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Chapter 1

Introduction

Vortices are a usual phenomenon in Nature: everyone who has seen a tornado, or the
water flow pattern in the bathtub drain, may have an idea of what a vortex is. These are
examples of a vortex in a fluid (air or water) and they have in common a characteristic
flow, which forms a “curling” pattern in the velocities field. Vortices can appear as a
particular curling pattern in other continuous media (e.g. the gravitational field in the
case of a spiral galaxy, the electromagnetic field in the case of an optical vortex, the
density field in a superfluid like Helium, etc). Vortices can move with respect to the
medium, or (as is usually the case in fluids) they can be “pinned” or “frozen” into the
medium, moving only together with the medium when the latter moves (e.g. the wind
carrying the tornado along with it). There exist vortices deep into the solid matter
too, where no flux or transport of matter takes place. Magnetic vortices are formed by
the spins of the atoms of a magnetic material, and enjoy of an astonishing persistence.
They exhibit mobility, interaction, and other intrinsic particle-like properties, which
distinguish them from vortices in fluid media. A magnetic vortex can appear as an
“antivortex” as well, with the opposite “circulation”. Vortices and antivortices can form
bound pairs (“molecules”) where the constituent vortices undergo a parallel “Kelvin”
motion, and these pairs scatter at right angles under collisions with other pairs.

The last feature induces some people to associate magnetic vortices, from a more
mathematical viewpoint, with “non-linear excitations” of a magnet, like solitary waves
and solitons, as opposite to “linear excitations” or spin waves. We distinguish between
“linear” and “non-linear” excitations of a medium, in the sense that the first ones are
solutions of the linearized underlying field equations, usually non-linear, describing the
continuous medium, while the latter are more complicated structures, whose existence
and stability is usually observed first in computer simulations, whenever the complete
non-linear field equations are too complicated to be solved exactly.

In the case of magnetic materials, the underlying equations are often posed as the

classical limits of the quantum equations of discrete spins systems on lattices. The
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resulting models, like the Classical Heisenberg model to be studied in this work, are in
principle discrete, but some of its features can also be cast in the so-called “long-wave
approximation” or, in short, the continuum limit. Not all of its features, however, can
be described in the frame of the continuum limit, and thus an interesting subject —at
least for me— is to observe the relationships between discrete and continuous dynamical
descriptions. In particular, a vortex is often linked to a singularity or a discontinuity
at some point of a phase-like field, which represents a problem for the continuum
descriptions (think of doing integrals of a function which diverges at some point), but

is naturally regularized for discrete systems or lattices.

Another source for infinities appearing in the continuous descriptions of vortices in
magnetic media is the size, which usually was let to tend to infinity for bulk samples.
In this respect it appears to me very interesting the study of the crossovers between
the bulk and the systems where finite size effects start to play a role. The latter is
actually the case in much of today’s research about vortices in small magnetic systems,
with dimensions so reduced (5-50nm) that they can not be considered a bulk (more
details below).

The stability and the dynamics of spin vortices in ferromagnetic materials have been
subject of study since at least three decades 75} 144} [74] 28], but nowadays this field is
receiving even more attention, from the pure scientist viewpoint, as well as from the

applied science perspective.

Very recently, direct experimental observation of vortices or “curling” states, as stable
micromagnetic states of small (submicron) magnetic particles (dots), has been attained
thanks to novel magnetic microscopy techniques, -magnetic force microscopy (MFM)
and Lorentz transmission electron microscopy (LTEM), which enhanced the resolution

of traditional methods for observing magnetic structures.

Notable MFM experiments on circular nanoscale dots of Permalloy (NiggFeqq) [72, 65],
and Co [65, [14] disposed in arrays over nanopatterned films, reported images of vortex
cores, where the magnetization was found to point out of the plane of the film. LTEM
imaging also showed vortices to be favorable configurations in permalloy nanodisks
[65, 68]. High sensitivity magneto-optical methods have been used [12] to measure
the hysteresis loops of Supermalloy (NigoFe;4Mos) nanodisks, and it was found that
the shape of the loops agrees very well with that of loops calculated by means of
micromagnetic simulations [29, 9] of thin disks with vortex states.

