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SUMMARY 
 
The effects of conversion of natural forest into different exotic tree species plantations and 

crop cultivation were investigated at Munesa, south-eastern Ethiopia with the objectives of (i) 

determining changes on soil physical and chemical properties, (ii) quantifying water and 

nutrient fluxes under the different forest ecosystems, and (iii) assessing nutrient dynamics in 

water flowing through the soil under the different forest ecosystems. Soil samples were taken 

from the organic layer and at 0−20, 20−40, 40−70, 70−100 cm depths from the mineral soil. 

Rainfall and throughfall were collected using plastic funnels mounted 1 m above the ground. 

Soil solutions were collected with zero-tension (organic layer) and tension (mineral soil at the 

depth of 20, 50 and 100 cm) lysimeters. After 26 years of cultivation, surface (20 cm depth) 

soil structure was deteriorated and total soil organic carbon (SOC) and N contents both in 

bulk soil and water stable aggregates were significantly reduced. Below 21 years old 

Eucalyptus plantation no significant changes on the above mentioned parameters could be 

identified, but significant reductions in SOC, N and S concentrations associated with the sand 

and silt separates were evident. There were also significant reductions both in quality and 

quantity of particulate organic matter (POM) due to cultivation and only in quality of POM 

due to 21 years Eucalyptus plantation. The organic layer mass under 21 years old Pinus 

patula, 21 years old Eucalyptus globulus and third rotation Eucalyptus globulus (established 

42 yr ago) decreased by 43%, 57% and 15%, respectively, relative to the natural forest. There 

were also significant reductions in the organic layer C and N stocks (9 to 60% and 25 to 68%, 

respectively), being highest under Pinus and lowest under third rotation Eucalyptus. In the 

mineral soil, to 1 m depth, there was a significant (P<0.05) reduction (16 to 20%) in SOC 

stock after conversion of natural forest into forest plantations. The N stocks under the 21 

years old Pinus and third rotation Eucalyptus plantations were significantly reduced 

amounting 27 and 20% respectively, whereas 21 years old Eucalyptus had nearly an 

equivalent amount of N as that of the natural forest, probably due to a dense forest floor 
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vegetation, fixing N. The changes in the organic layer and mineral soil S stocks after 

plantation establishment were not significant.  

 

Of the total annual rainfall (1190 mm) recorded during the monitoring period (October 2001 

to September 2002), about 47% and 18% were intercepted by the canopies of Cupressus and 

the natural forest, and Eucalyptus, respectively. Total annual nutrients (Ca, Cl, K, Mg, Na, 

NH4–N, NO3–N, PO4–P, SO4–S ) deposition by rainfall was 12 kg ha–1yr–1. Throughfall K, 

Mg, Ca and Cl fluxes were enriched relative to rainfall, whereas Na, NO3–N, NH4–N, PO4–P 

and SO4–S were depleted. Total annual throughfall nutrient inputs (Ca, Cl, K, Mg, Na, NH4–

N, NO3–N, PO4–P, SO4–S) were 14 kg ha–1yr–1 under Cupressus, 21 kg ha–1yr–1 under the 

natural forest and 24 kg ha–1yr–1 under Eucalyptus. Water passing through the different forest 

floors differed only in K, Mg and NO3–N concentrations, the latter two being higher under the 

natural forest and Eucalyptus plantation than Cupressus. Potassium was greater under 

Eucalyptus than the natural forest and Cupressus. Except for NH4–N in the natural forest, 

forest floor leachate nutrient concentrations were enriched in all forest types in relation to 

throughfall. Most nutrient fluxes to the mineral soil decreased in relation to throughfall fluxes, 

whereas NO3–N fluxes increased by over 50% in all forest types. At all soil depths, the 

concentrations of most nutrients in the mineral soil solution decreased relative to the 

concentrations in the forest floor leachate, but Mg, Na and NO3–N at all depths in Cupressus 

plantation and SO4–S and Na at some soil depths in the natural forest and Eucalyptus 

plantation had increased. The vertical trends in soil solution nutrient concentrations showed a 

decreasing trend with depth increments for most of the nutrients, but the concentrations of Cl 

and Na in all forest types and Ca, Mg and NO3–N in Cupressus increased with increasing soil 

depth. At 1 m soil depth, the concentrations of Ca, Mg and NO3–N in Cupressus, respectively, 

were 8, 7 and 23 times higher than in the natural forest and 3, 4 and 81 times higher than in 

Eucalyptus indicating losses by leaching.  Generally, the results of this study emphasize the 
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importance of forest type, species composition and management in affecting carbon and 

nutrient storage, water and nutrient fluxes and dynamics. 
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ZUSAMMENFASSUNG 
 

Im Munesa-Wald, Südostäthiopien, wurden die Auswirkungen der Umwandlung von 

Naturwald in Pflanzungen mit unterschiedlichen ausländischen Baumarten bzw. in Ackerland 

untersucht. Die Zielsetzung war, (i) die Änderungen in bodenphysikalischen und -chemischen 

Eigenschaften zu ermitteln, (ii) die Wasser- und Nährstoffflüsse in den unterschiedlichen 

Waldökosystemen zu quantifizieren und (iii) die Nährstoffdynamik im Bodenwasser der 

unterschiedlichen Waldökosysteme zu beurteilen. Bodenproben wurden von der organischen 

Auflage und vom Mineralboden in 0–20, 20–40, 40–70 und 70–100 cm Tiefe genommen. 

Freiland- und Bestandesniederschlag wurden mit Kunststofftrichtern gesammelt, die 1 m über 

dem Boden angebracht waren. Bodenlösungen wurden mit freidränenden (organische 

Auflage) bzw. Unterdruck-Lysimetern (Mineralboden in 20, 50 und 100 cm Tiefe) gewonnen. 

In 26 Jahren Ackerbau verschlechterte sich die Struktur des Oberbodens (0–20 cm) und die 

Gehalte an organischem Kohlenstoff (SOC) und Stickstoff in Gesamtboden und 

wasserstabilen Aggregaten nahmen beträchtlich ab. Unter einer 21-jährigen Eucalyptus-

Pflanzung konnten keine signifikanten Änderungen dieser Parameter festgestellt werden, aber 

signifikante Abnahmen von organischem Kohlenstoff, Stickstoff und Schwefel traten in der 

Sand- und Schlufffraktion auf. Auch zeigten sich signifikante Minderungen in Qualität und 

Quantität der partikulären organischen Substanz (POM) infolge von Ackerbau bzw. nur in der 

Qualität der POM in der 21-jährigen Eucalyptus-Pflanzung. Die Masse der organischen 

Auflage unter einer 21-jährigen Pinus patula-Pflanzung, einer 21-jährigen Eucalyptus 

globulus-Pflanzung und unter Eucalyptus globulus in der dritten Rotation (angelegt vor 42 

Jahren) nahm gegenüber dem Naturwald um 43%, 57% bzw. 15% ab. Auch die Vorräte an 

organischem Kohlenstoff und Stickstoff in der Auflage zeigten signifikante Abnahmen (9–

60% bzw. 25–68%), am meisten unter Pinus und am wenigsten unter Eucalyptus in der dritten 

Rotation. Im Mineralboden bis 1 m Tiefe gab es eine signifikante Abnahme von 16–20% 
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(P<0,05) im SOC-Vorrat nach der Umwandlung des Naturwalds in Pflanzungen. Die N-

Vorräte unter der 21-jährigen Pinus-Pflanzung und der Eucalyptus-Pflanzung in der dritten 

Rotation waren signifikant um 27 bzw. 20% reduziert, während die 21-jährige Eucalyptus-

Pflanzung nahezu den gleichen N-Vorrat aufwies wie der Naturwald, wahrscheinlich 

aufgrund des dichten, N-fixierenden Unterwuchses. Die Veränderungen der Schwefel-Vorräte 

in organischer Auflage und Mineralboden nach dem Anlegen der Pflanzungen waren nicht 

signifikant. 

 
Vom gesamten Jahresniederschlag während der Messperiode (1190 mm von Oktober 2001 bis 

September 2002) wurden etwa 47% durch das Kronendach von Cupressus und Naturwald 

bzw. 18% von Eucalyptus zurückgehalten. Die gesamte jährliche Deposition von Nährstoffen 

(Ca, Cl, K, Mg, Na, NH4–N, NO3–N, PO4–P, SO4–S) im Niederschlag betrug 12 kg ha–1 Jahr–

1. Die Flüsse von K, Mg, Ca, und Cl im Bestandesniederschlag waren höher als im 

Freilandniederschlag, die von Na, NO3–N, NH4–N, PO4–P und SO4–S dagegen niedriger. Die 

gesamten jährlichen Nährstoff-Einträge (Ca, Cl, K, Mg, Na, NH4–N, NO3–N, PO4–P, SO4–S) 

mit dem Bestandesniederschlag betrugen 14 kg ha–1 Jahr–1 unter Cupressus, 21 kg ha–1 Jahr–1 

unter dem Naturwald und 24 kg ha–1 Jahr–1 unter Eucalyptus. Das Sickerwasser aus den 

verschiedenen Auflagen unterschied sich nur in den Konzentrationen von K, Mg und NO3–N, 

wobei die beiden letzteren unter Naturwald und Eucalyptus höher waren als unter Cupressus. 

Kalium war unter Eucalyptus höher als unter Naturwald und Cupressus. Die Nährstoff-

Konzentrationen im Auflagen-Sickerwasser waren im Vergleich zum Bestandesniederschlag 

in allen Waldtypen erhöht mit Ausnahme von NH4–N im Naturwald. Die Flüsse in den 

Mineralboden waren für die meisten Nährstoffen niedriger als die Flüsse mit dem 

Bestandesniederschlag, während die von NO3–N in allen Waldtypen um über 50% höher 

waren. Die Konzentrationen der meisten Nährstoffen waren in den Mineralbodenlösungen 

aller Tiefen gegenüber dem Auflagen-Sickerwasser vermindert, die von Mg, Na und NO3–N 
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aber in allen Tiefen unter Cupressus und die von SO4–S und Na in einigen Bodentiefen unter 

Naturwald und Eucalyptus erhöht. Der vertikale Verlauf der Nährstoffkonzentrationen in den 

Bodenlösungen zeigte eine Abnahme mit den Tiefenstufen für der meisten Nährstoffen. In 

allen Waldtypen nahmen aber die Konzentrationen von Cl und Na mit der Tiefe zu, in der 

Cupressus-Pflanzung auch die von Ca, Mg und NO3–N. In 1 m Bodentiefe unter Cupressus 

waren die Konzentrationen von Ca, Mg und NO3–N um den Faktor 8 bzw. 7 bzw. 23 höher 

als unter Naturwald und um den Faktor 3 bzw. 4 bzw. 81 höher als unter Eucalyptus und 

wiesen somit auf Auswaschungsverluste hin. Insgesamt unterstreichen die Ergebnisse dieser 

Studie die Bedeutung von Waldtyp, Artenzusammensetzung und Wirtschaftsweise für die 

Kohlenstoff- und Nährstoff-Speicherung, die Wasser- und Elementflüsse sowie die Nährstoff-

Dynamik. 
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1. GENERAL INTRODUCTION 
 
1.1 Socio-economic setup 
 
Ethiopia is located between 3°N and 15°N, and 33°E and 48°E and covers an area of about 

1130 000 km2 (FAO, 2003). It has diverse topographic features with high mountains, deep 

gorges, flat-topped plateaus, and rolling plains. The altitude ranges from the highest peak at 

Ras Dejen (4620 m) down to the Dallol depression (110 m below sea level). The physical 

conditions and variations in altitude have resulted in a great diversity of climate, soil and 

vegetation (Asrat Abebe, 1992). Ethiopia’s population is estimated at 67 million (MoFED, 

2002) with an annual growth rate of 3 percent (MEDaC, 2001). The Ethiopian economy is 

highly dependent on agriculture, which accounts for 50 percent of the gross national product 

and contributes to more than 88 percent of exports and 85 percent of employment (CSA, 

1999). The agricultural sector is dominated by the subsistent smallholder farmers, which 

contributes 95 percent of the agricultural production, and pastorals with a nomadic form of 

production. The country also has the largest livestock population in Africa (Mengiftu, 2002). 

About 88 percent of the human population and 70 percent of the total cattle population live in 

the highlands (above 1500 m) which make up 44% of the total land area (Hurni, 1988; Asrat 

Abebe, 1992, EFAP, 1993), making it the most densely populated agricultural areas in Africa 

(Anonymous, 2004). This has placed high pressure and a greater burden on the vulnerable 

land, forest and soil resources.   

 
1.2. Rationale and research problem 
 
In historic times, Ethiopia was believed to be extensively covered with dense forests. Over the 

last few hundred years, however, human actions have caused the country’s forest cover to 

shrink significantly (von Breitenbach, 1962; EFAP, 1993). Documented evidences on the 

original extent of forest prior to human impact are scarce, but scientists estimate the losses by 

looking at remnant scattered trees as well as by using knowledge of the soil, elevation, and 
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climatic conditions required by forests where forest could potentially exist if it were not for 

human actions. Comparing this "potential" forest area with the existing forest cover, Evans 

(1982) has estimated historical forest losses to be 36% since 1850. The major cause for the 

disappearance of forests is rapid population growth leading to extensive forest clearing for 

cultivation and grazing, exploitation of forests for fuel wood and construction material 

(EFAP, 1993, 1994). The destruction of forests has widespread implications for all mankind 

and has wider implications of global importance (Redhead and Hall, 1992), but is clearly of 

most immediate importance to rural populations living in and near the forest areas. The 

consequences are very severe; the cumulative results are shortage of wood and ecological 

imbalance, manifestations of which are noticed in recurrent droughts, reduced water 

resources, extinction of flora and fauna and heavy soil erosion. It is estimated that the country 

is loosing over 2 billion tons of fertile top soil every year, most of it from the highlands, as a 

result of soil erosion by water (FAO, 1986).  This has resulted in a massive environmental 

degradation and serious threat to sustainable agriculture and forestry.  

 
In the last few decades, large areas of forest plantations (ca. 200,000 ha), predominantly 

exotic species (Eucalyptus spp., Cupressus lusitanica and Pinus spp.) have been established to 

satisfy the growing wood demands of the population and to rehabilitate degraded lands 

(Pohjonen, 1989; EFAP, 1994; FAO, 2003).  Also the fast growing nature of exotic species 

and favourable economic returns from tree plantations have encouraged the conversion of 

slow-growing and low-productive secondary natural forests into plantations. Recent estimates 

of the distribution of forest and woodland areas made by FAO (2001) indicated that about 

4.2% of the land is covered by forests and the areas under planted forests are small (about 

0.2%) compared with the size and needs of the population. The remaining natural forests are, 

therefore, under constant pressure from rising population in the wake of expansion of 

agricultural land and widening gap between demand and supply of forest products (EFAP, 
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1994). The current rate of deforestation is estimated to be 0.8% per year while the current 

expansion of planted forests is about 0.18% per year (FAO, 2001) which does not compensate 

for the loss of natural forests. There is no prospect of an early end to the pressures causing the 

clearing of the scarce forest resources to agricultural use, and cutting for fuelwood will 

continue. The challenge is not to prevent these activities but to manage them. The aim must 

be to ensure that wood and other forest products are harvested sustainably and that the 

subsequent land uses are productive and sustainable. Management of fast-growing and high-

yielding short rotation plantations, with long-term stability of soil fertility and nutrient 

balance, to sustain high biomass production and quality of the environment is an important 

challenge.  

 
The future of Ethiopia is linked with the judicious and efficient management of its natural 

resources and restoration of its environment. Although intensive management of exotic tree 

species may provide rapid growth and a higher economic return than would native tree 

species, little is known about the environmental impacts of this practice, such as on 

hydrology, soil quality and long-term productivity. The conversion of natural forest 

ecosystems into cultivation and monoculture plantations can change the nutrient cycling 

processes through changes in plant cover and species composition owing to differential 

patterns among plant species in litter production and turnover and nutrient accumulation 

(Gosz, 1981; Brown and Lugo, 1990; Lugo, 1992). Frequent harvesting of forest plantations 

result in long-term decline in soil organic carbon (SOC) and nutrient content due to disruption 

of the flow of carbon and nutrients through litter, removal of large amounts of nutrients from 

the soil through biomass and also losses by erosion and leaching (Zech and Drechsel, 1998). 

Human-induced land-use changes are known also to affect the spatial and temporal patterns of 

landscape water fluxes (Bosch and Hewlett, 1982) because forest stands of different tree 

species differ in their aboveground vegetation surface area, stand structure and morphology, 
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and can have a differential impact on rain water interception and evapotranspiration losses, 

hence, on soil water regimes (Pritchett, 1979; Cape et al., 1991). For example Swank and 

Douglass (1974) in the United States found that streamflow was reduced by 20% by 

converting a deciduous hardwood stand to a Pinus strobus L. plantation.  

 
Previous investigations on the effects of plantations on soil properties in Ethiopia have 

focused on changes to solid phase soil properties (Michelsen et al., 1993; Betre et al., 2000; 

Lemenih et al., 2004). These studies generally indicate that the changes in soil properties after 

plantation establishment are species specific. Moreover, to date, studies on the hydrology of 

forest ecosystems in Ethiopia have not been conducted. Nutrient cycling within ecosystems 

forms the major source of nutrients for plant use and nutrient inputs from the atmosphere are 

important to the long-term development of soils and ecosystems (Binkley, 1986). The input of 

nutrients from the atmosphere and the dynamics of nutrients in soil solution, which are an 

important aspect in studying nutrient cycling in forest ecosystems, are only beginning to be 

investigated in Ethiopia. In contrast to bulk soil properties, which are typically slow to 

respond to a change in land-use, soil solution chemistry is often a sensitive indicator of 

biogeochemical processes in forests responding quickly to various changes and may provide 

an early indication of the long-term changes in soils associated with land-use changes (Ranger 

et al., 2001; McDowell et al., 2004). Studies of solute concentrations and fluxes through forest 

ecosystems have been conducted mainly in North America (Likens et al., 1977) and Europe 

(Ulrich, 1983; Gundersen et al., 1998; De Vries et al., 2003) with greater risk of air pollution 

(Krupa, 2002). However, even in the absence of air pollution risks, such studies are also of 

critical importance because of the potential ecological significance of atmospheric depositions 

in forest ecosystems nutrient cycling and the need for such information to make reliable forest 

management decisions.  
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2. OBJECTIVES 
 

The overall objective of the study was to determine the effect of land-use changes on soil 

properties and understand ecosystem specific hydrological and biogeochemical processes 

under the different forest ecosystems. The specific objectives were (i) to assess the effect of 

natural forest conversion on soil physical and chemical properties, (ii) to quantify water and 

element fluxes under the different forest ecosystems, and (iii) to assess nutrient dynamics in 

water flowing through the forest floor and mineral soil under the different forest ecosystems. 

 
3. MATERIALS AND METHODS 
 
 
3.1. Location and general description of the study area 
 
The Munesa Shashemene forest (7°34´N and 38°53´E; 240 km south east of Addis Ababa) is 

located in the eastern escarpments of the central Ethiopian rift valley within the Bale/Arsi 

highlands massif (Fig. 1). The Munesa Shashemene forest consists of three branches, namely 

Degaga, Gambo and Sole. The forest cover at Degaga, where this study was conducted, 

comprises 8527 ha of disturbed natural forest and 2518 ha of forest plantations. The altitude 

ranges from 1500 m in the foothills to 3500 m at the peak. The climate is sub-humid with a 

long-term mean annual rainfall of 1250 mm and mean annual temperature of 19°C (Solomon 

et al., 2002). The distribution of rainfall is bimodal, most of it falling during the main rainy 

season (June to September) with peaks in July and August, and small rains from February to 

May. Generally, mean annual rainfall increases and mean annual temperature decreases with 

increasing altitude. Geologically, the area lies on tertiary volcanic deposits and the soils 

developed from these rocks are principally Nitisols (Anonymous, 2004). The topography and 

vegetation change rapidly with increasing altitude. Generally, vegetation varies from 

savannah and open woodland in the foothills at 1500 m to some disturbed forests and alpine 

vegetation closer to the peak (Müller-Hohenstein and Abate, 2004). The vegetation of the 

study area is described in detail by Abate (2004).  
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Figure 1. Map of the study area. 
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3.2. The studied forests and experimental design 

Two monoculture exotic tree species plantations (Cupressus lusitanica and Eucalyptus 

globulus) and an adjacent natural forest were selected to undertake multidisciplinary 

(Ecophysiology, Geobotany and Soil Science) field investigations. The natural forest is 

dominated by old growth Podocarpus falcatus trees and other common medium sized canopy 

tree species include Croton macrostachys, Olea hochstetterii and Scheffelera abyssinica. The 

Eucalyptus plantation is sparsely stocked (595 trees ha−1) relative to the Cupressus plantation 

(672 trees ha−1) and has a native understorey canopy tree (Croton macrostachys) and shrubs 

notably Acanthopale pubescens, Achyrospermum schimperi, Bothriocline schimperi, Carex 

spicato-paniculata, Hypoestes forskaolli. The forest floor in the natural forest and Eucalyptus 

plantation consists of dense grass and broad-leaved herbaceous species. The mean height of 

Eucalyptus is 30−40 m and the mean diameter at breast height (dbh) is 19−39 cm. The 

Cupressus plantation has almost no ground vegetation. The mean height of Cupressus is 18–

20 m and dbh is 29 cm. In addition, two plantations (Pinus patula) and third rotation 

(Eucalyptus globulus) and an adjacent crop field were included to compare some soil related 

parameters with those in forests selected by the multidisciplinary research team. All of the 

plantations and the crop field were established after clearing of part of the existing natural 

forest at different time scales. The third rotation Eucalyptus was established in 1960 while all 

the other plantations were established in 1980. The crop field was established in 1975. The 

natural forest is approximately 3 to 4 thousand years old (Zech pers. communication). In each 

forest type and the crop field three 0.04–0.06 ha permanent plots were randomly located. In 

the two plantations (Cupressus and Eucalyptus), which were selected by the multidisciplinary 

research team, and the natural forest, about 20−25 m2 of the area was fenced at the centre of 

each plot for the installation of field equipment. In addition a soil pit was excavated to the 

depth of 1.2 m within in each plot. Soil properties under the plantations and the crop field 

prior to their establishment were assumed to have been similar to those under the natural 

 13



forest.  

 
3.3. Equipment 
 
An automatic weather datalogger was placed in a big opening between the natural forest and 

the plantations. To monitor water and nutrient dynamics, rain water collectors were placed at 

three locations (three collectors per location) close to the automatic weather data logger in the 

open area. Within the fenced areas of the permanent experimental plots of each forest, 

throughfall collectors (five per plot) were placed around the sample tree at a distance of 0.8 to 

1 m from the trunk. Rainfall and throughfall were collected using plastic funnels of 12 cm 

diameter and 2 l capacity mounted 1 m above the ground. Table tennis balls were put inside 

each collector to prevent loss of water by evaporation. In addition, tension and zero-tension 

lysimeters and tensiometers (each of them three per plot) were installed. The zero-tension 

lysimeters made of plastic boxes (0.15 x 0.15 m) were placed horizontally in the contact zone 

between the forest floor and the mineral soil. The boxes were connected to a 2 l bottle placed 

in a soil pit. To avoid any solid material entering the boxes and bottles, a fine wire mesh (0.5 

mm) was attached to the upper part of each plate. Tension lysimeters and tensiometers were 

installed at three depths (0.2, 0.5 and 1 m below soil surface). The three suction cups per 

depth and per plot were connected to one collecting bottle. Tensiometers were placed 

approximately 0.5 m away from the suction lysimeters. All equipments were installed in May 

2001.  

 
3.4. Sampling and sample preparation  
 
Soil samples were taken at 0−20, 20−40, 40−70 and 70−100 cm depths from the three sides of 

the pit. In addition, two 1 m2 plots were marked randomly within each plot and samples were 

taken by auger at three points within the 1 m2 area and mixed for the above mentioned depth 

classes. Soil samples were put in individual polyethylene bags, air-dried and passed through a 

2-mm sieve. Samples for the mineral soil bulk density determination were taken by 100 cm3 
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Aluminium cylinder at seven points for each soil depth. Sampling of the organic layer (3 

samples per plot) was done by pressing a 30 x 30 cm steel sheet sampling frame into the 

organic layer. The surrounding organic matter was removed leaving a block of the organic 

layer in which the litter (L) and fermentation (Of) horizons were identified and the thickness 

of the different horizons was measured with a ruler. The materials (excluding woody debris > 

2 cm) from the different horizons were put in separate paper bags. The organic layer samples 

were dried in an oven at 65 °C and weighed. After drying, the three samples of each plot were 

mixed and the final number of samples was reduced to three.  

 
Rainfall and throughfall water and litter leachates were sampled from October 2001 to 

September 2002. Mineral soil solutions were sampled only during the main rainy season (June 

to September). Samples retrieved during June to September 2001 were discarded to allow ions 

on the exchange surfaces of the ceramic to equilibrate with the soil solution. Samples 

collected during the main rainy season of 2002 were used for chemical analysis. Soil solution 

samples were taken by applying vacuum produced by vacuum pumps based on the 

tensiometer readings at each soil depth. Sampling was done on a weekly basis and during 

sample collection the volume of water was registered. After each collection, the collectors 

were washed with deionized water or with a portion of the sample water. On each sampling 

day, water samples were transported to the storage facility and kept frozen. All samples were 

transported in cool boxes to Germany for chemical analysis. Solution samples were filtered 

through 0.45 μm glass fibre filters (Schleicher & Schuell). After filtration, samples from the 

rainfall and throughfall collectors and zero-tension lysimeters in one plot were proportionally 

bulked per source per plot prior to chemical analysis, yielding one sample per sampling day. 

The dried samples of the organic layers and mineral soil horizons were finely ground with a 

rotary ball mill for chemical analysis.   
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3.5. Laboratory analysis  

3.5.1. Soil particle and aggregate-size fractionation 

Air-dried and sieved (2 mm mesh) 30 g samples were put in a centrifuge tube and dispersed 

ultrasonically at a soil: water ratio of 1:5 (w/v), with an energy input of 60 J ml–1using a probe 

type sonicator (Branson Sonifier W−450). Coarse sand fraction (250−2000 µm) was separated 

by wet sieving, and the remaining material in the <250 µm fraction was further sonicated at a 

soil: water ratio of 1:10 (w/v), with an energy input of 440 J ml–1. The clay-size separates (< 2 

µm) were isolated from the silt (2−20 µm) and fine sand (20−250 µm) by repeated 

centrifugation, while the silt-size separates were isolated from the fine sand by wet sieving. 

After fractionation, the different particle-size fractions were dried at 50 oC.  

 

The size distribution of aggregates was measured by wet sieving through a series of sieves (2, 

1, 0.5, 0.25 and 0.053 mm) following the procedures of Cambardella and Elliott (1993). A 

70−80 g sample of air-dried soil passed through a 5 mm sieve was spread on the top of a 2 

mm sieve submerged in a bucket of deionized water. The water level was adjusted so that the 

aggregates on the sieve were just submerged. Soils were left immersed in the water for 10 min 

and then sieved by moving the sieves 3 cm vertically 50 times during a period of 2 min. 

During the sieving process, floatable materials >2 mm were removed and discarded. 

According to Six et al. (1998) materials > 2mm are not considered an integral part of SOM.  

The material remaining on the 2 mm sieve was transferred to a glass pan. Soil plus water that 

passed through the sieve were poured onto the next finer sieve and the processes were 

repeated, but floatable materials were not removed and discarded. The different aggregate 

sizes were dried in the oven at 50 °C overnight for chemical analysis.  
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3.5.2. Separation of particulate organic matter (POM) 

The separation of POM followed the procedure of Six et al. (1998). Prior to POM separation, 

the fractions in the >0.25 mm size aggregates were bulked as macroaggregates and the 0.053–

0.25 mm size as microaggregates. After the aggregates were dried (105 °C) in the oven 

overnight and cooled in a desiccator to room temperature, about 10 g of each aggregate 

fraction was taken in a conical centrifuge tube and suspended in 35 ml sodium polytungstate 

(adjusted to a density of 1.8 g cm–3) by hand shaking. The suspension was allowed to stand 

for 20 min before centrifugation at 1250 rpm for 60 min. After centrifugation, the floating 

material was collected on filters and rinsed thoroughly with deionized water to remove 

sodium polytungstate, this material is referred to as free light fraction (LF). The heavy 

fraction remaining in the tube was washed twice with 50 ml deionized water and dispersed in 

50 ml of 5% sodium hexametaphosphate by shaking in a reciprocal shaker for 18 hours. The 

dispersed heavy fraction was rinsed through a 0.053 mm sieve with deionized water. The 

material remaining on the sieve is intra-particulate organic matter (iPOM) + sand. Both the 

free LF and iPOM were dried in the oven at 50 °C overnight. The dried subsamples from each 

aggregate size class, particle size fraction, the free light fraction, and iPOM were finely 

ground in a rotary ball mill for chemical analysis. 

 
3.5.3. Chemical analysis 
 
Organic C, N and S concentrations in bulk soil, size fractions and POM were determined 

using a CHNS−analyzer (Vario EL, Elementar Analysensysteme GmbH, Hanau, Germany). 

The pHKCl (soil:solution ratio 1:2.5) of the soil was determined with a standard pH electrode 

(Orion U402−S7). Bulk density was determined after drying a defined volume of soil in an 

oven at 105°C. Solutions were analysed for pH, total content of Ca2+, K+, Mg2+, Na+  (plasma 

emission spectroscopy, ICP-AES, Integra XMP), and Cl–, NO3
–, NH4

+, PO4
3–, SO4

2– (ion 

chromatography, Dionex 2000i-SP). Detection limits (mg l–1 ) were: 0.025 for NH4
+, 0.2 for 
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Ca2+, Na+ and Mg2+, 0.25 for K+, 0.27 for Cl–, 0.34 for NO3
–, 0.28 for PO4

3– and 0.32 for 

SO4
2–.  

 
 
3.6. Calculations and data analysis 
 
Element stocks (kg m–2) were calculated as a product of bulk density, depth of sampling and 

element’s concentration per unit of soil samples (Guo and Gifford, 2002).  

C = BD x Cc x D/10        (1) 

where BD is the soil bulk density (g cm –3), Cc (%) the soil element concentration, and D is 

the soil sampling depth (cm). 

 
The mean weight diameter (MWD) of water stable aggregates was determined as the sum of 

the percentage of soil on each sieve multiplied by the mean intersieve diameter of adjacent 

sieves (Haynes, 1999). 

MWD=∑ (percent of sample on sieve x mean intersieve size)  (2) 

All calculations for a particular parameter in rainfall, throughfall and litter leachate of each 

season, i.e. dry season (October–January), small rainy season (February–May) and main rainy 

season (June–September) were based on mean values of three plots per forest type. Volume 

weighted concentrations (VWMC) and fluxes of elements in rainfall, throughfall and litter 

leachate for a given season were estimated from the paired measurements of element 

concentration and rainfall, throughfall and litter leachate volume in each plot (Tobon et al., 

2004).  

  VWMCi   =∑n
j=1 Cij . TFj /∑

n
j=1  TFi      (3) 

where Cij is the i-element concentration in throughfall on the j-collection day, TF is the total 

throughfall water volume and n is the total number of sampling dates. The same procedure 

was used for rainfall and litter lecheate element concentrations. Using rainfall, throughfall and 

litter leachate water volume, concentrations were converted into gram quantities of various 
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nutrients for each season and summed to yield annual inputs. Canopy exchange (i.e. canopy 

leaching and canopy uptake) was calculated as the difference between throughfall flux of a 

particular element and its atmospheric deposition to the rain collectors.  

 
Data for each parameter in rainfall, and throughfall and litter lecheate of the different 

treatments were assessed using MSTAT−C version 2.10 statistical package. Differences 

between and among treatment means were considered significant at P< 0.05. Correlation 

analysis was conducted between pairs of elements in rainfall, throughfall, litter leachate and 

soil solution, and rainfall, throughfall and litter leachate volume and element concentrations. 

 
 
4. RESULTS AND DISCUSSION 
 
 
4.1. Soil physical and chemical properties 
 
4.1.1. Soil aggregation 
 
Clearing of the natural forest and reforestation with Eucalyptus did not significantly affect the 

distribution of water-stable aggregates (WSA), but after 26 years of continuous crop 

cultivation, the amount of water-stable macroaggregates was significantly reduced from > 

70% in the natural forest soil to 50% in the cultivated soil, indicating that cultivation resulted 

in the structural degradation of this soil (Table B1 & Table A4 ). In the two forest types, 87–

90% of the total soil mass remained as water-stable aggregates with >74% as 

macroaggregates (> 0.25 mm), and 14−17% as microaggregates (0.05−0.25 mm). In contrast, 

in the cultivated soil, significantly large proportion of the soil was retained as 

microaggregates and small macroaggregates (0.25–0.5 mm). This could be attributed mainly 

to the breakdown of aggregates by tillage and differences between the two land use types in 

annual organic matter input which gives cementing agents. These results confirm earlier 

observations that macroaggregates are dynamic in nature and the size distribution of 

macroaggregates is affected by the change in land use and management (Dormaar, 1983; 
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Elliott, 1986; Beare et al., 1994; Puget et al., 1995; Spaccini et al., 2001). The effect of 

cultivation was much more evident in the larger macroaggregates (>1mm) than the smaller 

macroaggregate size classes (Table B1). The >2 mm and >1 mm classes of the natural forest 

soil were 13 and 4 times, respectively, larger than in the cultivated soil. 

 
The relatively higher reduction in larger macroaggregates compared to the smaller aggregates 

upon cultivation could be mainly due to the fact that the former are largely dependent on live 

and decaying plant roots and fungal hyphae and probably casts of earthworms and termites 

which are rapidly destroyed by tillage (Tisdall and Oades, 1982). A greater shift in water-

stable aggregates from large macroaggregates to smaller macroaggregates and 

microaggregates upon cultivation had also led to a significant reduction of MWD from 0.92 

mm in the natural forest soil to 0.36 mm in the cultivated soil (Table B1). Spaccini et al. 

(2001) reported MWD reductions of 37 to 76% for cultivated Ethiopian Vertisols, Alfisols, 

Entisols, and Andisols relative to the forest soil, being highest in Vertisols and lowest in 

Andisols.  

