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HIGHLIGHTS

+ A quasi-2D mixture of Stockmayer dipolar and repulsive particles is analysed using large-scale Langevin dynamics simulations.

« The combined effects of area fraction, dipolar interactions, and out-of-plane magnetic fields on clustering and dynamics are quantified.

» Without induction, isolated particles show Gaussian diffusion, while crowding causes subdiffusion and stronger non-Gaussianity.

« Strong magnetic induction restructures dipolar aggregates and indirectly slows down the diffusion of non-magnetic particles, producing a “magnetic cooling” effect.

« The results provide a framework for interpreting structure-diffusion coupling.
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We present a systematic numerical study of a quasi-two-dimensional mixed system composed of Stockmayer-type
dipolar particles and purely repulsive non-polar particles. By combining detailed cluster analysis with a quan-
titative evaluation of self-diffusion, we demonstrate how the interplay between particle area fraction, dipolar
interactions, and an out-of-plane magnetic induction governs the structural organisation and dynamical behaviour
of the mixture. We show that, in the absence of induction, isolated magnetic particles diffuse essentially in a

Gaussian manner across all concentrations. At longer time scales, by contrast, the system enters a crowding-
dominated diffusive regime, in which both the diffusion exponent and the non-Gaussianity vary monotonically
with area fraction. Our findings provide a framework for interpreting diffusion phenomena in ferrogranular ma-
terials and pave the way for future experimental verification, particularly regarding induction-controlled cooling

of non-magnetic components.

1. Introduction

The study of self-diffusion in liquids remains a central topic in
condensed matter and statistical physics, as it provides a direct con-
nection between microscopic particle motion and macroscopic transport
properties [1-6]. Self-diffusion reflects the interplay between ther-
mal fluctuations and interparticle interactions; therefore, it serves as
a sensitive probe of the local structure and dynamics of molecu-
lar and complex fluids [7-9]. Understanding how microscopic inter-
actions influence diffusive behaviour is essential for describing the
dynamical response of liquids across a broad range of conditions
[10,11].

More than eight decades have passed since the seminal work
of Stockmayer [12], who introduced a model fluid composed of
particles interacting through a combination of Lennard-Jones (1) and
dipole-dipole (2) potentials. The first is given by
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where 7;;, with |7;;| = r;;, is the vector connecting the centres of particles
(or molecules) i and j. The parameter o represents the characteristic
particle size, while ¢ sets the energy scale, i.e., the depth of the potential
well or the strength of attraction between particles. The dipole-dipole
potential has a form
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where ; and in; are the dipole moments of particles i and j, respectively,
and p* is a constant that determines the strength of the dipole-dipole

interaction.
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\begin {align}u_{ij}^{\textrm {LJ}} = 4 \varepsilon \left [ {\left ( \frac {\sigma }{r_{ij}} \right )}^{12} - {\left ( \frac {\sigma }{r_{ij}} \right )}^{6} \right ], \label {eq:LJ}\end {align}


\begin {align}\begin {split} u_{ij}^{\textrm {DD}} = \mu ^* \left [\frac {\vec {m}_i \cdot \vec {m}_j}{r_{ij}^3} - 3 \frac {(\vec {m}_i \cdot \vec {r}_{ij})(\vec {m}_j \cdot \vec {r}_{ij})}{r_{ij}^5} \right ], \end {split} \label {eq:dipole-dipole}\end {align}
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The Stockmayer fluid has since become a cornerstone of molecular
simulation studies [13-17], offering a simple yet powerful framework
for describing a wide variety of systems, including polar liquids and
dipolar gases.

Subsequent studies have shown that the Stockmayer description can
also be extended to ferrofluids, provided that the magnetic and ther-
modynamic parameters lie within appropriate ranges [18-21]. Over
the years, it has been demonstrated that the Stockmayer model ef-
fectively captures the essential features of systems characterised by
(sub)nanometer-scale interactions, where short-range repulsion and
long-range dipolar attraction together determine both equilibrium and
dynamical properties.

