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 A B S T R A C T

In this paper we give conditions under which control Lyapunov functions exist that can be represented by either 
piecewise affine functions or by neural networks with a suitable number of ReLU layers. The results provide 
a theoretical foundation for recent computational approaches for computing control Lyapunov functions with 
optimization-based and machine-learning techniques.
1. Introduction

A control Lyapunov function (CLF) is a powerful device in control 
theory that provides a systematic method for the design of stabilizing 
controllers. A CLF is a real-valued function defined on the state space of 
a (potentially nonlinear) control system that encodes the property that 
there exists a feedback to stabilize the system to an equilibrium point. 
This device finds employment in nonlinear and adaptive control, where 
one finds systematic methods for the design of stabilizing controllers 
even in the presence of input constraints. The early articles [1] and [2] 
on the topic of CLFs were considerably influential and spurred a range 
of developments, including [3,4], across wide areas of theoretical and 
applied constructive nonlinear control.

Let us take a brief look at the question of existence of CLFs. 
For continuous (nonlinear) control systems satisfying mild regularity 
(Lipschitz growth) conditions, having compact admissible action sets 
and convex velocity sets, CLFs are known to be intimately connected 
to the property of their null controllability [5]. The indicated property 
concerns the existence of controllers that guarantee steering of initial 
states arbitrarily picked from a domain to the origin over a finite time 
interval. It is known [5, Theorem 4.1] (see also Clarke [6, pp. 558-560]) 
that a control system of the aforementioned kind admits a CLF if and 
only if it is null controllable. In this case, the minimal-time function (of 
the initial states) serves as a CLF, and this function is continuous if the 
origin lies in the velocity set at the origin.

While from an engineering viewpoint, continuity of CLFs is a desir-
able property and numerical methods for the synthesis of CLFs certainly 
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stand to benefit from stronger regularity properties (such as continuous 
differentiability or smoothness) of candidate CLFs, the points raised 
in the preceding paragraph indicate that CLFs for continuous control 
systems could well be nonsmooth. Indeed, as shown in [7], nons-
moothness of CLFs may be unavoidable and is linked to topological 
obstructions that require binary decisions. For instance, this situation 
occurs in the benchmark planar system Artstein’s circles, cf. [1] and 
Section 6, below, in which the binary decision is whether to move 
clockwise or counterclockwise towards the equilibrium. On the other 
hand, positive results in the direction of structural regularity of CLFs, 
appearing e.g., in [8], provide sufficient conditions for the existence 
of Lipschitz continuous and semiconcave CLFs. Under reasonably mild 
hypotheses, therefore, it is possible to ascertain continuity of CLFs, but 
algorithmic synthesis of CLFs for nonlinear systems continues to remain 
a challenging problem from both theoretical and numerical standpoints.

This article makes inroads into the challenging domain of CLF
construction on both the analysis and synthesis fronts. The following 
points contain our key contributions:

(1) We begin by addressing the case of nonsmooth CLFs that are 
representable as the pointwise minimum of finitely many Lips-
chitz continuous CLFs. Proposition  10 shows that such a pointwise 
minimum is itself a CLF on a neighborhood of the origin.

(2) The possibility of approximating CLFs via continuous and piecewise 
affine (CPwA) functions is investigated next. It is demonstrated that 
if there exists a semiconcave CLF away from the origin and realized 
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as the pointwise minimum over finitely many 2 functions, then 
one can find a continuous piecewise affine CLF away from the 
origin; this is the content of Theorem  13. The CLF property away 
from the origin is expressed formally via practical CLFs — they 
encode the standard properties of CLFs, but only outside a small 
ball centered at the origin. The omission of a small ball around the 
origin is part of the approximation.

(3) From a computational standpoint, attention to CPwA functions is 
desirable because this class of functions possesses good numerical 
properties such as ease of representation and quick computation. 
In particular, since each ReLU neural network produces a CPwA
function, the inclusion of neural networks as candidate CLFs also 
benefits from the wide availability of efficient and contemporary 
computational packages for function approximation using ReLU 
neural networks. In this connection, Theorem  18 provides struc-
tural details of neural networks combining both smooth and ReLU 
activation functions, that guarantee the existence of a practical CLF
under the assumptions of Theorem  13. We draw attention to the 
at most logarithmic increase in the number of layers of the neural 
network with the number of 2 functions in the original CLF.

We refer the reader to [9] and the references therein for
optimization-based computational techniques for control Lyapunov 
functions using CPwA functions as approximators, and also to [10–15] 
for recent work on the synthesis of (control) Lyapunov functions via 
neural networks. In summary, the results in this paper justify recent 
computational approaches for CLFs, because they give conditions under 
which the approximators used in these approaches can indeed represent
CLFs.

This article exposes as follows: Section 2 sets down the setting 
of CLFs in the context of continuous nonlinear control systems, and 
Section 3 reviews known and preliminary results. The main results on 
representation of CLFs by CPwA functions are presented in Section 4 
and Section 5 contains the results on representation of CLFs by neural 
networks. A numerical experiment with the benchmark control system 
known as Artstein’s circles is carried out in Section 6, and we conclude 
in Section 7 with a discussion of future directions.

Throughout the paper we use the following notation. The derivative 
of a continuously differentiable real-valued function 𝑓 defined on an 
open subset of some Euclidean space is denoted by 𝐷𝑓 . When consid-
ering the restriction of a function 𝑓 to a subspace 𝑆 of its domain, we 
write 𝑓 |𝑆 . In particular, 𝐷𝑓 |𝑆 denotes the derivative of 𝑓 on 𝑆. For 
𝑥 ∈ R𝑛 we write ‖𝑥‖ for its Euclidian norm, and for a matrix 𝐴 ∈
R𝑛×𝑛 we denote with ‖𝐴‖ its operator norm induced by the Euclidean 
norm, i.e., ‖𝐴‖ ∶= sup

‖𝑥‖=1 ‖𝐴𝑥‖. For 𝑙 ∈ N ∪ {∞}, we say that a 
function is of class 𝑙 if it is 𝑙-times continuously differentiable. Further, 
for 𝑂 ⊂ R𝑛 we define 2

𝑏 (𝑂,R) as the set of all twice continuously 
differentiable functions 𝑔∶𝑂 → R with ‖𝑔‖2 < ∞, where ‖𝑔‖2 ∶=
sup𝑥∈𝑂 |𝑔(𝑥)| + sup𝑦∈𝑂

‖

‖

‖
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. Here 𝜕𝑔𝜕𝑥 (𝑦) ∈ R1×𝑛 and 
𝜕2𝑔
𝜕2𝑥

(𝑧) ∈ R𝑛×𝑛 denote the Jacobian and the Hessian of 𝑔, respectively. 
Finally, for 𝛿 > 0 and 𝑆 ⊂ R𝑛 we define the distance from 𝑥 to 𝑆 by 
𝑑(𝑥, 𝑆) ∶= inf𝑦∈𝑆 ‖𝑥 − 𝑦‖ and let 𝐵𝛿(𝑆) ∶= {𝑥 ∈ R𝑛 ∣ 𝑑(𝑥, 𝑆) < 𝛿}. Given 
𝑧 ∈ R𝑛 we abbreviate 𝐵𝛿(𝑧) ∶= 𝐵𝛿({𝑧}). 

