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ABSTRACT

Sulfur-containing polymers are receiving increasing attention due to their unique material and chemical properties, yet access to functional variants remains limited.
To address this challenge, the ring-opening terpolymerisation (ROTERP) of phthalic thioanhydride (PTA), carbon disulfide (CS5), and a range of substituted epoxides
was investigated. Polymerisation of linear, branched, aromatic, fluorinated, ether-functionalized, and multi-functional epoxides was achieved, thus providing access
to a versatile range of sulfur-rich polymers bearing trithiocarbonate functionalities. Most systems exhibited moderate to high sequence selectivity for an alternating
poly(ester-alt-ester-alt-trithiocarbonate) terpolymer structure, with some incorporation of polymer links from the competing ring-opening copolymerisation
(ROCOP). The materials demonstrated moderate thermal stability under nitrogen (Tq59 up to 314 °C) and tunable glass transition temperatures (Tg ranging from
—20 to 163 °C). The trithiocarbonate groups incorporated along the main chain were employed for grafting the polymer chains to gold nanoparticle surfaces, yielding
colloidally stable agglomerates. Furthermore, aldehyde-bearing polymers enabled attachment of organic moieties to the polymer grafted-to the nanoparticles via
imine condensation, which could be selectively released under acidic conditions. Our study demonstrates the power of ROTERP as a synthetic platform to access a
broad catalogue of functional sulfur-containing polymers and nanomaterials from readily available epoxides.

1. Introduction

Sulfur-containing polymers offer distinct properties compared to
their all-oxygen analogues [1-7]. These include the ability to coordinate
metals, enhanced semi-crystallinity, improved depolymerisability, and
superior optical properties. Following early synthetic efforts via poly-
condensation reactions, various methodologies have recently emerged
that offer improved synthetic control. Among these, ring-opening
polymerization (ROP) of heterocycles — such as thiolactones, thio-
esters, and thiiranes — yields homopolymers, including polythioesters,
polythiocarbonates, and polythioethers (see Fig. 1(a)) [8-13]. In some
cases, the ROP of three- or four-membered heterocycles can be coupled
with the insertion of heteroallenes or cyclic anhydrides to generate
alternating copolymers, in a process known as ring-opening copoly-
merization (ROCOP). Sulfur-containing examples include carbon disul-
fide/epoxide ROCOP to form poly(thiocarbonates) and cyclic

thioanhydride/epoxide ROCOP to produce poly(ester-alt-thioester)s
(see Fig. 1(b)) [14-30]. Recently, we demonstrated alternating ring-
opening terpolymerization (ROTERP) of ternary monomer mixtures
comprising phthalic thioanhydride (PTA), CSo, and propylene oxide
(PO). Using a simple lithium catalyst—such as lithium benzyloxide
(LiOBn)—this process selectively forms poly(ester-alt-ester-alt-trithio-
carbonates) with up to 98 % selectivity, rather than the competing poly
(ester-alt-thioester) formation from PTA/PO ROCOP (see Fig. 1(c))
[31-33]. However, particularly at lower catalyst loadings, PTA/PO
ROCOP is also observed, leading to a more irregular microstructure
[34-38]. The poly(ester-alt-ester-alt-trithiocarbonate) links exhibit an
unusual regio selectivity, with ester groups adjacent to tertiary carbon
centres and trithiocarbonates adjacent to secondary carbon centres [39].
Despite this, the epoxide scope remained limited, and no further appli-
cations of these polymers had been investigated. Building on this, the
motivation of this work was twofold: Firstly, we identified a series of
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other monomer combinations that undergo ROTERP [40-42]. We hy-
pothesized that PTA/CS;/epoxide ROTERP should, in principle, provide
straightforward access to a wide range of sulfur-containing polymers,
leveraging the many epoxides developed for epoxide ROP [43-45]. In
testing this hypothesis, we demonstrate that a broad variety of polymer
structures—with tuneable thermal properties and functionalities—are
easily accessible via ROTERP. Secondly, we aimed to make use of the
dual functionality of trithiocarbonate moieties incorporated in the
polymer backbone on one hand and additional functional groups that
are introduced with the oxirane monomer on the other for the formation
of hybrid nanomaterials. We hypothesized that the trithiocarbonate
groups enable straightforward anchorage of the synthesized polymer
molecules to gold nanoparticle surfaces (Fig. 1(d)), while aldehyde
groups in the oxirane monomer would offer the possibility for dynamic
covalent chemistry, enabling the controlled release of a cargo from the
nanoparticulate support. Acid-promoted release of an organic dye from
the colloidal gold species and concomitant restoration of its fluorescence
served as a model scenario to test this possibility in this promising type
of hybrid nanomaterials proving that ROTERP polymers can be applied
in the functionalization of gold nanoparticles.

