
Maximum Entropy Method in Superspace

Crystallography

Von der Universität Bayreuth zur Erlangung der Würde
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

geneghmigte Abhandlung

vorgelegt von Lukáš Palatinus
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Abstract

This thesis discusses several aspects of the combination of the Maximum En-
tropy Method (MEM) for the reconstructions of the electron density with the
superspace approach to the description of structures of aperiodic crystals. It is
shown that the MEM in superspace provides a parameter-free reconstruction of
the modulation functions with sufficient accuracy.

The MEM in superspace has been applied to diffraction data of several com-
pounds. The computer program BayMEM was developed for this purpose.
BayMEM allows electron densities of the ordinary 3D structures and the su-
perspace electron densities of the aperiodic structures to be reconstructed using
the same general principles. The program has been extended by adding features
improving its versatility and accuracy of the results. The improvements include
attaching of the set of subroutines MemSys5 to BayMEM, implementation of the
method of the Generalized F-constraints and the static weighting, implementation
of the G-constraints, of the Prior-derived F-constraints and of the two-channel
entropy.

The second major computer program EDMA is a software tool for analysis
of the electron densities in arbitrary dimension. The program analyzes the MEM
electron density and extracts quantitative information about the atoms according
to Bader’s formalism “Atoms in molecules”.

Two new variants of the constraints in the MEM have been developed in or-
der to solve the problems with artifacts in the MEM reconstructions. The two
methods are the Generalized F-constraints and the Prior-derived F-constraints.
The concept of the Generalized F-constraints is based in the observation, that
the standard F-constraint is not sufficiently strong to constrain the histogram of
the normalized residuals of the structure factors to the expected Gaussian shape.
Higher moments of the distribution of the normalized residuals were therefore
used as the constraint in the MEM calculations. With these constraints signifi-
cantly improved histograms were obtained.

The source of some artifacts in the MEM electron densities was identified to
be the tendency of the MEM to estimate incorrectly those structure factors, that
are not included in the experimental dataset. It is shown in that the missing
structure factors can successfully be replaced by the structure factors derived
from the procrystal electron density, that is known from the standard structure

vii
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refinement. If the structure factors derived from the procrystal prior electron
density (the Prior-derived F-contraints) are used as additional constraints in the
MEM calculation, the result is free of sharp artifacts and the quality of the
reconstruction of the electron density is comparable with the results of multipole
refinements.

To test the accuracy of the MEM in superspace, the method was applied
to the dataset of the misfit-layer composite structure of (LaS)1.14NbS2. It has
been shown, that the MEM on the model structure factors reproduces the model
modulation functions with accuracy better that 10% of the pixel size of the grid,
on which the electron density was sampled.

The structure of the high-pressure phase III of Bi provided a prominent e-
xample illustrating the advantages of the MEM in superspace over the standard
structure refinements. The MEM in superspace was applied to the diffraction
data of Bi-III to extract more information about the modulation than obtained
from the standard structure refinement. The modulation functions extracted
from the MEM electron density revealed a block-wave-like shape of the modu-
lation function of the Bi atom of the host structure, that indicates shifts of the
atom between two stable environments rather than smooth harmonic variation of
the position indicated by the modulation function from the standard refinement.
Secondly, the MEM modulation function of the Bi atoms in channels allowed to
better understand the nature of the most prominent feature of the modulated
structure — the occurrence of the pairs of Bi atoms along the channels.

The incommensurately modulated structure of ammonium tetrafluoroberyl-
late (NH4)2BeF4, stable between 175K and 182K, was solved and refined in su-
perspace. The known two-fold low-temperature superstructure of (NH4)2BeF4,
that is stable below 175K has been described in superspace as a commensurately
modulated structure. With aid of this description the close relationship between
the two structures has been found. The MEM was applied to the incommen-
surate structure to test the appropriateness of the refined harmonic structure
model. The MEM has shown that the harmonic model is very accurate.

The principal result of this work is that the MEM in superspace was esta-
bilished as a reliable tool for the structure solutions of the modulated structure.
Individual chapters present various aspects of the MEM applied to reconstruc-
tions of the electron densities in general and of the superspace electron densities
in particular. Together they form a framework, that allows to use the MEM
in superspace to extract novel information from the diffraction data of both the
periodic and aperiodic structures, that cannot be obtained from the structure
refinements.



Chapter 1

Introduction

The objective of this thesis is to present the application of the Maximum Entropy
Method (MEM) to description of the structures of aperiodic crystals in super-
space. The Maximum Entropy Method (Section 1.2) is a powerful tool, that can
be used for model-free image reconstructions in many fields of science. Combina-
tion of this method with the superspace structure refinements (Section 1.1) opens
new possibilities in the crystallography of aperiodic crystals, because it allows to
infer a parameter-free shape of the modulation functions. Determination of the
shape of the modulation functions is one of the main outputs of the structure
analysis of aperiodic crystals. In the thesis the results are presented of the ef-
fort to combine the two methods. Such an effort spans a wide range of topics,
including improvements of the methods (Chapters 3, 4), software development
(Chapter 2) and application of the new method to real problems (Chapters 5, 6
and 7). Some chapters of this thesis have been published or are submitted as sep-
arate articles or as a part of an article. These chapters are included here exactly
in the published form, without any changes apart from the layout of figures and
tables. This work contains 8 chapters and 2 appendices:

Chapter 1: Introduction: Introduction to the superspace crystallography and
description of the Maximum Entropy Method in crystallography.

Chapter 2: Development of program BayMEM after the year 2000:
Description of the changes in the computer program BayMEM for the
electron-density reconstruction from the diffraction data by the MEM in
arbitrary dimensions. Theory underlying the operation of supplementary
computer programs EDMA and Prior is also described.

Chapter 3: The Generalized F-constraint in the Maximum Entropy
Method – a study on simulated data: An improvement to the MEM
formalism is described that yields superior MEM results compared to the
classical formalism. Published in: Palatinus, L. and van Smaalen, S. (2001)
Acta Crystallogr. A 58, pp. 559-567.

1



2 CHAPTER 1. INTRODUCTION

Chapter 4: The Prior-derived F-constraints in the Maximum Entropy
Method: Another method improving performance of the MEM on crystal-
lographic problems is described.

Chapter 5: The inorganic misfit layer compound (LaS)1.14NbS2 studied
by the Maximum Entropy Method: The application of the MEM in
superspace to the modulated structure of the layer composite structure of
(LaS)1.14NbS2. Published in: van Smaalen, S., Palatinus, L. and Schneider,
M. (2003), Acta Crystallogr. A 59, pp 459-469.

Chapter 6: Origin of the incommensurability of the crystal structure of
the high-pressure phase III of Bi: The structure of the high-pressure
elemental composite structure of Bi-III is presented. The structure was
solved by a combination of refinements in superspace and the Maximum
Entropy Method in superspace. To be submitted as: Palatinus, L., van
Smaalen, S., McMahon, M., Nelmes, R. I. and Degtyareva, O. (2003), Acta
Crystallogr. B.

Chapter 7: The structure of the incommensurate ammonium tetraflu-
oroberyllate studied by structure refinements and the Maximum
entropy Method: The MEM in superspace is used to confirm the refined
structure of (NH4)2BeF4 and to asses the observability of weak features in
the electron density based on incomplete diffraction data. Submitted as:
Palatinus, L., Amami, M. and van Smaalen, S. (2004), Acta Crystallogr. B.

Chapter 8: Conclusions: Summary of the results. The achievements of the
Maximum Entropy Method in superspace are evaluated.

Appendix A: The crystallographic MaxEnt program BayMEM—User
manual: User manual to the program BayMEM. The program BayMEM

has been used in all applications of the MEM presented in this thesis.

Appendix B: EDMA — a computer program for analysis of electron
densities in arbitrary dimension — User manual: User manual to
the program EDMA (Section 2.9). EDMA is able to extract the structural
information from both ordinary and superspace electron densities.
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1.1 Introduction to superspace crystallography

1.1.1 Aperiodic crystals

Crystals are assemblies of atoms, that exhibit a long-range positional order. The
vast majority of the crystal structures1 are three-dimensionally (3D) periodic,
that means, that the structure of the whole crystal can be constructed as a
periodic repetition of a small part of the crystal (unit cell) along three linearly
independent directions (Giacovazzo et al., 1995). Aperiodic crystals lack this 3D
periodicity, while they are still long-range ordered. The aperiodic crystals can be
divided into three main classes (van Smaalen, 1995):

• Incommensurately modulated structures: These structures have an average
3D periodic structure, but the atoms are periodically shifted from their
average position according to a modulation function with a period that is
incommensurate with the periodicity of the basic structure. (Fig. 1.1). The
real structure is therefore not periodic.

a

b

Figure 1.1: Schematic representation of a two-dimensional modulated crystal structure
with one atom in the origin of the unit cell of the basic structure. Crosses represent
the periodic basic structure, circles represent the positions in the modulated structure.
The wavevector is ~q = 0.372~a∗ and the modulation function is ~u = 0.2~b sin(2π~r·~q).

1The crystal structure is an idealized construction that describes the position of atoms in
the crystal without taking into account disturbances like dislocations, inclusions etc.
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• Composite crystal structures: These structures can be described as an inter-
growth of two or more substructures (subsystems), each of them periodic in
first approximation. The subsystems have a mutually incommensurate ratio
of the unit cell dimensions in at least one direction. This incommensurate-
ness disturbs the periodicity of the whole composite structure. Moreover,
the interactions between the subsystems lead to incommensurate modula-
tions in both subsystems (Fig. 1.2).

a

a

1

2

b

Figure 1.2: Schematic representation of a two-dimensional composite crystal with two
subsystems. Crosses represent the first subsystem with one atom in the origin of the
unit cell. Circles represent the second subsystem with one atom in the center of the
unit cell. The first and second subsystems have the basic lattice vectors ~a1, ~b and ~a2, ~b,
respectively. Full and dashed lines outline the lattice of the first and second subsystem,
respectively. The ratio a1/a2 = 0.611. The arrows schematically denote the shifts of
the atoms of the second subsystem due to the interactions with the atoms of the first
subsystem. Shifts in the first subsystem are omitted for clarity.
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• Quasicrystals: Quasicrystals exhibit a non-crystallographic point-symmet-
ry, for example a 5-fold or 8-fold axis. Such symmetry is forbidden in
periodic structures. The structures of quasicrystals are described using a
different approach than is used for the description of the structures of in-
commensurately modulated crystals and composite crystals. Quasicrystals
are not discussed in this thesis and the considerations in following sections
are related only to the modulated structures and composite structures.

1.1.2 Reciprocal space of modulated crystals

The diffraction pattern of both periodic and aperiodic crystals is discrete. This
is a direct consequence of the long-range order in both structures. However, an
important difference between the two classes of crystals exist: The diffraction
pattern of aperiodic crystals is not indexable with three integer indices, while the
diffraction pattern of the ordinary periodic crystals is. The diffraction pattern
of modulated crystals consists of reflections corresponding to the periodicity of
the basic structure (main reflections) and reflections corresponding to the mo-
dulation wave (satellites, Fig. 1.3). Main reflections can be indexed with three

c*

a*

Figure 1.3: Diffraction pattern of the modulated γ-phase of Na2CO3 in the h0l plane.
Thin white lines connect main reflections. Satellites can be indexed with one wavevector
~q = 0.182~a∗ + 0.322~c∗ (small white arrows). In this rare case satellites up to fourth
order are visible. Reprinted with permission from Dušek et al. (2003).
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basic vectors, while d additional vectors (q-vectors) are necessary to index the
satellites.These (3 + d) vectors are not linearly independent and the q-vectors
can be expressed as a linear combination of the first three reciprocal vectors (van
Smaalen, 1995):

~a∗3+j =
3∑

i=1

σij~a
∗
i , j = 1, . . . , d (1.1)

At least one component of every row of the 3 × d matrix σ must be irrational,
otherwise an alternative description could be found that indexes the diffraction
pattern using less that (3 + d) integers. The rows of the matrix σ are formed by
the components of the modulation wavevectors with respect to the three basic
reciprocal vectors.

The diffraction vector ~H of every Bragg reflection can then be indexed by
(3 + d) integers:

~H =
3+d∑

k=1

hk~a
∗
k (1.2)

1.1.3 Superspace embedding of the diffraction pattern

The diffraction pattern of an aperiodic crystal can be considered to be a projection
on 3D space of a (3 + d)D weighted lattice (Fig. 1.4). Projections in general are
not reversible, but due to the discrete nature of the diffraction pattern and limited
number of reflections with significant intensity the (3 + d)D weighted lattice can
be unambiguously reconstructed from the 3D projection (Fig. 1.4). In the (3+d)D
reciprocal space the reciprocal vectors become linearly independent. The usual
construction of the basis Σ∗ in (3 + d)D space is (van Smaalen, 1995):

Σ∗ :

{

~a∗si = (~a∗i , 0) , i = 1, 2, 3

~a∗s,3+j =
(

~a∗3+j,
~b∗j
)

, j = 1, . . . , d
(1.3)

The vectors ~b∗ are perpendicular to real space. Since they do not have any
physical meaning, their length is arbitrary and can be set to one.

The direct superspace basis to the reciprocal basis in Eq. 1.3 is (van Smaalen,
1995):

Σ :







~asi =



~ai,−
d∑

j=1

σjibj



 , i = 1, 2, 3

~as,3+j =
(

0,~bj
)

, j = 1, . . . , d

(1.4)
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b*

q a*

a*

s1

s4

1

1

Figure 1.4: Diffraction pattern of a modulated crystal as a projection of the higher-
dimensional weighted lattice. Section as1 − as4 of a four-dimensional superspace is
shown. Empty circles denote satellites obtained as projections along b∗ of the super-
space lattice points. Satellites up to 2nd order are shown.

1.1.4 Superspace electron density

The general relation between the diffracted intensity and the structure is (Wilson
& Prince, 1999):

I( ~H) ∝ |F ( ~H)|2 (1.5)

F ( ~H) =
∫

V
ρ(~r) exp(2πi ~H·~r)d~r (1.6)

ρ(~r) stands for the electron density of the crystal. The integration in Eq. 1.6
runs over the whole volume of the crystal. The electron density at point ~r in
the crystal is thus obtained by an the inverse Fourier transform of the structure
factors F ( ~H):

ρ(~r) =
∑

~H

F ( ~H) exp(−2πi ~H·~r) (1.7)

where the summation is over all reciprocal lattice vectors ~H.
The theory of the Fourier transform shows, that a discrete Fourier spectrum

indexable by n integers can be always related to a periodic function defined in n
dimensions. Thus, we can always construct a n-dimensional (nD) periodic density
function (superspace density, ρs(~rs)), that is the nD inverse Fourier transform of
the structure factors indexed in n dimensions by integers:

ρs(~rs) =
∑

~Hs

F ( ~Hs) exp(−2πi ~Hs·~rs) (1.8)
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The subscript s denotes quantities defined in superspace. Quantities defined in
real space are without subscript. For ordinary structures, n = 3 and the density
ρs(~rs) represents the real electron density of the crystal. Diffraction patterns of
the aperiodic crystals are indexed by (3+d) integers (d > 0) and ρs(~rs) is defined
on a (3 + d)D space.

The relation between the superspace electron density and the real density
follows from the condition, that the real-space electron density at point ~r and the
superspace density at point ~rs are equal only if the right sides of Eqs. 1.6 and
1.8 are equal. This is fulfilled if

~Hs·~rs = ~H·~r mod integer (1.9)

for any ~H. The relation between the components hsi of the vector ~Hs and com-
ponents hi of the vector ~H follows from Eqs. 1.1 and 1.3:

hi = hsi +
d∑

j=1

σijhs,3+j (1.10)

Thus, Eq. 1.9 can be rewritten to

3+d∑

i=1

hsirsi =
3∑

i=1







hsi +
d∑

j=1

σijhs,3+j



 (ri + Li)



 (1.11)

or - in matrix notation - to

~Hs·~rs = ~HT
s

(

I
σ

)

(~rr + ~Lr) mod integer (1.12)

The vector ~L is a vector with arbitrary integer components. The matrix in
brackets is a juxtaposition of a 3 × 3 unit matrix I and of the matrix σ from
Eq. 1.1. Eq. 1.12 is fulfilled for any ~Hs if and only if ~rs = (~r+ ~L,σ(~r+ ~L)). If we
compare this result with the definition of the direct superspace basis (Eq. 1.4),
we see that this relation is equivalent to a linear 3D section through the (3+d)D
superspace density perpendicular to the additional dimensions (Fig. 1.5).

As a consequence of the periodicity of ρs(~rs), any basic unit cell anywhere
in the (non-periodic) real-space electron density can be mapped onto a reference
unit cell of ρs (Fig. 1.5). The shift of such a mapped section from the origin
along the internal dimensions is denoted as a shift by a vector ~t. Each basic unit
cell anywhere in the structure can be mapped onto a section of a single reference
superspace unit cell with the shift tj ∈ 〈0, 1); j = 4, . . . , d. Thus, all structural
properties like distances, bond valences etc. can be expressed as a function of ~t.
Characterization of any structural property in the interval ~t ∈ 〈0, 1)d is equivalent
to full characterization of the property in the whole structure.



1.1. INTRODUCTION TO SUPERSPACE CRYSTALLOGRAPHY 9

1.1.5 Atoms in superspace

Let us have an atom at an average position ~̄r
0
. Let the atom be shifted from

its average position according to a periodic function ~u(σ~r) with periodicity one
in each component of its argument. At least one component of each row of σ is
irrational and therefore the superposition of the average position and the modu-
lation is non-periodic. Using the periodicity of ρs(~rs), the atom can be mapped
onto a reference superspace unit cell (Fig. 1.5). As a result, the atom in super-
space forms a string parallel to the internal dimension, that has exactly the form
of the modulation function ~u. These strings (planes, volumes or hypervolumes
depending on the dimension of the superspace) are called atomic domains. Thus,
an atom in the superspace density is characterized by its average position in a
basic unit cell ~̄r

0
and by the shape of its atomic domain (modulation function

~u(r̄s4, . . . , r̄s(3+d))). The position of the atom is (van Smaalen, 1995):

r̄i = li + r̄0i
r̄si = r̄i

r̄s(3+j) = tj +
3∑

k=1

σjkr̄k

ri = r̄i + ui
(

r̄s4, . . . , r̄s(3+d)
)

i = 1, 2, 3
j = 1, . . . , d

(1.13)

The modulation function ~u is usually expressed as a Fourier series. In case of
a one-dimensional modulation, ~u of an atom µ becomes (van Smaalen, 1995):

uµi (x̄4) =
∞∑

n=1

Aµ
ni cos(2πnx̄4) +Bµ

ni sin(2πnx̄4) i = 1, 2, 3 (1.14)

Modulation of other structural properties like the displacement parameters or the
occupancy can be defined analogically.

1.1.6 Composite crystal structures

Incommensurate composite crystal structures are intergrowths of two or more
substructures (subsystems) that have incommensurate ratio of at least one lat-
tice parameter (Fig. 1.2). The diffraction pattern is slightly different from the
diffraction pattern of a simple modulated structure. Let us consider explicitly
the most frequent case of the intergrowth of two subsystems. The diffraction
pattern of such a structure consists of the main reflections of the first subsystem,
of the main reflections of the second subsystem and of the satellite reflections
arising due to the intersubsystem interactions (Fig. 1.6). Similarly as in the case
of the incommensurately modulated structures, the diffraction pattern cannot be
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a

a

a

s4

s1

1 t=0

t=0.806

Figure 1.5: Construction of the atomic domain in superspace. The atoms are shifted
from their average positions (crosses) to the modulated positions (open circles) along
the real space (bold line) according to the modulation function with period 2.481~a1.
The atoms can be brought to equivalent position in the reference superspace unit cell
(filled circles) by superspace lattice translations. Some of the possible translations are
shown by dotted lines. If all atoms of the structure are translated into the reference
unit cell, they form the atomic domain in superspace (wave parallel to ~as4). The dashed
line shows an alternative real space section at t = 0.806, which represents the same
structure shifted by −2~a1 with respect to the structure at t = 0.
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Figure 1.6: Schematic representation of a diffraction pattern of a composite crystal
with two subsystems in plane ~a∗,~b∗. The incommensurate lattice parameter is ~a, ~b is
common for both subsystems. Black open (grey filled) circles mark main reflections
of the first (second) subsystem. Diamonds show positions of the satellite reflections
up to 2nd order (max(|h1|, |h2|) ≤ 2). They can be generated as satellites of the first
subsystem with the modulation vector ~a∗2, or as satellites of the second subsystem with
the modulation vector ~a∗1. Indices (h1h2kl) of some reflections in the basis (~a

∗
1,~a

∗
2,
~b∗,~c∗)

are shown.

indexed with three integers, but it can be indexed with (3+d) integers. Selecting
the (3 + d) basic vectors in the diffraction pattern, we can map the diffraction
pattern onto the superspace similarly as in the case of simple modulated struc-
tures (Eqs. 1.1 and 1.3). The superspace reciprocal basis of a subsystem ν is
related to the selected general basis Σ∗ by a (3 + d) × (3 + d) matrix Wν with
integer components (van Smaalen, 1991b):

Σ∗
ν = WνΣ∗ (1.15)

Σ∗
ν is a setting of the reciprocal basic vectors, that allows to describe the subsys-

tem ν as an ordinary modulated structure. The modulation wavevectors (compo-
nents of the matrix σ, Eq. 1.1) of one subsystem are determined by the periodicity
of the second subsystem (Fig. 1.6). To obtain components of σν we decompose
the matrix Wν to:

Wν =

(

Zν
3 Zν

d

Vν
3 Vν

d

)

(1.16)

Matrices Z have three rows, matrices V have d rows. The subscript denotes the
number of columns. The matrix σν is then obtained from (van Smaalen, 1991b):

σ
ν = (Vν

3 +Vν
dσ)(Z

ν
3 + Zν

dσ)
−1 (1.17)
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Figure 1.7: Schematic representation of a superspace description of a composite struc-
ture with two subsystems. Atomic domains of the subsystems are parallel to different
directions in superspace. The strings cut the real space (bold line) with mutually incom-
mensurate average periodicities (grey crosses and stars) and the modulated positions
of the atoms are given by the intersections of the atomic domains with the real space
(full and empty circles).

In the superspace description of the composite structure, the atoms of dif-
ferent subsystems form strings parallel to different superspace directions. The
intersections of the sets of strings with the real space generate the atomic posi-
tions in the real space. The atomic domains of individual subsystems intersect
the real space under different angles. This results in different periodicities of the
subsystems in the real space, while the structure is still periodic in superspace
(Fig. 1.7).

1.2 Maximum Entropy Method in crystallogra-

phy

The standard way of solving crystal structures from X-ray diffraction data is
to approximate the electron density ρ(~r) in the unit cell of the crystal by a
model electron density, which is parametrized by a relatively small number of
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parameters. Values of these parameters are then determined that correspond
to the best fit to the measured dataset. This is possible thanks to the small
number of parameters compared to the number of data. Usually some hundreds
or thousands of reflections are available for the determination a few dozens of
parameters. Usually only one optimal solution exists. Another case occurs, if
ρ(~r) should be described by its values in an arbitrarily dense grid in the unit cell.
The number of values to be determined can now be much higher than the number
of the individual data. In such a case an infinite number of equally good solutions
exists, and some additional criterion is needed, that chooses the best solution.
Treatment of this problem leads to the Maximum Entropy Method (MEM).

1.2.1 The principle of the Maximum Entropy Method

The MEM is a very general principle applicable to nearly every field of science
(von der Linden et al., 1998). Here the case of the X-ray scattering experiments
will be considered explicitly. The electron density ρ(~r) in the unit cell is sampled
on a dense n-dimensional grid. n = 3 for electron densities of ordinary struc-
tures, n > 3 for superspace electron densities. The number of pixels along each
dimension i is Ni. The total number of pixels in the grid is:

Npix = N1 ×N2 × . . .×Nn (1.18)

The positions of the grid points must obey the symmetry of the unit cell. Each
grid point must be transformed onto itself or onto another grid point by all
symmetry operators. This puts restrictions on the choice of origin of the grid.
Either the grid points lie on the symmetry elements or the symmetry elements
lie on the boundaries between the grid points. The first choice is more favorable
(van Smaalen et al., 2003). The symmetry puts also restrictions on the divisions
Ni (van Smaalen et al., 2003). For example, if a 61 axis is among the symmetry
operators, then the division along that axis must be a six-fold integer.

It is the aim of the structure analysis to determine the values ρi in every point
i of the grid. It is the assembly of the values ρi, i = 1, . . . , Npix, that is denoted
ρ in this section, in contrast to ρ(~r), which stands for the continuous electron
density. ρ is related to the structure factors F via a discrete Fourier transform.
The amplitudes of the structure factors can be determined experimentally and
thus each trial ρ can be accepted or rejected based on its agreement with the
experimental data. Because the number of grid points can be arbitrarily large,
there is an infinitely large number of solutions that account for the finite number
of the measured data. A criterion is required, which selects the most probable
solution among all solutions that fit the data. Mathematically, a functional of ρ
must be found, that can be used as a measure of probability of ρ. The electron
density that fits the data and maximizes this functional is selected to be the most
probable electron density with respect to the experimental data.
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The functional used is the information entropy:

S = −
Npix∑

i=1

ρi ln
ρi
τi

(1.19)

τi is the value of the so-called prior electron density (prior in short) in a grid point
i. τ should incorporate all the information available about the electron density
prior to using the experimental data in the MEM. If no prior information is avail-
able, a uniform prior (τi = constant) should be used. The entropy functional has
a single maximum S = 0 for ρi = τi, i = 1, . . . , Npix, and decreases monotoni-
cally in all directions. The name (information) entropy has been selected for its
formal (and in some sense factual, too) similarity to the thermodynamic entropy
(Shannon, 1948).

The MEM has been originally designed for the estimation of the probability
distributions, e.g. for the distributions, that are everywhere-positive and that
add up to one. However, it can be easily generalized toward distributions that
are not normalized to one. The electron density fulfills the positivity condition
and therefore it can be optimized using this method.

Many different approaches leading to the Principle of the Maximum Entropy
for different classes of problems have been presented in the literature (Shannon,
1948; Shore & Johnson, 1980; Gull & Skilling, 1984; Jaynes, 1996; Sivia, 1997
and references therein). It has been shown, that no other functional fulfills the
basic conditions imposed on any functional Φ, that can be used as the selection
criterion among different probability distributions. These conditions are (Jaynes,
1996; Sivia, 1997):

1. Φ is continuous.

2. Φ corresponds to ”common sense”in simple cases. In particular, if no in-
formation is available about different hypothesis, it should assign equal
probabilities to them.

3. Φ must not introduce correlations between independent hypotheses.

4. Φ must be self-consistent.

During the long years of extensive usage of the MEM in various fields of the
data analysis and probability evaluations no inconsistency with these conditions
has been discovered in the entropy functional (Jaynes, 1996; Sivia, 1997).

1.2.2 Crystallographic MEM equations

The maximum-entropy criterion selects only among the solutions that fit the data.
The data are supposed to be noisy with a Gaussian distribution of the errors.
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Therefore the most probable solution is not the one corresponding exactly to the
data, but the one, which satisfies the condition

CF = −1 + 1

NF

NF∑

i=1




|Fobs( ~Hi)− FMEM( ~Hi)|

σ( ~Hi)





2

= 0 (1.20)

or some of its variants (Chapters 2, 3, 4). Fobs( ~H) denotes the observed struc-

ture factors, FMEM( ~H) denotes the structure factors calculated for the current

estimate of ρ, and σ( ~H) is the standard error of Fobs( ~H). NF is the number of
observed structure factors.

Another constraint is usually used in crystallographic applications of MEM.
It is the normalization constraint:

CN = Nel −
VUC
Npix

Npix∑

i=1

ρi = 0 (1.21)

Nel is the number of electrons in the unit cell and VUC is the volume of the unit
cell.

Having constructed NC constraints, we need to perform the constrained en-
tropy maximization with respect to ρ. Using the method of Lagrange undeter-
mined multipliers, this is equivalent to unconstrained maximization with respect
to ρ and λj, j = 1, . . . , NC of the Lagrangian

Q(ρ) = S(ρ)−
NC∑

j=1

λjCj(ρ) (1.22)

Differentiating the above equation with respect to ρi gives the condition

∂Q

∂ρi
=
∂S

∂ρi
−

NC∑

j=1

λj
∂Cj

∂ρi
(1.23)

Written explicitly for the two constraints CF and CN (Eqs. 1.20 and 1.21) and
using the definition of entropy (Eq. 1.19) we get:

∂Q

∂ρi
= −1− ln

ρi
τi
− λF

∂CF

∂ρi
− λN = 0 (1.24)

This gives an implicit solution for the MaxEnt electron density ρMEM in the form

ρi = τi exp (−1− λN) exp

(

−λF
∂CF

∂ρi

)

(1.25)

Substituting into the normalization condition (Eq. 1.21) yields:

Npix∑

i=1

τi exp (−1− λN) exp

(

−λF
∂CF

∂ρi

)

=
NelNpix

VUC
(1.26)
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The two Eqs. 1.25 and 1.26 can be combined to eliminate the Lagrange multiplier
λN . The final result for the normalized electron density is:

ρi =
NelNpix

VUC
τi exp

(

−λF
∂CF

∂ρi

)

/
Npix∑

j=1

τj exp

(

−λF
∂CF

∂ρj

)

(1.27)

Eq. 1.27 together with Eq. 1.20 give a set ofNpix+1 nonlinear equations, which
cannot be solved analytically. Several algorithms have been developed, that solve
the maximization problem iteratively (see overview in Skilling & Bryan, 1984).
The two commonly used algorithms will be described in following two sections.

1.2.3 Sakata-Sato algorithm

The right-hand side of Eq. 1.27 depends on ρi, because the constraint is a function
of ρi. The Sakata-Sato algorithm (Sakata & Sato, 1990) solves this problem by
using two approximations. The first one is:

∂C

∂ρi

∣
∣
∣
∣
∣
ρ
(n+1)
i

≈ ∂C

∂ρi

∣
∣
∣
∣
∣
ρ
(n)
i

(1.28)

where ρ
(n)
i and ρ

(n+1)
i are the values of electron densities at nth and (n+1)th cycle

of the iteration. This is equivalent to making a zero’th order Taylor expansion of
∂C
∂ρi

around ρi = ρ
(n)
i .

The second approximation is:

τ
(n+1)
i ≈ ρ

(n)
i (1.29)

This means, that the MEM electron density of the cycle n is used as a prior
electron density of the cycle n+ 1.

With these two approximations, Eq. 1.27 gives the basic formula for the iter-
ation in the Sakata-Sato algorithm:

ρ
(n+1)
i =

NelNpix

VUC
ρ
(n)
i exp



−λF
∂CF

∂ρi

∣
∣
∣
∣
∣
ρ
(n)
i



 /
∑

j

ρ
(n)
j exp



−λF
∂CF

∂ρj

∣
∣
∣
∣
∣
ρ
(n)
j



 (1.30)

The described approximations have been named the zero’th-order single-pixel
approximation (ZSPA; Kumazawa et al., 1995).

The Sakata-Sato algorithm is iterative. At cycle n of the iteration, the new
density ρ

(n+1)
i is calculated using Eq. 1.30 from the prior density ρ

(n)
i . The itera-

tion is started with ρ
(1)
i = τi. The value of the constraint decreases in each cycle.

The iteration is repeated until the condition CF ≤ 1 is fulfilled.
The last problem is to determine the value of λF . It has been shown (Sakata &

Sato, 1990; Kumazawa et al., 1995) that the result of the ZSPA is not sensitive to
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the exact value of λF , if it is small enough to assure convergence of the iteration.
If too large value of λF is chosen, the iteration diverges, i.e. the value of the
constraint increases between consecutive cycles.

It is obvious, that the second approximation (Eq. 1.29) is not valid, especially
if a uniform prior density is used. This approximation has been used to over-
come the convergence problems, that occur in the Gull-Daniels algorithm (Gull
& Daniel, 1978). Surprisingly, in despite of the inaccuracy of the approximations
used, the MEM electron densities obtained with the Sakata-Sato algorithm are
very close to the electron densities that correspond to exact MaxEnt solutions
(Section 2.2.4).

1.2.4 Cambridge algorithm

The Cambridge MaxEnt algorithm (Skilling & Bryan, 1984) is based on simul-
taneous optimization of the Lagrange multiplier λ and of the image. This is in
contrast with the Sakata-Sato algorithm, where λ is fixed and only the image
is optimized. For the purposes of the Cambridge algorithm, the total optimized
Lagrangian is written as (compare Eq. 1.22):

Q(ρ) = αS(ρ)− C(ρ) (1.31)

The Lagrange multiplier λ is now replaced by the factor α. This is only a change
of convention and does not influence the resulting MaxEnt image ρ.

For given α, a unique image ρ exists, that maximizes Q. The value of C(ρ) is
determined by the choice of α, supposing that C(ρ) is convex in all points, which
is the case for the F-constraint. The task to find the maximum of Q(ρ) for given
C(ρ) can thus be reduced to finding the maximum of Q(ρ) for given α. Then, the
value of α could be changed, until the constraint reaches its final value C = Caim.

The Cambridge algorithm searches for the ρMEM iteratively. The iteration
starts with very large value of α, which corresponds to almost unconstrained
entropy maximization. ρMEM(α → ∞) = ρprior and the starting ρMEM is thus
known. Each iteration cycle starts with changing the value of α, usually down-
wards. After that, the image ρ(n+1) is found, that maximizes Q(ρ) and the new
value of C(n+1) is calculated. This is repeated, until the condition C = Caim is
satisfied.

The non-trivial task is to find ρ(n+1). To facilitate this task, a local quadratic
approximation of Q(ρ) is formed around the image of the previous cycle ρ(n):

Q(ρ(n) + δρ) = Q(ρ(n)) + δρT∇Q+ δρT∇∇Qδρ (1.32)

Within this approximation, the maximization of Q(ρ) with respect to ρ becomes
feasible and it is one of the strengths of the Cambridge algorithm and MemSys

package, that this maximization is performed effectively using the method of
conjugate gradients (Skilling & Bryan, 1984; Gull & Skilling, 1999b).
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The local quadratic approximation is valid only in a limited interval around
ρ(n). This is the reason, why the algorithm must search for the MaxEnt solution
iteratively. The change of α must not be too large, otherwise ρ(n+1) would lie too
far from ρ(n), the quadratic approximation would not be valid there, and ρ(n+1)

could not be reliably determined.

1.2.5 Maximum Entropy Method in superspace

The applications of the MEM for the reconstruction of the electron densities were
first derived for ordinary 3D-periodic structures (Collins, 1982; Sakata & Sato,
1990). The first attempt to use the MEM in reconstructions of the superspace
electron densities has been made by Steurer (1991), but the results were not
quantitatively analyzed and the method was not further developed. Recently van
Smaalen et al. (2003) give a full account on the application of the MEM to the
superspace electron densities. It has been shown, that the MaxEnt formalism
can be generalized towards superspace in a straightforward manner. The nD
superspace electron density is sampled on a nD grid. The entropy is defined as
a function of all pixels of the superspace electron density. Thus, the ordinary
3D and superspace electron densities can be analyzed by MEM within the same
formalism and the 3D electron densities can be treated as a special case of the
general n-dimensional problem (van Smaalen et al., 2003). A computer program
BayMEM has been developed that has the capability of performing the MEM
analysis of electron densities in arbitrary dimensions within a unique framework
(Schneider, 2001; Chapter 2).



Chapter 2

Development of the program
BayMEM after the year 2000

2.1 Introduction

BayMEM is a computer program that has been developed for applications of the
MEM in charge-density reconstructions of both ordinary and modulated crystal
structures. It allows to reconstruct the MaxEnt electron density from at least
partially phased experimental structure factors measured by X-ray diffraction.

The first version of BayMEM has been written by Martin Schneider and
described in his Ph.D. Thesis (Schneider, 2001). This version contained following
basic features:

• General n-dimensional Fast Fourier Transform based on Beevers-Lipson al-
gorithm (Schneider & van Smaalen, 2000).

• General handling of symmetry of discretized unit cell in arbitrary dimension
(van Smaalen et al., 2003).

• Implementation of the Sakata-Sato MEM algorithm (Sakata & Sato, 1990).

• Constraint based on phased structure factors (F-constraint).

• MaxEnt calculation with both uniform and non-uniform prior electron den-
sity.

• Regularization function introducing correlation between the values of the
electron density at neighboring pixels of the grid.

This functionality has been extended by adding various features improving
BayMEM’s ability to produce reliable and informative MEM results. These
improvements are described in following sections.

19
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2.2 MemSys5 package

MemSys5 is a set of subroutines, that implements the Cambridge algorithm
(Skilling & Bryan, 1984; Section 1.2.4) for general solution of MaxEnt problems.
The system is not a self-standing program. The user must provide subroutines im-
plementing the transformations specific for his MaxEnt problem and the program
interface to the MemSys5 package. The subroutines are provided as Fortran 77
and C-language source code. The Fortran code of MemSys5, Version 1.2 from
September 6, 1999 (Gull & Skilling, 1999a; Gull & Skilling, 1999b), has been used
in BayMEM and is described in this section.

2.2.1 Structure of the MemSys5 package

MemSys5 provides three main subroutines. One of them - subroutine MEM5

- serves for reconstructions of the MaxEnt image. The other two - MOVIE5 and
MASK5 - enable various properties of the MaxEnt image to be inferred, like different
samples of the final MaxEnt probability distribution or integral properties of the
distribution and its standard error. BayMEM uses only the subroutine MEM5.

The subroutine MEM5 performs one iteration cycle per call. MEM5 must be
called repeatedly, until the iteration is converged.

Apart from the subroutines included in the MemSys5 package, four other
important subroutines are necessary. These subroutines must be supplied by the
user. They are specific to each MaxEnt problem, and they implement different
mathematical operations on the image or on the data. If the experiment is linear
(which is the case for many experiments, including diffraction experiments), the
data Fobs and the image ρ are related by a matrix equation:

Fobs = Rρ (2.1)

The operator R must be implemented in a subroutine named OPUS, the transpose
operator RT is represented by a subroutine TROPUS. The basic assumption under-
lying the MaxEnt formalism is that the points of the image are not correlated.
However, in practice, this is not always true and there is some kind of correlation
usually present in the image. Such a correlation can be introduced in the MaxEnt
formalism as a function called Intrinsic Correlation Function (ICF). The “real”
image (visible image) is considered to be obtained by “blurring” the actually op-
timized image (hidden image) by the ICF. The independence of the pixels of the
hidden image is given by definition, and all the correlations are moved to the
ICF. The relation of the hidden image h to the visible image ρ is

ρ = Ch (2.2)

and the relation of the hidden image to the data becomes:

F obs = RCh (2.3)
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The matrix operator C represents the ICF and should be supplied as subroutine
ICF, its transpose CT must be implemented in subroutine TRICF. The hidden
image does not correspond to a physically meaningful quantity. The final result
of the MEM analysis is the visible image ρ. BayMEM employs other means
to introduce correlations between pixels (the regularization function; Schneider,
2001) and the subroutines ICF and TRICF are therefore empty.

2.2.2 Interface BayMEM - MemSys

Any interface with the MemSys5 package must fulfill two main tasks: Supply-
ing the data in a form readable by MemSys5 and providing the code for the
transformation subroutines.

Format of the data

The data are passed to MemSys5 in one large array called ST, that is sub-
divided into several parts called areas. Each area contains one set of related
variables. The list of areas used by BayMEM and their contents is given in
Table 2.1. The data are of type real. That means, that complex numbers like
the structure factors must be supplied and handled as two separate real numbers.
The coding used in BayMEM is such, that each complex number is represented
in the array ST by two consecutive real numbers representing its real in imaginary
component.

