Germany’s Red Data Book for endangered species 

(Bundesamt für Naturschutz 1998), but is listed with different status of 

endangerment in several ‘Bundesländer’ (Germany’s federal states) in their 

regional Red Data Books, for example Schleswig-Holstein, Niedersachsen and 

Mecklenburg-Vorpommern (Kolligs 1998 and references therein).  

Eriogaster catax (Linnaeus, 1758) 

In contrast to Eriogaster lanestris, this species shows a far more restricted 

distribution and ranges from Northern Spain over Central Europe (including the 

Balkan but excluding the northern countries) to the Ural and Asia Minor 

(ProNatura 2000). This species which lives in open deciduous forests of broad-

leaved trees saw its habitat reduced by afforestations of coniferous trees and 

the giving up of traditional forms of forest cultivation like coppice or coppice with 

standards. In these old forms of forest cultivation, cyclic logging of small areas 

leads to a mosaic of different succession phases with blackthorn bushes in the 

understorey and large oaks in between that are not lumbered. E. catax already 

disappeared from Luxembourg, is not observed any more in Italy and since 

1950 is declining in Hungary and is restricted to few isolated populations in 

Germany and Switzerland. As a consequence of its severe endangerment 

throughout Europe E. catax is listed among the endangered species of special 

concern for the European Community as a species that requires the designation 

of special areas of conservation and which is in need of strict protection 

(Appendix II, IV: Council directive 92/43/EEC of 21 May 1992 on the 

conservation of natural habitats and of wild fauna and flora). 
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Despite its conservation status reliable information on any aspects of the 

biology of E. catax is extremely scarce. In contrast to E. lanestris moths hatch in 

autumn (September, October) and eggs overwinter. E. catax moths are more 

sexually dimorphic with the males being colored yellowish brown or nearly 

orange whereas females are of a darker brown. Eggs are covered with the hairs 

from female’s anal tuft as described for E. lanestris.  

The social phase of E. catax is shorter than in E. lanestris and caterpillars 

disperse in an earlier instar, but statements in the literature about the time when 

caterpillars leave their aggregations differ between ‘after the second molt’ (i.e. 

the beginning of the third instar) (ProNatura 2000) and ‘in the last (i.e. fifth) 

instar’ (Bolz 1998).  

Food plants are various deciduous trees and shrubs including blackthorn 

(Prunus spinosa), willow (Salix sp.), poplar (Populus sp.), and oak (Quercus 

sp.). 

Malacosoma neustria (Linnaeus, 1758) 

In contrast to the genus Eriogaster which is restricted to the Palaearctic, the 

genus Malacosoma has a broader, Holarctic distribution with about 20 species 

in the Palaearctic and another six species in the Nearctic (Fitzgerald 1995 and 

references therein). Despite the fact that larvae of all species of Malacosoma 

are social, yet do not always build a silken tent, they are commonly referred to 

as ‘tent caterpillars’.  

The distribution of Malacosoma neustria, the Common Lackey, or European 

Lackey Moth, is wide. It has been recorded for the European countries and all 

larger Mediterranean islands (Karsholt & Razowski 1996) and North Africa (de 

Freina & Witt 1987). Eastwards the species ranges throughout the entire 

Palaearctic region but Asiatic populations are commonly referred to as another 

subspecies (i.e. M. neustria testacea).  

Moths hatch in summer (July in Central Europe: Ebert 1994) and females lay 

their eggs in a cluster in one closed, ‘bracelet-like’ ring around the twigs of their 

host plants which has given rise to the German name ‘Ringelspinner’ (i.e. 
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Ringel = annular structure; Spinner = bombycoid moth). Since females do not 

possess an anal hair tuft, eggs remain visible. As the eggs are deposited they 

are held in place by a liquid substance from the accessory glands which has 

been named ‘spumaline’ by Hodson and Weinman (1945) and which hardens 

very soon.  

Caterpillars hatch in early spring and build a silken tent. They stay together until 

they molt into the final instar (Tutt 1900, ProNatura 2000). Cocoons are elliptic 

and soft and contain a yellowish powder (see Tutt 1900 for details). Pupae are 

much taller than in Eriogaster (cf. Patočka 1984) and are very agile within the 

cocoon.                                                                                                                                         

Caterpillars are highly polyphagous and can be found on several trees and 

shrubs including Quercus, Betula, Populus, Tilia, Prunus, Crataegus, Rubus, 

and Rosa. M. neustria is a species of economic impact for the timber industry 

since it is known to defoliate several hundreds of hectares per year, especially 

during outbreaks (e.g. Csóka 1998). M. neustria has once also been a pest of 

fruit trees in Central Europe (Tutt 1900) but no larger outbreaks have been 

reported during the 20th century (Ebert 1994). Presently the species is still 

widespread in Central Europe but its abundance tends to decline. 

Araschnia levana (Linnaeus, 1758) 

The European Map Butterfly, Araschnia levana (Nymphalidae), is well known for 

its striking seasonal polyphenism (Plate 4). The wing color of adults of the 

spring generation (f. levana) is reddish with a black pattern, whereas wings of 

butterflies of the summer generation (f. prorsa) show white stripes on a black 

ground color with only slight orange stripes that can also be completely missing 

(Ebert & Rennwald 1991). Occasionally, a third generation may occur in late 

autumn (f. intermedia) which is intermediate between spring and summer 

generation with changing portions of red or black scales (e.g. Carnier 1995). In 

the northern regions of its range and at higher altitudes the summer brood is 

often missing (Korshunov & Gorbunov 1995). 
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The polyphenism is primarily controlled by day length and can be modified by 

temperature. A short photoperiod induces diapause pupae which release the 

red spring form after hibernation, whereas a long photoperiod induces 

subitaneous development of pupae releasing the black summer form (Koch 

1996, Müller 1992, Reinhardt 1969). The color of pupae varies from a pale to a 

dark brown with changing portions of shiny golden areas (cf. Neville 1977). 

The physiological background of the determination of diapause or subitaneous 

development is well understood. Non-diapause larvae are characterized by an 

earlier increase of hemolymph ecdysteroid and an earlier pupation compared to 

diapause pupae. In addition the juvenile hormone titer of non-diapause larvae 

increases before pupation whereas that of diapause pupae remains low (Koch 

1996, Koch & Bückmann 1987). The reddish color of the spring form is formed 

by an ommatin (dihydroxanthommatin), derived from tryptophan over the 

precursor 3-hydroxykynurenine (Koch 1991, 1993). In contrast, the black or 

brown color is caused by synthesis of melanin (derived from tyrosine) in the 

wing scales (Nijhout & Koch 1991).  

Besides this striking polyphenism butterflies of the genus Araschnia are unique 

for their egg laying behavior: eggs are clustered by building vertical columns 

(‘turrets’) with eggs arranged in a pile one over the other on the underside of the 

leaves of its host plant, the stinging nettle (Urtica dioica) (Korshunov & 

Gorbunov 1995, Ebert & Rennwald, 1991, Fukuda et al. 1991, Plate 4).  

Caterpillars hatching from the egg clusters remain gregariously until the end of 

the third instar when groups start subdividing into smaller groups, and finally the 

larvae become solitary. During their gregarious phase caterpillars do not build a 

tent but live nomadically on the underside of leaves of their host plant and move 

from one leaf to the next as soon as resources are exhausted. Caterpillars are 

colored uniformly black but the degree of melanization varies and larval color 

may range from a pale gray to a deep black (Windig 1999). The larvae are 

covered with black, reddish, or light-brown spines that are branched in later 

instars. The most striking spines are situated on the head capsule and give the 

caterpillar its devil-like appearance. 
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Caterpillars can easily be assigned to the five larval instars by measuring the 

width of the head capsule (Table 1). 

Table 1. Width of head capsule of larvae of Araschnia levana. For first to fourth instar 
head capsules discarded during molting were used, last instar head capsules were 
measured directly at the living caterpillars which explains the slightly higher variation 
due to inaccuracies of the measurement. Sample size: N=10 for all categories. 

Larval instar L1 L2 L3 L4 L5 
Width of head 
capsule, 
mean±SD [mm] 

0.45±0.01 0.68±0.01 1.08±0.02 1.55±0.02 2.19±0.06 

 

Araschnia levana ranges throughout the Palaearctic region from the Atlantic 

coast in the West to the Russian Far East and Japan (Fric & Konvička 2000 and 

references therein). The butterfly is relatively common in Central Europe. 

However, it is not as widely distributed as other nettle feeding nymphalids and is 

absent from the British Isles, Scandinavia and Finland. In Russia, the northern 

boundaries are commonly south of 60°N. The species is also absent from the 

Mediterranean regions, the Balkan and Turkey. Current records of 

Macrolepidoptera repeatedly indicate a northward expansion of the range of this 

species (e.g.  Kaaber 1984, Koutroubas 1991, Palmquist 1996, 1998, Radigue 

1994-95, Sala et al. 1996, Parmesan et al. 1999). The habitats preferred by A. 

levana are moist deciduous forests, especially edges and openings in light 

woods with rich nectar sources, river valleys and meadows adjoining rivers 

(Ebert & Rennwald 1991).  

Barely nothing is known about the larval behavior of A. levana and implications 

of its social behavior are not understood at all. 
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Color plates 

Legends: 

Plate 1 (next page): 

Life-stages of Eriogaster lanestris A female B female, anal tuft of hairs at the rear end 
of the body visible C male D egg cluster with newly hatching caterpillars E ‘tent’ with 
caterpillars, 2 days old F cocoon G opened cocoons with pupae H tent with basking 2nd 
instar caterpillars I trail following behavior on 5β-cholestane-3-one J foraging 
caterpillars K last instar larva L last instar larva, front part. 

 

Plate 2 (page 20) : 

Life-stages of Eriogaster catax A moth, male B moth, female C egg cluster D 
caterpillar, first instar E tent with 2nd instar caterpillars F caterpillar, 4th instar G 
caterpillar, 5th instar H caterpillar shortly before pupation I cocoons J,K,L tents with 
caterpillars of different age M fully grown larva. 

 

Plate 3 (page 21):  

Life-stages of Malacosoma neustria A male, pale form B male, dark form C female D 
prepupa E cocoon F opened cocoon, pupa G egg cluster H young caterpillars, foraging 
I old caterpillars, resting on branch J egg cluster (left), primary tent (further right) and 
L1 larvae on secondary tent (right) in the field K young larvae on tent L old larvae on 
tent M last instar larva, front part. 

 

Plate 4 (page 22): 

Life-stages of Araschnia levana A,B spring form C,D summer form E,F intermediate 
forms G prepupa H pupa I group of egg turrets on underside of a leaf of the stinging 
nettle, colored grayish shortly before hatching of the caterpillars J foraging caterpillars 
K caterpillars changing their feeding location L group of resting caterpillars M 
caterpillar, 5th instar. 
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Plate 1: Eriogaster lanestris 
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Plate 2: Eriogaster catax 
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Plate 3: Malacosoma neustria 
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Plate 4: Araschnia levana 
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Physical basics of thermoregulation 
In order to understand the processes that are important for thermoregulation in 

caterpillars it is necessary to introduce some terms and physical basics of 

thermodynamics and heat transfer. All definitions and numerical values in this 

chapter and thereafter follow Bayley et al. (1972), Hagen (1999), and Rolle 

(2000).  

Heat transfer is the transport of thermal energy from one region to another. In 

order for heat transfer to occur, there must be a temperature difference between 

the two regions. Heat transfer occurs as an exchange of internal energy from 

one region to the other by atomic or molecular motion or by electromagnetic 

waves. The first law of thermodynamics requires that the energy given up by the 

hot object equals the energy gained by the cold object. The second law of 

thermodynamics requires that the natural direction of heat flow is from the hot 

object to the cold object. Another way to say this is that heat flows in the 

direction of decreasing temperature. 

Heat transfer can occur in three distinct modes, namely conduction, convection, 

and radiation. Although in many practical situations – which is also true for the 

case of thermoregulating caterpillars – all modes of heat transfer occur 

together, it is usual to consider conduction, convection, and radiation 

separately.  

Conduction 

Conduction is the transfer of thermal energy in solids or fluids at rest. The actual 

mechanism of conduction involves kinetic energy exchange between molecules 

in contact or, in the case of metals, the movement of free electrons.  The energy 

level of the elementary particles is a function of temperature, and thus as these 

particles move to regions of lower temperature they give up their excess 

energies. 
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Convection 

Convection is the mode of heat transfer which occurs as the consequence of 

the motion of a fluid. The motion of the fluid arises from the difference in density 

between the heated fluid on the hot surface and the cooler, and therefore 

denser, surrounding fluid. The transfer of heat through the motion induced by 

the intrinsic volume or density changes associated with temperature differences 

in a fluid is known as natural or free convection. On the other hand, the rate at 

which heat is transferred as a result of externally induced fluid motion (‘wind’) is 

known as forced convection and is of great importance for thermoregulation 

under field conditions. 

 (Thermal) radiation  

Radiation is the mode by which thermal energy is transferred by 

electromagnetic waves. Thermal radiation is just one manifestation of the wide 

spectrum of natural phenomena known as electromagnetic radiation. 

Electromagnetic radiation includes visible light, X-rays, γ-rays, ultraviolet, 

infrared and even radio waves (Fig. 1). 

Unlike conduction and convection, radiation does not require a medium. A 

familiar example of radiation is the thermal energy that we receive from the sun 

across the vacuum of space. Actually, all objects with a temperature above 

absolute zero (0K) radiate thermal energy. As the temperature increases, the 

rate of energy emission also increases, and the peak of the emission 

distribution shifts to shorter wavelengths. Bodies or surfaces which absorb all 

radiation and interchange radiant energy at maximum rates are commonly 

known as black bodies. The black body is an ideal thermal radiator or absorber, 

and although there is no real surface that is a true black body, some surfaces 

can be well approximated as black bodies. The term black body does not mean 

that all black surfaces (as perceived by a human observer) are black bodies in a 

physical sense, nor does it mean that only black surfaces are black bodies. 

Some surfaces that are colored black do show some characteristics of black 

bodies; however, surface color does not determine whether a surface can be 
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approximated as black body. To get an idea of the range of wavelengths 

emitted, a black body at room temperature (20°C = 293K) emits radiation >2µm 

with a maximum of its emission spectrum at 10µm. 

 

Wavelength [µm] 
Fig. 1 – Electromagnetic spectrum (after: Rolle 2000).  

Solar radiation 

Solar radiation contains a wide range of wavelengths and fairly closely matches 

the emission of a black body at a temperature of about 5900K, but only parts of 

this range may penetrate the Earth’s atmosphere (Fig. 2). For example, UV-

radiation below 280nm does not reach the Earth’s surface because shorter 

wavelengths are absorbed by ozone. Besides ozone other atmospheric 

molecules absorb parts of the solar radiation, for example molecular oxygen, 

water vapour, carbon dioxide and carbon monoxide as well as methane and 

nitrous oxides. 
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Fig. 2 – Irradiance spectrum of solar radiation at the top of the atmosphere and at sea 
level. Adapted after Andrews 2000. ‘Irradiance’ is the amount of electromagnetic 
energy incident on a surface per unit time per unit area.  

About 10% of the Sun’s emitted energy is at ultraviolet wavelengths, about 40% 

in the visible and ca. 50% in the infrared. 

Thermal budget of caterpillars 

Under natural conditions in the field the caterpillars’ thermal budget will be 

influenced primarily by two factors: Solar radiation (and in the case of social 

caterpillars also radiation emitted by their tentmates) may be absorbed by the 

surface of the caterpillar and rise its body temperature. Simultaneously, the 

caterpillar will cool down by convection, mainly driven by the wind (Fig. 3). 

For an individual caterpillar two parameters will predominantly influence its body 

temperature: The color and nature of the integument will influence the amount 

of radiation being absorbed and therefore determine the maximally achievable 

input of energy. In addition, surface structures may reduce convective heat loss 

(cf. Casey & Hegel 1981). To optimize this latter function, these surface 

structures themselves should only minimally affect radiant heat uptake. 
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Fig. 3 – Schematized heat transfer modes influencing thermoregulation success in a 
single caterpillar. First segment: Influence of conduction (of minor importance). Second 
and third segment: Influence of color on absorbance: ‘dark’ surfaces (i.e. surfaces with 
high absorbance of short-wave radiation) maximize heat gain while ‘pale’ colors (i.e. 
surfaces that strongly reflect short-wave radiation) are not suitable for successful 
external heat gain. Fourth and fifth segment: Reduction of heat losses due to forced 
convection: Bare surfaces are strongly exposed to convection while surface structures 
(e.g. hairs) may minimize conductive heat losses. 

Morphological characteristics of Eriogaster lanestris larvae 
relevant to thermoregulation  

At the onset of my studies, I expected that successful thermoregulation is one of 

the most striking advantages promoting sociality in Eriogaster lanestris (cf. Ch. 

1). Caterpillars only occur in sunny habitats and can be regularly seen being 

fully exposed to insolation. Thus, high irradiation is a natural part of the 

caterpillars’ physical environment. In order to gain an assessment of the 

morphological characteristics for thermoregulation in E. lanestris it is necessary 

to quantify some thermal characteristics of its larval integument. Since about 

50% of the sunlight reaching the Earth ranges from UV to the human-visible 

part of the spectrum, it is useful to measure the proportion of radiation reflected 

by the caterpillars integument.  

conduction 
radiation 

convection 

Color of caterpillar? Surface structures? 
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For this purpose a full grown caterpillar was killed by freezing at –18°C. The 

hairs of the caterpillar were then carefully clipped with a fine pair of scissors and 

removed with a fine brush. Measurements were made using a reflectance 

spectroradiometer (Intraspec II diode-array photometer equipped with an 

MS125 spectrograph, Oriel, Stratford). This radiometer is capable of measuring 

a range from 300-690nm. Illuminating light was delivered from an 

XBO75W/2OFR xenon arc lamp (Osram, Munich). For a detailed description 

and technical specifications see Knüttel & Fiedler (2001).  

Figure 4 shows that only about 3-4% between 300-600nm and less than 10% 

between 600-700nm is reflected by the caterpillar’s body. Obviously, caterpillars 

of Eriogaster lanestris are highly capable of absorbing solar radiation. I did not 

measure the influence of the setae isolating the larvae, but results obtained by 

Casey and Hegel (1981) for gypsy moth caterpillars strongly suggest that the 

setae are very important for E. lanestris as well for reducing heat loss. It is 

noteworthy, that the long setae of E. lanestris are white or even transparent and 

should thus not influence radiant heat uptake by the caterpillars while basking in 

the sun. 
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Fig. 4 – Reflection at different wavelengths of the integument of an Eriogaster lanestris 
caterpillar. 10 measurements at a shaved, dead caterpillar. Data shown: mean±1SD).  
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Social thermoregulation 

It has repeatedly been shown that groups of caterpillars may obtain thermal 

gains high above that of solitary caterpillars (Porter 1982, Knapp & Casey 1986, 

Casey et al. 1988, Joos et al. 1988). The physical background of this 

observation is that there is an important effect of the mass of an object on its 

heat balance (cf. Fig. 5). By grouping, caterpillars multiply their effective body 

mass and therefore increase their maximum achievable heat gain. Although the 

precise form and slope of the relationship between body mass and thermal 

gains depends on a wide variety of climatic, behavioral, and physical 

parameters of the caterpillars’ environment, the relative gain of large, dense 

larval groups as compared to individual caterpillars remains unaffected. 

Fig. 5 – Effect of body mass on maximum thermal gains (∆T= body temperature – air 
temperature) by basking. Indicated in the graph by thin lines are exemplary thermal 
gains of a single, nearly mature caterpillar (mass ≈1g) and of a cluster of 250 mature 
caterpillars (large, natural colony size. Grouping of caterpillars increases maximum 
potential temperature gain by 10K, which may double the velocity of physiological 
processes. Curve from Stevenson (1985) modeled for ectothermic animals at an 
irradiation of 400W/m² (=weak sunshine). Behavioral parameters (microhabitat 
selection, orientation to sun), environmental parameters (wind, radiation) as well as 
physical parameters of the substrate (conduction effects), and of the integument 
(absorption of short-wave radiation) may influence the slope of the curve considerably.   

Body mass 

T 
[K

]

0

5

10

15

20

25

30

35

1mg 10mg 100mg 1g 10g 100g 1kg 10kg 100kg

400W/m²

250 caterpillars

1 caterpillar
wind

orientation to sun

radiation
conduction

color

microhabitat selection

∆



Chapter three: Physical basics of thermoregulation 

34 

In other words, a small single caterpillar with low weight may not achieve body 

temperatures far in excess of ambient temperature even if it has good 

absorbing characteristics while the composed bodies of several hundred 

caterpillars may achieve body temperatures in the range of small ectothermic 

vertebrates such as lizards. As a consequence, this means that grouped 

caterpillars may maintain body temperatures that are optimal for digestion and 

development over many hours during a day whereas single caterpillars may 

only achieve optimum conditions during a small temporal phase of the day.  
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Abstract  

We investigated thermal characteristics of aggregations of social, 

tent building caterpillars of the small eggar moth Eriogaster lanestris 

(Lepidoptera: Lasiocampidae). The highly synchronous behavior of 

individuals of the colony has important consequences for their 

thermal ecology. Air temperature in the tent fluctuates according to 

the caterpillars' activity: Air temperature slowly rises about 2.5-3K 

above the surroundings when caterpillars aggregate in the tent after 

feeding, and decreases rapidly when the larvae leave the tent. 

Thermal energy can be stored for a few hours when ambient 

temperature drops. Experiments show that metabolic heat production 

sufficiently explains this effect. As even minor additional heat gain 

may reduce developmental time, aggregating in the tent may thus 

confer selective advantages under overcast weather or at night, 

when behavioral thermoregulation through basking is not possible. 

Introduction 

As with any other ectothermic animals, caterpillars are normally not able to 

elevate their body temperatures above ambient temperature. Control of body 

temperature by physiological means has not been demonstrated and seems 

unlikely due to the small body size, homogeneous body composition or the lack 

of control of hemolymph flow to various body regions (Casey 1993). As a 

consequence body temperature tracks the surrounding temperature unless 

caterpillars regulate it by using external heat sources through behavioral 
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thermoregulation. Because of their small size and high surface-to-volume ratios, 

even basking caterpillars are usually able to rise their body temperature only a 

few degrees.  

Caterpillars of the Palaearctic eggar moth Eriogaster lanestris (Lasiocampidae; 

for an account of the general biology of this species see Ebert 1994) are highly 

adapted to regulate their body temperature by basking. All instars have a black 

coloration that enhances radiant heating. Furthermore, they are thickly covered 

with setae that provide selective insulation and reduce convective heat 

exchange without affecting radiative heat gain (see Casey & Hegel 1981). 

However, the most striking feature of this moth species is the highly developed 

gregariousness of the larvae. These live together in large colonies of about 200 

caterpillars or more (full siblings) and form dense aggregations when basking, 

which has been reported in other gregarious Lepidoptera species to maximize 

radiant heat uptake while reducing convective heat exchange by minimizing the 

relative body surface exposed (Joos et al. 1988). In addition, E. lanestris larvae 

spin a silk tent which serves as a home base, to which caterpillars return for 

digestion after each foraging bout. Such tents also function as a greenhouse 

resulting in an additional gain of heat (Carlberg 1980, Knapp & Casey 1986, 

Joos et al. 1988).  

All earlier studies on the importance of social thermoregulation in caterpillars 

have concentrated on external heat sources (e.g. solar radiation), their effects 

on tent temperature and consequences for the thermal budget of the 

caterpillars. These investigations led to the conclusion that aggregations both in 

the laboratory and under field conditions never attain body temperatures 

significantly above ambient temperature when radiation is absent. Especially 

after dark the animals’ temperature always dropped to ambient temperature. 

Although aggregating inside the tent reduces rates of individual heat loss, and 

some early studies suggested that clustered caterpillars generate enough 

metabolic heat  to warm up the cluster above ambient temperature (e.g. 

Mosebach-Pukowski 1937), subsequent studies revealed no unequivocal 

evidence of an endothermic component to elevated body temperatures of 

gregarious caterpillars (Knapp & Casey 1986). 
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Only Breuer & Devkota (1990) observed that temperature inside the tent of pine 

processionary moths (Thaumetopoea pityocampa) was strongly tied to the 

presence or absence of the caterpillars, resulting in a slight increase (ca. 0.5-

1.5K) in temperature when caterpillars return from their single foraging bout at 

night. The authors postulated that metabolic heat production is responsible for 

these findings, but no experiment was performed to rule out the possibility that 

the radiation of the illumination in the laboratory influenced the observed effect. 

The aim of the present study was to test whether social caterpillars of 

Eriogaster lanestris, whose thermal ecology had never been studied before in 

detail, have any thermal advantage of aggregating in the tent when direct 

thermal radiation is weak or absolutely absent. As these caterpillars show 

several foraging bouts a day, it is also possible to investigate temperature 

effects during “day” and “night”. In addition, we investigated whether thermal 

differences between the tent and the surroundings can be caused by metabolic 

heat production only. 

Material and Methods 

For this purpose we kept colonies with last instar caterpillars in their original 

tents in an environmental cabinet under a 14:10h (L:D) light regime. 

Temperature changed between 20°C from 10:00 to 19:00 and 18°C during the 

rest of the day. For illumination we used five fluorescent tubes (Osram Lumilux 

DeLuxe: Biolux L58/72-965, 58 W each) which resulted in a maximum radiation 

of only 5-10W/m² (Sensor: LI-COR inc., QUANTUM Q 4557). For automatically 

monitoring the activity patterns of the colonies caterpillars had to pass a light 

barrier each time they left the tent for feeding. Temperature was measured to 

the nearest 0.1°C using high-precison thermal sensors (calibrated thermistor, 

HYGROTEC®, SEMI 833 ET). Temperature measurements and caterpillar 

counts were recorded and stored on a computer in one minute intervals. 

Results of two experiments are presented here: In the first experiment four 

thermal sensors were attached to the tent: two of them inside the tent, one on 

its outer surface, and one a few centimeters away from the tent to measure 
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ambient temperature (Ta). Body temperature was therefore not measured 

explicitly for individual caterpillars, but as a group temperature of the 

aggregations (Tt). Data were taken continuously over a period of two days. 

In a second experiment 30 last instar caterpillars were starved for a few hours 

and were then allowed to feed to repletion. Afterwards they were put in a small 

plastic box with airholes (volume: 250ml) which was lined with tissue paper. 

Four thermal sensors were attached inside the box (two on the bottom and one 

on each side of the box). As control a second plastic box was equipped equally, 

but no caterpillars were inserted. Each box was put into a larger polystyrene 

box and covered with acrylic glass to prevent that minor fluctuations of the 

surrounding temperature caused by the air condition would influence the 

measurements. Temperature was registered once per minute for two hours and 

the experiment was repeated three times. This experimental design ensured 

that any thermal differences between the two boxes were caused exclusively by 

heat produced by the caterpillars, but the effects of external radiation could be 

ruled out completely. 

Results 

Under the thermal and light conditions chosen in the first experiment colonies 

exhibited discrete bouts of activity separated by periods of rest. The behavior of 

individuals was strongly synchronized. Caterpillars left the tent three times a 

day, once every morning, every afternoon, and again around midnight (Fig. 1).  
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Fig. 1 – Dynamics of temperature changes in the tent in relation to foraging activity of 
an Eriogaster lanestris colony during the course of two days. Temperature in the tent is 
always higher than ambient temperature when caterpillars are in the tent (i.e. they are 
not active). Activity patterns are shown by the number of caterpillars counted per 
minute to pass the light barrier (left y-axis, bars), temperature by lines (right y-axis). 

Activity patterns strongly affected temperature in the tent. When caterpillars 

were in the tent (i.e. they were not foraging) Tt was always higher than Ta, 

sometimes exceeding a thermal difference of 6K (Table 1). As soon as the 

caterpillars left the tent, Tt dropped immediately to Ta or even slightly below. 

The following increase in Tt coincided with the return of caterpillars after 

feeding.  

Tent surface temperature was only slightly above Ta during the night, when all 

caterpillars usually rested in the tent, but it clearly increased in the morning 

when the animals usually aggregated and “basked” on the tent's surface. 

Measurements during the afternoon and evening were between these values, 

as only few caterpillars rested on the tent (Fig. 1). 

There was no obvious difference in net heat gain inside the tent during day and 

night (mean thermal gain always ca. 2.5K; Table 1), leading to the conclusion 

that the low radiation of the fluorescent tubes did not affect our experiment. 
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Table 1. Differences between temperature measured in the tent and ambient 
temperature (in K, data from Fig. 1). Values are averaged over the course of two days; 
only measurements during the presence of the caterpillars are included; for calculating 
values during day and night phases of cooling and warming up in the environmental 
cabinet were disregarded. 

Placement of 
sensor 

 All measurements 
outside foraging 
periods 

During the day  
(Ta = 20°C) 

During the night 
(Ta = 18°C) 

 N 1825 615 652 

Inside tent 
(sensor 1) 

mean ± SD 
maximum 

2.7 ± 1.0 
6.7 

2.6 ± 0.3 
3.7 

2.4 ± 0.4  
4.0 

Inside tent 
(sensor 2) 

mean ± SD 
maximum 

2.7 ± 1.1 
6.8 

2.3 ± 0.5 
3.7 

2.7 ± 0.4 
4.5 

Surface mean ± SD 
maximum 

1.2 ± 0.8 
3.4 

1.9 ± 0.8 
3.4 

0.4 ± 0.1 
1.4 

 

This conclusion is corroborated by temperature measurements of small groups 

of larvae in insulated boxes (Fig. 2). After the insertion of the caterpillars 

temperature in the box rose slowly, resembling the dynamics of temperature 

increase in the tent when caterpillars return from foraging. As effects of 

radiation can be excluded completely, this net heat gain must stem directly from 

metabolic heat production by the caterpillars. In our experimental setting 

metabolic heat production of 30 full-grown larvae was approximately 1.5K, 

compared to 2.5K in the much larger natural aggregations in the original silk 

tent. 
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Fig. 2 – Changes in temperature in a plastic box after insertion of 30 fed last-instar 
caterpillars. Temperature differences refer to the control box without caterpillars. 
Measurements are averaged for all four sensors and three replications of the 
experiment. 

Discussion 

Metabolic processes always produce heat as a by-product, but caterpillars have 

no adaptations for storing or even regulating it and heat production of a single 

caterpillar is very small. 

The maximum temperature a body can achieve is a function of its mass 

(Stevenson 1985). By aggregating larvae multiply their effective mass, heat 

production of all group members is added, and body temperature of every 

individual may increase much more than it would ever be possible for a single 

larva. Furthermore, the sphere-like arrangement of aggregations reduces heat 

exchange with the surroundings by minimizing the volume to surface ratio. Even 

when caterpillars rest on the tent in the morning, aggregating is advantageous 

because the tent provides a large boundary layer that reduces convective heat 

loss (Joos et al. 1988). 

It has often been emphasized that the tents of social caterpillars do not provide 

any insulation (Carlberg 1980, Knapp & Casey 1986). Nevertheless, as can be 

seen in Figure 1, cooling is clearly delayed after the fall in Ta during evenings, 
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and small fluctuations of Ta do not affect Tt at all. The thin silk layers themselves 

are probably of minor importance, while the architecture of the tent and the 

caterpillars’ bodies contribute most to overall heat storage. Tents of E. lanestris 

are constructed in multiple silk layers with air spaces between them. Heat 

produced by the caterpillars may therefore be reflected between the layers 

without being emitted (greenhouse effect). The spaces between the layers 

probably have a strong insulating effect as the thermal conductivity of air is very 

low. Furthermore, the dense aggregation of caterpillars itself serves as heat 

accumulator since both solids and liquids have a higher thermal capacity than 

the surrounding air. All these effects reduce thermal losses through convection. 

The observation that Tt is always about 2.5K higher than Ta, independently of 

the absolute value of Ta (see Table 1), emphasizes the overall importance of Ta 

in affecting Tt. However, although caterpillars cannot regulate their body 

temperature by metabolic heat production independently of Ta, they may 

elevate at least it by collective warming. Dense aggregation in the tent therefore 

allows the caterpillars to build up their own microclimate even when external 

heat sources are absent.  

 
Caterpillars of E. lanestris hatch in early spring, when temperatures are often 

below a physiological threshold suitable for growth. Even small increments of 

temperature excess may cause large reductions in developmental time (Rawlins 

& Lederhouse 1981, Scriber & Lederhouse 1983, Schroeder & Lawson 1992) 

and therefore have important consequences on larval survival and individual 

fitness. Lance et al. (1987) demonstrated that in gypsy moth caterpillars, which 

are comparable in size to E. lanestris, an increase of only 2K (i.e. comparable to 

the thermal gain shown above) during daytime leads to a reduction in 

developmental time by more than one week (13%).  

When developmental time is shortened, larvae decrease their exposure to 

natural enemies. In early spring species a fast development may further 

maximize the intake of high quality food, which is rich in nitrogen and water and 

available for only a short time after budbreak (Parry et al. 1998). 
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Living gregariously involves great risks, such as conspicuousness to natural 

enemies and resource shortages through intracolonial competition for food. 

Especially costs associated with behavioral thermoregulation (e.g. exposure to 

predators and parasitoids when basking) must be offset by advantages such as 

an increased rate of food intake and growth rate.  

Multiple selective advantages may favor the evolution of social life-styles in 

caterpillars, such as the improved effectiveness of aposematic colors (Sillén-

Tullberg 1988), facilitated feeding by overcoming plant defense (Clark & Faeth 

1997), and group defense against enemies (Lawrence 1990). In E. lanestris 

thermal ecology should be of special importance as larvae encounter thermal 

conditions that are often unsuitable for growth, suggesting an improved heat 

balance to be particularly critical. E. lanestris larvae utilize both solar radiation 

through basking and mutual warming through metabolic heat production and 

thus exhibit the most advanced strategy of obtaining thermal gains known so far 

from any Lepidopteran species with social caterpillars. 

High synchronization of individuals in social caterpillars during activity periods 

facilitates foraging through cooperative search for food (Fitzgerald & Peterson 

1988) and is essential for building the silken tent (Fitzgerald & Willer 1983). In 

addition, as demonstrated above, thermoregulation by basking and warming by 

metabolic heat production are beneficial only if caterpillars rest in the tent 

simultaneously, providing each other insulation and warmth. 
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Abstract  

1. We investigated thermoregulatory behavior of social tent building 

caterpillars of Eriogaster lanestris. 

2. The silk layers of the tent shield most of the incoming radiation and 

reduce heat exchange with the surroundings by convective heat loss. 

3. As a consequence its interior provides a wide range of 

temperatures.  

4. By changing their position inside or on the tent caterpillars are able 

to stabilize their body temperatures at 30-35°C over a wide range of 

ambient temperatures as long as solar irradiation is sufficiently 

strong. 

5. Overall behavioral thermoregulation takes precedence over the 

tent’s physical features. 

Introduction 

Thermal conditions influence growth and activity patterns of insects in all stages 

of their lives. In contrast to some winged insects that are able to produce 

warmth by endogenous means (i.e. shivering of flight muscles, Heinrich 1981) 

most ectothermic insects like caterpillars are usually closely linked to their 

thermal environment. Although caterpillars may be able to elevate their body 

temperatures by metabolic heat production (Mosebach-Pukowski 1937, Breuer 

& Devkota 1990, Ruf & Fiedler 2000) temperature gains are only weak and 

caterpillars may have to elevate their body temperatures additionally by basking 

in the sun. Thus, caterpillars which require a specific temperature range must 
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thermoregulate behaviorally by various means to overcome developmental 

threshold temperature. The most important way of behavioral thermoregulation 

is to change their orientation and/or position in the habitat towards incoming 

radiation (for an overview see: Stevenson 1985b), especially under cold 

weather conditions. 

 
Solitary caterpillars may only attain low gains of temperature by basking due to 

their small body mass (cf. Rawlins & Lederhouse 1981, Karban 1998). In 

contrast, many social caterpillars are especially adapted for effectively gaining 

higher body temperatures by building dense aggregations that are known to 

reduce convective heat losses (Joos et al. 1988). Furthermore, they enhance 

the maximum achievable heat gain by increasing their effective body mass 

(Stevenson 1985a). It has repeatedly been shown that social caterpillars may 

rise their body temperature far above ambient temperature by basking and that 

they are able to maintain high body temperatures throughout a wide range of 

ambient temperatures (Porter 1982, Knapp & Casey 1986, Casey et al. 1988, 

Bryant et al. 2000). Less attention has been drawn to the fact that in particular 

social caterpillars may suffer from excessive solar radiation and have a severe 

risk of overheating even in temperate zone regions. Thus, avoidance of 

overheating under high solar irradiation should be a central feature of 

thermoregulation in social caterpillars in much the same manner as maximizing 

body temperature on cold days (cf. Seymour 1974, Capinera et al. 1980, Frears 

et al. 1997).  

 
Only few lepidopteran species with social caterpillars have evolved a stationary 

resting and molting site that is used as a home-base throughout the social 

phase of the larval development. Even fewer species build a dense silken three-

dimensional tent with an accessible interior (cf. Fitzgerald 1995, Costa & Pierce 

1997). Communal spinning at regular intervals results in a multi-layered 

structure of the tent due to shrinkage of the silk shortly after deposition 

(Fitzgerald & Willer 1983). The layers are separated by air-filled gaps within 

which the larvae rest.  
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The role of the tent in behavioral thermoregulation has been the object of 

several studies in social caterpillars (Joos et al. 1988, Breuer & Devkota 1989, 

Fitzgerald & Underwood 2000). It was suggested that the tent functions 

somewhat like a greenhouse, heated by trapping solar radiation but little 

affected by external convection. However, the physical features of the tent have 

never been analyzed and there is no information about features of the silk 

layers in relation to irradiation which must be responsible for the observed 

effects. 

 
Caterpillars of the small eggar moth Eriogaster lanestris (Lepidoptera: 

Lasiocampidae) hatch in early spring shortly after budbreak of their hostplants 

(i.e. blackthorn, Prunus spinosa, and other deciduous trees and shrubs, Ebert 

1994). The totally black caterpillars typically face central European spring and 

early summer weather with frequent spells of low temperature but often high 

radiation. Caterpillars build a dense silken tent which is continually extended up 

to the end of the penultimate instar. In nature, larvae pupate in June to early 

July. Since tents are usually formed on sun-exposed hedgerows or hostplant 

trees, caterpillars are expected to experience also periods of occasional heat, in 

particular towards the end of their feeding period. Thus, E. lanestris should be 

particularly prone to both aspects of thermoregulation in social caterpillars, i.e. 

elevation of body temperature early in the season and the risk of overheating 

later on. 

The aim of the present study is to analyze the thermoregulatory behavior of E. 

lanestris under field conditions. Particular attention is paid to the interrelation 

between behavior, microclimate in the tent, and thermoregulation. 

Material and Methods 

Animals: Whole colonies with caterpillars of Eriogaster lanestris were collected 

in the field and fed with leaves of blackthorn. Resulting cocoons were over-

wintered in a refrigerator with interior lighting (5°C, 8:16h L:D). Moths hatched 

within a few hours after the cocoons were warmed up in spring and were put in 

a plastic box (10 liter volume) with blackthorn twigs for mating and egg 
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deposition. Whole egg masses with newly hatched caterpillars were placed on 

small bunches of blackthorn twigs until small tents had been established. Some 

of the tents were cut out of the bunches and transferred to wooden frames (cf. 

Fitzgerald 1980). Colonies were kept in an environmental cabinet (20°C, 14:10h 

L:D) until the end of the second instar and were then either transferred to 

natural hostplants (Prunus sp., Betula sp.) in the Botanical Garden of the 

University of Bayreuth, or to the roofdeck of the university building, where the 

tents were connected to bunches of the host-plants by a plastic rod. Tents on 

the roof were protected from birds by a coarse meshed cage (2.5×2.5×1.5m, 

width of meshes ca. 2cm) that did not influence solar radiation. To these 

colonies fresh food was provided daily in ample supply. For measurements of 

individual body temperatures a total of 17 colonies (12 on the roofdeck, 5 in the 

Botanical Garden) were used for data acquisition and data were pooled. 

Temperature and radiation measurements: Temperature measurements of 

individual caterpillars were only carried out during the late fourth and early fifth 

instar to level out effects of caterpillar size and weight.  

Body temperature (Tb) of individual caterpillars was measured to the nearest 

0.1°C by cautiously pressing a miniature coated thermocouple (NiCr / Ni, ca. 

0.1mm diameter coated with Inconel 600; TMG, Martinroda, Germany) which 

was attached to a laboratory thermometer (DTM 3010) onto the back of the 

caterpillar for about 3s to allow the reading to stabilize. Knapp and Casey 

(1986) reported no significant difference between this non-invasive method and 

alternatively piercing the cuticle of larvae to directly measure internal Tb. In 

addition to body temperatures of caterpillars temperature was measured 

immediately afterwards at different sites in and at the tent, namely the 

temperature under the sun-facing surface of the tent (Tsurf), temperature inside 

the tent in a central position (Tins), temperature in the shaded part of the tent 

opposite to the irradiated side (Tsh), and ambient temperature in the shade 

close to the tent (Ta).  For one analysis we calculated maximum temperature 

inside the tent by choosing the greatest value of either Tsurf, Tins, or Tsh which we 

call Ttent,max. 
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Data for global radiation were provided by a meteorological station in the 

Botanical Garden in Bayreuth at about 300m linear distance from the study site. 

Long-term measurements: Temperature progression in the tent was long-time 

monitored with calibrated thermistors (Hygrotec: SEMI 833 ET) connected to a 

computer. Tsurf, Tins, Tsh, and Ta were automatically recorded to the nearest 

0.1°C in one minute intervals. Four colonies with about 200 caterpillars each 

were monitored over their entire fourth instar. In addition, activity of caterpillars 

was recorded continuously with light barriers (cf. Ruf & Fiedler 2002). 

Caterpillars’ position: Caterpillars often changed their positions in and on the 

tent while resting between foraging periods. Position was classified in three 

categories which are either ‘in the sun’ (i.e. outside the tent on its irradiated 

surface), or ‘inside the tent’, or ‘in the shade’ (i.e. outside the tent on its non-

irradiated side or on branches nearby the tent), respectively. The exact position 

of caterpillars in the tent could not be analyzed due to the density of the silk that 

did not allow for detailed observations. 

Spectral photometry and transmittance of radiation: To investigate physical 

features of the tent the utmost silk layer of a tent of a laboratory colony was 

cautiously detached from the wooden frame and spread on a smooth surface. 

Impurities of the silk e.g. larval faeces were not removed because of the danger 

of damaging its structure. Moreover, such impurities accumulate over the 

development of each larval colony and thus are part of their natural conditions. 

Spectral transmission of six samples of differently dense silk layers was 

measured in the spectral range from 190-1100nm with a spectrometer (Perkin 

Elmer, Lambda 2, UV-Vis with adjusted deuterium lamp (190-327nm) and 

tungsten-halogen lamp (327-1100nm)). Although this range did not cover the 

whole spectrum emitted by the sun and passing the earth’s atmosphere, it 

covers at least the most energy rich part of natural sunlight. 

In addition, a piece of silk was mantled over the sensors of a radiometer (type 

CRN1, Kipp & Zonen, NL; sensor for short wave radiation, λ=300-3000nm, thus 

covering the total range of the sunlight). The instrument prepared in this way 

was attached to a meteorological mast to analyze the portion of solar radiation 
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permeating the silk layer. Data were saved by a data logger in 10min intervals 

over the course of five days. Data were then compared to the data obtained by 

a non-covered identical sensor installed at the meteorological station. 

Control for measurement errors / statistics: To assess the sensitivity of our 

thermistors to radiation errors we installed one thermistor and a special sensor 

whose measurements are nearly free of radiation errors (type Pt150 (12µm 

platinum wire), AIR, Boulder, CO) in an empty caterpillar tent near the 

meteorological station. Data from both thermal sensors were saved by a data 

logger for five consecutive days with high solar radiation in July in 10min 

intervals. We calculated standardized residual values from regressing 

thermistor on Pt150 data. Since the thermistor showed an exponential 

characteristic, data of the Pt150 sensor were log-transformed prior to regression 

analysis. Residual values were then correlated with radiation intensity to assess 

whether the thermistor used for longtime measurements had higher radiation 

errors at increasing levels of solar irradiation. 

All statistical analyses were conducted using the STATISTICA software 

package (StatSoft, 1999) or were calculated according to Sachs (1992). 

Results 

Reliability of thermistor measurements: Temperature measurements of the 

thermistor SEMI 833 ET and the sensor Pt150 were highly significantly 

correlated (R²=0.97, p<0.001, N=288). Standardized residual values were 

positively correlated with radiation (r=0.22, p<0.001) but data scattered widely 

and linear regression of residuals on radiation only explained 5% of the 

variance observed (R²=0.05). Thus, radiation errors of the thermistors were 

assessed to be in a negligible range for our experiments. 

Temperature in the tent: Temperature in the tents inhabited by caterpillars 

varied widely over the course of a day (Fig. 1). On sunny days temperature in 

the tent rapidly exceeded ambient temperature after sunrise, reaching 

maximum values of more than 50°C. During dusk, temperature in the tent 

rapidly equated to or even fell slightly below ambient temperature.  
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Within the tent there was a steep temperature gradient according to the position 

of the sensors. Until noon temperature was highest just below the surface of the 

tent, medium inside the tent, and lowest at the non-irradiated side of the tent. As 

expected, this order changed when the sun changed its position (cf. Fig. 1, 

upper graph). On days with overcast weather or rainfall differences were less 

pronounced (Fig. 1, middle and lower graph). Temperature gains of the tent 

compared to ambient temperature were significantly correlated with solar 

radiation (R²=0.94; Fig. 2) with only low temperature gains on clouded days and 

maximum gains of about 25K on sunny days. 

In contrast to these findings in tents with caterpillars, temperatures measured 

within the empty tent were always within 2-5K compared to Ta even on sunny 

days (N=360 measurements during five days, 0900 - 1900h). 

Caterpillars’ behavior / body temperature: Caterpillars changed their position on 

or in the tent throughout the day. Even though single caterpillars occasionally 

behaved differently, the majority of siblings behaved as a unit, resting either on 

the irradiated surface of the tent, where they formed a dense aggregation with 

orientation to the sun, or in the tent. When ambient temperatures increased 

towards noon and early afternoon on sunny days aggregations first became 

loose, then caterpillars crawled on the underside of the tent apart from the 

incoming radiation, or finally even left the tent to rest on the underside of 

branches near the tent. Even though it was impossible to unequivocally assign 

the caterpillars’ choice of position to a given temperature range the frequency of 

occurrence of either positions at different temperatures was significantly 

different (Fig. 3).   
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Fig. 1 – Exemplar chart recordings of temperature progression (lines) in the tent and 
activity patterns of the caterpillars (bars) on three days with different weather 
conditions. Average radiation (0700-1900h) per day is shown in each graph. On June, 
2nd rain fell continuously from 0800h onwards. Sunrise: ca. 0500h, sunset: ca. 2100h. 
Grey line: ambient temperature (Ta). Black lines: solid: T under tent surface (Tsurf), 
dashed: T inside tent (Tins), dotted: T at shaded side of tent (Tsh). 
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Fig. 2 – Temperature gain of tents inhabited by caterpillars depending on solar 
radiation. Pooled data of four colonies (36 colony days). Values for temperature and 
radiation are averaged over a period of 6 hours (3 hours before and after zenith of the 
sun). Temperature values averaged over maximum values measured by any of the 
three sensors placed in the tent.  