2. Setting and preliminaries

We consider control systems of the form
𝑥̇(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡))

with 𝑥(𝑡) ∈ R𝑛 and 𝑢(𝑡) ∈ 𝑈 ⊂ R𝑚. We assume that 𝑓 is continuous and 
Lipschitz in 𝑥 uniformly in 𝑢. By Carathèodory’s Theorem this implies 
existence and uniqueness of the solutions for each initial condition 
𝑥(𝑡0) = 𝑥0 and each control input 𝑢 ∈ 𝐿∞(R, 𝑈 ), see e.g. Sontag [7, 
Appendix C].

It is well known that smooth control Lyapunov functions do not exist 
in general. Hence, for their definitions we need a weak definition of a 
2 
directional derivative. The following definition provides the appropri-
ate concept for Lipschitz functions, which is a sufficiently rich class of 
functions for our purpose in this paper.

Definition 1.  Let 𝑉 ∶ 𝑂 → R for an open set 𝑂 ⊂ R𝑛 be a Lipschitz 
function. The lower right Dini derivative of 𝑉  at a point 𝑥 ∈ 𝑂 in the 
direction of 𝑤 ∈ R𝑛 is defined as
𝐷𝑉 (𝑥;𝑤) ∶= lim inf

𝑡↘0

𝑉 (𝑥 + 𝑡𝑤) − 𝑉 (𝑥)
𝑡

.

The next definition specifies the notion of a control Lyapunov 
function, going back to [2], which we present here in the by-now 
standard form using ∞ functions. A control Lyapunov function is 
always defined with respect to an equilibrium 𝑥∗ ∈ R𝑛 of the system, 
which we here assume to be the origin, i.e., 𝑥∗ = 0.

Definition 2.  A Lipschitz function 𝑉 ∶ 𝑂 → R for an open set 𝑂 ⊂ R𝑛

containing 0 is a control Lyapunov function (CLF), if there exist three 
∞ functions 𝛼𝑖, 𝑖 = 1, 2, 3, such that the inequalities

𝛼1(‖𝑥‖) ≤ 𝑉 (𝑥) ≤ 𝛼2(‖𝑥‖) (1)

inf
𝑢∈𝑈

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) (2)

hold for all 𝑥 ∈ 𝑂. In the case of 𝑂 = R𝑛, 𝑉  is called a global CLF.
A global CLF exists if and only if the system can be globally 

asymptotically controlled to 𝑥∗ = 0, which in turn holds if and only 
if the system can be globally asymptotically stabilized at 𝑥∗ = 0 in the 
sample-and-hold sense (for precise statements and definitions of these 
properties see, e.g., [16]).

If either of these properties is not global, one can restrict the 
definition of a CLF onto a subset of the system’s domain of asymptotic 
controllability. One can even define CLFs on the entire domain of 
asymptotic controllability 𝐷, cf. [17], but then at least one of the 
inequalities in (1) and (2) must be modified near the boundary of 𝐷.

When we want to find CLFs within a specific class of ‘‘simple’’ 
functions, we may have to exclude those 𝑥 for which the 𝛼𝑖 are close 
to 0, as in these points even small errors induced by the restriction to 
a limited class of functions may lead to a violation of the inequalities 
(1) and (2). This is captured by the notion of a practical CLF. Practical
CLFs appeared in the literature in different variants, dating back at least 
to [18]. In this paper we use the following definition.

Definition 3.  Given 𝜀 > 0, a Lipschitz function 𝑉 ∶ 𝑂 → R for an 
open set 𝑂 ⊂ R𝑛 containing 0 is an 𝜀-practical control Lyapunov function 
(𝜀-PCLF), if there exist three ∞ functions 𝛼𝑖, 𝑖 = 1, 2, 3, such that the 
inequalities

𝛼1(‖𝑥‖) ≤ 𝑉 (𝑥) ≤ 𝛼2(‖𝑥‖) (3)

inf
𝑢∈𝑈

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) (4)

holds for all 𝑥 ∈ 𝑂 with ‖𝑥‖ ≥ 𝜀.

The existence of an 𝜀-PCLF still implies asymptotic controllability 
and sample-and-hold stabilizability of a neighborhood of 0 whose size 
is determined by 𝜀, see [19]. More precisely, this neighborhood is at 
most as large as the smallest sublevel set of 𝑉  that contains the ball 
𝐵𝜀(0) with radius 𝜀 around 0. The radius of this neighborhood can be 
conservatively estimated by 𝛼−11 (𝛼2(𝜀)). It is clearly desirable to make 
𝜀 > 0 and 𝛼−11 (𝛼2(𝜀)) as small as possible. We will comment on this 
aspect for our approximation results in Remark  15.

3. Known and preliminary results

3.1. Semiconcave CLFs

Our construction is motivated by the notion of semiconcavity. Here 
we provide the definition used in [8].
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Definition 4.  A function 𝑉 ∶ 𝑂 → R defined on an open set 𝑂 ⊂ R𝑛 is 
called semiconcave if for any point 𝑥0 ∈ 𝑂 there exist 𝜌, 𝐶 > 0 such that

𝑔(𝑥) + 𝑔(𝑦) − 2𝑔
(𝑥 + 𝑦

2

)

≤ 𝐶‖𝑥 − 𝑦‖2

for all 𝑥, 𝑦 ∈ 𝐵𝜌(𝑥0) ⊂ 𝑂.

In the terminology of Cannarsa and Sinestrari [20] this is a semi-
concave function with linear modulus, but in order not to overload the 
terminology we will adhere here to the name semiconcave function.