Table 2.1: Areas of the array ST filled explicitly in BayMEM. Those areas not listed
here are either used as a workspace by MemSys5 (areas 〈2〉,〈23〉-〈28〉), or are not
occupied.

area nr. description
〈1〉 the MEM electron density
〈3〉 prior
〈4〉 pixel multiplicities
〈21〉 experimental structure factors

〈22〉 weights of the structure factors: 〈22〉 =
√

w(Fobs)

σ(Fobs)

(see Section 2.3 for explanation of the factor w(Fobs))
〈31〉 static weights w(Fobs) (see Section 2.3)

The most important part of the array ST is the area 〈1〉 - the image, and the
area 〈21〉 - the experimental data. In crystallography, the image and the expe-
rimental data correspond to the electron density and the experimental structure
factors. A choice has to be made, whether the two quantities will be supplied
as independent data (density in an asymmetric unit and independent structure
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factors), or expanded (density of the whole unit cell and all structure factors).
The disadvantage of the first choice is, that the transformation subroutines OPUS
and TROPUS become somewhat more complicated, and the expression for entropy
and its derivatives must be modified (see below). However, these disadvantages
are compensated by the memory savings, that are achieved in comparison with
the expanded datasets. Especially the values of the electron density form a large
array and the difference between the size of arrays containing the expanded and
independent part can be several hundred MB. Because the effective use of the
memory is one of the main objectives of BayMEM, the first choice has been
made.

Despite the fact, that only the independent part of the density is passed to
MemSys5, the entropy must remain defined on the whole unit cell:

S =
Npix∑

j=1

ρj − τj − ρj ln
ρj
τj

(2.4)

This general expression for entropy is used in MemSys5. The first two terms in
the sum reflect the contribution to the entropy of the (possible) difference in the
sum of the image and the prior (Gull & Skilling, 1999b).

Expressed with the pixels in the asymmetric part of the unit cell, this defini-
tion changes to:

S =

NAU
pix∑

j=1

mj

[

ρj − τj − ρj ln
ρj
τj

]

(2.5)

where only the NAU
pix symmetry-independent pixels are included in the summation.

Related quantities used in MemSys are:

∂S

∂ρj
= −mj ln

ρj
τj

(2.6)

and
∂2S

∂ρj2
= −mj

ρj
∂2S

∂ρj∂ρk
= 0, j 6= k

(2.7)

This is equivalent to saying that each independent pixel has a weight equal to
the multiplicity of the pixel. MemSys5 does dot have capacity to handle such a
weighting. Therefore, the code handling entropy and related quantities had to be
modified. All the calculations concerning entropy and related quantities are con-
centrated into subroutine MEMENT and subroutines called therefrom. Appropriate
changes must be made in these subroutines. The changes are listed in the User
manual to BayMEM (Appendix A.3.2).
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The transformation routines

The transformation subroutine OPUS contains the implementation of the ma-
trix operator R, that transforms the image to the data. Subroutine TROPUS

applies the transpose operator RT . In contrary to the impression made by the
MemSys5 manual, the operator RT does not have to be exactly the data-to-
image transform, it only must be the transpose matrix operator to R. Although
R is a matrix operator, its implementation as simple matrix multiplication would
be very inconvenient and slow. Instead of that, the FFT subroutine as imple-
mented in BayMEM can be used to obtain a result equivalent to the matrix
multiplication. The formulas necessary for expressing matrices R and RT by
means of the FFT will be derived here:

The electron density and the structure factors are related by Fourier trans-
form:

F ( ~H) =
∫

VUC

ρ(~r) exp
(

2πi ~H·~r
)

dV (2.8)

The integration spans the volume VUC of one unit cell. In a discrete case, with
the unit cell divided into Npix pixels, Eq. 2.8 becomes:

F ( ~H) =
VUC
Npix

Npix∑

j=1

ρ(~rj) exp
(

2πi ~H·~rj
)

dV (2.9)

Symmetry requires, that the relation

ρ(Rl~rj + ~τl) = ρ(~rj) (2.10)

Is valid for each symmetry operator {Rl|~τl}, l = 1, Nsym from the Nsym symmetry
operators of the space group. This makes it possible to rewrite Eq. 2.9 in form:

F ( ~H) =
VUC
Npix

NAU
pix∑

j=1

mj

Nsym

ρ(~rj)
Nsym∑

l=1

exp
(

2πi ~H·(Rl~rj + ~τl)
)

(2.11)

The summation runs over NAU symmetry independent pixels. mj is the multi-
plicity of the position j. The factor mj/Nsym corrects for the fact, that the pixels
lying on a special position are taken into account more than once in the inner
sum.

We can construct a “data vector” ~F with NF independent experimental struc-
ture factors as components: ~F = (F ( ~H1), F ( ~H2), . . . , F ( ~HNF

))T . Analogically we
define a “density vector” ~ρ = (ρ(~r1), ρ(~r2), . . . , ρ(~rNAU

pix
))T . We can now rewrite

Eq. 2.11 in a matrix form:

~F =
VUC
Npix

T

[

m

Nsym

]

~ρ =
VUC

NsymNpix

T[m]

︸ ︷︷ ︸

U

~ρ (2.12)
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In this and all following equations, the notation [x] denotes a square diagonal
matrix with elements of vector ~x on the diagonal. In this particular case, the
matrix [m] denotes a diagonal matrix with multiplicity mj of the j

th pixel in row
j. The operational effect of such a matrix on a matrix M to the right (left) is,
that it multiplies every row (column) j of the matrix M by a number in row
j of the diagonal matrix. The matrix T with NF rows and NAU

pix columns is a
symmetry-adapted Fourier transform matrix with coefficients:

Tkj =
Nsym∑

l=1

exp
(

2πi ~Hk·(Rl~rj + ~τl)
)

(2.13)

To summarize, the Fourier Transform in Eq. 2.9 and the matrix equation
Eq. 2.12 are equivalent and the Fast Fourier Transform subroutine of BayMEM

on the expanded set of data and pixels can be used as a computationally equiva-
lent operator to the matrix operator U applied to the unique set of pixels. Thus,
the subroutine OPUS contains merely an expansion of the unique pixels to the unit
cell and a call of the FFT subroutine.

To envisage the operation of the subroutine TROPUS, which implements a trans-
pose matrix operator to OPUS, let us first derive the expression for the data-to-
density transform. The electron density is related to the structure factor through
a discrete Fourier transform. The summation runs over all possible integer diffrac-
tion vectors ~H:

ρ(~r) =
1

VUC

∑

~H

F ( ~H) exp
(

−2πi ~H·~r
)

(2.14)

The following equation is valid for each symmetry operator {Rl|~τl} and each

structure factor F ( ~H) (see for example Giacovazzo et al., 1995):

F (RT
l
~H) = F ( ~H) exp(−2πi ~H·~τl) (2.15)

Using this equation and summing only over the measured structure factors we
can rewrite Eq. 2.14 into a form:

ρ(~r) =
1

VUC

NF∑

k=1

nk
Nsym

F ( ~Hk)
Nsym∑

l=1

exp(−2πi ~H·~τl) exp
(

−2πi ~HT
k Rl~r

)

(2.16)

which can be in turn written as:

ρ(~r) =
1

VUC

NF∑

k=1

nk
Nsym

F ( ~Hk)
Nsym∑

l=1

exp
(

−2πi ~Hk·(Rl~rj + ~τl)
)

(2.17)

nk is the point-group multiplicity of the reciprocal vector ~Hk.
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Using the same approach as in the step between Eqs. 2.11 and 2.12, we can
rewrite the transform between the experimental structure factors and the electron
density of the unique pixels in a matrix form:

~ρ =
1

NsymVUC
S[n]

︸ ︷︷ ︸

V

~F (2.18)

The matrix S has NF columns and NAU
pix rows and coefficients:

Sjk =
Nsym∑

l=1

exp
(

−2πi ~Hk·(Rl~rj + ~τl)
)

(2.19)

Comparison of the expressions for the matrices S (Eq. 2.19) and T (Eq. 2.13)
shows that they are each others Hermitian conjugate:

S = T̄T (2.20)

For this moment we will ignore the fact, that we have Hermitian conjugate
matrices and we need simple transpose matrices. This issue will be discussed at
the end of the derivation. So, apart from the complex conjugation, the matrices
S and T are transposes of each other, but the complete transformation matrices
U (Eq. 2.12) and V (Eq. 2.18) are not. Thus, a simple inverse Fourier transform
represented by matrix V cannot be used in the subroutine TROPUS and further
modifications are necessary. These modifications must transform matrix V into
matrix V′ that fulfills the condition:

V′ = ŪT =
VUC

NsymNUC

[m]T̄T (2.21)

Here we used the fact, that any real diagonal matrix is invariant to both trans-
position and complex conjugation.

By comparing Eqs. 2.21, 2.12 and 2.18 we can see, that the matrix V′ can be
expressed as:

V′ =
V 2UC
NUC

[m]V[n]−1 (2.22)

It is this matrix, that has to be implemented in the transformation subroutine
TROPUS. Thus, the transformation in TROPUS proceeds in three steps:

• Multiplication of the input reciprocal-space data by inverses of the multi-
plicities n.

• Expansion of the data and calculation of the FFT.

• Multiplication of the result of FFT by corresponding pixel multiplicities

and the prefactor
V 2

UC

NUC
.
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This method assures, that the subroutines OPUS and TROPUS work as transpose
matrix operators on the unique data, but use the efficient multidimensional FFT
subroutines of BayMEM.

The last issue to be explained is the Hermitian conjugation of the matrices U
and V′. As mentioned above, the data passed to MEM5 are real numbers. Thus,
the complex matrices U and V′ must be transformed to equivalent real matrices.
If the vectors with complex components are transformed into real vectors with
alternating real and imaginary part of the complex components, then any com-
plex matrix acting on the complex vector must be transformed into real matrix
with doubled number of rows and columns, and each complex element will be
represented by four real elements according to rule:

(

exp (iϕ)
)

ij

=

(

cos(ϕ)(2i−1)(2j−1) − sin(ϕ)(2i−1)(2j)
sin(ϕ)(2i)(2j−1) cos(ϕ)(2i)(2j)

)

(2.23)

Obviously, transposition of such a real matrix requires not only transposition of
the complex matrix, but also exchange of the signs at the sine terms. This is
equivalent to taking a complex conjugate number to exp(iϕ).

2.2.3 The “True Bayesian” MEM

The maximum entropy algorithms (both Sakata-Sato and Cambridge algorithms)
converge from large values of the constraint down to small values. Theoretically,
the constraint can attain arbitrarily small values and therefore some value of the
constraint must be defined as a stopping criterion. At that value the calculation
is considered to be converged. Traditionally, the stopping criterion has been
chosen to be χ2 = NF . This is based on a statistical analysis showing that the
number of observations is the most probable value of χ2, if the noise is random
and Gaussian. The authors of MemSys5 (Gull & Skilling, 1999b) have derived
another stopping criterion, based on the Bayesian probability theory. According
to this stopping criterion, the value of the constraint at the point of convergence
is always lower than NF . The exact value is inferred from the particular data in
a computationally complicated procedure.

Several tests have been performed with this “true Bayesian” stopping crite-
rion. The results of all tests were similar and will be illustrated for the structure
of α′-NaV2O5.

1 Fig. 2.1 shows comparison of the electron density obtained with
the classical χ2 = NF stopping criterion and with the “true Bayesian” stopping
criterion. The final value of χ2/NF in the latter case was 0.051 instead of expected
1.0. Obviously, such a low value of the final χ2 leads to a dramatic overfitting
of the data and much more pronounced spurious features in the electron density.

1for details about the experimental data the structure refinements see van Smaalen et al.
(2003)
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Figure 2.1: Section through ρMEM of α′−NaV2O5 obtained with a) the classical χ2 =
NF stopping criterion and b) with the “true Bayesian” stopping criterion. Contours
0.2 e/Å3, cut-off 2 e/Å3.

Although the “true Bayesian” stopping criterion is claimed to be theoretically
more correct that the classical stopping criterion, the practice shows that - at
least in case of the reconstruction of nD images from its Fourier coefficients - it
leads to less preferable results than the classical stopping criterion. All MEM
calculations described in this thesis have been made using the classical stopping
criterion.

2.2.4 Comparison of the Cambridge and Sakata-Sato al-
gorithms2

BayMEM works with both the Cambridge and the Sakata-Sato algorithms. Thus
the performance of the two algorithms can be compared under otherwise identical
conditions. To be able to assess the quality of the MaxEnt reconstructions we
have used simulated, noisy data of oxalic acid dihydrate, that were obtained from
calculated structure factors of a model electron density (for details see Chapter 3).

For the optimum electron density ρMEM , the entropy and constraint should
fulfill the following set of equations:

∂S

∂ρi
= λ

∂C

∂ρi
(2.24)

for i = 1, . . . , Nau
pix. Alternatively they should fulfill the equivalent set of equations

in reciprocal space:
∂S

∂Fj
= λ

∂C

∂Fj
(2.25)

2This section was published as Section 3.2 of van Smaalen, S., Palatinus, L. & Schneider,
M. (2003), Acta Crystallogr. A59, pp. 459-469.



28 CHAPTER 2. DEVELOPMENT OF BAYMEM

Figure 2.2: Graphical representation of a) Eq. 2.24, and b) Eq. 2.25. Grey squares:
Sakata-Sato algorithm. Black circles: Cambridge algorithm. Only about 1% of all
points shown in a. For an ideal MaxEnt solution all points lie on a straight line.

for j = 1, . . . , NF .
The Cambridge algorithm is supposed to produce an electron density that is

close to the real MaxEnt solution, because ρ and λ are optimized simultaneously.
On the other hand, there is no a priori reason to expect that the Sakata-Sato
algorithm will produce an electron density that fulfills Eqs. 2.24 and 2.25, be-
cause the Sakata-Sato algorithm uses an estimated value for λ and it determines
ρMEM by an approximate iterative procedure. The numerical evaluation for the
case of oxalic acid dihydrate confirms these expectations. The electron density
produced by the Cambridge algorithm is relatively close to the perfect solution,
while the Sakata-Sato algorithm produces distribution far away from the optimum
(Fig. 2.2).

Of practical importance is to know how close the optimized electron density
ρMEM is to the true electron density ρtrue. The latter is known for the simulated
data that were used here. For the Sakata-Sato algorithm it will be shown in
Chapter 3 that ∆ρS−S = ρMEM(Sakata-Sato) − ρtrue is small in the case of a
procrystal prior while it has variations up a few electrons per Å3 in the case of a
flat prior. Here we will directly compare the optimized electron densities of the
Sakata-Sato and Cambridge algorithms, employing the quantity

|∆ρCambridge|
|∆ρCambridge|+ |∆ρS−S|

(2.26)

where ∆ρCambridge is defined analogously to ∆ρS−S. A value less than 0.5 indicates
a point where the Cambridge algorithm produced more accurate density value,
while values larger than 0.5 indicate points where the Sakata-Sato algorithm was
more accurate. Depending on the resolution of the map and the noise level of
the data, average values of Eq. 2.26 were found to lie between 0.46 and 0.47 in
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Figure 2.3: Comparison of the electron densities obtained with the Sakata-Sato and
Cambridge algorithms. a) for a flat prior, and b) for a procrystal prior. A section
through the plane of the oxalic acid molecule is shown. Contour lines at intervals
2n, n = −2, . . . , 5 indicate ρtrue. The values of Eq. 2.26 are represented on a grayscale.
Light tones mark areas where Cambridge algorithm produces better density values, and
dark tones mark areas where the Sakata-Sato algorithm produces better values. Com-
putations were performed with BayMEM employing the dataset n1r1.00 (for details
see Chapter 3).

the case of a flat prior, and between 0.495 and 0.499 in the case of a procrystal
prior. These values show that on average the Cambridge algorithm produces a
slightly better density than the Sakata-Sato algorithm. However, none of the
algorithms is clearly superior, and the variations of the values of Eq. 2.26 over
the individual points show that there are regions where one and regions where
the other algorithm performs better (Fig. 2.3).

The third criterion for comparison is the speed of convergence of the algo-
rithms. In our tests, the Cambridge algorithm was usually faster than the Sakata-
Sato algorithm, if the classical F2-constraint was used. A serious problem with
the Sakata-Sato algorithm is that the convergence sometimes effectively stops
before the constraint is fulfilled. This happens especially for large problems and
cases where the standard uncertainties have been underestimated.

Because the Cambridge algorithm produces an electron density that is closer
to the true electron density than the Sakata-Sato algorithm, and because it con-
verges faster and more reliably, its use is recommended, if the F2-constraint is
used. However, the Cambridge algorithm does not allow to use any other con-
straint than the F2-constraint. The Fn-constraint with n equal to 4 or 6 was
shown to converge significantly faster and to lead to better results than the F2-
constraint, especially in the medium and low density regions (Palatinus & van
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Smaalen, 2002). This improvement turns out to be larger than the difference
between the electron densities obtained with the Cambridge and Sakata-Sato al-
gorithms. Thus, if the fine features of the electron density are investigated, the
use of Sakata-Sato algorithm with F4- or F6-constraint is preferred.

2.3 Static weighting

The objective of the static weighting (De Vries et al., 1994) is to solve the
problem with a non-Gaussian shape of the distribution of normalized residuals
ν = (|Fobs| − |FMEM |) /σ(Fobs). It has been observed that the low-angle strong
reflections have often been fitted extremely bad, while the high-angle weak re-
flections have been fitted very well. Therefore, the expression for constraint has
been extended by a weighting factor w(Fobs):

Cw = −1 + 1

NF

NF∑

i=1

w(Fobs( ~Hi))




|Fobs( ~Hi)− Fcalc( ~Hi)|

σ(Fobs( ~Hi))





2

(2.27)

The weighting factor should be selected so, that the low-angle reflections become
more weight in the fitting process and consequently become better fitted. In
BayMEM the weighting factor can be defined either as w(Fobs( ~H)) = 1/| ~H|n
or as w(Fobs( ~H)) = |Fobs( ~H)|n, where | ~H| is the length of the diffraction vector

and |Fobs( ~H)| is the amplitude of the corresponding structure factor. n is a user-
definable parameter.

2.4 Generalized F-constraints

The generalized F-constraints - similarly to the static weighting described in
previous section - improve the distribution of the normalized residuals and con-
sequently improve the quality of ρMEM . The generalized F-constraint is defined
as:

CFn
= −1 + 1

mn(Gauss)

1

NF

NF∑

i=1




|Fobs( ~Hi)− Fcalc( ~Hi)|

σ(Fobs( ~Hi))





n

(2.28)

mn(Gauss) is the value of the nth central moment of the Gaussian distribution.
The generalized F-constraints are extensively described in Chapter 3.

2.5 G-constraints

Sometimes phases or even amplitudes of individual structure factors cannot be
determined reliably. This is often the case for the powder diffraction data, where
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the occurrence of groups of overlapping reflections is a frequent phenomenon. In
these groups of reflections, only the sum of the intensities of several reflections
can be measured. This limited information can be used in the MEM calculations
by introducing so-called G-constraints (Sakata & Takata, 1996). G-constraints
are defined as:

CG = −1 + 1

NG

NG∑

i=1

(

Gi
obs −Gi

MEM

σ(Gi
obs)

)2

(2.29)

NG is the total number of different groups of reflections. Gi is a so-called “group
amplitude”:

Gi =

√
√
√
√
√

N i
g∑

j=1

(

mj
∑
mj

∣
∣
∣F ( ~Hj)

∣
∣
∣

2
)

(2.30)

N i
g in the number of reflections in group i, mj is the point-group multiplicity

of reflection j. The summation runs over the symmetry-independent structure
factors. The total maximized Lagrangian with the G-constraint is (compare Sec-
tion 1.2.1):

L = S − λFCF − λGCG − λNCN (2.31)

To facilitate the MaxEnt analysis, the F- and G-constraints are usually combined
in one constraint with a common lagrange multiplier λFG (Sakata & Takata,
1996):

L = S − λFG(CF + CG)− λNCN (2.32)

The formal solution of the maximum entropy equation then becomes (compare
Eq. 1.27):

ρi =
NelNpix

VUC
τi exp

(

−λFG
(

∂CF

∂ρi
+
∂CG

∂ρi

))

/
∑

j

τj exp

(

−λFG
(

∂CF

∂ρi
+
∂CG

∂ρi

))

(2.33)

Thus, the implementation of G-constraints in the Sakata-Sato algorithm is
straightforward, it is only necessary to find a proper expression for the derivative
of CG:

∂CG

∂ρk
=

1

NG

∂

∂ρk

NG∑

i=1

(

Gi
obs −Gi

MEM

σ(Gi
obs)

)2

=
1

NG

NG∑

i=1

2

(

Gi
MEM −Gi

obs

σ(Gi
obs)

2

)

∂Gi
MEM

∂ρk
(2.34)
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And the derivative of GMEM is:

∂GMEM

∂ρk
=

1

2GMEM

Ng∑

j=1

mj
∑
mj

∂|F ( ~Hj)|2
∂ρk

=

1

2GMEM

Ng∑

j=1

mj
∑
mj



F ∗( ~Hj)
∂F ( ~Hj)

∂ρk
+ c.c.



 =

1

GMEM

Ng∑

j=1

mj
∑
mj

<


F ( ~Hj)
∂F ∗( ~Hj)

∂ρk





(2.35)

F ( ~Hj) is a Fourier coefficient of a Fourier Transform of the electron density, and
therefore the expression in the square brackets becomes:

F ( ~Hj)
∂F ∗( ~Hj)

∂ρk
= F ( ~Hj)

mk

Ns

Ns∑

s=1

exp
[

−2πi ~Hj·(Rs~rk + ~τs)
]

(2.36)

where {Rs|τs} are the symmetry operators of the space group of the crystal and
mk is the multiplicity of the pixel k. Two structure factors related by a point-
group symmetry operator Rs fulfill equation:

F (RT
s
~Hj) = F ( ~Hj) exp(−2πi ~H·~τs) (2.37)

and Eq. 2.36 can be therefore rewritten as:

F ( ~Hj)
∂F ∗( ~Hj)

∂ρk
=
mk

Ns

Ns∑

s=1

F (RT
s
~Hj) exp(−2πi ~HT

j Rs~rs) (2.38)

We can see, that the right-hand side is a summation over all symmetry-related
structure factors. We can extend the sum in 2.35 from Ng symmetry-independent
structure factors to all symmetry-equivalent structure factors of one group (Ngs).
If we substitute Eq. 2.38 in Eq. 2.35 and merge the inner summation over Ns and
the outer summation over Ng, we must take into account the multiplicity mj of

vector ~Hj. We get:

∂GMEM

∂ρk
= <







1

GMEM

Ngs∑

j=1

mj
∑
mj

mk

mj

[

F ( ~Hj) exp(−2πi ~Hj·~rs)
]






(2.39)

Substitution of 2.39 to 2.34 yields the final expression of the derivative of the
G-constraint:

∂CG

∂ρk
=

2mk

NG

<






NG∑

i=1

Ngs∑

j=1

[

(Gi
MEM −Gi

obs)

Gi
MEMσ(G

i
obs)

2

1
∑
mj

F ( ~Hj)

]

exp(−2πi ~Hj·~rk)





(2.40)

This is - up to a factor of 2mk/NG - just the real part of an inverse Fourier
Transform of the quantity in the square brackets.
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2.6 Two-channel entropy

The concept of the two-channel entropy was first introduced for reconstructions
of the nuclear density from non-polarized neutron scattering data (Papoular &
Gillon, 1990). The same formalism can be used to reconstruct a difference electron
density, that can have both positive and negative values (Papoular et al., 1996).
The difference density must be separated into two parts that are positive in all
points:

∆ρ = ρ+ − ρ− (2.41)

The entropy of the difference density is then defined as sum of the entropies of
ρ+ and ρ−:

S∆ρ = Sρ+ + Sρ− = −
Npix∑

i=1

ρ+i ln
ρ+i
τ+i
−

Npix∑

i=1

ρ−i ln
ρ−i
τ−i

(2.42)

This entropy is maximized to obtain ∆ρMEM . The input data consist of the dif-
ference structure factors ∆F = Fobs − Fmodel. The advantage of this approach
is, that by optimizing only the difference map, the dynamic ratio of the den-
sity (|ρmax|/|ρmin|) is extremely reduced compared to maximization of the whole
ρMEM . The disadvantage of this formalism is that it removes the constraint of
an everywhere positive image, that is intrinsic to the basic MaxEnt formalism
and that is so suitable for reconstructions of the electron densities. Moreover, the
two-channel entropy often suppresses fine details in the reconstructed difference
density. This problem can be partially solved by decreasing the stopping value
of the constraint (Papoular et al., 2002).

2.7 Prior-derived F-constraints

MaxEnt reconstructions of electron densities suffer from occurrence of artifacts.
Major artifacts stem from the series termination errors, that occur, if a flat prior
density is used. A sufficiently informative, non-uniform prior electron density
can suppress these artifacts almost completely (De Vries et al., 1996; Papoular
et al., 2002; Palatinus & van Smaalen, 2002). But even a very informative prior
density does not suppress another type of artifacts. They occur due to the fact,
that the structure factors, that are not included in the input dataset, can assume
any value, as far as it decreases the entropy of the image. This ability of the
MEM to extrapolate the values of non-measured structure factors is very favor-
able for density reconstructions from a flat prior density, because this is the best
available estimate for the missing structure factor. But if a procrystal prior elec-
tron density is available, it turns out, that the MaxEnt estimate is often worse
than the information, that can be obtained from the structure factors of the prior
electron density. Thus, the electron-density reconstruction can be significantly
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improved, if the structure factors of the prior are used as a constraint for the
structure factors that were not measured, especially in the high-angle diffraction
region, where the contribution of the bonding electrons to the scattering is neg-
ligible. The method of the prior-derived F-constraints is described in detail in
Chapter 4.

2.8 Prior electron density - program Prior

The prior electron density (prior) is an essential part of the MaxEnt formalism.
Only the MEM with a sufficiently informative prior can be used for studies of
fine features of the electron density, like the atomic charges or the distribution of
bonding electrons (De Vries et al., 1996; Papoular et al., 2002; Palatinus & van
Smaalen, 2002). The best prior that can be obtained from standard structure
refinements is the Independent Atom Model (IAM). In this model, the electron
density is modelled as a superposition of electron densities of free, non-interacting
atoms placed at their refined positions and convoluted with the refined thermal
motion. An electron density constructed in this way is called procrystal electron
density (ρpro). Such a model describes the major part of the electron density
very well, but it does not account fully for the effects of bonding on the electron
density. Therefore, the difference density ρMEM − ρpro can be successfully used
to determine the deformations of the electron density due to the bonding.

The easiest way to construct the procrystal prior is to calculate the structure
factors corresponding to the model, using the well known formulas involving the
atomic form factors and tensors of temperature parameters (Shmueli, 1996). The
electron density can be then simply calculated as an inverse Fourier transform
of the structure factors. Unfortunately, this method cannot be used but for the
lightest elements. By heavier elements, the series termination errors become too
pronounced and even calculation of all structure factors up to sin(θ)/λ ≤ 6.0
does not avoid termination ripples of such an amplitude that makes the electron
density unusable as a prior in the MEM calculations. Therefore, an alternative
method must be used. The method is based on evaluation of the electron density
by means of an analytical Fourier transform, using the analytical approximation
to the atomic form factors3. The atomic form factors are usually analytically
approximated by a sum of exponentials:

fa(sin(θ)/λ) =
n∑

i=1

ai exp

(

−bi
sin2(θ)

)
λ2
)

(2.43)

The International Tables for Crystallography (Wilson & Prince, 1999) use n = 5
and b5 = 0, the atomic form factors published by Su & Coppens (1997) use n = 6.

3The method described here was inspired by personal communication with Robert Papoular
and later published in Papoular et al. (2002).
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It is more convenient to express the atomic form factor as a function of the
diffraction vector ~H in reciprocal crystal coordinates:

fa( ~H) =
n∑

i=1

ai exp

(

bi
4
| ~H|2

)

=
n∑

i=1

ai exp

(

bi
4
~HTG∗ ~H

)

(2.44)

Here G∗ denotes the reciprocal metric tensor G∗
ij = ~a∗i ·~a∗j

Convolution of the static atomic electron density with the anisotropic har-
monic thermal motion of the atom is expressed in reciprocal space by multiplying
the atomic form factor by corresponding displacement term that involves the dis-
placement tensor U (Shmueli, 1996). This yields the anisotropic dynamic atomic
form factor da:

da( ~H) =
n∑

i=1

ai exp

(

bi
4
~HTG∗ ~H

)

exp(2π2 ~HTA∗UA∗ ~H) (2.45)

The matrix A∗ is a diagonal matrix of the lengths of the reciprocal-space basic
vectors: A∗

ii = |~a∗i |2; A∗
ij = 0, i 6= j.

After some reordering, Eq. 2.45 becomes:

da( ~H) =
n∑

i=1

ai exp









− ~HT

[

bi
4
G∗ + 2π2A∗UA∗

]

︸ ︷︷ ︸

Mi

~H









=
n∑

i=1

ai exp
(

~HTMi
~H
)

(2.46)
The dynamic electron density of an atom a is given by a Fourier transform of

da. Since da is expressed as a three-dimensional Gaussian, its Fourier Transform
can be calculated analytically. The result is:

ρa(~r) = |G∗| 12
n∑

i=1

ai
|M−1

i |
(2π)

3
2

exp
(

−~rTM−1
i ~r

)

(2.47)

The prefactor |G∗| 12 transforms ρa from units of the crystal coordinate system to

e/Å
3
.

Eq. 2.47 provides a convenient way of calculating the electron density of an
atom a. The atom is centered in the origin of the coordinate system and the
density is a function of coefficients of the analytical approximation of the atomic
form factors, and of the coefficients of the atomic tensor of displacement parame-
ters. The formula does not involve any numerical Fourier Transform and therefore
does not lead to series termination error. The analytical approximation becomes
relatively inaccurate at high values of sin(θ)/λ (Wilson & Prince, 1999; Su & Cop-
pens, 1997). However, these values influence mostly the density close to atomic
nuclei. The experimental data provide almost no information about this electron
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density, and the exact form of the electron density in the vicinity of atomic nuclei
is therefore not crucial for the fit to the experimental data.

The method described in previous paragraphs was implemented in a computer
program Prior. The input to Prior is the standard crystallographic information
in a format common with BayMEM (Appendix A) and the list of coordinates
and thermal parameters of all independent atoms in the unit cell. The output
is the procrystal electron density in .m81 format of JANA2000 (Section A.6.1).
The prior density is calculated on the same grid that will be used for the MEM
calculation. For a calculation with the same input data, but with different grid,
a new prior on the new grid must be calculated. The input file for BayMEM

can be used as an input file for Prior, provided two specific keywords are added.
These keywords are outputprior filename , that defines the name of the output
electron density, and a pair of keywords atoms - endatoms. This keyword defines
the parameters of the atoms in the structure and its format is:

small

atoms

name1 type occupancy x y z U11 U22 U33 U12 U13 U23

name2 type occupancy x y z U11 U22 U33 U12 U13 U23

.

.

.

endatoms

Each line defines one atom. The name is an arbitrary identifier without spaces.
Type is the elemental symbol of the atom and is used to identify the parameters
of the analytical approximation to the form factors of that atom in the table.
Occupancy includes the site multiplicity of the atom. For example, if the mul-
tiplicity of the position of an atom is 4, and the position is fully occupied, then
the value of occupancy must be 0.25. Next values are the fractional coordinates
of the atom and the harmonic displacement parameters.

2.9 Analysis of ρMEM - program EDMA

The main output from the MEM calculation is the MEM-optimized electron
density distribution ρMEM . ρMEM can be viewed in form of two-dimensional
sections or projections using special programs. However, there is a large amount
of information that cannot be inferred by only observing the images. Quantitative
tools have to be used to extract all information contained in ρMEM . This concerns
at first place the exact position of the atoms and also other characteristics, like
the atomic charge.
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The accurate analysis of ρMEM becomes even more important in case of higher-
dimensional electron densities, where the graphical representation becomes dif-
ficult and where the modulation of the atomic positions is the output of major
interest.

The principles of the map analysis described in this section were implemented
in a computer program EDMA. This program is capable of analysis of both or-
dinary (3D) and higher-dimensional structures. The user manual to this program
is given in Appendix B.

2.9.1 Interpolation

The positions of the maxima of the electron density cannot be considered equal to
the coordinates of the pixel with maximum electron density, because the resolu-
tion of the grid is not sufficient (usually about 0.05 Å). An interpolation method
must be used to locate the position of the maximum of the density more accu-
rately. In addition to that, the t-sections of the superspace electron density have
a general orientation with respect to the grid and their accurate extraction also
demands interpolation of the density values between the grid points.

The basis of the interpolation method used in EDMA is a cubic spline inter-
polation in one dimension (Press et al., 1996). The method has been generalized
to arbitrary dimension using the philosophy of bicubic spline interpolation (Press
et al., 1996). The principle of the method is illustrated in Fig. 2.4. The inter-
polation of a n-dimensional electron density runs in n cycles. In every cycle,
one-dimensional cubic spline interpolation is used to calculate a (k− 1)D section
of the kD density. This section contains the point, in which the density is to be
determined. In the next cycle the newly calculated (k−1)D density is used as in-
put and the dimension is further reduced. Ultimately, this leads the interpolated
density of the point in question.

The result of the interpolation is independent of the order of axes, in which
the density is interpolated. To prove this statement, we first construct a general
formula for spline interpolation in one dimension. We have a function y(x) given
by its tabulated values (xi, yi), i = 0 . . . u − 1, or, in short, by u-dimensional
vectors ~x, ~y. For a general point xp lying in an interval 〈xj, xj+1〉 we have (Press
et al., 1996):

y(xp) = Ayj +Byj+1 + Cy′′j +Dy′′j+1 (2.48)

where
A = xj+1−xp

xj+1−xj

B = 1− A
C = 1

6
(A3 − A)(xj+1 − xj)

2

D = 1
6
(B3 −B)(xj+1 − xj)

2

(2.49)

The values of the second derivatives y′′k , k = 0 . . . u− 1 can be calculated from
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P[p , p ]
21

Figure 2.4: Interpolation process in two dimensions. In first step, the rows of points
xij , yij (circles) are interpolated along the dashed lines to obtain points of the vector
~yp1 (squares). This column is then interpolated along the full line to obtain the density
at the point P (cross).

a set of n− 2 linear equations of the form:

xk − xk−1
6

y′′k−1 +
xk+1 − xk−1

3
y′′k +

xk+1 − xk
6

y′′k+1 =
yk+1 − yk
xk+1 − xk

− yk − yk−1
xk − xk−1

k = 1 . . . u− 2
(2.50)

In addition to that, two more equations have to be supplied to obtain a unique
solution. The most usual choice is y′′0 = y′′u−1 = 0 to produce so called natural
splines, but any other choice is possible. This set of linear equations can be
compactly written in matrix form:

M~y′′ = N~y
~y′′ = M−1N~y = S~y

(2.51)

The matrix S is independent of the functional values yi and depends only on the
values xi. In next step, we construct vectors ~A, ~B, ~C, ~D of dimension u from the
functions A,B,C,D so that

~A·~y = Ayj
~B·~y = Byj+1
~C·~y = Cy′′j
~D·~y = Dy′′j+1

(2.52)

This is readily achieved by

Ak =

{

0 : k 6= j
A : k = j

(2.53)
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and analogously for ~B, ~C and ~D. With this notation, the interpolation formula
can be written in a concise form as (compare Eqs. 2.48 and 2.51):

yp = ~A·~y + ~B·~y + ~CTS~y + ~DTS~y (2.54)

or
yp = ~s·~y (2.55)

The vector ~s depends only on the values xi and xp.
Having obtained the general formula for the one-dimensional cubic splines we

can turn to the higher-dimensional case. We will first explicitly consider the two
dimensional case for the sake of simplicity. The generalization to the general nD
case is then straightforward.

The 2D function is defined by its tabulated values xij, yij, i = 0 . . . u− 1, j =
0 . . . v − 1. We suppose that the values xij lie on a straight line, if one index
is fixed and the other varies. This is equivalent to following condition: every
four values xij, x(i+1)j , xi(j+1), x(i+1)(j+1) must form corners of a parallelogram.
(Fig. 2.4).

To interpolate a value yp1p2 of the function y(x1, x2) at point P[p1,p2], we first
calculate a one-dimensional section of the two-dimensional density by interpola-
tion along every row of points xij with the first index fixed. As a result, we obtain
v pairs xpj, ypj, j = 0 . . . v − 1, where p denotes the first coordinate is equal to
the coordinate p1 of the point P . Using previous results (Eq. 2.55), we can write:

ypj = ~s1·~yj, j = 0 . . . v − 1 (2.56)

Notation ~yj denotes a column vector of dimension u corresponding to the row of
yij with j constant and i = 0 . . . u − 1. The symbol ~s1 stands for the vector ~s
from Eq. 2.55 related to the rows of xij with the second index constant. Because
of the condition on the regularity of the grid the vector ~s1 is independent of the
index j.

We form a one-dimensional vector ~yp1 from the values ypj and j Eqs. 2.56 can
be written in a matrix form

~yp1 = Y~s1 (2.57)

where Y is the matrix of the values yij.
The final value yp1p2 is obtained using Eq. 2.55 again:

yp1p2 = ~s T2 ·~yp1 (2.58)

Combining Eqs. 2.56 and 2.57, we obtain the final result:

yp1p2 = ~s T2 Y~s1 (2.59)

The proof follows immediately from Eq. 2.59. If the interpolation is inde-
pendent of the order of the axes, the resulting formula must be invariant to the
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transposition of the matrix Y and simultaneous exchange of the indices 1 and 2
of the vectors ~s. Eq. 2.59 fulfills this requirement.

The matrix notation becomes impractical for more-dimensional cases. There-
fore we turn to the tensor notation. Eq. 2.59 becomes (using the standard con-
vention for summation over repeated indices):

yp1p2 = s1is2jyij (2.60)

The general n-dimensional case follows immediately from the considerations
in the previous paragraphs (and by analogy to Eq. 2.60):

yp1p2···pn
= s1i1s2i2 · · · sninyi1i2···in (2.61)

This equation is invariant to any permutation of the indices ik combined with
corresponding permutation of the first indices of the numbers skik .

The interpolated value by the cubic-spline method is theoretically dependent
on all values of the grid. In practice, the dependence strongly decreases with the
distance from the central point. Therefore, in EDMA, every point is calculated
from the pixels lying in some (user-definable) neighborhood of that pixel. This
simplification does not introduce any detectable errors and saves computational
time.

2.9.2 Charge partitioning

A large number of charge-partitioning systems have proposed in past (Hirshfeld,
1977; Bader, 1990; Coppens, 1997; and references therein). The most widely used
and acknowledged system is the concept “Atoms in molecules” (Bader, 1990). The
concept partitions the whole electron density of a molecule (or crystal) into a set
of non-overlapping, space-filling regions, so called atomic basins. The points ~r of
the boundary between the basins are defined as the points of zero flux of charge:

∇ρ(~r)~n(~r) = 0 (2.62)

where ~n(~r) is the normal to the boundary at point ~r. In words, the interatomic
surface is such an area, that is not crossed by any gradient path of the electron
density.

This definition allows for charge partitioning that is based solely on the elec-
tron density, while it bears close relations to the quantum-mechanical approach
to assemblies of atoms (Bader, 1990). Two basic properties of this partitioning
are of both theoretical and practical importance: The sum of the charges assigned
to individual atoms corresponds to the total charge in the crystal and at each
point of space the entire electron density is assigned to one and only one atom.

Based on the Bader’s charge-partitioning system, many properties of the elec-
tron density can be directly evaluated, including:



2.9. ANALYSIS OF ρMEM - PROGRAM EDMA 41

• The total charge of the atom: defined as the integral of the charge density
over the volume of the atomic basin.

• The atomic volume: the volume of the atomic basin.

• The dipole moment of a molecule or the total dipole moment of an acentric
crystal structure: The dipole moment can be determined from the difference
between position of the center of negative charge of the atomic basin and
the position of the positive charge, that coincides with the atomic position
(see Section 2.9.3).

EDMA uses Bader’s space- and charge-partitioning to calculate the charge
of the atom and the center of the atomic charge. The theory has been adapted
to discretized electron density and simplified to allow reasonably fast calculation
(Fig. 2.5). The charge of each pixel is assigned to the corresponding local ma-
ximum fully. This is not a problem except for the pixels on the border of two
atomic basins. The border would probably divide the pixel in two parts, assigning
each part to different maximum. Thus, small inaccuracies in the charges can
be expected. In particular, two symmetrically equivalent atoms, which share a
common border, will have slightly different charges, because the pixels on their
border are assigned arbitrarily to one of them. This problem can be overcome
by prior resampling of the electron density to a better resolution. However,
this will naturally increase the computational time. In practice, the inaccuracies
introduced by the discrete nature of the MEM electron density are usually much
lower than the inaccuracy resulting from other sources.