More recently, it has been demonstrated that analogous concepts
may even be applied to ferrogranular materials [22,23], in which
millimetre-sized magnetic grains display collective behaviour reminis-
cent of their nanoscale counterparts. This conceptual continuity under-
scores the universality of dipolar interaction models and motivates their
application to systems extending well beyond the nanoscale. In our pre-
vious work, we have shown that the Stockmayer-type model successfully
describes features of ferrogranular systems [24-26]. While direct exper-
imental access to self-diffusion in these materials remains challenging
and is the subject of ongoing efforts, numerical simulations provide
a powerful means to predict and interpret diffusive dynamics under
well-controlled conditions.

While diffusion in Stockmayer and dipolar fluids has been widely
investigated [27-34], the specific case of a mixed system comprising
non-polar (purely repulsive) and polar (attractive and dipolar) particles
confined to a quasi-two-dimensional (q2D) geometry has not yet been
systematically explored. Such a mixture may be regarded as a zeotropic
system, akin to previously studied Stockmayer mixtures in which the
non-polar component was still represented by a Lennard-Jones fluid with
an attractive interaction [21].

In the present work, however, we focus on a system with distinct
interaction characteristics, offering a new perspective on clustering phe-
nomena and transport processes in confined Stockmayer systems mixed
with non-polar, non-sticky purely repulsive particles, aiming to embrace
the diffusion in ferrogranulate layers as well.

The remainder of this paper is organised as follows. In the next
Section 2, we introduce the computational methodology, outline the
system parameters, and define the principal observables. Section 3 is
divided into three parts: first, we analyse the formation and morphol-
ogy of clusters formed by magnetic particles; second, we characterise
the self-diffusive behaviour of the system; third, we analyse the non-
Gaussianity of particles in the system. The manuscript concludes with a
brief summary of the main results and an outlook for future research.

2. Methods

This section describes the model (Section 2.1), the simulation pro-
tocol (Section 2.2) and the estimation of the mean square displacement
(Section 2.3).

2.1. Model

We consider two types of particles placed in a laterally periodic
square simulation box with a constant side, at a constant temperature, 7.
All particle centres are confined to one plane, but rotations are possible
in all three dimensions.

Particle details. =~ Magnetic particles are modelled as a Stockmayer sys-
tem described by Eqgs. (1)-(2) with € = ¢, = 0.5; dimensionless particle
size 0 = o, = 3; u* = py/4r, where y, is the magnetic permeabil-
ity of vacuum; and m?/k T3 = 10. In dimensionless simulation units
kpT = 0.5. The thermal energy is chosen to be low in order to allow for
the granular athermal character of ferrogranulates [35].

Pure repulsive particles (glass beads in a ferrogranulate) are char-
acterised by a dimensionless diameter of o, = 4, with interactions
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Table 1

The overall area fraction ¢,
along with the magnetic parti-
cles ¢, and glass particles [ is
used in Figs. 1 and 2.

b, m e

¢, 0.175 0.100  0.075
[ 0.210 0.120  0.090
b3 0.233 0.133 0.100
N 0.268 0.153 0.115
s 0.300 0.170  0.130
b 0.303 0.173 0.130
¢, 0.315 0.180  0.135
b 0.350 0.200  0.150

governed by the Weeks-Chandler-Andersen (WCA) potential:

rij <Teut

©)]

WCA _ { uy(rij) = upy(reur), .
Y 0, Fij 2 Teut
Here, & = 10 and r,,, = 2/%6, [36].

The interactions between glass and magnetic beads are modelled us-
ing the Weeks-Chandler-Andersen potential (3) with the same ¢ = 10.
The effective diameter, denoted as ¢ = (o, + 05)/2, is used with an
appropriate cutoff radius r., = 2!/% 6.