Fig. 3 – Ambient temperature and position of caterpillars relative to the tent during the 
day. The observed frequency distributions of all categories are significantly different 
from each other (all combinations significant at p<0.001 after sequential Bonferroni 
correction, generalized Fisher’s exact test. a-b: Fi=13.71, a-c: Fi=43.97, b-c: Fi=30.81). 
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Threshold temperatures for the change from one position to another (here 

defined as the temperature of which the regression model predicts 0.5 

probability of behavioral change) were estimated by logistic regression: Change 

from the sun exposed side of the tent to its interior (and vice versa) occurred 

quite gradually with a threshold ambient temperature of 19.3°C (goodness of fit 

of logistic model: χ²=8.87, p<0.003), while the change from the interior to the 

shaded side of the tent occurred much more rapidly at 23.3°C (χ²=42.09, 

p<0.0001).   

Body temperatures of caterpillars were always elevated compared to ambient 

temperature during the day. During sunny weather caterpillars achieved highest 

temperature gains in the early morning when temperatures were low but 

radiation was already strong. In contrast, temperature gains were smaller 

relative to ambient temperature around noon when Ta was high (Fig. 4 above). 

This significantly negative relationship between Ta and (Tb-Ta) is explained by 

the caterpillars’ behavior (Fig. 3): with increasing temperature E. lanestris larvae 

seek shadow and avoid direct solar radiation. Thus, caterpillars were able to 

maintain body temperatures of about 30-35°C over a wide range of ambient 

temperatures (Fig. 5).  

Under overcast weather conditions temperature gains were smaller, and 

increased with increasing ambient temperature (Fig. 4, lower graph). Under 

such conditions sun-avoidance behavior was never observed in the caterpillars. 
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Fig. 4 – Temperature gain of individual caterpillars at different ambient temperatures. 
Upper graph: data gained at predominantly sunny weather conditions (radiation: 
966±285W/m2). Graph below: data gained during overcast weather (radiation: 
387±238W/m2).  
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Fig. 5 – Individual body temperatures of caterpillars at different ambient temperatures 
during cloudy (white diamonds) and predominantly sunny (black diamonds) weather 
conditions. Slopes of regressions are significantly different (t357df=10.8, p<0.0001) and 
boths functions are significantly different from Ta=Tb (cloudy: t154df=5.3, p<0.0001; 
sunny: t203df=15.3, p<0.0001). 

Caterpillars regulated their body temperature behaviorally by seeking the 

optimal microclimate in and around the tent (Fig. 6). Up to a Ttent,max of ca. 30°C, 

the caterpillars’ body temperature closely followed the temperature of the 

warmest part of the tent. When Tb exceeded about 35°C the caterpillars ceased 

to aggregate and rested individually in the shade, either on the underside of the 

tent or in the nearby vegetation. Thus, Tb was decoupled from tent temperature 

at high Ta and approximated a satiation value of 38°C (value determined by 

regression analysis, Fig. 6). Under extreme conditions the caterpillars hang 

from the shaded side of the tent, only being fixed by their abdominal prolegs, to 

maximize convective heat loss. None of the caterpillars ever died on the tent 

because of overheating, but caterpillars which fell from the tent and got stuck to 

a glue strip died within a few minutes. 
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Fig. 6 – Influence of behavior on individual body temperature: Body temperature 
follows maximum temperature in the tent up to 30°C. At higher temperatures 
caterpillars prevent overheating by disbanding aggregations and leaving the tent. 

 

Physical features of the silk layers: 

Spectral photometry showed that transmission remains rather constant from 

190-1100nm with a slight decrease of transmission towards the near IR-range 

of the spectrum (Fig. 7). Radiation did not easily penetrate the silk layers. Even 

the thinnest layer measured showed only a mean transmittance of 63%, and 

less than 4% of incoming light was transmitted through the thickest layer. Since 

the tent consists of multiple silk layers almost all short-wave radiation from 

sunlight is blocked. 

When the radiometer sensor (λ=0.3-3µm) was covered with silk, only about 

50% of the total solar energy simultaneously measured by the non-covered 

instrument permeated through to the sensors surface (mean±SD=51.6±19.6%, 

pooled data from 360 measurement intervals spread over five days from 0700-

1900h CEST).  
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Fig. 7 – Spectral transmission of six Eriogaster lanestris silk layers of different 
thickness. Different bars at the bottom of the graph show the visible range of the light 
(white), ultraviolet light (dashed), near-infrared (tightly dashed) and the proportion of 
the solar spectrum which is not transmitted through the earth’s atmosphere under 
natural conditions (black). 

Discussion 

Our results show that caterpillars of Eriogaster lanestris are typical 

thermoregulators which are able to maintain high and relatively constant body 

temperatures over a wide range of ambient temperatures. Thermoregulation is 

improved considerably by the tent, a multi-layered silk texture which creates a 

heterogeneous microclimate. In E. lanestris, the effectiveness of 

thermoregulation does not only depend on the incoming solar radiation, but is 

likewise mediated by the caterpillars’ behavior and the physical properties of 

their tent. 
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At the onset of their development, caterpillars of E. lanestris are active at a time 

of year when the average daily ambient temperature is often far below the 

optimum temperature required for growth and development. However, univoltine 

early spring larvae are frequently under great time pressure to complete their 

life cycles because availability of high quality larval resources is restricted to a 

short period of the year (cf. Parry et al. 1998). It is well known that leaf quality is 

best shortly after budbreak and that nutrient as well as water content rapidly 

decrease during the following weeks (Hunter & Lechowicz 1992, Slansky 1993). 

Caterpillars of E. lanestris failed to grow if they hatched about eight weeks after 

budbreak (C. Ruf, unpubl. obs.). 

In insect larvae increased body temperatures raise rates of digestion and 

growth (Rawlins & Lederhouse 1981, Knapp & Casey 1986, Fischer & Fiedler 

2001) and thereby shorten development time. However, most social caterpillars 

restrict foraging to the night or special daytimes in order to avoid exposure to 

natural enemies. Thus, they might not be able to benefit from increased body 

temperatures. In contrast, caterpillars of Eriogaster lanestris show plastic 

foraging patterns that are strongly influenced by temperature (Ruf & Fiedler 

2002). If temperatures are high, caterpillars are able to process food quickly and 

perform more foraging bouts per day than on cool days. Consequently, effective 

thermoregulation in this species should play a central role in enhancing food 

intake and growth. 

It proved difficult to explicitly describe the position of the caterpillars in or on the 

tent solely on the basis of temperature. Obviously, additional, non-tested 

parameters including factors other than thermal constraints, influence decision-

making of caterpillars. As a rule, however, caterpillars rested on the surface of 

the tent during the cold phases of a day, when radiation penetrating the tent 

possibly was too low to effectively warm the caterpillars (i.e. in the early 

morning or during phases of sunshine after rain). At higher temperatures, but 

also during phases of rainfall and in the absence of radiation at night, 

caterpillars made use of the multiple advantages of the tent like reduced 

convective heat loss, optimized surface-to-volume ratio, and protection from 

natural enemies, and retreated into the tent. When radiation was even higher, 
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temperatures in the tent rapidly exceeded physiological tolerable temperatures 

(>30-35°C) and caterpillars left the tent to rest in the shade. Laboratory studies 

with different arthropod species showed that developmental rates are often 

maximal at about 30°C but rapidly decrease at temperatures above 35°C 

(Logan et al. 1976, Taylor 1981, Lactin et al. 1995, Kingsolver 2000). Only few 

species of soft-bodied caterpillars are known to survive at temperatures slightly 

higher than 40°C at least for limited periods of time (Casey 1976). However, 

aggregation behavior has been shown to reduce water losses under high heat 

loads in a tropical saturniid caterpillar (Klok & Chown 1999). 

 
The tent facilitates a three-dimensional clumped formation of the caterpillars 

that are thus able to form a composite body with an optimal volume-to-surface 

ratio that minimizes convective heat loss. Full grown larvae of E. lanestris that 

still form a social unit achieve body weights of about 1.3±0.1g (mean±SD, 

N=20) resulting in an effective body mass of ca. 260g for an average colony 

that comprises 200 caterpillars. Simulations suggest that such an increase in 

body mass may double the maximum temperature gain achievable by basking 

(Stevenson 1985a,b).  

Other experimental studies showed that aggregations of caterpillars maintain 

body temperatures far in excess of single caterpillars of the same size 

independent of their orientation to the sun (Joos et al. 1988, Klok & Chown 

1999) and that large groups achieve higher temperature gains than small 

groups (Halperin 1990). In addition to thermal benefits group basking serves to 

keep the entire colony at about the same Tb, thereby facilitating synchronous 

growth of the colony despite low Ta and high thermal sensitivity of growth. 

Under laboratory conditions, in the absence of forced convection, caterpillars of 

E. lanestris are able to store metabolic warmth by tightly aggregating in the tent 

(Ruf & Fiedler 2000). Temperature in the tent is thus influenced by the 

caterpillars’ presence or absence. We were, however, not able to measure this 

effect under field conditions as these effects are overridden by environmental 

fluctuations of radiation and temperature. Yet, the observation that temperature 
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gains in tents with caterpillars were much larger (up to 25K) than in an empty 

tent (<5K) also emphasize the significance of the caterpillars’ composite body 

mass for thermoregulation. 

 
Dark bodied caterpillars may be effective behavioral thermoregulators (e.g. 

Porter 1982) even without a tent. Nevertheless, the use of a tent is an 

enormous advantage compared to individualistic or nomadic foraging caterpillar 

groups. The spinning of silk provides caterpillars with a material to alter their 

environment adaptively and consequently to improve their heat balance 

considerably. 

For tent caterpillars of the related lasiocampid genus Malacosoma it has been 

hypothesized that the tent may function in the way of a greenhouse (Joos et al. 

1988). The general characteristic of a greenhouse material should be to 

transmit radiation with relatively short wavelengths (such as sunlight), but block 

radiation of longer wavelengths (such as heat) (Goetzberger & Wittwer 1993). 

This tendency leads to a build-up of heat within the space enclosed by the 

material layer. Incoming radiation is usually absorbed by a mass enclosed in the 

‘greenhouse’ and re-radiated in form of infrared energy. Multiple layer 

constructions further reduce heat loss. 

Judging from our measurements of spectral characteristic of the tent material, 

the silk of Eriogaster lanestris does not match these specifications. Short-wave 

radiation only poorly penetrated the silk and transmittance was much lower than 

in transparent materials. Although we were not able to photometrically measure 

the transmittance of the silk for long-wave radiation (λ> ca. 3µm) we expect the 

heat storing capacity of the material to be rather low, since temperature in the 

tent always rapidly decreased within an hour during dusk. 

Obviously the tent rather functions like an ordinary tent than a greenhouse: The 

silk presumably absorbs a portion of the incoming short-wave radiation and 

emits long-wave radiation into the interior space of the tent as long as solar 

irradiation is sufficient. After sunset this effect expires at once and the tent cools 

down. 
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Nevertheless, the silk retards heat exchange of the caterpillars in the tent with 

the surrounding air (cf. Fitzgerald & Underwood 2000). The multiple layer 

structure should diminish convective heat loss, and air movement within intact 

tents has been reported to be negligible (Knapp & Casey 1986). In pine 

processionary caterpillars temperature gains in the tent (inhabited by the 

caterpillars) compared to ambient temperature were correlated to nest 

thickness, with only tightly woven nests gaining considerable heat (Breuer et al. 

1989). These findings corroborate the notion that the transmittance of the silk 

does not determine the efficiency of the tent to build up high temperatures. 

Instead, direct heating of the silk by sunlight and the reduction of convective 

heat loss for the mass of caterpillars (further improved by the multi-layer 

structure) are responsible for the observed effect.  

 
In contrast, in Mexican Eucheira socialis temperature differences between the 

tent’s interior and the surroundings were lower in more densely woven tents 

(Fitzgerald & Underwood 2000). In contrast to other species investigated so far, 

E. socialis uses its tent in a completely different way, seeking out the coldest 

parts of the tent, exhibiting voluntary hypothermia. This may suggest that in E. 

socialis very dense silk layers nearly totally reflect incoming radiation. However, 

no spectral measurement data on the silk of Eucheira and Thaumetopoea are 

thus far available that would allow for a rigorous comparison with our data on 

Eriogaster lanestris. 

It is also noteworthy in this context that the interior of the tent itself did not 

exhibit greatly elevated temperatures when empty which was also recorded by 

Knapp & Casey (1986). Evidently the thermoregulatory function of the tent 

primarily depends on the mass of caterpillars storing heat. 

The weak transmittance of solar radiation probably explains why E. lanestris 

caterpillars always rest outside on the tent during the early morning when solar 

radiation is weak. Only a small amount of radiation will then penetrate the silk, 

too low to allow the caterpillars to thermoregulate effectively.  
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There is a strong trade-off between the advantages provided by the tent and its 

disadvantages. Costs of sociality are numerous and may even be reinforced by 

the tents. Among these are the fast spreading of diseases (Hochberg 1991), 

food shortage which may occur on small sized crippled blackthorns on 

xerothermic slopes (C. Ruf, pers. obs.), and the conspicuousness of the tents to 

visually guided natural enemies (Costa 1993). This is especially true for the 

tightly woven tents formed by central-place foraging social caterpillars which are 

among the largest and most conspicuous structures built by insects and which 

are visible, to humans at least, over tens of meters. Furthermore, caterpillars 

are in a risk to overheat in summer and may thus be forced to stay outside the 

tent and be even more conspicuous. Besides, building a tent means an 

enormous energetic investment as silk protein is costly to produce for a 

herbivore (Berenbaum et al. 1993).  

Besides their thermal function tents of caterpillars serve other purposes like 

facilitating of mass assembly and recruitment to food (Fitzgerald & Peterson 

1983), or reduction of water loss (Wellington 1974). Furthermore, the tent is 

thought to transmit vibrations to ensure cohesion of group members and to help 

to keep caterpillars behavior synchronous (Fitzgerald & Costa 1999).  

However, the use of a tent opens up thermoregulatory capacities far in excess 

of those of solitarily thermoregulating caterpillars and therefore is an important 

selective factor for the evolution and the maintenance of sociality in Eriogaster 

lanestris. A comprehensive understanding of the thermal biology of this species 

will further need the integration of physiology, ecology and behavior. 
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Published as: Ruf, C.; Fiedler, K. (2002) Plasticity in foraging patterns of larval colonies of the 
small eggar moth, Eriogaster lanestris (Lepidoptera: Lasiocampidae). Oecologia 131, 626-634. 

Abstract 

Activity patterns of colonies of the central-place foraging (CPF) social 

caterpillar, Eriogaster lanestris, were electronically long-time 

recorded under field conditions. Caterpillars showed distinct, highly 

synchronized activity bouts during which they left their tent, fed on 

their host-plant and returned to their tent. Caterpillars stayed almost 

inactive during their digestion phases when they rested inside or on 

the tent. 

The number of daily foraging bouts varied over a wide range. On 

warm and sunny days with high solar irradiation caterpillars left their 

tent up to nine times whereas there was only one foraging bout on 

cool and rainy days. On average, 4.8 daily foraging bouts were 

performed by fourth (=pre-final) instar larvae, which is higher than the 

number reported for another well known CPF species, the eastern 

tent caterpillar Malacosoma americanum. Overall, E. lanestris 

colonies required 31±2 foraging periods to pass their fourth instar 

within 7.3±1.2 days under the temperature conditions prevailing over 

the course of our experiment.  

The length of individual foraging bouts as well as the phase of 

digestion proved to be strongly temperature dependent. In contrast to 

patterns reported for M. americanum, foraging activities were not 

bound to specific times of day and also continued during night time if 

temperature permitted. Changes in light phases only had a 

modulatory effect on the onset of the next foraging bout. 
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Eriogaster lanestris is the first lepidopteran species with CPF social 

caterpillars reported to show a plastic, but nevertheless strictly 

synchronized foraging pattern. Caterpillars are thus able to optimize 

their food intake and enhance growth during periods of thermally 

favorable conditions while minimizing their exposure to natural 

enemies. 

Introduction 

Social life-styles are an infrequent but widespread phenomenon among larvae 

of moths and butterflies. A number of factors have been identified which 

promote the evolution of social systems in caterpillars, such as social facilitation 

of feeding, improved defense, and thermoregulation (Costa & Pierce 1997 and 

references therein). However, in order to benefit from advantages accruing 

through sociality, behavioral requirements are necessary. This is especially 

relevant for synchronous behavior of individuals, which is crucial for example for 

tent building (Fitzgerald & Willer 1983), social thermoregulation (Knapp & Casey 

1986, Joos et al. 1988, Ruf & Fiedler 2000), and recruitment communication 

(Fitzgerald & Peterson 1983, Ruf et al. 2001a). 

 
Sociality of course has its costs. Behavioral synchronicity among hundreds of 

caterpillars means that they are extremely conspicuous to predators and 

parasitoids which hunt by sight and are considered the major selective agents 

influencing the foraging behavior of lepidopteran larvae (Heinrich 1993, Montllor 

& Bernays 1993). Although many species with gregarious caterpillars are 

aposematic and often well defended (Sillén-Tullberg & Leimar 1988), the 

majority of social species forage exclusively at night. Nocturnal activity, as a 

consequence, means doing without foraging during the thermally most suitable 

time of the day. Thus, for communally foraging caterpillars an extreme trade-off 

is to be expected between costs of synchronous mass appearance during 

foraging bouts and benefits of that unusual life-style. The costs should be 

highest in central-place foraging (CPF) caterpillars (Fitzgerald & Peterson 1988) 
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that must travel considerable distances between their only silk tent and their 

feeding places scattered in the vegetation. 

 
Synchronicity of feeding requires cues for triggering the onset of a new activity 

bout. Some nocturnally feeding species simply use the onset of dusk (e.g. 

Weseloh 1989, Roden et al. 1990). In contrast, diurnal species may need a 

fixed foraging schedule independent of the thermal environment as was 

demonstrated in the Nearctic eastern tent caterpillar, Malacosoma americanum. 

It was hypothesized that if foraging of individual caterpillars were mediated by 

temperature, it would be difficult to keep activities of the colony synchronous 

(Casey et al. 1988). Thus, in such species the need to trigger synchronous 

feeding may conflict with flexible responses to suitable thermal conditions. 

 
Previous laboratory studies on the small eggar moth, Eriogaster lanestris, have 

shown that caterpillars of this species show a sequence of strongly 

synchronized foraging bouts and intermediate resting phases. Caterpillars fed 

by day and night, and the number of foraging bouts varied with rearing 

temperature (Ruf et al. 2001b). These observations suggested that E. lanestris 

colonies, in contrast to all other social caterpillars studied so far, have a much 

more plastic foraging schedule related to environmental cues such as ambient 

temperature. However, laboratory studies are not necessarily transferable to 

field conditions. Fitzgerald et al. (1988) found that caterpillars of M. americanum 

showed an extra foraging bout at night under laboratory conditions which was 

non-existent under field conditions. We therefore investigated foraging activity 

of E. lanestris colonies exposed to outdoor weather conditions which allowed us 

to study effects of temperature over a much larger temperature range than in 

climate chambers. 

Published observations of colony foraging patterns under field conditions in E. 

lanestris are quite inconsistent. Ebert (1994) stated that caterpillars are active 

by day and night or only by night, respectively. In contrast, Carlberg (1980) 

argued that caterpillars in Finland forage during the day only, whereas 

caterpillars in Germany were said only to feed at night. Instead of relying on 
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intermittent visual observation we here provide data from continuous long-term 

monitoring of the foraging patterns of colonies under field conditions. We 

explicitly address two questions: (a) which environmental variables determine 

the number of foraging bouts per day, and (b) how do foraging bouts and 

digestive periods change with temperature. 

Material and Methods 

E. lanestris is a monovoltine moth widely distributed in the Palaearctic region. 

Larvae hatch from egg masses in late April to early May, build a silk tent and 

live socially until their mid final instar. Pupation occurs in July, moths usually 

emerge in early spring of the next year. Host plants are various shrubs and 

smaller trees (Prunus sp., Crataegus sp., Betula sp., Tilia sp.). E. lanestris is a 

typical central-place forager with an elaborated communication system that 

facilitates the location of rewarding feeding sites and social cohesion (Ruf et al. 

2001a). 

Whole colonies with caterpillars of Eriogaster lanestris were collected in the field 

from a northern Bavarian population and fed with leaves of blackthorn (Prunus 

spinosa). Resulting cocoons were overwintered in a refrigerator at 5°C with 

interior lighting (8:16h, L:D cycle). Moths hatched within a few hours after the 

cocoons were warmed up in spring and were put in a plastic box (10l volume) 

for mating. Fresh blackthorn twigs were provided for egg deposition. Resulting 

egg clusters were stored outdoors in a cage sheltered from rain until caterpillars 

hatched. Whole egg masses with newly hatched caterpillars were placed onto 

small bunches of blackthorn twigs until small tents had been established. Tents 

were cut out of the bunches and transferred to wooden frames (cf. Fitzgerald 

1980). Colonies were kept in an environmental cabinet (14:10h, L:D cycle, 20°C 

constant) at least until the end of the second instar. Only colonies with 

approximately 200 caterpillars were used for our experiments. 

Colonies were then transferred to a capacious coarse meshed cage (2.5 × 2.5 × 

1.5m, width of meshes ca. 2cm) which kept birds away from the tents but did 
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not influence radiation, rain and wind. The cage was placed on the roof of the 

university building. 

For quantifying activity patterns, the method presented elsewhere (Ruf et al. 

2001b) to electronically record caterpillar movements between their tent and 

feeding sites was used. Using infrared (IR) light barriers and a specially written 

software program this method allows one to record events (i.e. the number of 

caterpillars passing the light barrier) on a computer in one minute intervals.  The 

recording technique was modified for the use under field conditions. To prevent 

sunlight from influencing the infrared light barriers, we used IR detectors with 

integrated modulation system (type IS471, SHARP) which were connected to IR 

diodes (type LD274). Thus, external non-modulated radiation was not sensed 

by the detector. Nevertheless it proved to be necessary to put a small black 

plastic tube in front of the detector and shade the area of the light barrier by a 

narrow plastic canopy. To bundle and intensify the light emitted by the IR diode 

we used a plastic lens (Conrad Electronic) and a perforated dressing (shortened 

film tube with 1.5mm opening). 

Emitter and detector were attached to adjustable aluminum sections allowing for 

the alignment of the light beam exactly over the plastic bridge leading from the 

tent to a bunch of blackthorn twigs. For each colony, two light barriers were 

used for double safeguarding (Fig. 1). In addition, we regularly observed 

foraging activities to ensure the correct functionality of the light barriers. 

Twigs were replaced as needed to provide a constant supply of fresh food. The 

replacement of the food plant means a difference to real field conditions where 

food becomes more and more patchily distributed, thus forcing the caterpillars 

to walk over longer distances during the course of their development. 
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Temperature was measured to the nearest 0.1°C using high precision thermal 

sensors (Hygrotec SEMI 833ET calibrated thermistors) in 1min intervals. 

Thermal sensors were attached at a shaded position near the tents. Altogether 

seven colonies were monitored between 22 May  and 26 June during parts of 

the third, the whole fourth and the beginning of the fifth larval instar. 

Data for global radiation, precipitation, wind speed and atmospheric pressure 

(recorded at 10min intervals) were provided by a meteorological station in the 

Botanical Garden of the University of Bayreuth at about 300m linear distance 

from the study site. 

All subsequent analyses are based on the foraging bouts during the caterpillars’ 

fourth instar with data from the molting phases being excluded. During molting 

phases, activity of E. lanestris is much restrained and behavioral synchronicity 

is partly reduced (Ruf et al. 2001b). Activity bouts showed a bimodal form, 

recording the caterpillars going out to feed (first peak) and then coming back 

(second peak). The distinct beginning and end allowed us to accurately 

determine the duration of each bout. In those cases when patterns were more 

fuzzy we discarded single outlying signals. Out of 192 foraging periods only one 

foraging bout was completely disregarded because of ambiguous separation. 

The duration of resting phases between activity periods was assessed by 

determining the period between the middle of the preceding and the middle of 

the subsequent activity bout. This phase includes the whole interval where 

caterpillars rest in the tent for digestion from the point when caterpillars come 

back to the tent after foraging until all caterpillars have left the tent during the 

next foraging bout.  

All statistical analyses were conducted using the STATISTICA software 

package (StatSoft 1999) with the exception of regression analyses that were 

calculated with Datafit (Ver. 7.1.44, Oakdale Engineering). Factor extraction in 

principal component analysis (PCA) followed Kaiser’s criterion (i.e. factors were 

only considered if their eigenvalues were >1.0; cf. StatSoft 1999). Multiple 

regression analysis was performed using the standard (i.e. not stepwise) 

method. 
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Collecting multiple data at the same point may create a problem of 

pseudoreplication (Hurlbert 1984). However, effects of internal time series 

dependencies on the data were not to expected as the changing weather 

conditions to which the colonies were subjected did not follow a regular pattern. 

Moreover, colonies experienced different weather conditions during different 

stages of their lives since experiments were not run exactly in parallel. Finally, 

we were more interested in characteristics of individual foraging bouts rather 

than periodical phenomena, which would call for time-series analyses. Hence, 

foraging periods were treated as data points, and were pooled across colonies if 

no colony-specific differences could be noted. 

Regression analyses were first calculated separately for the seven colonies. 

Since parameter estimates never differed significantly (95% confidence 

criterion), data were pooled and regression analyses were recalculated.  

In many species of social caterpillars, changes of the light phases seem to be 

the predominant trigger for (nocturnal) activity (e.g. Schmidt et al. 1990, Floater 

1996). Therefore, we also tested whether the foraging bouts in the morning or in 

the evening, respectively, coincide with dusk or dawn. 

For all analyses, unless stated differently, temperature was averaged over the 

relevant time period, e.g. daily arithmetic means for analyses addressing a 

whole day, or means over the exact duration of  the respective foraging bout for 

analyses on that level. Throughout the text means are given ±1SD. 

Results 

During the course of a day strongly synchronized activity bouts could always be 

differentiated from intermediate resting phases (Fig. 2, Fig. 3). This applied not 

only to the fourth larval instar but was also true for earlier instars and far into the 

fifth (=final) larval stadium (data not shown). Direct observations confirmed that 

each activity bout resulted in foraging. Between foraging periods caterpillars 

rested almost motionless in or on the tent for digestion. The number of daily 

foraging bouts varied enormously, ranging between one and seven during the 
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fourth stadium and even nine foraging periods in the third stadium (mean, fourth 

instar: 4.8±1.9, Fig. 3).  

Even though the duration of the fourth stadium was different between colonies 

(min=5 days, max=9 days, mean: 7.3±1.3 days, N=7) the total number of 

foraging bouts required to pass this stadium was less variable (min=29, 

max=35, mean: 30.6±2.1, N=7). 
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Fig. 2 – Three exemplary foraging bouts of E. lanestris. Distribution of signals is 
bimodal because caterpillars pass the light barriers twice on each foraging bout (while 
walking back and forth between the tent and the plant). Shown here are three foraging 
bouts of colony 1 (first day) at higher temporal resolution that are also depicted in 
Fig. 3. 

We performed a PCA with daily means of temperature, radiation, wind speed 

and atmospheric pressure, as well as daily sums of precipitation to avoid 

collinearity of these climatic variables. PCA revealed that the five environmental 

parameters could be reduced to only two factors with factor 1 extracting 47.5%, 

and factor 2 extracting 21.6% of the variance. Ambient temperature, radiation 

and precipitation correlated with factor 1, whereas wind speed and atmospheric 

pressure correlated with factor 2 (Table 1). 



Chapter six: Plastic foraging patterns 

76 

 

 

 

Fi
g.

 3
 –

 E
xe

m
pl

ar
 a

ct
iv

ity
 p

at
te

rn
s 

of
 E

. 
la

ne
st

ris
. T

op
 p

an
el

: C
ol

on
y 

1,
 th

ird
 in

st
ar

 a
nd

 m
ol

tin
g 

ph
as

e 
to

 fo
ur

th
 

in
st

ar
. M

id
dl

e 
pa

ne
l: 

C
ol

on
y 

1,
 fo

ur
th

 in
st

ar
. B

ot
to

m
 p

an
el

: C
ol

on
y 

2,
 fo

ur
th

 in
st

ar
; a

ct
iv

ity
 p

at
te

rn
s 

di
ffe

r 
du

e 
to

 
di

ffe
re

nt
 w

ea
th

er
 c

on
di

tio
ns

.  



Chapter six: Plastic foraging patterns 

77 

Table 1. Factor loadings of environmental variables on factors extracted by principal 
component analysis after varimax rotation. Marked loading > 0.7. 

Variable Factor 1 Factor 2 

ambient temperature  0.83 -0.03 
radiation  0.85  0.11 
precipitation  -0.77 -0.33 
wind speed  0.05 -0.84 
atmospheric pressure  0.33  0.72 
proportion of total variance   0.42  0.27 

 

Multiple regression analysis with the factor values of single days extracted by 

PCA showed that the number of daily foraging bouts is highly correlated with 

factor 1 (standardized multiple regression coefficient β=0.94, t(56df)=21.7, 

p<0.0001) but is not correlated with factor 2 (β=0.09, t(56df)=2.0, p>0.05) 

(Fig. 4). 

Fig. 4 – Correlation of factors extracted by PCA with the number of daily foraging 
bouts. Factor 1 includes ambient temperature, radiation and daily precipitation, factor 2 
includes wind speed and atmospheric pressure. Linear regression for factor 1: 
y=4.10+2.05x. 
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Thus foraging patterns strongly depend on weather conditions. On sunny days 

caterpillars of a colony may forage several times a day (upper panel in Fig. 3) 

and therefore enhance nutrient uptake whereas foraging is strongly restricted 

during periods of low radiation associated with low temperatures and rainfall 

(e.g. middle panel in Fig. 3). 

 

Temperature affected foraging in two ways: First, the duration of each foraging 

bout was strongly influenced by temperature. Foraging bouts lasted less than 

one hour on average at 25-30°C (Table 2), but lasted two to five hours when 

temperatures fell below 15°C (Fig. 5A; regression for pooled data: R2=0.76). 

This effect was mainly caused by the fact that temperature directly reduces 

velocity of the caterpillars crawling between their tent and their host plant and 

slows down food uptake. Although the duration of foraging bouts seemed to 

decrease steadily with increasing temperature, categorization of temperature 

revealed that there was no significant difference between foraging bouts 

occurring at either 20-25°C or 25-30°C (Table 2) indicating that physiological 

thresholds limit the maximum speed of foraging attainable.  

Table 2. Durations of foraging bouts and digestion phases categorized by temperature. 
All values are means±SD. Different letters in superscript indicate significant differences 
between categories within one column after Tukey-Kramer test following a Kruskal-
Wallis test to assess column-wide significance. 

Temperature range Duration of foraging bout 
 [min] 

Duration of digestion interval [min] 

< 10°C 189.2 ± 69.0a (N=9) 550.0 ± 171.3a (N=8) 

10°C ≤ x < 15°C 176.9 ± 58.0a (N=46) 466.7 ± 186.9a (N=46) 

15°C ≤ x < 20°C 90.5 ± 30.6b (N=37) 265.6 ± 99.0b (N=38) 

20°C ≤ x < 25°C 52.1 ± 21.0c (N=47) 201.2 ± 56.0c (N=47) 

≥ 25°C  42.8 ± 17.1c (N=52) 144.4 ± 17.2c (N=49) 
Test statistics H(4df)=140.9, p<0.0001 H(4df)=143.5, p<0.0001 
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Fig. 5 – Duration of foraging bouts.(A) and spacing between foraging bouts (B) at 
different ambient temperatures. In order to linearize the relationship and homogenize 
variances data were log transformed for statistical analyses. Parameter estimates did 
not differ significantly between colonies (col.). Regressions were statistically significant 
for individual colonies (p<0.01). Regression for pooled data (bold line): (A) 
y=−0.040x+2.66, N=191 (B) y=−0.032x+2.99, N=188. 
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Temperature had an even more intense effect on the period between the 

foraging bouts which is the phase for digestion, when caterpillars rest in or on 

the tent. This period varied between 2-4h at 20-30°C, but increased to far more 

than 10h and became unpredictable at lower temperatures (Table 2, Fig. 5B; 

regression for pooled data: R2=0.71).  

 
Although activity patterns seemed to be largely controlled by thermal factors, 

the light regime might also modify this pattern. Figure 6 shows that the 

distribution of the starting times of activity bouts was irregular over the course of 

a day.  

Fig. 6 – Incidence (starting point, CEST) of 196 activity bouts pooled for seven colonies 
of E. lanestris relative to the time of day. Means (black diamonds and line) and 
standard deviations (crosses) of daily air temperatures recorded in the shade at the 
study site during the study period. Arrows mark hours of day which show more or fewer 
events than would expected after linear regression of number of foraging bouts on 
mean temperature (R=0.62, p<0.01, y=−2.81+0.70x). Small arrows ≥1 standardized 
residual value (srv), large arrow ≥2 srv. 

 

 

time of day [1h intervals]

nu
m

be
r o

f f
or

ag
in

g 
bo

ut
s 

(b
eg

in
ni

ng
)

te
m

pe
ra

tu
re

 [°
C

]

5
10
15
20
25
30

0

5

10

15

20

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

mean±SD
mean

daylight
darkness
twilight



Chapter six: Plastic foraging patterns 

81 

Ambient temperatures averaged for 1h intervals over all measurements taken 

over the entire experimental period were significantly correlated with the 

number of foraging bouts that started during these same 1h intervals (R2=0.38, 

p<0.01), but a disproportionately large number of foraging bouts occurred just 

after sunrise and again between 0900 and 1000h. In contrast, there was a 

disproportionately low number of foraging bouts during the first hours after 

sunset as well as during the interval right after the 0900h peak and between 

1500 and 1600h. Nonetheless, there was no well-defined accumulation of 

foraging bouts at any time of the day that would occur every day. In particular, 

nocturnal foraging periods did occur under outdoor conditions in nights with 

favorable temperatures (nightly mean: 13.6°C, min=6.6°C). 

Obviously an intrinsic fixed activity pattern controlled by light, if present at all in 

E. lanestris, is strongly superimposed by environmental conditions. On cold and 

rainy days, when temperatures hardly rose above 10°C, caterpillars left the tent 

at least once every day. Under such conditions, without the strong acceleration 

of foraging activity due to solar radiation, one might expect light-phase triggered 

activity patterns to be more pronounced. Figure 7 shows that the first foraging 

bout on these days did not coincide with sunrise either, further corroborating the 

observation that foraging is mainly influenced by thermal conditions. 
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Fig. 7 – Starting time (CEST) of the first foraging bout of a day. Only cold and rainy 
days with three or fewer daily foraging bouts were taken into account. Times for dawn 
and sunrise are averaged and varied for less than 10min over the study period. 

Discussion 

The general foraging pattern of E. lanestris caterpillar colonies under field 

conditions was quite similar to that reported for laboratory colonies (Ruf et al. 

2001b). Despite large temperature variation and occasional rain fall, activity 

periods proved to be perspicuously synchronized and distinct digestion phases 

were always well separable from foraging activities outside the tent. Caterpillars 

of E. lanestris were active by day and night, but never fed during the night time 

if temperatures were too low (well below 10°C). This may explain the totally 

diurnal behavior of Finnish populations (Carlberg 1980). We did not observe 

concentrations of foraging events at special times of day, which is in 

accordance with Carlberg (1980) and Balfour-Browne (1933) who both stated 

(without presenting supportive data) that the larvae showed no special foraging 

and resting times. 
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In contrast to all other social tent building caterpillars investigated so far 

showing CPF strategy (Table 3), the number of foraging bouts per day was 

neither constant nor restricted to special times of day but proved to depend on 

the weather. Solar radiation and temperature had the most pronounced effects, 

while precipitation, wind and light regime were of modulatory significance at 

most. The total number of foraging bouts achievable during one day depends 

on both the rate at which caterpillars forage and the rate of digestion.  

The duration of foraging bouts increased steadily with decreasing temperature. 

The reasons for this sharp increase are probably numerous. First, locomotion 

and feeding efficiency of caterpillars are severely constrained at low 

temperatures (cf. Joos 1992).  

In addition, caterpillars do not forage independently of each other but use a trail 

system (cf. Ruf et al. 2001a). Caterpillars’ advancement during trail following is 

probably severely restricted at low temperatures, because they are expected to 

need more time at each ramification to decide for one of the trails, and these 

effects will sum up. 

As bunches of the host plants were replaced regularly over the duration of the 

experiments, we destroyed existing trails and caterpillars afterwards strongly 

hesitated to crawl on the new branches. This accounts for part of the variability 

at any given temperature and might be even more pronounced at low 

temperatures due to slow marking of a new trail.  

 
In ectothermic animals, temperature has an overwhelming effect on all 

physiological processes including digestion (Schroeder & Lawson 1992, Casey 

1993 and references therein). The duration of the resting phase between the 

foraging bouts which is largely equivalent to the digestion phase proved to be 

strongly temperature dependent in our experiments. We did not verify whether 

caterpillars of E. lanestris had completely digested the food they had consumed 

during the previous foraging bout when leaving the tent again. However, the 

temperature dependence of duration of periods spent in or on the tent between 

two foraging bouts strongly suggests this, because one would not expect such 
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close temperature dependence with phases of resting behavior only. Complete 

digestion of a full gut’s load of food within a minimum of 2-3h at ambient 

temperatures of 25-30°C is absolutely within the realms of possibility (cf. 

Fitzgerald et al. 1988) since caterpillars of E. lanestris regulate their body 

temperature between 30-35°C under sunny weather conditions (Ruf & Fiedler 

2002). Thus, caterpillars seem to benefit from favorable weather conditions by 

maximizing their rate of food intake up to a physiological threshold, when no 

further acceleration of digestion is possible. Neither the duration of foraging 

bouts nor of digestion periods showed a substantial increase at ambient 

temperature above 20°C, suggesting that due to their combination of solar 

basking and tent-based thermoregulation caterpillars in the temperature range 

of 20-30°C approach their physiological optimum. 

In contrast to E. lanestris larvae, Eastern tent caterpillars, Malacosoma 

americanum, show a fixed activity pattern with foraging bouts occurring at 

around 0600h, 1500h, and 2000h (Fitzgerald et al. 1988). Thus, caterpillars 

begin foraging bouts at a definite time of day even when their gut might still be 

partially filled with undigested food from the previous foray. Indeed, when 

caterpillars were held for six hours at 15°C they showed no indication of having 

processed food (Casey et al. 1988). On the other hand, these caterpillars are 

also unable to benefit from a high temperature by means of abridged pauses 

between forays and stays in the tent even though their gut may be completely 

empty. Therefore, the foraging strategy of E. lanestris seems to be more 

advanced with regard to opportunistically taking advantage of favorable 

temperature conditions. 

Anyway, individual caterpillars of E. lanestris are expected to exhibit a variable 

range of digestive conditions at the beginning of each foraging bout. This is due 

to the fact that the re-arrival of some caterpillars at the end of the previous 

foraging bout is often quite delayed and caterpillars face different body 

temperatures at different locations in the tent (cf. Joos et al. 1988). Thus, 

individual caterpillars might also be physiologically “out of phase” when they 

start a new foraging bout. 
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Tent building caterpillars are well known for their thermoregulatory abilities. It 

has been shown repeatedly that especially social caterpillars are able to elevate 

their body temperatures significantly by basking and that temperature gains are 

much higher than those of solitary caterpillars (Knapp & Casey 1986, Joos et al. 

1988). Raising the body temperature by basking speeds up physiological 

processes enabling larvae to consume and digest food faster and, thus, develop 

more quickly. It is obvious that thermoregulation is most advantageous if 

caterpillars really benefit from their accelerated digestion by foraging more often 

than would be possible if a caterpillar’s body temperature were to track the 

surrounding air temperature during digestion. Assuming that caterpillars of E. 

lanestris need an average of 31 foraging bouts to complete their fourth larval 

stage, this species would need 10 days if they had a fixed foraging schedule 

with only three foraging periods per day provided that they consume the same 

amount of food during each foraging bout. Due to their plastic foraging patterns 

caterpillars are able to half this time when temperature conditions are favorable. 

Consequently, E. lanestris is well adapted to undergo rapid larval development 

under unpredictable spring weather conditions in Central Europe when 

temperature is often low during daytime but radiation is frequently intense (e.g. 

on cool but sunny mornings). 

 
Of course, foraging patterns of insect herbivores are not exclusively affected by 

the prevailing thermal conditions. They are also influenced by the availability 

and abundance of suitable food (Slansky 1993) and by the presence of natural 

enemies (Stamp & Bowers 1988). In our experiments fresh food was always 

available in ample supply in close proximity to the tent and natural enemies 

were largely excluded. Nevertheless, the latter does not influence innate 

behavioral patterns, i.e. if predator avoidance is obligatory and does not depend 

on experiencing contacts with natural enemies. 

Casey et al. (1988) suggested that the fixed foraging schedule of Malacosoma 

americanum was necessary to synchronize individuals. In contrast, E. lanestris 

caterpillars are able to synchronize their foraging activities despite variable 

foraging times which supports the assumption of Fitzgerald et al. (1988) that the 
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foraging pattern of M. americanum is primarily shaped by predator avoidance. 

This latter hypothesis is further supported by the observation that last instar 

caterpillars of M. americanum become strictly nocturnal and forage 

independently of their tentmates. Predator avoidance is generally thought to be 

the cause of completely nocturnal activity in caterpillars (Heinrich 1993). Many 

caterpillars remain hidden during the day and many species with social tent 

building CPF caterpillars are strictly nocturnal with the exception of the genera 

Malacosoma and Eriogaster (Table 3). Hence, all such nocturnal caterpillars 

defer their foraging activities until periods with lower predation risk, but also 

characterized by lower temperatures which are less favorable for foraging and 

digestion. 

There is a trade-off between the risk of attack by visually oriented predators or 

parasitoids and the necessity to grow fast which is especially strong in early 

spring caterpillars that rely on young leaves as food source (cf. Stamp & 

Bowers 1990, Parry et al. 1998). It is to the caterpillars advantage to complete 

their development while their food supply is still of high quality (cf. Slansky 

1993). A plastic foraging response is generally interpreted as enhancing growth 

rates by increasing rate of feeding and digestion at higher body temperatures. 

Of course, frequent foraging during the day raises the caterpillars’ 

conspicuousness and large groups of larvae are certainly easier for enemies to 

find than solitary caterpillars. However, foraging periods are especially short 

during the day (i.e. at high temperatures). This spatio-temporal coordination 

may limit colony losses to predators because individual caterpillars profit from 

the security of the group (Hamilton 1971) and synchronicity also reduces the 

absolute time the caterpillars are outside the tent. Even fifth instar caterpillars of 

E. lanestris retain tent-based communal foraging, although group cohesion 

diminishes progressively as the caterpillars approach the prepupal stage (cf. 

Ruf et al. 2001b).  
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Unfortunately, there are no reliable data on the impact of natural enemies on 

the survival of Eriogaster lanestris in the field. In our samples, few (<10) of 

several hundred individuals collected in the field were parasitized by tachinid 

flies. Vespid wasps (Polistes sp.) and ants (Formica sp., Lasius sp.) were 

observed to attack caterpillars only when they were forced to stay outside the 

tent at high ambient temperatures. Last instar E. lanestris caterpillars that are 

probably at most risk of succumbing to vertebrate predation possess reddish, 

urticarial hairs which cause severe contact dermatitis, at least in humans 

(Kawamoto & Kumada 1984). The impact of these hairs on birds and small 

mammals has never been investigated, but judging from their strong effect on 

humans, mature E. lanestris larvae are probably quite well defended. Improved 

chemical defense, accompanied by a putatively aposematic black and reddish 

coloration of final instar larvae, might well explain why E. lanestris seems to 

have been able to adopt a more flexible, but also more risky, foraging strategy 

in comparison to M. americanum. 

Extrinsic factors other than climatic parameters (e.g. light phases) had only a 

subsidiary effect on the onset of a new foraging bout with a slight accumulation 

of foraging bouts during the first daylight hours but no peak of activity right after 

sunset. This occasional feeding during the coldest hours of a day might point to 

an early filling of the gut to benefit from good digestive conditions in the 

subsequent morning hours. Despite the fact that the state of digestion probably 

differs among individuals at the onset of each foraging bout, how caterpillars of 

E. lanestris manage to coordinate their activities without relying on extrinsic 

timers is not yet known. 

 
Overall, the plastic foraging pattern of Eriogaster lanestris shows a striking 

example for the interaction between physiology, behavior, and ecology. 

Comparing E. lanestris and M. americanum shows that despite many very 

similar life-history traits (such as voltinism, tent building behavior, and early 

spring feeding) different behavioral strategies may arise. Much of our current 

understanding of sociality in lepidopteran caterpillars stems from studies of tent 

caterpillars in the genus Malacosoma (Fitzgerald 1995). However, comparative 
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investigations on different systems under a range of ecological conditions are 

necessary to critically test the generality of patterns and processes that govern 

the evolutionary ecology of social foraging in caterpillars. 

 

Acknowledgements 

We owe special thanks to Bernd Kornmaier for technical consulting throughout 
the course of the experiment. We also thank Jörg Hager for assistance with the 
implementation of the experiments and maintaining the colonies. We are 
grateful to two anonymous reviewers for comments that helped to improve the 
final version of this paper. The district government of Bayreuth kindly issued a 
permit to collect individuals in the field to start the laboratory population. This 
work was supported by a grant from the Bayerische Graduiertenförderung to 
CR and by DFG grant Fi 547/8-1. 

References 

Balfour-Browne, F. (1933) The life history of the “smaller eggar moth”, Eriogaster 
lanestris L. Proceedings of the Zoological Society London 1933, 161-180. 

Carlberg, U. (1980) Larval biology of Eriogaster lanestris (Lepidoptera, Lasiocampidae) 
in S.W. Finland. Notulae Entomologicae 60, 65-72. 

Casey, T.M. (1993) Effects of temperature on foraging of caterpillars. In: Stamp, N.E.; 
Casey T.M. (eds) Caterpillars – ecological and evolutionary constraints on 
foraging. Chapman & Hall, London, 5-28. 

Casey, T.M.; Joos, B.; Fitzgerald, T.D.; Yurlina, M.E.; Young, P.A. (1988) Synchronized 
foraging, thermoregulation, and growth of eastern tent caterpillars in relation to 
microclimate. Physiological Zoology 61, 372-377. 

Comstock, J.A. (1957) Early stages of Eutachyptera psidii (Lasiocampidae), a rare 
moth from Southern Arizona. The Lepidopterist’s News 11, 99-102. 

Costa, J.T.; Pierce, N.E. (1997) Social evolution in the Lepidoptera: ecological context 
and communication in larval societies. In: Choe, J.C.; Crespi, B.J. (eds) The 
evolution of social behavior in insects and arachnids. Cambridge University 
Press, Cambridge, 402-442. 

Ebert, G. (ed) (1994) Die Schmetterlinge Baden-Württembergs, Vol. 4. Eugen Ulmer, 
Stuttgart. 

Fitzgerald, T.D. (1980) An analysis of daily foraging patterns of laboratory colonies of 
the eastern tent caterpillar, Malacosoma americanum (Lepidoptera: 
Lasiocampidae), recorded photoelectronically. Canadian Entomologist 112, 731-
738. 

Fitzgerald, T.D. (1995) The tent caterpillars. Cornell University Press, New York.  
Fitzgerald, T.D.; Casey, T.M.; Joos, B. (1988) Daily foraging schedule of field colonies 

of the eastern tent caterpillar Malacosoma americanum. Oecologia 76, 574-578. 
Fitzgerald, T.D.; Peterson, S.C. (1988) Cooperative foraging and communication in 

caterpillars. BioScience 38, 20-25. 