2.9.3 Definition of atomic position

The position of an atom in a crystal is best defined as a time-averaged position of
its nucleus. The electron-density provides only indirect evidence on the position
of the atoms. One way to estimate the position of the atom is to determine
the point with highest electron density. If the thermal movement of the atom
is perfectly harmonic, then the position of the highest electron density in an
atomic basin coincides with the position of the atom. This statement is based
on the widely accepted approximation, that the electrons follow the movement
of the atomic nucleus exactly. However, if the thermal movement is not purely
harmonic, then the point of the highest electron density does not coincide with
the time-averaged position of the nucleus.

An alternative way to estimate the atomic position is to determine the center
of charge of the electron distribution in the atomic basin. This estimate is very
close to that used implicitly in the standard structure refinements. In case of a
discrete-boundary charge partitioning, the center of charge of an atomic basin Ω
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a) b)

Figure 2.5: The assignment of a point to a local maximum a) in a continuous density
according to the theory and b) in a discrete density by choosing the neighboring pixel
of the highest density until the maximum is reached.

of an atom a is given by:

~ra =
1

∫

Ωa
ρ(~r) d~r

∫

Ωa

~rρ(~r) d~r (2.63)

In the discrete case, the integrals must be replaced by summations and the sum-
mation runs over all pixels i belonging to the atomic basic Ωa:

~ra =
1

∑

Ωa
ρi

∑

Ωa

~ri ρi (2.64)

In practice, not all density of an atomic basin can be included in the calcu-
lation of the center of charge. First, the deformation of the electron density due
to the interaction with neighboring atoms should not be taken into account for
the determination of the center of charge, if the center of charge is to be used
as an estimate of the atomic position. Second, the low density regions far from
the atomic positions can contain relatively large amount of noise compared to
the values of the density. Including these low-density regions would introduce
unnecessary inaccuracy in the determination of the center of charge. For both
these reasons, the center of charge is in practice determined only from pixels,
whose ρi exceeds some (user-definable) limit. If the center od charge is calculated
as an input for the determination of the dipole moment, then it is necessary to
include all pixels within the atomic basin in the calculation.
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2.9.4 Positions of atoms in higher-dimensional electron
density

The positions of atoms in a (3+ d)D electron density are not given by one point,
but by dD atomic domains. The 3D structure is obtained as a 3D section of
the (3 + d) electron density perpendicular to the internal coordinate axes ~ai, i =
4, . . . , 3 + d. The position of the 3D section along the internal dimension is
described by a vector ~t (Section 1.1.3). Such 3D sections are called t-sections.
The t-sections represent the real-space electron density, that can be analyzed with
the same methods as used for ordinary electron density with the exception, that
the t-sections are not periodic. Therefore, the atomic properties, that are not
defined purely in the reference basic unit cell (atomic basins of atoms lying close
to the border of the basic unit cell), cannot be determined from the periodicity
and the electron density of the neighboring basic unit cells must be calculated
explicitly.

The analysis of the higher-dimensional electron density thus proceeds in two
steps: First, t-sections at some user-defined interval of ~t of one basic unit cell
plus necessary neighborhood is extracted from the (3 + d)D electron density.
The interval in ~t between successive sections determines the sampling of the
modulation functions. Second, the t-section is analyzed to obtain the properties
of the electron density, i.e. positions of the atoms, atomic volumes, atomic charges
and centers of atomic charges. The values of the atomic properties as a function
of ~t then give the modulation functions of the atomic properties.
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Chapter 3

The Generalized F-constraint in
the Maximum Entropy Method
— a study on simulated data

Abstract

One of the classical problems in the application of the Maximum Entropy
Method (MEM) to electron density reconstructions is the uneven distribution of

the normalized residuals of the structure factors (|Fobs( ~H)| − |FMEM( ~H)|)/σ( ~H)
of the resulting electron density. This distribution does not correspond to the
expected Gaussian distribution and it leads to erroneous features in the MEM
reconstructions. It is shown that the classical χ2-constraint is only one of many
possible constraints, and that it is too weak to restrict the resulting distribution
to the expected Gaussian shape. It is proposed that constraints should be used
that are based on the higher-order central moments of the distribution of the
structure factor residuals. In this work the influence of different constraints on
the quality of the MEM reconstruction is investigated. It is proposed that the
use of a combined constraint on more than one central moment simultaneously
would lead to again improved results. Oxalic acid dihydrate was chosen as model
structure, from which several datasets with different resolutions and different
levels of noise were calculated and subsequently used in the MEM. The results
clearly show that the use of different constraints leads to significantly improved
results.

3.1 Introduction

The Maximum Entropy Method (MEM) is used as a powerful tool for a model-free
image reconstruction in many scientific applications (von der Linden et al., 1998).
In crystallography, one particular application is the investigation of the electron

45
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density in the crystal structure. After the first promising applications in this field
(Collins, 1982; Sakata & Sato, 1990), several warnings concerning the reliability
and possible pathologies of the method appeared (Jauch, 1994; De Vries et al.,
1996). One of the obvious problems was that the distribution of the normalized

residuals of the structure factors ∆F ( ~H)/σ( ~H) = (|Fobs( ~H)| − |Fcalc( ~H)|)/σ( ~H)
was strongly deviated from the expected Gaussian distribution. Some of the re-
flections – usually strong reflections at low angles – had very large ∆F ( ~H)/σ( ~H),
while the rest was fitted almost exactly. The large deviation of the histogram
of ∆F ( ~H)/σ( ~H) from the Gaussian distribution was responsible for unphysical
features in the corresponding electron density. A solution to this problem was
proposed by De Vries et al. (1994), who employed an ad hoc weighting scheme
within the classical χ2-constraint. However, a theoretical basis for this weighting
scheme does not exist.

Here we propose new constraints based on the higher-order central moments
of the distribution of ∆F ( ~H)/σ( ~H). We show that the use of these constraints

produces results with better distributions of ∆F ( ~H)/σ( ~H) and with less artifacts
in the reconstructed electron density than the classical χ2-constraint.

The method is tested against datasets of various resolutions and with vari-
ous noise levels, that were computed for a known electron density of oxalic acid
dihydrate.

3.2 The Method

The basic principle of the MEM is that the optimal image is defined to be the
image with the maximum value of the entropy functional S, while one or more
constraints of the type Cj = 0 (j = 1, ..., Nc) are fulfilled. For our purposes the
image is the electron density (ρ) in the unit cell, that is defined by its values ρi
on a grid of Np = N1 ×N2 ×N3 points. The entropy is defined as

S = −
Np∑

i=1

ρi log
ρi
τi

(3.1)

where the values τi define the prior or reference electron density. For an overview
of the crystallographic applications of the MEM see Gilmore (1996).

The constraints should be selected so as to define, which image is in agreement
with the observed data. The first reasonable constraint is the normalization of ρ
to the expected number of electrons per unit cell volume:

∫

V

ρdV −Nel = 0 (3.2)

Traditionally, the constraint to the scattering data is the least squares likelihood
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criterion χ2 − 1 = 0, with

χ2 =
1

NF

NF∑

i=1




|Fobs( ~Hi)| − |FMEM( ~Hi)|

σ(Fobs( ~Hi))





2

(3.3)

where the summation runs over all measured structure factors NF . This definition
of the constraint cannot be used directly, since it does not contain the informa-
tion about the phases of the structure factors and does not lead to convergence.
Therefore, the so called F-constraint is usually employed:

CF = −1 + 1

NF

NF∑

i=1




|Fobs( ~Hi)− FMEM( ~Hi)|

σ(Fobs( ~Hi))





2

(3.4)

The value of CF depends both on the amplitudes and phases of Fobs( ~H) and

FMEM( ~H). CF is minimal, if the phases of all Fobs( ~Hi) are equal to the corre-

sponding FMEM( ~Hi). In that case CF = χ2 − 1.

The use of the χ2 statistics (and its phased modification in the CF -constraint)

is based upon an assumption that the experimental errors on |Fobs( ~H)| are random
with a Gaussian distribution:

|Fobs( ~H)| − |Ftrue( ~H)|
σ(Fobs( ~Hi))

= εGauss (3.5)

where εGauss is a sample of the random variable with normalized Gaussian distri-
bution. Since the resulting electron density ρMEM should be the best estimate of
the true density, the corresponding calculated structure factors FMEM should be
the best estimate of Ftrue and the distribution of the normalized residuals should
be Gaussian too.

It is obvious that the Gaussian distribution of errors does imply the validity
of the χ2- (or CF -) constraint, but not vice versa. Constraining only χ2 is not
sufficient to assure the proper Gaussian form of the resulting error distribution.

A probability distribution of a random variable x is characterized by the values
of its central moments mn. For the normalized Gaussian distribution the central
moments are

mn(Gauss) =

∞∫

−∞

xn
1√
2π
exp

(

−x
2

2

)

dx (3.6)

The values of the moments of odd order are all zero and the moments of even
order are:

m2k(Gauss) =
k∏

i=1

(2i− 1) (3.7)
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In case of N samples of the variable x the central moments mn can be computed
from

mn =
1

N

∑

N

xni (3.8)

It follows from Eqs. 3.3 and 3.8 that χ2 is the m2 central moment of the
distribution of ∆F ( ~H)/σ( ~H). Thus, the concept of generalized F-constraint can
be introduced, with F2 referring to the classical constraint on the second-order
moment, and with Fn defining a constraint based on the moment of order n:

CFn
= −1 + 1

mn(Gauss)

1

NF

NF∑

i=1




|Fobs( ~Hi)− FMEM( ~Hi)|

σ(Fobs( ~Hi))





n

(3.9)

Only the constraints with n even restrict the width of the histogram, con-
straints with n odd are sensitive only to the symmetry of the distribution with
respect to the origin. Therefore, only the constraints with n even are used in this
work.

It has been suggested that more simultaneous constraints (up to the number of

independent observations) of the form (|Fobs( ~H)| − |Fcalc( ~H)|)/σ(Fobs( ~H)) could
be used instead of the single χ2-constraint (Carvalho et al., 1996). This requires
some additional criterion for defining the point of convergence and strongly re-
stricts the role of the MEM as the noise filter. We suggest that the use of several
Fn-constraints simultaneously is the proper way to handle noisy data, since the
expected shape of the histogram is the only information about the noise that is
available. However, the available algorithms do not allow such a generalization.
Therefore, in the present stage of work, the influence of different choices of a
single constraint based on Eq. 3.9 on the result of MEM was investigated.

3.3 Computational details

The method was tested on the structure of the oxalic acid dihydrate. The main
reason for this choice was that this compound became a kind of standard for
charge density studies. In addition to that, the structure of oxalic acid dihydrate
is very suitable for this type of work, since it is centrosymmetric and the central
molecule is planar. That allows an easy interpretation of the majority of the
features using only one section of the electron density. The basic characteristics
of the structure are summarized in Table 3.1.

At first, the electron density of the procrystal structure (superposition of in-
dependent atoms, ρpro) was created. This was done by a method due to Papoular
et al. (2002). The analytical approximation to spherical atomic scattering fac-
tors (Su & Coppens, 1997) for each atom of the structure was multiplied by the
anisotropic displacement factor of that atom. The resulting 3-dimensional dis-
tribution in reciprocal space was then transformed by means of the analytical
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Table 3.1: Basic characteristics of the structure of the oxalic acid dihydrate

Chemical formula HOOC-COOH.2H2O
Chemical formula weight 126.06
Cell setting, space group Monoclinic, unique axis b, P21/n
a, b, c [Å] 6.101, 3.500, 11.955
β [◦] 105.78
V [Å3] 245.64
Z 2

Fourier transform to obtain the electron density of that atom. The density was
sampled on the 64 × 32 × 128 pixel grid, which corresponds to pixel size of ap-

proximately 0.1×0.1×0.1 Å
3
. The positional and displacement parameters from

the refinement due to Šlouf (2001) were used. The electron densities of the indi-
vidual atoms were then summed up to obtain ρpro. The “true” electron density
ρtrue was then constructed by summing ρpro with the dynamic deformation den-
sity ρdef , as determined by the multipole refinement of Šlouf (2001) (Fig. 3.1a).
This caused 1.65% of the pixels of the resulting electron density to be negative.
The lowest density was -0.021e/Å3. The negative areas were located in the low-
density intermolecular regions. This unphysical feature probably originates from
the inaccuracy of the multipole expansion in these very low density regions. The
MEM cannot handle these negative regions and very low density regions increase
the dynamic ratio of the electron density inadequately. Therefore, the pixels with
ρ < 0.005e/Å3 were set to 0.005e/Å3. 2.45% of the pixels were corrected.

The electron density obtained by this procedure is certainly not the true
electron density of oxalic acid dihydrate. The analytical approximation used
in the first step is not absolutely accurate and the structure parameters and
multipole deformation density can contain substantial degree of inaccuracy, too.
However, this model of electron density is good enough to be used as the reference
electron density for MaxEnt calculations and will be denoted as ρtrue (Fig. 3.1b).

The structure factors corresponding to the original map were calculated by
means of a numerical Fourier transform. To investigate the influence of noise and
resolution on the quality of the MEM reconstruction, 16 different datasets were
created. The value ( sin(θ)

λ
)max is used as a measure of resolution in this paper. It

was chosen to be 0.5, 0.75, 1.0 and 1.25 for the respective datasets, and for each
resolution four different levels of Gaussian noise were added to the calculated
structure factors. To simulate the error distribution in real experimental data,
σ(Fobs) were calculated from:

σ(Fobs) = ν

√
√
√
√p|Fobs|2 +

β + |Fobs|2
|Fobs|2

(3.10)
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Figure 3.1: The sections of the true electron density showing the oxalic acid molecule.
a) The dynamic deformation density ρdef obtained by the multipole refinement (Šlouf,
2001). b) The total electron density ρtrue. Scale in Å, contours 0.07 e/Å

3, cut-off 2.0
e/Å3, zero contour omitted. Maximum of the deformation density 0.56 e/Å3, maximum
of the total density 56.79 e/Å3.

where ν defines the noise level, β simulates the influence of nonzero background
and p is the commonly used instability factor. The noisy “observed” structure
factors were then calculated to fulfill the equation:

Fobs = Ftrue + σ(Fobs) · εGauss (3.11)

Here εGauss is the random variable with normalized Gaussian probability distri-
bution. Three different non-zero noise levels were created this way. The noiseless
datasets at each resolution were included for checking purposes. Although the
structure factors in the noiseless datasets were exact, which means they should
be assigned a zero standard deviation, this is not possible due to the nature of
the constraints (Eq. 3.9). Therefore, the value of σ(Fobs) was set to 0.005 for all
structure factors, so as to be low enough and to allow the computations to finish
in a reasonable time. The parameters of different noise levels and resolutions are
summarized in Table 3.2 and Fig. 3.2.

It is interesting to compare the phases of structure factors corresponding to
ρtrue with the phases corresponding to ρpro. In the present case, which is rep-
resentative for investigations of accurate electron densities, the amount of the
unknown structure is minute and the phases of the true structure factors are very
well estimated by the phases of the structure factors of ρpro. Among all 4029

structure factors up to ( sin(θ)
λ

)max = 1.25, only 9 have different phases for ρtrue
and ρpro. Moreover, Eq. 3.11 allows for changes of phases between Fobs and Ftrue.
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Table 3.2: Parameters of the datasets. Reflections with |Fobs| < 5σ(Fobs), (which
corresponds to I < 2.5σ(I)) are considered unobserved. The shorthand notation used
in text and figures for given dataset consists of the letter ”n”and the noise level followed
by the letter ”r”and the value of ( sin(θ)

λ
)max of the resolution. For example, n1r0.75

denotes dataset with noise level 1 and resolution ( sin(θ)
λ
)max = 0.75. For definitions of

ν, β and p see Eq. 3.10.

noise levels
level 0 level 1 level 2 level 3

ν 0.005 0.025 0.1 0.25
β 0 1 10 15
p 0 0.0001 0.0001 0.0001

resolution
shells in independent observed/unobserved
sin(θ)
λ

reflections level 1 level 2 level 3
< 0, 0.5 > 258 253/ 5 235/ 23 217/ 41
(0.5, 0.75 > 608 574/ 34 468/ 140 358/ 250
(0.75, 1.00 > 1182 1042/140 714/ 468 425/ 757
(1.00, 1.25 > 1981 1480/501 604/1377 165/1816

As the consequence of the introduction of the noise, there have been many more
phases changed in each noisy dataset than nine. Thus, the results presented here
are not influenced by the preliminary multipole refinement and can be regarded
as being obtained using just the standard refinement.

We have developed our own computer program BayMEM for the applications
of the MEM in charge density analysis (first version Schneider, 2001). This pro-
gram is designed to work in general n-dimensional space to allow computations
of the MEM electron density of incommensurately modulated structures, but can
be used for standard 3D structures too without any restrictions. BayMEM can
use both the algorithm of Sakata & Sato (1990) and the MEMSys5 package (Gull
& Skilling, 1999a). The program was extended to deal with the generalized F-
constraint. For the present study the algorithm by Sakata & Sato (1990) was
used.

The following characteristics are used to compare the quality of the MaxEnt
reconstructions:

• The values of the even central moments of the distribution of normalized
residuals

• The overall shape of the histogram

• The section through ρMEM in the plane of the HOOC-COOH molecule
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Figure 3.2: Distribution of |Fobs − Fprior|/σ(Fobs) as function of the resolution for
different noise levels. Note that for uniform prior Fprior=0 for all structure factors
except F (000). Black: ∆F < 2σ, dark gray: 2σ < ∆F < 5σ, light gray: 5σ < ∆F <
10σ, white: 10σ < ∆F .

• The section through the difference map ρdiff = ρMEM − ρtrue in the plane
of HOOC-COOH molecule

• The MEM deformation density ρMEM−pro = ρMEM − ρpro in the plane of
HOOC-COOH molecule

• The coincidence factor C, which allows for an easy comparison among dif-
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ferent reconstructions by one number:

C =

Npix∑

i=1
|ρiMEM − ρitrue|
Npix∑

i=1
ρitrue

(3.12)

For all n1, n2 and n3 datasets the computations using the Fn-constraints of
order 2 to 8 were performed, for the n0 dataset only the orders 2 to 6 were
used, since there was no visible influence of the constraint on the results. For
comparison the computations using the ad hoc weighting (De Vries et al., 1996;
referred to as static weighting hereafter) were performed on the noisy datasets.
The F-constraint with additional static weighting is defined as:

Cw = −1 + 1

NF

NF∑

i=1

w(Fobs( ~Hi))




|Fobs( ~Hi)− FMEM( ~Hi)|

σ(Fobs( ~Hi))





2

(3.13)

Weights w(Fobs( ~H)) = 1/| ~H|n (| ~H| is the length of the diffraction vector) with n
equal 3, 4 and 5 were used in this work. To investigate the influence of the prior
electron density, two series of calculations were performed. The first series was
made with the uniform prior, the second series with the procrystal prior ρpro.

The quality of the MEM reconstructions can be compared with Fourier maps.
The Fourier transform the observed structure factors with calculated phases re-
sults in an electron density (ρfou) that can be compared with ρMEM as obtained
with the uniform prior. Inspection of ρfou shows that the noise is much larger
than in ρMEM . This is quantified by the C-values (Table 3.3).

The classical method to derive information about electron densities beyond
the model is the difference Fourier. We have computed the difference Fourier for
Fobs − Fpro (ρdf ). To be able to compare the result with ρMEM , we have added
ρpro to ρdf . Again, the noise in ρfou + ρdf is significantly larger than in ρMEM

(Table 3.4).

3.4 Results and Discussion

3.4.1 The uniform prior

In the first series of calculations a uniform electron density was used as prior.
The dominating structure of ρdiff is the oscillatory electron density around each
atomic position (Fig. 3.3). Its presence is independent of the constraint and
of the noise level. However, at the high noise levels these features are partly
camouflaged by the noise of ρMEM itself. The oscillations are most pronounced at
the zero noise level. Clearly, this effect is a demonstration of the series termination
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Table 3.3: The coincidence factors C =
Np∑

i=1
|ρiMEM − ρitrue|/

Np∑

i=1
ρitrue for MaxEnt cal-

culations using the uniform prior and ρfou. Fn denotes the generalized F -constraint
of order n, swn denotes the static weighting with weight w = |H|n (for definition see
Eq. 3.13, for definition of shorthand notation of different datasets see Table 3.2) Note:
Some calculations could not be finished using the algorithm of Sakata & Sato due to
convergence problems. For static weighting computations this could be overcome by
using the MEMSys5 package (Gull & Skilling, 1999a). Those results are printed in
italic. Generally, the differences between the results of the two algorithms are not very
large, but the results of the latter algorithm seem to be slightly better. The calculation
with F6-constraint on n0r0.50 dataset did not converge (denoted by n.c.).

Dataset F2 F4 F6 F8 sw3 sw4 sw5 ρfou
n3r0.50 0.3515 0.2971 0.2942 0.2961 0.2884 0.2631 0.2548 1.3375
n3r0.75 0.3455 0.2237 0.2180 0.2230 0.1836 0.1546 0.1567 1.2187
n3r1.00 0.4137 0.2021 0.1873 0.1885 0.1569 0.1119 0.1179 1.1329
n3r1.25 0.4880 0.2316 0.1976 0.1970 0.1709 0.1073 0.1046 1.1434

n2r0.50 0.2730 0.2498 0.2515 0.2539 0.2447 0.2353 0.2326 1.3323
n2r0.75 0.2126 0.1476 0.1469 0.1502 0.1359 0.1212 0.1209 1.2073
n2r1.00 0.2250 0.1059 0.1010 0.1033 0.0935 0.0661 0.0685 1.1000
n2r1.25 0.2755 0.1063 0.0967 0.0969 0.1018 0.0632 0.0629 1.0440

n1r0.50 0.2287 0.2250 0.2254 0.2260 0.2233 0.2221 0.2457 1.3290
n1r0.75 0.1186 0.1026 0.1026 0.1033 0.1017 0.0998 0.1303 1.2061
n1r1.00 0.0815 0.0458 0.0448 0.0456 0.0451 0.0382 0.0708 1.0977
n1r1.25 0.0952 0.0365 0.0343 0.0353 0.0355 0.0255 0.0247 1.0339

n0r0.50 0.2199 0.2199 n.c.
n0r0.75 0.0949 0.0949 0.0950
n0r1.00 0.0286 0.0289 0.0290
n0r1.25 0.0147 0.0151 0.0155

error intrinsically present in the method, as pointed out already by Jauch (1994)
and later discussed in detail by Roversi et al. (1998). The present results show
the extent of this effect and its dependence on the resolution of the dataset.
The amplitude of the artifacts (ρmaxdiff − ρmindiff ) decreases with resolution, but even
at resolution 1.25 remains significant (Fig. 3.3, Table 3.5). Further lowering of
the artifacts by increasing the resolution is in practice not possible due to the
experimental limitations. Possible ways to overcome this problem are summarized
in Section 3.5.
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a)

b)

c)

Figure 3.3: Sections through the difference electron density map ρdiff showing one
COOH group. Uniform prior. a) n0r0.75, contours 0.2 e/Å3, cut-off 3.0 e/Å3. b)
n0r1.00, contours 0.05 e/Å3, cut-off 1.0 e/Å3. c) n0r1.25, contours like in b). The
decreasing width of the waves of the difference density with increasing resolution and
the interference of the waves is clearly visible.
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Figure 3.4: The histograms of ∆F ( ~H)/σ( ~H) for different constraints. Uniform prior.
For the F2 histograms only the central section is shown for good comparability, the full
histogram is shown in the inset. The ideal Gaussian shape is shown as the grey area
in each histogram. The counts of normalized residuals in classes higher than 4.0 are
multiplied by 10.
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Figure 3.5: The even central moments m2 to m16 of the histograms of all MEM-runs on
the n2 datasets. Uniform prior. Horizontal axis = order of the moment, vertical axis
= normalized values of the moments mn(MEM)/mn(Gauss) on a logarithmic scale.
Each curve corresponds to one histogram and is labeled with the constraint used for
the MaxEnt calculation.
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Table 3.4: The coincidence factors C =
Np∑

i=1
|ρiMEM − ρitrue|/

Np∑

i=1
ρitrue for MaxEnt cal-

culations using the procrystal prior and ρpro + ρdf . For explanation of the symbols see
table 3.3. The C-value of the procrystal prior is 0.0598.

Dataset F2 F4 F6 F8 sw3 sw4 sw5 ρpro + ρdf

n3r0.50 0.0538 0.0560 0.0589 0.0585 0.0554 0.0574 0.0575 0.1015
n3r0.75 0.0554 0.0552 0.0580 0.0574 0.0534 0.0513 0.0533 0.2023
n3r1.00 0.0598 0.0597 0.0590 0.0592 0.0598 0.0598 0.0545 0.3308
n3r1.25 0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0555 0.4856

n2r0.50 0.0421 0.0423 0.0443 0.0458 0.0400 0.0403 0.0386 0.0598
n2r0.75 0.0434 0.0404 0.0414 0.0433 0.0361 0.0353 0.0328 0.1016
n2r1.00 0.0496 0.0447 0.0453 0.0466 0.0420 0.0358 0.0372 0.1744
n2r1.25 0.0545 0.0491 0.0486 0.0496 0.0483 0.0473 0.0350 0.2702

n1r0.50 0.0285 0.0259 0.0258 0.0262 0.0253 0.0248 0.0236 0.0340
n1r0.75 0.0275 0.0233 0.0219 0.0224 0.0209 0.0184 0.0172 0.0206
n1r1.00 0.0290 0.0220 0.0208 0.0211 0.0205 0.0170 0.0157 0.0339
n1r1.25 0.0321 0.0245 0.0229 0.0229 0.0218 0.0174 0.0150 0.0563

n0r0.50 0.0224 0.0223 0.0223
n0r0.75 0.0106 0.0105 0.0104
n0r1.00 0.0057 0.0056 0.0057
n0r1.25 0.0038 0.0041 0.0045

ρMEM obtained for different noise levels and different resolutions is character-
ized by the C-values (Table 3.3), by the shapes of the histograms of ∆F ( ~H)/

σ( ~H) (Fig. 3.4), and by the values of the central moments of the distribution

of ∆F ( ~H)/σ( ~H) (Fig. 3.5). Following conclusions can be made based upon the
table and the figures:

• The use of the higher order constraints significantly improves the quality of
ρMEM . The improvement is the largest between the F2- and F4-constraint.
Only for the noiseless datasets the use of different constraints does not have
any effect on the resulting C-value, although the effect on the histogram
is large. This is due to the fact that at this noise level the C-value is
determined mainly by the series termination artifacts, which are almost
independent on the particular constraint. The improvement is generally
better with increasing resolution. The probable reason for this is not the
higher resolution itself, but rather the higher number of reflections in the
dataset.
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• The histograms of the higher order constraints are much closer to the ideal
Gaussian distribution than the F2-histograms and the number of very large
normalized residuals is reduced (Fig. 3.4). On the other hand, these his-
tograms are not free of systematic errors either. The histograms of the
higher-order constraints tend to be slightly asymmetric towards positive
differences. For a smaller number of reflections and/or lower noise level the
histograms tend to have flatter peak with respect to the ideal shape and
in the extreme case split into two distinct peaks (Fig. 3.4). The two peaks

tend to be at the positions ± n

√

mn(Gauss), which correspond to the average
value of normalized residual necessary to fulfill the given constraint. This
is not the exclusive property of higher order constraints, similar splitting
can appear in the F2 histograms, too, although only in very extreme case
(n0r0.50).

• The quality of the result (measured by the C-value) is perfectly correlated
with the quality of the histogram expressed by the values of its central mo-
ments. The best results are obtained with that constraint, which produces a
histogram closest to the expected normalized Gaussian (compare Table 3.3
and Fig. 3.5). With increasing order of the constraint the resulting his-
tograms get better first (the large positive slope of the curve in Fig. 3.5
gets smaller) and then the high-order central moments of the histograms
become overestimated (the slope of the curves in Fig. 3.5 becomes nega-
tive). The best result is obtained, when the slope of the curve is close to
zero. We suggest that if there are two constraints close to the optimal slope,
the one with positive slope should be preferred. This can be understood to
be a choice between slight underestimating and slight overestimating of the
data. Using the constraint with positive slope means possibly loosing some
information present in the data, using the one with negative slope means
letting the MEM fit some noise and thus introducing some false features in
the resulting ρMEM . But in practice the difference between the two results
is negligible.

The improvement of ρMEM is visible both in the total and difference electron
density maps ρMEM and ρdiff (Fig. 3.6). The waviness of the low-density contours
in ρMEM is suppressed, the overall amount of the residual structure in ρdiff
decreases. It should be noted that the total density maps do not give sufficient
insight into the accuracy of the result and cannot be used as a single criterion of
the quality of the MaxEnt reconstruction. This can be seen from the comparison
of the total and difference maps (Fig. 3.6). The largest errors occur in the
medium and high density levels, where the total density map seems to be smooth
and well behaved. This is especially true for the low resolution maps, which seem
to be smooth at the first sight, but which exhibit large differences in comparison
to the original map.
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Table 3.5: Extremals of the artifacts at different resolutions for noise level n0 and
F2-constraint.

max min
r0.50 4.36 -28.62
r0.75 3.32 -10.87
r1.00 4.94 -1.84
r1.25 3.42 -0.95

a) b)

c) d)

Figure 3.6: ρMEM and ρdiff obtained with the n2r1.00 dataset and with the uniform
prior. a) ρMEM , F2-constraint. b) ρMEM , F6-constraint. c) ρdiff , F2-constraint. d)
ρdiff , F6-constraint. All contours like in Fig. 3.1.
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Despite the significant improvement of the MEM reconstructions obtained
with the constraints on the higher-order moments, the quality of the reconstruc-
tions using the static weighting was in our case even better (Table 3.3). This
surprising effectiveness of the idea of the static weighting suggests that there
might exist some fundamental reason for it. A closer investigation of possible
theoretical foundations of this type of weighting is desirable.

The systematic investigation of the large number of different datasets allows to
make some general conclusions about the influence of the noise and the resolution
on the quality of the result. The expected improvement of the C-values with
decreasing noise level is clearly visible. The improvement with the increasing
resolution is visible, too, but not as an absolute rule (compare C-values of n3r1.00
and n3r1.25, n2r1.00 and n2r1.25, Table 3.3). This can be correlated with the
Fig. 3.2. The larger fraction of unobserved reflections is present in the outer shell,
the smaller amount of information it contains. In the datasets with the high level
almost all reflections in the outer shells are less-than’s, and they cannot contribute
to the improvement of the MEM reconstruction.

3.4.2 The procrystal prior

In the second series of calculations the procrystal electron density ρpro was used
as prior. The summary of the resulting C-values is given in the Table 3.4. The
deformation density ρMEM − ρpro obtained with datasets n2r1.00 and n1r0.75 is
shown in the Fig. 3.7. We believe that these examples are quite close to the
datasets obtainable in practice.

a) b)

Figure 3.7: MEM deformation electron density, ρMEM − ρpro. Calculations with ρpro
prior. a) n2r0.75 dataset, F4-constraint. b) n1r1.00 dataset, F6-constraint. All contours
like in Fig. 3.1.



62 CHAPTER 3. THE GENERALIZED F-CONSTRAINT

As expected, the artifacts are strongly reduced and visible only in the vicinity
of the atomic center. The deformation density resembles the true deformation
density quite well even for the medium noise level. The differences in C-values
among the different Fn-constraints and the different static weighting are much
smaller than in the case of the uniform prior, but they are still significant, espe-
cially for the low noise levels.

With increasing noise level, outer shells of structure factors contain so much
noise that it masks their statistical difference from the prior structure factors.
Such reflections do not improve the result and can even lead to a slightly worse
ρMEM (compare Table 3.4 and Fig. 3.2). In an extreme case — noise level 3 — the
reflections do not provide any additional information at all and ρMEM is almost
identical with the prior. In other words, the MEM indicates, that the data do
not contain any evidence for deviation from the prior.

The results confirm that with procrystal prior information, the MEM is able
to reveal the deformation electron density even from the medium resolution data,
provided they are sufficiently accurate.

3.5 Conclusions

The intrinsic presence of series termination effect in the crystallographic appli-
cations of the MEM is demonstrated. The extent of this effect depends on the
resolution of the dataset and on the kind of the prior electron density. For the
uniform prior, the artifacts are significantly higher than the bonding electron den-
sity level and make this version of the MEM unsuitable for investigation of fine
features in the electron density. Nevertheless, it is still a useful method for in-
vestigation of more robust features like anharmonic atomic movement or disorder
(Bagautdinov et al., 1998; Dinnebier et al., 1999; Wang et al., 2001).

The procrystal prior electron density lowers the artifacts and the reconstruc-
tions with this prior contain the information about the fine features of the electron
density. Further lowering of the artifacts could be probably achieved with the two-
channel MEM (Papoular et al., 1996) or with the valence-only MEM proposed by
Roversi et al. (1998). The latter method uses the refined structure parameters to
create a core electron density fragment, which is then considered to be known and
is not included in the MaxEnt optimization. Only the valence electron density is
modified. However, this method is of practical use only for extremely accurate
data of simple structures, since it relies on the knowledge of the temperature
parameters, which are often inaccurate and correlated with systematic errors in
the datasets.

The use of the generalized F-constraint dramatically improves the quality
of the MEM results. The selection criterion for the proper order is the best
coincidence of the histogram with the expected Gaussian distribution. From our
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experience the order 4 or 6 gives the best result.
The static weighting still gives better results than the non-weighted Fn-con-

straints. But this type of weighting lacks any theoretical foundation, and the
choice of the best weighting is very dataset-dependent (Yamamoto et al., 1996).
On the other hand, the constraints based on the expected moments of the dis-
tribution of ∆F ( ~H)/σ( ~H) have a clear interpretation. One can expect that the
new algorithms that will allow the simultaneous use of several constraints in the
MEM will again lead to improved results.

One more advantage of the higher-order F-constraints in comparison to the
classical F2-constraint or static weighting is the faster convergence, which makes
the computation time significantly shorter.
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Chapter 4

The Prior-derived F-constraints
in the Maximum Entropy
Method

4.1 Introduction

It has been pointed out (Jauch & Palmer, 1993; Jauch, 1994; De Vries et al.,
1996; Roversi et al., 1998; Palatinus & van Smaalen, 2002), that the use of the
MEM can lead to features in the reconstructed electron densities that are not
reliable and that can lead to misinterpretation of the reconstructed features, like
in the most well known example of silicon (Sakata & Sato, 1990; De Vries et al.,
1996). Several methods have been proposed, that aim to suppress the various
types of artifacts. These methods either try to reduce the dynamic ratio of
the optimized electron density (Papoular et al., 1996; Roversi et al., 1998) or
improve the statistic distribution of the normalized residuals of the structure
factors (De Vries et al., 1994; Chapter 3).

This chapter presents a method to suppress another type of artifacts in the
MEM calculations. These artifacts arise due to the fact, that MEM sometimes in-
correctly estimates the values of the structure factors that were not experimentally
determined. The problem and its solution is first described and demonstrated on
a simple one-dimensional example. Its justification for the realistic problems is
demonstrated on the simulated data of the oxalic acid dihydrate.

4.2 Theory

One source of the artifacts in the MEM electron densities is the occurrence of
a truncated Fourier series in the derivative of the constraints. These artifacts
can be strongly suppressed by decreasing the dynamic ratio of the optimized

65
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distribution. The concepts of the two-channel MEM (Papoular et al., 1996) and
the valence-only MEM (Roversi et al., 1998) have been proposed for this purpose.
Alternatively, the series termination error can be significantly reduced by using
sufficiently informative prior electron density (De Vries et al., 1996; Papoular
et al., 2002; Chapter 3). The second main source of artifacts is related to the
very nature of the MEM - the search for the electron density with the maximum
entropy. The algorithm tends to estimate incorrectly values of the structure
factors, that are most sensitive to the changes of the entropy, in order to decrease
the entropy as much as possible. These structure factors are known as the outliers.
One or two of these outliers often account for substantial part of the total χ2

(Jauch & Palmer, 1993; De Vries et al., 1994; Iversen et al., 1997). This effect
can be effectively suppressed by devising different constraints than the classical
χ2 (De Vries et al., 1994; Chapter 3). However, the constraints apply only to the
experimentally observed reflections. The structure factors that were not measured
are extrapolated by the MEM formalism to obtain the MEM solution with the
lowest entropy. These structure factors are not subject to any constraint. If the
MEM estimates the non-measured structure factors incorrectly, errors occur in
the reconstructed ρMEM .

If no prior information on the electron density is available, then the errors from
this source are unavoidable. Indeed, the MEM-estimated values of the missing
structure factors are the best available guesses. It is sufficiently accurate to re-
veal the basic features of the electron density (Bagautdinov et al., 1998; Dinnebier
et al., 1999; Wang et al., 2001). On the other hand, if the prior information in
the form of a procrystal electron density is available, then good estimates of the
high-angle structure factors are readily available. They are the structure fac-
tors corresponding to the prior electron density (Fprior). It will be shown that
the values of Fprior are indeed much closer to the true structure factors than the
MEM-estimated FMEM (Section 4.3). Thus, it is advisable to include these struc-
ture factors as additional constraints in the MEM optimization. This procedure
assures, that the structure factors that are not known from the experiment will
be constrained to the values close to Fprior, which is the best available estimate.
The structure factors that have been experimentally measured are optimized in
the usual way. The prior structure factors included in the constraint list (called
“the prior-derived F-constraints” or PDC hereafter) behave exactly like the ordi-
nary experimental structure factors in the entropy maximization. However, they
are not included in the calculation of the value of χ2, that used to determine
the stopping point of the iteration. The stopping criterion χ2 = Ndata bases
on the statistical distribution of the noise in the experimental data. Thus, the
convergence of the MEM calculation is stopped when the χ2 of the experimental
structure factors (without the prior-derived F-constraints) is equal to Ndata.

Each constraint has to be assigned a non-zero standard deviation. Standard
deviations are not available for the prior-derived F-constraints. In the present
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applications, all PDC have assigned uniform standard uncertainty, that is appro-
ximately equal to the lowest standard uncertainty of the experimental structure
factors.

The method of the prior-derived F-constraints is based on the fact, that the
good-quality datasets are complete in the low-angle region (up to sin(θ)/λ = 0.9
or more) and only the high-angle reflections are missing. The intensities of the
high-angle reflections are most sensitive to sharp features of the electron density
in the vicinity of the atomic cores. The inner electron shells are not deformed
by the bonding interactions between the atoms and they have therefore the same
form in the procrystal electron density and in the real electron density. For
this reason, the intensities of the high-angle reflections are very similar in the
procrystal electron density and in the real density.

This property of the electron densities and of the structure factors is sometimes
also used in the multipole refinements (Benabicha et al., 2000; Pichon-Pesme
et al., 2000). Prior to the refinement of the multipole parameters the positional
and displacement parameters are refined using only the high-angle reflections.
Then the displacement parameters are fixed and the multipolar parameters are
refined. Thus, the deformation of the electron density due to the bonding is re-
fined under the assumption that the displacement parameters can be successfully
determined from the standard model of independent atoms by using only the
high-angle reflections.

The concept of the prior-derived F-constraints will by demonstrated on a
simple example in following section. It will be demonstrated that the incorrect
estimates of the structure factors not included in the dataset are the major source
of artifacts in the MEM calculations with informative prior electron density and
that the method of the prior-derived F-constraints removes these artifacts suc-
cessfully.

4.3 A simple one-dimensional example

In this section, a simple one-dimensional example is used to demonstrate the basic
properties of the prior-derived F-constraints. One unit cell of the one-dimensional
(1D) density ρtrue was constructed by superposing five Gaussian functions (Ta-
ble 4.1). Three of them simulate the 1D analogons of atoms and two further
Gaussians simulate the bonds between the atoms (Fig. 4.1a). The “procrystal”
prior density ρpro was constructed in a similar way, but without the “bonds”. The
widths of the atoms in the prior were increased in order to maintain the integral
over the unit cell equal in both cases (Table 4.1, Fig. 4.1b). A center of inversion
was put in the origin of the unit cell. The densities are sampled on a grid with
128 points.