The total area fraction of particles, ¢, is the sum of the area fractions
of magnetic, ¢,,, and purely repulsive (glass for a ferrogranulate) beads,

b0 = b + b )

The area fractions for magnetic/glass beads, respectively, are estimated
by
Noyen
412

Punye = :
where Ny, denotes the number of spheres enclosed in a square simu-
lation box with a side length of L = 240. The list of investigated area
fractions is detailed in Table 1. The numbers of magnetic, N, and glass,
Ny, beads were varied. The area fractions in Table 1 are chosen in such a
way that the ratio between the magnetic and nonmagnetic components
is preserved and is equal to ¢,/¢; ~ 1.3. Keeping the ratio constant
facilitates a deeper understanding of the impact of ¢, without mixing in
the influence of other factors.

Particle masses, inertia tensors, and dimensionless friction coeffi-
cients, y are all set to unity, as the focus lies on steady-state behavior
and the relative effects of particle area fraction and applied induction.

Magnetic induction. To evaluate the impact of an external magnetic
induction B*, we apply it orthogonal to the layer of the particles. B*
tends to align each magnetic particle dipole moment 7;; with its direction
out-of-the-plane through the Zeeman energy:

uf == (- B*). ©)

The dimensionless values of the induction are scaled such that the
Langevin parameter, mB* /kgT, takes values of 0, /5, and 2\/5, leading
to three dimensionless magnitudes of the applied out-of-plane induction:
|l§;’;| =0.0, |§T| =0.5, and |§;| = 1.0. These values correspond to low, in-
termediate, and nearly saturating effects on the orientation of magnetic
particles in ferrogranulates [26].

2.2. Simulation protocol

We employ Langevin dynamics in a quasi-2D geometry to model a
two-component mixture, incorporating the interactions and dimension-
less parameters described earlier [37].
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The system was equilibrated for 60 x 10° integration steps.
Equilibrium was defined based on the stability of the cluster size
distribution, where clusters were identified using an energy—distance
criterion [38]: two particles were considered part of the same cluster if
their pair interaction energy was negative and their separation did not
exceed 30% above the contact distance. Once the cluster size distribution
reached a steady state, exhibiting no significant temporal fluctuations
(less than 10%), the system was considered equilibrated.

It should be noted that, in dense systems and in the absence of
an external magnetic field, the resulting clusters may represent kinet-
ically trapped but steady configurations. Nevertheless, even under such
conditions, the main results of this study remain valid.

After equilibration, production runs of 20x 103 integration steps were
carried out. During this stage, cluster configurations were stored at reg-
ular intervals, and particles were classified as either permanently single
or as attaching/detaching from clusters during the observation period.
Simultaneously, the mean-square displacement (MSD) was computed.

For statistical purposes, for each value of ¢, (Table 1) and |§;: |, eight
independent runs were performed.

Throughout the entire duration of the simulations, the time-step
maintains a constant value of 57 = 0.0005.

These simulations were executed using the ESPResSo 4.1.4 simula-
tion package, employing the velocity Verlet algorithm [39] for solving
Langevin equations, and the P3M method [40] combined with dipolar
layer correction [41] for calculating long range magnetic forces in a not
fully periodic system.

2.3. Determination of the mean-square displacement

The mean-square displacement MSD as a function of time lag 7 is
calculated as:

(AP (D)) = ([r(t + 7) — r(D]?), ®)

where r(r) is the position of a particle at time ¢, and (-) denotes an
ensemble average.

For a system in equilibrium, the MSD can be described by the fol-
lowing equation, which gives the dimension of the MSD in terms of the
diffusion coefficient D [2]:

(AP (7)) = 4D, )

where « is the scaling exponent. If « ~ 1, we are dealing with stan-
dard Brownian diffusion, while for exponents different from unity, the
diffusion is usually referred to as anomalous. In general, the value of
a can vary depending on the interparticle interactions. The diffusion
coefficient D is then defined as:

_ (A (@)
T 4

D (8)

To compute MSD, we used a Python implementation that takes ad-
vantage of the tidynamics library [42]. It is convenient to analyse the
dimensionless diffusion coefficient, D/D,, where D, = kT /y, with kg
denoting the Boltzmann constant and y being the friction coefficient.