These experiments have provided us with the possibility of directly checking theories of
vortices in ferromagnetic materials, making feasible a better understanding of the inter-
play between mesoscopic nonlinear collective excitations and geometrical constraints,

such as shape, size and boundary conditions at the interfaces (see Ref. [33]).

Concerning dynamical properties, it is important to investigate the response of systems



with vortex states to applied bias fields, which are control variables in experiments and
potential applications. The dynamical effects of nonlinear excitations in finite two-
dimensional (2D) and quasi-2D spin systems are especially relevant for read-heads in
storage devices, because of the high speeds of transfer reached by today’s hard disks.
Still, experiments are lacking which can resolve in space and time simultaneously, and
hence numerical simulations of Landau-Lifshitz equations have been the traditional
source of data regarding vortex dynamics. Simulation of 2D systems is important
because there are many 2D and quasi-2D magnetic materials, in the form of mono-
layers, layered and intercalated-layered compounds (for a review see Ref. [13, 56]),

which are known to support nonlinear excitations.

On the other hand, vortices have been shown to be relevant for many 2D systems of
theoretical physics, including 2D electron plasmas, 2D superfluid and superconducting
systems, and 2D Josephson junction arrays, because it is well established that vortices
drive, in all these 2D systems, a “topological” phase transition, called the Berezinskii-
Kosterlitz-Thouless (BKT) transition [8, 44], at a certain temperature Tpgr. For T <
Tgkr vortex-antivortex pairs are thermally excited and destroyed, and for T" > Tgkr
the pairs dissociate and the density of free vortices increases with the temperature.
Let us recall that according to the Mermin-Wagner theorem [53, [54], long-range order
is not possible in 1D and 2D models with a continuously degenerated ground state.
In magnetic materials Tpxr can depend (only weakly) on material parameters like
anisotropy [25] (to be introduced in Chap. 2) and on the applied external fields [36].
To study the vortex dynamics one usually assumes, and we will do so in our work,
that the density of free vortices above TgkT is so small, that one can isolate individual
vortices to follow their dynamics. We will also neglect thermal effects, which lead to
diffusive vortex motion and have been treated usually by means of stochastic terms in

the dynamical equations (see e.g. [40, 19]).

In the continuum approach, exact static solutions for the 2D isotropic Heisenberg
model are known, in the form of topological metastable states [7], but as soon as a
weak XY-type anisotropy or a magnetic field are included, the topologically non-trivial
solutions are not known in a closed analytical form, but only through numerically
obtained vortex-like profiles. For the 2D anisotropic easy-plane case, already in the
1980s two kinds of vortices were identified [28]: in-plane (IP) or planar vortices, which
are solutions with the magnetization always parallel to the XY-plane, and out-of-plane
(OP) vortices, with OP components of the magnetization in the vortex center region
or “core”, from which only asymptotic behavior was known [28 58]. In numerical
simulations, each type of vortex was found to be stable in different regimes of the
anisotropy parameter A (see Hamiltonian (2.12)) in Section 2.2)), and their asymptotic

behavior and deformations due to movement were calculated for each regime [22].



4 1. Introduction

In the context of a phenomenology of a dilute gas of vortices, their contributions to
low-frequency “central peaks” in dynamical form factors were studied [55, 22]. The
crossover from IP vortices (for A < A., see Section 2.2) to OP vortices (for A > A.) was
also established by analytical arguments [22] 83].

Most of the above work was done mainly at zero magnetic fields which complicate even
more the scenario. Although some work has been done on the XY-model (A = 0) with
static IP magnetic fields [24], little is known about the properties of easy-plane models
with magnetic fields for general A. A field applied in the XY-plane lifts the degeneracy
of the ground state and selects a preferential direction. In the presence of a vortex this
kind of field can lead to formation of domain walls connecting the vortex core with the
boundary of the system.

A magnetic field perpendicular to the easy plane tilts the ferromagnetic IP ground
state into the so-called “cone state”, in which the z-component of magnetization results
from a competition between the OP field and the effective anisotropy field [36]. The
IP component of magnetization still points to an arbitrary direction of the plane, since
the isotropy in the XY plane is not broken by the perpendicular applied field. The
shape of an OP vortex in the presence of such a perpendicular field was calculated in

Ref. [36], and a study of the magnon modes in this system was carried out in Ref. [3§].

