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H I G H L I G H T S

• A quasi-2D mixture of Stockmayer dipolar and repulsive particles is analysed using large-scale Langevin dynamics simulations.

• The combined effects of area fraction, dipolar interactions, and out-of-plane magnetic fields on clustering and dynamics are quantified.

• Without induction, isolated particles show Gaussian diffusion, while crowding causes subdiffusion and stronger non-Gaussianity.

• Strong magnetic induction restructures dipolar aggregates and indirectly slows down the diffusion of non-magnetic particles, producing a “magnetic cooling” effect.

• The results provide a framework for interpreting structure-diffusion coupling.
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A B S T R A C T

We present a systematic numerical study of a quasi-two-dimensional mixed system composed of Stockmayer-type 

dipolar particles and purely repulsive non-polar particles. By combining detailed cluster analysis with a quan­

titative evaluation of self-diffusion, we demonstrate how the interplay between particle area fraction, dipolar 

interactions, and an out-of-plane magnetic induction governs the structural organisation and dynamical behaviour 

of the mixture. We show that, in the absence of induction, isolated magnetic particles diffuse essentially in a 

Gaussian manner across all concentrations. At longer time scales, by contrast, the system enters a crowding-

dominated diffusive regime, in which both the diffusion exponent and the non-Gaussianity vary monotonically 

with area fraction. Our findings provide a framework for interpreting diffusion phenomena in ferrogranular ma­

terials and pave the way for future experimental verification, particularly regarding induction-controlled cooling 

of non-magnetic components.

1 . Introduction

The study of self-diffusion in liquids remains a central topic in 

condensed matter and statistical physics, as it provides a direct con­

nection between microscopic particle motion and macroscopic transport 

properties [1–6]. Self-diffusion reflects the interplay between ther­

mal fluctuations and interparticle interactions; therefore, it serves as 

a sensitive probe of the local structure and dynamics of molecu­

lar and complex fluids [7–9]. Understanding how microscopic inter­

actions influence diffusive behaviour is essential for describing the 

dynamical response of liquids across a broad range of conditions

[10,11].

More than eight decades have passed since the seminal work 

of Stockmayer [12], who introduced a model fluid composed of 

particles interacting through a combination of Lennard-Jones (1) and 

dipole-dipole (2) potentials. The first is given by

𝑢LJ
𝑖𝑗 = 4𝜀

[

(

𝜎
𝑟𝑖𝑗

)12
−
(

𝜎
𝑟𝑖𝑗

)6
]

, (1)

where ⃗𝑟𝑖𝑗 , with |𝑟𝑖𝑗 | = 𝑟𝑖𝑗 , is the vector connecting the centres of particles 

(or molecules) 𝑖 and 𝑗. The parameter 𝜎 represents the characteristic 

particle size, while 𝜀 sets the energy scale, i.e., the depth of the potential 

well or the strength of attraction between particles. The dipole-dipole 

potential has a form

𝑢DD
𝑖𝑗 = 𝜇∗

[

𝑚⃗𝑖 ⋅ 𝑚⃗𝑗

𝑟3𝑖𝑗
− 3

(𝑚⃗𝑖 ⋅ 𝑟𝑖𝑗 )(𝑚⃗𝑗 ⋅ 𝑟𝑖𝑗 )

𝑟5𝑖𝑗

]

, (2)

where 𝑚⃗𝑖 and 𝑚⃗𝑗  are the dipole moments of particles 𝑖 and 𝑗, respectively, 

and 𝜇∗ is a constant that determines the strength of the dipole-dipole 

interaction.
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\begin {align}u_{ij}^{\textrm {LJ}} = 4 \varepsilon \left [ {\left ( \frac {\sigma }{r_{ij}} \right )}^{12} - {\left ( \frac {\sigma }{r_{ij}} \right )}^{6} \right ], \label {eq:LJ}\end {align}


\begin {align}\begin {split} u_{ij}^{\textrm {DD}} = \mu ^* \left [\frac {\vec {m}_i \cdot \vec {m}_j}{r_{ij}^3} - 3 \frac {(\vec {m}_i \cdot \vec {r}_{ij})(\vec {m}_j \cdot \vec {r}_{ij})}{r_{ij}^5} \right ], \end {split} \label {eq:dipole-dipole}\end {align}
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The Stockmayer fluid has since become a cornerstone of molecular 

simulation studies [13–17], offering a simple yet powerful framework 

for describing a wide variety of systems, including polar liquids and 

dipolar gases.