ρprior is very close to ρtrue. It is the task of the MEM to reconstruct the
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Table 4.1: Parameters of the Gaussians G = A exp
(
−(x−c)2

2σ2

)

used to construct the

prior and true 1D densities. The scale of x, c and σ is pixels, the scale of A is arbitrary.
The width of the unit cell is 128 pixels, numbered from 0 in the origin to 127.

prior density true density
A σ c A σ c

A1 60 3.20 0 60 3.12 0
A2 50 3.20 64 50 3.12 64
A3 30 4.66 36 30 4.52 36
B1 0 - - 0.5 11.31 15
B2 0 - - 0.5 5.66 51
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Figure 4.1: a) One unit cell of the true 1D density sampled on the grid with 128 pixels.
b) The exaggerated low-density region of the densities. Black diamonds: ρtrue; grey
squares: ρpro; bold line: ρtrue − ρpro.
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small differences of order of percent of the total density. This is analogical to
the realistic case, where the procrystal prior density is available and only the
deformations due to the bonding remain to be inferred.

Nine MaxEnt optimizations were performed with BayMEM using the Cam-
bridge algorithm (Skilling & Bryan, 1984) and with the ρpro as the prior density.
Three different input datasets were created with low-order structure factors with
indices up to 12, 20 and 28 as observed data. The exact values of the structure
factors were used, without adding any noise. Uniform standard uncertainties
σ = 0.01 were assigned to all structure factors. Calculations without the prior-
derived F-constraints were performed on each input dataset as well as calculations
with the prior-derived F-constraints up to F(32) and up to F(48). The calcula-
tions are denoted with letter f followed by the number of structure factors in
the input dataset and letter p followed by the highest index of the added PDC.
For example, f20p48 denotes a calculation with low-order structure factors up to
F(20) included as observed data and the remaining structure factors up to F(48)
added as PDC.

The resulting difference densities ρdiff = ρMEM − ρtrue are shown in Fig. 4.2,
4.4 and 4.6. The corresponding MEM structure factors FMEM are shown in
Fig. 4.3, 4.5 and 4.7.

ρdiff obtained without the prior-derived F-constraints shows large wavy struc-
tures, that are comparable in amplitude to the difference between the prior and
true density. The difference densities are dominated by a few frequencies. These
frequencies correspond to the structure factors not included as the observed data
that have been most badly estimated. The difference between the values Ftrue(H)
and FMEM(H) of these structure factors is responsible for occurrence of waves in
the difference density with periodicity 1/H in the unit cell and with amplitude
proportional to |Ftrue(H)| − |FMEM(H)| . As an example, the most prominent
structure in ρdiff of the calculation f20p0 (Fig. 4.4a) is the wave with frequency
21, which corresponds to the overestimated value of F(21) (Fig. 4.5a). The in-
correct estimates of the values of F(21) and other structure factors are produced
by MEM, because they increase the entropy of ρMEM compared to the entropy
of the map with correct values of the structure factors. That can be seen by
comparing the entropy of ρMEM with unconstrained high-order structure factors
and the entropy of ρMEM with high-order structure factors constrained via PDC
(Table 4.2). The entropy of the former is always higher than the entropy of the
latter.

Calculations with PDC and with 20 and 28 observed structure factors produce
results with much lower values of ρdiff , because the high-order structure factors
are constrained to Fprior, that are very close to Ftrue (Fig. 4.3, 4.5, 4.7). The
calculations with the PDC up to F(32) still show a high-frequency noise, which
can be correlated with the overestimated values of the unconstrained structure
factors above F(32) (Fig. 4.5b, 4.7b). If PDC up to F(48) are added, the resul-



70 CHAPTER 4. THE PRIOR-DERIVED F-CONSTRAINTS

a)

b)

c)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 20 40 60 80 100 120

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 20 40 60 80 100 120

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 20 40 60 80 100 120

Figure 4.2: The difference densities ρdiff = ρMEM−ρtrue from the calculations a) f12p0,
b) f12p32, c) f12p48. The lines connecting the points serve as guide for eye.
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Figure 4.3: The structure factors FMEM (filled diamonds) corresponding to ρMEM

from calculations a) f12p0, b) f12p32, c) f12p48. Ftrue (open squares) and Fpro (open
circles) are shown in each plot for comparison. Values of structure factors with indices
higher than 19 are multiplied by 20. Structure factor F(4) has a value of approximately
64 and is not shown in the plots.
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Figure 4.4: The difference densities ρdiff = ρMEM−ρtrue from the calculations a) f20p0,
b) f20p32, c) f20p48. The lines connecting the points serve as a guide for eye.
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Figure 4.5: The structure factors FMEM (filled diamonds) corresponding to ρMEM

from calculations a) f20p0, b) f20p32, c) f20p48. Other description as in Fig. 4.3.
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Figure 4.6: The difference densities ρdiff = ρMEM−ρtrue from the calculations a) f28p0,
b) f28p32, c) f28p48. The lines connecting the points serve as a guide for eye.
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Figure 4.7: The structure factors FMEM (filled diamonds) corresponding to ρMEM

from calculations a) f28p0, b) f28p32, c) f28p48. Other description as in Fig. 4.3.
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Table 4.2: Entropy of ρMEM from different calculations

PDC up to:
observed data up to: 0 F(32) F(48)

F(12) -1.53815 -1.88067 -1.88290
F(20) -1.74731 -1.78002 -1.78153
F(28) -1.76185 -1.76343 -1.76498

ting ρMEM is virtually error-free (Fig. 4.4c, 4.6c). The remaining discrepancies
are due to the fact, that the MEM does not fit the low-order structure factors
exactly. Nevertheless, the remaining errors in ρdiff from the calculations f20p48
and f28p48 are smaller than 0.05 in absolute value, while the difference density
ρtrue − ρpro has minimum −0.86 and maximum 0.50. Thus the MEM with PDC
is able to reconstruct the difference between the ρtrue and ρpro with an average
accuracy of few percent of the values of ρtrue − ρpro.

The calculations f12p32 and f12p48 demonstrate the limitations of the method
of the prior-derived F-constraints. The structure factors above F(12) are replaced
by Fprior. The resulting difference densities show errors with a dominant frequency
of 14 (Fig. 4.3b, 4.3c). This is caused by the fact, that Fprior(14) = 5.25, which
is significantly different from Ftrue(14) = 5.76. The value of FMEM(14) is con-
strained to the value of Fprior(14) and the difference between Fprior and Ftrue is
responsible for the artifacts in ρdiff . This error is induced by the incompleteness
of the data and cannot be avoided by data processing. Such a limited dataset is
not suitable for accurate reconstructions of the density.

4.4 Simulated data of oxalic acid dihydrate

To investigate the effect of the prior-derived F-constraints on a realistic problem,
the method was applied to the simulated data of the oxalic acid dihydrate. The
simulated model has been extensively described in Chapter 3. It was shown
there, that the use of the procrystal prior density enhances the performance of the
MEM strongly compared to MEM with uniform density, but the resulting maps
are not artifact-free either. To demonstrate the benefits of the prior-derived
F-constraints, the method was applied to the dataset n1r100 (for explanation
see Chapter 3). Two calculations were performed on this dataset. The first
calculation was performed using the classical MEM formalism with the procrystal
prior, with the Cambridge algorithm and with the static weighting with weights
w = 1/| ~H|5 (Eq. 2.27). This setting produced the best result, if measured by
the C-value of the resulting ρMEM (Eq. 3.12, Table 3.4). The second calculation
was performed with the same algorithm and static weighting and with the prior-
derived F-constraints added to the experimental data up to sin(θ)/λ = 2.5. A
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uniform standard uncertainty of σPDC = 0.02 was assigned to all prior-derived
F-constraints.

The results of both calculations are shown in Fig. 4.8. The maximum dif-
ference density |ρMEM − ρtrue|max is 0.447 e/Å3 in the calculation without the
PDC. The difference density contains sharp peaks around the atomic positions.
In the calculation with the PDC, the maximum difference density has decreased
to 0.061 e/Å3. The C-value has decreased from 0.0157 in the calculation without
the PDC to 0.0138 in the calculation with the PDC. The noise is distributed much
more uniformly in ρMEM obtained with PDC and does not form sharp spikes.

4.5 Conclusions

The method of prior-derived F-constraints has been introduced. It has been
demonstrated on two examples that the method leads to significantly improved
MEM reconstructions, if sufficiently informative prior density is used. The simple
1D example allows to reveal the origin of the artifacts in the MEM reconstruc-
tions and to investigate the properties of the new method. It has been shown
that the amplitude of the remaining artifacts critically depends on the maximal
difference between Ftrue and Fprior. If experimental data with sufficient resolution
are available, then the method of prior-derived F-constraints leads to the MEM
reconstructions that are virtually artifact-free.

The applicability of the method to realistic problems is demonstrated for the
simulated dataset of oxalic acid dihydrate. The dataset n1r100 corresponds to
high-quality experimental data. It is shown that the prior-derived F-constraints
improve significantly the quality of the MEM reconstruction. The errors in the
reconstruction are of order of 10−2 e/Å3, which is comparable to or even smaller
than the errors reported from the multipole refinements of the electron density
(Pillet et al., 2000). Based on this observation it is concluded that the MEM
with the prior-derived F-constraints can be successfully used for accurate charge
density studies.
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a)

b)

Figure 4.8: Sections of the ρMEM of the oxalic acid dihydrate in the plane of the
oxalic acid molecule. a) calculation without the prior-derived F-constraints. ρmin =

−0.144 e/Å3, ρmax = 0.392 e/Å
3
. b) calculation with the prior-derived F-constraints

up to sin(θ)/λ = 2.5. ρmin = −0.048 e/Å3, ρmax = 0.051 e/Å3. Cambridge algorithm,
static weighting w( ~H) = 1/| ~H|5. Contours in both maps are drawn in intervals of
0.01 e/Å3.



Chapter 5

The inorganic misfit layer
compound (LaS)1.14NbS2

Inorganic misfit layer compounds belong to the class of incommensurate com-
posite crystals (van Smaalen, 1995; Wiegers, 1996). We have performed MaxEnt
calculations on the two isostructural misfit layer compounds (LaS)1.14NbS2 and
(LaS)1.13TaS2, employing the computer program BayMEM. The results for both
compounds turned out to be similar in every way. Therefore, we present here in
detail only the results for (LaS)1.14NbS2.

5.1 The structure model and experimental data

The structure has been solved and refined using conventional crystallographic
methods (van Smaalen, 1991a; Jobst & van Smaalen, 2002). The data and model
published in Jobst & van Smaalen (2002) were used in the present work, and
we refer to Jobst & van Smaalen (2002) for experimental details and structural
parameters (Fig. 5.1).

Important for the present analysis is that a complete dataset is available up to
sin(θ)/λ = 1.01. Almost all (98%) of the main reflections are of the type observed
(they have I > 3σ(I)), whereas about half of the first- and second-order satellites
are observed. The model included the Fourier components up to second harmonics
for the modulation functions for the displacements and the temperature factors.
Furthermore the average occupation of La was refined towards 0.949(2), and the
modulation function for this occupancy was included in the model.

The phases of the reflections were taken from the calculated structure factors
of the final structure model (model D in Jobst & van Smaalen, 2002). Together
with the observed structure factor amplitudes they formed the observed data
(subscript obs), that were used in the MaxEnt calculations. Standard uncertain-
ties are based on counting statistics. The scaling towards the scattering of the
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Figure 5.1: The average structure of (LaS)1.14NbS2. (a) Projection along the incom-
mensurate a-axis, (b) Projection along the common b-axis. Large circles denote S
atoms, small circles represent the metal atoms. Shaded and white circles represent
atoms at different positions of the projected coordinate. Lattice constants at T = 115
K are: a1 = 3.3065, a2 = 5.7983, b = 5.7960 and c = 22.957 Å.

unit cell and the corrections for the anomalous scattering were obtained by a
procedure described elsewhere (Bagautdinov et al., 1998).

A second dataset was formed by the structure factors computed for the final
structure model, albeit without the contributions of the anomalous scattering
factors. They were denoted as calculated data (subscript calc). To be able to
apply the MaxEnt procedure, non-zero standard uncertainties must be assigned
to each reflection. Standard uncertainties of the calculated data were set equal to
the standard uncertainties of the observed data. The calculated data correspond
to the Fourier transform of the model electron density. Their use as “observed”
data in the MEM (Eq. 1.20) thus allows to quantitatively estimate the quality of
the MaxEnt reconstruction of the electron density for a model that is as close as
possible to the real electron density.
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5.2 Details of the computations

The electron density was calculated on a grid of 32× 64× 256× 32 pixels. This
corresponds to a resolution of 0.103×0.092×0.090×0.181 Å4. A finer grid might
be desirable, but then the calculations would have been too time consuming. A
flat prior was used throughout the whole analysis.

ρMEM
obs was obtained from a run of BayMEM using the observed data and

the Cambridge algorithm (Fig. 5.2). In a similar way ρMEM
calc was obtained from

the calculated data. Calculations with the Sakata-Sato algorithm and the F4-
constraint did not converge within a reasonable time, and the iteration had to
be stopped before the F4-criterion was fulfilled. Therefore we have only used the
results obtained with the Cambridge algorithm in the present analysis. Details

Figure 5.2: Sections of the electron density ρMEM
obs at the position of La. a) x1-x4

section with ρmax = 961.1 e/Å4; b) x2-x4 section with ρmax = 1409.9 e/Å4; c) x3-x4
section with ρmax = 1161.4 e/Å

4. Contour lines are shown at intervals of 10 % of the
maximum value ρmax of the electron density in the corresponding sections.
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Table 5.1: Computational details and results for the MEM calculations on LaS1.14NbS2.

observed data calculated data

Cambridge
algorithm

Sakata-
Sato

algorithm

Cambridge
algorithm

Sakata-
Sato

algorithm
No. of reflections 10237
Npix 16777216
Nau
pix 1052736

RAM [MB] 678
Computation time [hours] 76.8 73.9 11.4 4.4
Constraint (Eq. 3.9) F2 F4 F2 F4
Final value of constraint 1.0 58.4 1.0 1.0
R−values obs/all [%]:
all reflections 2.1/4.1 2.8/6.4 3.2/3.1 2.7/3.4
main reflections 1.6/1.7 2.2/2.3 3.9/3.9 2.7/2.8
1st order sat. 3.7/8.6 4.8/14.1 0.6/0.8 2.4/3.4
2nd order sat. 3.8/16.8 6.2/28.7 0.6/1.6 3.3/8.7

about the MaxEnt computations are summarized in Table 5.1.
BayMEM can save the electron densities in several formats. An internal

format is used to store all independent density values in the full double precision
that is necessary to maintain the accuracy of the calculations. The computer
program jana2000 (Petř́ıček & Dušek, 2000) is used for the visualization of
the electron density, and BayMEM can save the electron density in the format
suitable for jana2000.

A principal task of the analysis of the ρMEM is to extract the modulation
functions for the displacive modulation of the atoms from it. This involves:

• The computation of the electron densities in 3D sections of superspace
from ρMEM for a series of t-values (t-maps), each of them representing the
electron density in physical space.

• Determination of the maxima in each t-map. The maxima of the electron
density in physical space are then identified with the atomic positions in
this particular section.

For each step it is necessary to be able to compute the electron density for ar-
bitrary values of the coordinates. Because ρMEM is defined on a grid only, an
interpolation method is required. We have used the bicubic spline method (Press
et al., 1996), generalized to arbitrary dimensions.

Using this two-step procedure, it is possible to extract the positions of the
individual atoms from the ρMEM as a function of the parameter t with arbitrary
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dense sampling in t. The difference between the modulated and the average
positions then defines the modulation function. For all four crystallographically
independent atoms of (LaS)1.14NbS2 we have extracted the modulation functions
from ρMEM

calc and ρMEM
obs accordingly, employing 50 equally spaced points on the

interval 0 ≤ t < 1 (Fig. 5.3).
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Figure 5.3: Overview of the modulation functions of the independent atoms of
LaS1.14NbS2. Full lines: Model modulation functions, open circles: modulation ex-
tracted from ρMEM

calc , crosses: modulation extracted from ρMEM
obs , dashed line for uc of

S2: best harmonic fit to ρMEM
obs . Horizontal scale: t, vertical scale: deviation from the

average position along the respective directions ~a,~b,~c in Å.
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5.3 Discussion

With the calculated data as “observed” data (Eq. 3.4, 3.9), BayMEM should
reproduce the electron density of the model that was used to generate the calcu-
lated structure factors. Fig. 5.3 shows that the modulation functions that are
determined from ρMEM

calc indeed follow the modulation functions of the structure
model quite well. For some modulation functions the match is almost perfect
(e.g. the modulation of La along y), while for other modulation functions differ-
ences between the model and ρMEM

calc are found (e.g. the modulation of Nb along
x).

A number of reasons exist why ρMEM
calc will not reproduce the electron density

of the model exactly (see below). However, the major source of the difference
between the reconstructed modulation functions and the model is the finite re-
solution of the grid that is used to define the electron density in the MaxEnt
calculations. First of all it is noted that the sizes of the modulation functions are
of the same order as the grid size of about 0.1 Å. It then becomes apparent that
the differences between the model and the modulation functions extracted from
ρMEM
calc are only a few percent of the pixel size, with the largest deviation being

less than 10% of the pixel size. Indeed it cannot be expected to obtain a more
accurate estimate of the positions of the maxima in ρMEM than a few percent of
the pixel size that was used to discretize this function.

In order to test the effects of the sizes of the pixels on the reconstructed
density we have performed an additional computation with a double number
of pixels along x1 and x4. That is, the additional computation used a grid of
64 × 64 × 256 × 64 pixels, and the resulting density is denoted by ρ′MEM

calc . Mo-
dulation functions were derived form ρ′MEM

calc by the procedure as described above.
The result showed that the agreement between the model and the reconstructed
modulation functions along x1 (x of the first subsystem) and x4 (x of the sec-
ond subsystem) has improved considerably (Table 5.2). In fact the difference
between these two has become less than half the value it was before (Table 5.3),
in accordance with the double resolution along these directions.

We have thus shown that the major part of the discrepancies between the
reconstructed density and the model is due to the discrete nature of ρMEM , and
that the accuracy of the modulation functions is limited to a fraction less than
about 10% of the size of the pixels. Nevertheless, this finding still leaves several
possibilities for the dependence of the result on the pixel size. It can be due to
the fact that ρMEM does not represent the values of the electron density on the
grid points, but that it represents some type of average density, where the average
involves all values of ρ within the space around the grid point. Alternatively, the
problem can lie in the method of interpolation that was used to obtain the values
of ρMEM in between the grid points.
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Table 5.2: The difference between the modulation functions extracted from ρ′MEM
calc and

those contained in the model. Given is the value of the difference averaged over t,
both in units of length (Å) and as fraction of the pixel size (in percent). Only values
for the modulation along the a-axis are given. ρ′MEM

calc was obtained with a grid of
64×64×256×64 pixels. The values are given for both the Cambridge and Sakata-Sato
algorithms.

Atom Cambridge algorithm Sakata-Sato algorithm
Å % Å %

Nb 0.0010 2.1 0.0028 5.6
S1 0.0017 3.3 0.0023 4.7
La 0.0026 2.9 0.0027 3.0
S2 0.0010 1.1 0.0016 1.8

Table 5.3: The difference between the modulation functions extracted from ρMEM
calc and

those contained in the model. Given is the value of the difference averaged over t, both
in units of length (Å) and as fraction of the pixel size (in percent). The values are
given for ρMEM

calc obtained with the Cambridge algorithm and for ρMEM
calc obtained with

the Sakata-Sato algorithm. Note that both algorithms lead to results of comparable
quality.

Atom axis Cambridge algorithm Sakata-Sato algorithm
Å % Å %

Nb a 0.0057 5.6 0.0065 6.4
b 0.0028 3.0 0.0019 2.1
c 0.0018 2.0 0.0023 2.5

S1 a 0.0043 4.2 0.0041 3.9
b 0.0024 2.6 0.0023 2.5
c 0.0018 2.0 0.0019 2.2

La a 0.0120 6.7 0.0114 6.3
b 0.0020 2.2 0.0012 1.3
c 0.0009 1.0 0.0015 1.7

S2 a 0.0049 2.7 0.0046 2.5
b 0.0025 2.8 0.0023 2.5
c 0.0031 3.5 0.0023 2.5
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Even if a sufficiently fine grid would have been selected, sources of error re-
main. They include

i. An inaccuracy of the MaxEnt algorithm resulting in an electron density
that is not the density with the maximum value of the entropy.

ii. An inaccuracy that is intrinsic to the method. Only a finite number of
reflections can be used. This causes series termination effects and the so-
called aliasing effect, resulting in artifacts and noise in ρMEM (Jauch, 1994;
Roversi et al., 1998; Palatinus & van Smaalen, 2002).

iii. Problems related to the estimated standard uncertainties. Although the
calculated data are noise-free, the MEM requires that non-zero standard
uncertainties be assigned to them. Therefore the MEM will never converge
to a perfect fit to the data.

At present we do not have a quantitative estimate of the importance of these
different effects. However, for the case of (LaS)1.14NbS2 with the extensive dataset
that was available to us, the sources of error listed above apparently are less
important than the effects of the limited resolution.

The reconstructed electron density ρMEM
obs may show features that are not

described by the model. The analysis shows that the modulation functions de-
rived from ρMEM

obs follow the model quite well, and in particular they match the
modulation functions derived from ρMEM

calc very good (Fig. 5.3). The differences
between ρMEM

obs and the model are larger than the differences between ρMEM
calc and

the model, but they still represent a small fraction of the pixel size only. In this
respect it should be noted that additional sources of error are present when the
MEM is applied to the experimental data instead of the calculated data. They
include the following points.

iv. The data contain noise. Although it is known that the MEM operates as
a noise filter (Skilling & Bryan, 1984), the optimized density might still be
different from the one obtained with noiseless data.

v. The standard uncertainties of the data contain noise.

vi. Both the standard uncertainties and the measured amplitudes may contain
systematic deviations from their true values, because of systematic errors,
like an absorption correction or extinction correction that is not perfect.

Point iv particularly applies to the satellite reflections. About half of them are
less than’s, and the MEM cannot fit their noisy values (Table 5.1). On the other
hand, all of these reflections do have correct values in the calculated data. The
discrepancies between the modulation functions derived from the calculated data
and those derived from the observed data will thus be heavily affected by the
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many satellites for which significant intensity values are missing. Although these
sources of error may also affect the values of the parameters in the model that
has been refined, the two methods are affected in different ways by errors in the
data, and differences between the two are expected accordingly.

In view of (i–vi) and the pixel-size effect we believe that the major part of
the differences between the model and the reconstructed modulation functions is
artifacts and noise. However, in estimating the reliability of the reconstructed
modulation functions one also needs to take into account the scattering powers
of the individual atoms. For the weaker scatterers S1 and S2 we believe that the
differences between the modulations functions derived from ρMEM

obs and ρMEM
calc are

artifacts and noise indeed. But for Nb it is found that modulation functions of the
model are followed by the reconstructed functions much better than for the sulfur
atoms, although the displacements of Nb are smaller than for S1 and S2. Noise is
visible, but it is an order of magnitude smaller than for S1 and S2. Lanthanum is
the strongest scatterer, and it is thus tempting to interpret the deviations between
model and reconstructed functions as a true structural effect. This is especially
so for the displacements along x3. Although we believe that the reconstructed
modulation does indicate that there are deviations from the harmonic model,
we refrain from a detailed analysis. We maintain our interpretation, that the
modulations in (LaS)1.14NbS2 are described well by modulation functions based
on the combinations of two harmonics (Fig. 5.3).

We have identified the positions of the atoms with the maxima in the electron
density. In the case of anharmonic temperature movements, the electron density
is asymmetric and its maximum does not need to coincide with the position of
the atom. For (LaS)1.14NbS2 both the refinements and the reconstructed electron
density do not give any indication for anharmonic temperature factors, and we
believe that this source of error in deriving the displacement modulations is not
important here.

Other effects that were important for the successful modelling of the structure
were the modulations of the harmonic temperature factors and the occupancy of
the La site (Jobst & van Smaalen, 2002). Both modulations lead to a modulation
of the value of the electron density along the trace of its maximum as a function
of t. Both for ρMEM

calc and ρMEM
obs the values of the electron density at the positions

of La indeed exhibit a variation with t, that matches with the modulations of the
temperature factors and the occupancy (Fig. 5.4). It can be concluded that the
MEM is able to reconstruct these aspects of the modulations too.
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Figure 5.4: Modulation of the temperature factor (Ueq) and the occupancy of La (occ)
compared to the values of ρMEM

calc (circles) and ρMEM
obs (crosses) at the positions of the

La atoms (ρMEM
max (La)).



Chapter 6

Origin of the incommensurability
of the crystal structure of the
high-pressure phase III of Bi

Abstract

In-situ single-crystal X-ray diffraction experiments have been performed on
the high-pressure phase III of the element bismuth at p = 5.5 GPa. The in-
commensurately modulated structure of the composite crystal type of Bi-III has
been determined by structure refinements in combination with the Maximum En-
tropy Method (MEM) in superspace. Bi-III is tetragonal with superspace group
I ′4/mcm(00γ) with γ = 1.309 (1). The first subsystem or host comprises a 3-
dimensionally connected net of Bi atoms. Channels in this framework are filled
by the atoms of the guest, that are equidistant in the basic structure of inter-
penetrating, periodic host and guest subsystems. The modulation is found to
give rise to the formation of quasi-pairs within guest, in accordance with theo-
retical calculations. A good supercell approximation is found with cs = 12.603 Å
≈ 3ch ≈ 4cg and space group P4/ncc. The pairing of atoms is found to be respon-
sible for the incommensurability of this structure as compared to the approximate
superstructure. A second effect of the modulation is the presence of an increased
inter-subsystem bonding. A peculiar feature of the structure of Bi-III is the pres-
ence of modulated 3rd order anharmonic temperature tensors, while their average
values are zero. This is explained by the varying environments of the atoms in
the incommensurate structure.

6.1 Introduction

Many metallic elements have been found to form complicated crystal structures at
high pressures (Schwarz et al., 1998; Nelmes et al., 1999). The unit cells are large

89
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and the environments of the atoms deviate strongly from the highly symmetric
coordination polyhedra, as they are found in the simple closed packed structures
that exist at ambient conditions.

Surprisingly, similar structures are found for elements in different groups of the
periodic system. For the alkali metals, the driving force for the formation of the
superstructures has been identified as the transfer of the valence electrons towards
d orbitals. This results in deviations from spherical symmetry of the atoms, and
it is thus responsible for the formation of complicated crystal structures at high
pressures (Neaton & Ashcroft, 1999). For the elements belonging to other groups
of the periodic system, the situation is less clear. Recent band structure calcula-
tions for the group VI elements suggest that the complicated superstructures are
the result of a competition between band energy and electrostatic contributions
to the total energy (Haussermann et al., 2002).

A particularly complicated structure is assumed by the phase III of bis-
muth: it belongs to the class of incommensurate composite crystals, that lack
3−dimensional (3D) translation symmetry (McMahon et al., 2000). Phase III of
bismuth is stable at pressures between 2.8 and 7.7 GPa. Its structure comprises
two subsystems, each of which has a periodic atomic structure in first approxi-
mation (Fig. 6.1).

Figure 6.1: The basic structure of Bi-III projected along the tetragonal c-axis. Host
atoms are represented by light circles. Dark circles stand for the guest atoms. The
projected unit cell is indicated. Dashed and full lines connect atoms that are shifted
over one half along ~c.

The first subsystem or host consists of Bi atoms arranged in a 3−dimensionally
connected network, in which channels exist parallel to the tetragonal axis. These
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channels are filled by chains of atoms, that form the guest or second subsystem.
The periodicity along the channel direction is different for the host and the guest,
resulting in two independent, mutually incommensurate lattice constants ch =
4.1817 Å and cg = 3.1950 Å at p = 5.5 GPa (McMahon et al., 2000).

The incommensurate structure type that is adopted by Bi-III has been de-
scribed for the first time for Ba-IV (Nelmes et al., 1999). The same structure type
has been found for Sb-II and Rb-IV (McMahon et al., 2001). Conclusive evidence
for the incommensurate character of the structures is provided by the positions
of the reflections in X-ray powder diffraction (McMahon et al., 2000; McMahon
et al., 2001). The diffraction profiles could not be indexed by either cg or ch nor
by a simple superlattice. The additional weak reflections that have been reported
to occur in the powder diffraction of Sb-II and Bi-III could be indexed with 4 in-
tegers on the basis of the (3+1)D superspace description, again showing that the
description as an incommensurate composite crystal is appropriate (McMahon
et al., 2003).

The true crystal structures of incommensurate composite crystals consist of
modulated subsystems (van Smaalen, 1995). Each subsystem has an incommen-
surately modulated structure, with a period of the modulation that is given by
the basic-structure period of the other subsystem. The determination of the
modulation functions of the Bi atoms is the subject of the present paper. The
modulations will be shown to have a profound effect on the coordinations of
the atoms, and thus they are necessary to understand the chemical bonding in
these crystals as well as their stability. The comparison of the true incommensu-
rately modulated structure with an approximate superstructure (cs = 12.6030 Å
≈ 3ch ≈ 4cg) then reveals the origin of the incommensurateness as the formation
of Bi–Bi quasi-dimers within the guest.

The superspace formalism (de Wolff et al., 1981; Janssen et al., 1992) gives
the positions of the atoms in incommensurately modulated structures as the sum
of a periodic average position and a shift. The shifts are obtained as the va-
lues of modulation functions taken at the appropriate values of their arguments.
Modulation functions can assume any form, and thus they are described by an
infinite number of independent parameters. However, the experiment allows only
a finite number of parameters to be determined. Usually only the first or the first
two harmonics of the Fourier series are determined for each modulation function
(van Smaalen, 1995). Sometimes the data are better described by a block-wave
or saw-tooth shaped modulation function (Petř́ıček et al., 1990), but a general
shape is not easily modelled.

The Maximum Entropy Method (MEM) allows for a model-independent re-
construction of the electron density (Gilmore, 1996). We have extended this
method to determine the electron density in superspace (ρMEM(~xs) ) from the
scattering data of an aperiodic crystal (van Smaalen et al., 2003). The modula-
tion functions are then derived from ρMEM(~xs) in a straightforward way. These
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functions are independent of a model and they can assume any shape. Conse-
quently, those shapes are recovered that provide the best fit to the data (van
Smaalen et al., 2003).

In this paper we show that modulation functions comprising a sum of a few
harmonics do not give a satisfactory fit to the scattering data of Bi-III. Employing
the MEM in superspace, the modulation functions are shown to have shapes that
are between that of a simple sum of harmonics and that of a block-wave or saw-
tooth function. Furthermore ρMEM(~xs) shows that the temperature factors are
modulated, as it can be described by a modulation for the third-order anharmonic
temperature factor tensors. Substitution of an idealized model based on these
features then leads to an acceptable fit of the refinement to the data.

It is noticed that the modulation functions based on ρMEM(~xs) cannot be
modelled in all aspects by existing refinement software. Therefore we analyze the
incommensurate crystal structure of Bi-III employing modulation functions that
are derived directly from ρMEM(~xs). A preliminary account of this work has been
given elsewhere (McMahon et al., 2003).

6.2 Experimental

A single crystal of Bi-III was grown at a pressure of 5.5 GPa inside a diamond
anvil cell, following procedures reported earlier (McMahon et al., 2000; McMahon
et al., 2003). Single-crystal X-ray diffraction was measured at station 9.8 of the
Synchrotron Radiation Source (SRS) at Daresbury Laboratory. Diffracted inten-
sities were measured in a series of rotation images on a Bruker diffractometer
equipped with a SMART CCD detector. The determination of the integrated in-
tensities of the Bragg reflections and further data processing were performed with
the SMART and SAINT suite of programs. An empirical absorption correction
was applied using SADABS (Sheldrick, 1997). Further details of the experimental
procedures are given in Table 6.1.

All Bragg reflections could be indexed with four integers (h k l1 l2) according
to (de Wolff et al., 1981)

~H = h~a∗ + k~b∗ + l1~c
∗
h + l2~c

∗
g (6.1)

where the reciprocal lattice of the host is defined by {~a∗,~b∗,~c∗h} and that of the

guest by {~a∗,~b∗,~c∗g}. The collinear vectors ~c∗h and ~c∗g have an incommensurate
length ratio, that has been determined as γ = ch

cg
= 1.309 (1). Different classes

of reflections can be recognized in this notation. The reflections (h k l1 0) are
the main reflections of the host, while (h k 0 l2) describe the main reflections of
the guest. The reflections (h k 0 0) are common to host and guest. Reflections
(h k l1 l2) with both l1 and l2 nonzero are satellite reflections. They are present
due to the modulations, and they would have zero intensities if the structure
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Table 6.1: Experimental data

Pressure (GPa) 5.5
Temperature (K) 295
Chemical formula Bi
Chemical formula weight 277.42
Superspace group I ′4/mcc(00γ)
Centering in superspace I ′ 1

2
, 1
2
, 1
2
, 1
2

Subsystem space group (host, guest) I4/mcm, I4/mmm
Lattice parameters a, ch, cg (Å) 8.5562(4), 4.1817(3), 3.1950(2)
Volume (host, guest, Å3) 306.14, 233.90
Z (host, guest) 8, 2
Crystal form circular disk
Crystal size (mm3) 0.1× 0.1× 0.1
Crystal colour silver lustre
Radiation type Synchrotron
Wavelength (Å) 0.4815 (1)
Diffractometer Bruker
Detector SMART 1K CCD
Method of measurement rotation images
∆ω (deg.) 0.1
(2θ)max (deg.) 42
Absorption correction sadabs (Sheldrick, 1997)
No. of measured refl. 1309
No of independent refl. 497
No. of observed refl. (all/indep.) 983/389
Criterion for observed reflections I > 5.0σ(I)
Rint (all reflections) 0.059
Rint (observed reflections) 0.060
Maximum of sin(θ)/λ (Å−1) 0.769
Range of h, k, l,m −11→ h→ 11

−12→ k → 12
−6→ l → 6
−4→ m→ 4

Refinement Refinement on F
Weighting scheme (σ2(F ) + (0.03F )2)−1

R (observed reflections) 0.067
wR (observed reflections) 0.142
Goodness of Fit (obs) 4.39
No. of parameters 24
Extinction correction Isotropic type I (Becker & Coppens, 1974)
Extinction coefficient 0.04 (2)
Source of atomic scattering factors Int. Tables for Crystallography, Vol. A
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would be composed of periodic host and guest structures. We have observed only
first-order (m = min{|l1|, |l2|} = 1) and second-order (m = 2) satellites.

The SAINT program can only integrate Bragg reflections belonging to a single
reciprocal lattice. In order to overcome the problems related to the incommen-
surate composite character of the present data, the integration was performed
separately for the host and guest main reflections. The intensities of the satel-
lites have been obtained by separate integrations using effective lattices. For
example, the (h k 1̄ 2) and (h k 2̄ 4) reflections have been obtained as the first and
second layers of a lattice with c∗eff = −c∗h + 2 c∗g. In this way satellite reflections
are obtained with (l1, l2) equal to (1̄, 1), (1̄, 2), (2, 1̄), (3, 1̄), (1, 1), (4, 1̄), (2, 1),
(3, 1), (2̄, 2), (2̄, 4), (3, 2̄), (4, 2̄) and (2, 2). All subsets of data contain the (hk00)
reflections, that have been used for scaling.

The integration was complicated by the presence of scattered intensity ori-
ginating in the diamonds, the wolfram gasket and the beryllium windows. The
powder-like scattering of the gasket and the beryllium windows could not be
eliminated perfectly, resulting in unwanted contributions to the intensities of some
reflections. Obviously, weak reflections are affected more than strong reflections.
Therefore, it was decided to use only observed reflections in the refinements,
and to set the criterion of observed reflections to I > 5σ(I). Furthermore 8
reflections were eliminated, for which Fobs > 10Fcalc was found in the final stages
of refinement.

After averaging in Laue symmetry 4/mmm, a dataset was obtained with a
total of 380 observed reflections, containing 238 main reflections, 111 first-order
(m = 1) and 31 second-order (m = 2) satellites. These intensity data were used
in the refinements and MEM calculations.

For the indexing of the reflections according to Eq. 6.1, reflection conditions
were found as (hkl1 l2): h+k+l1+l2 = 2n, (h0l1 l2): h+l1+l2 = 2n and (hhl1 l2):
l1 + l2 = 2n. This lead to the superspace group I ′4/mcc(00γ) (Table 6.1). This
superspace group is in accordance with the space groups of the average structures
of the host and guest, as they were previously reported (McMahon et al., 2000).

6.3 Structure refinements

6.3.1 The basic structure

The first step was the refinement of the basic structure against the main reflec-
tions. A reasonably good fit was obtained with R(main) = 0.090. (R(host) =
0.073 for 110 main reflections of the host and R(guest) = 0.134 for 92 main reflec-
tions of the guest and R(comm) = 0.070 for 36 common (h, k, 0, 0) reflections.)
The previously reported structure was confirmed (McMahon et al., 2000), with
one independent atom for the host (Bi1) at (0.1532(2), x + 0.5, 0) and one inde-
pendent atom for the guest (Bi2) at (0, 0, 0). The x coordinate of Bi1 was found
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to have essentially the same value for all refinements, employing different models
for the modulation functions. It is noticed that in the superspace approach, the
coordinates of the atoms are referred to the lattice of the subsystem to which
this atom belongs (Janssen et al., 1992; van Smaalen, 1995). Accordingly, the
coordinates of Bi1 refer to the host lattice and the coordinates of Bi2 refer to
the guest lattice. All refinements were performed with the computer program
jana2000 (Petř́ıček & Dušek, 2000).

6.3.2 The modulated structure

The first model for the modulated structure consists of harmonic modulation
functions for the positions of the two crystallographically independent atoms
(Model 1).

ui(x̄s4) =
4∑

n=1

An
i sin(2πnx̄s4) +Bn

i cos(2πnx̄s4) (6.2)

for i = x, y, z and with x̄s4 = t + ~q · ~̄x (van Smaalen, 1995). The parameter t
represents the initial phase of the modulation. For Bi1 only n = 1, 2 have been
used, while for Bi2 the terms with n = odd are zero by symmetry. Similarly, mod-
ulation amplitudes for the temperature parameters were included into Model 1.
A considerable reduction of the number of independent modulation parameters
was obtained by the symmetry restrictions according to the superspace group.
Most notably the modulation of Bi2 is restricted to displacements parallel to the
c−axis. Refinements were performed of all independent parameters of Model 1
against the complete dataset, employing arbitrary but small starting values for
the modulation parameters. Convergence was obtained at R = 0.068 (Table 6.2).
The final model was independent of the starting values of the parameters (Ta-
ble 6.3). The improvement of the fit to the main reflections from 0.090 towards
0.063 shows that the refined modulation functions contain at least part of the
truth. However, the fit to the satellite reflections is not satisfactory, in particu-
larly with respect to the second-order satellites (Table 6.2). Part of this could be

Table 6.2: R−values for the refinements of the basic structure and three different models
for the modulation. Partial R−values are given for different groups of reflections. Npar

is the number of independent parameters.

Basic structure Model 1 Model 2 Model 3
Npar 8 17 17 24
R(all) 0.090 0.068 0.067 0.067
R(main) 0.090 0.063 0.063 0.064
R(m = 1) 0.105 0.103 0.093
R(m = 2) 0.249 0.231 0.161
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Table 6.3: Values of the parameters after the refinements of Models 1, 2 and 3. Bi1 is
at the special position (x, 0.5 + x, 0) with U22 = U11, B

1
y = −B1x, B2y = B2x, U

sin1
23 =

−U sin1
13 and U cos1

22 = −U cos1
11 . Bi2 is at the special position (0, 0, 0) with U22 = U11

and U cos2
22 = U cos2

11 . All other parameters that are not listed in this table are zero
by symmetry. The parameter Usin1

33 of Bi2 in Model 3 assumed insignificant values in
the initial refinements. It was set to zero in the final refinements, in order to avoid
correlations with the ADP parameters.