2. Results and discussion
To investigate whether PTA/CSy/epoxide ROTERP is compatible
with different epoxides and how sequence selectivity and polymer

properties are affected, we employed a range of epoxides (see Fig. 2)
under unified ROTERP conditions. For baseline comparison, butylene
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oxide (BO) and propylene oxide (PO)—used in our previous study-
—were also examined, albeit under different loading than previously
investigated [31].

Performing CSy/PTA/BO ROTERP (Table 1, run #1) using 1 eq.
lithium benzyloxide (LiOBn, generated in situ from Li[N(SiMe3),] and
BnOH), 500 eq. BO, 200 eq. PTA, and 500 eq. CS, at 80 °C for 2 h
resulted in 70 % PTA conversion. The polymer was isolated via pre-
cipitation from DCM/MeOH, and its microstructure, apparent molar
mass and molar-mass distribution, and the thermal properties were
evaluated (Fig. 3). The 1H NMR spectrum (Fig. 3(a)) confirms that the
polymeric product consists primarily of poly(ester-alt-ester-alt-trithio-
carbonate) links from the ROTERP process. These are indicated by two
aryl CH resonances from a symmetrically substituted aromatic unit at
7.60 and 7.45 ppm, connected to the tertiary CH at 5.27 ppm,; the CHy
group appears between 3.60 and 3.85 ppm. The CH resonance corre-
lates to quaternary aryl ester signals at 133 ppm in the 'H-'3C HMBC,
while the CH; resonances correlate to trithiocarbonate groups (see ESI
Figure S 8). Additionally, the 'H NMR spectrum reveals the presence of
thioester groups from co-occurring ROCOP, visible as minor aryl signals
from unsymmetrically substituted aromatic units and CHy resonances at
3.01 ppm, which correlate to quaternary thioester resonances at 191
ppm in the 'H-'3C HMBC spectrum. The sequence selectivity of the
ROTERP process versus co-occurring ROCOP, as determined per 'H
NMR (see ESI Section S2), is 86 %. The estimated uncertainty of these
values is +5 % based on repeated integrations of independent spectra
and signal overlap, as common for NMR methods.

Fig. 4(a) illustrates the proposed propagation mechanism for
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Fig. 1. Comparison of sulfur containing (a) ROP, (b) ROCOP and (c) ROTERP. (d) Outline of the current study.
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Fig. 2. Epoxides employed in this study.

ROTERP, while Fig. 4(b) shows the competing ROCOP pathway. Minor
amounts (2 % relative to epoxide consumption) of cyclic dithiocar-
bonate by-products were also detected, consistent with the side pathway
illustrated in Fig. 4(c).

Gel permeation chromatography (GPC) analysis of the polymer re-
veals an apparent weight-averaged molar mass of M,y = 58 kg/mol
(polystyrene calibration) and a polydispersity of » = 1.8. This poly-
dispersity is well above the expected value for a controlled chain-growth
polymerization, and accordingly, the molecular weight distribution is
unsymmetric. This suggests the occurrence of side reactions such as
chain transfer, chain-end coupling, and transesterification, which are
commonly observed during sulfur-containing ROCOP [14]. Previous
investigations on PTA/CSy/epoxide ROTERP revealed that the poly-
dispersities remained comparatively broad regardless of concentration,

catalyst loading, or temperature [31]. Although the molecular weight
increased linearly with conversion, resulting in some weight control, the
polydispersity broadened with conversion. For a detailed mechanistic
analysis, the reader is referred to our original contributions [31-33].