Subsequent studies have shown that the Stockmayer description can 

also be extended to ferrofluids, provided that the magnetic and ther­

modynamic parameters lie within appropriate ranges [18–21]. Over 

the years, it has been demonstrated that the Stockmayer model ef­

fectively captures the essential features of systems characterised by 

(sub)nanometer-scale interactions, where short-range repulsion and 

long-range dipolar attraction together determine both equilibrium and 

dynamical properties.

More recently, it has been demonstrated that analogous concepts 

may even be applied to ferrogranular materials [22,23], in which 

millimetre-sized magnetic grains display collective behaviour reminis­

cent of their nanoscale counterparts. This conceptual continuity under­

scores the universality of dipolar interaction models and motivates their 

application to systems extending well beyond the nanoscale. In our pre­

vious work, we have shown that the Stockmayer-type model successfully 

describes features of ferrogranular systems [24–26]. While direct exper­

imental access to self-diffusion in these materials remains challenging 

and is the subject of ongoing efforts, numerical simulations provide 

a powerful means to predict and interpret diffusive dynamics under 

well-controlled conditions.

While diffusion in Stockmayer and dipolar fluids has been widely 

investigated [27–34], the specific case of a mixed system comprising 

non-polar (purely repulsive) and polar (attractive and dipolar) particles 

confined to a quasi-two-dimensional (q2D) geometry has not yet been 

systematically explored. Such a mixture may be regarded as a zeotropic 

system, akin to previously studied Stockmayer mixtures in which the 

non-polar component was still represented by a Lennard-Jones fluid with 

an attractive interaction [21].

In the present work, however, we focus on a system with distinct 

interaction characteristics, offering a new perspective on clustering phe­

nomena and transport processes in confined Stockmayer systems mixed 

with non-polar, non-sticky purely repulsive particles, aiming to embrace 

the diffusion in ferrogranulate layers as well.

The remainder of this paper is organised as follows. In the next 

Section 2, we introduce the computational methodology, outline the 

system parameters, and define the principal observables. Section 3 is 

divided into three parts: first, we analyse the formation and morphol­

ogy of clusters formed by magnetic particles; second, we characterise 

the self-diffusive behaviour of the system; third, we analyse the non-

Gaussianity of particles in the system. The manuscript concludes with a 

brief summary of the main results and an outlook for future research.

2 . Methods

This section describes the model (Section 2.1), the simulation pro­

tocol (Section 2.2) and the estimation of the mean square displacement 

(Section 2.3).

2.1 . Model

We consider two types of particles placed in a laterally periodic 

square simulation box with a constant side, at a constant temperature, 𝑇 . 

All particle centres are confined to one plane, but rotations are possible 

in all three dimensions.

Particle details. Magnetic particles are modelled as a Stockmayer sys­

tem described by Eqs. (1)–(2) with 𝜀 = 𝜀m = 0.5; dimensionless particle 

size 𝜎 = 𝜎m = 3; 𝜇∗ = 𝜇0∕4𝜋, where 𝜇0 is the magnetic permeabil­

ity of vacuum; and 𝑚2∕𝑘𝐵𝑇𝜎3m = 10. In dimensionless simulation units 

𝑘𝐵𝑇 = 0.5. The thermal energy is chosen to be low in order to allow for 

the granular athermal character of ferrogranulates [35].

Pure repulsive particles (glass beads in a ferrogranulate) are char­

acterised by a dimensionless diameter of 𝜎g = 4, with interactions 

Table 1 

The overall area fraction 𝜙𝑛, 

along with the magnetic parti­

cles 𝜙m and glass particles 𝜙g, is 

used in Figs. 1 and 2.

𝜙𝑛 𝜙m 𝜙g

𝜙1 0.175 0.100 0.075

𝜙2 0.210 0.120 0.090

𝜙3 0.233 0.133 0.100

𝜙4 0.268 0.153 0.115

𝜙5 0.300 0.170 0.130

𝜙6 0.303 0.173 0.130

𝜙7 0.315 0.180 0.135

𝜙8 0.350 0.200 0.150

governed by the Weeks-Chandler-Andersen (WCA) potential:

𝑢WCA
𝑖𝑗 =

{

𝑢LJ(𝑟𝑖𝑗 ) − 𝑢LJ(𝑟cut), 𝑟𝑖𝑗 < 𝑟cut

0, 𝑟𝑖𝑗 ≥ 𝑟cut

. (3)

Here, 𝜀 = 10 and 𝑟cut = 21∕6𝜎g [36].

The interactions between glass and magnetic beads are modelled us­

ing the Weeks-Chandler-Andersen potential (3) with the same 𝜀 = 10. 

The effective diameter, denoted as 𝜎 = (𝜎m + 𝜎g)∕2, is used with an 

appropriate cutoff radius 𝑟cut = 21∕6 𝜎.