Model 1 Model 2 Model 3
Bi1
x 0.1532(1) 0.1532(1) 0.1532(1)
U11 0.0146(8) 0.0146(8) 0.0149(8)
U33 0.0167(15) 0.0168(15) 0.0171(15)
U12 -0.0027(4) -0.0027(4) -0.0028(3)
B1x -0.0047(1) -0.0048(1) -0.0048(1)
B2x -0.0008(1) -0.0008(1) -0.0003(2)
A2z 0.0001(4) 0.0001(4) 0.0011(7)

Usin1
13 0.0012(2) 0.0013(2) 0.0013(2)

Ucos1
11 0.0010(3) 0.0010(3) 0.0008(3)

Bi2
U11 0.0163(10) 0.0133(13) 0.0133(14)
U33 0.0369(21) 0.0470(51) 0.0350(18)
B1z 0 0.0387(25) 0.0348(26)
A2z 0.0203(14) -0.0124(24) -0.0109(23)
A4z 0.0152(11) 0 0

Usin1
11 0 0.0048(14) 0.0050(15)

Usin1
33 0 -0.017(7) 0

Ucos2
11 -0.0021(6) 0 0

Ucos2
33 0.0111(29) 0 0
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explained by the fact that the (weaker) satellites are much more affected by the
problems of the data collection than the (stronger) main reflections (Section 6.2).
However, the fit is much poorer than it is expected from the data quality, thus
indicating that the modulation functions cannot be described as a sum of a few
harmonics. The introduction of additional harmonics lead to unstable refine-
ments, because of nearly dependent parameters. Therefore, we decided to study
the structure of Bi-III by the MEM (Section 6.4).

Based on the analysis of ρMEM(~xs) more appropriate models for the mo-
dulation were developed (Section 6.4). The atom Bi1 is better described by a
combination of block-wave and saw-tooth shaped functions, but we retained the
function of two harmonics in the refinement as a reasonable approximation. For
the Bi2 atom a saw-tooth shaped function of double period describes the true
shape of the modulation function better than a harmonic function does. This
function was modelled by a sum of two harmonics defined for half of the period
and the same sum of two harmonics shifted by half a period for the second half
of the period in x̄s4 (Model 2):

uz(x̄s4) =
2∑

n=1

An
z sin(2πnx̄s4) +Bn

z cos(2πnx̄s4) for 0 < x̄s4 <
1

2

uz(x̄s4) =
2∑

n=1

An
z sin(2πn(x̄s4 −

1

2
)) +Bn

z cos(2πn(x̄s4 −
1

2
)) for

1

2
< x̄s4 < 1

(6.3)
A slightly better fit to the data was obtained than in Model 1 (Table 6.2).

Inspection of ρMEM(~xs) showed that the atoms have a strongly asymmet-
ric shape. This could be described by anharmonic displacement parameters
(ADPs) of the third order (Kuhs, 1992), and they were included in the refinement
(Model 3). A considerable improvement of the fit to the data was obtained (Ta-
ble 6.2). Most notable is, that the ADPs of the average structure are zero, while
significantly non-zero values are only obtained for the modulation parameters of
the ADPs. This feature is readily understood from inspection of ρMEM(~xs). For
half of the atoms in the crystal the skewness is to one side, while for the other
half of the atoms the skewness is to the opposite direction (Section 6.4).

Model 3 is considered to be our best refinement model. The improvements
of the fits to the data on the introduction of modulation features derived from
ρMEM(~xs) provide evidence for the meaningfulness of the results of the MEM.
However, the shapes of the refined functions still show significant differences from
the modulations as derived from ρMEM(~xs), that we were not able to describe by
a simple, parameterized model. Therefore, the structure of Bi-III was analyzed
employing the modulation functions as they were derived directly from ρMEM(~xs)
instead of using the refined model.
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6.3.3 The commensurate approximation

The value of 1.309 for γ is close to the 4
3
. This suggests that the structure of Bi-III

might be approximately described in a supercell, that is a 3-fold superstructure
of the host and a 4-fold superstructure of the guest. Substitution of γ = 4

3

into the superspace group leads to different possibilities for the symmetry of the
supercell. They are P4cc, P4/mcc and P4/ncc. A good fit to the data could only
be obtained in the space group P4/ncc. The fit to the data is equally good as
the fit of the best incommensurate structure model. The lattice parameters a = b
of the supercell are equal to the corresponding parameters of the host and guest.
The fit to the data is independent of the precise value of the cs lattice parameter
of the supercell. Reasonable choices are within the range 3 ch < cs < 4 cg. We
have chosen cs = 12.6030 Å, such that the density of the approximate supercell
is equal to the experimental density of the true incommensurate structure.

The approximate superstructure belongs to the Ba5Si3 structure type, albeit
with shifts of the atoms up to 0.7 Å as compared to the published structure of
Ba5Si3 (Villars & Calvert, 1996). There are 4 crystallographically independent
atoms in this supercell. (Table 6.4, Fig. 6.2).

Table 6.4: Atomic parameters for the approximate superstructure model. The space
group is P4/ncc with the origin defined by the inversion operator (0.5−x, 0.5− y,−z).
Lattice parameters are as = 8.5562 and cs = 12.6030 Å.

Atom x y z Uiso

Bi1a 0.1492 (3) 0.1579 (3) 0.0837 (2) 0.0148 (7)
Bi1b 0.3459 (3) x 0.25 0.0150 (8)
Bi2a 0 0.5 0.0578 (4) 0.0229 (16)
Bi2b 0 0.5 0.3144 (3) 0.0225 (11)

6.4 Application of the MEM

The MEM was used to determine the modulation functions, independent of any
parameterization. The experimental data (Fe) as used in the MEM were obtained
from Fobs following a procedure described previously (Bagautdinov et al., 1998).

The magnitude of Fe( ~H) is set equal to the magnitude of Fobs( ~H), scaled towards
the scattering of one unit cell and corrected for extinction and anomalous scat-
tering. The phase of Fe( ~H) is made equal to the phase of Fcalc( ~H). We have used
the refinement of Model 3 to derive Fe. However, it is noticed, that all reflections
have identical phases in the three models that were considered in the refinements
(Section 6.3.2). The MEM is therefore independent of the model that is used to
derive Fe from the measured structure factor amplitudes Fobs.
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Figure 6.2: Perspective view of the supercell. One period along ~c is given for one chain
of guest atoms and the surrounding host atoms. Vertical lines connect the pairs of the
guest atoms.
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Three different Maximum Entropy (MaxEnt) optimizations were performed
with the computer program BayMEM (van Smaalen et al., 2003), employing
alternatively the Sakata-Sato algorithm (Sakata & Takata, 1996) with the F2- or
the F4-constraint (Palatinus & van Smaalen, 2002) and the MEMSys algorithm
(Skilling & Bryan, 1984). An overview of the parameters and resulting R−values
is given in Table 6.5. The result of the MEM is an electron density map ρMEM(~xs)

Table 6.5: Parameterization of the electron density and resulting R-values of the MEM
calculations. S-S denotes the Sakata-Sato algorithm. F2 and F4 denote the type of
constraint.

pixel division 128× 128× 32× 32
pixel size [Å] 0.067× 0.067× 0.131× 0.100
algorithm S-S S-S MEMSys
constraint F2 F4 F2
final value of the constraint 1.30 1.76 1.02
computation time [hours] 111.3 113.2 35.8
final R-values
all reflections 0.041 0.039 0.037
main reflections 0.044 0.041 0.039
1st order satellites 0.004 0.026 0.004
2nd order satellites 0.003 0.028 0.003

in (3 + 1)D superspace. These maps were analyzed by inspection of 2D sections,
and by computational procedures to derive the modulation functions.

The MaxEnt computations with the F2-constraint result in unrealistically low
partial R−values for satellites. This overfitting of the satellites is a direct con-
sequence of the non-Gaussian distribution of the normalized residuals (De Vries
et al., 1996; Palatinus & van Smaalen, 2002). MaxEnt computations with the F4-
constraint (Table 6.5) give a much more evenly distribution of residuals. There-
fore, we have used the results of the computation with the F4-constraint for a
detailed analysis of the structure model. However, following similar procedures
for the three different models as obtained with the MEM, it was found that all
three electron density maps lead to similar results for the shapes of the modulation
functions (Fig. 6.3). The positions of the atoms are not sensitive to the details
of the method followed in the MaxEnt calculations, and it can be considered to
be a robust result.

The modulation functions have been obtained from the positions of the centers
of charge of ρMEM(~xs) as a function of x̄s4. An interpolation method has been
used to determine the values of the electron density at arbitrary ~xs (van Smaalen
et al., 2003). The average positions are defined as the integral over one period,
i.e. the integral over x̄s4 from 0 to 1. The modulation functions then follow as the
differences between the positions of the centers of charge and the corresponding
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Figure 6.3: The modulation functions for displacements a) Modulation along x of Bi1,
and b) Modulation along z of Bi2. The values in Å are given as a function of x14 and
x24, respectively. The modulation functions derived from ρMEM (~xs) for the 3 different
MaxEnt calculations (Table 6.5) nearly coincide. The modulation functions derived
from Model 3 are indicated by full lines (Table 6.3).
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average positions. The results of these procedures for the two independent atoms
are shown in Fig. 6.3.

The (x1s, xs4)−section of ρMEM(~xs) shows that the modulation of Bi1 along x
is different from the modulation function in the refined model (Fig. 6.4). This is

x14

0.0

1.0

x-1.0 0.0 1.01

(a)

x

0.0

1.0

24

x

-1.0

0.0

1.0

3

(b)

Figure 6.4: 2D sections of the electron density ρMEM (~xs). a) (x1, x14)−Section centered
at the position of Bi1. b) (x3, x24)−Section centered at the position of Bi2. The scale
of x1 and x3 is in Å. The scale of x4 is in relative coordinates. Contour lines of equal
density are drawn every 10% of the maximum density.

confirmed by the modulation function as determined by the procedure described
above (Fig. 6.3). The modulation along y has the same shape as that along x, but
it is shifted by 1

2
in the phase x̄s4. The analysis showed that the modulation of

Bi1 is much smaller along z than it is along x and y. Values for the z modulation
that deviate significantly from zero could not be found either in the MEM or
in the structure refinements (Table 6.3). Fig. 6.4 also shows that the density is
not symmetrical in xs1 around its maximum. This effect can be explained by
anharmonic temperature tensors of odd orders. As presented in Section 6.3.2 the
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introduction of 3rd order anharmonic temperature factors lead to a substantial
improvement of the fit.

The modulation of Bi2 is restricted by symmetry to be parallel to ~c. The
function as derived from the MEM can be described as a modified saw-tooth
function of a period that is half the fundamental period. The sum of two har-
monics is a poor approximation. Instead, this function was modelled by a kind of
saw-tooth function (Section 6.3.2). The fine structure on the modulation derived
from ρMEM(~xs) is not modelled in this way. Although this fine structure might be
a realistic effect, that is related to the interactions between the two subsystems,
it is the least reliable part of the modulation. Due to the limited resolution of
the data along ~c∗, the modulations parallel to ~c are the least accurate. There-
fore we refrain from a quantitative analysis of these details of the shapes of the
modulation functions.

6.5 Discussion

The incommensurate composite character of the structure of Bi-III leads to the
presence of an infinite number of different atomic environments. These environ-
ments can be summarized in t−plots (van Smaalen, 1995). Interatomic distances,
bond angles and other properties can be computed as a function of t in the fourth
superspace coordinate x̄s4 = t+~q · ~̄x (Eq. 6.2). This plot is periodic, if it is calcu-
lated for a single central atom and its neighbors. Each value of t gives a possible
environment of the central atom. The fraction of atoms with environments within
a certain range is proportional to the fraction of t values that span this range.
For both crystallographically independent atoms the t−plots show that the envi-
ronments are within physically acceptable boundaries, with a minimum distance
of about 3.07 Å and coordination numbers (CN) between 6 and 10 (Figs. 6.5 and
6.6).

The modulations of the atoms are responsible for the presence of the shortest
distance of 3.07 Å instead of a shortest distance of 3.20 Å, as it is found in
the hypothetical basic structure. The distance of about 3.07 Å is equal to the
shortest Bi–Bi distance in the crystal structure of Bi at ambient conditions (Cucka
& Barrett, 1962).

The coordination number of Bi1 is found to vary between 7 in points around
B and C and 8 in points around A (Fig. 6.5). The nearest neighbors of Bi1 are
two atoms of the same subsystem at distances of about 3.15 Å. The distances
towards the four neighbors at about 3.34 Å switch between two values. The
block-wave character of the modulation functions is responsible for this switching
behavior. Thus the block-wave-like character seems to result from the strive
towards a few stable environments of the Bi1 atoms, instead of a much broader
range of environments, as it would result from harmonic modulations.
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fourth superspace coordinate. Full lines indicate the distances derived from ρMEM (~xs);
broken lines are distances in the hypothetical basic structure. Points A′ and B′ refer
to the environments as they are realized in the commensurate approximation. Points
C ′ and D′ represent the positions of the superspace mirror planes.
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Noteworthy is that the shortest Bi1–Bi2 contact is shorter in the modulated
structure than in the basic structure, indicating increased inter-subsystem bond-
ing as compared to the basic structure. The variations of this distance are mainly
influenced by the modulations along x and y of the Bi1 atoms, and the driving
force for this modulation is probably the generation of chemical bonds between
Bi1 and Bi2. This feature is opposite to the observations for other incommensu-
rate composite crystals, for which the modulations are responsible for a smoothed
inter-subsystem contact (van Smaalen, 1995).

The coordination number of Bi2 is found to vary between 6 (points A′, B′

and D′ in in Fig. 6.6) and 10 (points C ′ in Fig. 6.6). The most important feature
of the modulation is a quasi-pairing of Bi2 with an intra-dimer distance varying
between 3.07 and 3.16 Å and an inter-dimer distance varying between 3.21 and
3.31 Å. The quasi-pairing of the guest is reproduced by the approximate supercell
structure. This approximate supercell structure was independently found in re-
cent Density Functional Theory (DFT) calculations (Haussermann et al., 2002).
These calculations also found quasi-pairing of the guest to occur in the approx-
imate supercell. These calculations showed that the quasi-pairs form due to
chemical bonding between the two atoms of the pairs.

We believe that the pairing is responsible for the incommensurate nature of
the structure of Bi-III. First it is noticed that incommensurate composite struc-
tures can only be stable, if the most important interactions occur within the
subsystems. This is the situation for the structure of Bi-III, as follows from the
observation, that the shortest Bi–Bi contacts are between pairs of guest atoms
(Fig. 6.5) and between pairs of host atoms (Fig. 6.6). The lattice parameters a, b
and ch are determined by the strong bonds within the host, while the lattice pa-
rameter cg is determined by the strong bonds along the chains of guest atoms. On
the other hand, if the host-guest interactions would have been sufficiently strong,
then the guest atoms would have adapted their positions to the host and the
structure would have been periodic. For the observed composite-type structure
the host–guest interactions are responsible for the incommensurate modulations
of the atoms.

The origin of the incommensuration can be revealed by comparison of the true
structure with the approximate supercell (Section 6.3.3). The supercell contains
four crystallographically independent Bi atoms, that have coordinations approx-
imately corresponding to the coordinations in the points A, B, A′ and B′ of the
incommensurate structure (Figs. 6.5 and 6.6). The supercell thus represents a
very good approximation to the incommensurate structure. However, both the
supercell approximation refined against the experimental data and the DFT cal-
culations (Haussermann et al., 2002) have smaller guest-guest distances than are
found in the incommensurate structure. Apparently this compressed state is less
stable than the true incommensurate structure. The average Bi–Bi distance along
the chains in the guest is equal to cg = 3.195 Å. In the supercell this average dis-
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tance is reduced towards 3.151 Å and 3.185 Å for the refined and DFT structures,
respectively. This distance is longer than the shortest distances within the host
and it is almost equal to the shortest host–guest distances. Therefore it does
not provide an incentive to form an incommensurate composite structure. How-
ever, Bi–Bi quasi-pairs are present in the high-pressure structure. The average
bonding distance in the incommensurate structure is 3.12 Å, while the average
inter-pair distance is 3.26 Å. We noted that the actual ranges of distances in the
incommensurate structure critically depend on the fine structure of the modula-
tion function, that could not be determined with high accuracy (Section 6.3.2 and
Fig. 6.3). But, independently of the accuracy, the Bi-Bi distance within the pairs
is the shortest distance in the structure. Apparently, further shortening of this
distance, that would be necessary to form the commensurate structure, cannot
be tolerated and the structure is stabilized by an expansion of the guest towards
the observed basic structure lattice parameter cg.

Thus the bond alternation in the chains comprising the guest is responsible
for an average cg that is slightly longer than 3

4
× ch, and this effect stabilizes the

incommensurate composite structure of Bi-III.

In the hypothetical supercell precisely 50% of the guest–guest nearest neighbor
distances would be shorter than average, and all atoms of the guest participate in
exactly one quasi-pair. In the incommensurate composite structure the fraction
of short guest–guest distances depends on the incommensurability parameter.
For γ = 1.309 it is obtained as 48.7%. Accordingly, a fraction of 0.973 of the
guest atoms are part of a quasi-pair. This leads to a disruption of the sequence
of pairs, and the occasional presence of an isolated Bi atom in the guest (points
C ′ in Fig. 6.6).

The formation of quasi-pairs in the guest competes with the bonding between
the host and the guest. For Bi2 that are closest to the Bi1 atoms, the modulation
of Bi2 along z is perpendicular to the directions of the Bi1–Bi2 bonds and it hardly
affects their lengths (points D′ in Fig. 6.6). Accordingly the Bi2 atoms around
points D′ have the largest shifts, while a minimum value of the shift is found for
Bi2 atoms in between the squares of Bi1 atoms (points C ′ in Fig. 6.6). Both the
inter-subsystem bonding and the formation of quasi-pairs appear to be important
effects in this structure, and their competition is responsible for the complicated
shape of the modulation of Bi2. Unfortunately, this part of the modulation is the
least accurate part of the present analysis. Although we do believe that deviations
from the simple saw-tooth shape are present, the deviations from this shape, as
found in the present analysis, are not necessarily accurate. The variations of
the distances within the quasi-pairs therefore should not be given a too detailed
interpretation. (Notice that a simple saw-tooth function would lead to a constant
distance within the quasi-pairs.)
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6.6 Conclusions

The incommensurately modulated structure of Bi-III at p = 5.5 GPa has been
determined by a combination of structure refinements and the application of the
MEM. The MEM has been found to be an indispensable tool to recover the true
shapes of the modulation functions. Although the MEM has lead to an improved
model for the modulation functions, their shapes are too complicated to capture
in a simple parameterized model. Even the best refinement cannot give the true
shapes of the modulation functions, that we believe to have been recovered by the
MEM. Furthermore, the MEM has provided the crucial information, that lead to
the idea of modulated temperature tensors.

The basic structure of Bi-III consists of the intergrowth of two periodic sub-
systems (McMahon et al., 2000). The displacement modulation functions of the
two crystallographically independent Bi atoms give rise to structural features be-
yond the basic structure, that are essential for the understanding of the chemistry
of this element. Principal effect is that Bi-III contains quasi-pairs of Bi atoms
within the guest. DFT calculations indicated the formation of bonded quasi-
pairs within the guest of the approximate supercell (Haussermann et al., 2002),
in agreement with the experiment. It has been argued that the pairing is respon-
sible for the incommensurate composite character of this structure, as opposed
to the formation of a simple superstructure.
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Chapter 7

The crystal structure of
incommensurate ammonium
tetrafluoroberyllate studied by
structure refinements and the
Maximum Entropy Method

Abstract

Incommensurately modulated ammonium tetrafluoroberyllate (AFB) occurs
in a narrow temperature interval between the paraelectric room-temperature
phase with spacegroup Pnma (Ti = 178 K) and the ferroelectric low temper-
ature phase with space group Pna21 (Tc = 173 K). The structure is determined
from accurate single-crystal X-ray diffraction data collected with synchrotron ra-
diation at 175 K. The superspace group of the structure is Pnma(α00)0ss with
α=0.47956. Both structure refinements and the maximum entropy method lead to
the same structure model, involving single harmonic modulation only. The build-
ing units of the structure are BeF2−4 and NH+4 complex ions with approximately
tetrahedral point symmetry. They are relatively rigid and the modulations consist
mainly of translations of the tetrahedra and their rotations around a fixed axis.
The modulation is related to changes in the network of the hydrogen bonds. The
low-temperature superstructure can be described as a commensurately modulated
structure with the same superspace symmetry. The first harmonic modulations
of the low-temperature and incommensurate phases are related by a scale factor
with a value of approximately two. In addition, the low-temperature phase ex-
hibits a second harmonic modulation, that is responsible for shifts along ~c and the
ferroelectricity in this phase. The absence of a second-order modulation in the
incommensurate phase shows that the incommensurate phase does not involve a

109
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modulation of local dipole moments, contrary to previous models for the phase
transitions in AFB (Iizumi & Gesi, 1977).

7.1 Introduction

Ammonium tetrafluoroberyllate (AFB) is centrosymmetric with space group
Pnma at room temperature. It undergoes two phase transitions at lower temper-
atures. After the first transition at Ti=182 K (Strukov et al., 1973; Makita
& Yuiko, 1974) the structure becomes incommensurate with the modulation
wavevector close to 0.5~a∗ (Iizumi & Gesi, 1977). The second phase transition
at Tc=175K leads to a non-centrosymmetric ferroelectric phase (Pepinsky &
Jona, 1957). The crystal structures of the paraelectric and ferroelectric phases
have been studied by X-ray diffraction (Onodera & Shiozaki, 1979; Garg & Sri-
vastava, 1979) and neutron diffraction (Srivastava et al., 1999). O’Reilly et al.
(1967) and Onodera & Shiozaki (1979) suggest that one of the ammonium ions is
orientationally disordered in the paraelectric phase. O’Reilly et al. (1967) propose
that the phase transition is of the order-disorder type. However, the structures
by Garg & Srivastava (1979) and the most recent work by Srivastava et al. (1999)
do not indicate any disorder in the room temperature structure. These authors
conclude the phase transition is a result of changes in the hydrogen bonding
scheme.

Iizumi & Gesi (1977) have proposed a model of the phase transitions similar
to that proposed for potassium selenate (Iizumi et al., 1977). In this model, the
spontaneous polarization would already be present in the modulated phase on a
microscopic scale, but the incommensurateness of the modulation would cause the
average spontaneous polarization to be zero. The incommensurate to commensu-
rate phase transition would then correspond to ordering of the directions of the
microscopic polarizations, resulting in a macroscopic spontaneous polarization.

None of the previous works have studied the crystal structure of the inter-
mediate, incommensurate phase. Knowledge of the structure of this phase can
give additional insight into the mechanism of the phase transitions in AFB and
into the origin of the ferroelectricity of the low temperature phase. In particular,
we will show that the model by Iizumi & Gesi (1977) is not correct, and that
the microscopic polarizations are zero in the incommensurate phase within the
experimental resolution.

Single-crystal diffraction data were collected with synchrotron radiation. The
structural model was found by refinements in superspace. The structure was
further studied by means of the Maximum Entropy Method (MEM). The Ma-
ximum Entropy Method (MEM) is a general tool for a model-free reconstruc-
tions of positive additive distributions. One of many applications in crystallo-
graphy is a reconstruction of the electron density from phased structure factors
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(Gilmore, 1996). The maximum entropy formalism can be extended to super-
space (Steurer, 1991; van Smaalen et al., 2003). The MEM in superspace can
give a non-parametric estimate of the shapes of the modulation functions. Thus,
the MEM can be used to either independently confirm the refined model or to
find a shape of modulation functions that differ from the parametrized model
(van Smaalen et al., 2003; Chapter 6).

7.2 Experimental

Crystals of AFB were grown by slow evaporation at 5◦C from an aqueous solution
of a stoichiometric mixture of NH4F (ACROS, ACS-Reagenz, purity ≥ 98%) and
BeF2 (Alfa Aesar, 99.9% purity of the metals basis). Several crystals were tested
on a Nonius Mach3 diffractometer with a rotating anode generator and MoKα
radiation. A thick plate of dimensions 0.20 × 0.13 × 0.08 mm3 was selected for
the data collection. The diffraction data were collected on a Huber four-circle
diffractometer at beamline D3 at Hasylab, DESY, Hamburg. The beam was
monochromated by a Si(111) double-crystal monochromator. The wavelength
was set to 0.7100 Å. An Oxford Cryojet was used to cool the sample by a cold
nitrogen gas flow. Incommensurate satellite reflections were observed in a tem-
perature range between 173K and 178K; the data were collected at 175K. Three
standard reflections were measured every two hours as a check of the stability of
the experimental setup. Experimental details are given in Table 7.1.

The modulation wavevector was determined from the positions of 32 satellites.
The value q = 0.49756(4) ~a∗ is very close to 1/2. Thus, reflections of the type
h k lm are very close to reflections (h± 1) k l (m∓ 2). This can result in overlaps
of these reflections in the ω scans. The value of the ψ-angle (rotation of the
crystal around the scattering vector) was therefore optimized so, that the distance
between the positions of the reflections in the ω-scans was maximal. Even with
this procedure the occurrence of the two neighboring reflections in one scan could
not always be avoided, but the distances between the peaks became large enough
to allow intensities of the individual reflections to be determined.

The critical problem in the determination of the integrated intensities was
the determination of the background. The standard procedures for background
determination could not be used due to the presence of more than one peak in
some scans. Therefore, the following procedure was used. Every profile was first
smoothed by calculating a thirteen-point sliding average. Then a least-squares
line was fitted to every 16 points of the smoothed profile. As a result, a smooth
first derivative of the scan profile was obtained. Starting from the expected peak
position, the derivative was scanned to the left. The first negative point, that was
not followed by any significantly positive point, was considered to be the border
of the peak area. On the right side, the procedure was repeated symmetrically.
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Table 7.1: Experimental data

Temperature (K) 175
Chemical formula (NH4)2BeF4
Chemical formula weight 121.08
Superspace group Pnma(α00)0ss
q-vector 0.47956(4) ~a∗

Lattice parameters a, b, c (Å) 7.5284(14), 5.8848(11), 10.436(3)
Z 4
Crystal form thick plate
Crystal size (mm3) 0.20× 0.13× 0.08
Crystal colour colourless, transparent
Radiation type Synchrotron
Wavelength (Å) 0.7100
Absorption coefficient (mm−1) 0.215
Diffractometer Huber four-circle
Detector NaI scintillation counter
Method of measurement ω-scans
Scan width:

0 < sin(θ)
λ

< 0.45 (deg.) 0.700

0.45 < sin(θ)
λ

< 0.60 (deg.) 0.550

0.60 < sin(θ)
λ

< 0.89 (deg.) 0.500
Step width (deg.) 0.005
(2θ)max (deg.) 78.4
Absorption correction not performed
No. of measured refl. 4109
No of independent refl. 3969
No. of observed refl. (all/indep.) 2321/2260
Criterion for observed refl. I > 3σ(I)
Range of h, k, l,m −13→ h→ 0

0→ k → 10
0→ l→ 18
−1→ m→ 1

No. of standard reflections 3
Frequency of standard reflections every 2 hours
Refinement on F
Weighting scheme (σ2(F ) + (0.006F )2)−1

Robs/Rall/wRobs/wRall (%)
all reflections: 3.41/6.22/3.84/3.99
main reflections: 2.76/3.16/3.66/3.68
1st order satellites 6.62/17.91/5.43/6.46
Goodness of Fit (obs/all) 2.59/1.99
No. of parameters 175
Extinction correction Isotropic type I (Becker & Coppens, 1974)
Extinction coefficient 0.05(3)
Source of atomic scattering factors International Tables for Crystallography, Vol. C
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The peak area was determined for each peak in the profile and the points lying
outside the peak areas were considered to be the background points. At least
ten points were always assigned to background at each side of the peak. The
parameters of the method were selected empirically to produce the best results.
In the case of present data the method proved to be very robust and to produce
reliable estimates of the background.

The raw counts were corrected for the dead-time of the detector, the integrated
intensities were corrected for the LP effect and for variation of the intensity of the
primary beam. The absorption correction was not applied because of the very
small absorption coefficient (µ=0.215 mm−1).

The classes of reflections (0 k l 0) with k+ l = 2n+ 1, (h k 0m) with h+m =
2n + 1, and (h 0 l m) with m = 2n + 1 were systematically extinct. No other
extinction rule was observed. The unique superspace group corresponding to
these extinction rules is Pnma(α00)0ss.

Second-order satellites (m=±2) were not observed in preliminary measure-
ments. Therefore, these satellites were not measured during the data collection.
However, due to the almost commensurate value of the q-vector the second-order
satellites occur close to the main reflections. Analysis of the collected dataset
showed, that profiles of 1131 main reflections (out of 1460) contained positions of
the second-order satellites. All these 1131 profiles were visually checked and no
peak was observed at the positions of the second-order satellite reflections.

7.3 Structure refinements

The structure was refined using the superspace approach (deWolff et al., 1981; van
Smaalen, 1995). All refinements were performed using the computer program
JANA2000 (Petř́ıček & Dušek, 2000). The coordinates of the room tempe-
rature structure (Srivastava et al., 1999) were used as a starting point for the
refinement of the basic structure. The positional parameters of all atoms were
refined together with isotropic temperature parameters of hydrogen atoms and
anisotropic harmonic temperature parameters of all other atoms. The fit to main
reflections converged to Rmain(obs)=4.25%. In the next step, the modulation
was introduced. The displacive modulations in the directions i = 1, 2, 3 were
described by Fourier series:

ui(x̄s4) =
∞∑

n=1

An
i sin(2πnx̄s4) +Bn

i cos(2πnx̄s4) (7.1)

Functions with n = 1 (first-order harmonic modulation) were refined for all atoms,
starting from arbitrary but small values. The refinement with 97 parameters
converged to Rmain(obs)=4.22% and Rsat(obs)=13.13%. The difference Fourier
maps showed significant structure around the positions of the fluorine atoms
(Fig. 7.1a).
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Figure 7.1: x2 − x4 sections of the difference Fourier map at the position of the F(2)
atom. a) without modulated ADP, ∆ρmin= -0.94e/Å3, ∆ρmax= 0.90e/Å3. b) with
modulated ADP, ∆ρmin= -0.18e/Å

3, ∆ρmax= 0.23e/Å
3. Contours at 0.05 e/Å3, posi-

tive contours solid, negative contours dashed, the zero contour omitted. The thick line
corresponds to the refined position of the F(2) atom.

It turned out, that the fit can be significantly improved by introducing an-
harmonic displacement parameters (ADP) of the 3rd order (Kuhs, 1992) for the
fluorine atoms as well as their first-order harmonic modulation. The R-values
dropped to Rmain(obs)=2.76% and Rsat(obs)=6.62% after introduction of the
modulated ADP. This decrease is significant, although the number of refinable
parameters increased to 175. The maxima in the difference electron density of
all fluorine atoms decreased by a factor larger than three (Fig. 7.1b). There is no
significant negative region of the probability density function at any of the three
atoms. Moreover, the BeF4 tetrahedron becomes more regular in comparison with
the refinement without ADPs. All these observations support the conclusion, that
the ADP parameters are the appropriate way to describe the structure. The po-
sitional parameters of the basic structure are listed in Table 7.2; the parameters
of the modulation functions are listed in Table 7.3.

As mentioned in Section 7.2, we did not observe any second-order satellites.
This indicates that the harmonic modulation of second order is very weak or
absent. Indeed, the introduction of the second-order harmonic modulation did
not improve the fit and did not lead to significant amplitudes of the second-order
modulation functions.
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Table 7.2: Basic structure coordinates of the incommensurate structure corresponding
to the final refined model.

x y z
Be 0.25141(8) 0.25 0.41847(6)
F(1) 0.05442(9) 0.25 0.38015(8)
F(2) 0.27030(10) 0.25 0.56419(6)
F(3) 0.33820(7) 0.03489(9) 0.36575(5)
N(1) 0.18709(6) 0.25 0.09990(4)
N(2) 0.45778(6) 0.25 0.80326(4)
H(11) 0.3059(12) 0.25 0.1228(10)
H(12) 0.1075(16) 0.25 0.1586(12)
H(13) 0.1718(10) 0.1298(15) 0.0498(8)
H(21) 0.4876(13) 0.25 0.7213(10)
H(22) 0.5606(18) 0.25 0.8468(13)
H(23) 0.3946(12) 0.1227(17) 0.8194(8)

Table 7.3: Modulation functions of the displacive modulation. For definition see Eq. 7.1.
Only first-order harmonic modulation functions were refined. Amplitudes are given in
Å.

A1x B1x A1y B1y A1z B1z
Be 0 0 -0.0143(13) 0.0085(12) 0 0
F(1) 0 0 -0.0197(13) -0.0829(12) 0 0
F(2) 0 0 0.0736(13) 0.1095(12) 0 0
F(3) 0.0251(9) 0.0243(8) -0.0348(7) -0.0071(7) 0.0828(8) 0.0653(9)
N(1) 0 0 -0.0133(9) 0.0254(9) 0 0
N(2) 0 0 0.0338(9) -0.0067(9) 0 0
H(11) 0 0 -0.033(14) 0.110(14) 0 0
H(12) 0 0 -0.123(17) 0.040(16) 0 0
H(13) -0.040(12) 0.018(11) 0.093(13) -0.065(13) -0.142(12) 0.103(13)
H(21) 0 0 0.029(15) -0.020(13) 0 0
H(22) 0 0 0.003(19) -0.125(17) 0 0
H(23) 0.018(13) -0.128(13) 0.017(14) 0.061(14) 0.004(11) -0.029(12)
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7.4 The ferroelectric structure as commensura-

tely modulated structure

The low-temperature phase can be described as a 2-fold superstructure of the
room-temperature phase. Alternatively, it can be described in superspace as a
commensurately modulated structure with qc = 0.5~a∗ and with the same su-
perspace group as the incommensurate phase. For a given superspace group
and modulation wavevector, the symmetry and structure of the supercell de-
pend on the section t0 of superspace (Yamamoto, 1982; van Smaalen, 1995). For
Pnma(α00)0ss Hogervorst (1986) has listed all possible space groups of the su-
percell for different values of t0 and different commensurate modulation wavevec-
tors. The space group Pna21 of the 2-fold supercell corresponds to the sections
t0 = 1/8 + n/4, n = 0, 1, 2, 3. Alternative values of n correspond to a shift of
the phase of the modulation or a shift of the origin of the 3D space group. The
proper value of t0 for the transformation between the LT structure reported by
Srivastava et al. (1999) and the superspace model used in this work is t0 = 7/8.
Using this information, we have derived the modulation amplitudes of the su-
perspace description for the LT structure (Tables 7.4 and 7.5). Both first- and
second-order harmonics were necessary to fit the supercell coordinates. Because
of the commensurateness of the modulation (qc = 0.5~a∗), the phase and ampli-
tude of the second-order harmonic are correlated. We have chosen the phases so,
that the modulation amplitudes are minimal.

The average N-H bond-length in the LT structure is 1.005 Å, while the
presently determined incommensurate structure gives 0.900 Å. This difference
is due to the different experimental techniques (neutron vs. X-ray scattering).
In order to facilitate the comparison of the two structures, we have modified the
positions of the hydrogen atoms in the LT structure in such a way, that the N-H
bonds are shorter than the published values by a factor of 0.9.

7.5 The Maximum Entropy Method

The superspace electron density of AFB is discretized on a grid of 128×100×162×
32 pixels. That corresponds to a resolution of approximately 0.06 Å in each real-
space direction. The modulation functions are sampled in 32 points, allowing, in
principle, the determination of up to eight harmonics. The experimental ampli-
tudes of the structure factors, corrected for anomalous scattering and extinction,
were combined with the phases of the best refined model to produce the input
for the MEM calculation (Bagautdinov et al., 1998). This input is called “ob-
served data”. For checking purposes, the MEM calculations were performed with
the structure factors derived directly from the refined model (“calculated data”).
The computer program BayMEM (van Smaalen et al., 2003) was used for two
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Table 7.4: Basic structure coordinates of the superspace description of the low tem-
perature structure, corresponding to the published coordinates of the structure at 163
K (Srivastava et al., 1999) with positions of hydrogen atoms corrected for differences
between the neutron and X-ray positions (see text, Section 7.6). The inaccuracies in
parentheses are combined inaccuracies of the average positions and modulation func-
tions, because the inaccuracies of the separate parameters cannot be determined from
the coordinates of the 3D model.

x y z
Be 0.2517(2) 0.2500(3) 0.4188(4)
F(1) 0.0560(3) 0.2500(7) 0.3769(6)
F(2) 0.2668(3) 0.2500(6) 0.5645(4)
F(3) 0.3397(3) 0.0352(6) 0.3666(5)
N(1) 0.1879(2) 0.2500(3) 0.1006(1)
N(2) 0.4559(2) 0.2500(3) 0.8029(3)
H(11) 0.3034(5) 0.2500(16) 0.1244(10)
H(12) 0.1124(7) 0.2500(15) 0.1665(11)
H(13) 0.1690(5) 0.1278(12) 0.0554(9)
H(21) 0.4816(6) 0.2500(15) 0.7188(8)
H(22) 0.5544(6) 0.2500(15) 0.8512(10)
H(23) 0.3930(6) 0.1281(13) 0.8206(8)

MaxEnt calculations, with different algorithms and different constraints for each
dataset (Table 7.6). Convergence was obtained for all four calculations.

The MaxEnt calculations result in optimized superspace electron densities
ρMEM . ρMEM exhibits local maxima in the form of strings parallel to the fourth
dimension of superspace at the positions of the atoms (Fig. 7.2). The positions
of the atoms as a function of the fourth coordinate have been determined by the
computation of the centers of charge around each local maximum for different
real-space sections (different values of t). The positions of the hydrogen atoms
cannot not be determined with this method, because these atoms do not form
separate maxima in the electron density. The determination of the hydrogen
positions and the investigation of the bonding electron density will be a topic of
future research.

The agreement of the modulation functions derived from ρMEM with the re-
fined functions of the model is excellent (Fig. 7.3). The differences between the
results by the MEM on the observed data and the refined functions are similar
to or even smaller than the differences between the results by the MEM on cal-
culated data and the refined functions. All differences in atomic positions are
found to be below 10% of the pixel size. Thus, within the accuracy of the MEM
calculations, the MEM shows perfect agreement with the refined model and the
model is confirmed (van Smaalen et al., 2003). Inspection of ρMEM also provides
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Table 7.5: Modulation functions of the superspace description of the low tempera-
ture structure, corresponding to the published coordinates of the structure at 163K
(Srivastava et al., 1999) with positions of hydrogen atoms corrected for differences be-
tween the neutron and X-ray positions (see text, Section 7.4). For definition of the
symbols see Eq. 7.1. Amplitudes are given in Å.

An
x Bn

x An
y Bn

y An
z Bn

z

n = 1
Be 0 0 -0.0311 0.0212 0 0
F(1) 0 0 -0.0529 -0.1810 0 0
F(2) 0 0 0.1669 0.2074 0 0
F(3) 0.0675 0.0485 -0.0664 0.0018 0.1781 0.1125
N(1) 0 0 -0.0270 0.0546 0 0
N(2) 0 0 0.0670 -0.0047 0 0
H(11) 0 0 -0.0529 0.1974 0 0
H(12) 0 0 -0.2121 0.0993 0 0
H(13) -0.0531 0.0478 0.1363 -0.0570 -0.2396 0.1625
H(21) 0 0 0.0905 0.0000 0 0
H(22) 0 0 -0.0147 0.2180 0 0
H(23) 0.0971 -0.2177 0.0118 0.1351 -0.0167 -0.0313
n = 2
Be 0.0000 0.0008 0 0 0.0000 -0.0281
F(1) -0.0061 0.0023 0 0 0.0000 0.0000
F(2) 0.0000 0.0000 0 0 -0.0031 -0.0292
F(3) -0.0023 -0.0030 0.0029 0.0047 -0.0135 -0.0219
N(1) 0.0008 -0.0023 0 0 0.0063 -0.0156
N(2) 0.0068 0.0015 0 0 -0.0135 -0.0042
H(11) -0.0053 -0.0144 0 0 0.0042 0.0115
H(12) -0.0030 0.0023 0 0 0.0063 -0.0052
H(13) -0.0061 0.0106 -0.0088 0.0153 0.0260 -0.0458
H(21) 0.0652 0.0076 0 0 0.0250 0.0031
H(22) 0.0190 -0.0068 0 0 -0.0479 0.0167
H(23) -0.0372 -0.0296 0.0270 0.0212 0.0135 0.0104
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Table 7.6: Parameters of the MEM calculations. S-S denotes the Sakata-Sato algorithm
(Sakata & Sato, 1990), Cambridge denotes the Cambridge algorithm (Skilling & Bryan,
1984). F6 denotes the type of generalized F-constraint (Palatinus & van Smaalen, 2002),
sw4 denotes the static weighting (De Vries et al., 1994) with weighting factor w =
1/| ~H|4, | ~H| is the length of the diffraction vector.

name of the calculation calc1 calc2 obs1 obs2
pixel division 128× 128× 32× 32
pixel size [Å3] 0.059× 0.059× 0.064
input data calculated calculated observed observed
algorithm S-S Cambridge S-S Cambridge
constraint F6 sw4 F6 sw4

Figure 7.2: A x2-x4 section of the MEM electron density at the position of atom F(2)
(calculation obs2, Table 7.6). Contours at 2 e/Å3. The anharmonicity of the thermal
displacement is observable as the asymmetric shape of the sections parallel to x2.
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Figure 7.3: Modulation functions uyi of the non-hydrogen atoms. Full lines: refined
modulation functions; crosses: modulation functions derived from ρMEM of the calcu-
lation obs1; circles: modulation functions derived from ρMEM of the calculation obs2
(see Table 7.6).

an independent indication of the modulated odd-order anharmonic temperature
factors of the fluorine atoms (Fig. 7.2).