To my knowledge, the dynamics of OP vortices in easy-plane magnets in an external
static field with both IP and OP components has not been investigated before, due
to the complications which arise mainly from the IP component of the field, which
deforms the well known “arctan” distribution of the spin field in the simplest vortex

state.

In addition, I believe that very little is known about the behavior of OP vortices in the
presence of time-dependent IP magnetic fields. Apart from the work of our group in
Refs. [18, [87], where one aspect of the dynamics of OP vortices under the action of a
uniform rotating IP field has been investigated, namely the switching phenomenon (See
Chapter 4), I am aware of only one work (Ref. [64]) about vortex pairs in a uniform
oscillating IP field.

In this Thesis, I am concerned with the dynamics of OP vortices, driven by either an
IP rotating magnetic field or a static field with both IP and OP components, in the
Heisenberg model with easy-plane anisotropy.

I investigate mostly in numerical simulations the phenomenological facts, and pro-
pose some possible explanations for these facts, by means of analytical models which
qualitatively account for the features observed in the simulations.

I will present a general introduction to the Heisenberg-like models, with different terms
of energy, as paradigmatic examples of classical spin systems, and to the non-linear

excitations called vortices, that these models support, in the Chapters 2 and 3. In



the latter, I will also show some basic known results about the dynamics of vortices
under the action of static fields, both IP and OP, for the easy-plane system. Together
with this, some new results which I have observed in numerical simulations will be

presented.

In Chapter 4, the phenomenon of switching of the OP components of the magnetization
of the vortex, under the action of the rotating field, will be studied in detail (Sec. 4.2).
Based on the results of an earlier work [18], we carry out an extensive set of numerical
simulations to complete the phenomenogical picture of the switching, and we formulate
a discrete model of the vortex core, which can account qualitatively for the features of

the process. This model is described in Sec. 4.3.

By transforming variables to a rotating reference frame in the spin space, we have
found that the dynamics of our original model, where the IP rotating field is applied,
is equivalent to the dynamics of a system in the rotating frame where only a static
field with both IP and OP components is applied. In both cases, a coupling between
the OP oscillation modes of the vortex structure and the IP movement of the vortex
center, while it moves around in the lattice, is observed in the simulations. In the
context of our model of the vortex core, a formal connection is found between one
of its equations, governing the antisymmetric oscillation modes, and an equation in
collective coordinates, that is similar to the Thiele equation but with a mass term
[84, 86] and is believed to give a low-order approximation to the movement of the
vortex center. Part of the results of this Chapter were published in Ref. [87].

In Chapter 5, we turn the attention to the movement of the vortex in the XY plane,
under the combined action of the rotating field and the damping. 1 first describe
the variety of trajectories that arise, and then I direct the attention to the study of
certain trajectories which form a circular limit cycle. These are especially relevant
since the vortex stays inside the system in a stationary movement, conditioned by the

simultaneous action of damping and driving.

In order to describe analytically this equilibrium trajectories, the inconvenience of
applying the Thiele approach to this problem is discussed, and based on these results a
new Collective Variable Theory is formulated. This theory starts from a generalization
of the steady-movement Ansatz, which introduces, in addition to the usual collective
variables (X (t),Y (t)) = (R(t) cos ®(t), R(t) sin ®(t)) for the coordinates of the vortex
center, a variable “width” [(¢) of the vortex core, or equivalently a variable M (t), the
total z-component of the spins, strongly localized in the vortex core, either of them
accounting for oscillations of the shape of the vortex core, and a variable “phase” W(t)
describing collective oscillation modes in the IP structure of the vortex, excited by
the rotating field. We derive the equations of motion for these 4 collective variables

{R,®, M, ¥} and we show that those equations produce circular limit-cycles in the
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expected regime of parameters, leading to a qualitative agreement with the results of

the simulations.

The new Collective Variable Theory gives us, thus, a better understanding of the vortex
movement in the presence of the rotating magnetic field. However, this theory, being
based on a continuum approach, is unsuitable for explaining the switching phenomenon
of Chapter 4, because in a continuum model the polarization of the vortex should be
a conserved. The discrete models of Chapter 4 remain thus as a good physical picture

of the switching phenomenon.