Alongside the anomalous diffusion exponent obtained from the MSD
scaling, the nature of diffusion can also be characterised by exam-
ining whether the underlying displacement statistics are Gaussian or
non-Gaussian. This distinction is determined from the probability distri-
bution of particle displacements, P(6x, t), evaluated at different lag times
t. Numerous soft-matter systems exhibit combinations such as Gaussian
but non-Brownian diffusion or Brownian yet non-Gaussian diffusion,
reflecting the complexity of their underlying dynamics (see, [43] and
references therein). In the present work, we likewise computed the dis-
placement distribution over the same time interval used for the MSD
analysis, allowing us to assess both the anomalous exponent and the
Gaussian/non-Gaussian character of particle motion.
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3. Results and discussions

This section starts with a cluster analysis (Section 3.1), which is
followed by an estimation of the self-diffusion (Section 3.2).

3.1. Cluster analysis

Initially, we conducted a visual assessment of the equilibrium states
that our systems adopted during the simulations, as depicted in Fig. 1.

In these snapshots, glass particles are shown in gray, while magnetic
particles are represented in dark red, each with a dark blue hemisphere
indicating the orientation of the magnetic moment. The snapshots reflect
three distinct magnitudes of the applied magnetic induction (|Bjjn|) and
three corresponding total area fractions of particles. Moving from left to
right in Fig. 1, we observe an increase in the particle area fraction, as
detailed in Table 1.

The present observations align well with the conclusions reported
previously [25,26]. In the absence of an external magnetic induction
(bottom row), the increase in ¢, leads to the formation of larger clus-
ters. However, no significant qualitative changes in the structure or
the emergence of new aggregation patterns appear. These results cor-
roborate the findings of researchers investigating the self-assembly of
magnetic particles released from a steel plate [44], in liquid media [45],
as well as the clustering phenomena observed in granular systems, which
display a liquid-solid-like phase transition under out-of-equilibrium
conditions [46].

Examining the column on the right-hand side, corresponding to the
maximum value of ¢,, indicates a consistent pattern: irrespective of the
magnitude of | B*|, the overall structure of the aggregate is preserved.
Specifically, it exhibits a hexagonal local arrangement where particles
align in a head-to-tail configuration, forming chains that are offset by
half a particle. As | B*| increases (see rows 2 and 3 in Fig. 1), the frac-
tion of isolated magnetic particles that align their magnetic moments
with the field also rises. This leads to a configuration characterised
by dipole-dipole repulsion, which cannot be offset by dipolar in-plane
favourable head-to-tail attraction at low particle area fractions. This be-
comes prominent in the top left quadrant (minimal ¢, and maximal B*),
where the majority of magnetic particles are non-aggregated. Likewise,

(1)1 (b4 (bs

Fig. 1. Typical simulation snapshots. The total area fraction ¢, from left to right:
¢, = 0.175, ¢, = 0.268, ¢ = 0.350. The applied external magnetic induction
grows from bottom to top |Bj| = 0.0, via |B{| = 0.5, to | Bj| = 1.0, in simulation
units.
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Fig. 2. The fraction of magnetic particles (%) within clusters, ¢, single parti-
cles, ¢y;,,, and particles migrating from a clustered to a single state (or reverse),
@migr versus total area fraction ¢,. In each column, the magnetic induction
changes from 0.0 to 1.0 in simulation units.
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Fig. 3. Dependence of ¢ys(By)/de1us(B;) (circles, black) and ¢ging (By)/ bsing (B5)
(squares, light blue) versus total area fraction, ¢,. Red dashed horizontal line
marks unity. Vertical lines around symbols, if seen, show error-bars.

in its diagonal counterpart, the bottom right quadrant for the high value
of ¢, and no applied induction evidences the formation of large clusters.
The structures observed in the simulation snapshots are similar to the
experimental findings in [25].

To quantify the observations, in Fig. 2, we show how the percentage
of magnetic particles in clusters, s, single particles, ¢gng, and migrat-
ing particles, ¢p;g,, depends on the area fraction and the strength of the
magnetic induction.