 
4.1.2. Total SOC, N and S concentrations in particle- and aggregate-size fractions 
 
Conversion of the natural forest into a monoculture Eucalyptus plantation 21 years ago 

resulted in the depletion of mean SOC concentrations of sand and silt fractions, and N and S 

concentrations of the sand fraction (Table A2). The coarse sand fraction showed the highest 

losses of all three elements, suggesting that organic matter associated with the coarser 

fractions is more labile and the first to be affected by changes in land-use and soil 

management (Christensen, 1996; Solomon et al., 2002; Zinn et al., 2002). The loss of OC was 

larger than the losses of N and S. Mean C/N and C/S ratios of all the particle-size fractions 

and N/S ratio of the clay fraction were also significantly narrowed after conversion of the 

natural forest into Eucalyptus plantation (Table A3). In both forest types, the C/N and C/S 

ratios of the coarse and fine sand and silt fractions were higher than in the bulk soil, whereas 
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those of clay were lower (Tables A1&A3). This might be due to the more aliphatic and 

humified nature of the clay-associated organic matter (OM) in comparison to the OM in the 

bulk soil and coarser fractions (Buyanovsky et al., 1994; Mahieu et al., 1999).  

 

In the two forest types, C, N and S concentrations were not significantly different among the 

different aggregate size fractions (Fig. A1). In contrast, in the cultivated soil, the OC and N 

concentrations were significantly different among the different size classes, and appeared to 

decrease as size increases from 0.053 to 2 mm diameter (Table B3). This could be attributed 

partly to the redistribution and / or transfer of organic matter from the large aggregates to 

smaller ones either in the process of biodegradation or by mechanical disruption of the large 

macroaggregates (Dormaar, 1983; Christensen, 1992). Conversion of the natural forest into 

Eucalyptus plantation did not significantly affect the OC, N and S concentrations associated 

with each water-stable aggregate size class. However, although the differences generally are 

not statistically significant, the OC and N concentrations associated with each maroaggregate-

size class in the natural forest were 2–3 times higher than the corresponding values in the 

cultivated soil (Table B3).  

 

The average C/N ratios of the larger aggregates (> 0.5 mm) were significantly wider in the 

soil under natural forest than in the soil under Eucalyptus, whereas C/S and N/S ratios were 

not different between the two forest types (Fig. A2). In the cultivated soil, C/N ratios of the 

different aggregate-sizes were not significantly different from the natural forest soil 

aggregates, but the overall mean C/N ratio of the water-stable aggregates was significantly 

narrowed from 11 in the natural forest soil to 9 in the cultivated soil. The mean C/N, C/S and 

N/S ratios of the aggregates in both forest types and C/N ratio in the cultivated soil were 

nearly the same as those of the corresponding bulk soil (Table A1, Fig. A2 and Tables B2& 

B3).  
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4.1.3. Free LF and iPOM C, N and S concentrations associated with soil aggregates 
 
 

Conversion of the natural forest into a monoculture Eucalyptus plantation significantly 

reduced the free LF C associated with both aggregate-sizes and N associated with 

macroaggregates (Table A5). The iPOM C, N and S associated with macroaggregates and S 

associated with microaggregates below Eucalyptus were also significantly reduced relative to 

the natural forest soil (Table A6). Cultivation of the natural forest soil for 26 years also 

significantly reduced the mean C and N concentrations in both the free LF and iPOM 

fractions (Table B5). The effect of cultivation was more pronounced on the iPOM C than on 

the free LF C concentration. Similarly, although the Eucalyptus plantation had nearly the 

same level of soil aggregation (Table A4) as in the natural forest, the losses in iPOM C and N  

concentrations were more pronounced than losses from the free LF. This could be due to (i) 

the input of organic material to the LF material from the previous crop and year-round input 

of litter from the plantation and (ii) gaseous losses of OM inside the aggregates caused by 

high fire temperatures during clearing and site preparation; otherwise biodegradation is 

normally nearly three times as fast outside aggregates as within them (Besnard et al., 1996) 

and in addition deterioration of aggregation in the cultivated soil was another reason. 

According to Jastrow (1996) and Six et al. (1998), the amount of total occluded POM C and 

nutrients per unit soil is mainly a function of aggregation, whereas the free light POM C i.e., 

LF C is mostly affected by residue input. Buschiazzo et al. (2001) linked the large decrease of 

OC after cultivation of a forest soil to the occurrence of natural fire before cultivation.  

The effect of changes in land use was more drastic on macroaggregate-associated POM C, N 

and S than on POM associated with microaggrates (Tables A5&A6 and Table B5). This 

confirms the conclusions of several authors (Elliott, 1986; Gupta and Germida, 1988; Besnard 

et al., 1996) that organic matter associated with macroaggregates is more labile than organic 

matter associated with microaggregates. Jastrow (1996) found relatively higher proportions of 
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POM C inside the macroaggregates of a virgin prairie soil compared to corn field and restored 

prairie soil. Six et al. (1998) also reported higher iPOM levels in water-stable 

macroaggregates sampled from native sod soil than those from cultivated soil. Overall, the 

results showed that the effect of conversion of the natural forest into tree plantation and 

cultivation was more pronounced on the POM C and N than those observed in the whole soil 

and in water-stable aggregates, indicating that POM constitutes soil organic matter fraction 

more sensitive to the effects of land-use change and soil management.  

 
 
4.1.4 Dry mass accumulation, and SOC, N and S storage   
 

The effect of clearing and reforestation of the natural forest soil with different plantation 

species significantly influenced the accumulation of dry mass in the organic layer (Table C3). 

Organic layer mass was highest under the natural forest followed by third rotation Eucalyptus 

and lowest under Pinus. The reductions in average litter mass after clearing and replacement 

of the natural forest ranged from a low of 6.4 t ha–1 (–14%) under third rotation Eucalyptus to 

a maximum of 24.2 t ha–1 (–57%)  under Pinus (Table C3). Such variations in the organic 

layer mass accumulation may be due to differences in rate of litter production, litter quality, 

age and species composition. The greatest mass under third rotation Eucalyptus compared to 

the other two plantations is due to the accumulation of litter after each harvest and differences 

in time since establishment. Zinn et al. (2002) reported an increase in litter mass after 

conversion of native Cerrado to Pinus and a decrease after conversion to Eucalyptus for sub 

humid site conditions in Central Brazil.  

 

Clearing and replacement of the natural forest by tree plantations significantly affected the 

organic layer C concentration, being greater under third rotation Eucalyptus compared to the 

natural forest and 21 years Eucalyptus, but differences between Pinus and the other forest 
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types were not significant. Total N and S concentrations were higher under 21 years 

Eucalyptus in comparison to the other two plantation species but were not different from the 

natural forest (Table C2). The C/N ratios under Pinus and third rotation Eucalyptus organic 

layers were significantly (P<0.01) higher than under the natural forest, but 21 years 

Eucalyptus had an equivalent C/N ratio as the natural forest probably due to the presence of 

N-fixing plants in the understorey vegetation. From the ecological point of view, litter with 

high nutrient contents or low C/N ratio play an important role in plantation forestry because 

rather than immobilising nutrients it releases them for rapid recycling (Lugo et al., 1990).  

The mean C, N and S stocks of the organic layers under the different forest types ranged from 

6.5–16.4 t ha–1, 0.3–0.7 t ha–1 and 0.03–0.1 t ha–1, respectively, (Table C3). Wilcke et al. 

(2002) reported 103, 5.53 and 0.77 t ha–1 C, N and S stocks, respectively, in the tropical 

montane rainforest of Ecuador. Higher litter mass accumulation in the natural forest and third 

rotation Eucalyptus resulted in a significantly (P<0.01) higher C and nutrient storage in 

comparison to the other two plantation treatments. C stock under the natural forest (16.4 t ha–

1) was found to be significantly reduced by 8.2 t ha–1 (–50%) and 9.9 t ha–1 (–60%) after 

conversion to 21 years Eucalyptus and Pinus plantations, respectively, while third rotation 

Eucalyptus had an equivalent amount of C (15 t ha–1 ) as the natural forest probably due to the 

greater amount of litter accumulated after each harvest.  Like that of C, the reductions in N 

and S stocks under Pinus were much higher followed by 21 years Eucalyptus (Table C3).  

There were no considerable variations in the mineral soil mean bulk densities to the depth of 1 

m among the different forest types (Table C4). Mean SOC concentration of the mineral soil 

under the natural forest was significantly higher than under the 21 years Eucalyptus and Pinus 

stands. The natural forest and 21 years Eucalyptus had greater N concentration compared to 

third rotation Eucalyptus and Pinus stands, but there were no considerable differences 

between the former and the latter two. In the surface 20 cm soil layer, the natural forest and 
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21 years Eucalyptus had higher SOC, N and S concentrations compared to third rotation 

Eucalyptus and Pinus stands, but differences between the former two were not significant 

(Table C4). Below the 20 cm soil depth, except OC and N in the 20–40 cm layer, all forest 

types had nearly the same OC, N and S concentrations. Mean C/N ratio to the depth of 1 m 

under 21 years Eucalyptus (9) was significantly (P<0.01) lower than the C/N ratios under 

third rotation Eucalyptus (11), and under the natural forest and Pinus (12). In all forest types, 

with the exception of 21 years Eucalyptus, C/N ratio tended to decrease with increasing depth 

(Fig. C1) probably due to leaching of N-rich materials from the upper soil layers.  

 
Average SOC stocks in the mineral soil horizons in this study ranging from 26.2–32.7 kg m–2 

to 1 m depth (Table C5) were higher than the world average (11.7 kg m–2 to 1 m depth) based 

on the data of Eswaran et al. (1993) and several other authors (Brown and Lugo, 1982; Lugo 

et al., 1986; Brown and Lugo, 1990; Zinn et al., 2002). Differences between our study and 

others could be due to differences in soil forming factors, including climate, parent material, 

topography, vegetation, and human impact. Soil OC under the different plantations varied 

from 26.2–27.5 kg m–2 representing 80–84% of the SOC stock under the natural forest (32.7 

kg m–2) (Table C5). Since there is about three times as much C in the world's soils as in the 

atmosphere (Follett, 2001), the observed changes (–16 to –20%) in this pool can have 

considerable feed-back effects on the amount of CO2 in the atmosphere and thereby on global 

warming.  

 

Mean N stocks to 1 m soil depth (Table C5) differed among forest types (P<0.01), being 

highest under the natural forest and 21 years Eucalyptus plantation compared to third rotation 

Eucalyptus and Pinus stands, but both the former and the later two were not significantly 

different from each other. The reductions in N stocks relative to the natural forest varied from 

a maximum of 0.78 kg m–2 (–27%) under Pinus to a low of 0.04 kg m–2 (–1.4%) under third 

rotation Eucalyptus (Table C5). The changes in S stocks due to the transformation of the 
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natural forest into different forest plantations were non-significant, being 0.05 kg m–2 (–13%) 

under Pinus and 21 years Eucalyptus, while there was a net gain of 0.02 kg m–2 (+5 %) under 

third rotation Eucalyptus (Table C5).  

 
The distribution of SOC, N and S stocks across the profile (Table C5) tended to follow the 

general trend in SOC, N and S concentrations (Table C4), decreasing from the surface to the 

subsoil although bulk density values increased in this direction. Nearly one-third of the total 

SOC, N and S stocks to 1 m depth in all forest types (Table C5) were found in the surface 0–

20 cm layer. This points out the need for proper management as it represents the pool most 

exposed to management effects that may accelerate its decomposition and release of CO2 to 

the atmosphere. Surface soil OC, N and S stocks under the natural forest (Table C5) were not 

significantly different from the 21 yr Eucalyptus, however, the natural forest and 21 years 

Eucalyptus stored greater amounts of OC, N and S in the surface 20 cm depth compared to 

Pinus and third rotation Eucalyptus. For the depth 20–100 cm, treatment effects on SOC, N 

and S stocks were less clear, but the losses range from 2.73–5.89 kg m–2 (13–28%) for SOC, 

0.21–0.4 kg m–2 (11–20%) for N and 0.06 kg m–2  (21%) for S (Table C5). This indicates that 

any conclusion based on surface soil responses to changes in soil OC and nutrients such as N 

and S that occurred after forest clearing is conservative. 

 
4.2. Water and nutrient fluxes 
 
4.2.1. Water flux 
 
Total rainfall amount during the one year study period amounted 1190 mm (Table D1), lying 

very close to the past long-term value (1250 mm) from the nearby meteorological station 

(Solomon et al., 2002). There was a marked variation in the distribution of rainfall among the 

different seasons because in Ethiopia rainfall is mainly associated to a change in the 

predominant wind direction (monsoon); northeast winds prevail during the dry season and 

westerly to southwesterly winds during the rains (NMSA, 1996). Of the total annual rainfall, 
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the highest amount (60%) fell during the main rainy season (June to September) and the 

minimum (12%) during the dry season (October to January) (Table D1). The monthly 

maximum and minimum rainfalls, respectively, were 67.4 and 6.2 mm in the dry season, 

136.4 and 20.8 mm in the small rainy season and 268.2 and 120 mm in the main rainy season. 

Daily minimum rainfall was the same in all the three seasons (0.2 mm) while the daily 

maximum was variable: amounting 8.2 mm in the dry season, 39.2 mm in the small rainy 

season and 60 mm in the main rainy season. Of the 12 months, monthly rainfall was less than 

100 mm from October to February and was above 200 mm only in August.  

 

The proportions of annual incident rainfall that reached the forest floor were 82% under 

Eucalyptus and 53% under Cupressus and the natural forest (Table D1). This variation was 

mainly attributed to the difference in stand density and total canopy area, leaf morphology, 

branch geometry and hydrophobicity among species. However, the possibility of spatial 

variations in rainfall intensity within the study area could not be ruled out. In general, 

interception loss was highest during the dry season (65% in Cupressus, 63% in the natural 

forest and 32% in Eucalyptus) (Table D1) not only due to the pronounced sunny days before 

and after rain events, but also rainfall intensity for most of the rain events was very low (< 5 

mm) to produce throughfall. During the monitoring period, throughfall water fluxes under the 

different forest types were generally less than rainfall (Table D1) which is expected since 

cloud water is not a factor. Throughfall values ranging from 62–88% have been reported for 

different montane tropical forests (Veneklaas, 1990, 1991;   Cavelier et al., 1997; Schrumpf, 

2004). In Brazil, Lilienfein and Wilcke (2004) found that throughfall was 75–85% of incident 

rainfall (1682 mm) under Pinus caribaea plantation. Variability in throughfall amount 

between different studies can be attributed in part to differences in climatic patterns, 

meteorological conditions, and stand density and species composition. In the Munesa forest, 
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long sunny periods were common even during the wetter months and so there was usually 

plenty of time for the canopy to dry out. 

 
4.2.2. Nutrient concentrations and fluxes  
 
The volume weighted mean (VWM) nutrient concentrations in rainfall ranged from 0.09 mg l–

1 for Mg to 3.29 mg l–1 for Na (Table D2). VWM concentration of NH4–N was 1.78 times 

higher than that of NO3–N. Rainfall at Munesa was weakly acidic (mean pH 6.7) with most of 

the potential acidity being neutralised by Na and Ca. On an equivalent basis, Na was 

accompanied by Cl and Ca. In all forest types, canopy interactions produced throughfall more 

alkaline than bulk precipitation (Table D2). The VWM nutrient concentrations in throughfall 

were dominated by K>Cl>Ca>Na>SO4–S in all forest types. Throughfall nutrient 

concentrations were found to be consistently greater for the natural forest than for the two 

plantations although the differences for some of the nutrients were not significant (Table D2).  

This might have been caused by differences in dry deposition and canopy interception 

capacity which is a result of several factors such as stand density, canopy area and roughness, 

and leaf morphology.  

 
In each forest type, VWM throughfall Ca, K, Mg and Cl concentrations were significantly 

increased in relation to rainfall. The increases in K and Mg concentrations relative to those of 

rainfall were highest under the natural forest compared to the two plantations. Throughfall 

NH4–N concentration was lower in each forest type and PO4–P was lower in the two 

plantations in relation to rainfall. The concentration of NO3–N in rainfall was significantly 

lowered after passing through the canopy of Cupressus plantation, while under Eucalyptus 

plantation and the natural forest the reverse holds true. Although statistically not significant in 

Eucalyptus, the concentration of SO4–S in all forest types increased after the passage through 

the canopy. With few exceptions, nutrient concentrations in rainfall and throughfall of our 

study site were higher than those summarized for other montane tropical forest sites (Table 
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D2). The seasonal patterns in nutrient concentrations in throughfall of each forest type (Table 

D4) were similar, being highest, with few exceptions, during the dry season (October–

January) presumably due to wash-off of dry deposition accumulated on the canopy during dry 

periods by intermittent low-volume rain events. There was no discernible trend with time in 

rainfall nutrient concentrations except for Na which showed a slight increasing tendency from 

the dry season to the wet season (Table D4).  

 
The annual total amounts of nutrients (Ca, K, Mg, Na, Cl, NH4–N, NO3–N, SO4–S, PO4–P) 

reaching the soil (Table D5) in throughfall were 14 kg ha–1yr–1 under Cupressus, 24 kg ha–1yr–

1 under Eucalyptus and 21 kg ha–1yr–1 under the natural forest. Of these, 12 kg ha–1yr–1can be 

explained by the rainfall while 2, 9, and 12 kg ha–1yr–1 under Cupressus, natural forest and 

Eucalyptus, respectively, derived from dry deposition and leaching of intracellular solutes 

from the canopy. In spite of the same amount of throughfall water with that of Cupressus and 

about 30% less than Eucalyptus, the observed annual total weight of nutrients in the natural 

forest suggests that the much rougher surface of the natural forest canopy increased the 

deposition area and allowed interception of dust carrying winds. Except NH4–N and PO4–P in 

all forest types, Ca and NO3–N in Cupressus and the natural forest, and SO4–S in Eucalyptus 

the fluxes of all other nutrients in throughfall of each forest type were significantly different 

from that of rainfall (Table D5). Annual fluxes of nutrients in rainfall and throughfall in the 

Munesa forest (Table D5) were lower than the values summarised for other montane tropical 

forests (Table D5). The greatest variability in rainfall and throughfall inputs between our 

study and others could be due to variability in rainfall amount, species composition and 

canopy structure, and the availability of nutrients from atmospheric and rock weathering 

processes and exposure to acid precipitation. Throughfall inputs of Ca, Mg, Na and Cl were 

significantly different among forest types. Although statistically not significant for some of 

the nutrients, throughfall in Cupressus had the lowest fluxes of each nutrient compared to the 
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natural forest and Eucalyptus, NH4–N was an exception. Eucalyptus was found to have 

relatively the highest throughfall input of Ca, Mg, Na, NO3–N and SO4–S compared to the 

natural forest mainly due to high volume of water reaching at the soil surface under the 

Eucalyptus plantation. The inputs of Cl and PO4–P were slightly highest under the natural 

forest compared to Eucalyptus mainly resulting from high concentration. Nutrient fluxes 

varied considerably from season to season and were higher during the wet season (Table D7) 

because of higher rainfall volume or rainfall intensity, although concentrations of most 

nutrients tended to be higher in the dry season. This seasonal pattern of variation in fluxes 

indicated that except for the few relatively high-volume dry season rain events, throughfall in 

dry season is not likely to provide a major nutrient source via root uptake for overstorey tree 

species.  

 
The data in net throughfall Na, NH4–N, NO3–N, SO4–S and PO4–P fluxes (Table D5) indicate 

absorption by the canopies of all forest types, whereas net throughfall Ca, K, Mg and Cl 

fluxes indicate canopy leaching. The magnitude of absorption and canopy leaching were both 

nutrient and tree species specific. Comparison of net throughfall fluxes among seasons 

indicated clear temporal patterns of canopy leaching and very different chemical speciation 

associated with biological uptake (Fig. D1). Ammonium–N and PO4–P were taken up in 

larger quantity during the small rainy season in all forest types while Na, NO3–N and SO4–S 

were mainly taken up during the main rainy season. Calcium in Cupressus and natural forest 

indicated intermediate behaviour: a tendency towards absorption during the main rainy season 

and canopy leaching during the dry and small rainy seasons. A similar behaviour was also 

observed for NO3–N in Eucalyptus and the natural forest.  

 
4.3. Nutrient dynamics in soil solution 
 
Water passing through the forest floor under the different tree species did not differ in mean 

nutrient concentrations except for K, Mg and NO3–N (Table E2). Magnesium and NO3–N 
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concentrations were significantly higher under the natural forest and Eucalyptus plantation 

than under Cupressus. Potassium concentration was higher under Eucalyptus than under the 

natural forest and Cupressus. The low C/N ratio in the forest floors of Eucalyptus and natural 

forest might have triggered nitrification in comparison to Cupressus which had high C/N ratio 

in the organic layer. Soils with C/N ratios >25-30 and low nutrient concentrations are reported 

to be poor-nitrifying (Gundersen and Rasmussen, 1990). In each forest type, after K, Ca and 

Cl were the most abundant nutrients leached from the litter layer (Table E2). PO4–P was the 

least of all the nutrients followed by NH4–N. Except for NH4–N in the natural forest, forest 

floor leachate nutrient concentrations were enriched in all forest types in relation to rainfall 

and throughfall, being more pronounced in NO3–N, Ca, Mg and PO4–P concentrations. 

Leaching of nutrients from decaying vegetation and microbial mineralization of elements 

within organic matter contribute to the observed enrichment of forest floor leachates.  

 

Nutrient fluxes from the forest floor to the mineral soil were not significantly different among 

forest types, but were slightly highest under Eucalyptus (Table E4). In general, large fluxes 

were observed for Ca and Cl. Measured nutrient exports from the forest floor to the mineral 

soil decreased in relation to throughfall fluxes for most of the nutrients indicating that 

nutrients that are deposited from throughfall as well as those released from decomposition are 

effectively taken up by plant roots or immobilised. The nutrients that decreased most were 

NH4–N≈K>Cl>SO4–S under the natural forest, SO4–S >Na> Ca≈ Mg under Eucalyptus, and 

NH4–N >SO4–S>Na>Ca under Cupressus. Nitrate–N exports from the forest floor exceeded 

the inputs via throughfall by about 161% for Cupressus and 70% for the natural forest and 

Eucalyptus. Calcium and PO4–P exports by leaching out of the Cupressus forest floor were 

34% and 33% higher than the corresponding throughfall inputs; below Eucalyptus as high as 

50% more PO4–P was exported in comparison to the input by throughfall.   
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The median mean nutrient concentrations in the soil solutions of the mineral soil were in the 

order: Na>Cl>Ca>SO4–S>Mg>NO3–N>K>NH4–N below the natural forest, Na>Ca> SO4–

S>Cl>Mg> NO3–N>K> NH4–N below Eucalyptus and NO3–N>Ca>Na>Cl> SO4–S>K> 

NH4–N below Cupressus (Table F4). The concentration of PO4–P in the mineral soil solution 

was generally below the detection limit in the three forest types.  Phosphorus is relatively 

insoluble and readily fixed by soil minerals (Brady and Weil, 1999). Potassium was also often 

below the detection limit in the mineral soil solution under the natural forest and under 

Cupressus plantation probably due to the high biological demand for this element. The lower 

NH4–N concentration relative to NO3–N in both the forest floor leachate and mineral soil 

solution was probably a result of nitrification, vegetation uptake, adsorption or assimilation by 

microbes. With the exceptions of Mg, Na and NO3–N concentrations at all depths below 

Cupressus plantation and  SO4–S and Na at some soil depths below the natural forest and 

Eucalyptus plantation, all other nutrients decreased relative to the concentrations in the forest 

floor leachate. Potassium, Mg, NH4–N and PO4–P decreased to a great degree compared to 

the other nutrients. An increase in NO3–N concentration in the mineral soil solution relative to 

forest floor leachate below Pinus was also reported by Lilienfein et al. (2001) in Brazil. 

Schrumpf (2004) observed a decrease in Ca, K, Mg, Na and NH4–N concentrations and an 

increase in NO3–N concentration in the mineral soil solution of Andisols in Kilimanjaro in 

relation to the forest floor leachate. In Congo, Laclau et al. (2003) reported an increase in 

NH4–N, NO3–N and SO4–S and a decrease in Ca, K, Mg and Na in the mineral soil solution 

relative to the forest floor leachates below Eucalyptus plantation.   

 

The concentrations of K, NH4–N and SO4–S in all forest types and Ca, Mg and NO3–N 

concentrations below Eucalyptus and the natural forest decreased steadily with increasing soil 

depth, presumably due to adsorption by the soil colloid or to plant and microbial uptake 

(Table F4). In contrast, below Cupressus, the concentrations of Ca, Mg and NO3–N decreased 
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from 0.2 m depth to 0.5 m depth and then increased at the depth of 1 m. This pattern appears 

to follow the root distribution and concurrent nutrient uptake as the roots of Cupressus are 

confined to the surface 0.5 m (Ashagrie, pers. observation). Median Ca, Mg and NO3–N 

concentrations below Cupressus, respectively, were 4, 3.37 and 17 times higher than below 

the natural forest and 2, 2.41 and 7 times higher than below Eucalyptus (Table F4). The 

higher Ca, Mg and NO3–N concentrations in the soil solution under Cupressus relative to the 

other two forest types were probably due to the fact that these nutrients were in excess of tree 

and microbial requirements. Much of the observed differences in median mean nutrient 

concentrations were attributed to the large differences at the depth of 1 m, being 3 and 8 

times, 4 and 7 times and 81 and 23 times more for Ca, Mg and NO3–N under Cupressus than 

under Eucalyptus and the natural forest, respectively (Table F4). In a 15N tracer study made by 

Fischer (2004) at the same experimental plots, large proportion of the 15N applied at the 

surface (0 m soil depth) under Cupressus was found in the deeper soil layer (0.3–0.6 m) 

confirming that leaching had occurred below Cupressus. Lilienfein et al. (2000, 2001) 

reported two times higher Ca, K, Mg, Na and NO3–N concentrations in soil solution under 

Pinus than under Cerrado in sub humid Central Brazil.  

 
 

5. GENERAL CONCLUSIONS  

 
This study showed that conversion of natural forest into crop land had more deleterious 

effects on soil aggregation, SOC and nutrient contents than conversion into Eucalyptus 

plantation. Direct measurement of short-term SOM losses or gains resulting from variations in 

land-use may not clearly reflect the effects of land use and soil management because of the 

generally high background soil C pool (Haynes, 1999). Physical fractionation of soils into 

aggregate and particle-size fractions enabled separation of SOM into pools of differing 

composition and biological function and turnover, thus allowing sensitive detection of 
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changes in SOM dynamics and soil fertility resulting from changes in land-use. In general, 

losses of SOC and nutrients associated with the different size/density fractions resulting from 

the conversion of the natural forest into Eucalyptus plantation and crop cultivation were more 

pronounced than losses observed in the bulk soil and total water stable aggregates. Plantations 

of several tree species growing under similar site conditions offer an opportunity to evaluate 

species´ effects without confounding problems of prior soil differences. The results of the 

present study on SOC and nutrient stocks as affected by conversion of the natural forest into 

different exotic tree species plantations emphasise the importance of forest type, stand age 

and management in affecting the size of C and nutrient stocks. In general, the effect of tree 

species appear limited largely to the forest floor, with little change in mineral soils. The 

accumulation of organic detritus and the relative losses or accumulation rates of C and 

nutrients in the soil depends on the rate of decomposition of the plant material which is 

influenced by litter quality, acidity, soil moisture and temperature, and the kinds of micro 

flora and fauna present. Hence, many of the above mentioned factors that affect ecosystem 

processes and C and nutrient storage, and the relationships between substrate quality and 

decomposition rates need to be further investigated.  

 
The results of the present study also showed that water and nutrient inputs into and nutrient 

outputs from the studied ecosystems were affected after conversion of the natural forest into 

managed forest plantations. Because Eucalyptus leaves often are held vertically on the twigs, 

the leathery nature of the leaves, and the overall low stand density, the amount of rain water 

intercepted and lost by evaporation was lower in comparison to the natural forest and 

Cupressus plantation. The higher rainfall interception under the natural forest and Cupressus 

means reduced rainfall infiltration and insufficient rainy season replenishment of ground 

water reserves that may in the longer-term affect plant productivity and dry season stream 

flows. Canopy characteristics such as leaf area and canopy density, as well as canopy 
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roughness relative to wind and the amount of water reaching the soil affected the input of 

nutrients by rainfall and throughfall. Rainfall chemistry at Munesa showed no evidence of 

acid or polluted deposition of anthropogenic origin. However, except for K and Mg, the 

annual levels of mineral–element accession in rainfall can augment the nutrient stocks in the 

soil. The input of most nutrients by throughfall under Cupressus was lower than under the 

natural forest and Eucalyptus. Ecosystem-specific patterns of vegetation composition and 

associated demand for nutrients appear to control the dynamics of nutrients in soil solution. In 

general, forest ecosystems retain nutrients very efficiently. Exceptions to this general pattern 

are ecosystems with low nutrient uptake by plants and immobilization cannot compensate for 

reduced plant uptake. Plant uptake is a major sink of available nutrients. Apparently, the 

movement of Ca, Mg, and NO3–N out of the rooting zone were higher under Cupressus than 

under the other forest types. The fact that NO3–N and basic cations leached from relatively 

low or non nitrifying soils such as in Cupressus with high C/N ratio in the organic layer may, 

indicate that plant uptake for Ca, Mg and NO3–N periodically did not match mineralization in 

the soil or mineralization has exceeded the retention capacity of the system. From the 

ecological point of view, the presence of basic cations and mineralised nitrogen in subsoil 

solution under Cupressus indicates leaching, and that the ecosystem is not characterised by 

tight nutrient-cycling.  

 
Generally, considering the high C/N ratio in the organic layer of the studied Cupressus stand 

that will negatively influence the rates of litter and nutrient turnover, loss of basic cations 

from the rooting zone may, in the short-term, reduce site fertility and contribute to the onset 

of nutrient deficiencies. However, in the long-term, the positive impacts of annual cycling of 

nutrients through uptake by roots, fine root turnover, and above-ground litter deposition and 

atmospheric inputs act to maintain fertility of the soil. Weathering, one of the chief sources of 

nutrients, also acts to counteract loss of cations from the system. In Eucalyptus plantation, the 
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presence of diverse shrub and herbaceous understorey vegetation might have contributed in 

nutrient retention. These aspects reveal some characteristics that could be important to 

Cupressus plantation management. In light of the poor nutrient retention capacity of 

Cupressus, future monoculture plantations with high tree density should be discouraged. 

Rather mixed stands formed by several tree species or monocultures with minimum tree 

density that allow the growth of understorey shrub and herbaceous vegetation should be 

encouraged so as to maintain the fertility status of the soil for future rotations. Furthermore, 

such practices may also ensure input of sufficient rain water to the soil and enhance the 

regeneration of native plant species which is now lacking under Cupressus. Unfortunately, it 

is impossible to estimate the total loss rate due to the inherent methodological problems in 

quantifying the total water flow rates through the soil, but enlighting the general trends and 

patterns found in comparison of the different forest ecosystems may be more important than 

the precise budgetary calculations.  Generally, drawing conclusions or making inferences 

solely based on a one year ecosystem analysis studies that focus on elucidating processes 

would be difficult, therefore, continuous monitoring of water and nutrient input and output 

patterns in the studied ecosystems is needed to reach a valid conclusion.  
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Abstract 
 
Changes in land-use and management can affect soil structure, soil organic carbon (SOC) and 

other nutrients reserve (such as N, P, S). We analysed organic carbon (OC), total nitrogen (N), 

and total sulfur (S) in particle-size, aggregate-size and size/density fractions of soil organic 

matter (SOM) in order to identify the SOM pools most affected by the conversion of a 

Podocurpus falcatus dominated mixed natural forest into a monoculture Eucalyptus globulus 

plantation 21 years ago on a reddish brown Nitisol at Munesa, Ethiopia. Bulk soil OC, N, and 

S concentrations and stocks in soil to 20 cm depth were not significantly changed after the 

conversion of the natural forest into Eucalyptus plantation, but C/N ratio narrowed 

significantly. Soil organic C, N and S concentrations, and C/N and C/S ratios in sand and silt 

separates from the plantation samples were significantly reduced, while clay N and S 

concentrations had slightly increased. The losses of SOC, N and S in the sand fraction were 

more pronounced than that in the silt. Aggregate stability and total SOC, N and S 

concentrations of the aggregates were not significantly different in samples from the  

Eucalyptus plantation and the natural forest. In the plantation samples, both the free light 

fraction (LF) and the intra-particulate organic matter (iPOM) C, N and S concentrations 

associated with the macroaggregates were significantly reduced. Differences in the total 

amount of the free LF (on the basis of water-stable aggregates proportion) between the two 

forest types were not apparent, suggesting that SOM quality is more prone to changes in land-

use and soil management strategies than the total amount of SOM. The loss of iPOM was 
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higher than that of free LF probably due to gaseous losses of organic matter (OM) inside the 

aggregates caused by high fire temperatures during clearing and site preparation. In both 

forest types, the LF OM comprised the highest percentage of whole soil OM and the loss of 

particulate organic matter (POM) accounted for much of the losses of OM. Overall, the results 

showed that analysis of OC, N and S concentrations in soil particle and aggregate-sizes, and 

size/density fraction of SOM allowed sensitive detection of changes in SOM dynamics and 

soil fertility resulting from changes in land-use. 

 

Key words: Land-use change; Soil organic carbon; Nitrogen, Sulfur, Eucalyptus plantation; 

Particulate organic matter; Nitisol; Ethiopia. 

 

1. Introduction 

 
In Ethiopia, massive deforestation of natural forests and extensive use of agricultural lands 

have resulted in soil degradation and loss of environmental quality (EFAP, 1994). To reduce 

land degradation, and to satisfy the demand for timber and timber products of the local 

population, extensive afforestation with fast-growing exotic tree species has been carried out 

on degraded agricultural lands (Pohjonen and Pukkala, 1990). Sometimes, degraded 

secondary forests containing low quality and non-uniform stands of several species were also 

transformed into forest plantations. Of the total area of 200, 000 ha covered by plantations in 

1992 more than 60% is under Eucalyptus species (EFAP, 1994). Although intensive 

management of exotic tree species may provide rapid growth and a higher economic return 

than would native tree species, little is known about the environmental impacts of this 

practice, such as on soil quality and productivity. Following refforestation, changes inevitably 

occur in the quantity, quality, temporal and spatial distribution of soil organic carbon (SOC) 

inputs, depending on type of forest established (Brown and Lugo, 1990). For example, in 

Ethiopia, Solomon et al. (2002) reported losses of about 27% of SOC and 13% of N and S  
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after 25 years of conversion of the natural forest into Cupressus plantations. Zinn et al. (2002) 

found about 23 to 48% SOC loss after conversion of Brazilian native wooded savanna to 

Eucalyptus plantations. 

 

Maintenance and improvement of soil organic matter (SOM) content is generally accepted as 

being an important aim for any sustainable soil fertility management because it is a major 

reservoir of nutrients such as N, S and P, and influences soil structure, water availability and 

other important chemical, physical and biological properties of soil (Haynes and Beare, 1996). 

Carbon is stored in terrestrial ecosystems in diverse organic forms with a wide range of mean 

residence times (Balesdent and Mariotti, 1996). The organic matter associated with different 

size fractions of soil, and that of the organo-mineral fractions of specific particle and 

aggregate sizes, exhibit distinct properties with respect to their composition and turnover 

(Christensen, 2001). The initial impact of land-use or management change occurs 

disproportionately in pools with short residence times (Cambardella and Elliott, 1992), 

whereas the effect on stable SOC pools occurs slowly over a much longer time period.  

