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Chapter 1 

 

Introduction 

The discovery in 1986 of the superconductivity at 35 K in an oxide of La, Ba and Cu by 

Bednorz and Müller [1] revealed a new class of superconducting materials with unique 

properties and unexpectedly high temperature of the superconducting transition. All 

these compounds have layered structure consisting of the copper oxide planes, which 

determine the superconducting properties. This type of materials did not behave as 

ordinary BCS superconductors. The tunnelling measurement shows that the energy gap 

is not fully formed [2, 3]. Also, the thermodynamic, optical and transport properties 

exhibit power-law rather than exponentional temperature dependence [for example, 4, 

5].  

The numerous experiments show that these superconductors may have an 

unconventional pairing state with an order parameter that has symmetry different from 

that of the isotropic s-wave state. The experiments on NMR relaxation [6] gave direct 

evidence of spin-singlet pairing. Thus most of the attention was focused on a particular 

state with d-wave symmetry first suggested by N. E. Bickers et al. [7]. This state has a 

four-fold symmetry of the magnitude of the order parameter and exhibits nodes and 

lobes in the energy gap aligned with the in-plane lattice vectors. 

The possible effect of the pairing state on the pinning forces and the dynamic properties 

of the flux line lattice is an open question. It is reasonable to expect the appearance of a 
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four-fold symmetry in the pinning potential. To study this question the vibrating reed 

technique may be very useful. 

The vibrating reed technique was proved to be a powerful tool to study the dynamics of 

the flux lines and the pinning forces acting on them [8]. In particular, this is a reliable 

method to measure the curvature of the pinning potential (Labusch parameter) for thin 

samples. To determine the symmetry of the pinning potential it is necessary to measure 

the Labusch parameter for vortex motion in planes aligned parallel to the 

crystallographic c-axis, but oriented at different angles relative to the a- or b-direction. 

Such a motion can be easily produced with the vibrating wire with two degrees of 

freedom instead of the vibrating cantilever. The construction and use of this device is 

described in this work, and results obtained on single crystals of YBa2Cu3O7-δ  and 

Bi2Sr2CaCu2O8+δ are presented. 
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Chapter 2 

 

Theoretical description of pinning potential 

2.1. Vortices in the high temperature superconductors 

The discovery of high-temperature superconductors [1] was very exciting since it 

revealed a new class of superconducting materials with unique properties and 

unexpectedly high temperature of the superconducting transition. Within several years 

new materials were discovered such as YBa2Cu3O7-δ, Bi2Sr2CaCu2O8+δ and 

Tl2Ba2CanCun+1O6+2n with the Tc equal 93 K, 110 K and 130 K respectively. All these 

compounds consist of superconducting copper oxide planes separated by non-

superconducting blocks. This layered structure of the materials results in their large 

effective mass anisotropy between the directions c (011) and a (001) or b (010). The 

anisotropy in the ab-plane is much smaller. 

Compared to conventional superconductors the cuprate compounds are characterized by 

a small value of coherence length ξ, which is the typical length scale for spatial 

variations of the order parameter | Ψ |2. Typical values of ξ are about 1 ÷ 2 nm. In 

contrast, the penetration depth λ is larger than in conventional superconductors and is 

about 100 ÷ 250 nm. Thus, the Ginzburg-Landau parameter is very large k = λ / ξ »1. 

That means that high-temperature cuprate compounds are type II superconductors. 
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Thus, an external magnetic field can penetrate into the high-Tc superconductor as an 

arrangement of parallel magnetic flux lines, each carrying an elementary flux quantum 

Φ0 = h/ 2e. These flux lines, or vortices, consist of a core with radius ≈ ξ where the 

order parameter and density of superconducting electrons are depressed. This core is 

surrounded by shielding currents extending over a region with radius λ. 

Vortex motion, driven by Lorentz force, leads unavoidably to dissipation of energy and 

to a non-zero resistivity of the superconductor. Fortunately, vortices can be pinned by 

defects in the crystal structure such as dislocations, vacancies, grain and twin 

boundaries and columnar defects.  Therefore, pinning of flux lines plays an essential 

role in establishing high critical current density. 

 

2.2. s- and d-wave symmetry in the cuprate superconductors 

Since the discovery of the high temperature superconductors the question of the 

superconducting pairing mechanism was actively studied. It was recognised that these 

materials did not behave as ordinary superconductors. For example there was extensive 

experimental evidence which shows that the energy gap is not fully formed. This is 

revealed in tunnelling measurements that display a high sub-gap density of states [2, 3]. 

These experimental results suggested that HTSCs may exhibit an unconventional 

pairing state. 

The allowed symmetries for the pairing state are described in reference [4]. The 

experiments with NMR relaxation rates and Knight shift gave direct evidence of spin-

singlet pairing [6], so the only two possibilities left are s-wave and d-wave symmetry. 
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Figure 2.2.1. Magnitude and phase of the superconducting order parameter as a 

function of direction in k-space for the main candidate pairing states. Taken from [15]. 
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Determination of the symmetry of the pairing state is possible by direct measurement of 

the anisotropy of the order parameter. The magnitudes and the phase of the order 

parameter as function of k-space direction are shown in Fig.2.2.1. For symmetries other 

than the conventional s-wave the magnitude has a modulation with four-fold symmetry. 

In all these cases a depression of the order parameter exists in the (110) direction. The 

reduced gap along some directions results in an excess of excited quasiparticles and can 

be observed in transport measurements and tunnelling spectra. Many experiments such 

as NMR spectroscopy [9], angle-resolved photoemission [10], scanning tunneling 

microscopy [11], Raman scattering [12], angle resolved torque magnetometry [13, 14] 

and so on, have shown the spatial anisotropy and gave evidence for four-fold symmetry 

in magnitude. However impurities can obscure the presence of zero magnitude of the 

order parameter in nodes. This prevents determination of the pairing state by the 

magnitude sensitive experiments. Thus, it is necessary to probe the phase of the order 

parameter in different directions of k-space which is different for the various states. In 

particular, the s-wave state has a uniform phase whereas the d-wave state exhibits 

discontinuous jumps of π at the (110) direction with sign change of the order parameter. 

For the s+id and d+id mixture states the phase varies continuously with angle. The 

interferometer experiments sensitive to the phase of the order parameter in different 

directions were carried out. These experiments are reviewed in [15]. This is the most 

direct experiments based on dc SQUID and on single Josephson junctions. 

The main idea of the two-junction interferometer (dc SQUID) experiment [16, 17] is 

demonstrated in Fig.2.2.2. The Josephson tunnel junctions are fabricated on the 

orthogonal surfaces of a single crystal of a high-temperature superconductor. The 

junctions are joined by a loop of a conventional s-wave superconductor. For s-wave 

symmetry the phase of the order parameter is the same at each junction so the circuit 

behaves as an ordinary dc SQUID and the critical current is a maximum for zero flux. 

The circulating supercurrent at this point is zero. In contrast, for d symmetry the order 

parameter has an intrinsic phase shift π between a and b directions. At zero applied field 

the junction currents are exactly out of phase and a circulating current flows to maintain 

phase coherence around the loop. As a result at zero flux the critical current will be 
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minimal. The experimental measurements of the resistance and current-voltage 

characteristics shows evidence for a phase shift of order π between a and b directions 

which is consistent with the d pairing state. 

 

Figure 2.2.2. a) The scheme of the dc-SQUID experiment. The Josephson tunnel 

junctions are connected to a (001) and b (010) surfaces of YBCO single crystal. 

b) The modulation of the critical current vs applied magnetic flux for s-wave and d-

wave symmetries (taken from [15]). 

Another way to explore the phase difference between directions is the single Josephson 

junction modulated experiment [18]. In this experiment one measures the critical current 

of a junction fabricated on the corner of the crystal as shown in Fig.2.2.3. In this 

geometry part of the tunnelling is into the (001) face of the crystal and part is into (010) 

a) 

b) 
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face. For an s-wave superconductor with isotropic phase the critical current would have 

the usual Fraunhofer diffraction pattern. However in case of a d-wave sample the order 

parameter in the a (001) and b (010) directions would be of opposite sign resulting in a 

modified pattern. At zero field in this case the currents through the orthogonal faces 

cancel and critical current would be zero. So the key feature to distinguish pairing states 

is a peak or a dip in the critical current at zero field. The experimental data shows the 

dip at zero flux and this is evidence for d-wave paring. 

 

Figure 2.2.3. a) The scheme of a single junction experiment.  

b) Fraunhofer diffraction pattern for the critical current modulation of a single 

Josephson junction with applied magnetic field for s-wave and d-wave symmetries 

(taken from [15]) 
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However in spite of such strong evidence the answer to the question of pairing of high 

temperature superconductors is not so straightforward. The fact is there are some 

experiments demonstrating s-wave behaviour of HTSCs as c (110) axis Josephson 

tunnelling [19] and a hexagonal interference experiment [20]. 

Recent discussions result in the assumption that unconventional superconductors may 

have a mixture of d-wave and s-wave states. It was recognized that the order parameter 

of HTSCs may be unstable in the presence of perturbations at surfaces and interfaces or 

in presence of nonmagnetic and magnetic impurities [21]. A isd yx +
− 22  or xyyx idd +

− 22  

pairing state has been suggested near a surface or twin boundary with (110) orientation 

[22, 23]. The difficulty is that most phase sensitive experiments involve surface or 

boundary properties of HTSCs and many experiments suggested that the surface order 

parameter is not necessarily the same as the bulk order parameter. 

 

2.3. Pinning in unconventional superconductors 

It is an interesting question how the pairing state affects the symmetry of the pinning 

properties and vortex dynamics. Since in the d-wave state the order parameter has four-

fold symmetry, it is reasonable to expect the appearance of this symmetry in the pinning 

potential. Unfortunately the experiments demonstrating four-fold symmetry of pinning 

are rather scarce. There is an interesting result in torque magnetometry [13, 14, 24] 

where four-fold symmetry in intrinsic intraplane pinning was observed (see Fig.2.3.1). 

For better understanding the effect of the pairing state on the pinning symmetry it is 

necessary to model the interaction of a single flux line and point defect, and then to 

carry out the summation of these elementary forces for a random distribution of pinning 

centres. 
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Figure 2.3.1. The reversible and irreversible torque of the YBa2Cu3O7-δ untwinned 

single crystal upon rotating the field (0.8 T) around the c(110) axis at a temperature of 

77.3 K. The lines for τrev represent the twofold torque, the fourfold torque and their sum. 

In the lower figure, the isotropic twofold sinusoidal torques are subtracted from the 

irreversible torque τirr. Taken from [13]. 

The shape of the pinning potential for a single pancake vortex and a point pinning 

center has been calculated by M.Endres [25] in the group of Prof. D.Rainer using the 

method described in classical work [26]. The main idea of this method is that pinning is 

caused not by suppression of superconducting condensation near the pinning center, but 

by quasiparticle scattering on the center. In case of small impurities of size d in the 

superconductor with coherence length ξ0 the new mechanism leads to pinning energies 

larger by the factor ξ0/d than the energy from the excluded volume effect. For 

calculating the defect pinning potential the quasiclassical method (equivalent to the 
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WKB method of quantum mechanics) was applied. The defects are modelled by a point 

scattering center. The superconductor was assumed two-dimensional with an isotropic 

Fermi surface and with either d-wave or s-wave symmetry. The modelling was 

performed in the unitary limit at a temperature T = 0.3 Tc. The results of the calculations 

are shown in Fig.2.3.2 - 2.3.5. The length scale used in the figures is the coherence 

length ξ0=vF/2π, the energy is given in units of the critical temperature Tc. Figure 2.3.2 

shows the pinning potential as a function of the distance between vortex core and defect 

for isotropic s-wave and for d-wave along one of the crystal axes and at 45° to it. The 

difference in absolute value of the pinning for the two pairing states is not large enough 

to be measured. The difference of the potential in two different directions for d-wave is 

also very small.  