As the induction strength increases, ¢, decreases. This can be seen
by comparing the three bars within each value of ¢,: the black bars
are consistently higher than the dark blue and dark turquoise bars, es-
pecially at intermediate particle concentration. In contrast, both the
migrating and single-particle fractions grow with increasing B*. For mi-
grating particles, this is shown by the bars in progressively darker to
lighter shades of red; for single particles, by the central bars in each
column, which shift from dark purple to light blue and finally to light
turquoise, as indicated in the legend. The actual values of the area frac-
tions of clustered, single, and migrating magnetic particles are collected
in Table. S1 in the Supplementary.

To further examine how the combined increase in B* and ¢, affects
cluster formation, Fig. 3 shows the ratio between the fraction of clus-
tered particles in the absence of induction and that at the highest applied
B* (circles). At low area fractions, the system contains nearly ten times
more clustered particles when no induction is applied; however, this
ratio decreases to about two at high area fractions. Interestingly, the
corresponding ratio for the fraction of single particles (squares) is essen-
tially insensitive to ¢,,: at zero applied induction, only very few particles
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Fig. 4. Probability distribution function (PDF) of the number of particles within
clusters as a function of cluster size for different magnetic induction strengths
B*, at a constant total area fraction. (a) compares three area fractions in the
absence of magnetic induction. Panel (b) shows results for ¢, = 0.175, while (c)
illustrates ¢»; = 0.315. Three curves in (b) and (c) are for three values of magnetic
induction B* as shown in the legend.

remain single, whereas at finite B*, the combined fraction of migrating
and single particles never falls below 50 % across the entire parameter
range studied here, leading to the aforementioned ratio being constant.

The size distribution of clusters can be found in Fig. 4. Here, we plot
a probability distribution function (PDF) of finding clusters of a given
size. Fig. 4(a) corresponds to B(’; = 0 and shows the PDFs for three dif-
ferent area fractions: ¢, = 0.175, 0.210, and 0.315. As the area fraction
increases, larger clusters become more likely, as evidenced by the heav-
ier tail of the green (¢, = 0.175) PDF at higher cluster sizes; however,
their topology does not change, as previously seen in Fig. 1. The distri-
butions show bi-exponential decay, indicating that the system is close to
the percolation threshold.

Comparing Fig. 4(b) and (c), one can conclude that while the PDFs for
Bj and B} remain quite similar, the decay of the PDF for B} is markedly
steeper. The latter also exhibits the strongest sensitivity to the area frac-
tion: at low ¢,,, Fig. 4(b), almost no clusters with more than 10 particles
are observed, and the decay follows a single-exponential form apart from
a statistically noisy tail at large cluster sizes. In contrast, at high ¢,,,
Fig. 4(c), the difference between the BS‘ and B;’ PDFs becomes much
less pronounced.

In summary, this subsection demonstrates that for the system pa-
rameters considered above, increasing the area fraction promotes the
formation of larger clusters but does not have a significant impact
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Fig. 5. The scaling exponent, a, Eq. (7), in upper panels and effective diffusion coefficient, D/D, in lower panels, versus ¢,. The values of magnetic induction are
provided in the legend. (a) single (nonaggregated) magnetic particles; (b) magnetic particles in clusters; (c) nonmagnetic particles (glass), « = 1 for all ¢, and is not

plotted here.

under zero applied induction, as the system is highly aggregated and
the fraction of single particles is negligible in agreement with the pre-
vious observations in work [47]. The magnetic induction hinders the
formation of large clusters. This effect is more pronounced at low
area fractions. At a high area fraction of particles, the density effects
dominate over an applied induction.

As ¢, increases, the system approaches and eventually reaches the
percolation threshold, where clusters span the entire system [48]. For
the parameters considered here, however, no percolation has been
observed.

Such clustering behaviour cannot help but affect self-diffusion in the
layer of a model ferrogranulate; therefore, in the next subsection, we
analyse the mean-square displacement of both Stockmayer and purely
repulsive beads.