Finally, in Chapter 6, I briefly summarize the conclusions and perspectives of possible

future work.



Chapter 2
Classical many-spin systems

In this chapter I present a basic introduction to the classical Heisenberg model with dif-
ferent anisotropy terms, which gives a fair description of ferromagnetic materials, and
represents an archetypical example of classical spin systems. I review many features of
the discrete system, some of which are known and some of which are not easily found
in the literature. In particular, I show the dissipation relations in the discrete system
or lattice, when damping and driving are considered, for quantities like energy and
magnetization, and I derive these relations showing how one can perform calculations
directly at the level of discrete systems. These results are useful, whenever we want
to understand the behavior of the discrete system, which, on the other hand, is ap-
propriated to be simulated in computers. I introduce as well the dynamical equations
of classical many-spin systems. After this short introduction, in the next Chapter I
will present the basics of the topological collective excitation named vortex, and give
a review of some known facts, in the frame of a continuum approach. This will serve

as a sufficient basis for the next Chapters?®.

2.1 Energy terms

Consider a piece of ferromagnetic material, like Fe or Ni, composed by an ensemble of
atoms, each of one is assumed to have a magnetic moment m. We adopt the quantum-
mechanical result [4] that this magnetic moment is proportional to the total angular

momentum of the atom or ion,
-~ gpuB T
m = e ,

1 The presentation is based on material spread over some recent books about ferromagnetism
[2, 33], and spin dynamics in confined systems [29], review articles about non-linear excitations in
magnets [73] 5, 43} 56], as well as the Ph.D. thesis of my predecessors [78, 69, [39], and, finally, my
own calculations for discrete spin systems.
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where
JJ+1)+ SIS +1)—-L(L+1)

2J(J +1) ’

the so-called Landé factor, takes into account contributions from the spin and orbital

g=1+

part, and pug = —|e| i/(2m.c) is known as Bohr magneton. Usually the orbital part is
neglected?, as for a pure spin (L = 0, J = S), the value of g = 2 is twice as large as for
a pure orbit case (S = 0,J = L). In this case, the angular momentum J is just the

total spin S of the atoms or ions and we write
m=yS5 , y=—lel/(mec) <0, (2.1)

When placed in an external magnetic induction B , these atomic momenta will experi-
ence a torque which, in absence of other interactions, would be sufficient to align them
in the direction of the field. The interaction energy of a dipole moment m with a field

induction B is known to be

—

V=—m-B=—75-

]l

(2.2)

This field would determine, thus, a preferred direction, say z, along which the corre-
sponding components of the spins would take the 25 + 1 integer or half-integer values
{-=S,-S+1,---,5—1,5}. But the atomic spins in a ferromagnet, unlike the param-
agnetic substances, do interact with each other, each of them trying to align the other
in its own direction. The interaction between them originates from a quantum mechan-
ical property of the atoms, namely the fact that the wave functions of the electrons
bound to different ions overlap. In quantum mechanics one can calculate the intensity
of this coupling (see, e.g. [2]) usually using a mean-field theory, such as in the method
of Hartree-Fock. The calculation of the total energy of N atomic spins, combining the
Coulomb electrostatic interaction between pairs of electrons and the Pauli Exclusion
Principle, gives rise to an effective interaction, which is a sum of interactions between

pairs of spins, described by the Hamiltonian

Ha=—3 Y JyS-S; (2.3)

2Some materials, like the rare earths, have a strong orbit contribution, and some others exhibit
contributions from itinerant electrons. These materials will not be considered here, having in mind
the simplest ferromagnetic materials, where the magnetic momenta are basically the total spin of
the electrons bound to the ions. For metals, only the electrons in the inner shell are counted, which
typically means for metals like Ni, Co and Fe, the d electrons.
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proposed by Heisenberg [27] in 1928, where S, is the total spin of all electrons bound
to the atom or ion at the lattice site ¢ and the coefficients .J;; , known as the “exchange
integrals”, are integrals over the real space which involve the overlap of single-electron
wave functions. From this fact is clear that (a) they must be symmetric, J;; = Jj; ,
and (b) their values must decrease very rapidly with increasing distance between ions.
In particular, J must be negligible for farther atoms. Therefore, it is usually sufficient
to consider exchange interactions between nearest neighbors only. It is customary also
to keep the minus sign in front of (2.3) so that a positive J;; means a ferromagnetic
coupling that tends to align spins parallel to each other, while a negative J;; means an

antiferromagnetic coupling.