 
Direct measurement of short-term SOM losses or gains resulting from variations in land-use 

may not clearly show the effect of land use and soil management because of the generally 

high background soil C pool (Haynes, 1999). Therefore, approaches based on characterization 

of active SOM with comparatively rapid turnover rates have been suggested as a more 

sensitive indicators of soil fertility that allow early detection of changes in soil fertility before 

soil degradation becomes apparent (Cadisch et al., 1996; Haynes and Beare, 1996). Physical 

fractionation of soil into aggregate and particle-size fractions in studies of SOM has received 

increased attention because it enables separation into pools of differing composition and 

biological function (Christensen, 1992, 2001).  

 
Among the different labile SOM pools, those associated with the sand fraction (Christensen, 
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2001) and particulate organic matter (POM), a pool that is functionally similar to light 

fraction (free LF) organic matter (Cambardella and Elliott, 1994), closely reflect early 

changes in SOM resulting from changes in land use and soil management. Similarly, the OM 

that binds microaggregates to macroaggregates is labile and responds more sensitively to 

changes in land use than the organic matter that binds microaggregates (Elliott, 1986; Gupta 

and Germida 1988; Cadisch et al. 1996; Christensen, 1996). Most of the labile organic matter 

within macroaggregates could be free light-fraction POM of relatively low-density, mineral-

associated OM (Cambardella and Elliott, 1993). Several authors (Guggenberger et al., 1994; 

Solomon et al., 2002; Zinn et al., 2002) found differences in the quality and amount of SOM 

associated with mineral particles of different sizes. They also reported relatively greater losses 

of OC in the coarser particle-size separates than in the finer particle-size separates as a result 

of changes in land use from native vegetation to plantation.  

 
The presence of a monoculture Eucalyptus plantation side by side with the natural forest from 

which it was established 21 years ago provided the opportunity to determine if soil structure 

and the quantity, as well as the quality, of organic matter in the mineral soil had changed as 

result of land-use change in the highlands of Ethiopia.  

 
2. Materials and methods 

 

2.1. Site description  

 

The study was conducted at the Munesa/Shashemenie forest enterprise site (7°34´N and 

38°53´E) located about 240 km south east of Addis Ababa at an altitude of 2400 m.a.s.l. 

Rainfall is bimodal with mean annual precipitation of 1250 mm most of it falling in July and 

August, and mean annual temperature is 19 °C with little seasonal variation. The soils are 

clayey and very deep with reddish brown colour, and are moderately acidic at or near the 

surface and slightly acidic at depth. The principal parent materials are of volcanic origin from 
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which Rhodic Nitisols were derived (FAO, 1997). A Podocarpus falcatus dominated mixed 

natural forest (ca. 3 to 4 thousand years) and an adjacent 21 years Eucalyptus plantation were 

selected for this study. The natural forest is one of the few remaining natural forest reserves in 

the country. Eucalyptus plantation in the study area covers about ca. 1, 620 ha comprising 

different species, and was established after clearing and burning of part of the natural forest. 

Clearing was done manually and the surface biomass was burned on site. Tree density in the 

studied plantation compartment was about 595 tree ha–1 and tree diameter at breast height 

(dbh) ranged from 19 to 39 cm with a height of 30 to 40 m. The studied plantation is open to 

light penetration with dense understorey grass and broad-leaved herbaceous, and different 

species of shrub vegetation, and is occasionally grazed by free grazing cattle. 

 

2.2. Sampling 

 

In each forest type, three 0.06 ha plots ca. 100 m apart from each other were located randomly 

and a pit was excavated to the depth of 1.2 m at the centre of each plot. In addition, four 1 m2 

sub plots were marked randomly at 10 m radius from the centre of each plot. Soil samples ca. 

500 g were taken from the three sides of the pit by a shovel, and at three points within each of 

the 1 m2 sub plots by an auger to the depth of 0−20 cm. All the auger and pit samples in the 

0.06 ha plot were mixed and the final number of samples were reduced to three per land use. 

After air drying, a sub sample was sieved through 5 mm sieve size for aggregate fractionation, 

and the remaining was sieved through 2 mm sieve size for bulk soil C, N and S analysis, and 

particle size fractionation. Soil samples for bulk density determination were taken from the 

wall of the three pits by a 100 cm3 metal cylinder; totally seven per land use. 

 

2.3. Soil particle size fractionation 

 

Air-dried and sieved (2 mm mesh) 30 g samples were put in a centrifuge tube and dispersed 
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ultrasonically at a soil: water ratio of 1:5 (w/v), with an energy input of 60 J ml–1using a probe 

type sonicator (Branson Sonifier W−450). Coarse sand fraction (250−2000 µm) was separated 

by wet sieving, and the remaining material in the <250 µm fraction was further sonicated at a 

soil: water ratio of 1:10 (w/v), with an energy input of 440 J ml–1. The clay-size separates (< 2 

µm) were isolated from the silt (2−20 µm) and fine sand (20−250 µm) by repeated 

centrifugation, while the silt-size separates were isolated from the fine sand by wet sieving. 

After fractionation, the different particle-size fractions were dried at 50 oC.  

 

2.4. Soil aggregate size fractionation and separation of particulate organic matter 

 

The size distribution of aggregates was measured by a wet sieving through a series of sieves 

(2, 1, 0.5, 0.25 and 0.053 mm) following the procedures of Cambardella and Elliott (1993). A 

70−80 g sample of air-dried soil passed through a 5 mm sieve size was spread on the top of a 

2 mm sieve submerged in a bucket of deionized water. The water level was adjusted so that 

the aggregates on the sieve were just submerged. Soils were left immersed in the water for 10 

min and then sieved by moving the sieves 3 cm vertically 50 times during a period of 2 min. 

During the sieving process, floatable materials >2 mm were removed and discarded. 

According to Six et al. (1998) materials > 2mm are not considered an integral part of SOM.  

The material remaining on the 2 mm sieve was transferred to a glass pan. Soil plus water that 

passed through the sieve were poured onto the next finer sieve and the processes repeated, but 

floatable materials were not removed and discarded. The different aggregate sizes were dried 

in the oven at 50 °C overnight for chemical analysis.  

 

The separation of POM followed the procedure of Six et al. (1998). Prior to POM separation, 

the fractions in the >0.25 mm size aggregates were bulked as macroaggregates and the 0.053–

0.25 mm size as microaggregates. After the aggregates were dried (105 °C) in the oven 

overnight and cooled in a desiccator to room temperature, about 10 g of each aggregate 
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fraction was taken in a conical centrifuge tube and suspended in 35 ml sodium polytungstate 

(adjusted to a density of 1.8 g cm–3) by hand shaking. The suspension was allowed to stand 

for 20 min before centrifugation at 1250 rpm for 60 min. After centrifugation, the floating 

material was collected on filters and rinsed thoroughly with deionized water to remove 

sodium polytungstate, this material is referred to as free LF. The heavy fraction remaining in 

the tube was washed twice with 50 ml deionized water and dispersed in 50 ml of 5% sodium 

hexametaphosphate by shaking in a reciprocal shaker for 18 hours. The dispersed heavy 

fraction was rinsed through a 0.053 mm sieve with deionized water. The material remaining 

on the sieve is intra-particulate organic matter (iPOM) + sand. Both the free LF and iPOM 

were dried in the oven at 50 °C overnight. The dried subsamples from each aggregate size 

class, particle size fraction, and the free light fraction and iPOM were finely ground in a 

rotary ball mill for chemical analysis. 

 

2.5. Soil analysis  

 

Organic C, N and S concentrations in bulk soil, size fractions and POM were determined 

using a CHNS−analyzer (Vario EL, Elementar Analysensysteme, GmbH, Hanau, Germany). 

Element stocks (kg m–2) were calculated as a product of bulk density, depth of sampling and 

element´s concentration per unit of soil samples. The pHKCl (soil:solution ratio 1:2.5) of the 

soil was determined with a standard pH electrode (Orion U402−S7). Bulk density was 

determined after drying the soil in an oven at 105°C.  

 

2.6. Statistical analysis 

One way analysis of variance (ANOVA–1) was performed to asses the effect of change in 

land-use on soil aggregate stability, and soil organic C and nutrients associated with the 

different particle size/density fractions using the MSTATC statistical package. Separation of 

means were performed using Tukey´s honestly significance difference test with a significance 
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level of P < 0.05.  

 

3. Results and discussion 

 

3.1. Organic C, N, and, S in bulk soil samples 

Analysis of variance performed on the data showed that mean SOC, N and S concentrations 

and the C/S and N/S ratios in bulk soil samples did not differ significantly in the natural forest 

and Eucalyptus plantation (Table A1). The changes in bulk density after the establishment of 

Eucalyptus was also not significant, and varied from 0.86 g cm–3 under the natural forest to 

0.91 g cm–3 under Eucalyptus. On an area basis, the two forest types had almost the same 

level of SOC and S stocks, but there appeared to be a slight and non significant gain of N in  

 

Table A1. Soil organic C, N and S concentrations and stocks, and element ratios and bulk 

density (Bd) under the different land use types, results refer to the 0−20 cm soil depth.  

___________________________________________________________________________ 
 
   C N S C/N C/S N/S Bd C N S 
___________________________________________________________________________ 
   ------g kg–1------    g cm–3-----kg m–2------ 
Natural forest  72 6 0.72 12a 100 8 0.86 12.4 1.0 0.12 
   (7.4) (0.6) (0.07) (0.6) (3.5) (0.3) (0.02) (0.9) (0.1)(0.01) 
Eucalyptus plantation 61 7 0.75 9b 81 9 0.91 11.1 1.3 0.14 
   (4.9) (0.5) (0.03) (0.9) (3.7) (0.3) (0.02) (1.3) (0.1)(0.01) 
___________________________________________________________________________ 
 
Means followed by different lower case letters in a column are significantly different from 

each other at P<0.05. Numbers in parentheses are standard errors (n=7 for bulk density and 

n=3 for other parameters). 

 

the Eucalyptus plantation (Table A1). This relative gain could perhaps be attributed to the 

recycling of N via excreta of free grazing cattle. In contrast to our results, Michelsen et al. 

(1993) reported significantly lower OC and nutrient concentrations under a 40 years 

Eucalyptus plantation than under an adjacent natural forest on a reddish brown soil in 
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Ethiopia. There was a significant decrease in the C/N ratio from 12 in the natural forest to 9 in 

the Eucalyptus plantation, indicating that changes in organic matter quality took place (Table 

A1).  

 
3.2. Particle size distribution, and concentrations of OC, N, and S in particle size fractions 

The proportional distribution of the different primary particles in the different size classes 

were similar in soils under the two land use types (Table A2) suggesting that the textural 

composition of the soils under the two land use types were comparable which further 

confirms similar origin of the two soils. Table A2 shows that, with the exception of S which 

was significantly higher in the clay fraction than the other fractions, OC and N did not differ 

significantly in the different particle-size fractions in the natural forest. In soil under 

Eucalyptus forest, however, OC, N and S concentrations were highest in the clay fraction; this 

indicates a preferential shift of the organic matter to the finer fractions during the 

decomposition process. The redistribution of sand-sized OM to clay-complexed OM during 

decomposition has already been shown by other authors (Anderson et al., 1981; Zinn et al., 

2002).  

 

Element ratios (C/N, C/S, and N/S) differed significantly among some of the size fractions at 

both sites, and tended to decrease in the order sand>silt>clay (Table A3). This could be 

attributed mainly to the accumulation of newly added and less decomposed organic matter in 

the coarser fractions (Guggenberger et al., 1994; Gerzabek et al., 2001). In both forest types, 

the C/N and C/S ratios of the coarse and fine sand, and silt fractions were higher than in the 

bulk soil, where as that of clay was lower. This might be due to the more aliphatic and 

humified nature of the clay-sized OM in comparison to the OM in the bulk soil and coarser 

fractions (Buyanovsky et al., 1994; Mahieu et al., 1999). The proportion of whole soil OC, N 

and S associated with the different particle size fractions calculated by multiplying the 
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quantity of each particle size by the element concentrations showed that most of the whole 

soil OC, N and S in both land use types were associated with the finer particle sizes (<20 µm), 

being highest in the clay fraction (data not shown). This is in agreement with the observations 

of Desjardins et al. (1994) and Solomon et al. (2002) for tropical soils.  
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Table A2. Particle size distribution (%), and organic C, N and S concentrations (g kg–1 size fraction) in soil under natural forest (NF) and in soil 21 

yr after conversion of natural forest into Eucalyptus plantation (EP), results refer to the 0−20 cm soil depth.  

__________________________________________________________________________________________________________________ 
 

   Size distribution   C    N    S 
   _______________  _______________  _______________  ______________  
Particle 
Size    NF  EP  NF  EP  NF  EP   NF  EP 
__________________________________________________________________________________________________________________ 
 
Cs   0.09  0.08  67A  22bB  4.0A  2.0bB  0.47bA 0.23bB 
       (9.1)  (0.7)  (0.9)  (0.3)  (0.1)  (0.03)  
Fs   0.09  0.09  90A  30bB  4.5A  2.3bB  0.43bA 0.23bB 
       (1.6)  (5.4)  (0.8)  (0.2)  (0.1)   (0.03)  
Si   0.28  0.30  62 A  32bB  4.1A  3.3bA  0.47bA 0.37bA 
       (0.3)  (1.8)  (0.3)  (0.1)  (0.03)  (0.03)  
Cl   0.50  0.51  56 A  53a A  5.9A  7.2aA  0.77aA  1.00aA 
       (0.5)  (2.4)  (0.5)  (0.5)  (0.1)  (0.1)  
_________________________________________________________________________________________________________________ 
 
Different lower case letters in a column indicate significant differences (P<0.05) between means under each land use according to Tukey´s HSD 

mean separation test. Different upper case letters in a row indicate significant differences between means at P<0.05. 

Cs: Coarse sand; Fs: Fine sand; Si: Silt; Cl: Clay. Numbers in parentheses are standard errors (n=3). 
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Table A3. Element ratios of particle-size fractions as influenced by conversion of the natural 

forest (NF) into a Eucalyptus plantation (EP); results refer to 0−20 cm soil depth.  

___________________________________________________________________________ 
C/N    C/S    N/S 

Particle size 
 NF  EP  NF  EP  NF  EP 

___________________________________________________________________________ 
CS  18aA  11abB  156bA  96abB  9abA         9abA 

(2.7)  (0.9)  (4)  (10)  (1.1)         (0.2) 
FS  20aA  13aB  245aA  131aB  13aA          12aA 

(0.5)  (1.3)  (3)   (21)  (0.6)  (1) 
Si  15abA  10abB  149bA  90abB  10abA          9abA 

(0.7)  (0.5)  (10)  (10)  (0.4)          (0.6) 
Cl  9bA  7bB  76cA  54bB  8bA  7bB 

(0.2)  (0.2)  (0.2)   (3)  (0.2)           (0.2) 
___________________________________________________________________________ 
 
Different lower case letters in a column indicate significant differences between means at P < 

0.05 according to Tukey´s HSD mean separation test. Different upper case letters in a row 

indicate significant differences between means at P<0.05. Cs: Coarse sand; Fs: Fine sand; Si: Silt; 

Cl: Clay. Numbers in parentheses are standard errors (n=3). 

 

Mean OC of sand and silt fractions and, N and S of sand fraction concentrations, and C/N and 

C/S ratios of all the particle size fractions and N/S of clay fraction declined significantly after 

conversion of the natural forest to 21 years Eucalyptus plantation (Tables A2 & A3 ). The coarse 

sand fraction showed the highest losses of all three elements (Table A2), suggesting that organic 

matter associated with the coarser fractions is more labile and the first to be affected by changes 

in land use and soil management (Christensen, 1996; Solomon et al., 2002; Zinn et al., 2002). 

The degree of OC loss was larger than the losses of N and S. The changes in the clay-associated 

OC, N and S were not significantly affected by the change in land use, suggesting that the OM 

pool attached to clay is more stable. In tropical soils, clay associated SOM may contain the most 

stable OC, while in temperate soils OM in silt appears more stable than clay (Christensen, 1996). 

Results on the calculated enrichment factors (g kg –1 separate)/ (g kg –1 whole soil), which take 
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account of the effects of different SOM levels in whole soils (Christensen, 1992) indicated that 

clearing of the natural forest and replacing it by the Eucalyptus plantation resulted in the 

depletion of OC, N and S from the sand-sized fractions and enrichment of OC, N and S in the 

clay-sized fraction (data not shown).  

 

3.3. Aggregate distribution, and OC, N, and S concentrations  

 

Clearing and reforestation of the natural forest with Eucalyptus did not significantly affect the 

distribution of WSA (Table A4). In both forest types, the distribution of WSA among the 

different size classes was significantly different, with > 85% of the total soil mass, remaining as 

water stable aggregates, >73% as macroaggregates (> 0.25 mm), and 14−17% as microaggregates 

(0.05−0.25 mm). Except N in microaggregates, the mean OC, N and S concentrations of the 

different aggregate sizes did not differ significantly between the natural and Eucalyptus forests 

(Fig A1a, b, c). This is not surprising since both land use types had almost the same level of soil 

aggregation (Table A4). The average C/N ratios of the larger aggregates (> 0.5 mm) were 

significantly wider in the natural forest than Eucalyptus plantation (Fig. A2a), where as C/S and 

N/S were not influenced by land use (fig. A2b, c). The mean C/N, C/S and N/S ratios of the 

aggregates in both soil types were nearly the same as those of the corresponding bulk soil. 

 

3.4. Free light fraction OC, N and S  

 

The data on the free LF mean OC and N concentrations (Table A5) demonstrate that there were 

significant reductions in these elements concentration after conversion of the natural forest into 

the Eucalyptus plantation. However, differences in the total amount of the above parameters (on 

the basis of water-stable aggregates proportion) between the two forest types were not apparent, 

suggesting that SOM quality is more prone to changes in land use and soil management strategies 
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than the total amount of SOM. This situation is further illustrated by the significantly narrower 

mean C/N (11) and C/S (94) ratios in the Eucalyptus forest than those of 16 and 146, 

respectively, in the natural forest. The magnitude of reductions in both OC and N was much 

higher than the magnitude observed in the whole soil and total water stable aggregates. Cadisch 

et al. (1996) found 10 times more light fraction C (>100 μm) in the surface (0−2 cm) soil of a 

Brazilian rain forest than in a papaya plantation, and three-to-five times more than a pasture soil.  

 

Table A4. Distribution of water-stable aggregates (WSA) (%) among different aggregate-size 

classes to 0−20 cm soil depth as influenced by replacement of natural forest with the Eucalyptus 

plantation 21 years ago.  

__________________________________________________________________ 
         
Size class  Natural forest   Eucalyptus plantation  
(mm)        
___________________________________________________________________ 
 
2−5   10b     8c    

(0.2)     (1.6)   
1−2   21a     18ab  

(1.4)     (0.3)   
0.5−1   21a     23ab   

(1.3)     (1.9)   
0.25−0.5  22a     25a   

(1.6)     (1.8)   
0.053−0.25  14b     17b   

(3.1)     (0.5)   
Total   87     90   
__________________________________________________________________ 
 
In a column, means followed by the same lower case letter are not significantly different from 

each other at P<0.05 according to Tukey´s HSD mean separation test. Numbers in parentheses 

are standard errors (n=3). 
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Fig. A1. Organic C (a), N (b) and S (c) concentrations (g kg–1 aggregate) of aggregate-size classes 
in soil at 0−20 cm depth under the natural forest (NF) and Eucalyptus plantation (EP). Vertical 
lines are standard errors (n=3). 
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Fig. A2. C/N (a), C/S (b) and N/S (c) ratios of soil aggregate-size classes as affected by 
conversion of the natural forest (NF) into Eucalyptus plantation (EP), results refer to 0−20 cm 
depth. Vertical lines are standard errors (n=3). 
 

 

The effect of changes in soil management on soil quality rather than on total SOM was also 

reported by Janzen et al. (1992) and Biederbeck et al. (1994). Mean S concentration and N/S ratio 

were not significantly different between the two land use types (Table A5). In the natural forest, 

 61  



the macroaggregate-associated LF had significantly larger OC, N and S concentration than the 

microaggregate-associated LF, while in the Eucalyptus plantation, the difference between the two 

size fractions was not significant. The mean OC and N concentrations, and C/N and C/S ratios of 

the macroaggregates in the natural forest were significantly higher than both the macro and micro 

aggregates in the Eucalyptus plantation (Table A5). Differences in microaggregate element 

concentrations and element ratios between the two land use types were not apparent with the 

exception of C/S ratio which was significantly higher in the natural forest than in the Eucalyptus 

plantation.  

 

Table A5. Characteristics of the free light organic matter fractions to the soil depth of 0−20 cm.  

___________________________________________________________________________ 
    C  N  S 
   ___________________________  
        (mg g–1 fraction)  C/N  C/S  N/S 
___________________________________________________________________________ 
 
Natural forest 
Macroaggregates 138a*  9.9a*  1.0a 14a*  144a*  10a 
   (6)  (0.4)  (0.07) (0.07)  (3.4)            (0.3)  
Microaggregates 84b*  5.2b  0.6b 17a  148a*  9a 
   (12)  (1.4)  (0.07) (2.2)  (4.4)               (1.3) 
Eucalyptus plantation 
Macroaggregates 56a  5.9a  0. 7a 9a  87a  9a  
   (8)  (0.9)  (0.2) (0.5)  (9)            (0.8) 
Microaggregates 57a  4.4a  0.6a 13a  101a  8a 
   (0.2)  (0.4)  (0.03) (1.4)  (7)           (0.6) 
___________________________________________________________________________ 
 

Values followed by different lower case letters within a land use are significantly different 

(P<0.05). Values followed by * in the natural forest are significantly higher (P<0.05) than the 

corresponding values in the Eucalyptus plantation. Numbers in parentheses are standard errors 

(n=3). 

 

The proportion of whole soil OC, N and S contained as free LF calculated by multiplying the 

quantity of the fraction recovered by concentration of each element were as much as 55, 47, and 
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39%, respectively, in the natural forest, and 57% of the whole soil OC, 34% of whole soil N and 

36% of whole soil S in the Eucalyptus plantation. The C concentration of the free LF we report 

here is half of that reported by Besnard et al. (1996) for a French forest soil, whereas the N 

concentration is comparable; their values averaged about 250 mg OC and 9 mg N g–1 light 

fraction. This site difference could have resulted from variations in climate and vegetation type, 

and partly from the removal of large and recognisable plant materials during the sieving of our 

samples.  

 

3.5. Intra-particulate OC, N, and S 

After the conversion of the natural forest into the Eucalyptus plantation 21 years ago, total iPOM 

C, N and S concentrations in the 0−20 cm soil depth were significantly reduced (Table A6). The 

mean C/N and C/S ratios of the iPOM were also significantly narrowed from 17 and 108 in the 

natural forest to 9 and 50 in the Eucalyptus plantation, respectively, suggesting that soil organic 

matter under Eucalyptus plantation has undergone more decomposition. However, the mean N/S 

ratio was not significantly different between the two land use types. According to Jastrow (1996) 

and Six et al. (1998), the amount of total occluded POM C and nutrients per unit soil is mainly a 

function of aggregation., whereas the free light POM C i.e., LF C is mostly affected by residue 

input. In this study, although the Eucalyptus plantation had a slightly higher iPOM dry weight 

(data not shown) and nearly the same level of soil aggregation (Table A4) as in the natural forest, 

the losses in aggregate-protected OC and N (Table A6) were more pronounced than losses from 

the free LF (Table A5). This could be due to (i) a year-round input of organic material to the LF 

material after refforestation and (ii) gaseous losses of OM inside the aggregates caused by high 

fire temperatures during clearing and site preparation; otherwise biodegradation is normally 

nearly three times as fast outside aggregates as within them (Besnard et al., 1996). Buschiazzo et 
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al. (2001) linked the large decrease of OC after cultivation of a forest soil to the occurrence of 

natural fire before cultivation. In our study, in contrast to the observations of Besnard et al. 

(1996) in French forest soils, the LF OC, N, and S concentrations in both forest types were 

always larger than the iPOM C, N, and S values. In the natural forest, the amounts of iPOM C, N, 

and S comprised 8, 6 and 4%, respectively, of the whole soil; while in the plantation these values 

were low, amounting 4% for OC, 2% for N, and 3% for S.  

 

Table A6. Characteristics of the intra-particulate organic matter fractions to the soil depth of 

0−20 cm.  

___________________________________________________________________________ 
   C  N  S 
   ____________________________  
 

  (mg g–1 fraction)  C/N  C/S  N/S 
___________________________________________________________________________ 
 
Natural forest 
 
Macroaggregates 44a*  2.5a*  0.3a* 17a*  155a*  9a 
   (17)  (0.8)  (0.07) (0.9)  (21)            (0.7) 
Microaggregates 14b  0.9b  0.3a* 16a*  61b  4b 
   (3)  (0.2)  (0.1) (2)  (25)           (1.6)  
Eucalyptus plantation 

 
Macroaggregates 8a  0.9a  0.13a 9a  62a  7a  
   (2)  (0.1)  (0.03) (0.8)  (5)            (0.7) 
Microaggregates 5a  0.6a  0.13a 8a  38b  5a 
   (0.6)  (0.0)  (0.03) (1)  (5)  (1)  
___________________________________________________________________________ 
 
Values followed by different lower case letters within a land use are significantly different 

(P<0.05). Values followed by * in the natural forest are significantly different compared with the 

corresponding values in the Eucalyptus plantation. Numbers in parentheses are standard errors 

(n=3). 

 

In the natural forest, significantly larger amounts of iPOM C and N were contained in 

macroaggregates than in the microaggregates, which contained only 36% of the C and 43% of the 
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N contained in macroaggregates. However, the concentrations of iPOM S in the natural forest 

and iPOM C, N and S in the Eucalyptus plantation were similar in both aggregate size fractions 

(Table A6). In both land use types, no significant differences were detected in iPOM element 

ratios between the macro and microaggregates (Table A6). In a study by Cadish et al. (1996) and 

Six et al. (1998) macroaggregate iPOMC and N concentrations were found to be higher than 

microaggregate iPOMC and N concentrations. Macroaggregate iPOM C, N and S concentrations 

in the natural forest were significantly higher than either macro or microaggregate iPOM C, N 

and S concentrations in the Eucalyptus plantation (Table A6), where as the changes in 

microaggregate associated element concentrations and element ratios, with the exception of S and 

C/N ratio, were not significant. This confirms the conclusions of Elliott (1986), Gupta and 

Germida (1988) and Besnard et al. (1996) that organic matter associated with macroaggregates is 

more labile than organic matter associated with microaggregates. Because floatable and easily 

recognizable materials were removed during aggregate size fractionation, the C/N ratios of the 

LF and iPOM fractions did not differ from one another in either forest types. In a similar study 

dealing with French forest soils, Besnard et al. (1996) even with out removing the floatable and 

easily recognisable materials also found that C/N ratios of LF and iPOM did not differ 

significantly from one another.  

 

4. Conclusions 

 
Bulk soil OC, N and S concentrations did not show significant change as a result of changes in 

land-use and management. However, physical fractionation of the soils into size and size/density 

fractions clearly showed the effect of land use and management on the quantity and quality of 

SOM. Our results showed that organic matter associated with the sand and silt fractions appeared 

to be more sensitive to changes in land use and management compared with that in clay. 
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Similarly, both free LF and iPOM associated with macroaggregates were found to be much more 

affected by changes in land use and management than that associated with microaggregates. 

Although the level of soil aggregation was the same between the two land-use types, loss of 

aggregate protected POM was higher than that of free LF after conversion to Eucalyptus 

plantation. Our results suggest that the amount of aggregate protected OM is not only influenced 

by aggregation but also by soil management. We conclude that high fire temperature used for site 

clearing and preparation resulted in gaseous losses of aggregate protected POM in the Eucalyptus 

plantation. As a result the observed change in POM resulting from changes in land-use was more 

evident on the quality than on the total amount. In general, losses of OM associated with the 

different size and size/density fractions resulting from the conversion of the natural forest to the 

Eucalyptus plantation were more pronounced than losses observed in the bulk soil. 
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Abstract 
 
Conversion of native forests to cultivation is usually accompanied by a decline in soil organic 

carbon (SOC) and nutrients, and deterioration of soil structure. The effect of 26 years of 

continuous cultivation was studied on soil aggregation, and total and particulate organic 

matter in a Rhodic Nitisol at Munesa, south eastern Ethiopia. The objectives of this study 

were (i) to assess the effect of cultivation on aggregate stability, (ii) to evaluate the 

hierarchical model of soil aggregation and the effect of soil aggregation on soil organic matter 

(SOM) protection, and (iii) to determine the effect of cultivation on the quantity and quality of 

particulate organic matter (POM). Samples were collected from a cropland cultivated for 26 

years and an adjacent natural forest. After cultivation, the proportion of water-stable 

macroaggregates was significantly reduced from >70% in the natural forest soil to 50% in the 

cultivated soil, being more pronounced in the >1 mm size aggregates. Cultivation also 

induced significant losses of OC and N both in bulk soil and water-stable aggregates. The OC 

and N associated with the larger aggregates were more affected by cultivation than the smaller 

aggregates. The amounts of free light fraction (free LF) C and N were more affected by 

cultivation than the amounts of intraparticulate organic matter (iPOM) C and N. POM C and 

N associated with the macroaggregates were highest compared to those of microaggregates 

and the effect of cultivation was more pronounced on macroaggregates associated POM 

relative to the microaggregates. The effect of cultivation on POM C and N was more 

pronounced than on total aggregate and whole soil OC and N suggesting that POM constitutes 
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a more sensitive soil organic matter (SOM) fraction to the effects of cultivation. The data 

show that after 26 yr continuous cultivation both the physical and chemical properties of the 

soil are deteriorated. 

Key words: Aggregate stability, POM, Cultivation, Nitisol, Ethiopia. 

1. Introduction 

Maintenance of SOM is important for sustainable use of soil resources due to the multiple 

effects of SOM on soil nutrient status and soil structural stability. Conversion of native forests 

to cultivation is usually accompanied by a decline in SOC and nutrients, and deterioration of 

soil structure (Dormaar, 1983, Detwiler, 1986; Brown and Lugo, 1990; Balesdent et al., 1998; 

Spaccini et al., 2001; Solomon et al., 2002). Cultivation effects on SOM are caused by 

complex interactions of the physical, chemical and biological soil processes including reduced 

inputs of plant residues and increased soil disturbance, but the exact nature of the changes 

induced by cultivation depend on the particular agronomic practices adopted and on the 

properties of the virgin soil (Christensen, 1992). Identification of the magnitude of such 

management induced changes in SOM and associated nutrients is needed to select appropriate 

management options.  

 

Tillage of a soil breaks soil aggregates and exposes the previously protected OM within 

aggregates to microbial decomposition. According to the conceptual models of soil 

aggregation (Oades, 1984; Oades and Waters, 1991), aggregates of different sizes have 

different strength, and are stabilised by different agents. On the basis of their temporal 

persistence, Tisdall and Oades (1982) classified the organic binding agents of soil aggregates 

into: (i) transient or temporary such as polysaccharides, roots, fungal hyphae, bacterial cells, 

and algae which are responsible for stabilising macroaggregates (0.25−2 mm) and (ii) 

persistent aromatic humic materials associated with polyvalent metal cations and polymers 

strongly sorbed to clays mainly responsible for the integrity of the microaggregates (0.05 to 
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0.25 mm). The organic binding agents keep the aggregates intact and protect them against 

deformation from heavy rain drop impacts especially in the tropics (Spaccini et al., 2001). 

 

Due to the labile nature of their binding agents, the effect of soil management on 

macroaggregates and the OM retained in it are greater than those on microaggregates with its 

stable and more humified organic binding agents (Oades, 1984; Elliott, 1986; Gupta and 

Germida, 1988; Miller and Jastrow, 1990; Cambardella and Elliott, 1993; Puget et al., 1995; 

Dalal and Bridge, 1996). Several authors have demonstrated that macroaggregates contain 

more OC and N than microaggregates (Elliott, 1986; Gupta and Germida, 1988; Beare et al., 

1994a, 1994b; Cambardella and Elliott, 1993; Puget et al., 1995; Spaccini et al., 2001). The 

decline in total SOM during cultivation of native grassland and forest soils has been largely 

attributed to losses of POM (Besnard  et al., 1996; Buyanovsky et al., 1994; Cambardella and 

Elliott, 1992, 1994; Janzen et al., 1992; Lehmann et al., 2001; Six et al., 1998). Large stocks 

of POM in a soil have been associated with pronounced mineralization of organically-bound 

nutrients such as N and are therefore intimately linked to higher soil fertility and productivity 

(Yakovchenko et al., 1998). POM can also serve as a sensitive indicator of changes in SOM 

because of its responsiveness to management (Janzen et al., 1992; Dalal and Mayer, 1987).   

 

Except a few (Elliott et al., 1991; Lehmann et al., 2001, Spaccini et al., 2001), studies dealing 

with sensitive OM fractions have focused on few soil groups of temperate ecosystems only. 

But soils developed under different vegetation types and climate may have different modes of 

SOM stabilisation (Elliott, 1986). The importance of aggregate formation and stabilisation in 

regulating the accumulation or loss of SOM and nutrients in differently managed tropical soils 

is not well understood. Understanding these relationships may be of particular importance for 

evaluating the applicability of the hierarchical model of aggregate formation (Tisdall and 

Oades, 1982) to a broader range of soils and management conditions, and for developing 
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management options for sustainable crop production systems. The objectives of this study 

were (i) to assess the effect of cultivation on aggregate stability, (ii) to evaluate the 

hierarchical model of aggregation and its effect on soil organic matter (SOM) protection, and 

(iii) to determine the effect of cultivation on the quantity and quality of particulate organic 

matter (POM).  

 

2. Materials and methods 

2.1. The study site  

The study was conducted at the Munesa/Shashemenie forest enterprise site (7°34´N and 

38°53´E) located about 240 km south east of Addis Ababa at an altitude of 2400 m. The area 

has a sub-humid tropical climate with a bimodal rainfall pattern most of it falling in July and 

August. Mean annual rainfall is about 1250 mm, and mean annual temperature is 19 °C with 

little seasonal variation. The soils are clayey and very deep with reddish brown colour, and 

are moderately acidic at or near the surface and slightly acidic at depth. The principal parent 

materials are of volcanic origin from which Rhodic Nitisols were derived (FAO, 1997). A 

Podocarpus falcatus dominated mixed natural forest and an adjacent cropland situated side by 

side were selected for this study. The cropland was established after clearing of part of the 

natural forest some 26 years ago and has been used continuously for annual crops such as 

maize (Zea mays), bread-wheat (Triticum aestivum), faba bean (Vicia faba) and sorghum 

(Sorghum bicolor) and fertilised with di-ammonium phosphate annually depending on the 

crops' fertiliser requirement. 

