
On measuring the temperature coefficient of resistivity and the thermal 
expansion coefficient of conductive thin films

Gerhard Fischerauer
Chair of Measurement and Control Systems, Universität Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
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A B S T R A C T

We analyze the details of extracting the temperature coefficient of resistivity and the thermal expansion coef
ficient of thin-film materials from the measured temperature coefficient of resistance of thin-film resistors on 
supporting substrates. It is shown that this requires two straining experiments, one thermal experiment, and the 
ability to deposit identical films on two different substrates with known properties. An analysis of experimental 
data from the literature, which includes the application of accepted rules from the Guide to the Expression of 
Uncertainty in Measurement (GUM), reveals that the violation of the stated requirements usually leads to 
inconsistent or arbitrary results.

1. Introduction

It is well known that thin films are characterized by effective mate
rial parameters that are different from the corresponding bulk values. 
The difference is caused on the one hand by the fact that surface effects 
play a greater role in thin films than in bulk materials. For example, 
aluminum always forms a layer of aluminum nitride (Al2O3) on its 
surface, and this layer contributes the more to the effective character
istics of an aluminum film, the thinner the film is.

On the other hand, the characteristics of a film are influenced by its 
morphology which depends on the details of the processes that have 
been used to deposit it on a supporting substrate. For example, the mass 
density of silicon carbide thin films deposited by plasma-enhanced 
chemical vapor deposition (PECVD) on GaAs is around 2, 100 kg /m3, 
depending somewhat on the film thickness [1,2], which is 33 % lower 
than the bulk value of 3, 128 kg/m3 [3]. Young’s modulus and Poisson’s 
ratio for the same films are around 140 GPa and 0.3, respectively [1,2]. 
The corresponding bulk values amount to 400 GPa (185 % above the 
thin-film value) [3, Table 223, p. 763] and 0.2 (33 % below the thin-film 
value) [3, Table 249, p. 823].

The substantial differences between bulk and thin-film material pa
rameters explain the need for direct measurements on thin films. We are 
interested in the temperature dependence of the resistance of thin-film 
samples and in shedding light on the factors that contribute to this 
temperature dependence. The resistance of a thin-film device is an in
tegral parameter which depends on both material properties (resistivity 
of the thin-film material) and geometry (length, width and height of the 

film). Both the material properties and the geometry are functions of 
temperature. The situation is complicated by the fact that the geometry 
of the supporting substrate also depends on temperature. Measurements 
on film/substrate geometries must be interpreted carefully. It is easy to 
misinterpret effects as caused by the film when in reality they are con
sequences of the film/substrate coupling. It is even easier to obtain 
wrong numbers for thin-film material parameters such as the resistivity 
by such a misinterpretation of measured data.

For thin metal wires, it has been shown that neglecting thermal 
expansion effects leads to significant errors, so significant indeed that 
even the sign of the temperature coefficient of resistivity can be wrong 
when the coefficient is derived from measured resistances in this manner 
[4]. The literature on thin films provides numerous examples with ma
terial data (resistivities and temperature coefficients of resistivity) that 
have been derived from resistance measurements without taking into 
account thermal expansion effects. It is the aim of this contribution to 
provide a framework for correct data interpretation and to show to what 
extent the numerical values change when this approach is followed.

It is not our goal to trace back the measured material parameters to 
more fundamental parameters such as film morphology, mean free path 
length of electrons, specularity parameter (probability of an electron to 
be specularly reflected from the surface), etc. It is true that physical 
theories such as the well-known Fuchs-Sondheimer model [5] or the 
Mayadas-Shatzkes model [6,7] for the resistivity of thin films allow one 
to predict measurable quantities and thus to judge the plausibility or 
quality of measurement data. It is also true, however, that such 
theory-based approaches can fail dramatically when the assumptions 
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behind the theory are not satisfied. Sambles opined >40 years ago that 
the area of thin-film research in general and resistivity measurements in 
particular would “be cluttered further with trivial and almost worthless 
experimental data” unless experimenters paid close attention to a 
number of points that were often overlooked [8]. This verdict is as valid 
today as it was back then. As Thompson has shown only a few years later 
[9,10], the situation may improve if one combines theory-based ap
proaches with an appropriate processing of experimental data. But the 
situation does not necessarily have to improve as processing errors can 
lead to erroneous thin-film parameters even though the underlying 
physical theory is correct. Common errors include assumptions 
regarding the bulk values of material parameters, comparison of samples 
with different thin-film structures, and failure to consider outcome 
quality measures [9]. Although we do not strive to compute resistivity 
and its dependence on temperature from more basic physical quantities 
by way of physical theory, the mentioned data processing errors can also 
occur when measuring the thin-film resistivity directly and will there
fore be included in our treatment.