Chapter six: Plastic foraging patterns 

90 

Fitzgerald, T.D.; Peterson, S.C. (1983) Elective recruitment communication by the 
eastern tent caterpillar (Malacosoma americanum). Animal Behaviour 31, 417-
442. 

Fitzgerald, T.D.; Underwood, D.L.A. (1998a) Communal foraging behavior and 
recruitment communication in Gloveria sp. Journal of Chemical Ecology 24, 
1381-1396. 

Fitzgerald, T.D.; Underwood, D.L.A. (1998b) Trail marking by the larva of the Madrone 
butterfly Eucheira socialis and the role of trail pheromone in communal foraging 
behavior. Journal of Insect Behavior 11, 247-262. 

Fitzgerald, T.D.; Underwood, D.L.A. (2000) Winter foraging patterns and voluntary 
hypothermia in the social caterpillar Eucheira socialis. Ecological Entomology 25, 
1-10. 

Fitzgerald, T.D.; Willer, D.E. (1983) Tent-building behavior of the eastern tent 
caterpillar Malacosoma americanum (Lepidoptera: Lasiocampidae). Journal of 
the Kansas Entomological Society 56, 20-31. 

Floater, G.J. (1996) Estimating movement of the processionary caterpillar Ochrogaster 
lunifer Herrich-Schäffer (Lepidoptera: Thaumetopoeidae) between discrete 
resource patches. Australian Journal of Entomology  35, 279-283. 

Hamilton, W.D. (1971) Geometry of the selfish herd. Journal of Theoretical Biology 31, 
295-311. 

Heinrich, B. (1993) How avian predators constrain caterpillar foraging. In: Stamp, N.E.; 
Casey, T.M. (eds) Caterpillars – ecological and evolutionary constraints on 
foraging. Chapman & Hall, London, 224-247. 

Hurlbert, S.H. (1984) Pseudoreplication and the design of ecological field experiments. 
Ecological Monographs 54, 187-211. 

Joos, B. (1992) Adaptations for locomotion at low body temperatures in eastern tent 
caterpillars, Malacosoma americanum. Physiological Zoology 65,1148-1161. 

Joos, B.; Casey, T.M.; Fitzgerald, T.D.; Buttemer, W.A. (1988) Roles of the tent in 
behavioral thermoregulation of eastern tent caterpillars. Ecology 69, 2004-2011. 

Kawamoto, F.; Kumada, N. (1984) Biology and venoms of Lepidoptera. In: Tu, A.T. 
(ed) Insect poisons, allergens, and other invertebrate venoms. Handbook of 
natural toxins, vol. 2. Marcel Dekker, New York, 291-330. 

Kevan, P.G.; Bye, R.A. (1991) The natural history, sociobiology, and ethnobiology of 
Eucheria socialis Westwood (Lepidoptera: Lasiocampidae), a unique and little-
known butterfly from Mexico. Entomologist 110, 146-165. 

Knapp, R.; Casey, T.M. (1986) Thermal ecology, behavior, and growth of gypsy moth 
and eastern tent caterpillars. Ecology 67, 598-608. 

Montllor, C.B.; Bernays, E.A. (1993) Invertebrate predators and caterpillar foraging. In: 
Stamp, N.E.; Casey, T.M. (eds) Caterpillars – ecological and evolutionary 
constraints on foraging. Chapman & Hall, London, 170-202. 

Parry, D.; Spence, J.R.; Volney, J.A. (1998) Budbreak phenology and natural enemies 
mediate survival of first-instar forest tent caterpillar (Lepidoptera: 
Lasiocampidae). Environmental Entomology 27, 1368-1374. 

Pro Natura – Schweizerischer Bund für Naturschutz (ed) (2000) Schmetterlinge und 
ihre Lebensräume. Arten, Gefährdung, Schutz. Vol. 3. Fotorotar, Egg.  

Roden, D.B.; Kimball, J.C.; Simmons, G.A. (1990) A laboratory technique to study a 
change in feeding behaviour between small and large larvae of gypsy moth, 
Lymantria dispar (L.). Canadian Entomologist 122, 617-625. 



Chapter six: Plastic foraging patterns 

91 

Ruf, C.; Costa, J.T.; Fiedler, K. (2001a) Trail-based communication in social caterpillars 
of Eriogaster lanestris (Lepidoptera: Lasiocampidae). Journal of Insect Behavior 
14, 231-245. 

Ruf, C.;  Fiedler, K. (2000) Thermal gains through collective metabolic heat production 
in social caterpillars of Eriogaster lanestris. Naturwissenschaften 87, 193-196.  

Ruf, C.; Fiedler, K. (2002) Plasticity in foraging patterns of colonies of the small eggar 
moth, Eriogaster lanestris (Lepidoptera: Lasiocampidae). Oecologia 131, 626-
634. 

Ruf, C.; Kornmaier, B.; Fiedler, K. (2001b) Continuous long-term monitoring of daily 
foraging patterns in three species of lappet moth caterpillars (Lepidoptera: 
Lasiocampidae). Nota lepidopterologica 24(3), 87-99. 

Sallé, M.A. (1856) Note sur la sauvage du Mexique, et description du Bombyx qui la 
produit. Annales de la Societé Entomologique de France (Ser 3) 5, 15-19. 

Schmidt, G.H.; Koutsaftikis, A.; Breuer, M. (1990) Ein Beitrag zur Biologie und zum 
Feinddruck von Thaumetopoea pityocampa (Den. & Schiff.) in Griechenland 
(Insecta: Lepidoptera). Zeitschrift für angewandte Zoolgie 77, 395-422. 

Schroeder, L.A.; Lawson, J. (1992) Temperature effects on the growth and dry matter 
budgets of Malacosoma americanum. Journal of Insect Physiology 38, 743-749. 

Sillén-Tullberg, B.; Leimar, O. (1988) The evolution of gregariousness in distasteful 
insects as a defense against predators. The American Naturalist 132, 723 -734. 

Slansky, F. (1993) Nutritional ecology: the fundamental quest for nutrients. In: Stamp, 
N.E.; Casey, T.M. (eds) Caterpillars – ecological and evolutionary constraints on 
foraging. Chapman & Hall, London, 29-91. 

Stamp, N.E.; Bowers, M.D. (1988) Direct and indirect effects of predatory wasps 
(Polistes sp.: Vespidae) on gregarious caterpillars (Hemileuca lucina: 
Saturniidae). Oecologia 75, 619-624. 

Stamp, N.E.; Bowers, M.D. (1990) Variation in food quality and temperature constrain 
foraging of gregarious caterpillars. Ecology 71, 1031-1039. 

StatSoft (1999) Statistica for Windows, ver. 5.5. StatSoft Inc.,Tulsa, OK. 
Talhouk, A.S. (1975) Contributions to the knowledge of almond pests in East 

Mediterranean countries. I. Notes on Eriogaster amygdali Wilts. (Lepid., 
Lasiocampidae) with a description of a new subspecies by E.P. Wiltshire. 
Zeitschrift für angewandte Entomologie 78, 306-312. 

Talhouk, A.M.S. (1940) Early stages of Oriental Palaearctic Lepidoptera IV. Part II. The 
oak tree tent caterpillar, Eriogaster philippsi, Bartel. Its life history, habits, and 
parasites in Lebanon. Entomological Records 15, 87-89. 

Weseloh, R.M. (1989) Behavioral response of gypsy moth (Lepidoptera: Lymantriidae) 
larvae to abiotic environmental factors. Environmental Entomology 18, 361-367. 

 
 
 
 
 
 
 
 
 



Chapter six: Plastic foraging patterns 

92 

 
 
 
 
 
 
 



Chapter 7 

93 

Trail-based Communication in Social Caterpillars 
of Eriogaster lanestris  
Published as: Ruf, C.; Costa, J.T.; Fiedler, K. (2001) Trail-based communication in social 
caterpillars of Eriogaster lanestris (Lepidoptera: Lasiocampidae). Journal of Insect Behavior 
14,  231-245. 

Abstract 

Caterpillars of Eriogaster lanestris (Lepidoptera: Lasiocampidae) 

mark trails as they move between feeding sites and their communal 

tent. They prefer new trails over aged ones. Hungry caterpillars 

prefer trails marked by fed caterpillars returning to the tent. Thus 

successful foragers direct tentmates to profitable food finds, in a 

manner similar to Malacosoma americanum. E. lanestris readily 

follows trails prepared from 5β-cholestane-3-one, a component of the 

trail marker of M. americanum, when applied at a rate of ≥ 10-10g/cm. 

In choice tests, they preferred more highly concentrated over weaker 

trails. New trails are always established in groups and velocity 

increases from early to late caterpillars traversing a new trail. 

Introduction 

Although trail marking and trail following is usually associated with eusocial 

insects (e.g. ants and termites) it has been documented for a number of other 

taxa including gastropods, spiders, bugs and some larval Lepidoptera 

(Roessingh 1989 and references therein). In ants trail-based communication is 

often highly sophisticated and allows the highly coordinated foraging, leading to 

high efficiency in locating and exhausting food patches (Hölldobler & Wilson 

1990). Much less work has been done on non-eusocial insects and diversity 

and efficiency of communication systems of these groups remains poorly 

understood. At present the communication systems of only about 3% of social 

lepidopteran species have been examined. Larval communication has been 
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analyzed in perhaps the greatest detail in the tent caterpillar Malacosoma 

americanum (Fitzgerald 1995). The trail system of this species contains 

substantial information. Successful foragers use a pheromone and direct 

siblings to the most profitable food finds, showing obvious parallels to food 

recruitment strategies among ants and termites (Fitzgerald & Peterson 1983; 

Fitzgerald & Costa 1999). 

Fitzgerald and Peterson (1988) classified social caterpillars as patch restricted, 

nomadic or central-place foragers depending on whether they feed within their 

home webs, travel between different resource patches, or use a communal 

nesting site which they leave periodically to forage. These authors hypothesized 

that caterpillars foraging from a fixed home base are more likely to evolve 

sophisticated systems of communication to contend with increasingly depleted 

and patchy resources. However, studies on Gloveria sp. (Lasiocampidae) and 

Eucheira socialis (Pieridae) (Fitzgerald & Underwood 1998a,b) revealed that 

central-place foragers do not always exhibit fine-tuned communication systems 

and ecological constraints (e.g. spatial distribution of acceptable food patches 

on host-plants) might influence the evolution of communication.   

The family Lasiocampidae itself presents a diversity of group-foraging 

strategies, including nomadic and central-place foragers, that differ in details of 

shelter-building and chemical communication (Fitzgerald 1995). Behavioral 

studies from a broader array of social lasiocampids are needed for a 

comparative study of social evolution in this group, and may yield insight into 

mechanisms that influence the parallel evolution and diversity of social behavior 

in social caterpillars in general.  To this end we undertook studies of trail 

following behavior in larvae of the Palaearctic small eggar moth Eriogaster 

lanestris. 

Materials and Methods 

Insect collection and rearing: Caterpillars of Eriogaster lanestris (Linnaeus, 

1758) eclose in early spring just after budbreak and live together in silken tents 

on blackthorn (Prunus spinosa, Rosaceae) or other deciduous trees and shrubs 
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(e.g. Crataegus spp., Betula spp., Tilia spp.) (Ebert 1993). Tents are maintained 

throughout larval development and are abandoned shortly before pupation 

(Balfour-Browne 1933). This species is a central-place forager, leaving the tent 

to forage several times a day.  

Whole colonies of about 50 to 200 individuals were collected from blackthorn 

(Prunus spinosa) near Würzburg, Germany, and transferred to environmental 

chambers with a 14:10h (L:D) light regime. Temperature ranged between 15°C 

(night) and 22°C (day). Caterpillars were taken in their original tents into the 

laboratory, where each whole tent was placed in a new bunch of blackthorn 

twigs. Subsequently, the larvae extended their tent to include these new twigs. 

The caterpillars were permitted to adjust to the new surroundings for three days, 

after which all remaining leaves were removed from the twigs around the tent 

and caterpillars were given access to a bridge leading to fresh food. Bridges 

were made of wooden dowel rods of 5mm diameter and 50cm length. Cut 

sections of such bridges (5cm each) were the basis for all trail following tests. 

Fresh food was offered in ample supply twice every day. Experiments were 

conducted with penultimate (fourth) and ultimate (fifth) instar caterpillars. 

Bioassays: All bioassays were conducted with Y mazes made of wood (cf. 

Weyh & Maschwitz 1978). To prevent the caterpillars from leaving the maze, 

rods were raised about 2cm above the substrate by small, rounded pieces of 

wood. No wood was placed beneath the point of contact of the three rods to 

exclude the possibility that any silk or pheromone left by a preceding caterpillar 

would influence the decision of a subsequent caterpillar. Each test bridge was 

only used for one experiment. 

Caterpillars were allowed to select between two trails (marked by the 

caterpillars themselves or prepared with silk or synthetic pheromone, see 

below). Choice for one of the two trails was considered valid when a caterpillar 

had completely passed onto one of the two rods. The sides of the two different 

trails were always switched after half of the experiments to control for any side 

preference. The stem of the Y was reused in the experiments and the trail was 
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therefore well established, facilitating caterpillars' movement before reaching 

the choice point. 

For bioassays we only used caterpillars that started walking on their tent at the 

beginning of a new foraging period, which is a clear indication that they are 

hungry and motivated for finding food (for Malacosoma see Fitzgerald 1995). 

From every colony only 10-12 caterpillars were removed for each series of 

bioassays to avoid influencing the course of colonial foraging. All test series 

involving 10-12 caterpillars each were replicated 3-10 times. Within every test 

series each caterpillar was only used once. Afterwards, test caterpillars were 

allowed to feed and re-integrate into their home colony. 

Preparation of trails: In a series of preliminary experiments we tested if 

caterpillars of E. lanestris preferred trails naturally marked during one foraging 

period, or trails artificially prepared with silk from the tent, over totally unmarked 

trails. Naturally marked trails were obtained by cutting the rods leading to the 

host plant in small sections. Rods prepared with silk were obtained by turning 

fresh rods through the silk at the edges of the tents. As manually prepared trails 

were strongly covered with silk while trails marked by the caterpillars showed 

only thin strands of silk we subsequently tested which of these two trail types 

caterpillars preferred.   

To find out whether caterpillars of E. lanestris are able to distinguish trails 

leading to profitable or unproductive feeding sites, respectively, we used the 

following experimental design. The bridge leading to the host plants used for the 

experiments consisted of a proximal stem section leading to a small platform 

where a distal arm was attached at an angle of about 20° (Fig. 1). At the 

beginning of a foraging period caterpillars were allowed to establish a trail along 

the arm which led to a totally defoliated branch of the host plant (unproductive 

feeding site). Exploration of the 50cm long trails lasted 15-30 minutes. Ten 

minutes after caterpillars had reached and explored the defoliated branch a 

second arm was joined to the platform, now forming a Y, the arms of which 

were separated by an angle of 40°. Caterpillars were then able to establish a 

new trail to a foliated branch (profitable feeding site), where they were allowed 
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to feed to repletion and return to their tent. When the last caterpillar had 

reached the tent both rods were removed and cut into pieces used for the 

bioassays. Differences in trail age between the two rods were considered 

negligible because the old trail was not immediately abandoned in favor of the 

new trail and the bioassays were not conducted until the spontaneous onset of 

the next foraging period of the same colony, which was about four to five hours 

later.  

 
Fig. 1 – Experimental design for preparing trails leading to unproductive or profitable 
feeding sites respectively. Rods were made of wood (length: 50cm). 

To determine if the caterpillars are able to asses trail age, caterpillars were 

allowed to lay a trail during one foraging bout. This trail was then set aside, cut 

into pieces and aged until the next day. During the course of the first foraging 

bout on the next day a second, new trail was obtained as described above. At 
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the beginning of the subsequent foraging period caterpillars had to choose 

between old trails (about 20 hours old) and new trails (4-5 hours old). 

Site of secretion of the trail marker: To test the possibility that E. lanestris uses 

an extrasilk trail marker as was reported for other social caterpillars we modified 

the experimental design of Fitzgerald and Underwood (1998b). A 10 × 6cm-

sheet of paper was folded along both diagonals. Parts of the creases were 

marked 1cm in one direction and 3cm in the other direction starting from the 

crossing point. To obtain trails, the venter of the tip of the abdomen of one 

caterpillar was dragged several times along one of the creases between the 

markings. The sheet was then unfolded and a caterpillar was placed on the 

paper with its head between the crossing of the two creases. Swinging its head 

from side to side the caterpillar touched both creases and could therefore find 

the prepared trail. A positive response was scored when the caterpillar followed 

the trail to the mark within three minutes after it started to search for a trail. 

Pheromone tests: Weyh and Maschwitz (1978) demonstrated that trail following 

in Eriogaster lanestris is mediated by some chemical factor. We therefore tested 

if the trail pheromone 5β-cholestane-3-one, identified by Fitzgerald and Webster 

(1993) to be a component of the trail marker of tent caterpillars, elicits trail 

following in E. lanestris.  We assessed the sensitivity of the caterpillars to 

different concentrations of the pheromone. 5β-cholestane-3-one (Sigma 

Chemical Company No. C 2152) was dissolved in hexane and the solution 

diluted from 10-6g/cm to 10-10g/cm trail. 50µl of the pheromone solutions of 

different concentrations were applied to one arm of the Y, while pure hexane 

was simultaneously offered at the other. We also tested the response of the 

caterpillars when confronted simultaneously with two concentrations of the 

pheromone applied to the alternate arms of the Y using 10-fold concentration 

differences. To assess the importance of mechanical guidelines for trail 

following the pheromone solution (4 × 10-10g/cm) was laid out in an S-shape on 

filter paper. Single caterpillars were allowed to crawl on the paper and the 

position of the caterpillar's head capsule was registered in a rough drawing on a 
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second paper. Each caterpillar was also tested on trails prepared with pure 

hexane as a control. 

Velocity measurements: To determine if well-explored trails facilitate movement 

of the caterpillars or if new, unexplored trails slow down the progression to food 

sources we measured velocity of as many caterpillars as possible crawling 

between their tent and the host plant. For this purpose we measured with a stop 

watch the time taken by caterpillars to walk on the rods for the longest distance 

observable. Distances were determined by dividing the rods into 5cm sections 

by markings with a ballpoint pen. Markings were used later for cutting sections 

for the Y-test bioassays. Caterpillars that were disturbed by their tentmates and 

therefore slowed down or stopped were disregarded. Caterpillars were 

categorized in five groups: “Scouts” start exploring a new trail but turn back 

before reaching the host plant. “First five out / back” are the first five caterpillars 

reaching or leaving the plant. “Others out / back” are all caterpillars reaching or 

leaving the host afterwards. 

Statistics: Statistical analyses were conducted using the software package 

STATISTICA (StatSoft 1999). Frequency tables with several replicates of one 

experimental series were analyzed by adding up χ2 values calculated 

individually for each experiment. Significance was then assessed with the 

number of test series as degrees of freedom (Sachs 1992). The number of 

individual trials for each series (N) is also given. 

Results 

In all of three replicates caterpillars clearly preferred trails prepared with silk of 

the tent to unmarked rods (χ²(3df, N=36)=25.66; p<0.001). Furthermore 51 of 

60 caterpillars opted for trails marked by caterpillars during one foraging period 

rather than unmarked ones (χ²(6df, N=60)=30.0; p<0.001). Caterpillars 

preferred naturally marked silk trails over artifically prepared trails, despite the 

greater silk cover of the artificial trails (χ²(6df, N=60)=42.0; p<0.001).  

In most of the ten test replicates the majority of caterpillars chose the more 

recent of two differently aged trails (Table 1). Overall 77 out of 100 caterpillars 
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preferred newer trails and pooled results of the tests are highly significant 

(χ²(10df, N=100)=38.8; p<0.001).  

Table 1. Test series A:  Number of Eriogaster lanestris caterpillars choosing aged vs. 
new trails. Test series B: number of caterpillars choosing trails marked by hungry 
caterpillars returning from an unproductive feeding site (unprofitable) vs. trails marked 
by fed, successful caterpillars returning from a profitable feeding site (profitable). 
Significance was assessed with the number of test replicates as degrees of freedom. 

Replicate Larval 
instar N Choice Total χ2 p 

A    aged trail new trail   
 1-6 L4 60 12 48 29.6  
 7-10 L5 40 11 29 9.2  
 Total  100   38.8 < 0.001 
B    profitable unprofitable   
 1-6 L4 60 47 13 22.0  
 7-10 L5 40 33 7 18.8  
 Total  100   40.8 < 0.001 
 

When caterpillars were allowed to choose between trails marked by successful, 

fed caterpillars or trails marked by unsuccessful foragers they significantly 

preferred the trails of successful foragers (Table 1, χ²(10df, N=100)=40.8; 

p<0.001). These results suggest that E. lanestris may employ a 2-part trail 

system, with exploratory and overmarked (recruitment) trails, similar to that 

found in M. americanum. However, there is an important difference in the 

mechanism of trail establishment between these species. Laboratory 

observations showed that E. lanestris larvae always start foraging en masse, 

and individual caterpillars do not explore new substrate individually. Rather, in 

the laboratory, exploration of unfamiliar or new substrate took place by 

caterpillars in the vanguard proceeding only a few millimeters or centimeters, 

then turning back and being replaced by another caterpillar that would extend 

the explored trail slightly further, and so on. Even with large last instar larvae, 

which would already have begun dispersing in the field, we observed single 

caterpillars returning from foraging before the start of the next mass foraging in 

only 2 out of 10 foraging periods observed in detail.  

Eighteen out of 20 penultimate instars tested, and all 20 ultimate instars tested, 

followed trails prepared by swiping the edge of a folded paper across the venter 
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of the tip of the last abdominal segment (L4: χ²(1df, N=20)=12.8, p<0.001; L5: 

χ²(1df, N=20)=20.0, p<0.001). 

Caterpillars of the penultimate instar readily followed trails prepared with 5β-

cholestane-3-one at a rate of 10-10g/cm or higher (Table 2). Lower 

concentrations were not tested as caterpillars obviously reached their 

physiological limits. With 10-10g/cm pheromone they strongly hesitated to move 

on any trail and frequently turned back before finally choosing. Last-instar 

caterpillars were only tested with concentrations of 10-9g/cm trail and also 

responded positively (χ²(3df, N=30)=13.6; p<0.01). When allowed to choose 

between trails applied at concentrations differing by one order of magnitude, 

caterpillars were only able to distinguish between concentrations if the higher of 

the two was 10-7g/cm or less (Table 2). In these cases they always preferred 

the stronger over the weaker trails. 

Table 2. Number of E. lanestris caterpillars (fourth instar) choosing between trails 
prepared with different concentrations (in g/cm trail) of 5β-cholestane-3-one or hexane 
respectively.  A concentration of 10-10g/cm corresponds to 2.59 × 10-12Mol/cm. Results 
of several replicates with 10-12 individuals each were accumulated. Significance was 
assessed with the number of test series as degrees of freedom. n.s.: not significant. 

Test Choice (total) Total N Total χ2 df P 

10-8  hexane 27 3 30 20.0 3 < 0.001 
10-9 hexane 20 0 20 20.0 2 < 0.001 
10-10 hexane 37 13 50 12.86 5 0.025 

10-6 10-7 19 11 30 4.0 3 n.s. 

10-7 10-8 22 8 20 8.4 3 0.03 
10-8 10-9 31 5 36 20.33 3 < 0.001 
10-9 10-10 29 3 32 21.13 3 < 0.001 

 

Caterpillars of the third to fifth instar closely followed the S-curved artificial 

pheromone trails on filter paper, irrespective of mechanical guidelines, by 

swinging the head left and right, while they failed to cross the filter paper when 

trails were prepared with hexane only (N=5-10 caterpillars for each series).  
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The position of a caterpillar in a group exploring a new trail had a significant 

effect on its walking velocity. Velocity differed significantly between the three 

behavioral classes (scouts, first five out, and others out) and this was true for 

both instars tested (2-way-ANOVA; Effects of category: F(2df, N=98)=88.92, 

effects of instar: F(1df, N=98)=53.00, p<0.001, no interaction effects were 

found). Figure 2 shows that velocity increases from scouts to “first five out” to 

“others out”. According to their bigger size, fifth instar caterpillars of every 

category were faster on average than corresponding fourth instars.  

Fig. 2 – Walking velocity [cm/s] of caterpillars (fourth and fifth instar) exploring a new 
trail, categorized as either “scouts” (not reaching the host), “first five” (reaching the 
host) or “others” (caterpillars reaching the host later). For calculations medians of all 
caterpillars measured during the course of one foraging period were used. Sample 
sizes therefore refer to the number of foraging periods investigated. Boxes marked with 
different letters differ significantly (Spjotvoll/Stoline test, p<0.01, following two-way 
ANOVA). 

Although it was not possible to measure velocity of each caterpillar during each 

mass foraging period the chronological order of caterpillars measured may 

serve as an indicator for their position in the group. Although variability was 

high, Figure 3 shows that mean velocity increased steadily, reaching a 

saturation point by the 20th caterpillar. By this time the trail seemed to be 

completely established and there was no further reinforcement. 
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chronological sequence of larvae leaving the tent to forage
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Fig. 3 – Walking velocity [cm/s] of caterpillars exploring a new trail according to the 
sequence of their registration. The figure shows measured values (+) and medians of 
each position ( ). Median values are connected by a line for better visibility. Sample 
size is 890 measurements altogether and 11-31 measurements for each position. 
Medians of the last 10 positions were not calculated because of small sample sizes. 

Although these results suggest trails are fully established by the time 20 or 

more larvae have traversed it to establish a feeding site, we observed that, after 

feeding, the first five caterpillars subsequently returning to the tent over this trail 

again moved significantly more slowly than subsequent caterpillars (t-test: 

 t(70df; N=72)=-2,36; p=0.02). 

Discussion 

The use of trails – although by markedly different means – is a central feature of 

communication among social caterpillars. Simple trail following systems appear 

to function in group cohesion, as in the case of patch restricted and nomadic 

foragers (e.g. Capinera 1980, Fitzgerald & Costa 1986, Roessingh 1990, 

Fitzgerald 1993a), whereas central place foraging may lend itself to more 

complex exchange of information between individuals (Fitzgerald & Peterson 

1988). Among the approximately 300 Lepidoptera species with social 
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caterpillars identified to date (Costa & Pierce 1997) only about 11% are central 

place foragers, and E. lanestris is just the fifth of these to be investigated in 

more detail.  

Previous studies had shown that larvae of E. lanestris display trail following 

behavior and use a chemical trail marker (Weyh & Maschwitz 1978), but nothing 

was known about the complexity of its communication system. Although 

younger caterpillars of E. lanestris deposit copious quantities of silk as they 

forage, and silk might have been expected to be important for marking trails, our 

study shows that the attractiveness of a trail is not influenced by the quantity of 

silk deposited. Trail-following occurs even on artificial trails without any 

mechanical (silk) guidelines. The same is true for M. americanum and Eucheira 

socialis, which readily leave their natural trails for artificial chemical trails 

(Fitzgerald & Edgerly 1982, Fitzgerald & Underwood 1998b). Last instar E. 

lanestris caterpillars do not deposit any silk while foraging (C. Ruf, unpubl. 

obs.), yet readily follow natural as well as artificial chemical trails (this study). 

So, trail following in E. lanestris obviously is not bound to silk production, for 

example as a substrate for pheromone deposition. The coupling of pheromone- 

and silk-based trails in younger instars may facilitate the recognition of each 

branch ramification for the smaller larvae, and silk may be expected to improve 

the hold of the caterpillar on the substrate during foraging. 

Caterpillars of E. lanestris can discriminate trails of different age, and 

consistently preferred younger trails. Central-place foraging larval communities 

are faced with an increasing number of trails radiating from the nest site, and 

under natural conditions fresh trails have a higher probability of leading to non-

exhausted feeding sites. Central-place foraging caterpillars like E. lanestris are 

thus expected to be able to distinguish trails of different ages. 

 Caterpillars of E. lanestris are highly responsive to 5β-cholestane-3-one, a 

compound of the natural trail phermone of Malacosoma spp. yet the threshold 

of sensitivity is 10 to 100 times higher than that observed in Malacosoma spp. 

(Fitzgerald 1993b, Fitzgerald & Webster 1993). We can presently not determine 

whether this is due to the experimental conditions. On wooden dowels, a 
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fraction of the applied pheromone solution may be absorbed and thus will be 

out of reach of the caterpillar's contact chemoreceptors. Tests with Malacosoma 

have been conducted with small strips of index card where these effects are 

less likely. Alternatively, E. lanestris might use a trail pheromone which could 

either consist of steroids other than 5β-cholestane-3-one or where 5β-

cholestane-3-one is just one compound of the native pheromone blend (cf. 

Fitzgerald & Webster 1993). 

Bioassays of 5β-cholestane-3-one show that E. lanestris respond to quantitative 

increases in artificially-applied pheromone, recognizing only concentrations 

above a 10-10g/cm threshold in our studies and preferring stronger trails to 

weaker ones. Thus, during group foraging, the pheromone deposited by each 

caterpillar increases the probability that subsequent caterpillars recognize and 

choose the same pathway.  

Caterpillars of Gloveria, Malacosoma, and Eucheira all mark trails by dragging 

the ventral surface of the tip of the abdomen along the substrate, resulting in an 

altered locomotion cycle. In E. lanestris we were not able to explicitly see the 

marking behavior but the ‘wiping’ tests, as well as the observation that velocity 

is reduced during the return of the caterpillars to the tent when trails have 

already been well established, indicate that marking follows the same pattern as 

described for those species. Marking may take place only during part of the 

locomotive cycle as described in Eucheira, making it more difficult to observe 

the details without sophisticated video techniques. Weyh and Maschwitz (1978) 

suggested that the trail marker of E. lanestris might be produced in the 

spinneret, therefore being a component of the silk. Our results are inconsistent 

with this hypothesis, because even last instar caterpillars are able to mark trails 

and recruit to food, but no longer deposit silk.  

Recruitment communication has evolved in many eusocial insects (especially 

ants and termites) and is commonly considered to be a feature of highly 

sophisticated communication systems. Interestingly, however, recruitment 

communication frequently does not occur in eusocial species if the distribution 

of resources does not support such behavioral patterns (Hölldobler & Wilson 
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1990, Traniello & Robson 1995). Despite their simple demographic structure 

some social caterpillar colonies exhibit communication systems not inferior to 

those of some ants and termites (e.g. Fitzgerald & Costa 1999). 

The complexity of information encoded in a trail has been a central issue in 

previous studies on social caterpillars. The trails deposited by larvae of E. 

lanestris obviously encode foraging information, directing unfed group members 

to profitable feeding sites, as opposed to simply serving as a group cohesive 

device as found in nomadic and patch restricted foragers. From this point of 

view the foraging system of E. lanestris resembles those of M. americanum and 

M. neustrium and is more sophisticated than those of Eucheira and Gloveria, 

which do not recruit to food at all or which have only weak recruiting abilities. A 

comparison of E. lanestris and M. americanum reveals that the trail following 

system of the latter differs somewhat in that single scouts may break from the 

group in search of high quality food (in particular, when exploring old trails), 

whereas caterpillars of E. lanestris only seek food in groups, at least under 

laboratory conditions.  If E. lanestris never forages independently under natural 

conditions, its communication system may have a somewhat reduced capacity 

for collective flexibility relative to that of M. americanum (cf. Fitzgerald & Costa 

1999). 

Food recruitment in social insects is typically defined as communication by 

which a successful forager directs nestmates to a resource (Hölldobler & Wilson 

1990) but the term is used in a slightly wider sense in social caterpillars (cf. 

Fitzgerald & Underwood 1998a). Although caterpillars of E. lanestris almost 

never leave the tent alone, as activity is strongly synchronized and individuals 

forage en masse, they return to the tent if they are not able to find food and are 

thus likely to detect a trail left by successful foragers and follow it out to a new 

patch. Depleted feeding sites are thus left in favor of new food finds within the 

course of a foraging bout (C. Ruf, pers. obs.). We do not know whether E. 

lanestris larvae are also able to discriminate between food patches of different 

quality, as has been shown for M. americanum, where such discrimination 

abilities contribute to the trail system’s complexity (Fitzgerald & Peterson 1983). 
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It should be emphasized that the studies reported here are laboratory studies, 

and behavior of the caterpillars may differ to some degree under field 

conditions. For example, they almost certainly ‘recruit’ in a stochastic fashion if 

separate small groups of caterpillars leave the tent at different points for 

different host plant branches, which we did not permit in our laboratory 

experiments but which occurs under natural conditions (C. Ruf, pers. obs.).  

 
Central place foraging by itself does not lead to complex foraging systems per 

se. Fitzgerald and Underwood (1998a) suggested that the patchiness of the 

food supply and the need to search extensively for food may have led to the 

evolution of the fine-tuned foraging system of M. americanum. Other factors 

might be important as well. For example, larval development in E. lanestris, M. 

americanum, and M. neustrium seems to be selected for speed: these 

caterpillars eclose in early spring, use food that is rich in nitrogen and water 

(Parry et al. 1998), and show pronounced behavioral as well as metabolic 

thermoregulation (Knapp & Casey 1986, Joos et al. 1988, Ruf & Fiedler 2000) 

which allows those species to reduce developmental time. Fast development is 

further improved through foraging by day and night, a factor not taken into 

account so far. Diurnal foraging increases the risks of conspicuousness to 

natural enemies (visually hunting predators, parasitoids), perhaps making it 

necessary to reduce foraging periods to a minimum. Possibly there are no 

selective advantages for more slowly developing caterpillars which strictly 

forage at night – like Gloveria and Eucheira – to evolve a highly sophisticated 

foraging system, leading to short efficient foraging bouts and ultimately reducing 

exposure to natural enemies. 

Sociality itself is a rare but widespread phenomenon in the Lepidoptera, 

occurring in some twenty or more ditrysian families. Although it occurs more 

frequently in some monophyletic lineages (such as the Lasiocampidae) than in 

others, which would hint to phylogenetically inherited traits favoring the 

evolution of sociality ecological factors appear to having shaped the different 

social systems more strongly (Costa & Pierce 1997). In accordance with this 

view, our results on the trail communication system of E. lanestris revealed that 
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all its properties well match the ecological requirements of a species exploiting 

patchily distributed resources in early spring, where thermal constraints strongly 

favor social life-habits (Ruf & Fiedler 2000). Moreover, our study has shown a 

number of parallels, but also marked differences, in comparison with the well-

known trail communication systems of tent caterpillars of the genus 

Malacosoma. Clearly, much remains to be learned from detailed comparative 

studies on a range of social caterpillar species to uncover the factors which 

shape the complexity of their communication systems. 
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The mechanisms of trail-based communication: 
Trail marking and recruitment  
Submitted to a peer reviewed journal as: Ruf, C.; Fiedler, K.: The mechanism of trail-based 
communication in a social caterpillar: Trail marking and recruitment. 

Abstract 

Caterpillars of Eriogaster lanestris mark previously unmarked paths 

by dragging the ventral side of the tip of their last abdominal segment 

(A10) over the substrate. Crawling without marking is achieved by 

bobbing up the last abdominal pair of prolegs during the locomotion 

cycle. Caterpillars only overmark already existing trails as they turn 

back to the tent, if they had successfully exploited a food patch 

during the preceding foraging bout, and then continue marking onto 

the tent itself. Thereby, the attractiveness of trails leading to 

profitable feeding sites is reinforced. Surface residues wiped off the 

sternum of A10 from fed or unfed caterpillars onto artificial pathways 

are undistinguishable for other caterpillars in Y-maze tests. Thus, 

differences in trail attractiveness that exist between trails connecting 

the tent with either profitable or exhausted feeding sites must be 

encoded by the amount of trail marker and are not caused by 

qualitative differences between exploratory and recruitment trails. 

Since foraging bouts are strongly synchronized new trails are usually 

explored by caterpillars in groups and the majority of the tentmates 

find the new feeding sites before the first successfully foraging 

caterpillar returns to the tent. Recruitment by individuals as described 

for the related species Malacosoma americanum never occurred in 

our experiments.  
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Introduction 

Among the huge insect order Lepidoptera, the larvae (=caterpillars) of less than 

1% of the known species live gregariously or “socially” at least during earlier 

parts of their life-cycle (Costa & Pierce 1997). Social caterpillars can be broadly 

classified as either patch-restricted, nomadic, or central-place (fixed-base) 

foragers, respectively, depending on their use of resources and the location and 

the permanence of their resting sites (Fitzgerald & Peterson 1988). It is 

generally acknowledged that central-place foraging requires the most 

sophisticated form of communication among the members of the colonies. 

Parallels and differences in the complexity and effectiveness of trail-based 

communication systems have been analyzed in five species representing four 

genera (Fitzgerald 1995 and references therein, Fitzgerald & Underwood 

1999a,b, Ruf et al. 2001). 

Social caterpillars of Eriogaster lanestris pertain to the ca. 30 species of 

lepidopterous central-place foragers identified so far (Costa & Pierce 1997). 

With the exception of the last instar these caterpillars produce copious 

quantities of silk when they move between their stationary tent and their feeding 

sites on the host plant, leaving trunk trails heavily covered with white filaments 

of silk. During the course of the caterpillars’ development resources become 

more and more patchily and unpredictably distributed around their home base 

and numerous ramified trails spread over the whole plant. Thus, the ability to 

mark trails differently and to clearly distinguish between different trails is crucial 

for efficient feeding until the end of the caterpillars’ social phase of their lives.  

Previous studies on tent caterpillars (Malacosoma spp.) and other species with 

central place foraging social caterpillars revealed that the chemical stimulus for 

trail marking is not intimately associated with the silk. Rather, a pheromone 

secreted from the tip of the abdomen elicits trail following irrespective of the silk 

(Fitzgerald & Edgerly 1982, Fitzgerald & Costa 1986, Fitzgerald & Underwood 

1998a,b). In contrast to these findings Weyh and Maschwitz (1978) supposed 

the trail marker of Eriogaster lanestris to be a component of the silk produced in 

the caterpillar’s spinneret. However, subsequent studies proved this assumption 
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to be wrong since caterpillars of E. lanestris readily follow silk-free trails, which 

were attained by wiping the edge of a folded paper between the caterpillars’ 

terminal prolegs (Ruf et al. 2001a). Furthermore, trail-based communication 

was also observed during the caterpillars’ last instar, when they do not produce 

silk any more. In addition, E. lanestris larvae readily follow artificial trails made 

of 5β-cholestane-3-one, i.e. the same chemical that serves as trail pheromone 

in Malacosoma spp. (Ruf et al. 2001a). 

It has been repeatedly shown that orientation on naturally laid trails is facilitated 

by differences in their attractiveness to the caterpillars (Fitzgerald 1995 and 

references therein). Obviously, there is a difference between ‘exploratory trails’ 

that only serve the relocation of the tent and ‘recruitment trails’ that indicate 

trails leading to profitable feeding sites. Trail attractiveness is not a simple 

function of the number of caterpillars passing the trail (Fitzgerald 1976, Ruf et 

al. 2001a). Yet, the chemical basis of a bilevel trail system with exploratory trails 

and more attractive recruitment trails remains unknown for any lepidopteran 

species. It was suggested that the Eastern tent caterpillar, Malacosoma 

americanum, might use different steroid compounds for differently marking trails 

(Fitzgerald 1993a). However, the use of one of the two steroids used in these 

experiments has never been shown for M. americanum and consequently 

remains doubtful. In addition, the source of the trail marker is still unclear and 

circumstantial evidence suggests that it is probably not localized to a single 

gland but spread over numerous cells (Fitzgerald 1995). Thus, it appears to be 

quite unlikely that a caterpillar might be able to control the chemical composition 

of the trail marker, but direct chemical analyses of the surface residues of unfed 

and satiated caterpillars have never been conducted. Moreover, a bilevel trail-

based communication system might be based upon quantitative characteristics 

rather than the qualitative chemistry of the trails. 

This study aims at answering the following questions: 

(1) Where does the trail marker of E. lanestris originate from and how does the 

caterpillar apply it? 
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(2) Are caterpillars able to modify the trail marker qualitatively or quantitatively 

according to their physical condition (hungry or satiated)? 

(3) How sophisticated is the recruitment system of Eriogaster lanestris, i.e. how 

fast are colonies able to switch from a depleted to a new feeding site?  

Material and Methods 

Animals: Whole colonies of Eriogaster lanestris were maintained in an 

environmental cabinet at 25°C during the day and 15°C at night (L:D 14:10h). 

Under these conditions fourth instar caterpillars showed three foraging bouts 

during the daylight hours with an approximate temporal spacing of four hours, 

third instar caterpillars had a shorter digestion time (approximately 3½ hours) 

and could achieve four foraging bouts during daytime. Another 1-2 foraging 

bouts occurred over night (cf. Ruf & Fiedler 2002). 

Preparation of artificial trails with the natural trail  marker: In order to obtain 

defined trails with the natural trail marker, we modified the experimental design 

of Fitzgerald & Underwood (1998b). A 10 × 6cm sized sheet of paper was 

folded along both diagonals. Parts of the creases were marked 1cm in one 

direction and 3cm in the other direction starting from the crossing point (Fig. 1).  

 

Fig. 1 – Experimental design for assessing the response of caterpillars to qualitatively 
different trails prepared by wiping off surface residues. Lines between the dots indicate 
the region, where the marker was applied. 
 



Chapter eight: Trail marking and recruitment 

115 

To obtain trails, the venter of the tip of the abdomen of one caterpillar was 

dragged three times along one of the creases between the markings (Fig. 2, A). 

The sheet was then unfolded and a caterpillar was placed on the paper with its 

head between the crossings of the two creases, now building a slight ridge. 

Swinging its head from side to side the caterpillar touched both creases and 

could therefore find the prepared trail. A positive response was scored when the 

caterpillar followed the trail to the mark within three minutes after it had started 

to search for a trail. Twenty caterpillars of the fourth as well as twenty 

caterpillars of the fifth instar were tested. As a control, the same experiment 

was repeated by dragging the folded paper across the caterpillar’s body, right 

before the terminal prolegs (Fig. 2, B). Twenty fourth instar caterpillars were 

allowed to search for the trail for five minutes each. In all tests the sides of the 

prepared pathways were changed after half of the experiments to level out 

potential effects of side preference. 

 

Fig. 2 – Posterior tip of the ventral surface of the abdomen of E. lanestris. Arrows show 
regions from which surface residues were collected as indicated in the text. Drawing 
courtesy of J. Klein.  
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Qualitative differences of trails: Orientation of caterpillars must be promoted by 

qualitative or quantitative differences of trails, either caused by chemical 

differences of trails marked in different situations (e.g. before or after feeding) or 

simply by different marking intensity causing differently intense trails. In contrast 

to natural trail marking it is possible to control for the strength of a trail when 

wiping surface residues directly off the caterpillar, whereas caterpillars naturally 

marking trails may voluntarily influence the strength of trail by adding a different 

amount of pheromone onto the surface. We therefore collected caterpillars 

which were either on their way to the host plant or on their way back after 

feeding and collected surface residues as described above, preparing each 

sheet of paper with the surface residue of one hungry and one satiated 

caterpillar. Hungry caterpillars taken from a different colony were allowed to 

choose between the two trails. The test was replicated 40 times. 

In two further experiments trails were obtained in the same way as described 

above but sheets were set aside after preparing one side of the sheet until the 

next foraging period (i.e. for ca. 4 hours) when the second side of the sheet was 

prepared. Sheets were then used for the tests at once or aged another time 

until the next foraging bout. Thus, we created sheets with trails of four hours 

age difference, once with the older trails having aged for four hours compared 

to non-aged trails, and alternatively with trails of four and eight hours of age, 

respectively. Test caterpillars were thus confronted with new trails and trails 

from the directly preceding foraging bout, or with trails from the two preceding 

foraging bouts respectively, corresponding to natural conditions. 

Marking behavior: Movements of caterpillars during locomotion were recorded 

with a video camera. Representative sections of the video frames were 

digitalized (Dazzle Movie Star: Digital video creator II) and analyzed on the 

basis of single pictures (Action Image Systems Technology: Video capture utility 

für Windows 95). Locomotion patterns were drawn by firstly copying individual 

pictures one by one in single file into a word processing program (Microsoft 

Word 2000) and by then redrawing the outlines of the caterpillars for better 

clarity. 
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Recruitment experiments: For analyzing recruitment abilities of Eriogaster 

lanestris we slightly modified the experimental design used by Fitzgerald & 

Underwood (1998a,b) (Fig. 3). During the first foraging bout of each 

experimental day after the light had turned on and temperature had been 

elevated from 15°C to 25°C caterpillars got access to only one wooden bridge 

leading to a bunch of blackthorn (Prunus spinosa L., Rosaceae, a major host 

plant of E. lanestris) twigs. The bridge was attached to a stem section, which 

was retained during the whole series of experiments with the exception of the 

very end of the stem which was replaced prior to each new test. In the 

subsequent foraging bout a new bridge was attached to the stem section, now 

forming a Y. A bunch of host plants was offered at the end of the new bridge 

whereas a bare branch was attached to the end of the old trail. During the third 

foraging period all settings from the foregoing foraging period were retained.  

 

Fig. 3 – Experimental design for analyzing recruitment abilities of Eriogaster lanestris 
caterpillars. Transparent bar: new rod; gray bar: marked trail. T=tent; FP=foraging 
period. Arrows indicate position of light barriers. The leaf symbol denotes a bunch of 
the host plant, the other symbol a bare branch. 
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The decision making of caterpillars was recorded with the help of light barriers 

placed at both sides of the arms of the Y (cf. Ruf et al. 2001b). The counts of 

the light barriers could not be used as an exact measurement for the number of 

caterpillars using a trail per minute, because caterpillars that search intensively 

for a trail move hesitantly over the bridges and may release several counts by 

moving their head back and forth. Nevertheless, the counts serve as a reliable 

relative measurement for the attractiveness of a trail for the caterpillars. 

During the second foraging bout it was noted when the first caterpillar reached 

the plant and when the first satiated caterpillar left the plant. Ten colonies were 

tested on 2-3 consecutive days. 

Conditions of trail marking: It is well known from other social caterpillars, 

especially those of the genus Malacosoma, that trail marking consists of two 

steps: marking behavior on new trails and overmarking when caterpillars return 

to the tent after feeding. In order to determine under which conditions 

caterpillars of E. lanestris mark or overmark trails we used the experimental 

setup described above but with only one section attached to the stem. We 

observed fourth instar caterpillars passing the established stem section 

(abbreviation: “establ.”) and a previously unmarked branch (“new”) and noted 

whether the caterpillars did, or did not, show marking behavior. We used three 

categories to define the marking process: “marking” (clear, intense marking), 

“discontinuous marking” (caterpillar changed between marking and not 

marking), and “no marking”. We noted the direction of the caterpillars and 

differentiated between caterpillars leaving the tent, and caterpillars returning to 

the tent without feeding or after successful feeding, respectively (“unfed 

outbound”, “unfed back”, “fed inbound”). Altogether 10 replicates using four 

colonies were recorded. During each foraging bout 25 caterpillars of each 

category were registered with the exception of the category ‘unfed back’ where 

only 15-17 caterpillars were registered in four of 10 cases.   
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Results 

Choice tests: Caterpillars readily followed trails prepared from surface residues 

gained from the ventral side of the last abdominal segment between the 

terminal prolegs. Trails prepared from penultimate and ultimate instar 

caterpillars were equally accepted (Table 1). In contrast, the majority of 

caterpillars was not able to find a trail when the surface residues had been 

wiped off anterior to the last abdominal prolegs.  