Differential scanning calorimetry (DSC) shows the material is
amorphous, with a glass transition temperature (Tg) of 20 °C. Ther-
mogravimetric analysis reveals a decomposition onset temperature
(T4,5%) of 236 °C. These results serve as a reference for the other epox-
ides investigated.

Switching to epoxides with other aliphatic chains (Table 1, runs #2
and #3) significantly affects thermal properties. Moving from PO to BO
and decyl oxide (DO) leads to a decrease in Tg to 20 °C and —20 °C,
respectively. As expected, sequence selectivity and molar masses
(normalized to conversion) remain comparable due to the chemical
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Table 1
Polymerizations investigated in this study.
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Run® Epoxide time Conv. [%]" Polymer select. [%]° Sequence select. [%)]¢ M,, [kg/mol]¢ p! Ty [°CI° Tasos [°C1'
#1 BO 3h 70 98 86 58 1.8 20 236
#2 PO 2h 86 95 87 80 2.1 48 230
#3 DO 19h 78 97 83 64 2 —20 258
#4 1BO 18h 82 79 94 58 1.8 23 209
#5 CHO 72h 20 96 75 7 1.8 115 233
#6 SO# 336 h 30 85 n. d. 3 1.5 37 211
#7 PGE 20h 99 79 84 25 1.9 37 250
#8 EGE 25h 92 97 79 26 1.6 9 241
#9 ECH 15h 90 92 91 24 1.9 54 209
#10 TMSE" 45 min 84 89 88 n. d. n. d. -15 255
#11 VGE 22h 82 92 53 11 1.7 81 256
#12 CE® 16 h 75 70 n. d. 35 1.3 136 269
#13 F-PO 20h 88 56 91 25 1.6 62 314
#14 F-PGE 5h 83 93 87 43 1.2 40 255
#15 F-SO® 384 h 40 90 n. d. 7 1.3 90 249

2 ROTERP conducted at 80 °C and with a loading of 1 eq. LiOBn: 500 eq Epoxide: 200 eq. PTA: 500 eq. CS,.
b Relative peak integrals of aromatic signals in the normalised '"H NMR spectrum (CDCls, 400 MHz) of the crude reaction mixture corresponding to polymer

resonances.

© Relative peak integrals of the CH signals in the normalised 'H NMR spectrum (CDCls, 400 MHz) of the crude reaction mixture corresponding to polymer resonances.

4 Relative peak integrals of the CH, signals in the normalised *H NMR spectrum (CDCls, 400 MHz) of polymer resonances corresponding to ROTERP links. “De-
termined by GPC (gel permeation chromatography) measurements conducted in THF on a system calibrated using narrowly dispersed polystyrene standards.

¢ Determined by differential scanning calorimetry (DSC) from a second heating curve at 10 K/min.

f Determined by thermogravimetric analysis (TGA).

8 Complete determination of selectivity not possible due to overlapping signals.

" Cross-linking from hydrolysis of —Si(OMe); groups preventing GPC.

()

CHCls

f
o 0 i/v o
o
gL
a n a* n
b

o]

7 5 S [ppm] 3 1
(b) (c) (d)
M, = 32 kg/mol 100+ Tys0,= 236 °C
M,, = 58 kg/mol
b=18 ]
g
T,=20°C 5 1
[
2
[}
2
©
o
T T T T T T T T T T T T T T O T T T 7
1 M [kg/mol] 1000 -40 T[°C] 140 100 T[°C] 800

Fig. 3. (a) H NMR (b) GPC, (c) DSC and (d) TGA data of precipitated polymer corresponding to table 1 run #1.

similarity of the monomers.