2. Problem analysis and model development

2.1. Geometries with homogeneous current density

Let us consider a thin-film resistor made of an isotropic material with 
resistivity ρf , the index “f” being used to indicate a material property of 
the film. The current density inside the film shall be homogeneous. 
When the dimensions of the resistor are l (length, aligned with the x- 
axis of a Cartesian coordinate system), w (width, in y-direction), and h 
(height, in z-direction), its resistance is given by 

R = ρf ⋅
l

wh
. (1) 

This resistance varies when the quantities on the right-hand side 
vary. Differentiating by parts or looking into the literature—see, e. g., 
[11, Eq. (2)] or [12, Eq. (4)]—shows that 

ΔR
R

=
Δρf

ρf
+

Δl

l
−

Δw
w

−
Δh
h

=
Δρf

ρf
+ εxf − εyf − εzf . (2) 

Here, εxf , εyf and εzf are the relative length changes, or strains, of the 
film in the x-, y- and z-directions, respectively. Eq. (2) is a quantitative 
way of stating that changes in the device parameter “resistance” are 
caused by changes in the material parameter “resistivity” or changes in 
the geometry (or both).

Strains are caused by mechanical stresses or by temperature changes 
(thermal expansion). By ignoring shear components in Hooke’s law, one 
obtains [13, Eq. (3)] 
⎛

⎝
εxf
εyf
εzf

⎞

⎠ =
1
Ef

⎛

⎝
1 − μf − μf

− μf 1 − μf
− μf − μf 1

⎞

⎠

⎛

⎝
σxf
σyf
σzf

⎞

⎠+

⎛

⎝
1
1
1

⎞

⎠αl f ΔT (3) 

where Ef , μf and αl f respectively denote Young’s modulus, Poisson’s 
ratio, and the thermal expansion coefficient of the thin-film material. 
σxf , σyf and σzf are the normal stress components in the film in the x-, y-, 
and z-directions, respectively (in compressed index notation). ΔT is the 
difference between the instantaneous temperature and the reference 
temperature at which the dimensions of the resistor are considered as 
unstrained.

In general, the fractional change in resistivity, too, will depend on 
mechanical stresses and on temperature: 

Δρf

ρf
=
(

πxxf πxyf πxzf
)

⎛

⎝
σxf
σyf
σzf

⎞

⎠+ αρf ΔT (4) 

where the πijf are components of the piezoresistivity tensor (in com

pressed index notation) and αρf is the linear temperature coefficient of 
resistivity.

Eqs. (2), (3) and (4) together describe how the resistance changes 
when the resistor is mechanically stressed or subjected to temperature 
variations. We proceed by considering two special cases.

2.1.1. Thin films with uniaxial stress
Let a thin-film resistor be subjected to uniaxial stress in the x-di

rection (σxf ∕= 0, σyf = σzf = 0) and to temperature effects (ΔT ∕= 0). 
Inserting the stress conditions into Eqs. (3) and (4) and combining the 
resulting equations with Eq. (2) yields: 

ΔR
R

=
1
Ef

KGFσxf +
(
αρf − αl f

)
ΔT (5) 

with the “gauge factor” 

KGF = πxxf Ef + 1 + 2μf . (6) 

We conclude the following: 

(a) For a purely mechanical experiment with ΔT = 0, Eq. (5) reduces 
to 

ΔR
R

=
1
Ef

KGFσxf = KGFεxf . (7) 

This shows that the gauge factor KGF can be determined by straining 
the resistor along its length direction and measuring the resulting 
resistance change. 

(b) Without external forces acting on the thin film, σxf = 0, Eq. (5)
reduces to 

ΔR
R

=
(
αρf − αl f

)
ΔT =: αRΔT. (8) 

Obviously, one can measure the overall temperature coefficient of 
resistance, αR, but not the individual contributions of the material pa
rameters αρf and αl f of the film.

Note that an experiment of type (b) usually requires a suspended thin 
film but is hardly conceivable for a thin film deposited on a substrate. 
The conditions σxf = 0 and σyf = 0 exclude any thermal expansion 
mismatch between the film and the substrate. Generally, the film will be 
strained by the substrate at temperatures other than room temperature 
when the system was stress-free at room temperature (so-called misfit 
strains).