3.2. Self-diffusion

Using mean-squared displacement and Eq. (7), we estimated the
diffusion coefficients, D, and exponents a for single magnetic parti-
cles, magnetic particles in clusters, and glass particles. The results are
collected in Fig. 5.

In the lower panel of Fig. 5(a), we show the normalised self-diffusion
coefficient, D/D,, of single magnetic particles at low induction B (cir-
cles) and high induction B;‘ (stars) as a function of the total area fraction
¢, The straight lines correspond to linear fits. The results demonstrate
that the magnitude of the diffusion coefficient remains essentially un-
changed: neither the applied magnetic induction nor increasing ¢, has
a noticeable effect on the self-diffusion speed of isolated particles. In con-
trast, the exponent a, displayed in the upper panel of the same figure,
is sensitive to both ¢, and B]. At zero induction, the particles exhibit
normal diffusive behaviour (¢ ~ 1) over the entire range of area frac-
tions. Under strong magnetic induction, however, their motion becomes
progressively subdiffusive, with a decreasing to approximately 0.8 at
the highest ¢,. This trend arises because single particles become pre-
dominantly aligned along the direction of the induction - orthogonal to
the layer and parallel to one another - resulting in strong dipolar re-
pulsion that suppresses normal diffusion. Thus, although the diffusion
coefficient itself remains robust, the nature of the particle trajectories is
substantially altered by the combined influence of the increasing area
fraction and applied induction.

Magnetic particles within clusters experience the joint effects of
crowding and induction even more strongly. As shown in Fig. 5(b), the

ratio D/ D, is significantly lower for clustered particles than for single
ones, and it decreases further as both the induction (B;, stars) and ¢,
increase.

As discussed in the previous section, this behaviour reflects the re-
duced effectiveness of the orthogonal induction at higher ¢,, where
dipolar interactions promoting in-plane chain formation dominate the
dynamics. For the same reason, D/D, remains low even in the absence
of induction (B, circles): under these conditions, clusters are already
large, and most particles are aggregated regardless of ¢,,, as illustrated
in Figs. 2 and 3. The largest difference between circles and squares (B;
and Bg) in the values of D/ Dy, is observed for low area fractions, where
the ratio of particles in clusters, as shown in Fig. 3, is almost an or-
der of magnitude. This significant difference, however, results in only
a 25 % decrease in the diffusion coefficient, highlighting the strongly
nonlinear relationship between clustering and diffusivity. No ¢, depen-
dence is measured for D/D, in the case of B (circles). The resulting
¢,-independent cluster-size distribution at Bj (Fig. 4) explains the nearly
constant trend observed for D/D,. As for the values of «, the particles
in clusters clearly exhibit subdiffusion.

It is particularly interesting to examine the behaviour of purely re-
pulsive, non-dipolar particles. Even though the value of « remains very
close to one (see Supplementary Information), the diffusion coefficient
turns out to be not only ¢,-dependent but also sensitive to the ap-
plied magnetic induction. As shown in Fig. 5(c), the values of D/D,
for B; (circles) and B;‘ (stars) differ markedly: the latter is consistently
lower across the entire range of ¢,. This effect arises from the repul-
sion between the isolated magnetic particles discussed above, which
substantially restricts the space available for the non-magnetic particles
to diffuse. In this sense, one may view the phenomenon as a kind of mag-
netic “cooling” of a non-magnetic component. Note that non-magnetic
spheres are analogous to the glass spheres dispersed in a ferrogran-
ulate, where similar cooling effects may, in principle, be observable
experimentally.

3.3. Non-Gaussianity of particle displacements

The final step in our analysis is to determine whether any of the
diffusion processes modelled here are non-Gaussian. To examine this,
we calculate the probability that a particle (either a single magnetic
particle, a glass particle, or a magnetic particle within a cluster) moves
by a distance §x during a time interval z. We consider five different time
intervals, measured in simulation units,
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7; € {05, 1, 2, 2.5, 5}, i=1..5.

The shortest interval, z,, corresponds to the ballistic regime. All in-
termediate values, except for the last one, lie within the intermediate
regime, while 75 captures the diffusive part of the MSD (see Fig. S2 in
the Supplementary Information).

