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ATRP   atom transfer radical polymerization 
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FTIR   fourier transform infrared spectroscopy 
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1. Zusammenfassung/Summary 

Summary 

The objective of this thesis is to utilize the hydroxyl terminated 

polyethylene (PE-OH) produced via Ziegler’s “Aufbaureaktion” for the 

synthesis of 1) porous polyethylene templates for the synthesis of structurally 

inverted porous SiCN (siliconcarbonitride) 2) SiCN mesomaterials using PE-

OH as porogen 3) porous SiCN supported gold catalysts.  

 

Porous polyethylene template was synthesized from polyethylene-

block-polylactide (PEOPL) copolymer by microphase separation technique 

and selective etching of polylactide block. 1H NMR was used to confirm the 

formation of copolymer. Atomic Force Microscopy (AFM) was used to analyse 

the microphase separated PEOPL copolymer. The progress of etching 

polylactide block was monitored by Fourier Transform Infrared Spectroscopy 

(FTIR). Scanning Electron Microscopy (SEM) was used to analyse the porous 

polyethylene template.  

 

The SiCN mesomaterials were synthesized from PE-OH by linking with 

commercially available polysilazane (HTT1800). Linked copolymer was 

microphase separate, cross-linked, and pyrolysed for the synthesis of SiCN 

mesostructures. Upon tuning the weight (volume) ratio of HTT1800 and PE-

OH, various morphologies such as lamellae, fibers, and disordered 

biconteneous SiCN can be synthesized (Figure 1.1). These morphologies 

were confirmed by AFM, TEM, SEM and Small Angle X-ray Scattering (SAXS). 

  

Die SiCN-Mesomaterialien wurden durch Bindung des PE-OHs an 

kommerziell erhältlichem Polysilazan (HTT1800) erhalten. Das entstandene 

Copolymer wurde mirkophasensepariert, vernetzt und pyrolisert. Durch 

Variation des Gewichts- (Volumen-) Verhältnisses von HTT1800 und PE-OH 

konnten verschiedene Morphologien wie Lamellen, Fasern und 

bicontinuierlem SiCN erhalten werden. Diese Morphologien wurden mittels 

AFM, TEM, REM und Kleinwinkelröntgenstreuung (SAXS) untersucht.  

 



1. Zusammenfassung/Summary 
 

2  

Porous SiCN supported gold ceramic (Au@SiCN) catalyst was 

synthesized by copolymer formation, microphase separation, crosslinking, 

and pyrolysis. The biconteneous SiCN morphology has been chosen as a 

support for the synthesis of porous catalyst due to high surface area and the 

pores in the range of mesoscale (2-50 nm). Gold nanoparticles were 

introuduced by adding tetrameric aminopyridinato gold complex. The 

synthesized Au@SiCN catalysts were characterized by TEM, powder XRD, 

and N2 physisorption. The stability of nanoparticles may be due to the 

nitrogen functionality of Si-C-N network (Figure 1.2). The catalytic 

performance of the synthesized catalyst was demonstrated in the oxidation of 

cyclic and linear alkenes with air. The catalyst was highly selective for the 

epoxide products. 

 
Zusammenfassung 
 

Ziel dieser Doktorarbeit ist es, Hydroxy-terminiertes Polyethylen (PE-

OH), welches über Zieglers “Aufbaureaktion“ zugänglich ist, für die Synthese 

von 1) einem porösen Polyethylentemplat für die Herstellung von porösen 

SiCN 2) SiCN-Mesomaterien mittels PE-OH als porogen 3) poröse SiCN 

geträgerte Gold-Katalyatoren. 

 

Das poröse Polyethylentemplat wurde durch Mikrophasenseparation 

mittels einem Polyethylen-block-polylactid (PEOPL) Copolymer und 

selektivem Herauslösen des Polylactidblocks synthetisiert. Die Bildung des 

Copolymers wurde mittels 1H-NMR bestätigt. Das mikrophasenseparierte 

PEOPL-Copolymer wurde mittels Rasterkraftmikroskopie (AFM) analysiert. 

Das Herauslösen des Polylactid-Blocks wurde mittels Fouriertransformierter 

Infrarotspektroskopie (FTIR) verfolgt. Das poröse Polyethylentemplat wurde 

mittels Rasterelektronenmikroskopie (REM) analysiert. 

 

Die SiCN-Mesomaterialien wurden durch Bindung des PE-OHs an 

kommerziell erhältlichem Polysilazan (HTT1800) erhalten. Das entstandene 

Copolymer wurde mirkophasensepariert, vernetzt und pyrolisert. Durch 

Variation des Gewichts- (Volumen-) Verhältnisses von HTT1800 und PE-OH 

konnten verschiedene Morphologien wie Lamellen, Fasern und 
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bicontinuierlem SiCN erhalten werden. Diese Morphologien wurden mittels 

AFM, TEM, REM und Kleinwinkelröntgenstreuung (SAXS) untersucht.  

 

Die porösen SiCN geträgerten Gold-Katalysatoren (Au@SiCN) wurden 

durch Copolymerbildung, Mikrophasenseparation, Vernetzung und Pyrolyse 

synthetisiert.  Aufgrund der hohen Oberfläche und Poren im Mesobereich (2-

50 nm) wurde die bikontinuierliche SiCN Morphologie als Träger für die 

Synthese von porösen Katalysatoren verwendet. Durch die Zugabe eines 

tetramerischen Aminopyridinato-Gold-Komplexes konnten Goldnanopartikel in 

die poröse SiCN-Matrix eingeführt werden. Der synthetisierte Au@SiCN 

Katalysator wurde mittels TEM, Pulverdiffraktometrie (XRD) und N2-

Physisorption (BET) charakterisiert. Die Nanopartikel können dabei durch die 

Stickstoff-Funktionen des Si-C-N-Netzwerkes stabilisiert werden. Der 

hergestellte Katalysator wurde in der katalytischen Oxidation von zyklischen 

und linearen Alkanen mit Luftsauerstoff getestet. Hierbei war der Katalysator 

sehr selektiv hinsichtlich der Epoxidierung.
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2. Introduction 

“Science cannot solve the ultimate 
mystery of nature. And that is because, in the 
last analysis, we ourselves are part of nature 
and therefore part of the mystery that we are 
trying to solve.” 
 
---Hon. Prof. Max Ernst Ludwig Planck 

2.1. Brief introduction on SiCN ceramics 
 

The term “Keramik” (ceramics) is originated from the greek word 

“κεραµοσ” denotes for inorganic and non-metallic materials.1 Ceramics are 

divided into three classes namely, oxide ceramics (metal oxides, little or no 

glass phase), non-oxide ceramics and silicate ceramics (large proportion of 

glass phase with SiO2).2 Among these three classes, the non-oxide ceramics 

are an interesting class of materials that includes borides, silicides, carbides, 

nitrides, carbonitrides, etc.3 In particular, (polymer derived) non-oxide silicon 

carbonitrides (SiCN) show unique physical and chemical properties4 that 

make them suitable materials for various applications such as supports for 

heterogeneous catalysts.5 

 

Figure 2.1. General synthetic route to polymer derived SiCN ceramics. 

The synthesis of polymer derived SiCN ceramics is carried out from 

oligo- or polysilazane precursors via multi step process as mentioned in 

Figure 2.1.6 The precursors can be cross-linked in the presence of a 
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catalytic amount of radical initiator. The cross-linked precursor is called pre-

ceramic polymer or green-body that can be transferred into SiCN material 

upon pyrolyzing at high temperature under inert atmosphere. During pyrolysis, 

the formation of various environments such as C4Si, C3SiN, C2SiN2, CSiN3, 

and SiN4 is possible.7 The pre-ceramic polymer, pyrolysed at 1100°C leads to 

the formation of an amorphous SiCN materials with primarily C3SiN, C2SiN2, 

and CSiN3 environments.8 

2.2. From non-porous to mesoporous SiCN  
 

Since the discovery of mesoporous silica materials,9 the demand for 

the synthesis of mesoporous materials with controlled pore size and porosity 

has been exceptionally increased. Based on the pore diameter, porous 

materials are classified into microporous (< 2nm), mesoporous (2-50 nm) and 

macroporous (> 50 nm).10 The porous materials offer many additional features 

from non-porous materials such as high surface area and high adsorption 

capacity.11 These porous materials can be synthesized by various template 

and non-template assisted techniques.12 Introducing porosity to SiCN 

ceramics is a challenging task because of the sensitivity of the precursors.  

 

Figure 2.2. Various procedures for the synthesis of porous SiCN (PCCP- 

preceramic carboosilazane polymer, porogen-pore generating 
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polymer).  
 

In general, porous SiCN ceramics13 can be synthesized by (i) inverse 

replication of hard or soft templates, (ii) employing an organic copolymers as 

structural directing agent, and (iii) copolymerization of ceramic precursor with 

an organic porogen block (Figure 2.2). Hard templates such as SiO2, Al2O3, 

etc., are widely used for the synthesis of structurally inverted porous SiCN in 

mainly macro porous range.14 However, strong etching reagents (HF, etc.) are 

required for the removal of the templates. These harmful etching reagents not 

only etches out the templates but also causes sever damage to the SiCN. 

Alternative to the hard template inversion procedure, soft templates such as 

porous polyolefins templates have shown to avoid exposing to etching 

reagents.15 However, the precursor may not be effectively infiltrated. Thus, 

this procedure has been mainly used for the synthesis of macroporous SiCN 

ceramics. Alternative to the (spherical) template assisted synthesis of porous 

SiCN, structural directing agents such as organic block copolymers can be 

employed for the self-assembly of ceramic precursor.16 Pyrolyzing the 

morphology leading to mesostructured SiCN with only moderate surface area. 

In addition, this approach can introduce oxygen environment to SiCN due to 

the copolymers with having oxy functional groups. 

 

Followed by the above copolymer/polymer mixture leading to a self-

assembled morphology approach, the direct inorganic-organic 

diblockcopolymer of pre-ceramic precursor with organic porogen block have 

shown to be a promising technique for the synthesis of mesoporous SiCN.17 

 

A chemically dissimilar block copolymer with thermodynamically 

incompatible and spatially segregating blocks tend to undergo microphase 

separation leading to various morphologies in nanoscale.18 The final 

morphology is based on several factors such as the volume fraction of blocks, 

degree of polymerization, and Flory-Huggins interaction parameters. The 

volume fraction can control the morphology and the degree of polymerization 

can control the domain size. Incompatibility between the blocks is an 

important factor for the microphase separation. Morphologies such as 

hexagonally packed cylinders, spheres arranged on body centered cubic, 
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lamellae, gyroidal (Figure 2.3) can be obtained.19 This direct copolymerization 

approach seems to be most promising approach to structure materials such 

as SiCN caramics/catalysts. 

   

Figure 2.3. Various self-assembled morphologies (S-spherical, C-cylindrical, 

and G-gyroidal) derived from diblock copolymers (figure adopted from ref. 

19b). 

 

2.3. (Mesoporous) SiCN supported metal catalysts 
 

Recently, metal containing SiCN ceramics have been introduced as 

interesting class of heterogeneous catalyst.5a For example, copper containing 

SiCN catalysts were synthesized via modifying the preceramic precursor by a 

copper aminopyridinato complex.20 The modification was accomplished by 

transmetallation reaction from metal complex to ceramic precursor via 

molecular pathway. This non-porous Cu@SiCN catalyst has shown increase 

in selectivity for aerobic oxidation of alkanes with increasing copper loading. 

In another example of non porous SiCN support, palladium silicides at SiCN 

catalyst was synthesized for the hydrogenation of ketones via modifying 

precursor ceramic by a palladium aminopyridinato complex.21 Recently, 

porous materials have been used as a support because porosity can impact 

on the performance of catalysts.22 Metal nanoparticles have been introduced 

on porous support as an additional step.22a For example, the metal containing 

macroporous SiCN catalyst for ammonia reformation was first reported by Kim 

and coworkers using two-step synthetic procedure.14d A macroporous SiCN 

was fabricated by capillary filling of preceramic polymer followed by 
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the deposition of ruthenium metal. To simplify this two step procedure, 

Wiesner and co-workers have introduced one pot synthesis of metal 

nanoparticles supported mesostructured catalysts using block-copolymer as 

structural directing agent have been established. Porous SiCN supported 

platinum nanoparticles have been synthesized via above mentioned approach 

by copolymer, ceramic precursor, and platinum complex as a part of five 

component system.23 The platinum SiCN catalyst synthesized by this 

approach has shown 40 m2/g of surface area. Recently, microporous SiCN 

supported nickel catalyst with 400 m2/g for semi hydrogenation of alkynes was 

synthesized by Kempe and co-workers.24 Controlled pyrolysis at 600°C is the 

reason reported for the generation of microporosity in the catalysts. 

 

This thesis comprises of 1) the synthesis of porous polyethylene 

templates for the synthesis of structurally inverted porous SiCN 2) synthesis 

of nanostructured SiCN ceramics 3) synthesizing porous SiCN supported 

catalysts for alkene epoxidation. For the synthesis of porous catalysts, 

biconteneously porous SiCN was used as support and gold and silver 

aminopyridinato metal complexes were employed to introduce nanoparticles. 

2.4. References 

[1] W. Kollenberg in Technische Keramik (Ed.: W. Kollenberg), Vulkan, 

Essen 2004, p. 3. 

[2] W. Kollenberg in Technische Keramik (Ed.: W. Kollenberg), Vulkan, 

Essen 2004, p. 163. 

[3] E. Kroke, Y.–L. Li, C. Konetschny, E. Lecomte, C. Fasel, R. Riedel, 

Mater. Sci. Eng. 2000, 26, 97-199. 

[4] a) P. Colombo, G. Mera, R. Riedel, G. D. Soraru, J. Am. Ceram. Soc. 

2010, 93, 1805–1837; b) E. Ionescu, H.–J. Kleebe, R. Riedel, Chem. 

Soc. Rev. 2012, 41, 5032–5042. 

[5] a) M. Zaheer, T. Schmalz, G. Motz, R. Kempe, Chem. Soc. Rev. 
2012, 41, 5102–5116; b) D. Su, Y.–L. Li, Y. Feng, J. Jin, J. Am. Ceram. 

Soc. 2009, 92, 2962–2968; c) R. Riedel, H.–J. Kleebe, H. 

Schönfelder, F. Aldinger, Nature 1994, 374, 526–528; d) L. M. Reinold, 

M. Graczyk-Zajac, Y. Gao, G. Mera, R. Riedel, J. Power Sources 2013, 

236, 224–229. 



2. Introduction 
 

9  

[6] E. Kroke, Y.-L. Li, C. Kornetschny, Technische Keramik (Ed.: W. 

Kollenberg), Vulkan, Essen 2004, p. 230. 

[7] Polymer Derived Ceramics (Eds: P. Colombo, G. D. Sorarú, R. Riedel, 

A. Kleebe, D. E. Stech), Publications Inc., Lancaster USA 2010. 

[8] a) C. Haluschka, H.–J. Kleebe, R. Franke, R. Riedel, J. Eur. Ceram. 

Soc. 2000, 20, 1355–1364; b) H.–J. Kleebe, H. Störmer, S. Trassl, G. 

Ziegler, Appl. Organometal. Chem. 2001,15, 858–866. 

  [9] a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, 

Nature 1992, 359, 710–712; b) J. S. Beck, J. C. Vartuli, W. J. Roth, M. 

E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, 

E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. 

Chem. Soc. 1992, 114, 10834–10843. 

[10] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. 

Rouquerol, T. Siemieniewska, Pure & Appl. Chem. 1985, 57, 603–619. 

[11] M. E. Devis, Nature 2002, 417, 813–821. 

[12] G. J. de A. A, Soler-IIIia, C. Sanchez, B. Lebeau, J. Patarin, Chem. 

Rev. 2002, 102, 4093-4138. 

[13] a) P. Colombo, Science 2008, 322, 381-383; b) P. Colombo, C. 

Vakifahmetoglu, S. Costacurta, J. Mater. Sci. 2010, 45, 5425-5455;  b) 

P. Colombo, M. Scheffler, Highly porous components, in Polymer 

Derived Ceramics. From Nano-Structure to Applications, (Eds: P. 

Colombo, R. Riedel, G. D. Sorarú, and H.-J. Kleebe), p 379, DEStech 

Publications Inc., Lancaster, PA, 2010. 

[14] a) H. Wang, S.–Y. Zheng, X.–D. Lia, D.–P. Kim, Microporous 

Mesoporous Mater. 2005, 80, 357–362; b) J. Yan, A. Wang, D.–P. Kim, 

Microporous Mesoporous Mater. 2007, 100, 128–133; c) I.–K. Sung, 

Christian, M. Mitchell, D.–P. Kim, P. J. A. Kenis, Adv. Funct. Mater. 