A possible displacement along ~c of the atoms in the special positions is of par-
ticular importance, because they are responsible for the spontaneous polarization
in the LT phase. In the superspace approach the z-displacements are described
by the second harmonics. Any evidence for the presence of second harmonics in
the incommensurate structure has not been found in the MaxEnt calculations.
We have tested the sensitivity of the MEM for second harmonic modulations
by two additional calculations on simulated data. The structure model of the
incommensurate phase (Table 7.3) is combined with second-order harmonic mo-
dulation functions, as they were obtained by dividing the second harmonics of
the LT structure by a factor of 2 (Table 7.5, Section 7.6.3). The structure fac-
tors calculated from this model were used as input in the MEM calculations.
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Figure 7.4: Modulation along z of atom N(1) in the hypothetical incommensurate
structure, that includes second-order modulation functions (Section 7.5). Full line:
modulation derived from the coordinates of the ferroelectric structure. Circles: MEM
reconstruction from simulated data including second-order satellites. Crosses: MEM
reconstruction from simulated data with second-order satellites excluded from the input
dataset.

The first calculation contained main reflections, first- and second-order satellites,
the second calculation only the main reflections and the first-order satellites. The
results of the first calculation clearly reproduce the weak second-order modula-
tions along x and z. However, the results of the second calculation do not show
any such modulations (Fig. 7.4). It can be concluded, that it is not possible to
detect the weak second-order modulations, if the corresponding satellites have
not been measured and included in the dataset, because the main reflections and
first-order satellites do not contain enough information about this modulation.

7.6 Discussion

7.6.1 Description of the modulated structure

Among the seven structures of AFB published previously (Section 7.1), the work
by Srivastava et al. (1999) is the most recent one and it involves the most extensive
datasets. The structures by Srivastava et al. (1999) basically confirm earlier
refinements of the paraelectric and ferroelectric structures, but they are more
accurate. Therefore, we compare the present structure of the incommensurate
phase with the structures from Srivastava et al. (1999). If not otherwise stated,
the expression “RT structure” refers to the room-temperature structure, while
the “LT structure” indicates the two-fold superstructure at 163 K, as they were
reported by Srivastava et al. (1999).
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Figure 7.5: View of the basic structure of AFB along the b-axis with axes of rotation
of individual ions. Only ions with central atoms at y=0.25 are shown. Be atoms light
gray, N atoms black.

The BeF2−4 complex anion has nearly perfect tetrahedral geometry. The small
deviations from this symmetry are of equal sizes for the RT and incommensurate
structures, while LT structure exhibits slightly larger distortions (Table 7.7). The
modulation hardly affects the geometry (Table 7.8). This implies that the mo-
dulation of the BeF2−4 complex anion can be described as rigid-body translations
and rotations in very good approximation.

A quantitative analysis shows that the modulation of BeF2−4 can be described
as the combined effect of small displacements along ~b and rotations around an
axis in the mirror plane. While the angle of rotation varies with the phase of the
modulation, the direction of this axis is fixed and is not affected by the modulation
(Table 7.9, Fig. 7.5).

The deviations from tetrahedral symmetry are larger for the NH+4 cations than
they are for the BeF2−4 complex anions (Table 7.7). However, the variations of
0.04 Å due to the modulations of the individual N-H bond lengths (Table 7.8) are
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Table 7.7: Summary of the geometric parameters of the crystallographically indepen-
dent complex ions in the incommensurate structure, room-temperature structure and
low-temperature structure. The latter two structures are taken from Srivastava et al.
(1999). dave, dmin and dmax are the average, minimal and maximal distance between
the central atom and the ligand atoms of the complex ions; ∆d=dmax-dmin. α denotes
the angles F-Be-F or H-N-H.

ferroelectric phase incommensurate phase paraelectric phase
temperature 163K 175K 295K
BeF4
dave 1.535 1.5315 1.528
dmin 1.524 1.5251 1.524
dmax 1.550 1.5381 1.535
∆d 0.026 0.0130 0.011
αave 109.5 109.47 109.5
αmin 107.5 108.19 108.2
αmax 112.2 112.15 111.9
∆α 4.7 3.96 3.7
N(1)H4
dave 1.007 0.898 0.980
dmin 0.989 0.857 0.964
dmax 1.012 0.930 1.004
∆d 0.044 0.073 0.040
αave 109.5 109.3 109.5
αmin 105.2 104.2 107.3
αmax 115.4 119.5 115.4
∆α 10.2 15.3 8.1
N(2)H4
dave 1.003 0.901 0.991
dmin 0.971 0.884 0.985
dmax 1.030 0.926 1.000
∆d 0.059 0.042 0.015
αave 109.5 109.4 109.4
αmin 101.1 105.5 104.4
αmax 118.6 113.1 112.8
∆α 17.5 7.7 8.4
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Table 7.8: Selected interatomic distances (Å) and angles (deg.) in the refined structure
of the incommensurate phase.

average min max ∆
Be-F(1) 1.5370(9) 1.5359(9) 1.5381(9) 0.002
Be-F(2) 1.5302(9) 1.5273(9) 1.5331(9) 0.006
Be-F(3) 1.5294(14) 1.5251(14) 1.5334(14) 0.008
N(1)-H(11) 0.928(10) 0.926(9) 0.930(10) 0.004
N(1)-H(12) 0.860(12) 0.857(9) 0.864(12) 0.007
N(1)-H(13) 0.902(16) 0.878(16) 0.919(16) 0.041
N(2)-H(21) 0.884(11) 0.884(11) 0.884(11) 0.000
N(2)-H(22) 0.901(14) 0.898(14) 0.905(14) 0.007
N(2)-H(23) 0.909(16) 0.895(17) 0.926(16) 0.031

F(1)-Be-F(2) 110.52(5) 110.43(5) 110.61(5) 0.2
F(1)-Be-F(3) 108.55(8) 108.19(8) 108.81(8) 0.6
F(2)-Be-F(3) 108.58(8) 108.46(8) 108.73(8) 0.3
F(3)-Be-F(3) 112.06(6) 111.98(6) 112.15(6) 0.2
H(11)-N(1)-H(12) 118.9(11) 118.4(11) 119.5(10) 1.1
H(11)-N(1)-H(13) 106.2(12) 104.2(12) 108.1(12) 3.9
H(12)-N(1)-H(13) 109.4(14) 107.0(14) 111.6(14) 4.6
H(13)-N(1)-H(13) 105.7(14) 105.5(14) 105.8(14) 0.3
H(21)-N(2)-H(22) 105.6(11) 105.5(11) 105.7(11) 0.2
H(21)-N(2)-H(23) 108.2(13) 107.6(12) 108.8(13) 1.2
H(22)-N(2)-H(23) 111.1(14) 109.1(14) 113.1(14) 4.1
H(23)-N(2)-H(23) 112.3(14) 112.1(14) 112.5(24) 0.4

Table 7.9: Characteristics of the rotations of the complex ions. The rotation axes
lie in the mirror plane. The orientations of the axes are given as the oriented angle
between the rotation axis and the lattice vector ~a, with positive angles corresponding
to a rotation towards the positive direction of lattice vector ~c. ρ(A(i)) is the angle, that
corresponds to the rotation of the atom A(i) around the axis between the two most
displaced positions. Atoms A(i) correspond to atoms F(i), H(1i) and H(2i) for BeF4,
N(1)H4 and N(2)H4 tetrahedron, respectively. The angle ρ(H(21)) was not determined,
because the atom H(21) lies almost on the axis of rotation.

BeF4 N(1)H4 N(2)H4
inc. LT inc. LT inc. LT

position of the axis -17.7◦ -20.9◦ -13.6◦ -13.5◦ -76.1◦ -82.8◦

ρ(A(1)) 11.3◦ 17.5◦ 22.2◦ 30.3◦ — —
ρ(A(2)) 10.2◦ 15.2◦ 15.0◦ 28.9◦ 14.8◦ 24.5◦

ρ(A(3)) 10.1◦ 15.5◦ 28.9◦ 34.2◦ 19.3◦ 27.1◦
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much smaller than the displacements up to 0.35 Å of the hydrogen atoms due to
the modulation. Similarly, the variation of angles H-N-H due to the modulation
(up to 4.6◦) are much smaller than the rotations of the whole cations (Tables 7.8
and 7.9). The result is that the largest part of the modulations of the NH+

4 ions is
described by rigid body modulations. The quantitative analysis again shows that
the modulation is a combination of small displacements along ~b and rotations
about a single axis in the mirror plane (Table 7.9, Fig. 7.5).

The modulation of the NH+4 cations affects the N(1)-H(13) and N(2)-H(23)
bond lengths only, as well as a few bond angles involving either H(13) or H(23).
The other bond lengths and angles are almost independent of the modulation
(Table 7.8). The variation of deformations in the LT structure is slightly smaller
for the N(1)H+4 cation, while it is much larger for the N(2)H+4 cation. Especially
the N(2)-H(21) bond length does not vary in the incommensurate structure, while
it results in two distances different by 0.059 Å in the LT structure. These diffe-
rences are significant with respect to the standard uncertainties of the positions in
both structures. We believe that the differences in distortions between the incom-
mensurate and LT structures are related to the development of the spontaneous
polarization in the latter phase.

The structure can be considered to consist of two alternating layers stacked
along ~c (Fig. 7.6). Layer I is centered on z=0, while layer II is centered on z=0.5.
The translations and rotations of the complex ions within the same layer are
so correlated, that the neighboring ions have approximately the same deviations
from average position and orientation at the same value of t. The modulations of
the ions of the second layer are shifted by about 0.25 in t. The result is such, that
at the places of the structure, where the ions of one layer reach their maximal
deviations, the ions of the other layer are in their average positions and vice

versa. The ions in layer I have the largest deviations approximately at t = 0.25
and t = 0.75; the ions in layer II are most displaced around t = 0.0 and t = 0.5.
Because of the commensurateness of the LT structure, each ion adopts only four
different orientations. The value t0=0.875 corresponds to intermediate deviations
of the ions in both layers.

As we will discuss below, the dissection of the structure into layers is strongly
correlated with the modulations of the hydrogen bonds.

7.6.2 Hydrogen bonding scheme

The interactions between the complex anions and cations are governed by ionic
interactions and hydrogen bonds. Changes in the pattern of hydrogen bonds
are believed to be responsible for the phase transitions in AFB (Onodera &
Shiozaki, 1979; Garg & Srivastava, 1979; Srivastava et al., 1999).

The distances H...F as a function of t are shown in Fig. 7.7. We take 2.6 Å
as a limit for the effective bonding interaction between H and F in the present
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Figure 7.6: Perspective view of the basic structure along the b-axis. Dotted lines
separate the layers with correlated modulations of the ions (Section 7.6). Be atoms are
light gray, N atoms black.

structure. There is a gap between the distances below and above this limit. In-
clusion of all distances below this limit is necessary and sufficient to fully connect
the structural units in a 3D network of hydrogen bonds.

The H...F interactions can be roughly separated into two classes: “stable”
and “instable” interactions. The “stable” interactions change only little with the
phase of the modulation. They involve the atoms H(11), H(12), H(21) and H(22),
that lie in the mirror plane. H(11) and H(22) have only one very short distance
to a neighboring F atom. This distance is not influenced by the modulation
at all. These distances represent the strongest hydrogen-bond interactions in
the structure and they remain almost unchanged in all three phases of AFB.
The atoms H(12) and H(21) have three almost equally long distances to fluorine
atoms. These distances are considerably longer than the H(11)...F and H(22)...F
distances and they can be considered weak, but the simultaneous occurrence
of three such interactions in different directions stabilizes the position of the
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Figure 7.7: H...F distances shorter than 2.6 Å as a function of t. a) hydrogen atoms of
the N(1)H+4 ion, b) hydrogen atoms of the N(2)H

+
4 ion. All hydrogen atoms belong to

layer I. The primed hydrogen atoms have symmetry code x1, 1/2-x2, x3, 1/2+x4. Each
curve represents distance to different fluorine atom. The symmetry codes of fluorine
atoms are omitted for clarity.
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hydrogen atoms and is probably responsible for the special behavior of these
atoms. Note, that the H(12) atom rotates considerably less around the rotational
axis of the N(1)H4 tetrahedron than the other atoms, and H(21) lies almost
exactly in the rotational axis of the N(2)H4 tetrahedron (Table 7.9).

The “instable” interactions involving atoms H(13) and H(23) are subject to
large changes of the H...F distance with the phase of the modulation. The result
is that the H(13) and H(23) atoms of one NH+4 ion are alternatively bonded to
F(2) or F(3) atoms of different BeF2−4 anions, depending on the phase of the
modulation. The formation of one very short and one very long H...F distance
for each of the hydrogen atoms H(13) and H(23) will have lower energy than all
distances being of intermediate length, as it is found in the RT structure. The
modulation of these bonds thus appears to be the driving force for the phase
transition.

All the inter-layer hydrogen bonds belong to the “stable” interactions. The
changes in the hydrogen bonding scheme occur only within the layers and the
bonds between the layers are not influenced by the modulation.

In the LT structure, only four points from each curve representing the H...F
distance are realized. In each “instable” interaction, two of the four points re-
present the stronger H...F interaction and two the weak or broken interaction.
However, no general distance limit can be defined, that separates the stronger
and weaker interactions within the modulated distances. The limit 2.1 Å used by
Srivastava et al. (1999) yields 13 strong hydrogen bonds involving four crystallo-
graphically independent ammonium ions, but these bonds involve both stronger
and weaker H...F bonds on the H(23)...F(3) curve, and neglect one of the shorter
distances on the H(23)...F(1) curve. Obviously, it is inappropriate to reduce the
description of the hydrogen-bond interactions in the LT structure of AFB to a
simple categorization of the bonds to strong and weak based only on the distance
limit.

7.6.3 The ferroelectric phase transition

The superspace description reveals a striking similarity between the incommen-
surate and the LT structures. The phases of the first harmonic modulation func-
tions in the two structures are almost equal. The amplitudes of these modulation
functions in the LT structure are approximately two times larger (Tables 7.3 and
7.5). The LT structure also contains second-order harmonic displacements, that
are responsible for the ferroelectricity, as is demonstrated by following argument:
All central atoms of the complex ions lie on special positions in superspace mirror
planes. Symmetry restricts the first-order harmonic modulations of these atoms
to shifts along the y-axis. The vectors representing the dipole moments of the
NH+4 and BeF2−4 complex ions lie also in the mirror planes and they are subject
to the same symmetry restrictions. As a consequence, the first-order modulation
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cannot change the z-components of the dipole moments of the individual complex
ions, nor can it create a z component of the dipole moment by relative shifts of
the NH+4 and BeF2−4 ions. However, the small spontaneous polarization in the LT
structure is along ~c, because this is the polar axis of the space group of the LT
structure. Consequently, second-order harmonic modulations, that include dis-
placements along ~a and ~c, are necessary to describe the spontaneous polarization.

Second-order harmonic modulation amplitudes have not been found in the
incommensurate structure, although neither the MEM nor the refinements could
disprove the possibility of small second-order amplitudes. To analyze this further
we have computed the intensities of second-order satellites for a model com-
posed of the modulation functions of the incommensurate structure combined
with second-order harmonic modulation functions derived from the LT structure
by applying a factor of 0.5 (Table 7.5). The positions of the second-order satel-
lites are close to the main reflections, and they are present in the scans made to
measure the intensities of the main reflections. Inspection of all scans did not
reveal any observable second-order satellite (Section 7.2), while for some of these
reflections they should have been visible, if the second-order harmonic modula-
tions corresponding to the extrapolation from the LT structure would have been
present (Fig. 7.8). The absence of any second-order satellites in our experiment
implies that the modulation of the incommensurate structure does not contain a
second-order harmonic contribution, or at least that these amplitudes are much
smaller than in the LT structure.

Any spontaneous polarization of the incommensurate phase is forbidden by
the centrosymmetric superspace group. Furthermore, the absence of observable
second-order harmonic modulation implies that even the z-components of the
local dipole moment of the basic unit cells are very close to zero. This find-
ing is in contradiction with the model proposed by Iizumi et al. (1977) for the
phase transition in potassium selenate and applied to AFB by Iizumi & Gesi
(1977). These authors propose, that the incommensurate phase contains a mo-
dulated local dipole moment, that, at the lock-in transition, orders to form the
spontaneous polarization in the commensurate phase. Our analysis of the incom-
mensurate structure indicates that the local dipole moments are extremely small
or absent in the modulated structure and that the dipole moment responsible for
the observed spontaneous polarization is formed at the lock-in transition.

If it is further considered that the first harmonics are sufficient to stabilize the
pattern of hydrogen bonds (Section 7.6.2), we obtain following possibilities of the
mechanisms the phase transitions: The transition at Ti is most probably governed
by changes in the hydrogen bonding, in accordance with previous suggestions
(Onodera & Shiozaki, 1979; Garg & Srivastava, 1979; Srivastava et al., 1999).
The formation of the spontaneous polarization (forbidden in the incommensurate
structure) might be the driving force for the transition at Tc. Alternatively, the
rearrangements of the hydrogen bonds might also be responsible for the lock-in
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Figure 7.8: Experimental (filled squares) and simulated (open circles) profiles through
the positions of the reflections a) -5 0 13 0 and -6 0 13 2 and b) -1 5 0 0 and -2 5 0 2. Po-
sitions of the main reflections are located in the middle of the scans. Simulated profiles
are calculated as a sum of the experimental profile and a Lorenzian curve centered at the
position of the second-order satellite and with intensities predicted from hypothetical
incommensurate structure model including 2nd-order harmonics (Section 7.6.3). The
reflection -1 5 0 0 is systematically extinct. The peaks corresponding to the second-
order satellites are clearly visible in the simulated scans.

transition at Tc, and the spontaneous polarization would be a side-product of
this rearrangement. However, the absence of significant local dipole moments
in the incommensurate structure and the similarity of the overall pattern of the
hydrogen bonding scheme in the incommensurate and LT structures suggest that
the spontaneous polarization is important for the stabilization of the LT lock-in
phase, thus making the first mechanism the most probable one.

7.7 Conclusions

The atomic structure of the incommensurately modulated phase of ammonium
tetrafluoroberyllate has been determined at T=175 K. The transition from the
paraelectric phase to incommensurate phase is found to be due to rearrangements
in the hydrogen bonding scheme. The structure of AFB can be described as
an alternate stacking of two layers along ~c. In the incommensurate structure,
H...F distances between the layers remain constant at their values in the RT
phase. Within the layers, some of the H...F distances strongly vary between
values corresponding to strong and very weak hydrogen bonds. This change is
the driving force for the phase transition at Ti.

A microscopic polarization is found to be correlated with the lock-in transition
rather than to be an intrinsic property of the incommensurate phase. This finding
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is in variance with the mechanism proposed by Iizumi & Gesi (1977). In this
mechanism local dipole moments would already be present in the incommensurate
structure. At Tc these dipoles would rearrange to form the LT structure with a
spontaneous polarization. Instead, we do not find evidence for a local polarization
in the incommensurate structure.

Two mechanisms can be envisaged for the transition at Tc. The first is further
rearrangements in the hydrogen bonding scheme, with the spontaneous polariza-
tion as an “accidental” corollary. The second, more likely mechanism is that the
development of the spontaneous polarization is the driving force for the lock-in
transition.

Interesting questions pertaining to the mechanisms of the transitions remain.
For example, it could be possible, that the second-order harmonic modulation
(and consequently local dipole moments) develops in the incommensurate phase
close to Ti, or that the second-order harmonics develop as critical fluctuations.
Whether this is true or not can be investigated by high-resolution diffraction
experiments towards measuring the temperature dependence of the second-order
satellites, as it is possible at the third generation synchrotron sources.
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Chapter 8

Conclusions

This thesis discusses several aspects of the combination of the Maximum Entropy
Method (MEM) for the reconstructions of the electron density with the super-
space approach to the description of structures of aperiodic crystals. The MEM
in superspace provides a tool for a parameter-free reconstruction of the shapes
of the modulation functions of the atoms in the aperiodic structures. It is shown
that the MEM in superspace provides a parameter-free reconstruction of the mod-
ulation functions with sufficient accuracy. The opportunities offered by the new
method as well as its limitations and possible shortcomings are investigated.

The MEM in superspace has been applied to diffraction data of several com-
pounds. The computer program BayMEM was developed for this purpose.
The first version of BayMEM was produced by Schneider (2001). BayMEM al-
lows electron densities of the ordinary 3D structures and the superspace electron
densities of the aperiodic structures to be reconstructed using the same general
principles. The program has been extended by adding features improving its
versatility and accuracy of the results. The improvements include:

• Attaching of the set of subroutines MemSys5 to BayMEM (Gull & Skilling,
1999a; Section 2.2). BayMEM with MemSys provides MEM reconstruc-
tions that are closer to the ideal MEM solutions than the Sakata-Sato al-
gorithm (Section 2.2.4). Moreover, the convergence of MemSys5 is more
reliable and more robust than the convergence of the Sakata-Sato algorithm.

• Implementation of the method of the Generalized F-constraints (Chapter 3)
and the static weighting (Section 2.3). These methods suppress the oc-
currence of large “outliers” in the histograms of the normalized residuals
|Fobs − FMEM |/σ(Fobs) and produce MEM densities with less artifacts.

• Implementation of the G-constraints (Section 2.5). G-constraints are con-
straints on structure-factor amplitudes or on groups of structure-factor am-
plitudes. Their use allows to include those intensities in the MEM opti-
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mization, which can not be measured individually or for which phases are
not available.

• Implementation of the method of the Prior-derived F-constraints (Chap-
ter 4). This method produces accurate, virtually artifact-free MEM recon-
structions provided a sufficiently informative prior electron density is used.

• Implementation of the two-channel entropy (Papoular et al., 1996). With
this method, BayMEM is able to reconstruct densities that have both posi-
tive and negative regions, like the difference electron densities ρobs− ρmodel.

The second major computer program EDMA is a software tool for analy-
sis of the electron densities in arbitrary dimension (Section 2.9; Appendix B).
The program analyzes the MEM electron density and extracts quantitative infor-
mation about the atoms according to Bader’s formalism “Atoms in molecules”
(Bader, 1990). This includes the positions of the atoms, atomic charges, atomic
volumes and dipole moments. By the higher-dimensional electron densities, in-
formation provided by EDMA can be used for an accurate determination of the
shapes of the atomic modulation functions.

Two new variants of the constraints in the MEM have been developed in
order to solve the problems with artifacts in the MEM reconstructions. The two
methods are the Generalized F-constraints (Chapter 3) and the Prior-derived F-
constraints (Chapter 4). The concept of the Generalized F-constraints is based
in the observation, that the standard F-constraint is not sufficiently strong to
constrain the histogram of the normalized residuals of the structure factors to the
expected Gaussian shape. Higher moments of the distribution of the normalized
residuals were therefore used as the constraint in the MEM calculations. With
these constraints significantly improved histograms were obtained. The efficiency
of the new constraints was tested and justified in a series of calculation on a
simulated noisy datasets of the oxalic acid dihydrate. A series of calculations
with various resolutions, various amounts of noise and various constraints also
allowed to infer some general problems of the MEM reconstructions, namely the
artifacts, that occur independently of the type of constraint and independently
of the amount of noise in the data. These artifacts have large amplitudes, if
a flat prior electron density is used. If a procrystal prior density is used, the
artifacts are strongly reduced, but they still assume amplitudes comparable with
the bonding effects in the electron density and thus obscure the use of the MEM
reconstructions in the accurate charge-density studies. In Chapter 4 the source of
these artifacts is identified to be the tendency of the MEM to estimate incorrectly
those structure factors, that are not included in the experimental dataset. In
Chapter 4, it is shown in that the missing structure factors can successfully be
replaced by the structure factors derived from the procrystal electron density,
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that is known from the standard structure refinement. If the structure factors
derived from the procrystal prior electron density (the Prior-derived F-contraints)
are used as additional constraints in the MEM calculation, the result is free of
sharp artifacts and the quality of the reconstruction of the electron density is
comparable with the results of multipole refinements.

To test the accuracy of the MEM in superspace, the method was applied to
the dataset of the misfit-layer composite structure of (LaS)1.14NbS2. For this
dataset a satisfactory structure model was known from the standard superspace
refinement and the results of the MEM could be compared with this model.
MEM calculations were performed on the experimental structure factors and
on the structure factors derived from the model. In the latter case, the MEM
should reproduce the model. Indeed, it has been shown, that the MEM on the
model structure factors reproduces the model modulation functions with accuracy
better that 10% of the pixel size of the grid, on which the electron density was
sampled. The differences between the MEM on simulated and experimental data
were small, thus confirming the appropriateness of the structure model based on
modulation functions as a sum of two harmonics. However, differences between
the MEM result and the model modulation functions have been found, especially
for the modulation functions of La, that illustrate, that the MEM reconstruction
is not restricted to the features already present in the model and that it is possible
to reconstruct modulation functions that differ from the model.

The structure of the high-pressure phase III of Bi provided a prominent e-
xample illustrating the advantages of the MEM in superspace over the standard
structure refinements (Chapter 6). Bi-III forms a complex channel composite
structure at pressures between 2.8 and 7.7 GPa. The structure has been first
solved in (3 + d)D space using the standard superspace refinement. The refine-
ment turned out to be difficult, because the large number of parameters necessary
to describe the modulation could not be reliably refined due to the poor quality of
the data, which was an inevitable consequence of the difficulties with the diffrac-
tion experiment at high pressures. The MEM in superspace was applied to the
diffraction data of Bi-III to extract more information about the modulation. The
modulation functions extracted from the MEM electron density revealed a block-
wave-like shape of the modulation function of the Bi atom of the host structure,
that indicates shifts of the atom between two stable environments rather than
smooth harmonic variation of the position indicated by the modulation function
from the standard refinement. Secondly, the MEM modulation function of the
Bi atoms in channels allowed to better understand the nature of the most promi-
nent feature of the modulated structure — the occurrence of the pairs of Bi atoms
along the channels. The MEM electron densities also showed that it is necessary
to describe the thermal motion of the atoms by the 3rd-order anharmonic displace-
ment parameters. This structure description is the first accurate determination
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of an elemental composite structure from the single-crystal diffraction data.

The ammonium tetrafluoroberyllate (NH4)2BeF4 forms an incommensurately
modulated structure in a narrow range of temperatures between 173 and 178 K.
The intensities of the reflections of this phase have been measured using syn-
chrotron radiation. Only satellites of order 1 were observed. The structure was
solved and refined in superspace. The building units of the structure — the BeF2−4
and NH+4 complex ions — were found to be relatively rigid. The modulation com-
prises mainly the relative rotations and shifts of the building units. The structure
has been compared to the known two-fold superstructure of (NH4)2BeF4, that is
stable below 175K. The low-temperature structure has been described in super-
space as a commensurately modulated structure. With aid of this description the
close relationship between the two structures has been found. The MEM was ap-
plied to the incommensurate structure to test the appropriateness of the refined
harmonic structure model. The MEM has shown that the harmonic model is very
accurate. The low-temperature structure is ferroelectric. It has been proposed
that the shifts responsible for the ferroelectricity are present already in the mod-
ulated structure and that they merely order at the phase transition to produce
the macroscopic spontaneous polarization. The detailed analysis of the measured
dataset and of the structure revealed that this model is not correct and that the
shifts responsible for the spontaneous polarization occur at the phase transition
from the modulated to the ferroelectric phase.

The principal result of this thesis is that the MEM in superspace was esta-
bilished as a reliable tool for the structure solutions of the modulated structure.
Individual chapters present various aspects of the MEM applied to reconstruc-
tions of the electron densities in general and of the superspace electron densities
in particular. Together they form a framework, that allows to use the MEM
in superspace to extract novel information from the diffraction data of both the
periodic and aperiodic structures, that cannot be obtained from the structure
refinements. The results presented here also point towards possible misinter-
pretations of the MEM electron densities, and offers procedures to avoid them.
Misinterpretations by several authors have lead to criticism of the use of MEM,
that prevented the MEM from being much more widely used in contemporary
crystallography. I therefore believe that the present results represent not only
an important progress in the investigation of the incommensurately modulated
structures, but also a contribution to a wider acceptance of the MEM among
crystallographers in general.



Kapitel 9

Zusammenfassung

Die Maximum Entropie Methode (MEM) ist eine statistische Methode, die zur
parameterfreien Bestimmung beliebiger “Bilder” aus unvollständigen Daten ange-
wandt werden kann. Sie kann in der Kristallographie benutzt werden um Elek-
tronendichten im Superraum, die in mehr als drei Dimensionen definiert sind,
aus den Röntgenbeugungsdaten aperiodischer Kristalle zu rekonstruieren. Die
Aufgabe des Projektes, in dessen Rahmen diese Arbeit entstanden ist, war es
die Methode “MEM im Superraum” zu entwickeln und sie zur Lösung real-
er Probleme zu verwenden. Diese Arbeit behandelt die Weiterentwicklung des
Programms BayMEM zur Anwendung der MEM im Superraum (erste Version
Schneider, 2001, sowie die Entwicklung neuer Methoden in der MEM und die An-
wendung der MEM zur Bestimmung modulierter Strukturen aus experimentellen
Beugungsdaten.

Nach der Einführung in die Kristallographie im Superraum und in die Grund-
lagen der MEM werden die im Rahmen dieser Arbeit entwickelten Verbesserun-
gen des Programms BayMEM beschrieben. Das Programmpaket MEMSys und
wurde in das Programm integriert. Dies ermöglicht es, mit dem Cambridge Algo-
rithmus zu arbeiten und dadurch bessere Ergebnisse zu erzielen, als es mit dem
Sakata-Sato Algorithmus möglich ist. BayMEM wurde mit Methoden erweitert,
die zur Elimination oder zur Minimierung von Artefakten in den Elektronendicht-
en dienen. Es handelt sich dabei um “Two-channel Entropy” (Zwei-Kanal En-
tropie; Papoular et al., 1996), “Static Weighting” (Statische Gewichtung; De Vries
et al., 1994), “Generalized F-constraints” (Verallgemeinerte F-Constraints) und
“Prior-derived F-constraints” (von der Referenzdichte abgeleitete F-Constraints).

Zwei neue Methoden wurden entwickelt, mit denen die Qualität der von der
MEM produzierten Elektronendichten wesentlich verbessert wurde. In der Me-
thode “Generalized F-constraints” wird die klassische Zwangsbedingung

∑

i (

|Fobs( ~Hi)− FMEM( ~Hi)|/σ( ~Hi)
)2

durch eine Zwangsbedingung mit höherem Ex-
ponenten ersetzt. Die klassische Zwangsbedingung führt dazu, dass in der Verteilung
von |Fobs( ~Hi)−FMEM( ~Hi)|/σ( ~Hi) zu grosse Werte (sog. “Outliers”) auftreten, die
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zu verrauschten Elektronendichten führen. Die Anwendung der “Generalized F-
constraints” löst das Problem der Outlier und somit werden die Elektronendichten
glatter und genauer.

Die Methode “Prior-derived F-constraints” behebt eine andere Art von Fehler
in den MEM Elektronendichten. Die MEM extrapoliert Strukturfaktoren, deren
Werte nicht experimentell bestimmt worden sind. Steht keine Information über
die fehlenden Strukturfaktoren zur Verfügung, dann ist diese Extrapolation die
beste Schätzung, die anhand der Daten gemacht werden kann. Wenn aber die
Struktur bekannt ist und die MEM nur zur Bestimmung der Bindungselektronen-
dichte benutzt wird, ist es möglich statt der fehlenden experimentellen Struktur-
faktoren die berechneten Strukturfaktoren aus dem Strukturmodell zu benutzen.
Bei der richtigen Anwendung dieser Methode wird das Hochfrequenzrauschen
in den Elektronendichten minimiert und Bindungselektronendichten können mit
hoher Genauigkeit bestimmt werden.

Um die Genauigkeit und Auflösung der MEM im Superraum zu ermitteln,
wurde die Methode auf Beugungsdaten eines (LaS)1.14NbS2 Kompositkristalls
angewendet. Ein genaues Strukturmodell für diese Verbindung war bekannt und
die Ergebnisse der MEM konnten mit dem Modell verglichen werden. Anhand der
simulierten Daten hat sich gezeigt, dass die MEM im Superraum eine Genauigkeit
erreichen kann, die besser als ein Zehntel der Pixelgröße ist. Die Anwendung der
MEM auf die experimentellen Daten hat das Strukturmodell bestätigt.

Die Kristalstruktur der Hochdruckphase III des Bismuts wurde durch die
Kombination aus Kristallstrukturverfeinerung und MEM im Superraum bestimmt.
Bismut hat in der Phase III bei einem Druck zwischen 2.8 und 7.7 GPa eine
Kompositstruktur mit zwei Teilsystemen. Das erste Teilsystem bildet ein dreidi-
mensionales Gerüst mit Kanälen, in denen die Atome des zweiten Teilsystems in
Form atomarer Ketten eingebaut sind. Die Struktur weißt eine stark anziehende
Wechselwirkung zwischen den Atomen den beiden Teilsysteme auf. Benachbarte
Bismutatome haben in den Ketten keine gleichmäßigen Abstände, sondern sie
bilden verbundene Paare. Die MEM hat es ermöglicht die Form der Modulation-
funktionen im Detail zu bestimmen, was zum besseren Verständnis der Struktur
geführt hat.

Ammonium Tetrafluoroberylat (NH4)2BeF4 hat im engen Temperaturbere-
ich zwischen 173 und 178 K eine modulierte Kristallstruktur. Diese Struktur
wurde aus Synchrotronbeugungsdaten bestimmt. Die Struktur ist aus (BeF4)

2−-
und (NH4)

+-Ionen aufgebaut. Durch die Modulation wird die interne Geome-
trie der (BeF4)

2−- und der (NH4)
+-Ionen nur wenig beeinflusst, vielmehr be-

wirkt sie Verschiebungen und Drehungen der Ionen. Bei Temperaturen unter-
halb von 173 K besitzt Ammonium Tetrafluoroberylat eine zweifache Überstruk-
tur. Diese Tieftemperaturstruktur ist ferroelektrisch. Die modulierte Struktur
ist dieser Tieftemperaturstruktur sehr ähnlich. Es wurde vermutet (Iizumi &
Gesi, 1977), dass die Verschiebungen, die für die spontane Polarisation verant-
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wortlich sind, schon in der modulierten Struktur vorhanden sind. Eine detail-
lierte Analyse der Struktur und der Messdaten hat jedoch gezeigt, dass dies nicht
der Fall ist und dass die strukturellen Verschiebungen, die zur Ferroelektrizität
der Tieftemperaturstruktur führen, erst beim Phasenübergang in die Tieftem-
peraturstruktur auftreten. Die MEM wurde auf diese Struktur angewendet, um
eventuelle Abweichungen der Modulationfunktionen von den in der Kristallstruk-
turverfeinerung ermittelten Formen zu entdecken. Es hat sich gezeigt, dass die
Modulation perfekt harmonisch ist und dass sie vom Modell sehr gut beschrieben
wird. Durch die Anwendung der MEM auf simulierte Daten wurde nachgewiesen,
dass die Vollständigkeit des Datensatzes unbedingt nötig ist um schwache Effekte
in der Modulation zu bestimmen.

Diese Arbeit hat bewiesen, dass durch die Anwendung der MEM im Super-
raum neue Erkenntnisse über modulierte Strukturen gewonnen werden können,
die man mit den üblichen Verfeinerungsmethoden nicht erzielen kann. Die Ergeb-
nisse dieser Arbeit haben gezeigt, dass die MEM im Superraum eine zuverlässige
Methode zur parameterfreien Bestimmung der Elektronendichten von modulierten
Strukturen ist und dass die Analyse der von der MEM berechneten Elektronen-
dichten zum besseren Verständniss modulierter Strukturen führt.
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Appendix A

BayMEM - A computer program
for application of the Maximum
Entropy Method in
reconstructions of electron
densities in arbitrary dimension

User manual

A.1 Introduction

The Maximum Entropy Method (MEM) is a versatile statistical method for re-
construction of images of virtually any type. One of its applications is the re-
construction of the electron density distributions from the X-ray diffraction data.
As a special case, combination of the MEM and superspace approach offers new
possibilities for studies of the modulation functions of modulated structures.

BayMEM is a computer program that has been developed for applications
of the MEM in charge-density reconstructions of both ordinary and modulated
crystal structures.

This manual is intended to provide practical guide to the usage of BayMEM;
it will not focus on the theory of the MEM and on details of different algorithms
and types of MEM available in the program. The reader can find the theore-
tical information in special literature: The basic foundations of the MEM are
described in Jaynes (1996). A collection of articles encompassing the wide va-
riety of applications of the MEM in science was is compiled in von der Linden
et al. (1998). The various applications of the MEM to the crystallographical
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problems are described in a review article by Gilmore (1996). The description
of the Sakata-Sato algorithm is given in Sakata & Sato (1990). The Cambridge
algorithm was first published by Skilling & Bryan (1984). The commercial set
of subroutines MEMSys5, that implements the Cambridge algorithm and that
BayMEM provides interface with, has its own extensive user manual (Gull &
Skilling, 1999b). The first version of BayMEM has been described in a PhD.
thesis by Schneider (2001). Further developments of BayMEM are described in
Chapter 2 of this thesis. An article on the theory of MEM in superspace with de-
scription of BayMEM and examples of application is published by van Smaalen
et al. (2003).

A variety of methods exist, that can enhance the performance of the MEM.
Many of them are available in BayMEM. Among them is the concept of static
weighting (De Vries et al., 1994), the generalized F-constraints (Chapter 3), the
two-channel entropy formalism (Papoular et al., 1996), and the prior-derived F-
constraints (Chapter 4).

A.2 Basic operation of BayMEM

The operation of BayMEM can be considered to be split into following steps.

i. Reading the data: The data from the input file is read and checked for
consistency. Dynamic arrays for holding the data are allocated. The format
of the input file is described in Section A.5.

ii. Initializing the MEM iteration: Before start of the iteration, three essential
steps are necessary. First, the prior density is created or read from an
external file. Second, the symmetry of the pixel grid is analyzed and the
asymmetric unit is found. And finally, the set of unique reflections given in
the input file is expanded into the whole sphere to facilitate Fast Fourier
Transform performed later during the iteration.

iii. The iteration: The heart of the program. More about the iteration process
will be described in following subsections. BayMEM can work with two dif-
ferent MEM algorithms. The Sakata-Sato algorithm (Sakata & Sato, 1990)
has been implemented as a part of the code of BayMEM. The MEMSys5

set of subroutines, that implements the Cambridge algorithm (Skilling &
Bryan, 1984), is commercial and must be purchased separately (Gull &
Skilling, 1999a). BayMEM provides interface with the MEMSys5 pac-
kage. Issues specific for the two algorithms are discussed in Section A.3.

iv. Writing the output: After the iteration has been finished, BayMEM writes
out the electron density and other files containing information about the
MEM calculation. The output is described in Section A.6.
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These four steps are performed automatically by the program. The task of
the user is just to prepare the input file.

A.3 Algorithms

A.3.1 Sakata-Sato algorithm

The Sakata-Sato algorithm is based on an approximate solution of the MEM
equation (Sakata & Sato, 1990; Kumazawa et al., 1995; Section 1.2.3). The
crucial point in the performance of the algorithm is selection of the value of the
Lagrange multiplier λ. In the zeroth-order single-pixel approximation used in
the Sakata-Sato algorithm the value of λ is not critical for the convergence of
the algorithm, unless it is too large. Too large values lead to divergence of the
algorithm. On the other hand, too small values of λ only decrease the speed
of convergence. Selection of the value of λ is user’s responsibility and does not
follow from the theory.