2.1.2. Supported thin films with biaxial stress due to thermal expansion
A thin film deposited on a substrate does not exhibit any out-of-plane 

stress unless such stress is intentionally applied. We do not consider such 
intentional stressing and therefore set σzf = 0. In the xy-plane, however, 
the film cannot move freely as the coupling to the substrate introduces 
constraints. We assume isotropic biaxial stress: σxf = σyf . Eqs. (3) and 
(4) then become 
⎛

⎝
εxf
εyf
εzf

⎞

⎠ =
1
Ef

⎛

⎝
1 − μf
1 − μf
− 2μf

⎞

⎠σxf +

⎛

⎝
1
1
1

⎞

⎠αl f ΔT (9) 

and 

Δρ
ρ =

(
πxxf + πxyf

)
σxf + αρf ΔT. (10) 

There is some disagreement in the literature on how the (average) 
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stress σxf in a layer supported by a substrate should be computed. Under 
the assumption of perfect bonding between film and substrate (no-slip 
condition), any deformation of the substrate also leads to a deformation 
of the thin film. An often-cited equation due to Stoney is [14, Eq. (1) Eq. 
(1)] 

σxf =
1
6

⋅
Es

1 − μs
⋅
hs

hr
(11) 

where Es and μs are Young’s modulus and Poisson’s ratio of the substrate 
material, respectively. Furthermore, hs denotes the substrate height and 
r is the radius of curvature of the coated substrate at a temperature 
difference ΔT with respect to the temperature at which the substrate is 
unstressed and therefore flat (r→∞).

In practice, it may be difficult to mechanically stress a supported thin 
film in a controlled manner. When the thermal expansion coefficients of 
the film and substrate materials differ, one can exploit the thermal-misfit 
stress created by temperature increases. This has the disadvantage that 
the influences of piezoresistivity and thermal expansion on the device 
resistance now act together, but we will see below that they can be 
separated by performing three independent experiments.

A common expression for the stress in a supported thin film caused 
by thermal expansion is [14, Eq. (2)] 

σxf =
Ef

1 − μf

(
αl s − αl f

)
ΔT. (12) 

This expression assumes a rigid, incompressible, inflexible substrate 
[14]. It does not account for the equilibria of the film and substrate 
stresses on the one hand and the bending moments on the other hand. 
Such stresses and moments necessarily occur with temperature changes 
when film and substrate have different thermal expansion coefficients. 
As pointed out by Chiu [14], combining Eqs. (11) and (12) is equivalent 
to treating the substrate as simultaneously flexible and inflexible. This, 
although found in the literature, is inconsistent and leads to wrong 
conclusions.

The correct equation, which takes the mentioned equilibria into 
account, is lengthy [14, Eq. (B-5)]. But for thin films with a large 
thickness ratio hs/h—on the order of (100 μm)/(100 nm) = 1000—and 
when the ratio of the elastic moduli, Es/Ef , is not exceedingly large, the 
film stress σxf can be approximated very well by its saturation value 

σxf = Ef
(
αl s − αl f

)
ΔT. (13) 

This equation considers the coated system as a linearly elastic 
framework whereas, as mentioned, Eq. (12) treats the substrate as rigid. 
Eqs. (2), (9), (10), (13) together yield 

ΔR
R

=
(
Kʹ

GF
(
αl s − αl f

)
+ αρf − αl f

)
ΔT =: αʹ

RΔT (14) 

with the gauge factor 

Kʹ
GF =

(
πxxf + πxyf

)
Ef + 2μf

(
= KGF − 1+ πxyf Ef

)
. (15) 

Eq. (14) degenerates to Eq. (8) for αl f = αl s (thermal expansion 
match between thin film and substrate). This is to be expected as the 
substrate does not exert any forces on a film when the film-substrate 
system expands uniformly. In any other case, the gauge factor Kʹ

GF and 
the temperature coefficient of resistance αʹ

R valid for a resistor based on a 
supported thin film differ from the corresponding values KGF and αR of 
the suspended thin film. Kʹ

GF describes a biaxial-stress case whereas KGF 

is valid for uniaxial stress. In the absence of a transverse piezoresistive 
effect, i.e., when πxyf = 0, Kʹ

GF = KGF − 1; for isotropy, i.e., when πxyf =

πxxf , Kʹ
GF = 2⋅

(
KGF − 1 − μf

)
. Some caution must be exercised to make 

sure that such relations hold. As noted by Rosenberg [15], “simple re
lations which often appear in the literature should be dealt with 
cautiously because they usually treat the resistivity of metals as a scalar, 
thus eliminating one of the piezoresistance coefficients.”