We next explored disubstituted epoxides, focusing on 1,2-dimethyl
epoxide (isobutylene oxide, IBO; run #4). Under analogous condi-
tions, ROTERP yielded 82 % PTA conversion after 18 h, affording a
polymer with 94 % sequence selectivity—higher than its mono-
substituted counterpart, PO. According to the ROTERP mechanism
(Fig. 3), this suggests that the alkoxide intermediate formed from IBO
ring-opening facilitates O/S exchange via back-biting, consistent with
prior reports in sulfur-containing ROCOP [17]. However, increased

formation of cyclic dithiocarbonate by-products reduced overall poly-
mer selectivity to 79 %. GPC analysis shows Mw = 58 kg/mol (D = 1.8).
As the epoxide contains no stereocenter, which could render the
resulting polymer atactic, it shows a semi-crystalline behavior with a T,
of 23 °C, melting temperature T;, of 110 °C (see ESI Figure S 23), similar
to recent polymers obtained from IBO, and a thermal decomposition
onset at 209 °C [46].

Cyclohexene oxide (CHO, run #5) was also included in the monomer
scope due to its potential to yield polymers with improved thermal
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Fig. 4. (a) PTA/CS,/Epoxide ROTERP propagation mechanism. During each cycle, the degree of polymerization indicated by the subscript n increases. (b) Co-

occurring side reactions.

properties, owing to its bicyclic structure. Consistent with this, ROTERP
with CHO gave a high T of 115 °C and a decomposition onset at 233 °C.
However, the polymerization efficiency was notably reduced, achieving
only 20 % PTA conversion after 72 h. GPC confirms the formation of
shorter polymers (M, = 7 kg/mol, P = 1.8), potentially due to a higher
concentration of diol impurities—an often-encountered issue with CHO
in ROCOP [47]. Attempts to obtain higher weight materials by adapting
the loading failed, which implies some limitation of the ROTERP pro-
cess. Sequence selectivity also dropped to 75 %, presumably due to steric
hindrance from the rigid cyclohexyl ring interfering with O/S exchange
via backbiting.

Next, we turned to styrene oxide (SO, entry #6), a challenging
epoxide in ROCOP. Due to SO’s aromatic substituent rendering the CH
position more prone to nucleophilic attack, ring-opening typically oc-
curs at both the CH; and CH positions, resulting in a loss of regiose-
lectivity [48]. In our case, slow polymerization occurred, reaching only
30 % PTA conversion after 14 days. 'H NMR spectroscopy confirms
regio-unselective polymerization, showing multiple broad and over-
lapping resonances. Due to this lack of regioselectivity, structural
determination of sequence selectivity wasn’t possible. 2D NMR analysis
confirms the formation of some ROTERP terpolymer links, with proton
signals in the 3.00-3.10 ppm range correlating to trithiocarbonate
groups at around 220 ppm. Nevertheless, significant thioester formation
is observed in the '3C NMR, indicating poor sequence selectivity. GPC
analysis shows a low apparent molar mass (M, = 3 kg/mol, p = 1.5),
suggesting poor polymerization control, likely due to transesterification
side reactions. DSC reveals the material is amorphous with a T; = 37 °C
and a decomposition onset at Tq 50, = 211 °C.

Phenyl glycidyl ether (PGE, run #7) achieved 99 % PTA conversion
after 20 h, yielding a polymer with 79 % polymer selectivity and 84 %
sequence selectivity. The polymer has an apparent M, = 25 kg/mol (b
= 1.9), Ty = 37 °C, and Tgs59 = 250 °C. Its aliphatic analogue, ethyl
glycidyl ether (EGE, run #8), improved polymer selectivity to 97 %,
albeit at the cost of reduced sequence selectivity (79 %). The resulting
amorphous polymer had an M, = 26 kg/mol (b = 1.6), T; = 9 °C, and
Tq,5% = 241 °C. These results show that glycidyl ethers—of which a wide
variety of versions with functional substituents exist (see below)—are
well tolerated in the ROTERP process.