The Heisenberg Hamiltonian (2.3) is isotropic in spin space, i.e., the coupling between
x-components has the same intensity as the coupling between y- and z-components.
Therefore, its extreme value is reached when all the spins are parallel in the ferro-
magnetic case, or antiparallel in the antiferromagnetic case, the direction of the total
spin vector being arbitrary, at zero applied field. Actually, real magnetic materials
are not isotropic, and there are several theorems, and arguments based on Statistical
Mechanics, which show that if there were no other energy term besides the isotropic
Heisenberg Hamiltonian (with the spins treated as classical variables), magnetism at
zero field would not exist [2].

2.1.1 Anisotropy terms

In a crystal, the spin orbit interaction causes the most common form of anisotropy,
called magnetocrystalline anisotropy. The electron orbits are coupled to the crystal-
lographic structure, which makes the spins prefer to align along well-defined crystal-
lographic axes. There are therefore directions in space along which it is easier to
magnetize a given crystal than along others. This fact is described by means of a
direction-dependent energy term, which is usually small compared with the exchange
energy. The magnitude of the total magnetization (in the present context, mainly the
vectorial sum of spins, M = v S, for a unity volume), at some temperature T,
is determined almost only by the exchange, but its direction is determined by the di-
rection of the “anisotropy field”, derived from the anisotropy energy terms. Since a
quantitative evaluation of the spin-orbit interaction from basic principles is not accu-
rate, as is the case with exchange integrals, anisotropy energies are often introduced

as phenomenological terms, which are power expansions of the unit vector

| =

(2.4)

m —

=
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parallel to the total magnetization.

Among the magnetocrystalline anisotropies we can mention the uniazial anisotropy
W, = —Kym? + Kym? (2.5)

which appears, for instance, in hexagonal lattices where the z direction is the c-axis,
and usually |K»| < |K;| are dependent on T. When K; > 0 the c-axis is an easy-axis,
and m in that direction gives the minimum energy. When K; < 0, the c-axis is a hard-
axis, with an easy-plane perpendicular to it. The odd powers of 1 are excluded by the
experimental observation that the energy is symmetric with respect to the ab-plane.

For cubic crystals, there exists the cubic anisotropy: the previous expansion should
be unchanged if z is replaced by y, etc., and again odd powers are excluded, so the
lowest-order combination would be (m?2 + mz +m?), but this is a constant. Therefore,

four is the lowest order, and the expansion starts with
We = Ky (m2m +mim? +mim2) + Ky mimim? . (2.6)

For instance, K; > 0 in Fe, so that the easy axes are along (100), while K; < 0 for Ni,
and the easy axes are along the body diagonals, (111).

There are other situations in which the presence of interfaces of different media, or
deformations in the crystalline structure itself, give rise to anisotropic exchange, where
the different components of the neighbor spins are coupled with different intensities. In
a thin film, for instance, realized by deposing few layers of magnetic atoms over a non-
magnetic substrate, or in compounds which contain intercalated planes of magnetic
and non-magnetic substances, the planar structures give rise to anisotropic exchange

which can be modeled in terms of the spins in the form

N
—3 > (LSTSE S SIS+ L SES;) (27)

i,j=1

This form is what we will use in most of this work, since we are interested in small 2D
ferromagnets, particularly with a circular shape.
There are also situations in which the geometry itself, through the magnetostatic

dipole-dipole interaction Uy; which solves the magnetic Poisson equation
VUy=-V-M | (2.8)

where M is the total magnetization, causes the appearance of shape anisotropy terms.
The use of magnetostatic instead of the complete Maxwell equations is justified here,

whenever the time variations of typical magnetic structures are slow. Only for a few
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simple cases, like a uniformly magnetized ellipsoid, this problem is exactly solved, and

leads to an effective energy term in the form
Ung = %(Nx M2+ N, M2 + N, Mj) , (2.9)

with N; contants, which is very similar to the above mentioned crystalline anisotropies.
This kind of result can be obtained only for uniformly magnetized bodies, and not for
other spatial distributions of the magnetization. Note that in applying magnetostatics,
we have passed to a continuum description of matter, which was not necessary for the
previously discussed anisotropy terms. Alternatively, one could include in the energy

a dipole-dipole interaction, as the formal integral of (2.8). A discrete version of it,