By Eq. (14), αŔ can be determined by heating the film-substrate 
system and measuring the resistances at different temperatures. The 
same is not true for αρf . A thermal cycling experiment only yields αŔ, i.e., 
a weighted combination of the coefficients αρf and αl f (material prop
erties of the film) and αl s (a material property of the substrate). αl s may 
be known for common substrates such as glass, and the gauge factor KǴF 
may be determined by mechanically straining the resistor. But even 
when αl s and KǴF are known, one cannot quantify the individual con
tributions of αρf and αl f towards αŔ. All one can infer is the numerical 
value of the linear combination 

αρf −
(
1+Kʹ

GF
)
αl f = αʹ

R − Kʹ
GFαl s. (16) 

If it is possible to deposit films with identical material parameters on 
two different substrates, one can use Eq. (14) twice and subtract them 
from one another. This leads to 

Kʹ
GF =

αʹ
R1 − αʹ

R2
αl s1 − αl s2

. (17) 

Of course, given the importance of the substrate surface for the 
growth of a thin film, the requirement of identical films on two different 
substrates may be hard to satisfy.

2.1.3. Measurement strategy
Let us assume that we can perform the experiment described by Eq. 

(14) with identical films on different substrates. Then we know the 
numerical values of the slopes 

m1 = K’
GF
(
αl s1 − αl f

)
+ αρf − αl f , (18) 

m2 = Kʹ
GF

(
αl s2 − αl f

)
+ αρf − αl f . (19) 

Hence, in matrix notation, 
(

1 −
(
1 + Kʹ

GF
)

1 −
(
1 + Kʹ

GF
)

)(
αρf
αl f

)

=

(
m1 − Kʹ

GFαl s1

m2 − Kʹ
GFαl s2

)

. (20) 

This system of linear equations is either underdetermined or incon
sistent because the determinant of the system matrix vanishes. In the 
consistent case, i.e., when m1 − Kʹ

GFαl s1 = m2 − Kʹ
GFαl s2 or m1 − m2 =

Kʹ
GF(αl s1 − αl s2), the equations are solved by infinitely many pairs of 

parameters 
(
αρf , αl f

)
for given values of Kʹ

GF, αl s1 and αl s2. In the 
inconsistent case m1 − m2 ∕= Kʹ

GF(αl s1 − αl s2), which may occur as a 
result of measurement errors or uncertain parameter values from the 
literature, the equations do not have a solution at all. Either case is 
disappointing.

Alternatively, assume that we can perform the experiment described 
by Eq. (14) with a substrate 1 and, independently, the experiment 
described by Eq. (8). Then we know the numerical values of the slope m1 
in Eq. (18) and of 

m3 = αρf − αl f (= αR) . (21) 

In matrix notation, Eqs. (18) and (21) can be written as 
(

1 −
(
1 + Kʹ

GF
)

1 − 1

)(
αρf
αl f

)

=

(
m1 − Kʹ

GFαl s1

m3

)

. (22) 

The determinant of the system matrix now is Kʹ
GF, i.e., it does not 

vanish. Therefore, the system of equations has a unique solution. When 
αl s1 and Kʹ

GF are known, we obtain the following solution for the thin- 
film parameters: 

αρf = αl s1 −
1

Kʹ
GF

m1 +

(

1+
1

Kʹ
GF

)

m3; (23a) 

αl f = αl s1 −
1

Kʹ
GF

m1 +
1

Kʹ
GF

m3 . (23b) 
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When Kʹ
GF is not known a priori, but the experiment described by Eq. 

(14) can be repeated with a different substrate 2, we have Eqs. (18), (19) 
and (21) at our disposal. By Eq. (17), we can now determine Kʹ

GF 
= (m1 − m2)/(αl s1 − αl s2) and eliminate Kʹ

GF from Eqs. (23a), (23b). The 
result is: 

αρf =
m2 − m3

m2 − m1
αl s1 +

m1 − m3

m1 − m2
αl s2 + m3; (24a) 

αl f =
m2 − m3

m2 − m1
αl s1 +

m1 − m3

m1 − m2
αl s2 . (24b) 

It requires two straining experiments and one thermal experiment to 
uniquely determine the thin-film coefficients αρf , αl f ; and, in addition, 
the thermal expansion coefficients αl si of two substrates must be known. 
Note that this procedure yields the purely mechanical quantity Kʹ

GF, 
which directly depends on elasticity and piezoresistivity but not on 
temperature, by way of thermal experiments as the biaxial thin-film 
strain is realized as thermal-misfit strain.