Theorem 5.  Assume that 𝑓 is locally Lipschitz in 𝑥 uniformly in 𝑢 and 
bounded on 𝐵𝑟(0) × 𝑈 for all 𝑟 > 0. Assume furthermore that the system is 
globally asymptotically controllable to 𝑥∗ = 0. Then there exists a CLF that 
is semiconcave and Lipschitz on R𝑛 ⧵ {0}.

This follows from Theorem 1 and 2 in [8]. Although there the 
properties of the CLF being Lipschitz and semiconcave are stated sepa-
rately, the construction in the proof of Theorem 2 in this reference in 
fact provides a CLF that has both properties at the same time, except 
possibly at 0.

In view of Theorem 5, restricting attention to approximating semi-
concave Lipschitz CLFs does not lead to loss of generality, and we 
thus focus on this class of functions in this paper. The crucial property 
of such functions that serves as the motivation for our approach is 
described in the following theorem, which is Theorem 3.4.2 in [20] 
in its version for semiconcave functions with linear modulus.

Theorem 6.  Let 𝑉 ∶ 𝑂 → R be a semiconcave function on an open set 
𝑂 ⊂ R𝑛. Then 𝑉  can be locally written as the minimum of functions of 
class 2. More precisely, for any 𝐾 ⊂ 𝑂 compact, there exists a compact 
set 𝑆 ⊂ R2𝑛 and a continuous function 𝐹 ∶ 𝑆 ×𝐾 → R such that 𝐹 (𝑠, ⋅) is 
2 for any 𝑠 ∈ 𝑆 with uniformly bounded 2-norm, and 

𝑉 (𝑥) = min
𝑠∈𝑆

𝐹 (𝑠, 𝑥)  for all 𝑥 ∈ 𝐾. (5)

Now consider a point 𝑥 ∈ 𝑂 in which two different functions 
𝐹 (𝑠1, ⋅) ≠ 𝐹 (𝑠2, ⋅) realize the minimum in any neighborhood   of 
𝑥. Then, typically the function 𝑉  will not be differentiable in 𝑥. As 
discussed in [21], such points of nondifferentiability correspond to 
points in which the stabilizing feedback is discontinuous and a decision 
between one of two or more possibilities for the directions in which 
to control the system must be taken. In all examples we were able to 
find in the literature, the number of points at which this is necessary 
is limited to a finite number of hypersurfaces, suggesting that 𝑉  can 
be written as the minimum over finitely many functions. Hence, even 
though we are not aware of a theorem that gives rigorous conditions for 
this fact, it appears that assuming that 𝑉  can be written as the minimum 
over finitely many functions captures many if not all cases that are 
discussed in the literature, including, e.g., nonholonomic systems [21].

Remark 7.  Motivated by this discussion, in the remainder of the paper 
we will assume the existence of a semiconcave CLF that is given by a 
minimum over finitely many 2 functions. The situation in which this 
assumption is not satisfied is discussed in Remark  16 below 

3.2. Approximation of 2 functions

We continue this section by discussing approximations of 2 func-
tions by piecewise affine functions and by neural networks. The follow-
ing result is well known, but for convenience of the reader we provide 
its proof. For its formulation and proof we assume a familiarity with 
the usual way piecewise affine functions can be expressed as functions 
over a simplicid grid. Details can be found, e.g., in Hafstein [22, Section 
6.1].
3 
Theorem 8.  Let 𝑂 ⊂ R𝑛 be open and 𝑔 ∈ 2
𝑏 (𝑂,R) with 2 norm bounded 

by 𝐶 > 0. Consider a grid of simplices with vertices 𝑆𝑘 of maximal diameter 
𝛥 > 0, covering a compact set 𝐾 ⊂ 𝑂. Let 𝐶𝑆 > 0 be such that for each 
simplex 𝑆𝑘 and its vertices 𝑥𝑖1 ,… , 𝑥𝑖𝑛+1  the matrix 

(𝑥𝑖1 − 𝑥𝑖2 , 𝑥𝑖2 − 𝑥𝑖3 , ⋯ 𝑥𝑖𝑛 − 𝑥𝑖𝑛+1 ) ∈ R𝑛×𝑛 (6)

has an inverse with norm bounded by 𝐶𝑆∕𝛥. Let 𝑝 be the (unique) contin-
uous and piecewise affine function on the grid with 𝑝(𝑥𝑖) = 𝑔(𝑥𝑖) for all 
vertices in the grid. Then for all 𝑥 ∈ 𝐾 the inequalities
|𝑝(𝑥) − 𝑔(𝑥)| ≤ (𝐶𝑆 + 2)𝐶𝛥2

and

‖𝐷𝑝|𝑆𝑘
−𝐷𝑔(𝑥)‖ ≤ (𝐶𝑆 + 1)𝐶𝛥

hold for all 𝑥 ∈ 𝐾, where in the second inequality 𝑆𝑘 is a simplex containing 
𝑥 and 𝐷𝑝|𝑆𝑘

 is the derivative of 𝑝 on 𝑆𝑘.

Proof.  Let 𝐾 ⊂ 𝑂 be compact and consider a triangulation of 𝐾 with 
simplices of diameter ≤ 𝛿. Consider the piecewise affine function 𝑝
uniquely defined by 𝑝(𝑥𝑖) = 𝑔(𝑥𝑖) for all vertices 𝑥𝑖 of the grid. Then by 
the fact that the second derivative of 𝑔 is bounded, Taylor’s theorem 
yields

𝑔(𝑥) = 𝑔(𝑦) +𝐷𝑔(𝑦)(𝑥 − 𝑦) + 𝑅(𝑦)

with |𝑅(𝑦)| ≤ 𝐶‖𝑥 − 𝑦‖2 for a constant 𝐶 independent of 𝑥 and 𝑦. For 
𝑝 we obtain the same relation with 𝑅(𝑦) = 0 as long as 𝑦 and 𝑥 are 
contained in the same simplex.

Setting 𝑦 = 𝑥𝑖 and choosing 𝑥 from a simplex 𝑆𝑘 containing 𝑥𝑖 as a 
vertex (which implies ‖𝑥 − 𝑥𝑖‖ ≤ 𝛿), we obtain
𝑝(𝑥) − 𝑔(𝑥) = 𝑔(𝑥𝑖) +𝐷𝑔(𝑥𝑖)(𝑥 − 𝑥𝑖) + 𝑅(𝑥𝑖)

− 𝑝(𝑥𝑖) −𝐷𝑝|𝑆𝑘
(𝑥 − 𝑥𝑖) (7)

= 𝐷𝑔(𝑥𝑖)(𝑥 − 𝑥𝑖) −𝐷𝑝|𝑆𝑘
(𝑥 − 𝑥𝑖)

+ 𝑅(𝑥𝑖).