D Si S L (S Fy) (S 7%y)
Uy = — — 1 _3 2 J , (2.10)
" 2 ; ( I7is? |7is1°

namely

can be used for numerical calculations [20]. However, this term is a long-range inter-
action which makes very difficult the theory and very time-consuming the numerical
calculations. For the 2D systems that we consider here in many cases (depending on
the relative intensities D/J or D/K), this term is usually neglected.

We are interested exclusively in the Hamiltonian (2.7) with easy-plane anisotropy. For
typical quasi-2D materials with an easy-plane (for instance, the compound KyCuFy ,
a layered magnet with a ratio of interplane-to-intraplane exchange constants J'/J &~
107, see Ref. [30]), at low temperatures (Tpxr = 6.2K), the exchange constants are

in the order J ~ 10K, and the anisotropies range from 1 to 10%.

2.2 Heisenberg model with uniaxial anisotropy

So far the spins involved in the energy terms (except the magnetostatic term which
is derived from Classical Electromagnetism), are a quantum concept. The quantum
many-body problem is so complex that it is tractable only in a few very restricted cases.

Therefore, a usual practice is to consider classical spins variables, as the classical limit

S—o0 , h—0 , hS— S.=const (2.11)

of the (non-commuting) spin operators, and justify this procedure a posteriori, by
contrasting the results with the experiments. We will investigate, thus, the dynamics
of a classical spin system, whose equations of motion arise, in the case of a Hamiltonian
system, as the classical limit of the corresponding quantum equations of motion (see
Appendix A)).
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Throughout this work, we will be interested in the dynamics of a strictly 2D ferro-
magnet, say a monolayer, forming a square lattice of spins Sz indexed by a vector of
integers 17 = (n,, n,). The system in our numerical simulations and in some analytical
considerations, has a finite size, often with a circular border, although for some calcula-
tions (particularly in discrete form) a rectangular border (1 <n, <N, , 1 <n, < N,)

is assumed for simplicity.

Our model system is chosen to have anisotropic exchange in the form (2.7), although
in some of the next calculations and in some parts of the numerical work, for the sake
of comparisons, I will use on-site or self-interaction terms of the form of (2.5) as well.

All together with a rescaled static field h = y B , we will use the Hamiltonian

g‘(:j_co‘i_g_(:l_'—/\?:_%zgﬁ'j_}ﬁ+a’—%z_)ﬁ'f)_»ﬁ—ﬁ'zgﬁ (2.12)

I ~
n,a I n

where @ = (ng,n,) is a lattice site, and @ = {(0,—a),(0,a),(—a,0),(a,0)} are
the elemental displacements to its 4 neighbors, with a > 0 the lattice constant,
J= diag(J;, Jy, J,) is a diagonal matrix which includes the exchange constants with
anisotropy in the 3 axes of the spin space, and the on-site anisotropy is included in
D = diag(D,, D,, D.). The spin lengths are fixed to its classical value 15| = S..

The models included in (2.12) are classified by their state of minimum energy at zero
field. In the easy-azis as well as in the easy-plane models, both extremes of uni-azial
anisotropy, the coupling constants for 2 of the main directions, say in the XY plane,
are equal to each other, and different to the corresponding constants for the remaining

3

axis, say the z-axis® | so it proves convenient to write

Easy-Plane or Easy-Axis : )= Jdiag(1,1,)) , D= D diag(1,1,u) , (2.13)

where usually |\| = 1 and || &~ 1. Whether the spins in a uniform configuration prefer
to align in some arbitrary direction in the XY plane, or perpendicular to it, at zero
field, depends on the competition between the two anisotropies. We can evaluate the
Hamiltonian (2.12) for any uniform state (S; = Sz.z = S, Vii): at zero field, assuming
(2.13) and because of (S%)% + (S¥)? = S? — (S%)? we have

