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In this paper we give conditions under which control Lyapunov functions exist that can be represented by either
piecewise affine functions or by neural networks with a suitable number of ReLU layers. The results provide
a theoretical foundation for recent computational approaches for computing control Lyapunov functions with
optimization-based and machine-learning techniques.

1. Introduction

A control Lyapunov function (CLF) is a powerful device in control
theory that provides a systematic method for the design of stabilizing
controllers. A CLF is a real-valued function defined on the state space of
a (potentially nonlinear) control system that encodes the property that
there exists a feedback to stabilize the system to an equilibrium point.
This device finds employment in nonlinear and adaptive control, where
one finds systematic methods for the design of stabilizing controllers
even in the presence of input constraints. The early articles [1] and [2]
on the topic of CLFs were considerably influential and spurred a range
of developments, including [3,4], across wide areas of theoretical and
applied constructive nonlinear control.

Let us take a brief look at the question of existence of CLFs.
For continuous (nonlinear) control systems satisfying mild regularity
(Lipschitz growth) conditions, having compact admissible action sets
and convex velocity sets, CLFs are known to be intimately connected
to the property of their null controllability [5]. The indicated property
concerns the existence of controllers that guarantee steering of initial
states arbitrarily picked from a domain to the origin over a finite time
interval. It is known [5, Theorem 4.1] (see also Clarke [6, pp. 558-560])
that a control system of the aforementioned kind admits a CLF if and
only if it is null controllable. In this case, the minimal-time function (of
the initial states) serves as a CLF, and this function is continuous if the
origin lies in the velocity set at the origin.

While from an engineering viewpoint, continuity of CLFs is a desir-
able property and numerical methods for the synthesis of CLFs certainly
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stand to benefit from stronger regularity properties (such as continuous
differentiability or smoothness) of candidate CLFs, the points raised
in the preceding paragraph indicate that CLFs for continuous control
systems could well be nonsmooth. Indeed, as shown in [7], nons-
moothness of CLFs may be unavoidable and is linked to topological
obstructions that require binary decisions. For instance, this situation
occurs in the benchmark planar system Artstein’s circles, cf. [1] and
Section 6, below, in which the binary decision is whether to move
clockwise or counterclockwise towards the equilibrium. On the other
hand, positive results in the direction of structural regularity of CLFs,
appearing e.g., in [8], provide sufficient conditions for the existence
of Lipschitz continuous and semiconcave CLFs. Under reasonably mild
hypotheses, therefore, it is possible to ascertain continuity of CLFs, but
algorithmic synthesis of CLFs for nonlinear systems continues to remain
a challenging problem from both theoretical and numerical standpoints.

This article makes inroads into the challenging domain of CLF
construction on both the analysis and synthesis fronts. The following
points contain our key contributions:

(1) We begin by addressing the case of nonsmooth CLFs that are
representable as the pointwise minimum of finitely many Lips-
chitz continuous CLFs. Proposition 10 shows that such a pointwise
minimum is itself a CLF on a neighborhood of the origin.

(2) The possibility of approximating CLFs via continuous and piecewise
affine (CPwA) functions is investigated next. It is demonstrated that
if there exists a semiconcave CLF away from the origin and realized
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as the pointwise minimum over finitely many C? functions, then
one can find a continuous piecewise affine CLF away from the
origin; this is the content of Theorem 13. The CLF property away
from the origin is expressed formally via practical CLFs — they
encode the standard properties of CLFs, but only outside a small
ball centered at the origin. The omission of a small ball around the
origin is part of the approximation.

(3) From a computational standpoint, attention to CPwA functions is
desirable because this class of functions possesses good numerical
properties such as ease of representation and quick computation.
In particular, since each ReLU neural network produces a CPwA
function, the inclusion of neural networks as candidate CLFs also
benefits from the wide availability of efficient and contemporary
computational packages for function approximation using ReLU
neural networks. In this connection, Theorem 18 provides struc-
tural details of neural networks combining both smooth and ReLU
activation functions, that guarantee the existence of a practical CLF
under the assumptions of Theorem 13. We draw attention to the
at most logarithmic increase in the number of layers of the neural
network with the number of C? functions in the original CLF.