 

 

Figure 2.3.2. Pinning potential as a function of the distance from the pinning centre for 

s-wave and d-wave. In case of d-wave calculation was made for two directions: along 

one of the crystal axes and under 45°. 
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The shape of the pinning potential in the CuO2 plane for d-wave symmetry of the order 

parameter is shown in Fig.2.3.3. As it was reasonably assumed before, the four-fold 

symmetry of order parameter and gap results in four-fold symmetry of the pinning 

potential and the equipotential lines deviate from circles. When a vortex is moved away 

from the pinning center, the pinning potential anisotropy leads to the appearance of a 

restoring force component perpendicular to the deflection of the vortex from the pinning 

center. This transverse force is directed towards a higher value of the order parameter. 

Obviously this force is equal to zero for deviations along an axis and under 45°. The 

maximum value of the transverse force is observed near 22°. Figure 2.3.4 shows the 

dependence of this force on the deviation angle for three different values of distance 

between the vortex and the pinning center. The calculation shows that the transverse 

force is maximal for elongations of order the coherence length ξ0. 

The dependence of the radial force on the distance from the pinning center is shown in 

Fig.2.3.5. This attractive force increases monotonically for distances smaller than the 

coherence length ξ0. When the distance gets larger than ξ0 the attraction weakens. The 

dependence of the radial force on the direction is so small than it seems unlikely to be 

observable. 
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Figure 2.3.3. The shape of the pinning potential. The equipotential lines have four-fold 

symmetry caused by symmetry of the order parameter. The arrows show the direction of 

the transverse forces acting on a vortex at points A and B. x and y denote the directions 

of the crystallographic axes in the basal plane. Displacement is shown in units of the 

coherence length ξ0. The pinning center is located at (x, y) = (0, 0). 

To obtain the interaction between the flux line lattice and the superconductor it is 

necessary to summarize the elementary forces for a random set of pinning sites. The 

perfectly rigid and periodic flux line lattice can not be effectively pinned by the 

randomly distributed pinning sites. However, elasticity of the flux line lattice allows 

flux lines to deviate from the ideal periodic arrangement to lower their energy by better 

pinning but at the expense of increasing the elastic energy. This idea was developed as 
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the theory of collective pinning by Larkin and Ovchinnikov [27]. Unfortunately it is 

difficult to perform the exact summation of forces between randomly distributed 

pinning sites and the flux line lattice. But it is reasonable to assume that the symmetry 

of the elementary pinning force appears at sufficiently strong pinning and less rigid flux 

lines lattice. 

 

Figure 2.3.4. The transverse force as function of magnitude and direction of the vortex 

displacement from the pinning site. The calculation shows that the maximal value is 

reached at an angle about 22° to the crystallographic axis and at a displacement of 

about the coherence length ξ0. 
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Figure 2.3.5. The radial force as function of the displacement of the vortex from the 

pinning center. Displacement is shown in units of the coherence length ξ0.  

 

2.4. Choosing the optimal conditions of experiment 

From these considerations we can find requirements for the experimental measurement 

of the pinning potential symmetry. These measurements should be carried out at low 

temperatures far away from Tc to decrease the effect of the thermally activated flux flow 

and depinning. Also the magnetic field should not be too small since the total pinning 

force is proportional to the number of the vortices in the sample. However, since the 

elastic moduli C66 and C44 increase proportionally to the square of the magnetic field B2, 

the magnetic field should not be too high. 
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 The material of the superconductor is also very important for the experiment. 

YBa2Cu3O7-δ is the first choice because this material is well studied and proven to be a 

d-wave material. Because of the interest in the symmetry of the point pinning the 

sample of YBa2Cu3O7-δ should be an untwinned single crystal in which pinning is 

dominated by point-like oxygen defects. Samples of Bi2Sr2CaCu2O8+δ should even be 

better because of its more pronounced layered structure. This leads to smaller 

interaction between vortices in adjacent layers and to smaller elastic moduli of the flux 

line lattice. 
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Chapter 3 

 

Vibrating reed technique 

 

The vibrating reed technique has been known as a powerful tool to study Young�s 

modulus, the sound velocity, and internal friction of different materials. It is interesting 

to use this method to study static and dynamic properties of the flux line lattice (FLL) in 

type II superconductors (see detailed reviews [8, 28]). The vibration of the 

superconductor in a static magnetic field between Hc1 and Hc2 leads to a measurable 

change in resonance frequency and damping of the reed because of the interaction 

between the FLL and the pinning centres. It appears to be a very useful method to study 

FLL properties and pinning forces, especially for the measurement of the Labusch 

parameter [29], the curvature of the average pinning potential. This method allows 

contact-free measurements of very tiny pieces of superconductor. 

 

3.1. Standard experimental set-up 

The standard experimental set-up of the vibrating reed consists of a platelet clamped at 

one end, while two electrodes near the free end serve to drive and to detect its motion 

electrostatically. The platelet might be the superconducting sample itself or a dielectric 
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host reed sputtered with a thin metal layer, with the superconducting sample fixed near 

its free end. At small amplitudes the reed behaves like a driven harmonic oscillator with 

natural frequency ω0 and damping Γ 

t
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02
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the reed amplitude 

2
122222

0

*
0

]4)[(

1

ωωω Γ+−
=

m
F

ureed . 

The two parameters of the vibration, resonance frequency ω0 and damping Γ, are 

measured. Since the oscillation is excited by a constant driving force, the reed amplitude 

at resonance can be used to determine the magnitude of damping. But this is possible 

only in case of a constant gap between the reed and the driving/detecting electrode. 

Otherwise, the full resonance curve should be measured in order to determine the 

damping from the width of the resonance. 

The application of a magnetic field causes an enhancement of the resonance frequency 

and an increase of the damping. For an understanding of the process it is important to 

remember that at such vibrations the superconductor is tilted in the magnetic field. A 

superconductor moving in a homogeneous magnetic field without rotation does not feel 

any force or torque.  But the situation changes when the II type superconductor tilts in 

the magnetic field. For the magnetic field greater than a lower critical field Bc1 the 

magnetic field penetrates in the superconductor in form of a periodic arrangement of the 

flux lines. Since the flux lines are pinned in the superconductor the tilt causes an 

increase of the magnetic energy and consequently additional restoring force acting on 

the reed. There were different experimental modifications with vibrating and rotating 

superconductor in a homogeneous field or linear oscillations in a nonhomogeneous field 

[3.1] 

[3.2] 
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[30 � 33]. But here we consider the behaviour of the superconducting sample glued to 

the vibrating reed, which oscillates in a homogeneous field. 

Here we assume negligible magnetization of the superconductor which requires 

κ>>1, applied field Ba>>Bc1 so that the field penetrates completely the superconductor, 

i.e. Ba = B. 

 

3.2. Line tension 

The distortion of the magnetic field lines inside the tilted superconductor and around it 

causes an increase of the magnetic energy, which leads to a measurable additional 

restoring force. The value of this restoring force is proportional to the tilt modulus c44 of 

the flux line lattice in the reed and also to the magnetic energy needed to bend the 

outside field [34, 35]. Depending on the superconducting sample geometry and field 

direction these factors prevail in the mechanism of the increasing of the magnetic 

energy. 

It is convenient to introduce here the line tension P (energy per unit length) to calculate 

the magnetic energy due to the curved field when the superconductor tilts in a 

homogeneous field. The resonance frequency enhancement is caused by the additional 

line tension 

I
PlB ≅− 2

0
2 )( ωω  

where ω0 is the resonance frequency in zero magnetic field, I denotes an effective 

moment of inertia of the reed, and l is the reed length. The additional line tension may 

be caused by different mechanisms: by tilt modulus of FLL, by energy of the curved 

magnetic field around the sample or by elastic coupling of the FLL to atomic lattice. 

The reed set-up configuration determines which mechanism prevails. In general we can 

[3.3] 
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distinguish three types of line tension which correspond to three set-up configurations 

(shown in Fig.3.2.1.). 

Figure 3.2.1. Three different configurations of the vibrating set-up (taken from 

reference [36]) 

 

The first case corresponds configuration 1, when the magnetic field is applied along the 

length of the sample with size ls≥ws>>ds glued to the host reed (l, w, d). Then for 

rigidly pinned FLL or perfectly diamagnetic reed the line tension is mainly provided by 

energy of the distorted field and is given by [36] 

l
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 [37]. Here λ44 = (c44/α)½ is the Campbell 

penetration depth for tilt waves. This parameter λ44 characterises how deep the small 

Θ 

[3.4] 
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oscillating disturbances of outer magnetic field penetrate in the superconductor [38, 39]. 

Thus, Campbell penetration depth determines the distortions of the flux lines inside the 

vibrating sample. In case if the penetration depth λ44 is smaller than the dimension of 

the sample along the field direction, the vortices are bent only in a thin surface layer. 

The value of λ44 is proportional to the FLL tilt modulus c44 = BBa/µ0 and is inversely 

proportional to α, the Labusch parameter, i.e. the curvature of the average pinning 

potential U(s, B, T, Θ) for small displacement s of the FLL: [ ]),,,(2

2

Θ
∂
∂= TBsU
s

α . 

The physical reason for appearance of the additional line tension P is the shielding of 

the small component δB perpendicular to the applied field when the reed is tilted by an 

angle φ. 

The line tension P1 is a factor 14/ >>ss dwπ  larger than the line tension  

)/(' 441 llcdwP sss=  

due to the FLL tilt modulus c44, which is dominant in configuration 2 [36]. 

If the magnetic field is oriented perpendicular to the sample surface, i.e. along the 

thickness ds>>2λ44 (Θ = 90° in configuration 1), the line tension is mainly due to the 

FLL tilt modulus  

)/(442 ldclwP sss= . 

For arbitrary angle Θ the line tension is obtained by decomposing the magnetic field 

into components parallel to the length and thickness of the sample 
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[3.6] 
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Figure 3.2.2. Resonance frequency enhancement in magnetic field of single crystals of 

Bi2Sr2CaCu2O8+δ. The measurements were done at T=10K. The continuous line is 

theoretically predicted dependence B2 (Taken from reference [36]) 

     Bi2Sr2CaCu2O8+δ in configuration 2; 

    Bi2Sr2CaCu2O8+δ in configuration 3; 

The line tension is derived in the limit of infinite pinning. A relative movement between 

flux and the superconducting sample can be considered with appropriate corrections 

[37, 40] 

In Fig.3.2.2 [36] the resonance frequency of Bi2Sr2CaCu2O8+δ in magnetic field is 

shown. The frequency change in configuration 2 is proportional to B2 according to the 

theoretical equation [3.4]. The continuous line in figure is obtained with those equations 

showing that the theory describes well the measured ω2(B)−ω0
2 at the small magnet 

field in regime of strong pinning for the configuration 2. 
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3.3. Labusch parameter 

The response of the superconductor is different when the penetration depth λ44 is larger 

than sample dimension along the field direction. In this case flux lines are pinned 

elastically and stay parallel to the external field. Therefore elastic pinning gives the 

main contribution to the magnetic energy and frequency enhancement. Thus, the line 

tension is provided mainly by the elastic coupling constant α, which characterizes the 

coupling between FLL and atomic lattice. 

In configuration 3 or configuration 1 at Θ = 90° the line tension is then given by [36, 

41] 

l
d

lwP s
ss 3

3

3 α= . 

The result of the experiment with Bi2Sr2CaCu2O8+δ single crystal (2.0 × 0.9 × 0.02 

mm3) in configuration 3 is shown in Fig.3.2.2 at T = 10 K [36]. Here the dependence of 

frequency enhancement ω2(B)-ω0
2 was not proportional to B2 as it was for configuration 

2 because the thickness of the sample along the magnetic field is comparable to 

Campbell penetration depth λ44 and the field dependence of the frequency change is 

determined by the field dependence of the Labusch parameter. A similar result is 

obtained in configuration 1 as shown in Fig.3.3.1. The measurements were carried out 

with a Bi2Sr2CaCu2O8+δ single crystal (1.8 × 1.0 × 0.025 mm3) at T = 60 K for angles 

Θ = 0 � 75° [36]. 