 

2.2. Sampling 

We chose three 0.06 ha plots in the natural forest and three 0.04 ha plots in the cropland 

randomly, and a pit was excavated to the depth of 1.2 m at the centre of each plot. In addition, 

four 1 m2 sub plots were marked randomly at 6−10 m radius from the centre of each plot. Soil 
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samples ca. 500 g were taken from the three sides of the pit by a shovel and, at three points 

within each of the 1 m2 sub plots by an auger to the depth of 0−20 cm. All the auger and pit 

samples in each plot were mixed and the final number of samples was reduced to three per 

land use. After air drying, a sub sample was sieved through 5 mm sieve size for aggregate 

fractionation, and the remaining was sieved through 2 mm sieve size for bulk soil C and N 

analysis. Soil samples for bulk density determination were taken from the three sides of each 

pit with a 100 cm 3 metal ring.  

 

2.3. Soil aggregate size fractionation and separation of POM 

The size distribution of soil aggregates was measured by wet sieving technique following the 

procedures of Cambardella and Elliott (1993). A 70−80 g sample of air dried soil that passed 

through a 5 mm sieve size was spread on top of five stacked sieves (2, 1, 0.5, 0.25 and 0.053 

mm) submerged in a bucket of deionized water. The water level was adjusted so that the 

aggregates on the upper sieve were just submerged. Soils were left immersed in the water for 

10 min and then sieved by moving the sieve 3 cm vertically 50 times during a period of 2 min. 

During the sieving process, floatable materials >2 mm were removed and discarded.  The 

material remaining on the 2 mm sieve was transferred to a glass pan. Soils plus water that 

passed through the sieve was poured onto the next finer sieve and the processes repeated, but 

floatable materials were not removed and discarded. The different aggregate sizes were dried 

in the oven at 50°C overnight for chemical analysis. The mean weight diameter (MWD) of 

water stable aggregates was then determined as the sum of the percentage of soil on each 

sieve multiplied by the mean diameter of adjacent sieves i.e. MWD=∑ (percent of sample on 

sieve x mean intersieve size).  

 

The separation of POM was done following the procedure of Six et al. (1998). The fractions 

in the >0.25 mm size aggregates were bulked as macroaggregates, and the 0.053 to 0.25 mm 
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size was taken as microaggregates. After drying (105°C) in the oven overnight and cooling in 

a decicator to room temperature, about 10 g macro and microaggregates was suspended in 35 

ml sodium polytungstate adjusted to a density of 1.8 g cm–3 in a conical centrifuge tube and 

hand-shaken until all the material was suspended. The suspension was allowed to stand for 20 

min before centrifugation at 1250 rpm for 60 min. After centrifugation, the floating material 

was collected on 2 µm pore size filter paper and rinsed thoroughly with deionized water to 

remove sodium polytungstate. The material in the < 1.8 g cm–3 fraction is referred to as free 

LF. The heavy fraction remaining in the tube was washed twice with 50 ml deionized water 

and dispersed in 50 ml of 5% sodium hexametaphosphate by shaking in a reciprocal shaker 

for 18 hours. The dispersed heavy fraction was rinsed through a 0.053 mm sieve with 

deionized water. The material remained on the sieve is iPOM + sand. Both the free LF and 

iPOM + sand were dried in the oven at 50°C overnight. The dried sub samples from each 

aggregate size class, and the free LF and iPOM + sand were finely ground in a rotary ball mill 

for chemical analysis. 

 

2.4. Laboratory analysis 

Bulk density was determined after drying the soil in an oven at 105°C. Organic C and N 

concentrations in bulk soil, size fractions and POM were determined using CHNS−analyzer 

(Vario EL, Elementar Analysensysteme GmbH, Hanau, Germany).  

 

2.5. Statistical analysis 

The experiment had a split-plot design (three replications) with land use as a main plot and 

soil aggregate size as a subplot. Analysis of variance (ANOVA) was conducted using 

MSTAT-C version 2. One way ANOVA was conducted to detect significant differences 

between land use and, among aggregate size means within a land use. Two way ANOVA was 

performed to test significant differences in aggregate size means between land use types. 

 75



Significant treatment means were separated using Tukey´s honestly significance difference 

test (HSD) at P < 0.05.  

 

3. Results and discussion 

3.1. Aggregate size distribution and stability 

Table B1 shows that, in the forest soil, after 10 min of slaking, most soil was found in 0.25 to 

2 mm size macroaggregates and to a lesser extent in microaggregates (0.053 to 0.25 mm). In 

contrast, in the cultivated soil, significantly large proportion of the soil was retained as 

microaggregates and small macroaggregates (0.25 to 0.5 mm).  

 

Table B1. Distribution and MWD of water-stable aggregates after 26 years continuous 

cultivation of the natural forest soil. 

___________________________________________________________________________ 
Aggregate size Distribution (%)    MWD (mm) 
(mm)  Natural forest  Cultivated  Natural forest  Cultivated 
___________________________________________________________________________ 
 
2−5  10bA   0.8eB   0.35aA  0.03cB 
  (0.22)   (0.09)   (0.01)   (0.003) 
 
1−2  21aA   5dB   0.32aA  0.08bB 
  (1.4)   (0.87)   (0.02)   (0.01) 
 
0.5−1  21aA   17cA   0.16bA  0.13aA 
  (1.3)   (0.62)   (0.01)   (0.005) 
 
0.25−0.5 21aA   27bA   0.08cA   0.10abA 
  (1.6)   (2.4)   (0.01)   (0.01) 
 
0.053−0.25 14bB   35aA   0.01dA  0.02cA 
  (2.6)   (0.84)   (0.002)   (0.001) 
 
Total  87   85   0.92   0.36 
  
___________________________________________________________________________ 
 
Means followed by the same lower case letter in a column and by the same upper case letter 

in a row are not significantly different. Numbers in parentheses are standard errors (n=3). 
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After 26 years continuous cultivation, the amount of water stable macroaggregates was 

significantly reduced from > 70% in the natural forest soil to 50% in the cultivated soil, while 

that of microaggregates increased by a factor of 2.5, indicating that cultivation resulted in the 

structural degradation of this soil. This could be attributed to the breakdown of aggregates by 

tillage, differences between the two land use types in annual organic matter input which gives 

cementing agents and the enmeshing effects of roots and associated mycorrhizal hyphae. 

These results confirm earlier observations that macroaggregates are dynamic in nature and the 

size distribution of macroaggregates is affected by the change in land use and management 

(Dormaar, 1983; Elliott, 1986; Beare et al, 1994b; Puget et al., 1995; Spaccini et al. 2001). 

The relatively higher proportions of soil in the macroaggregates of the forest soil further 

suggest that the soil aggregates under forest were not greatly affected by slaking or were more 

stable than the cultivated soil.  

 

There was a significant land use x aggregate-size interaction on the distribution of water 

stable aggregates indicating that the effect of cultivation was much more evident in the larger 

macroaggregates i.e >1–2 mm size than the smaller macroaggregate-size classes (Table B1). 

As with the findings of Haynes (1999) in pasture soil and Spaccini et al. (2001) in forest soil, 

in this study, the >2–5 mm and >1–2 mm classes of the forest soil were 13 and 4 times, 

respectively, larger than in the cultivated soil (Table B1). The relatively higher level of 

reduction in larger macroaggregates compared to the smaller macroaggregates up on 

cultivation could be mainly because the former are largely dependent on live and decaying 

plant roots and fungal hyphae and probably casts of earthworms and termites which are 

rapidly destroyed by tillage (Tisdall and Oades, 1982). Beare et al. (1994b) also reported a 

reduction in the >2 mm aggregates of cultivated surface soil and redistribution of particles to 

smaller size classes in conventional tillage than in no tillage soil. Tisdall and Oades (1979) 

and Angers (1992) reported that the effects of cropping treatments on soil aggregates were 
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mostly apparent in the >2 mm size fractions. A greater shift in water stable aggregates from 

large macroaggregates to smaller macroaggregates and microaggregates up on cultivation had 

also led to a significant reduction of MWD from 0.92 mm in the forest soil to 0.36 mm in the 

cultivated soil (Table B1). Spaccini et al. (2001) reported MWD reductions of 37 to 76% on 

cultivated Ethiopian Vertisols, Alfisols, Entisols, and Andisols relative to the forest soil, being 

highest in Vertisols and lowest in Andisols.  

 

3.2. Whole soil C and N  

Conversion of the natural forest into continuous cultivation had resulted in significant 

reductions of both the concentrations and stocks of OC and N (Table 2). C/N ratio was also 

significantly narrowed from 12 in the forest soil to 9 in the cultivated soil (Table B2). The 

substantial losses of organic C and N after 26 years of cultivation were expected since the 

break-up of soil aggregates and increased aeration caused by tillage both favour 

decomposition of soil organic matter. In addition, reduced inputs of organic matter because of 

the removal of large amounts of above-ground biomass at harvest and burning of crop 

residues during land preparation are also responsible for the lower C and N content of the 

cultivated soil. Comparable losses of SOC and nutrients due to cultivation of forest soils have 

been reported in many studies (Brown and Lugo, 1990; Davidson and Akerman, 1993; 

Buschiazzo et al., 2001; Spaccini et al. 2001; Solomon et al., 2002). 
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Table B2. Bulk soil chemical and physical properties under the different land-use types, 

results refer to the 0-20 cm soil depth.  

___________________________________________________________________________ 
   C  N C/N  Bd  C N 
   (g kg–1)    (g cm–3) (kg m–2) 
___________________________________________________________________________ 
 
Natural forest  72a  6a 12a  0.86b  12.4a 1.0a 
   (7.4)  (0.6) (0.6)  (0.02)  (0.9) (0.01) 
Cultivated  34b  3.9b 9b  0.99a  6.7b 0.76b 
   (4.9)  (0.5) (0.2)  (0.03)  (0.2) (0.03) 
___________________________________________________________________________ 
Bd: bulk density 

Means followed by different letters in a column are different from each other. Numbers in 

parentheses are standard errors (n=3). 

 

3.3. Total OC and N of aggregates 

Data on the OC and N concentrations (g kg−1 aggregates) and, C/N ratio of the different 

aggregate size classes are reported in Table B3. In the soil under natural forest, none of the 

parameters showed significant differences among aggregate size classes. In contrast, in the 

cultivated soil, the OC and N concentrations were significantly different among the different 

size classes, and appeared to decrease as size increases from 0.053 to 2 mm diameter (Table 

B3). This could be attributed partly to the redistribution and / or transfer of organic matter 

from the large aggregates to smaller ones either in the process of biodegradation or by 

mechanical disruption of the large macro-aggregates (Dormaar, 1983; Christensen, 1992). 

Oades and Waters (1991) suggested that when roots and hyphae that hold the 

macroaggregates die and disrupted by tillage or fauna, the decomposed fragments probably 

become the organic core in the 0.02 to 0.25 mm size microaggregates. Alternatively, the 

extent of OM decomposition under arable use may be different for the different aggregate 

fractions. Our results in the cultivated soil contrast with the observations of Elliott (1986), 

Cambardella and Elliott (1993) and Puget et al. (1995), who observed an increase in OC 

concentration of the cultivated soil with an increase in diameter of the fractions. The OC and 
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N concentrations associated with each maroaggregate size in the natural forest were two to 

threefold higher than the corresponding values in the cultivated soil, although the differences 

generally are not statistically significant. The effect of cultivation was more pronounced on 

OC than on N. This was further reflected by a significantly narrower mean C/N ratio in the 

cultivated soil aggregates (9–10) than in the forest soil aggregates (12–13). In both land use 

types, C/N ratios of the bulk soil and the different water stable aggregates were nearly the 

same (Tables B2 & B3).  

 

Table B3. Organic C and N concentrations (g kg–1 aggregate) and C/N ratios of soil aggregate 

size classes to the depth of 0−20 cm as affected by 26 years continuous cultivation.  

__________________________________________________________________________________ 
Aggregate size  OC    N    C/N 
(mm)  NF  Cu  NF  Cu  NF  Cu
  
___________________________________________________________________________ 
2-5  78a  23c  6.4a  2.5d  12a  9a
  (6.1)  (2)  (0.5)  (0.1)  (0.8)            (0.2)
  
1-2  65a  27bc  5.5a  2.9cd  12a  10a
  (4.4)  (1)  (0.2)  (0.3)  (0.5)            (0.7)
  
0.5-1  84a  33ab  7.1a  3.7ab  12a  9a
  (32)  (4)  (2.4)  (0.5)  (0.6)          (0.03)
  
0.25-0.5 74a  31b  6.2a  3.4bc  12a  9a
  (24)  (1)  (1.6)  (0.1)  (1.3)            (0.1)
  
0.053-0.25 57a  40a  4.6a  4.3a  13a  9a
  (11)  (1)  (0.3)  (0.03)  (0.8)            (0.2) 
___________________________________________________________________________ 
 
NF: Natural forest; Cu: cultivated. In a column, means followed by the same lower case letter 
are not significantly different. Numbers in parentheses are standard errors (n=3). 
 

Mean total amounts of OC and N (g kg−1 whole soil) of the different aggregate size classes 

did not significantly differ between the two land use types (Table B4), but land use x 

aggregate size interaction was significant. With the exception of N in the 0.25-0.5 mm size 

class, the amounts of C and N in the different macroaggregate size classes of the cultivated 
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soil were significantly lower than those in the natural forest. However, the amounts of 

microaggregate associated C and N were significantly higher in the cultivated soil than that of 

the natural forest mainly due to large proportion of soil in this size class. In the natural forest, 

although the proportion of water stable aggregates was different among the different size 

classes, differences in the amounts of C and N (g kg−1 whole soil) among the different size 

classes did not reach significance.  

 

Table B4.Total amounts of OC and N (g kg–1whole soil) associated with each aggregate-size 

in natural forest and cultivated field soils.  

___________________________________________________________________________ 
      Size fractions (mm) 
            
   _________________________________________________________ 
   2−5  1−2  0.5−1  0.25−0.5 0.053−0.25 
___________________________________________________________________________ 
 
Organic C 
 
Natural forest  8a  14a  18a  16a  8b  
   (0.4)  (1.4)  (5.7)  (3.5)  (1.8) 
Cultivated  0.18bD 1.4bD  5.6bC  8.4bB  14aA  
   (0.02)  (0.24)  (0.65)  (1.0)  (0.11) 
Total N   
 
Natural forest  0.64a  1.2a  1.5a  1.3a  0.64b  
   (0.04)  (0.09)  (0.43)  (0.22)  (0.14) 
Cultivated  0.02bD 0.15bD 0.63bC 0.93aB  1.5aA  
   (0.003)  (0.03)  (0.09)  (0.08)  (0.03) 
 
Means followed by the same lower case letter in a column and by the same upper case letter 
in a row are not significantly different. Numbers in parentheses are standard errors (n=3). 
 

In contrast, in the cultivated soil, the amounts of C and N were significantly different among 

the different aggregate sizes; increasing steadily as the proportion of water stable aggregates 

and concentrations of C and N increased (Tables B1, B3 &B4). Significant reductions in OC 

and N concentrations due to cultivation of a native vegetation soil were reported by 

Buschiazzo et al. (2001) from macroaggregates of Typic Ustipsament. Spaccini et al. (2001) 
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reported better protection of carbohydrates associated with smaller aggregate size classes for 

Ethiopian and Nigerian soils when forests are converted to cultivation.   

 

The relationship between WSA and, OC and N concentrations did not show significant 

coorelations (data not shown) suggesting that other factors such as inorganic soil constituents 

(Tisdall, 1996) and, the arrangement of the organic compounds other than the absolute 

organic matter quantity present might be responsible for the aggregation of this tropical soil 

(Hamblin and Greenland, 1977; Dormaar, 1983). It has been suggested that diverse organic 

and inorganic constituents participate in the binding of soil particles in to water stable 

aggregates and the relative importance of each varies in differing situations (Haynes and 

Beare, 1996). Our results agree with Dormaar (1983) and Lehmann et al. (2001), who 

observed no relationship between WSA and organic carbon.  

 

3.4. Free LF and iPOM C and N 

The mean C and N concentrations (g kg−1 fraction) in both the free LF and iPOM fractions 

were significantly reduced after cultivation with much of the reductions occurring from the 

macroaggregate associated fractions (Table B5). The effect of cultivation was more 

pronounced on the iPOM C than on the free LF C. This was further evidenced by a 

significantly narrower iPOM C/N ratio under cultivation than the natural forest (Table B5) 

suggesting that much of the readily decomposable components have been lost, leaving old and 

more humified components. However, the free LF C/N ratio (Table B5) was not significantly 

changed after cultivation probably due to recent inputs of less decomposed fresh organic 

residues from roots of the previous crop. The mean C/N ratios of the free light and iPOM 

fractions in both land use types were relatively wider than the corresponding whole soil C/N 

ratios (Tables B2&B5). Christensen (1992) suggested that SOM in LF has usually a wider 

C/N ratio than in whole soils and heavy fractions. In the present study, no significant 
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difference was detected between the C/N ratios of free LF and iPOM in either of the land use 

types probably due to the removal of free and released floatable easily recognisable fresh 

plant residues from the samples soon after slaking. However, this is not unusual as Besnard et 

al., (1996) also found no significant difference in POM C/N ratio of different positions. 

 

Table B5.Characteristics and total amounts of POM associated with each aggregate size in 

natural forest and cultivated field soils 

__________________________________________________________________________________ 

    C  N    C  N
  
    (g kg–1 fraction)  C/N  (g kg–1whole soil)
  
__________________________________________________________________________________ 
Natural forest 
Free LF 
 Macroaggregates 138a*  9.9a*  14a  38a* 2.7a* 
    (0.6)  (0.04)  (0.1)  (9.3) (0.6) 
  

Microaggregates 84b*  5.2a  17a*  1.5b 0.10b* 
   (1.2)  (0.1)  (2.2)  (0.8) (0.06) 

iPOM   
 Macroaggregates  44a*  2.5a  17a*  5.6a 0.31a 

   (1.7)  (0.08)  (0.9)  (2.4) (0.1) 
 Microaggregates 14b*  0.9a  16a*  0.3b 0.02a 

   (0.3)  (0.02)  (2.1)  (0.01) (0.08)  
Cultivated 
Free LF 
 Macroaggregates 59a  4.6a  13a  3.9a 0.3a 
    (0.3)  (0.02)  (0.3)  (0.8)  (0.06) 
    
 Microaggregates 38a  3.1a  12a  0.39b  0.03a 
    (0.3)  (0.03)  (0.1)  (0.1)  (0.01) 
   
iPOM 
 Macroaggregates 12a  1.2a  10a  1.5a 0.15a 
    (0.1)  (0.02)  (0.5)  (0.2) (0.02) 
     
 Microaggregates 4.3b  0.43a  10a  0.3a 0.03a 
    (0.04)  (0.003)  (1)  (0.07) (0.01)  
___________________________________________________________________________ 
Means followed by the same letter within land use for each POM fractions associated with 

macro and microaggregates are not different. Means followed by * in the natural forest are 

significantly different from the corresponding values in the cultivated soil. Numbers in 

parentheses are standard errors (n=3). 
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The total amounts of the free LF and iPOM C and N (g kg–1whole soil) were significantly 

larger in the natural forest than in the cultivated soil (Table B5). Cultivation had resulted in 

the depletion of over 80% of the free LF C and N, and 69% of the iPOM C and 45% of iPOM 

N. This could be attributed mainly to the reduced inputs of organic matter and, faster 

biodegradation of POM due to the more favourable environmental conditions for biological 

activity such as higher temperature and moisture, and aeration created by tillage under the 

cultivated soil. The relative losses of POM C and N were larger than those observed in the 

whole soil and in water stable aggregates, indicating that POM constitutes soil organic matter 

fraction more sensitive to the effects of cultivation. Similar results have been reported for 

situations dealing with the conversion of native forest to corn cultivation (Besnard et al., 

1996) and native grassland soil to cultivation (Cambardella and Elliott, 1992; Six et al., 1998). 

After 35 years continuous cultivation of a soil under virgin brigalow (Acacia harpophylla), 

Skjemdstad et al. (1986) reported as much as 95% OC loss from the light fraction. Gregorich 

et al.(1997) also reported losses of substantial amounts of both free and physically protected 

organic matter after 32 years cultivation of a sod soil. Averaged over aggregate sizes, much of 

both the free LF and the iPOM C and N were associated with the macroaggregates compared 

to the microaggregates, with the LF accounted for much of the POM C and N associated with 

both aggregate size fractions.  

 

A significant land use x aggregate size interaction indicates that the amounts of the free LF C 

and N associated with both macro and micro aggregates were significantly larger in the forest 

soil than in the cultivated soil (Table B5). With respect to the amounts of iPOM C and N, 

however, the effect of cultivation was evident only in the macroaggregate associated fraction 

due to the reduction of the proportion of macroaggregates by tillage and due to the labaile 

nature of macroaggregate associated OM to accelerated decomposition induced by cultivation 

(Skjemstad et al., 1990; Buyanovsky et al., 1994; Jastrow et al., 1996). Jastrow (1996) found 
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relatively higher proportions of POM C inside the macroaggergates of the virgin prairie soil 

compared to corn field and restored prairie soil. Six et al. (1998) also reported higher iPOM 

levels in water stable macroaggregates sampled from native sod soil than those from the 

cultivated soil. In the natural forest, the proportion of whole soil organic C and N found in 

free LF accounted for 55% and 47%, respectively, and that of iPOM C and N comprised 8% 

and 6%, respectively. After 26 years cultivation, the free LF C and N represented 13% of 

whole soil OC and 8% of whole soil N and the corresponding proportions in iPOM C and N 

were 5%. These results indicate that the free LF accounted for much of the losses of whole 

soil OC and N due to cultivation, whereas the iPOM C and N appeared to be a relatively 

constant fraction of the total OC and N pool, as was also observed by Jastrow (1996). In 

Jastrow´s (1996) study about 12 to 17 % of the total amount of OC in soils under cornfield 

and restored prairie and about 14% in virgin prairie soil were found to be composed of POM. 

In a similar study conducted by Cambardella and Elliott (1992), it was found that POM C 

comprised about 39% of the total SOC in Nebraska native sod.  

 

4. Conclusions 

Cultivation had lead to a reduction of the proportion of water stable macroaggregates and an 

increase in the proportion of microaggregates. The effect of cultivation on the amount of 

macroaggregates was most evident in the > 1 mm size aggregates. The breakdown of larger 

aggregates up on slaking to smaller aggregates in both soil types demonstrated the 

hierarchical concept of aggregate formation in this Nitisol. The result also shows that the OM 

that binds microaggregates in to macroaggregates was found to be the most prominent sources 

of OC and N lost due to cultivation. However, there was no correlation between SOC and N, 

and aggregate stability. The POM C and N were much more affected by cultivation than the 

whole soil and, total aggregate OC and N, being highest from the macroaggregates. Of the 

different POM fractions the losses of the free LF C and N due to cultivation were more 
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pronounced than the iPOM fraction, making it a more biodegradable organic matter pool. 

Generally the results indicate that cultivation of the natural forest soil for 26 years resulted in 

the reduction of organic matter and deterioration of soil structure. 
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ABSTRACT 
 
Conversion of natural forests into monoculture forest plantations can affect soil fertility and 

carbon sequestration, thus CO2 induced climate change phenomena. We compared SOC, N and S 

stocks (organic layer and mineral soil) under Podocarpus falcatus natural forest and monoculture 

forest plantations (21 yr Eucalyptus globulus and Pinus patula, and third rotation Eucalyptus 

globulus established 42 yr ago) at Munesa, South Ethiopia. Results indicate that organic layer 

mass decreased by 43 and 57% under the 21 yr Eucalyptus and Pinus plantations, respectively. 

The third rotation Eucalyptus, however, had 85% of the natural forest organic layer mass mainly 

due to the accumulation of large amounts of poorly decomposed leaves after each harvest. The 

C/N ratio of the organic layer decreased in the order: 21yr Pinus (42), third rotation Eucalyptus 

(38), 21 yr Eucalyptus (26), natural forest (25). There were significant reductions (25 to 68%) in 

the organic layer N stocks under the plantations relative to the natural forest, being highest under 

Pinus and lowest under third rotation Eucalyptus. Unlike the 21 yr Eucalyptus and Pinus organic 

layers which had 50 and 60% lower OC, respectively, the organic layer under third rotation 

Eucalyptus contained 91% of the OC stock under the natural forest (16.4 t ha−1). However, this 

does not imply that the establishment of Eucalyptus plantations is sustainable as repeated 

harvesting removes considerable amounts of nutrients. In the mineral soil, to 1 m depth, there 

was a significant (P<0.05) reduction (16 to 20%) after conversion of natural forest into forest 
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plantations. The N stocks under the 21 yr Pinus and third rotation Eucalyptus plantations were 

significantly reduced amounting 27 and 20% respectively, whereas 21 yr Eucalyptus had nearly 

an equivalent amount of N as that of the natural forest probably due to a dense forest floor 

vegetation, fixing N. The changes in the S stocks under the plantations were not significant. 

Mineral soils under plantations had similar C/N ratios, with the exception of the 21 yr Eucalyptus 

which had narrower C/N ratio compared to the natural forest and other plantations. With the 

exception of the 0–20 cm depth, differences in the distribution of SOC, N and S stocks across the 

profile were non significant among forest types. Generally, when the data from the organic layers 

and mineral soils were pooled, the results indicate that clearing of the natural forests and 

replacement by monoculture tree species plantations resulted in a reduction of large amounts of 

SOC and N. 

 
INTRODUCTION 
 
Global warming caused by higher atmospheric greenhouse gases (GHGs) concentrations has been 

a major issue world-wide. Several GHGs are responsible for the warming of the earth's 

atmosphere, but the single most important GHGs is carbon dioxide (CO2), which accounts for 

about 60% of the anthropogenic effect (BMZ, 2002). According to the report of the 

Intergovernmental Panel on Climate Change (IPCC) (1996a) the concentrations and distributions 

of naturally occurring gases have been greatly affected by human activities.  The main emission 

sources are the energy and transport sectors, but deforestation of natural forests affects sources 

and sinks of greenhouse gases through emissions resulting not only from destruction and burning 

of the vegetation but also from more and more soil organic matter (SOM) oxidation (Tate et al., 

1993). Nowadays questions such as the sources and sinks of GHGs, and the role of the soil 

carbon and nitrogen cycle in the global climate change have been drawing more and more 

attention (Johnson, 1992; Johnson and Curtis, 2001; Liping and Erda, 2001). In the tropics where 
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soils are poor in inorganic nutrients, concern on soil carbon levels are not only to decrease the 

effect of CO2 emissions on global warming but also to ensure nutrient availability as the soils 

rely on recycling of nutrients from soil organic matter to maintain productivity (Tiessen et al., 

1994; IPCC, 1996b). Nitrogen is of particular concern, since availability of this element limits 

forest growth more frequently than any other nutrient (Tiessen et al., 1994).  

 
The world's forests store large quantities of carbon, with an estimated 330 Gt C in live and dead 

above- and below ground vegetation, and 660 Gt C in soil (mineral soil plus organic horizons) 

(IPCC, 1996b). Tropical forests store 46% of the world's living terrestrial carbon pool and 11% 

of the world's soil carbon pool (Brown and Lugo, 1982). About 90–95% of the N in forest soils is 

contained in soil organic matter (SOM) (Fisher and Binkley, 2000).  Carbon storage in forest 

soils is a dynamic balance between inputs (primarily litter and dead roots) and outputs (primarily 

heterotroph respiration) (Simmons et al., 1996). In mature forests, C and nutrient storage in soil 

approaches a steady-state where outputs nearly equal the inputs. Land use change is often 

associated with changes in litter quantity or rate of decomposition and an associated change in 

SOC and nutrient levels (Johnson, 1995; Van Cleve and Powers, 1995). The degree of SOC and 

nutrient losses/gains after plantation forest establishment depends on previous land use, time, 

forest species or forest type, management and local climate and soil conditions (Johnson, 1992). 

For example, harvesting followed by cultivation or intensive site preparation for planting trees 

may result in large decreases in soil carbon—up to 30% to 50% in the tropics over a period of up 

to several decades (Fearnside and Barbosa, 1998). Harvesting followed by reforestation, 

however, in most cases has a limited effect (±10 percent) (Allen, 1985; Turner and Lambert, 

2000; Zinn et al., 2002). This effect is particularly prevalent in the tropics (Johnson, 1992). There 

are also some cases in which soil carbon increases significantly, probably because of the 

additions of slash and its decomposition and incorporation into the mineral soil (Detwiler, 1986; 
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Johnson, 1992).  

 

In the highlands of Ethiopia, increases in human and livestock population and the sedentary 

nature of agriculture have resulted in massive deforestation of natural forests. Consequently, loss 

of biodiversity, land degradation and shortage of wood and wood products are the major 

phenomenon. To satisfy the demand for wood and wood products of the population and to 

rehabilitate degraded lands, large scale forest plantations on degraded lands and sites supporting 

low productive secondary natural forests have been carried out in 1980`s (Pohjonen, 1989; EFAP, 

1994). Most of the plantations are monoculture exotic species such as Eucalyptus, Cupressus and 

Pinus covering 200,000 ha (EFAP, 1993). The establishment of plantations on degraded lands not 

only helps to rehabilitate sites and provide wood resources but also to enhance the amount of OC 

and nutrients in the soil and to mitigate CO2 emission effects on climate change (Brown and 

Lugo, 1982). According to Lugo et al. (1988), the net primary productivity of some plantations 

could be higher than secondary and mature forests, and some plantation species could also 

accelerate SOC recovery (Lugo et al., 1990a,b). A major concern with tree plantations in the 

tropics is when they replace natural forests, and the sustainability of multiple rotations of high 

yielding species because they may place a high nutrient demand on the soil (Cuevas et al., 1991). 

The effect of tree plantations on SOC and nutrient levels in the highlands of Ethiopia is not well 

known. Studies that have been undertaken so far (Michelsen et al., 1993; Solomon et al., 2001, 

2002) dealt only with the surface soil layers. Therefore, understanding the changes to soil 

biogeochemistry that influence SOC and nutrient levels to deeper soil layers after clearing and 

replacement of natural forests with monospecfic tree plantations will be important for 

implementing effective and sustainable management plans and for predicting the regional/global 

and ecological consequences of plantations.  
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MATERIALS AND METHODS 
 The study site 

 

The study was conducted at Munesa  within the Munesa/Shashemenie forest enterprise area about 

240 km south east of Addis Ababa at an altitude of 2400 m. Rainfall is bimodal with a mean 

annual precipitation of 1250 mm most of it falling in July and August, and mean annual 

temperature is 19°C with little seasonal variation. The soils are classified as Nitisol (FAO, 1997) 

and characterised by amorphous hydrous aluminium and iron oxides mineralogy. A mixed natural 

forest and three plantations established on, and adjacent to, it were selected for this study. The 

plantations were established after clearing of part of the natural forest. Clearing was done 

manually and the surface biomass was burned on site. The different plantation compartments are 

situated side by side to each other and to the natural forest with similar history, only separated by 

forest roads. Selected chemical and physical properties of the natural forest soil from which all 

plantations were established are presented in Table C1.  

 
Table C1. Selected chemical and physical properties under the natural forest. 
_________________________________________________________________________________ 
            CEC Ald Fed    Al0    Fe0     sand     silt     clay 
    cmolc kg-1 soil __________________________________________ 
Horizons     pHKCl (1M NH4 OAc)                     g kg–1 soil             
Depth (cm) 
______________________________________________________________________________ 
A 0−15             5.4  51.1 3.7 42.9    3.4   9.1    200     300    500 
AB 15−29              5.3  32.8 4.6 55.3    4.5   7.6     230     230    540 
Bt1 29−68             4.7  30.6 4.7 58.5    4.5   7.2    80     180    740 
Bt2 68−108+ 4.5  29.2 4.1 57.3    3.9   6.2    80     180     740 
______________________________________________________________________________ 

 

The plantation forests were (1) Eucalyptus globulus established in 1960 and harvested two times, 

(2) Eucalyptus globulus established in 1980 and never harvested and (3) Pinus patula established 

in 1980 and never harvested. The 21 years Eucalyptus stand was more open to light penetration 
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and due to the rich understory shrub and herbaceous vegetation it is also used for grazing 

purposes. Due to the dense forest floor layer the third rotation Eucalyptus stand lacked understory 

vegetation, while the Pinus stand had sparse understory vegetation.  

 
 Sampling  

 
In each forest type, three 0.06 ha plots were located and a pit was excavated to the depth of 1.2 m 

at the centre of each plot. Soil samples for chemical analysis were taken from the three sides of 

the pit at 0−20, 20−40, 40−70 and 70−100 cm depths. In addition, two 1 m2 plots were marked 

randomly within each plot and samples were taken by auger at three points within the 1 m2 area 

and mixed for the above mentioned depth classes. Soil samples were put in individual 

polyethylene bags, air-dried and passed through a 2-mm sieve before grinding for analysis. Litter 

samples were taken within a 1 m2 square area at three points by pressing a 0.09 m2 steel sheet 

sampling frame into the organic layer. The surrounding organic matter was removed leaving a 

block of the organic layer in which the litter (L) and fermentation (F) horizons were identified. 

Each horizon was measured for thickness and the organic material was placed in a separate paper 

bag. Afterwards the samples from the three square subplots were mixed and the number of 

samples was reduced to three. Samples for the mineral soil bulk density determination were taken 

by 100 cm3 core at seven points for each soil depth. Both the litter and soil samples were 

transported to Bayreuth University, Germany, for chemical analysis. 

 
 Laboratory analysis 

 
The litter samples were dried at 65°C and weighed. Mass per unit area of the organic layer was 

based on the area of the sampling frame and the oven dry weight of the sample. Mineral soil bulk 

density was calculated after drying of the sample at 105°C to a constant mass and dividing the 

oven-dry mass by the volume of the core segment. Carbon, nitrogen and sulphur were determined 
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using a CHNS−analyser (Vario EL, Elementar Analysensysteme). The pHKCl (soil:solution ratio 

1:2.5) for the mineral soil and pHH2O (1: 20) for the organic layer were determined with a 

standard pH electrode (Orion U402−S7). Cation exchange capacity (CEC) was determined with 1 

M NH4OAc (pH=7.0) following the procedure of Hendershot et al., (1993). 

Dithionite−citrate−bicarbonate extractable aluminium and iron (Ald, Fed) and oxalate-extractable 

aluminium and iron (Alo, Feo) were determined according to Ross and Wang (1993).  

 
 Data analysis 

 
Carbon, N and S stocks (kg m–2) to a given depth were calculated as the product of bulk density, 

concentration, and depth of sampling. Data on measured mean soil properties of the different 

forest types were compared by using MSTAT−C version 2.10 statistical package. Differences 

between and among treatment means were considered significant at P< 0.05.  