2005, 15, 1336–1342; d) Y. Shi, Y. Wan, Y. Zhai, R. Liu, Y. Meng, B. 

Tu, D. Zhao, Chem. Mater. 2007. 19. 1761–1771; e) Y. Shi, Y. Wan, D. 

Zhao, Chem. Soc. Rev. 2011, 40, 3854–3878. 

[15] a) B. H. Jones, T. P. Lodge, J. Am. Chem. Soc. 2009, 131, 1676–1677; 

b) T. Schmalz, J. M. Hausherr, W. Müller, T. Kraus, W. Krenkel, R. 

Kempe, G. Motz, J. Cerm. Soc. Jpn. 2011, 119, 477–482; c) P. 

Colombo, C. Vakifahmetoglu, S. Costacurta, J. Mater. Sci. 2010, 45, 

5425–5455. 



2. Introduction 
 

10  

[16] a) C. B. W. Garcia, C. Lovell, C. Curry, M. Faught, Y. Zhang, U. 

Wiesner, J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 3346–3350; b) 

M.   Kamperman, C. B. W. Garcia, P. Du, H. Ow, U. Weisner, J. Am. 

Chem. Soc. 2004, 126, 14708–14709; c) J. Wan, A. Alizadeh, S. T. 

Taylor, P. R. L. Malenfant, M. Manoharan, S. M. Loureiro, Chem. Mater. 

2005, 17, 5613–5617; d) J. Wan, P. R. L. Malenfant, S. T. Taylor, S. M. 

Loureiro, M. Manoharan, Mater. Sci. Eng. A 2007, 463, 78–88; e) P. F. 

W. Simon, R. Ulrich, H. W. Spiess, U. Wiesner, Chem. Mater. 2001, 13, 

3464–3486. f) M. Kamperman, P. Du, R. O. Scarlat, E. Herz, U. 

Werner-Zwanziger, R. Graf, J. W. Zwanziger, H. W. Spiess, U. Wiesner, 

Macromol. Chem. Phys. 2007, 208, 2096–2108; g) M. Kamperman, M. 

A. Fierke, C. B. W. Garcia, U. Wiesner, Macromolecules 2008, 41, 

8745–8752. 

[17] a) Q. D. Nghiem, D. Kim, and D.–P. Kim, Adv. Mater. 2007, 19, 2351–

2354; b) N. Q. Dat, N. C. Thanh, D.–P. Kim, J. Polym. Sci. Part A 2008, 

46, 4594–4601; c) H.–C. Kim, S.–M. Park, W. D. Hinsberg, Chem. Rev. 

2010, 110, 146–177; d) H. C. Kim, S.–M. Park, W. D. Hinsberg, Chem. 

Rev. 2010, 110, 146–177; e) S. K. T. Pillai, W. P. Kretschmer, C. 

Denner, G. Motz, M. Hund, A. Fery, M. Trebbin, S. Förster, R. Kempe, 

Small 2013, 9, 984–989. 

[18] a) The physics of block copolymers (Eds: I. W. Hamley), Oxford 

University Press, Inc. New York, 1998; b) F. S. Bates, Science 1991, 

251, 898–905. 

[19] a) F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32–38; b) T.  

P. Lodge, Macromol. Chem. Phys. 2003, 204, 265–273. 

[20] a) G. Glatz, T. Schmalz, T. Kraus, F. Haarmann, G. Motz, R. Kempe, 

Chem.  Eur. J. 2010, 16, 4231–4238. 

[21]  M. Zaheer, G. Motz, R. Kempe, J. Mater. Chem. 2011, 21, 18825– 

18831. 

[22] a) R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie, 

Chem. Soc. Rev. 2009, 38, 481–494; b) J. Kärger, D. Freude, Chem. 

Eng. Technol. 2002, 25, 769–778. 

[23] a) M. Kamperman, A. Burns, R. Weissgraeber, N. van Vegten, S. C. 

Waren, S. M. Gruner, A. Balker, U. Wiesner, Nano. Lett. 2009, 9, 

2756–2762. 



2. Introduction 
 

11  

[24] M. Zaheer, C. D. Keenan, J. Hermannsdörfer, E. Roessler, G. Motz, J. 

Senker, R. Kempe, Chem. Mater. 2012, 24, 3952–3963.



3. Overview of the Thesis 
 

12  

3. Overview of the Thesis 

  “There are many hypotheses in science which are 
wrong. That's perfectly all right; they're the apertures to 

finding out what's right. Science is a self-correcting 
process . To be accepted, new ideas must survive the 

most rigorous standards of evidence and scrutiny.” 
 

---Hon. Prof. Carl Sagan. 
 

This chapter describes the overview of following chapters 4-6. The chapter 4 

is published in “Chemistry a European Journal” under the title of “Tailored 

Nano-Structuring of End-Group Functionalized HD-Polyethylene Synthesized 

via an Efficient Catalytic Version of Ziegler’s “Aufbaureaktion””. The chapter 5 

is published in “Small” under the title of “SiCN nanofibers with a diameter 

below 100 nm synthesized via concerted block copolymer formation, 

microphase separation, and crosslinking”. The chapter 6 will be published 

under the title of “Robustly Supported Porous Au Catalyst for the Selective 

Oxidation of Alkenes using Air/O2 as an Oxidant”. In this chapter 3, all the 

following three chapters will be described by connecting one another by 

utilization of hydroxyl terminated polyethylene (PE-OH) synthesized via 

Ziegler’s “Aufbaureaktion” in 1) the synthesis of porous polyethylene 2) the 

structuring of SiCN (Fibers, lamellae, and biconteneous) 3) the synthesis of 

porous SiCN supported catalysts. The porous polyethylene template was 

synthesized via three step procedure: 1) synthesis of copolymerization 2) 

microphase separation 3) selective etching. As a first step towards the 

synthesis of porous polyethylene template, the copolymers of PE-OH and PL 

were synthesized (PEOPL) with various ratios using ring-opening 

polymerization (Figure 3.1). The linear polyethylene block was chosen due to 

high crystallinity, the presence of reactive hydroxyl end group and can be 

synthesized with high yield. Polylactide block was chosen due to the 

amorphous nature that provides good contrast to the crystalline PE-OH block 

and is compatible with most of the counter blocks. 
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Figure 3.1. Schematic route from hydroxyl terminated polyethylene to porous 

SiCN. 

The PEOPL was synthesized with different ratios (50:50, 70:30 and 90:10) by 

varying the PL block length. The ratio of the blocks and the covalent link 

between the blocks were confirmed by 1H NMR. Also, the mass ratio of the 

blocks was elucidated by thermo gravimetric analysis (TGA), which confirmed 

the PEOPL with 50:50 and 70:30 with respect to PE:PL. Furthermore, 

molecular weight of the PE-OH and copolymers were characterized by high-

temperature gel permeation chromatography (GPC). After the 

characterization, the copolymers were then self-assembled using microphase 

separation technique in the presence of a high boiling solvent. Biconteneous 

morphology was obtained from 70:30 copolymer and lamellae morphology 

was with 50:50 copolymer. The self-assembled morphologies at green-body 

stage were mainly analysed by Atomic Force Microscopy (AFM). The Small 

Angle X-ray Scattering (SAXS) patterns were collected for the 50:50 samples 

to confirm the presence of alternative lamellae block with lattice size of 20 nm. 

The self-assembled morphologies were then nanostructured by etching out 

the PL block under mild basic (NaOH/CH3OH/H2O) condition. The progress of 

etching was monitored by Fourier transform infrared spectroscopy (FTIR). 

After the completion of etching, the resultant nanostructured polyethylene 

was analysed by scanning electron microscopy (SEM), which showed the 

polyethylene with biconteneously structured porous surface. The resultant 

porous polyethylene was further analysed by N2 physisorption measurements 

to confirm the surface area of 19 m2/g and pore size distribution of 30 nm. 

The synthesized porous polyethylene may potentially be used as template for 

the preparation of structurally inverted mesoporous SiCN ceramics. After 

etching the lamellae morphology of PEOPL, the resultant structure was 

analysed by SEM and characterized as a fiber/ribbon like polyethylene 

nanostructure. The same PE-OH was also utilized in the synthesis of SiCN 

materials such as nanofibers, lamellae, and biconteneous SiCN. A 

commercially available preceramic polycorbosilazane (HTT1800) was used 

as a precursor for SiCN. This HTT1800, an inorganic block, can be cross-
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linked in the presence of free radical initiators and tend to be in amorphous 

form after crosslinking. The inexpensive PE-OH was chosen as an organic 

porogen block due to high crystallinity and having reactive hydroxyl end group 

to link HTT1800 block. The synthesis of lamellae and fiber SiCN ceramics 

consists of two step process. The first step of synthesis involves a concerted

 
Figure 3.2. Schematic diagram of the synthetic route leading to nano-scaled 

SiCN lamellae and fibers. 

 

formation of copolymer, microphase separation, and crosslinking. The second 

step was the pyrolysis of the hybrid material obtained from the concerted first 

step. The inorganic-organic copolymer (PEOHTT) was linked by the formation 

of covalent bond between PE-OH and HTT1800 blocks. Due to the rapid 

crosslinking nature of HTT1800 block, the covalent link of HTT1800 and PE-

OH was evidenced by conducting a 1H NMR study using model compounds. 

A linear alcohol, C22H44OH, and a silylamine, bis((dimethylsilyl)amine), were 

employed as a mimics to confirm the formation of covalent link between the 

PE-OH and HTT1800 blocks. The result of the 1H NMR experiment showed 

the formation of Si-O-PE link with the evolution of ammonia. The covalently 

linked PEOHTT was synthesized using equal weight fractions (50:50) of 

inorganic and organic blocks. Following with microphase separation and 



3. Overview of the Thesis 
 

15  

crosslinking, a non-meltable and hardened green-body was obtained. This 

green-body was then transferred into SiCN ceramics using high temperature 

pyrolysis programme under inert atmosphere. The PEOHTT was 

nanostructured into SiCN nanofibers and SiCN lamellae by varying the 

solvent (Figure 3.2). The lamellae morphology was obtained as a result of 

microphase separation in the presence of cumene. The lamellae morphology 

present in the green body stage was confirmed by AFM and TEM. This 

morphology was pyrolyzed under argon atmosphere for the ceramization and 

the resultant SiCN was analysed by SEM, which shows the layer like SiCN 

lamellae structure. The resultant lamellae SiCN was also analysed by FTIR 

and powder XRD. In the presence of THF and cumene, SiCN nano fibers 

were synthesized. The green body stage was measured by time dependant 

Quasi AFM to confirm the presence of core-shell rod like structure, which is 

consisting of amorphous HTT block as core and polyethylene block as shell. 

Upon irradiation of laser on the surface of the sample, the shell starts melting 

and reveals the core with rod like structure. The green-body was then 

pyrolyzed to get SiCN fiber ceramics and was analysed by SEM, 29Si NMR, 

Powder XRD, and TEM. The variation in the ratio of inorganic and organic                                                 

 
Figure 3.3. Schematic representation of ceramic precursor HTT1800 

transferred into disordered biconteneously porous SICN via formation of 

copolymer with PE-OH. 
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block was also experimented with the addition of 70% of PEOH to 30 % of 

HTT1800 (Figure 3.3). The same experimental procedure for the synthesis of 

lamellae SiCN was conducted with a change in the solvent. The resultant 

self-assembled copolymer was analysed by AFM to see biconteneous 

structure in the green body stage. Upon pyrolyzing the green body results the 

mesoporous SiCN with high surface area of 460 m2/g with size of the pores in 

the range of mesoscale (2-50 nm). The biconteneous structure was analysed 

by both TEM and SEM. The N2 adsorption measurements were conducted to 

calculate surface area and size of the pore size. Due to the high surface area, 

this biconteneously porous SiCN support was chosen for the synthesis of 

porous gold catalyst. The gold nanoparticles were introduced to mesoporous 

SiCN by adding aminopyridinato metal complexes to the mixture of PE-OH 

(70%) and HTT-1800 (30%). The added aminopyridinato metal complexes 

prefer to settle on the inorganic carbosilazane block due to the presence of N-

H and Si-H functional group (Figure 3.4). These added metal complexes act 

as mediator for transmetallation reaction via molecular pathway to the 

HTT1800 block. Pyrolyzing the green-body leads to the porous SiCN 

supported gold and silver catalysts. Three possible transformations can be 

taken place during pyrolysis namely i) the formation of metal nanoparticles ii) 

Pore formation in the place of PE-OH block and iii) ceramization. Figure 3.5 

depicts the porous SiCN having molecular network structure with nitrogen

 Figure 3.4. Schematic representation of catalyst preparation from ceramic 

precursor HTT1800, PE-OH, and metal precursor transferred into disordered 

biconteneously porous Au@SiCN. 

 

function, which might be stabilizing gold nanoparticles. Furthermore, the 

molecular network of Si-C-N may stabilize the nanoparticles formed at the 

surface of carbosilazane block. The TEM was used to analyse the presence 

of nanoparticles as well as the nature of the porous SiCN support. The 
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porosity was analysed by N2 adsorption and observed to have the pores in 

mesoscale range with high surface area. Moreover, solid state NMR 

experiment was conducted to substantiate the presence of SiCN environment 

in the sample. The liquid phase oxidation of higher alkenes was conducted 

with the synthesized Au@SiCN catalyst using air as an oxidant. The 

Au@SiCN catalyst was active towards oxidation of higher alkenes. In 

particular, cyclooctene was chosen to perform temperature dependant air 

oxidation. The inference of the result implies that the conversion increases as 

the temperature is increased. 
                         

 
Figure 3.5. Schematic representation of porous SiCN supported gold 

nanoparticle stabilized by SiCN network structure at the surface. 

 

3.1. Individual Contribution to Joint Publications 

 
The results presented here were obtained in collaboration with co-

workers and are published, submitted or to be submitted as indicated below. 

The individual contributions of all authors are specified. The corresponding 

author is denoted by an asterisk. 
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Chapter 4 
 
This work is published in Chem. Eur. J., with the title of  

“Tailored Nano-Structuring of End-Group Functionalized HD-
Polyethylene Synthesized via an Efficient Catalytic Version of Ziegler’s 
“Aufbaureaktion”” 

Saravana K. T. Pillai,[a] Winfried P. Kretschmer, [a] Martin Trebbin, [b] Stephan 

Förster, [b] and Rhett Kempe*,[a] 

The synthesis of PE-OH part was carried out by Dr. Winfried P. 

Kretschemer. Copolymerization and nanostructuring part was done by myself, 

SAXS measurements were carried out by Martin Trebbin and the 

interpretations were done by both Martin Trebbin and myself. AFM (trained by 

Markus Hund) and N2 physisorption measurements were done by myself. The 

SEM of the samples were analysed by Dr. Christine Denner. DSC 

measurements were carried out with the help of Dr. Florian Wieberger and 

TGA with Sandra Ganzleben. All the above-mentioned work was conducted 

under the super vision of Prof. Dr. Rhett Kempe. Publication, scientific 

discussions, comments, correction of manuscripts, and preparation of 

supporting information are done collectively by myself, Dr. Winfried P. 

Kretschmer, Prof. Stephan Förster and Prof. Dr. Rhett Kempe. 

 
Chapter 5 
 
This work is published in Small, with the title of 

“SiCN nanofibers with a diameter below 100 nm synthesized via 
concerted block copolymer formation, microphase separation, and 
crosslinking” 

Saravana K. T. Pillai,a Winfried P. Kretschmer, b Christine Denner,a Günter 

Motz,b Markus Hund,c Andreas Fery,c Martin Trebbin, b Stephan Förster, b and 

Rhett Kempe*,a 

The synthesis of PE-OH part was carried out by Dr. Winfried P. 
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Kretschemer. SiCN nanofibers synthesis was done by myself. The SEM of 

the samples were analysed by Dr. Christine Denner. The TEM of the sample 

was measured by Justus Hermannsdörfer. SAXS pattern was measured by 

Martin Trebbin and the interpretations were performed by both Martin Trebbin 

and myself. AFM measurements were carried out by myself. QUASI in situ 

AFM study was conducted by Markus Hund and N2 physisorption 

measurements were done by myself. 29Si NMR measurements were 

conducted by Renee Siegel. DSC measurements were carried out by Dr. 

Florian Wieberger and TGA by Sandra Ganzleben. All the above-mentioned 

work were conducted under the super vision of Prof. Dr. Rhett Kempe. 

Publication, scientific discussions, comments, correction of manuscripts, and 

preparation of supporting information were done collectively by myself, Dr. 

Günter Motz and Prof. Dr. Rhett Kempe.  