[3.8] 
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Figure 3.3.1. Frequency enhancement as a function of the applied field for the 

Bi2Sr2CaCu2O8+δ crystal at T = 60 K and at different angles between field and CuO2 

planes (Taken from [36])   - 75°;  - 60°;   - 45° ;   - 30°;   - 15°;      - 0° 

For small angles the frequency enhancement ∆ω2 is proportional to B2 in agreement 

with theory, but for larger angles the slope of the curves is smaller and for Θ  = 75° a 

linear field dependence is observed. This experiment might be interpreted as a crossover 

from a response due to distortion of the magnetic field at small angles Θ < 15° to a 

frequency enhancement due to elastic pinning α at Θ > 75°. 

Besides thin single crystals, reeds fabricated from granular suspensions are also used for 

direct measurements of the Labusch parameter [41, 42]. If the grain size R < λ44 then 

the response of the reed is due to the elastic pinning. In this case the line tension is 

given by [41] 
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3

5

4 5 R

R
wdfP α=  

where f is the volume fraction of grains in the reed and <...> denotes the average over 

the particle size distribution.  The frequency enhancement of Bi1.5Pb0.5Sr2CaCu2O8 

suspension and bulk reeds is shown at Fig.3.3.2 (taken from [42]). The estimation of the 

Campbell penetration depth λ44 gives value 129µm, i.e. larger than the grain size <R> = 

18.5 µm. Thus the result of these measurements is that α is proportional to B1.9 in the 

field range 0.1 T < B < 8 T, in agreement with results for polycrystalline reeds, which 

generally show B2.0±0.2 proportionality. 

 

 

Figure 3.3.2. Resonance frequency enhancement of a Bi1.5Pb0.5Sr2CaCu2O8 suspension 

and bulk reed in configuration 1 at Θ = 0° and T = 10K. The solids lines are fits to the 

data of the form Bn with n = 2.0 (bulk) and n = 1.9 (suspension). (Taken from [42]). 

[3.9] 
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3.4. Thermally activated depinning 

The ideal pinning picture considered in the previous case strictly spoken applies only at 

zero temperature. At T>0 thermally activated depinning of flux lines causes a non-

vanishing resistivity. The important role of thermal depinning in high temperature 

superconductors was first pointed out by Dew-Hughes [43]. Thermal depinning, or 

�giant flux creep�, occurs mainly because of the features which are peculiar to high-Tc 

superconductors. Small coherence length ξ and large magnetic penetration depth λ 

decrease elementary pinning energy and increase flexibility of the flux lines. Moreover, 

large material anisotropy leads to very low line tension of the vortices and thus FLs 

easily break into short segments or point pancake vortices which then depin individually 

with very low activation energy. The diffusive nature of the thermally activated flux 

motion caused by small flux density gradients was shown by Kes et al [44] introducing 

the thermally assisted flux flow (TAFF) model based on Anderson�s ideas [45].  

In the vibrating reed experiments the effect of thermal depinning was studied 

thoroughly since the method is very convenient for non-contact investigations of flux 

dynamics in HTSCs. The typical measurement of the resonance frequency change ∆ν 

and damping Γ is shown in Fig.3.4.1 for an YBa2Cu3O7-δ single crystal at B = 2.8 T and 

for three different vibration amplitudes [36]. Note that the vibrating superconductor 

response does not depend on the amplitude of vibration. It was found that the step in the 

resonance frequency and the accompanying damping maximum can be understood as a 

crossover from a pinned to an unpinned flux line lattice. 
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Figure 3.4.1. Damping and frequency resonance enhancement of YBa2Cu3O7-δ single 

crystal in an applied field Ba =2.8 T at three different amplitudes A/Amin = 1, 4, 8. Taken 

from [36]. 

To understand this process let us consider the question how a moving superconductor 

with pinned flux line responds to a small field gradient ∇ B. According to the Kim-

Andersen model, in presence of a field gradient the vortices move by thermally 

activated hopping process in the direction of the Lorentz force 

FL = J × B = −B∇ B/µ0, [3.10] 
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Where J denotes the average current density. The expression for electric field caused by 

the flux jumps is given by Andersen and Kim [45] 
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with the phenomenological parameters Jc(B) (critical current density at T = 0), ρc(B,T) 

(resistivity at J = Jc), and U(B,T) (activation energy for flux jumps). The physical 

meaning of this expression is that the Lorentz force density J × B acting on the FLL 

increases the rate of thermally activated jumps of flux lines along the force, and reduces 

the jump rate for backward jumps. 

The conservation of magnetic flux is expressed by a continuity equation [46] 
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∂
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with the vortex current density JΦ = -uB(∇ B / |∇ B|) where u is flux motion velocity 
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 At low current densities J << (kT/U)Jc the vortex velocity is linear in the current 

density [43]. Linearizing the continuity equation for a small perturbation B leads to a 

diffusion equation [44, 47, 48] 
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∂
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The depinning of the flux lines will increase the energy loss, i.e. the damping of the reed 

oscillation, and will reduce the resonance frequency since there is no additional line 

tension caused by field shielding or tilting of the vortices. The resonance frequency 

reduces to its zero field value when all flux lines are parallel to the external field. This 

happens when the tilt of the flux lines (i.e. the small field perturbation δBac) diffuses to 

the center of the reed. The time scale for thermally activated depinning is 






≅

kT
Uexp

α
ητ , 

where η is the viscosity of the flux lines. The penetration length for AC deviation λAC is 

given by [49, 50] 
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The schematic picture describing the depinning transition is shown in Fig.3.4.2 (taken 

from [51]). At frequencies ω  » τ−1 the effective AC field, generated by tilting of the 

superconductor in the DC magnetic field, is shielded leading to a resonance frequency 

enhancement, as described in the previous part. At ω  ≈ τ−1 flux lines tilt penetrate to 

the sample centre and the maximum in damping (energy losses) is observed. At ω  « 

τ−1 the deformation of the flux lines diffuses through the sample thus the lines are 

always parallel to the direction of the applied field. Therefore, there is no FLL 

contribution to the line tension and no frequency enhancement. 

[3.16] 

[3.17] 
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Figure 3.4.2. Schematic picture of diffusive flux penetration into a superconductor 

(taken from [51]). A static magnetic field Bdc is applied parallel to the thickness of the 

superconducting sample. At t = 0 a small field ∆B is applied perpendicular to Bdc. This 

field perturbation diffuses into the superconductor on a characteristic time scale τ. For 

t « τ, ∆B is shielded at the surface leaving the field orientation inside the 

superconductor parallel to Bdc, for t = τ the perturbation has penetrated to the centre of 

the sample and for t » τ the field inside the superconductor has become parallel to the 

applied field. 

 

3.5. Double peaks in dissipation of the superconductors 

In several publications dealing with vibrating superconductors [52; 53] and 

superconductors in ac-field [54, 55] an interesting effect was reported. Two distinct 

peaks in the dissipation as function of the temperature were observed when the DC 

component of the applied field was directed under some non-zero angle to the symmetry 

axis of the sample. When the field was applied along the axis one of the peaks 

disappeared. 
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As it was explained in [51], this effect can have geometrical origin and relates to the 

diffusion of the field perturbation by thermally activated flux depinning.  The different 

relaxation times τ, i.e. penetration times for field perturbation, lead to different modes 

of the flux lines diffusion. So the relaxation time along the thickness is 
D

d
d 2

2

π
τ =  and 

along the length is 
Dw

dl
l 2

2

π
τ = . If the field is directed along x, y or z axis, a single 

diffusion mode is exited and only one peak observed. The situation with oblique field is 

different as shown in Fig.3.5.1. In a first relaxation mode the flux line tilt diffuses 

across the slab thickness, then in second slower mode along the length. 
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So the damping can be calculated using equation [3.18], where Vs is the sample volume 

and χd� and χl� are the imaginary (absorption) part of the complex AC susceptibility 

for two different modes 

The experimental results [56] demonstrated very good agreement with this equation as 

shown in Fig.3.5.2. The measurements of the damping of single crystal YBa2Cu3O7-δ 

were carried out in a field Ba = 0.7 T at different angles. At Θ = 60° a double peak 

structure is clearly visible and at Θ = 30° the maximum corresponding mode along d 

appears as a shoulder on the low-temperature side of the peak. The solid curves are 

calculated according to equation [3.18]. 

 

 

[3.18] 
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Figure 3.5.1. Visualization of relaxation modes in superconducting sample in tilting 

magnetic field. The shielding currents which appear on the surface of the sample 

immediately after field tilting are shown as circles with dots and crosses. At the right 

picture the current patterns are shown. Top picture: B||z, longitudinal mode. The flux 

line tilt diffuses from the top end of the slab along the length in a time 
Dw

dl
l 2

2

π
τ = . 

Middle picture: B||x, perpendicular mode. The flux lines across the sample curve and 

straighten in a time
D

d
d 2

2

π
τ = . Bottom picture: B tilted by an angle Θ. In a first mode 

the field perturbation diffuse across slab thickness to realign the fluxes along field B. 

This leads to increased flux density, which has to expand in a second slower mode 

along z. Taken from [51] 
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Figure 3.5.2. Damping of YBa2Cu3O7-δ single crystal at Ba = 0.7 T. The continuous lines 

represent fits to the flux diffusion theory (taken from [56]). 
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Chapter 4 

 

Description of the experiment 

 

4.1. Two-dimensional vibrating reed 

4.1.1. The mechanical oscillator 

The main part of the two-dimensional vibrating reed is a sapphire fiber (diameter 

100µm, Good Fellows) glued into the hole at the center of a ruby disk � a jewel stone of 

old watches (Fig.4.1.1). The materials were chosen because of special requirements to 

the reed. It should be dielectric to prevent eddy currents in magnetic field. The material 

of the reed also should have very good thermal conductivity since the diameter of the 

wire is rather small. The dielectric crystals are ideal for this. Also crystal sapphire has 

good mechanical properties so the reed has rather high quality factor (up to 50 000) at 

frequency 400 � 800 Hz. The dielectric reed is covered by a thin conducting layer of 

evaporated gold or silver for driving the reed electrostatically and detecting its 

elongation from equilibrium by capacitance method. 
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sapphire wire

stycast

ruby disc

 

Figure 4.1.1. The sapphire wire glued into the hole of the ruby disc (watches jewel 

stone) with Stycast. The diameter of the hole is about 120÷140 µm, the wire diameter is 

100 µm, and the wire length is about 7 mm. 

 

4.1.2. The cell 

Figure 4.1.2 shows the scheme of the vibrating reed cell for measurements of the 

superconducting sample (1), glued on the top of the reed (2).  The other end of the reed 

is glued with Stycast into a thin copper capillary (3) which is clamped by copper blocks 

(4). Two orthogonal electrodes-screws (6) are fixed in plastic isolators (7) to isolate 

them electrically from the copper reed holder. The gap between electrode and the reed 

can be adjusted by screwing the electrode in and out. In the experiment this distance is 

usually about 10µm. 

On the clamped end of the reed the small screw head (5) is glued. It allows adjustment 

to find the principal axes of inertia of the reed. It is shown in the Appendix B that this is 

always possible for such a mechanical oscillator with two degrees of freedom. Indeed 

when the detection coordinates coincide with the easy axes of the reed, the oscillation 

decouples to two independent oscillations along the axes. In other cases we have a 

system of two coupled oscillators, and the resonance curve will have two peaks. In such 

a system the free oscillations will have beating. Another feature of such a system with 
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two degrees of freedom is that applying a driving force at one electrode will result in a 

signal at both detectors, and the free reed end will move on an elliptical trajectory. Thus 

the easiest way to find the main axes of the inertia of the reed in the experiment is the 

use of two criteria. The first is absence of beating at free oscillation of the reed. The 

second criterion is the absence of the signal on one detecting electrode when the drive is 

applied along the other. 