We refer the reader to [9] and the references therein for
optimization-based computational techniques for control Lyapunov
functions using CPwA functions as approximators, and also to [10-15]
for recent work on the synthesis of (control) Lyapunov functions via
neural networks. In summary, the results in this paper justify recent
computational approaches for CLFs, because they give conditions under
which the approximators used in these approaches can indeed represent
CLFs.

This article exposes as follows: Section 2 sets down the setting
of CLFs in the context of continuous nonlinear control systems, and
Section 3 reviews known and preliminary results. The main results on
representation of CLFs by CPwA functions are presented in Section 4
and Section 5 contains the results on representation of CLFs by neural
networks. A numerical experiment with the benchmark control system
known as Artstein’s circles is carried out in Section 6, and we conclude
in Section 7 with a discussion of future directions.

Throughout the paper we use the following notation. The derivative
of a continuously differentiable real-valued function f defined on an
open subset of some Euclidean space is denoted by Df. When consid-
ering the restriction of a function f to a subspace S of its domain, we
write f|g. In particular, Df|g denotes the derivative of f on .S. For
x € R" we write ||x|| for its Euclidian norm, and for a matrix A €
R™" we denote with ||A]| its operator norm induced by the Euclidean
norm, i.e., [[A|l := supj = lAx|l. For I € N U {co}, we say that a
function is of class C' if it is /-times continuously differentiable. Further,
for O c R" we define CZ(O, R) as the set of all twice continuously
differentiable functions g: O — R with ||g|l2 < oo, where ||g|l2 :=

; ) ’
Z—i(y)“ + sup,eo %(z) ‘ Here %(Y) e R and

SUPyeo lg()| + SUpyeo

Sz—i(z) € R™" denote the Jacobian and the Hessian of g, respectively.
Finally, for § > 0 and S c R” we define the distance from x to .S by
d(x,8) :=inf 5 [|Ix — y|l and let B;(S) := {x € R" | d(x,S) < 5}. Given
z € R" we abbreviate By(z) := Bys({z}).

2. Setting and preliminaries

We consider control systems of the form
x(1) = f(x@®), u®)

with x(r) € R" and u(t) € U c R™. We assume that f is continuous and
Lipschitz in x uniformly in u. By Carathéodory’s Theorem this implies
existence and uniqueness of the solutions for each initial condition
x(ty) = xo and each control input u € L*(R,U), see e.g. Sontag [7,
Appendix C].

It is well known that smooth control Lyapunov functions do not exist
in general. Hence, for their definitions we need a weak definition of a
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directional derivative. The following definition provides the appropri-
ate concept for Lipschitz functions, which is a sufficiently rich class of
functions for our purpose in this paper.

Definition 1. Let V : O — R for an open set O C R” be a Lipschitz
function. The lower right Dini derivative of V' at a point x € O in the
direction of w € R" is defined as

V(x+tw)—V(x)

DV (x;w) := liminf
N0 t

The next definition specifies the notion of a control Lyapunov
function, going back to [2], which we present here in the by-now
standard form using K, functions. A control Lyapunov function is
always defined with respect to an equilibrium x* € R” of the system,
which we here assume to be the origin, i.e., x* = 0.

Definition 2. A Lipschitz function ¥ : O — R for an open set O c R”
containing 0 is a control Lyapunov function (CLF), if there exist three
K, functions «;, i = 1,2,3, such that the inequalities

a(IxIh £ V(x) < a(llxID @
ulglf] DV (x; f(x,u)) < —a3(||x]]) (2)
hold for all x € O. In the case of O = R", V is called a global CLF.

A global CLF exists if and only if the system can be globally
asymptotically controlled to x* = 0, which in turn holds if and only
if the system can be globally asymptotically stabilized at x* = 0 in the
sample-and-hold sense (for precise statements and definitions of these
properties see, e.g., [16]).