BayMEM offer two modes of handling λ. The first mode is the fixed-λ mode.
The user selects the value of λ at the beginning of the iteration and the value is
fixed during the iteration. If divergence is encountered in this mode, BayMEM

terminates. The second mode is called the automatic λ-control. The starting
value of λ is increased by an arbitrary factor fi every cycle (currently fi = 1.1).
If divergence is encountered, λ is decreased by a factor fd (currently fd = 0.75)
and the cycle is repeated. At the same time, the factor fi is lowered (currently
fnewi = (f oldi + 1)/2), so that the increments of λ are not so large in following
cycles.

In the majority of cases, the automatic λ-control gives the best possible per-
formance of the Sakata-Sato algorithm. However, in some exceptional cases the
automatic λ-control fails and divergence occurs, that cannot be avoided by any
decreasing of λ. In those cases, the only solution is to turn-off the automatic
λ-control and set λ to a fixed value. See description of the keyword settings

(Section A.5.3) for information on how to select different λ-modes.

The Sakata-Sato algorithm works well in most cases. However, its convergence
is not guaranteed. Sometimes, the speed of the convergence becomes so low, that
the calculation must be stopped before the final value is reached. If the difference
between the current value of the constraint and the desired stopping value is not
large, the problem is usually not dramatic, because the electron density changes
only very little in the last stages of the iteration. Note also, the some problems
with convergence are not due to the algorithm, but due to inconsistencies in the
input data. See Section A.8 for description of possible problems.
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A.3.2 MemSys5 package

MemSys5 package is a general MEM system applicable to any MEM problem,
not only crystallographic. The package is commercial and must be purchased
separately (Gull & Skilling, 1999a). The interface with MemSys5 is provided
as a part of BayMEM. The interface is written so as to avoid modifications to
the code of MemSys5 package as much as possible. However, changes could
not be avoided entirely. These changes have to be made in the source code of
the MemSys5 package; without them BayMEM will not work with MemSys5

properly. The changes are listed here. The line numbers refer to the version 1.2
of the MemSys5 package, released on September 6th, 1999.

• All declarations of the floating-point numbers should be changed from
REAL to DOUBLE PRECISION. This can be done by replacing all occur-
rences of text ’REAL ’ with text ’DOUBLE PRECISION ’ (note the ending
spaces!) in files memsys5.for, vector.for and memsys.inc.

• file memsys5.for, line 896: replace code

IF((METHD1.LT.1).OR.(4.LT.METHD1)) STOP ’ Illegal METHOD(1) value’

by code

IF((METHD1.LT.1).OR.(5.LT.METHD1)) STOP ’ Illegal METHOD(1) value’

• file memsys5.for, line 3409: Between lines 3409 and 3410:

CALL MENT4(ST,DEF, PS,PGRADS,PSUM)

END IF

this code must be inserted:

ELSEIF (METHD1.EQ.5) THEN

CALL MENT5(ST,DEF, PS,PGRADS,PSUM)

• file memsys5.for, subroutine MENT1: Replace the code of the subroutine
MENT1 (between lines 3418 and 3440) by this code:

SUBROUTINE MENT1(ST,DEF,S,GS,SUM)

* One block of standard entropy

IMPLICIT CHARACTER (A-Z)

DOUBLE PRECISION ST(0:*),DEF,S,GS,SUM

DOUBLE PRECISION ZERO,A,C

PARAMETER (ZERO=0.0D0)

IF (DEF.GT.ZERO) THEN

CALL MFILL(ST,2,DEF)

CALL MMUL(ST,2,4,2)
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CALL MSUM(ST,2,A)

CALL MDIV (ST,1,4,2)

CALL MEXP(ST,2,2)

CALL MSMUL(ST,2,DEF,2)

ELSE

CALL MMUL(ST,3,4,2)

CALL MSUM(ST,2,A)

CALL MDIV (ST,1,4,2)

CALL MEXP(ST,2,2)

CALL MMUL(ST,2,3,2)

ENDIF

CALL MDOT(ST,2,4,SUM)

C=A/SUM

CALL MSMUL(ST,2,C,2)

CALL MDOT(ST,2,1,C)

S=SUM-A-C

CALL MMUL(ST,1,1,1)

CALL MDIV(ST,2,4,2)

CALL MSUM(ST,2,SUM)

CALL MDOT(ST,2,1,GS)

CALL MSQRT(ST,2,1)

CALL MMUL(ST,2,4,2)

END

• file memsys5.for, line 3441: Insert code of subroutine MENT5 here:

SUBROUTINE MENT5(ST,DEF,S,GS,SUM)

* One block of standard entropy without normalization

IMPLICIT CHARACTER (A-Z)

DOUBLE PRECISION ST(0:*),DEF,S,GS,SUM

DOUBLE PRECISION ZERO,EPS,A,C

INTEGER I

PARAMETER (ZERO=0.0D0,EPS=1.0D-13)

IF (DEF.GT.ZERO) THEN

CALL MFILL(ST,2,DEF)

CALL MMUL(ST,2,4,2)

CALL MSUM(ST,2,A)

CALL MDIV (ST,1,4,2)

CALL MEXP(ST,2,2)

CALL MSMUL(ST,2,DEF,2)

ELSE

CALL MMUL(ST,3,4,2)
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CALL MSUM(ST,2,A)

CALL MDIV (ST,1,4,2)

CALL MEXP(ST,2,2)

CALL MMUL(ST,2,3,2)

ENDIF

CALL MDOT(ST,2,4,SUM)

CALL MDOT(ST,2,1,C)

S=SUM-A-C

CALL MMUL(ST,1,1,1)

CALL MDIV(ST,2,4,2)

CALL MSUM(ST,2,SUM)

CALL MDOT(ST,2,1,GS)

CALL MSQRT(ST,2,1)

CALL MMUL(ST,2,4,2)

END

• file memsys5.for, lines 3661-3663: Replace code

5 CALL MSUB(ST,21,25,24)

CALL MMUL(ST,24,22,24)

CALL MDOT(ST,24,24,PLHOOD)

with code

5 CALL MSUB(ST,21,25,24)

CALL MMUL(ST,24,22,24)

CALL MMUL(ST,24,31,28)

CALL MDOT(ST,28,28,PLHOOD)

Following changes are not necessary for proper performance of the program,
but they remove some unnecessary operations on the data and thus speed up the
operation of the program:

• file vector.for, lines 540-563: the original code between lines 540 and 563:

IF (MORE.EQ.0) THEN

* Initialise and count disc buffers if using dynamic block sizes

MORE=1

NBUF=0

...
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* held on disc

CALL VSTACK(1,KCORE)

IF (ACTION) CALL UFETCH(ST,KCORE,KB(J)+IOFF,LENGTH)

ENDIF

ENDIF

should be replaced by:

KCORE=KB(J)

LENGTH=KL(J)

• file vector.for, lines 567-589: the original code between lines 567 and 589:

* If using dynamic block sizes instead of fixed LBLOCK ..........

IF (MORE.EQ.1) THEN

* Calculate block size, and set up stack

LBLOCK=KL(J)

IF (NBUF.GT.0) THEN

LBLOCK=MIN(LBLOCK,LWORK/NBUF)

...

* if held on disc

IF (ACTION) CALL USTORE(ST,KCORE,KB(J)+IOFF,LENGTH)

CALL VSTACK(-1,KCORE)

ENDIF

ENDIF

* Any more elements?

IF (IOFF+LENGTH.GE.KL(J)) MORE=0

should be completely removed.

Operation of MemSys5 is extensively described in the MemSys5 user manual
(Gull & Skilling, 1999b). The Cambridge algorithm guaranties convergence to the
proper MaxEnt solution under normal circumstances. If the computation with
Cambridge algorithm does not converge, the reason is usually in the input data
and the data should be checked for errors (Section A.8). However, the MemSys5

set of subroutines is complex and relatively rigid, and therefore difficult to adapt
to non-standard problems. For this reason, some variations of the constraints are
not implemented in BayMEM with the Cambridge algorithm. This concerns the
G-constraints (Section 2.5) and the generalized F-constraints (Chapter 3). These
constraints work only with the Sakata-Sato algorithm.
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Important: MemSys5, version 1.2, does not have a built-in option for nor-
malization of the MEM distribution, although this option is described in the user
manual. Therefore, the normalization must be achieved by adding the F(000)
structure factor to the dataset with value equal to the number of electron given
in the input file. For details on handling the F(000) see description of the keyword
fbegin - endf (Section A.5.3).

A.4 Technical details

A.4.1 Programming language and system requirements

The program BayMEM is written in the programming language Fortran 90. It
has been compiled and tested on two computers:

• Compaq AlphaStation ES40 with 500MHz 64-bit Alpha EV6 RISC proces-
sor and with Compaq Fortran Compiler V5.5-1877-48BBF

• Silicon Graphics Fuel with 500MHz IP35 MIPS R14000 processor and with
MIPSPro Fortran compiler V7.4

The program obeys Fortran 90 standards and should therefore be compilable with
any F90 compiler. The program does not have any special system requirements.
It does not use graphical interface and the input can be edited with any plain
text editor such as vi, nedit or emacs. However, it should be noted that the
requirements for the RAM are quite high, in order of GB for large problems.

A.4.2 Execution

The program is executed with command

BayMEM input filebase [ncycles]

where input filebase is the name of the ASCII file containing input para-
meters (see Sections A.5.2, A.5.3 and A.5.4) without the extension .BayMEM.
The extension .BayMEM is automatically added by the program; every input file
must have this extension. If the input filebase is omitted, the program will
prompt for it interactively. The optional parameter ncycles defines the maximal
number of MEM iterations. After BayMEM performs ncycles iterations, it
stops regardless of the degree of convergence of the job. If ncycles is omitted,
the value MAXCYCLES from the module GlobalDefinitions in file Variables mod.f90
is used (currently MAXCYCLES = 100000).
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A.5 Specification of input

A.5.1 Types of input

There are two types of input. The basic input is the ASCII input file: it contains
all the necessary parameters of the BayMEM run. In following sections, the
expression “input file” means always the ASCII input file. The second type is a
file containing the reference electron density (prior). This input is used only if
the keyword inputdensity has another value than flat. Currently, BayMEM

supports electron density files in three different formats (Section A.6.1). The file
with the reference electron density is referred to as a “prior density file” or “prior
density” in following text.

A.5.2 Format of the ASCII input file

The input file is a free-format file based on keywords. Each keyword represents
a specific parameter of the MEM calculation and must be given a value.

Multiple spaces anywhere in the file are handled as a single space. If the sign
’#’ or ’!’ occurs anywhere in the line, the rest of the line after this sign is
treated as comment and not interpreted. Blank lines anywhere in the input file
are ignored. The length of the interpreted part of the line is 132 characters, any
text exceeding this length is ignored.

A.5.3 Specification of keywords

There are two basic types of keywords. The first type is followed by one or more
values on the same line:

keyword value1 [value2 value3...]

The second type has the form:

initial keyword

line 1

line 2

...

final keyword

Each line may contain one or more values.
The name of the keyword of the first type is a single word without spaces.

The name of the keyword of the second type is a pair of initial and final word
(separated by a hyphen in the following text).
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Each value can be a constant of type real, integer or character. The type
of the parameters and their allowed values are specified. Alternative values are
separated by slashes.

The keywords are either compulsory or optional. The compulsory keywords
must be specified for the analysis to proceed. The optional keywords can be
omitted. If an optional keyword is omitted, the default value is used. Compulsory
keywords are indicated by “compulsory keyword - no default value” in the item
“default”.

The item “description” describes the function of the keyword, its influence on
the output and relations to other keywords.

A.5.3.1 name: 2channel

• value: yes/no

• default: no

• description: Activates or deactivates the two-channel entropy formalism
(Papoular et al., 1996). That allows to reconstruct the maps with both
positive and negative densities, for example the difference electron densities.

A.5.3.2 name: algorithm

• value: S-S/MEMSys [+ optional algorithm-specific settings]

• default: compulsory keyword - no default

• description: This keyword selects one of the two algorithms presently avail-
able in BayMEM. S-S selects the Sakata-Sato algorithm, MemSys selects
the Cambridge algorithm implemented in the MEMSys5 package. Each
algorithm has its own specific settings.

For algorithm MEMSys the settings are:

method: Integer. 4 for the “historical” maximum entropy (χ2 = N), 1,
2 and 3 for different variants of the “Bayesian” maximum entropy (Gull
& Skilling, 1999b). All choices are possible, but only method 4 has been
extensively tested and the other methods did not prove to be useful in
crystallographic problems.

NRAND: Integer. Number of random vectors used in the calculation of
conjugate gradient in the MEMSys5 package. NRAND=1 is safe for the
vast majority of cases. For more details see Gull & Skilling (1999b).

aim: Real number. The stopping criterion aim = Cfinal, where C is the
value of constraint. Usually 1.0. Lower values mean closer fit of the MEM
density to the experimental structure factors.
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RATE: Real number. Sets the user-definable factor, that influences the
sizes of the steps along the conjugate-gradient vector. For more details
see Gull & Skilling (1999b). Usually between 1.0 and 5.0 at the beginning
of the iteration. RATE can be increased interactively during the iteration
(Section A.7.2).

internal accuracy: Real number. Defines the internal accuracy in the
calculation of the conjugate gradient. The recommended value is 0.05. The
precise value is not crucial for the performance of the algorithm. Too small
values do not improve the accuracy, but slow down the iteration.

For algorithm S-S the settings are:

lambda: Real number. The initial estimate of the Lagrange multiplier
λ. λ is always positive. If the parameter lambda is given negative, the
absolute value is taken and fixed, e.g. BayMEM will operate in the fixed-
λ mode (Section A.3.1). If the string AUTO (case sensitive) occurs instead of
a number, BayMEM will estimate the starting value of λ automatically.

aim: Real number. The stopping criterion aim = Cfinal, where C is the
value of constraint. Usually 1.0. Lower values mean closer fit of the MEM
density to the experimental structure factors.

The settings after the specification of the algorithm can be omitted. In that
case the default settings are used. The defaults are:

algorithm S-S ∼ algorithm S-S AUTO 1.0

algorithm MEMSys ∼ algorithm MEMSys 4 1 1.0 1.0 0.05

A.5.3.3 name: cell

• value: a b c α β γ

• default: compulsory keyword - no default

• description: Lattice parameters of the structure.

A.5.3.4 name: centers - endcenters

• value: Each line contains one centering vector.

• default: no centering vectors

• description: Defines the centering vectors of the (super)space group. The
dimension of the centering vectors must correspond to the dimension of the
structure defined by the keyword dimension. The components can be given
both as fractions and as fractional number.
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A.5.3.5 name: centro

• value: yes/no

• default: compulsory keyword - no default

• description: The value yes corresponds to a centrosymmetric structure.
The value of centro must be consistent with the symmetry operators given
in keyword symmetry - endsymmetry!

A.5.3.6 name: conorder

• value: even positive integer

• default: 2

• description: Defines the order of the generalized F-constraint (Chapter-
genf). The generalized F-constraint of order n is defined as:

CFn
= −1 + 1

mn(Gauss)

1

NF

NF∑

i=1




|Fobs( ~Hi)− FMEM( ~Hi)|

σ( ~Hi)





n

(A.1)

mn(Gauss) is the value of the nth central moment of the Gaussian dis-
tribution. The generalized F-constraint is implemented only in the S-S
algorithm. n = 2 corresponds to the standard χ2-constraint. If conorder
other than 2 is combined with the MEMSys algorithm, the program writes
out a warning and sets the value to 2.

A.5.3.7 name: conweight

• value: Hn or Fn, n is a number between -50 and 50

• default: n = 0 ∼ no weighting

• description: Static weighting according to De Vries et al. (1994). The F-
constraint with the static weighting is defined as:

Cw = −1 + 1

NF

NF∑

i=1

w(Fobs( ~Hi))




|Fobs( ~Hi)− FMEM( ~Hi)|

σ( ~Hi)





2

(A.2)

The weighted G-constraints can be defined analogically. Weighting factor
is defined as w(F ( ~H)) = 1/| ~H|n or w(F ( ~H)) = |F ( ~H)|n, depending on the

value of the keyword conweight. | ~H| is the length of the diffraction vector

and |F ( ~H)| is the amplitude of the structure factor of every reflection. The
power n can be any number, but numbers between 2 and 5 proved to be the
most efficient. The weighting on |F ( ~H)| is not applicable to G-constraints,
because the separate intensities of reflections in one group are not known.
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A.5.3.8 name: correction

• value: none/normalize/cut/flat/raise

• default: none

• description: The prior density used in BayMEM must be positive every-
where, with exception of the two-channel entropy method. If the prior
density does not fulfil this requirement, BayMEM offers several possibi-
lities to make the prior density positive everywhere. The meaning of the
values is:

none: No correction.

normalize: The density is normalized to the number of electrons given in
the input file: ρcorri = Nel∑

ρuncorr
i

ρuncorri .

cut: If the minimum of the density is negative, then all pixels with ρi <
|ρmin| are assigned the value of |ρmin|.
flat: Values less than zero are set to value corresponding to an equally
distributed density ρeq =

NelVUC

Npix
.

raise: If the minimum of the density is negative, then the whole density is
raised by 1.5|ρmin|.
The charge of the prior density must be equal to the total charge of the
resulting ρMEM . Therefore, the prior densities obtained by the corrections
cut, flat or raise are subsequently normalized to the number of electrons
given in the input file.

A.5.3.9 name: dimension

• value: positive integer

• default: compulsory keyword - no default

• description: This keyword defines the dimension of the structure. Dimen-
sion must be larger or equal to the value of realdimension. Apart from
this restriction, the dimension is arbitrary, however, for dimensions larger
that the parameter MAXDIM in the module Globaldefinitions the param-
eter MAXDIM must be changed and the program recompiled. The current
value of MAXDIM is 8.

A.5.3.10 name: electrons

• value: real number

• default: compulsory keyword - no default
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• description: Gives the number of electrons in the unit cell. The resulting
electron density will be normalized to this number of electrons. If the value
F(000) is given in the list of structure factors (see keyword fbegin - endf,
it must be equal to the value of electrons. Zero or negative value of the
number of electrons is possible only with two-channel entropy (see keyword
2channel).

A.5.3.11 name: expandedlog

• value: yes/no

• default: no

• description: If the value is yes, the log-file will contain the full list of all
symmetry-expanded reflections. If the value is no, only the symmetry in-
dependent reflections are listed.

A.5.3.12 name: extra - endextra

• value: each line contains indices of one reflection with optional expected
value of the structure factors of that reflection.

• default: no extra reflection

• description: The maximum entropy method is able to estimate the values of
the structure factors that have not been used in the MaxEnt optimization.
The estimated values of the structure factors of reflections given in the
extra - endextra list are written to the output file jobname.BMout at
the end of the calculation. If an expected value of structure factor is given,
this value is also written in the output file and the expected and estimated
values can be directly compared.

A.5.3.13 name: fbegin - endf

• value: each line contains the indices, real and imaginary part of the struc-
ture factor and its estimated standard uncertainty of one reflection from
the input dataset.

• default: compulsory keyword - no default

• description: This keyword serves for definition of the input data. The
format of each line is free, the order is {indices A B σ(|F |)}. A and B are the
real and imaginary components of the structure factor. Number of indices
must be consistent with the dimension of the structure defined in keyword
dimension. F(000) must be present in the dataset. If F(000) is present as
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the first structure factor in the input data, its value and sigma are read by
BayMEM, otherwise BayMEM adds this structure factor automatically,
and any later occurrence of F(000) will be reported as doubled reflection.
The standard deviation of F(000) will be set to one third of the smallest
standard uncertainty found in the input data. F(000) is not included in
calculation of the starting and final R-values and values of the F-constraint,
but it is included in the value of χ2 reported by MemSys5.

A.5.3.14 name: file

• value: a valid filename without extension

• default: The first command-line argument to BayMEM at start

• description: The user can change the base of all output files generated by
BayMEM. The default base is the base of the input file (filename without
the extension .BayMEM).

A.5.3.15 name: gbegin - endg

• value: one or more groups of intensities (see keyword ggroup)

• default: no G-group

• description: The so called G-groups are groups of two or more reflections,
where only sum of their intensities in known. Several such groups can be
placed between the keywords gbegin and gend. Each group starts with the
keyword ggroup.

A.5.3.16 name: ggroup

• value: first line: ggroup G σ(G), where G is the “group amplitude” and
σ(G) is the standard uncertainty of G; following lines: ndim integers rep-
resenting the indices of reflections in the G-group.

• default: no ggroups

• description: ggroup defines one G-group. The “group amplitude” is defined
as:

G =

√
√
√
√
√

Ng∑

j=1

(

mj
∑
mj

|Fj|2
)

(A.3)

Ng is the number of reflections in the G-group, mj is the multiplicity of the
reflection j, |Fj| is the amplitude of the structure factor of reflection j. Each
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line following the line with ggroup contains indices of one reflection in the
G-group. The format of the whole ggroup is:

gbegin

# first ggroup ggroup g-amplitude g-sigma

h k l ...

h k l ...

...
h k l ...

# second ggroup

ggroup g-amplitude g-sigma

...
endg

A.5.3.17 name: initialdensity

• value: flat/jana/BMascii/BMbinary

• default: compulsory keyword - no default

• description: initialdensity defines the type of the prior density τ . If
initialdensity is set to flat, the prior density is assigned a uniform
value of electrons/Npix (Npix being the total number of pixels in the unit
cell; see keywords electrons and voxel). Any other initialdensity has
to be accompanied by specification of the prior density file (see keyword
initialfile). Formats are: jana = single precision .m81 format of the
program package JANA2000; BMascii = ascii format of BayMEM, trans-
ferable between platforms; BMbinary = double precision binary format of
BayMEM, usually non-transferable between different platforms.

A.5.3.18 name: initialfile

• value: a valid filename shorter or equal in length to 132 characters

• default: compulsory keyword - no default, if initialdensity is other than
flat.

• description: Specifies the file containing the input electron density map.
See keyword initaldensity.

A.5.3.19 name: memcheck

• value: positive integer
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• default: no memcheck output

• description: The correctness of the MaxEnt solution can be checked by
testing the set of equations:

∂S

∂ρMEM
i

= λ
∂C

∂ρMEM
i

(i = 1, . . . , Nau
pix) (A.4)

or its equivalent in reciprocal space:

∂S

∂FMEM( ~Hj)
= λ

∂C

∂FMEM( ~Hj)
(j = 1, . . . , NF ) (A.5)

where S is the entropy of the MEM density and C is the constraint. If the
pairs ∂S

∂ρMEM
i

vs. ∂C
∂ρMEM

i

or ∂S
∂FMEM

j

vs. ∂C
∂FMEM

j

are plotted, they should be

aligned on a straight line. The keyword memcheck can be used to produce
a file jobname.BMcheck, that contains list of the pairs ∂S

∂ρMEM
i

, ∂C
∂ρMEM

i

and
∂S

∂FMEM
j

, ∂C
∂FMEM

j

. This file can be used to plot the the corresponding graphs.

The list of every pixel of the asymmetric unit (Eq. A.4) could be extremely
long. Therefore, only some pixels are selected. The number of selected pi-
xels is given by the value of the keyword memcheck. The pairs corresponding
to the equation in reciprocal space (Eq. A.5) are listed completely.

A.5.3.20 name: outputfile

• value: a valid filename of a non-existing file

• default: jobname.ext, where ext is a format-specific extension

• description: Specifies the filename of the output electron density. If the
keyword is omitted, then the name of the output file is created from the
jobbase (see keyword file) and a format-specific extension, which is .asc
for outputformat BMascii, .raw for outputformat BMbinary and .m81

for outputformat jana/janap1 (for description of the formats see Sec-
tion A.6.1). The file must not exist. BayMEM will never overwrite an
existing density file. Instead of that, the output density is written to a
file named bmmapXX.ext, where XX is a serial number starting from 00.
A warning is written to the logfile jobname.BMlog. If all hundred files
(bmmap00.ext–bmmap99.ext) exist, the program will try to ask the user
for the filename on the terminal. If the terminal, which BayMEM has
been started from, does not exist anymore, the program will stop without
writing any output density file.
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A.5.3.21 name: outputformat

• value: jana/janap1/BMascii/BMbinary

• default: compulsory keyword - no default

• description: Supported formats of the output density files are: jana and
janap1 = single precision .m81 format of the program package JANA2000;
BMascii= double precision ascii format of BayMEM, transferable between
platforms; BMbinary = double precision binary format of BayMEM, usu-
ally non-transferable between different platforms. The files written with
format jana contain pixels with coordinates 0 . . . Ni− 1 in each direction i.
Format janap1 contains all pixels with coordinates 0 . . . Ni in each direc-
tion, e.g. with the redundant border of the unit cell. For more description
of the formats of the output density see Section A.6.1.

A.5.3.22 name: priorsf

• value: three real numbers, optional positive integer

• default: no adding of prior structure factors

• description: This keyword provides a possibility to include structure factors
calculated from the prior density in the input dataset (Chapter 4). The for-
mat of the keyword is: priorsf (sin(θ)/λ)min (sin(θ)/λ)max sigma [maxin-
dex]. All structure factors with diffraction vectors between 2 (sin(θ)/λ)min

and 2 (sin(θ)/λ)max, that are not present in the input data, are calculated
from the prior density and added to the dataset as so-called “P-constraints”.
These P-constraints behave exactly like the F-constraints in the MEM ite-
ration, but they are not included in the calculation of χ2 and therefore do
not influence the stopping point of the convergence. The optional parame-
ter maxindex tells the program, that only the reflections with the maximal
satellite index smaller or equal to the value of maxindex will be added to
the dataset. Default value of maxindex is 0. Currently, maxindex works
correctly only for ordinary modulated structures and not for composites,
because the definition of a satellite reflection is slightly different in the two
cases.

A.5.3.23 name: qvectors - endqvectors

• value: Each line contains the components of one q-vector. There must be
dim − rdim q-vectors between the start- and end-keyword. rdim is the
number of real-space dimensions (keyword realdimension).

• default: compulsory keyword - no default; not applicable if dim = rdim
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• description: This keyword contains coordinates of the q-vectors.

A.5.3.24 name: realdimension

• value: positive integer smaller than or equal to dim (keyword dimension)

• default: 3

• description: Defines the dimension of the real space. Normally this is 3. For
some special applications (two-dimensional diffraction on surfaces) other
values than 3 can be chosen.

A.5.3.25 name: regularwidth

• value: dim positive real numbers

• default: regularization function not used

• description: BayMEM has the capability of introducing a correlation be-
tween the neighboring pixels. The correlation is introduced by convolution
of the “density” with a nD normalized Gaussian distribution. More about
this topic can be found in Schneider (2001). The Gaussian can have dif-
ferent widths in different directions. The widths w are given as argument
to regularwidth. The units of w are dmin = 1

| ~Hmax|
, where | ~Hmax| is the

longest reciprocal vector present in the input dataset.

A.5.3.26 name: spacegroup

• value: text shorter or equal to 132 characters

• default: empty

• description: Symbol of the (super)space group. Currently not used in the
program.

A.5.3.27 name: symmetry - endsymmetry

• value: each line contains definition of one symmetry operator

• default: compulsory keyword - no default

• description: This keyword contains the complete definition of the symmetry
with exception of the centering vectors. Each line contains one symmetry
operator. The format of the symmetry operators corresponds to the conven-
tions used in the International Tables for Crystallography. If the symmetry
operator is {R|τ}, then the format of each entry is:
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τ1+R11x1+R12x2+ . . .+R1nxn τ2+R21x1+R22x2+ . . .+R2nxn . . .

Example — n-glide perpendicular to b:

1/2+x1 -x2 1/2+x3

The translation components can be given either as fractions or decimal
numbers.

A.5.3.28 name: symtable

• value: yes/no

• default: no

• description: BayMEM calculates so called symmetry table at the begin-
ning of each run. This symmetry table contains all information about the
symmetry of the pixel grid. This calculation is quite time-consuming. To
save computer time in subsequent calculations with the same grid and
symmetry, the symmetry table can be written out in a file called jobna-
me.BMsymtb. BayMEM will write the file jobname.BMsymtb only if set-
ting symtable yes is present in the input file. If the file jobname.BMsymtb
exists, BayMEM reads the symmetry information from that file instead of
calculating it. Generally, this option is useful only if many calculations with
the same symmetry setting are planned. Note that the .BMsymtb file can
be very large, up to several GB for large grids.

Once the file jobname.BMsymtb exists, BayMEM will read it regardless of
the value of symtable. This setting influences only the writing of the file.

A.5.3.29 name: title

• value: text shorter or equal to 132 characters

• default: compulsory keyword - no default

• description: The title of the job. It is used in the output files to identify the
individual calculations. It is recommended, but not necessary, to change
the title with every new calculation.

A.5.3.30 name: voxel

• value: dim positive integers

• default: compulsory keyword - no default
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• description: Defines the division of the unit cell. Each number corresponds
to the number of pixels along one axis of the (superspace) unit cell. The
division must obey the symmetry of the unit cell, i.e. a center of any pixel
must be mapped by the symmetry operators onto itself or onto a center
some other pixel. This means that for example the numbers of pixels along
the directions of the screw axes 21, 31, 41, 62 and 61 must be multiples of
2, 3, 4, 3 and 6, respectively. Numbers with small prime factors should
be preferred, to take the full advantage of the speed of the Fast Fourier
Transform. Combinations of powers of two or three are especially favorable.
The largest prime factor of all divisions must be smaller than 23.

A.5.4 Examples of typical input files

A.5.4.1 Example 1.

This is an example of a simple input file for the calculation of a 3D electron density
of a monoclinic crystal using a flat prior density. The Sakata-Sato algorithm is
selected, while the alternative setting for the MEMSys algorithm is commented
out:

title oxalic acid

dimension 3

initialdensity flat

outputfile example1.m81

outputformat jana

algorithm S-S AUTO 1.0

#algorithm MEMSys 4 1 1.0 1.0 0.05

cell 6.1005 3.4999 11.9554 90.0 105.781 90.0

voxel 64 32 128

spacegroup P21/n

centro yes

electrons 132

symmetry

x1 x2 x3

1/2-x1 1/2+x2 1/2-x3

-x1 -x2 -x3

1/2+x1 1/2-x2 1/2+x3

endsymmetry

fbegin

2 0 0 25.3459292 0.0000000 0.2727374
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4 0 0 10.4668808 0.0000000 0.1478727

.

.

.

5 4 -1 4.1934419 0.0000000 0.1320773

1 5 -1 1.9409568 0.0000000 0.1921479

2 5 -1 -0.6319270 0.0000000 0.5103144

endf

A.5.4.2 Example 2.

The following input file can be used for determination of accurate charge density
of a 4D structure. It uses prior density and prior-derived F-constraints (keyword
priorsf). The generalized F-constraint of order 4 is used. The input and output
formats are BMascii. This format allows easy transfer of the densities between
different platforms.

title Example 2

dimension 4

initialfile prior_density.asc

initialdensity BMascii

outputfile example2.asc

outputformat BMascii

algorithm MEMSys 4 1 1. 1. 0.05

conorder 4

priorsf 0.89 1.5 0.01 1

cell 7.5281 5.8851 10.437 90. 90. 90.

voxel 128 100 162 32

spacegroup Pnma(a00)0ss

electrons 248

qvectors

0.4794 0. 0.

endqvectors

centro yes

centers

# the 0 0 0 0 centering vector can be omitted

# here it is given just for illustration

0.0 0.0 0.0 0.0

endcenters

symmetry

x1 x2 x3 x4

x1 1/2-x2 x3 1/2+x4
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1/2+x1 x2 1/2-x3 1/2+x4

1/2+x1 1/2-x2 1/2-x3 x4

-x1 -x2 -x3 -x4

-x1 1/2+x2 -x3 1/2-x4

1/2-x1 -x2 1/2+x3 1/2-x4

1/2-x1 1/2+x2 1/2+x3 -x4

endsymmetry

fbegin

0 0 0 0 248.0000000 0.0000000 0.1000000

2 0 0 0 -37.4445880 0.0000000 0.2325634

4 0 0 0 8.2858164 0.0000000 0.0570781

.

.

.

1 2 18 1 0.1344953 0.0000000 0.2110144

2 2 18 -1 -0.1234955 0.0000000 0.2823512

2 2 18 0 1.9918284 0.0000000 0.0583801

endf

A.6 Description of the output

The most important output of the MEM calculation is the optimized electron
density. Apart from this output, there are several other files containing informa-
tion about the input data, data processing, symmetry, iteration and results. All
files except for the density file have names of the form jobname.BM*. If several
runs are performed with the same jobname, all the “jobname.BM*” files except
for .BMsymtb are appended, not overwritten.

A.6.1 Electron density

A.6.1.1 Format BMascii

In this format, the electron density of all pixels in the unit cell is written with six
values per line in exponential format, preceded by a four-line header. The pixels
are sorted first by increasing first coordinate, then second, then third etc.
The file has this form:

dimension real_dimension

pixel_division
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lattice parameters a b c alpha beta gama volume

minimum and maximum of the map

density values, six numbers per line (multiple occurrences)

...

For example:

4 3

128 100 162 32

5.41530 12.33200 6.78930 90.00000 90.00000 90.00000 453.40

1.041386E-02 4.063997E+01

2.348115E-02 2.380756E-02 2.477587E-02 2.641150E-02 2.877340E-02 3.185024E-02

3.561728E-02 4.012891E-02 4.537618E-02 5.122452E-02 5.765039E-02 6.476191E-02

7.245219E-02 8.037046E-02 8.832136E-02 9.632531E-02 1.042432E-01 1.116911E-01

...

A.6.1.2 Format BMbinary

This is a double precision binary format of BayMEM. The order of numbers is
the same as in the ascii format, only the minimum and maximum of the map is
omitted in the binary format. Dimension, real dimension and pixel division is
written as integers, all following numbers are written as double precision floating
point numbers.

A.6.1.3 Format jana, janap1

This is the format of the crystallographic software package Jana2000 (Petř́ıček
& Dušek, 2000). Its standard extension is .m81. It stores the electron density
in a single-precision direct-access binary format. It is beyond the scope of this
manual to fully describe this format. The density file written in the format jana
contains only the pixels in one unit cell (0...Ni − 1 in each direction, Ni is the
pixel division in the direction i); format janap1 contains also the border of the
unit cell, e. g. pixels with coordinates 0 . . . Ni in each direction i.

A.6.2 File jobname.BMout

This file contains all important information about the input data, data processing
and results of the MEM run. It consist of three parts:

• Summary of the input data: This part contains the most important in-
formation collected by the program from the input file. Its content is
self-explanatory. Following BMout file was produced by the input file in
Example 2. (Section A.5.4.2):
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Title: Example 2

Input: example2.BayMEM

Dimension of superspace: 4

"Real" dimensions: 3

Cellparameters (a b c alpha beta gamma Volume): 7.52810 5.88510 10.43700 \\

90.00000 90.00000 90.00000 462.40

Reciprocal cellparameters (a b c alpha beta gamma Volume): 0.1328356 0.1699206 0.0958130 \\

90.00000 90.00000 90.00000 2.162644E-03

Pixel (a b c...): 128 100 162 32

Electrons per unit cell: 248.0000

Type of initial density file: BMascii

Initial density filename: prior_density.asc

Initial density correction type: none

Algorithm type is set to MEMSys

The settings are:

Method: 4

NRand : 1

Aim : .10000D+01

Rate : .10000D+01

Utol : .50000D-01

Constrained moment order: 2

Spacegroup: Pnma(a00)0ss

Centrosymmetric structure: No Friedel-pairs are computed while expanding reflections!

q-vectors: 1

1: 0.4794000 0.0000000 0.0000000

Symmetry operations: 8

Symmetry operations: 1 through 3

1.0 0.0 0.0 0.0 0.000 1.0 0.0 0.0 0.0 0.000 1.0 0.0 0.0 0.0 0.500

0.0 1.0 0.0 0.0 0.000 0.0 -1.0 0.0 0.0 0.500 0.0 1.0 0.0 0.0 0.000

0.0 0.0 1.0 0.0 0.000 0.0 0.0 1.0 0.0 0.000 0.0 0.0 -1.0 0.0 0.500

0.0 0.0 0.0 1.0 0.000 0.0 0.0 0.0 1.0 0.500 0.0 0.0 0.0 1.0 0.500

Symmetry operations: 4 through 6

1.0 0.0 0.0 0.0 0.500 -1.0 0.0 0.0 0.0 0.000 -1.0 0.0 0.0 0.0 0.000

0.0 -1.0 0.0 0.0 0.500 0.0 -1.0 0.0 0.0 0.000 0.0 1.0 0.0 0.0 0.500

0.0 0.0 -1.0 0.0 0.500 0.0 0.0 -1.0 0.0 0.000 0.0 0.0 -1.0 0.0 0.000

0.0 0.0 0.0 1.0 0.000 0.0 0.0 0.0 -1.0 0.000 0.0 0.0 0.0 -1.0 0.500

Symmetry operations: 7 through 8

-1.0 0.0 0.0 0.0 0.500 -1.0 0.0 0.0 0.0 0.500

0.0 -1.0 0.0 0.0 0.000 0.0 1.0 0.0 0.0 0.500

0.0 0.0 1.0 0.0 0.500 0.0 0.0 1.0 0.0 0.500

0.0 0.0 0.0 -1.0 0.500 0.0 0.0 0.0 -1.0 0.000

F-Constraints input/expanded: 3970 30045

P-Constraints input/expanded: 15270 118968

G-Constraints input/expanded: 0 0

• Information about initial and final status of the iteration: Contains start-
ing and ending time of the iteration, initial and final R-values and related
quantities. Part of the BMout file corresponding to Example 2 is show here.
The lines beginning with # are comments and are not present in the file:

Date of iteration start: 30.01.2003 Time: 14:03.58

Initial state:

R = 0.9725 Rw = 0.7779

RF= 0.9725 RwF= 0.7779
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RG= 0.0000 RwG= 0.0000

Entropy: 0.0000000E+00

# Sum of calculated (mem) and observed (obs) amplitudes of F- and G-constraints

Sum Fmem= 2.480E+02 Sum Gmem= 0.000E+00

Sum Fobs= 9.031E+03 Sum Gobs= 0.000E+00

Sum all F and G mem= 2.480E+02

F-Constraint 2.373E+03 G-Constraint 0.000E+00

Date of iteration end: 01.02.2003 Time: 09:41.56

After 38 Cycles of iteration

Elapsed CPU time: 2628 min 28 sec

Final state:

R = 0.0137 Rw = 0.0159

RF= 0.0137 RwF= 0.0159

RG= 0.0000 RwG= 0.0000

Entropy: -3.0085513E+02

Sum Fmem= 8.914E+03 Sum Gmem= 0.000E+00

Sum Fobs= 9.031E+03 Sum Gobs= 0.000E+00

Sum all F and G mem= 8.914E+03

F-Constraint: 9.964E-01 G-Constraint: 0.000E+00

F-Constraints input/expanded: 3970 30045

# P-constraints denote the F-constraints calculated from the prior density

P-Constraints input/expanded: 15270 118968

G-Constraints input/expanded: 0 0

• List of the reflections: The list contains information about all input reflec-
tions and (optional) extra reflection (see keyword extra - endextra):

F-Constraints:

# h k l... A/Gobs B A/Gmem B DeltaF \\

Sigma DeltaF/Sigma sinth/l

1: 2 0 0 0 -37.4445880 0.0000000 -37.7395357 0.0000000 -0.2949477 \\

0.2325634 -1.2682464 0.132835

2: 4 0 0 0 8.2858164 0.0000000 8.1621250 0.0000000 0.1236914 \\

0.0570781 2.1670549 0.265671

...

All input F-constraints are listed. DeltaF=|Fobs| − |Fcalc|, sinth/l denotes
sin(θ)/λ. reflections with DeltaF > 3× Sigma and DeltaF > 6× Sigma are
marked with # and ! at the end of the line.
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A.6.3 File jobname.BMlog

This is the log-file for all messages and informations produced by BayMEM

during its run-time. The file can be separated into several parts:

• report from the reading of the input file: This part contains error messages
about missing or doubled compulsory keywords, and information about
missing or doubled optional keywords. The part has form:

Error!!! Statement either missing or doubled: cell

Error!!! Statement either missing or doubled: voxel

Info: Statement not included or doubled: expandedlog

Info: Statement not included or doubled: file

Info: Statement not included or doubled: conorder

2 errors found in the input file!