2.2. Van-der-Pauw experiments

The van-der-Pauw (vdP) theorem applies to geometries involving 
planar films or plates with arbitrary perimeters, uniform thickness and 
four contacts A, B, C, D on the periphery (Fig. 1). The current density in 
such geometries is clearly inhomogeneous. The theorem, derived by 
conformal mapping methods, relates the resistance RAB, CD measured 
between terminals C and D when a current is impressed between ter
minals A and B and the resistance RBC, DA measured between terminals D 
and A when a current is impressed between terminals B and C [16].

The quantitative statement of the vdP theorem is: 

exp
(

−
πh
ρf

RAB, CD

)

+ exp
(

−
πh
ρf

RBC,DA

)

= 1. (25) 

Here, h denotes the film thickness and ρf is the resistivity of the film 
material. For symmetric structures with RAB, CD = RBC,DA = : R, the 
theorem reduces to 

2exp
(

−
πh
ρf

R
)

= 1 (26) 

or 

R =
ln2
π ⋅

ρf

h
. (27) 

The resistance varies, when the quantities on the right-hand side 
vary. Along the same line of reasoning as used in SubSection 2.1, we 
conclude that 

ΔR
R

=
Δρf

ρf
−

Δh
h

=
Δρf

ρf
− εzf . (28) 

As in SubSection 2.1.2, we investigate the effects of thermal expan
sion only. They are associated with biaxial stress, and Eqs. (2), (9), (10)
and (13) hold as before. This also means that Eq. (14) holds as before. As 
a result, the experiment directly yields the temperature coefficient of 

resistance, αR, but not the temperature coefficient of the film resistivity, 
αρf , unless one knows the respective thermal expansion coefficients of 
the film and the substrate, αl f and αl s, and the effective gauge factor Kʹ

GF.

3. Results of application to experimental data

3.1. Geometries with homogeneous current densities

3.1.1. Case 1: 10-nm Au films on glass or polyimide
One finds models other than Eq. (14) in the literature. For example, 

Oliva et al. propose to use Eq. (14) with KǴF replaced by KGF [17]. This 
neglects both the transverse piezoresistive effect and the effect of ther
mal expansion in the thickness direction of the film.

In [17], Eq. (20) is solved with KǴF replaced by KGF and with αR =

αρf − αl f and αl f as unknowns. But rewriting Eq. (20) in the form 
(

1 − KGF
1 − KGF

)(
αR
αl f

)

=

(
m1 − KGFαl s1
m2 − KGFαl s2

)

(29) 

does not eliminate the fact that the system determinant vanishes. The 
system of equations remains underdetermined or inconsistent. We could 
not gather from [17] how the issue was resolved. In the case of a 10-nm 
thick gold film deposited at a rate of 0.015 nm/s on borosilicate glass 
(Corning® Gorilla®) on the one hand and on polyimide (DuPont™ 
Kapton®) on the other hand, experiments and datasheets provided the 
data listed in Table 1. This amounts to the inconsistent case as m1 −

m2 = 450 ppm/
∘C ∕= KGF(αl s1 − αl s2) = − 46.2 ppm/

∘C.
As expected, the alleged solution αR = 894 ppm/

∘C, αl f =

67.3 ppm/
∘C solves the second row of Eq. (29), up to numerical errors, 

but not the first one: the left-hand side computes to 
(

1 − 4.2
1 − 4.2

)(
894
67.3

)

ppm/
∘C =

(
611.34
611.34

)

ppm/
∘C 

whereas the numbers for the right-hand side are 
(

1140 − 4.2 × 9
690 − 4.2 × 20

)

ppm/
∘C =

(
1102.2

606

)

ppm/
∘C.

These expressions deviate too much to suggest an explanation by 
measurement noise only. It appears as if the observed inconsistency 
cannot be removed. Neither replacing KGF by the value of Kʹ

GF valid 
without transverse piezoresistivity (πxyf = 0) nor the value valid in the 
isotropic case (πxyf = πxxf ) do the job. Indeed, to make Eq. (29) consis
tent would require a gauge factor of 

K’
GF, cons =

m1 − m2

αl s1 − αl s2
=

450ppm/
∘C

(9 − 20)ppm/
∘C

= − 40.9,

which is not convincing. But this is of only secondary importance. Even 
if Eq. (29) were consistent with the actual numbers, we would not be 
able to extract αR and αl f as infinitely many other data pairs would solve 
the equation just as well. Our main point is that the entire approach is 
not applicable without additional equations.