 
Chapter 6 
 
The following work is “to be submitted” 
 
 “Robustly Supported Porous Au and Ag Catalysts for the Selective 
Oxidation of Alkenes Using air/O2 as an Oxidant” 

 

Saravana K.T. Pillai,a Winfried P. Kretschmer,a Torsten Irrgang,a Martin 

Friedrich,a Justus Hermannsdörfer,a Günter Motz,b and Rhett Kempe*,a 

 

The synthesis of PE-OH part was carried out by Dr. Winfried P. Kretschemer. 

The synthesis of porous SiCN and porous gold and silver catalysts are done 

by myself. Dr. Torsten Irrgang provided the suggestions on catalysis. 

Nitrogen physisorption measurements and calculations are done by myself. 

The TEM of catalysts were analysed by Martin Friedrich and porus SICN was 

by Justus Hermannsdörfer. 29Si NMR measurements were conducted by Dr. 

Yamini Avadhut. The SEM of the samples were analysed by Dr. Christine 

Denner. AFM measurements were conducted by myself. Powders XRD of the 

samples were measured with the help of Dr. Wolfgang Milius. All the above-

mentioned work were conducted under the super vision of Prof. Dr. Rhett 

Kempe. Publication, scientific discussions, comments, correction of 

manuscripts, and preparation of supporting information are done collectively 

by myself, Dr. Günter Motz and Prof. Dr. Rhett Kempe.
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4. Tailored Nano-Structuring of End-Group Functionalized 
HD-Polyethylene Synthesized via an Efficient Catalytic 
Version of Ziegler’s “Aufbaureaktion” 

Saravana K. T. Pillai,[a] Winfried P. Kretschmer,[a] Martin Trebbin,[b] Stephan 

Förster,[b] and Rhett Kempe*,[a] 

[a]Lehrstuhl Anorganische Chemie II, Universität Bayreuth, Universität 

Bayreuth, 95440 Bayreuth, Germany, E-Mail : kempe@uni-bayreuth.de 
[b]Lehrstuhl Physikalische Chemie I, Universität Bayreuth, Universität 

Bayreuth, 95440 Bayreuth, Germany. 

4.1. Abstract 

Monoguanidinato titanium complexes are efficient catalysts to make OH end-

group-functionalized polyethylene (PE-OH) by a catalyzed version of Ziegler's 

“Aufbaureaktion”. This PE-OH can be structured to mesoporous polyethylene 

or polyethylene nanofibers/ribbons through diblock copolymer synthesis, 

microphase separation, and etching of the sacrificial polylactide block. 

4.2. Introduction, Results and Discussion 

Polyethylene (PE) is the most widely used synthetic polymer and is 

essential for our modern life style because of its low cost and its broad 

applicability. Unfortunately, the compatibility with other important polymers or 

materials is limited. Compatibility agents, having a PE block and a block of 

that other polymer or a block that is compatible with the material, could solve 

this problem. Furthermore, PE-based block copolymers may allow to 

nanostructure PE via microphase separation and enable novel applications of 

this commodity. Both approaches rely on an efficient synthesis of PE having 

an end-group that allows the easy introduction of the second polymer block. A 

polymerization method which produces metal terminated PE that can easily 

be converted into PE carrying such reactive end-groups is coordinative chain 

transfer polymerization (CCTP).1, 2 Pioneering work was done by Eisenberg 

and Samsel3 as well as Mortreux and coworkers.4 Meanwhile, a few 
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ethylene/propylene CCTP catalyst systems using rare earth metals (RE) and 

transition metals in combination with different chain transfer agents (CTA), 

like Mg, Zn5,6,7 and Al alkyls,8,9 are known. Furthermore, enhancements of the 

CCTP concept like “chain shuttling” and “ternary CCTP”10 have been 

developed. A simplified mechanism of CCTP is shown in Scheme 1.  

 
Scheme 4.1. Net reaction and mechanism of CCTP involving aluminum 

alkyls; top: CTS (chain transfer state); bottom: CGS (chain growing state); [M] 

= cationic or neutral transition metal or RE complex; R1, R2 = alkyl moiety; n, 

m = natural numbers.  

 

The chain growing state (CGS) elongates the polymer chain and the 

chain transfer state (CTS) exchanges the polymer chain between the catalyst 

and the CTA - here aluminum alkyls. Bochmann and Lancaster reported that 

the exchange of alkyl chains between group 4 metal cations and Al occurs via 

bimetallic complexes (CTS).11 Norton and co-workers described a detailed 

mechanistic picture of a zirconium complex catalyzed chain growth of Al 

alkyls.12,13 The kinetics of chain growth has been studied when catalyzed by 

[(EBI)Zr(µ-Me)2AlMe2][B(C6F5)4] [EBI: ethylene bridged bis(indenyl), Me: 

methyl]. The reaction is first-order in [olefin] and [catalyst] and inverse first-

order in [AlR3].12 These inverse first order dependence prohibits the use of 

high CTA/catalyst ratios. High amounts of CTA result in a poor overall 

polymerization activity. In consequence, most of the described CCTP catalyst 

systems work with CTA/catalyst ratios < 500 and become inactive with 
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significant higher CTA ratios. A possibility to solve this rather fundamental 

problem is the design of new catalyst systems that undergo fast chain growth 

in comparison to chain exchange and still suppress ß-H elimination/transfer 

processes. In such a regime, multiple insertions may compensate efficiency 

loss caused by high CTA/catalyst ratios. 14 

 

Herein, we report on a novel titanium based catalyst system that is highly 

active in the presence of very high CTA/catalyst ratios and undergoes 

polyethylenyl chain transfer to triethylaluminum (TEA). No ß-hydride 

elimination/transfer products were observed. This polymerisation process can 

be viewed as an efficient catalytic version of Zieglers “Aufbaureaktion”. Via 

oxidation with O2 and subsequent hydrolytic workup the metallopolymers can 

be converted to PE-OH. The generated PE-OH was used to synthesize block 

copolymers having polylactide (PL) as a counter block. Microphase 

separation yielded different morphologies by varying the PL block length. 

Etching out of the sacrificial PL block gave rise to meso-porous polyethylene 

and polyethylene nano-ribbons. Nano-porous “PE” has been generated from 

hydrogenated 1,4-polybutadiene (hPB). Block copolymers from hPB and 

polystyrene made via anionic polymerization allow excellent structuring but 

need rather harsh and difficult to control etching techniques to remove the 

polystyrene block.15 Furthermore, polymeric bicontinuous microemulsion 

templates were generated using hPB and block copolymers carrying a hPB 

block.16Unfortunately, the PE mimic hPB suffers from the unavoidable 

presence of branches. Ring opening metathesis polymerization of 

cyclooctene is discussed as an alternative and gave rise to pseudo PE blocks 

after hydrogenation. Tri-block copolymers carrying such a block were 

successfully converted into porous “PE”.17 The fabrication of polyethylene 

nano-ribbons via the block copolymer approach has not been reported 

yet.18,19 A few examples exist in which end group functionalized PE was 

synthesized via CCTP and used to make block copolymers.20 

 

We recently developed RE based CCTP catalysts,21 and varied the 

nature as well as the steric demand of the monoanionic ligand used to 

stabilize the organo RE cations. In addition, the size of the RE atom was 
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varied to find a catalyst system that tolerates high CTA/catalyst ratios.22 

Unfortunately, these variations did not lead to CTA/catalyst ratios above 500.    

 

Thus we shifted our attention to group 4 metals, especially towards 

titanium catalysts. Titanium catalysts stabilized by bulky aminopyridinato (Ap) 

ligands showed attractive polymerization activities but suffered from ligand 

transfer problems.23 The Ap ligand is transferred to the CTA (aluminum 

alkyls) and an increased electron donor ability of the ligand rather increased 

ligand transfer rates than decreasing them.24 Bulky guanidinates25 are 

chemically related to Ap ligands and were expected to alter ligand transfer 

rates significantly but may maintain high polymerization activity. 

 

The reaction of amido titanium trichloride complexes26 with N,N'-

methanediylidenebis(2,6-diisopropylaniline) leads to the complexes A, B and 

C via methanediimine insertion into the titanium amide bonds (Figure 4.1). 

NMR data show a single signal set for the symmetrically substituted 

complexes A and C. Signal splitting was observed for complex B indicating a 

dynamic behaviour, presumably rotation around the C-N bond of the non-

coordinated nitrogen atom. Variable temperature NMR studies indicate a 

coalescence temperature of 88 °C for the methine proton signal of the 

isopropyl groups and a rotation barrier of about 73 kJ/mol. X-ray crystal 

structure analysis of A and B reveal mono-guanidinate trichloro complexes 

and a distorted trigonal bipyramidal coordination of the titanium atoms. The 

variation of the substituents at the non-coordinated nitrogen atom alters the 

titanium coordination only slightly (Figure 4.1, bottom).  
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Figure 4.1. Polymerization pre-catalyst synthesis and structure. Top: 

Synthesis of the complexes A (R = R’ = ethyl), B (R = cyclohexyl, R’ = 

methyl) and C (R+R’ = pentamethylene). Bottom: Molecular structure of A 
and B determined by X-ray single crystal structure analysis (atom colour 

code: carbon orange, chlorine yellow, nitrogen green and titanium red). 

Selected bond distances [Å] and angles [°] of A (bottom left): N1-Ti1 2.015(3), 

N2-Ti1 2.027(4), N1-C1-N2 106.0(3); and of B (bottom right): Ti1-N1 

2.0081(14), Ti1-N2 2.0180(15), N1-C1 N2 106.40(14). 

 

Ethylene polymerization studies using complex A as a pre-catalyst and 

different activation protocols reveal that A can be highly active27 if activated 

with MAO (methyl alumoxanes), d-MAO (dry MAO, free trimethyl aluminum 

content of MAO was removed) and a combination of aluminium alkyls and 

perfluoroarylborates (Table 4.1).  

 
Table 4.1. Initial polymerization studies using complex A. Conditions: 2 µmol 

of A, 2 bar ethylene pressure, 150 ml toluene, 15 min polymerization time, 

ammonium borate: [R2N(CH3)H]+[B(C6F5)4]- (R = C16H33 – C18H37), Ti/B = 

1/1.1 (TMA = trimetyl aluminum, TiBA = triisobutyl aluminum). 

 
Run 

 
Activator 

 
Temp. 

[oC] 

 
mpol. 
[g] 

 
Activity 
[kgPE         

mol-1h-1bar-

1] 

 
Mn 

[g mol-1] 

 
Mw/Mn 

1 d-MAOa 30 3,64 3640 141000 5,9 
 

2 d-MAOa 50 1,36 1360 52000 3,2 
 

3 d-MAOa 80 1,22 1220 28000 2,7 
 

4 MAOb 30 2,82 2820 16000 2,0 
 

5 MAOb 50 1,67 1670 8400 2,5 
 

6 MAOb 80 0.1 100 7700 4,0 
 

7 TMA/B(C6F5)4
c 50 0,7 700 3900 1,9 

 
8 TEA/B(C6F5)4

c 50 1,62 1620 2200 1,9 
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9 TiBA/B(C6F5)4
c 50 1,1 1100 40000 2,0 

 
10 TEA/B(C6F5)4

d 50 1,8 1800 1800 1,9 
 

11 TEA/B(C6F5)4
d,e 50 3,7 930 2300 1,7 

 
12 TEA/B(C6F5)4

d,f 50 7,0 880 2300 1,7 
a) Ti/Al = 1/650, b) Ti/Al = 1/500, c) Ti/Al = 1/500, d) Ti/Al = 1/1000, e) 60 min, f) 

120 min 

Investigations at different temperatures reveal that the catalyst is 

stable in the temperature window between 30 and 80 °C. Activation by MAO 

and d-MAO leads to significant differences of the molecular weight of the 

polymers indicating a polymeryl chain transfer catalysis to aluminium (Table 

4.1, run 1-6). 1H NMR investigations of the hydrolysed polymers obtained by 

MAO activation support this hypothesis since no olefinic end-groups were 

detected. Polymerization reactions using a borate activator and different 

aluminum alkyls (Table 4.1, run 7-9) indicate that TEA is a better transfer 

agent than trimethylaluminum (TMA). The polydispersities recorded for all 

runs listed in Table 4.1 are significantly larger than 1.2. This observation 

indicates that a classic CCTP mechanism with a very fast chain transfer in 

comparison to chain growing is not operating. The molecular weight of the 

polymers does not increase with increased polymerization time, Table 4.1, 

run 10 to 12. In a time regime from 15 to (60 to) 120 min a larger amount of 

polymer having essentially the same molecular weight is produced. The 

number of aluminum alkyl chains extended increases from 17 to (27 to) 50 %, 

respectively. Control over the molecular weight can be obtained via the 

catalyst, the temperature and the CTA to catalyst ratio (Table 4.2). The 

molecular weight of the polymers decreases with CTA/catalyst ratio 

increasing from 500 to 1000 (Table 4.2).  

 
Table 4.2. Ethylene polymerization studies using complexes B and C, 
activation with TEA and ammonium borate. Conditions: pre-catalyst: 2.0 

µmol; ammonium borate: 2.2 µmol [R2N(CH3)H]+[B(C6F5)4]- (R = C16H33 – 

C18H37), Ti/B = 1/1.1; CTA = TEA; toluene: 150 mL; T = 50 °C, p = 2 bar; t = 

15 min. 

Run Pre-cat. Al/Ti mPol. Activity Mn Mw/Mn 
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Furthermore, different catalysts have different insertion rates leading to 

different molecular weights of the polymers at the same CTA/catalyst ratio 

(Table 4.2). Polymerization runs with very high CTA/catalyst ratios were 

performed and subsequently oxidized using air as an oxidant to produce PE-

OH (Table 4.3).  

 
Table 4.3. Ethylene polymerization studies using complex A, activation with 

TEA and ammonium borate and subsequent oxidation by air. Conditions: 

ammonium borate: [R2N(CH3)H]+[B(C6F5)4]- (R = C16H33 – C18H37), Ti/B = 

1/1.1; CTA = TEA; toluene: 150 mL; p = 5 bar; t = 60 min. 

a) 2 bar 

 

The 1H NMR spectra of the polymer obtained from run 2, Table 4.2 is 

shown in Figure 2. Important regions are expanded (insets). Remarkably, the 

catalyst based on A shows activities of around 16.000 kgPEmolcat
-1h-1bar-1 in 

the presence of 25.000, 33.000 or 50.000 equivalent of TEA. The catalyst 

performance decreases slightly during the last 45 min of the one hour 

polymerisation experiments indicating a good stability of the catalyst 

[g] [kgPEmolcat
-1h-

1bar-1] 
[gmol-1] 

1 B 500 1.70 1700 2800 2.2 
2 B 750 1.75 1750 2100 2.0 
3 B 1000 1.80 1800 1600 2.0 
4 C 500 1.40 1400 3100 2.4 
5 C 750 1.40 1400 2700 2.4 
6 C 1000 1.55 1550 2500 2.3 

Run A 
[µmol] 

Al/Ti T 
[°C] 

mPol. 
[g] 

Activity 
[kgPE 

molcat
-1h-1bar-1] 

Mn 
[gmol-1] 

Mw/Mn 

1 4a 2500 70 44.0 5500 1700 1.8 
2 2 5000 70 47.0 4700 2100 1.9 
3 0.6 17000 65 28.4 9470 2500 1.8 
4 0.4 25000 60 32.0 16000 3300 1.9 
5 0.3 33000 65 24.4 16300 2500 1.9 
6 0.2 50000 60 16.7 16700 2900 1.9 
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system at 60 to 70 °C. Oxidation of the aluminum terminated PE leads to PE-

OH (after hydrolytic workup). The PE-OH produced in run 4, Table 3 was 

used for diblock copolymer synthesis. It contains 80% hydroxyl group 

functionalized PE as determined by NMR spectroscopy. PL was chosen as 

sacrificial counter block because it can predominately adopt an amorphous 

form which is in good contrast to the crystalline nature of linear PE.28 

Moreover, PL can be etched out under mild basic conditions without 

disrupting the PE structure of the microphase separated diblock copolymer. 

Tin(II) 2-ethylhexanoate [Sn(Oct)2] was used as a catalyst to polymerize a PL 

block onto PE-OH. Different amounts of rac-lactide gave rise to PE-O-PL 

diblock copolymers having different PL block lengths [PEOPL(1) and (2)]. The 

diblock copolymers were characterized by high temperature GPC, NMR, TGA, 

DSC and IR.  

 
Figure 4.2. Schematic representation of the synthesis of meso-porous 

polyethylene and polyethylene nano-ribbons. 

 

Different morphologies of PEOPL(1) and (2) via microphase separation 

were accomplished in cumene (Figure 4.3). The diblock copolymers were 

dissolved in cumene at 152 °C followed by slow solvent casting at 140 °C oil 

bath temperature. 