If we choose 𝑥 = 𝑥𝑗 ≠ 𝑥𝑖 to be another vertex in 𝑆𝑘, then this implies
0 = 𝑝(𝑥𝑗 ) − 𝑔(𝑥𝑗 ) = 𝐷𝑔(𝑥𝑖)(𝑥𝑗 − 𝑥𝑖) −𝐷𝑝|𝑆𝑘

(𝑥𝑗 − 𝑥𝑖) + 𝑅(𝑥𝑖).

Using (6), we thus obtain
‖𝐷𝑔(𝑥𝑖) −𝐷𝑝|𝑆𝑘

‖ ≤ 𝐶𝑆𝐶𝛥,

from which, using that 𝐷𝑔 is Lipschitz with constant 𝐶, we obtain
‖𝐷𝑔(𝑥) −𝐷𝑝|𝑆𝑘

‖ ≤ (𝐶𝑆 + 1)𝐶𝛥

for all 𝑥 ∈ 𝑆𝑘. Inserting this into (7) we immediately obtain
|𝑝(𝑦) − 𝑔(𝑦)|

≤‖𝐷𝑔(𝑥𝑖)(𝑥 − 𝑥𝑖) −𝐷𝑝|𝑆𝑘
(𝑥 − 𝑥𝑖) + 𝑅(𝑥𝑖)‖

≤(𝐶𝑆 + 2)𝐶𝛥2 □

The next theorem summarizes universal approximation results for 
neural networks that are relevant for this paper. For readers not fa-
miliar with neural networks we refer to [23] for an explanation of the 
technical terms in this theorem.

Theorem 9.  Let 𝑂 ⊂ R𝑛 be open and 𝑔 ∈ 2
𝑏 (𝑂,R). Let 𝐾 ⊂ 𝑂 be compact 

and 𝜀 > 0. Then
(a) there exists a neural network with ReLU activation functions and at 

most ⌈log2(𝑛+ 1)⌉+ 1 layers such that the function 𝑝 ∶ 𝐾 → R represented 
by the neural network satisfies 
|𝑝(𝑥) − 𝑔(𝑥)| ≤ 𝜀  and ‖𝐷𝑝(𝑥) −𝐷𝑔(𝑥)‖ ≤ 𝜀, (8)

where the first inequality holds for all 𝑥 ∈ 𝐾 and the second for all 𝑥 ∈ 𝐾
in which 𝑝 is differentiable;
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(b) for any activation function 𝜎 ∈ 𝑙(R,R), 𝑙 ≥ 2 and 0 <
∫R |𝜎(𝑙)(𝑟)|𝑑𝑟 < ∞, there exists a neural network with one hidden layer such 
that the function 𝑝 ∶ 𝐾 → R represented by the neural network satisfies (8) 
for all 𝑥 ∈ 𝐾.

Proof.  Statement (a) follows from the fact that Theorem  8 implies the 
existence of a piecewise affine function satisfying (8). By Arora et al. 
[24, Theorem 2.1] this function can be represented by a deep neural 
network with ReLU activation functions and at most ⌈log2(𝑛 + 1)⌉ + 1
layers. Statement (b) follows from Hornik et al. [25, Corollary 3.5]. □

3.3. Technical results on CLF-like functions

We end this section with two results on functions satisfying the 
inequalities (1) and (2) in the CLF definition. The first result shows 
that a minimum of such functions again satisfies these inequalities.

Proposition 10.  Consider Lipschitz functions 𝑉𝑖 ∶ 𝑂𝑖 → R, 𝑖 = 1,… , 𝑞, 
with 𝑂𝑖 ⊂ R𝑛 being open sets. Assume that there are 𝛼1, 𝛼2, 𝛼3 ∈ ∞ such 
each 𝑉𝑖 satisfies (1) and (2) for all 𝑥 ∈ 𝑂𝑖. Then the function 𝑉  defined for 
𝑥 ∈ 𝑂 ∶=

⋃𝑞
𝑖=1 𝑂𝑖 by

𝑉 (𝑥) = min
𝑖=1,…,𝑞
𝑥∈𝑂𝑖

𝑉𝑖(𝑥)

satisfies (1) and (2) for all 𝑥 ∈ 𝑂.

Proof. It is obvious that the inequalities in (1) carry over to the 
minimum of the 𝑉𝑖. Concerning inequality (2), let 𝑥 ∈ 𝑂 and let 𝑉𝑖 be 
the function at which the minimum in the definition of 𝑉  is realized 
in this 𝑥, i.e., 𝑉 (𝑥) = 𝑉𝑖(𝑥). Fix 𝜀 > 0 and let 𝑢𝜀 ∈ 𝑈 be a control value 
that satisfies
𝐷𝑉𝑖(𝑥; 𝑓 (𝑥, 𝑢𝜀)) ≤ −𝛼3(‖𝑥‖) + 𝜀.

By the definition of the Dini derivative, this implies that there is a 
sequence 𝑡𝑗 ↘ 0 with 𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀) ∈ 𝑂𝑖 and

lim
𝑗→∞

𝑉𝑖(𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉𝑖(𝑥)
𝑡𝑗

≤ −𝛼3(‖𝑥‖) + 𝜀.

From this we conclude that

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢𝜀)) = lim inf
𝑡↘0

𝑉 (𝑥 + 𝑡𝑓 (𝑥, 𝑢𝜀)) − 𝑉 (𝑥)
𝑡

≤ lim
𝑗→∞

𝑉 (𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉 (𝑥)
𝑡𝑗

= lim
𝑗→∞

𝑉 (𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉𝑖(𝑥)
𝑡𝑗

≤ lim
𝑗→∞

𝑉𝑖(𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉𝑖(𝑥)
𝑡𝑗

≤ −𝛼3(‖𝑥‖) + 𝜀.

In turn, this yields
inf
𝑢∈𝑈

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) + 𝜀,

and since 𝜀 > 0 was arbitrary, the preceding inequality gives us (2). □

The second preparatory result shows that if a function satisfies the 
inequalities (1) and (2) on a compact set, then it also satisfies these 
inequalities with an adjusted family of 𝛼𝑖’s on a neighborhood of this 
compact set.