The total area fraction of particles, 𝜙𝑛, is the sum of the area fractions 

of magnetic, 𝜙m, and purely repulsive (glass for a ferrogranulate) beads, 

𝜙g: 

𝜙𝑛 = 𝜙m + 𝜙g. (4)

The area fractions for magnetic/glass beads, respectively, are estimated 

by

𝜙m∕g =
𝑁m∕g𝜋𝜎2m∕g

4𝐿2
,

where 𝑁m∕g denotes the number of spheres enclosed in a square simu­

lation box with a side length of 𝐿 = 240. The list of investigated area 

fractions is detailed in Table 1. The numbers of magnetic, 𝑁m, and glass, 

𝑁g, beads were varied. The area fractions in Table 1 are chosen in such a 

way that the ratio between the magnetic and nonmagnetic components 

is preserved and is equal to 𝜙m∕𝜙g ∼ 1.3. Keeping the ratio constant 

facilitates a deeper understanding of the impact of 𝜙𝑛 without mixing in 

the influence of other factors.

Particle masses, inertia tensors, and dimensionless friction coeffi­

cients, 𝛾 are all set to unity, as the focus lies on steady-state behavior 

and the relative effects of particle area fraction and applied induction.

Magnetic induction. To evaluate the impact of an external magnetic 

induction 𝐵⃗∗, we apply it orthogonal to the layer of the particles. 𝐵⃗∗

tends to align each magnetic particle dipole moment 𝑚⃗𝑖 with its direction 

out-of-the-plane through the Zeeman energy:

𝑢𝑍𝑖 = −
(

𝑚⃗𝑖 ⋅ 𝐵⃗
∗
)

. (5)

The dimensionless values of the induction are scaled such that the 

Langevin parameter, 𝑚𝐵∗∕𝑘B𝑇 , takes values of 0,
√

5, and 2
√

5, leading 

to three dimensionless magnitudes of the applied out-of-plane induction: 

|𝐵∗
0 | = 0.0, |𝐵∗

1 | = 0.5, and |𝐵∗
2 | = 1.0. These values correspond to low, in­

termediate, and nearly saturating effects on the orientation of magnetic 

particles in ferrogranulates  [26].

2.2 . Simulation protocol

We employ Langevin dynamics in a quasi-2D geometry to model a 

two-component mixture, incorporating the interactions and dimension­

less parameters described earlier [37].
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The system was equilibrated for 60 × 106 integration steps. 

Equilibrium was defined based on the stability of the cluster size 

distribution, where clusters were identified using an energy–distance 

criterion [38]: two particles were considered part of the same cluster if 

their pair interaction energy was negative and their separation did not 

exceed 30% above the contact distance. Once the cluster size distribution 

reached a steady state, exhibiting no significant temporal fluctuations 

(less than 10%), the system was considered equilibrated.

It should be noted that, in dense systems and in the absence of 

an external magnetic field, the resulting clusters may represent kinet­

ically trapped but steady configurations. Nevertheless, even under such 

conditions, the main results of this study remain valid.

After equilibration, production runs of 20×103 integration steps were 

carried out. During this stage, cluster configurations were stored at reg­

ular intervals, and particles were classified as either permanently single 

or as attaching/detaching from clusters during the observation period. 

Simultaneously, the mean-square displacement (MSD) was computed.

For statistical purposes, for each value of 𝜙𝑛 (Table 1) and |𝐵∗
𝑛 |, eight 

independent runs were performed.

Throughout the entire duration of the simulations, the time-step 

maintains a constant value of 𝛿𝑡 = 0.0005.

These simulations were executed using the ESPResSo 4.1.4 simula­

tion package, employing the velocity Verlet algorithm [39] for solving 

Langevin equations, and the P3M method [40] combined with dipolar 

layer correction [41] for calculating long range magnetic forces in a not 

fully periodic system.

2.3 . Determination of the mean-square displacement

The mean-square displacement MSD as a function of time lag 𝜏 is 

calculated as:

⟨Δ𝑟2(𝜏)⟩ = ⟨[𝑟(𝑡 + 𝜏) − 𝑟(𝑡)]2⟩, (6)

where 𝑟(𝑡) is the position of a particle at time 𝑡, and ⟨⋅⟩ denotes an 

ensemble average.