RESULTS AND DISCUSSION 
 

 Organic layer  
 
The thickness of the organic layer was not significantly affected by forest type and forest type by 

horizon interaction.  The thickness of the L, Of1 and Of2 horizons respectively were 0.8, 1.2 and 

1.7 cm (total 3.7 cm) under the natural forest, 1.3, 1.0 and 1.7 cm (total 4 cm) under third rotation 

Eucalyptus, 0.5, 1.0 and 1.3 cm (total 2.8 cm) under 21 yr Eucalyptus and 0.5, 1.1  and 1.3 cm 

(total 3.5 cm ) under Pinus. In a similar study, Wilcke et al. (2002) reported a thicker organic 

layer (15.7 cm) in the natural forest of Ecuador relative to our study forests. This difference could 

be attributable to differences in disturbance, vegetation composition and age, local climate, 

microtopography and soil type and mineralogy (Lugo et al., 1986). The rganic layer bulk density 

in the four forest types varied significantly (P < 0.01), increasing in the order Pinus<21 years 
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Eucalyptus<third rotation Eucalyptus<natural forest (Table C2). In each forest type, with few 

exceptions thickness and bulk density of the organic layer horizons decreased in the order Of2 > 

Of1 > L (Table C2). There was a significant effect of forest type on the organic layer mean C (P 

< 0.1), N and S (P < 0.01) concentrations, but forest type by horizon interaction was not 

significant. The least significant difference test (LSD) revealed that C concentration was 

significantly greater under third rotation Eucalyptus compared to the natural forest and 21 years 

Eucalyptus, but differences between Pinus and the other forests were not significant (Table C2). 

N and S concentrations were higher under 21 years Eucalyptus than the other two plantations but 

were not different from the natural forest. In each forest type, C concentration decreased while N 

and S concentrations increased from the L horizon to the Of2 horizon (Table C2). Similar results 

have been reported by Lugo et al. (1990b). The C/N ratios under Pinus and third rotation 

Eucalyptus organic layers (Table C2) were significantly (P<0.01) wider than under the natural 

forest, but 21 years Eucalyptus had an equivalent C/N ratio as that of the natural forest probably 

due to the presence of N-fixing plants in the understorey vegetation.   

 

In each forest type, as expected, C/N ratio dropped considerably from the L layer to the Of2 layer 

indicating that litter in the Of layer is in advanced state of decomposition.  The Pinus plantation L 

horizon had a C/N ratio of twice that of the natural forest (Table C2). In view of the current 

increase in atmospheric CO2 level litter with high C/N ratio could serve as a temporary sink of 

CO2 because it positively affects SOC accumulation (Swift et al., 1979).  From the ecological 

point of view, however, litter with high nutrient content or low C/N ratio play an important role 

in plantations because rather than immobilising nutrients it releases for rapid recycling (Lugo et 

al., 1990b). Mean pH values in the organic layers of the different forest types ranged from 5.7–7  
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(Table C2). The L layer pH varied in the order Pinus (3.8)<Eucalyptus (5.0)<natural forest (7.0). 

Unlike the results of Wilcke et al. (2002), who reported a decreasing trend in the organic layer pH  

(Oi > Oe > Oa), in all our study forest types, pH tended to increase from the L layer to the Of 

layer and this difference was more evident under Pinus than the other forest types. 
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Table C2 Chemical and physical properties of the organic layer horizons as influenced by conversion of the natural forest into tree 
plantations. 
______________________________________________________________________________________________________________ 

Natural forest             3rd rot. Eucalyptus  21 yr Eucalyptus  21 yr Pinus 
   __________________                _________________  _________________  _______________
   L Of1 Of2 Mean L Of1 Of2 Mean L Of1 Of2     Mean L Of1 Of2   Mean 
______________________________________________________________________________________________________________ 
 
 
Bulk density  0.11 0.12 0.12 0.12a 0.03 0.07 0.16 0.09ab 0.06 0.07 0.10 0.08ab 0.05 0.03 0.09  0.06b 
(g cm–3)  (0.03) (0.02) (0.02) (0.02) (0.01) (0.02) (0.06) (0.03) (0.02) (0.02) (0.04) (0.03) (0.02) (0.01)  (0.02) (0.02) 
 
C (g kg–1)  444 382 343 390b 517 438 368 441a 481 358 322 387b 493 449 326  423ab 
   (16) (22) (64) (34) (9.1) (4.8) (74) (29) (7.4) (11) (20) (13) (26) (47) (38)   (37) 
 
N (g kg–1)  13 17.3 18 16ab 8.7 16 14.6 13ab 115 21.3 18.3 17a 7.7 12.9 14.7     12b 
   (1.1) (0.5) (2.2) (1.3) (1.2) (3.1) (1.7) (2) (3.8) (1.6) (1.4) (2.3) (2.8) (1.6) (0.2)   (1.5) 
 
S  (g kg–1)  1.4 1.8 1.8 1.67a 1.1 1.6 1.5 1.4b 1.3 1.8 2.0 1.7a 1.0 1.3 1.6     1.3b 
   (0.1) (0.2) (0.1) (0.13) (0.1) (0.3) (0.2) (0.2) (0.4) (0.3) (0.1) (0.3) (0.2) (0.2) (0.2)   (0.2) 
 
C/N   34       22 18 25c 60 28 26 38b 45 17 15 26c 70 35 22         42a 
   (3.8) (1.1) (1.2) (2.0) (9.2) (5.9) (6.8) (7.3) (15.4) (1.1) (1.1) (5.4) (26) (7) (2.3)    (12) 
 
pH   6.4 7.2 7.4 7.0a 5.0 6.8 6.7 6.2ab 5.0 6.9 6.9 6.3a 3.8 6.1 6.0      5.3b 

(0.7) (0.5) (0.2) (0.5) (0.5) (0.1) (0.2) (0.3) (0.5) (0.2) (0.1) (0.3) (0.5) (0.24) (0.22) (0.3) 
______________________________________________________________________________________________________________ 
 

 Means followed by the same lower case letter in a row are not significantly different from each other at 0.01 probability level. 
Numbers in parentheses are standard deviations (n=3). 
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Table C3 Dry mass and C, N and S stocks (t ha–1) in the organic layers of the different forest types. 
______________________________________________________________________________________________________________ 
     Dry mass   C    N    S 
   ______________________   ______________________  ______________________ ______________________ 
Forest type  L Of1 Of2 Total L Of1 Of2 Total L Of1 Of2 Total L          Of1       Of2    Total 
______________________________________________________________________________________________________________ 
Natural forest     9.1 13.2 20.2 42.5a 4.1 5.4 6.9 16.4a 0.12 0.24 0.36 0.72a 0.01 0.03      0.04 0.08a 
   (4.1) (6.6) (6.9) (5.9)    (2.0) (2.4) (2.6) (7) (0.1) (0.1) (0.1) (0.3) (0.01) (0.01)    (0.02) (0.04) 
3rd rot. Eucalyptus   3.8 7.7 24.6 36.1ab  2.1 3.1 9.8 15a 0.03 0.11 0.39 0.53ab 0.004 0.01       0.04    0.05ab 
   (1.7) (1.3) (4.1) (2.4)     (1.0) (0.7) (3.6) (5.3) (0.02) (0.04) (0.5) (0.56) (0.002) (0.004)   (0.004) (0.01) 
Eucalyptus (21 yrs)  2.7 7.4 14.1 24.2bc  1.4 2.5 4.3 8.2b 0.03 0.15 0.24 0.42bc 0.004 0.01    0.03     0.04ab 
   (0.5) (1.7) (8.9) (3.7)      (0.5) (0.7) (2.6) (3.8) (0.01) (0.04) (0.2) (0.25) (0.001) (0.002)   (0.02)   (0.02) 
Pinus (21 yrs)        2.6 3.6 12.1    18.3c     1.2 1.5 3.8 6.5b 0.02 0.04 0.17 0.23c 0.003 0.004    0.02     0.03b 
   (0.12) (0.42) (4.3)   (1.6)      (0.1) (0.3) (1.3) (1.7) (0.01) (0.002) (0.1) (0.11) (0.001) (0.00)    (0.01)   (0.01) 
 

 Means followed by the same lower case letter in a row are not significantly different from each other at 0.01 probability level. 
Numbers in parentheses are standard deviations (n=3).
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Table C4 SOC, N and S contents (g kg–1) and bulk density (g cm–3) at different depths under the different forest types.  
______________________________________________________________________________________________________________ 
Soil  NF Eur Eu Pi NF Eur Eu Pi NF Eur Eu Pi NF Eur Eu Pi 
depth 
______________________________________________________________________________________________________________ 

C     N   S   Bulk density 
 ______________________ _____________________ ____________________ _____________________    

0−20  66.1 49.3 59.3 46.2 5.7 3.5 6.3 3.2 0.7 0.6 0.7 0.4 0.86 0.90 0.91 0.90          
  (12) (5.7) (7.8) (8.6) (0.9) (0.3) (1.0) (0.6) (0.1) (0.04) (0.1) (0.1) (0.05) 0.04) (0.04) (0.07)  
20−40  34.1 35.3 27.7 32.6 3.0 2.7 3.1 2.4 0.4 0.5 0.4 0.4 0.97 0.97 0.98 0.97 
  (7.9) (6.8) (10) (7.5) (0.8) (0.4) (1.1) (0.4) (0.0) (0.04) (0.1) (0.04) (0.03) (0.01) (0.02) 80.02) 
40−70  29.5 20.1 17.0 21.5 2.6 1.8 1.9 1.8 0.4 0.3 0.2 0.4 1.08 1.07 1.11 1.09 
  (11) (6.2) (4.6) (7.6) (0.7) (0.4) (0.7) (0.5) (0.1) (0.04) (0.1) (0.1) (0.04) (0.07) (0.01) (0.05) 
70−100 15.4 15.7 12.9 15.0 1.6 1.8 1.5 1.5 0.2 0.3 0.2 0.2 1.11 1.12 1.12 1.13 
  (5.1) (8.6) (4.0) (7.6) (0.4) (0.5) (0.4) (0.3) (0.1) (0.1) (0.1) (0.1) (0.04) (0.06) (0.01) (0.03)  
Mean  36.3a 30.1ab 29.2b 28.9b 3.2a 2.4b 3.2a 2.2b 0.4 0.4 0.4 0.4 1.01 1.02 1.03 1.02  
______________________________________________________________________________________________________________ 
 

Means followed by the same lower case letters in a row are not significantly different from each other at 0.01 probability level. Numbers 
in parentheses are standard deviations (n =5 for C, N and S and n =7 for bulk density). NF-natural forest, Eur-third rotation Eucalyptus, 
Eu-21 years Eucalyptus, Pi-21 years pinus. 
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Table C5 Depth wise storage of OC, N and S stocks in kg m–2 , 1 m soil depth. Numbers in 
parenthesis are standard deviations (n=5). 
__________________________________________________________________________________ 
      Soil depth (cm) 
   ________________________________________________________________ 
Land use  0−20  20−40  40−70  70−100      0−100 20−100 
__________________________________________________________________________________ 
     OC    
__________________________________________________________________________________ 
Natural forest  11.37  6.62  9.56  5.13      32.68a 21.31  
  (2.13)  (1.54)  (3.46)  (1.68)     

3rd rot. Eucalyptus 8.87  6.85  6.45  5.28      27.45b 18.58 
   (1.02)  (1.33)  (1.98)  (2.90)   
Eucalyptus (21 years) 10.79  5.43  5.66  4.33      26.21b 15.42 
   (1.43)  (2.03)  (1.52)  (1.35) 
Pinus (21 years) 8.32  6.32  7.03  5.08      26.75b 18.43 
  (1.62)  (1.38)  (2.56)  (2.46) 

__________________________________________________________________________________ 
     Total N 
__________________________________________________________________________________ 
      
Natural  forest  0.98  0.58  0.84  0.53      2.93a 1.95  
   (0.15)  (0.16)  (0.22)  (0.14) 
3rd rot. Eucalyptus 0.63  0.53  0.58  0.60      2.34b 1.71 
   (0.05)  (0.07)  (0.13)  (0.17) 
Eucalyptus (21 years) 1.15  0.61  0.63  0.50      2.89a 1.74 
   (0.17)  (0.21)  (0.24)  (0.12) 
Pinus (21 years) 0.58  0.47  0.59  0.51      2.15b 1.57 
   (0.1)  (0.67)  (0.16)  (0.11) 
__________________________________________________________________________________ 
     Total S 
__________________________________________________________________________________ 
 
Natural  forest  0.12  0.08  0.13  0.07      0.4  0.28 
   (0.02)  (0.00)  (0.03)  (0.03) 
3rd rot. Eucalyptus 0.11  0.11  0.10  0.10      0.42  0.30 
   (0.01)  (0.01)  (0.01)  (0.03) 
Eucalyptus (21 years) 0.13  0.08  0.07  0.07      0.35  0.22 
   (0.02)  (0.02)  (0.03)  (0.03)  
Pinus (21 years) 0.07  0.08  0.13  0.07      0.35  0.28 
   (0.01)  (0.01)  (0.03)  (0.02) 
__________________________________________________________________________________ 

 
 Means followed by the same lower case letter in a column are not significantly different 

from each other at 0.05 and 0.01 probability level for OC and N, respectively.  
 

 
The average organic layer mass by forest type varied from 18.3–42.5 t ha–1 with a site average of 

30.28 t ha–1(Table C3). These values were much greater compared to the organic layer mass (10.5 
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t ha–1) under 11 years old Pinus plantation and (5 t ha–1) under secondary natural forest in Puerto 

Rico (Cuevas et al., 1991) and the Brazilian Cerrado vegetation dominated with broad leaved 

shrubs and trees (6–13. 5 t ha–1), and Pinus (37.69 t ha–1) and Eucalyptus (7.62−13.9 t ha–1) 

plantations (Zinn et al., 2002), but were lower than the organic layer mass estimates of Wilcke et 

al. (2002) for the tropical montane rain forest (247 t ha–1) in Ecuador.  The forest floor mass 

estimates of Vogt et al. (1986)  for the tropics and sub tropics ranged from 3.2−5.4 t ha–1 for 

tropical evergreen, 2.08−16.48 t ha–1 for tropical broad-leaved deciduous and 1.34−13.12 t ha–1 

for subtropical broad-leaved deciduous. Turner (1986) reported organic layer mass of 13–21 t ha–

1 under 5–31 years old E. grandis forest. Lugo et al. (1990b) reported 5–27.2 t ha–1 organic layer 

mass under 26 years old different tree plantations.   

 
Organic layer mass was significantly influenced by forest type (P<0.01), being highest under the 

natural forest followed by third rotation Eucalyptus and lowest under Pinus (Table C3). 

However, the interaction of forest type by horizon was non significant. In each forest type, litter 

accumulation was greatest in Of2 horizon and lowest in L horizon (Table C3). The reductions in 

average litter mass after clearing and replacement of the natural forest ranged from a low of 6.4 t 

ha–1 (–14%) under third rotation Eucalyptus to a maximum of 24.2 t ha–1 (–57%)  under Pinus 

(Table C3). Such variations in the organic layer mass accumulation may be due partly to 

differences in rate of litter production, litter quality, age and species composition and, partly to 

increased microbial activity in the post clearing period caused by more favourable moisture and 

temperature conditions and burning of the organic layer and above ground biomass of the 

previous forest during site preparation. Zinn et al (2002) reported an increase in litter mass after 

conversion of native Cerrado to Pinus and a decrease after conversion to Eucalyptus in loamy 

Oxisols in Brazil. On the sandy Entisol, however, they reported a non significant difference in 
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litter quantity between the native Cerrado and Eucalyptus plantation. The greatest mass under 

third rotation Eucalyptus compared to the other two plantations is due to the accumulation of 

litter after each harvest and differences in time since establishment. This demonstrates that 

residue management after harvesting can have a large effect on organic layer mass. Cuevas et al. 

(1991) and Grigal and Ohmann (1992) found differences in forest floor mass due to forest type 

and age. A poorer quality litter (high in lignin/nitrogen and C/N ratios) input with lower 

decomposition rates could also contribute to a greater forest floor mass accumulation (Vogt et al., 

1986).  

 
Our best estimates of the organic layer mean C, N and S stocks for the different forest types 

ranged from 6.5–16.4 t ha–1, 0.3–0.7 t ha–1 and 0.03–0.1 t ha–1, respectively (Table C3). Wilcke et 

al. (2002) reported 103, 5.53 and 0.77 t ha–1C, N and S stocks, respectively, in the tropical 

montane rainforest of Ecuador. The estimates of Tiessen et al. (1994) for the natural rainforest 

organic layer of Venezuela were 69.95 t ha–1C and 3.17 t ha–1N. Values reported by Lilienfein et 

al. (2001) in Brazil range from 1.2–24.5 t ha–1C, 0.02–2.6 t ha–1N and 2.3–26 kg ha–1S. Smith et 

al. (2002) in Brazil estimated 3.59–5.42 t ha–1C for organic layers under natural forest, P. 

caribaea, C.guianensis and E.paraensis stands. Turner and Kelly (1985) reported C stocks of 27 t 

ha–1 under Eucalyptus and 21 t ha–1 under Pinus stands. The forest floor data compiled by Vogt et 

al. (1986) indicate average values of 7 t C ha–1 for tropical forest, 14 t C ha–1 for temperate forest 

and 17 t C ha–1for boreal forest, and the data of Vogt et al. (1995) yield averages of 5 t C ha –1 for 

tropical forest, 17 t C ha –1 for temperate forest and 33 t C ha–1 for boreal forest.  Vogt et al. 

(1986) reported forest floor N content of 0.12 t ha–1 under subtropical broadleaf evergreen forest, 

0.04 t ha–1 under tropical broadleaf semi-deciduous forest and 0.33 t ha–1under tropical broadleaf 

evergreen forest. The N values reported under 26 years old different tree plantations organic layer 
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by Lugo et al. (1990b) ranged from 0.06–0.19 t ha–1. Variations in C, N and S stocks between our 

study and others may be due to differences in site characteristics such as geomorphology, 

disturbance history, climate, soil texture, slope, and composition and age of vegetation (Homann 

et al., 1995).  

 
Higher litter mass accumulation in the natural forest and third rotation Eucalyptus resulted in a 

significantly (P<0.01) higher proportion of C and nutrient storage. The natural forest had always 

higher C, N and S stocks compared to 21 years Eucalypus and Pinus stands. C stock under the 

natural forest (16.4 t ha–1) was found to be significantly reduced by 8.2 t ha–1  (–50%)  and 9.9 t 

ha–1 (–60%)   after conversion to 21 years Eucalyptus and Pinus plantations, respectively, while  

third rotation Eucalyptus had an equivalent amount of C (15 t ha–1) as that of the natural forest 

probably due to the greater amount of litter accumulated after each harvest.  Like that of C, the 

reductions in N and S stocks under Pinus were much higher followed by 21 years Eucalyptus 

(Table C3). These could be attributed to differences in net primary productivity, chemical 

composition/susceptibility of the litter to decomposition and age of the forest (Minderman, 1968; 

Swift et al., 1979; Lugo et al., 1988; Cuevas et al., 1991; Mtambanengwe and Kirchmann, 1995). 

The two Eucalyptus stands did not significantly differ in their N and S stocks, but C was higher 

under third rotation Eucalyptus suggesting that C storage in the soil increases with time. In a 

similar study, Grigal and Ohmann (1992) indicated an increase in the organic layer C stock with 

time. Minimisation of site disturbance during harvest operations and retention of forest litter and 

debris after silvicultural activities can help retain organic matter (Johnson, 1992). C and N stocks 

under Pinus were significantly lower than under third rotation Eucalyptus, but differences 

between Pinus and 21 years Eucalyptus were not significant.  
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 Mineral soil 
 
Unlike the organic layer, there was no considerable variation in the overall mean bulk (Table C4) 

of the mineral soil used to calculate SOC and nutrient stocks among forest types. SOC 

concentration under the natural forest was significantly higher than under the 21 years Eucalyptus 

and Pinus stands. The natural forest and 21 years Eucalyptus had greater N concentration 

compared to third rotation Eucalyptus and Pinus stands, but there were no considerable 

differences between the former and the latter two. The interaction of forest type by soil depth was 

also significant for OC (P<0.05), and N and S (P<0.01) concentrations. In the surface 20 cm soil 

layer, the natural forest and 21 years Eucalyptus had higher SOC, N and S concentrations 

compared to third rotation Eucalyptus and Pinus stands, but differences between the former two 

were not significant (Table C4). SOC (4.62−6.61%) and N (0.32−0.63%) concentrations in the 

top 20 cm soil of our study site were higher than those reported by others in the tropics (Brown 

and Lugo, 1990; Lilienfein et al., 2001; Zinn et al., 2002). Below the 20 cm soil depth, except OC 

and N in the 20–40 cm layer, all forest types had nearly the same OC, N and S concentrations 

(Table 4). Mean C/N ratio to the depth of 1 m under 21 years Eucalyptus (9) was significantly 

(P<0.01) lower than the C/N ratios under third rotation Eucalyptus (11), and under the natural 

forest and Pinus (12). In all forest types, with the exception of 21 years Eucalyptus, C/N ratio 

tended to decrease with increasing depth (Fig. C1) probably due to leaching of N rich materials 

from the upper soil layers. Lilienfein et al. (2001) reported average C/N ratios of 12.9 under pinus 

plantation and 15.6 under Cerrado vegetation, with a decreasing trend under Pinus from the 

surface to the subsoil. Lugo et al. (1986) reported C/N values ranging from 10.3–13.5 for the 

Puerto Rican forest soils. At each depth, 21 years Eucalyptus had consistently lower C/N ratio 

compared to the natural forest and the other plantations. 
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 Fig. C1. C/N ratio at different soil depths as influenced by conversion of natural forest into 

monoculture tree plantations. NF-natural forest, Eur-third rotation Eucalyptus, Eu-21 years 

Eucalyptus and Pi-21 years Pinus. Vertical lines are standard errors (n=5).  

 

Average mineral soil OC stock in this study ranging from 26.2–32.7 kg m–2 to 1 m depth (Table 

C5) was higher than in several other studies in the tropics (Brown and Lugo, 1982; Post et al., 

1982; Post et al., 1985; Lugo et al., 1986; Brown and Lugo, 1990; Moraes et al., 1995; Lardy et 

al., 2002; Zinn et al., 2002). The world average for all soils is 11.7 kg m–2 to 1 m depth, based on 

the data of Eswaran et al. (1993). This difference could be due to soil forming factors, including 

climate, parent material, topography, vegetation, and disturbance. From the results of this study 

we could deduce that protected natural forests and plantations established even in the absence of 

climate change considerations in Ethiopia can store large amount of SOC and contribute to the 

mitigation of CO2 induced climate change and global warming. Activities aimed at protection of 

nature, biodiversity and natural resources degradation such as soil have a major co-benefit that 

they contribute to C sequestration and conservation (IPCC, 1996b; Brown, 1999).  

 
Forest type had a significant (P<0.05) effect on mean OC stock to 1 m mineral soil depth. SOC 

under the different plantations varied from 26.2–27.5 kg m–2 representing 80–84% of the SOC 
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stock under the natural forest (32.7 kg m–2) (Table C5). Since there is about three times as much 

C in the world's soils as in the atmosphere (Follett, 2001), the observed changes ( –16 to –20%) 

in this pool can have considerable feed-back effects on the amount of CO2 in the atmosphere and 

thereby on global warming. In a similar study in Brazil, Zinn et al. (2002) found OC losses of 9% 

and 17% to the depth of 60 cm after conversion of Cerrado vegetation to Pinus and Eucalyptus, 

respectively, in the sandy Entisol, and no net losses in Oxisol under Eucalyptus. Turner and 

Lambert (2000) reported reductions of about 65 and 180 t ha–1 OC to the depth of 50 cm under 24 

years Pinus radiata and 20 years Eucalyptus grandis relative to native vegetation and pasture, 

respectively. While Lugo et al. (1986) found a comparable SOC level to that in mature forest 

stands after 30 years of forest succession.  

 
Mean N stock to 1 m soil depth (Table C5) differed with forest type and the interaction was also 

significant (P<0.01). The natural forest and 21 years Eucalyptus plantation had significantly 

higher amount of N stock compared to third rotation Eucalyptus and Pinus stands, but both the 

former and the later two were not different from each other. The reductions in N stocks relative to 

the natural forest varied from a maximum of 0.78 kg m–2 (–27%) under Pinus to a low of 0.04 kg 

m–2 (–1.4%) under third rotation Eucalyptus (Table C5). The changes in S stocks due to the 

transformation of the natural forest into different forest plantations were non-significant, being 

0.05 kg m–2 (–13%) under Pinus and 21 years Eucalyptus, while there was a net gain of 0.02 kg 

m–2 (+5 %) under third rotation Eucalyptus (Table C5). The observed losses in OC to 1 m depth 

mineral soil of 6.47 kg m–2 (–20%) under 21 years Eucalyptus and 5. 94 kg m–2 (–18%) under 

Pinus were almost 2 times less than that observed in the organic layer, while under third rotation 

Eucalyptus the opposite holds true. The reasons for the relatively small reduction in mineral soil 

OC compared to the organic layer could be: (1) even though harvest removes much of the 
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biomass, inputs from roots to the mineral soil wood have been large, (2) soils with high clay and 

Al and Fe content stabilise organic matter and retard decomposition by complexing with Al and 

Fe (Oades, 1988; Veldkamp, 1994) and (3) the organic layer is most affected by management 

such as burning and residue management compared to the mineral soil.  

 
The distribution of SOC, N and S stocks across the profile (Table C5) tended to follow the 

general trend in SOC, N and S concentrations (Table C4), decreasing from the surface to the 

subsoil although bulk density values increased in the opposite direction. An exception is the 40–

70 cm depth, where SOC, N and S stocks were relatively elevated compared to the overlying soil 

layer in most of the forest types due to the high bulk density and clay content values. Nearly one-

third of the total SOC, N and S stocks to 1 m depth in all forest types (Table C5) were found in 

the surface 0–20 cm layer. This points out the need for proper management as it represents the 

pool most exposed to management effects that may accelerate its decomposition and release of 

CO2 to the atmosphere. Compared to the results of other studies in the tropics (Lugo et al., 1986; 

Lugo et al., 1990a; Tiessen et al., 1994; Bashkin and Binkley, 1998; Johnson et al., 2001; Zinn et 

al., 2002), SOC and N stocks to 20 cm depth in our study site were relatively high, but were 

comparable to the results of Brown and Lugo (1990b) and Smith et al. (2002). Based on the LSD 

test, surface soil OC, N and S stocks under the natural forest (Table C5) were not significantly 

different from the 21 years Eucalyptus. This could be attributable to the presence of dense 

understory N-fixer vegetation that contributed to surface SOC and N and the recycling of 

nutrients via animal excreta as the 21 years Eucalyptus is used for grazing purposes. However, 

both 21 years Eucalyptus and natural forest stored greater amounts of OC, N and S compared to 

Pinus and third rotation Eucalyptus. In a study by Lugo et al. (1990b), tree plantations with 

native species in the understorey vegetation were found to have higher litter nutrient 

concentrations compared to those which have only canopy vegetation. A reduction in surface (0–
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10 cm) soil OC after plantation establishment on previously undisturbed native vegetation was 

reported by Turner and Lambert (2000).  

 

The significant reduction in surface soil OC and the non-significant difference in subsoil OC 

between the plantations and the natural forest may be due to the effect of burning during site 

preparation and cultivation during planting, and to reduced inputs in the first few years of stand 

establishment and accelerated mineralisation of organic matter because of changes in 

microclimate following clearing and afforestation. Following clearing, soil C inputs dropped 

substantially  in the first few years due to a small forest biomass and low rate of litter fall, thus C 

loss from this portion of the profile continues outweighing gains in C from litter production (Paul 

et al., 2002). Below 20 cm, treatment effects on SOC, N and S stocks were less clear although the 

natural forest tended to have large SOC and N stocks compared to all plantations in the 40–70 cm 

layer (Table C5). Detwiler (1986) reported that most studies found no effect of land use change 

on soil OC below 40 cm in the tropics. Bashkin and Binkley (1998) found no significant change 

in SOC below 55 cm after planting of Eucalyptus on previous cane site in Hawaii. When the data 

below 20 cm were combined, more than 60% of the total SOC, N and S stocks in the surface 1 m 

depth under all forest types were stored below 20 cm depth and the losses from this part of the 

profile although not significant ranged from 2.73–5.89 kg m–2 (13–28%) for SOC, from 0.21–0.4 

kg m–2 (11–20%) for N and 0.06 kg m–2 (21%) for S. This indicates that sampling to 20 cm depth 

excludes large proportions of the total SOC and nutrient stocks to 1 m depth which are very 

important in the global carbon and nitrogen biogeochemical cycles because they are less 

susceptible to be oxidised and transported to the atmosphere (Brown and Lugo, 1990; Lugo and 

Brown, 1993). Therefore, any conclusion based on surface soil responses to changes in soil OC 

and nutrients that occurred after forest clearing is conservative. 
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CONCLUSIONS 
 
Proper management of forests for conservation of SOC and nutrients and their efficient utilisation 

in growth is required to sustain forest productivity, especially on nutrient-poor sites. Different 

extents of OM addition to the soil may be expected between trees of different species. Our results 

emphasise the importance of management, stand age, and forest type in affecting the size of C 

and nutrient stocks. Differences in stand microclimate, depth of tree rooting, quality and hence 

recalcitrance of above and below ground litter could have been contributed to the observed 

differences. Although the age of the plantations should be viewed with caution, practices such as 

shortened rotation lengths or improper management may have greater implications in C and 

nutrient storage.  However, many of the factors that affect ecosystem processes and C storage 

such as microclimate, abundance and diversity of macro and micro fauna and flora, and the 

relationships between substrate quality and decomposition rates need to be further investigated. 

For a more complete picture, it is also important to determine the fate of cations and other 

nutrients present in trees and litter, which in turn requires investigation over more than one forest 

rotation. The data in C, N and S stocks, as related to forest type and disturbance, indicate that C 

and nutrient storage in forests of Ethiopia may be influenced by forest management activities. 

Although the changes in carbon associated with land use change do not define the total net flux of 

carbon between land and the atmosphere, they represent the portion of the flux that can be 

attributed to direct human activity, and it is this portion that is addressed by the United Nations 

Framework Convention on Climate Change and by the Kyoto Protocol (IPCC, 2000). Thus, 

comprehensive analysis of land use, land use change and forestry is needed at the national level 

to evaluate changes in emissions and mitigation requirements because in the long term a feasible 

solution is only possible at the international level as the beneficial impacts of reduced emissions 

in one country can easily be offset by the emissions in another. In view of the current climate 
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change scenarios GHGs mitigation activities in Ethiopia have to be taken by the government 

because the current land ownership policy of the country that gives only use rights could not 

encourage investments on long-term returns such as planting trees or there should be incentives 

as farmers do not adopt practices unless they have ownership rights and improve profitability. 

The relative losses or accretion rates of C, N and S in the soil are determined by the interplay of 

physical, chemical and biological factors (Kirschbaum, 1995). Therefore, we must further 

improve our understanding of these processes to gain a better understanding of the likely future 

interaction between the global C cycle and climate change to be able to adequately anticipate the 

nature of the feed-back effects that link soil and atmospheric C reservoirs.  
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Abstract 
 
Water and nutrient fluxes are two of the most important biogeochemical processes directly 

affected by changes in land-use and land-cover. The input of rain water to the forest floor, and the 

composition of rainfall and throughfall water were monitored between October 2001 and 

September 2002 in a natural and two plantation (Eucalyptus globulus and Cupressus lusitanica) 

forests at Munesa, south-eastern Ethiopia. Total annual rainfall was about 1190 mm, being very 

much skewed in distribution with the highest (60% of the total) during the main rainy season 

(June to September) and the lowest (12% of the total) during the dry season (October to January). 

The proportions of annual rainfall that passed through the different forest canopies were 53% 

under Cupressus and the natural forest, and 82% under Eucalyptus. The chemistry of rainafll was 

weakly acidic (pH 6.7) mainly dominated by Na, Cl and Ca. In all forest types, canopy 

interactions produced throughfall more alkaline relative to rainafll. Annual nutrients deposition 

by rainafall varied from 0.08 kg ha–1yr–1 for Mg to 3.79 kg ha–1yr–1 for Na. Annual nutrients 

deposition by throughfall ranged between 0.03 kg ha–1yr–1 for PO4–P under Cupressus and 9.28 

kg ha–1yr–1 for K under the natural forest. In all forest types, throughfall fluxes of K, Mg, Ca and 

Cl were enriched relative to rainfall indicating higher nutrient-status of the forests. The degree of 

enrichment was species and nutrient specific, but was generally lowest under Cupressus.  

Whereas, the depletion of NO3–N, NH4–N, SO4–S and PO4–P fluxes in throughfall of all forest 

types relative to rainfall indicate that these nutrients are limiting. Overall, the results indicate that 

throughfall volume was influenced largely by management (tree density) while throughfall 
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characteristics were influenced by species. The results of this study will be helpful to establish 

input-output budgets of nutrients and thereby predict the sustainability of the plantation forest 

ecosystems.  

Key words: Cupressus; Eucalyptus; Ethiopia; Throughfall; Rainfall  
 
1. Introduction 
 
Nutrient fluxes and ecosystem productivity are driven to a large extent by the landscape water 

balance because water is both a limiting natural resource in many ecosystems and the driving 

fluid of most nutrient fluxes. Water and nutrient cycles are two of the most important 

biogeochemical processes directly affected by land use and land cover. Human-induced land use 

changes are known to affect the spatial and temporal patterns of landscape water fluxes (Bosch 

and Hewlett, 1982). Increasing concern on the ecological status of water resources has resulted in 

physical processes-based studies that examine the influence of vegetation on precipitation water 

quantity and quality. The quantity of precipitation passing through the forest canopy has a 

significant hydrological importance because it is responsible for the recharge of groundwater and 

streamflow, and influences runoff and distribution of understorey vegetation. Forest stands of 

different tree species differ in their above ground vegetation surface area, stand structure and 

morphology, and can have a differential impact on rain water interception and evapotranspiration 

losses, hence, on soil water regimes (Pritchett, 1979; Cape et al., 1991). For example Swank and 

Douglass (1974) in the United States found that streamflow was reduced by 20% by converting a 

deciduous hardwood stand to Pinus strobus L. 