Lemma 11.  Assume that 𝑓 is locally Lipschitz in 𝑥 uniformly in 𝑢 and 
bounded on 𝐵𝑟(0) × 𝑈 for all 𝑟 > 0. Let 𝑖 ∈ {1,… , 𝑞}, 𝑂𝑖 ⊂ R𝑛 be open 
and bounded, and consider 𝑉𝑖 ∈ 2

𝑏 (𝑂𝑖,R). Assume there are 𝛼1, 𝛼2, 𝛼3 ∈
∞, locally Lipschitz with constant 𝐿𝛼 on [0, sup𝑥∈⋃𝑖 𝑂𝑖

‖𝑥‖], such that 𝑉𝑖
satisfies (1) and (2) for all 𝑥 ∈ int𝐾𝑖 for a compact set 𝐾𝑖 ⊂ 𝑂𝑖 with 
𝐾 = cl int𝐾 . Then, given 𝜀 > 0, there exists 𝛿 > 0, depending only on the 
𝑖 𝑖

4 
bounds and Lipschitz constants of the involved functions, such that  for all 
𝑥 ∈ (𝐵𝛿(𝐾𝑖) ∩ 𝑂𝑖) ⧵ 𝐵𝜀(0) it holds that
1
2
𝛼1(‖𝑥‖) ≤ 𝑉𝑖(𝑥) ≤ 2𝛼2(‖𝑥‖),

inf
𝑢∈𝑈

𝐷𝑉𝑖(𝑥; 𝑓 (𝑥, 𝑢)) ≤ −1
2
𝛼3(‖𝑥‖).

Proof. Let 𝐶 ∶= ‖𝑉𝑖‖2 . By definition of the 2 norm, we know that 𝑉𝑖
and 𝐷𝑉𝑖 are bounded and Lipschitz with constant 𝐶 on 𝑂𝑖. Let 𝐿 and 𝑀
be the Lipschitz constant and bound of 𝑓 on 𝐵1(𝐾𝑖) × 𝑈 , respectively, 
and let 𝜂 ∶= min{𝛼𝑖(𝑟) ∣ 𝑖 = 1, 2, 3, 𝑟 ≥ 𝜀}.

Now consider a point 𝑥 ∈ 𝑂𝑖 with 𝑥 ∉ 𝐾𝑖 and 𝑥 ∉ 𝐵𝜀(0). Let 𝑦 ∈ 𝐾𝑖
be a closest point in 𝐾𝑖 and let 𝑑 = ‖𝑥 − 𝑦‖ be the distance of 𝑥 to 𝑦
(and hence to 𝐾𝑖). Then since 𝐾𝑖 = cl int𝐾𝑖 we can estimate
𝑉𝑖(𝑥) ≥ 𝑉𝑖(𝑦) − 𝐶‖𝑥 − 𝑦‖ ≥ 𝛼1(‖𝑦‖) − 𝐶𝑑

≥ 𝛼1(‖𝑥‖) − (𝐶 + 𝐿𝛼)𝑑

and

𝑉𝑖(𝑥) ≤ 𝑉𝑖(𝑦) + 𝐶‖𝑥 − 𝑦‖ ≤ 𝛼2(‖𝑦‖) + 𝐶𝑑

≤ 𝛼2(‖𝑥‖) + (𝐶 + 𝐿𝛼)𝑑,

which leads to
inf
𝑢∈𝑈

𝐷𝑉𝑖(𝑥; 𝑓 (𝑥, 𝑢)) = inf
𝑢∈𝑈

𝐷𝑉𝑖(𝑥)𝑓 (𝑥, 𝑢)

≤ inf
𝑢∈𝑈

𝐷𝑉𝑖(𝑦)𝑓 (𝑦, 𝑢) + 𝐶𝑀𝑑 + 𝐶𝐿𝑑

≤ − 𝛼3(‖𝑦‖) + (𝐶𝑀 + 𝐶𝐿)𝑑

≤ − 𝛼3(‖𝑥‖) + (𝐶𝑀 + 𝐶𝐿 + 𝐿𝛼)𝑑.

Now if we choose 𝛿 such that (𝐶 +𝐿𝛼)𝛿 ≤ 𝜂∕2 and (𝐶𝑀 +𝐶𝐿+𝐿𝛼)𝛿 ≤
𝜂∕2, then the assertion follows. □

4. Representation by piecewise affine functions

Now we turn to our main result on the representation of CLFs by 
piecewise affine functions. Before stating our main result, we first show 
an approximation result for each component 𝑉𝑖 of 𝑉 .

Lemma 12.  Assume that 𝑓 is bounded on 𝐵𝑟(0) × 𝑈 for all 𝑟 > 0. Let 
𝑂𝑖 ⊂ R𝑛 be open and let 𝑉𝑖 ∈ 2

𝑏 (𝑂𝑖,R). Then, for any compact set 𝐾 ⊂ 𝑂𝑖
and every 𝜈1, 𝜈2 > 0 there is a piecewise affine function 𝑉 𝑝

𝑖  satisfying

𝛼1(‖𝑥‖) − 𝜈1 ≤ 𝑉 𝑝
𝑖 (𝑥) ≤ 𝛼2(‖𝑥‖) + 𝜈1 (9)

inf
𝑢∈𝑈

𝐷𝑉 𝑝
𝑖 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) + 𝜈2 (10)

for all 𝑥 ∈ 𝐾.

Proof. First observe that by standard constructions of simplicid grids 
for any 𝛥 > 0 we can find a grid covering 𝐾 and satisfying the 
requirements of Theorem  8. Defining 𝐶 ∶= ‖𝑉𝑖‖2  and choosing 𝑉 𝑝

𝑖 = 𝑝
from Theorem  8, this implies the first two inequalities with 𝜈1 = (𝐶𝑠 +
2)𝐶𝛥2, which can be made arbitrarily small. The Dini derivative of a 
piecewise affine and continuous function satisfies
𝐷𝑉 𝑝

𝑖 (𝑥; 𝑓 (𝑥, 𝑢)) = 𝐷𝑉 𝑝
𝑖 |𝑆𝑘

𝑓 (𝑥, 𝑢),

where 𝐷𝑉 𝑝
𝑖 |𝑆𝑘

 is the derivative of 𝑉 𝑝
𝑖  on one of the simplices 𝑆𝑘

containing 𝑥. More precisely, the relevant simplex 𝑆𝑘 is the one that 
also contains 𝑥 + ℎ𝑓 (𝑥, 𝑢) for sufficiently small ℎ > 0, but this is not 
relevant here, as the error estimate for the derivative in Theorem  8 
holds for all simplices containing 𝑥. From this error estimates and 
denoting by 𝑀 a bound on ‖𝑓 (𝑥, 𝑢)‖, we obtain
|𝐷𝑉 𝑝