3.1.2. Case 2: 100-nm Au films on glass or polyimide
One starting point to work with additional equations is Eq. (22). 

Oliva et al. [17] use it with KǴF replaced by KGF and with αR = αρf − αl f 

and αl f as unknowns: 
(

1 − KGF

1 0

)(
αR

αl f

)

=

(
m1 − KGFαl s1

m3

)

. (30) 

The second row immediately yields αR = m3, which we already 
know, cf. Eq. (21). In the case of a 100-nm thick gold film deposited at a 
rate of 0.21 nm/s on the same substrates as in SubSection 3.1.1, ex
periments and datasheets provided the data listed in Table 2.

The numbers look inconspicuous and we would infer a temperature 
Fig. 1. Test geometry in a vdP experiment.
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coefficient of resistivity of αρf = αR + αl f = 3227.3 ppm/
∘C for the 100- 

nm thick gold films. Yet we cannot trust these numbers because, by Eq. 
(17), we would obtain an effective gauge factor of 

K’
GF =

Δα’
R

Δαl s
=

m1 − m2

αl s1 − αl s2
=

(3280 − 3230) ppm/
∘C

(9 − 20) ppm/
∘C

≅ − 4.54.

This is not convincing at all and is likely due to measurement errors. 
Oliva et al. give a standard uncertainty of um = 130 ppm/

∘C for the 
slopes m1 through m3 [17, Tbl. 2 and Tbl. 3]. Error propagation by the 
usual rules of the Guide to the Expression of Uncertainty in Measure
ment (GUM) [18–20] then leads to a standard uncertainty of 

uKʹ
GF

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑3

i=1

(
∂Kʹ

GF
∂mi

)2

u2
m

√
√
√
√ =

̅̅̅
2

√
⋅um

|αl s1 − αl s2|
≅ 16.7 (!)

for the effective gauge factor. In other words, the measurement noise 
does not allow us to estimate KǴF in any meaningful manner. The 
goodness of the result for KǴF hinges on (a) the uncertainty um of the 
measured slopes—it should be an order of magnitude smaller than was 
the case in [17]—and (b) the difference αl s1 − αl s2 of the thermal 
expansion coefficients of the substrates—it should be as large as 
possible, maybe larger than was the case in [17]. We reiterate that it is 
not a matter of course to obtain identical thin films on two different 
substrates.

It is interesting to check if the large uncertainty of the gauge factor 
KǴF also translates into a large uncertainty of the thermal expansion 
coefficient αl f of a thin film. After all, Eq. (24b) does not contain KǴF 
anymore. Using Eq. (24b) with the numbers from Table 2 yields αl f ≅

24.4 ppm/
∘C for the 100-nm thick gold film. By the law of propagation 

of random errors [18–20], the standard uncertainty of αl f is 

uαl f =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑3

i=1

(
∂αl f

∂mi

)2

u2
m

√
√
√
√ =

=
|αl s1 − αl s2|⋅um

(m1 − m2)
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(m1 − m2)
2
+ (m1 − m3)

2
+ (m2 − m3)

2
√

(31) 

or, in numbers, uαl f ≅ 50.5 ppm/
∘C. The result of αl f =

(24.4 ± 50.5) ppm/
∘C is of equally doubtful usefulness as the result for 

KǴF. And it differs quite a bit from αl f = (17.3 ± 0.3) ppm/
∘C as given in 

[17, Tbl. 3].
For metal films thicker than about 10 % of the mean free path length 

of electrons, the Fuchs-Sondheimer theory links the resistivity of a thin 
film and its thermal coefficient to the corresponding bulk values by [21] 

ρf αρf = ρbulkαρ, bulk. (32) 

For gold ρbulk ≅ 20.5⋅10− 9Ωm and αρbulk ≅ 3400 ppm/
∘C [17, Tbl. 

1]. Hence, with αρf ≅ 3227.3 ppm/
∘C as found above, we obtain 

ρf =
αρ,bulk

αρf
ρbulk ≅

3400
3227.3

20.5⋅10− 9Ωm ≅ 21.6⋅10− 9Ωm. (33) 

This result, close to the bulk value, is inconspicuous and would not 
lead us to suspect any difficulties with the measurement. But what is true 
for the first-order parameter ρf need not be true for the second-order 
parameter αρf , as we have seen above.

3.1.3. Case 3: 200-nm films of interpenetrating polymer networks on glass
Ziemer et al. [22] prepared and characterized thin films of inter

penetrating polymer networks on soda lime glass. The film thickness 
amounted to about h = 200 nm. The authors measured the temperature 
coefficient of the resistance, αŔ, of various samples and used this as an 
approximation to the temperature coefficient of the thin-film resistance, 
αρf . We would like to check if this approximation is justified or not.