If either of these properties is not global, one can restrict the
definition of a CLF onto a subset of the system’s domain of asymptotic
controllability. One can even define CLFs on the entire domain of
asymptotic controllability D, cf. [17], but then at least one of the
inequalities in (1) and (2) must be modified near the boundary of D.

When we want to find CLFs within a specific class of “simple”
functions, we may have to exclude those x for which the «; are close
to 0, as in these points even small errors induced by the restriction to
a limited class of functions may lead to a violation of the inequalities
(1) and (2). This is captured by the notion of a practical CLF. Practical
CLFs appeared in the literature in different variants, dating back at least
to [18]. In this paper we use the following definition.

Definition 3. Given &€ > 0, a Lipschitz function V' : O — R for an
open set O C R” containing 0 is an e-practical control Lyapunov function
(e-PCLF), if there exist three K, functions «;, i = 1,2, 3, such that the
inequalities

ay(IxI) < V(x) < ax(JIxID) 3
inf DV (x: f(x.u) < ~as(llx]) “
holds for all x € O with ||x|| > e.

The existence of an &-PCLF still implies asymptotic controllability
and sample-and-hold stabilizability of a neighborhood of 0 whose size
is determined by ¢, see [19]. More precisely, this neighborhood is at
most as large as the smallest sublevel set of V' that contains the ball
B,(0) with radius ¢ around 0. The radius of this neighborhood can be
conservatively estimated by a;l(a@(a)). It is clearly desirable to make
e > 0 and “1_1(‘12(5)) as small as possible. We will comment on this
aspect for our approximation results in Remark 15.

3. Known and preliminary results
3.1. Semiconcave CLFs

Our construction is motivated by the notion of semiconcavity. Here
we provide the definition used in [8].
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Definition 4. A function V : O — R defined on an open set O C R" is
called semiconcave if for any point x, € O there exist p, C > 0 such that

800+ 80) - 2¢ (52) < Cllx = 1P

for all x,y € B,(xp) C O.

In the terminology of Cannarsa and Sinestrari [20] this is a semi-
concave function with linear modulus, but in order not to overload the
terminology we will adhere here to the name semiconcave function.

Theorem 5. Assume that f is locally Lipschitz in x uniformly in u and
bounded on B,(0) x U for all r > 0. Assume furthermore that the system is
globally asymptotically controllable to x* = 0. Then there exists a CLF that
is semiconcave and Lipschitz on R" \ {0}.

This follows from Theorem 1 and 2 in [8]. Although there the
properties of the CLF being Lipschitz and semiconcave are stated sepa-
rately, the construction in the proof of Theorem 2 in this reference in
fact provides a CLF that has both properties at the same time, except
possibly at 0.

In view of Theorem 5, restricting attention to approximating semi-
concave Lipschitz CLFs does not lead to loss of generality, and we
thus focus on this class of functions in this paper. The crucial property
of such functions that serves as the motivation for our approach is
described in the following theorem, which is Theorem 3.4.2 in [20]
in its version for semiconcave functions with linear modulus.

Theorem 6. Let V : O — R be a semiconcave function on an open set
O c R" Then V can be locally written as the minimum of functions of
class C2. More precisely, for any K C O compact, there exists a compact
set S ¢ R*" and a continuous function F : S x K — R such that F(s,") is
C? for any s € S with uniformly bounded C>-norm, and

V(x)= nggl F(s,x) forall x € K. (5)

Now consider a point x € O in which two different functions
F(s;,") # F(s,,-) realize the minimum in any neighborhood N of
x. Then, typically the function V will not be differentiable in x. As
discussed in [21], such points of nondifferentiability correspond to
points in which the stabilizing feedback is discontinuous and a decision
between one of two or more possibilities for the directions in which
to control the system must be taken. In all examples we were able to
find in the literature, the number of points at which this is necessary
is limited to a finite number of hypersurfaces, suggesting that ¥ can
be written as the minimum over finitely many functions. Hence, even
though we are not aware of a theorem that gives rigorous conditions for
this fact, it appears that assuming that V' can be written as the minimum
over finitely many functions captures many if not all cases that are
discussed in the literature, including, e.g., nonholonomic systems [21].