𝑖 (𝑥; 𝑓 (𝑥, 𝑢)) −𝐷𝑉𝑖(𝑥; 𝑓 (𝑥, 𝑢))|

=||
|

𝐷𝑉 𝑝
𝑖 |𝑆𝑘

𝑓 (𝑥, 𝑢) −𝐷𝑉𝑖(𝑥)𝑓 (𝑥, 𝑢)
|

|

|

≤𝑀(𝐶𝑆 + 1)𝐶𝛥
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for all 𝑥 ∈ 𝐾, 𝑢 ∈ 𝑈 . This carries over to the minimum over 𝑢 and thus 
shows the claim with 𝜈2 = 𝑀(𝐶𝑆 + 1)𝐶𝛥, which can again be made 
arbitrarily small. □

Of course, in the interest of stabilization to the origin, 𝜈1, 𝜈2 ought to 
be small, and the preceding result shows that 𝜈1, 𝜈2 can indeed be picked 
arbitrarily close to 0. As discussed after Eq.  (5), we now assume that, 
at least away from the origin, the minimum in Eq.  (5) can be realized 
as a minimum over finitely many functions 𝑉𝑖. For systems admitting 
such a CLF, the next theorem shows that for each 𝜀 > 0 there exists 
a practical CLF that can be written as the minimum of finitely many 
piecewise affine functions.

Theorem 13.  Consider an open set 𝑂 containing the origin and an 𝜀 > 0. 
Assume that there exists a semiconcave CLF on 𝑂 that on 𝑂 ⧵𝐵𝜀(0) is given 
by a minimum over finitely many functions, i.e.,
𝑉 (𝑥) = min

𝑖=1,…,𝑁
𝑉𝑖(𝑥)  for all 𝑥 ∈ 𝑂𝜀 ∶= 𝑂 ⧵ 𝐵𝜀(0),

with each 𝑉𝑖 being 2. Then for any compact set 𝐾 ⊂ 𝑂 with 𝐾 = cl int𝐾
and cl𝐵𝜀(0) ⊂ int𝐾 there exists an 𝜀-PCLF 𝑉 𝑝 on 𝐾 that can be written as 
the minimum of finitely many piecewise affine functions 𝑉 𝑝

𝑖 , i.e.,
𝑉𝑝(𝑥) = min

𝑖=1,…,𝑁
𝑉 𝑝
𝑖 (𝑥)  for all 𝑥 ∈ 𝐾𝜀 ∶= 𝐾 ⧵ 𝐵𝜀(0).

Proof. Consider the sets
𝐶𝑖 ∶= {𝑥 ∈ 𝐾𝜀 ∣ 𝑉 (𝑥) = 𝑉𝑖(𝑥)} and 𝑂𝑖 ∶= int 𝐶𝑖.

Since the 𝑉𝑖 are continuous and 𝐾𝜀 is compact, the sets 𝐶𝑖 are compact, 
hence closed. Moreover, 𝐾𝜀 ⊂

⋃

𝑖=1,…,𝑁 𝐶𝑖 holds. We claim that 

𝐾𝜀 ⊂
⋃

𝑖=1,…,𝑁
cl𝑂𝑖 (11)

holds. In order to prove (11), it is sufficient to show that each 𝑥 ∈ int𝐾𝜀
is contained in cl𝑂𝑖 for some 𝑖. Hence, consider an arbitrary 𝑥 ∈ int𝐾𝜀
and the closed ball 𝐵𝛿(𝑥) for a sufficiently small 𝛿 > 0 such that 
𝐵𝛿(𝑥) ⊂ 𝐾𝜀. Define 𝐶𝛿,𝑖 ∶= 𝐶𝑖 ∩ 𝐵𝛿(𝑥). Then 

𝐵𝛿(𝑥) ⊂
⋃

𝑖=1,…,𝑁
𝐶𝛿,𝑖. (12)

Now, if all closed sets 𝐶𝛿,𝑖 have empty interior, then it follows from 
Baire’s Category Theorem that their union has empty interior, too, but 
then the inclusion (12) cannot hold. Hence, at least one of the 𝐶𝛿,𝑖 has 
nonempty interior.

Now consider a sequence 𝛿𝑘 → 0. Then the argument above implies 
that there is a sequence of indices 𝑖𝑘 and points 𝑥𝑘 ∈ int 𝐶𝛿𝑘 ,𝑖𝑘 ⊂ int 𝐶𝑖𝑘 =
𝑂𝑖𝑘 . Since 𝛿𝑘 → 0, it follows that 𝑥𝑘 → 𝑥 as 𝑘 → ∞. Since the 𝑖𝑘 can 
only assume finitely many different values, there exists a subsequence 
𝑖𝑘𝑙 , 𝑘𝑙 → ∞, such that 𝑖𝑘𝑙 = 𝑖′ for all 𝑙 ∈ N. Hence, 𝑥𝑘𝑙 → 𝑥 as 𝑙 → ∞
and 𝑥𝑘𝑙 ∈ 𝑂𝑖′  for all 𝑙 ∈ N. Thus, 𝑥 ∈ cl𝑂𝑖′  and (11) follows.

Now, by Lemma 3.2 in [26], for each 𝑖 = 1,… , 𝑁 , there exists a ∞

function 𝑓𝑖 ∶ R𝑛 → R, such that
𝑐1𝑑(𝑥, cl𝑂𝑖) ≤ 𝑓𝑖(𝑥) ≤ 𝑐2𝑑(𝑥, cl𝑂𝑖),

for constants 𝑐1, 𝑐2 > 0. Replacing each 𝑉𝑖 by 𝑉𝑖 + 𝑓𝑖, the assumptions 
on 𝑉  and 𝑉𝑖 obviously remain true, but now we have the additional 
property that 𝑉𝑗 (𝑥) ≥ 𝑉𝑖(𝑥) + 𝑐1𝛿 for all 𝑥 ∈ 𝑂𝑖 ⧵ 𝐵𝛿(𝑂𝑗 ). For these 
modified 𝑉𝑖 we now pick 𝛿 > 0 from Lemma  11 for 𝐾𝑖 ∶= cl𝑂𝑖. Next, 
using Theorem  8 we approximate each 𝑉𝑖 by a piecewise affine function 
𝑉 𝑝
𝑖  with error in the function values ≤ 𝜈1 ≤ 𝛿∕3 and error in the 
derivatives ≤ 𝜈1, where 𝜈1 and 𝜈2 will be determined below. Then it 
follows that for all 𝑥 ∉ 𝐵𝛿(𝐾𝑗 ) we have 
𝑉 𝑝
𝑗 (𝑥) ≥ 𝑉𝑗 (𝑥) − 𝛿∕3 ≥ min