The two modes of oscillation have slightly different frequencies because the elastic 

properties of the sapphire wire are anisotropic and the shape of the reed is not absolutely 

symmetrical. Usually this intrinsic difference between frequencies ωx and ωy is about 5-

8Hz. Since the width of the resonance curves is about 0.05Hz such a distance between 

resonance frequencies is too large for the excitation of oscillations at both directions. To 

reduce this distance the additional weight made of plastic mass was attached on the top 

of the ruby disc. This plastic weight is soft at room temperatures. That makes it 

convenient for adjustment. At low temperatures plastic mass hardens and allows long 

measurements without detuning. This additional plastic weight has oblong shape and 

allows making difference between mode frequencies 0.5-1Hz 
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Figure 4.1.2. Two-dimensional vibrating reed. 

1. Superconducting sample, YBa2Cu3O7-δ 

2. The vibrating reed: sapphire wire, diameter 100µm, length about 7mm, glued into the 

centre of the ruby disc 

3. Copper capillary, inner diameter 0.2mm, outer diameter 0.5mm 

4. Copper clamp 

5. Adjusting screw head 

6. Electrodes, screws 

7. Dielectric electrode holders, textolite 
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4.1.3. The measurement technique 

The deviation of the reed from its equilibrium position is measured by the electrodes by 

a capacitance method. The change of the capacitance between the electrode and reed 

causes the modulation of the high frequency of the LC-generator with 100 MHz base 

frequency (see diagram 4.1.3.). The high-frequency signal is demodulated in the tuner 

and the demodulated signal fed into the lock-in amplifier and the oscilloscope. 

1M
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68pF

100nF

G
D

S

L 3V

GD

S

100nF

330

L

68pF

1M

lock-inlock-in

computer

tunertuner
oscilloscope

electrode electrode
Vdrive Vdrive

Figure 4.1.3. Diagram of the LC-generators. The frequencies are about 100MHz and 

90MHz. 

The same electrodes which are used for detecting also excite the motion of the reed by 

applying an AC voltage from driving voltage supply ELUB643 (Electronic Laboratory 

of Uni-Bayreuth) with changeable phase difference between two outputs (diag.4.1.4). 

The frequency synchronization was realized either from the output of synthesized 

frequency generator (Stanford Research System, model DS 340) or by output from the 
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lock-in amplifier. In the latter case we have the auto-generation cycle locked on the 

frequency of the reed resonance. 

driveX

driveY

lock-in X

lock-in Y
outputY

outputX

Ref

Ref

SFG

DVS ELUB

tunerY

HFX

tunerX

HFY

reed

counter

Figure 4.1.4. Diagram of the measurements. DVS ELUB � driving voltage supply; SFG 

� synthesized function generator; HFX and HFY � high-frequency LC-generators. 

 

4.1.4. The normalisation of the measured values 

For the experiment it is important to know the relation between the real amplitudes of 

oscillation along x and y directions. If we assume that the effective surface area of the 

measuring/detecting capacitors is the same for both electrodes, we do not need to know 

exact value of the gap between electrodes and the reed. The driving force Fdrivve is 

proportional to square of driving voltage ϕ2: 
d
CFdrive

2ϕ= , where d is the distance 

between electrode and reed, and C is the capacitance of the reed/electrode capacitor. 

The oscillation amplitude in resonance can be found from the equation of motion of the 

reed 
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 The change of the capacitance is modulating the frequency of the HF oscillator and it 

results in voltage signal Vsignal measured by the lock-in amplifier. This signal can be 

calibrated if we know the tuner coefficient K: KVC signal /=∆ . Thus knowing the value 

of signal in resonance it is possible to find the only unknown value C/d: 
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It is reasonable to assume that for the x and y coordinates the value Km ωΓ*2  is the 

same. Thus the amplitudes can be normalized by knowing that 
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and this relation gives the normalization coefficient for the real amplitudes of oscillation 

along different axes. 

 

4.2. Detwinning of the YBCO crystal 

In the experiment we used YBa2Cu3O7-δ crystals grown by Peter Fischer and Wolfgang 

Widder in our laboratory. The growth method is described in detail in the dissertation 

[57]. The results of the magnetisation study of the samples are also demonstrated there 

and will be shown in part 4.5. 

The superconducting YBa2Cu3O7-δ presents a typical example of a ferroelastic crystal 

with a highly twinned domain structure, made up of lamellar domains with a high 

density of twin walls [58] (see Fig.4.2.1). These domains can be easily seen under the 

polarising microscope [59, 60]. Since twin boundaries can be strong longitudinal 

pinning centres [61, 62] it was reasonable to reduce their effect by detwinning. 

Cu

0
2Ba+Y

a

b

a

ab

b

twin boundary

stress stress

 

Figure 4.2.1. Scheme of twin boundaries and the detwinning by stress. 
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In order to obtain a large single domain for the vibrating experiment the usual stress 

technique was used [63-66]. Uniaxial stress was applied by the spring detwinning 

device constructed shown in Fig.4.2.2. The process of detwinning took place at 

temperature about 400-500°C, not exceeding 550°C to prevent deoxidising of the 

sample. For the same reason the crystal was all the time kept in an oxygen flow. The 

spring with k=2.18N/mm was steadily compressed for 3-4mm after heating the sample. 

This allows smoothly pressing the sample up to 25MPa by soft slightly melted glass 

without breaking the crystal. The detwinning usually takes about 5-10 hours. After this 

process the temperature was slowly decreased and pressure was steadily removed. As 

result we can observe the domain free surface of crystal under the polarising 

microscope. Unfortunately, it is possible to be certain about the absence of domains 

only on the crystal surfaces. But nevertheless it is a strong indication that we have a 

domain free crystal. 

5 4 3 2 1

 

Figure 4.2.2. Schematic picture of the device for detwinning of YBCO crystal. 

1. YBCO crystal 

2. Glass plates 

3. Glass rod 

4. Spring with the elastic coefficient k = 2,18 N/mm 

5. Micrometer screw 
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4.3. Oxidation of the YBCO crystal 

The crystals of YBa2Cu3O7-δ as obtained have superconducting transitions at 60 K. This 

indicates that the crystals are in the oxygen deficiency phase (δ is 0.2�0.4) [67-70]. It is 

known that oxygen vacancies often form one-dimensional structures, kind of chains 

[71-75], which can act as longitudinal pinning centres. Thus it is reasonable to convert 

60K YBa2Cu3O7-δ   into oxygen saturated 90K YBa2Cu3O7-δ . Oxygenating requires long 

time, high temperature and high pressure because of the small diffusion coefficient of 

oxygen in the crystal. But the temperature should not exceed 600°C, the temperature of 

an orthorhombic-to-tetragonal phase transition in YBa2Cu3O7-δ  [70, 76 - 79]. 

The samples in the alumina crucible were placed into the device shown in Fig.4.3.1. 

The oxygen pressure in the device was about 200bar when the temperature was about 

500°C. The chart of the temperature change is shown in Fig.4.3.2. First the temperature 

was increased rather fast (120°C/h) to 460°C. Then after several minutes of stabilisation 

it was increased steadily with rate about 50°/C. This stage allows reaching accurately 

the temperature 500°C without overheating. The inner cavity was filled by oxygen at 

room temperature to a pressure of 150bar. At high temperature the pressure reached 

200bar. After a week of oxidation the temperature was decreased very slowly. 
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YBCO crystal

oxygen

heater

fill rod

alumina crucible

 

Pic.4.3.1. Set-up for oxidising. The oxygen is under the pressure 200bar from the 

pressure gas cylinder. 

The oxidised samples showed Tc=80÷90K as usual for saturated YBa2Cu3O7-δ. But 

these samples break more easily at detwinning than the crystals before the process. It is 

possible that oxidation results in crystal tension which increases the fragility of crystals. 

So it is reasonable to detwin the samples before oxidising. Fortunately the examination 

under the polarising microscope shows that oxidising does not affect the number of twin 

domains. Samples treated in this way have Tc about 80K and no visible traces of twins. 
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Pic.4.3.2. Chart of the temperature program during oxidising. Fast heating, one week at 

high temperature and high pressure, then very slow cooling.  

 

4.4. Magnetic ac-susceptibility measurements  

For the AC susceptibility measurements we used a conventional method [80, 81]. The 

set-up (shown in Fig.4.4.1.) consists of one primary coil, one secondary coil, in which a 

superconducting sample is placed, and another secondary reference coil. An AC current 

Ip can be put through the outer primary coil, thus creating a small AC field, which 

induces AC voltages in the secondary coils. The difference between the voltages 

induced in the secondary coils Us is proportional to the complex ac-susceptibility of the 

sample χχχχac=χ´ac �iχ´´ac: 

Us = -igνVph0χac. 

Here Vp is volume of the sample, h0 is amplitude of the oscillating field, and ν  is the 

frequency. The coil coefficient g is proportional to the mutual inductance of the coils 

and can be determined by measurement of a sample with known susceptibility.  

[4.7] 
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amplifier lock-in

SFG computer

Refcoils

Primary
coil

sample
difference two-phase

Figure 4.4.1. Diagram for measurements of ac-susceptibility. SFG � synthesized 

function generator. 

 

4.5. SQUID-magnetometry 

As mentioned above the studied YBa2Cu3O7-δ crystals were grown by Peter Fischer and 

Wolfgang Widder. Also the measurements of magnetic properties were carried out with 

those samples by Peter Fischer. The magnetisation was measured by SQUID 

(Superconducting Quantum Interference Device) magnetometer set-up MPMS 

(Magnetic Properties Measurement System) of Quantum Design (San Diego, USA). 

The sample was placed in the cryostat equipped with superconducting magnet with 

maximal field 5.5 T.  

The measurements were carried out with single crystal (2 × 2 × 1 mm3) at temperatures 

10, 40 and 77K with applied DC field B along the c-axis and perpendicular to the axis to 

study the anisotropy of the crystal magnetic properties.  Relevant to our case experiment 
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with B||c demonstrates hysteretic loops in increasing and decreasing magnetic field (see 

Fig.4.5.1). 

 

Figure.4.5.1. Magnetisation of the single crystal (B||c) at temperatures 77, 40 and 10K. 

Increasing of the field yields the lower curve, decreasing of the field back to zero gives 

upper line of the hysteresis curve. Taken from ref. [57].  
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4.6. Cryostat 

The vibrating reed measurements took place in a cryostat equipped with a 9T 

superconducting magnet. The bore of the magnet is 43mm. The magnet power supply 

(Heinzinger TNSUs 5-100) allows a maximum current Imax=100A and a maximum 

voltage Umax=5V. The stability of the magnet current is about 10-5. 

The liquid helium volume of the cryostat is about 30 l and rate of the evaporation is 

about 0.5-1 l/h. So the stand time is about 30 hours. However, the working with the 

magnet is possible only when the level is high enough, i.e. only in the first 10-15 hours. 

A schematic picture of the cryostat is shown in Fig.4.6.1. 

current leads

helium

nitrogen

vacuum

space for inset

magnet

holders

Pic.4.6.1. Scheme of the cryostat. 
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In the inner chamber of the cryostat the measurement stick with reed cell is placed. The 

presence of any gas leads to viscous damping of the reed oscillations. To avoid this 

effect the inner chamber is pumped. The pumping allows to reduce the damping by a 

factor of 10 and the quality factor of the reed can reach up to 50 000. For the thermal 

contact, Cu-Be clamps were used (see Fig.4.6.2.). The temperature range >10K can be 

set at gas pressure in the chamber P ~ 10-6 mbar. For work at T = 4.2 K � 10 K pressure 

P ~ 10-4 mbar should be set. The temperature is regulated by Lake Shore Cryotronics 

DRC 91C temperature controller. 

 

heater

Cu-rings with
Cu-Be clamps

flange

cell with reed

thermometers

LC-generators

electrical 
connector

 

Pic.4.6.2. Schematic picture of the measurement stick.  
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Chapter 5 

 

Mathematical description of a two-dimensional 

vibrating reed. 

5.1. Two-fold symmetric potential 

5.1.1. Reed without crystal 

At small oscillations the reed without superconducting sample behaves like a driven 

harmonic oscillator with two degrees of freedom. So the movement of the reed can be 

described by two independent equations with two variables (see Appendix B): 
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where Γx and Γy are the damping,  ωxr and ωyr are the resonance frequencies of the reed 

for two modes of motion along two directions x and y, Fx and fy=Fyeiψ are proportional 

with factor 1/m* (effective mass) to the amplitudes of the x and y components of the 

driving force acting on the reed with frequency ω. The phase shift between the driving 

forces is denoted ψ. 