 
Precipitation also plays an important role in ecosystem nutrient cycles. Rainfall contains 

dissolved and particulate constituents; almost nearly all of the pool of nitrogen and sulphur 

including important quantities of inorganic nitrogen for forest growth are derived from the 

atmosphere (Waring and Schlesinger, 1985).  Forests are particularly effective in scavenging and 
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retaining atmospheric particles and gases that contain nutrients due to their high surface area and 

aerodynamic resistance (Howsam et al., 2000; Levia and Frost, 2003). Throughfall and stem flow 

are the two hydrological processes responsible for the transfer of precipitation and solutes from 

vegetative canopy to the soil (Levia and Frost, 2003) and have been documented to play a 

significant role in forest geochemical cycles (Parker, 1983). The chemistry of precipitation can be 

changed as it passes through the forest canopy resulting from wash-off of dry depositions and 

leaching of leaves and branches, and uptake of nutrients by the canopy (Jordan et al., 1980; 

Veneklaas, 1990). Ions such as Na+, Cl–, SO4
2–and PO4

3– usually flow passively through the 

canopies (Lindberg and Lovett, 1992; Ragsdale et al., 1992; Hultberg and Ferm, 1995). On the 

other hand, it has been documented that nitrogen can be absorbed by tree canopies from the 

atmospheric inputs, and this process relates to both ammonium and nitrate ions (Potter et al., 

1991; Lovett, 1992; Shubzda et al., 1995; Stachurski and Zimka, 2000).   

 
Many studies that have been carried out on the effects of atmospheric deposition on forest 

ecosystems have concentrated on countries with greater risk of air pollution (Krupa, 2002). 

However, even in the absence of air pollution risks, such studies are also of critical importance 

because of the potential ecological significance of atmospheric depositions in forest ecosystems 

nutrient cycling and the need for such information to make reliable forest management decisions. 

Such studies are also useful in understanding the level of atmospheric deposition and in 

evaluating air quality to undertake sound environmental management practices. The objectives of 

this study were (1) to assess the relative importance of atmospheric deposition in the nutrient 

cycle and (2) to determine the effects of land use and land cover change on the hydrological and 

nutrient cycles in the Munesa forest, thus contributing in the development of sustainable land use 

systems. 

 

 122



2. Materials and methods 
 
2.1. Study site and experimental design 
 
The experimental site was located at the Munesa/Shashemene forest enterprise site (7°34´N and 

38°53´E), 240 km south-east of Addis Ababa. The long term average annual precipitation of the 

area is about 1250 mm (Solomon et al., 2002) and shows seasonal pattern: main rainy season 

(June to September) and small rainy seasons (February to May) with a relatively dry season from 

October to January (NMSA, 1996). The soil parent materials are of volcanic origin and soils can 

be classified as Nitisols (FAO, 1997). A natural forest and two plantation forests (Eucalyptus 

globulus and Cupressus lusitanica) situated side by side were selected for this study. The natural 

forest was a montane tropical forest mainly dominated by old growth Podocarpus falcatus trees. 

The two plantations were established in 1980 after clearing of part of the natural forest. 

Eucalyptus globulus had 595 stems ha –1 with a mean diameter at breast height (dbh) of 19–39 cm 

and a height of 30–40 m. Tree density in the  Cupressus plantation was 672 ha –1 with mean dbh 

of 29 cm and a height of 18–20 m. For each forest type, three 20x30 m plots were identified, 

randomly distributed and within each plot an area of about 20–25 m2 was fenced for throughfall 

collector installation.  

 
2.2. Field equipment and sampling 
 
An automatic weather data-logger was installed at the site to record the daily weather data 

including rainfall. We also kept a deep freezer in a nearby town for sample storage. Rainfall and 

throughfall were collected using plastic funnels of 12 cm diameter and 2 l capacity established 1 

m above the ground. Rainfall was collected at three localities, each with three collectors, in a 

large opening between the plantation and natural forests. Throughfall was collected in three 

replicated plots with five collectors per plot. The collectors were placed 0.8 to 1m from the trunk 

of the sample tree. Table tennis balls were put inside each collector to prevent loss of water by 
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evaporation. The sampling period started in October 2001 and concluded in September 2002. 

Water was collected on a weekly basis. During sample collection the volume of water was 

registered. After each collection, the collectors were washed with deionized water or with a 

portion of the sample water. On each sampling day, water samples were transported to the storage 

facility and kept frozen until they were transported in a cool box to Germany for chemical 

analysis. Samples were filtered through 0.45 μm glass fibre filter papers (Schleicher & Schuell). 

After filtration, samples from the different collectors in one plot were proportionally bulked per 

plot and per sampling day. From these samples about 100 ml were used for chemical analysis.  

 
2.3. Chemical analysis 
 
Analysis in both rainfall and throughfall samples include pH (Orion U402-S7), total content of 

Ca, K, Mg, Na  (plasma emission spectroscopy, ICP-AES, Integra XMP), NO3
–, NH4

+, PO4
3–, 

SO4
2–, Cl– (ion chromatography, Dionex 2000i-SP). Detection limits (mg l–1 ) were: 0.025 for 

NH4
+, 0.2 for Ca2+, Na+ and Mg2+, 0.25 for K+, 0.27 for Cl–, 0.34 for NO3

–, 0.28 for PO4
3– and 

0.32 for SO4
2–.  

 
2.4. Calculations and statistical analysis 
 
All calculations for a particular parameter in a given season were based on mean values of three 

plots per forest type. Volume weighted concentrations and depositions of nutrients were 

calculated for each season, i.e. dry season (DS), small rainy season (RS1) and main rainy season 

(RS2).  Volume Weighted Mean Concentration of the i-nutrient (VWMCi) in rainfall and 

throughfall were estimated from the paired measurements of nutrient concentration, and rainfall 

and throughfall volume in each plot.  

 

  VWMCi   =∑
n
j=1 Cij . TFj /∑

n
j=1  TFi     (1) 
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where Cij is the i-nutrient concentration in throughfall on the j-collection day, TF is the total 

throughfall water volume and n is the total number of sampling dates. Using rainfall and 

throughfall water volume, concentrations were converted into gram quantities of various nutrients 

cycled in liquid form for each season and summed to yield annual inputs. Canopy exchange (i.e. 

canopy leaching and canopy uptake) was calculated as the difference between throughfall flux of 

a particular nutrient and its atmospheric deposition to the rain collectors. Significance of 

differences of a given parameter between rainfall and throughfall, and among throughfall of the 

three forest types were assessed with two way ANOVA using MSTAT-C statistical package. 

Correlation analysis was conducted between pairs of nutrients in rainfall/throughfall and 

rainfall/throughfall volume and nutrient concentrations. 

 
3. Results and discussion 
 
3.1. Water flux 
 
Total annual rainfall and throughfall, and its seasonal distribution during the study period 

(October 2001 to September 2002) are shown in Table D1. Total annual rainfall was about 1190 

mm, lying very close to the past long term mean value (1250 mm) from the nearby 

meteorological station (Solomon et al., 2002). There was a marked variation in the distribution of 

rainfall among the different seasons because in Ethiopia rainfall is mainly associated to a change 

in the predominant wind direction (monsoon); northeast winds prevail during the dry season and 

westerly to southwesterly winds during the rains (NMSA, 1996). Of the total annual rainfall, the 

highest amount (60%) fell during the main rainy season (June to September) and the least (12%) 

during the dry season (October to January). As with the distribution of the total annual rainfall 

across the different seasons, the distribution of rainfall among the different months within a given 

season was very much skewed. The monthly maximum and minimum rainfalls, respectively, 

were 67.4 and 6.2 mm in the dry season, 136.4 and 20.8 mm in the small rainy season and 268.2 
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and 120 mm in the main rainy season. Daily minimum rainfall was the same in all the three 

seasons (0.2 mm) while the daily maximum was variable; amounting 8.2 mm in the dry season, 

 

Table D1. Rainfall (R) and throughfall (TF) at Munesa, Ethiopia, and other selected montane 

tropical forest ecosystems. 

 
Location Altitude (m) R/TF DS RS1 RS2 Total 
Ethiopia1 2400      
 Rainfall  R 141 

(0.01) 
329 
(0.01) 

720 
(0.002) 

1190 
(0.02) 

Natural forest  TF 52b* 
(0.003) 

189b* 
(0.003) 

384b* 
(0.02) 

625b* 
(0.03) 

    Eucalyptus  TF 96a* 
(0.004) 

272a* 
(0.01) 

602a* 
(0.02) 

970a* 
(0.03) 

    Cupressus  TF 50b* 
(0.01) 

182b* 
(0.002) 

404b* 
(0.02) 

636b* 
(0.03) 

Puerto Rico2 425 R − − − 3750 
  TF − − − 2774 
Malaysia3 870 R − − − 2700 
  TF − − − − 
Panama4 1200 R − − − 3510 
  TF − − − 2190 
Jamaica5 1250–1310 R − − − 2539 
  TF − − − c.1270 
Ecuador6 1900–2010 R − − − 2193 
  TF − − − 943–1996 
New Guinea7 2450 R − − − 3800 
  TF − − − 2585 
Colombia8 2550 R − − − 2115 
  TF − − − 1854 
Tanzania9 2300 R − − − 2220–2405 
  TF − − − 1695–1705 
 
Sources: 1This study; 2Veneklaas (1990) 3Bruijnzeel et al. (1993); 4Cavelier et al. (1997);                 
5McDonald and Healey (2000); 6 Wilcke et al. (2001); 7Edwards (1982); 8Veneklaas (1991);  

9Schrumpf (2004).  
DS-dry season; RS1-small rainy season; RS2-main rainy season. Values followed by the same 
letter in a column are not different and those followed by * are different from those of rainfall. 
Values in parentheses are standard errors (n=3). 
 

 126



39.2 mm in the small rainy season and 60 mm in the main rainy season. Of the 12 months, 

rainfall was less than 100 mm during the dry season and at the beginning of the small rainy 

season (February) and was above 200 mm only in August.  

 

The proportion of annual rainfall that passed through the Eucalyptus canopy (82%) was 

significantly higher than the cooresponding value for Cupressus and the natural forest (53%) 

(Table D1). This means that, when stem flow is unaccounted for, about 18% to 47% of the total 

rainfall was intercepted. This variation was mainly attributed to the difference in leaf 

morphology, branch geometry and hydrophobicity, stand density and total canopy area among 

species. However, the possibility of spatial variations in rainfall intensity within the study area 

could not be ruled out. In general, interception loss was highest during the dry season (65% in 

Cupressus, 63% in the natural forest and 32% in Eucalyptus) not only due to the pronounced 

sunny days before and after rain events, but also rainfall intensity for most of the rain events was 

too low (< 5 mm) to produce throughfall. This has implications not only on soil moisture level 

but also on the input and distribution of nutrients to the different compartments of the ecosystem 

and their availability to plants. There was no big variability in interception between the two rainy 

seasons. During the monitoring period, throughfall water fluxes under the different forest types 

were generally less than rainfall (Table D1). This is expected since cloud water is not a factor.  

 
Rainfall and throughfall values for different montane tropical forest areas are summarized in 

Table D1. Except for Jamaican and part of the Ecuadorian montane forests, throughfall values are 

above 60% of rainfall. In Brazil, Lilienfein and Wilcke (2004) found that throughfall was 75–

85% of rainfall (1682 mm) under Pinus caribaea plantation. Variability in throughfall amount 

between different studies can be attributed in part to differences in climatic patterns, 

meteorological conditions, and stand density and species composition. In the Munesa           
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forest, long sunny periods were common even during the wetter months and so there was usually 

plenty of time for the canopy to dry out. 

 
3.2. Chemistry of rainfall and throughfall 
 
Rainfall at Munesa was weakly acidic (mean pH 6.7) with most of the potential acidity being 

neutralised by Na and Ca (Table D2). On an equivalent basis, Na was the dominant nutrient 

accompanied by Cl and Ca. The VWM nutrient concentrations in rainfall ranged from 0.09 mg l–1 

for Mg to 3.29 mg l–1 for Na (Table D2). VWM concentration of NH4–N was 1.78 times higher 

than that of NO3–N. It has been suggested that rain water has only minor importance as source of 

NO3–N relative to NH4–N (Stachurski and Zimka, 2002). Calcium concentration was 1.78 times 

greater than that of K.  

 

Correlation analysis between pairs of nutrients in rainfall (Table D3) revealed that PO4–P was 

related with more nutrients than SO4–S and NO3–N. None of the other nutrient pairs showed 

significant relationship with the exception of the significant relationship of NH4–N with K and 

Mg. Nutrient concentrations in rainfall at Munesa were higher than the mean values obtained by 

Parker (1983) and other montane tropical forest sites summarised in Table D2 except for Mg 

which was lower than the Puerto Rican and Colombian sites. Perhaps dust is responsible for the 

observed high values at Munesa where the occurrence of sporadic but strong dust carrying wind 

storms are common in the surrounding semiarid rift valley areas. The differences in rainfall 

amount and frequency between our study site and the others could also be another source of 

variability. The molar ratio Ca/Na in seawater is 0.04. The corresponding values in rainfall at 

Munesa during the dry and rainy seasons were 0.63 and 0.48, respectively, suggesting that most 

of the Ca was of continental origin and from biomass burning.  
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In all forest types, canopy interactions produced throughfall more alkaline than bulk 

precipitation. The average pH values of throughfall were 7.8 in the natural forest, 7.3 in 

Eucalyptus and 7.1 in Cupressus stands (Table D2). The effect of forest type on throughfall pH 

was not significant, although pH under the two plantations tended to be slightly lower than under 

the natural forest. Below canopy reduction in acidity has been reported in other forest ecosystems 

(Veneklaas, 1990; Laclau et al., 2003; Williams et al., 2004). VWM concentrations of throughfall 

Ca, K, Mg and Cl were significantly increased in relation to rainfall (Table D2). There was also a 

slight but non-significant increase in throughfall Na concentration under all forest types in 

comparison to that of rainfall. Increases in K and Mg concentrations relative to those of rainfall 

were variable among the three forest types, being highest under the natural forest compared to the 

two plantations. With respect to N and P, except for NH4–N and PO4–P which were significantly 

higher in rainfall in relation to throughfall of each forest type and the two plantations, 

respectively, the data show differences between tree species in their ability to alter the 

concentrations in rainfall. The concentration of NO3–N in rainfall was significantly lowered after 

passing through the canopy of Cupressus plantation, while under Eucalyptus and the natural 

forest the reverse holds true. Although statistically not significant for Eucalyptus, the 

concentration of SO4–S in all forest types had increased after the passage through the canopy 

(Table D2). The ratios of throughfall to rainfall nutrient concentration (concentration ratios) at 

Munesa were higher for K, Mg and Ca and lower for Na and NH4–N than those in Tanzanian 

montane forest (Schrumpf, 2004). The concentration ratios of Na in Puerto Rico, Ca in New 

Guinea were higher than the values for our study site while the Colombian and Ecuadorian sites 

had higher ratios for many of the nutrients except for Cl and Mg. The concentration ratios for K 

in the natural forest and Eucalyptus plantation of our study site were higher than those of the 

Colombian, Puerto Rican and New Gunean sites. The increase/decrease in rainfall nutrient  
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Table D2. Volume weighted mean annual nutrient concentrations (average of the three seasons, mg l–l) and pH in rainfall (R) and 
throughfall (TF) at Munesa and other montane tropical forests 
 
Location  Ca K Mg Na Cl NH4–N NO3–N SO4–S PO4–P pH 
Ethiopia1            
Rainfall R 1.60* 

(0.1) 
0.90* 
(0.3) 

0.09* 
(0.0) 

3.29 
(0.3) 

1.83* 
(0.1) 

1.53* 
(0.3) 

0.86* 
(0.1) 

1.59*§ 
(0.1) 

0.22*+

(0.1) 
6.7* 
(0.5) 

Natural forest 
 

TF 4.94a 
(0.6) 

21.2a 
(3.7) 

2.23a 
(0.3) 

3.89a 
(0.4) 

8.65a 
(1.1) 

0.89a 
(0.02) 

1.53a 
(0.3) 

2.26a 
(0.2) 

0.28a 
(0.1) 

7.8a 
(0.8) 

Eucalyptus 
 

TF 4.29a 
(0.4) 

10.3b 
(1.5) 

1.20b 
(0.1) 

3.57a 
(0.3) 

4.96b 
(0.4) 

0.41b 
(0.1) 

1.06ab 
(0.2) 

1.63a 
(0.1) 

0.07b 
(0.0) 

7.3a 
(0.3) 

Cupressus TF 4.51a 
(0.5) 

10.4b 
(2.0) 

1.11b 
(0.1) 

3.39a 
(0.3) 

6.44ab 
(1.0) 

0.83a 
(0.2) 

0.53b 
(0.1) 

2.10a 
(0.1) 

0.06b 
(0.0) 

7.1a 
(0.5) 

Puerto Rico2 R 0.58 0.49 0.13 1.53 − − − − − − 
 TF 1.25 5.59 0.33 3.00 − − − − − − 
New Guinea3 R 0.10 0.19 0.03 − − − − − − − 
 TF 0.87 3.03 0.47 − − − − − − − 
Ecuador4 R 0.18 0.17 0.06 0.86 0.54 0.12 0.13 − − 5.3 
 TF 0.9–2.3 5.3–13 0.4–1.7 1.1–1.6 1.03–2.41 0.3–0.4 0.43–0.99 − − 4–5.7 
Colombia5 R 0.48 0.38 0.15 1.14 0.92 0.86 − 1.24 0.034 4.4 
 TF 1.46 5.14 0.58 1.45 1.96 1.16 − 2.20 0.09 5.6 
Tanzania6 R 0.1–0.2 0.3–0.5 0.04–0.05 0.3–0.4 − 0.2 0.1-0.2 − − − 
 TF 0.13–0.34 1.5–3.0 0.1–0.2 0.5–0.9 − 0.2 0.03 − − − 
 

Sources: 1This study; 2Veneklaas (1990); 3Edwards (1982); 4Wilcke et al. (2001) 5Veneklaas  (1991); 6Schrumpf (2004).  
 
Values followed by the different letter in a column are different. Values followed by * in rainfall are different from those of throughfall of 
each forest type and those followed by § and + are not different from those of Eucalyptus and natural forest, respectively. Values in 
parentheses are standard errors (n=3). 
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concentrations as it passes down through the forest canopy is the result of numerous, well-

documented canopy interactions, which change the composition of rainfall resulting in 

enrichment (foliar leaching) or losses (foliar uptake) with regard to throughfall concentrations 

(Parker, 1983; Lindberg et al., 1986). 

 

Throughfall VWM nutrient concentrations were found to be consistently higher in the natural 

forest than in Cupressus and Eucalyptus although the differences for some of the nutrients were 

not significant (Table D2).  This was caused by differences in dry deposition and canopy 

interception capacity which is a result of several factors such as stand density, canopy area and 

leaf morphology. The roughness of the natural forest canopy together with its high leaf area index 

(Fetene and Beck, 2004) compared to the two even-aged plantations might have enabled to 

effectively scavenge dry depositions. In addition to washing of materials deposited on the canopy 

surface, internal sources possibly exudation of intracellular solutes from transpiring leaves during 

dry periods could also contribute to such enrichment (Parker, 1983). The leathery leaves of 

Eucalyptus and the needles of Cupressus were likely preventing the leaching of their water-

soluble nutrients by rainfall. The lower nutrient concentrations and higher volumes of Eucalyptus 

throughfall reflect the reduced contact between precipitation and the Eucalyptus plantation 

canopy compared to the natural forest. The concentration of NH4–N in throughfall below 

Cupressus was significantly higher than below Eucalyptus. The concentrations of Ca, Na, and 

SO4–S in throughfall were not significantly variable among the three forest types. Throughfall 

nutrient concentrations were dominated by K>Cl>Ca>Na>SO4–S in all forest types relative to the 

other nutrients. The concentrations of most nutrients in throughfall of the natural forest at 

Munesa were generally higher than the concentrations in other montane tropical forests (Table 

D2).  

 131



Table 3. Correlation coefficients for (i) nutrient concentrations and rainfall (R)/throughfall (TF) 
volume and between pair of nutrients in (ii) rainfall, and throughfall of (iii) the natural forest, (iv) 
Eucalyptus and (v) Cupressus.  
 
i. R/TF Ca  K Mg Na Cl NH4–N  NO3–N SO4–S PO4–P 
Rainfall ns ns ns ns ns ns ns ns ns 
Natural forest -0.88** -0.70* -0.81** ns -0.83** -0.76*      -0.89** ns -0.72* 
Eucalyptus 0.89** ns 0.81** ns -0.89*** -0.87** -0.91** ns ns 
Cupressus -0.88** -0.88* -0.89*** ns -0.77** ns -0.71** ns ns 
ii. Rainfall          
Ca − ns ns ns ns ns ns ns ns 
K  − ns ns ns 0.88*** ns ns 0.90** 
Mg   − ns ns 0.76* 0.68* ns 0.68* 
Na    − ns ns ns 0.79** ns 
Cl     − ns ns ns ns 
NH4–N        − ns ns 0.95** 
NO3–N        − ns ns 
SO4–S         − ns 
iii.Natural forest          
Ca − 0.80** 0.85** ns 0.94*** 0.70* 0.88*** ns ns 
K  − 0.91*** ns 0.92*** ns 0.89*** ns 0.66* 
Mg   − ns 0.90*** ns 0.94*** ns ns 
Na    − ns ns ns 0.88 ns 
Cl     − 0.68* 0.92*** ns 0.72* 
NH4–N        − 0.77** 0.66* ns 
NO3–N        − ns 0.67* 
SO4–S         − ns 
iv.Eucalyptus          
Ca − ns 0.93*** ns -0.71* -0.66* -0.73* ns ns 
K  − ns ns ns ns ns ns ns 
Mg   − ns -0.70* -0.71* -0.75* ns ns 
Na    − ns ns ns 0.80** ns 
Cl     − 0.83** 0.82** ns 0.69* 
NH4–N        −  0.98*** ns   0.81** 
NO3–N        − ns 0.73* 
SO4–S         − 0.84** 
 v.Cupressus          
Ca − 0.98** 0.97*** -0.67* 0.79** ns 0.75* ns ns 
K  − 0.99*** -0.73* 0.75* ns 0.84** ns ns 
Mg   − -0.69* 0.73* ns 0.82** ns ns 
Na    − -0.74* ns -0.73* ns ns 
Cl     − ns ns ns ns 
NH4–N        − ns ns ns 
NO3–N        − ns ns 
SO4–S         − ns 
*** P<0.001; ** P<0.01; * P<0.05; ns-not significant. 
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Magnesium and NH4–N in the higher altitudes of Ecuador and NH4–N, PO4–P and SO4–S in 

Colombia were higher than the values for the two plantation forests at Munesa. Sulfate S in 

Colombian, Na in Puerto Rican and K in Ecuadorian forests were more or less similar to the 

values in our study forests. Table D3 shows that throughfall NO3–N and Cl concentrations were 

well correlated with most of the nutrients in comparison to SO4–S and PO4–P, but the 

relationships with Ca  and Mg in Eucalyptus and Na in Cupressus were negative. However, NH4–

N, SO4–S and PO4–P in throughfall below Cupressus and K below Eucalyptus did not show 

significant relationships with any nutrient. Sodium in throughfall under Cupressus was negatively 

correlated with more nutrients than that under Eucalyptus and natural forest in which Na was 

related only with SO4–S.  

 
The temporal trends in rainfall nutrient concentrations (Table D4) indicate that except for Na, 

which showed a slight increasing tendency from the dry season to the wet season no other 

nutrients showed a discernible trend with time. This was further reflected by the non-significant 

relationship of each nutrient and rainfall volume. The ratios of dry season to main rainy season 

element concentrations were 1.01 for Ca, 2.19 for K, 2.8 for Mg, 3.5 for NH4–N, 3 for PO4–P, 

1.82 for NO3–N, 1.06 for Cl, 0.77 for Na and 0.85 for SO4–S. These figures confirm that the 

edaphic and biomass burning sources are more important in the dry season for most of the 

nutrients. In the wet season, the gases released from agricultural fields and combustion of fuels 

can be progressively scavenged by rain bearing clouds. This is particularly true for SO4–S. The 

seasonal patterns in nutrient concentrations in throughfall of each forest type were similar (Table 

D4), being highest, with few exceptions, during the dry season (October–January) presumably 

due to wash-off of dry deposition accumulated on the canopy during dry periods by intermittent 

low-volume rain events. Reductions in nutrient concentrations during the wet period relative to 
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the dry period are no doubt a result of frequent washing of the canopy and dilution effects. The 

ratios of dry season to wet season nutrient concentrations in throughfall followed the trend in 

rainfall. With the exceptions of Na and SO4–S in all forest types, K in the throughfall under 

Eucalyptus and PO4–P under Cupressus and Eucalyptus, the correlations between nutrient 

concentrations and throughfall volume of each forest type were negative and significant. This 

indicates that the concentrations in throughfall were diluted in proportion to the total rainfall 

which in turn indicates that nutrient depositions at Munesa may be limited by atmospheric 

concentrations and internal sources and not by rainfall. Interestingly, the relationship of Ca and 

Mg with throughfall volume under Eucalyptus were positive suggesting that the amounts of 

leachable Ca and Mg from the leathery leaves of Eucalyptus become increasing when rainfall 

volumes are large or intensities are high. 

 
3.3. Nutrient fluxes 
 
The annual total weights of nutrients (Na, Ca, K, Mg, NH4–N, Cl, SO4–S, NO3–N, PO4–P) 

reaching the soil (Table D5) were  14 kg ha–1yr–1 under Cupressus, 24 kg ha–1yr–1 under 

Eucalyptus and 21 kg ha–1yr–1 under the natural forest. Of these values 12 kg ha–1yr–1can be 

explained by the incident rainfall, while 2, 9, and 12 kg ha–1yr–1 under Cupressus, natural forest 

and Eucalyptus, respectively, derived from dry deposition and leaching of intracellular solutes 

from the canopy. These variations in total weight of nutrient amounts among the forest types 

were mainly due to the variability in throughfall water volume, canopy interaction and canopy 

surface area, and leachability of leaves and branches. In spite of the same amount of throughfall 

water with that of Cupressus and about 30% less than Eucalyptus, the annual total weight of 

nutrients reaching the ground under the natural forest was higher than under Cupressus and very 

close to that of Eucalyptus. This suggests that the much rougher surface of the natural forest 

canopy increased the deposition area and effectively intercepted dust carrying winds. In addition, 
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the leaves and branches of natural forest appear to be more leachable than the needles of 

Cupressus and the leaves of Eucalyptus.  
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Table D4. Volume weighted mean nutrient concentrations (mg l –1) in rainfall and throughfall of the three forest types in the dry season (DS), small 
rainy season (RS1) and main rainy season (RS2). 
______________________________________________________________________________________________________________________ 
                Season Ca  Cl  K  Mg  Na  NH4−N NO3−N PO4−P           SO4−S 
______________________________________________________________________________________________________________________ 
Rainfall DS 1.85A  1.87A  0.81A  0.14A  2.92A  1.96A  1.22A  0.24A            1.53A 
   (0.08)  (0.16)  (0.27)  (0.03)  (0.62)  (0.32)  (0.04)  (0.12)            (0.16) 
  RS1 1.11B  1.84A  1.53A  0.09A  3.18A  2.07A  0.69A  0.33A            1.45A 
   (0.04)  (0.03)  (0.57)  (0.04)  (0.35)  (0.40)  (0.07)  (0.28)            (0.06) 
  RS2 1.84A  1.77A  0.37A  0.05A  3.77A  0.56A  0.67A  0.08A            1.80A 
   (0.08)  (0.05)  (0.15)  (0.02)  (0.11)  (0.22)  (0.23)  (0.03)            (0.03) 
Natural forest DS 6.62*a  11.72*a 29.7*a  3.29*a  4.62*a  1.97a  2.71*a  0.47a              2.84*a 
   (0.54)  (1.84)  (7.9)  (0.52)  (0.53)  (0.64)  (0.33)  (0.14)            (0.21) 
  RS1 4.86*abcd 8.82*a  21.8*ab 2.00*abc 3.11a  0.55a  1.34c  0.15a  1.98a 
   (0.89)  (0.68)  (3.64)  (0.23)  (0.85)  (0.003)  (0.30)  (0.07)            (0.35) 
  RS2 3.35d  5.41*a  12.2*bcd 1.40*bc 3.95a  0.15a  0.55def 0.03a  1.98a 
   (0.37)  (0.99)  (3.06)  (0.29)  (0.31)  (0.02)  (0.18)  (0.01)             (0.07) 
Eucalyptus DS 3.45*d  6.64*a  9.08cd  0.87bc  4.09a  0.88a  1.94b  0.14a  1.88a 
   (0.09)  (0.19)  (3.07)  (0.05)  (0.63)  (0.08)  (0.10)  (0.05)            (0.38) 
  RS1 3.84*cd 4.80*a  13.2bcd 1.24bc  2.79a  0.29a  0.94d  0.05a  1.46a 
   (0.61)  (0.46)  (3.08)  (0.21)  (0.49)  (0.07)  (0.14)  (0.03)            (0.19) 
  RS2 5.71*abc 3.65*a  8.98cd  2.62ab  3.96a  0.08a  0.38f  0.03a  1.59a 
   (0.23)  (0.17)  (0.84)  (0.99)  (0.46)  (0.01)  (0.10)  (0.001)            (0.07) 
Cupressus DS 6.15*ab 8.10*a  17.5*bc 1.52*abc 2.87a  1.06a  0.84de  0.06a  2.35a 
   (0.5)  (0.60)  (0.41)  (0.11)  (0.7)  (0.30)  (0.11)  (0.02)            (0.22) 
  RS1 4.22*bcd 7.90*a  9.01*cd 1.04*bc 3.17a  0.66a  0.45ef  0.09a  1.83a 
   (0.42)  (1.83)  (1.41)  (0.09)  (0.43)  (0.23)  (0.09)  (0.04)            (0.30) 
  RS2 3.17*d  3.31*a  4.77*d  0.76*c  4.14a  0.76a  0.30f  0.04a  2.10 
   (0.16)  (0.37)  (1.86)  (0.02)  (0.19)  (0.41)  (0.13)  (0.01)             (0.19) 
______________________________________________________________________________________________________________________ 
 
Means followed by the same lower case letters in a column are not different among forest types for each season (P<0.05). Rainfall values followed 
by the same upper case letters in a column are not different (P<0.05).  Values followed by * in each forest type are different (P<0.05) from the 
corresponding values in rainfall. Numbers in parentheses are standard errors (n=3). 
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Table D5. Annual nutrient fluxes (kg ha–1yr–1) in rainfall and throughfall, leaching and canopy 
uptake in the different forest types, Munesa, Ethiopia 
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Ca 1.77 2.29b 0.52 1.29 4.36*a 2.59 
 
2.46 
 

2.13b 0.36 1.20 

K 0.80 9.28*a 8.48 11.6 9.01*a 8.21 11.3 
 

4.02*a 3.22 5.03 

Mg 0.08 0.98*ab 0.90 11.3 1.22*a 1.14 15.3 
 

0.52*b 0.44 6.5 

Na 3.79 2.13*b -1.66 0.56 3.22a -0.57 0.85 
 

2.17*b -1.62 0.57 

Cl 1.95 3.91*a 1.96 2.01 3.76*ab 1.81 1.93 2.87b 0.92 1.47 
 

NH4–N   1.25 0.24a -1.01 0.19 0.19a -1.06 0.15 
 

0.44a -0.81 0.35 

NO3–N  0.80 0.54a -0.26 0.68 0.61*a -0.19 0.76 
 

0.23*a -0.57 0.29 

SO4–S  1.81 1.16*a -0.65 0.64 1.40a -0.41 0.77 
 

1.18*a -0.63 0.65 

PO4–P 0.18 0.06a -0.12 0.33 0.04a -0.14 0.22 
 

0.03a -0.15 0.17 

 
Values followed by different letters in a row are different. Values followed by * are different 
from those of rainfall. 
 
 
 
Total annual deposition of nutrients by rainfall increased in the order: Mg<PO4–P<K< NO3–N < 

NH4–N < SO4–S <Ca< Cl<Na. According to Table D5 nearly all nutrients fluxes in the 

throughfall were significantly different. Only some nutrients behave different; e.g. NH4–N and 

PO4–P in all forest types, NO3–N and Ca in Cupressus and the natural forest, and SO4–S in 

Eucalyptus. Annual nutrient fluxes in rainfall and throughfall in the Munesa forest (Table D5) 

were lower than the values for other montane tropical forests ( Table D6). The greatest variability 

in rainfall and throughfall inputs between our study and others could be due to variability in 
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rainfall amount, species composition and canopy structure, and the availability of nutrients from 

atmospheric and rock weathering processes and exposure to acid precipitation. Throughfall inputs 

of Ca, Na, Mg, and Cl were significantly different among forest types. Although statistically not 

significant for some of the nutrients, throughfall in Cupressus had the lowest fluxes of each 

nutrient compared to the natural forest and Eucalyptus, NH4–N was an exception. Eucalyptus was 

found to have relatively the highest throughfall input of Ca, Na, Mg, SO4–S and NO3–N 

compared to the natural forest, mainly due to high volume of water under the Eucalyptus 

plantation. The inputs of PO4–P and Cl were slightly highest under the natural forest compared to 

Eucalyptus, mainly resulting from high concentration.  

 

Total annual throughfall input can be arranged in the following order: K > Cl > Na > Ca > SO4–S 

>Mg > NO3–N > NH4–N > PO4–P (Table D5). Net throughfall nutrient inputs result from a 

combination of dry deposition wash-off plus leaching of intracellular solutes from leaves and 

branches (Parker, 1983). Net throughfall data for K, Cl, Ca and Mg indicated leaching of these 

nutrients from the canopy (Table D5). Although atmospheric deposition of K was lower than 

those of Ca and Cl, net throughfall K was higher than Ca and Cl in all forest types. According to 

common opinions, ions absorbed by the canopy such as NH4
+ and H+ could be the cause of ion 

exchange reactions and consequent leaching of K+, Ca2+ and Mg2+ from the plant tissues, 

potassium in particular. The magnitude of nutrient leaching varied from forest type to forest type. 

In general, leaching was lowest in Cupressus plantation and highest in the natural forest and 

Eucalyptus plantation with Ca and Mg in Eucalyptus and K and Cl in the natural forest being 

highest, suggesting that leaves are leached more than needles. 
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Table D6. Annual nutrient fluxes (kg ha–1yr–1) in rainfall (R) and throughfall (TF) in selected montane tropical forests. 
 