𝑖=1,…,𝑁
𝑉𝑖(𝑥) + 𝛿 − 𝛿∕3

≥ min
𝑖=1,…,𝑁

𝑉 𝑝
𝑖 (𝑥) − 𝛿∕3 + 𝛿 − 𝛿∕3 > min

𝑖=1,…,𝑁
𝑉 𝑝
𝑖 (𝑥).
5 
 This implies that 𝑉 𝑗
𝑝 (𝑥) can only attain the minimum min𝑖=1,…,𝑁 𝑉 𝑝

𝑖 (𝑥)
for 𝑥 ∈ 𝑂𝛿,𝑖 ∶= 𝐵𝛿(𝐾𝑗 ). This implies that for all 𝑥 ∈ 𝐾 we obtain 

min
𝑖=1,…,𝑁

𝑉 𝑝(𝑥) = min
𝑖=1,…,𝑞
𝑥∈𝑂𝛿,𝑖

𝑉 𝑝
𝑖 (𝑥). (13)

By choosing 𝜈1 and 𝜈2 sufficiently small (depending on 𝜀), using 
Lemma  12 we can ensure that 𝑉 𝑝

𝑖  satisfy (1) and (2) on 𝑂𝛿,𝑖 for suitably 
adapted 𝛼1, 𝛼2, 𝛼3. Now the statement follows from Proposition 10 with 
𝑂𝛿,𝑖 in place of 𝑂𝑖, because by (13) the minimum in the assertion 
coincides with the minimum in Proposition 10. □

In view of the discussion in Section 3.1, the assumption of semi-
concavity of the CLF in Theorem  13 is natural. As mentioned after 
Definition  3, it is desirable to obtain 𝜀-PCLFs with small 𝜀 > 0. The 
following corollary states that the existence of a piecewise affine 𝜀-PCLF
with arbitrary small 𝜀 > 0 can be concluded from Theorem  13.

Corollary 14.  Suppose the assumptions of Theorem  13 are satisfied for 
each 𝜀 > 0. Then for each compact set 𝐾 ⊂ 𝑂 and each 𝜀 > 0 there exists 
a continuous and piecewise affine 𝜀-PCLF on 𝐾. 

Proof. This statement follows immediately from Theorem  13, because 
the minimum of finitely many continuous and piecewise affine func-
tions is again a continuous and piecewise affine function. □

Remark 15.  As discussed after Definition  3, it is not only desirable 
to be able to choose 𝜀 > 0 as small as desired but also 𝛼−11 (𝛼2(𝜀)), as 
this quantity determines the radius of the neighborhood of the origin 
in which asymptotic stability does not hold. A look at the construction 
of the piecewise affine 𝜀-PCLF via Lemma  12 reveals that as the 
approximation becomes more and more accurate (in order to reduce 
𝜀 > 0), the functions 𝛼1 and 𝛼2 for the piecewise affine 𝜀-PCLF approach 
that of the semiconcave CLF from the assumption. This means that 
when 𝜀 decreases to 0, 𝛼1 and 𝛼2 do not degenerate and consequently 
𝛼−11 (𝛼2(𝜀)) also tends to 0. 

Remark 16.  (i) In case the general assumption from Remark  7 fails, 
i.e., if there is no CLF that is the minimum over finitely many 2

functions, Corollary  14 still holds if infinitely many functions are only 
needed near the origin, i.e., if the assumption of Theorem  13 is still 
satisfied for each 𝜀 > 0. Then the number 𝑁 depends on 𝜀, but this 
does not affect the validity of the approximation.

(ii) If the inclusion (11) holds for infinitely many 𝑂𝑖 and 𝑉𝑖, then 
after enlarging the domains 𝑂𝑖 using Lemma  11, the inclusion
𝐾𝜀 ⊂

⋃

𝑖=1,…,𝑁
𝐵𝛿(𝑂𝑖)

holds. Since 𝐾𝜀 is compact, finitely many 𝐵𝛿(𝑂𝑖) will cover 𝐾𝜀 and we 
can use these and the corresponding 𝑉𝑖 in the remainder of the proof 
of Theorem  13. Whether suitable conditions on the infinitely many 𝑉𝑖
(e.g., requiring that there are only countably many or requiring certain 
regularity properties of the 𝐶𝑖) allow to conclude (11) for infinitely 
many 𝑂𝑖 and 𝑉𝑖 is an open question and subject to future research. 

5. Representation of 𝜺-PCLFs by neural networks

We now turn to the representation of 𝜀-PCLFs via neural networks. 
In this section, neural networks will be employed for the representation 
of continuous piecewise affine and twice continuously differentiable 
𝜀-PCLFs on compact domains.2 We first consider the case of ReLU 
networks (which produce continuous piecewise affine functions after 
training), for which the existence proof works similar to the proof of 
Theorem  9(a).

2 The readers are referred to [23] for the technical terms in this paragraph.
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Corollary 17.  Under the assumption of Theorem  13, for each compact set 
𝐾 ⊂ 𝑂 and each 𝜀 > 0 there exists a continuous and piecewise affine 𝜀-PCLF
on 𝐾 that can be represented by a neural network with ReLU activation 
functions and at most ⌈log2(𝑛 + 1)⌉ + 1 layers.

Proof. Theorem  8 implies the existence of a piecewise affine function 
satisfying (8). By Arora et al. [24, Theorem 2.1] this function can be 
represented by a deep neural network with ReLU activation functions 
and at most ⌈log2(𝑛 + 1)⌉ + 1 layers. □

While this result is theoretically appealing, its practical relevance 
may be limited. The reason is that, as worked out in detail in [9], for 
checking inequality (2) or (4) for a continuous and piecewise affine 
function, the points at which the function is not differentiable need to 
be treated differently depending on their local convexity or concavity: 
While for points of nondifferentiability 𝑥 at which 𝑉  is locally concave 
it is sufficient to know that (2) or (4) are satisfied in all adjacent regions 
in which 𝑉  is smooth, if 𝑉  is locally convex near 𝑥 then additional 
conditions need to be checked (see condition (iv) in Algorithm 2 
in [9] for details). This does not only complicate the construction of 
a loss function for the training of a neural network, but also requires 
that sampling points are placed on each edge between two simplices 
defining the piecewise affine function.