[5.1.] 
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5.1.2. Reed with non-zero angle between crystal axes and reed axes   

The behavior of the reed changes when an anisotropic superconducting sample is glued 

on it because of the vortex pinning. In the first case we will consider that the pinning 

potential has two-fold symmetry along crystal axis a and b. So this elliptical potential is 

proportional with factor 1/m* to 

22

2222 baU ysxs ωω += , 

where γωω =− 22
ysxs  is the parameter of the anisotropy. If the crystal with such a 

pinning potential is glued so angle between the crystal system coordinate a-b and the 

reed system x-y is non-zero angle Θ (see Fig. 5.1.1), then coordinates a and b can be 

expressed as 

.sincos
;sincos

θθ
θθ

xyb
yxa

−=
+=

 

 

Figure 5.1.1. Scheme of two coordinate systems: the easy axes x-y of the reed and the 

crystallographic axis a-b of the sample. The angle between them is Θ. 

y 

x 
Θ

a 
b 

[5.2.] 

[5.3.] 
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The equations of motion are determined by the pinning forces proportional to 
x
U

∂
∂  and 
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∂
∂ .  
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where m is effective inertia coefficient of the reed. Substituting [5.3] in the expression 

of the pinning potential we get 
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Thus each partial derivative of the potential with respect to the coordinates has two 

terms 
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So the pinning potential gives the additional restoring force (first term), which increases 

resonance frequencies ωx and ωy and adds mixing (second term) in the equations 
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[5.4.] 

[5.4.] 

[5.5.] 

[5.6.] 
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The c parameter depends only on angle θ and anisotropy γ   

c = γ sinθ cosθ. 

These equations can be solved in the standard way by substituting tiexx ω~=  

and tieyy ω~= . The x~ and y~ are complex since they content the phase term xie δ and yie δ . 

.0~~~2~
;0~~~2~

22

22

=−++Γ+−
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These equations have been solved analytically using the Maple5 program: 
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For a more clear interpretation it is possible to express these complex quantities in 

standard view: yyxx iyix ImRe~;ImRe~ +=+= , where  
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Here denote 
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[5.7.] 
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This solution means movement of the reed on an elliptical trajectory )(|| xtiexx φω +=  and 

)(|| ytieyy φω += , where 22 ImRe|| xxx += ; 
x

x
x Re

Imtan =φ  and analogically for y. When the 

phase difference δφ = φx−φy is equal to 90°, the reed trajectory is a circle. When the 

phase difference δφ is equal to zero the ellipse becomes a straight line.  

 

Figure 5.1.2. Schematic picture of the driving force and amplitude directions. |x| and |y| 

are the components of the amplitude of the reed elongation from the equilibrium 

position. Angle α determines the elongation direction. |Fx| and |Fy| are the components 

of the amplitudes of the driving force and β is angle between the force direction and x 

axis. 

For such a mode of motion it is possible to extract the value of anisotropy c from this 

solution. One of the easiest ways (theoretically and experimentally) is to analyze the 

motion of the reed along a straight line, partially analyze the dependence of the 

elongation of the reed (|x|,|y|) on the driving force (|Fx|, |Fy|) at δφ = 0  (see Fig.5.1.2). 

The adjusting of δφ is possible by changing phase shift ψ of the force y component fy = 

Fyeiψ. Thus the condition δφ = 0  leads to additional requirements for phase ψ:  

|Fx| 

|y| 

|x| 
β α 

|Fy| 

[5.11.] 
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From this equation we find the value of phase ψ, at which the reed moves along a 

straight line. Substituting of real experimental parameters allows solving of the equation 

[5.12.] numerically. Knowing of the value of the phase ψ  allows to find the 

components of the amplitude of the reed elongations |x| and |y|. Thus we simulate the 

motion of the reed along a straight line with the amplitudes 22 yx +  and direction 

angle α = arctan(|x|/|y|). This angle is not equal to the driving force angle 

β = arctan(|Fx|/|Fy|) in the general case and the value of the parameter c is crucial for the 

dependence of α on β as shown in Fig.5.1.3. These results were obtained for reed 

parameters ωx = 399.8 s-1; ωy = 400.2 s-1; Γx = 0.05 s-1; Γy = 0.05 s-1 and for a driving 

frequency of 400 s-1. It is obvious that for zero value of c the reed moves along the 

direction of the applied driving force and the deviation angle α is equal to the force 

angle β . With increasing c difference between α and β increases. Also some 

disturbances are observed around zero and π/2, caused probably by numerical problems. 

At very big values of c difference between α and β is almost π/2 and disturbances 

disappear. Here the results for positive anisotropy are shown. The calculation with 

negative value of c demonstrates similar behaviour with opposite phase shift. 

[5.12.] 
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Figure 5.1.3. Results of calculations for two-fold symmetric potential. The calculation 

has been carried out for ωx =399.8 s-1 ; ωy = 400.2 s-1; Γx = 0.05 s-1; Γx = 0.05 s-1 and 

for driving frequency 400 s-1. The values of c were from 0 to 10000 s-1. At smaller c the 

difference between α andβ is almost zero. With increasing anisotropy this difference 

also grows up asymptotically to 90°.  

 

5.2. Four-fold symmetric potential 

5.2.1. The approximation of the pinning potential 

To find higher order symmetry of the pinning potential it is necessary to eliminate the 

influence of the two-fold symmetric potential on the reed behaviour. This is possible in 
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experiment with sample glued so crystallographic axes coincide with principal axes of 

the reed. In this case the value of the two-fold anisotropy parameter c = γ sinθ cosθ will 

by equal to zero.  

Now let us consider the more complicated case of four-fold symmetry of the pinning 

potential. The simplest way to set such potential is approximate it by a term X2·Y2 (it 

gives fourfold symmetry) instead of X·Y, which is equal to zero at zero angle between 

crystal and reed axis. Thus the potential is proportional with factor 1/m* to 

 

Here X and Y are the components of the displacement in the potential. Since the shape 

of the equipotential lines depends on the displacement, it is convenient to introduce the 

normalizing amplitude A and divide the equation by the square of it. Then we have the 

equation 
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2
2

22
yxyxU ss βωω

++= , 

where x = X/A and y = Y/A are dimensionless components of the displacement, U is 

value proportional to the potential, and β is parameter of four-fold anisotropy with 

dimension [s-2].  

For small amplitudes, the potential is almost isotropic. At range x ~ βω2 , this 

expression gives the shape of the potential similar to that theoretically described in 

Chapter 2 (see Fig. 2.3.3). The shape of the potential [5.13] was calculated for ωs=3 s-1 

and β = 1000 s-2 and is shown in Figure 5.2.1 in range x, y = [-0.2, 0.2]. For the 

amplitudes x » βω2  the approximation yields the shape quite different from the 

theoretical description, which predicts an almost round shape of the potential at large 

amplitude. 

.
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[5.13a] 
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Figure 5.2.1. Shape of the potential with four-fold symmetry 

222
2

2
2

22
yxyxU ss βωω

++= . Contour plot and 3D illustration. The ωs=3 s-1 and β = 

1000 s-2  for x, y ∈ [-0.2, 0.2] 

 

5.2.2. Analysis of the equation of motion 

Unfortunately the analytic solution of such equations is impossible, but some analysis of 

the equation can be done.  Let us assume that we can make the reed to move in one 

plane in such potential. The movement parallel to one axis will be described by the 

simple equation of the harmonic oscillator with frequency ωs. The more complicated 

case is the vibration at some angle to the axis. For oscillation in the 45°-plane x = y and 

the pinning potential will be 

42
2

42
xxU s βω

+=  , 

where xx 2= . The equation of motion is determined by the pinning potential of the 

sample and the properties of the reed itself 

[5.14.] 
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Here f = F/A·m* is value proportional to the applied driving force. The frequency 
222

0 sr ωωω +=  is the resulting frequency of the reed and the sample. The solution of 

such an equation is considered elsewhere, for example in [82]. This anharmonic 

potential leads to a shift of the resonance frequency and appearance of the third 

harmonic. The shift of the resonance frequency is proportional to the square of the 

amplitude of the oscillations || xa =  

2

08
3 a
ω
βδω = . 

The resonance curve near resonance is given by the equation: 

 ( )[ ] 2
0

2
2222

4ω
κε faa =Γ+− ,  

where ε = ω−ω0 and κ = 
08

3
ω
β . At small force f amplitude a is also small, so it is 

possible to neglect the terms of higher powers of a and we will have the symmetric 

resonance curve with the maximum at ε = 0 (see Fig. 5.2.2.). Increasing of f results in 

deformation of the curve and the maximum shifts to positive values in case of β > 0. 

From the three roots of the equation the only one is real. At f > fk the equation has three 

real roots, and the curve becomes two-valued and bistability occurs. 

 

[5.15.] 

[5.16.] 

[5.17.] 
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Figure 5.2.2. Resonance curve of the anharmonic oscillator for different driving force. 

The amplitude of the oscillation were normalised to the resonance amplitude. The shift 

of the maximum increases with the driving force and the amplitude of oscillations. At 

f>10 s-2 bistability appears. The shift of the resonance at fk is Γ3 . 

The calculations present below were made for the parameters of the reed close to the 

experimental ones: ωr = 400 s-1 and Γ = 0.05 s-1. The parameters of the pinning potential 

in the sample were the same as before:  ωs = 9 s-1 and β = 1000 s-2. These values of the 

parameters are in agreement with the experimental data (see Chapter 6): 

7000222
0

2 =≈−= srr ωωωωδω s-2. The resonance curves shown in Fig.5.2.2 are 

obtained for different driving forces. The amplitude of oscillation are normalised to 

resonance amplitudes, which are equal to 0.025, 0.125, 0.25 and 0.375 for driving 

forces equal to1, 5, 10 and 15 s-2 accordingly. 
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5.2.3. The estimation of the measured values 

The position of the maximum can be found by equating the derivative of a(ε) to zero: 

0
34 42222

3

=
+−Γ+

+−=
aa

aa
d
da

κκεε
κε

ε
. 

Thus ε = κa2 and amax = f/2ω0Γ which is the same maximal amplitude as that of the 

harmonic oscillation. Bistability occurs at points A and B. The position of these points 

is determined by the condition ∞=
εd

da  and thus by the solutions of equation 

034 42222 =+−Γ+ aa κκεε . 

 When the determinant of this equation is equal to zero, it has only one solution and 

points A and B coincide. This happens at f = fk. The resonance shift at the critical force 

fk is Γ= 3kε ( about 0,06Hz) which is a measurable value.  

The other feature of the anharmonity of the potential is the appearance of the third 

harmonic 

tax ω
ω
β 3cos

32 2
0

3
)3( = . 

Thus the ratio of signal of the third harmonic to that of the first harmonic is proportional 

to a2β. Since this parameter has dimensionality of s-2 and does not depend on the units 

of amplitude we can use the same values of a = 1 and β = 1000 for estimation. The 

estimation gives 4
)3(

102|| −⋅=
a

x . Unfortunately, the accuracy of our experiment is not 

enough to detect such a signal. 

[5.18.] 

[5.19.] 

[5.20.] 
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Chapter 6 

 

Experimental results 

6.1. Two-fold anisotropy 

6.1.1. The field dependence of the resonance enhancement 

The vibrating reed technique is a powerful tool for the investigation of the interaction 

between the flux line lattice and the pinning centers in the superconductor. The direct 

measurement of the elastic coupling parameter α (Labusch parameter) is possible when 

the Campbell penetration depth λ44 is larger than the sample dimension along the field 

direction. In our case, the important sample size is the crystal thickness along the c 

direction since the field was always directed perpendicular to the a-b surface. The 

thickness of the samples used in the experiment was less than 100 µm. 