Table 1. Results of trail marking tests (data summarized from all replicates of one 
experiment, but significance was assessed with the number of test replicates as 
degrees of freedom). Data in the first two rows from Ruf et al. (2001a). All experiments 
done with fourth instar caterpillars unless otherwise stated. n.s. = not significant.                                

Experiment Choice N χ² df p 
Wiping between last 
abdominal prolegs 
(L4) 

Marked trail: 
18 

Unmarked trail: 
2 

20 12.80 1 <0.001 

Wiping between last 
abdominal prolegs 
(L5) 

Marked trail: 
20 

Unmarked trail: 
0 

20 20.00 1 <0.001 

Wiping before last 
abdominal prolegs 

Marked trail:  
9 

Unmarked or no 
trail:  
21 

30 4.80 2 n.s. 

Satiated vs. hungry 
caterpillars 

Satiated:  
22 

Hungry:  
18 

40 2.78 3 n.s. 

Trail difference 4h, 
Exp. 1 

New (0h):  
26 

Old (4h):  
4 

30 41.39 3 <0.0001 

Trail difference 4h, 
Exp. 2 

Newer (4h): 
35 

Older (8h):  
15 

50 8.63 3 <0.05 

 

Caterpillars could not differentiate between trails either obtained from satiated 

or hungry larvae, respectively. If caterpillars were to choose between new trails 

and trails which had aged for four hours they highly significantly opted for the 

new trails. If caterpillars were offered trails that had aged for either four or eight 

hours they still significantly preferred the younger trails but the difference was 

less pronounced and caterpillars examined both trails several minutes before 

they chose one of them. 

Marking behavior: Observations of caterpillars moving between their tent and 

their host plant revealed two distinct locomotive patterns. Figure 4 (left side) 

shows a typical motor pattern of a caterpillar marking a trail: Starting with the 
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caterpillar being stretched to its maximum length, with all prolegs attached to 

the substrate, locomotion starts with the thoracic legs dragging the body 

forward. During the concomitant contraction of the body the pair of terminal 

prolegs is dragged in the direction of crawling (Fig. 4: a1-a5). It is noticeable 

that during this part of the locomotory cycle the terminal prolegs are never lifted, 

as it is common in caterpillars, but always remain on the substrate. To achieve 

a maximum compression of the body the abdominal prolegs A5 and A6 are 

lifted. As soon as the pair of terminal prolegs is re-anchored (Fig. 4: a5) the 

remaining abdominal prolegs are planted and lifted and planted again 

(progressing from A6 to A3), resulting in a body wave moving from back to the 

front until the caterpillar is totally stretched again, fixed with all prolegs to the 

substrate, and a new locomotive cycle starts (a5-a7). 

In contrast to this locomotive pattern E. lanestris also shows another way of 

movement which can particularly be seen during faster locomotion (Fig. 4, right 

side). During the phase of re-planting the foremost abdominal prolegs which is 

exactly the moment when the caterpillar becomes maximally sprawled (b1-b2), 

the pair of terminal prolegs rapidly bobs up (Fig. 4, marked with arrow). It is 

conspicuous that this movement does not yet serve the contraction of the body 

because the terminal prolegs are not yet anchored immediately after they have 

been re-planted. Instead, the contraction of the body only starts afterwards (b3-

b6) and the subsequent body wave occurs in exactly the same way as 

explained above. During the contraction of the body the terminal prolegs are set 

more vertically than during the locomotor pattern described above when they 

are more straddled which brings the region between the terminal prolegs in 

better contact with the substrate. However, differences between marking and 

non-marking are weaker and less obvious in E. lanestris compared to the 

marking mode described for other lepidopteran species. 
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Fig. 4 – Patterns of locomotion in caterpillars of Eriogaster lanestris (one locomotor 
cyle). T terminal prolegs, A3-A6 abdominal prolegs, Th thoracic legs. Patterns differ by 
the way how the terminal prolegs are moved. During marking (left) the terminal prolegs 
almost always contact the substrate and marking is supposed to occur particularly 
strongly during a1, a6, a7. Non-marking caterpillars (right) must bob up the terminal 
prolegs to avoid marking during the phase when the body is maximally stretched (see 
arrow). Asterisks mark the forward moment when the body is anchored by the terminal 
prolegs (plantae everted). Vertical lines indicate the progression of the terminal prolegs 
during locomotion. Caterpillar on the right is slightly bigger and faster than caterpillar on 
the left. Total duration of one cycle: ca. 0.3s (at room temperature). 

We assume that the only purpose of this unusual locomotor behavior is to 

prevent the sternum of the last abdominal segment from contacting the 

substrate. Thus, larvae of Eriogaster lanestris commonly mark their trails during 

their ‘normal’ movements particularly in the moment when the caterpillar is 
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maximally sprawled (Fig. 4: a1, a6, a7), and must actively avoid contacting the 

substrate in order to crawl without laying a trail. The trail substance can thus be 

expected to be applied more or less continuously but is probably not equally 

highly concentrated over the course of the entire trail. 

Recruitment: Individual caterpillars that encountered a new, yet unmarked trail 

usually turned round and returned to the tent or made only little progress. Thus, 

new trails were only slowly established as a result of marking activities of 

multiple caterpillars in a group. During the second foraging period (FP2, Fig. 3, 

middle) caterpillars intensively searched for food on the bare branch, to which 

they were led by the trail marked during FP1. The new site of the plant at the 

other arm of the Y was only found after an average of 31±12 minutes (N=26, 

pooled data from 10 colonies) after the beginning of the foraging period. Since 

individual activity is very well synchronized in E. lanestris and all caterpillars 

participated collectively in the search for new food, 41.5±9.2% of the signals 

registered by the light barriers aside the new rod during the second foraging 

period appeared before the first satiated caterpillar returned from feeding at the 

new site. The first caterpillar which reached the new plant required 11.2±2.2 

minutes (N=26) to crawl on the branch to a suitable feeding site, feeding, and 

returning to the rod. Since each caterpillar passed the light barrier at least twice 

during one foraging period, this means that about 83% of the caterpillars finally 

reached the plant during FP2 prior to the return of the first satiated caterpillar to 

the tent (cf. Fig. 5). Thus, immediate recruitment of food-searching caterpillars 

by fed individuals or small groups never took place in our experiments.  

During the third foraging period (FP3, Fig. 3, right) only few caterpillars chose 

the old trail but occasionally the old trail was still attractive and preferred over 

the new trail during the first half of the foraging period (Table 2). It is noteworthy 

that such less efficient recruitment was mainly shown in those colonies that 

were held at lower temperatures some weeks before the experiment and 

recruitment became more efficient when the experiment was repeated on the 

consecutive days. Overall, only 2.1% of the signals were registered on the old 

trail.  
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Fig. 5 – Exemplary results of the Y-test over a period of three foraging bouts. Upper 
graph: first offered rod. Lower graph: secondary offered rod. FP = foraging period. The 
majority of caterpillars chose the new rod clearly before the first satiated caterpillar 
crawls back to the tent. 

Marking intensity: When leaving the tent, only few caterpillars marked the 

established trail near the tent but they started to mark heavily when they 

encountered the previously unmarked or yet only weakly established trail 

(Fig. 6). If caterpillars turned back without having found the food, the majority 

did not mark at all or only marked occasionally. If caterpillars returned to the 

tent after feeding they strongly marked both, the previously newly marked trail 

and the well established trail and continued marking onto the tent itself.  
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Table 2. Proportion of signals on older trails [%] (‘Prop.’) during the third foraging 
period (FP3 = succeeding foraging bout after food was switched from the end of the old 
rod to the end of the new branch). Caterpillars of colonies 4-8 were held at 15°C prior 
to the experiments. *** p<0.0001, n.s. not significant, o.p. opposite preference 
(p<0.0001, for old trail). χ²-tests (with 1 degree of freedom) are based on actual counts 
on both rods compared to the null hypothesis of equal distribution of the counts.   

Entire FP First half of FP Second half of FP Colony Replicate 

Prop. χ ² p Prop. χ ² p Prop. χ ² p 

1 1 2.3 587.4 *** 3.9 237.7 *** 1.1 350.2 *** 
1 2 0.8 247.1 *** 0.8 233.1 *** 0.0 113.0 *** 
1 3 5.2 354.8 *** 7.7 215.0 *** 0.0 142.0 *** 

2 1 0.8 757.2 *** 0.9 681.2 *** 0.0 56.0 *** 

2 2 22.4 316.8 *** 27.7 166.5 *** 0.0 200.0 *** 
2 3 0.0 768.0 *** 0.0 520.0 *** 0.0 248.0 *** 

3 1 0.0 590.0 *** 0.0 483.0 *** 0.0 107.0 *** 
3 2 0.0 577.0 *** 0.0 327.0 *** 0.0 250.0 *** 

4 1 65.1 227.7 o.p. 77.9 583.2 o.p. 27.1 132.6 *** 
4 2 26.2 102.8 *** 37.5 19.3 *** 2.7 131.4 *** 

5 1 48.4 1.8 n.s. 62.5 80.8 o.p. 17.4 248.1 *** 
5 2 17.0 236.5 *** 23.5 110.4 *** 0.0 150.0 *** 
5 3 0.9 562.2 *** 1.4 325.3 *** 0.0 237.0 *** 

6 1 30.4 202.0 *** 37.3 65.6 *** 6.4 223.9 *** 
6 2 7.5 563.3 *** 10.7 333.9 *** 0.0 237.0 *** 
6 3 11.8 636.0 *** 15.6 392.4 *** 0.0 263.0 *** 

7 1 30.3 95.7 *** 46.9 1.6 n.s. 0.0 218.0 *** 
7 2 0.0 540.0 *** 0.0 356.0 *** 0.0 184.0 *** 
7 3 0.0 548.0 *** 0.0 330.0 *** 0.0 218.0 *** 

8 1 0.9 426.1 *** 1.4 265.2 *** 0.0 161.0 *** 

8 2 0.0 436.0 *** 0.0 248.0 *** 0.0 188.0 *** 
8 3 0.5 358.0 *** 0.9 218.0 *** 0.5 146.0 *** 

9 1 0.2 559.0 *** 0.4 267.0 *** 0.0 292.0 *** 
9 2 2.5 583.6 *** 4.1 311.4 *** 0.4 273.0 *** 

10 1 1.8 807.2 *** 2.8 508.8 *** 0.0 299.0 *** 
10 2 6.3 364.5 *** 11.0 165.2 *** 0.0 205.0 *** 

Median 2.1   3.4   0.0   
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Fig. 6 – Behavior of caterpillars passing previously unmarked (‘new’) or well 
established (‘establ.’) trails under different conditions. Black bars: marking, hatched 
bars: discontinuous marking, white bars: no marking. Pooled data from all colonies and 
replicates. Marking intensity is significantly higher in unfed outbound caterpillars on 
new compared to established trails, and fed caterpillars returning to the tent mark 
significantly more intensively compared to unfed caterpillars turning back on new and 
established trails, respectively (pairwise t-tests, all p<0.0001 after Bonferroni 
correction, arc sine-squareroot transformed data). Other, non-relevant combinations 
were not tested. 

Discussion 

Evolution of trail marking modes in caterpillars 

The mode how caterpillars mark trails is quite variable across species, even 

within the moth family Lasiocampidae. Solitary caterpillars of Dendrolimus pini 

mark trails by dragging the terminal prolegs passively behind, keeping the 

plantae of the terminal prolegs completely retracted (Ruf & Fiedler 2000). 

Tent-building caterpillars of Malacosoma americanum, M. disstria, M. neustria 

and of a non-specified species in the genus Gloveria have all been reported to 

mark trails by dragging the tip of the abdomen against the substrate while 

straddling the terminal prolegs during a whole locomotive cycle. This is believed 

to produce a continuous trail (Fitzgerald & Edgerly 1982, Fitzgerald & 

Underwood 1998a). In contrast, Eucheira socialis (Pieridae) uses a distinctly 

different pattern, marking during only part of a locomotive cycle when the larva 



Chapter eight: Trail marking and recruitment 

126 

stretches its body and presses the ventral surface of the tip of its abdomen 

down. These point-like contacts with the substrate result in the deposition of a 

discontinuous trail (Fitzgerald & Underwood 1998b). Whether Eriogaster 

lanestris deposits its trail marker discontinuously, since abrading of the ventral 

side of the last abdominal segment should be maximal when the caterpillar is 

fully stretched and might be very low during other parts of the locomotive cycle, 

or if deposition occurs more or less continuously, since the up and down 

movements of the terminal segments probably result in smearing of the marker, 

remains unknown. However, a discontinuous application of the marker should 

not influence the functionality of trails since a caterpillar only progresses a 

fourth or a fifth part of its total body length during one locomotive cycle, which is 

a range that can easily be scanned by a subsequent caterpillar. Moreover, since 

trail-marking in E. lanestris only occurs as a collective behavior of multiple 

individuals which forage synchronously en masse, even discontinuous 

individual trail marks will always sum up to a rather continuous, graded trail. 

Despite their different ways of marking all species use secretory sites at the tip 

of the abdomen. It has been hypothesized that marking with the tip of the 

abdomen derived from advance-withdrawal conflict behavior associated with 

movement into unmarked terrain (Fitzgerald & Underwood 1998a,b). By 

strongly stretching the body while scanning its environment, the ventral surface 

of the tip of the abdomen necessarily contacts the substrate, and this might 

have set the stage for the evolutionary conversion of the sternal region of the 

10th abdominal segment to a trail-marking organ. If this evolutionary scenario is 

correct, marking behavior in Eriogaster lanestris as well as in Eucheira socialis 

is still more motivationally linked to conflict behavior whereas in Malacosoma 

spp. and Gloveria sp. trail marking is more emancipated from its motivational 

basis in conflict (Fitzgerald & Underwood 1998b). In E. lanestris larvae the 

sternal region of A10 does not carry any noticeable glandular openings (SEM 

inspection, M. Obermayer, pers. comm.). In addition, histological sections did 

not reveal distinct clumps groups of enlarged glandular epidermis cells (M. 

Obermayer, pers. comm.). Therefore, the most likely source of the trail 

pheromone are individual secretory cells that occur interspersed in the 
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epidermis of the region of the integument that proved to carry biologically active 

surface residues. 

Marking with glands situated at the tip of the abdomen is also the predominant 

mode of marking in ants and termites (Hölldobler & Wilson 1990). Nevertheless, 

glands producing the trail markers are morphologically very diverse in different 

families or genera in ants and must have evolved independently multiple times. 

In analogy, the variation of trail marking behaviors that can be observed across 

the Lepidoptera suggests that trail marking has evolved independently a 

number of times. This view is strongly supported by the scattered, and overall 

rare, occurrence of trail-marking in solitary lepidoperan caterpillars (Weyh & 

Maschwitz 1982, Tsubaki & Kitching 1986, Ruf & Fiedler 2000), as well as by 

the sporadic distribution of species with trail-marking social larvae across the 

higher clades of Lepidoptera (Costa & Pierce 1997).  Even within the family 

Lasiocampidae phylogenetic evidence suggests that social life-styles and trail 

marking have evolved more than once (Regier et al. 2000). 

It is noteworthy that social caterpillars that forage in a ‘patch-restricted’ manner 

or by tandem trail-following in a nomadic way also use pheromones for trail 

marking, but these chemical are not produced at a secretion site at the posterior 

end of the body (Capinera 1980, Roessingh 1990, Fitzgerald 1993b). Instead, in 

these instances the pheromone is part of the silk and the mechanical cues of 

the silk alone can be sufficient to elicit trail following behavior. In patch-

restricted foragers the pheromone primarily serves for maintaining group 

cohesion as well as for marking the foraging arena. Only rarely are silk-based 

trail pheromones used to reassemble the cohort at a new foraging site. 

Similarly, tandem trail-following species might also use the pheromone for 

arena marking only, since cohesion of group members during migration is 

achieved by direct body contact of the caterpillars. Thus, in these species with 

putatively less advanced social systems there has been no selection for a 

marking system that is independent of the ubiquitous deposition of silk along 

paths walked by a caterpillar. 
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Reinforcement of trails by overmarking 

In central-place foraging species, there is a need for regulating when and how 

an individual participates in marking trails. Otherwise, the information content of 

a trail system would severely be affected (e.g. in a ‘chaotic’ network of individual 

trails). Social central-place foraging lepidopterous larvae exhibit a range of 

behavioral strategies in this respect. Caterpillars of Eucheira socialis only mark 

non-established trails but mark little if at all, when they pass over previously 

marked trails or when they return to their tent after feeding. Obviously, initial trail 

marking is sufficient to bring the branch to a threshold level of acceptability after 

which caterpillars do no longer reinforce the trail (Fitzgerald & Underwood 

1998b). In Gloveria sp. caterpillars mark heavily on previously unmarked trails 

and overmark newly established trails after feeding, but mark little if they move 

onto the well established portions of their trail system and on the surface of the 

nest (Fitzgerald & Underwood 1998a). In contrast, Eastern tent caterpillars, 

Malacosoma americanum, overmark existing trails and continue marking up to 

the surface of the tent (Fitzgerald 1995). 

The trail marking behavior of Eriogaster lanestris mostly resembles that of 

Gloveria sp. because individuals do not recruit tent-mates to food. 

Nevertheless, E. lanestris caterpillars continue marking on the well established 

trail near the tent and the tent itself.  

Under natural conditions, tents of E. lanestris are predominantly found on the 

sun-exposed, south-facing outmost branches or twigs of host plant trees (Ebert 

1994, C. Ruf, pers. obs.). Thus, tents often have only one main trail which has 

to be passed by the caterpillars during each foraging bout and which is often 

strongly coated with silk. Nevertheless, overmarking of new and old trails 

assures that newly established trails become more attractive than existing but 

abandoned old ones and that trunk trails leading to the new trails will continue 

to be attractive during the subsequent foraging periods. 

The mechanisms of recruitment 

E. lanestris possesses a bilevel trail system that can be functionally categorized 

as  ‘exploratory’ and ‘recruitment’ trails (cf. Ruf et al. 2001a). ‘Exploratory trails’ 
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are laid whenever a larva or a group of larvae walk over previously unmarked 

pathways and enable the caterpillars to relocate their tent, even after 

unsuccessful foraging. These trails are weakly attractive when the larvae leave 

the tent for the next foraging period some hours later. ‘Recruitment trails’, in 

contrast, are laid when caterpillars return from a profitable feeding site. These 

trails direct the caterpillars to this same site again at the onset of the next 

foraging period, i.e. result in a temporally shifted recruitment effect (Ruf et al. 

2001). Hence, there is no recruitment in a more narrow sense by individual 

caterpillars and within one foraging period the effect of recruitment becomes 

only operative (if at all) for few lately foraging, less synchronized caterpillars. In 

our experiments, individuals did hardly cross previously unmarked sections and 

colony activity was so tightly synchronized that the majority of caterpillars found 

the new trail leading to a new profitable feeding site before the first caterpillars 

left the plant after feeding. Although the arms of the Y were short in our 

experiments we assume that even longer pathways would not have influenced 

the results since caterpillars move quickly on established trails. Small L3-

caterpillars (mean velocity = 0.53±0.08m/min at 25°C, N=25) would be able to 

walk nearly 6 meters within the time foraging requires for the first caterpillars to 

reach the plant, feed, and return to the trunk trail. For fourth and fifth instars, the 

respective range would even amount to over 7m or over 9m, respectively, 

based on the velocity data from Ruf et al. (2001a), even disregarding the longer 

feeding times of larger caterpillars. Thus, most caterpillars would have found the 

new feeding site within the feeding time of the first caterpillars even if the 

distances between profitable and depleted feeding sites had been chosen 

longer.  

Obviously, the reinforcement of an exploratory trail into a recruitment trail can 

only be achieved by numerous caterpillars overmarking the trail after feeding. 

As a consequence, the recruitment effect of the trail is temporally shifted to the 

beginning of the consecutive foraging bout.  

With regard to the complexity of trail marking and collective flexibility, E. 

lanestris, ranges between Gloveria sp. and M. americanum (see Table 3). It 

was argued that the necessity to recruit precisely to food, as it is the case in M. 
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americanum, arises only if caterpillars strongly depend on the youngest leaves 

as food which are patchily distributed over the whole plant (Fitzgerald & 

Underwood 1998a). In blackthorns, the youngest terminal shoots do not seem 

to provide qualitatively better food for the caterpillars and are not fed upon 

preferentially (C. Ruf, pers. obs.). Thus, the necessity to evolve recruitment by 

individually foraging larvae may not have arisen in E. lanestris. 

Table 3. Comparison of foraging and trail marking behavior of four central-place 
foraging social caterpillar species. 

 Malacosoma 
americanuma 

Eriogaster 
lanestrisb 

Gloveria 
sp.c 

Eucheira 
socialisd 

Marking new branches + + + + 

Marking on turn-back when 
searching food - - - + 

Marking on newly established 
trails after feeding + + + - 

Marking on older trails leading 
back to the tent and onto tent 
after feeding 

+ + - - 

Recruitment to food strong medium weak none 

Dependency on young leaves + - - - 

a Fitzgerald 1995, b this study, c Fitzgerald & Underwood 1998a, d Fitzgerald & 
Underwood 1998b 
 
It was suggested that caterpillars of M. americanum are able to modify 

exploratory and recruitment trails by using different pheromones when 

overmarking trails after feeding (Fitzgerald 1993a). We propose that recruitment 

in E. lanestris can be achieved by the opposing effects of temporally changing 

trail concentrations only, resulting from overmarking on one the hand and trail 

aging on the other, and need not be further modified by different trail 

substances (cf. Fig. 7). 

Caterpillars of E. lanestris show trail following behavior on artificial trails made 

of 5β-cholestane-3-one (Ruf et al. 2001a). Thus, it is likely that this substance or 

a slightly different steroid is the active component of the caterpillars’ trail 

marker. Caterpillars are highly capable of discriminating between artificial trails 

with different concentrations of this steroid. This dose-sensitivity is necessary 
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and sufficient for the caterpillars to distinguish between trails marked by 

different numbers of tentmates, marked with different intensity, or where the 

active substance has been partially lost during aging of the trail. The 

mechanism of aging is yet unclear. In ants trail pheromones are often quite 

volatile substances resulting in short-lived trails that are quickly abandoned if 

they are not reinforced (Hölldobler & Wilson 1990). In contrast, steroids are 

larger molecules that have a much lower vapor pressure and are thus not 

volatile. Moreover, derivates of cholesterol such as 5β-cholestane-3-one are 

very stable and are thus not expected to degrade within hours (K. Seifert, pers. 

comm.). 

Assuming that quantitative differences between trails are sufficient, the 

processes during recruitment could be described as follows (numeration from 

Fig. 7): At the beginning of the foraging bout when food has been switched to 

the new side (2) caterpillars first follow the well established trail from the earlier 

foraging period and only choose the new branch if they repeatedly fail to find 

food (3), a pattern which has been shown experimentally for M. americanum 

(Peterson & Fitzgerald 1991). These exploratory trails are only marked up to a 

low threshold level that enables the caterpillars to perceive the trail substances 

quickly (4). Simultaneously, the old trail has lost intensity due to aging because 

it is not reinforced although many caterpillars pass the trail. Only if caterpillars 

are satiated they overmark the already existing trail to a much higher threshold 

level. At the end of a foraging period the new trail leading to the profitable site is 

consequently much more attractive due to its higher quantity of pheromone 

(through overmarking), whereas the old trail becomes weaker due to aging (5). 

This relative difference persists to the next foraging bout (6) and suffices to 

direct the larvae to the new feeding site. As a consequence, a recruitment effect 

seems feasible without the existence of a second pheromone.  
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Fig. 7 – Proposed mechanism of recruitment effect and decision-making in foraging E. 
lanestris larvae based on quantitative effects of trail quality alone. Marking increases, 
aging decreases the strength and therefore the attractiveness of the trails. Switching 
from an old to a new trail occurs because the old trail is no more overmarked in the 
second foraging period (FP) if no food is detected. As soon as the new trail is heavily 
overmarked by fed caterpillars it becomes more attractive than the old trail that has 
aged since the preceding foraging period. 
 
In line with this argumentation, surface residues of either fed or unfed 

caterpillars proved to be indistinguishable for the caterpillars in our experiments. 

Moreover, the observation that larvae of Eriogaster lanestris must actively avoid 

marking by bobbing up the terminal prolegs is a further hint that they are not 

able to actively control the amount or quality of pheromone deposited on the 

substrate during contact. Instead, the secretory cells are supposed to produce 

pheromone continuously and the caterpillar determines whether the pheromone 

is wiped off or not by controlling the posture of its terminal prolegs.  

In ants, where trail systems have been studied much more intensively, trail-

based communication can be based on qualitatively different orientation trails, 

recruitment trails or even long-lasting permanent trails marked with different 

pheromones produced in different glands (e.g. Attygalle et al. 1988, 1991, 
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Quinet & Pasteels 1991, Kohl et al. 2001). For other ant species, computer 

simulations suggest that quantitative differences alone in combination with 

behavioral thresholds might be responsible for the trail preferences (Goss et al. 

1990). Unfortunately, there is no experimental proof yet for the existence of a 

trail system based solely on pheromone quantities as a consequence of limited 

possibilities of detecting and quantifying small quantities of pheromones.  New 

studies on the chemical composition of the trail markers of M. americanum and 

E. lanestris directly extracted from the trails are necessary to finally address this 

question. 
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Mechanisms for and consequences of behavioral 
synchronicity in Eriogaster lanestris 

Abstract 

Caterpillars of Eriogaster lanestris exhibit a high level of 

synchronization of their individual activity patterns. For example, 

foraging is usually so tightly synchronized across the colony that the 

majority of caterpillars leaves the tent as a group in search of food 

within a few minutes. Although synchronization requires 

communication between tentmates at the onset of each foraging 

bout, the mechanistic basis of this exchange of information has not 

yet been determined for any social caterpillar. 

This study tests the hypothesis that synchronicity of the caterpillars is 

related to substrate vibrations arising from the movements of the 

caterpillars on the tent. Data were acquired by long-term monitoring 

of tent vibrations with a laser Doppler vibrometer and parallel 

automatic monitoring of foraging patterns of the caterpillars via light 

barriers.  

Tent vibrations increased and decreased irregularly during the 

resting phases and frequently, but briefly exceeded a permanent 

resting level of vibrations (background noise). The final building up of 

vibrations before the start of a foraging bout lasted on average 19 

minutes at 25°C. The start of a foraging bout precisely coincided with 

the time when the increase of vibrations (i.e. the increase of 

restlessness among tent mates) was at its maximum. 

Group size had a significant impact on synchronicity of the larvae. 

Caterpillars in large colonies are better able to synchronize their 

activities and develop faster even though environmental conditions 

(temperature, light regime, food availability) were kept identical. 
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Introduction 

One of the most striking features of large assemblages of animals is probably 

behavioral synchronicity among hundreds or even thousands of individuals. 

Synchronized activity patterns are known from a broad range of animal species 

like fish, mammals and many insects (for an overview see: Krause & Ruxton 

2002). In a recent study Conradt & Roper (2000) focusing on ruminants 

suggested that many of the advantages of being in a group only emerge if 

animals perform a given activity (e.g. foraging or resting) synchronously. 

However, synchronizing activities is assumed to be costly for group members 

because it may require the postponement of activities despite individual needs. 

Thus, it is predicted that groups are more stable if they are homogeneous (e.g. 

with respect to size and age, Conradt & Roper 2001, Ruckstuhl & Neuhaus 

2000). 

Social, tent-building caterpillars of Eriogaster lanestris develop quite uniformly 

and thus usually build up very homogeneous groups. Individuals exhibit strongly 

synchronized resting phases and feeding bouts (Ruf et al. 2001b, Ruf & Fiedler 

2002a) but mechanisms underlying this synchronicity are not understood at all. 

Synchronized activity patterns are widespread among central-place foraging 

lepidopteran species and are well known from other Lasiocampidae (Fitzgerald 

et al. 1988, Fitzgerald & Underwood 1998a), processionary caterpillars 

(Notodontidae, Thaumetopoeinae, Schmidt et al. 1990, Floater 1996) and the 

highly social Pierid Eucheira socialis (Fitzgerald & Underwood 1998b). 

However, other central place foraging species do not or only partially 

synchronize activities, indicating that synchronicity is no general character of 

tent-building caterpillars (cf. Chapter 11).  

Preliminary observations on E. lanestris caterpillars showed that between 

foraging periods small groups of larvae may become active temporarily at 

irregular intervals. Sometimes other colony members may become activated, 

too, through these activity pulses, but eventually all caterpillars resume resting 

again (Ruf 1999). However, at the onset of a foraging bout within few minutes 
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the majority of caterpillars can be involved and almost all caterpillars leave the 

tent in a tightly synchronized manner (Balfour-Browne 1933).  

Temporal synchronicity requires communication among group members. There 

have as yet been no studies to determine the mechanistic basis of this 

communication in social caterpillars. The rather well known trail pheromones 

(see Chapters 7+8) apparently do not play a major role in this respect. At least, 

no activity-stimulating potential of artificial or natural trail pheromone deposits 

have ever been observed so far in the Lepidoptera. It was hypothesized that 

synchronization could be achieved by an increasing level of restlessness 

among the hungry caterpillars associated with tactile cues (Fitzgerald & Costa 

1999). However, movements of caterpillars cannot be monitored by direct 

observation because they mostly occur inside the densely woven silken tent. 

The use of endoscope cameras is also excluded by the multi-layer construction 

of the tent which would not allow for an overall view of all individuals to record 

their activity. Furthermore, caterpillars rapidly spin silk over any material 

introduced in their tent. Thus, I used an indirect technique to quantify levels of 

activity of the caterpillars in and on the tent by measuring vibrations of the tent 

surface. 

This study deals with two different aspects of behavioral synchronicity in 

Eriogaster lanestris: 

1. Analysis of possible mechanisms of synchronization. How do caterpillars 

synchronize their activity prior to the foraging bout? I specifically test the 

hypothesis that vibrations are a possible cue for communication in this 

context. 

2. Experimental analysis of the impact of synchronicity. Are larger colonies 

better capable of synchronizing their activities? Are there any advantages of 

more synchronized foraging? I therefore compare five pairs of differently 

sized colonies with regard to their level of synchronicity during their foraging 

bouts.  
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Material and Methods 

Vibration experiment 

General information on vibration measurements: For measuring the vibrations 

of the tent I used laser Doppler vibrometry (LDV) which is a non-contact 

vibration measurement technique. LDV is based on the detection of the Doppler 

shift of coherent laser light that is scattered from a small area of the test object. 

The object scatters or reflects light from the laser beam and the Doppler 

frequency shift is used to calculate the component of velocity which lies along 

the axis of the laser beam. For this purpose a laser beam is divided at a beam 

splitter into a measurement beam and a reference beam which propagates in 

the arms of an interferometer. For detailed information see Polytec (2002). 

Type and settings of the laser vibrometer:  The instrument used was a compact 

laser vibrometer, type CLV 1000 (Polytec, Waldbronn). This vibrometer is an 

eye-safe class 2 laser instrument using a low power Helium-Neon laser. This 

laser produces a visible red laser beam (λ=0.6238µm) that can be focused over 

several meters.  

Further data acquisition equipment: The laser vibrometer was connected to a 

data acquisition card (type PCI-Base50 provided with a 12bit A/D-module, type 

MAD12, BMC-Messsysteme, Maisach) placed into a personal computer 

(Pentium I, 133MHz). Data were sampled continuously over 24 hour intervals at 

a rate of 100Hz with a specialized software (NextView/NT, Ver. 3.0, BMC-

Messsysteme, Maisach). In order to achieve small files, it was necessary to 

subdivide data in three hour intervals (containing 1,080,000 readings at a size 

of the file of 34.3 MB). On a second computer activity patterns were measured 

continuously with the help of infrared light barriers (for details see Ruf et al. 

2001b, Ruf & Fiedler 2002a). It was carefully checked daily whether the internal 

clocks of the two computers worked perfectly in parallel. 

Colonies: Due to the considerable technical expenditure only two colonies could 

be monitored in succession within one month. Both colonies were large in size 

(about 250 individuals) and were monitored during their fourth instar. Colonies 

were allowed to build a tent on a wooden, 3-dimensional cross (cf. Ruf & Fiedler 
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2002a). In order to minimize vibrations caused by movements of the building 

colonies were placed in an air-conditioned room (Tambient=25°C, L:D 14:10h) in 

the cellar of the university building. Vibrations of the tent were measured by 

focusing the laser beam of the vibrometer on a small flag-like construction 

which was set loosely on the tent’s surface and which was attached to the tent 

by the caterpillars by spinning silk on and around the flags some days before 

the start of the experiments. ‘Flags’ were constructed with a small piece (ca. 

2x2cm) of a special coated foil (provided by Polytec, Waldbronn) that optimizes 

reflection. The foil was attached to an insect pin which in turn was soldered in a 

right angle to the crossing point of two additional insect pins that were bent at 

their ends to anchor them in the silk mats (Fig. 1).  

Fig. 1 – Schematized drawing of the experimental design used to simultaneously 
record vibrations of the tent and foraging activities of the caterpillars. Flag is not drawn 
true to scale but larger for better visibility. 

Caterpillars continuously had access to a large bunch of their major host-plant 

(blackthorn, Prunus spinosa) over a 30cm long wooden bridge. The bunch was 

replaced every day. Two light barriers were attached besides the bridge for 

double safeguarding of the measurements of activity patterns. 

Analysis of raw data: Since general programs for processing tables are not able 

to work with several millions of readings I used the software FlexPro 5.0 

(Weisang & Co.) for analysis. In a first step data were reduced to one 
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measurement per minute. For this purpose I summed up the readings of one 

minute by calculating the integral of the area (6000 measurements each, see 

algorithm in Box 1). 

 

Box 1 – Program algorithm for reducing data using FlexPro 5.0. ‘2-Analog In’ is the 
channel of the AD-DA card which was connected to the vibrometer. 

Afterwards I produced combined files with vibration and foraging pattern data 

for further analyses. In all, 26 foraging bouts were chosen for analysis. Many 

other foraging bouts had to be excluded from the analysis because the spinning 

behavior of the caterpillars often led to a minimal moving of the flags so that the 

laser was not focused perfectly any more. This caused only weak signals by the 

vibrometer that were not suitable for further analyses. Furthermore only highly 

synchronized foraging bouts (i.e. those between molting phases) could be used. 

Files started 90 minutes before the beginning of a foraging period and ended 30 

minutes after the beginning. During this time the vast majority of the caterpillars 

had always left the tent so that the maximum vibrations associated with each 

foraging bout could be determined with certainty. Since absolute measurement 

values for minimum and maximum vibrations highly depend on the fine tuned 

focusing of the laser beam, it proved to be necessary to standardize vibration 

recordings. For this purpose, minimum values of each set of data were set to 

zero and maximum values of each foraging bouts were then set as 100%. In 

SigY = '2 - Analog In.Y' 
WindowSize = 6000 
Count = NumberOfValues (SigY) / WindowSize 
if NumberOfValues (SigY) % WindowSize > 0 Then 
  Result = 0. # (Count + 1) 
 else 
  Result = 0. # Count 
end 
for i = 0 to Count-1 Do 
 Ausschnitt = Trigger (SigY[i * WindowSize, (i+1) * WindowSize - 1], 0, 0, 
EVENT_EXTRACT) 
 Result [i] = Sum (Ausschnitt) 
end 
if NumberOfValues (SigY) % WindowSize > 0 Then 
 Result[Count] = Sum(Trigger(SigY[Count * WindowSize, NumberOfValues 
(SigY) -1], 0, 0, EVENT_EXTRACT)) 
end 
Result 
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another analysis vibration values for the time from -90 to -30 minutes before the 

beginning of a foraging period were averaged and set to zero. Thus ‘resting 

values’ (see below) are either positive (first method) or oscillate around zero 

(second method). 

Possible triggers for the caterpillars’ departure: To delimit possible triggers for 

the synchronized departure of the caterpillars from the tent, I firstly determined 

some characteristic parameters from the course of the vibration recordings that 

could be of potential relevance for the caterpillars’ decision to leave the tent. 

Secondly, I compared these parameter values with the time when caterpillars 

actually left the tent. Two different hypotheses were tested. 

1. Activity could be triggered when tent vibrations exceed the resting value 

(background noise), i.e. there is a threshold value above which the 

synchronized departure of the individuals takes place. In order to determine a 

‘resting value’ r of vibrations (i.e. a mean value for the background vibrations) 

vibration values were averaged from -90 to -60 minutes before the start of each 

foraging period (i.e. at a time during the digestion phase where any measurable 

vibrations were clearly not involved in foraging activities). To avoid 

overestimating the influence of single strong vibrations which can be either 

produced by individual caterpillars occasionally passing directly through the 

laser beam or by strong vibrations in the nearby rooms, data were smoothed 

using floating averages of five values each. Significant excess of the vibrations 

over r was scored at the time when tent vibrations exceeded the 95% 

confidence interval of r  (i.e. when r ≥ 1.96 SE+ r ). Moreover it was determined 

how strong vibrations were at the point of the departure of the caterpillars 

(percentage of maximum value). 

2. The trigger could be connected with the maximal increase of vibrations, i.e. 

there is a temporal component of the tent vibrations that serves as a signal. To 

test this hypothesis, a sigmoid curve was fitted to the data (software: Datafit 

Ver. 8.0.32, Oakdale Engineering). I used a general model for logistic 

processes (Hadeler 1974, Box 2). Two points in time (x1, x2) are of potential 

biological significance here. First, the moment x1 when there is the largest 
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increase in overall tent vibrations (i.e. when restlessness and thus motivation to 

leave is maximal among tentmates) could be related to the eventual start of a 

foraging period. To identify this point, I calculated the point of inflection of the 

sigmoid curve from the parameter estimates. The point of inflection is given by 

f’’(x1)=0 which indicates a maximum value for the first derivative, f’(x). Second, 

the moment x2 could be of interest, when there is the largest change in the 

increase rate of tent vibrations. This point is given when the second derivative, 

f’’(x), has a ‘local maximum’, i.e. if f’’’(x2)=0.  

 

Box 2 – Mathematic equation used for regression analysis and its derivatives as well as 
equations for calculating local maxima. 

 

Remarks on statistical problems: Strictly speaking, vibration data as recorded 

here do not represent independent data points but are temporally connected 

(time series). Furthermore, due to technical constraints data were taken from 

only two colonies and data sets can thus be seen as pseudoreplicates. 

However, it is most unlikely that events during one foraging period in this enemy 
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free situation with constant environmental conditions should influence the 

behavior of the caterpillars during the next foraging period. Thus, data sets were 

treated like independent measurements.  

Synchronicity experiment 

Caterpillar colonies: In order to test whether colonies of different size exhibit 

different synchronicity while foraging five pairs of colonies which hatched on the 

same day were held in an environmental cabinet. Caterpillar colonies were 

either obtained by breeding (second laboratory bred generation, eight colonies) 

or by dividing one field colony (see below). Eight colonies were assessed as 

being “large” or “small” since they hatched from differently sized egg clusters. 

“Large” colonies contained about 200 caterpillars, “small” colonies about 50 

caterpillars each (all numbers ±10%). In one case, a colony collected in the field 

was subdivided into one large (200 caterpillars) and one small colony (20 

caterpillars), the latter being established on an abandoned tent of Malacosoma 

neustria which was accepted readily as a new home base. Rearing conditions 

differed between experimental replicates but were identical for colony pairs (see 

Table 1 for details). 

Activity patterns of all colonies were long term monitored with light barriers (cf. 

Ruf et al. 2001b). Synchronicity was assessed by calculating an index SI which 

is based on the density of all light barrier signals set off by the caterpillars 

during the course of a day (SI = Sum of signals of a day / Sum of minutes with 

at least one signal, cf. Ruf et al. 2001b).  

For calculations of SI only days between the molting to the fourth instar and the 

molting to the fifth instar were taken into account which represent the 

synchronized phases of the fourth larval instar. Whenever caterpillars in a 

colony are about to molt, behavioral synchronicity declines sharply as does 

overall foraging activity (cf. Ruf et al. 2001b). 

Statistical analysis: Collecting multiple data (i.e. indices of synchronicity) in one 

system (one colony) violates the postulate of independent samples. To avoid 

inflation of the degrees of freedom I used an ANOVA design for repeated 

measurements. This means that measurements of one colony are used as 
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multiple measurements within one system in the analysis. Because of 

inhomogeneity of variances data were transformed (i.e. log(sqrt(x)).  

Results  

Vibration experiment 

Suitability of method 

Figure 2 (upper graph) shows original data of the laser vibrometer of one 3h file. 

Although it is obvious that there is a strong increase of vibrations during the 

foraging phase (lower graph) differences appear rather small. However, these 

small differences are partly caused by the fact that it is impossible to visualize 

small values if more than 1 million readings are shown in one graph. Thus, 

single large signals within the resting phases optically lead to an overestimation 

of vibrations there. Figure 2 (middle graph) shows that there is actually at least 

a four to five fold increase of overall vibration during the foraging bouts, i.e. 

when the vast majority of caterpillars is active and moves over the tent. If the 

laser was focused perfectly even 10-fold differences between resting values 

and maximum vibrations during the foraging bouts occurred. During the resting 

phases, there was still considerable vibration (‘background noise’), that was 

predominantly caused by the caterpillars since there were always some single 

individuals that made little movements and thus caused small vibrations. In 

addition, vibrations of the building cannot be excluded but are considered 

insignificant in comparison to the large vibrations during the group movements 

of the caterpillars. Overall, the strength of the background noise and the 

absolute size of vibration scores depended on the accuracy of focusing the 

laser beam. 
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Fig. 2 – Exemplary graphs of a 3-h interval (one file). Red line indicates the start of the 
synchronized foraging period. A Original data gained from the vibrometer. The graph 
represents 1,080,000 data points. B Reduced data. (Positive) amplitudes summed up 
per minute. C Activity patterns measured with the light barriers. 
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Dynamics of starting phase 

Although vibrations fluctuated during the course of the resting phases there was 

neither a regular appearance nor an increasing density of pre-foraging vibration 

peaks (Fig. 3). During the resting phases vibrations frequently exceeded the 

resting value r  significantly but no caterpillar left the tent. Instead, vibrations 

declined again to the resting level. The mean maximum relative strength of 

vibrations during these pre-foraging phases reached 7.3±4.0% (min=0.9%, 

max=20.0%) of the absolute maximum value achieved during the foraging 

period later on (see below). 

The phase prior to the actual beginning of a foraging period, when vibrations 

continuously significantly exceeded the resting value, lasted on average 19 

minutes (mean±SD=18.8±6.1, min=7, max=33, N=26). In no case the departure 

of the caterpillars started before the resting value had been surpassed 

significantly for at least seven minutes.  

At the point when the first caterpillars left the tent vibrations were not yet at their 

maximum, which means that not all caterpillars were yet mobilized. Complete 

mobilization took place within approximately 30 minutes after the departure of 

the first caterpillars. Strength of vibrations at departure varied enormously and 

ranged from 12.9% to 63.9% of the maximum value (mean±SD=34.2±14.2%). 

Thus, there was no defined strength of vibrations that could be associated with 

the departure of the caterpillars. However, vibrations were significantly stronger 

at the time of departure than during any of the pre-foraging peaks (Wilcoxon 

matched pairs signed rank test: Z=4.46, p<0.0001). Actually, pre-foraging peak 

vibrations reached only a quarter of the strength of those at the time when 

caterpillars left the tent. 
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Fig. 3 – Dynamics of vibrations 90 minutes before to 30 minutes after the beginning of 
a synchronized foraging bout (x=0). Vibrations were standardized (the minimum is set 
to zero, maximum = 100). A Exemplary graph. Black line: Original data, blue line: 
smoothed data, red arrow: time, when tent vibrations exceed the resting value 
significantly for the last time before the departure of the caterpillars. B Trajectories of 
mean±1SD of all 26 data sets available. 
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The general logistic model fitted almost perfectly to the data (Fig. 4). If data of 

26 starting phases were pooled, the point of largest change in the increase rate 

(x2) was eight minutes before the departure of the caterpillars (x2=-8.21, 95% 

confidence interval: x2=-9.18 – -7.38). Regression analyses for the 26 individual 

data sets were more scattered but revealed a similar result (mean x2(N=26)= 

-6.35±2.90).  

The point of inflection (i.e. the time when the increase of vibrations was 

maximal) calculated from the parameter estimates is practically identical with 

the time when caterpillars start leaving the tent (x1=0.37, 95% confidence 

interval: x1=0.07–0.61). Thus, the caterpillars’ departure precisely coincided with 

the time when the increase of the vibrations from one minute to the next was 

maximal. Again, regression analyses for the 26 individual data sets were more 

scattered but revealed a similar result (mean x1(N=26)=0.98±3.96). 
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Fig. 4 – Logistic function modeling the dynamics of the phase 90 minutes before to 30 
minutes after the beginning of a foraging period (x=0). Data are average values of 26 
sets of data. The point of inflection of the curve is nearly identical with the time when 
caterpillars start leaving the tent. 
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Synchronicity experiment 

Small colonies showed a remarkable lag of development compared to larger 

colonies (Table 1). Even the development of colony V/2, which was only 

subdivided before molting to the fourth instar was retarded for 1.5 days when 

molting to the fifth instar. 

Table 1. Rearing conditions, size, hatching and molting times for the five pairs of 
colonies of E. lanestris used for this study. 

Colony Rearing 
conditions Size Hatching date 

Molting to  
4th instar 

difference 

I/1 large 13/05 
I/2 

22 °C / 15 °C 
small 

24/04 
17/05 

4 days 

II/1 large 18/05 
II/2 

22 °C / 15 °C 
small 

28/04 
22/05 

4 days 

III/1 large 23/05 
III/2 

20 °C const. 
small 

02/05 
21/05 

2 days 

IV/1 large 16/05 
IV/2 

20 °C const. 
small 

03/05 
18/05 

2 days 

V/1 large 
V/2 

22 °C / 15 °C 
very small 

unknown identical - 

 

To understand influencing factors on synchronicity I first analyzed whether 

rearing conditions (i.e. temperature regime in the environmental cabinet) 

influenced synchronicity of caterpillars by a multifactor ANOVA design. Rearing 

conditions had no influence on synchronicity (F(2, 1)=0.77; p=0.52) and was 

therefore subsequently excluded from the analysis. Group size and ‘within-

groups’ (i.e. temporal variability between the repeated measurements within 

one colony) proved to be significant (Fsize(1, 4)=17.51; p=0.014; Fwithin-groups(6, 

24)=2.83; p=0.032). No interactions between the factors were found, indicating 

that temporal fluctuations in synchronicity existed, but did not vary consistently 

between group sizes. 

Testing for size and within-group factors only revealed that the influence of 

group size was predominant (Fsize(1, 8)=28.75; p=0.0007). Differences between 
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the colony pairs proved to be important as well but were far less pronounced 

(Fwithin-groups (6, 48)=3.18; p=0.010). Again, no interactions of factors were found.  

Figure 5 shows that synchronicity of behaviors was always highest in large 

colonies. It is also apparent that SI values were overall much more similar 

across large colonies than in small colonies. Thus, the significant within-group 

variation (see above) is mostly due to the more variable behavioral synchrony 

exhibited by small colonies. 
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Fig. 5 – Influence of group size on synchronicity of daily foraging in colonies of E. 
lanestris. Synchronicity is assessed by using an index SI that integrates density of 
signals over the course of one day. Sample size: N=7 days for all colonies. Roman 
numbers refer to the colony numbers from Table 1. Size of the index was significantly 
higher for large colonies in all colony pairs. 