For a system in equilibrium, the MSD can be described by the fol­

lowing equation, which gives the dimension of the MSD in terms of the 

diffusion coefficient 𝐷 [2]:

⟨Δ𝑟2(𝜏)⟩ = 4𝐷𝜏𝛼 , (7)

where 𝛼 is the scaling exponent. If 𝛼 ∼ 1, we are dealing with stan­

dard Brownian diffusion, while for exponents different from unity, the 

diffusion is usually referred to as anomalous. In general, the value of 

𝛼 can vary depending on the interparticle interactions. The diffusion 

coefficient 𝐷 is then defined as:

𝐷 =
⟨Δ𝑟2(𝜏)⟩

4𝜏𝛼
. (8)

To compute MSD, we used a Python implementation that takes ad­

vantage of the tidynamics library [42]. It is convenient to analyse the 

dimensionless diffusion coefficient, 𝐷∕𝐷0, where 𝐷0 = 𝑘𝐵𝑇 ∕𝛾, with 𝑘𝐵
denoting the Boltzmann constant and 𝛾 being the friction coefficient.

Alongside the anomalous diffusion exponent obtained from the MSD 

scaling, the nature of diffusion can also be characterised by exam­

ining whether the underlying displacement statistics are Gaussian or 

non-Gaussian. This distinction is determined from the probability distri­

bution of particle displacements, 𝑃 (𝛿𝑥, 𝑡), evaluated at different lag times 

𝑡. Numerous soft-matter systems exhibit combinations such as Gaussian 

but non-Brownian diffusion or Brownian yet non-Gaussian diffusion, 

reflecting the complexity of their underlying dynamics (see, [43] and 

references therein). In the present work, we likewise computed the dis­

placement distribution over the same time interval used for the MSD 

analysis, allowing us to assess both the anomalous exponent and the 

Gaussian/non-Gaussian character of particle motion.

3 . Results and discussions

This section starts with a cluster analysis (Section 3.1), which is 

followed by an estimation of the self-diffusion (Section 3.2).

3.1 . Cluster analysis

Initially, we conducted a visual assessment of the equilibrium states 

that our systems adopted during the simulations, as depicted in Fig. 1.

In these snapshots, glass particles are shown in gray, while magnetic 

particles are represented in dark red, each with a dark blue hemisphere 

indicating the orientation of the magnetic moment. The snapshots reflect 

three distinct magnitudes of the applied magnetic induction (|𝐵∗
𝑧𝑛|) and 

three corresponding total area fractions of particles. Moving from left to 

right in Fig. 1, we observe an increase in the particle area fraction, as 

detailed in Table 1.

The present observations align well with the conclusions reported 

previously [25,26]. In the absence of an external magnetic induction 

(bottom row), the increase in 𝜙𝑛 leads to the formation of larger clus­

ters. However, no significant qualitative changes in the structure or 

the emergence of new aggregation patterns appear. These results cor­

roborate the findings of researchers investigating the self-assembly of 

magnetic particles released from a steel plate [44], in liquid media [45], 

as well as the clustering phenomena observed in granular systems, which 

display a liquid-solid-like phase transition under out-of-equilibrium 

conditions [46].

Examining the column on the right-hand side, corresponding to the 

maximum value of 𝜙𝑛, indicates a consistent pattern: irrespective of the 

magnitude of |𝐵∗
|, the overall structure of the aggregate is preserved. 

Specifically, it exhibits a hexagonal local arrangement where particles 

align in a head-to-tail configuration, forming chains that are offset by 

half a particle. As |𝐵∗
| increases (see rows 2 and 3 in Fig. 1), the frac­

tion of isolated magnetic particles that align their magnetic moments 

with the field also rises. This leads to a configuration characterised 

by dipole-dipole repulsion, which cannot be offset by dipolar in-plane 

favourable head-to-tail attraction at low particle area fractions. This be­

comes prominent in the top left quadrant (minimal 𝜙𝑛 and maximal 𝐵∗), 

where the majority of magnetic particles are non-aggregated. Likewise, 

Fig. 1. Typical simulation snapshots. The total area fraction 𝜙𝑛 from left to right: 

𝜙1 = 0.175, 𝜙4 = 0.268, 𝜙8 = 0.350. The applied external magnetic induction 

grows from bottom to top |𝐵∗
0 | = 0.0, via |𝐵∗

1 | = 0.5, to |𝐵∗
2 | = 1.0, in simulation 

units.
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Fig. 2. The fraction of magnetic particles (%) within clusters, 𝜙clus, single parti­

cles, 𝜙sing, and particles migrating from a clustered to a single state (or reverse), 

𝜙migr versus total area fraction 𝜙𝑛. In each column, the magnetic induction 

changes from 0.0 to 1.0 in simulation units.

Fig. 3. Dependence of 𝜙clus(𝐵∗
0 )∕𝜙clus(𝐵∗

2 ) (circles, black) and 𝜙sing(𝐵∗
0 )∕𝜙sing(𝐵∗

2 )
(squares, light blue) versus total area fraction, 𝜙𝑛. Red dashed horizontal line 

marks unity. Vertical lines around symbols, if seen, show error-bars.

in its diagonal counterpart, the bottom right quadrant for the high value 

of 𝜙𝑛 and no applied induction evidences the formation of large clusters. 