As it was demonstrated in [36], the Labusch parameter α can be estimated from the 

frequency enhancement and from the line tension P 

l
dd

lwP
l
I ss

ss 3
)(

2
2
0

2 αωω ==−  

where I is the effective moment of inertia of the reed, l is its length, and ws, ls a

describe the geometrical size of the superconducting sample. 

 
[6.1]
nd ds 
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Measurements of the resonance frequency enhancement of the YBa2Cu3O7-δ single 

crystal (YBCO-A, 1.5 × 0.8 × 0.05 mm2) are shown in Fig.6.1.1. From these 

measurements, we obtain an estimate of the Labusch parameter α about 1013 N m-4. 

Thus, the penetration depth λ44 is about 200µm, which is larger than the sample 

thickness ds/2 ≈ 25 µm. This estimate demonstrates the consistency of the description. 
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Figure 6.1.1. Log-log plot of the resonance frequency enhancement of YBa2Cu3O7-δ 

single crystal (YBCO-A) as a function of the magnetic field B at the temperature T = 

50K. The line is linear fit proportional to B2.4. 

This conclusion is confirmed by the measurements of the resonance frequency 

enhancement as a function of magnetic field. The experimental results show that 

frequency enhancement is not proportional to B2 at temperatures below 75 K. The linear 

fit of the data shows that 4.22
0

2 B∝−ωω . This dependence of the line tension is 

different from the proportionality c44 = BaB/µ which is attributed to the distortion of the 
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magnetic field or tilt of the flux line lattice. The proportionality different from B2 might 

be interpreted as an indication that the line tension is provided by elastic pinning. In this 

case the dependence of line tension on magnetic field indicates that the Labusch 

parameter of the elastic coupling is proportional to B2.4. 

The most important conclusion is that the frequency enhancement and additional 

restoring force are not caused by a geometrical effect. They are provided by elastic 

interaction between flux line lattice and pinning centers. 

 

6.1.2. Pulse excitation experiment 

The response of the two-dimensional reed to a pulse excitation can be predicted from 

the equations of motion. When the reed is well adjusted the two coordinates x and y are 

independent. In this case, the motion of the reed would be the summation of two normal 

modes of the free oscillations with frequencies ω0x and ω0y. These oscillations decay 

because of the damping in time
02πω

τ Q= . Thus, the signal on each of the electrodes 

will be a damped oscillation with one degree of freedom. The output of the lock-in 

amplifier displayed on the oscilloscope is shown in Fig.6.1.2. Such signal of single-

mode free oscillation is observed at any initial conditions and it is independent on 

direction and magnitude of the initial distortion of the reed. 
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Figure 6.1.2. Lock-in signal on the oscilloscope from the x electrode representing the 

response on a pulse excitation of the well adjusted reed. The x and y coordinates are 

completely independent so response is the same as the response of the one-dimensional 

damped oscillator. 

The situation changes when the additional mixing term appears in the restoring force. In 

this case, the damped oscillations have beating with frequency ω0x-ω0y. The additional 

restoring force acts on the superconductor and reed in a magnetic field. This force can 

have a mixing term if the superconducting crystal has a not isotropic pinning potential, 

and if such superconducting sample is glued to the reed under some nonzero angle 

between the main axis of inertia of the reed and crystal axis, i.e. axis of the pinning 

symmetry. A thin superconducting crystal YBa2Cu3O7-δ (YBCO−Α) was glued at 20° 

angle to reed axis. Fig.6.1.3 shows the response of the reed to the pulse excitation at 

B=0.8 T at a temperature below transition temperature. The beating of the oscillation is 

clearly seen in this case. The Fourier transform of the signal has two distinct peaks 

corresponding two modes x and y. The distance between the modes is about 10Hz. The 



 66 

other peaks in the Fourier transform are the 100Hz modes from the outside noise. 

However being far away from the resonance frequency of the reed, these parasite 

signals have no effect on the experiment. 

 

Figure 6.1.3. The oscilloscope signal for the x direction in a magnetic field B = 0.8 T. 

The superconducting crystal YBCO-A was glued under an angle of about 20 degree 

between the crystal axis and the x-y directions of the oscillation. The lower picture is 

the Fourier transform of the signal. Two modes are clearly seen. Also 100Hz modes of 

the parasite signal can be seen. 

Above the transition temperature the magnetic field has no effect on the reed free 

oscillations and we observe the signal of two independent modes x and y on both 

electrodes. 



 67 

The mixing of two modes demonstrates that the restoring force has anisotropic 

symmetry. This restoring force is associated with the pinning potential since the sample 

is thin (the thickness d is smaller than Campbell penetration depth λ) as is seen from the 

field dependence of the resonance enhancement. Thus, we observe the force associated 

with the Labusch parameter and this effect is not caused by geometrical size of the 

sample. Similar results were obtained in an experiment with a square-shaped crystal of 

YBa2Cu3O7-δ  (YBCO-B). 

In addition, experiments with Bi2Sr2CaCu2O8+δ rectangular samples glued at some 

nonzero angle were carried out. The results of these experiments show no indication of 

the mode mixing at magnetic fields up to 3 T. This demonstrates that beating is 

associated with the anisotropy of the pinning potential. Most obviously, it is caused by 

the intrinsic symmetry of the YBa2Cu3O7-δ crystal structure, which has a well 

established anisotropy in the a-b plane. 

 

6.1.3. Constant drive experiment 

The previous observation of free oscillations is a qualitative experiment. More 

information can be obtained from driven oscillations. In case of the adjusted reed no 

mode-mixing forces are acting on the reed. Thus, the driving voltage applied along one 

of the reed axes results in stable oscillation in this direction. The amplitude of this 

oscillation is proportional to the square of this driving voltage. The signal at the 

perpendicular direction is equal to zero. This fact and the absence of beating at free 

oscillations are used for the adjustment of the electrodes along main axes of inertia of 

the reed. 

The mode-mixing force results in an elliptic motion. Thus, a signal appears in the 

direction perpendicular to applied driving force. In the experiment with the YBCO-A 

sample the perpendicular signal increases with the magnetic field since the mode-

mixing force is associated with elastic pinning and increases with vortex density. 
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The results of this experiment are shown in Fig.6.1.4. The driving voltage was applied 

along the x direction. At zero magnetic field, the y signal was zero within the accuracy 

of the measurements. Applying a magnetic field leads to an increase of this signal. At a 

temperature T=60 K the amplitude along x direction does not change up to B = 1 T. The 

amplitude of the oscillation along the driving force is proportional to the damping, 

associated with vortex motion. Thus, the depinning of the vortices starts at higher 

magnetic field than the mode-mixing. Therefore, the mode-mixing force is not related to 

vortex motion and depinning. 
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Figure 6.1.4. Increase of the y-signal in magnetic field for a reed driven along the x 

direction. The experiment was carried out with superconducting crystal YBa2Cu3O7-δ 

(YBCO-A) at T =60 K. The mode-mixing appears at about 0.2 T. That is much smaller 

than the field at which depinning starts (about 1 T). 

For temperatures closer to Tc the depinning starts at lower fields. Figure 6.1.5 shows 

that at T = 75 K the damping starts to grow near the field 0.6 T and the x amplitude 
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decreases. The y amplitude grows up at smaller fields (~0.2 T) and then drops because 

of high damping of the reed. 

Thus, the effect of the mode-mixing is a property of the superconductor sample with 

pinned vortices. However, for more quantitative results, a detailed experiment with 

angular resolution is required. 
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Figure 6.1.5. Increase of the y-signal in magnetic field. The driving voltage is applied 

along x coordinates. The experiment was carried out with superconducting crystal 

YBa2Cu3O7-δ at temperature T =75 K. Depinning starts at field about 0.6 T. At 

depinning both signals decrease to zero because of high damping. 
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6.1.4. Angular dependence 

The main idea of another constant drive experiment is clear after the mathematical 

consideration described in Chapter 5.1. The driven planar oscillations allow quantitative 

measurements of the anisotropy in the a-b plane. If two-fold symmetry anisotropy is 

assumed, the parameter c characterizes this anisotropy and it can be determined from 

the angular dependence of the response. 

The motion of the reed depends on the magnitudes (Fx, Fy) and phases (ψx, ψy) of the 

applied driving forces. The amplitudes of the oscillations depend on the magnitudes of 

the force components. The phase difference of the driving forces ψx - ψy determines the 

signal phase difference. At a certain phase difference the reed performs planar 

oscillations. The regulation of the amplitudes and phases was carried out with the help 

of the program in LabView (Diag.4, Appendix A). This program controls one of the 

driving phases such that the signal phase difference is kept equal to zero or π. 

Simultaneously, the amplitudes are regulated such that the value 22 yx + is constant. 

While keeping these values constant, the program changed the ratio Fx / Fy to scan the 

angle β = arctan (Fx/Fy) from zero to π/2. Measuring the angle of reed deviation α = 

arctan (x/y) as a function of β gives the possibility to find the value of the two-fold 

anisotropy. It is clear that in absence of a magnetic field the reed oscillation direction is 

the same as the direction of the driving force, and α = β. Measurable changes appear at 

higher fields when the mode-mixing force is strong enough. 

The scanning of the angle β results in a multivalued function α(β), which is difficult to 

measure. This leads to an uncertainty in the values of the function and some additional 

artefact points near β = 0. However, careful low-noise measurements are possible and 

give results, which are very close to the mathematical simulations. 

Figure 6.1.6 shows the dependence α on β measured by this method on the reed with 

YBCO-A crystal glued at a non-zero angle. The measurements were carried out at 76 K 

and at magnetic fields B = 0.75 � 1.05 T i.e. at fields when the mode-mixing force is 
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highest but the damping is still moderate. The graphs shown differ from the diagonal 

line α = β. The main feature of the graphs is the second branch in the angular range β < 

0.3 rad. The zero value of β is not at the point α = 0 as it is in the absence of a magnetic 

field and mode-mixing force. This point is displaced to a higher value of α. The position 

of this minimum depends on the magnetic field and shifts from α = 0.1 rad ≈ 6 degree at 

B =0.75 T to α  = 0.35 rad ≈ 20 degree at B = 1.05 T. At lower fields, the plot is almost 

undistinguishable from the zero field curve. At higher fields, the measurements become 

complicated because of the too strong mode-mixing and too strong damping. 
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Figure 6.1.6. The dependence of α on β measured at T = 76 K and magnetic fields B = 

0.75 � 1.05 T. The signal phase difference φ was π. We observe a multivalued function, 

which has two branches at each field value. 
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The results of the experiment carried out at T = 76 K and B = 0.93 T is shown in 

Fig.6.1.7. These measurements have been done for a phase difference φ  = 0 and φ  = π, 

i.e. at full range of the angle α. Thus we observe a curve which is very similar to the 

mathematical simulation described in Chapter 5.1. The calculations were made with 

Maple5 program. The parameters used in calculations were close to those measured: ωx 

=  399.8 Hz; ωy= 400.2 Hz; Γx= 0.02 ; Γy = 0.02 and driving frequency ω = 400 Hz. The 

only fitting parameter c characterizes two-fold symmetry. The best fit yields c = 60. 
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Figure 6.1.7. The dependence of α on β measured at T = 76 K and magnetic fields B = 

0.93. The signal phase difference was kept zero and π. Thus, we scan the full range of 

the angle α. The line is the result of the simulations. The parameter of the two-fold 

symmetry used for this fit was c = 60. 

6.1.5. Estimation of the anisotropy 
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Once the value of the parameter c is known, we can estimate the value of the two-fold 

symmetry. The parameter c is determined by the anisotropy γ of the pinning potential 

and angle θ between the direction of the crystallographic axes a-b and reed coordinates 

x-y: 

c = γsinθcosθ. 

Figure 6.1.8. Photograph of the cell. The two screws are the electrodes, 

determine the directions x and y shown as dashed black lines. The thick white a

points at the superconducting sample, which is glued on top of the reed (cannot be

in the picture). Small white axes indicate the direction of the a-b crystallographic

of the YBa2Cu3O7-δ sample. The angle θ between these two coordinate systems is 

23°. 