Discussion  

It is obvious that social groups can only be coherent if their members remain in 

the same place at the same time and, for this to occur, it may often be 

necessary for them to engage in the same activity all at a time (Conradt & 

Roper 2000). Casey et al. (1988) speculated that there are strong selective 

pressures for synchronous foraging in colonies of the Nearctic eastern tent 

caterpillar, Malacosoma americanum. These are assumed to having given rise 
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to group mediated behavioral patterns that override the tendency of individuals 

to follow foraging schedules dictated by their own hunger levels. It is generally 

acknowledged that for these tent caterpillars high synchronicity is especially 

helpful for thermoregulation (through collective resting and basking) or for 

detecting and exploiting profitable feeding sites (by collective searching and 

feeding). However, since social, central place foraging caterpillars use a fixed 

home base and trail-based orientation in the vicinity of their tent (Fitzgerald 

1995, Fitzgerald & Underwood 1998a,b, Ruf et al. 2001a), it is not inevitably 

necessary to synchronize both, resting phases and feeding activity. For 

example, caterpillars of Eriogaster catax exhibit collective resting phases when 

the majority of the caterpillars of the colony lie in a tight group on the surface of 

the tent and bask (cf. Chapter 11). Nevertheless, simultaneously small 

subgroups are foraging, i.e. they are asynchronous. Thus, resting caterpillars of 

E. catax benefit from the presence of their siblings by enhanced social 

thermoregulation (see Joos et al. 1988, Ruf & Fiedler 2000, 2002b for details), 

but individuals still follow their own feeding rhythm. Furthermore, analysis of the 

foraging behavior of caterpillars of Malacosoma americanum has demonstrated 

that single individuals are able to find new, profitable feeding sites and recruit 

the whole colony to these places (Fitzgerald & Underwood 1998a). Once such 

pheromone paths are laid it does not seem crucial that the rest of the colony 

forages en masse. In Malacosoma neustria, individuals show marked 

asynchrony and individualism while feeding but are nevertheless able to 

maintain more or less closed groups during the first four larval instars (Peterson 

1988, Chapter 11). Obviously, behavioral synchronicity is no necessity for 

social, tent-building caterpillars.  

 
This study demonstrated that in E. lanestris the size of a colony significantly 

influenced synchronicity among individuals. Large colonies were more likely to 

integrate and behave as a unit and synchronicity was less variable across 

colonies. Furthermore, large colonies also developed faster compared to small 

colonies despite constant environmental conditions. Developmental differences 

at different group sizes are usually assigned to social facilitation in feeding (e.g. 
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Tsubaki 1981, Tsubaki & Shiotsu 1982, Lawrence 1990, Clark & Faeth 1997, 

Denno & Benrey 1997, see also Chapter 12). However, ‘small’ groups in my 

experiment still contained more caterpillars than would be physically able to 

feed on one single blackthorn leaf, even in the first instar. Furthermore, 

blackthorn leaves do not show any obvious defensive structures that need to be 

overcome by communal feeding. Thus, communal feeding is not expected to 

facilitate nutrient intake in this particular case. 

In his detailed life-history documentation on E. lanestris, Balfour-Browne (1933) 

also reported that large colonies were much more successful than small ones 

and grew faster but he did not show any concrete data nor did he give any 

possible explanation. Possibly, faster development may be directly caused by a 

higher synchronization of individuals which means that individuals spend less 

time for searching food and more time for digestion (energy saving strategy). 

Fitzgerald and Visscher (1996) showed that isolated larvae of the eastern tent 

caterpillar, Malacosoma americanum, were more active but developed more 

slowly compared to grouped caterpillars. However, these effects already 

stabilized in groups of few (five to ten) individuals while my ‘small’ groups 

contained 20-50 individuals and were able to build normal although small tents. 

It is therefore conceivable that developmental differences are also influenced by 

thermoregulatory differences between groups of different size. Although 

caterpillars in the environmental cabinets were not able to use solar radiation for 

basking, metabolic heat production could be responsible for the observed 

effects (Ruf & Fiedler 2000). However, it is presently unknown how net profits of 

metabolic heat production depend on group size. 

Synchronization requires communication among the members of a group. 

Otherwise, tightly synchronized, fast departures of the caterpillars at the 

beginning of a foraging period are not imaginable. Balfour-Browne (1933) also 

reported that the majority of the colony ‘suddenly’ became active and moved off 

to feed without any obvious trigger.  

This study shows that there is no continual building up of activity peaks of 

increasing strength. Instead, resting values are frequently exceeded but no 



Chapter nine: Behavioral synchronicity 

153 

foraging period follows such peaks. However, before the first caterpillar leaves 

the tent, vibrations significantly exceed the level of any of the pre-foraging 

activity bursts. Actually, this phase proved to be longer than was assessed from 

observations merely recognizing movements on the tent and nearly lasted 20 

minutes. Nevertheless, there was neither a defined threshold value, the excess 

of which served as a signal for the synchronized departure, nor was it 

necessary to activate all tentmates to start a foraging bout. Furthermore, the 

time x2, when the ‘restlessness’ among caterpillars built up fastest did not serve 

as a trigger for the departure as well, since it occurred more than eight minutes 

prior to the start of the foraging bout. After the exclusion of many possibilities it 

seems most likely that the time x1, when the increase of vibrations and therefore 

the mobilization rate of tentmates was maximal and which clearly coincided with 

the starting time of the foraging period, may serve as trigger for the 

synchronized departure of the caterpillars. I therefore hypothesize that 

substrate-borne vibrations are used by the caterpillars to sense the readiness of 

their tentmates to leave the tent. Of course, it cannot be excluded from my 

experiments that chemical cues might also help to synchronize activity. 

However, some considerations make chemical signaling unlikely in this context. 

For example, if caterpillars rest on the tent before departure, air movements 

should quickly disperse any volatile pheromone. Otherwise, the pheromone 

would be restricted to some regions of the tent due to its multilayer structure if 

caterpillars rest in the tent. Moreover, caterpillars with their small antennae have 

a lower morphological capacity to receive volatile signals. In contrast, substrate-

borne vibrations can easily be perceived at any region of the tent and therefore 

could serve as an efficient one for each caterpillar to sense the overall 

‘willingness’ of tentmates to commence foraging. 

In the last three decades it has become clear that the use of vibrations in animal 

communication is much more widespread than previously thought (Hill 2001). 

Vibration may provide information used in predator-prey or mutualistic 

interactions, recruitment to food, mate choice, intrasexual competition and 

maternal/brood social interactions in adult insects (e.g. McVean & Field 1996, 

Roces & Hölldobler 1996, Hill & Shadley 2001), Lepidopteran pupae and larvae 
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(e.g. DeVries 1990, Bacher et al. 1997), spiders (e.g. Fernandez Montraveta & 

Schmitt 1994, Schüch & Barth 1990) and other arthropods (e.g. Aicher & Tautz 

1990) or even elephants (e.g. O’Connell et al. 1997). However, most papers 

studying vibrations as a means of communication concentrated on discrete 

signals produced during special (often ritualized) behavioral sequences, where 

the signals usually show strong regularity.  

In tent living caterpillars vibrations are a by-product of locomotion that could 

secondarily be used for communicative purposes. As a consequence, vibrations 

are highly irregular and it is therefore their timing and relative increase in 

intensity which could carry the relevant information. Since tents are a highly 

inhomogeneous substrate (which has many consequences for the transmission 

and frequency characteristics of substrate-borne vibrations) it seems quite 

unlikely that there is more information encoded than just the level of 

restlessness among tentmates.  

If E. lanestris larvae really use vibrations as cues, they must be able to sense 

these. The perception of air-borne vibrations by specialized receptor hairs has 

been documented for a number of butterfly and moth caterpillars (Tautz 1989) 

and has been studied in much detail for caterpillars of the cabbage moth 

(Mamestra brassicae: Tautz 1977, 1978, Tautz & Markl 1978). Gregarious 

sawfly larvae that are morphologically and ecologically most similar to social 

lepidopteran caterpillars have been shown to use substrate stridulation for 

communication (Hograefe 1984). In the sawfly Hemichroa crocea foraging 

larvae regularly scratch over the leaf surface by stretching out and curling their 

abdomina. Scratching frequency is thought to indicate patch quality and shall 

keep the colony together. Although the sensory basis of receiving these signals 

was not finally clarified sensilla-like structures were supposed to play a role. 

However, the perception of strong substrate vibrations like those of the tent 

need no specialized hairs but can also be perceived by chordotonal organs that 

occur throughout the peripheral regions of the body and in the legs (so-called 

subgenual organs) of insects (Chapman 1982, Dettner & Peters 1999). 
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To conclude, this study has accumulated the first (although still indirect) 

evidence that Eriogaster lanestris may use tent vibrations to synchronize activity 

at the beginning of a foraging bout. This mode would be a most efficient and 

most economical one. The departure of the caterpillars could be triggered by a 

significant increase in the level of vibrations of the tent and precisely coincides 

with the moment when the rate of mobilizing tentmates is maximal. The 

emergent behavioral synchronicity turned out to depend on groups size and 

conferred developmental advantages to the caterpillars in an enemy-free 

situation. These advantages are likely to be even larger when sun-basking or 

enemy avoidance are considered, as they occur in the field. 
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Colony survivorship of social caterpillars in the 
field: A case study  
Submitted to a peer reviewed journal as: Ruf, C.; Fiedler, K.: Colony survivorship of social 
caterpillars in the field: A case study of the small eggar moth (Lep., Lasiocampidae). 

Abstract: 

This study investigates temporal survivorship and its spatial variation 

of 100 caterpillar colonies of the small eggar moth, Eriogaster 

lanestris. The field study took place at four sites in Northern Bavaria 

in May and June 2002. Egg clusters were obtained from females 

mated in the laboratory and were transplanted into the field just 

before hatching of the young caterpillars. Colony mortality rate was 

rather constant over time (total: 48%) and not mainly restricted to the 

earliest instars. There was no spatial heterogeneity in mortality. The 

inability to build an initial tent or the later loss of the tent accounted 

for 71% of total colony losses. Strong rainfalls had a severe influence 

on the constitution of tents. The impact of climatic factors and 

predation on colony survival as well as the importance of the tent 

structure for the survival of social caterpillars are discussed. 

Introduction 

Lepidopteran larvae are most vulnerable in the earliest stages of their lives. 

Since natural enemies are supposed to be the dominant cause of mortality 

(Cornell et al. 1998) most caterpillars rely on a hidden life habit with cryptic 

coloration and show behavioral adaptations that reduce their risk to be detected 

by visually oriented natural enemies (e.g. commuting between feeding areas 

and hidden resting areas, nocturnal activity, Heinrich 1979, 1993, Stamp & 

Wilkens 1993). 

Only few lepidopteran caterpillars (<3% of the species worldwide, Costa & 

Pierce 1997) live gregariously or ‘socially’, sometimes in groups of several 
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hundreds of individuals. Although gregarious caterpillars may benefit from living 

in groups in several ways, for example by maximizing growth through efficient 

thermoregulation (Joos et al. 1988, Ruf & Fiedler 2000, in press) or by social 

feeding facilitation (Clark & Faeth 1997, Denno & Benrey 1997), they are very 

conspicuous at the same time (for a general overview see: Fitzgerald 1995). 

Thus, groups may be at a high risk to become totally extinct once they have 

been detected by visually hunting predators like birds or by predators that 

recruit further nestmates to food (e.g. ants, wasps). 

Many gregarious species show a warning coloration (Sillen-Tullberg 1988, 

Vulinec 1990) and are supposed to be chemically or structurally defended, 

which enables these caterpillars to behave conspicuously (Heinrich 1979, 1993, 

but see also Ruf et al. 2001b). Several studies showed that the effect of 

aposematism may be enhanced by  gregarious life habits because grouping 

makes the aposematic signal more effective by generating a greater aversion in 

predators (e.g. Gamberale & Tullberg 1996, 1998). Nevertheless, unless 

unpalatability is tested explicitly for any species this attribution always remains 

doubtful. In addition, the effectiveness of any defensive structures may vary 

according to the larval stage as well as between various types of predators (den 

Boer 1971). 

We here use the small eggar moth, Eriogaster lanestris, to address the trade-off 

of social behavior, and the concomitant association with a communal silken 

tent, with larval survivorship under the influence of natural predation and 

adverse weather conditions. 

Caterpillars of E. lanestris hatch in spring few days after budbreak and live 

together in and on a silken tent until the very end of their development, when 

they finally leave the tent and pupate some meters away (Balfour-Browne 

1933). Females lay all their eggs in one single cluster and all siblings stay 

together for their whole development. Caterpillars start building the tent right 

after hatching, and expand the structure throughout development. Tents may 

achieve an estimated volume of 750cm³ and are visible over a distance of tens 

of meters by a human observer. Since the tent does not include any resources, 

caterpillars must leave the tent for every food intake (i.e. they are central-place 
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foragers according to Fitzgerald & Peterson 1988). Individuals are highly site 

tenacious and always return to the tent after feeding even if the tent has been 

severely destroyed. This feature is advantageous for survival analyses since re-

locating colonies over a longer period of time is possible. Young caterpillars (L1-

L3) are totally black (to the human observer) and covered with white setae, 

whereas fourth instar caterpillars develop additional tufts of shorter red 

urticating hairs, which are even more pronounced in the fifth (last) instar.  

Many aspects concerning the advantages of living in a group and mechanisms 

underlying group behavior in E. lanestris have been analyzed in recent years 

(Ruf & Fiedler 2000, 2002a,b, Ruf et al. 2001a). Data on the survival of the 

caterpillars in the field are crucial for understanding the costs associated with 

sociality in this species, since the destruction of a colony means the total loss of 

a female’s offspring. It is the purpose of this study to investigate temporal 

survivorship and its spatial variation in Eriogaster lanestris on the colony level 

under field conditions.  

We expect two contradictory scenarios: If defensive features of the caterpillars 

are essential, we expect high initial mortality in the earlier instars (L1-L3) and a 

clear reduction of mortality after the molt to the fourth instar when urticating 

hairs have developed. Alternatively, mortality should influence all instars in the 

same manner, if predation by different predators feeding on the different larval 

stages is equally significant. Moreover, climatic factors are expected to 

influence especially the younger caterpillars that have not yet build a tent or 

which have only a small tent. 

Material and Methods 

Study sites: All study sites were situated in the region around Bayreuth 

(Germany, Northern Bavaria, see Figure 1 for relative geographical positions) 

and can be characterized as typical xerothermic habitats on limestone 

underground with blackthorn bushes and/or hedgerows. All sites were either 

southwest exposed slopes or open plateaus. At sites HP and PB the authors 

have found naturally occurring tents of this species several times between 1999 

and 2002. The site HL had previously been only scarcely covered with 
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blackthorn bushes but presently blackthorn shrubs rapidly spread over the 

whole site. The site BB is a formerly military training area maintained through 

regular pasturing by sheep and goats but also experiencing massive 

encroachment by blackthorn. For BB the occurrence of E. lanestris has been 

reported for at least the end of the 1970s (Wolf 1982). 

 

 

Fig. 1 – Relative geographical position of the four study sites with statements to altitude 
(meters above sea level) and number of experimental colonies exposed per site. 
Marked diamonds denote sites with documented naturally occurring populations of E. 
lanestris in 2002.  

Animals: 100 egg clusters laid on small twigs were attached between 8 – 10 

May with small pieces of wire to branches of blackthorn, Prunus spinosa, which 

is one of the preferred natural host-plants in Southern Germany (Ebert 1994). 

We preferentially chose the top of smaller bushes (height <ca. 1.7m) or the sun-

exposed side of higher plants (height 2-3m). All egg clusters were placed 0.5-

1.5m above ground (depending on the height of the plant) and were marked 

with small numbered labels for later relocation and identification. The number of 

egg clusters exposed per site varied (cf. Fig. 1) depending on the size of the 

area and the number of suitable blackthorns. 

All egg clusters stemmed from a laboratory bred population (third laboratory 

generation). Originally, about 500 caterpillars from three tents had been 

collected at the site HP in 1999. For breeding we attempted to use only males 
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and females from different colonies. Thus, inbreeding should not have 

influenced our experiments since in each year subsequent generations 

consisted of 1000-1500 individuals descending from at least 10 different 

colonies.  

Cocoons were over-wintered in a refrigerator at 4°C under a 6:18h (L:D) light 

regime. Moths hatched within a few hours after they were transferred to room 

temperature in April. Groups of five males and five females were put in a plastic 

box (ca. 13l volume, customary pet boxes) with blackthorn twigs for egg 

deposition. Resulting egg clusters were stored in a shaded cage outdoors to 

maintain them under semi-natural humidity conditions and to prevent early 

hatching. 

 Monitoring: After exposure of egg masses at the field sites hatching of the 

caterpillars and development was monitored once a week (Table 1).  

Table 1. Exposure dates, census dates and progress of larval development for 100 
experimental Eriogaster lanestris colonies monitored in 2002 in the region of Bayreuth. 

 North (site BB) South (sites HP, HL, PB) 

Start 8 - 9 May exposure 10 May exposure 
Census 1 15 May first caterpillars hatched 20 May 60 % of colonies 

hatched 
Census 2 22 May L1, most tents established 26 May L1, most tents 

established 
Census 3 28 May L1/L2  1 June L1/L2 
Census 4 4 June L2/L3 9 June L2/L3  
Census 5 12 June L2-L4 (most L3) 16 June L2-L4 (most L3) 
Census 6 19 June L3-L5 (most L4) 22 June L3-L5 (most L4) 
Census 7 26 June most tents abandoned 29 June L5 or abandoned 

 

Since egg clusters were not attached to the blackthorns before budbreak to 

prevent caterpillars from hatching too early, the developmental status of 

exposed caterpillars did not perfectly match larval ontogeny of naturally 

occurring field colonies that proved to be one larval stage ahead (N=2 colonies, 

sites HP and HL). Nevertheless, some of the experimental colonies finished 

development before the younger one of the natural colonies. This means that 
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our colonies were not much out of phase and experienced predation and 

weather in the same way as natural colonies. 

This study focuses on colony, rather than individual, survivorship since 

caterpillars may hide in the tent during rain or during moderate solar irradiation 

(Ruf & Fiedler, 2002b) and are not visible to the observer. Thus, the precise 

number of caterpillars cannot be specified and even the larval stage of the 

majority of the colony members may not be definable at each census.  

The condition of the colonies was evaluated by using the descriptors listed in 

Table 2. If possible, the cause of the damage of a tent was recorded as well. 

While predation by invertebrates does not leave obvious marks on the tent, 

predation by birds is easily visible by the large holes in the tent occurring in the 

middle of the silk mats. In contrast, damage caused by rain is clearly 

distinguishable from that by birds since ruptures due to rain arise from the 

edges of the mats and stretch in the direction of the silk filaments. 

Table 2. Descriptors for the condition of colonies (pertinent to either egg cluster or 
tent). 

Descriptor Explanation 

hatched caterpillars just hatched, no tent yet established 
infertile no caterpillars hatched from the egg clusters within three weeks 
no tent caterpillars without tent (just after hatching, because of small 

number of caterpillars, or after destruction of tent) 
intact tent with no physical damage 
repaired tent was obviously damaged, but new silk has been spread over the 

holes 
damaged egg cluster: parts are missing; tent: shows holes, not yet repaired 
destroyed egg cluster: no eggs left; tent: completely destroyed, but caterpillars 

still alive 
abandoned tent abandoned, occasionally fifth (=final) instar caterpillars in the 

nearby surroundings 
extinct colony completely destroyed, no caterpillars nearby 
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Climatic conditions: Climatic data were provided by the meteorological station at 

the University of Bayreuth. Since all study sites are less than 20km away from 

the meteorological station these data should be precise enough to show the 

overall weather conditions during the time of the study. More precise data for 

the southern sites are unfortunately not available.  

Results 

During our observations mean daytime temperature (0700-1900h) was 18.9°C, 

mean nighttime temperature (2100-0500h) was 11.3°C. Maximum temperature 

was 33.0°C and nighttime minimum temperature was always above 0°C 

(minimum: 2.8°C) (cf. Fig. 2).  
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Fig. 2 – Climatic conditions (short-wave radiation, temperature, and precipitation) in 
Bayreuth, May and June 2002. Note the interruption of the y-axis in the undermost 
graph. Numbers: 1 = raining period during hatching time. 2 = heavy rainfalls during 
instars L2/L3. 

 

Table 3 shows that mean temperature and the sum of precipitation were higher 

in May and June 2002 compared to the average of the last 30 years.  
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Table 3. Mean temperature and mean sum of precipitation in Bayreuth (Northern 
Bavaria) in May and June between 1971 and 2001 and in the year of the study. 

 May  
1971-2001 

June  
1971-2001 

May  
2002 

June  
2002 

Temperature [°C] 12.0 14.9 14.1 17.5 
Sum of precipitation [mm] 56.3 78.9 76.5 113.4 
 

On June 6 unusually strong rainfall occurred with 43l/m²×h. Comparisons to 

other years (1992-2001) show that the monthly sum of rainfalls may vary 

considerably among years and has been similarly high in other years but such 

extreme rainfall events in May and June are exceptionally rare in this region 

(Fig. 3). 
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Fig. 3 – Sum of precipitation and maximum precipitation per hour in May and June from 
1992 to 2002. Total precipitation in 2002 was not too different from other years but the 
heavy rainfalls on June 6 (60mm within three hours) are extremely unusual for the 
region. Dashed lines indicate mean values of the eleven years that were taken into 
account. Data for 1997 are incomplete and contain data of only three weeks. 
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Most caterpillars hatched between May 15 and May 20 (i.e. ca. one week after 

exposure in the field) and left their tents around the end of June (northern 

colonies at site BB always a few days ahead compared to the colonies at the 

more southern sites HL, HP, and PB). Thus, the complete development of the 

caterpillars lasted approximately 6-7 weeks, because caterpillars pupate very 

soon after leaving the tent (C. Ruf, pers. obs.).  

Five of 100 egg-batches failed to eclose. Obviously, these eggs were not fertile. 

In two further cases the egg clusters were totally destroyed prior to eclosion. 

We do not know whether they were actively destroyed by a predator or if the 

adhesion of the eggs was solved during rain or because of the shrinkage of the 

dead branch, on which the egg-batch had been deposited in the laboratory. 

In 94.2% of all colonies that were successful in building a tent (N=69), the tent 

was directly built on the egg mass. Only four colonies built their tent about 30cm 

above the egg mass. In most cases, the same tent was used (and expanded) 

over the whole development. Occasionally (N=6 colonies), caterpillars moved to 

another place to start tent-building for a second time. This was always a web of 

the ermine moth (Yponomeuta padella Linnaeus 1758), which was then 

expanded. 

Overall, 52 colonies survived until census 7 when the caterpillars had reached 

their final instar (Table 4). Survival here means that a least one mature 

caterpillar could be traced which could unequivocally be attributed to a given 

colony. There was no significant difference in the mortality rate over time 

between the four study sites (Kaplan-Meier analysis, Fig. 4). Overall mortality 

was constant over time, i.e. there was a strong negative correlation between the 

number of colonies surviving and time (r=-0.95, r²=0.91, p<0.0001).  

Table 4. Number of colonies surviving with at least one individual until fifth instar.  

Site Number of colonies surviving until  
fifth instar / total number Percentage colonies surviving 

BB 22 / 50 44% 
HP 10 / 15 67% 
PB 9 / 15 60% 
HL 11 / 20 55% 
total 52 / 100 52% 
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Fig. 4 – Cumulative proportion of colonies surviving at the four study sites. Statistical 
figures relate to Kaplan-Meier survival analysis and indicate that survival was not 
significantly different between the four sites. 

Successful construction of a tent seems to be crucial for the survival of the 

caterpillars (cf. Fig. 5). Of 24 caterpillar groups that had not been successful in 

building an initial tent by the second census (i.e. within approximately one week 

after hatching) 18 became extinct which amounts to 43.9% of the total losses 

that occurred after hatching. From the remaining six hatchling groups only two 

were able to establish a tent even later during the second instar. The other four 

groups survived without having built a tent, but dwindled to a final group size of 

only one individual each until census 7. Even later in the larval life, complete 

destruction of the tent strongly increased the extinction risk of these colonies 

(Fig. 5). Only two out of 15 colonies that lost their tent (between census 3 and 

7) succeeded in rebuilding a tent and two further such colonies survived without 

a tent, whereas the other eleven colonies died out within 1-3 weeks after tent 

destruction. 

Thus, 70.7% of the overall colony mortality after hatching was caused by or 

associated with the preceding loss or non-existence of the tent. Probability of 

survival was significantly higher (nearly 3-fold) after the successful construction 
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of a tent and again significantly increased (again, nearly 3-fold) when the tent 

remained intact or when the caterpillars were able to repair the tent before it 

was totally destroyed (see statistics in Fig. 5). 

Fig. 5 – Flow-chart diagram illustrating the fate of the colonies. Numbers in 
parentheses = number of colonies. pos = probability of survival. Statistics: Comparison 
of actual survival probabilities at a given point: Fisher's exact test, test for deviation 
from equal distribution: Chi-square test (1df). All probability values printed in bold are 
significant after sequential Bonferroni correction. Different width of arrows indicates 
pathways with significant differences in survival. 

 

Predation is generally supposed to be the major cause for larval mortality in 

Lepidopteran larvae. Although the weekly controls of the colonies provided only 

snapshots and observations lack completeness, predation was observed by 

ants (Lasius sp.; Formica. sp.), bugs (Fam. Miridae), spiders, and beetles (Fam. 

Cantharidae) during the earlier larval stages. Only two of 11 colonies at which 

predation by invertebrates was directly observed became extinct by the next 
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census. Again, both of these colonies had no tent for their protection. Predation 

by birds directly at the tents did not occur before census 5 at site HP and 

census 6 at site BB (i.e. when pre-final instars equipped with urticating hairs 

were present). None of the tents with obvious damage by birds (N=5) was 

completely lacking caterpillars, and in no case bird attacks led to the complete 

extinction of a colony.  

Besides predation, climatic factors, particularly rain, had a severe impact on the 

condition of the colonies in our experiments. Figure 6 shows that all tents at site 

BB and the majority of tents at the southern sites were damaged after the 

severe rainfalls on June 6. Most tents showed a noticeable reduction of volume 

at census 5 compared to census 4 and tents were probably temporarily (i.e. 

until the damage was repaired and the tent was newly expanded again) not 

habitable for the caterpillars after the severe rainfalls.  

Discussion 

Contrary to our expectations, colony mortality was not restricted to, nor 

particularly intense, during early instars in E. lanestris in our study but was very 

constant over time. This suggests that different types of natural enemies were 

equally important over the whole development. In spite of the possession of 

urticating hairs, colony mortality did not drop distinctly in the last larval stages. 

Comparable data from other social, tent building caterpillars are rare. In a field 

study conducted in Georgia, USA, caterpillars of Malacosoma americanum 

finished their development within 7-8 weeks (Costa 1993). Climatic conditions in 

the Georgia piedmont in March and April and in the region of Bayreuth in May 

and June are comparable with respect to mean temperature (Georgia: March: 

13.7°C, April: 16.0°C), whereas precipitation is even higher in Georgia (March: 

207.5mm, April: 54.6mm) (State Climate Office, University of Georgia, Athens).  
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In contrast to our findings, the M. americanum population experienced 

significant early-instar mortality but negligible mid- to late-instar mortality. 

Overall, one third of the M. americanum colonies was destroyed by the third to 

fourth instar but no colony became extinct later on. We assume that the 

relatively higher mid-instar mortality of E. lanestris in our study was 

predominantly due to the damage of the tents after the heavy rainfalls on June 

6, which facilitated access of predators to the caterpillars and led to the 

extinction of whole colonies. Surprisingly, climatic conditions did obviously not 

contribute to mortality in M. americanum, maybe because of evenly spread 

precipitation without distinct peaks in the year of Costa’s (1993) study (i.e. 

1990). 

Rain seriously affected the constitution of the silk which became brittle leading 

to large ruptures and holes at the edges of the tent. Additionally, the multiple 

layers of the tent stuck together after being soaked by heavy rain, which forces 

the caterpillars to stay outside. Both factors may have contributed to higher 

mortality through predation following the damage of the tent. 

Climatic factors may also have severely contributed to first instar mortality. The 

five day period (15-20 May) with cool weather (daily maximum <20°C) and with 

sometimes substantial precipitation (Fig. 2) most likely constrained mobility of 

the small caterpillars and retarded the construction of the initial tent just after 

hatching. Under laboratory conditions (ca. 20°C constantly) without precipitation 

caterpillars build a tent, in which all caterpillars may hide, within 1-2 days after 

hatching (C. Ruf, pers. obs.). Besides the direct impact of rain and associated 

low temperatures which retard mobility, foraging, and digestion (Ruf & Fiedler 

2002a), it is very likely that those groups that were not able to build a tent fast 

enough were decimated by invertebrate predators. As a consequence, too few 

individuals (10-20) were left which were not able to construct a tent any more, 

and those groups were very likely to become extinct. 

The impact of climatic conditions on the abundance of insects has been 

analyzed for temperate zone butterflies (Roy et al. 2001), often showing positive 

associations with low rainfall. Furthermore, the impact of extreme weather 

events (e.g. rainstorms) on butterfly populations was shown in a number of case 



Chapter ten: Colony survival in the field 

173 

histories, although by their very nature such events lack reproducibility (Dennis 

& Bardell 1996). Although similar long-term studies for moths hardly exist, it is 

most likely that climatic extremes have the same consequences of larval 

populations of moths.  

Mortality rates of social caterpillars vary enormously among different studies: In 

two other Malacosoma species colony mortality was 40% or more than 95%, 

respectively (Shiga 1979 cited from Fitzgerald 1995, Filip & Dirzo 1985). While 

our and other studies on social, tent-building caterpillars focused on colony 

mortality only and not on mortality of individuals, the latter is probably several 

times higher.  

In the tent building pine processionary Thaumetopoea pityocampa, Schmidt et 

al. (1990) calculated a mean reduction by 62% of the individuals from the mean 

number of eggs in a cluster to the mean number of mid-instar caterpillars per 

colony counted in the field. Unfortunately this study disregarded those colonies 

that had been completely destroyed between egg deposition and the detection 

of the colony.  Another study on web-building caterpillars of Hyphantria cunea 

found mortality rates of 77-100% during the fourth and fifth stadium by birds and 

wasps (Morris 1972). In a recent study Myers (2000) showed that survival of 

western tent caterpillars (Malacosoma californicum) varied with the natural 6-11 

years periodicity of this species. Highest survival rates were measured in early 

stages of the population increase and survival was lowest during the population 

decline.  

We did not control explicitly for the impact of parasitism and virus or bacterial 

infections on the survival of colonies but no colony showed obvious signs of 

strong parasitism (many larval carcasses on the outside of the tents) or disease 

(heterogeneous multi-instar colonies, shrunken dead caterpillars). Nevertheless, 

both aspects of mortality may have had a low effect on the colonies. 

The possession of an intact tent emerged as the strongest predictor of colony 

success. Overall, 71% of colony failures were related to the loss of the tent. The 

functions of the tent are numerous: First of all, the tent facilitates social 

thermoregulation and enables the caterpillars to elevate their body 

temperatures high above ambient temperature (Joos et al. 1988, Breuer & 
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Devkota 1989, Fitzgerald & Underwood 2000, Ruf & Fiedler in press). Besides 

their thermal function tents of caterpillars serve other purposes like facilitating of 

mass assembly and recruitment to food (Fitzgerald & Peterson 1983), or 

reduction of water loss (Wellington 1974). Furthermore, the tent is thought to 

transmit vibrations to ensure cohesion of group members and to help to keep 

caterpillars behavior synchronous (Fitzgerald & Costa 1999). Since caterpillars 

often rest on the surface of the tents, these structures are expected to be only 

marginally effective in reducing the overall impact of predators and parasitoids 

(Fitzgerald 1995 and references therein), but sophisticated studies controlling 

for the sole effect of the tent as a refuge from invertebrate predators are missing 

so far. We suppose that tents may serve as a shelter for at least part of the time 

because many invertebrates (e.g. bugs, wasps, ants) do not enter the structure 

as long as it remains physically intact (C. Ruf, pers. obs.). As a consequence, 

the destruction of the tent thus means the simultaneous loss of multiple 

functions enhancing development and communication among the caterpillars 

which may be the reason for the increased mortality rate among individuals and 

finally to the complete extinction of a colony.  

Silken tents are a costly investment for herbivorous caterpillars (Berenbaum et 

al. 1993, Craig et al. 1999, Stevens et al. 1999). The importance of the tent is 

obvious since E. lanestris caterpillars repaired the tent whenever it had been 

destroyed but normally did not leave it. The only cases where a replacement of 

the tent was observed were associated with the expansion of an already 

existing Yponomeuta web, thus saving costs for a completely new tent.  

 

In a meta-analysis comparing published survival curves for gregarious and 

solitary Lepidoptera and Symphyta, Hunter (2000) showed that gregarious 

caterpillars are less likely do die during the earlier instars than solitary 

caterpillars, but mortality rates rise during the later development (last, solitary 

instars, pupal phase). Overall, in the comparative analysis generation survival 

(from egg to adult) was hence not significantly different between solitary and 

gregarious species whereas the timing of mortality differed between the two 

classes. 
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It is noteworthy in this context that in the Lepidoptera there is a continuum from 

solitary life habits to gregariousness (Costa & Pierce 1997). The duration of the 

period over which larval cohesion persists as well as the percentage of eggs a 

female lays in a single cluster vary enormously across species. Hence, there is 

an important aspect of larval mortality concerning the fitness of the females that 

remains to be noted when comparing solitary, temporarily gregarious, and 

highly social caterpillars. Although mortality rates of solitary Lepidoptera larvae 

may be generally higher during the early larval phase, in all probability at least a 

few individuals of a female’s offspring will escape predation and survive. The 

same is true for species that distribute the share of risk and lay several smaller 

egg clusters. In highly social caterpillars where tent-building can only be 

achieved by large numbers of cooperating siblings colony mortality reduces a 

female’s individual fitness to zero even though mean survival may be high on 

the population level. Thus, there must be a strong trade-off of tent-building in 

highly social Lepidoptera between high benefits, primarily by developmental 

advantages, and high costs due to the risk of complete reproductive failure. 

Most of the tents the authors found in the field contained more than 200 

individuals. Since the potential fecundity of an E. lanestris female is about 300 

eggs (C. Ruf, unpubl. data) relative survival seems to be very high once the 

hatchlings have established their tent and no extreme weather events influence 

the caterpillars’ development.  Obviously, in E. lanestris the benefits of sociality 

outweigh the high risk of losing the whole offspring. 

The field study presented here is one of the first of its kind to demonstrate the 

costs of social tent-bound life-habits in gregarious caterpillars. We showed how 

important a functional, intact tent is for colony survival. In addition to the many 

laboratory studies that revealed advantages of tent-living for thermoregulation 

and development, possession of a tent thereby emerged as the single most 

important predictor of colony survival. This dependence on a silk tent turns into 

a disadvantage when the tent is destroyed by extreme weather conditions. This 

means that tent-building as a survival strategy will be selected against 

whenever the risk of such catastrophes is too high, since each nest destruction 

is related to complete reproductive failure of the female or very likely of both 
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parent moths. It will be interesting to see whether with the ongoing global 

changes in climate, and the associated increasing risk of heavy spring rains in 

Central and Western Europe, the distribution of E. lanestris might change. 

Climate-related distributional changes are well under way for many Lepidoptera 

with complex thermal requirements (Kuchlein & Ellis 1997, Hill et al. 1999, 

Parmesan et al. 1999). 

Acknowledgements  

We thank Bernd Kornmaier for his assistance in controlling the southern study 
sites and Jörg Hager for help in exposing egg clusters at site BB. The district 
government of Bayreuth kindly issued a permit to collect individuals in the field 
for starting the laboratory population.  

References 

Balfour-Browne, F. (1933) The life history of the “smaller eggar moth”, Eriogaster 
lanestris L. Proceedings of the Zoological Society London 1933, 161-180. 

Berenbaum, M.R.; Green, E.S.; Zangerl, A.R. (1993) Web costs and web defense in 
the parsnip webworm (Lepidoptera: Oecophoridae). Environmental Entomology 
22, 791-795. 

Breuer, M.; Devkota, B.; Douma-Petridou, E.; Koutsaftikis, A.; Schmidt, G.H. (1989) 
Studies on the exposition and temperature of nests of Thaumetopoea 
pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) in Greece. Journal of 
Applied Entomology 107, 370-375. 

Clark, B.R.; Faeth, S.H. (1997) The consequences of larval aggregation in the butterfly 
Chlosyne lacinia. Ecological Entomology 22, 408-415. 

Cornell, H.V.; Hawkins, B.A.; Hochberg, M.E. (1998) Towards an empirically-based 
theory of herbivore demography. Ecological Entomology 23, 340-349. 

Costa, J.T. (1993) Larval ontogeny and survivorship in eastern tent caterpillar colonies. 
Journal of Research on the Lepidoptera 32, 89-98. 

Costa, J.T.; Pierce, N.E. (1997) Social evolution in the Lepidoptera: ecological context 
and communication in larval societies. In: Choe, J.C.; Crespi, B.J. (eds) The 
evolution of social behavior in insects and arachnids. Cambridge University 
Press, Cambridge, 402-442. 

Craig, C.L.; Hsu, M.; Kaplan, D.; Pierce, N.E. (1999) A comparison of the composition 
of silk proteins produced by spiders and insects. International Journal of 
Biological Macromolecules 24, 109-118. 

den Boer, M.H. (1971) A colour polymorphism in caterpillars of Bupalus piniarius (L.) 
(Lepidoptera: Geometridae). Netherland Journal of Zoology 21, 61-116. 

Dennis, R.L.H.; Bardell, P. (1996) The impact of extreme weather events on local 
populations of Hipparchia semele (L.) (Nympalidae) and Plebejus argus (L.) 
(Lycaenidae): hindsight, inference and lost opportunities. Entomological Gazette 
47, 211-225. 



Chapter ten: Colony survival in the field 

177 

Denno, R.F.; Benrey, B. (1997) Aggregation faciliates larval growth in the neotropical 
nymphalid butterfly Chlosyne janais. Ecological Entomology 22, 133-141. 

Ebert, G. (ed.) (1994) Die Schmetterlinge Baden-Württembergs, vol. 4,  Nachtfalter II. 
Verlag Eugen Ulmer, Stuttgart. 

Filip, V.; Dirzo, R. (1985) Life cycle of Malacosoma incurvum var. aztecum 
(Lepidoptera: Lasiocampidae) of Xochimilco, Federal District, Mexico. Folia 
Entomologica Mexicana 66, 31-45.  

Fitzgerald, T.D. (1995) The tent caterpillars. Cornell University Press, New York.   
Fitzgerald, T.D.; Costa, J.T. (1999) Collective behavior in social caterpillars. In: Detrain, 

C.; Deneubourg, J.L.; Pasteels, J.M. (eds) Information processing in social 
insects. Birkhäuser, Boston, 379-400. 

Fitzgerald, T.D.; Peterson, S.C. (1983) Elective recruitment communication by the 
eastern tent caterpillar (Malacosoma americanum). Animal Behaviour 31, 417-
442. 

Fitzgerald T.D.; Peterson, S.C. (1988) Cooperative foraging and communication in 
caterpillars. BioScience 38, 20-25. 

Fitzgerald T.D.; Underwood D.L.A. (2000) Winter foraging patterns and voluntary 
hypothermia in the social caterpillar Eucheira socialis. Ecological Entomology 25, 
35-44. 

Gamberale, G.; Tullberg, B.S. (1996) Evidence for a more effective signal in 
aggregated aposematic prey. Animal Behaviour 52, 597-601. 

Gamberale, G.; Tullberg, B.S. (1998) Aposematism and gregariousness: the combined 
effect of group size and coloration on signal repellence. Proceedings of the Royal 
Society London, Series B 265, 889-894. 

Heinrich, B. (1979) Foraging strategies of caterpillars. Leaf damage and possible 
predator avoidance strategies. Oecologia 42, 325-337. 

Heinrich, B. (1993) How avian predators constrain caterpillar foraging. In: Stamp, N.E.; 
Casey, T.M. (eds) Caterpillars – ecological and evolutionary constraints on 
foraging. Chapman & Hall, London, 224-247. 

Hill, J.K.; Thomas, C.D.; Huntley, B. (1999) Climate and habitat availability determine 
20th century changes in a butterfly’s range margin. Proceedings of the Royal 
Society London, Series B 266, 1197-1206. 

Hunter, A.F. (2000) Gregariousness and repellent defences in the survival of 
phytophagous insects. Oikos 91, 213-224. 

Joos, B.; Casey, T.M.; Fitzgerald, T.D.; Buttemer, W.A. (1988) Roles of the tent in 
behavioral thermoregulation of eastern tent caterpillars. Ecology 69, 2004-2011. 

Kuchlein, J.H.; Ellis, W.N. (1997) Climate induced changes in the microlepidoptera 
fauna of the Netherlands and the implications for nature conservation. Journal of 
Insect Conservation 1, 73-80. 

Morris, R.F. (1972) Predation by wasps, birds, and mammals on Hyphantria cunea. 
Canadian Entomologist 104, 1581-1591. 

Myers, J.H. (2000) Population fluctuations of the western tent caterpillars in 
southwestern British Columbia. Population Ecology 42, 231-241. 

Parmesan, C.; Nils, R.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; 
Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; Tennet, W.J.; Thomas, J.A.; 
Warren, M. (1999) Poleward shift in geographical ranges of butterfly species 
associated with regional warming. Nature 399, 579-583. 



Chapter ten: Colony survival in the field 

178 

Roy, D.B.; Rothery, P.; Moss, D.; Pollard, E.; Thomas J.A. (2001) Butterfly numbers 
and weather: predicting historical trends in abundance and the future effects of 
climate change. Journal of Animal Ecology 70, 201-217. 

Ruf, C.; Costa, J.T.; Fiedler, K. (2001a) Trail-based communication in social caterpillars 
of Eriogaster lanestris (Lepidoptera: Lasiocampidae). Journal of Insect Behavior 
14, 231-245. 

Ruf, C.; Fiedler, K. (2000) Thermal gains through collective metabolic heat production 
in social caterpillars of Eriogaster lanestris. Naturwissenschaften 87, 193-196.  

Ruf, C.; Fiedler, K. (2002a) Plasticity in foraging patterns of colonies of the small eggar 
moth, Eriogaster lanestris (Lepidoptera: Lasiocampidae). Oecologia 626-634. 

Ruf, C.; Fiedler, K. (2002b) Tent-based thermoregulation in social caterpillars of 
Eriogaster lanestris (Lep., Lasiocampidae): Behavioral mechanisms and physical 
features of the tent. Journal of Thermal Biology 27, 493-501. 

Ruf, C.; Kornmaier, B.; Fiedler, K. (2001b) Continuous long-term monitoring of daily 
foraging patterns in three species of lappet moth caterpillars (Lasiocampidae). 
Nota lepidopterologica  24(2), 87-99. 

Schmidt, G.H.; Koutsaftikis, A.; Breuer, M. (1990) Ein Beitrag zur Biologie und zum 
Feinddruck von Thaumetopoea pityocampa (Den. & Schiff.) in Griechenland 
(Insecta: Lepidoptera). Zeitschrift für angewandte Zoologie 77, 395-422. 

Shiga, M. (1979) Population dynamics of Malacosoma neustria testacea (Lepidoptera, 
Lasiocampidae). Bulletin of the Fruit Tree Research Station Series A 6, 59-168. 

Sillén-Tullberg, B. (1988) Evolution of gregariousness in aposematic butterfly larvae: a 
phylogenic analysis. Evolution 42, 293-305. 

Stamp, N.E.; Wilkens, R.T. (1993) On the cryptic side of life: being unapparent to 
enemies and consequences to foraging and growth of caterpillars. In: Stamp, 
N.E.; Casey, T.M. (eds) Caterpillars – ecological and evolutionary constraints on 
foraging. Chapman & Hall, London, 283-330. 

State Climate Office, University of Georgia, http://climate.engr.uga.edu. 
Stevens, D.J.; Hansell, M.H.; Freel, J.A.; Monaghan, P. (1999) Developmental trade-

offs in caddis flies: increased investment in larval defense alters adult resource 
allocation. Proceedings of the Royal Society of London, Series B 266, 1049-
1054. 

Vulinec, K. (1990) Collective security: Aggregation by insects as a defense. In: Evans, 
D.L.; Schmidt , J.O. (eds) Insect defenses. State University of New York Press, 
Albany NY, 251-288. 

Wellington, W.G. (1974) Tents and tactics of caterpillars. Natural History 83, 64-72. 
Wolf, W. (1982) Die sogenannten Großschmetterlinge des nordöstlichen Bayreuther 

Umlandes (Insecta, Lepidoptera). Ein Beitrag zur Kenntnis des Obermain-
Hügellandes. Berichte der Naturwissenschaftlichen Gesellschaft Bayreuth 27, 
145-255.  

 



Chapter 11 

179 

Larval sociality in three species of central-place 
foraging Lasiocampidae: A comparative survey 
Submitted to a peer reviewed journal as: Ruf, C.; Freese, A.; Fiedler, K.: Larval sociality in 
three species of central-place foraging lappet moths (Lasiocampidae): A comparative survey. 
 

Abstract 

We studied three species of Lasiocampidae with social, tent-building 

caterpillars in Northern Bavaria, viz. Eriogaster lanestris, Eriogaster 

catax, and Malacosoma neustria. We used key life-history data 

(number of larval instars, sizes and weights of eggs, caterpillars, and 

moths, size of egg clutches) as well as behavioral data (activity 

patterns, tent-building behavior, trail following behavior) for a 

comparative study. Although larvae of all three species are active 

only in spring, show overlapping habitat requirements, and use the 

same major host-plant (Prunus spinosa) with only minor differences 

in phenology, they show markedly different life-history and behavioral 

strategies.  

E. catax lays comparatively few but large eggs while E. lanestris lays 

more but smaller eggs. M. neustria lays the smallest eggs but large 

clusters. E. lanestris caterpillars build a large tent with an accessible 

interior while those of E. catax build a small tent that is only used as 

a resting and molting platform. M. neustria shows a flexible behavior, 

may abandon the primary tent and build a new one several times. M. 

neustria colonies also subdivide and reunite regularly while 

Eriogaster colonies stay together until larvae become solitary. In E. 

lanestris all tentmates of a colony are highly synchronized while 

foraging or resting. Instead, in E. catax small subgroups leave the 

tent for foraging while at every time the majority rests on the tent. M. 

neustria caterpillars forage more or less individually and only 

synchronize by night. Results are discussed in relation to other 
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species of the genera Eriogaster and Malacosoma and with regard to 

the evolution and diversification of caterpillar sociality. 

Introduction 

Social phenomena in animals have interested scientists ever since. In insects, 

this particularly holds for eusocial Hymenoptera (ants, bees, wasps) that share 

common features like overlapping generations, cooperative brood care and 

reproductive division of labor (Costa 1997). Social systems in Lepidoptera 

larvae are far less complex. There are no parent-offspring interactions and 

caterpillars only build up single-generation cohorts that dissolve when the larvae 

mature. Furthermore, genetic factors promoting social cooperation like kin 

selection (Hamilton 1964) do not play a role (Costa & Ross 1993). 

Nevertheless, there is considerable communication among group members, 

resulting in complex behavioral cooperation like communal foraging, defense 

and nest building (for an overview see Costa 1997). 