The structures observed in the simulation snapshots are similar to the 

experimental findings in [25].

To quantify the observations, in Fig. 2, we show how the percentage 

of magnetic particles in clusters, 𝜙clus, single particles, 𝜙sing, and migrat­

ing particles, 𝜙migr, depends on the area fraction and the strength of the 

magnetic induction.

As the induction strength increases, 𝜙clus decreases. This can be seen 

by comparing the three bars within each value of 𝜙𝑛: the black bars 

are consistently higher than the dark blue and dark turquoise bars, es­

pecially at intermediate particle concentration. In contrast, both the 

migrating and single-particle fractions grow with increasing 𝐵∗. For mi­

grating particles, this is shown by the bars in progressively darker to 

lighter shades of red; for single particles, by the central bars in each 

column, which shift from dark purple to light blue and finally to light 

turquoise, as indicated in the legend. The actual values of the area frac­

tions of clustered, single, and migrating magnetic particles are collected 

in Table. S1 in the Supplementary.

To further examine how the combined increase in 𝐵∗ and 𝜙𝑛 affects 

cluster formation, Fig. 3 shows the ratio between the fraction of clus­

tered particles in the absence of induction and that at the highest applied 

𝐵∗ (circles). At low area fractions, the system contains nearly ten times 

more clustered particles when no induction is applied; however, this 

ratio decreases to about two at high area fractions. Interestingly, the 

corresponding ratio for the fraction of single particles (squares) is essen­

tially insensitive to 𝜙𝑛: at zero applied induction, only very few particles 

Fig. 4. Probability distribution function (PDF) of the number of particles within 

clusters as a function of cluster size for different magnetic induction strengths 

𝐵∗, at a constant total area fraction. (a) compares three area fractions in the 

absence of magnetic induction. Panel (b) shows results for 𝜙1 = 0.175, while (c) 

illustrates 𝜙7 = 0.315. Three curves in (b) and (c) are for three values of magnetic 

induction 𝐵∗ as shown in the legend.

remain single, whereas at finite 𝐵∗, the combined fraction of migrating 

and single particles never falls below 50 % across the entire parameter 

range studied here, leading to the aforementioned ratio being constant.

The size distribution of clusters can be found in Fig. 4. Here, we plot 

a probability distribution function (PDF) of finding clusters of a given 

size. Fig. 4(a) corresponds to 𝐵∗
0 = 0 and shows the PDFs for three dif­

ferent area fractions: 𝜙𝑛 = 0.175, 0.210, and 0.315. As the area fraction 

increases, larger clusters become more likely, as evidenced by the heav­

ier tail of the green (𝜙𝑛 = 0.175) PDF at higher cluster sizes; however, 

their topology does not change, as previously seen in Fig. 1. The distri­

butions show bi-exponential decay, indicating that the system is close to 

the percolation threshold.

Comparing Fig. 4(b) and (c), one can conclude that while the PDFs for 

𝐵∗
0  and 𝐵∗

1  remain quite similar, the decay of the PDF for 𝐵∗
2  is markedly 

steeper. The latter also exhibits the strongest sensitivity to the area frac­

tion: at low 𝜙𝑚, Fig. 4(b), almost no clusters with more than 10 particles 

are observed, and the decay follows a single-exponential form apart from 

a statistically noisy tail at large cluster sizes. In contrast, at high 𝜙𝑚, 

Fig. 4(c), the difference between the 𝐵∗
0  and 𝐵∗

2  PDFs becomes much 

less pronounced.

In summary, this subsection demonstrates that for the system pa­

rameters considered above, increasing the area fraction promotes the 

formation of larger clusters but does not have a significant impact
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*
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(a) (b)

(c)

Fig. 5. The scaling exponent, 𝛼, Eq. (7), in upper panels and effective diffusion coefficient, 𝐷∕𝐷0 in lower panels, versus 𝜙𝑛. The values of magnetic induction are 

provided in the legend. (a) single (nonaggregated) magnetic particles; (b) magnetic particles in clusters; (c) nonmagnetic particles (glass), 𝛼 = 1 for all 𝜙𝑛 and is not 

plotted here.

under zero applied induction, as the system is highly aggregated and 

the fraction of single particles is negligible in agreement with the pre­

vious observations in work [47]. The magnetic induction hinders the 

formation of large clusters. This effect is more pronounced at low 

area fractions. At a high area fraction of particles, the density effects 

dominate over an applied induction.

As 𝜙𝑛 increases, the system approaches and eventually reaches the 

percolation threshold, where clusters span the entire system [48]. For 

the parameters considered here, however, no percolation has been 

observed.