The thermal expansion coefficient of soda lime glass (SiO2–Na2O) 
depends somewhat on the Na2O content [3,23, Tbl. 118, Sheets 8–11]. 
The molar content is likely to be between 10 and 20 % in glasses used as 
microscope slides, for which case we may assume αl s ≅ 10 ppm/

∘C at 
room temperature [3, Tbl. 118, Sheet 8; 23].

Most pure polymers have αl f = 10⋯60 ppm/
∘C [24]. For inter

penetrating polymer networks, this, of course, may be different. The 
same range covers the values for the common photoresist SU-8, be it 
pure or heavily reinforced and modified by MEMS technology [25]. 
Without additional knowledge, let us assume αl f = 30 ppm/

∘C as a first 
guess.

By Eq. (14) and for isotropy (KǴF = 2KGF − 2 − 2μf ): 

αʹ
R = 2

(
KGF − 1 − μf

)(
αl s − αl f

)
+ αρf − αl f . (34) 

As αl s ≅ 1
3αl f with the numbers given above, we can rewrite this in 

the form 

αʹ
R ≅ −

1
3

(
4KGF − 1 − 4μf

)
αl f + αρf . (35) 

Poisson’s ratio for most polymers is in the range μf = 0.3…0.4 [26, p. 
A10], so we may use the approximate value μf ≅ 0.35. Neglecting 
piezoresistivity, about which we know nothing in the case considered, 
we obtain the purely geometrical estimate KGF = 1+ 2μf ≅ 1.7. Hence, 

α’
R ≅ −

4.4
3

αl f + αρf ≅ −
4.4
3

⋅
30 ppm

◦C
+ αρf = − 44 ppm

/
◦C + αρf .

(36) 

With α’
R ≅ − 1.5 ppm/◦C as measured by Ziemer et al. [22], we 

would conclude that 

αρf ≅ 42.5 ppm
/
◦C. (37) 

In this case, the true material property αρf turns out to be almost 

Table 1 
Data for supported thin gold films from [17].

Substrate
Thin film

mi (ppm/
∘C) [17, Tbl. 

4]
KGF [17, 
Fig. 4a]

αl si (ppm/
∘C) [17, Tbl. 

1]
αR (ppm/

∘C) [17, Tbl. 
5]

αl f (ppm/
∘C) [17, Tbl. 

5]No. i Material

1 Glass Au (10 nm), deposited at 0.015 
nm/s

1140 4.2 9 894 67.3
2 Polyimide 690 20

Table 2 
Data for supported thin gold films from [17].

Substrate
Thin film

mi (ppm/
∘C) [17, 

Tbl. 2]
KGF [17, Fig. 2 
Fig. 2]

αl si (ppm/
∘C) [17, 

Tbl. 1]
m3 = αR (ppm/

∘C) [17, 
Tbl. 3]

αl f (ppm/
∘C) [17, 

Tbl. 3]No. i Material

1 Glass Au (100 nm), deposited at 
0.21 nm/s

3280 8.8 9 3210 17.3
2 Polyimide 3230 20

G. Fischerauer                                                                                                                                                                                                                                   Thin Solid Films 825 (2025) 140727 

5 



thirty times greater by magnitude than the estimate one obtains by 
simply equating αρf with the component property αʹ

R. In addition, the 
sign of the estimate is wrong.

As the parameters used in our calculation are uncertain, it is 
worthwhile to determine the values of αρf which are compatible with the 
measured value of αŔ and the possible ranges of the parameters. The 
most uncertain parameters are αl f and KGF. As mentioned above, we 
may assume αl f = 10⋯60 ppm/

∘C. The gauge factor KGF ranges from 
values below 1 to >100. The largest values are observed in polymer- 

filler composites—think of carbon nanotubes in homogenous polymer 
substrates—with filler contents just below the percolation threshold 
[27]. In most cases, however, and at the low strains applied by Ziemer 
et al. [22], KGF = 0.5…10 [28,29]. Unfortunately, the intervals αl f =

10⋯60 ppm/
∘C and KGF = 0.5…10 lead to permissible values of αρf 

between − 175 ppm/
∘C and 925 ppm/

∘C (Fig. 2a). In other words: 
almost nothing can be said about αρf unless αl f and KGF can be restricted 
to smaller intervals or are even known by independent measurements. 
For example, should we know αl f = (30 ± 5) ppm/

∘C and KGF = 2 ±

Fig. 2. Temperature coefficient of resistivity, αρf , of a thin film of an interpenetrating polymer network on soda lime glass derivable by Eq. (34) from the measured 
temperature coefficient of the resistance, αŔ, as a function of the gauge factor KGF and the coefficient of thermal expansion αl f . As the latter two parameters are 
unknown, plausible intervals for their values have been assumed. (a) Overview image for large interval range (assuming maximum uncertainty of KGF and αl f ). (b) 
Close-up for restricted interval range.
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0.5, then we can pinpoint αρf to a value of (60 ± 30) ppm/
∘C (Fig. 2b). 