Social caterpillars are commonly classified in three categories with regard to 

their foraging strategies (Fitzgerald & Peterson 1988). Patch-restricted foragers 

only feed within their loosely spun webs, whereas nomadic foragers do not build 

a three-dimensional web at all. Instead, they spin at most two-dimensional 

resting mats, move from one site to the next, and feed and rest in groups. Only 

few species use a permanent home base, usually in the form of a silken densely 

woven tent or resting platform, throughout the social phase of the larvae’s life 

(so-called central-place foragers, CPF). Since those tents do not include any 

resources caterpillars have to leave their home-base for every food intake. As a 

consequence, resources become more and more depleted and patchily 

distributed during the caterpillars’ life. Moreover, tents of CPF species serve as 

multifunctional structures for thermoregulation (Joos et al. 1988, Ruf & Fiedler 

2002b), coordination of colony activity (Fitzgerald & Costa 1999) and probably 

as a shelter against predators. This leads to the assumption that CPF species 

should have evolved more complex societies based on communicative systems 

that facilitate cooperative foraging and other adaptive interactions as compared 

to any other social Lepidoptera.  
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In Central Europe there are only few moth genera with social CPF caterpillars. 

Besides some species of processionary caterpillars (Thaumetopoea spp., 

Notodontidae) CPF social systems are here only found in the lasiocampid 

genera Eriogaster and Malacosoma. Although some older descriptive 

publications deal with the general natural history of some species of these taxa 

(e.g. Balfour-Browne 1933, Carlberg 1980, Tutt 1900), there is a nearly 

complete lack of quantitative, basic data with the exception of few species of 

economic interest (Fitzgerald 1995 and references therein).  

This paper has two objectives: Firstly, it shall add to our knowledge of the 

biology of three CPF species with overlapping habitat requirements which use 

the same major host plants (Ebert 1994). These species include the small 

eggar, Eriogaster lanestris L., its scarce relative Eriogaster catax L. and the 

common lackey, Malacosoma neustria L. It is our special concern to enlarge 

current knowledge of the highly endangered species E. catax, since the only 

recent publication on this species (Bolz 1998) lacks concrete quantitative data 

and observations reported there are frequently inconsistent with our data.  

Secondly, we use a comparative approach for elucidating ecological strategies 

that may explain niche segregation among these three species. We specifically 

focus on the use of the tents, on strategies for daily activity, and also deal with 

communicative aspects (trail following behavior). Based on these data 

comparisons with other species shall add to our understanding of the evolution 

and diversity of social phenomena in the genera Eriogaster and Malacosoma. 

Material and Methods 

Geographical range of study species: All three species have a Palaearctic 

distribution but ranges do not overlap completely. M. neustria shows the widest 

distribution and can be found almost throughout the Palaearctic region (Table 

1). Eriogaster lanestris also shows a wide Palaearctic distribution but is absent 

from the Mediterranean region. In contrast, E. catax has a more restricted 

distribution and is absent from the northern countries in Europe. In Germany, 

the northernmost populations today occur in Northern Bavaria.  
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Table 1.  Selection of life-history traits that characterize the three species investigated. 
Data on phenology and hostplants from Ebert 1994. Data on geographical range: Ebert 
1994, de Freina & Witt 1987, Dubatalov & Zolotuhin 1992, ProNatura 2000. 

 E. lanestris E. catax M. neustria 
Geographical range Europe (except 

Mediterranean and 
Tundra), N Caucasus, 
Kazakhstan, S Siberia, 
Central Jakutia 

N Spain, Central 
Europe (except 
North), Ural, Asia 
Minor 

Nearly whole 
Palaearctic: Europe, 
Mediterranean 
Islands, N Africa, 
Asia, Japan 

Overwintering 
stadium 

Pupa  Egg Egg 

Larval phenology 
(sequence of 
hatching in spring) 

third first second 

Moths flight season Spring (March-April) Autumn (Sep.-
Oct.) 

Summer (June-Aug.)

Major host plants Prunus spinosa, 
Crataegus sp., Betula 
sp., Tilia sp., Salix sp. 

Prunus spinosa, 
Crataegus sp., 
Quercus sp. 

Prunus spinosa, 
Prunus domestica, 
Malus sp., Betula sp. 

 

Habitat requirements: Although all species may share the same habitat (A. 

Geyer, pers. obs.), habitat requirements are not identically but overlap 

considerably. M. neustria uses a wide spectrum of habitats like deciduous 

forests, hedgerows, parks, and orchards (Ebert 1994). E. lanestris is more 

restricted to warm and xeric habitats and often lives on blackthorns on south-

facing slopes. The primary habitats of E. catax are warm, relatively humid, 

sparsely-wooded, open forests but it may also occur on blackthorn hedgerows 

(Ebert 1994). 

General phenology of the study species: The three species are all strictly 

univoltine with larvae occurring in spring. However, life-history traits differ 

greatly with respect to the overwintering  stadium, the flight season of the moths 

and the precise phenology of the caterpillars (Table 1). The phenology of 

blackthorns is characterized by an early phase of blossoming, withering, and 

delayed budbreak about one week after blossoming (Bartels 1993). E. catax 

caterpillars can regularly be found before leaf budbreak when only blossoms 

and small leaf buds are available as food (in our study area around the end of 

April or the beginning of May). Caterpillars of Malacosoma neustria hatch in 

synchrony to leaf budbreak (ca. 10 days later) and E. lanestris caterpillars hatch 
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shortly after budbreak when leaves are not yet fully developed (in the middle of 

May, A. Freese & C. Ruf pers. obs.).  

Origin of the animals investigated: All animals stemmed from various sites in 

Northern Bavaria. Colonies of E. lanestris were collected in 1999. The animals 

used for this study belonged to the third laboratory-bred generation of these 

animals. Inbreeding was avoided by only breeding with males and females from 

different colonies (1000-1500 individuals each year). Colonies of M. neustria 

were bred in the laboratory (first generation). They all stemmed from males and 

females from one colony (ca. 150 individuals) which was collected in 2001. 

Colonies of E. catax were either collected in the field in the second larval 

stadium or were bred in the laboratory from animals collected in 2001.  

Determination of the two Eriogaster species in young colonies: For an early 

identification of field colonies or for the identification of abandoned tents, it is 

necessary to reliably identify egg clusters and young caterpillars. The egg 

cluster of E. lanestris is usually coiled around a small twig several times 

whereas that of E. catax is more flatly spread along a bigger branch. 

Additionally, the hairs deposited by the mother from her anal tuft on the eggs 

look very different: The hair of E. catax is very smooth and more checkered 

(darker at the base, paler at the top, appearing silver). The most striking feature 

of the whole egg cluster is a dark brownish ridge along its longitudinal axis. In E. 

lanestris the color of the hair appears uniformly gray and the structure of the 

hair cover is less smooth. 

Immediately after hatching caterpillars of E. catax have reddish setae whereas 

those of E. lanestris are white. Differentiation is easy after the first molt when E. 

catax caterpillars show the characteristic tufts of hair on the second and third 

thoracic segment which are not yet visible after hatching. 

Measuring activity patterns: Activity patterns of the caterpillars were monitored 

in the laboratory (environmental cabinet, L:D 14:8h, 18°C) and under near-field 

conditions (roof of university building) by using light barriers attached to both 

sides of a rod leading from the tent to a bunch of blackthorn twigs in a vase. 

Thus, the number of caterpillars crawling between the plant and the tent was 
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automatically registered in 1-minute intervals. Besides, ambient air temperature 

was measured in the shade nearby the tents. Details of the methods can be 

found elsewhere (laboratory: Ruf et al. 2001b, field conditions: Ruf & Fiedler 

2002a). 

Size and weight measurements: Body weights (fresh weight) were measured to 

the nearest milligram on an electronic balance (Sartorius BL 150 S) except for 

the weights of tiny newly hatched caterpillars that were pooled to a group of 

several individuals and weighed to the nearest 0.01mg (Sartorius MC 210 P). 

Moths were weighed immediately after their wings were fully expanded prior to 

the excretion of the meconium and therefore prior to flight or egg deposition. To 

measure the weight of full grown larvae we chose caterpillars that looked as 

large as the larvae would grow according to our experience. This somewhat 

inaccurate method had to be used because Eriogaster and Malacosoma 

caterpillars cease feeding several days before pupating and shrink to less than 

half of their maximum size before they start to build their cocoon. Since 

caterpillars were not sexed it is likely that we measured females only, which 

grow larger than males. Maximum length of full grown caterpillars was 

measured with a caliper rule when caterpillars sat fully stretched and 

undisturbed on a branch. 

Widths of head capsules were measured with the help of a stereo microscope 

using a calibrated scale at a 40-fold magnification. For instars L1 to L4 we used 

head capsules which were thrown off during molting. Head capsules of last 

instar caterpillars were measured at the living caterpillar since the head capsule 

is destroyed during the pupal molt. Thus, due to larval movements inaccuracy of 

measurements is higher for the last instar.  

Cross-section dimension and length of eggs were measured at 70-fold 

magnification. Egg volume was calculated by first taking photographs of the 

eggs. The outlines of the eggs (halves) were then digitalized and the volume 

was determined by calculating a rotational body of this shape with the help of a 

software (FormZ, Ver. 2.9, AutoDesSys).  
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Trail following experiments: Trail following abilities have been shown for M. 

neustria (Peterson 1988) and E. lanestris (Ruf et al. 2001a). Both species 

release their trail marker on the ventral side of the last abdominal segment. 

Nothing is yet known about the trail following abilities of E. catax, and there are 

no studies on communication across species boundaries.  

In order to gain defined trails with the natural trail marker a 10 × 6cm-sheet of 

paper was folded along both diagonals (see Fitzgerald & Underwood 1998a,b 

for method). Parts of the creases were marked 1cm in one direction and 3cm in 

the other direction starting from the crossing point. To obtain artificial trails, the 

venter of the tip of the abdomen of one caterpillar was dragged three times 

along one of the creases between the markings. The sheet was then unfolded 

and another caterpillar was placed on the paper with its head between the short 

markings of the two creases, now building a slight ridge. Swinging its head from 

side to side the caterpillar touched both creases and could therefore find the 

prepared trail. A positive response was scored when the caterpillar followed the 

trail to the mark within three minutes after it had started to search for a trail.  

Other Malacosoma species (M. americanum and  M. disstria) as well as 

caterpillars of E. lanestris follow trails prepared with the steroid 5β-cholestane-

3-one (Fitzgerald 1993, Ruf et al. 2001a). In order to test whether caterpillars of 

E. catax and M. neustria show trail following behavior in response to this 

substance as well, artificial trails were prepared by laying out the steroid solved 

in hexane in an S-shape on a filter paper (Sigma Chemical Company, 

Coprostane-3-one, concentration: ca. 4×10-10g/cm). This concentration is 

sufficient to release a strong trail following response in E. lanestris (Ruf et al. 

2001a). One L2 caterpillar was placed at the end of the trail and the behavior 

was observed. The test was replicated with three caterpillars of each species. 

Use of the tent: We observed tent building behavior and the use of the tents for 

the three species under field and laboratory conditions (exception: E. catax only 

field data). In particular, we noted where precisely the larvae rested, if the same 

tent was used throughout larval development and how the tent was enlarged by 

cooperative spinning behavior. 
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Results 

Clutch size, volume of eggs, and body size: Females of all three species always 

laid their full egg complement into one egg batch. The size of egg clusters 

varied between species. Egg clusters of E. lanestris were the largest but did not 

differ significantly compared to M. neustria (Table 2). Egg clusters of E. catax 

proved to be significantly smaller. Comparing the eggs of the three species 

reveals that they are shaped quite differently. Thus, despite only minor 

differences in length and width, egg volumes of E. catax are ca. 50% larger than 

those of E. lanestris and are three times larger than those of M. neustria. The 

different volume of eggs is also reflected in the different weight of hatching 

caterpillars that is also largest in E. catax (Table 3). 

Table 2. Number of eggs per clutch. Different letters indicate significant differences 
(Kruskal-Wallis ANOVA: H(2df)=54.6, p<0.001, followed by Tukey-Kramer post-hoc 
test, p<0.05). 

Number of eggs in cluster Species Origin N 
mean±SD min max 

E. lanestris Laboratory bred 20 323±71a 210 470 
E. catax Field 39 183±40b 55 293 
M. neustria Laboratory bred 20 292±40a 210 350 

 

There are no significant differences between the body weights of fully grown 

larvae of either E. catax or E. lanestris, whereas M. neustria attains a 

significantly lower maximum body weight (Kruskal-Wallis ANOVA, H(2df)=37.9, 

p<0.0001).  
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Table 3.  Size and weight of Eriogaster lanestris, E. catax, and Malacosoma neustria. 
* mean weight calculated from pooled data. Different letters within a column indicate 
significant differences between larval stages (width of head capsule: Scheffé test after 
ANOVA). Different letters within a row mark significant differences between species 
(body weights: Tukey-Kramer test after Kruskal-Wallis ANOVA). 

Parameter N E. lanestris E. catax M. neustria 

Egg: cross section dimension 15 0.75 ± 0.05 0.73 ± 0.02 0.64 ± 0.03 
Egg: length 15 1.17 ± 0.07 1.56 ± 0.04 1.07 ± 0.08 
Egg: volume (calculated) [mm³] - 0.52 0.73 0.25 

L1 20 0.55 ± 0.01a 0.56 ± 0.02a 0.45 ± 0.01a

L2 20 0.96 ± 0.02b 0.89 ± 0.02b 0.72 ± 0.04b  
L3 20 1.60 ± 0.06c 1.46 ± 0.04c 1.28 ± 0.07c 
L4 20 2.56 ± 0.08d 2.17 ± 0.06d 2.17 ± 0.08d

L5 (ultimate) 20 3.26 ± 0.19e 3.34 ± 0.10e 3.47 ± 0.18e

L5 (penult.) 19 – – 2.66 ± 0.10f 

Width of head 
capsule [mm] 

L6 16 – – 3.77 ± 0.18g

Body length (maximum) [mm] - 54 55 58 
Body weight of hatching caterpillar 
[mg] 

(15-20) 0.43* 0.49* 0.21* 

Body weight of full grown larva [mg] 20 1278 ± 112a 
max: 1530 

1294 ± 51a 
max: 1390 

920 ± 59b 
max: 1029 

male 10-20 236 ± 24 no data 167 ± 25 Body weight of 
adult moth [mg] female 10-20 434 ± 63 no data 378 ± 54 

 

Number of larval stages and width of head capsule: Eriogaster lanestris and E. 

catax both passed through five larval stages which could clearly be separated 

by the width of the head capsule (Table 3; E. catax: F(4df)=7413, E. lanestris: 

F(4df)=2830, both p<0.0001, Scheffé post-hoc tests, all p<0.0001). In contrast, 

the number of larval stages was variable in Malacosoma neustria which had 

either five or six stages. Although the widths of the head capsule were all 

significantly different (F(6df)=2658, p<0.0001, Scheffé post-hoc tests: all 

p<0.0001) it is not possible to unambiguously recognize caterpillars as either 

fifth (if ultimate) or sixth instar, since there was some overlap in the data. The 

sixth instar in M. neustria did not depend on the sex of the caterpillar. Eight of 

18 caterpillars passing through a sixth instar proved to be males and ten proved 

to be females (χ²(1df)=0.2, n.s.). 
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Emergence and sex-ratio: Emergence rates in the flight season following 

pupation were generally very high in M. neustria, whereas they were distinctly 

lower in the two Eriogaster species as they show a considerable proportion of 

delayed hatching (Table 4). The sex-ratio was balanced in E. lanestris and M. 

neustria. In E. catax subitaneous hatching in 2001 indicated a female-biased 

sex ratio but when moths from the same cohort were considered, which 

emerged in the flight season of 2002 (i.e. one year later) the overall sex-ratio 

was unbiased. Delayed emergence in E. lanestris was not taken into account 

since those moths will soonest hatch in 2003. 

Table 4. Sex-ratio of the three species investigated. n.s.= not significant. Delayed 
hatching was disregarded in E. lanestris and is not known from M. neustria.  

Species Origin Eclosion Males Females Proportion  
m : f χ²(1df) p 

E. lanestris Breed. 
2001 

86%  
(430 of 500) 105 95 1.1 : 1 0.50 n.s. 

E. catax, 
subitaneous 

72% 
(153 of 214) 58 95 1 : 1.6 8.95 <0.01 

E. catax, delayed 8% 
(17 of 214) 16 1 16 : 1 13.24 <0.001

E. catax, total 

Field 
2001 

79%  
(170 of 214) 74 96 1 : 1.3 2.85 n.s. 

M. neustria Field 
2001 

97%  
(146 of 151) 60 72 1 : 1.2 1.09 n.s. 

M. neustria Breed. 
2002 

100%  
(167 of 167) 86 81 1.1 : 1 0.15 n.s. 

 

Use and construction of the tent: Although all species build a densely woven 

tent, the use and size of the tent differed markedly (Table 5). E. lanestris 

colonies built one tent, usually right around the egg mass. Only very rarely, 

when the original tent had been destroyed through heavy rainfall, a secondary 

tent was constructed (Ruf & Fiedler, submitted). The tents were continually 

expanded by adding new silk layers and finally became large in size (i.e. about 

750cm³ during the last instar for an average sized tent). The tents had an 

accessible interior. Accordingly, caterpillars changed their position on and in the 

tent frequently to achieve optimal body temperatures (Ruf & Fiedler 2002b). 
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Tents were usually built at the outermost end of branches with optimal exposure 

to solar radiation. Caterpillars left the tent only shortly before pupation.  

Table 5. Use of tent in E. lanestris, E. catax and M. neustria.  

N observations 
Species 

Field Laboratory
Exposure on 
blackthorn Use Number 

of tents Duration of use 

E. lanestris >100 >50 Outer 
margin, sun 
exposed 

Surface 
and interior 

1 Until end of last 
(=5th) instar 

E. catax >100 10 Set back, 
sun exposed 

Surface 
only 

1 Until beginning 
of penultimate 
(4th) instar 

M. neustria 10 >50 Outer 
margin, sun 
exposed 

Preferably 
surface 

variable Until beginning 
of 5th instar 

 

In contrast, caterpillars of E. catax also built only one tent, usually above the 

egg mass, but which was comparatively small in size (roughly 300cm³). Building 

a secondary tent at a new site due to the local exhaustion of the blackthorn was 

scarce (less than 5% of the observed tents, total N=150). The tent was 

exclusively used as a resting platform because it was more flat and had no 

accessible interior. We never observed larvae of any instar staying inside the 

tent. Nevertheless, tents are three-dimensional structures and not just a silk 

mat. Caterpillars usually rested in tightly aggregated groups on its surface or 

rested on its underside when solar irradiation was too strong or during phases 

of rain. The tent was always situated within the blackthorn bushes woven close 

to the branching point of several thick branches (diameter = 5.8±2.6cm, N=33). 

Despite the comparatively deeper location of the tents in the bushes, tents were 

predominantly found on sun exposed positions, with 46.4% of the tents 

occurring in southern directions (SE, S, SW), and another 21.1% of the tents 

situated on the top positions of the plants. Only one third (32.5%) of the tents 

were exposed to western, eastern, and northern directions (N=114). Caterpillars 

left the tent at the beginning of the fourth (=penultimate) instar, usually 1-2 days 

after molting. By then, they dropped off the tent and crawled away.  
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Caterpillars of M. neustria showed a more flexible behavior in terms of tent 

building. They sometimes built only one small tent which was inhabited until the 

end of the fourth or the beginning of the fifth instar. Very often (>80% of cases, 

N=50 colonies), however, the primary tent was abandoned and caterpillars built 

a new tent elsewhere. Colonies regularly subdivided into smaller groups but 

also reunited later on. Changes of the home base were not bound to molting 

phases. The tent was always situated sun-exposed at the end of the branches. 

Tents reached a maximum size of roughly 300cm³. Under field conditions as 

well as in the laboratory, caterpillars were predominantly found on the surface of 

the tent. Only rarely, single individuals hid inside the structure. Besides, 

caterpillars could also often be found hanging in tight aggregations with the 

head downwards on twigs away from the tent.  

Activity patterns: Figure 1 shows exemplary recordings of typical foraging 

patterns of the three species. 

Eriogaster lanestris: Activity patterns of E. lanestris have been described 

elsewhere in detail (Ruf et al. 2001b, Ruf & Fiedler 2002a). Foraging bouts are 

highly synchronized and always include all caterpillars from a colony (apart from 

those just about to molt). In addition, they are clearly distinct from resting 

phases, when all caterpillars rest in or on the tent. The number of foraging bouts 

per day depends on temperature and varies between one and nine. 

Eriogaster catax: Under laboratory conditions we recorded a more or less 

regular, pulsed distribution of signals during the course of a day (Fig. 1, Fig. 2: 

Lab1, Lab2). Thus, caterpillars left the tent and returned to it in rather 

synchronized groups. Resting times between activity bouts were only weakly 

differentiated. It is noteworthy, however, that these foraging groups did never 

include all caterpillars from a colony. Instead, at any time the majority of 

caterpillars stayed on the tent, always in a tightly packed group, usually forming 

a flat circular clump. Under field conditions activity patterns were similar, but 

there were fewer movements between the tent and the plant during the night 

time hours when temperature fell below about 15°C (Fig. 2: Fi1, Fi2).  
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Fig. 1 – Exemplary recordings of typical foraging patterns of caterpillar colonies under 
laboratory conditions at 18°C. Eriogaster lanestris: Synchronized colony activity. Every 
peak represents a synchronized foraging bout of all tentmates. Eriogaster catax: 
Synchronized subgroups. One peak represents a more or less synchronized foraging 
bout of only part of the caterpillars of a colony. Malacosoma neustria. Individual 
foraging by day, nocturnal synchronization. R=return, D=departure from/to nocturnal 
feeding on plant.  

Malacosoma neustria: Foraging patterns of M. neustria are the most flexible 

among the three species investigated. The most striking pattern is the peak of 

signals at dawn and the almost complete absence of nocturnal signals (Fig. 1). 

Direct observations revealed that caterpillars of M. neustria left the tent in the 

evening and stayed on the plant during the whole night. They returned to the 

tent not until the morning which causes a second distinct peak in the automatic 

recordings (see arrows in Fig. 3). During the day, caterpillars usually returned to 

the tent after every food intake. In the laboratory foraging activities during 

daytime were never synchronized and caterpillars foraged individually. In 

contrast, caterpillars synchronized their activities under field conditions and 
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showed distinct, albeit widely spread activity bouts at least at low temperatures. 

The morning return proved to be less synchronized and temporally flexible. 

Since we have no direct observational data under field conditions for longer 

periods of time we do not know whether all caterpillars of the colony, or only a 

fraction, participated in those activity bouts. 
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Fig. 2 – Recordings of foraging activities of four different Eriogaster catax colonies (3rd 
instar) during three consecutive days. Lab1, Lab2: in the laboratory. Fi1, Fi2: under 
field conditions. In colony Fi1 activity patterns were disturbed between day 2 and 3 
because the plant was shifted by a storm and caterpillars had no access to the plant 
anymore. 
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Fig. 3 – Activity patterns of four different Malacosoma neustria colonies (4th instar) on 
five consecutive days. Lab1, Lab2: in the laboratory. Fi1, Fi2: under field conditions. 
Marks at the time axis denote the time when the light was turned on (environmental 
chamber = Lab1, Lab2) or the time of sunrise (Fi1, Fi2), respectively. 

Trail following: Caterpillars of E. catax and M. neustria both followed the 

S-shaped artificial trails prepared with 5β-cholestane-3-one. The same had 

already been shown for E. lanestris (Ruf et al. 2001). E. lanestris readily 

followed trails prepared from surface residues gained from third, fourth 

(=penultimate) and fifth (=ultimate) instar caterpillars of E. catax as well as 

fourth instar caterpillars of M. neustria (Table 6). M. neustria only occasionally 

found trails prepared with surface residues of E. catax, when the material was 

gained from only one caterpillar. If two source caterpillars were used, the 

majority of M. neustria larvae found the trail of E. catax as well as those of E. 

lanestris. The ability of caterpillars of E. catax to recognize trails of either E. 
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lanestris or M. neustria could not be tested since caterpillars refused to search 

for a trail in the experimental situation.  

Table 6. Cross-species attractiveness of the trail marker of three lasiocampid 
caterpillars (non-choice tests). *caterpillar repositioned up to three times if it crawled 
away without showing searching behavior. E. lanestris and M. neustria show reciprocal 
trail following behavior on trails of the other species and on trails of E. catax. E. catax 
caterpillars were not used as test species since caterpillars refused to search for a trail 
in the experimental situation. 

Origin of trail 
marker 

Species tested for 
response 

Trail found No trail found χ²(1df) p 

E. catax L3 E. lanestris L3 11 1 8.3 <0.01 
E. catax L4 E. lanestris L3 11 1 8.3 <0.01 
E. catax L5 E. lanestris L3 12 0 12.0 <0.001 

E. catax L4 M. neustria L3 7* 5 0.3 n.s. 

2 E. catax L4 M. neustria L3 10* 2 5.3 <0.05 

2 E. lanestris L3 M. neustria L3 11 0 11.0 <0.001 

M. neustria  L4 E. lanestris L2/L3 12 0 12.0 <0.001 

 

In choice tests, caterpillars of E. lanestris were not able to distinguish their own 

trails from those of the congeneric species E. catax, and even preferred trails of 

the confamilial species M. neustria over their own trails (Table 7). 

Table 7. Decision of E. lanestris caterpillars (second and third instar) when choosing 
between conspecific and congeneric, or between conspecific and confamilial trails, 
respectively. 

Trail 1 Trail 2 Choice Trail 1: Trail 2 χ² (1df) p 

E. catax L4 E. lanestris L4 10:10 0.0 n.s. 
M. neustria L4 E. lanestris L4 20:6 7.5 <0.01 

Discussion 

Our data show that despite many similarities in larval life history traits a broad 

diversity of ecological and behavioral strategies may arise among tent-building 

Lasiocampidae. Furthermore, closely related (i.e. congeneric) species need not 

necessarily exhibit more similar strategies than other, more distantly related 

species of the same family.  
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Egg size and fecundity 

The mean potential fecundity of a female of E. catax is less than 60% compared 

to a female of E. lanestris although full grown caterpillars are equal in weight 

and adult moths are also very similar in size. Obviously, females of E. catax 

adopt a different strategy and lay fewer but larger eggs and also have larger 

hatchlings. It is generally acknowledged that there is a strong trade-off between 

egg size and number (Fox & Czesak 2000 and references therein, Fischer & 

Fiedler 2001). This effect is especially strong for semelparous arthropods that 

use larval-acquired resources for egg production (i.e. capital breeders: 

Tammaru & Haukioja 1996). This is true for all Lasiocampidae which do not 

possess a functional proboscis and totally rely on the larval resources for adult 

reproduction (e.g. Lemaire & Minet 1999).  

The adaptive significance of different egg sizes is a controversial issue. It is 

generally acknowledged that larger eggs give rise to larger offspring (Fischer et 

al. 2002, Reavey 1992). Furthermore, many studies on different insects support 

the hypothesis that larger offspring can often better withstand environmental 

stresses such as starvation or desiccation (Fox & Czesak 2000, Fischer & 

Fiedler 2001). In contrast to these findings Reavey (1992), in an extended 

comparison across species, observed no general pattern in Lepidoptera. 

Neither were larvae hatching from larger eggs less susceptible to starvation nor 

more mobile. Nevertheless, it seems reasonable to hypothesize that larger 

hatchlings are advantageous for E. catax since these caterpillars often hatch 

before budbreak and have to walk considerable distances from their tent to find 

suitable buds or blossoms for feeding. Furthermore, larger eggs might facilitate 

to survive cold winter temperatures. Species that overwinter in the egg stage 

generally have larger eggs which contain greater energy reserves or have a 

thicker chorion (Reavey 1992 and references therein). Additionally, species that 

oviposit on hosts with tougher leaves were shown to lay larger eggs (Nakasuji 

1987). It seems feasible that feeding on buds requires a relatively larger head 

size than feeding on young soft leaves which would also select for a higher 

hatchling weight. Whatever the ecological significance of larger egg and 

hatchling size may be, in E. catax this constrains the size of larval aggregations 
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that can be attained. It should also be noted that our volume-based estimates of 

egg size (and thus of investment into eggs) produced more realistic values than 

would have been possible by simple measures of linear egg dimensions (egg 

diameter and height, Garciá-Barros 2000). Using linear dimensions only we 

would have been unable to detect the significant difference between E. catax 

and E. lanestris, which are exclusively due to egg geometry.  

Comparisons of our clutch size data with literature data are difficult, since most 

available data lack details about sample sizes. Clutch size for M. neustria 

reportedly varies between 100 and 400 with mean values of about 300 eggs 

(Tutt 1900) which is consistent with our data. Egg clusters of E. lanestris have 

been reported to contain 150-300 eggs (data from English populations, Balfour-

Browne 1933). The number of eggs per egg mass is positively correlated with 

the mass of the ovipositing female which in turn reflects resource accumulation 

during larval development (cf. Fitzgerald 1995). Thus, clutch size is typically 

highly variable within species. This was also true in our samples, where clutch 

sizes varied 1.6 to 5.3-fold within species. Thus, overall our quantitative data 

are in reasonable agreement with these published records. 

Activity patterns 

All caterpillars of the genera Malacosoma and Eriogaster for whom data are 

available show a mixture of diurnal and nocturnal foraging (Ruf & Fiedler 2002a 

and references therein). However, when looked upon in more detail the three 

species investigated in this study show very different foraging strategies, 

ranging from temporally flexible, strictly synchronized foraging (E. lanestris) to 

foraging in more or less synchronized subgroups (E. catax) or even individual 

foraging with only nocturnal synchronization (M. neustria). Besides, the North 

American species Malacosoma americanum shows another more strictly 

scheduled foraging pattern with three foraging periods per day, one each during 

sunrise and sunset, and one around noon (Fitzgerald et al. 1988). All other 

central-place foraging species for whom data are available rely on strictly 

nocturnal foraging (see references in Ruf & Fiedler 2002a). Interestingly, non of 

these nocturnally foraging species has spring feeding larvae. Temperate zone 
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spring species typically face cold temperatures at night but often high radiation 

during the day. It is therefore reasonable to suppose that diurnal activity is 

associated with the need to thermoregulate and to make use of elevated body 

temperatures during the daylight hours (cf. Casey et al. 1988, Ruf & Fiedler 

2002b). Probably, this diurnal foraging activity is then further shaped by biotic 

factors. For example, coordinated and synchronized foraging may be 

advantageous to minimize conspicuousness to visually hunting predators but 

may be useless when food patches are too small or too scattered in distribution 

to support the whole colony at the same time (as in the very early bud-feeding 

E. catax). Variation of activity patterns within and across species indicates that 

there is ecological as well as evolutionary plasticity of this trait in tent-building 

social Lasiocampidae larvae. Automatic long-term recording of foraging 

activities with electronic light barriers again turned out to be necessary to fully 

uncover this variation (see Ruf et al. 2001b). 

Trail following 

Although the trail following abilities of caterpillars of E. catax could only be 

tested on artificial trails it seems reasonable to assume that all three species 

tested use chemically similar trail markers. This result is not surprising. In 

contrast to sex pheromones that have a direct impact on reproduction and 

fitness, trail pheromones are far less species specific and studies on ants have 

shown that even phylogenetically unrelated species may use the same trail 

pheromone (Hölldobler & Wilson 1990). 

It is noteworthy, however, that caterpillars of E. lanestris even prefer trails of M. 

neustria over their own trails and that M. neustria only shows trail following 

behavior on Eriogaster trails if the trail is prepared with surface residues from 

two caterpillars. Possibly, M. neustria caterpillars produce higher quantities of 

the pheromone. Thus, trails may be stronger compared to E. lanestris trails. 

This assumption is also consistent with the observation that M. neustria 

caterpillars did not react to trails prepared from surface residues of only one 

Eriogaster caterpillar because this trail is probably below the threshold level. 

Peterson (1988) showed that in M. neustria the frequency of marking declines 
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rapidly with caterpillar order with the tenth caterpillar passing a trail showing a 

probability of marking of less than 10%. Thus, trails obviously reach a high level 

of acceptability after only few individuals have passed a trail which suggests 

that pheromone quantities applied per caterpillar are relatively high.   

Fitzgerald & Edgerly (1979) also showed that caterpillars of M. americanum 

preferred trails of Malacosoma disstria to trails produced by unfed M. 

americanum caterpillars but preferred their own trails if caterpillars used to 

prepare the trails were satiated. Again, quantitative effects may be responsible 

for this effect. It was also proposed that qualitative differences may play a role 

but these assumptions remain speculative until the chemical composition of the 

trail markers is fully analyzed. 

Tent building and tent use 

Many studies have shown the thermoregulative advantages of silken tents (e.g. 

Joos et al. 1988, Breuer et al. 1989, Ruf & Fiedler 2002b). All species that have 

been investigated so far preferably build their tents in a sun-exposed position on 

the bush or tree and use both, the tent’s surface and its interior for effective 

thermoregulation. In E. lanestris the tightly woven tent becomes enlarged 

throughout larval development and serves as an essential requisite for 

behavioral and metabolic thermoregulation (Ruf & Fiedler 2000, 2002b) as well 

as shelter. In E. catax, however, the far smaller tent is rather constructed like a 

platform on which caterpillars rest and is situated much deeper within the bush. 

This position of the tent does not necessarily affect thermoregulation because 

blackthorns are still bare during the early development of the caterpillars and 

solar radiation easily reaches the larvae. During this early developmental stage 

caterpillars first feed on the blossoms and the emerging leaf buds and later on 

the young leaves (M. Dolek, pers. obs.). Due to the high nutrient content of 

blossoms and buds (Slansky 1993) caterpillars are able to complete the social 

phase of their development (i.e. from hatching until the beginning of the fourth 

instar) in less than 10 days under field conditions (A. Freese, unpubl. data). 

Thus, caterpillars normally have already abandoned the tent before the leaves 

expand to their final size and would therefore shade the tent. Therefore, it is 
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reasonable to suppose that doing without a large tent is a strategy selected for 

to save time and resources. Silk is an energetically costly investment for any 

insect (Berenbaum et al. 1993; Craig et al. 1999, Stevens et al. 1999) and 

spinning silk also requires time. Thus, a flat resting platform is sufficient for the 

caterpillars to assemble in a dense, flat aggregation which facilitates the 

absorption of the incoming solar radiation and provides the caterpillars with a 

boundary layer suitable for thermoregulation (Joos et al. 1988). Yet, the small 

platform-type tent of E. catax does not allow to be used as a retreat in times of 

inclement weather or under attack. In contrast to the statements of Bolz (1998) 

we never observed larvae of E. catax inside the tent. One might speculate that 

due to the early timing and high developmental speed E. catax larvae minimize 

the risk of predation and parasitism but comparative field studies on the main 

causes of larval mortality have not been conducted (for E. lanestris see Ruf & 

Fiedler, submitted). 

In contrast to the two Eriogaster species M. neustria caterpillars did not stay at 

one single place during the social phase of their lives but usually built a 

successive series of tents or several parallel tents when groups subdivide. 

These observations are consistent with those made by Tutt (1900). Obviously, 

the tent is used as a communication center which enables the caterpillars to 

aggregate closely and possibly to deter predators by their pronounced head 

jerking behavior. Nevertheless, the tent is abandoned in order to get closer to 

new food findings. 

Possibly, thermoregulative advantages which require more synchronized resting 

phases and a large tent are of minor importance in M. neustria. This assumption 

is supported by the light coloration (blue, white and orange stripes) of the 

caterpillars which is expected to be less suitable for thermoregulation than the 

black ground color of the two Eriogaster species. The more extensive 

geographical distribution of M. neustria as well as the wider range of habitats 

used also suggest that this species is less dependent on high insolation and 

effective thermoregulation than E. lanestris and E. catax. 
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Evolution of sociality in the genera Eriogaster and Malacosoma 

Within the Lepidoptera sociality is a rare phenomenon but is widespread and 

has undoubtedly evolved multiple times (Costa & Pierce 1997). Factors 

promoting the evolution of sociality have been identified in several studies on 

moths and butterflies. Among these are the reduction of the proboscis which 

often leads to egg clustering for energetic reasons (Miller 1996, Tammaru & 

Haukioja 1996, Hebert 1983). Accordingly,  gregarious larvae are more frequent 

in species that do not feed as adults (Hunter 1991). Furthermore, larval 

aposematism favors the evolution of gregariousness (Sillén-Tullberg 1988). 

Although the Lasiocampidae are of only minor diversity (ca. 1500 species in 150 

genera, Lemaire & Minet 1999), larval sociality seems to be relatively frequent. 

Besides the genera Eriogaster and Malacosoma social CPF caterpillars are 

known from Gloveria and Eutachyptera (Franclemont 1973), and many other 

genera reportedly have gregarious caterpillars (e.g. Aurivillus 1930, Austara et 

al. 1971, Taylor 1949, Arce de Hamity & Neder de Roman 1981, Holloway 

1987, Murphy 1990, Vuattoux 1991, Aherkar et al. 1997, Costa & Pierce 1997). 

Overall, gregarious caterpillars occur in more than 10% (18 out of 150) of the 

lasiocampid genera. 

In all species of the genera Eriogaster and Malacosoma caterpillars are social 

(Table 8). In Malacosoma there is a continuum from species which build a 

permanent large tent, over species with small or multiple tents, to those species 

that do not build a tent at all (Table 8). In contrast, all species of Eriogaster for 

which literature data are available seem to build a tent with the possible 

exception of E. rimicola for which statements in literature are contradictory. It 

must, however, be emphasized that larval life-histories remain unknown for ca. 

50% of the species within both genera. Moreover, available information is 

frequently incomplete, stems from old records and lacks any rigor in the way it 

has been recorded. Thus, more detailed accounts like the present one are 

required in order to gain more comparative insight into the evolutionary ecology 

of larval sociality in Eriogaster and Malacosoma.  
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Table 8. Foraging strategy and use of tent of six species of Eriogaster1 and eleven 
species of Malacosoma2.  CP central-place foraging, NOM nomadic foraging, CP/NOM 
multiple nests, frequently abandoned. Since most studies cited are only descriptive 
papers it was impossible to find all parameters for every species. ‘small’, ‘large’, 
‘dense’, and ‘loose’ are necessarily arbitrary terms. Literature on E. rimicola is 
controversial. 

Species Foraging 
strategy 

Tent Reference 

Eriogaster1 amygdali CP Accessible interior Talhouk 1975 
Eriogaster arbusculae CP Small, dense, 

accessible interior 
Trawöger 1977 

Eriogaster catax CP Small, dense, 
surface only 

This study 

Eriogaster lanestris CP Large, dense, 
accessible interior 

Ruf & Fiedler 2002b 

Eriogaster philippsi CP Accessible interior Talhouk 1940 
Eriogaster rimicola NOM? 

CP? 
 

No tent or: 
tent with accessible 
interior 
 

Lunak 1937,  
Gómez Bustillo & 
Fernández-Rubio 1976, 
Bertaccini et al. 1994 

Malacosoma2 alpicolum CP/NOM Loose, accessible 
interior 

ProNatura 2000, Martín 
& Serrano 1984 

Malacosoma americanum CP Large, dense, 
accessible interior 

Fitzgerald 1995 

Malacosoma californicum  CP Large, accessible 
interior 

Myers 2000,  
Stehr & Cook 1968 

Malacosoma castrensis CP/NOM Loose Martín & Serrano 1984 
Malacosoma constrictum CP/NOM Series of small 

tents for molting 
Stehr & Cook 1968 

Malacosoma disstria NOM No tent Fitzgerald 1995 
Malacosoma franconcium3 CP/NOM Loose, accessible 

interior 
ProNatura 2000 

Malacosoma incurvum CP Large tent, 
accessible interior 

Filip & Dirzo 1985, 
Stehr & Cook 1968 

Malacosoma indica CP ? Joshi & Agarwal 1979 
Malacosoma neustria CP/(NOM) Small, dense, 

preferably on 
surface 

Tutt 1900, this study 

Malacosoma tigris CP/NOM Series of small 
tents for molting 

Stehr & Cook 1968 

1 altogether there are about 13 Eriogaster species known so far (see: de Freina 1999, 
Dubatolov & Zolotuhin 1992). 
2 altogether there are about 25 species of Malacosoma known so far (Fitzgerald 1995). 
3 probably only a subspecies of M. alpicolum. 
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Tent building appears to be restricted to four genera within the Lasiocampidae, 

which do not share a last ancestor common only to them (Regier et al. 2000). 

Hence, together with outgroup data this suggests tent-building to be a derived 

character state that has multiply evolved in the Lasiocampidae. Since there is 

no reliable phylogenetic system of the two genera, it is presently impossible to 

decide if the small size of tents or their complete absence in some species is an 

ancestral or a secondary trait. For example, small tents used as mere resting 

platforms as described here for E. catax may represent an ancestral trait or may 

be the result of secondary reduction. A precise resolution of the phylogeny of 

these two genera will be required to gain more insight into the history and 

dynamics of the evolution of sociality in the Lasiocampidae.  
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Implications of the gregarious life-style on the 
development of Araschnia levana 

Abstract 

Females of the European Map butterfly, Araschnia levana, clump 

their eggs in clusters on the underside of leaves of their host plant, 

the stinging nettle, Urtica dioica. Resulting larvae feed gregariously 

during the first three instars. Aggregations break up with the 

beginning of the fourth instar and last instar larvae feed solitarily. 

Group cohesion is achieved by trail marking and trail following 

behavior. 

The hypothesis that aggregation increases growth rate was tested by 

rearing caterpillars in different group sizes (1, 10, 40, or 80 

individuals, respectively) either on excised nettle leaves in plastic 

boxes in the laboratory, or on intact plants in a greenhouse, 

respectively. 

In both experiments, grouped caterpillars showed a shorter 

developmental time and a higher growth rate compared to solitary 

caterpillars. However, differences were less pronounced in the 

greenhouse experiment which is attributed to higher ambient 

temperatures. Pupal weight tended to be relatively higher for grouped 

caterpillars in the greenhouse experiment but lower in the laboratory 

experiment. The latter effect is ascribed to crowding effects in the 

rearing containers during the later instars. 

Mechanisms underlying faster development are discussed. It is 

supposed that collective overwhelming of host-plant’s spines is most 

important for the observed effects. 
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Introduction 

Although many moths are known to lay their eggs in large clusters, this 

phenomenon is relatively scarce in butterflies (Stamp 1980, Costa & Pierce 

1997). Within butterflies, egg clustering is most common in the family 

Nymphalidae and resulting larvae often stay together for at least the initial 

instars.  

In the Central European fauna gregarious nymphalid caterpillars can be found 

in most checkerspot butterflies (tribe Melitaeini, genera Euphydryas, Melitaea; 

e.g., Wahlberg 1995, 1997, Klemetti & Wahlberg 1997) and in many (though by 

far not all) Nymphalini butterflies (Ebert & Rennwald 1993). Among the latter 

belongs the European map butterfly, Araschnia levana. Females of this species 

lay their eggs in clusters consisting of a group of egg turrets on the underside of 

its only host plant, the stinging nettle (cf. Chapter 2). Caterpillars stay together 

until the beginning of the 4th instar, when colonies disintegrate and last instar 

caterpillars live and pupate solitarily. 

There are many hypotheses to explain the evolution and maintenance of egg 

clustering and larval gregariousness in the Lepidoptera. Most studies 

concentrate on the protection of aggregated larvae from natural enemies 

(reviewed by Hunter 2000). I will deal with this subject in Chapter 13 as well. 

There are, however, other hypotheses that explain egg clustering and larval 

aggregations. Among these are energy limitations on adult females (Hebert 

1983), prevention of egg desiccation (Clark & Faeth 1998) and increase in 

female fecundity (Courtney 1984). At least the first two factors are not likely to 

promote egg clustering in A. levana since females possess a functional 

proboscis and are observed regularly feeding on nectar plants. Furthermore, 

map butterflies prefer nettles in shaded and humid habitats for egg deposition 

(Ebert & Rennwald 1993), which rendering egg desiccation very unlikely. Some 

further studies concentrated on the enhancement of feeding efficiency in 

gregarious larvae, leading to faster development of grouped caterpillars. Two 

mechanisms were supposed to influence communal feeding: (1) advantages of 

caterpillar groups in overwhelming plant defensive structures (Young & Moffet 
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1979, Clark & Faeth 1997, Denno & Benrey 1997) and (2) increased social 

stimulation to feed (Long 1955). 

Stinging nettles are densely covered with spines. These sharp spines contain 

histamine and formic acid, irritating chemicals that are released when the plant 

is touched (Rodriguez et al. 1984). Especially on young leaves these spines 

form a dense cover which complicates movements of small insects. This 

particularly holds for young caterpillars that have only short legs and are 

severely constrained in moving on such surfaces (C. Ruf, pers. obs.). Thus, 

caterpillars feeding on nettles can be expected to benefit from communally 

overcoming spines, for example by collective spinning of silk.  

In this study I focused on developmental benefits of gregariousness in A. 

levana. I hypothesized that if gregariousness in A. levana is driven by the 

necessity of caterpillars to overwhelm plant defensive structures like spines, 

caterpillars that are reared in groups should develop faster and gain more 

weight than caterpillars reared in isolation. Within the grouped caterpillars I 

expected a decrease of developmental time and an increase of growth rate from 

small to large groups (Fig. 1). Relative alteration of pupal weight was either 

expected to equal growth rate or to firstly increase to a maximum at medium 

group sizes and decline at large group sizes if effects of food competition 

influence the development of the caterpillars (Fig. 1).  
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Fig. 1 – Hypothesized patterns of developmental parameters according to group size in 
A. levana, based on the assumption that gregariousness increases feeding efficiency 
and consequently development. 
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Decoupling of growth rate and / or pupal weight and developmental time has 

been shown frequently (Abrams et al. 1996, Nylin & Gotthard 1998). Therefore, 

I analyzed these three parameters separately as well. 

The study followed three steps. (1) Appropriate experimental group sizes were 

determined by assessing the variability of natural egg clutch size. (2) 

Caterpillars were reared in plastic boxes on excised nettle shoots. Food was 

always in close proximity and it was easy to determine the weight of caterpillars. 

(3) Caterpillars were reared on potted nettle plants. This approach was more 

natural but it was impossible to remove and re-integrate caterpillars for weighing 

since disturbance may have prompted the caterpillars to drop off the plant. In an 

additional experiment I tested if caterpillars marked and followed trails that may 

ensure group cohesion. 

Material and Methods 

Breeding: Group size experiments were conducted using the progeny of wild 

caught females. For egg clutch size counts females of the first laboratory bred 

generation were used since females caught in the field are expected to have 

already laid parts of their egg load and resulting egg clusters may thus be 

smaller than on average.  

Females of Araschnia levana (summer generation) were collected in the field in 

the vicinity of Bayreuth and transferred to plastic boxes (Volume: 10l). The 

bottom of each box was covered with cellulose tissue which was moistened 

regularly. The butterflies were provided with shoots or potted individuals of their 

host-plant (stinging nettle, Urtica dioica) for egg deposition. Each box was 

supplied with a small bunch of nectar plants (as available from the field), 

predominantly Asteraceae. Boxes were also provided with petri dishes with wet 

filter paper to make water available to the animals. Egg turrets were removed 

two days after deposition. Since females were never observed to oviposit on a 

leaf where another female had already laid eggs it is very unlikely that large 

clusters consisted of eggs from two females. Eggs were stored until hatching of 

the caterpillars in weighing dishes which were put into bigger boxes with 
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moistened tissue for optimal humidity. Resulting larvae were reared in plastic 

boxes (see below, experiment 1). Pupae were removed from the leaves or 

stems and glued on small paper strips (ca. 1 x 10cm), one beside the other 

(glue: Ponal® Express, Henkel KgaA, Düsseldorf). Paper strips were then hung 

up in plastic boxes (volume: 1000cm³) lined with wet cellulose tissue, so that the 

pupae hung upside down for eclosion. 5-10 males and a similar number of 

females were transferred to gauze cages (ca. 30 x 30 x 30cm) at 25°C (L:D 

18:6h) for mating. Cages were equipped like the plastic boxes described above 

for egg-laying. Females were marked with a permanent marker (Lumocolor 313, 

Staedtler) during copulation and were then transferred to new plastic boxes for 

egg deposition. The number of eggs from 50 egg clusters of ca. 20 females was 

counted and eggs were treated as described above. 