Location Altitude(m) R/TF Rainfall(mm) Ca Mg K Na Cl NH4–N NO3–N SO4–S PO4–P 
Puerto Rico1 425 R 3750 21.8 4.9 18.2 57.2 − − − − − 
  TF 2774 34.8 9.2 155 83.2 − − − − − 
Malaysia2 870 R 2700 4 1.2 4 − 23 2.5 5 24 0.1 
  TF − 12 7 23 − 59 8.5 10 43 0.11 
Panama3 1200 R 3510 27.9 4.1 13.5 63.5 34.5 − − 13.2 0.7 
  TF 2190 35.1 7.6 63.2 131.2 49.6 − − 6.1 2.2 
Jamaica4 1250-1310 R 2539 − − − − − − − − − 
  TF c.1270 21.6 1.2 68 − − 4.8 2.3 − 3 
Ecuador5 1900-2010 R 2193 3.9 7.1 3.7 19–20 12 2.6 3 − − 
  TF 943–1996 15–28 7.1–21 76–142 22 15–30 2.6–7.2 5.9–12 − − 
New Guinea6 2450 R 3800 3.6 1.3 7.3 − − − − − 0.5 
  TF 2585 22.6 12.2 78.4 − − − − − 3 
Colombia7 2550 R 2115 10.1 3.2 7.9 24.1 19.4 18.3 − 26.2 0.72 
  TF 1854 27.1 10.7 95.2 26.9 36.3 21.5 − 40.9 1.67 
Tanzania8 2300 R 2220–2405 2.3 0.9 7.5 6.2 − 3.05 2.85 − − 
  TF 1695–1705 3.5 2 35 11 − 3.3 0.85 − − 
 
Sources: 1Veneklaas (1990);  2Bruijnzeel et al. (1993); 3Cavelier et al. (1997); 4McDonald and Healey (2000); 5Wilcke et al. (2001); 
6Edwards (1982); 7Veneklaas (1991); 8 Schrumpf (2004).  
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The data in net throughfall NH4–N, Na, SO4–S, NO3–N and PO4–P fluxes (Table D5) indicate 

absorption by the canopies of all forest types. The magnitude of absorption was different for the 

different nutrients; highest for Na in Cupressus plantation (1.62 kg ha–1yr–1) and natural forest 

(1.66 kg ha–1yr–1) and NH4–N (1.06 kg ha–1yr–1) in Eucalyptus plantation and lowest for PO4–P 

(range 0.12 to 0.15 kg ha–1yr–1). The annual amount of NH4–N taken up by the natural forest and 

Eucalyptus plantation was slightly higher than that by the Cupressus plantation and was higher 

by about 5 times in Eucalyptus plantation, 4 times in the natural forest and 3 times in Cupressus 

plantation than NO3–N uptake. The fact that NH4–N was more readily assimilated or sorbed than 

NO3–N was observed by Emmett et al. (1998) in N addition experiments with NaNO3 and 

NH4NO3 where the ecosystem demand for NH4
+ continued after NO3

– leaching had occurred. 

Eucalyptus and Cupressus trees had slightly higher PO4–P uptake compared to the natural forest. 

The amounts of SO4–S and Na taken up were higher in the natural and Cupressus forests 

compared to Eucalyptus. Nitrate N was taken up in larger quantity by Cupressus than by the 

other two forest types (Table D5). Foliar uptake has been reported for N (Parker, 1983; Cavelier 

et al., 1997) and PO4–P and occasionally for Ca and SO4–S (Parker, 1983). In many instances 

foliar interaction with SO4–S and Na is believed to be negligible, however, evidences to support 

the theory of SO4–S (Mahendrappa, 1990; Cavelier et al., 1997) and Na (Moreno et al., 2001; 

Wilcke et al., 2001) absorptions by canopies are reported. Nutrient enrichment in throughfall 

relative to rainfall was higher for K and Mg as shown by high enrichment factors (Table D5).  

 

Nutrient fluxes varied considerably from season to season and were highest during the wet season 

(Table D7). This can be attributed to higher rainfall volume or intensity although concentrations 

of most elements tended to be higher in the dry season (Table D4). This seasonal pattern of 

variation in fluxes indicated that except for the few relatively high-volume dry season rain events, 
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throughfall in dry season is not likely to provide a major nutrient source via root uptake for 

overstorey tree species. Shallow-rooted understorey vegetation probably periodically utilise wet-

deposited nutrients following dry season rain events of sufficient magnitude to infiltrate the upper 

rooting zone. Contrary, higher rainfall intensity or volume in the main rainy season may lead to 

nutrient losses in seepage and runoff. Increased deposition of nutrients from the dry season to the 

wet season was also reported elsewhere (Cavelier et al., 1997; Clark et al., 1998; Lilienfein and 

Wilcke, 2004). Comparison of net throughfall fluxes among seasons indicated clear temporal 

patterns of canopy leaching and very different chemical speciation associated with biological 

uptake (Fig. D1). As with total throughfall input, net throughfall inputs of nutrients were higher 

during the rainy season. Ammonium–N and PO4–P were taken up in larger quantity during the 

small rainy season by all forest types, while Na, SO4–S and NO3–N were mainly taken up during 

the main rainy season. Calcium in Cupressus and natural forest indicated intermediate behaviour: 

a tendency towards absorption during the main rainy season and canopy leaching during the dry 

and small rainy seasons (Fig. D1). A similar behaviour was also observed for NO3–N in 

Eucalyptus and the natural forest. 
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Table D7. Seasonal variability in nutrient fluxes (kg ha –1 season –1) in rainfall and throughfall of the three forest types. 
______________________________________________________________________________________________________________________ 
               Season Ca  Cl  K  Mg  Na  NH4−N NO3−N PO4−P         SO4−S 
______________________________________________________________________________________________________________________ 
Rainfall DS 0.24B  0.24BC 0.11A  0.02A  0.37C  0.26A  0.16A  0.03A          0.20BC          
   (0.01)  (0.01)  (0.04)  (0.04)  (0.07)  (0.05)  (0.01)  (0.02)         (0.02) 
  RS1 0.33B  0.55B  0.46A  0.03A  0.95B  0.62A  0.21A  0.10A         0.43B 
   (0.01)  (0.01)  (0.17)  (0.01)  (0.09)  (0.42)  (0.02)  (0.08)         (0.02) 
  RS2 1.20A  1.16A  0.24A  0.03A  2.47A  0.37A  0.44A  0.05A         3.53A 
   (0.05)  (0.03)  (0.09)  (0.01)  (0.07)  (0.15)  (0.15)  (0.02)         0.02) 
Natural forest DS 0.31c  0.56ef  1.44*bc 0.16cd  0.22a  0.09a  0.13a  0.02a         0.13a 
   (0.04)  (0.11)  (0.45)  (0.03)  (0.02)  (0.03)  (0.02)  (0.01)         (0.00) 
  RS1 0.82*b  1.49*abc 3.70*a  0.34*bc 0.53*a  0.09a  0.23a  0.03a         0.33a 
   (0.14)  (0.11)  (0.66)  (0.04)  (0.14)  (0.00)  (0.05)  (0.01)         (0.06) 
  RS2 1.16b  1.86*ab 4.15*a  0.48*b  1.39*a  0.05a  0.19a  0.01a         0.69*a 
   (0.08)  (0.27)  (0.92)  (0.08)  (0.17)  (0.01)  (0.06)  (0.00)         (0.06) 
Eucalyptus DS 0.30c  0.58*def 0.76c  0.08d  0.35a  0.08a  0.17a  0.01a         0.16a 
   (0.01)  (0.02)  (0.24)  (0.00)  (0.05)  (0.01)  (0.01)  (0.00)           (0.03) 
  RS1 0.96*b  1.19*cde 3.30*ab 0.31*bc 0.70a  0.07a  0.23a  0.01a          0.36a 
   (0.18)  (0.13)  (0.85)  (0.06)  (0.14)  (0.02)  (0.04)  (0.01)          (0.06) 
  RS2 3.12*a  1.99*a  4.93*a  0.84*a  2.18a  0.04a  0.21a  0.01a          0.87*a 
   (0.16)  (0.05)  (0.61)  (0.07)  (0.31)  (0.01)  (0.06)  (0.01)          (0.06) 
Cupressus DS 0.27c  0.36f  0.78*c  0.07*d  0.13*a  0.05a  0.04a  0.003a          0.11a 
   (0.02)  (0.02)  (0.09)  (0.01)  (0.03)  (0.02)  (0.01)  (0.00)          (0.01) 
  RS1 0.70*bc 1.30*bc 1.48*bc 0.17*cd 0.53*a  0.11a  0.08a  0.01a          0.30a 
   (0.06)  (0.28)  (0.22)  (0.01)  (0.08)  (0.04)  (0.02)  (0.01)          (0.05) 
  RS2 1.16b  1.22bcd 1.76*bc 0.28*bcd 1.51*a  0.28a  0.11a  0.01a          0.77*a 
   (0.04)  (0.15)  (0.21)  (0.02)  (0.02)  (0.14)  (0.05)  (0.01)          (0.04) 
______________________________________________________________________________________________________________________ 
 
Means followed by the same lower case letters in a column are not different among forest types for each season (P<0.05). Rainfall values followed 
by the same upper case letters in a column are not different (P<0.05).  Values followed by * in each forest type are different (P<0.05) from the 
corresponding values in rainfall. DS: dry season, RS1: small rainy season, RS2: main rainy season. Numbers in parentheses are standard errors 
(n=3).
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Fig. D1. Seasonal variations in net throughfall nutrient fluxes (kg ha–1season–1) in the three 
forest types. DS-dry season; RS1-small rainy season; RS2-main rainy season. 
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4. Conclusions 
 
The results of this study showed that the natural forest and Cupressus plantation canopies 

intercepted large proportion of the total annual rainfall compared to the Eucalyptus plantation 

canopy. Most of the potential acidity in rainfall was neutralized by Na and Ca resulting in a 

weakly acidic pH. Nutrients such as K, Ca, Cl and Mg were leached from the canopy of each 

forest type making throughfall more alkaline than rainfall, in agreement with most of the 

literature. Nitrogen, phosphorous and sulphur were absorbed from atmospheric sources by the 

canopy of each forest type suggesting that these nutrients are limiting in the study area. 

Throughfall characteristics and the magnitude of the nutrient fluxes in throughfall are highly 

dependent upon crown density and species. The inputs of large proportion of rain water under 

Eucalyptus resulted in a proportionally higher nutrient fluxes followed by the natural forest. 

In general, except for K and Mg raifall seems to contribute in an important way to the annual 

nutrient demand for growth of the forests studied. The within-canopy source of inputs for 

those with lower external deposition (mainly of K and Mg) appeared to be one way that the 

forest stands recycle needed nutrients. The information from this study will be useful to 

establish nutrient input and output budgets of the different forest ecosystems. However, 

additional information is needed on the relationship between above-ground nutrient return 

pathways and below-ground processes such as soil chemical and biological processes, and 

nutrient mobility, particularly in monoculture plantation systems, where overall sustainability 

is often debated.  
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Abstract 
 
A large portion of the nutrient stocks in forest ecosystems may be preserved in the organic 

layer. The rate at which the accumulated nutrients are released and transferred to the different 

compartments of the ecosystem for recycling is of prime significance to forest productivity. 

The dynamics of nutrients in water passing through the forest floors of two plantation forests 

(Cupressus lusitanica and Eucalyptus globulus) and an adjacent natural forest were 

monitored over a one year period at Munesa, south-eastern Ethiopia. The results showed that, 

in all forest types, after K, Ca and Cl were the most abundant nutrients leached from the 

forest floor to the mineral soil. The concentration of PO4–P was the least of all the nutrients 

analysed followed by NH4–N. The concentration of NO3–N in the natural forest was about 10 

times higher than that of NH4–N, but 8 and 3 times higher than that of NH4–N under 

Eucalyptus and Cupressus, respectively. The lower NH4–N concentration relative to NO3–N 

was probably a result of nitrification, vegetation uptake, adsorption or assimilation by 

microbes. No significant differences in concentrations of most of the nutrients were observed 

among forest types. Magnesium and NO3–N were significantly higher under the natural 

forest and Eucalyptus than under Cupressus. The low C/N ratios in the forest floors of 

Eucalyptus and natural forest might have triggered nitrification in comparison to Cupressus 

which had high C/N ratio in the organic layer. The concentration of K was higher under 

Eucalyptus than under the natural forest and Cupressus. Except for NH4–N, which was 

depleted in relation to throughfall in the natural forest, the concentrations of all other 

nutrients were enriched in litter leachate in relation to both rainfall and throughfall. However, 

with the exceptions of NO3–N in all forest types, Ca under Cupressus and PO4–P under 
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Cupressus and Eucalyptus, all measured nutrient fluxes from the forest floor to the mineral 

soil decreased in relation to throughfall fluxes. Generally, the results show that despite the 

differences in tree species composition among the forest types the organic layer acted as a 

sink for most of the nutrients. 

Key words: Cupressus, Eucalyptus, Forest floor leachate, Ethiopia 
 
1. Introduction 
 
The organic layer in forest ecosystems plays a key role in soil development, carbon and 

nutrient cycling, runoff control, moisture retention, and is often the medium in which fine root 

development occurs with priority (Wells and Davey, 1966). A large portion of the nutrient 

stocks in forest ecosystems may be preserved in the organic layer (Wells and Davey, 1966; 

Youngberg, 1966). The rate at which the accumulated nutrients are released and transferred to 

the different compartments of the ecosystem for recycling is of prime significance to forest 

productivity (Youngberg, 1966). Organic matter decomposition is a key process in the turnover 

and cycling of nutrients held in the organic layer of forest ecosystems. Numerous factors 

including forest type and composition are known to affect the decomposition processes of 

organic matter.  

 
Modifications of forest floor properties that parallel changes in the forest cover/composition 

are mainly related to microclimate and the quality of the organic material (Berg et al., 1993). 

Of the various factors related to the quality of litter, the importance of nitrogen and phosphorus 

contents (Vogt et al., 1986), C/N ratio (Berg et al., 1998; Kurka et al., 2000) and lignin content 

(Johansson et al., 1995) have been emphasized. Species composition affects the quantity of 

litterfall (Ashagrie et al., 2003) and root litter (Helmisaari, 1995), stand structure also affects 

the amount of solar radiation (Zhang and Zark, 1995) and of precipitation reaching the soil 

(Mahendrappa, 1990), all of which affect decomposition and consequently nutrient transport to 

the mineral soil. One of the factors controlling the rate of decomposition of organic matter is 
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the availability of readily soluble carbon by throughfall and stemflow, a ready source of 

carbohydrates for decomposers (Mahendrappa, 1990). Nutrients released in the forest floor by 

mineralization may be directly assimilated by roots or partly leached into the mineral soil, 

together with nutrients deposited by throughfall. It is likely that variation in the quantity of 

water passing the forest floor and root density in the organic layer influence these processes 

with consequent effects on nutrient leaching to the mineral soil. The objective of this study was 

to monitor the dynamics of nutrients in water as it passes through the forest floors of the 

different forest ecosystems growing under comparable site conditions.  

 
2. Materials and methods 
 
2.1. Study site 
 
The study was conducted in the Munesa/Shashemene forest (7°34´N and 38°53´E) located on 

the eastern escarpment of the central Ethiopian rift valley, 240 km south-east of Addis Ababa. 

The study site is characterised by a sub-humid tropical climate with a mean annual rainfall of 

1250 mm and mean annual temperature of 19 °C (Solomon et al., 2002). Rainfall is bimodal, 

most of it falling in July and August. The soils of the study area are classified as Nitisols 

(FAO, 1997). They are well drained, reddish brown in colour and characterised by increasing 

clay contents with increasing soil depth (49 − 50% clay in the A horizon;   63 − 74% clay in 

the Bt2 horizon). CEC varies between 37− 51 cmolc kg−1 soil in the A horizon. The physical 

and chemical properties of the organic layers under the three forest types are presented in Table 

E1. Plantations with Cupressus lusitanica and Eucalyptus globulus, and an adjacent natural 

forest were selected for this study. The forest plantations were established in 1980 after 

clearing of part of the natural forest. Clearing was done manually and the aboveground 

biomass was burned on site. The natural forest was dominated by old-growth Podocarpus 

falcatus trees and is regarded as a montane tropical forest. Tree density was 672 trees ha–1, 

diameter at breast height (dbh) was 29 cm and height was 18–20 m for Cupressus. There was 
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almost no ground vegetation under Cupressus. The Eucalyptus plantation was sparsely stocked 

with 595 trees ha−1 and had a native understorey canopy tree (Croton macrostachys) and 

shrubs, notably Acanthopale pubescens, Achyrospermum schimperi, Bothriocline schimperi, 

Carex spicato-paniculata, Hypoestes forskaolli. The ground layer was covered with dense 

grass and broad-leaved herbaceous species. The mean height of Eucalyptus was 30−40 m and 

dbh was 19−39 cm.  

   
2.2. Equipment and sampling 
 
In each forest type, three replicated (20x30 m) plots were randomly located. Within each plot, 

an area of about 20–25 m2 was fenced for the installation of equipment. Zero-tension 

lysimeters made of plastic boxes (0.15 x 0.15 m) were placed horizontally in the contact zone 

between the forest floor and the mineral soil to measure the amount of water percolating 

through the forest floor. Three boxes were used per plot. The boxes were connected to a 2 l 

bottle placed in a soil pit. To avoid any solid material entering the boxes and bottles, a fine 

wire mesh (0.5 mm) was attached to the upper part of each plate. Samples were taken from 

October 2001 to September 2002 on a weekly basis. After sampling, the solution was 

immediately transported to the storage facility and kept frozen until they were transported in a 

cool box to Germany for chemical analysis. Samples were filtered through pre-washed glass 

fiber filters (0.45 µm pore size). After filtration, the solution collected from the three 

lysimeters was proportionally combined by plot prior to chemical analysis, yielding one sample 

per sampling day.  
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Table E1. Chemical and physical properties of the organic layer under the three forest types. 
 
 
   thickness pH  C N S P C/N C/P N/P Ca Mg K   Na 
   /cm   ______ g kg–1_______    ______g kg–1_______  
_______________________________________________________________________________________________________________________ 
  
Natural forest  3.7  7.0 390 16 1.67 0.8 25 501 20 21 3.5  3.6 0.54  
 
Eucalyptus  2.8  6.3 387 17 1.7 1.13 26 450 16 23 3.20  4.26 0.63  
 
Cupressus  4.3  5.2 451 8.7 1.13 0.72 53 694 13 19 1.93 1.65 0.28  
_______________________________________________________________________________________________________________________
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2.3. Chemical analysis 
 
Samples were analysed for pH, total content of Ca, K, Mg, Na  (plasma emission 

spectroscopy, ICP-AES, Integra XMP), and NO3
–, NH4

+, PO4
3–, SO4

2–, Cl– (ion 

chromatography, Dionex 2000i-SP). Detection limits (mg l–1) were: 0.025 for NH4
+, 0.2 for 

Ca2+, Na+ and Mg2+, 0.25 for K+, 0.27 for Cl–, 0.34 for NO3
–, 0.28 for PO4

3– and 0.32 for 

SO4
2–.  

 
2.4. Calculations and statistical analysis 
 
Volume weighted concentrations were calculated for each season, i.e. dry season (DS) 

(October–January), small rainy season (RS1) (February–May) and main rainy season (RS2) 

(June–September).  Volume Weighted Mean Concentration of the i-nutrient (VWMCi) in 

forest floor leachate was estimated from the paired measurements of nutrient concentration 

and the volume of water flowing from the forest floor.  

   

  VWMCi   =∑
n
j=1 Cij . Lfj /∑

n
j=1  Lfi     (1) 

            
where Cij is the i-nutrient concentration in water collected on the j-collection day, Lf is the 

total water volume flowing through the forest floor and n is the total number of sampling 

dates. The seasonal fluxes of nutrients in forest floor leachate were calculated as the product 

of the VWMC of each nutrient and the cumulative water volumes measured for each season 

and summed to yield annual fluxes. Significance of differences among forest types of a given 

nutrient was assessed with two-way ANOVA using MSTAT-C statistical package. 

Correlation analysis was conducted between pairs of nutrients in forest floor leachate, and 

nutrient concentrations and forest floor leachate volume and pH. 
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3. Results and discussion 
 
3.1. Nutrient concentrations 
 
The mean annual nutrient concentrations in forest floor leachates of the three forest types are 

presented in Table E2. Nutrient concentrations in our study forests were generally higher 

than those reported for other montane tropical forests (Ecuador, Wilcke et al., 2001; 

Tanzania, Schrumpf, 2004), Pinus plantations in Brazil (Lilienfein et al., 2000, 2001) and 

from Eucalyptus plantations in Congo (Laclau et al., 2003a, b). Potassium and Mg 

concentrations in the higher altitudes of the Ecuadorian forests were somewhat equivalent to 

the values analysed in our study forests. In all three forest ecosystems under study, after K, 

Ca and Cl were the most abundant nutrients leached from the forest floor to the mineral soil. 

The concentration of PO4–P was the least of all the nutrients followed by NH4–N. The 

concentration of NO3–N was about 10, 8 and 3 times higher than that of NH4-N below the 

natural forest, Eucalyptus and Cupressus, respectively. The lower NH4–N concentration 

relative to NO3–N was probably a result of nitrification, vegetation uptake, adsorption (cation 

exchange) or assimilation by microbes.  

 
In all forest types, forest floor leachates were enriched in almost all nutrients in relation to 

both precipitation and throughfall. However, the pattern was tree species and nutrient specific. 

For example, NH4–N was depleted in relation to rainfall in all forest types and also in relation 

to throughfall in the natural forest. The total nutrient composition of forest floor leachates 

below Eucalyptus, Cupressus and natural forest were about 3, 2 and 1.58 times, respectively, 

those of throughfall with the proportional level enrichment following the order: NO3–

N>Ca>Mg>PO4–P>Cl>K≈Na>SO4–S under the natural forest, NO3–N> PO4–P>Mg>Ca > 

K>Cl> NH4–N >SO4–S>Na under Eucalyptus and NO3–N> Ca >PO4–P>Mg> Cl>K> Na 

>NH4–N >SO4–S under Cupressus. Forest floor leachates under the two plantations were 

more enriched relative to throughfall than under the natural forest. Nitrate-N was enriched by 
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325% under the natural forest, by 494% under Cupressus and by 514% under Eucalyptus. The 

increase in NO3–N concentrations in forest floor leachate, vis-à-vis throughfall, attests to 

considerable nitrifier activity. The results may also imply that nitrogen is not a limiting 

nutrient in our study site. It has been suggested that in the presence of abundant NH4–N or 

organic N, nitrate is rejected even by microorganisms as N source (Joergensen and Meyer, 

1990). Calcium enrichment ranged from 173% under the natural forest to 270% under 

Cupressus and Mg from 109% under the natural forest to 128% under Cupressus (Table E2). 

In forest soils, the forest floor horizons generally are characterised by intense microbial 

activity, high mineralization and accelerated nutrient release (Foster, 1985). Nutrient 

concentrations in forest floor leachates are not only affected by mineralization and plant 

uptake, but also by the amounts of water passing through the forest floor as a result of water 

uptake by roots and evaporation. Water flowing through the forest floor was higher under 

Eucalyptus than under the other two forest types (data not shown), but the lower amount of 

water under the natural forest and Cupressus did not cause a proportional increase in nutrient 

concentrations in the forest floor leachate probably due to root uptake and microbial 

immobilisation. Schrumpf (2004) in Tanzania also reported increased nutrient concentrations 

in forest floor leachates relative to throughfall with the exception of K which was lower than 

in throughfall. Tobon et al. (2004) and Laclau et al. (2003a, b) reported depletion of litter 

leachate nutrient concentrations relative to throughfall for Colombian Amazonia forests and 

Eucalyptus plantation in Congo, respectively. Wilcke et al. (2001) in Ecuador reported an 

increase in litter leachate Ca, Mg, NO3–N, Na and total S concentrations relative to 

throughfall. The results of the later authors were not consistent on NH4–N, K and total P 

concentrations. 
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Table E2. Volume weighted mean nutrient concentrations (mg l–1) and pH in forest floor leachates during the dry and two rainy seasons and mean 
annual solute concentration changes (CC) relative to throughfall (litter leachate minus throughfall). 
 
Forest/season Ca  K  Mg  Na   Cl  NH4–N NO3–N SO4–S PO4–P  pH 
Natural forest           
DS 19.0 (2.3) 43.1 (11) 6.72 (1.0) 3.36 (0.3) 21.0 (3.0) 0.97 (0.5) 9.28 (1.0) 2.74 (0.1) 0.87 (0.4) 7.1 (0.3) 
RS1 11.8 (1.7) 28.5 (2.4) 4.14 (0.4) 5.57 (1.9) 11.7 (1.0) 0.87 (0.2) 7.28 (0.5) 2.60 (0.2) 0.41 (0.1) 7.1 (0.2) 
RS2 9.67 (2.2) 8.96 (0.3) 3.07 (0.6) 5.74 (0.3) 4.25 (0.4) 0.18 (0.02) 2.97 (0.5) 2.59 (0.1) 0.06 (0.04) 7.1 (0.5) 
Mean 13.5 (1.8) 26.8 b(5.9) 4.65 a(0.6) 4.89 (0.7) 12.3 (2.6) 0.67(0.2) 6.51a(1.0) 2.64 (0.1) 0.45 (0.2) 7.1 (0.4) 
CC 8.56 5.60 2.42 1.00 3.65 −0.22 4.98 0.38 0.17 -0.7 
Eucalyptus           
DS 12.7 (0.4) 42.3 (7.6) 3.44 (0.1) 5.76 (0.4) 16.7 (2.4) 0.46 (0.1) 5.67 (0.9) 2.51 (0.1) 0.44 (0.06) 6.0 (0.1) 
RS1 19.6 (5.7) 54.7 (17) 5.78 (1.7) 6.92 (1.8) 27.2 (8.0) 1.48 (0.6) 9.44 (3.5) 3.93 (0.8) 0.55 (0.07) 6.9 (0.5) 
RS2 6.71 (0.2) 8.36 (1.5) 1.82 (0.1) 5.30 (0.3) 4.80 (0.5) 0.19 (0.0) 1.10 (0.1) 2.27 (0.2) 0.02 (0.02) 6.5 (0.2) 
Mean 13.0 (2.5) 35.1 a(8.8) 3.68 a(6.0) 6.00 (0.6) 16.2 (4.0) 0.71 (0.3) 5.40 a(1.6) 2.90 (0.4) 0.33 (0.08) 6.6 (0.2) 
CC 9.21 16.5 3.45 1.32 7.34 0.26 5.45 1.01 0.38 0.07 
Cupressus           
DS 20.1 (3.3) 21.2 (1.9) 3.07 (0.4) 4.08 (1.5) 17.3 (1.8) 2.08 (0.5) 2.45 (1.0) 2.70 (0.8) 0.26 (0.12) 7.0 (0.5) 
RS1 16.5 (2.3) 23.1 (1.6) 2.66 (0.2) 4.50 (0.6) 15.2 (0.9) 0.89 (0.3) 2.58 (1.1) 2.73 (0.4) 0.26 (0.1) 7.1 (0.2) 
RS2 10.3 (0.4) 7.94 (0.7) 1.88 (0.1) 6.86 (0.4) 4.87 (0.5) 0.55 (0.0) 4.42 (0.7) 3.30 (0.3) 0.15 (0.03) 7.2 (0.4) 
Mean 16.7 (1.8) 17.4 c(2.5) 2.53 b(0.29 5.15 (2.0) 12.5 (2.0) 1.17 (0.3) 3.15 b(0.6) 2.91 (0.3) 0.22 (0.05) 7.1 (0.3) 
CC 12.2 7.00 1.42 1.76 6.06 0.34 2.62 0.81 0.16 0 
Tanzania1 0.8 1.4 0.3 0.8 − 0.3 0.9 − − − 
Colombia2 0.1−0.2 0.2−0.3 0.06−0.1 0.25−0.3 0.2−0.4 0.2−0.30 0.15−0.2 0.6−0.9 0.004−0.01  
Congo3 0.32 0.12 0.30 1.00 0.74 0.10 0.05 0.35 0.09 4.3 
Ecuador4 2.3−8 4−28 1.4−5 1.3−1.5 0.83−4.4 0.25−0.71 0.6−5.7 − − 4.8−7 
Brazil5 0.1−0.3 0.2−1.3 0.03−0.13 0.26−2.25 − 0.97 0.75 − − − 
 
DS-dry season, RS1-small rainy season, RS2-main rainy season. 
Source : 1Schrumpf (2004), 2Tobon et al. (2004), 3Laclau et al. (2003a, b), 4Wilcke et al. (2001); 5Lilienfein et al. (2000, 2001).  
In a column means followed by the same lower case letters are not different. Values in parentheses are standard errors (n=3). 
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The pH of the forest floor leachate under the natural forest and Eucalyptus was lower by a 

unit of 0.7 in comparison to that in throughfall, while pH in the Cupressus plantation forest 

floor leachate remained unchanged. In forest soils acids are produced in many ways (Ulrich, 

1980; Nilsson et al., 1982). For example, H ions are excreted from tree roots in response to 

cation uptake or organic acids are released from decomposing plant litter. Microbial 

mineralization of N and S in soil can also lead to SO4 and NO3 formation by acid producing 

reactions (Foster, 1985). 

 
Table E3. Correlation matrices between litter leachate volume and nutrient concentrations in 
the organic layers of the three forest types.  
___________________________________________________________________________ 
Water  
volume  Ca Mg K Na Cl NH4–N      NO3–N PO4–P          SO4–S 
___________________________________________________________________________ 
Overall 0.38* ns ns ns ns ns     0.32* 0.36*  ns 
Natural forest 0.85**0.81**0.74* ns 0.89***ns     0.85** ns  ns 
Eucalyptus ns ns ns ns ns ns     ns  ns  ns 
Cupressus ns ns ns ns ns ns     ns  ns  ns 
___________________________________________________________________________ 
 
*** P<0.001; ** P<0.01; * P<0.05; ns-not significant.  
 
Water passing through the forest floors of the ecosystems under study did not differ in 

concentration of most nutrients except for K, Mg and NO3–N (Table E2). Also, the interaction 

of forest type by season was not significant for any of the nutrients. Nitrate–N and Mg were 

significantly highest under the natural forest and lowest under Cupressus. Potassium was 

highest under Eucalyptus and lowest under Cupressus, while Mg and NO3–N were slightly 

but not significantly higher below the natural forest than below Eucalyptus. Whereas, 

although statistically not significant, NH4–N was slightly higher under Cupressus in 

comparison with the other two forest types, indicating lacking ammonium uptake or absence 

of an active nitrifying community. The low C/N ratios in the forest floors of Eucalyptus and 

natural forest might have triggered nitrification in comparison to Cupressus which had high 

C/N ratio in the organic layer (Table E1). Soils with C/N ratios >25-30 and low nutrient 
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concentrations are reported to be poor-nitrifying (Gundersen and Rasmussen, 1990; 

Gundersen et al., 1998).  
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Fig.E1. Monthly precipitation (a) and examples of the monthly patterns of nutrient 
concentrations in forest floor leachates below the natural forest (b), Eucalyptus plantation (c) 
and Cupressus plantation (d).   
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Fig. E1. Continued. Natural forest (e), Eucalyptus plantation (f) and Cupressus plantation (g).  
 

Nearly no significant correlations between nutrient concentrations and forest floor leachate 

volume were observed; only in the natural forest Ca, Mg, K, Cl and NO3–N revealed a 

positive significant relationship with the water volume (Table E3). None of the correlations 

between nutrient pairs, and nutrients and pH were significant in either of the forest types. The 

seasonal patterns of nutrient concentrations (Table E2) in the different forest types were 

variable. In the natural forest, except for Na which showed an increasing trend from the dry 
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season to the wet season, all other nutrients decreased sharply from the dry season to the wet 

season with increasing rainfall amount and intensity. In the Eucalyptus plantation, nutrient 

concentrations were highest in the small rainy season and least in the main rainy season. This 

could be due to a lag in nutrient leaching during the dry season when low-volume intermittent 

rains reach the forest floor to permit mineralization but being insufficient to percolate 

vertically and transport nutrients to the mineral soil before the small rainy season. Stand 

density of the Eucalyptus plantation was very low compared to the other two forest types and 

consequently there had been throughfall water even during small rain events when there was 

no water under the other two forest types.  In Cupressus plantation, the trend followed that of 

the natural forest except for K, NO3–N, and SO4–S, for which the concentrations were higher 

in the small rainy season compared to the dry season. The monthly nutrient dynamics 

(Fig.1b–g) show a clear variation among the different months; high concentrations during the 

dormant period (dry and small rainy season) and low concentrations during the vegetative 

period (main rainy season) probably due to high nutrient uptake by roots.   

 
3.2. Nutrient fluxes  
 
Nutrient fluxes to the mineral soil were not significantly different among forest types, but 

were slightly higher under Eucalyptus than below the other two forest types (Table E4). In 

general, large fluxes were observed for K, Ca, Cl, Na and NO3–N. Measured nutrient exports 

to the mineral soil decreased in relation to throughfall fluxes for most of the nutrients 

indicating that nutrients deposited from throughfall as well as those released from 

decomposition are effectively taken up by plant roots or are immobilised. The nutrients that 

decreased most were K≈NH4–N> Cl> SO4–S in the natural forest, Na>SO4–S>Mg>K in the 

Eucalyptus plantation and NH4–N > SO4–S>Na>Ca in the Cupressus plantation. Nitrate–N 

exports from the forest floor exceeded the inputs via throughfall by about 161% under 

Cupressus and 70% under the natural forest and Eucalyptus (Table D5 & Table E4).  
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Table E4. Seasonal nutrient fluxes (kg ha–1 season–1) from the forest floor to the mineral soil 

under natural forest and below Eucalyptus and Cupressus in south-eastern Ethiopia. 

 
Forest/Season Ca  K  Mg  Na  Cl  NH4–N NO3–N SO4–S PO4–P 
Natural forest          
DS 0.32 

(0.12)
0.72 
(0.45) 

0.11 
(0.06)

0.06 
(0.01)

0.35 
(0.17)

0.02 
(0.01) 

0.15 
(0.06) 

0.05 
(0.01) 

0.01 
(0.001)

RS1 0.77 
(0.04)

1.85 
(0.14) 

0.27 
(0.00)

0.36 
(0.14)

0.76 
(0.03)

0.06 
(0.01) 

0.47 
(0.05) 

0.17 
(0.03) 

0.03 
(0.00) 

RS2 0.96 
(0.15)

0.89 
(0.05) 

0.31 
(0.04)

0.57 
(0.05)

0.42 
(0.02)

0.02 
(0.00) 

0.30 
(0.04) 

0.26 
(0.02) 

0.01 
(0.00) 

Total 2.05 3.46 0.69 0.99 1.53 0.09 0.92 0.47 0.05 
Eucalyptus          
DS 0.50 

(0.04)
1.68 
(0.31) 

0.14 
(0.02)

0.23 
(0.02)

0.66 
(0.09)

0.02 
(0.00) 

0.23 
(0.02) 

0.10 
(0.00) 

0.02 
(0.00) 

RS1 1.46 
(0.54)

4.07 
(1.56) 

0.43 
(0.16)

0.51 
(0.17)

2.02 
(0.82)

0.11 
(0.06) 

0.70 
(0.30) 

0.29 
(0.08) 

0.04 
(0.01) 

RS2 0.68 
(0.13)

0.85 
(0.20) 

0.18 
(0.04)

0.54 
(0.10)

0.49 
(0.10)

0.02 
(0.00) 

0.11 
(0.01) 

0.23 
(0.04) 

0.002 
(0.00) 

Total 2.64 6.60 0.75 1.28 3.17 0.15 1.04 0.62 0.06 
Cupressus          
DS 0.48 

(0.10)
0.50 
(0.16) 

0.07 
(0.02)

0.10 
(0.02)

0.41 
(0.10)

0.05 
(0.02) 

0.06 
(0.01) 

0.06 
(0.01) 

0.01 
(0.00) 

RS1 1.40 
(0.29)

1.96 
(0.66) 

0.23 
(0.06)

0.38 
(0.06)

1.29 
(0.37)

0.08 
(0.06) 

0.22 
(0.02) 

0.23 
(0.05) 

0.02 
(0.00) 

RS2 0.98 
(0.33)

0.75 
(0.27) 

0.18 
(0.06)

0.65 
(0.02)

0.46 
(0.18)

0.05 
(0.02) 

0.42 
(0.1) 

0.31 
(0.09) 

0.01 
(0.00) 

Total 2.86 3.21 0.48 1.13 2.16 0.18 0.60 0.60 0.04 
 
DS-dry season, RS1-small rainy season, RS2-main rainy season. Values in parentheses are 
standard errors (n=3). 
 