4J+ D
2

4J(1 = \) + D(1 — p)
2

H(S?) = S2N + (S*)*N (2.14)
where N = ) _1 is the number of spins. The first term is a constant, the energy of

the in-plane (IP) uniform state Ej, when S* = 0. On the other hand, the energy of

3The case of 2 different axes for exchange anisotropy and on-site anisotropy, respectively, would
correspond, for instance, to a monolayer of a rectangular lattice, and will not be treated here.
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the perpendicular (L) state, when S* = S, is E; = — (4J\ + Du) S?> N/2, so which
state has the lowest energy depends on the quantity

<0 , Ey>E, ~ Easy-Axis

K=4J1—-XN)+D(1—p) (2.15)

>0 , Ey<E. ~» Easy-Plane

From here it is clear that when all the constants are positive the system exhibits an

easy plane, which is the case of interest in this work.

When there is a static magnetic field present, the uniform state with minimum energy
results from the competition between the anisotropies and the field. For a perpendicular
field h, = h, z, which does not break the O(2) symmetry in the XY plane, we can
simply add the energy —h, Sc N to E, , while F) remains unchanged, which amounts
to add the term +h, /S. to the Lh.s. of the inequalities (2.15), to determine which

state will have the lowest energy.

However, the uniform state with the lowest _5
energy in this case may be none of (2.15), e
but a sort of compromise [36, 38|, where
the IP components of the spins point in 55
an arbitrary direction of the plane, while E 515
the out-of-plane (OP) components result B
from minimizing
-6.25 p
M = ﬂ + 5 S#)? — h, S* (2.16 -65 jl:/_/ofé// \\\h\z\ofi_
N N2 o ] 219 -0.75 -05 -025 0 025 05 075 1
with respect to S*, which gives g
. hy hy Fig. 2.1: The energy (2.18) for typical
7 T Se (2.17) settings (see the text) and various field

intensities h.
where we defined the anisotropy field in-

tensity h, = K S.. Together with the constraint |S*| < S., which means |h, | < |h,|,
this formula says that the minimum of the energy is shifted to the right with increasing
h, >0, for K > 0, until the field takes the critical value h; = h,, when the magnet
has an easy-axis with 5% = S.. When A, < 0, for K > 0, the minimum of S* in the
interval |S?| < S, is reached at S* < 0, until eventually h, = h,, and the ferromag-
net is again an easy-axis, but with —z as easy direction. The situation is depicted in
Fig. 2.1, where I plot (2.16) divided by (K S?), i.e. the function

e(n) = By + L2 — hy (2.18)
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of the reduced variables n = S*/S. and h = h,/h,, with Ey = Ej/(N K S?), for
typical settings J = D = 1, A = 0.9, and p = 0.98, and for different reduced fields
h. Here K = 0.42, and Ey = —5.95. Thus, at very low fields the magnet has an

easy-plane, while at high fields the magnet has an easy-axis.

For an applied field with an additional IP component, we can choose the x-axis in that
direction and write i = (he,0,h,). It is convenient to parameterize the spin vectors in

terms of their z-component SZ and of the IP angle ¢z = arctan(S%/S%) as

—

7= (Pqcososz, Pqsingz, SZ) | (2.19)

n

where P; = /S? — (SZ)2. In these variables the Hamiltonian (2.12) plus the IP mag-
netic field contribution is

H = -2 {Pﬁ Pr g cos (¢ﬁ - ¢ﬁ+a> + A S% S%m} -2 Z (P,% + M(S§)2>
—hy Yy Prcosga—h. Yy Si . (2.20)

In the uniform state, with S2 =95, , P =P =/S2—- 52, ¢z = ¢, Vi, we have

% =1 (4P2 +4)\Sf) -2 <P2 +uS§) —hgy Pcosp—h.S. . (2.21)

Minimizing with respect to (¢, S,) gives ¢ = 0, and, therefore, S, = P, so that the IP
components of the spins are aligned with the IP component of the field,while the value

of S, results from the quartic equation

S.
K Se
S.+hapy —he =0,

recalling that K =4J (1 — A) + D (1 — p). In terms of S, we have the relation

(KS. —h.)\/S2 =82+ h, 8. =0, (2.22)

where the constraint |S,| < S. assures a physical result. We note, first, that the
solution S, = S, is proscribed unless h, = 0, and secondly, for h, = 0 we recover 