Glycidyl ethers are synthesized from epichlorohydrin (ECH, run #9),
an epoxide with widespread industrial relevance. ECH reached 90 %

PTA conversion after 15 h, with 92 % polymer selectivity and 91 %
sequence selectivity, producing a polymer with M,y = 24 kg/mol (b =
1.9). DSC analysis tentatively supports the selectivity, showing a
distinct, unbroadened Ty at 54 °C, with no additional transitions indic-
ative of branching or cross-linking. This is somewhat surprising, as the
electrophilic RCH,Cl group in ECH and its polymers could be expected
to undergo Sy2 attack by the nucleophilic sulfur chain ends—an issue
observed in related polymerizations [49]. IH NMR reveals minor
sequence errors from co-occurring ROCOP, particularly signals between
3.55 and 3.47 ppm that correlate with a thioester carbon at 193 ppm in
the HMBC. Furthermore, the presence of RCH»Cl groups is confirmed via
HSQC correlation of the CH; resonance at 3.79 ppm with a 45 ppm
signal, typical of halogen-adjacent carbons. No polymer links from side
reactions of the chain end with the RCH,Cl groups could be observed.

Next, we investigated functional glycidyl ethers, beginning with (3-
glycidyloxypropyDtrimethoxysilane (TMSE, run #10), which bears silyl
functionality. After 45 min, the reaction viscosity increased drastically,
halting stirring. Crude 'H NMR analysis indicated 84 % PTA conversion,
89 % polymer selectivity, and 88 % sequence selectivity. The resulting
material had a T = 15 °C and Ty 59 = 255 °C. Moisture from ambient
humidity slowly hydrolyzes the methoxy groups to silanols (-Si-OH),
which undergo further condensation to form -Si-O-Si- linkages,
creating an insoluble network [50]. Consequently, GPC analysis was not
conducted to avoid instrument damage. However, the opportunity for
crosslinking after ROTERP was leveraged to form shape-defined sulfur-
containing silicones. A freshly precipitated polymer (from acidified
methanol) was cast in a cylindrical mold and left under benchtop con-
ditions for 3 days, followed by further storage in a humidified chamber
(a desiccator containing water) and subsequent drying. The result was a
cylindrical and brittle object. Gel fractions in DCM and THF, excellent
solvents for the parent linear polymer, are 99 % confirming crosslinking.
This procedure increased the T, from -15 °C to -8 °C, and Tq 59 from
255 °Cto 271 °C.

We then turned to vanillin glycidyl ether (VGE, run #11), synthe-
sized from vanillin and epichlorohydrin. Although VGE is solid at room
temperature, the ROTERP reaction temperature (80 °C) is above its
melting point, enabling homogeneous polymerization. VGE reached 82
% PTA conversion after 22 h, producing 92 % polymer selectivity but a
reduced sequence selectivity of 53 %. The 'H NMR spectrum confirms
that the aldehyde group remains intact, with a -CHO proton resonance
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at 9.66 ppm. Despite moderate sequence control, the polymer displays
favorable thermal properties (Tg = 81 °C, Ty 50, = 256 °C). However, its
relatively low molar mass (M, = 11 kg/mol) suggests limited control,
likely due to side reactions such as transesterification [51].

Next, we investigated a functionalized carbazole epoxide (CE, run
#12). Polymerization with PTA and CS; for 16 h gave 75 % PTA con-
version and 70 % polymer selectivity. The isolated polymer had an My,
= 35 kg/mol, b = 1.3, and exhibited an exceptional Ty = 163 °C (Tq,5%
= 269 °C), which may be attributed to n—n interactions between
carbazole units in the solid state.