This is still not an extremely pleasing result, but it is better than no 
knowledge at all and in any case it reflects the often overlooked fact that 
αρf is hard to determine.

3.2. Van-der-Pauw experiments

The influence of αl f , let alone αl s and KǴF, is sometimes neglected in 
the literature without proper justification. For example, Pal et al. [30,
31] use the vdP method to infer the temperature-dependent resistivity of 
thin-film materials from resistances measured at various temperatures 
and from room-temperature film thicknesses. This amounts to neglecting 
the influence of αl f .

The literature cites a bulk value of αl f = 13 ppm/
∘C for the thermal 

expansion coefficient of cobalt at room temperature [32, p. 70; 33, p. 
12-216]. Assuming this value to also hold for the cobalt thin films of 
[30] gives the following correction for a 100-nm cobalt film deposited at 
150 ◦C on a glass substrate [30, fig. 6]: 

αρf ≅ 700 ppm/
∘C → αρf ≅ 713 ppm/

∘C. (38) 

Likewise, for a 100-nm tin film (αl f = 22 ppm/
∘C at room tempera

ture [32, p. 339; 33, p. 12-217] deposited on glass [31, Fig. 2Fig. 2]: 

αρf ≅ 3400 ppm/
∘C → αρf ≅ 3422 ppm/

∘C. (39) 

In this case the errors are not large, 13/700 ≅ 1.9 % and 22 
/3400 ≅ 0.6 %, and may be neglected. This should not tempt one to 
take such luck for granted in other cases. To be on the safe side, it is 
preferable to avoid conceptual errors from the outset.

4. Discussion

In most cases, it is not possible to investigate suspended thin films. 
Nor does it make sense, as thin films are normally supported by a sub
strate in practical applications. Our analysis of such supported films has 
shown 

(1) that it requires two straining experiments and one thermal 
experiment to uniquely determine the thin-film coefficients αρf 
(temperature coefficient of resistivity) and αl f (thermal expansion 
coefficient) and
(2) that, in addition, the thermal expansion coefficients αl si of two 
substrates must be known and
(3) that, finally, one must be able to deposit identical copies of a thin 
film on the two substrates.

As a cursory glance at the literature shows, quite a few reports 
approximate αρf , a material property, by the measured coefficient of 
resistance αŔ of a supported thin-film resistor, a device property. Our re- 
evaluation of some cases has shown how poor this approximation can 
be. And even when researchers are aware of the difference between αρf 

and αŔ, the complexity of the situation and experimental difficulties can 
lead and have led to incorrect conclusions in that the material param
eters determined satisfy one but not all of the required equations 
(inconsistent case) or represent only one of infinitely many equally valid 
solutions (underdetermined case).

We believe that our framework in the first place and the demon
stration of the use of uncertainty measures according to GUM—practi
cally absent from the literature on thin-film measurements to date—in 
the second place can help avoid similar pitfalls in the future.

5. Conclusions

It is generally known that the effective material properties of thin 
films may deviate from the corresponding bulk values. This under
standing has spawned and continues to spawn much experimental work 

dedicated to directly measuring the material properties of thin films. As 
we have shown, it requires two substrates, two straining experiments, 
one thermal experiment, and the knowledge of the thermal expansion 
coefficients αl si of the two substrates to uniquely determine the thin-film 
temperature coefficient of resistivity by Eqs. (24a, 24b). As we have 
shown by way of examples, it is easy to overlook one or more of these 
conditions and experimental difficulties can lead to large uncertainties. 
In any case, the allegedly measured value of the temperature coefficient 
of resistivity may violate necessary requirements (and thus simply be 
wrong) or be an arbitrary pick from an infinite set of valid solutions.

In case of doubt, it is advisable not to specify the temperature coef
ficient of resistivity αρf of a thin film, but only the measured temperature 
coefficient of resistance αŔ. Although the latter is a device property and 
thus involves both material properties and geometry details, correct 
knowledge of its temperature behavior is preferable to incorrect 
knowledge of the temperature behavior of the resistivity.
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