Table 4.4. Summary of the characterization data of the diblock copolymers. 
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1) Mn and polydispersity as determined by high temperature gel permeation 

chromatography (HT GPC). 2) Molecular weight of the diblock copolymer as 

calculated by 1H NMR spectroscopy using relative intensities of repeating unit 

signals and end-group signals, and Mn of PE as determined by HT GPC. 3) 

Weight fraction of PL in the diblock copolymer calculated using NMR 

spectroscopy and the densities at 25 °C reported for the respective 

components [PL = 1.25;29 LPE = 0.95 (at 60% crystallinity)30.4) Taken as the 

peak of the melting endotherm (or the crystallization exotherm) during the 

heat (or cool) in DSC. 5) Percentage of crystallinity of the diblock copolymers 

calculated31from [ΔHm/(ΔHm)]x100% with ΔHm
0 = 277 J g–1. 

 

The material was subsequently annealed at this temperature for six 

hours. Annealing of the melt seems to ensure good segregation of the 

equilibrated nanostructures. The microphase separated diblock copolymers 

were investigated by synchrotron Small Angle X-ray Scattering (SAXS) 

(Figure 4.4) and Atomic Force Microscopy (AFM). AFM, recorded at ambient 

condition in non-destructive tapping mode, is indicative of a rather well 

ordered lamellar type of structuring for PEOPL(1) (Figure 4.5a and b) and a 

less ordered bicontinuous morphology for PEOPL(2) (Figure 4.6a). 
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Figure 4.3. Radially averaged synchrotron SAXS patterns for PEOPL(1) and 

PEOPL(2) indicating a lamellar-type and a disordered bicontinuous 

morphology, respectively. Colour code: grey measured, red and blue 

simulated.  

 

Synchrotron SAXS studies are in agreement with these observations 

(Figure 4.4). The SAXS pattern of PEOPL(1) with three peaks at q = 0.29, 

0.58 and 0.85 nm-1 correspond to the ratio of 1:2:3 which indicates a lamellar 

structure (Figure 4.4). Calculations using the software Scatter confirm this 

alternating lamellar lattice with periodic domain spacing (d-spacing) of 20 

nm.32 Furthermore, the first order peak at 0.28 nm-1 was used to confirm the 

d-spacing of 22nm. Observation of such large domain spacing for these lower 

molecular weight copolymers is due to the polydispersity of PE block and the 

presence of 20% of the homopolymer in the sample.33 The SAXS pattern of 

PEOPL(2) does not show pronounced peaks which would indicate a defined 

lattice. The fit shown in Figure 4 is based just on a simple sphere particle 

model. 
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Figure 4.4. Microphase separated PEOPL(1). AFM phase images show a 

lamella-type morphology (a, b). SEM images of PE nano-ribbons after etching. 

(c, d) 

 

The microphase separated diblock copolymers were submerged in a 

NaOH/water/methanol mixture to remove the PL block (Figure 4.3). The 

completion of the etching process was confirmed by FTIR spectroscopy. 

Removing the PL block of microphase separated PEOPL(1) afforded a PE 

material that might be best described as PE nano-fibres as indicated by SEM 

(Figure 4.5c and d). Microphase separation of PEOPL(2) results disordered 

bicontinous morphology. The resultant morphology was mainly driven by both 

copolymer PEOPL(2) and homopolymer PE present in the sample. Upon 

etching the lactide block, the PEOPL(2) give rise to a porous PE material with 

a mean pore size diameter of 30 nm as determined via nitrogen adsorption-

desorption studies ((Barrett-Joyner-Helenda method, Figure 4.6). The pore 

size is in an acceptable agreement with the domain size of microphase 

separated PEOPL(2) observed by AFM (Figure 4.6a). A surface area of 19 

m2/g was calculated for the porous PE using the Brunauer-Emmett-Teller 

(BET) method. The pores in the range of 10-50 nm contribute mainly to that 

specific surface. SEM studies (Figure 4.6c and d) support the porous nature 

of the PE material and the structuring indicated by AFM studies (Figure 4.6a).  
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Figure 4.5. Microphase separated PEOPL(2). AFM image. Phase image 

shows the disordered bicontineous morphology (a). Nitrogen 

adsorption/desorption studies and inset of the resulting pore size distribution 

(b). SEM images of porous PE after etching (c, d). 

4.3. Conclusion 
 
Two main conclusions can be drawn from this study. 

1. Monoguanidinato titanium complexes are efficient catalysts to make OH-

endgroup functionalized polyethylene (PE-OH) via a catalyzed version of 

Zieglers “Aufbaureaktion”. 

2. PE-OH can be structured to meso-porous polyethylene and polyethylene 

nano-ribbons via diblock copolymer synthesis, microphase separation and 

etching of the sacrificial polylactide block. 
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All manipulations, beside microphase separation and etching, were 

performed with rigorous exclusion of oxygen and moisture in Schlenk type 

glassware on a dual manifold Schlenk line or in an argon filled glove box 

(Braun 120-G) with a high-capacity recirculator (<0.1 ppm O2). Non-

halogenated solvents were dried by distillation from sodium 

wire/benzophenone. N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate 

([PhNMe2H][B(C6F5)4], abcr GmbH & Co. KG), N,N,N-trialkylammonium 

tetrakis(pentafluorophenyl)borate ([R2NMeH][B(C6F5)4] , R = C16H33 – C18H37, 

6.2 wt-% B(C6F5)4 in Isopar, DOW Chemicals), trimethyl aluminum (TMA, 2.0 

M in toluene, Aldrich), triethyl aluminum (TEA, 25 wt-% in toluene, Aldrich), 

tri-iso-butyl aluminum (TIBA, 25 wt-% in toluene, Aldrich), tri-n-octylaluminum 

(TOA, 25 wt-% in toluene, Aldrich), EURECEN AI 5100-10-toluene (4.9 wt-% 

in Al, Chemtura Organometallics), bis(2,6-diisopropylphenyl)carbodiimide 

(TCI Europe) were used as received. The titanium precursors [R’R’’NTiCl3] 

(R’/R’’ = C2H5/C2H5 or CH3/C6H11 or -(CH2)5- were synthesized as reported in 

the literature.S1 Cumene was purchased from Aldrich and used as received. 

D,L-lactide (99%) was purchased from Aldrich and recrystallized from ethyl 

acetate and dried at 40° C for 24 hrs prior to use. Tin (II) 2-ethylhexanoate 

[Sn(Oct)2] from Aldrich was distilled and stored in the glove-box. Deuterated 

solvents were obtained from Cambridge Isotope Laboratories and were 

degassed, dried, and distilled prior to use. NMR spectra were recorded with a 

Varian ARX at 400 MHz or Varian ARX 300 MHz and chemical shifts are 

reported in ppm relative to the deuterated solvent. Elemental analyses (CHN) 

were carried out using a Vario EL III instrument. Due to TiC formation, the C 

value obtained by our analyzer is in average 1% lower in carbon if titanium 

amides are analyzed.d-MAO was prepared by removal of volatiles from MAO 

(4.9 wt. % in Al, ). The polymer samples for NMR spectroscopic 

measurements were prepared by dissolving 15 mg of the polymer in 0.5 mL 

C2D2Cl4at 100 °C for 3 h before measuring. Gel permeation chromatography 

(GPC) analysis was carried out on a PL-GPC 220 (Agilent, Polymer 

Laboratories) high temperature chromatographic unit equipped with a DP and 

RI detectors  and two linear mixed bed columns (Olexis, 13-micron particle 

size) at 150 °C using 1,2,4-trichlorobenzene as the mobile phase. The 

samples were prepared by dissolving the polymer (0.05 wt.-%, conc. = 1 
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mg/mL) in the mobile phase solvent in an external oven and were run without 

filtration. The molecular weight was referenced to polyethylene (Mw = 520 - 

3200000 gmol–1) and polystyrene (Mw = 580–2800000 gmol–1) standards. 

The reported values are the average of at least two independent 

determinations.X-ray crystal structure analysis was carried out at a STOE 

IPDS II diffractometer equipped with an Oxford Cryostream low temperature 

unit. Structure solution and refinement were accomplished using SIR97,S2 

SHELXL-97S3 and WinGX.S4 The degradation temperature was determined 

using thermo gravimetric analysis (TGA) with a TGA/SDTA851e (Mettler 

Toledo) using a heating rate of 10 K/min under nitrogen flow. Differential 

scanning calorimetric (DSC) measurements were obtained using a 

DSC/SDTA 821 calorimeter from MettlerToledo Instruments that was 

calibrated with an indium standard. Samples were loaded into hermetically 

sealed aluminum pans prior to analysis. The thermal history of the samples 

was erased by heating the samples to 250 °C and isothermally annealing for 

5 min. The samples were characterized using atomic force microscopy (AFM) 

under ambient conditions. The images were taken with a commercial AFM 

(DimensionTM 3100 equipped with a NanoScope® IV and a XY closed-loop 

scanner (Veeco Instruments Inc., USA). The Data were acquired by scanning 

areas of 1 µm x 1 µmwith 512 x 512 pixels in TappingMode TM with 

cantilevers which have a typical spring constant of 42 N/m and a typical 

resonance frequency of 300kHz (OMCL-AC160TS, Olympus, Japan). The 

topographic and phase images were flattened and the surface roughness 

(Rg) was calculated using the NanoScope ® Analysis software version XY, 

Brucker Corporation, USA). Modelling material or fast-drying conductive silver 

(G3692, Plano GmbH, Germany) was used for sample fixation. Infrared 

spectra of the materials were recorded using Bruker Vektor 22FT-IR 

spectrometer. The synchroton Small Angle X-Ray Scattering (SAXS) 

measurements were performed at the beamline BW4 at DORIS III 

(HASYLAB/DESY). The SAXS data was collected using a MarCCD detector 

with a sample to detector distance of 2.575 m and a wavelenght of 0.138 nm. 

The Scanning Electron Microscopy (SEM) imaging were recorded on a Zeiss 

LEO 1530 (2kV, 6.4mm) FESEM instrument (Zeiss, Jena, Germany). The 

samples were sputtered with platinum (2.0 nm) in a Cressington sputter 
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coater 208HR to enhance conductivity. 

4.6.1. Synthesis and Characterization of the Polymerization 
Catalysts 
 
Synthesis of complex A 
 

 
 

Diethylamidotitanium(VI) chloride (0.50 g, 2.2 mmol) and bis(2,6-

diisopropylphenyl) carbodiimide (0.80 g, 2.2 mmol) were subsequently added 

to a Schlenk flask filled with 25 mL of toluene and stirred at 50 °C. After 24 h 

the mixture was heated to 110 °C and filtered. Slow cooling to room 

temperature gives dark red crystals. The supernatant solution was decanted 

and the titanium complex was dried under reduced pressure (1.05 g, 80 % 

yield). 

Elemental analysis: calcd.  C 59.04,  H 7.69,  N 7.12; found C 57.98, H 7.65, 

N 7.02. 
1H-NMR (C6D6,400 MHz, 298K): d = 0.36 (t, 6H, CH2CH3), 1.15 (d, 12H, 

CH(CH3)2), 1.52 (d, 12H, CH(CH3)2), 2.52 (q, 4H, CH2CH3), 3.57 (m, 4H, 

CH(CH3)2), 7.0 – 7.11 (m, 6H, C6H3). 
13C NMR (C6D6,100.53 MHz, 298K): d= 12.1 (CH3

3), 24.4 (CH3
9,10), 25.7 

(CH3
9,10), 29.1 (CH8), 41.5 (CH2

2), 124.8 (CH6), 128.6 (CH7), 143.0 (C5), 

145.0 (C4), 167.7 (NCN1). 
Synthesis of complex B 

 

Cyclohexyl(methyl)amidotitanium(VI) chloride (0.78 g, 2.93 mmol) and 
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bis(2,6-diisopropylphenyl) carbodiimide (1.06 g, 2.9 mmol) were subsequently 

added to a Schlenk flask filled with 25 mL of toluene and stirred at 50 °C. 

After 24 h the mixture was heated to 110 °C and filtered. Slow cooling to 

room temperature gives dark red crystals. The supernatant solution was 

decanted and the titanium complex was dried under reduced pressure (0.92 g, 

50 % yield). 

Elemental analysis: calcd. C 61.01, H 7.84, N 6.67; found C 59.93, H 7.75, N 

6.51. 
1H-NMR (C6D6,400 MHz, 298K): d = 0.46 (m, 2H, CH2), 0.71 (m, 4H, CH2), 

1.08 (m, 4H, CH2), 1.17 (d, 6H, CH(CH3)2), 1.22 (d, 6H, CH(CH3)2), 1.55 (d, 

12H, CH(CH3)2), 1.90 (s, 3H, CH3), 3.33 (m, 1H, CH(CH2)2), 3,49 (m, 2H, 

CH(CH3)2), 3,75 (m, 2H, CH(CH3)2), 7,04 – 7,14 (m, 6H, C6H3). 
13C NMR (C6D6,100.53 MHz, 298K):d =23.1 (CH3

14,15,17,18), 24.0 (CH3
14,15,17,18), 

24.8 (CH3
14,15,17,18), 25.2 (CH2

4,5,6), 25.8 (CH2
14,15,17,18), 28.9 (CH2

4,5,6), 29.4 

(CH13,16), 29.7 (CH13,16), 30.5 (CH3
2), 58.8 (CH3), 123. 6 (CH9,11), 124.5 

(CH9,11), 128.1 (CH10), 143.1 (C7,8,12), 143.2 (C7,8,12), 143.3 (C7), 167.5 (NCN1). 

 
Synthesis of Complex C 

 

Piperidin-1-yltitanium(VI) chloride (0.80 g, 3.36 mmol) and Bis(2,6-

diisopropylphenyl)carbodiimide (1.22 g, 3.36 mmol) were subsequently added 

to a Schlenk flask filled with 25 mL of toluene and stirred at 50 °C. After 24 h 

the mixture was heated to 110 °C and filtered. Slow cooling to room 

temperature gives dark red crystals. The supernatant solution was decanted 

and the titanium complex was dried under reduced pressure (1.80 g, 89 % 

yield). 

Elemental analysis: calcd. C 59.86, H 7.54, N 6.98; found C 58.03, H 7.50, N 

6.87. 
1H-NMR (C6D6,400 MHz, 298K): d = 0.71 (m, br, 6H, (CH2)3), 1.17 (d, 12H, 

CH(CH3)2), 1.53 (d, 12H, CH(CH3)2), 2.56(m, br, 4H, NCH2), 3,63 (m, 4H, 

CH(CH3)2), 7,05 – 7,14 (m, 6H, C6H3). 
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13C NMR (C6D6,100.53 MHz, 298K):d= 22.6 (CH3
9,10), 24.1 (CH2

4), 24.5 

(CH2
3), 25.7 (CH3

9,10), 29.1 (CH8), 48.1 (CH2
2), 124.8 (CH6), 128.3 (CH7), 

143.0 (C5), 144.8 (C4), 166.5 (NCN1). 
 

CCDC-885210 and CCDC-885211 contain the supplementary 

crystallographic data for complex A and B. These data can be obtained free 

of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

4.6.2. Ethylene Polymerization Studies 
 
Description of ethylene polymerization experiments (Runs 1-28) 

The catalytic ethylene polymerization reactions were performed in a 250 mL 

glass autoclave (Buechi) in semi-batch mode (ethylene was added by 

replenishing flow to keep the pressure constant). The reactor was ethylene 

flow controlled and equipped with separated toluene, catalyst and co-catalyst 

injection systems. During a polymerization run the pressure and the reactor 

temperature were kept constant while the ethylene flow was monitored 

continuously. In a typical semi-batch experiment, the autoclave was 

evacuated and heated for 1h at 80 °C prior to use. The reactor was then 

brought to desired temperature, stirred at 1000 rpm and charged with 150 mL 

of toluene. After pressurizing with ethylene to reach 2 bar total pressure the 

autoclave was equilibrated for 10 min. Successive co-catalyst solution, 

activator, and 1 mL of a 0.002 M pre-catalyst stock solution in toluene was 

injected, to start the reaction. After 15 min reaction time the reactor was 

vented and the residual aluminum alkyls were destroyed by addition of 50 mL 

of ethanol. Polymeric product was collected, stirred for 30 min in acidified 

ethanol and rinsed with ethanol and acetone on a glass frit. The polymer was 

initially dried on air and subsequently in vacuum at 80°C. 

 

Description of ethylene polymerization experiments (Runs 29-37) 

The catalytic ethylene polymerization reactions were performed in a stainless 

steel800 mL autoclave (Buechi) in semi-batch mode (ethylene was added by 

replenishing flow to keep the pressure constant). The reactor was pressure, 

temperature, stirrer speed, and ethylene flow controlled and 
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equipped with separated toluene, catalyst and co-catalyst injection systems. 