Next, we compute the non-Gaussianity parameter (Fisher’s coeffi-
cient), defined using the fourth moment (u,) and the second moment
u, of the displacement distribution:

rn=— =3 ®

A distribution close to a normal yields y, ~ 0. Positive values indi-
cate a leptokurtic distribution, whereas negative values correspond to
a platykurtic one [49].

In the absence of an applied induction, B, the values of y, for the few
non-aggregated magnetic particles remain close to zero, independently
of the system area fraction. The raw data for the frequencies of different
displacements can be found in the supplementary materials, Fig. S3. The
values of y, change markedly in the case of a strong applied induction,
B;, as shown in Fig. 6(a). For each value of z, three columns correspond
to three different area fractions, increasing from the lowest (¢, leftmost)
to the highest (¢g, rightmost).

For a fixed ¢,, the non-Gaussianity increases monotonically with in-
creasing displacement. Interestingly, in the ballistic and intermediate
regimes (r,-74), the value of y, for the intermediate area fraction ¢,
exceeds that for ¢5. We attribute this to the higher fraction of single mag-
netic particles at ¢,, as shown in Fig. 2. Since y, reflects the strength of
interactions, a larger population of individual magnetic particles with
dipoles aligned with the applied induction leads to stronger effects of
dipolar repulsion on a short timescale.

In the diffusive regime, however, the diffusion exponent a decreases
monotonically with ¢,, indicating crowding-induced subdiffusivity (see
Fig. 5(a)). At these longer time scales, the non-Gaussianity also becomes
a monotonic function of ¢,.

In Fig. 6(b), one can see that magnetic particles in clusters exhibit
a strongly non-Gaussian displacement distribution (actual distributions
are shown in Supplementary Fig. S4). Here, for each 7;, one finds six
columns: the first three are for By, and the other three are for B;.
Analogously to Fig. 6(a), the three columns for each induction value
from left to right correspond to ¢, ¢,, and ¢g. For short time-scales
(ballistic or nearly ballistic intervals of z; and 7,), neither the induction
nor the area fraction has notable effects on y,.

The situation changes for r; and 7,. Here, the values of y, reflect
the internal dynamical heterogeneity of the aggregates. When the mag-
netic field is applied orthogonally to the substrate, it destabilises planar
clustering and suppresses all but the most favourable dipole-dipole
arrangements, resulting in tight, highly constrained clusters that are typ-
ically smaller than those formed in zero field. At intermediate lag times,
this produces a monotonic increase in non-Gaussianity with increasing
¢, since higher area fractions enhance the internal restrictions within
these tight surviving aggregates. In contrast, the clusters in zero field
are larger and structurally more variable; their internal rearrangements
are most heterogeneous at intermediate ¢,, leading to a non-monotonic
dependence of y,.

At long lag times, 75, both zero and applied induction values ex-
hibit non-monotonic behaviour again, albeit for different reasons. The
small, tight field-stabilised clusters relax and reorganise sufficiently to
reduce their internal heterogeneity at the highest ¢,, whereas the large
zero-field clusters, although loosely structured, occupy appreciably more
space and provide a greater number of neighbours that constrain long
displacements. This increased spatial crowding leads to an analogous
reduction in y, at high ¢, in the diffusive regime.

Finally, in Fig. 6(c) we observe that the applied magnetic induction
also influences the values of y, calculated for the displacements of the
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Fig. 6. Non-Gaussian parameter y, for (a) single (nonaggregated) magnetic
particles, (b) magnetic particles within clusters, and (c) purely repulsive non-
magnetic particles, shown for several lag times 7;. For each panel, the bars
correspond to different area fractions, and colours indicate either zero induction,
B;, or strong applied induction, B} (in (b)). Raw displacement distributions are
provided in the Supplementary Information (Figs. S3-S5).