Such clustering behaviour cannot help but affect self-diffusion in the 

layer of a model ferrogranulate; therefore, in the next subsection, we 

analyse the mean-square displacement of both Stockmayer and purely 

repulsive beads.

3.2 . Self-diffusion

Using mean-squared displacement and Eq. (7), we estimated the 

diffusion coefficients, 𝐷, and exponents 𝛼 for single magnetic parti­

cles, magnetic particles in clusters, and glass particles. The results are 

collected in Fig. 5.

In the lower panel of Fig. 5(a), we show the normalised self-diffusion 

coefficient, 𝐷∕𝐷0, of single magnetic particles at low induction 𝐵∗
0  (cir­

cles) and high induction 𝐵∗
2  (stars) as a function of the total area fraction 

𝜙𝑛. The straight lines correspond to linear fits. The results demonstrate 

that the magnitude of the diffusion coefficient remains essentially un­

changed: neither the applied magnetic induction nor increasing 𝜙𝑛 has 

a noticeable effect on the self-diffusion speed of isolated particles. In con­

trast, the exponent 𝛼, displayed in the upper panel of the same figure, 

is sensitive to both 𝜙𝑛 and 𝐵∗
2 . At zero induction, the particles exhibit 

normal diffusive behaviour (𝛼 ≈ 1) over the entire range of area frac­

tions. Under strong magnetic induction, however, their motion becomes 

progressively subdiffusive, with 𝛼 decreasing to approximately 0.8 at 

the highest 𝜙𝑛. This trend arises because single particles become pre­

dominantly aligned along the direction of the induction - orthogonal to 

the layer and parallel to one another - resulting in strong dipolar re­

pulsion that suppresses normal diffusion. Thus, although the diffusion 

coefficient itself remains robust, the nature of the particle trajectories is 

substantially altered by the combined influence of the increasing area 

fraction and applied induction.

Magnetic particles within clusters experience the joint effects of 

crowding and induction even more strongly. As shown in Fig. 5(b), the 

ratio 𝐷∕𝐷0 is significantly lower for clustered particles than for single 

ones, and it decreases further as both the induction (𝐵∗
2 , stars) and 𝜙𝑛

increase.

As discussed in the previous section, this behaviour reflects the re­

duced effectiveness of the orthogonal induction at higher 𝜙𝑛, where 

dipolar interactions promoting in-plane chain formation dominate the 

dynamics. For the same reason, 𝐷∕𝐷0 remains low even in the absence 

of induction (𝐵∗
0 , circles): under these conditions, clusters are already 

large, and most particles are aggregated regardless of 𝜙𝑛, as illustrated 

in Figs. 2 and 3. The largest difference between circles and squares (𝐵∗
0

and 𝐵∗
0 ) in the values of 𝐷∕𝐷0 is observed for low area fractions, where 

the ratio of particles in clusters, as shown in Fig. 3, is almost an or­

der of magnitude. This significant difference, however, results in only 

a 25 % decrease in the diffusion coefficient, highlighting the strongly 

nonlinear relationship between clustering and diffusivity. No 𝜙𝑛 depen­

dence is measured for 𝐷∕𝐷0 in the case of 𝐵∗
0  (circles). The resulting 

𝜙𝑛-independent cluster-size distribution at 𝐵∗
0  (Fig. 4) explains the nearly 

constant trend observed for 𝐷∕𝐷0. As for the values of 𝛼, the particles 

in clusters clearly exhibit subdiffusion.

It is particularly interesting to examine the behaviour of purely re­

pulsive, non-dipolar particles. Even though the value of 𝛼 remains very 

close to one (see Supplementary Information), the diffusion coefficient 

turns out to be not only 𝜙𝑛-dependent but also sensitive to the ap­

plied magnetic induction. As shown in Fig. 5(c), the values of 𝐷∕𝐷0
for 𝐵∗

0  (circles) and 𝐵∗
2  (stars) differ markedly: the latter is consistently 

lower across the entire range of 𝜙𝑛. This effect arises from the repul­

sion between the isolated magnetic particles discussed above, which 

substantially restricts the space available for the non-magnetic particles 

to diffuse. In this sense, one may view the phenomenon as a kind of mag­

netic “cooling” of a non-magnetic component. Note that non-magnetic 

spheres are analogous to the glass spheres dispersed in a ferrogran­

ulate, where similar cooling effects may, in principle, be observable

experimentally.