During a polymerization run the pressure and the reactor temperature were 

kept constant while the ethylene flow, inner and outer temperature, and stirrer 

speed were monitored continuously. In a typical semi-batch experiment, the 

autoclave was evacuated and heated for 1 h at 130 °C prior to use. The 

reactor was then brought to desired temperature, stirred at 600 rpm and 

charged with 250 mL of toluene. After pressurizing with ethylene to reach the 

desired total pressure the autoclave was equilibrated for 10 min. Successive 

co-catalyst solution, activator, and pre-catalyst stock solution in toluene 

(0.002 M) was injected, to start the reaction. After 60 min reaction time the 

reactor was vented and slowly pressurized with dry oxygen to reach 2 bar 

total pressure. After 15 min 1 mL of titanium(VI)isopropoxide in toluene (1 M) 

was injected and the autoclave was heated to reach 90°C inside. After four 

hours the residual aluminum alkyls were destroyed by addition of 50 mL of 

ethanol. Polymeric product was collected, stirred for 30 min in acidified 

ethanol and rinsed with ethanol and acetone on a glass frit. The polymer was 

initially dried on air and subsequently in vacuum at 80°C. 

 

Table SI 4.2.1. Ethylene polymerization with MAO and d-MAO cocatalysts.a 
Entry Preca

t. 
Cocat. T mPol.

 Activity Mn Mw/Mn 

   [°C] [g] [kgPE                         
molcat

-1h-1bar-1] 
[kgmol-1]  

1 A MAO 30 2.82 2820 15.9 2.0 
2 A MAO 50 1.67 1670 8.4 2.5 
3 A MAO 80 0.10 100 7.6 4.0 
4 B MAO 30 1.91 1910 13.2 4.8 
5 B MAO 50 4.20 4200 6.5 2.5 
6 B MAO 80 0.95 950 3.3 2.0 
7 C MAO 50 4.50 4500 6.2 3.0 
8 A d-MAO 30 3.64 3640 829.2 5.9 
9 A d-MAO 50 1.36 1360 172.5 3.3 
10 A d-MAO 80 1.22 1220 75.6 2.7 
11 B d-MAO 30 9.30 9300 104.1 4.0 
12 B d-MAO 50 1.92 1920 85.3 2.8 
13 B d-MAO 80 1.08 1080 34.7 2.5 
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14 C d-MAO 50 3.35 3350 111.6 5.7 
aPrecatalyst: 2.0 µmol; cocatalyst: 1.0 mmol (Ti/Al = 1/500); toluene: 150 mL; 

p = 2 bar; t = 15 min. 

 

 
Figure 4.2.1. 1H NMR spectrum (C2Cl4D2, 120°C) of PE obtained with the 

A/MAO system catalyst after acidic workup (entry 3). 

 

 
Figure 4.2.2. Molecular-weight distribution (SEC) of the polymerization 

experiments listed in Table 4.2.1, entries 1 - 3. 
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Figure 4.2.3. Molecular-weight distribution (SEC) of the polymerization 

experiments listed in Table 4.2.1, entries 8 - 10. 

 
Table 4.2.2. Ethylene polymerization with trialkylaluminum cocatalysts and 

perfluorophenylborate activators.a 

 
Entry Preca

t. 
Cocat. Al/Ti mPol.

 Activity Mn Mw/M
n 

    [g] [kgPE                     
molcat

-1h-1bar-1] 
[kgmol-1]  

15 A TEA 250 1.50 1500 2.9 2.3 
16 A TEA 500 1.62 1620 2.2 1.9 
17 A TEA 750 1.53 1530 2.1 2.4 
18 A TEA 1000 1.80 1800 1.8 1.9 
19 A TMA 500 0.70 700 3.9 1.9 
20 A TIBA 500 1.10 1100 40.4 2.0 
21 B TEA 250 0.92 920 3.9 2.5 
22 B TEA 500 1.70 1700 2.8 2.2 
23 B TEA 750 1.75 1750 2.1 2.0 
24 B TEA 1000 1.80 1800 1.6 2.0 
25 C TEA 250 1.50 1500 3.3 2.6 
26 C TEA 500 1.40 1400 3.1 2.4 
27 C TEA 750 1.40 1400 2.7 2.4 
28 C TEA 1000 1.55 1550 2.5 2.3 
aPrecatalyst: 2.0 µmol; ammonium borate: 2.2 µmol [R2N(CH3)H]+[B(C6F5)4]- 

(R = C16H33 – C18H37), Ti/B = 1/1.1; toluene: 150 mL; T = 50°C, p = 2 bar; t = 

15 min. 

 

 
Figure 4.2.4. Molecular-weight distribution (SEC) of the polymerization 
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experiments listed in Table 4.3.2, entries 15, 16 and 18.  

 
Figure 4.2.5. Molecular-weight distribution (SEC) of the polymerization 

experiments listed in Table 4.2.2, entries 25 - 28. 

 

 
Figure 4.2.6. Molecular-weight distribution (SEC) of the polymerization 

experiments listed in Table 4.2.2, entries 16, 19 - 20. 

 

 
Figure 4.2.7. Molecular-weight distribution (SEC) of the polymerization 

experiments listed in Table 4.2.1 and 4.2.2, entries 2, 9 - 16. 

 
Table 4.2.3. Ethylene polymerization with trialkylaluminum cocatalysts and 

perfluorophenylborate activators and subsequent oxidation. 
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Entry Precat.  Cocat. Al/Ti T mPol.

 Activity Mn Mw/M
n 

  [µmol]   [°C] [g] [kgPE 
molcat

-1h-1bar-1] 
[kgmol-1]  

29 A 4 TEA 2500 70 44.0 5500 1.7 1.8 
30 Ab 2 TEA 5000 70 47.0 4700 2.1 1.9 
31 Ab 0.6 TEA 17000 65 28.4 9470 2.5 1.8 
32 Ab 0.4 TEA 25000 60 32.0 16000 3.3 1.9 
33 Ab 0.3 TEA 33000 65 24.4 16300 2.5 1.9 
34 Ab 0.2 TEA 50000 60 16.7 16700 2.9 1.9 
35 C 4 TEA 2500 60 30.2 3780 1.7 2.0 
36 C 4 TEA 2500 65 27.7 3460 1.5 2.0 
37 C 4 TEA 2500 75 4.20 525 0.9 1.6 
          
aAmmonium borate: [R2N(CH3)H]+[B(C6F5)4]- (R = C16H33 – C18H37), Ti/B = 

1/1.1; toluene: 250 mL; p = 2 bar; t = 60 min. 
bp = 5 bar. 

 

 
 

Figure 4.2.8. 1H NMR spectrum (C2Cl4D2, 120°C) of PE-OH obtained with the 

A/borate catalyst system after oxidative and acidic workup 
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(entry 30). 

4.6.3. General procedure for block copolymer synthesis 
 
PEOPL(1) 
 
Linear hydroxy terminated polyethylene (Mn 3321 g/mol, Mw/Mn 1.9; 2.0 g, 

0.6 mmol OH) and rac-lactide (1.6 g, 11.1 mmol) was added in a pressure 

tube. Sn(Oct)2 (4.5 mg; 8.5 µmol) and 20ml of dried toluene was transferred 

to the pressure tube before sealing with Teflon screw-cap fitted with a Viton 

o-ring seal. The flask was immersed in an oil-bath at 110 °C for 18 h followed 

by selective precipitation into a tenfold excess by volume of cold methanol. 

After the filtration, the precipitate was washed with THF prior to dry at 70 °C 

for 24 h in the conventional oven. The yield of the dried block copolymer was 

3.15 g (72% conversion of L-lactide). The resultant diblock copolymer was 

analyzed using HT GPC, NMR, TGA, DSC and IR. 

 
PEOPL(2) 
 
Linear hydroxy terminated polyethylene (Mn 3321 g/mol, Mw/Mn 1.9; 2.0 g, 

0.6 mmol OH) and rac-lactide (0.9 g, 6.24 mmol) was added in a pressure 

tube. Sn(Oct)2 (4.5 mg; 8.5 µmol) and 20ml of dried toluene was transferred 

to the pressure tube before sealing with Teflon screw-cap fitted with a Viton 

o-ring seal. The flask was immersed in an oil-bath at 110 °C for 18 h followed 

by selective precipitation into a tenfold excess by volume of cold methanol. 

After the filtration, the precipitate was washed with THF prior to dry at 70 °C 

for 24 h in the conventional oven. The yield of the dried block copolymer was 

2.72 g (80% conversion of L-lactide). The resultant diblock copolymer was 

analyzed using HT GPC, NMR, TGA, DSC and IR. 

 
PEOPL(3) 
 
Linear hydroxy terminated polyethylene (Mn 3321 g/mol, Mw/Mn 1.9; 2.0 g, 

0.6 mmol OH) and rac-lactide (0.6 g, 4.16 mmol) was added in a pressure 

tube. Sn(Oct)2 (4.5 mg; 8.5 µmol)  and 20ml of dried toluene was transferred 

to the pressure tube before sealing with Teflon screw-cap fitted with a Viton 

o-ring seal. The flask was immersed in an oil-bath at 110 °C for 18 h followed 

by selective precipitation into a tenfold excess by volume of cold methanol. 
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After the filtration, the precipitate was washed with THF prior to dry at 70 °C 

for 24 h in the conventional oven. The yield of the dried block copolymer was 

2.48 g (79% conversion of L-lactide). The resultant diblock copolymer was 

analyzed using HT GPC, NMR, TGA, DSC and IR. 

4.6.4. Characterization of the diblock copolymers 
Table 4.2.4. Summary of the characterization data. 

SampleID Mn 1 
g/mol 

Mw/Mn1 MW2 
g/mol 

fPL
3 Tm

4 
°C 

Tc
4 

°C 
ΔHm

4 
J/g 

XE
5 

% 

PE-OH 3300 1.9   130.0 115.0 252.2 91 
PEOPL(1) 4500 1.7 5500 0.44 126.6 113.1 104.3 37 
PEOPL(2) 4000 1.6 4400 0.38 127.2 114.0 128.1 46 
PEOPL(3) 3500 1.8 3900 0.17 128.3 114.6 185.3 66 

1) Mn and polydispersity as determined bygel permeation chromatography.  

2) Molecular weight of the diblock copolymer as calculated by 1H NMR  

    spectroscopy using relative intensities of repeating unit signals and end-    

    group signals and Mn of PE as determined by HT GPC. 

3) Weight fraction of PL in the diblock copolymer calculated using NMR  

    spectroscopy and the densities at 25 °C reported for the respective   

    components [PL = 1.25;S5 LPE = 0.95 (at 60% crystallinity) S6]. 

4) Taken as the peak of the melting endotherm (or the crystallization  

    exotherm) during the heat (or cool) in DSC. 

5) Percentage of crystallinity of the diblock copolymers calculated from  

    [ΔHm/(ΔHm
0·)] with ΔHm

0 = 277 J g–1 

 

Figure 4.2.9. Molecular weight distribution of different diblock copolymers. 
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Figure 4.2.10. 1H NMR spectrum of block polymer PEOPL(1) measured in 

C2D2Cl4 at 120 °C with the inset showing a magnified portion that 

accentuates the methylene protons at the junction between the two 

components [Hd; –CH2–CH2–O–C(O)–CH(CH3)–] and the PLA end-group 

methine protons [He–O–C(O)–CH(CH3)–OH]. 

 
Figure 4.2.11. Thermo gravimetric curve of PEOPL(1), PEOPL(2), and 

PEOPL(3). The mass loss below 300 °C corresponds to PL decomposition 

and that above 450 °C to PE decomposition. 
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Figure 4.2.12. FTIR-spectra of starting PEOH (red) and synthesized PEOPL 

copolymer (black). 

4.6.5. Microphase separation of PEOPL 
 
PEOPL(1), PEOPL(2), and PEOPL(3) (200mg) were dissolved in 8mL of 

cumene in a glass vials at 152°C. After slow evaporation of solvent at 140°C 

(oil bath temperature), the melt morph was annealed for six hours at the 

same temperature prior to bring the melt morph to room temperature. The 

resultant phase separated morphologies were analyzed using AFM. 
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Figure 4.2.13. Top row. AFM images of synthesized copolymers in different 

scales. Top: phase image of PEOPL(1) showing a lamellar morphology. 

Below row: phase images of PEOPL(2) shows a disordered bicontinous 

morphology. All of the AFM images were recorded at non-contact mode and 

all of them were flattened at first order execution.  

 
Figure 4.2.14. Radially averaged synchrotron SAXS patterns for PEOPL(1) 

and PEOPL(2) indicating a lamellar-type and a disordered bicontineous 

morphology, respectively.  

 

Table 4.2.5. Simulation parameters (scattersoftware)S7 used to obtain the fits  

          5 shown in figure 4.2.14. 

Parameter PEOPL(1) PEOPL(2) 
Lattice Lamellae Form factor 
Unit cell [nm] 20.2  
Domain size [nm] 48.7  
Displacement [nm] 4.2  
Peak shape Gaussian  
Particle Disk Sphere 
Thickness [nm] 4.5  
Radius [nm] 300  8.2 
Sigma 0.098 0.523 
 
Etching of the PL block 

The microphase separated diblock copolymer was submerged in 

NaOH/water/methanol mixture (0.5 M NaOH, 40% MeOH) for 3 days at 70°C. 

The completion of the etching process was confirmed by recording FTIR at 

different times. The resultant PE materials were analyzed using SEM and 

BET. 



4. Tailored Nano.Structuring of End-Group Functionalized HD-Polyethylene 
Synthesized via an Effecient Catalytic Verison of Ziegler’s “Aufbaureaktion“ 

 

50  

 

Figure 4.2.15. SEM images PE fibers after removal of the PL block of 

PEOPL(1) via etching. 

 

 

Figure 4.2.16. SEM images of porous polyethylene after removal of the PL 

block of PEOPL(2). 
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Figure 4.2.17. Nitrogen adsorption desorption studies of porous polyethylene 

after removal of the PL block of PEOPL(2). The inset shows the pore size 

distribution (BJH method). The calculated surface area (BET method) was 

19.3 m2/g.  
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5.1. Abstract 
 
Ultrathin SiCN fibers are produced from inexpensive carbosilazane-

polyethylene block copolymers. The two-step synthesis consists of a 

concerted block copolymer formation, microphase separation and crosslinking 

step, followed by pyrolysis. The fibers have a mean diameter of 45 nm and an 

aspect ratio of up to 100. SiCN fibers with a mean diameter of 50 nm and an 

aspect ratio of up to 100 are produced in a two-step process by R. Kempe 

and co-workers. The key step to fabricate the longitudinal and cross-sectional 

views of the mesofibers shown here is a concerted block-copolymer synthesis, 

microphase separation, and cross linking at 140°C followed by pyrolysis at 

1100°C. Inexpensive components like a commercially available silazane and 

polyethylene are linked. The fibers may find application in electronic devices, 

as components of ceramic matrix composites, as fiber beds in 

hightemperature nano-filtering like diesel fine dust removal, or as thermally 

robust and chemically inert catalyst supports. Furthermore, the SiCN 

nanofibers introduced on page 984 are a promising alternative to ultrathin 

carbon fibers, due to their oxidation resistance. 
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5.2. Introduction, Results and Discussion 
 
1-dimensional nano-materials like rods,[1] tubes,[2] and fibers[3] are of immense 

interest since they combine small-size relevant properties and a large aspect 

ratio. Polymer derived amorphous SiCN materials are known for their very 

high thermal stability and their chemical inertness.[4] Furthermore, metal 

modifications significantly extent the application spectrum, for instance, 

towards catalysis.[5] The polymeric carbosilazane ceramic precursors (PCCP) 

are sensitive towards hydrolysis which excludes structuring in the presence of 

water or even moisture. Despite this sensitivity structuring over multiple length 

scales under mild conditions is possible.[6] Structuring in the meso-pore size 

range (meso-structuring) can be accomplished by the addition of block 

copolymers to the PCCP as developed by Wiesner and coworkers.[7] The 

PCCP components are selectively added to one of the blocks, thereby 

swelling it. An alteration of the PCCP to block copolymer ratio leads to 

different morphologies. This structuring concept is meanwhile well 

established.[6-8] One could argue that the segments of the block copolymers 

which are swelled by the PCCP are mostly oxygen rich. The presence of 

oxygen-containing functional groups may alter the nature of the SiCN material 

towards higher oxygen contents. The synthesis of meso-structured SiCN 

precursor ceramics directly from microphase separated block copolymers has 

been developed by the Kim[9] as well as the Matsumoto[10] group and 

Malenfant et al. reported on related boron nitride ceramics.[11] Organic-

inorganic block copolymers in which the inorganic block is the ceramic 

precursor were synthesized and pyrolyzed. High surface area materials could 

be obtained by this direct block copolymer approach. Furthermore, block 

copolymers were synthesized, microphase separated, one of the blocks 

(polylactide) was etched off and replaced by PCCP.[12] None of the described 

block copolymer-based synthetic concepts led to SiCN nanofibers. We have 

been interested in polymer derived ceramic SiCN (macro) fibers for many 

years[13] and describe here the synthesis of fibers having a mean diameter of 

45 nm. These ultrathin fibers were made via the direct organic-inorganic block 

copolymer approach from a commercially available and comparably 

inexpensive silazane precursor polymer segment and polyethylene. A 

concerted block copolymer synthesis, microphase separation and 
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crosslinking process [14] led to different morphologies (lamellar or cylindrical) 

by variation of the solvents used (Figure 5.1). The morphologies can be 

transferred to amorphous SiCN materials via high temperature pyrolysis in an 

inert atmosphere (Figure 5.1). The commercially available polysilazane 

HTT1800 (Clariant Advanced Materials, Germany) was chosen as a suitable 

carbosilazane block since it is rather inexpensive. Amino groups attached to 

silicon are prone to displacement by hydroxyl groups followed by the evolution 

of ammonia or silylamines.[15] Hydroxy-terminated high density polyethylene 

(PE-OH) was used as counter block. Progress in controlled ethylene 

polymerization applying a protocol called coordinative chain transfer 

polymerization (CCTP)[16] makes PE-OH efficiently available by rare earth and 

transition metal catalysts transferring the polymeryl chain reversibly to Mg, Zn 

or Al alkyls.[17,18,19] PE-OH synthesized via CCTP is inexpensive too and can 

be highly crystalline. The low cost makes it an attractive sacrificial filler and 

the highly crystalline nature was expected to give a good segregation contrast 

to the amorphous carbosilazane block of HTT1800.The resulting nano-

structured and crosslinked block copolymer morphology (green body) of 

PEOHTT-LAM was analyzed using Atomic Force Microscopy (AFM), 

Transition Electron Microscopy (TEM) (Figure 3a and b), X-ray Powder 

Diffraction (XRD) and Infrared Spectroscopy (FTIR).The non-crosslinked 

block copolymers were analyzed by NMR, Thermogravimetric Analysis (TGA) 

and Differential Scanning Calorimetriy (DSC). 