Calcium and PO4–P exports by leaching out of the Cupressus forest floor were 34% and 33% 

higher than the corresponding throughfall inputs; below Eucalyptus as high as 50% more 

PO4–P was exported in comparison to the input by throughfall.  The temporal patterns in 

fluxes appeared to be nutrient and tree species specific. In the Eucalyptus plantation, except 

for Na which increased sharply from the dry season to the wet season, the fluxes of all other 

nutrients were highest in the small rainy season and least in the dry season. In the natural 

forest and in the Cupressus plantation, the seasonal changes in nutrient fluxes showed the 

following: Ca, Mg, Na and SO4–S in the natural forest and Na, NO3–N and SO4–S in the 
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Cupressus plantation increased with increasing rainfall amount and intensity, while the fluxes 

of the other nutrients followed the trend below Eucalyptus.  

 

4. Conclusion 

The results of this study showed that in general differences in the forest cover did not 

influence the concentration of most nutrients in forest floor leachates. However, Mg and NO3-

N concentrations below Cupressus were significantly lower than under Eucalyptus and under 

the natural forest. The concentration of K was significantly higher below Eucalyptus than 

below the natural forest and Cupressus. In all forest types, K was the most abundant nutrient 

followed by Ca and Cl, while PO4-P followed by NH4-N was the least. Almost all of the 

nutrients in the forest floor leachates of the three forest types were enriched in relation to 

throughfall, being even higher in the two plantations. Calcium, Mg, NO3–N and PO4–P were 

the most enriched. Nearly no significant correlations between nutrient concentrations and 

forest floor leachate volume were observed in the two plantation forest ecosystems, while in 

the natural forest some significant correlations were evident. The annual flux of K was larger 

than any other nutrient. Measured nutrient exports to the mineral soil decreased in relation to 

throughfall fluxes for most of the nutrients. The nutrients that decreased most were SO4–S, 

Na, K, Cl and NH4–N. However, the export of NO3–N from the forest floor exceeded the 

inputs via throughfall by about 161% under Cupressus and 70% under the natural forest and 

Eucalyptus. Overall, the results show that despite differences in tree species composition 

among the three forest types, the organic layer in all forest types acted as a sink for most of 

the nutrients deposited by throughfall and being released by the decomposition of organic 

matter.  
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Abstract 
 
The dynamics of nutrients in water passing through the mineral soils under two exotic tree 

species plantations (Cupressus lusitanica and Eucalyptus globulus) and an adjacent 

Podocarpus falcatus dominated natural forest were examined during the main rainy season 

(June–September) in 2002 at Munesa, south-eastern Ethiopia. The soil solutions collected 

from the different stands were dominated by Ca, NO3–N and Na in Cupressus plantation and 

by Na and Cl in the natural forest and by Ca in Eucalyptus plantation. The vertical patterns in 

median nutrient concentrations showed a decreasing trend for most of the nutrients under the 

natural forest and Eucalyptus plantation. The concentrations of Cl and Na in all forest types 

and Ca, Mg and NO3–N below Cupressus increased with increasing soil depth. Nutrient 

concentrations showed a great variation between Cupressus on the one side, and the natural 

forest and Eucalyptus plantation on the other side, especially with respect to Ca, Mg and 

NO3–N concentrations. The concentrations of Ca,  Mg and NO3–N below Cupressus were 7, 

3.4 and 17 times higher than under the natural forest  and 2, 2.4 and 4 times higher under 

Eucalyptus, suggesting that these nutrients under Cupressus are in excess of tree and 

microbial requirements. These variations among stands were mainly due to large differences 

in the subsoil (1 m soil depth) concentrations. The concentrations of Ca, Mg and NO3–N at 1 

m soil depth under the natural forest were 8, 7 and 23 times lower than under Cupressus. The 

corresponding figures under Eucalyptus were 3, 4 and 81 times lower than under Cupressus. 

These results suggest relatively tight nutrient cycling in the natural forest and Eucalyptus 

plantation. Potassium, Na, NH4–N and SO4–S concentrations were similar among the three 
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forest types. Overall, ecosystem-specific patterns of vegetation composition and associated 

demand for nutrients appear to control nutrient concentrations and rates of nutrient leaching in 

the forest ecosystems under study.  

 
Key words: Cupressus, Ethiopia, Eucalyptus, nutrient leaching, plantation, soil solution  
 
 
1. Introduction 
 
In the last few decades large areas of forest plantations (ca. 200,000 ha), predominantly exotic 

species (Eucalyptus spp., Cupressus lusitanica and Pinus spp.) have been established in 

Ethiopia to satisfy the growing wood demands of the population and to rehabilitate degraded 

lands (EFAP, 1994).  Also the fast growing nature of exotic species and favourable economic 

returns from forest plantations have encouraged the conversion of slow growing and low 

productive secondary natural forests into plantations. The conversion of natural forest 

ecosystems into monoculture plantations can change the nutrient cycling processes through 

changes in species composition. Changes in forest species composition influence the overall 

nutrient cycling owing to differential patterns among plant species in litter production and 

turnover and nutrient accumulation (Gosz, 1981; Lugo, 1992; Ashagrie et al., 2003), rooting 

(Alban, 1982) and canopy geometry and area (Mahendrappa,1990). Previous investigations on 

the effects of forest plantations on soil properties in Ethiopia have focused on changes to solid 

phase soil properties (Michelsen et al., 1993; Ashagrie et al., 2003; Lemenih et al., 2004). 

These studies generally indicate that the changes in soil properties after plantation 

establishment are species specific. However, up to know it remains unknown, how sustainable 

such forest plantations are? 

 
Soil solution chemistry, which is an important aspect in studying nutrient cycling in forest 

ecosystems, is only beginning to be investigated in Ethiopia. In contrast to bulk soil 

properties, which typically react slowly on changes in land-use, soil solution chemistry is 
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often a sensitive indicator of biogeochemical processes in forests, responding quickly to 

various changes and may provide an early indication of the long-term changes in soils 

associated with land use changes (Ranger et al., 2001; McDowell et al., 2004). Studies of 

solute concentrations and fluxes through forest ecosystems have been conducted mainly in 

North America (Likens et al., 1977) and Europe (Gundersen et al., 1998; de Vries et al., 

2003). The chemistry of soil solution can change as it passes down through the soil profiles 

(Tokuchi et al., 1993). These changes reflect the biological and chemical processes which 

occur through the movement of soil solution within the soil. The objective of this work was to 

assess whether ecosystem-specific differences lead to differences in rates of nutrient retention 

and leaching at Munesa, south eastern Ethiopia. 

 
2. Materials and methods 
 
2.1. Study area  
 
The study was conducted in the Munesa/Shashemene forest (7°34´N and 38°53´E) located 

some 240 km south east of Addis Ababa. The altitude of the study site is 2400 m. 

Precipitation is bimodal most of it falling in July and August. Mean annual precipitation and 

mean annual temperature of the study area are 1250 mm and 19 °C, respectively. The 

experimental design was set up in three stands situated side by side: an old growth 

Podocarpus falcatus dominated natural forest, and two exotic tree species plantations 

(Eucalyptus globulus and Cupressus lusitanica) established in 1980 after clearing of part of 

the natural forest. Within each forest type three replicated plots (20x30 m) were randomly 

located. The Eucalyptus plantation was sparsely stocked with 595 trees ha−1 and had native 

understorey canopy tree (Croton macrostachys) and shrubs notably Acanthopale pubescens, 

Achyrospermum schimperi, Bothriocline schimperi, Carex spicato-paniculata, Hypoestes 

forskaolli. The ground layer was covered with dense grass and broad-leaved herbaceous 

species. The mean height of Eucalyptus was 30−40 m and mean diameter at breast height 
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(dbh) was 19−39 cm. The Cupressus plantation had a relatively dense standing stock (672 

trees ha−1) with almost no ground vegetation. The mean height of Cupressus was 18–20 m 

and dbh was 29 cm. Soil properties under the two plantations prior to their establishment were 

assumed to be similar to those under the natural forest. The soils of the study area were 

classified as Nitisols (FAO, 1997). Some selected chemical and physical properties of the 

soils under the three forest types are presented in Tables F1&F2.  

 
2.2. Field equipment and soil solution sampling 
 
In each of the nine plots an area of 20x30 m was fenced at the centre and porous cup ceramic 

tension lysimeters and tensiometers were installed at three depths (0.2, 0.5 and 1 m below soil 

surface). Tensiometers were placed approximately 0.5 m away from the suction lysimeters. In 

total three lysimeters and tensiometers were placed per depth. The three suction cups per 

depth and in each plot were connected to one collecting bottle. Lysimeters and tensiometers 

were installed in May 2001 and solution samples retrieved during the main rainy season (June 

to September 2001) were discarded to allow ions on the exchange surfaces of the ceramic to 

equilibrate with the soil solution. In 2002 solution samples were taken only during the main 

rainy season when water inputs exceeded soil water storage capacity and evapotranspiration. 

Sampling of soil solution was done every week by applying vacuum produced by vacuum 

pumps based on the tensiometer readings at each soil depth. After each collection, the 

collector bottles were washed with deionized water or with a portion of the sample water. On 

each sampling day, water samples were transported to the storage facility and kept frozen 

until they were transported in a cool box to Germany for chemical analysis. Samples were 

filtered through 0.45 μm glass fibre filters (Schleicher & Schuell) before analysis. 

 
2.3. Chemical analysis 
 
Soil organic C, N and S concentrations were determined using a CHNS−analyzer (Vario EL, 

Elementar Analysensysteme, GmbH, Hanau, Germany). Cation exchange capacity (CEC) was 
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determined with 1 M NH4OAc (pH=7.0) following the procedure of Hendershot et al., 

(1993). Dithionite−citrate−bicarbonate extractable aluminium and iron (Ald, Fed) and 

oxalate-extractable aluminium and iron (Alo, Feo) were determined according to Ross and 

Wang (1993).  
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Table F1.  Some chemical and physical properties of the soils under the studied forests.  
____________________________________________________________________________________________________________ 
            CEC  Ald Fed    Al0    Fe0 Ca K Mg Na sand     silt    clay 
    cmolc kg–1 soil ___________________________________________________________________ 
Horizons   Depth pHKCl (1M NH4 OAc)                       g kg–1 soil             
       (cm) 
____________________________________________________________________________________________________________ 
Natural Forest   
A 0−15           5.4     51.1  3.7 43    3.4   9.1   5.4 0.59 0.91 0.01 200     300    500     
AB 15−29             5.3    32.8  4.6 55    4.5   7.6    0.5 0.25 0.29 nd 230     230    540 
Bt1 29−68           4.7     30.6  4.7 58    4.5   7.2   0.2 0.23 0.19 0.01 80     180    740 
Bt2 68−108 4.5     29.2  4.1 57    3.9   6.2   0.03 0.25 0.12 0.06 80     180     740 
Eucalyptus plantation  
A 0−10  5.3     37.2  3.8 43    3.5   8.6   4.3 0.71 0.53 0.02 140   370    490     
AB 10−27            5.1     31.1  3.9 46    2.8   7.3   1.8 0.74 0.38 0.02 140   300    560 
Bt1 27−69            4.8     34.2  3.6 51    2.6   6.7   1.8  0.34 0.27 0.03 100   240    660 
Bt2 69−106+         4.7     32.2  3.5 53    2.4   6.2   1.9 0.32 0.29 0.01 100   170    730 
Cupressus  plantation 
A 0−25            5.6    36.7  4.1 48    3.1   10   3.3  0.53 0.56 0.01 90   270      640 
AB 25−41            5.1    33.9  4.3 55    3.0   9.4    3.3 0.67 0.50 nd 140   360    500 
Bt1 41−81            4.8     32.5  4.4 58    3.3   7.4    3.0 0.69 0.47 nd 60   170    770 
Bt2 81−105+         4.6     31.7  4.9 59    3.6   6.0    2.8 0.37 0.45 nd 60   310    630 
_________________________________________________________________________________________________________________ 
Ald and Fed: Dithionite−citrate−bicarbonate extractable aluminium and iron. 
Alo and Feo: Oxalate-extractable aluminium and iron. 
nd: not detectable  
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Table F2. SOC, N and S concentrations (g kg –1) and C/N ratios at different soil depths under the 
three forest types. 
___________________________________________________________________________ 
 
   0–20  20–40  40–70  70–100 
___________________________________________________________________________ 
Natural forest 
SOC   61.3  32.3  28.8  17.4 
TN   5.2  2.1  2.4  1.7 
TS   0.6     0.4    0.4  0.2        
C/N   12  11  11  9 
Cupressus 
SOC   65.2  20.9  17.0  16.1 
TN   6.5  2.1  1.8  1.7 
TS   0.7     0.2     0.2     0.2    
C/N   10  10  9  9 
Eucalyptus 
SOC   59.3  27.7  17.0  12.9 
TN   3.5  2.7  1.8  1.8 
TS   0.6  0.5  0.3  0.3 
C/N   9  9  9  9 
___________________________________________________________________________ 
SOC: soil organic carbon; TN: total nitrogen; TS: total sulphur 

 

Total contents of Ca, K, Mg, Na were determined by plasma emission spectroscopy, ICP-AES, 

Integra XMP, Cl–, NO3
–, NH4

+, PO4
3–, SO4

2– by ion chromatography, Dionex 2000i-SP and pH 

(Orion U402-S7). Detection limits (mg l–1) were: 0.025 for NH4
+, 0.2 for Ca2+, Na+ and Mg2+, 

0.25 for K+, 0.27 for Cl–, 0.34 for NO3
–, 0.28 for PO4

3– and 0.32 for SO4
2–.  

 
2.4. Data analysis 
 
Random missing values occurred throughout the study due to variations in water input and 

evapotranspiration under the different stands, variations in micro relief of the different plots 

within a stand, and equipment failure. In addition, too little sample water volume in some plots 

did not allow measurement of all elements. Furthermore, the concentration data for each element 

was generally highly variable. Therefore, statistical analysis based on mean values can not be 

justified; instead median values were used.  
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3. Results and discussion 
 
Table F3 informs about the ranges of minimum and maximum values for pH and nutrient 

concentrations at different soil depths. The concentration of PO4–P was generally below the 

detection limit in all the three forest types.  Phosphate is relatively insoluble and readily fixed by 

soil colloids (Brady and Weil, 1999). Potassium and NH4–N were also often below the detection 

limit in almost all forest types. Similar results have been reported by Lilienfein et al. (2001) in 

Brazilian Oxisols under Cerrado and Pinus plantation. Magnesium and NO3–N under the natural 

forest and Eucalyptus plantation at all depths, and NO3–N below Cupressus at 0.5 m depth had 

minimum values less than one. Low concentrations of K, Mg and NH4–N and NO3–N in soil 

solutions probably can be attributed to the high biological demand for these nutrients in the 

forests under study. The median mean concentrations of nutrients (Table F4) in the soil solution 

below the studied forests were in the order: Na>Cl>Ca>SO4–S>Mg>NO3–N>K>NH4–N under 

the natural forest, Na>Ca> SO4–S>Cl>Mg> NO3–N>K> NH4–N under Eucalyptus and NO3–

N>Ca>Na>Cl>Mg>SO4–S>K> NH4–N under Cupressus.  

 

With the exceptions of Mg, Na and NO3–N at all depths under Cupressus, Na at all depths and 

SO4–S at 0.2 m depth below Eucalyptus, and Na and SO4–S at the 0.2 m depth under the natural 

forest which increased in relation to those in the forest floor leachate, the concentrations of all 

other elements decreased in relation to the concentrations in the forest floor leachate (Paper E). 

Of the nutrients, especially K, Mg, NH4–N and PO4–P decreased to a great degree, indicating root 

uptake and adsorption by the exchange complex. Decreases in nutrient concentration from the 

organic layer to the mineral soils were more pronounced under the natural forest and Eucalyptus 

than under Cupressus. An increase of the Mg concentration in the mineral soil solution down to 2 

m and of the NO3–N concentration down to 1.2 m soil depth relative to forest floor lecheate 
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under Pinus plantation were also reported by Lilienfein et al. (2000, 2001). The later authors 

reported a decrease in forest floor lecheate Ca, K, Na and NH4–N concentrations in relation to the 

concentrations in the mineral soil. Laclau et al. (2003) in Congo described an increase in NH4–N, 

NO3–N and SO4–S concentrations and a decrease in Ca, K, Mg, Na and PO4–P concentrations in 

the forest floor  leachate in relation to the concentrations in the mineral soil under Eucalyptus 

plantation. Schrumpf (2004) observed a decrease in Ca, K, Mg, Na and NH4–N concentrations 

and an increase in NO3–N concentration in the mineral soil solution in relation to the forest floor 

leachate below a tropical montane forest at south-west exposed slopes of Mount Kilimanjaro. 

Below the natural forest and Eucalyptus, mineral soil solution pH was higher than the forest floor 

leachate at all depths while under Cupressus the reverse holds true except at 1 m depth where the 

mineral soil solution had higher pH value than the forest floor leachate. Increased pH values at 

different soil depths in relation to the forest floor have been reported by Laclau et al. (2003). 
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Table F3. Ranges of nutrient concentrations (mg l–1) and pH in soil solution at different soil 
depths under the three forest types.  
__________________________________________________________________________________________ 
     
Element depth  Natural forest Eucalyptus Cupressus 
  (m) 
___________________________________________________________________________ 
 
pH  0.2  6–8.3  6.6–7.6 5.7–7.7 
  0.5  6.6–7.8 6.9–8.3 5.2–7.2 
  1.0  6.9–7.7 6.7–8.3 6.7–7.7 
 
Ca  0.2  1.6–24.5 3.9–20.3 8.4–49.3 

0.5  1.0–2.8 2.1–11.5 3.8–16.2 
  1.0  1.8–7.7 1.9–5.0 11.1–16.2 
 
Cl  0.2  2.0–9.4 1.3–8.8 2.0–6.3 
  0.5  2.0–6.5  0.8–8.7 2.4–11.8 
  1.0  2.9–9.5 1.7–5.3 2.8–9.2 
 
K  0.2  nd–8.5  0.4–11.5 1.2–17.2 
  0.5  nd–3.4  nd–29.6 nd–5.7 
  1.0  2.4–20.2 nd–3.9  nd–0.4 
 
Mg  0.2  1.1–7.3 0.9–6.4 3.1–16.6 
  0.5  0.6–3.0 0.4–4.1 2.3–5.9 
  1.0  0.6–3.0 0.6–1.5 4.0–5.5 
 
Na  0.2  4.2–6.6 5.0–8.8  5.1–8.7 
  0.5  3.4–8.8 2.4–7.9 4.1–7.5 
  1.0  2.1–6.3 5.1–13.5 5.6–10.4 
 
NH4–N 0.2  nd–0.7  nd–0.1  nd–0.6  
  0.5  nd–0.4  nd–0.4  nd–0.1 
  1.0  nd–0.1  nd–0.1  nd–0.1 
 
NO3–N 0.2  0.2–1.5 0.3–3.8 10.6–58.5 
  0.5  0–1.6  0.9–11.5 0.1–21.5 
  1.0  0.5–1.1 nd–3.9  8.6–15.9 
 
SO4–S  0.2  1.7–4.0 2.5–5.4 1.9–5.8 
  0.5  2.0–3.7 1.0–3.9 1.7–3.7 
  1.0  0.8–3.0 1.8–4.6 1–2.3 
___________________________________________________________________________ 
 
nd: not detected 
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Table F4. Median nutrient concentrations (mg l–1) and pH at different soil depths under the three 
forest types. 
______________________________________________________________________ 
Element Depth  Natural forest Eucalyptus Cupressus 
  (m) 
_______________________________________________________________________ 
 
pH  0.2  7.2  7.1  6.7 
  0.5  7.2  7.0  6.6 
  1.0  7.2  7.3  7.3 
Mean    7.2  7.1  6.9 
Ca  0.2  3.41  9.99  12.5  
  0.5  3.27  4.60  9.35  
  1.0  1.62  3.84  12.8  
Mean    2.77  5.81  11.6 
Cl  0.2  2.75  1.99  2.87 
  0.5  3.94  2.27  6.77 
  1.0  5.76  2.52  6.96 
Mean    4.15  2.26  5.53 
K  0.2  1.13  2.01  4.49  
  0.5  nd  1.36  nd  
  1.0  nd  0.42  nd  
Mean    0.38  1.26  1.50 
Mg  0.2  2.20  3.19  5.02   

0.5  1.18  1.31  3.74  
  1.0  0.65  1.12  4.76  
Mean    1.34  1.87  4.51 
Na  0.2  5.33  6.18  5.92  
  0.5  4.71  6.60  6.16  
  1.0  4.73  6.81  7.14  
Mean    4.92  6.53  6.41 
NH4–N 0.2  0.08  0.03  0.08  
  0.5  0.03  0.03  0.03  
  1.0  0.03  nd  0.04  
Mean    0.05  0.02  0.05 
NO3–N 0.2  1.05  4.17  17.7 
  0.5  0.78  1.05  9.28 
  1.0  0.57  0.16  12.9 
Mean    0.8  1.79  13.3 
SO4–S  0.2  3.45  3.83  2.87 
  0.5  2.26  2.46  2.62 
  1.0  1.70  2.45  1.40 
Mean    2.47  2.91  2.30 
___________________________________________________________________________ 
 
nd: not detected 
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The vertical patterns of the median K, NH4–N and SO4–S concentrations in soil solution below 

all forest types and median Ca, Mg and NO3–N concentrations under Eucalyptus plantation and 

the natural forest decreased steadily with increasing soil depth, presumably due to adsorption by 

the soil colloid or to plant and microbial uptake (Table F4). In contrast, under the Cupressus 

plantation, the concentrations of Ca, Mg and NO3–N decreased from 0.2 m depth to 0.5 m depth 

and then increased at the depth of 1 m. This pattern appears to follow the root distribution and 

concurrent nutrient uptake as the roots of Cupressus are confined to the surface 0.5 m (Ashagrie, 

pers. observation). Whereas, increased concentrations of these nutrients at the depth of 1 m 

indicates losses by leaching. The degrees of Ca and NO3–N leaching were higher than that of Mg 

leaching (Table F4). Nitrate is a very mobile anion in the soil and its adsorption is small and, if 

not taken up by plants or microflora, leaching occurs during periods of excess precipitation 

(Gundersen and Rasmussen, 1995; Rasmussen, 1998).  

 

Increased concentrations of Ca and Mg in the subsoil (1 m depth) under Cupressus can be 

attributed to the combination of increased anion availability for leaching, increased H+ generated 

from nitrification displacing cations on exchange sites, and/or limited plant uptake (Foster, 1985). 

The increase in Cl and Na concentrations with depth (Table F4) may indicate that these nutrients 

are mobile and biotic demand for them is low. In a similar study in Tanzania, Schrumpf (2004) 

reported a decrease in mean Ca, Mg, Na, NO3–N concentrations with depth. Her results show no 

clear trend in the K and NH4–N concentrations with increasing soil depth. Lilienfein et al. (2000, 

2001) reported an increase in Ca, K, Mg and Na concentrations between 0.3 and 2 m mineral soil 

depth under Cerrado vegetation and Pinus plantation and an increase in NO3–N concentration 

under Pinus but a slight decrease under Cerrado.  An increase in Ca, Mg and NO3–N 

concentrations and a decrease in K and SO4–S concentrations with increasing soil depth have also 
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been reported in a coniferous forest in Japan (Tokuchi et al., 1993). The pH of the soil solution 

below the natural forest under study was the same at all depths, but was slightly different at 

different depths under the two plantations (Table F4). 

 

In each forest type, regardless of soil depth, there were statistically significant correlations 

between the major nutrient elements (Table F5). In the Eucalyptus plantation, SO4–S and Ca, Mg 

and Na correlated significantly. Very few significant correlations were observed between other 

nutrients, and Cl and NO3–N. In the natural forest and Cupressus plantation, most of the metal 

elements were correlated with Cl, NO3–N and SO4–S, but the relationships with NO3–N in the 

natural forest and Cl in Cupressus were negative.  The positive significant correlations between 

metallic elements and Cl, NO3–N and SO4–S indicate that cations were moved with the chloride, 

nitrate and sulphate anions. In Cupressus plantation, most of the correlations between elements 

were stronger than below the natural forest and Eucalyptus. The correlations between metallic 

elements and NO3–N were stronger than the correlations with SO4–S and Cl. The correlations 

between sulphate and cations were generally weaker than between nitrate and cations (Ranger et 

al., 2001). Correlations between nutrient concentrations and pH were not significant under 

Cupressus and Eucalyptus while below the natural forest few significant correlations were 

observed.  

 
Median mean nutrient concentrations among forest types (Table F4) generally showed 

differences in nutrient retention capacity of the different forest ecosystems. Overall, the 

variations in median mean nutrient concentrations were higher between Cupressus on the one 

hand and the natural forest and Eucalyptus plantation on the other than between the later two. 
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Table  F5. Correlation matrices between nutrient concentrations, and between nutrient 
concentrations and pH.   
___________________________________________________________________________ 

Ca Cl K Mg Na NH4–N  NO3–N      SO4–S pH 
___________________________________________________________________________ 
 
Natural forest 
 
Ca  – ns ns 0.93* ns 0.37*  -0.46** 0.39* 0.31* 
Cl  – – 0.34* ns 0.31* ns  -0.37*  ns ns 
K  – – – ns ns ns  ns  -0.31* ns 
Mg  – – – – 0.34* 0.40*  -0.53*  0.51* 0.29* 
Na  – – – – – ns  -0.44** 0.56* ns 
NH4–N – – – – – –  ns  0.42* 0.39* 
NO3–N – – – – – –  –  -0.28* 0.36* 
SO4–S  – – – – – –  –  – ns 
pH  – – – – – –  –  – – 
 
Eucalyptus 
 
Ca  – ns ns 0.94* ns ns  ns  0.59** ns 
Cl  – – 0.64* ns ns 0.41*  ns  0.31** ns 
K  – – – ns ns 0.73*  ns  ns ns 
Mg  – – – – ns ns  ns  0.60** ns 
Na  – – – – – ns  ns  0.59** ns 
NH4–N – – – – – –  0.31*  ns ns 
NO3–N – – – – – –  –  ns ns 
SO4–S  – – – – – –  –  – ns 
pH  – – – – – –  –  – – 
 
Cupressus 
 
Ca  – -0.42* 0.81* 0.98** ns 0.37*  0.96*** 0.64* ns 
Cl  – – -0.53* -0.39* ns ns  -0.49*  ns ns 
K  – – – 0.81* ns 0.60**  0.85**  0.72* ns 
Mg  – – – – ns 0.36*  0.98**  0.62* ns 
Na  – – – – – ns  ns  ns ns 
NH4–N – – – – – –  0.42*  0.44* ns 
NO3–N – – – – – –  –  0.63** ns 
SO4–S  – – – – – –  –  – ns 
pH  – – – – – –  –  – – 
___________________________________________________________________________ 
 
*** P<0.001; ** P<0.01; * P<0.05; ns-not significant.  
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Median mean Ca and NO3–N concentrations under Cupressus were, respectively, 4 and 17 times 

higher than those below the natural forest, whereas under Eucalyptus the corresponding 

concentrations were 2 and 7 times lower than under Cupressus. Magnesium concentrations under 

Eucalyptus and the natural forest were 2.4 and 3.4 times less than those under Cupressus 

plantation. The concentration of Cl below Eucalyptus was about 2 times less than that under 

Cupressus and the natural forest. The higher Ca, Mg and NO3–N concentrations in the soil 

solution under Cupressus relative to the other two forest types may indicate that these nutrients 

were in excess of tree and microbial requirements. In contrast, in the natural forest and 

Eucalyptus plantation, lower concentrations of the above nutrients could be associated with the 

species composition and its nutrients demand and uptake. Denitrification is not considered to be 

of importance in this well drained soil. Decreases in solute concentrations could also be due to 

dilution of nutrient concentrations in soil solution. However, the volume of water in the mineral 

soil as collected by the suction cups was highest under Cupressus at any depth in comparison to 

the other two forest types, except at the depth of 0.5 m where the water volume was highest under 

the natural forest (data not shown).  

 

Much of the observed differences in median mean Ca, Mg and NO3–N concentrations were 

attributed to the large differences in the subsoil (1 m depth) concentrations. The concentrations of 

Ca, Mg and NO3–N at 1 m depth were 3, 4 and 81 times higher, respectively, under Cupressus 

than under Eucalyptus; the corresponding concentrations under the natural forest were 8, 7 and 23 

times lower than under Cupressus (Table F4). The lower median Ca, Mg and NO3–N 

concentrations under the natural forest and Eucalyptus plantation relative to Cupressus can be 

explained by the presence of diverse plant species with different rooting zones which serve as 

safety-net by intercepting/capturing nutrients at different soil depths within the profile (Schroth et 
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al., 1999). In a 15N tracer study made by Fischer (2004) in the same experimental plots large 

proportion of 15N applied at the surface (0 m soil depth) under Cupressus was found in the deeper 

soil layer (0.3–0.6 m) confirming that heavy leaching had occurred in the Cupressus plantation.  

 

Differential responses of soil solution nutrient concentrations to forest management and species 

have been reported (Callesen et al., 1999; De Schrijver et al., 2000; Lilienfein et al., 2000; 2001; 

Laclau et al., 2003). Nutrients in the soil solution where vegetation is poorly distributed or 

lacking may be potentially lost by leaching (Titus et al., 1997; Iseman et al., 1999). The later 

authors reported low nutrient leaching in a clear cut harvested plot colonized with an early 

successional species compared to the same clear cut plot where the density of an early 

successional species was low.  Although the variations were not as pronounced as with that of 

Cupressus, the natural forest had about 2 times lower median mean Ca and NO3–N 

concentrations as compared with those below Eucalyptus. The concentrations of K, Na, NH4–N 

and SO4–S were almost similar among the forest types. The median mean pH value under 

Cupressus was lowest compared to the natural forest and Eucalyptus (Table F4). 

 

The temporal trends of the nutrient concentrations at any one depth were small within a given 

forest type (data not shown), but for some of the nutrients there seem to be a slight increase 

towards the end of the rainy season (Figs.F1–3). The concentrations of Ca, Mg and NO3–N at any 

one time and depth usually were higher below the Cupressus plantation than below the other two 

forest types. Similar results have been observed by Lilienfein et al. (2001) in NO3–N and total 

dissolved N concentrations under Pinus plantation relative to the native Cerrado growing on 

Oxisols in central Brazilian. No clear variations in Ca, Mg and NO3–N concentrations were seen 

between Eucalyptus and the natural forest, particularly at the depth of 0.2 and 1 m (Figs.F1–3). 
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At the 0.5 m depth, however, concentrations appear to be higher under Eucalyptus plantation than 

under the natural forest.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 183  



 

0

10

20

30
C

a
Cupressus
Eucalyptus
Natural forest

 

0

2

4

6

8

10

M
g

 

0
5

10
15
20
25
30
35

20
.06

.20
02

27
.06

.20
02

04
.07

.20
02

11
.07

.20
02

18
.07

.20
02

25
.07

.20
02

01
.08

.20
02

08
.08

.20
02

15
.08

.20
02

22
.08

.20
02

29
.08

.20
02

05
.09

.20
02

12
.09

.20
02

19
.09

.20
02

26
.09

.20
02

03
.10

.20
02

N
O

3-
N

 
 
Fig. F1. Temporal trends in Ca, Mg and NO3–N concentrations (mg l –1) in the soil solution at 0.2 
m soil depth under the three forest types.  
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Fig. F2. Temporal trends in Ca, Mg and NO3–N concentrations (mg l –1) in the soil solution at 0.5 
m soil depth under the three forest types.  
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Fig. F3. Temporal trends in Ca, Mg and NO3–N concentrations (mg l –1) in the soil solution at 1 
m  soil depth under the three forest types.  
 
 
 
 
5. Conclusion  
 
The results showed that the nutrient concentrations in the mineral soil solution at Munesa 

responded differently to forest management and tree species. Ecosystem-specific patterns of 

vegetation composition and associated demand for nutrients appear to control nutrient dynamics. 

It was found that the soil solution under Cupressus plantation had higher Ca, Mg and NO3–N 

concentrations than under Eucalyptus plantation and the natural forest at any one depth. The low 

rates of nutrient leaching in the natural forest and Eucalyptus plantation relative to Cupressus, 
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probably resulted from high demand for nutrients due to the presence of diverse plant species 

with different rooting zones. The concentrations of Ca, Mg and NO3–N under Cupressus, and Na 

and Cl under all forest types appeared to increase with depth increments. The concentrations of 

K, NH4–N and SO4–S under all forest types, and Ca, Mg and NO3–N under the natural forest and 

Eucalyptus plantation decreased with depth increments. From the ecological point of view, the 

presence of cations and mineralised nitrogen in the soil solution of the subsoil is a sign of 

leaching, and may indicate that the site is not characterised by tight nutrient-cycling. The 

leaching of NO3
– and exchange of H+ produced by nitrification with basic cations, especially of 

Ca2+ and Mg2+ might be the cause for the leaching of these nutrients under Cupressus.  The fact 

that NO3–N and basic cations were leached from soils under Cupressus may be due to a high 

release of Ca, Mg and NO3–N periodically that probably exceeded the retention capacity of the 

system. Loss of basic cations from the Cupressus ecosystem may, in the short-term, reduce site 

fertility and contribute to the onset of nutrient deficiencies. However, the positive impacts of 

annual cycling of nutrients through uptake by roots, fine root turnover, above-ground litter 

deposition and atmospheric inputs act to maintain fertility of the soils. Weathering, one of the 

most poorly quantified components of nutrient budgets, also acts to counteract loss of cations 

from the system.  
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