3.3 . Non-Gaussianity of particle displacements

The final step in our analysis is to determine whether any of the 

diffusion processes modelled here are non-Gaussian. To examine this, 

we calculate the probability that a particle (either a single magnetic 

particle, a glass particle, or a magnetic particle within a cluster) moves 

by a distance 𝛿𝑥 during a time interval 𝜏. We consider five different time 

intervals, measured in simulation units,
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𝜏𝑖 ∈ {0.5, 1, 2, 2.5, 5}, 𝑖 = 1…5.

The shortest interval, 𝜏1, corresponds to the ballistic regime. All in­

termediate values, except for the last one, lie within the intermediate 

regime, while 𝜏5 captures the diffusive part of the MSD (see Fig. S2 in 

the Supplementary Information).

Next, we compute the non-Gaussianity parameter (Fisher’s coeffi­

cient), defined using the fourth moment ⟨𝜇4⟩ and the second moment 

𝜇2 of the displacement distribution: 

𝛾2 =
𝜇4
𝜇2
2

− 3. (9)

A distribution close to a normal yields 𝛾2 ≈ 0. Positive values indi­

cate a leptokurtic distribution, whereas negative values correspond to 

a platykurtic one [49].

In the absence of an applied induction, 𝐵∗
0 , the values of 𝛾2 for the few 

non-aggregated magnetic particles remain close to zero, independently 

of the system area fraction. The raw data for the frequencies of different 

displacements can be found in the supplementary materials, Fig. S3. The 

values of 𝛾2 change markedly in the case of a strong applied induction, 

𝐵∗
2 , as shown in Fig. 6(a). For each value of 𝜏, three columns correspond 

to three different area fractions, increasing from the lowest (𝜙1, leftmost) 

to the highest (𝜙8, rightmost).

For a fixed 𝜙𝑛, the non-Gaussianity increases monotonically with in­

creasing displacement. Interestingly, in the ballistic and intermediate 

regimes (𝜏1–𝜏4), the value of 𝛾2 for the intermediate area fraction 𝜙4
exceeds that for 𝜙8. We attribute this to the higher fraction of single mag­

netic particles at 𝜙4, as shown in Fig. 2. Since 𝛾2 reflects the strength of 

interactions, a larger population of individual magnetic particles with 

dipoles aligned with the applied induction leads to stronger effects of 

dipolar repulsion on a short timescale.

In the diffusive regime, however, the diffusion exponent 𝛼 decreases 

monotonically with 𝜙𝑛, indicating crowding-induced subdiffusivity (see 

Fig. 5(a)). At these longer time scales, the non-Gaussianity also becomes 

a monotonic function of 𝜙𝑛.

In Fig. 6(b), one can see that magnetic particles in clusters exhibit 

a strongly non-Gaussian displacement distribution (actual distributions 

are shown in Supplementary Fig. S4). Here, for each 𝜏𝑖, one finds six 

columns: the first three are for 𝐵∗
0 , and the other three are for 𝐵∗

2 . 

Analogously to Fig. 6(a), the three columns for each induction value 

from left to right correspond to 𝜙1, 𝜙4, and 𝜙8. For short time-scales 

(ballistic or nearly ballistic intervals of 𝜏1 and 𝜏2), neither the induction 

nor the area fraction has notable effects on 𝛾2.
The situation changes for 𝜏3 and 𝜏4. Here, the values of 𝛾2 reflect 

the internal dynamical heterogeneity of the aggregates. When the mag­

netic field is applied orthogonally to the substrate, it destabilises planar 

clustering and suppresses all but the most favourable dipole-dipole 

arrangements, resulting in tight, highly constrained clusters that are typ­

ically smaller than those formed in zero field. At intermediate lag times, 

this produces a monotonic increase in non-Gaussianity with increasing 

𝜙𝑛, since higher area fractions enhance the internal restrictions within 

these tight surviving aggregates. In contrast, the clusters in zero field 

are larger and structurally more variable; their internal rearrangements 

are most heterogeneous at intermediate 𝜙𝑛, leading to a non-monotonic 

dependence of 𝛾2.
At long lag times, 𝜏5, both zero and applied induction values ex­

hibit non-monotonic behaviour again, albeit for different reasons. The 

small, tight field-stabilised clusters relax and reorganise sufficiently to 

reduce their internal heterogeneity at the highest 𝜙𝑛, whereas the large 

zero-field clusters, although loosely structured, occupy appreciably more 

space and provide a greater number of neighbours that constrain long 

displacements. This increased spatial crowding leads to an analogous 

reduction in 𝛾2 at high 𝜙𝑛 in the diffusive regime.