Fixing of experimental group size: Based on the number of eggs in a cluster, 

experimental group sizes were determined. ‘Large’ groups approximately refer 

to the maximum clutch size, ‘medium’ groups to mean clutch size and ‘small’ 

groups to minimum group size. 

Group size manipulation: In order to create groups with different numbers of 

individuals, freshly hatched caterpillars were cautiously handled with a fine 

brush and transferred onto leaves of nettle. The numbers of caterpillars used for 

the two experiments described below are listed in Table 1. 

Experiment 1: Caterpillars were reared in 250cm² plastic boxes outlined with 

moistened cellulose tissue and with fresh nettle leaves available ad libitum. 

Leaves were replaced every day to optimize food quality. After the third instar it 

was necessary to subdivide the individuals from medium or large groups 

respectively to more boxes (maximum: 20 individuals per box). Boxes were put 

into an environmental cabinet at 22°C with a 12:12h (L:D) light regime. The 

following parameters were recorded: Total duration of development, weight of 

pupae, and weight of third instar caterpillars two days after molting to L3. Body 

weights were measured to the nearest 0.1mg with an electronic balance 

(Sartorius MC 210 P). Sample size of L3 caterpillars was different and 

depended on group size (number of individuals (ind.) weighed per approach: 
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3 ind.  / small groups, 5 ind. / medium groups, 10 ind. / large groups, all solitary 

caterpillars). Growth rate was calculated according to Gotthard et al. (1994). To 

determine the hatchling weight of caterpillars, 20 freshly eclosed caterpillars 

were pooled and weighed on an electronic balance to the nearest 0.01mg 

(Sartorius MC 210 P). Mean weight of these caterpillars (m=0.11mg) was then 

used for the growth rate calculations. 

Experiment 2: Caterpillars were placed on potted nettles. It was controlled that 

all groups started on leaves of approximately equal size and age. Therefore I 

chose the third youngest pair of leaves of each stem and placed the larvae 

randomly on one of these leaves. All plants were comparable in size (height: ca. 

30cm at the beginning of the experiments) and provided with the same volume 

of soil (pot diameter ca. 25cm) independently of group size to level out 

differences in food quality. All larvae crawled to the underside of the leaves 

within one hour after they had been placed on the leaf. Plants were placed in a 

non-heated greenhouse in August. Caterpillars were removed from the plants 3 

days after molting to the fifth instar to prevent losses due to dispersion before 

pupation. Caterpillars were then reared in plastic boxes (Volume: 1000cm³) as 

described above until pupation. 

Air temperature and relative humidity in the greenhouse was registered by a 

data logger (HandyLog DK 503 combined with software Infralog for Windows, 

both: Driesen + Kern GmbH, Bad Bramstedt). 

Table 1. Number of replicate groups used in the two experiments. 

  Group size 

  Single Small 
(N=10) 

Medium 
(N=40) 

Large 
(N=80) 

excised nettle leaves 29 25 15 5 
Number of larvae on 

intact nettle plants 21 9 10 6 

 

Trail following behavior: In order to test whether caterpillars of Araschnia levana 

mark trails and recognize marked trails, when they crawl over newly explored 

parts of a plant, I used a simple Y-test. Small parts of filter paper (3 x 1cm) were 
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folded along the long axis forming roof-like pieces. Three of these pieces were 

arranged as a Y (all angles 180°). Ten caterpillars were allowed to pass over 

these pieces, when one arm of the Y was removed. Afterwards, the second, yet 

unmarked arm of the Y was added. Test caterpillars (third instar) were then put 

on the stem of the Y and were allowed to crawl to the crossing point and decide 

for the marked or unmarked trail. 20 caterpillars (third instar) were tested. The 

same stem of the Y was used for all experiments. The side of the marked or 

unmarked arm was regularly changed after every test caterpillar to rule out side 

preferences.  

Statistics: In order to compare the parameters between different group sizes I 

used medians of each group instead of original data to avoid effects of too large 

differences in sample size and pseudoreplication.  For normally distributed data 

I used one-way analysis of variance. Data were squareroot-transformed for 

achieving normal distribution and / or homogeneity of variances if necessary 

and possible. Otherwise I used Kruskal-Wallis ANOVA for non-parametric data. 

Post-hoc tests used were Tukey’s HSD test after standard ANOVA or the 

Tukey-Kramer test for non-parametric data. 

In some parameters tested there was a marked difference in variances between 

different group sizes, especially in weight measurements between solitary and 

grouped caterpillars. To test if these differences were caused by the use of 

medians in groups of 10 to 80 individuals that reduced variances or if these 

differences indicated real variability between the groups I calculated coefficients 

of variation which were then tested for significance (following Sokal & 

Braumann 1980, see formulas below).  
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where s = sample standard deviation,  

x = sample mean,  

N = sample size 

t-Tests were calculated pairwise and resulting p-values were Bonferroni 

corrected (sequential Bonferroni procedure, Hochberg 1988) to assess the 

significance of differences. 

Results 

Size of egg clutches 

The number of eggs per clutch varied over a wide range, but reasonably 

followed a normal distribution. One egg cluster may consist of one to six egg 

turrets. The average number of eggs in a cluster was 42 with a maximum of 75 

eggs and a minimum of 7 eggs (Fig. 2). This distribution led to the fixing of 

experimental group sizes at 10 (small group), 40 (mean = medium group size) 

and 80 individuals (maximum = large group size). 
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Fig. 2 – Variability of the number of eggs laid per cluster by Araschnia levana. Data 
from 50 clusters laid by females of the first laboratory bred generation (non-diapause 
progeny of females of the summer generation caught in the field). 
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Development on excised nettle leaves 

Caterpillars in groups, irrespective of group size, had a significantly shorter 

developmental time than caterpillars which were reared individually. This 

difference between single and grouped caterpillars was already visible in 3rd 

instar caterpillars that were bred in groups of 40 or 80 individuals and became 

very obvious at the end of the larval period (Fig. 3, upper graphs). Solitary 

larvae lagged behind for 2-3 days. 

Body mass of 3rd instar caterpillars was highest in groups of 40 or 80 

caterpillars but was significantly lower in groups of 10 individuals and again 

significantly lower in singly bred caterpillars (Fig. 3: middle). Interestingly, this 

effect was reversed regarding pupal mass: caterpillars reared in large groups 

produced the lightest pupae.  

Growth rate proved to be significantly lower in singly bred caterpillars compared 

to grouped caterpillars irrespective of group size during the social phase of the 

caterpillars’ development. In contrast, growth rate was indistinguishable 

between all group sizes during the last two (i.e. solitary) instars in all 

experimental groups (Fig. 3, lower graphs). 

Development on intact plants 

Caterpillars on potted nettle plants reared in groups of 40 individuals developed 

significantly faster and showed a higher growth rate than singly bred 

caterpillars. No other differences between groups could be ascertained 

statistically (Fig. 4). Mean pupal weight was 6-8% lower in singly bred 

caterpillars compared to medians of grouped caterpillars but differences were 

not significant. Obviously, caterpillars reached their physiological limits under 

the hot weather conditions prevalent during the study phase (cf. Fig. 5). Due to 

high outside temperatures the greenhouse heated to above 30°C and ambient 

air temperature even exceeded 40°C on three days. 
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Fig. 3 – Developmental time, weight and growth rate of A. levana caterpillars fed with 
excised nettle shoots in closed rearing containers. Left column: Data from first three 
instars, right column: data from total development, last two instars, or pupae. Box-
Whisker plots show mean, ±1SD and ±1SE. Boxes marked with different letters differ 
significantly. 
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reared on potted nettle plants in the greenhouse. Box-Whisker plots show mean, ±1SD 
and ±1SE.  

 



Chapter twelve: Gregariousness and development in the Map Butterfly 

218 

te
m

pe
ra

tu
re

 [°
C

]

5
10
15
20
25
30
35
40
45

re
l. 

hu
m

id
ity

 [%
]

20
30
40
50
60
70
80
90

 

Fig. 5 – Course of air temperature and relative humidity in the greenhouse during the 
rearing experiment (from L1 until collecting L5 larvae off the plant). Each space 
between two ticks on the x-axis corresponds to one day (7th – 24th August). Mean 
temperature: 23°C, maximum 42.5°C. 

Variability of parameters in different group sizes 

There was a large inhomogeneity of variances in all three parameters tested in 

the greenhouse experiment and in pupal mass data in the plastic box 

experiment. Table 2 shows coefficients of variation for these data. 

Table 2. Coefficients of variation calculated (1) from the median data for grouped 
caterpillars or (2) from the original data (with all individuals of each group pooled). G = 
greenhouse experiment, PB = caterpillars reared in plastic boxes. 

Calculated from medians Calculated from original data Group size 
1 10 40 80 1 10 40 80 

Pupal mass G 0.128 0.044 0.046 0.047 0.128 0.090 0.103 0.110 
Develop. time G 0.047 0.022 0.008 0.039 0.047 0.036 0.031 0.041 
Growth rate G 0.051 0.026 0.011 0.045 0.051 0.038 0.034 0.041 
Pupal mass PB 0.120 0.042 0.035 0.038 0.120 0.097 0.110 0.121 

 

Pairwise comparisons of coefficients of variation showed that variances were 

often significantly larger in singly bred caterpillars compared to the data of 
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grouped caterpillars if median data were used (Table 3). However, these 

significances broke down if original data were used. In this case, large groups 

sometimes differed significantly, probably an effect of large sample sizes. Thus, 

large differences in variability are an effect of the use of group medians and are 

not caused by a real higher variability of the parameters in singly bred larvae. 

Table 3. Significant differences between coefficients of variation (see Table 2) (Sokal & 
Braumann 1980). Double arrows indicate significant differences, numbers in 
parentheses indicate group sizes. G = greenhouse experiment, PB = caterpillars reared 
in plastic boxes. 

 Calculated from group medians Calculated from original data 

Pupal mass G (1)  (10, 40, 80) - 
Developmental time G (1)  (10, 40) (40)  (80) 
Growth rate G (1)  (40) (40)  (80) 
Pupal mass PB (1)  (10, 40, 80) (10)  (80) 
 
Trail following experiment  

All 20 caterpillars tested preferred the marked arm of the Y to the unmarked trail 

(χ²(1df)=20.0; p<0.0001). The stem section of the Y was always connected to 

the marked arm of the Y by fine filaments of silk. 

Discussion 

Development and growth rate  

Experiments with A. levana caterpillars feeding either on excised nettle shoots 

or on intact plants showed that there is a continuous decrease of development 

time and a continuous increase of growth rate with group size. However, in the 

majority of cases these tendencies could not be partitioned statistically between 

grouped caterpillars but only between grouped versus solitarily bred caterpillars. 

Obviously, caterpillars benefit from their gregarious life-style even in small 

groups and further developmental benefits in larger groups are small. Many 

other studies have shown that larger groups of gregarious caterpillars have 

shorter developmental times and higher growth rates compared to smaller 
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groups (Long 1955, Tsubaki 1981, Tsubaki & Shiotsu 1982, Lawrence 1990, 

Clark & Faeth 1997, Denno & Benrey 1997).  

Mass effects  

According to the expectations caterpillars reared in groups in the greenhouse 

tended to produce larger pupae. This effect has also been shown for other 

gregarious caterpillars (Tsubaki 1981, Fordyce & Agrawal 2001, Fitzgerald & 

Visscher 1996). In the greenhouse experiment, colonies had the possibility to 

disintegrate in the fourth instar and plants were large enough to allow for a wide 

dispersion of the individuals.  

Contradictory to the result discussed above, pupal mass was lowest in grouped 

caterpillars in the laboratory experiment, although the body mass of third instar 

caterpillars was highest for larger groups at first. This effect is probably caused 

by developmental stress of grouped caterpillars in the last two instars that would 

not live gregariously under field conditions beyond the third instar. This 

assumption is also supported by the fact that growth rate within the first three 

instars is significantly higher for grouped caterpillars (i.e. caterpillars benefit 

from the presence of their siblings) whereas there is no difference between 

grouped and single caterpillars for the last two larval stadia. Obviously, the 

rearing conditions were suitable for young caterpillars but caused environmental 

stress for late instar caterpillars. Effects of food shortage can be excluded since 

caterpillars were always fed ad libitum but tactile contacts between the 

caterpillars in the rearing boxes (1000cm³) were probably very frequent. In 

Hyphantria cunea, for example, Suzuki (1981) found a sharp decrease of pupal 

weight and female fecundity with increasing group size in a laboratory 

experiment which was attributed to overcrowding effects in the later instars.  

Trail following behavior 

Caterpillars of A. levana prefer trails marked by their siblings to unmarked trails. 

Trail marking ensures the cohesion of group members while crawling to a new 

foraging site without having direct body contact. Similar trail following behavior 

has also been shown for the nymphalid Chlosyne lacinia (Bush 1969). I did not 

test explicitly whether there is a trail marker eliciting trail following behavior, or if 
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the small silk trails alone serve this purpose. Other studies on nomadic or 

patch-restricted foragers (terms: see Chapter 1) suggest that the latter is the 

predominant mode of trail communication in these species (e.g. Fitzgerald 

1993). The existence of a trail based communication in A. levana stresses the 

importance of group cohesion, i.e. these caterpillars are not only mere 

aggregates of individuals feeding on the same parts of the plant but actively 

hold contact to their siblings. For a general discussion of trail-based 

communication see Chapters 7+8. 

Mechanisms of developmental advantages of gregarious caterpillars 

Many plants employ mechanical defenses and insect herbivores have 

developed a number of strategies to overcome these defenses (Dussourd 1993 

and references therein). Trichomes have been shown to act as structural 

defense (reviewed in: Southwood 1986). For example, caterpillars of Pieris 

brassicae cause higher damage on Brassica plants that had been selected for 

low trichome density (Ågren & Schemske 1993). Furthermore, Colorado potato 

beetles preferentially feed on leaves where trichomes were removed (Yencho & 

Tingey 1994).  

As described above, developmental patterns were quite similar in the two 

experimental approaches used in this study. However, the effect of group size 

was stronger in the laboratory experiment, although food was more easily 

available to the caterpillars since they were not forced to pass the hairy leaf 

stalks and stems of the plants. Probably, the weakness of effects in the 

greenhouse experiment must be attributed to the high temperatures prevalent 

during the study. Obviously, caterpillars reached their physiological maximum 

with regard to growth at regular daytime temperatures above 30°C (cf. Slansky 

1993 and references therein) and in the absence of sufficient scope for plastic 

responses effects of group size were thus very weak. 

Enhanced growth rates have also been attributed to social feeding stimulation. 

It has been argued that aggregations may lead to an increase in overall activity 

among crowded larvae (e.g. Long 1953, 1955). However, it is most unlikely to 

assume that the presence of a caterpillar’s siblings should be primarily 
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necessary to enhance a caterpillar’s internal feeding rhythm. Thus, I assume 

that collective feeding stimulation – if it does occur at all – is a consequence of 

larval gregariousness rather than a factor promoting the evolution of sociality in 

caterpillars. Studies on eastern tent caterpillars (Malacosoma americanum) 

showed that group living appears to constrain rather than promote foraging 

activity (Fitzgerald & Visscher 1996). Isolated caterpillars of this species foraged 

significantly more often than caterpillars maintained in groups but grew more 

slowly compared to grouped caterpillars. It was hypothesized that the slower 

growth may reflect the increased metabolic costs associated with increased 

activity or restricted food intake.  

Although feeding stimulation might play a role in the enhanced development of 

grouped caterpillars in A. levana, it is more likely to suppose that grouped 

caterpillars are better able to overwhelm the nettle’s spines efficiently by 

spinning silk. It is generally acknowledged that silk enhances the adherence of 

caterpillars to the leaf (Dussourd 1993 and references therein). Furthermore, 

caterpillars of A. levana feed in tight aggregations synchronously at the edges 

of the nettle leaves (cf. Chapter 2, plate 4). It thus seems feasible that this 

behavior also serves inducing of a nutrient sink or overwhelming an induced 

allelochemical response in the plant (cf. Denno & Benrey 1997). Further 

experiments combining closer observations of the feeding behavior of A. levana 

with supplying artificial food without plant defensive structures (cf. Clark & Faeth 

1997) are necessary to finally address this question. 

 
Within the tribe Nymphalini there is an ancestral association with Urticaceae 

and many species still have the capacity to feed on Urtica dioica regardless of 

actual host-plant use (Janz et al. 2001). In Central European Nymphalini there 

are five species using the stinging nettle as their host-plant (Table 4). It is 

noticeable that three of these species have gregarious caterpillars. Another 

species (V. atalanta) lives solitarily but builds a leaf shelter in which it rests and 

feeds. The only polyphagous species (P. c-album) also builds a loose leaf 

shelter.  
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Table 4. Use of host-plants and life-style in nettle feeding, nymphalid butterfly larvae 
(all tribe Nymphalini) occurring in Central Europe. Data based on Janz et al. (2001) 

Species Host-plant families Life-style 

Araschnia levana Urticaceae gregarious 

Aglais urticae Urticaceae gregarious 

Inachis io Urticaceae, Cannabidaceae gregarious 
Vanessa atalanta Urticaceae solitary, leaf shelter 

Polygonia c-album Urticaceae, Ulmaceae, Cannabidaceae, 
Salicaceae, Betulaceae, Grossulariaceae, 
Corylaceae 

solitary, loose leaf 
shelter 

 

Other species of Lepidoptera feeding on stinging nettle also frequently build leaf 

shelters, for example the noctuids Diachrysia chrysitis and Hypena 

proboscidalis (Carter & Hargreaves 1987, Porter 1997) and also some pyralid 

moths (e.g. Pleuroptya ruralis, Eurrhypara hortulata, Udea olivalis; Emmet 

1979, Palm 1986). However, building leaf shelters is a common phenomenon 

among pyralid caterpillars (Slamka 1995). Nevertheless, it seems reasonable to 

suppose that caterpillars feeding on stinging nettles are severely constrained by 

the hairy leaves and stems and follow either of two strategies: (1) Caterpillars 

feed solitarily. In this case they preferentially feed within leaf shelters were they 

may feed slowly while they are hidden. (2) Caterpillars feed more openly but live 

gregariously and benefit from communal feeding facilitation and may develop 

faster. 

However, there are numerous Nymphalini butterfly species that have gregarious 

caterpillars but use other host-plants that do not possess hairy leaves. Among 

these are the polyphagous tree-feeding Nymphalis antiopa, Nymphalis milberti, 

Nymphalis vau-album, Nymphalis xanthomelas, and Nymphalis polychloros 

(Scott 1986, Ebert & Rennwald 1993, Costa & Pierce 1997). Thus, it seems 

more likely that gregariousness in Nymphalini butterflies is not bound to nettle 

feeding which is a phylogenetically old trait but is very plastic and has evolved 

numerous times (see cladistic analyses in Janz et al. 2001, Nylin et al. 2001). 

Nevertheless, host-plant architecture might have influenced the evolution and 
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the maintenance of gregariousness in A. levana but is surely not the main factor 

(see also discussion in Chapter 13). 

Faster development in itself has of course no selective advantage but acts 

through mortality agents. Faster growth may result in less overall mortality for 

larvae feeding in larger groups (Clancy & Price 1987). Denno & Benrey (1997) 

demonstrated that slower growth rate extended the window of vulnerability to a 

wasp parasitoid, and thereby increased parasitism.  

Thus, although the proximate mechanisms underlying faster development in A. 

levana need further investigations, developmental benefits are undoubtedly an 

important ultimate factor contributing to the gregarious behavior of the larvae of 

this species. 
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Group size influences larval survival of 
Araschnia levana 

Abstract 

Caterpillars of A. levana live together in aggregations of less than 10 

up to over 80 individuals. Survival probability was independent of 

group size if caterpillars were reared on excised nettle leaves in 

plastic boxes (enemy free situation). In contrast, if caterpillars were 

reared on potted nettles in a greenhouse, where predators had free 

access, survival was highest for experimental groups of 40 

individuals (=mean natural group size), medium for groups of 10 or 

80 caterpillars, respectively, and very low for individual caterpillars.  

If 30 caterpillars were exposed on potted nettles in the field, either as 

a tight group or spread over the plant, the survival rate of grouped 

caterpillars was significantly higher, indicating that different survival 

rates are not caused by a dilution effect (reduced per capita risk). 

Caterpillars showed synchronized flicking behavior and strongly 

regurgitated foregut content when they were disturbed. Ants 

responded with marked defensive reactions when they were 

confronted with droplets of the regurgitated fluid. By synchronous 

flicking and regurgitating caterpillars were able to repel predatory 

bugs of equal body size. Caterpillars may only regurgitate once or 

twice in one sequence and are not always able to regurgitate large 

amounts of fluid, probably depending on their digestive condition. 

Thus, transient deficiencies of individual caterpillars in defensive 

capacity can be counterbalanced by grouping.  

It is concluded that group defensive behavior is a key factor for the 

maintenance of gregarious behavior of larvae of this butterfly 

species. 
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Introduction 

Assemblages of lepidopteran caterpillars vary broadly in size, ranging from only 

few individuals to aggregates containing hundreds or thousands of larvae. 

Variation in group size between species is largely influenced by various 

species-specific life-history traits and niche-associated constraints, but within 

species variation in colony size is also considerable (Fitzgerald 1993). Naturally, 

caterpillar groups consist of the offspring of one single female only, i.e. the 

members of the group are all siblings. Thus, the initial group size is totally 

determined by the female, unless high population densities or the lack of 

suitable host-plants lead to multi-family aggregates (e.g. Stamp 1981, Fitzgerald 

& Willer 1983). 

The female herself is constrained by the total number of eggs available which in 

turn is influenced by larval nutrition (in semelparous insects, Tammaru & 

Haukioja 1996) and / or by adult feeding of the female (in iteroparous insects, 

e.g. Fischer & Fiedler 2001). Thus, in semelparous insects the clutch size is 

fixed at emergence and cannot be influenced by the female any more since all 

eggs are laid in one single cluster. In contrast, iteroparous insects that lay their 

eggs in a number of distinct groups are able to influence the success of their 

offspring by adjusting the number of eggs per cluster as well as the number of 

clutches to be laid.  

The adjustment of egg clutch size is affected by extrinsic constraints acting on 

the females, but also by constraints relevant to the caterpillars. On the part of 

the females these constraints include, for example, the mortality risk between 

egg depositions, the time which is necessary for the maturation of new eggs, or 

the time required for the search for new, suitable host plants. For example, high 

mortality risks should lead to egg clutches that are larger than the clutch size 

that would be optimal if only success of the offspring were to be considered 

(Parker & Courtney 1984). On the part of the caterpillars constraints affecting 

group size are numerous, as well. Although group living may confer a variety of 

physiological, reproductive, and defensive benefits, it also potentially carries 

competitive and mortality costs (Vulinec 1990). For example, larval 
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aggregations may cause local food shortage, resulting in starvation or at least 

exposure to the risks of traveling to find fresh food. The issue, however, is 

clearly complex, and a complete explanation requires simultaneous 

consideration of many life-history characters. 

Apart from the constraints influencing clutch size, it is most important for the 

females to maximize their individual fitness, i.e. to maximize the number of 

offspring surviving to the next generation. Thus, if the adjustment of egg clutch 

size is adaptive one should predict that survival of caterpillars is maximal in 

group sizes that equal the mean natural group size.  

Survival rates should not only be influenced by the mere number of caterpillars 

in a cluster, but also by their ability to deter predators. Protection from natural 

enemies has been reported for many species of gregarious folivores and is 

prevalently acknowledged to be the most important benefit of gregariousness 

(Vulinec 1990, Hunter 2000). Mechanisms underlying this observations are 

quite complex and may interact with each other: Individuals in groups may 

benefit from increased chances of detecting predators, from active group 

defense against predators (Stamp 1981, Vulinec 1990, Codella & Raffa 1993), 

or from the dilution effect (as group size increases, per capita risk of attack 

decreases; Hamilton 1971, Turchin & Kareiva 1989). 

This chapter aims at analyzing the effect of group size on the survival of 

gregarious caterpillars of the European Map butterfly, Araschnia levana. 

Females of this species lay several egg clusters on the leaf underside of their 

only host-plant, the stinging nettle, Urtica dioica (Ebert & Rennwald 1993). 

Preliminary studies have shown that clutch size varies enormously in A. levana 

(Chapter 12) but that study did not address the egg clutch size and its life-time 

variability within individual females. Moreover, nothing is presently known about 

survival rates of these caterpillars in different group sizes and defensive 

mechanisms have never been reported for this species. 

Therefore, the following questions are addressed here: 

1. Which parameters influence egg clutch size, i.e. are there any constraints 

on the part of the females? 
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2. Do caterpillars survive better in larger groups? Is there an optimal group 

size? What are the mechanisms underlying differential survival in different 

group sizes? 

3. What behaviors do these larvae exhibit in response to being attacked? Are 

caterpillars at all able to defend themselves successfully against natural 

enemies? 

Material and Methods 

General breeding conditions: Females of Araschnia levana (summer 

generation) were collected in the field in the vicinity of Bayreuth and transferred 

to plastic boxes (Volume: 10l) in an environmental cabinet (L:D 18:6h, 22-25°C 

during the day / 15°C at night). The bottom of each box was covered with 

cellulose tissue which was wetted regularly. The butterflies were provided with 

stems or potted plants of stinging nettle (Urtica dioica) for egg deposition. Boxes 

were also provided with petri dishes with wet filter paper to make water 

available to the animals. Egg turrets were removed every second day and 

stored until hatching of the caterpillars in weighing dishes which were put into 

bigger boxes with moist tissue for raising humidity.  

Breeding conditions for the ‘female’ experiment: Initial observations showed that 

the size of egg clusters varied with the age of the females. Therefore, I pursued 

studies on the egg laying dynamics of individual females. Butterflies of both 

sexes (ca. 50-100 individuals) were held together in a gauze cage (75 × 75 × 

55cm) with big bunches of nectar plants at 20°C during seven hours of a day 

and 12°C during the rest of the day (L:D 12:12h). These restrictive conditions 

proved to be suitable for mating and survival of the butterflies that are otherwise 

quite short-lived. Due to the experimental conditions it was not possible to 

control exactly for the age of females prior to mating. Thus, females mated 

between the first and third day after eclosion from the pupa. Map Butterflies 

always mated during the evening hours and remained in copula for several 

hours. Females in copula were marked with a marker pen (Lumocolor 313, 

Staedtler) and were isolated on the following day before the onset of the warm 
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phase. They were individually transferred to a plastic box as described above. 

Nettles were checked very carefully for eggs clusters once a day during the cold 

phase. Egg clusters were removed, and eggs were counted and stored until 

hatching of the caterpillars. One egg cluster is defined here as the whole 

number of eggs laid by one female within one day, i.e. the sum of eggs of all 

egg turrets. All egg turrets were usually found tightly grouped on the same leaf 

underside. 

Group size experiments: Caterpillars were cautiously handled with a fine brush 

and transferred onto leaves of nettle creating different group sizes or exposing 

single individuals, respectively. Three different survival experiments were 

conducted. 

Experiment 1: Caterpillars (singly, and in groups of 10, 40, and 80) were reared 

in 250cm² plastic boxes with moistened cellulose tissue with excised nettle 

leaves available ad libitum. Leaves were replaced every day to optimize food 

quality. After the third instar it was necessary to subdivide the groups of 40 and 

80 individuals respectively to more boxes (maximum: 20 individuals per box). 

Boxes were kept in an environmental cabinet at 22°C and a 12:12h (L:D) light 

regime. At the end of the caterpillars development praepupae and resulting 

pupae were counted to determine mortality rates. For sample sizes see Table 1. 

Experiment 2: Caterpillars (singly, and in groups of 10, 40, and 80) were placed 

on potted nettles situated in a non-heated greenhouse (cf. Chapter 12). It was 

controlled that all groups started on the third youngest leaf of a stem and that all 

plants were comparable in size (height: ca. 30cm at the beginning of the 

experiment) and provided with the same volume of soil (diameter of pots: ca 

25cm) independently of group size to minimize differences of food quality. All 

larvae crawled to the underside of the leaves within one hour after they had 

been placed on the plant. Invertebrate predators (such as small bugs, lacewing 

larvae, spiders, and harvestmen) had free access to the greenhouse and 

thrived there in abundance. Survival of the caterpillars and larval instar was 

recorded every day starting on the third day after their placement on the plant. 

For single caterpillars I placed small pieces of paper on the leaf where the 

caterpillar was seen during the last inspection to facilitate re-location on the next 
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day. Caterpillars were removed from the plants 3 days after molting to the fifth 

(last) instar to prevent losses due to dispersal off the host-plant before pupation. 

Caterpillars were then reared in plastic boxes as described above until 

pupation. 

Experiment 3: In order to assess whether dilution effects might influence 

survival rates another experiment was conducted under field conditions. Thirty 

large pots (diameter: ca. 25cm) with nettles grown in a greenhouse (height: ca. 

30cm) were placed along a small path crossing an arboretum in the Botanical 

Garden of the University of Bayreuth one week prior to the onset of the 

experiments. Thus, natural predators could settle down on the plants. Although 

A. levana butterflies are common in the Botanical Garden, egg laying by wild 

females should not have influenced our experiments since the flight period of 

the butterflies was almost over at the date when the nettles were put to their 

final position and caterpillars were released on the plants (7th & 8th August 

2002). Since microclimate might have differed spatially (at various sites along 

the path) and temporally, the plants were positioned pairwise with each plant in 

a pair representing one of the two different treatments (see below). All 

caterpillars of all replicates were exposed within 1.5 days with the pairs being 

exposed with a maximum temporal difference of half an hour. 

30 caterpillars that had just hatched were placed on each potted nettle. In half 

of the replicates (Ngrouped=15) these caterpillars were grouped together on one 

leaf as a tight aggregate. In the other experiment (Nsingles=15) the caterpillars 

were spread individually over the various shoots of the plants. Since all 

caterpillars had to be placed on the leaves during severe rainfalls they were 

settled directly on the underside of the leaves. It was paid attention that all 

caterpillars gripped the leaf before it was turned round so that no caterpillar fell 

off the plant. No matter if caterpillars were grouped or not, they were released at 

the third youngest leaf of a stem to provide equal nutritional starting conditions. 

Grouped caterpillars were monitored once every day and the number of 

surviving individuals was counted. Monitoring of individually placed caterpillars 

was not possible due to their large number (Ntotal=450) and because of their 
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small size. At the end of the caterpillars’ third instar all caterpillars were 

collected from the plants and were counted (on the 23rd August 2002, i.e. 

caterpillars were exposed to predation for 15-16 days). All plants were checked 

very carefully to avoid overlooking individual caterpillars.  

Regurgitation experiment: Regurgitation behavior was observed with the help of 

a stereo-microscoope and documented by drawings and photographs. 

Thirty bugs (Nabis brevis, Fam. Nabidae, ca. 7mm body length) were caught in 

the field (in the Botanical Garden) from nettle plants and starved for 5-7 days at 

room temperature. 5-10 individuals were then placed in a foraging arena (17 x 

12cm plastic box with a 0.5cm thick plaster of Paris layer on the ground to 

provide sufficient humidity). The sides of the arena were prepared with a 

fluoropolymer coating (DyneonTM TF 5035) to prevent the bugs from escaping. 

A group of ca. 30 caterpillars of A. levana (3rd instar, 6-8mm long) resting tightly 

together on a nettle leave was placed in the middle of the arena. Bugs were 

observed if their attacks were successful or not and were removed from the 

arena afterwards. Caterpillar groups were replaced if the first individuals started 

to crawl away. Altogether, 20 attacks were followed in detail. 

Regurgitated fluid was gained from fourth or fifth instar caterpillars. The fluid 

was either removed by gently pressing a 20µl capillary onto the head of the 

caterpillars, or the caterpillars were cautiously held with a forceps right behind 

the head and the capillary was pressed at the mandibles to remove the 

regurgitated fluid.  

For quantitative measurements the fluid of individual larvae (N=40, fourth instar) 

was taken up with a capillary, and the fluid level was measured with a digital 

caliper rule. Afterwards, the data were calibrated with the help of water droplets 

with a defined volume produced with the help of an Eppendorf pipette (vol. 

100µl) to calculate the volume of the regurgitate droplets.  

100µl of the regurgitated fluid and 100µl of water, respectively, were trickled at 

a distance of 3cm on a petri dish (diameter ca. 5cm) and offered to a colony of 

ants (Lasius flavus) in the proximity to a nest entrance. The reaction of 40 ants 

touching a droplet with their antennae was categorized as either ‘defense 
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reaction’ (ant immediately winces or bends its abdomen towards the droplet) or 

‘no reaction’ (ant does not wince and leaves the droplet without any visible 

reaction) or ‘drinking’ (imbibing the liquid). The experiment was repeated with 

three different ant colonies. 

Special statistical methods: Survival analysis: The Kaplan-Meier survival 

function estimation used in this study is a descriptive method for estimating the 

distribution of survival times from a sample (see details in StatSoft 1995). A 

comparison of the survival in more than two groups can be calculated. This 

multi-sample test computes a Chi-square value based on a score that is first 

assigned to each survival time using Mantel’s permutation procedure (see 

details in StatSoft 1995). However, as implemented in the program version 

available (STATISTICA 5.5), this test is only able to compare up to 10 groups. 

Thus, for the field experiment analyses were calculated separately for caterpillar 

groups exposed on the 7th August or 8th August, respectively. Localization of 

significances was achieved by using pairwise Cox-Mantel tests with sequential 

Bonferroni correction (Hochberg 1988). 

Montecarlo statistics on R×C matrices: For analyzing contingency tables of 

frequency data there is a restriction with regard to the cell entries. Thus, Chi-

square analyses are not permitted if about 20% of the cells contain expected 

values <5 (Sachs 1992). In this study I therefore used a randomization method. 

For this analysis, 100.000 random matrices were generated with the same row 

and column totals as in the empirical matrix (see Blüthgen et al. 2000 and 

references therein). Statistics of the empirical data (Tobs) are then compared 

with the distribution of the statistics of all generated random matrices (Tran) and 

the significance level p is calculated from the proportion of all Tran being equal to 

or smaller than Tobs. 
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Results 

Natural group sizes and female reproductive parameters 

Egg cluster size varied between a minimum of 6 eggs and a maximum of 90 

eggs (mean±SD=42.8±18.6, pooled data for all clutches of all females, N=87) 

(Fig. 1). The number of caterpillars hatching in each cluster was only slightly 

lower since only a small proportion of eggs was not viable 

(mean±SD=38.6±20.4). Overall, egg hatching rate was 86.6% under the 

experimental conditions. First clusters of an individual female were significantly 

larger, i.e. they contained nearly twice as many eggs compared to any 

subsequent cluster (Fig. 2). There was no significant decline of clutch sizes 

between second and subsequent egg clusters (Scheffé-test following ANOVA, 

p>0.05). Hatching rate declined from first clusters (95.5%), over second clusters 

(92.6%) to later clusters (81.8%), but differences were not significant due to 

large variances of hatching rate in late clusters (Kruskal-Wallis ANOVA: 

H(2df)=1.25, p=0.3). Nevertheless, hatching rate was negatively (but weakly) 

correlated with the age of the females (r=-0.34, p<0.01). 
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Fig. 1 – Frequency distribution of cluster size of Araschnia levana. Eggs laid under 
laboratory conditions. Pooled data from 17 females. 
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Fig. 2 – Size of egg clusters according to their succession in the female’s life. Different 
letters indicate significant differences located with Scheffé’s post-hoc test following 
ANOVA. Data were squareroot-transformed prior to statistical analysis to achieve 
normally distributed data.  
 

Life time fecundity was quite variable and ranged between 71 and 298 eggs per 

female (mean±SD =219±80.3, N=17). Females laid an average of 5.2±2.0 egg 

clusters over their life time (min=2, max=9). Preoviposition period was short. 

Most females laid their first egg clutch on the day after mating. Only three 

females started egg laying not before the third day after mating. The phase of 

oviposition (i.e. the duration between mating and the deposition of the last egg 

clutch) varied broadly, ranging from 3 to 23 days (mean±SD=12.8±6.1 days). 

Postoviposition phase (i.e. the time between the deposition of the last cluster 

and the death of the female) was very long and ranged from 5 to 29 days 

(mean±SD=12.6±6.6 days). Longevity (excluding pre-mating phase) was 15 to 

34 days (mean±SD=24.8±6.6d). 

The duration of the oviposition phase was strongly correlated with fecundity and 

the number of egg clutches laid per female (Fig. 3).  
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Fig. 3 – Correlation between duration of the oviposition phase (i.e. time between 
mating and deposition of the last egg clutch) and the number of clutches per female, or 
life time fecundity, respectively. 

Life-time fecundity of females (total number of eggs laid) was highly significantly 

correlated with the number of clusters, i.e. females producing more clusters laid 

more eggs (r=0.75, p<0.001). However, mean clutch size per female was not 

influenced by its life-time fecundity (r=0.26, p=0.31). Thus, although variability in 

clutch size was considerable, females held the mean clutch size relatively 

constant except for their first clutch (mean clutch size per female, first cluster = 

66.4±13.8, second and later clusters = 37.1±14.9, see Figure 4 for statistics). 

Egg clusters comprising less than 20 eggs were rare (8% of all clutches). 

There was no correlation between the interval between two egg depositions and 

clutch number in the life time sequence (r=0.06, p=0.60), i.e. although there was 

large variability the time females needed to form a new clutch remained 

relatively constant (mean±SD=2.4±1.8 days). Viability of eggs decreased 

slightly from early to late egg clutches (r=-0.37, p<0.001) but only one female’s 

late egg clutches were totally infertile. Total fecundity of females was not 

correlated with total hatching rate (r=0.38, p=0.13), i.e. females that laid more 

eggs did not produce proportionally fewer viable eggs. 
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Fig. 4 – Egg clutch size as a function of female age (0=day of copula). The graph 
shows pooled data of all females (N=17 females, total N=87). Including first clutches, 
there is a negative correlation between egg clutch size and female age (r=-0.30, 
p<0.01). However, if first clutches are excluded age and clutch size are not correlated 
(r=0.04, p=0.76). 

Larval survival under different conditions 

Survival of caterpillars was very high under the enemy free situation in the 

plastic boxes (≥90%) and indistinguishable between caterpillars reared in 

groups of different numbers of individuals (Table 1). In contrast, survival was 

conspicuously lower when caterpillars were reared on potted nettles in the 

greenhouse. Mortality proved to be age dependent and was mainly restricted to 

the earlier instars, the largest fraction of larval mortality even occurring within 

the first days after hatching (Fig. 5, Fig. 6). Moreover, survival on potted nettles 

in the greenhouse strongly varied with group size. Individual larvae had lowest 

success (total survival: 25.6%), groups of 10 and 80 larvae experienced 

intermediate mortality (total survival: 63.4%, 59.0%), and groups of 40 

performed best (85.3%) (Table 1). 

Mortality was primarily caused by small bugs (family Anthocoridae), lacewing 

larvae (Chrysopa sp.) as well as harvestmen and spiders. Of most caterpillars 

which died during the experiment I found dry carcasses or parts of the body, 
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indicating that the rate of ‘lost’ caterpillars (caterpillars which could not be found 

since they had left the plant or which were totally devoured by predators) was 

low. Parasitoids were never observed during the experiments. 

Table 1. Survival of caterpillars of A. levana reared in plastic boxes or on potted nettles 
in the greenhouse, respectively. Caterpillars dying during pupation were disregarded as 
this is an effect of overcrowding in large group sizes. Overall significance was 
calculated with Montecarlo statistics for R×C matrices. Significant differences for the 
greenhouse data were located with pairwise χ²-tests and subsequent sequential 
Bonferroni correction (Hochberg 1988). Different letters in the last column indicate 
significant differences between groups of different size. 

Total Median per 
group 

Group 
size 

N 
groups 

Surviv. dead Surviv. dead

Probability 
of survival 

[%] 

Overall 
p 

Significant diff. 
between groups 
of different size 

Enemy free situation, caterpillars in plastic boxes 

1 30 29 1 29 1 96.7 a 
10 25 224 21 9 1 90.0 a 
40 15 524 59 37 3 92.0 a 
80 5 361 28 76 4 95.0 

>0.05 

a 

Caterpillars on potted nettles in the greenhouse, natural enemies present 

1 82 21 61 21 61 25.6 a 
10 10 63 37 7 3 70.0 b 
40 10 331 59 35 5 87.5 b 
80 6 276 197 54 26 67.5 

<0.001 

b 
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Fig. 5 – Mortality of caterpillars of A. levana reared on potted nettle plants in the 
greenhouse over the course of the experiment (pooled data for all group sizes). Inset 
pie-chart showing proportion of incidences of death according to developmental stage.  
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Fig. 6 – Cumulative proportion of caterpillars surviving on potted nettles (Kaplan-Meier, 
pooled data). Overall, survival was highly significantly differed between treatment 
groups (Kaplan-Meier survival analysis, p<0.0001). Pairwise Cox-Mantel tests show 
that survival was significantly higher in groups of 40 caterpillars than in groups of 10 or 
80 caterpillars, and survival of single caterpillars was significantly lowest.  
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Survival of 30 grouped caterpillars on potted nettles exposed to field conditions 

was very heterogeneous (Fig. 7). Five groups went totally extinct and the 

maximum number of individuals surviving was only 20 (i.e. 66.7%). Although 

mortality rates were higher in the first instar (i.e. days 1-6, mean: 51.8%) 

compared to the later larval phase (mean: 22.3%, Wilcoxon matched pairs 

signed rank test: Z=2.69, p<0.01, groups which went extinct in L1 excluded), 

mortality was not largely restricted to the first instar as in the greenhouse 

experiment.  
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Fig. 7 – Cumulative proportion of caterpillars surviving on potted nettles under field 
conditions (Kaplan-Meier method; grouped caterpillars). Overall, survival highly differed 
significantly between the groups, irrespective of the day of exposure. 

However, survival of grouped larvae was significantly higher compared to 

individually living caterpillars (complete extinction on four plants, maximum 

number of individuals surviving = 4; Fig. 8). Thus, the probability for a total 

extinction of the whole group was equal (Fisher’s exact test: p=0.50), but mean 

survival rate was 28.9% in grouped caterpillars compared to only 4.9% in single 

caterpillars. 
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No parasitoids emerged from the larvae after they had been brought back to the 

laboratory. 
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Fig. 8 – Number of caterpillars surviving on potted nettles in the field if either being 
grouped or spread individually over the plants. Nstart=30 caterpillars per plant. 
Nreplicates=15 per treatment. Survival is significantly different between groups (Wilcoxon 
matched pairs signed rank test: Z=2.48, p=0.01). 

Defensive behavior / regurgitation 

If caterpillars of A. levana were disturbed, they synchronously started flicking, 

i.e. they rose the front part of the body and moved their bodies fastly from side 

to side. Furthermore, a fraction of the caterpillars strongly regurgitated. At first, 

only small amounts of fluid formed a droplet around the mouth parts but later 

the whole head capsule was covered with the fluid, then appearing very large, 

round, and shiny black (Fig. 9, Fig. 10).  
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Fig. 9 – Schematized appearance of A. levana caterpillars during regurgitation 
behavior. A flicking behavior. Arrow indicates direction of head movements B lateral 
view C front view. Dark green: position of regurgitated fluid at the beginning. Light 
green: position of regurgitated fluid when maximally spread over the head capsule. 

 
Fig. 10 – Photograph of an A. levana caterpillar prior to (left) and during regurgitation 
(right). The regurgitated fluid pours over the whole head capsule giving a shiny black, 
round appearance. The fluid can be re-imbibed if the caterpillar does not touch 
anything so that the fluid drains off the head capsule. 

Caterpillars of all instars are able to regurgitate. This includes L1 larvae that are 

able to regurgitate immediately after hatching before the first food intake. Only 

caterpillars shortly before molting do not regurgitate.  

However, caterpillars were not equally capable of regurgitating fluid. The 

volume regurgitated by different individuals was up to 13.7 times different 

(Fig. 11). None of the caterpillars tested did not regurgitate at all.  
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Fig. 11 – Volume of the accumulated fluid droplets regurgitated by A. levana 
caterpillars (4th instar) after simulated attacks.  

The reaction of Lasius flavus worker ants touching the droplet with the 

regurgitated fluid was homogenous (Table 2). The vast majority of individuals 

showed marked defensive behavior and backed off the droplet immediately 

after touching it (Total χ²(3df)=51.79, p<0.0001). Many of them immediately 

started grooming. Only few ants showed no reaction, mainly if they possibly 

passed the droplet just with the legs and did not touch it with the antennae (this 

was not always clearly visible). None of the 40 animals in any of the three 

experimental replicates imbibed the fluid.  

In contrast, none of the ants touching the water droplet winced and many of 

them rested to drink. Although the proportion of water-drinking individuals 

differed significantly between the three test colonies, the reaction on the 

regurgitated fluid was uniform (see statistics in Table 2). 
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Table 2. Reaction of 40 Lasius flavus ants encountering droplets of either regurgitated 
fluid or water, respectively. Statistics: Montecarlo statistics on R×C matrices to test for 
homogeneity across colonies (cf. Bluethgen et al. 2000). 

Regurgitated fluid Control (water) Ant 
colony Defense reaction No reaction Drinking No reaction 

1 34 6 23 17 
2 38 2 31 9 
3 38 2 13 27 
p p>0.05 p<0.0001 

 

Only 7 out of 20 Nabis brevis bugs were able to capture a caterpillar 

successfully. The remaining 13 were deterred by the flicking behavior and by 

the regurgitated fluid which sometimes agglutinated the antennae of the bugs. 

Bugs usually abandoned the attacks after two or three unsuccessful attempts 

and left the leaf. 

Discussion 

Influence of group size on survival in gregarious caterpillars 

Comparing egg clutch sizes of the females from this study (first laboratory bred 

generation from females of the summer generation caught in 2001) to those of 

Chapter 12 (females from 1999), it is obvious that mean clutch size in A. levana 

is very constant (i.e. about 40 eggs. But see also discussion on geographical 

differences, p. 250).  

This study shows that mortality of caterpillars is independent of group size when 

caterpillars are reared in an enemy-free situation. In contrast, solitary 

caterpillars and small groups are clearly at a disadvantage compared to larger 

groups when caterpillars were reared on intact plants with their natural enemies 

being present. Colonies with a group size of around 40 eggs (and later larvae) 

which parallels mean natural clutch size had the highest survival, suggesting 

that selective pressures in natural populations have favored a medium group 

size. This means that under an optimality framework clutch size can be 

considered as an adaptive trait that has been shaped to an optimal trait size by 
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natural selection. However, first clutches of females are usually larger than later 

clutches indicating that there are strong constraints affecting the female (e.g. 

survival probability). Thus, there are obvious conflicts of interests between the 

female and its offspring. While from the female’s perspective the first clutch is 

the most valuable one (greatest likelihood of surviving up to the first egg laying, 

highest egg viability), the resulting very large caterpillar groups appear to be at 

a disadvantage relative to medium sized groups. 