Fluorinated monomers were also tested to evaluate their impact on
polymer sequence and properties, particularly since fluorination is
known to enhance thermal stability [52]. However, fluorinated ROCOP
polymers remain scarcely explored [53-55]. 1,1,1-Trifluoro-2,3-epoxy-
propane (F-PO, run #13) was employed and reached 88 % PTA con-
version, with a polymer selectivity of 56 %, and a molar mass of My, =
25 kg/mol (P = 1.6). DSC showed a T of 62 °C, while TGA recorded a
Tq,5% of 314 °C—the highest thermal stability among all tested mono-
mers. Compared to the non-fluorinated PO-based polymer, this reflects
an increase of over 80 °C in thermal stability, highlighting the sub-
stantial effect of fluorination while maintaining catalytic performance
and sequence selectivity. Phenylglycidylether with a C¢F5 moiety (2,3-
epoxypropyl pentafluorophenyl ether, F-PGE, run #14) reached 83 %
PTA conversion after 5 h, with 93 % polymer selectivity and 87 %
sequence selectivity. GPC analysis revealed a high M,, of 43 kg/mol,
nearly double that of the non-fluorinated PGE under similar conditions.
This increase may be attributed to inverse electron demand n—r stacking
interactions involving the fluorinated aromatic ring, a phenomenon
previously reported in ROCOP and potentially applicable here [54]. In
contrast, thermal properties were only slightly improved: DSC revealed
a Ty = 40 °C, and TGA showed T4;59 = 255 °C, comparable to PGE.
Fluorinated styrene oxide (2-(perfluorophenyl)oxirane, F-SO, run #15)
showed poor reactivity, reaching only 10 % PTA conversion after 15
days. Similar to non-fluorinated SO, regioselectivity was not controlled
due to regio-random epoxide ring-opening, making precise assessment
of sequence selectivity difficult. GPC showed a M, of 7 kg/mol. The
polymer exhibited Ty = 90 °C and Ty,504 = 249 °C, both notably higher
than the non-fluorinated counterpart. However, due to differences in
molar mass, these thermal improvements cannot be unambiguously
attributed to fluorination.

Finally, we explored difunctional bis-epoxides — an aliphatic version
(DEO) and aromatic bisphenol A diglycidyl ether (BAGE) — to deter-
mine whether ROTERP could directly yield crosslinked networks. Each
system was prepared using 1 equiv. LiOBn, 300 equiv. epoxide, 200
equiv. PTA, and 500 equiv. CSy, with epoxide loading adjusted for the
bifunctionality to encourage more uniform crosslinking. DEO yielded a
soft, solid material within 1 h. After repeated purification via extraction,
DSC revealed a Ty = -10 °C, and TGA a Tgsy = 230 °C. BAGE-based
polymer formed a stiffer material with a T, = 84 °C and a Tq =
270 °C. However, as expected, neither material was soluble or thermally
processable due to the crosslinked nature.

The ROTERP process introduces trithiocarbonate groups,
which—due to the chemically soft lone pairs of sulfur—can interact with
metals [56,57]. Moreover, it enables the incorporation of various
functional epoxides into sulfur-containing polymers, presenting oppor-
tunities to tether these functionalities onto metal surfaces. To demon-
strate this, gold nanoparticles (AuNPs) were functionalized with
polymer ligands using a grafting-to approach, exploiting the affinity of
trithiocarbonate groups for gold-nanoparticle surfaces (see ESI Section S
4) [58,59].

The polymer derived from vanillin glycidyl ether (VGE, run #11) was
selected due to the presence of aldehyde groups on the vanillin moiety,
which can participate in imine condensation. Prior to surface grafting,
imine condensation was carried out between Rhodamine 110 and the
polymer. This dye was selected as it can act as a fluorescent marker due
to the fact that AuNPs are known to quench the fluorescence of nearby

European Polymer Journal 241 (2025) 114373

dye molecules in a distance-dependent manner [60,61].