There are 3 infos!

If a missing or doubled compulsory keywords are encountered, BayMEM

terminates with an error message written to the standard output. It is
recommended to always check this part of the BMlog file. Even non-fatal
infos can indicate a problem in the input file.

• Summary of the input data: This part is almost identical with the corre-
sponding part of the .BMout file (Section A.6.2).

• List of all input reflection with components of the structure factor or square-
root of the intensity of the G-constraints, amplitude of the structure factor,
sigma, assignment to a g-group (zero for F-constraints; see keyword gbegin

- endg), multiplicity of each reflection, and some other diagnostic informa-
tion.

• Information about the total number of voxels and number of voxels in asym-
metric unit:

Voxels in unitcell : 66355200

Voxels in asymmetric unit: 8294402

• A list of reflections is produced, that contains all reflections that are equi-
valent by symmetry to other reflections in the input file. If such equivalent
reflections are found, the program terminates with an error message written
to the standard output and to the BMlog file.

• If the prior-derived F-constraints are used, this list will contain also the
structure factors calculated from prior density. The format is identical with
the format of experimental F-constraints.
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• If setting expandedlog yes is present in the input file, then the BMlog file
will contain a full list of all reflections expanded by the symmetry operators
from the input file. This listing is suppressed by default. In the default
case, only this summary is printed:

Listing of expanded reflections suppressed, summary follows:

Totals of expanded reflections:

F-Constraints: 30045

P-Constraints: 118968

G-Constraints: 0

Alltogether : 149013

• Record of the progress of the iteration: The style of this part depends of
the type of algorithm in use.

Sakata - Sato algorithm: A record identical to the record in the BMout
file is written to the BMlog file at the beginning of the iteration. If the
automatic determination of the starting λ is allowed (keyword settings),
following information occurs in the BMlog file:

Automatic calculation of starting lambda: the value set to 0.3144E-02

Following statistics is written into the log file after each cycle:

Cycle: 392

Lambda: 0.1308E-01

Test: 0.2313 Charge increase factor: 1.0002

R = 7.596E-03 Rw = 6.674E-03

RF= 7.596E-03 RwF= 6.674E-03

RG= 0.000E+00 RwG= 0.000E+00

Entropy: -3.5944897E-01 Entropy shift: -4.512E-04

L=-3.6019225E-01

Constrained moment number: 4

Sum Fmem= 4.799E+03 Sum Gmem= 0.000E+00

Sum Fobs= 4.801E+03 Sum Gobs= 0.000E+00

Sum all F and G calc= 4.799E+03

F-constrained moment 5.246E-02 G-constrained moment 0.000E+00

Combined FG Constraint : 0.998 Constraint shift: 5.136E-03

Combined FPG Constraint: 0.057 Constraint shift: 2.891E-04

Aim: 1.000

FCon(1)= 5.231E-02 FCon(2)= 7.993E-02 GCon(1)= 0.000E+00 GCon(2)= 0.000E+00

FCon(3)= 1.688E-01 FCon(4)= 5.246E-02 GCon(3)= 0.000E+00 GCon(4)= 0.000E+00

FCon(5)= 1.635E+00 FCon(6)= 2.888E-02 GCon(5)= 0.000E+00 GCon(6)= 0.000E+00

FCon(7)= 2.806E+01 FCon(8)= 1.153E-02 GCon(7)= 0.000E+00 GCon(8)= 0.000E+00

The majority of the text is self-explanatory or has been explained in Sec-
tion A.6.2. The meaning of the remaining statements is given here:

Lambda: The Lagrange multiplier. For more description see Section A.3.1.

Test: Test = 1−cos(∇S·∇C)/(|∇C|·|∇S|), i.e. one minus the cosine of the
angle between the gradients of the entropy and of the constraint. The angle
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is zero for the ideal MaxEnt solution and consequently Test should be close
to zero, too. However, there is no guarantee that the Sakata-Sato algorithm
leads to an ideal MaxEnt solution. Therefore, a larger deviation of test from
zero does not necessarily indicate a problem in the computation and/or
input data. The higher value of Test may be caused by the inadequacy of
the approximations used in the Sakata-Sato algorithm.

Charge increase factor: Ratio of total charge of the new ρMEM and ρMEM of
the previous cycle before the new density is normalized. Large values of this
factor indicate too large change between the two cycles. If the automatic
lambda-control is enabled, the last cycle will automatically be repeated with
a decreased value of lambda, if the charge increase factor exceeds 100. If
the automatic lambda-control is disabled, only a warning is printed to the
BMlog file.

Entropy: The total entropy of the unit cell:

S = −
Npix∑

i=1

ρi ln
ρi
τi

(A.6)

L: The total maximized Lagrangian:

L = S − λC (A.7)

Constrained moment number: Order of the generalized constraint (see key-
word conorder).

Combined FG constraint: Constraint calculated only from the experimen-
tal data present in the input file. If this value becomes smaller than aim
(keyword settings), the iteration is considered to be converged.

Combined FPG constraint: Constraint calculated from all data including
the prior-derived F-constraints (keyword priorsf). This quantity is the
measure of the convergence of the algorithm. If the constraint shift between
the FPG constraints of successive cycles is negative, the calculation is con-
sidered to diverge. This line occurs only if the prior-derived F-constraints
are used.

FCon(i), GCon(i): Values of the ith moments of the distribution of the
normalized residuals. The odd values should remain close to zero, the even
values should converge to one. These values allow the user to estimate the
quality of the distribution of the normalized residuals before the end of the
iteration.

MemSys package: Prior to beginning of the iteration, check of consistency
of the transformation routines is performed. Output of this check is a real
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number. If the check is successful, the number is very small, comparable to
the numerical accuracy of the calculation. For double precision calculations,
the value of check should not exceed 10−14. The result of the check is written
to the BMlog file:

Result of input data check: 0.3803E-17

Important: It is strongly recommended to check this number at the be-
ginning of the calculation, especially if a completely new dataset is used.
If this check fails, the calculation will not lead to correct results. For more
information see Section A.8.

The information logged at each cycle is produced by the MEMSys5 pack-
age. User should refer to MEMSys5 manual for description of the output
(Gull & Skilling, 1999b). Here only the description of the most important
values will be given. The standard form of the output is:

Iteration 5

Entropy === -1.4524E-01 Test === 0.0214 Chisq === 7.6539E+03

Omega === 0.260387 dist === 0.2746 Alpha === 7.3870E+03

Ntrans === 74 Code === 001010

The most important indicators are Test, Omega and Code. Test is defined
as:

Test = 1− cos(∇S·∇C)/(|∇C|·|∇S|)
i.e. one minus the cosine of the angle between the gradients of entropy and
constraints. Test is zero for the ideal MaxEnt solution. In the MEMSys
algorithm, this value is a crucial indicator of the quality of the MaxEnt
solution. The value should be low at the end of the iteration, say less
than 0.1. Omega is an indicator of the progress of the iteration. Iteration
is stopped only if Omega is equal to 1.± internal accuracy (see keyword
settings). Code is a string of ones and zeroes. Iteration will not stop
before all digits in Code are zero. For the meaning of individual positions
in Code please refer to the MemSys5 user manual.

Note, that one cycle of MEMSys iteration is not comparable with one cycle
of iteration of Sakata-Sato algorithm. In each iteration cycle of MEMSys
several “subcycles” are performed. The number of total direct and inverse
Fourier transforms performed during one iteration cycle is given as Ntrans
in the last line of the output of each cycle.

A.6.4 File jobname.BMhst

One of the basic assumptions underlying the principle of the F- and G-constraints
is that the noise in the data is distributed randomly with a Gaussian distribu-
tion. Thus, the proper solution should produce normalized residuals (|Fobs| −
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|FMEM |)/σ(Fobs) that have a Gaussian distribution. The file jobname.BMcheck
contains a representation of the histogram of normalized residuals for an easy
assessment of the quality of the distribution of the normalized residuals. This is
an example of the histogram:

Start of histogram

Title: Sample histogram

Prior type: flat

10.06.2003 Time: 09:31.08

Weighting: No

Constrained moment: 2

Rescaled by 100/ 105

|D-F|/sigma(D): # of appearances : graphical representation

-4.6 1 |X

-4.4 0 |

-4.2 0 |

-4.0 0 |

-3.8 0 |

-3.6 0 |

-3.4 0 |

-3.2 0 |\

-3.0 1 |\

-2.8 2 |X\

-2.6 1 |X \

-2.4 3 |XXX \

-2.2 2 |XX \

-2.0 9 |XXXXXXXXX \

-1.8 7 |XXXXXXX \

-1.6 20 |XXXXXXXXXXXXXXXXXXX \

-1.4 34 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\

-1.2 39 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \

-1.0 49 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \

-0.8 75 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\XXXXXXX

-0.6 87 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\XXXXXXXXX

-0.4 96 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXX

-0.2 104 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXX

0.0 105 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXX

0.2 101 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXX

0.4 98 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXX

0.6 79 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/X

0.8 69 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/XX

1.0 45 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX /

1.2 27 |XXXXXXXXXXXXXXXXXXXXXXXXXX /

1.4 31 |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX /

1.6 17 |XXXXXXXXXXXXXXXX /

1.8 24 |XXXXXXXXXXXXXXXX/XXXXXX

2.0 8 |XXXXXXXX /

2.2 8 |XXXXXXX/

2.4 4 |XXXX/

2.6 3 |XX/

2.8 2 |X/

3.0 1 |/

3.2 0 |/

3.4 0 |

3.6 2 |XX

3.8 0 |

4.0 0 |

4.2 0 |

4.4 0 |

4.6 1 |X

4.8 1 |X

5.0 1 |X

5.2 0 |

5.4 0 |

5.6 0 |
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5.8 0 |

6.0 1 |X

6.2 0 |

6.4 0 |

6.6 0 |

6.8 0 |

7.0 0 |

7.2 0 |

7.4 0 |

7.6 0 |

7.8 0 |

8.0 0 |

8.2 0 |

8.4 0 |

8.6 0 |

8.8 1 |X

Statistics:

# F G Combined

1 7.397E-01 0.000E+00 7.397E-01

2 1.007E+00 0.000E+00 1.007E+00

3 2.443E+00 0.000E+00 2.443E+00

4 3.552E+00 0.000E+00 3.552E+00

5 6.807E+01 0.000E+00 6.807E+01

6 3.451E+01 0.000E+00 3.451E+01

7 4.244E+03 0.000E+00 4.244E+03

8 3.434E+02 0.000E+00 3.434E+02

End of histogram

The header contains basic information about the MEM run. The time refers to
the time of writing of the histogram and is almost equal to the time of writing the
output electron density. Weighting and Constrained moment refer to the static
weighting (keyword conweight and to the order of the generalized F-constraint
(keyword conorder), respectively.

The main body of the histogram consists of a representation of the distribu-
tion of normalized residuals. The interval between the minimum and maximum
normalized residue is divided in steps of 0.2. The number at the beginning of
each line denotes the center of each interval. The next number in line gives the
number of normalized residuals falling into that interval. The number of crosses
(X) in each line corresponds to number of residuals in each interval, rescaled by
a factor given in the header of the histogram, if the number of normalized resid-
uals in any interval exceeds 100. Three types of slashes (\ | /) outline the ideal
Gaussian distribution.

After the main body of the histogram, a list of moments of the distribution
is printed, separated into contribution of F-constraints and G-constraints. The
even moments are normalized so, that the expected value of the ideal Gaussian
distribution is 1. Ideal Gaussian value of the odd moments is zero.

A.6.5 File jobname.BMcheck

This file allows the user to graphically check the quality of the MaxEnt solution.
The file is produced only if the keyword memcheck is present in the input file. For
closer description of the underlying theory see keyword memcheck. The file has
this format:



A.6. DESCRIPTION OF THE OUTPUT 173

# Algorithm: MEMSys

# direct space gradient

# number dS/drho dC/drho multiplicity

686 -0.10099E+01 0.26331E-03 8

1372 -0.10160E+01 -0.17682E-03 8

2058 -0.10429E+01 -0.45650E-03 8

2744 -0.10190E+01 -0.53921E-03 8

3430 -0.10327E+01 -0.22974E-03 8

4116 -0.10345E+01 -0.21474E-04 8

.

.

.

# reciprocal space gradient:

# j dS/dF(j) dC/dF(j) multiplicity

1 0.98691E-02 -0.26485E+01 1

2 -0.19613E-01 -0.32598E+02 2

3 0.93420E-02 0.21646E+02 2

4 0.45182E-02 0.10621E+02 2

5 -0.10662E-02 -0.14466E+01 2

6 -0.21129E-02 -0.18777E+01 2

.

.

.

The pixels in the direct-space gradient are sampled so, that the total number
of samples corresponds to the number given by the keyword memcheck. The list
of reflections in the reciprocal-space part is complete. If a chart of second vs.
third columns is plotted, the points should form a straight line in case of an ideal
MaxEnt solution.

A.6.6 File jobname.BMsymtb

This is a binary file containing the information about the symmetry of the discrete
unit cell. It is intended for internal use in BayMEM. This file is written only
if enabled in the input file (keyword symtable). If the file jobname.BMsymtb
exists, the symmetry information is read from the file and the time-consuming
calculation of the symmetry information is not performed. Having this file can
be useful, if many runs with identical symmetry settings are planned. However,
note that the BMsymtb file can be very large (several GB for more-dimensional
unit cells). The file is never deleted by BayMEM.
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A.7 Run-time interaction with the program

A.7.1 Program-to-user communication

Almost all messages from the program are written into the BMlog file (Sec-
tion A.6.3). This is because the MaxEnt runs might take very long time and
the terminal BayMEM has been run from might have been closed before the
MaxEnt run has finished. Therefore, user should always check the BMlog file
for possible warnings and error messages, especially in the initial stages of the
runs. Few exceptions exist, when an error message is written both to the BMlog
file and to the standard output. These exceptions concern problems encountered
during the reading of the data, i.e. at the very beginning of the run.

A.7.2 User-to-program communication

All information necessary to run BayMEM is given in the input file. However,
there is a limited set of commands, that can be passed to the program during
its run-time. The commands must be written in the file jobname.BMcom. The
existence and contents of this file is checked by the program and if some known
command is found, it is performed and the file is deleted. No multiple commands
are allowed in the BMcom file. The commands are case-sensitive. The most
convenient way to pass a command to BayMEM is to use the command echo:

$ echo "command" > jobname.BMcom

The allowed commands are:

• DENSITY filename: If this command is found, the current ρMEM is written
to the file specified in the command and the iteration continues.

• STOP: If this command is found, the iteration is stopped, like if the maximal
allowed number of cycles were exceeded. The output density and all output
files are written.

• RATE value: This command applies only to the algorithm MEMSys. It allows
the user to change the value of parameter RATE specified originally in the
keyword settings. Higher values of RATE speed up the convergence, but
too high values can cause failure of the algorithm. For more information on
this problem see Section A.8. The information about the change of RATE
is written in the BMlog file.
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A.8 Troubleshooting

• Problem: BayMEM terminates very quickly without writing any output
density.

Solution: Check the jobname.BMlog file for possible reports on errors
in the data, like some missing or mistyped keywords or non-unique set of
reflections.

• Problem: The “input data check” in the file jobname.BMlog returns too
large value.

Solution: This indicates some inconsistency in the input parameters or
data. Most probable reason is that the symmetry operators do not form a
space group. Check also, whether the keyword centro is consistent with
the symmetry operators. All symmetry operators of the space group must
be listed, including those related by the center of symmetry. Another pos-
sibility is that the list of reflections in the input file contains reflections,
that are systematically extinct. Such reflections must not be present in
the input list! Such a situation can occur, if the reflections have been in-
dexed in other symmetry (or only other setting of the space group) that the
symmetry operators refer to.

• Problem: The Cambridge algorithm converges smoothly up to certain
value of omega, but then oscillates around that value without reaching the
final value Omega = 1.

Solution: This usually indicates inconsistency in the number of electrons
given in various places. The total number of electrons given by the key-
word electrons must be consistent with the value of F(000) in the in-
put reflection list and - if applicable - with the number of electrons in the
prior electron density. BayMEM does not automatically normalize the
prior electron density to the expected number of electron. BayMEM nor-
malizes the prior electron density only on users’ explicit request (keyword
correction).

• Problem: The Cambridge algorithm converges very slowly, the change in
Omega between cycles is very small.

Solution: If none of the previously described problems applies, you may
have chosen too low value of RATE. Try to increase it either in the in-
put file (keyword settings) or during the iteration (recommended; see
Section A.7.2). In general, more symmetrical structures can have higher
RATE, up to 15 or 20 in extreme cases. Important: Do not increase
RATE too much, better increase it by small amount several times. Watch
the value of Test. If Test starts to increase, do not increase Rate further.
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Increasing Rate too much can (and probably will) lead to serious problems
with convergence.

If the value of RATE is already high and the convergence is still slow,
consider increasing the standard uncertainty of the F(000) structure factor
(keyword fbegin - endf). But do not increase it too much, or you end up
with a problem described below!

• Problem: The Cambridge algorithm converges, but the value of Test is
high.

Solution: The two most probable reasons for this problem are too large
value of RATE or too large value of σ(F (000)). Try to decrease them and
repeat the calculation. Under special circumstances (with very informative
prior and/or data with large standard uncertainties), the condition on the
value of the constraint is reached sooner than the proper MEM path is
found. This can be sometimes also solved by decreasing RATE, or by
decreasing the internal accuracy (keyword settings).

• Problem: The Sakata-Sato algorithm converges very slowly, virtually stops
converging.

Solution: The convergence of Sakata-Sato algorithm is not guaranteed.
However, slow convergence can be caused by various errors in the input
file. It is recommended to try calculation with the Cambridge algorithm,
if possible. If the Cambridge algorithm converges, the problem is in the
Sakata-Sato algorithm. If none of the two algorithms converge, the problem
is in the data. In that case (or if the Cambridge algorithm is not available),
try to see solutions of previous problems.



Appendix B

EDMA - A computer program
for analysis of electron-density
maps in arbitrary dimension

User manual

B.1 Introduction

The Maximum Entropy Method (MEM) is nowadays well estabilished as a pow-
erful tool for a model-free image reconstruction. In crystallography it has found
applications in the reconstruction of the electron density in the unit cell (von der
Linden et al., 1998). One of its promising applications is the reconstruction of
the electron density of the incommensurately modulated structures in the higher-
dimensional unit cell. This can be used for a model-free determination of the
shapes of the modulation functions, a result which is not achievable with the
standard refinement methods.

However, the output from the MEM is a discrete n-dimensional array of values
of the electron density representing a sampling of the true continuous electron
density. Such a type of output does not allow a straightforward quantitative
interpretation and extraction of all the relevant information, like the position of
the atoms, charge partitioning between the atoms and ultimately the shape of the
modulation functions. It is precisely the task of the program EDMA to provide
the necessary software tools for such an analysis and extraction. The program
can extract an exact position of the atomic maxima from any discrete electron
density map, the charge of individual atoms, and the center of the charge, all
this as a function of the superspace coordinates in case of higher-dimensional
densities.

177
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EDMA is optimized for work with the superspace densities, but since the 3D
densities are but a special case of the general nD density, EDMA is fully capable
of the analysis of ordinary 3D-periodic structures, too.

The theoretical and mathematical background of the various aspects of the
analysis is given in Section 2.9 of this thesis.

B.2 Technical details

B.2.1 Programming language and system requirements

EDMA is written in the programming language Fortran 90. It has been compiled
and tested on two copmputers:

• Compaq AlphaStation ES40 with 500MHz 64-bit Alpha EV6 RISC proces-
sor and with Compaq Fortran Compiler V5.5-1877-48BBF

• Silicon Graphics Fuel with 500MHz IP35 MIPS R14000 processor and with
MIPSPro Fortran compiler V7.4

The program obeys Fortran 90 standards and should be therefore compilable with
any F90 compiler.

The program does not have any special system requirements. It does not
use a graphical interface and the input can be edited with any plain text editor
such as vi, nedit or emacs. However, it should be noted that the requirements
for the system memory are quite high. The program stores the whole electron
density and some smaller arrays in RAM to achieve reasonable speed of compu-
tation. Since the electron density maps can be very large (up to the order of
several GB in case of high-resolution 4-D maps), the memory requirements are
correspondingly high. However, these requirements are not higher than of the
program BayMEM. Thus, any computer used for computation of the electron
density map with BayMEM can be used for analysis of that map with EDMA.

B.2.2 Execution

The program is executed with command
EDMA input file

where input file is the full name of the ASCII file containing input para-
meters (see Sections B.3.2, B.3.3 and B.3.4). There are no other command-line
options.

B.2.3 Standard run of the program

This is an example of a standard run of the program, if no error has been en-
countered in the input and during the execution:
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Reading the density map Example.m81

t= 0.000

Extracting the electron density in real dimensions:

Integrating charge of the atoms:

t= 0.040

Extracting the electron density in real dimensions:

Integrating charge of the atoms:

67%

.

.

.

The last line shows always the progress of the current task in percent. The sen-
tence ”Integrating charge of the atoms” appears only if setting centerof-

charge yes is present in the input file (Section B.3.3.6).
The output goes standardly to the standard output. Should EDMA run after

closing of the terminal it was launched from, the output must be redirected to
some temporary file, for example:

EDMA input file > edma.tmp

B.3 Specification of the input

B.3.1 Types of input

EDMA requires two input files. The first file contains the values of the elec-
tron density. EDMA supports electron density files in the .m81 format of
JANA2000 (Petř́ıček & Dušek, 2000)1. EDMA supposes that the density was
produced with the program BayMEM. The density must be defined in points
xi = 0, 1/ni, 2/ni, ..., (ni − 1)/ni where n is number of pixel in each direction i.
This is the standard produced by BayMEM. User is referred to the specification
of BayMEM for further details. Other formats can be added upon request.

The second file is an ASCII file containing specifications on the program pa-
rameters. In following sections, the expression “input file” means always the
ASCII input file. The file with electron density is referred to as a “input density
file” or “input density”.

B.3.2 Format of the ASCII input file

The input file is a free-format file based on keywords. Each keyword represents
a specific parameter of the analysis and must be given a value.

1This crystallographic package is free and can be downloaded at
http://sun175.fzu.cz/jana/jana.html
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Multiple spaces anywhere in the file are handled as a single space. The lines
containing the character ’#’ in the first column are treated as comments and not
interpreted. Blank lines anywhere in the input file are ignored. The length of the
interpreted part of the line is 132 characters, every text exceeding this length is
ignored.

B.3.3 Specification of keywords

There are two basic types of keywords. The first type is followed by one or more
values on the same line:

keyword value1 [value2 value3...]

The second type has the form:

begin keyword

line 1

line 2

...

end keyword

Each line may contain one or more values.
The name of the keyword of the first type is a single word without spaces.

The name of the keyword of the second type is a pair of initial and final word
(separated by a hyphen in the following text).

• Each value can be a constant of type real, integer or character. The type
of the parameters and their allowed values are specified bellow. Alternative
values are separated by slashes.

• The keywords are either compulsory or optional. The compulsory keywords
must be specified for the analysis to proceed. The optional keywords can be
omitted. If the optional keyword is omitted, the default value is used. The
compulsory keywords are indicated by “compulsory keyword - no default”
in the item “default”.

• description: Describes the function of the keyword, its influence on the
output and relations to other keywords.

B.3.3.1 name: addborder

• value: positive real number

• default: 0
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• description: The t-maps are non-periodic in one or more direction. How-
ever, some atomic basins span beyond the borders of the current basic-
structure unit cell. The density of these parts of the atomic basins must
be calculated explicitly in the aperiodic directions, if any characteristics
depending on the atomic basins (see keywords basin, centerofcharge)
should be computed. The keyword addborder controls, how large portion
of the neighboring unit cell should be calculated for each t. The para-
meter gives the fraction of the neighboring unit cells to be added to the
actual unit cell. For example, addborder 0.4 will cause EDMA to calcu-
late t-maps in interval -0.4 to 1.4 with respect to the actual unit cell in
each aperiodic direction. It is user’s responsibility to use sufficiently large
value of addborder. If the number is too small, not all charge of the atom
might be accounted for and consequently the extracted properties of the
atoms at the border of the unit cell can be biased. On the other hand,
the computational time increases approximately linearly with the value of
addborder (t = taddborder=0(1 + 2 ∗ addborder)) and thus redundantly large
values should be also avoided. The proper value depends on the particu-
lar crystal structure and can be determined by inspecting maps of atomic
basins (see keyword basins and Section B.4.3).

B.3.3.2 name: atoms - endatoms

• value: each line contains a name of an atom (maximum 8 characters) and
three fractional basic-structure coordinates of that atom.

• default: compulsory keyword in combination with setting maxima atoms -
no default

• description: This keyword is used only together with setting maxima atoms

(see keyword maxima for more details). If used without this setting, it has
no effect. Setting maxima atoms and omitting this keyword will lead to
empty output. The analysis will proceed, but a warning will be printed
on the standard output. If the keyword is present, the density is searched
only for maxima close to the positions of the listed atoms (see keyword
tolerance).

B.3.3.3 name: axisorder

• value: string of dim non-repeating digits from 1 to dim, where dim in the
dimension of the input density

• default: 123 . . . dim
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• description: The value of the keyword represents a permutation of the su-
perspace axes to be used by the program. First three digits denote the
real-space axes x, y, z, the rest determines the order of the axes in addi-
tional dimension. This setting is useful for composite structures, where
the real-space and internal-space axes interchange their role for different
subsystems. Consider for example a composite structure with the incom-
mensurate direction along a. The most probable setting of the superspace
axes will be a1, b, c, a2. Thus, the fourth axis will be the additional axis of
the first subsystem and simultaneously the x-axis of the second subsystem.
Consequently, to analyze the first subsystem of the composite structure,
use setting axisorder 1234, to analyze the second subsystem, use setting
axisorder 4231.

B.3.3.4 name: basins

• value: yes/no

• default: no

• description: EDMA uses Bader’s formalism to assign charge to atoms
(Bader, 1990; Section 2.9.2). This formalism divides the whole space into
“atomic basins”. The charge anywhere in the basin belongs to the atom
lying in that basin. EDMA produces maps of these basins for each t, if
setting basins yes is present in the input file. For more details about the
maps of atomic basins see Section B.4.3.

B.3.3.5 name: cell

• value: six real numbers representing a b c α β γ

• default: compulsory keyword — no default

• description: Lattice parameters of the structure. If the output coordinates
are fractional (see keyword scale) and the absolute values of atomic charges
are not needed, the values of the lattice parameters do not influence the
output.

B.3.3.6 name: centerofcharge

• value: yes/no

• default: no
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• description: If yes, EDMA calculates the weighted average of coordinates
of the pixels in the atomic basin of particular maximum, that have den-
sity values above some user defined limit (see keyword chlimit). These
coordinates represent a center of charge of the atomic basin and thus an al-
ternative position of the atom. This position can be more accurate than the
position of maximal electron density if significant anharmonic movement is
present. The atomic charges of individual atomic basins are calculated at
the same time and written in the output.

B.3.3.7 name: chlimit

• value: real number between 0 and 1

• default: 0.25

• description: This keyword has effect only in combination with the setting
centerofcharge yes. Only pixels with density ρ > chlimit ∗ ρmax (ρmax

is the maximum density of the atomic basin) are included in calculation of
the center of charge and atomic charges.

B.3.3.8 name: inputfile

• value: valid specification of the file shorter or equal in length to 132 cha-
racters

• default: compulsory keyword - no default

• description: Specifies the file containing the input electron density map.

B.3.3.9 name: maxima

• value: none/all/atoms

• default: atoms, if atoms are defined in atoms - endatoms, all otherwise

• description: Setting maxima all will cause all maxima found in each t-
map to be listed in the output file. Setting maxima atoms results in list of
the maxima near the coordinates given in the keyword atoms - endatoms.
This setting is suited for convenient extracting of the modulation functions
for a list of atoms. Setting maxima none avoids any coordinates to be
printed in the output. It can be useful if t-maps or maps of atomic basins
are the only desired output. All maxima are subject to acceptance/rejection
according to the keyword plimit.
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B.3.3.10 name: outputbase

• value: any string of 132 or less characters valid as a part of a filename

• default: compulsory keyword - no default

• description: The value of this keyword defines the base of all output files.
Each output file begins with this base and is given specific ending and/or
extension. For closer description of the naming conventions see Section B.4.

B.3.3.11 name: plimit

• value: real number

• default: 0.0

• description: Only maxima with ρmax > plimit are listed in the output.
This keyword can be used to filter out spurious maxima, that are often
present in the MEM maps and that are sometimes extremely increasing the
number of maxima in the output.

B.3.3.12 name: position

• value: relative/absolute

• default: absolute

• description: Applies only to the setting maxima atoms. If position is
absolute, the coordinates in the output are related to the origin of the
unit cell. With setting position relative the output coordinates are
relative to the basic structure coordinates specified in the keyword atoms

- endatoms.

B.3.3.13 name: qvectors - endqvectors

• value: Each line contains coordinates of one q-vector. There must be (dim−
3) q-vectors between the start- and end-keyword.

• default: compulsory keyword — no default; not applicable if dim = 3

• description: This keyword contains the definition of the q-vectors. The or-
der in which they are listed must correspond to the order of axes defined in
the keyword axisorder. For example, we can have a 5D map with a stan-
dard order of axes x1 x2 x3 x4 x5 and two q-vectors q1 and q2 corresponding
to axes x4 and x5. If the value of the keyword axisorder is 12345, the order
of the q-vectors must be q1, q2. If the value of the keyword axisorder is
12354, the order of the q-vectors must be q2, q1.
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B.3.3.14 name: range

• value: positive odd integer

• default: 7

• description: The electron density at arbitrary points is determined by spline
interpolation of electron density in some neighborhood of that pixel. The
keyword range defines the size of this neighborhood. With setting range 7

the density of a given point is determined from the cube with side 7 pixels
centered on that the point. The larger the value, the more “global” is the
interpolation, but the longer computation time is needed. In practice value
7 produces almost identical results with any higher value and value 11 is
perfectly safe. The value should be odd because of some symmetry of the
interpolation. Even values will work too, but they are not recommended.

B.3.3.15 name: scale

• value: angstrom/fractional

• default: fractional

• description: Influences the scale of the atomic coordinates in output. Useful
to obtain the modulation functions directly in Ångstroms.

B.3.3.16 name: tlist - endtlist

• value: Each line contains three real numbers between 0 and 1. There must
be (dim− 3) lines between the begin- and end-keyword.

• default: compulsory keyword - no default; not applicable if dim = 3

• description: Each line of this setting applies to one additional dimension in
order determined by the keyword axisorder. Each line has format tstart
tend tstep. tstart defines starting t in that dimension, tend defines ending t
and tstep the steps between individual t’s. Real-dimensional sections are
calculated starting with tstart in steps of tstep as long as the generated value
does not exceed tend.

B.3.3.17 name: tmap

• value: yes/no

• default: no
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• description: Turns on/off saving of the t-sections to separate files for inspec-
tion. For the description of the output files and their naming conventions
see Section B.4.2.

B.3.3.18 name: tolerance

• value: positive real number

• default: 0.15

• description: This setting is applicable only in combination with the setting
maxima atoms. The maximum is considered to belong to some atom (from
the list of atoms defined by keyword atoms - endatoms) if the difference
between the coordinates of the maximum and of the atom in Å is smaller
that tolerance in all coordinates. Tolerance should be selected larger than
the largest modulation. At the same time it must not be too large to avoid
assigning possible neighboring maxima to the atoms.

B.3.4 Examples of input files

B.3.4.1 Example 1.

This is the simplest possible input file applicable only to the 3D densities. The
output will be a list of fractional coordinates of all maxima present in the map.
The filename of the output will be example1.coo.

inputfile example1.m81

outputbase example1

cell 1. 1. 1. 90. 90. 90.

B.3.4.2 Example 2.

A run of EDMA with this input file would extract all significant maxima (above
50 e/Å3) from eleven t-sections. The structure is supposed to be a (3 + 1)D
modulated structure. It could be used for a preliminary analysis of the map with
unknown positions of the atoms. The output will contain only the fractional
coordinates of the maxima. All eleven t-sections would be written to files.

inputfile example2.m81

outputbase example2

cell 3.128 3.128 8.245 90. 90. 120.

plimit 50.

maxima all

scale fractional

centerofcharge no
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tmap yes

qvectors

0. 0. 0.2356

endqvectors

tlist

0.0 1.0 0.1

endtlist

B.3.4.3 Example 3.

This example uses most of the options EDMA offers. It leads to determination of
the modulation functions of the two listed atoms of the second subsystem of the
composite structure (LaS)1.14NbS2. The modulation will be listed relative to the
basic-structure coordinates in Å and would contain 26 points:

inputfile LaSNbS_6626.m81

outputbase LaSNbS_6626_2nd

cell 5.7983 5.7972 22.9555 90. 90. 90.

tolerance 0.08

range 11

plimit 20.

chlimit 0.20

axisorder 4231

maxima atoms

position relative

scale angstroem

centerofcharge yes

qvectors

1.7536 0. 0.

endqvectors

tlist

0.0 1.0 0.04

endtlist

atoms

La2 0.0 0.00069 0.32733

S2 0.0 0.50701 0.30005

endatoms
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B.4 Description of the output

B.4.1 File outputbase.coo

The principal output file has the name outputbase.coo (see keyword outputbase).
It consists of two parts: the header and the data. The header contains informa-
tion about the input parameters and the density map. Its contents might vary
depending on the input parameters, but it is self-explaining. The header of the
output file of example 3 in previous section will look like this:

# Analysis of the density map LaSNbS_6626.m81

# Dimension of the map : 4

# Division of the map : 64 64 256 64

# Order of the axes : 4231

# Range for spline interpolation: 11

# Cell: 3.3065 5.7972 22.9555 90.0000 90.0000 90.0000

# q-vectors:

# 1.75360 0.00000 0.00000

# limits and steps of t:

# start end step

# 0.00000 1.00000 0.04000

# The center of charge and total charge of atomic basins will be computed.

# The density in the incommensurate directions is calculated from -1.300 to 1.300

# The density limit for the pixel to be accepted in the charge calculation is 0.20*Rho(max)

# The scale of the output coordinates will be angstroem

# Positions of following atoms +- 0.080 and with density over 20.000 will be searched for maxima at each t

# Coordinates are related to the input coordinates of the atoms.

# La2 0.00000 0.00069 0.32733

# S2 0.00000 0.50701 0.30005

The header is terminated with a blank line.

The format of the data part depends on the value of the keyword maxima. If
the setting maxima atoms is present in the input file, the data part is divided into
blocks corresponding to individual atoms. Each line in the block corresponds to
coordinates of the atom at one t-setting (see Example 1 below). Blocks are sepa-
rated by two blank lines. The setting maxima all will divide the data part into
blocks corresponding to different t settings. Each line in one block corresponds
to one maximum found in that t-section (see Example 2 below). The blocks are
separated by two blank lines.

Each non-blank line of the data part is either a comment (name of the atom
or the t setting) or represents one maximum. The format in which the maxima
are written is:

[t1, t2...] xmax ymax zmax [xcoc ycoc zcoc charge] ρmax

Subscriptmax denotes coordinates of the maximum density, subscript coc denotes
coordinates of the center of charge. The values of t appear only with the setting
maxima atoms in the input file, the coordinates of the center of charge and the
total charge is present only with the setting centerofcharge yes in the input
file.
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Example 1: This example corresponds to the input file of Example 3. in
Section B.3.4:

# La2

0.000 0.000000 0.090418 -0.009751 0.000000 0.087569 -0.014710 39.2694 1545.26

0.040 -0.016656 0.088507 -0.010179 -0.018866 0.085161 -0.014261 39.1792 1480.91

0.080 -0.033310 0.083125 -0.010803 -0.035440 0.077808 -0.011317 38.2003 1329.34

.

.

.

0.920 0.033310 0.083125 -0.010803 0.035440 0.077808 -0.011317 38.2003 1329.34

0.960 0.016656 0.088507 -0.010179 0.018866 0.085161 -0.014261 39.1792 1480.91

1.000 0.000000 0.090418 -0.009751 0.000000 0.087569 -0.014710 39.2694 1545.26

# S2

0.000 0.000000 0.030583 0.015285 0.000000 0.024386 0.017255 8.6366 238.66

0.040 0.006026 0.031678 0.014303 0.007160 0.028037 0.012887 8.6486 238.53

0.080 0.011000 0.034211 0.011461 0.009563 0.035063 0.005891 8.6872 238.75

.

.

.

0.920 -0.011000 0.034211 0.011461 -0.009563 0.035063 0.005891 8.6872 238.75

0.960 -0.006026 0.031678 0.014303 -0.007160 0.028037 0.012887 8.6486 238.53

1.000 0.000000 0.030583 0.015285 0.000000 0.024386 0.017255 8.6366 238.66

Example 2: This example illustrates the output of the run with settings
maxima all and centerofcharge no:

# t= 0.000

0.286588 0.423447 -0.000043 1646.19

0.859758 0.423054 0.000144 1686.35

0.000002 0.922324 -0.000232 1676.74

.

.

.

0.859758 0.423054 1.000144 1686.35

0.000002 0.922324 0.999768 1676.74

0.565829 0.922539 1.000209 1670.88

# t= 0.040

0.263647 0.423486 -0.000014 1664.99

0.836763 0.423222 0.000115 1648.99

-0.020935 0.922352 -0.000231 1648.26

.

.

.

0.836763 0.423222 1.000115 1648.99

-0.020935 0.922352 0.999769 1648.26

0.545323 0.922432 1.000222 1680.50

# t= 0.080

0.238186 0.423490 0.000012 1651.24

0.812799 0.423351 0.000080 1679.12

0.523123 0.922357 0.000231 1643.32

.

.

.

The readers using the plotting program Gnuplot will have already recognized
that the output is designed to be easily viewed with this program. The sign #
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indicates comment lines, which are not interpreted by Gnuplot, and double
blank lines separate individual fields.

B.4.2 t-maps

Sometimes it is desirable to have the opportunity to view the real-dimensional
sections of the superspace density. EDMA calculates these sections and upon
request (setting tmap yes) saves them as so called t-maps in the .m81 format.
The saved files can be then viewed with program Contour of the software
package JANA2000. The names of the t-maps follow the pattern

outputbase t1 t2...tn.m81

t1 etc. stands for the value of t in the corresponding dimension given to two
decimal places. For 4D maps only one t is present, of course. outputbase repre-
sents the value of the keyword outputbase in the input file. The t-maps contain
one basic unit cell extended according to the value of the keyword addborder

in each non-periodic direction. Consequently, setting addborder to (say) 3 will
produce a t-map, which covers 7 basic unit cells in each non-periodic direction.
No t-maps can be produced from ordinary 3D maps.

Note on the naming of the t-maps and maps of atomic basins (Section B.4.3):
The t coordinates are written in the file name with 2 decimal digits. If the real
coordinates have more than two significant decimal digits, they are rounded in
the filename (but not in the actual calculation). This can cause problems, if the
step in t is smaller than 0.01 (see keyword tlist - endtlist). Two consecutive
maps will then have the same name and the program will deny to write the second
map with an error message

Error! Cannot open density file mapname

The problem can be overcome by first writing all t maps with step larger or
equal to 0.01 and then, in the second run, writing another set of t-maps with a
modified outputbase.

B.4.3 Atomic basins

According to Bader’s formalism (Section 2.9.2), each point in the space can be
assigned to one atom. This results in a division of the space into so called atomic
basins. These basins are used to calculate the total charge of the atom and the
center of charge. The atomic basins can be saved in the format .m81 (see Sec-
tion B.3.1). Each pixel in the map of atomic basins is assigned a number of
maximum it belongs to. If such a map is viewed in the plotting program Con-

tour of the crystallographic package JANA2000, it appears in 2D sections as a
mosaic of black fields (constant ”density”= atomic basin of one atom) separated
by lines on the border of the atomic basins, where an abrupt change of the number
takes place. Due to the interpolation scheme used in Contour, some borders
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(those with large difference between the numbers of maxima) are separated by
several close-lying lines rather than by a single line. The names of the maps of
basins follow the pattern

outputbase basins t1 t2...tn.m81

t1 etc. stands for the value of t in corresponding dimension. outputbase

represents the value of the keyword outputbase in the input file. In the 3D case
the map of basins has the name outputbase basins.m81.

For a note on the naming of the output files see Section B.4.2.
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