 

A glass vial with 25 mg of PE-OH (Mn of 2500 gmol-1 and Mw/Mn = 1.9, 

80% of the linear PE chains are terminated by hydroxyl group)[20] in 6 mL of 

cumene was placed in a flat bottom Schlenk tube (Figure 5. 1). 25 µL of 

HTT1800 (25 mg) were transferred to the glass vial followed by the addition of 

dicumylperoxide (DCP; 1 mg, 4 wt% of HTT1800). The Schlenk tube was then 

placed in a pre-heated oil bath at 160°C to form a homogeneous solution. 

Cumene is slowly evaporated under anaerobic conditions maintaining an oil 

bath temperature of 160°C. After the solvent casting, the molten form of the 

block copolymer was annealed for 24 hours at 140°C to finalize crosslinking of 

PEOHTT-LAM. PE-OH is linked covalently to the PCCP HTT1800 under 

these conditions. Nuclear magnetic resonance (NMR) studies using model 
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silyl amides or DCP-free HTT1800 (crosslinking is very slow then) confirm the 

linkage of both blocks (Scheme 5. 1). The reaction of C22H45-OH (NACOL 22, 

SASOL Germany GmbH) with bis(dimethylsilyl)amine at 60°C is 33 times 

faster (based on the initial rate) than that with bis(dimethyl(vinyl)silyl)amine at 

the same temperature (and concentration). The difference in reaction rates 

indicates a preferred reaction of PE-OH with the amines embedded between 

two methylsilane moieties most likely due to steric reasons. The terminal 

amine formed during the initial cleavage step immediately reacts with another 

PE-OH molecule via ammonia elimination. The reaction of C22H45-OH or PE-

OH with HTT1800 goes along with a signal shift of the methylene group 

attached to the OH-group from 3.37 ppm to 3.7 ppm and a peak broadening.  

 

Scheme 5.1. Linkage of the two block copolymer segments (R and R’ label 

the rest of the PCCP HTT1800). 

 

Figure 5.1. Concerted block copolymer formation, microphase separation, 

and crosslinking leading to PEOHTT-LAM. 
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THF and 5 mL of cumene was added and placed in a flat bottom Schlenk tube. 

The Schlenk tube was heated to dissolve the PEOH. Subsequently, 25 µL of 

HTT1800 dissolved in 3 mL of THF were added drop by drop to the PE-OH 

solution. The temperature of the closed Schlenk tube was then heated to 

160°C to remove the solvent (about 4 hours of time). Subsequently, the 

melted form of the block copolymer was annealed for 24 hours at 140°C to 

finalize crosslinking and microphase separation. 

 

Figure 5.2. Schematic diagram of the synthetic route leading to nano-scaled 

SiCN lamellae and fibers. 

             

           AFM and TEM are indicative of a lamellar structuring (Figure 5. 3. a 

and b) having uniform domain sizes of about 25 nm. PEOHTT-LAM was 

pyrolysed under an argon flow: heating of 1 °C per min. to 600°C, holding time 

2h at 600°C, heating of 1°C per min. to 1100°C, holding time 2 h at 1100°C, 

and cooling of 4°C per min. to room temperature. Under these pyrolysis 

conditions the lamellar structuring could be transferred into an amorphous 
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SiCN material as indicated by SEM (Figure 5. 3. c), XRD and MAS 29Si NMR 

(Figure SI 5. 29). 

 

 

Figure 5.3. Structuring of PEOHTT-LAM. (a) AFM phase image of 

microphase separated and crosslinked block copolymer indicating a lamellar 

structure. (b) Corresponding TEM image. (c) SEM image of PEOHTT-LAM 

after pyrolysis at 1100 °C under an Ar atmosphere.  

 

            By changing the reaction conditions and the solvent [11] used for the 

concerted block copolymer formation, microphase separation, and 

crosslinking steps a differently structured green body morphology was 

obtained (PEOHTT-FIB, see experimental section). AFM analysis of the green 

body of PEOHTT-FIB (Figure 5. 4) is indicative of a different nano-structuring 

compared to that of PEOHTT-LAM. 
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Figure 5.4. Quasi in-situ AFM study of PEOHTT-FIB using successive low 

pressure plasma treatments. (a) and (b) Tapping Mode™ topography before 

and after etching (cumulative etch time 50 s). (c) and (d) Corresponding 

phase images showing rod-like structures. The raw data was acquired with a 

pixel density of 1024 x 1024 and a constant scan area of 3µm x 3µm (10 

process steps). 

 

          As can be seen in Figure 4a, a surface rather homogenously covered 

by PE is observed in the first place. PE is removed by plasma etching and the 

number of rod-like structures increases with prolonged etching time (Figure 

5.4b and d). We use the quasi in-situ AFM imaging technique[21] in order to 

reveal the underlying structures. Series of registered AFM images 

(topography and phase) indicate that these embeddings are actually 

cylindrical. They were very hard to be etched off as expected for crosslinked 

carbosilazanes. The embeddings are below 100 nm in diameter (Figure 5.4d). 

The PEOHTT-FIB greenbody is a transparent monolith and was synthesized 

as a tablet having a diameter of about 22 mm and thickness of about 2-3 mm 

(Figure 5.5). 

 
Figure 5.5. PEOHTT-FIB monolith as transparent greenbody and after 

pyrolysis at 1100 °C. 

 

           PEOHTT-FIB was pyrolyzed under an argon flow with a slightly 

modified program in comparison to PEOHTT-LAM, for details see 

experimental section. Pyrolysis of PEOHTT-FIB led to a monolith, reduced in 

size to a diameter of about 19 mm (Figure 5.5), consisting of amorphous SiCN 

phases as confirmed by XRD and solid state NMR spectroscopy. SEM 

analysis of the pyrolyzed sample of PEOHTT-FIB indicates that itconsists of 

SiCN nanofibers (Figure 5.6 and 5.7). The fibers have a rather small diameter 

distribution with a mean diameter of about 45 nm (Figure 5.6c, inset). A cross 
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section view (Figure 5.7a) indicates a large aspect ratio of the fibers 

exceeding 100 in the fiber bundles. Furthermore, the fibers seem to partially 

interpenetrate with each other. The packing of the fibers leads to mesopores. 

N2 adsorption/desorption studies of pyrolyzed PEOHTT-FIB indicate a rather 

narrow pore size distribution with a mean pore size of about 4.5 nm and a 

surface area of 17 m2/g was calculated using the Brunauer-Emmett-Teller 

(BET) method. Initial efforts to separate the fibers from the fiber bundle via 

sonication lead to isolated fibers that were analyzed by TEM (Figure 5.7b). 

 
Figure 5.6. SEM image of SiCN fibers. (a) Overview and (b and c) insets with 

fiber diameter distribution.  
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Figure 5.7. Selected additional characterization data of pyrolyzed PEOHTT-

FIB. (a) SEM cross-section view indicating the large aspect ratio. (b) TEM of 

an isolated fiber. 

 

 
Figure 5.8. a) SAXS patterns for SiCN fibers and PEOHTT-FIB with 2D 

scattering image of PEOHTT-FIB. b) SAXS patterns for PEOHTT-LAM and 

SiCN lamellae with 2D scattering image of PEOHTT-LAM. 

 

             The SAXS-pattern measured for PEOHTT-FIB before 
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pyrolysis is dominated by a q-2 -scattering typical for layered structures (Figure 

5.8). We observe two weak diffraction peaks at q = 0.42 and 0.84 nm-1 which 

corresponds to a lamellar lattice structure with a long period (unit cell size) of 

15 nm.[22] A comparison with the SEM-images suggests that the fibers are 

arranged in layers, rather than in a hexagonal lattice. The SAXS patterns 

obtained for the SiCN fibers is only weakly structured, with a broad shoulder 

from 0.2 to 0.8 nm-1. The SAXS patterns of PEOHTT-LAM before pyrolysis is 

similarly dominated by a q-2- scattering typical for layered structures. We 

observe weak diffraction peaks at 0.35, 0.7 and 1.05 nm-1 (Figure 5.8) which 

corresponds to a lamellar lattice structure with a unit cell size of 18 nm.[22] 

After pyrolysis, the scattering is dominated by a Porod q-4- surface scattering 

typical for smooth surfaces in accordance with the SEM-images. 

5.3. Conclusion 
 
In summery, the formation of ultrathin SiCN fibers having a large aspect ratio 

is reported. The fibers were made from inexpensive starting materials, namely 

a commercially available carbosilazane that is annually produced in ton scale 

and high density polyethylene carrying an OH-end group. The production 

process is a one pot synthesis procedure followed by pyrolysis. The first step 

includes a concerted block copolymer formation, crosslinking, and microphase 

separation. Despite the concerted nature of the greenbody synthesis and the 

rather broad polydispersities of the two block copolymer components a good 

degree of structure control was observed. Variation of the solvent used leads 

to a differently structured SiCN material. The ultrathin SiCN fibers may find 

applications in electronic devices, as components of ceramic matrix 

composites, as fiber beds in high temperature nano-filtering like diesel fine 

dust removal, or as a thermally robust and chemically inert catalyst support. 
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5.6. Experimental Section (Supporting Information) 
 
All manipulations were performed with rigorous exclusion of oxygen and 

moisture in Schlenk type glassware on a dual manifold Schlenk line or in an 

argon filled glove box (Braun 120-G) with a high-capacity recirculator (<0.1 

ppm O2). Non-halogenated solvents were dried by distillation from sodium 

wire/benzophenone.  
1
H NMR spectra obtained using C2D4Cl2 as a solvent were measured 

on a Varian Inova 400 operating at 400 MHz or Varian Inova 300 operating at 

300 MHz, with variable temperature capability up to 120°C.  

Solid-state NMR spectra of the cross-linked HTT 1800 were acquired on a 

DSX 400 Bruker Avance Nuclear Magnetic Resonance (NMR) spectrometer 

using direct-excitation Hahn-echo MAS at a 12.5 kHz rotation frequency. 

Pyrolyzed samples were characterized by a ramped 29Si{1H} and 13C{1H} 

CP/MAS NMR technique and recorded on a commercial Avance II 300 Bruker 

spectrometer equipped with a standard triple resonance 7-mm MAS probe 

head.  

 

Gel permeation chromatography (GPC) analysis was carried out on a 

Polymer Laboratories Ltd. (PLGPC210) chromatograph at 423 K using 1,2,4-

trichlorobenzene as the mobile phase. The samples were prepared by 

dissolving the polymer (0.1% weight/volume) in the mobile phase solvent in 

an external oven and were run without filtration. The molecular weight was 

referenced to polyethylene (Mw = 50000 g mol-1) and polystyrene (Mw 

=100000–500000 g mol-1) standards. The reported values are the average of 

at least two independent determinations. 

 

The degradation temperature was determined with a TGA/SDTA851e 

(Mettler Toledo) using a heating rate of 10 K/min under nitrogen flow.  

 

Differential scanning calorimetric (DSC) measurements were obtained 

using a DSC/SDTA 821 calorimeter from Mettler Toledo Instruments that was 

calibrated with an Indium standard. Samples were loaded into hermetically 

sealed aluminum pans prior to analysis. The thermal history of the samples 
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was erased by heating the samples to 250°C and isothermally annealing for 5 

min. Heating and cooling rate was 10°C per minute.  

 

The phase separated morphology and topography were characterized 

using atomic force microscopy (AFM) operating in TappingMode™ under 

ambient conditions. For the quasi in-situ measurements the AFM 

(Dimension™ 3100 with a NanoScope®IV SPM controller, both from Vecco 

Instruments Inc., USA) is equipped with a special developed retrofit package. 

It replaces the original sample holder system and is described in detail in refs. 

S1 and S2. The image registration of the quasi in-situ data set is described in 

S2 (see Supporting Information). The used cantilevers from Olympus have a 

typical spring constant of 42 N/m and a typical resonance frequency of 300 

kHz (OMCL-AC160TS). The AFM data passed through standard 2D-image 

processing tasks like flattening using NanoScope Analysis Software (Bruker 

Inc., USA). The quasi in-situ plasma etching was performed with a RF power 

of about 3W at a process pressure of 5 mbar (atmospheric air).  

 

Infrared spectra of the materials were recorded using the Bruker Vektor 

22 FT-IR spectrometer/PerkinElmer Spectrum 100 ATR.  

 

The Scanning Electron Microscopy (SEM) imaging were recorded on a 

Zeiss LEO 1530 (2kV, 6.4mm) FESEM instrument (Zeiss, Jena, Germany). 

The samples were sputtered with platinum (2.0 nm) in a Cressington sputter 

coater 208HR to enhance conductivity.  

 

All X-ray powder diffractograms were recorded by using a 

STOESTADI-P diffractometer (CuKa radiation, 1.54178 A°) in θ – 2θ 

geometry and with a position sensitive detector.  

 

Transmission electron microscopy (TEM) was carried out by using a 

Varian LEO 9220 (200 kV) instrument. The samples were suspended in 

chloroform and sonicated for 5 min. Subsequently a drop of the suspended 

sample was placed on a grid (Plano S 166-3) and allowed to dry.  
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Nitrogen physisorption measurements were conducted at 77K using 

Quantachrome Nova 2000e instrument. Specific surface area of the samples 

were calculated using the Brunauer–Emmet–Teller method (5 points),S3 while 

the pore-size distributions were determined using the Barret–Joyner–Halenda 

model.S4 

5.6.1. Characterization of hydroxyl terminated PE block 

The OH group terminated PE was synthesized via Coordinative Chain Trans 

PolymerizationS5 and characterized via high temperature GPC and 1H NMR 

spectroscopy. The Mn of 2500 gmol-1 and a polydispersity of Mw/Mn = 1.9 

was observed. About 80 % of the PE polymer chains carry an OH end group 

as determined by 1H NMR spectroscopy.  

5.6.2. Characterization of HTT-1800  

The ceramic precursor HTT1800 was purchased from Clariant Advanced 

Materials, GmbH and stored in schlenk flask. 

 
Figure 5.9. The commercially available polysilazane HTT1800 

(Mw=2640gmol-1 Mn=893 gmol-1, d= 1.02 gmL-1), is a statistical copolymer 

with 20% of methyl/vinyl and 80% of methyl/hydride-substituted silazane 

repeating units. A cross-linked pre-ceramic polymer can be obtained from 

HTT1800 with a radical initiator, dicumyl peroxide (DCP), upon heating at 

130°C. 
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ppm 

Figure 5.11. 1H NMR spectrum of hydroxyl terminated polyethylene. 

Measured in C2D2Cl4 at 120°C. 

 

 
Figure 5.12. 1H NMR spectrum of hydroxyl terminated polyethylene and 

HTT1800 measured in C2D2Cl4 at 120°C (top). 1H NMR spectrum of HTT1800 

recorded at room temperature. 