purely repulsive, non-magnetic particles (akin to the glass beads in fer-
rogranulates). As confirmed by the raw distributions provided in the
Supplementary Fig. S5, at Bj the displacement statistics of these non-
magnetic particles remain practically Gaussian for all but the highest
area fraction: only at ¢3 and at the longest lag time 75 does a modest de-
viation from Gaussianity appear. In contrast, at B} the values of y, are
no longer negligible. Instead, y, increases markedly with both ¢, and
7;, in some cases even exceeding the non-Gaussianity observed for iso-
lated magnetic particles in Fig. 6(a). This enhanced heterogeneity arises
because the field-induced restructuring of the magnetic particles mod-
ifies the local environment experienced by the non-magnetic ones: the
formation of compact dipolar aggregates creates spatially extended ob-
stacles and transient cages, leading to intermittent trapping, uneven free
volumes, and thus a strongly non-Gaussian displacement distribution for
the repulsive particles.

4. Conclusions

In this work, we have carried out a systematic numerical study of
a quasi-two-dimensional mixed system composed of Stockmayer-type
dipolar particles and purely repulsive non-polar particles, motivated by
the broader goal of understanding transport processes in ferrogranular
layers. By combining detailed cluster analysis with a quantitative evalu-
ation of self-diffusion, we have demonstrated how the interplay between
particle area fraction, dipolar interactions, and an out-of-plane magnetic
induction governs the structural organisation and dynamical behaviour
of the mixture.
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Our results show that increasing the total area fraction enhances
clustering among magnetic particles, although the topology of the clus-
ters remains qualitatively unchanged. The application of an external
magnetic induction reduces cluster sizes by promoting out-of-plane
alignment and dipolar repulsion between single particles. This effect is
most pronounced at low area fractions; whereas, at high area fractions,
dipolar interactions diminish the influence of the induction, leading
to similar cluster statistics across field strengths. Importantly, the sys-
tem remains below the percolation threshold for all parameter sets
explored.

The cluster morphology has direct consequences for the particle mo-
bility. Isolated magnetic particles retain a diffusion coefficient that is
largely independent of induction and concentration, but their motion
becomes increasingly subdiffusive under strong induction. Magnetic par-
ticles embedded in clusters diffuse substantially more slowly and exhibit
clear subdiffusive dynamics, reflecting the constrained motion imposed
by dense bundles of chain-like aggregates. Remarkably, even the purely
repulsive non-magnetic particles — despite exhibiting nearly Brownian
displacement statistics — display diffusion coefficients that are strongly
suppressed by magnetic induction.

We showed that the interplay between magnetic induction and
increasing area fraction strongly influences the average particle dis-
placement distribution in the system. As expected, magnetic particles
within clusters display consistently non-Gaussian dynamics, which be-
come more pronounced with both area fraction and applied field (on
short-time scales). Our displacement analysis reveals that, in the absence
of induction, isolated magnetic particles diffuse essentially in a Gaussian
manner across all concentrations. Under strong induction, however, the
dynamics become increasingly non-Gaussian, with the non-Gaussianity
parameter rising with displacement and showing a marked dependence
on particle concentration. At intermediate area fractions, where the
proportion of single magnetic particles is higher, short-time dynamics
exhibit enhanced non-Gaussianity due to the stronger influence of dipo-
lar repulsion. At longer time scales, by contrast, the system enters a
crowding-dominated diffusive regime, in which both the diffusion ex-
ponent and the non-Gaussianity vary monotonically with area fraction.
At sufficiently high induction and crowding, even the glass parti-
cles develop non-Gaussian dynamics, confirming field-driven dynamical
cooling of the non-magnetic component.

Altogether, our findings reveal the rich and highly nonlinear cou-
pling between dipolar interactions, cluster formation, and transport in
mixed quasi-2D dipolar systems. The study provides a framework for
interpreting diffusion phenomena in ferrogranular materials and paves
the way for future experimental verification, particularly regarding
induction-controlled cooling of non-magnetic components. Extensions
of this work may include time-dependent fields, polydispersity effects,
or direct comparisons with trajectory-resolved experimental data from
granular magnetic layers.
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