 
[6.2]
 

which 

rrow 

 seen 

 axes 

about 



 74 

The angle θ can be determined from the photograph shown in Fig.6.1.8. The coordinates 

x and y are determined by the two screws which are used as driving and detecting 

electrodes. The direction of the crystallographic axes a and b is readily determined from 

the photo since they are parallel to the crystal edges. Knowing the angle θ ≈ 23° allows 

us to find the anisotropy 17022 ≈=− γωω ysxs . Here 2
xsω  and 2

ysω  are the coefficients in 

the pinning potential of the superconducting sample 
22

2222 baU ysxs ωω +=  (see Chapter 

5.1.) 

θγωωω
θγωωω

2222

2222

cos

sin

−+=

−+=

xsyry

xsxrx  

This potential is the origin of the additional restoring force, which results in a frequency 

enhancement θγωωω 222
0

2 sin)( −=− xsB . Thus, knowing the frequency enhancement, 

we can evaluate the relative anisotropy 221 ysxs ωωγ −=  ≈ 10%. This value is in a good 

agreement with measurements of the anisotropy in the penetration depth of  

YBa2Cu3O7-δ  single crystals [83], which gives γab =1.15, and magnetic torque 

measurements [84] yielding γab =1.18. 

 

6.2. Search of the four-fold symmetry 

6.2.1. Reverse resonance curve 

The mathematical description of the oscillation of the reed gives clues to the search of 

the four-fold symmetry of the pinning potential. The superconducting sample was glued 

so its crystallographic axes coincide with the principal axes of the reed. In this case, the 

two-fold symmetry parameter c = γ sinθ cosθ is equal to zero. Thus, all two-fold 

symmetry effects should disappear. Indeed, for the YBa2Cu3O7-δ samples glued parallel 

to the x-y axes, no mode-mixing was observed in a magnetic field up to 2.5 T. No 

[6.3] 
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beating was observed in the free oscillation of the reed. Also in the experiment with 

constant drive, there was no increase of the signal perpendicular to the applied driving 

force. 

As shown in Chapter 5.2, a four�fold symmetry should manifest itself in anharmonical 

motion and in the change of the resonance curve in dependence of the angle of the plane 

of oscillations. The theoretical prediction shows that four-fold symmetry of the pinning 

potential can be observed only in very narrow range of the elongation of the vortex from 

the pinning center. Thus, the measured effect depends strongly on the amplitude of the 

oscillation. Because of this fact, we measured reversed resonance curves, i.e. the 

amplitude of the oscillation was kept constant by changing the driving force in 

dependence of the frequency. The measurement was carried out with the LabView 

program shown in Appendix A, Diagram 3. The phase difference φx-φy of signals x and 

y was controlled by the program and was kept equal to zero or π by the program. The 

amplitude of the oscillation was kept constant while the frequency was scanned near the 

resonance. Thus, the driving force is minimal at the resonance frequency and increases 

away from the resonance. 

 

6.2.2. YBa2Cu3O7-δδδδ 

The experiments with the YBa2Cu3O7-δ samples (YBCO-A, -B, -C) were carried out in 

the temperature range 50 K � 70 K and fields of about 2 � 3 T. At higher temperature 

the damping starts at lower magnetic field. Unfortunately, in the lower temperature 

range, a large hysteresis of the resonance frequency enhancement appears in increasing 

and decreasing field similar as observed in Ziese�s dissertation [85](see Fig. 6.2.1). This 

irreversible magnetisation is caused by penetration of the vortices into the 

superconductor. This leads to a nonequilibrium distribution of the vortices in the sample 

and obscures the measurements. The magnitude of this effect depends on the critical 

current density and increases with decreasing temperature. Thus, we have tried to carry 

out the experiments at not too low temperatures. 
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Figure 6.2.1. The dependence of the resonance curve of the YBa2Cu3O7-δ sample 

(YBCO-A) on magnetic field strength. A large hysteresis loop appears in increasing and 

decreasing field caused by penetration of the vortices into the superconducting sample. 

The temperature of the measurements is 48 K. 

Some of the experimental results are shown in Fig.6.2.2. The reverse resonance curves 

were measured near the resonance ωy at a temperature T = 66K and magnetic field B = 

2.9T for different angles α = 35° � 75°. The resonance frequency differs by about 0.2Hz 

in different measurements. Unfortunately this effect was caused by an instability of the 

resonance frequency with time. The resonance frequency drifted slowly at stabilized 

temperature and magnetic field. For example, at temperature T = 65 K and field B = 2 T 

the resonance frequency decreased by ~0.15 Hz in three hours (see Fig.6.2.3). The same 

result was observed with other YBa2Cu3O7-δ samples. 
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Figure 6.2.2. Reverse resonance curves of the reed with a superconducting YBa2Cu3O7-δ 

crystal (YBCO-A). The measurements were carried out at T = 66K and B = 2.9T for 

different angles α = 35° � 75° near the resonance ωy. The phase difference of x and y 

signal was kept equal to π. 

This effect is most likely caused by an unstable nonequilibrium state of the flux line 

arrangement. Since the drift of the resonance frequency is comparable to the frequency 

difference measured at different angles of the planar oscillation, it is impossible to 

obtain the dependence of the resonance curve on the angle α. 
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Figure 6.2.3. Reverse resonance curves of YBa2Cu3O7-δ sample (YBCO-A) measured at 

temperature 65K and magnetic field 2T. The phase difference of x and y signal was kept 

equal to 0 and α was 60°. The curves were measured at a different time. Within three 

hours, the resonance frequency has shifted by 0.15 Hz. 

 

6.2.3. Bi2Sr2CaCu2O8+δδδδ 

The Bi2Sr2CaCu2O8+δ samples were grown at the Moscow State University in the 

laboratory of Prof. L.Shvanskaya. The method of growth was described in [86, 87]. 

Unfortunately, the crystals that we have obtained had the rather low transition 

temperature Tc ≈ 22 K. Nevertheless, we carried out experiments with these samples. 

For these samples, the irreversible magnetisation was much smaller than for 

YBa2Cu3O7-δ crystals. It can be seen in Fig.6.2.4, which shows the dependence of the 
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resonance frequency on magnetic field measured at a temperature T = 16 K in 

increasing and decreasing field. 

Evidently the vortex state in Bi2Sr2CaCu2O8+δ sample is much more stable than in 

YBa2Cu3O7-δ crystals. The resonance frequency does not change in the observation time 

of several hours in stabilized magnetic field and temperature within the accuracy of the 

experiment. 
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Figure 6.2.4. The dependence of the resonance frequency of the Bi2Sr2CaCu2O8+δ 

sample on magnetic field. The hysteresis loop is smaller than that observed for the 

YBa2Cu3O7-δ samples (see Fig.6.2.1). The measurements were carried out at 

temperature 16 K. 

A search for indications of the four-fold symmetry of the pinning potential was carried 

out at a temperatures of about 17 K and magnetic field lower than the depinning field, 
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i.e. B = 2 � 3 T. However the reverse resonance curves and resonance frequency show 

no dependence on the angle of the plane of the oscillations (Fig.6.2.5). 

Another manifestation of the four-fold symmetry of the pinning potential is the 

appearance of an asymmetry in shape of the resonance curve (see Fig.6.2.5). 

Measurements of the resonance curve for plane oscillations at different angles were 

carried out with the LabView program similar to the program shown in Appendix A, 

Diagram 3, but now instead of the amplitude the driving force |F| was kept constant. 
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Figure 6.2.5. Resonance curve of the Bi2Sr2CaCu2O8+δ sample at temperature T = 17 K 

and magnetic field B = 2 T. The resonance curves were measured for the oscillation at 

angle α equal to 45° and 75°. The difference in resonance frequency is negligible. 
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The resonance curves measured at temperature T = 17 K and field B =2 T are shown in 

Fig. 6.2.5. The angles of the oscillations were 45° and 75°. The difference in resonance 

curves is insignificant and probably caused by the measurement technique. A similar 

small difference of the resonance curves was observed at zero magnetic field or at 

temperatures above the superconducting transition. 

 

6.3. Hysteretic behaviour 

6.3.1. Resonance enhancement hysteresis 

The behaviour of the reed in changing magnetic field allows an investigation of 

penetration of the magnetic flux into the superconductor sample and permits estimations 

of the critical currents of the superconductor. The shielding currents and surface barriers 

result in an irreversible magnetisation and hysteretic behaviour of the magnetic 

properties of the superconductor. 

In a magnetic field a superconductor with static magnetisation M experiences a torque τ, 

proportional to the field and angle φ between applied field Ba and magnetisation. This 

torque leads to a change of the resonance frequency of the reed 
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where Vs is volume of the sample and I is the effective moment of inertia of the re

magnetisation M is different in increasing and decreasing field and this leads 
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where ↓ω  and ↑ω  are the resonance frequencies for decreasing and increasing fields. 

Our investigations also show hysteresis loops of the frequency enhancement in 

changing field (see Figures 6.2.1 and 6.2.4). This hysteresis is rather large for the 

YBa2Cu3O7-δ crystals and depends on temperature. Figure 6.3.1 shows the frequency 

enhancement ω2(B) − ω2(0) in a changing magnetic field at different temperatures 35 K, 

50 K, 68 K and 76 K. Increasing temperature leads to decreasing hysteresis loops and at 

temperatures higher than 76K, hysteresis disappears. These measurements show that the 

critical current density increases from 105 A/cm2 to 106 A/cm2 in this temperature range. 
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Figure 6.3.1. Resonance frequency enhancement of YBa2Cu3O7-δ crystals at different 

temperatures. The arrows show the direction of the field change. At temperatures 

higher than T = 76 K hysteresis is too small to be measured 
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6.3.2. Amplitude hysteresis 

Besides resonance frequency hysteresis at low temperature, we have observed also large 

hysteresis of the resonance amplitude of the oscillations. Since the vibrations were 

excited by constant driving force, the amplitude depends only on damping and the 

distance between driving/detecting electrode and the reed. However, careful 

measurements of the resonance curves show that the width of the resonance does not 

change with field up to 3 T. 
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Figure 6.3.2. The first experimental run. Large hysteresis of the amplitude of 

oscillations along x in magnetic field at temperature 44 K. Arrows shows the direction 

of the field changes. Almost no hysteresis occurred in y direction of the oscillations. 

Insert: normalised resonance curves measured in points A and B. 
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Figure 6.3.2 shows the hysteresis in magnetic field at temperature T = 44 K. In x 

direction of the oscillations we observed large hysteresis. In points A and B the 

amplitudes differ by almost a factor of two. However, as shown in the insert, the 

resonance curves in these points are the same. That means that the difference in 

amplitude of the oscillations is caused not by a change in damping, but by the bending 

of the reed. The reason of this bending is a torque, which appears in magnetic field. 

That means that the sample has a static magnetisation directed at some angle to the field 

direction. 

In the experiment shown in Fig. 6.3.2, the hysteresis loop was observed only in x 

direction of oscillations. The signal along y direction had very small hysteresis. 
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Figure 6.3.3. The second experimental run. Hysteresis of the amplitude of oscillations 

along y coordinate in magnetic field at temperature 35 K. Arrows shows the direction of 

the field changes 
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The second experimental run was carried out with the same sample turned by 90° 

around the c axis. In this case, the a and b axes are interchanged relative to the x and y 

directions. We now observed hysteresis in the y direction. However, the hysteresis had 

different sign, i.e. the amplitude of oscillations in decreasing field was larger than the 

amplitude in increasing field (see Fig.6.3.3). Another experiment shows the hysteretic 

behaviour in both directions (not presented). 

We interpret these observations such, that hysteresis caused by the orientation of the 

sample relative to the direction of the applied magnetic field and the small angle 

between the c axis of the sample and field direction Ba leads to a torque bending the 

reed in the magnetic field. 

Another interesting feature was observed at temperatures in range 45 � 60 K. The non-

monotonous change of the signal in field is clearly seen in Fig. 6.3.4. The observed 

small bump is very similar to the �fishtail�, which was reported by P. Fischer and M. 