Finally, in Fig. 6(c) we observe that the applied magnetic induction 

also influences the values of 𝛾2 calculated for the displacements of the 

Fig. 6. Non-Gaussian parameter 𝛾2 for (a) single (nonaggregated) magnetic 

particles, (b) magnetic particles within clusters, and (c) purely repulsive non-

magnetic particles, shown for several lag times 𝜏𝑖. For each panel, the bars 

correspond to different area fractions, and colours indicate either zero induction, 

𝐵∗
0 , or strong applied induction, 𝐵∗

2  (in (b)). Raw displacement distributions are 

provided in the Supplementary Information (Figs. S3–S5).

purely repulsive, non-magnetic particles (akin to the glass beads in fer­

rogranulates). As confirmed by the raw distributions provided in the 

Supplementary Fig. S5, at 𝐵∗
0  the displacement statistics of these non-

magnetic particles remain practically Gaussian for all but the highest 

area fraction: only at 𝜙8 and at the longest lag time 𝜏5 does a modest de­

viation from Gaussianity appear. In contrast, at 𝐵∗
2  the values of 𝛾2 are 

no longer negligible. Instead, 𝛾2 increases markedly with both 𝜙𝑛 and 

𝜏𝑖, in some cases even exceeding the non-Gaussianity observed for iso­

lated magnetic particles in Fig. 6(a). This enhanced heterogeneity arises 

because the field-induced restructuring of the magnetic particles mod­

ifies the local environment experienced by the non-magnetic ones: the 

formation of compact dipolar aggregates creates spatially extended ob­

stacles and transient cages, leading to intermittent trapping, uneven free 

volumes, and thus a strongly non-Gaussian displacement distribution for 

the repulsive particles.

4 . Conclusions

In this work, we have carried out a systematic numerical study of 

a quasi-two-dimensional mixed system composed of Stockmayer-type 

dipolar particles and purely repulsive non-polar particles, motivated by 

the broader goal of understanding transport processes in ferrogranular 

layers. By combining detailed cluster analysis with a quantitative evalu­

ation of self-diffusion, we have demonstrated how the interplay between 

particle area fraction, dipolar interactions, and an out-of-plane magnetic 

induction governs the structural organisation and dynamical behaviour 

of the mixture.
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Our results show that increasing the total area fraction enhances 

clustering among magnetic particles, although the topology of the clus­

ters remains qualitatively unchanged. The application of an external 

magnetic induction reduces cluster sizes by promoting out-of-plane 

alignment and dipolar repulsion between single particles. This effect is 

most pronounced at low area fractions; whereas, at high area fractions, 

dipolar interactions diminish the influence of the induction, leading 

to similar cluster statistics across field strengths. Importantly, the sys­

tem remains below the percolation threshold for all parameter sets

explored.

The cluster morphology has direct consequences for the particle mo­

bility. Isolated magnetic particles retain a diffusion coefficient that is 

largely independent of induction and concentration, but their motion 

becomes increasingly subdiffusive under strong induction. Magnetic par­

ticles embedded in clusters diffuse substantially more slowly and exhibit 

clear subdiffusive dynamics, reflecting the constrained motion imposed 

by dense bundles of chain-like aggregates. Remarkably, even the purely 

repulsive non-magnetic particles – despite exhibiting nearly Brownian 

displacement statistics – display diffusion coefficients that are strongly 

suppressed by magnetic induction.

We showed that the interplay between magnetic induction and 

increasing area fraction strongly influences the average particle dis­

placement distribution in the system. As expected, magnetic particles 

within clusters display consistently non-Gaussian dynamics, which be­

come more pronounced with both area fraction and applied field (on 

short-time scales). Our displacement analysis reveals that, in the absence 

of induction, isolated magnetic particles diffuse essentially in a Gaussian 

manner across all concentrations. Under strong induction, however, the 

dynamics become increasingly non-Gaussian, with the non-Gaussianity 

parameter rising with displacement and showing a marked dependence 

on particle concentration. At intermediate area fractions, where the 

proportion of single magnetic particles is higher, short-time dynamics 

exhibit enhanced non-Gaussianity due to the stronger influence of dipo­

lar repulsion. At longer time scales, by contrast, the system enters a 

crowding-dominated diffusive regime, in which both the diffusion ex­

ponent and the non-Gaussianity vary monotonically with area fraction. 

At sufficiently high induction and crowding, even the glass parti­

cles develop non-Gaussian dynamics, confirming field-driven dynamical 

cooling of the non-magnetic component.

Altogether, our findings reveal the rich and highly nonlinear cou­

pling between dipolar interactions, cluster formation, and transport in 

mixed quasi-2D dipolar systems. The study provides a framework for 

interpreting diffusion phenomena in ferrogranular materials and paves 

the way for future experimental verification, particularly regarding 

induction-controlled cooling of non-magnetic components. Extensions 

of this work may include time-dependent fields, polydispersity effects, 

or direct comparisons with trajectory-resolved experimental data from 

granular magnetic layers.
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