The influence of group size on survival of caterpillars is well documented for a 

number of species in the laboratory or under field conditions. However, there is 

no evidence for a general pattern indicating that gregariousness is always 

bound to advantages in survival. Results can be broadly classified in two 

categories: 

1. Individually reared larvae or small groups of caterpillars have low survival 

even in enemy-free situations.  

For example, Tsubaki (1981) found higher mortality of solitary individuals and 

smaller groups in a gregarious zygaenid moth. 20% of isolated larvae died of 

unsuccessful feeding in the first instar which was attributed to ‘establishment 

mortality’ (definition by Ghent 1960), i.e. solitary caterpillars are not successful 

to commence feeding due to their inability to produce an initial wound in the 

plant tissue. Similar results were found for a large number of lepidoperan and 

sawfly larvae (see references in Tsubaki 1981, Matsumoto 1989). Obviously, 

mortality during the first instar due to unsuccessful feeding in solitarily bred 

caterpillars and feeding facilitation in gregariously bred caterpillars is not 

operant in A. levana (see also: Suzuki & Uematsu 1981). Thus, feeding 

facilitation is at most of minor importance for the survival of A. levana, but may 

nevertheless be important for the caterpillars’ growth (Chapter 12). 

2. Individually reared larvae or small groups of caterpillars have low survival in 

the presence of predators and / or parasitoids. 

Higher survival of larger groups under enemy pressure was found for several 

lepidopteran species (e.g. Morris 1976, Shiga 1976, Clark & Faeth 1997). 

Furthermore, comparing artificial group sizes with natural groups sizes often 
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revealed that survival was highest for those group sizes that resembled the 

naturally occurring clutch size (Stamp 1981, Matsumoto 1990). The 

mechanisms responsible for higher survival of grouped caterpillars are variable. 

Sometimes, a minimum number of caterpillars is necessary to build a leaf 

shelter which enhances survival (Damman 1987). Other studies found that large 

groups had significantly fewer predators per caterpillar than did smaller groups 

(so-called dilution effect; Lawrence 1990). My studies using map butterfly larvae 

on potted nettles in the field showed that this dilution scenario is unlikely for A. 

levana, since survival of tightly grouped caterpillars was still significantly higher 

than in solitary caterpillars although the total number of caterpillars per plant 

was kept constant. Only few studies did not find any influence of group size on 

survival (Denno & Benrey 1997, Fordyce & Agrawal 2001). However, optimal 

group size may differ for each stage of the life cycle, a consequence of 

changing ecological factors affecting mortality (Stamp 1981). Thus, studies 

focusing on life-stages that are least affected by predation or parasitism could 

result in misleading conclusions. 

Most studies which aim at explaining the higher survival rates of groups of 

larvae concentrate on the communal repellent defense of grouped caterpillars 

as a mechanism (reviewed by Hunter 2000). The remarkably strong 

regurgitation behavior of A. levana makes it very likely that in this species, too, 

defensive mechanisms are responsible for the observed increase of survival 

rates in differently sized groups. 

The efficiency of defensive regurgitation is strictly bound to the toxicity or the 

repellency of the host-plant material (Peterson et al. 1987, Sword 2001). 

Regurgitation has been studied most intensively in grasshoppers. Regurgitates 

of grasshoppers are a complex mixture of partially digested food, salivary 

secretions, and digestive enzymes (Sword 2001 and references therein). Since 

the regurgitated fluid of A. levana was not analyzed for its compounds it 

remains unknown what compounds cause its deterrent impact on ants or bugs. 

However, stinging nettles are chemically well analyzed and were shown to 

contain several acids (butyric acid, caffeic acid, ferulic acid) and tannins (Duke 

1992) that could be responsible for the defensive effect of foregut regurgitates.  
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Evidence for the deterrency of regurgitate to invertebrate predators (and also 

birds) was provided by several studies. For example regurgitation enables 

grasshoppers to ward off attacking ants (Eisner 1970). Even body parts of 

potential prey treated with regurgitate were rejected. Wasps were reluctant to 

sting grasshoppers which had spread regurgitate over their bodies and showed 

marked grooming behavior after contact (Steiner 1981).  

Defensive regurgitation has also been reported for lepidopteran and symphytan 

larvae. Gregarious checkerspot caterpillars (Euphydryas spp.) are reported to 

defend themselves successfully by thrashing the front half of the body and 

regurgitating on attacking parasitoids (Stamp 1984). Caterpillars of the 

lasiocampid moth Malacosoma americanum use allelochemicals derived from 

host-plant cyanogenesis for defensive regurgitation against ants (Peterson et al. 

1987). Caterpillars of two solitary oecophorid species (Myrascia sp.) even 

possess diverticuli in the foregut to store host-plant oil for regurgitation 

(Common & Bellas 1977). Such diverticuli are also known from gregarious 

sawfly larvae (Neodiprion sertifer) that store host-plant resins which are used for 

defensive regurgitation against vertebrate and invertebrate predators (Eisner et 

al. 1974). Thus, all these species use compounds produced by the plant for its 

own defense against herbivores as a secondary defense against predators.  

Defensive behaviors of caterpillars may be temporally variable. In buckmoth 

caterpillars (Hemileuca lucina) behaviors in response to simulated attacks 

changed markedly between the first three instars (the gregarious phase of the 

caterpillars) and the last three instars (the increasingly solitary phase) (Cornell 

et al. 1987). In the late instars caterpillars escaped from attacks by dropping or 

curling while the early instars caterpillars defended themselves by regurgitating 

and thrashing. This behavior of young larvae reflects the necessity of young 

larvae to react to attacks in a way as to remain in cohesion with the siblings.  

The benefits of defensive behaviors may also vary depending on the predator 

species. Clark & Faeth (1997) found that caterpillars of the nymphalid butterfly 

Chlosyne lacinia living in large groups were well protected from solitary 

predators but not from ants that recruit to food. It is noticeable in this context 
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that defensive mechanisms are not ubiquitous in gregarious caterpillars. For 

example, Young & Moffet (1979) found no apparent communal defense against 

predators in gregarious butterfly larvae of Mechanitis isthmia (Nymphalidae). 

The benefits of gregariousness for defensive behaviors are obvious, since many 

synchronously acting caterpillars may regurgitate more fluid than a single larva. 

Since mortality was highest during the first days after hatching, synchronized 

regurgitation may be particularly necessary for young larvae to provide enough 

regurgitate to ward off natural enemies. It is important to note in this context that 

the ability to regurgitate was quite variable among larvae of A. levana. Since no 

nymphalid species has ever been reported to possess foregut diverticuli to store 

fluid for regurgitation the ability to regurgitate will largely depend on the 

digestive status of each larva. Those larvae that have nearly finished digestion 

will not be able to regurgitate fluid from their foregut until the next feeding bout. 

Similar observations were made in Hemileuca lucina were one third of the 

caterpillars attacked with forceps did not show any reaction (Cornell et al. 

1987). Thus, gregariousness insures the members of a group to be protected by 

their siblings at times when they are not ready to defend themselves. 

However, it remains unclear, why very large groups of A. levana suffered higher 

mortality than medium groups. It is conceivable that large groups consume 

leaves very fast and are thus forced to change between foraging sites more 

frequently than smaller groups. These migrations will increase the caterpillar’s 

conspicuousness and may result in temporary disintegration of the groups.  

 

Adjustment of clutch size and female fecundity 

If survival is highest in groups of a medium size (about forty caterpillars in A. 

levana), why is there so much natural variation in batch sizes? Since the 

pioneering work of Lack (1947, 1948) a great deal of interest has centered on 

the evolution of clutch size in birds. However, clutch size in birds is dominated 

by the influence of parental care. Models for clutch size determination in 

animals without parental care have been developed in the 1980’s (e.g. Parker & 
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Courtney 1984, Skinner 1985, Mangel 1987). Some of the most important 

aspects and predictions from the models are addressed below. 

1. Selective pressures on the caterpillars may vary temporally and spatially (cf. 

discussion p. 245). For example, caterpillars in other geographical regions may 

face other selective pressures with another optimum clutch size. Danish A. 

levana reportedly lay clutches of over 100 eggs (Henriksen & Kreutzer 1982) 

which is above the maximum clutch size of A. levana as observed in my 

experiments with animals from the vicinity of Bayreuth. In contrast, Japanese  

Map butterflies reportedly lay only 4 to 20 eggs (Fukuda et al. 1991). Natural 

groups of Belgian A. levana are reported to contain 10-30 individuals (Maes & 

Van Dyck 1999) which is comparable with our data if mortality in the early 

instars is considered. Thus, variability may be a strategy to spread the risk due 

to a relative unpredictability of the pressure imposed by predation and 

parasitism. 

2. Optimal clutch size is influenced by possible competition among the 

hatchlings for resources (Parker & Begon 1986). Therefore, females could lay 

larger clusters on hosts that can support the growth of more offspring (Pilson & 

Rausher 1988, Damman 1991, Tsubaki 1995). In A. levana, however, 

competition for food is highly unlikely because stinging nettles build rhizomes 

and individual clones thus usually cover several square-meters at suitable sites 

(nutrient rich soil, high humidity – these are the typical larval habitats of A. 

levana: ProNatura 1987, Ebert & Rennwald 1993). Thus, competition among 

siblings has never been reported for the map butterfly and will consequently 

hardly influence clutch and group size. 

3. Clutch size is not only influenced by maximization of surviving larvae but also 

by the life-expectancy, resource availability and potential fecundity of the female 

(Parker & Courtney 1984, Mangel 1987, Minkenberg et al. 1992). For example, 

if the expectation of surviving to lay a second clutch is low, more eggs should 

be laid in the first clutch. The validity of this prediction has been shown for other 

nymphalid butterflies as well (e.g. Warren et al. 1994, Wahlberg 1995) and is 

also consistent with my data. Furthermore, clutch size is predicted to decrease 
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as the number of eggs remaining to be laid becomes low (Forsman 2001). 

However, in A. levana clutch size and time between two clutches remained 

relatively constant over time (excluding the first clutch). Map butterflies hatch 

with a mean number of ca. 60 mature eggs (Bink 1992). As in many other 

butterflies new eggs mature during the oviposition period (cf. Wheeler 1996), 

i.e. map butterflies are income breeders (Tammaru & Haukioja 1996). Thus, life-

time fecundity is strongly correlated with longevity. Consequently, it is very likely 

that females invest most of the available eggs into the first clutch and are then 

limited by the time required to mature further eggs.  

In the laboratory females of A. levana survived for 2-5 weeks but the oviposition 

phase spanned only 3 to 23 days. Although fertility decreased with age, A. 

levana females are probably not sperm limited because females that had a high 

life time fecundity did not show reduced hatching rates. However, resource 

limitation might have played a role if the offered nectar plants and water 

resources did not fulfill the female’s requirements (i.e. there were constraints on 

egg maturation and vitellogenesis. For a general discussion of the importance 

of adult nutrition for egg production see Boggs 1986). The long post-oviposition 

phase is probably influenced by artificial conditions in my experiments with 

nectar plants and water being available ad libitum in close proximity to the 

females that would otherwise probably have died faster. Unfortunately, there 

are no data on the life expectancy of Map butterflies under field conditions. 

Summer populations of the field generation were reported to show an open 

population structure and females had low site tenacity (Fric & Konvička 2000). 

Thus, even rough estimations of survival probabilities under field conditions are 

difficult to obtain. Even rough estimates of life-time fecundity are rare in the 

literature. Bink (1992) stated, without reporting sample sizes or details as to 

how he obtained his data, that maximum egg production ranges between 250-

280 eggs. This is slightly higher than the average I observed (219 eggs), but 

lower than the maximum I recorded (298 eggs). 
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What are the major benefits of gregariousness in A. levana? 

Caterpillars of A. levana reared in groups on potted nettle plants in the 

greenhouse had shorter developmental times than solitary caterpillars (Chapter 

12) and showed reduced predation rates. Thus, it remains debutable which of 

these benefits is more important. Do grouped caterpillars show higher survival 

rates due to faster development (presumably by better overcoming of plant 

defense structures), or are survival rates higher due to a more effective predator 

defense? Of course, mechanisms of increased development time and reduced 

predation are not mutually exclusive. Faster growth rates may decrease 

mortality by reducing the time during which especially the small larvae are most 

vulnerable to predation (Lawrence 1990). However, my studies in the 

greenhouse showed that developmental benefits were rather low whereas 

survival rates differed markedly. Unfortunately, high temperatures resulting in 

overall high growth rates limited the potential for a plastic response that was 

expected in this experiment. 

There are of course other potential benefits of gregariousness (cf. Chapter 1). 

Benefits by enhanced thermoregulation are most unlikely, since caterpillars of 

A. levana live on the underside of stinging nettle leaves and prefer shaded 

habitats for egg deposition (Ebert & Rennwald 1993). Furthermore, constraints 

on females like a lack of nectar plants and restricted availability of host-plants 

are also unlikely. Thus, I conclude that the main benefits of gregariousness in A. 

levana accrue from synchronized, communal predator defensive behaviors. 

Theoretical work suggests that repellent defenses should be an important 

precondition for the evolution of gregariousness in many insects (Sillén-Tullberg 

& Leimar 1988). These assumptions are confirmed by recent phylogenetical 

studies which show that gregariousness is more likely to evolve in lineages with 

repellent defense (and in lineages with warning coloration; Tullberg & Hunter 

1996). However, it remains and unresolved puzzle why gregariousness is 

particularly common in many clades of Nymphalidae, including the Nymphalini 

(to which A. levana belongs). Further studies on a wider range of nymphalid 

butterfly species combined with phylogeny-based comparative approaches will 

be necessary to finally address this question. 
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Synopsis 
When most biologists think of social animals, caterpillars not even play a minor 

role in their considerations. Some most recent reviews and books focusing on 

animal groups or sociality also still concentrate exclusively on vertebrates 

(Johnson et al. 2002, Krause & Ruxton 2002). However, many gregarious 

caterpillars exhibit more strongly integrated group behaviors than many 

vertebrates considered to be social (e.g. fish schools, Wittenberg 1981), for 

example communal shelter building or trail-based communication. Even among 

entomologists social insects (and other arthropods) apart from ants, bees, 

wasps and termites were at the most considered ‘presocial’ (Eickwort 1981) for 

many decades. However, recent reviews and books have given more attention 

to social arthropods that do not fulfill the criteria of eusocial insects (e.g. 

Fitzgerald & Peterson 1988, Choe & Crespi 1997, Costa 1997). 

Sociality in caterpillars: benefits and mechanisms 

This thesis comprises ten chapters on different aspects of sociality or 

gregariousness in caterpillars. With regard to the questions derived in Chapter 1 

the following conclusions can be drawn for the two main focal species under 

consideration. 

In Eriogaster lanestris advantages accruing from sociality proved to be 

numerous. Major benefits of sociality obviously emerge from the combined 

effects of the tent and collective warming. Large, dense tents, unlike thin webs, 

can only be built communally by large numbers of caterpillars and are very 

effective in reducing convective heat loss. Simultaneously, caterpillars benefit 

from social thermoregulation by endogenous means and by basking (Chapters 

4+5). Developmental benefits through higher body temperatures obviously 

outweigh the high costs of sociality (Chapter 10). 

In order to benefit from these advantages ethological preconditions are 

required. E. lanestris caterpillars proved to have a highly sophisticated 
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communication system which enables caterpillars to still forage effectively in an 

environment where available food becomes more and more patchily distributed 

during the course of the caterpillars’ extended social phase (Chapters 7+8). 

Moreover, it was shown that caterpillars exhibit a high degree of synchronicity 

during the foraging bouts which seems especially crucial for trail marking 

(Chapter 6). However, while sophisticated trail-based communication emerges 

as a general property of central-place foraging as well as nomadically foraging 

social caterpillars, behavioral synchronicity does not necessarily occur in 

species with such foraging systems. E. catax and M. neustria, though rather 

closely related in phylogenetic terms to E. lanestris, only partially synchronized 

their activities (Chapter 11). 

The mechanisms underlying these behaviors are now fairly well understood for 

communicative aspects (by identifying the trail marking mode and the possible 

encoding of information in the trails by quantitative graduation of the trail 

marker, Chapter 8). The hypothesis that the mechanism for behavioral 

synchronicity lies in communication through substrate-borne vibrations is now 

even more plausible since I showed concrete data supporting this idea for the 

first time. 

Despite their black coloration caterpillars of Araschnia levana do not 

thermoregulate but main advantages of their social life-style are an enhanced 

development and a higher survival rate compared to single caterpillars. Group 

cohesion as a main precondition for gregariousness was shown to be 

achieved by trail following behavior. The mechanisms for the enhanced 

development by social feeding facilitation are not yet understood. Though, 

higher survival is achieved by group defense, with enhanced collective 

regurgitation being the most prominent component. 

General patterns? 

This study has shown for a very small set of Lasiocampid species that foraging 

patterns in caterpillars differ markedly. Foraging patterns of Lepidopteran 

caterpillars as a whole are even much more diverse (e.g. diurnal vs. nocturnal, 
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endophagous vs. ectophagous), and there is a remarkable diversity of color 

patterns (ranging from blending into the background and mimicking inedible 

objects to displaying bright, colorful signals), size, and thermal behavior 

(regulators or conformers) (Stamp & Casey 1993). Such diversity in traits 

affecting foraging exists despite the seemingly simple set of constraints on 

larvae: Caterpillars, within their limitations as ectotherms, must avoid their 

natural enemies while obtaining as much food for growth as possible in a 

minimum time. Searching for a common pattern even among closely related 

species is critical because besides phylogenetic factors, biotic and abiotic 

constraints specific to a species’ environment shape the foraging pattern and 

are reflected in the caterpillars’ life-style. 

Several characteristics of lepidopteran feeding, such as host specificity, degree 

of gregariousness, degree of conspicuousness, and position or time of feeding 

are potentially influenced by selection pressures from natural enemies (Montllor 

& Bernays 1993). Taken together for any given species, these and other related 

features define a foraging strategy. Presumably each of these diverse strategies 

seen in nature are a compromise between conflicting pressures, a balance of 

the costs and benefits incurred by feeding in a particular way on particular 

plants. 

Studies on Malacosoma americanum (Fitzgerald 1980, Fitzgerald et al. 1988), 

E. lanestris (Ruf et al. 2001, Ruf & Fiedler 2002), and many nocturnal social 

species (see overview in Ruf & Fiedler 2002) led to the expectation that 

synchronicity during foraging is a general trait in social caterpillars. However, 

this study showed that despite numerous shared life-history traits very different 

patterns of activity and foraging may arise (Chapter 11). The developmental 

consequences of feeding rhythms have rarely been addressed. Some few 

studies (Herrebout et al. 1963, Slansky 1974, Chapter 6) suggest that feeding 

rhythms, whatever the selective forces molding their evolution, likely have 

substantial ramifications for caterpillars’ food consumption, growth, and 

associated life cycle components (e.g. number of generations per year and 

diapause stage), but clearly much more data are required to assess this more 

thoroughly. One conclusion clearly emerges from the data presented here and 
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integrated into the existing body of evidence: Even among taxonomically related 

and ecologically similar species with central-place foraging larvae, many 

generalizations expected from earlier studies (e.g. strict synchronicity, fixed 

foraging schedules) do not hold. Thus, only when considering the phylogenetic 

position plus all ecological forces simultaneously, it is possible to really 

understand the diversity of solutions that social Lepidopteran larvae have 

achieved during evolution. 

Evolution of sociality in caterpillars 

The evolution of egg clustering and gregariousness among caterpillars has 

generated a long and yet unresolved debate. Since all social caterpillars are 

derived from cases where eggs are laid in clusters, many investigators dealing 

with the evolution of gregariousness in caterpillars have focused on elucidating 

the egg clutch laying habit (e.g. Stamp 1980, Young 1983) and on selection 

pressures operant on the adults. It was suggested that batch oviposition is 

particularly likely to arise if ovipositional plants are rare and thus females 

seldom encounter larval food plants. Moreover, selection pressures from 

predators capturing females, inclement weather that limits egg laying, and 

scarcity of adult nectar plants may favor cluster oviposition (Stamp 1980). 

Furthermore, clustering may render eggs less vulnerable to desiccation (Clark & 

Faeth 1998).  

It is a controversial issue, whether the apparent benefits accruing to aggregated 

larvae are consequences rather than causes of the evolution of egg clustering. 

For example, batch laying may increase realized fecundity (Courtney 1984). 

Thus, increased fecundity could be the main factor underlying the evolution of 

cluster oviposition. Consequently, cluster oviposition would have arisen first and 

would have set the stage for the evolution of larval adaptations that could 

eventually lead to sociality.  

However, if larval success depends on group size it seems reasonable to 

suppose that fitness enhancing aspects of gregarious behavior should 

contribute to the evolution of adult ovipositional patterns. Several chapters of 
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this thesis have indeed shown that benefits accruing from gregariousness 

depend on having a large number of caterpillars (in E. lanestris: e.g. Chapters 

4,5,9) or on the particular size of the groups (in A. levana, Chapters 12+13). 

However, only extensive phylogenetic studies will elucidate the sequence of 

events in evolutionary pathways leading to caterpillar sociality (e.g. Tullberg & 

Hunter 1996) and it is very likely that there are different pathways in different 

families. 

Fitzgerald & Costa (1986) hypothesized for social Lasiocampidae (Malacosoma 

spp.) that the trail laying behavior of solitary ancestral species led to encounters 

of individuals. Benefits accruing to these incipient aggregates could then have 

favored females that laid their eggs in groups. However, in the Lasiocampidae 

that have no functional proboscis and are obviously selected for maximizing 

fecundity (i.e. capital breeders sensu Tammaru & Haukioja 1996), females are 

very short-lived, have a high wing load, and consequently under manifold 

ecological conditions benefit from laying all eggs in one cluster irrespective of 

the advantage accruing to their offspring (see also Ruf & Fiedler 2000 for further 

discussion). However, in the social species caterpillars hatching from these 

eggs do not disperse like it is common in many solitary Lasiocampidae (e.g. in 

the genera Gastropacha, Macrothylacia, Ebert 1994) or Lymantriidae (e.g. in 

the genera Lymantria, Orgyia, Ebert 1994). Hence, whatever the evolutionary 

mechanism is, it seems reasonable to suppose that the benefits accruing to the 

caterpillars should at least stabilize the female’s egg deposition habits. 

In A. levana there are no such obvious morphological constraints that could 

explain the egg batch laying habit as in the Lasiocampidae. The proboscis of 

this species is normally developed, adults are long-lived (Chapter 13) and they 

do not hatch with all eggs being matured at eclosion. Moreover, many more 

species in the tribes Nymphalini and Melitaeini lay their eggs in clusters (Ebert 

& Rennwald 1993) which are also very long-lived and have a normally 

developed proboscis (e.g. such common species as Inachis io, Aglais urticae). 

Since females of egg clustering nymphalid species always lay several clusters, 

they spread the risk of losing all their offspring when one clutch completely fails. 

Nevertheless, grouped caterpillars have much higher survival rates which 
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makes it most likely that the caterpillars’ success will again influence the egg 

laying habits of the females. 

In E. lanestris large colonies develop faster since more individuals can build 

larger tents and have better capacities for social thermoregulation (cf. Chapters 

4+5). If one disregards potential problems of resource overexploitation (which 

are effectively counterbalanced by trail communication and recruitment to 

profitable food finds) the strategy here must be ‘more is better’ (i.e. the 

maximally achievable group size is the best). In contrast, A. levana caterpillars 

rely on a hidden life-style. Provided that the main benefits of gregariousness in 

this species come from collectively warding off natural enemies it seems logical 

that there is an intermediate group size which optimizes defensive behaviors 

whereas larger group sizes increase the risk of being detected. Thus, optimal 

group size corresponds to the maximum of a bell-shaped clutch-size curve.  

To the extent that the field studies conducted in the course of this thesis are 

representative (Chapter 10+13) costs of sociality in E. lanestris are very high 

since half of the females lost their whole offspring. On the other hand, colonies 

with mature caterpillars found in the field regularly contained about 250 

caterpillars (i.e. about 80% of the egg number of an average cluster). This 

indicates that benefits (e.g. by social thermoregulation and potentially by group 

defense) may be also very high and thus outweigh the costs on the population 

level. In A. levana maximum survival in the field was only 67% of the individuals 

of a group and 33% of the groups also totally failed, but multiple batch laying 

decreases a female’s risk to lose her whole offspring.  Possibly, the lower 

maternal risk also leads to smaller benefits. 

 
Being gregarious may reduce some constraints on foraging but imposes others. 

Thus, research on behavioral strategies of caterpillars must take more of a 

multiple factor approach. The studies included in this thesis have contributed to 

complete some gaps in our current knowledge on sociality in larval Lepidoptera. 

Moreover, it was shown that studies testing widely hold hypotheses with hitherto 

under-studied species is still promising and may bring out new, and partly 

unexpected patterns. Many more studies on different species with gregarious 
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caterpillars combined with phylogenetic analyses will be necessary to fully 

understand how behavioral mechanisms and ecological consequences interact 

with the evolution of sociality in Lepidopteran caterpillars. 
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Preliminary note: Please notice that Chapters 4–13 are accompanied by their 

own abstracts. 

The present thesis investigates ecological advantages, ethological adaptations, 

and behavioral mechanisms connected with sociality in larval Lepidoptera. Data 

on social thermoregulation, larval communication, developmental benefits, and 

advantages of survival are presented to contribute to a better understanding of 

the evolution and maintenance of social systems in caterpillars. 

I put the main emphasis of this work on the highly social, tent building European 

lasiocampid moth Eriogaster lanestris. In a comparative study aspects of the 

social biology of E. lanestris were compared to its congener E. catax and the 

confamilial species Malacosoma neustria. In addition to these tent building, 

central-place foraging species a fourth, non-tent building nomadic butterfly 

species, Araschnia levana (Nymphalidae) was also studied. 

 Caterpillars of E. lanestris are behavioral thermoregulators. In the laboratory 

(i.e. in the absence of solar radiation) tightly aggregated caterpillars are able 

to rise their body temperatures compared to ambient temperature for 2.5-3K. 

Temperature gains are based on metabolic heat production (Chapter 4). 

Under field conditions grouped caterpillars are able to stabilize their body 

temperatures between 30-35°C independent of ambient temperature as long 

as solar radiation is sufficient. Optimal body temperatures are achieved by 

changing positions in and on the tent frequently. The functionality of the tent 

is based on the reduction of convective heat exchange (Chapter 5). 

 Foraging bouts of E. lanestris caterpillars are highly synchronized under field 

conditions. The number of foraging bouts is temperature dependent 

(influence on speed of digestion and walking). Plasticity in foraging patterns 

optimizes nutrient uptake and therefore minimize developmental time 

(Chapter 6). 

 Caterpillars of E. lanestris use trail pheromones for communication. The 

pheromone is applied by dragging the ventral median sternite of the last 

abdominal segment over the substrate. Trails contain information about age 
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and suitability of foraging sites, which is encoded by quantitative graduation 

of the trail marker (opposing processes of aging and (over)marking) 

(Chapters 7+8). 

 Vibrations of the tent caused by the increasing restlessness of caterpillars at 

the end of the digestion phase turned out to be tightly linked to the 

emergence of larvae from the tent and are supposed to play a role for 

synchronizing the foraging bouts (Chapter 9). 

 Costs of social behavior in E. lanestris are high under field conditions. Total 

colony mortality (i.e. the complete loss of a female’s offspring) of 100 

exposed colonies was 48%. The majority of colony losses was connected to 

the previous loss of the tent, mostly initiated by heavy rainfalls (Chapter 10). 

 Comparing E. lanestris to E. catax and M. neustria revealed that despite 

similar life-history traits and overlapping habitat requirements very different 

ecological strategies evolved with regard to egg size, tent building behavior, 

foraging strategies, and activity patterns (Chapter 11). 

 Females of A. levana produce several egg clutches of different size over their 

life time. Caterpillar group size strongly influences development and survival. 

Single individuals develop more slowly and achieve smaller weights 

compared to groups of 10, 40 (=mean natural clutch size), or 80 individuals 

during the social phase of the caterpillars’ life (i.e. first to third instar). 

Mortality is highest in singly bred individuals and lowest in groups of 40. The 

advantage of grouping for survival is supposed to result from the strong 

collective regurgitation behavior which enables the caterpillars to ward off 

natural enemies (Chapters 12+13). 

The thesis shows with the example of E. lanestris that highly evolved social 

systems in larval Lepidoptera afford high parental and larval investment which 

may in turn lead to high advantages, e.g. with regard to large reductions in 

developmental time. The extended social phase requires highly sophisticated 

communication processes. In A. levana flexible egg deposition leads to higher 

plasticity with regard to the costs of sociality. Nevertheless, physiological and 

ecological advantages of group living are evident as well. 
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Neben den traditionell als „sozial“ oder „eusozial“ betrachteten Insekten (Amei-

sen, Bienen, Termiten) findet sich in der moderneren Literatur ein zunehmen-

des Interesse an solchen Insekten und anderen Arthropoden, die nicht durch 

die klassischen Kriterien wie reproduktive Arbeitsteilung, kooperative Brutpflege 

und überlappende Generationen gekennzeichnet sind, dennoch aber klare 

Grundzüge sozialen Verhaltens (z. B. enger Gruppenzusammenhalt, Kommuni-

kation der Gruppenmitglieder untereinander) zeigen. Solche Sozialsysteme sind 

i. d. R. nicht durch Verwandtenselektion geprägt, sondern stellen in erster Linie 

durch ökologische Zwänge bestimmte Zweckgemeinschaften dar. Es ist das 

Ziel dieser Dissertation, das noch auf wenige Arten beschränkte Wissen über in 

diesem Sinne sozial lebende Raupen zu erweitern und wichtige Hypothesen zur 

Funktion und Ökologie solcher Gemeinschaften zu testen. 

Der Schwerpunkt der Arbeit wurde dabei auf das Sozialverhalten der Raupen 

des paläarktisch verbreiteten Wollafters Eriogaster lanestris (Lasiocampidae) 

gelegt, da diese Art ein außergewöhnlich hohes Maß an Komplexität bezüglich 

ihres Sozialverhaltens zeigt und die Larvengemeinschaften bis fast unmittelbar 

vor dem Abschluß der Larvalentwicklung zusammenbleiben, wobei sie ein ge-

meinsam erbautes Seidenzelt bewohnen. In einer vergleichenden Studie wur-

den Teilaspekte des Sozialverhaltens von E. lanestris mit zwei weiteren, zelt-

bauenden Lasiocampiden-Arten, dem Hecken-Wollafter Eriogaster catax und 

dem Ringelspinner Malacosoma neustria verglichen. Im Gegensatz zu diesen 

drei zeltbauenden Arten ist der Sozialverband der Raupen der vierten unter-

suchten Art, des Landkärtchens Araschnia levana, schwächer: Die Raupen le-

ben nur in den ersten drei Larvenstadien gregär und investieren keine Ressour-

cen in den Bau eines Seidenzelts. Es war deshalb zu erwarten, daß sich bei E. 

lanestris zahlreiche meßbare Effekte der Sozialität auf verschiedene Aspekte 

des Lebenszyklus zeigen, während bei A. levana die Vorteile des Sozialverban-

des weniger stark ausgeprägt sein sollten. 
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Die vorliegende Arbeit verfolgte dabei drei Schwerpunkte:  

(1)  Messung und Beschreibung der ökologischen Vorteile sozialen Verhaltens  

(2)  Analyse der ethologischen Voraussetzungen, die es überhaupt möglich 

machen, von diesen Vorteilen zu profitieren 

(3)  Analyse der Mechanismen der für die Sozialität relevanten larvalen Verhal-

tensmuster 

Die folgenden Ergebnisse werden in den einzelnen Kapiteln vorgestellt: 

 Durch hochsynchronisierte Fouragierperioden kommt es bei E. lanestris 

stets auch zur Klumpung der Raupen im oder auf dem Zelt während der Ru-

he- / Verdauungsphasen. Dabei erzielen die Raupen unter Laborbedingun-

gen um 2,5–3 K erhöhte Körpertemperaturen im Vergleich zur Umgebungs-

temperatur. Da im Labor keine Energieaufnahme durch Absorption von sola-

rer Strahlungsenergie erfolgen kann, muß diese Erwärmung auf metaboli-

scher Wärmeproduktion beruhen (Kapitel 4).  

 Unter Freilandbedingungen können E.-lanestris-Raupen ihre Körpertempe-

ratur weitgehend unabhängig von der Außentemperatur zwischen ca. 30 

und 35 °C stabilisieren, solange die Sonneneinstrahlung ausreichend hoch 

ist. Dies wird vor allen Dingen durch gezielte Positionswechsel im und auf  

dem Seidenzelt erreicht. Die Seide schirmt die einfallende Strahlung weitge-

hend ab. Die Funktionalität des Zeltes beruht also offensichtlich vor allen 

Dingen auf der Verminderung konvektiven Wärmeaustauschs und nicht auf 

einem Treibhauseffekt, wie dies häufig propagiert wurde (Kapitel 5). 

 Durch elektronische Langzeitüberwachung von E.-lanestris-Kolonien konnte 

gezeigt werden, daß auch unter Freilandbedingungen hochsynchronisierte 

Fouragierperioden stattfinden. Dabei ist die Anzahl der täglich stattfindenden 

Fouragierperioden stark temperaturabhängig, da hohe Temperaturen so-

wohl die Verdauungszeit (Intervall zwischen den Fouragierperioden) als 

auch die Fouragierperioden selbst (durch beschleunigte Lokomotion) ver-

kürzen. Solche plastischen Fouragiermuster optimieren die Nahrungsauf-
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nahme und folglich die Entwicklungsdauer und konnten erstmals für eine 

soziale Schmetterlingsart gezeigt werden (Kapitel 6). 

 Die Kommunikation der Raupen von E. lanestris erfolgt mittels eines Spur-

pheromons, das von der Ventralseite zwischen den Nachschieberbeinen 

abgestreift werden kann. Die Raupen bevorzugen neue gegenüber alten 

Spuren. Ferner bevorzugen sie solche Spuren, die von Raupen gelegt wur-

den, die erfolgreich eine Futterquelle erschlossen haben, gegenüber sol-

chen Wegen, die von Raupen gelegt wurden, die erfolglos und hungrig zum 

Zelt zurückkehrten. E. lanestris zeigt Spurfolgeverhalten auf Wegen, die mit 

5β-Cholestan-3-on präpariert wurden, einer Substanz, die für die verwandte 

Art Malacosoma americanum als Teil des natürlichen Spurpheromons nach-

gewiesen wurde. Höher konzentrierte Spuren werden gegenüber schwäche-

ren bevorzugt; die verhaltensauslösende Schwellenkonzentration liegt bei 

10-10 g/cm (Kapitel 7).  

 Raster- und transmissionselektronenmikroskopische Aufnahmen des Be-

reichs zwischen den Nachschieberbeinen von E. lanestris zeigen keine auf-

fälligen Drüsenzellen. Offensichtlich wird das Spurpheromon von in der Epi-

dermis verteilten, einzelnen spezialisierten Zellen produziert. Die Auftragung 

erfolgt während jedes Bewegungszyklus durch Abstreifen der ventralen In-

tegumentfläche zwischen den Nachschiebern. Die Raupe kann durch 

schnelles Hochziehen des Nachschiebers die Markierung während des 

Laufvorgangs aussetzen. Die Attraktivität einer Spur wird vermutlich nur 

durch quantitative Abstufungen der Spurmarkierung erzielt, da Raupen nicht 

fähig sind, künstlich abgestreiftes Spurpheromon von satten bzw. hungrigen 

Raupen zu unterscheiden. Der Wechsel von einer ehemals attraktiven Spur 

auf eine neue vollzieht sich während des Fouragierprozesses einer Kolonie 

nur langsam durch eine Alterung und ausbleibende Neumarkierung des ent-

sprechenden Wegs (Kapitel 8). 

 Für die Synchronisierung der Kolonieaktivität während der Fouragierperio-

den können die Vibrationen des Zelts eine Rolle spielen, die durch die Un-

ruhe der Raupen am Ende einer Ruhe- und Verdauungsphase zustande 
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kommen. Das Auslaufen der Raupen erfolgt exakt zu dem Zeitpunkt, an 

dem die Zunahme der Zeltvibrationen maximal ist, d. h. wenn die Mobilisie-

rungsrate der Raupen im Zelt am höchsten ist. Kleine Kolonien sind ver-

gleichsweise schlecht synchronisiert und zeigen eine um mehrere Tage ver-

zögerte Entwicklung bei ansonsten identischen Umweltbedingungen (Kapi-

tel 9).  

 Die Kosten sozialen Verhaltens bei E. lanestris unter Freilandbedingungen 

sind hoch. In einem Feldexperiment starben 48 von 100 exponierten Koloni-

en aus, was jeweils den Komplettverlust der Nachkommenschaft eines 

Weibchens bedeutet. Von diesen Verlusten waren 71 % mit dem Verlust des 

Zeltes gekoppelt, wobei sich Starkregenereignisse als besonders zerstöre-

risch für die Seidenzelte erwiesen. Dies unterstreicht die besondere Bedeu-

tung des Zelts für das Überleben und die Entwicklung der Raupen, aber 

auch die Risiken, die die weitgehende Abhängigkeit von der Intaktheit des 

Zeltes mit sich bringt. Raupen E. lanestris ergänzen beschädigte Seidenzel-

te, bauen aber i. d. R. kaum je ein Ersatzzelt. Die Mortalität der Kolonien war 

über die gesamte Larvenentwicklungszeit weitgehende gleichmäßig verteilt 

(Kapitel 10). 

 Ein Vergleich von Eriogaster lanestris mit E. catax und Malacosoma neustria 

hinsichtlich verschiedener Life-history-Eigenschaften und ihres Verhaltens 

zeigt, daß Gemeinsamkeiten und Unterschiede nicht an die Verwandt-

schaftsverhältnisse der Arten gekoppelt sind. Trotz stark überlappender Ha-

bitatansprüche entwickelten alle drei Arten sehr verschiedene Strategien, 

z. B. hinsichtlich Eigrößen, Zeltbau, Fouragierstrategien und Aktivitätsmu-

stern (Kapitel 11). 

 Bei Araschnia levana hat die Gruppengröße einen massiven Einfluß auf die 

Entwicklung der Raupen: Einzeln gehaltene Tiere zeigen während der er-

sten drei Larvenstadien (entspricht der gregären Phase) eine geringere 

Wachstumsrate, sind als L3-Larven leichter und entwickeln sich langsamer 

als Tiere in Gruppen (je 10, 40, 80 Individuen), wenn sie unter prädatoren-

freien Bedingungen mit Futter ad libitum aufgezogen werden. Die Effekte bei 
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der Aufzucht auf getopften Futterpflanzen und in Anwesenheit natürlicher 

Prädatoren waren tendenziell gleich, aber nicht immer signifikant (Kapi-

tel 12).  

 Weibchen von A. levana produzieren mehrere Eigelege, wobei das Erstge-

lege signifikant größer ist als die Folgegelege. Auf getopften Futterpflanzen 

im Gewächshaus gehaltene Raupen zeigen eine hohe Mortalität während 

der ersten drei Larvenstadien, wobei die Überlebenswahrscheinlichkeit bei 

einer Gruppengröße von 40 Individuen (entspricht der mittleren natürlichen 

Eigröße) am höchsten ist, während Tiere in Gruppen à 10 oder 80 Individu-

en eine signifikant höhere Mortalität zeigen und Einzeltiere die höchste 

Sterblichkeit erfahren. Der Gruppenzusammenhalt wird durch ein (nicht nä-

her identifiziertes) Spurpheromon vermittelt. Die erhöhte Überlebenswahr-

scheinlichkeit kann auf das starke gemeinschaftliche Feind-Abwehrverhalten 

der Raupen (Regurgitieren)  zurückgeführt werden (Kapitel 13). 

Die Studie zeigt am Beispiel von E. lanestris, daß hochkomplexe Sozialverbän-

de von Raupen zum einen hohe Investitionen fordern (hohe parentale und lar-

vale Investition, komplette Abhängigkeit der Individuen vom Sozialverband), 

allerdings auch zu großen Vorteilen, z. B. hinsichtlich einer starken Verminde-

rung der Entwicklungszeit, führen. Dabei erfordert das lange Zusammenleben 

auch komplexe Verhaltensmuster und Kommunikationsprozesse. 

Bei Araschnia levana zeigt sich, daß eine flexible Eiablage-Strategie höhere 

Plastizität hinsichtlich der Kosten der Sozialität bieten und Sozialität auch nur 

auf frühe Larvenstadien beschränkt sein kann. Dennoch sind auch in diesem 

Fall physiologische und ökologische Vorteile des Gruppenlebens evident.  
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Technical details of the use of light barriers under field 
conditions ( Chapter 6) 

The following section contains additional information to the specifications made 

in Chapter 6 which give insight into the technical background of the electronic 

components and the exact realization of the experimental design. 

IS471F (SHARP) is a built-in signal processing circuit for a light modulation 

system. The light detecting element and the signal processing circuitry is 

integrated on a single chip. Since the spectral sensitivity is maximal at 

 λ=940nm I used LD274 light emitting diodes that show a peak emission at this 

wavelength.

 
Fig. 1 – Basic circuit of the modulated IR detector IS471F (SHARP). The internal 
connection diagram is shaded in gray (all information from the data sheet of SHARP).  

 

 



Appendix 

276 

 
Fig. 2 – Drawing of the xy-unit used for a precise justification of emitters and detectors. 
Total height of the construction: 25cm. A 3D overview. y-unit and both parts of x-unit 
made of aluminum, slide rail consists of PVC with mill-cut rail. B Carrier of light 
detector. Material: Three PVC layers, inner tile excised in form of the component, front 
tile with 3mm opening and tube C Carrier of light emitting diode with plastic lens and 
perforated dressing. Material: Solid PVC with 5mm drill hole. 
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Geometry and volume of eggs of Eriogaster lanestris, E. catax, 
and Malacosoma neustria (Chapter 11) 

Measuring egg size with the help of a stereomicroscope poses an optical 

problem, especially when measuring the diameter of the eggs. If eggs do not 

form a regular ellipsoid but are more conically formed, egg volume is 

overestimated since the viewer measures the maximum diameter by focusing. 

Fig. 3 shows the half-forms of the eggs of the three species. It is obvious that 

eggs of M. neustria are particularly susceptible to miscalculations of size since 

they are a bit tapered whereas those of E. lanestris are more barrel-like and 

those of E. catax are only tapered at the very end.  

 

 

Mean diameter:  
E. lanestris: 0.75 
E. catax: 0.73 
M. neustria: 0.64 
 
Mean length:  
E. lanestris: 1.17 
E. catax: 1.56 
M. neustria: 1.07 

Fig. 3 – Half-profiles of the eggs of E. lanestris, E. catax, and M. neustria drawn from 
microphotographs taken at a stereomicroscope equipped with a digital camera. These 
half-profiles were used for the calculation of egg volume in chapter eleven. 
 

Comparing egg size is normally done in the ecological literature by calculating 

regular ellipsoids based on the length and the diameter (width) of the eggs. 
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García-Barros (2000)1 additionally uses a cubicroot transformation which is said 

to ameliorate the results if egg shapes are not ideal ellipsoids.  

Table 1 shows that this approximation is an oversimplification and results in a 

strong overestimation of the volume of M. neustria eggs. 

Table 1. Comparison of egg size calculated with a software FormZ, Ver. 2.9 
(AutoDesSys) based on the real shapes of the eggs and the calculation based on the 
width and length of the eggs according to García-Barros (2000). Formula: egg size = 
3 25236.0 hd ××  (d = egg diameter, h = egg length). Volume of regular ellipsoid: 

2
2
13

4 rrV π= (r1=radius short axis, r2=radius long axis). Relative egg size always refers to 

the volume / size of the largest eggs, i.e. those of E. catax. 

 E. lanestris E. catax M. neustria 

Linear (=cubicroot) size estimation [mm] 0.70 0.76 0.61 
Relative egg size 92% 100% 80% 
Volume of regular ellipsoid [mm³] 0.34 0.44 0.23 
Relative egg size 79% 100% 53% 
True egg volume [mm³] 0.52 0.73 0.25 
Relative egg size 71% 100% 34% 

 

Probably, conical egg shapes like in M. neustria are a rare phenomenon, since 

they are caused by strong bending of eggs in the whole spiraled egg cluster. 

This effect is less pronounced in Eriogaster  where egg clusters are not twisted 

around the twigs (E. catax) or the cluster has the form of an open spiral (E. 

lanestris).  

Nevertheless, I assume that such large variations as shown above, which 

distort relative differences between the species, render results of existing 

studies comparing egg size across species with very different egg geometries 

questionable. 

                                            

1 García-Barros, E. (2000) Body size, egg size, and their interspecific relationships with 
ecological and life-history traits in butterflies (Lepidoptera: Papilionidea, Hesperioidea). 
Biological Journal of the Linnean Society 70, 251-284. 
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Species list Eriogaster 

Table 2. List of Eriogaster species including Europe, Asia Minor and the territory of the 
former USSR. Possibly, there are additional species in China. 
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List of gregarious Lasiocampidae (genera) 

The following table gives a list of genera within the Lasiocampidae with at least 

one species reported to have gregarious caterpillars. C = Central, N = North, S 

= South, E = East.  All generic names were checked for validity according to 

Fletcher & Nye (1982). 

Genus Distribution Reference 
Anadiasa Africa Aurivillius 1927 
Bombycomorpha Africa Aurivillius 1927, Taylor 1949 
Catalebeda Africa Costa & Pierce 1997 
Diapalpus Africa Aurivillius 1927 
Eriogaster Europe, Asia Ebert 1994 
Eutachyptera S + C America Sallé 1856, Comstock 1957  
Gloveria S + C America Fitzgerald & Underwood 1998 
Gonometa Africa Austara et al. 1971 
Lebeda SE Asia Holloway 1987 
Malacosoma Europe, Asia, N America Fitzgerald 1995 
Mallocampa  Africa Vuattoux 1991 
Metanastria India, China, SE Asia Aherkar et al. 1997 
Mimopacha Africa Aurivillius 1927 
Rhinobombyx Africa Costa & Pierce 1997 
Schausinna Africa Costa & Pierce 1997 
Taragama  Africa Aurivillius 1927 
Tolype S America Arce de Hamity & Neder de 

Roman 1981 
Trabala SE Asia Murphy 1990 
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Claudia Ruf 



»Larvæ cohabitant in Societate sub tentoriis cellulosis, unde migrant pabulaturæ, 
redeuntque per foramina ramis parallela.« 
(C. v. Linné: Systema naturae, XIIth ed., 1767) 
 
»Obwohl auf dem Gebiete der Tiersoziologie in den letzten zwei Dezennien eine 
reiche und fruchtbare Literatur über Zustandekommen und Einteilung 
soziologischer Erscheinungen im Zusammenhange mit Untersuchungen, welche 
die bisherige Vorstellung vom Wesen des Instinktes wesentlich verändert haben, 
entstanden ist, liegen fast keine Beobachtungen über den biologischen Wert 
soziologischer Tatsachen vor.«  
(H. Rebel: Über den biologischen Wert von Larvensozietäten, 1931) 
 
»Largely unrecognized, the gregarious behavior of caterpillars is changing the 
way entomologists think about social insects. (…) More than mere aggregates of 
individuals, these species appear to have exploited the possibilities inherent in 
grouping – potentials for building shelters, behaviorally thermoregulating, warding 
off enemies and finding food. Social caterpillars are in many ways very different 
social organisms than their better known relatives, but this difference underlies 
an important lesson about what means to be social, ironically pointing the way to 
commonalities across the sociality spectrum.« 
(J.T. Costa: Caterpillars as social insects, 1997) 
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