Ziese in magnetization measurements [57, 85]. This effect was discussed widely in 

many works [89 - 93]. At present, the origin of the �fishtail� or peak effect is commonly 

associated with transformation of the quasiordered vortex glass into disordered 

amorphous vortex state [94 - 96]. 
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Figure 6.3.4. The x signal changes with field non-monotonously. The measurement was 

carried out at T= 50 K with the sample YBCO-A. 

 

6.3.3. Orientation of the sample and double peak in damping 

The measurements of the damping near the transition temperature verify the 

assumption, that the reason of the torque is the small inclination of the sample relative 

to the field direction. As shown in [51] (see Chapter 3.4.), the double peak structure in 

damping manifests depinning in the sample in the tilting magnetic field. Our 

experiments show that double peaks in damping and hysteresis are observed in the same 

directions of the oscillations. For example, in the first experimental run hysteresis was 

observed only for the x coordinate. The double peak of depinning is also observed in 
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this direction of the oscillations (see Fig.6.3.5). In the other direction, only one 

maximum with a small shoulder is observed. 

Similar results were observed for other experimental runs. In all these experiments, the 

presence of the damping double peaks was correlated with the observation of the 

hysteresis. This was confirmed for six experimental runs with three different 

YBa2Cu3O7-δ samples to make sure, that it is not just coincidence. 

Thus we can claim that hysteretic behaviour is caused by reed bending due to the 

torque, which appears in the sample tilted relative to the applied magnetic field. 
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Figure 6.3.5. Double peak in damping of YBa2Cu3O7-δ sample in the first experimental 

run near Tc. for oscillations along x and y directions. The damping for x oscillations has 

a pronounced double peak. Along the y directions there is only one maximum.  
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6.3.4. Magnetization of the slab in the inclined field 

To understand the appearance of the torque bending the reed in a magnetic field, it is 

necessary to consider the magnetisation of a superconductor in increasing and 

decreasing magnetic field. This problem was analyzed in many papers for samples of 

different simple shapes and different orientation relative to the field direction [97-102] 

and was reviewed in [103]. 

To compare our configuration with these cases one should consider field and 

magnetisation components parallel and perpendicular to the ab plane of the 

superconductor as shown in figure 6.3.6.  

 

Figure 6.3.6. Magnetization of the superconducting slab in the tilted magnetic field. 

Field and magnetization can be resolved into components parallel and perpendicular to 

the slab. 

According to the Bean model [97, 98] the field, parallel to the ab planes Bl, causes the 

appearance of shielding currents which lead to a negative magnetisation  
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Here we assume that aa HµHB 0)( = . In equation [6.6] Hc and Jc denotes critical field 

and critical current density. 

In our case we apply a magnetic field B ≥ 1T and the angle of the field inclination φB 

can be about 1�3°. That means that Hl «Hc and we have the ideal shielding case in 

which the applied field is expelled completely. Then the magnetisation is  

Ml = Hld. 

For an estimate of the magnetization component parallel to the c axis it is necessary to 

use the solutions for the transverse geometry. In this configuration, the original model 

has to be modified. The problem of flux penetration was solved analytically for a thin 

circular disc in [99, 100, 103] and we can use this result in our case neglecting the 

rectangular shape of the superconducting crystal. The solution for the disc of radius l is 

the negative magnetic moment 





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d
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8  

where 
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1)( . 

At B ≥ 1T we have full penetration, and the magnetisation is equal to [103] 

cd lHM
3

2π=  

Thus from equations [6.7] and [6.10] we can determine the angle between the 

magnetisation and the c axis of the superconductor 
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[6.7] 
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[6.9] 

[6.11] 
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That means that the negative magnetisation is not parallel to the inclined applied field 

mainly because of the geometric parameters of the sample. Since the thickness d of the 

sample usually is 10�20 times smaller than its longitudal dimension l, the magnetisation 

is almost parallel to the c axis of the sample. Thus, the angle between applied magnetic 

field and magnetisation of the sample is almost equal to φB. When this angle is not zero, 

the torque acts on the sample and bends the reed toward the electrodes or away from 

them in dependence of the direction of the inclination of the sample. This leads to an 

increase or decrease of the amplitude of oscillations in increasing magnetic field. When 

the magnetic field is decreasing, the magnetisation changes sign and the reed bends in 

the opposite direction. This results in hysteresis of the amplitude of oscillations. 

 

6.3.5. Sensitivity of torque measurements  

These experiments are very similar to the usual torque measurements with the sample 

glued to a cantilever, which bends in magnetic field. It is easy to estimate the sensitivity 

of our torque measurements knowing that the signal from detection electrode depends 

on the fourth power of the distance d between reed and electrode. This follows from the 

equations [4.2]: 

44
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ω

 

where K is the coefficient of the tuner convertion; m*, Γ and ω are parameters of the 

reed; A is the effective surface of the reed/electrode capacitance and ϕ is the driving 

voltage. Thus the change of the signal can be found: 

( ) d
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d
d

d
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ddd
kV signalsignal
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From here we can determine how the change of the torque determines the signal change: 

[6.12] 

[6.13] 
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signal

signal

V
Vd

l
Id

l
I ∆

=∆=∆
2*2 ωωτ . 

where l is the length of the reed (7mm), 2** ~ lmI  is the effective moment of inertia 

and ω is the resonance frequency of the reed. Thus we can estimate the sensitivity of the 

torque measurements which is about 10-9 Nm. 

Another method of torque measurements, described in part 6.3.1, gives much higher 

sensitivity. In this method, the torque is measured by changes of resonance frequency 

and very high quality factor of the vibrating reed allows to realise extremely sensitive 

measurements, since the torque τ leads to resonance frequency enhancement (see 

Chapter 3)  

a
l

I *
2
0

2 )( τωωδ =− , 

where a is the amplitude of the oscillations. The high quality factor permits to measure 

δω with a sensitivity of about 0.01 s-1. Thus the minimal measurable value 

of δωωωωδ 0
2
0

2 2)( ≅−  is about 10 s-2. This gives an estimate for the torque sensitivity 

of 10-14Nm. 

In addition, we can compare the torque values obtained with both methods. From 

equations [6.5] and [6.14] we can find the ratio of the torque τ1 obtained by the 

resonance measurements and the torque τ2 obtained by the measurements of the 

oscillation amplitude: 

signal

signal

V
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d
l

∆
∆= 2

2

2

1 4
ω
ω

τ
τ

. 

Since the torque caused by magnetisation M in field Ba is proportional to the angle 

between them, the ratio of the torques is equal to the ratio of the angles in both 

[6.15] 

[6.14] 
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cases
φ
θ

τ
τ

=
2

1 . Here θ is angle of the reed distortion at oscillations, and φ is angle of 

inclination of the sample relative to the field direction. If we substitute the parameters 

from the experiment l= 10-2 m, d = 2·10-6 m, ∆ω2 = )( 2
0

2 ωωδ − = 8·103 s-2 and ω2 = 

16·104 s-2, we get the ratio θ /φ  = 2000. Taking the approximate value of the amplitude 

of oscillation as 100nm we find the θ = 10-5 and consequently φ = 1°. This estimation 

gives rather consistent result proving the validity of our assumptions.  
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Chapter 7 

 

Conclusions 

In this work the anisotropy of the pinning forces in the ab plane of single crystals of 

high-temperature superconductors was studied. For this purpose a vibrating reed with 

two degrees of freedom was constructed. This device allows measuring the shape of the 

pinning potential in YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ single crystals. 

 

7.1. Two-dimensional vibrating reed 

For the study of the ab anisotropy of the pinning forces acting on the vortices the two-

dimensional vibrating reed was built. This reed consists of a sapphire fiber glued into a 

hole of the ruby disc, which is used as a sample holder. The superconducting sample 

was glued on top of the disc with the c-axis parallel to the sapphire fiber. Thus we have 

the possibility to vibrate the sample in any direction of the ab plane. The magnetic field 

directed along the c axis creates vortices in the superconductor. Vibrating of the 

superconductor leads to the distortion of the flux lines and displacement of the vortices 

from the point-like oxygen defects, which act as pinning centers. Such an experimental 

configuration has never been used before and gives the possibility to study the 

symmetry of the pinning potential. 
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7.2. Mathematical model 

A mathematical model was developed to describe the effect of the shape of the pinning 

potential on the vibrating reed motion. The two simplest cases of two- and four-fold 

symmetry of the potential were considered in this model.  

According to the equations of motion it is clear that it is possible to make the two-

dimensional reed move in a plane, thus the free end of the reed moves along a straight 

line trajectory. In this case it was proven that the two-fold symmetry of the potential 

leads to a change in the dependence of the reed displacement (x,y) on the driving force 

(Fx,Fy). The dependence of the motion direction α = arctan(|x|/|y|) on the driving force 

direction β = arctan (|Fx|/|Fy|) was studied. The presence of two-fold symmetry results 

in shift of the curve of α versus β. This shift depends on the parameter of anisotropy 

and this fact gives a clue to the experimental measurements of the anisotropy by the 

vibrating reed with two degrees of freedom. 

The mathematical model of the reed motion in a potential with four-fold symmetry has 

been developed. According to this model the four-fold symmetry should manifest itself 

in a change of the resonance curve in dependence on the angle of the plane of the 

oscillations. For an oscillation in a plane at 45° to the crystallographic axes, the shift of 

the resonance frequency is expected to be maximal and the resonance curve should have 

asymmetry shape. 

 

7.3. Two-fold symmetry 

The experiments with the two-dimensional vibrating reed were carried out with single 

crystals of YBa2Cu3O7-δ, glued with some angle between the easy axis of the reed (the x 

direction) and the crystallographic axis a and b. These experiments demonstrated the 
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presence of the two-fold symmetry of the pinning potential of the sample. The 

anisotropy of the pinning potential manifests itself by the appearance of beating in the 

free oscillations.  

Moreover the experiments with the in-plane oscillations at constant drive give the 

results predicted by the mathematical model. The direction of the oscillations α depends 

on the direction of the driving force β as it was expected. The dependence curve α 

versus β shifted in magnetic field proving that pinning potential has two-fold symmetry. 

The mathematical simulations allow to estimate the anisotropy parameter from the 

experimental data. This parameter appears to be about 10% which is in a good 

agreement with experimental measurements of the anisotropy in the penetration depth 

and in the magnetic torque 

 

7.4. Four-fold symmetry 

The experiments with the samples glued so that the crystallographic axes coincide with 

the easy axes of the reed eliminate the effect of the two-fold symmetry of the pinning 

potential. Unfortunately, the experiments with YBa2Cu3O7-δ show that at temperatures 

lower than 78K the vortices are in a nonequilibrium state. This leads to a drift of the 

resonance frequency with time and prevents the comparison of resonance curves in 

different directions of oscillations.  

In Bi2Sr2CaCu2O8+δ single crystals the vortices are in more stable state, but the 

measurements of the resonance curves in different directions show no indication of the 

four-fold symmetry. 

7.5. Amplitude hysteresis 

The experiments carried out at temperatures lower than 60K with YBa2Cu3O7-δ crystals 

reveals strong hysteretic behaviour in changing magnetic field. Hysteresis of the 
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resonance frequency enhancement caused by irreversible magnetisation was observed 

earlier in vibrating reed experiments. However the hysteresis of the amplitude of the 

oscillation was observed for the first time. It was verified experimentally by measuring 

resonance curves that the damping does not change in a small field in this range of 

temperature. The damping increases only at fields higher than 2 T, when the depinning 

starts. From this we conclude that the change in the measured signal is caused by the 

change of the gap between the reed and the driving/detecting electrode because of 

bending of the reed. This bending is the result of a torque caused by the irreversible 

magnetisation. This magnetisation is directed mainly perpendicular to the flat surface of 

the superconductor because of a geometrical shape of the sample. At a consequence, the 

small inclination of the sample relative to the magnetic field direction leads to the 

appearance of the torque which bends the reed. A comparison of the values of the 

magnetisation estimated from the measured hysteresis of the resonance frequency and 

hysteresis of the signal gives a consistent result. This proves that our assumption of the 

origin of the hysteresis of the measured signal is correct. 
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