It is therefore desirable to avoid points of nondifferentiability in 
which the function represented by the neural network is not locally 
concave. Fortunately, this is possible if we design our function such 
that it is the minimum of a finite number of smooth functions 𝑉 𝑝

𝑖 , 
𝑖 = 1,… , 𝑁 . This is because in this case points of nondifferentiability 
𝑥 can only occur when the minimum is attained in two different 𝑉 𝑝

𝑖
in any neighborhood of 𝑥 and in such points the function must be 
locally convex. The following theorem and the network construction in 
its proof show how this can be achieved by suitably combining smooth 
activation functions with ReLU neural networks.

Theorem 18.  Under the assumption of Theorem  13, for each compact set 
𝐾 ⊂ 𝑂 and each 𝜀 > 0 there exists a continuous 𝜀-PCLF on 𝐾, which is 
the minimum over 𝑁 twice continuously differentiable functions and can be 
represented by a neural network with at most ⌈log2(𝑁)⌉ + 1 hidden layers, 
of which one uses a smooth activation function as specified in Theorem  9(b) 
and the remaining layers use ReLU activation functions.

Proof. We first follow the proof of Theorem  13, replacing the piecewise 
affine approximations 𝑉 𝑝

𝑖  provided by Theorem  8 with 2 approxima-
tions 𝑉 𝑠

𝑖  provided by Theorem  9(b). This results in an 𝜀-PCLF of the 
form min𝑖=1,…,𝑁 𝑉 𝑠

𝑖 , where each of the 𝑉 𝑠
𝑖  can be represented by a 

neural network with one hidden layer. We combine the hidden layers 
of these 𝑁 neural networks in the first hidden layer of the network we 
construct.

Now we observe that the minimum min{𝑥, 𝑦} of two reals 𝑥, 𝑦 ∈ R
can be realized in an NN by a ReLU layer with 4 nodes, since

min{𝑥, 𝑦} = 1
2

(

𝜌(𝑥 + 𝑦) − 𝜌(−𝑥 − 𝑦) − 𝜌(𝑥 − 𝑦) − 𝜌(𝑦 − 𝑥)
)

, where 𝜌(𝑥) = max{𝑥, 0} is the ReLU activation function. Hence, by 
adding another ⌈log2(𝑁)⌉ additional ReLU layers (with at most 2𝑁 , 
𝑁 , 𝑁∕2, … 4 nodes), the network represents the desired function 
min𝑖=1,…,𝑁 𝑉 𝑠

𝑖 . □

6. Illustrative example

We illustrate our numerical findings by the following two
-dimensional control system known as Artstein’s circles [1], whose 
dynamics is given by 

𝑥̇ = 𝑓 (𝑥, 𝑢) =
(

(−𝑥21 + 𝑥22)𝑢
)

(14)

−2𝑥1𝑥2𝑢

6 
Fig. 1. Invariant sets for the solutions of (14).

Fig. 2. Piecewise affine PCLF for Artstein’s circles.

with 𝑢 ∈ 𝑈 = [−1, 1]. The solutions of this control systems evolve on 
the circles shown in Fig.  1, where 𝑢 determines whether the solutions 
move clockwise or counterclockwise.

It is known that this system admits a CLF, but not a smooth one. 
In fact, in order to asymptotically stabilize the system at 0, at some 
point on each circle a discontinuous decision to move clockwise or 
counterclockwise must be taken. A natural choice for the points where 
the direction of movement changes is the 𝑥2-axis. A known CLF for this 
system is 

𝑉 (𝑥) =
√

4𝑥21 + 3𝑥22 − |𝑥1|, (15)

in which the nondifferentiability, which corresponds to the change of 
direction, occurs precisely at 𝑥1 = 0, i.e., on the 𝑥2-axis.

Fig.  2 shows a piecewise affine PCLF computed with the mixed 
integer programming based technique proposed in [9]. One clearly sees 
that also in this CLF the concave ‘‘ridge’’ at which the direction of 
movement changes (approximately) lies on the 𝑥2-axis.

Fig.  3 shows a piecewise smooth PCLF represented by a neural 
network of the form discussed in Theorem  18 and its proof. The 
wireframe in the lower part of the figure shows the expression on the 
left hand side in (4). The nondifferentiability of the function is clearly 
visible and again lies along the 𝑥2-axis.

The corresponding neural network architecture3 is depicted in
Fig.  4. It consists of two shallow subnetworks 𝑊1 and 𝑊2, each 
containing 𝑀 = 32 neurons using the sigmoid activation function. The 
subnetworks are trained using supervised learning to approximate the 
target functions 𝑉1(𝑥) =

√

4𝑥21 + 3𝑥22 − 𝑥1 and 𝑉2(𝑥) =
√

4𝑥21 + 3𝑥22 + 𝑥1, 
ensuring that their outputs satisfy 𝑊1(𝑥) ≈ 𝑉1(𝑥) and 𝑊2(𝑥) ≈ 𝑉2(𝑥). The 

3 We refer the readers to [23] for an explanation of the technical terms in 
this paragraph.
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Fig. 3. Neural network PCLF for Artstein’s circles.

Fig. 4. Neural network architecture for representing the PCLF from Fig.  3.

training is conducted by minimizing the mean squared error between 
the network outputs and the values of 𝑉1 and 𝑉2 over a set of training 
samples generated from the known functions 𝑉1 and 𝑉2. To compute 
the minimum of the two functions, the neurons 𝑧1,… , 𝑧4 use the 
ReLU activation function together with fixed weights as described in 
the proof of Theorem  18. Note that the purpose of this example is 
to demonstrate that a neural network can represent a valid PCLF as 
opposed to proposing a general numerically viable method for finding 
one; indeed, the training process here relies on the explicit knowledge 
of the functions being approximated.

7. Conclusion and future work

We have shown that nonsmooth CLFs can be approximated by 
piecewise affine functions and by suitably designed neural networks, 
provided they can be expressed as the minimum over finitely many 
smooth functions. Approximation here is to be understood in an 𝜀-
practical sense on compact subsets of the state space. These results on 
the one hand justify the algorithmic approach using piecewise affine 
functions presented in [9], because they show that the piecewise affine 
functions PCLFs constructed in this reference exist. On the other hand, 
the results yield a neural network architecture that is able to ex-
press nonsmooth CLFs. This motivates the development of unsupervised 
training algorithms that are able to learn nonsmooth CLFs without a 
priori information on their functional form, which will be an important 
topic of future research.
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