Dynamic light scattering (DLS) measurements showed a modest in-
crease in the hydrodynamic diameter of the AuNPs from 17 nm to 29
nm immediately after polymer grafting. This suggests the formation of a
polymer shell via “wrapping” by the VGE-derived ROTERP terpolymer,
which contains multiple trithiocarbonate groups along its main chain, as
previously demonstrated for comparable systems [62]. After purifica-
tion by centrifugation and re-dispersion, a further increase in hydro-
dynamic size to 139 nm was observed, indicating the formation of small
nanoparticle agglomerates. Consistent with this, visible extinction
spectroscopy revealed a pronounced red-shift of the plasmon resonance
(see Fig. 5). This behavior is attributed to plasmon coupling interactions
within the agglomerates which form during the performed purification
of nanohybrids by centrifugation/re-dispersion [63]. This is likely a
result of limited surface stabilization due to a relatively small polymer
molar mass, “looped” multidentate binding to the nanoparticle surface,
or a combination of both, leading to a comparably thin polymer shell
(compare with DLS results above). However, extinction spectra recorded
at various time points after purification showed no further shifts in the
plasmon peak, indicating that the aggregation process did not proceed
further, and a stable colloidal dispersion was obtained.

Imine functionalities are hydrolytically labile, enabling the potential
for acid-triggered dye release. This was evaluated by analyzing the
extinction spectra of the supernatant collected from functionalized
AuNP dispersions after acid treatment. Upon the addition of HCI,
extinction signals corresponding to Rhodamine were observed in the
supernatant. Quantitative analysis based on dye extinction yielded an
estimated released dye concentration of 0.7 uM. This corresponds to
approximately 0.2 molecules of Rhodamine 110 chloride per nm? of
nanoparticle surface area, calculated using a calibration curve obtained
in the same solvent system.

Consistent with the known quenching effect of AuNPs, no fluores-
cence was observed in the dye-polymer-AuNP conjugate. However,
fluorescence was restored upon acid addition, confirming dye release
(see Fig. 6). As a control, AuNPs functionalized with thiol-terminated
polystyrene pre-treated with Rhodamine in the same way showed no
detectable dye release under identical acidic conditions. This demon-
strates the system’s unique capability to function as an efficient, pH-
responsive nanoprobe.

3. Conclusions and Outlook

In conclusion, this study demonstrates the broad applicability of
ring-opening terpolymerisation (ROTERP) for the synthesis of functional
sulfur-containing polymers using a diverse range of epoxides. The
method provides access to polymers containing poly(ester-alt-ester-alt-
trithiocarbonate) linkages with tunable thermal and structural proper-
ties. From an environmental standpoint, the present synthetic route

AuNP
==—=AuNP+Pol. 1 h
AuNP+Pol. 6 h

Extinction [a.u.]

400 4 [nm] 700

Fig. 5. Visible extinction spectra of citrate capped AuNPs (black trace) and
polymer-functionalized AuNPs after 1 and 6 h (coloured traces) in a THF/DMF
solvent mixture.
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Fig. 6. (a) AuNP functionalisation and dye release methodology. (b) Fluores-
cence spectra of the AuNP solutions with polymer prior to and following
acid addition.

cannot be classified as “green.” The use of CS; and (halogenated) ep-
oxides limits its sustainability. Nevertheless, the modularity of the
ROTERP process and the wide commercial availability of its monomers
make it a flexible and accessible platform for developing sulfur-
containing polymers. However, side reactions are common and sub-
stantially impede the controllability of the methodology, particularly
with respect to molecular weight predictability and polydispersity.
These limitations are more pronounced for certain epoxides, resulting in
only modest molecular weights under practical conditions. Importantly,
the incorporation of sulfur centers enables downstream applications
such as gold nanoparticle surface functionalization with built-in pH-
responsive dye release. Overall, ROTERP represents a powerful and
modular tool for designing advanced polymeric and nanomaterial sys-
tems with tailored functionalities.

4. Safety considerations

Both carbon disulfide and epoxides (especially ECH) are highly
hazardous. These reagents are volatile, flammable, neurotoxic, sensi-
tizing, and suspected carcinogens. All operations involving these re-
agents were conducted in a well-ventilated fume hood using appropriate
personal protective gear. Reaction vessels were kept sealed under inert
atmosphere as long as possible to minimize vapor exposure. Liquid and
solid residues were quenched under basic conditions and collected in
appropriate waste streams according to institutional hazardous-waste
regulations.
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