5.6.3. Synthesis of SiCN fibers 

To a glass vial with 25 mg of PE-OH 1 mg of dicumylperoxide, 3 mL of THF 

and 5 mL of cumene was added and placed in a flat bottom Schlenk tube. The 

Schlenk tube was heated to dissolve the PEOH. Subsequently, 25 µL of 

HTT1800 dissolved in 3 mL of THF were added drop by drop to the PE-OH 

solution. The temperature of the closed Schlenk tube was then heated to 

160°C to remove the solvent (about 4 hours of time). Subsequently, the 

melted form of the block copolymer was annealed for 24 hours at 140°C to 

finalize crosslinking and microphase separation. 
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PEOHTT-FIB was pyrolysed under an argon flow: heating of 2°C per minute 

until reaching 6 hrs hold for two hours at 600°C followed by heating up to 

1100°C at 5°C per minute. The sample was hold for 2 hours at 1100°C and 

cooling of 4°C per minute to room temperature. 

5.6.4. Characterization ofcross-linked “green body”  

 

 

Figure 5.10. Crosslinked green body of PEOHTT-FIB (left) and SiCN 

nanofiber monolith (right) after the pyrolysis. Scale bar in the figure is 5mm. 

 

 
Figure 5.13. AFM phase images of synthesized, microphase separated and 

cross-linked copolymers PEOHTT-LAM. (a) Scan size of 5 µm x 5 µm) and (b) 

1 µm x 1 µm). The phase images shows the lamellar morphology of PEOHTT-

LAM. 
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Figure 5.14. TEM image of microphase separated and crosslinked PEOHTT-

LAM showing lamellar morphology. 
 

                   
Figure 5.15. Successive low pressure plasma etching of PEOHTT-FIB having 

with the quasi in-situ AFM (QIS-AFM). The raw data was acquired by 

scanning areas of 3µm x 3µm with a resolution of 1024 x1024 pixels with 

tapping mode AFM imaging. 5 process steps of the total 10 are shown (crops). 

(a-e) Series of phase images after prolonged etching. (f) Different crop 

displaying a longitudinal direction of PEOHTT-FIB. Cumulative etching time as 

indicated. 
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Figure 5.16. TGA of HTT-1800, PEOHTT-FIB and PEOHTT-LAM. Weight 

loss of 52% (PEOHTT-FIB) and 54% (PEOHTT-LAM) at 480°C correspond to 

the loss of PE block.  

 

 
Figure 5.17. DSC of PE-OH. 
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Figure 5.18. DSC of PEOHTT-LAM/FIB without adding DCP. Observation of 

single peaks for melting (Tm) and cooling (Tc) temperature ensures the 

formation of a copolymer. Addition of HTT-1800 to PE-OH changes the Tm 

and Tc of PE-OH confirming the covalent link between HTT1800 and PE-OH 

under synthesis conditions. 

 
Figure 5.19. Powder XRD pattern of PEOH, PEOHTT and of PEOHTT-FIB as 

well as PEOHTT-LAM after pyrolysis.  
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Figure 5. 20. FTIR of the HTT-1800, PEOHTT-FIB before and after pyrolysis. 

5.6.5. Pyrolysis of the green body and characterization of the 
nano-structured SiCN material 
 

PEOHTT-LAM was pyrolysed under argon flow with a heating rate of 1°C per 

minute until reaching 600°C. The sample was dwelled for two hours at 600°C 

followed by heating up to 1100°C at 1°C per minute. The sample was hold for 

2 hours at 1100°C and then cooled down to room temperature at 4°C per 

minute. 

 

PEOHTT-FIB was pyrolysed under an argon flow with a heating rate of 

2°C per minute until reaching 600°C. The temperature was hold for two hours 

at 600°C followed by heating up to 1100°C at 5°C per minute. The sample 

was hold for 2 hours at 1100°C and then cooled down to room temperature at 

4°C per minute. 
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Figure 5. 21. SEM image of PEOHTT-FIB after pyrolysing at 1100°C 

(overview). 

 

Figure 5. 22. SEM image of PEOHTT-FIB after pyrolysing at 1100°C (top 

view). 
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Figure 5. 23. SEM image of PEOHTT-FIB after pyrolysing at 1100°C (top 

view in detail). The diameter of the synthesized fibers are manually measured 

from the SEM image. The size distribution curve (inset) shows the range of 

diameter (x-axis) against the single fiber counts (y-axis). 

 
Figure 5. 24. SEM image of PEOHTT-FIB after pyrolysing at 1100°C (side 

view). 
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Figure 5. 25. TEM image of separated SiCN fibers. The fibers were dispersed 

in diethyl ether followed by sonochemical treatment.  

 
Figure 5. 26. SEM image of PEOHTT-LAM after pyrolysis at 1100°C showing 

SiCN layers. 
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Figure 5. 27. SEM image of PEOHTT-LAM after pyrolysis at 1100°C at a 

higher resolution. 

 
Figure 5. 28. N2 adsorption and desorption isotherms of the SiCN nanofibers 

(pyrolyzed PEOHTT-FIB). The inset shows the pore size distribution (BJH 

methode). A specific surface of 17 m2/g (BET method) was observed. 
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Figure 5. 29. MAS 29Si NMR spectrum of the SiCN material derived from 

HTT1800-FIBpyrolyzed at 1100°C in an Ar-atmosphere. The main signal at -

31.5 ppm is assigned to the formed SiCN3 environments. Whereas the 

shoulder at -19.8 ppm and the smaller signal at -46.8 ppm corresponding to 

SiC4 and SiN4 environments, respectively [S6]. The signals andthe respective 

chemicals shifts are characteristic for a ceramic material formed from a 

polymeric SiCN-precursor at temperatures above 1000 °C. An identical NMR 

spectra is observed for HTT1800-LAM 
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6.1. Abstract 
 

 

A general synthetic procedure for mesoporous metal nanoparticles integrated 

SiCN supports with high surface area has been developed. The synthetic 

procedure consists of two steps including i) concerted block copolymerization, 

microphase separation, and cross-linking ii) pyrolysis at 1000°C under inert 

atmosphere. Hydroxyl terminated polyethylene (PE-OH) and an inexpensive 

commercially available polymeric carbosilazane precursor were used as 

organic porogen and inorganic ceramic precursor blocks, respectively. The 

linked hybrid block copolymer is structured using microphase separation in a 

non-polar solvent. Upon pyrolyzing, the mesostructured organic-inorganic 

copolymer results in the porous SiCN material with the surface area of 460 

m2/g. The synthesis of metal nanoparticles supported mesoporous SiCN 
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catalysts with biconteneous morphology was synthesized with surface area of  

by the addition of aminopyridinato complexes. The synthesized porous 

Au@SiCN catalysts were characterized by transmission electron microscopy, 

scanning electron microscopy, atomic force microscopy, powder X-ray 

diffrectometer and nitrogen physisorption techniques. The Au@SiCN is active 

in oxidation of higher alkenes in the presence of air/O2 as an oxidant. 

Selective epoxide formation has been observed for cycloalkenes. 

6.2. Introduction 
 
Heterogeneously catalyzed alkene oxidation using molecular oxygen or 

environmentally benign air as an oxidant is a burgeoning topic of interest in 

green chemistry/catalysis.1 Supported gold catalysts have been used as 

heterogeneous catalysts for the gas phase epoxidation of lower alkenes in the 

presence of molecular oxygen.2 Notably, Hutchings and co-workers have 

reported liquid phase epoxidation of cyclic alkenes by gold supported on 

graphite using molecular oxygen under mild and solvent free conditions.3 It is 

reported that high selectivity for the epoxide can be attainable only by 

propagating the reaction with a suitable radical initiator/co-catalyst.4 

Afterwards, Lambert and co-workers have reported the oxidation of styrene by 

1.5 nm large Au nanoparticles (generated from a Au55 cluster) in the presence 

of molecular oxygen. No radical based co-catalyst was needed. Low 

conversion rates and minor styrene oxide product selectivity were observed.5 

The olefin oxidation activity without a radical based co-catalyst was explained 

by the very small size of the Au particles. Styrene was converted to styrene 

oxide as major product and with high conversion by Choudhary and co-

workers.6 This study was conducted with gold nanoparticles supported on 

various oxide supports in the presence of a anhydrous radical initiator. Caps 

and co-workers reported stereoselective epoxidation of trans-stilbene in 

methylcyclohexene.7 In this study, air was used as source of oxygen and 

solvent was also oxidized and acts as propagating radical.  
 

Polymer derived amorphous SiCN materials were recently used as 

extremely robust support for various nanoparticles to study different types of 

catalysis.8 For example, copper containing SiCN catalysts were 



6. Robustly Supported Porous Au Catalyst and their Activity in Oxidation of Alkenes 
using Air/O2 as an Oxidant 

 

81  

synthesized via modification of the preceramic precursor by a copper 

complex.9 This non-porous Cu@SiCN catalyst has shown increase in 

selectivity for aerobic oxidation of alkanes with increasing copper loading. In 

another example of non porous SiCN support, palladium silicides at SiCN 

catalyst was synthesized for the hydrogenation of ketones via modifying 

precursor ceramic by a palladium complex.10 Recently, porous ceramic 

materials have been used as a support because porosity of the support can 

impact on the performance of catalysts.11 For example, the metal containing 

macroporous SiCN catalyst for ammonia reformation was reported by Kim 

and coworkers using two-step synthetic procedure.12 A macroporous SiCN 

was fabricated by capillary filling of preceramic polymer followed by the 

deposition of ruthenium metal. To simplify this two step procedure, Wiesner 

and co-workers have introduced one pot synthesis of metal nanoparticles 

supported mesostructured catalysts using block-copolymer as structural 

directing agent.13 Porous SiCN supported platinum nanoparticles have been 

synthesized via above mentioned approach by copolymer, ceramic precursor, 

and platinum complex as a part of five component system.14 The platinum 

SiCN catalyst synthesized by this approach has shown 44 m2/g of surface 

area. Recently, microporous SiCN supported nickel catalyst with 400 m2/g for 

semi hydrogenation of alkynes was synthesized by Kempe and co-workers.15 

Controlled pyrolysis at 600°C is the reason reported for the generation of 

microporosity in the catalysts.  

 

Recently, copolymers consisting out of an inorganic ceramic precursor 

block and an organic porogen block were used for the synthesis of 

mesostructured SiCN materials.16 These inorganic-organic copolymers are a 

promising tool for direct mesostructuring. Due to the covalent link between the 

inorganic and the organic block domain size within the mesoscale are favored 

during phase separation.17 Furthermore, purely organic block-copolymers 

have been used as structural directing agents for the synthesis of 

mesostructured SiCN materials.18  
 

Herein, we report on the synthesis Au nanoparticles supported on 

mesoporous SiCN (Au@SiCN) and their catalytic applications in liquid phase 
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epoxidation of higher alkenes. The catalysts were synthesized via concerted 

block copolymer formation, microphase separation and cross-linking followed 

by pyrolysis under inert condition during which metal nanoparticle formation 

takes place. For the first time, we report on a metal nanoparticle decorated 

mesoporous SiCN support having a high surface area. Furthermore, we report 

on a rare example of selective alkene epoxidation with dioxygen (including 

high conversion) and no need of a radical based co-catalyst.  

6.3. Results and Discussion 

Recently, the synthesis of SiCN nanofibers adopting concerted copolymer 

formation, microphase separation, and cross-linking process was 

communicated as a promising procedure for the synthesis of mesostructured 

SiCN materials.17a Polyethylene with a hydroxyl end group (PE-OH, Mn = 

2500 gmol-1, PDI = 1.9)19 and commercially available polymeric ceramic 

carbosilazane precursor (PCCP) were used as organic and inorganic blocks, 

respectively. Equal weight ratio of PE-OH and PCCP resulted (depending 

from the solvent used) in strong segregated morphologies such as lamellae 

and fiberous SiCN (Figure 6.1 a and b).  

           
Figure 6.1. a. Schematic representation of the synthetic steps involved in 

SiCN fibers. b. Representative TEM image of SiCN mesofibers. c. 
Representative TEM images of gold nanoparticles functionalized SiCN 

mesofiber with the inset.  
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The fiberous SiCN was loaded with gold nanoparticles by the addition 

of a gold aminopyridinato complex (Figure 6.2)20 to the solution of 50% by 

weight of PE-OH and PCCP. Alkene oxidation (under the conditions listed in 

Table 6.2) were conducted with the synthesized Au@SiCN fibers. No activity 

was observed in oxidation of alkenes using dioxygen. It might be due to the 

low surface area (50 m2/g) of the Au@SiCN fibers and the resulting low active 

site accessibility of the educts. In consequence, we become interested in 

morphologies leading to high surface area materials.  

 
Figure 6.2. Molecular structure of [(ApTMS)4Au4], tetrameric aminopyridinato 

gold (left) complex. Color code: red = gold, green = nitrogen,  blue = silicon, 

orange = carbon. 

 

Weak segregating bicontinuous morphologies can be attained by 

varying the weight ratio of PE-OH and PCCP copolymer (Figure 6.3). 

HTT1800 (30% by weight) was added to pore generating PE-OH (70% by 

weight) to prepare a block copolymer via Si-O-C bond formation. In the 

presence of PE-OH block selective solvent, this inorganic and organic block 

copolymer was microphase separated by solvent casting and melt annealing 

at 140°C. The microphase separated copolymer was crosslinked for 12 hours 

to obtain the gree-body. The structure of self-assembled morphology in the 

green-body stage was confirmed by AFM measurements and observed to 

have bicontinuous morphology (Figure 6.3a-b) on the surface. The green-

body can be pyrolysed at 1000°C under an argon atmosphere forming a 

mesoporous SiCN material. The mesoporous SiCN material was examined by 

transmission electron microscopy (TEM) (Figure 6.3c) and nitrogen 
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physisorption studies (Table 6.1).  

 

 
Figure 6.3. a-b. AFM images of cross-linked “green-body” of SiCN sample 

with surface having bicontinuous morphology. c. TEM images of 

mesostructured SiCN. 

 

From the N2 adsorption measurements (Figure 6.4a), the BET 

(Brunauer-Emmett-Teller) surface area of SiCN support was calculated as 

460 m2/g with a mean DFT pore size (Figure 6.4b) of 9 nm (Table 6.1). The 

surface area is due to the elimination of the porogen polyethylene block. In 

order to calculate the yield of the synthesized SiCN material, thermo 

gravimetric analysis (TGA) measurements were conducted. A yield of 64% of 

the PCCP weight contribution was observed. The vice versa ratio (30% of PE-

OH and 70% of PCCP) were also microphase separated and pyrolysed. The 

resultant SiCN material was only having a surface area of 117 m2/g and pore 

volume of 0.124 cc/g, which implies that the higher amount of PE-OH is 

required to achieve a high surface area. 

 
Figure 6.4. a. N2 physisorption of SiCN and Au@SiCN. b. The pore size 

distribution curves of SiCN and Au@SiCN. 
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For the synthesis of SiCN supported metal nanoparticles a 70% of PE-

OH / 30% of PCCP ratio was adopted. Following the above described 

copolymerisation, microphase separation, and cross-linking process, the 

green-body Au@SiCN was synthesized. Solvent casting was employed with 

an excess amount of solvent to minimize metal catalyzed cross-linking of the 

inorganic PCCP block during copolymer formation. The self-assembled and 

cross-linked green-bodies were pyrolyzed under an inert atmosphere and 

were characterized by TEM, SEM, TGA, powder X-ray diffraction (XRD), and 

nitrogen adsorption. 

 

Table 6. 1. Summary of textural properties of synthesized materials. 
 

   sample ID 
 

PE-OH : HTTa 
 

 surface areab 

(m2/g) 

 

pore volume  
(cm3/g)d 

 SiCN 70 : 30 460 0.553 

Au@SiCN 70 : 30 300 0.350 
aWeight ratio, bcalculated by BET method, cCalculated by density 

functional theory (DFT), d Pore size distribution curve and volume histogram 

were used. 

 

The yield of Au@SiCN (77% of the PCCP weight contribution) was 

calculated from TGA measurements (Figure 6.13), which is 13% higher than 

of porous SiCN (64%). The additional gain of yield Au@SiCN may be due to 

the contribution from the aminopyridinato complexes. Furthermore, powder 

XRD analysis was performed. The Au@SiCN catalyst is shown strong 

reflection (θ = 19, 22, 32, 38.5°) corresponding to the fcc planes [(111), (200), 

(220), and (331)] of gold nanoparticles immobilized on amorphous SiCN 

support (Figure 6.5d). The Debye-Scherrer equation was employed to 111 

(FWHM = 2.1°) reflection peak for the measurement of an approximate size of 

4.1 nm of the Au nanoparticles (Figure 6.15). The porous Au@SiCN catalyst 

was further analyzed by TEM (Figure 5b). The mean size of the particles 

measured from TEM image (3 nm) was roughly consisting with the particles 

size calculated by powder XRD. It is well documented that the sintering of 
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nanoparticles takes place when reaching the Tammann temperature of gold 

metal (395°C).21 The Au@SiCN catalyst, synthesized at 1000°C, with small 

particles implies that the sintering of particles has been successfully 

prevented. This may be due to the stabilization of particles by the N atoms of 

the Si-C-N network. Nitrogen physisorption measurements were conducted to 

the synthesized Au@SiCN catalyst (Figure 4a-b). The Au@SiCN catalyst 

exhibits the surface area of 300 m2/g. Comparing with the surface area of the 

porous SiCN sample, Au@SiCN is noticed to have a similar pore size 

distribution and a reduced amount of adsorbed pore volume (0.350 cm3/g) 

(Table I). The solid-state 29Si NMR study was conducted to confirm Si-C-N 

phases present in all the samples. The samples are predominantly having 

SiC2N2, SiC3N, SiCN3 environments along with shoulder peak of SiO3C phase 

which may be due to the contribution from PE-OH block (Figure 6.33) . 
 

 
Figure 6.5. a. Schematic diagram depicting the synthesis of biconteneously 

porous Au@SiCN. b. Representative TEM image of Au@SiCN. c. Particles 

size distribution of the gold nanoparticles counted from the TEM image. d. 
Powder XRD of Au@SiCN catalyst.   

 

Epoxidation of higher alkenes was conducted with the porous 

Au@SiCN catalyst. Temperature dependent air oxidation was conducted with 

9 mmol of cyclooctene at 1 bar with 20 mg of Au@SiCN (Figure 6.6). 
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Au@SiCN did show conversion at a temperature above 100°C and a 

selectivity of >99 % towards the epoxide. Since the conversion was maximum 

at 120°C, The experiment was conducted by changing the condition to high 

pressure. 

 
Figure 6.6. Temperature dependent study of the oxidation of cis-cyclooctene 

using Au@SiCN under air and at atmospheric pressure. 

 

The Au@SiCN catalyst was active for the oxidation of alkenes under 20 

bar of air (24 h) and at 120°C. The conversion was observed to be higher with 

cyclic alkenes then for linear alkenes (Table 6.2). In order to confirm the cyclic 

ring selectivity, the limonene with both linear and cyclic unsaturated double 

bond was studied to confirm the selectivity. The catalyst was observed to 

have selective towards cyclic alkenes over linear alkenes (Table 6.2). The 

catalyst was washed for the subsequent run with acetone followed by water 

then dried at 150°C for 12 hours. 

 
Table 6.2. Catalytic results for the epoxidation with M@SiCN 
 

 

Substrate 
Au@SiCN 

Conversion Epoxide 
Selectivity 

Cyclooctene 56 >99 

Cyclododecene 51 62 

Decene 10 84 

(-) Limonene 47 >99* 
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Standard conditions: 3.0 mmol of substrate, 20 mg of catalyst (1/160 of 

Au/Si. 14 w% of Au). Experimental conditions were 24 hrs, 120°C, 20 bar and 

3500 rpm. * cyclic epoxidized product. 

6.4. Conclusion 
 

1) Bicontinuous morphologies of commercially available silazanes and 

hydroxyl-terminated polyethylene were synthesized by concerted block 

copolymer formation, microphase separation, and cross-linking. The 

resultant morphologies were pyrolysed at 1000°C and mesoporous 

SiCN with high specific surface area were obtained.  

2) Mesoporous SiCN supported gold catalyst was synthesized using the 

same synthetic procedure. Gold aminopyridinato metal complex was 

used as precursor for gold nanoparticles.  

3) The catalytic performance of the synthesized catalysts has been 

demonstrated in the oxidation of cyclic and linear alkenes with air. The 

gold catalyst was highly selective concerning epoxide formation of 

cyclic alkenes. 
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6.7. Experimental Section 
 
All the experiments were performed with rigorous exclusion of oxygen and 

moisture in Schlenk type glassware on a dual manifold Schlenk line or in an 

argon filled glove box (Braun 120-G) with a high-capacity recirculator (<0.1 

ppm O2). Non-halogenated solvents were dried by distillation from sodium 

wire/benzophenone. Ligand, 4-methyl-2-((trimethylsilyl)amino)pyridine 

(ApTMSH), was synthesised as reported literature procedure.S1 Synthesis of 

[(ApTMS)4Au4] was carried out under the exclusion of light and the synthesized 

complexes were preserved at -30°C wrapping with aluminum foil.S2 

6.7.1. General Characterization Methods 
 
1
H NMR spectra obtained using C2D4Cl2 as a solvent were measured on a 

Varian Inova 400 operating at 400 MHz or Varian Inova 300 operating at 300 

MHz, with variable temperature capability up to 120°C. Solid-state NMR 

spectra of the cross-linked HTT 1800 were acquired on a DSX 400 Bruker 

Avance Nuclear Magnetic Resonance (NMR) spectrometer using direct-

excitation Hahn-echo MAS at a 12.5 kHz rotation frequency. Pyrolyzed 

samples were characterized by a ramped 29Si{1H} and 13C{1H} CP/MAS NMR 
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technique and recorded on a commercial Avance II 300 Bruker spectrometer 

equipped with a standard triple resonance 7-mm MAS probe head. 

 

Gel permeation chromatography (GPC) analysis was carried out on a 

Polymer Laboratories Ltd. (PLGPC210) chromatograph at 423 K using 1,2,4-

trichlorobenzene as the mobile phase. The samples were prepared by 

dissolving the polymer (0.1% weight/volume) in the mobile phase solvent in 

an external oven and were run without filtration. The molecular weight was 

referenced to polyethylene (Mw = 50000 g mol-1) and polystyrene (Mw 

=100000–500000 g mol-1) standards. The reported values are the average of 

at least two independent determinations.  

 

The degradation temperature was determined with a TGA/SDTA851e 

(Mettler Toledo) using a heating rate of 10 K/min under nitrogen flow.  

Differential scanning calorimetric (DSC) measurements were obtained using a 

DSC/SDTA 821 calorimeter from MettlerToledo Instruments that was 

calibrated with an indium standard. Samples were loaded into hermetically 

sealed aluminum pans prior to analysis. The thermal history of the samples 

was erased by heating the samples to 250°C and isothermally annealing for 5 

min. Heating and cooling rate was 10°C per minute.  

 

The phase separated morphology and topography were characterized 

using atomic force microscopy (AFM) in tapping mode under ambient 

conditions by silicon cantilevers (Digital Instruments). The analysis were 

performed with AFM DimensionTM 3100 equipped with a NanoScope® IV 

AFM controller from Vecco Instruments Inc., USA. Silver colloidal solution was 

used to hold the sample to avoid sample movement while scanning.  For each 

sample, both height and phase images were recorded (5 X 5 µm) with the 

maximum available number of pixels (1040 X 1040). For image analysis the 

recorded scans were “flattened” using the Nanoscope image processing 

software. Plasma etching was performed using USB FLECTO-10 Plasma 

Technology under 0.2mbarr, 100W and air. 

 

Infrared spectra of the materials were recorded using Bruker Vektor 22 
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FT-IR spectrometer/PerkinElmer Spectrum 100 ATR. The Scanning Electron 

Microscopy (SEM) imaging were recorded on a Zeiss LEO 1530 (2kV, 6.4mm) 

FESEM instrument (Zeiss, Jena, Germany). The samples were sputtered with 

platinum (2.0 nm) in a Cressington sputter coater 208HR to enhance 

conductivity. All X-ray powder diffractograms were recorded by using a 

STOESTADI-P-diffractometer (CuKa radiation, 1.54178 A°) in θ – 2θ 

geometry and with a position sensitive detector. Transmission electron 

microscopy (TEM) was carried out by using a Varian LEO 9220 (200 kV) 

instrument. The samples were suspended in chloroform and sonicated for 5 

min. Subsequently a drop of the suspended sample was placed on a grid 

(Plano S 166-3) and allowed to dry. Nitrogen physisorption measurements 

were conducted at 77K using Quantachrome Nova 2000e instrument. Specific 

surface area of the samples was calculated using the Brunauer–Emmet–

Teller (BET) method,S3 while the pore-size distributions were determined 

using the Density of Functional Theory (DFT).S4 The compatibility of model 

was studied using adsorption isotherm to fit with Nonlocal Density Functional 

Theorey (NLDFT)S5 function. Gas chromatography (GC) analyses were 

performed using an Agilent 6890N gas chromatograph equipped with a flame 

ionization detection (FID) device and an Agilent 19091 J-413 FS capillary 

column or thermo focus GC/Trace DSQ system equipped with a HP-5MS 

column (30 m x 0.32 µm x 0.25 µm), using decane as an internal standard.  

 

The OH group terminated PE was synthesized via Coordinative Chain 

Trans PolymerizationS6and characterized via high temperature GPC and 1H 

NMR spectroscopy. Mn of 2500 gmol-1 and a polydisperity of Mw/Mn = 1.9 

was observed. About 80 % of the PE polymer chains carry an OH end group.  
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Figure 6.7. 1H NMR spectrum of hydroxyl terminated polyethylene. Measured 

in C2D2Cl4 at 120 °C. 

 

 
Figure 6.8. DSC result of PE-OH confirms the melting point of 129.95°C and 

crystallization point of 115.00°C. 

 

The Ceramic precursor HTT1800 was purchased from Clariant Advanced 

Materials, GmbH and stored in schlenk flask. 

 

Figure 6.9. Commercially available Polysilazane, grade of HTT1800 (Mw = 

2640gmol-1 Mn = 893 gmol-1, d = 1.02 gmL-1), is a statistical copolymer with 

20% of methyl/vinyl and 80% of methyl/hydride-substituted silazane 
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repeating units. A cross-linked pre-ceramic polymer can be obtained from 

HTT1800 with a radical initiator, dicumyl peroxide (DCP), upon heating at 

130°C. 

6.7.2. Synthesis of SiCN and Au@SiCN 
 

6.7.2.1. Synthesis of SiCN (30% VL-20) 
 
To a glass vial with 200 mg of PE-OH, 4 mg of dicumylperoxide, and 8mL of 

toluene is added and placed in a flat bottom Schlenk tube. The Schlenk tube 

was heated to 140°C to dissolve the PEOH. Subsequently, 85 µL of HTT1800 

was added drop by drop to the PE-OH solution. The temperature of the closed 

Schlenk tube is then heated to 160°C to cast the solvent (about 4 hours of 

time). After the solvent casting, the melt was annealed for 24 hours at 140°C 

to crosslinking the block copolymer. The resultant cross-linked copolymer 

morphology was analyzed using AFM and TEM.  

 

Figure 6.10. Scheme of the synthesis of the cross-linked microphase 

separated PE-OH-HTT1800 block copolymer (Process I = solvent casting, 

melt annealing, and crosslinking). 

6.7.2.2. Synthesis of SiCN (70% VL-20) 
 

To a glass vial with 85 mg of PE-OH, 4 mg of dicumylperoxide, and 8mL of 

toluene is added and placed in a flat bottom Schlenk tube. The Schlenk tube 

was heated to 140°C to dissolve the PEOH. Subsequently, 200 µL of 

HTT1800 was added at once to the PE-OH solution and waited to 
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see HTT1800 is well dispersed in the solution. Metal precursor was injected 

drop by drop to the above solution. The temperature of the closed Schlenk 

tube is then heated to 160°C to cast the solvent (about 4 hours of time). After 

the solvent casting, the melt was annealed for 24 hours at 140°C to 

crosslinking the block copolymer. The resulted cross-linked copolymer 

morphology was analyzed using AFM and TEM.  

6.7.2.3. Synthesis of Au@SiCN 
 
To a glass vial with 200 mg of PE-OH, 4 mg of dicumylperoxide, and 8mL of 

toluene is added and placed in a flat bottom Schlenk tube. The Schlenk tube 

was heated to 140°C to dissolve the PEOH. Subsequently, 85 µL of HTT1800 

was added drop by drop to the PE-OH solution following with the injection of 

30 mg of gold aminopyridinato caomplex dissolved in 1 ml of dry toluene. The 

temperature of the closed Schlenk tube is then heated to 160°C to cast the 

solvent (about 4 hours of time). After the solvent casting, the melt was 

annealed for 24 hours at 140°C to crosslinking the block copolymer. The 

resultant cross-linked copolymer morphology was analyzed using AFM and 

TEM.  

 

Figure 6.11. Scheme of the synthesis of the cross-linked microphase 

separated PE-OH-HTT1800 block copolymer (Process I = Solvent casting, 

Melt annealing, and Crosslinking) 

 

SiCN and Au@SiCN was pyrolysed by the following programme. 
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Programme 6.1. Pyrolysis programme of Au@SiCN catalyst 

 

Figure 6.12. Top row. Solvent casted, melt annealed and crosslinked green 

bodies. Bottom row. Pyrolysed green bodies (images not to scale). 

6.7.3. Characterization of SiCN, Au@SiCN, and Ag@SiCN 
 

6.7.3.1. Characterisation of PEOHTT copolymer 
 

The reaction of C22H45OH or PE-OH with HTT1800 goes along with a signal 

shift of the methylene group attached to the OH-group from 3.37 ppm to 3.7 

ppm and a peak broadening.  

 
Scheme 6.1. Linkage of the two-block copolymer segments (R and R’ label 

the rest of the PCCP HTT1800). 
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Figure 6.13. Thermo gravimetric analysis curves of as synthesized materials. 

Weight loss at 480 °C to 520°C correspond to the loss of PE and other 

organic moieties. The yield of the ceramics was calculated from the amount of 

VL-20 and subtracted contribution of PE towards the formation of SiCN. The 

yield of the SiCN afterpyrolysis was in the range of 79-82 in every run. The 

weight gain after 800°C may be due to the deposition of carbon. 

6.7.3.2. Characterization of pyrolysed SiCN, Au@SiCN, and Ag@SiCN 
 

 
Figure 6.14. WXRD of both green body and pyrolysed Au@SiCN. Greenbody 

is with amorphous peak (¢) of PCCP block and crystalline peaks (u) 
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of PE block. Gold nanoparticles supported amorphous SiCN was confirmed 

by observing typical fcc reflections. Presence of graphitic phase in the sample 

is highlighted by �. 

 

 

Figure 6.15. Reflection (111) of (Figure 6.13) was used for the calculation of 

particle size by Debye-Scherrer. 

 

Figure 6.16. SEM image of SiCN after pyrolysing at 1000°C (detailed view) 
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Figure 6.17. Detailed morphological view of the SiCN-2 sample analyzed by 

TEM.  

 

 
Figure 6.18. Presence of graphitic phase in Au@SiCN sample with inter 

planar distance of 0.45 nm highlighted with inset of diffractogram plane image.  
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Figure 6.19. TEM image of pyrolysed Au@SiCN sample at 1000°C assisting 

the presence of bicontinuous porous SiCN supported gold nanoparticles. 

 
Figure 6.20. Hysteresis of SiCN Sample with inset of corresponding pore size 

distribution plot. 
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Figure 6.21. Experimental isotherm of SiCN and fit from NLDFT 

cylinder/sphere adsorption model. 

 

 
Figure 6.22. Volume histogram of SiCN sample matching the pore size 

distribution of 9 nm. 
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Figure 6.23. Hysteresis of Au@SiCN Sample with inset of corresponding pore 

size distribution plot. 

 
Figure 6.24. Experimental isotherm of Au@SiCN and fit from NLDFT 

cylinder/sphere adsorption model. 
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Figure 6.25. Volume histogram of Au@SiCN sample matching the pore size 

distribution of 8 nm. 

 
Figure 6.26. Hysteresis of SiCN (70% HTT1800 / 30% PE-OH) sample with 

inset of corresponding pore size distribution plot. 
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Figure 6.27.Experimental isotherm of SiCN (70% HTT1800 / 30% PE-OH)  

and fit from NLDFT cylinder/sphere adsorption model. 

 

Figure 6.28. Volume histogram of SiCN (70% HTT1800 / 30% PE-OH)  

sample matching the pore size distribution of 9.316 nm. 
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Figure 6.29. Hysteresis of Au@SiCN mesofibers  sample. 

 

Figure 6.30. MAS 29Si NMR spectrum of the Au@SiCN catalyst pyrolyzed at 

1000 °C in an Ar-atmosphere. The main signal at -31.5 ppm is assigned to the 

formed SiCN3 environments. Whereas the shoulder at -19.8 ppm and 
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the smaller signal at -46.8 ppm corresponding to SiC4 and SiN4 environments, 

respectivelyS7. A distinct peak at 81.0 ppm is assigned to the SiCO3 

environmentS8. The signals and the respective chemicals shifts are 

characteristic for a ceramic material formed from a polymeric SiCN-precursor 

at temperatures above 900 °C.  
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