Remark 7. Motivated by this discussion, in the remainder of the paper
we will assume the existence of a semiconcave CLF that is given by a
minimum over finitely many C? functions. The situation in which this
assumption is not satisfied is discussed in Remark 16 below

3.2. Approximation of C? functions

We continue this section by discussing approximations of €2 func-
tions by piecewise affine functions and by neural networks. The follow-
ing result is well known, but for convenience of the reader we provide
its proof. For its formulation and proof we assume a familiarity with
the usual way piecewise affine functions can be expressed as functions
over a simplicid grid. Details can be found, e.g., in Hafstein [22, Section
6.11.
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Theorem 8. Let O C R" be openand g € le(O, R) with C? norm bounded
by C > 0. Consider a grid of simplices with vertices .S, of maximal diameter
A > 0, covering a compact set K C O. Let Cg > 0 be such that for each

simplex S, and its vertices x; , ..., x; . the matrix

(x; —x;, X;. —X ) e R"™" (6)

iy Xiy i X —X

i in ingl
has an inverse with norm bounded by Cg/A. Let p be the (unique) contin-
uous and piecewise affine function on the grid with p(x;) = g(x;) for all
vertices in the grid. Then for all x € K the inequalities

Ip(x) — g(x)| < (Cg +2)CA
and
IDpls, — Dg)ll < (Cs +1)CA

hold for all x € K, where in the second inequality S, is a simplex containing
x and Dpls, is the derivative of p on S).

Proof. Let K C O be compact and consider a triangulation of K with
simplices of diameter < §. Consider the piecewise affine function p
uniquely defined by p(x;) = g(x;) for all vertices x; of the grid. Then by
the fact that the second derivative of g is bounded, Taylor’s theorem
yields

g(x) =g + Dg(y)(x — y) + R(y)

with |R(y)| < C|lx — y||? for a constant C independent of x and y. For
p we obtain the same relation with R(y) = 0 as long as y and x are
contained in the same simplex.

Setting y = x; and choosing x from a simplex S, containing x; as a
vertex (which implies ||x — x;|| < §), we obtain

p(x) — g(x) = g(x;) + Dg(x)(x — x;) + R(x;)

— p(x;)) = Dpl, (x = x;) @
= Dg(x,-)(x - X,‘) - DP|sk(x - x,~)
+ R(x;).

If we choose x = x; # x; to be another vertex in .Sy, then this implies
0= p(x;) — g(x;) = Dg(x)(x; — x;) — Dplg, (x; — x;) + R(x;).

Using (6), we thus obtain

I1Dg(x;) — Dpls |l < CsCA,

from which, using that Dg is Lipschitz with constant C, we obtain
IDg(x) = Dpls, Il < (Cs +1)CA

for all x € S,. Inserting this into (7) we immediately obtain

[p(y) — gl
<|IDg(x;)(x = x;) = Dpls, (x — x;) + R(x))||
<(Cs+2)CA* O

The next theorem summarizes universal approximation results for
neural networks that are relevant for this paper. For readers not fa-
miliar with neural networks we refer to [23] for an explanation of the
technical terms in this theorem.

Theorem 9. Let O C R" be open and g € C[f(O, R). Let K C O be compact
and e > 0. Then

(a) there exists a neural network with ReLU activation functions and at
most [log,(n+ 1)] + 1 layers such that the function p : K — R represented
by the neural network satisfies

|p(x) —g(x)| <& and ||Dp(x)— Dg(x)|l <e, (8

where the first inequality holds for all x € K and the second for all x € K
in which p is differentiable;
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(b) for any activation function ¢ € C'R,R), | > 2 and 0 <
Jg 16D (P)ldr < oo, there exists a neural network with one hidden layer such
that the function p : K — R represented by the neural network satisfies (8)

for all x € K.

Proof. Statement (a) follows from the fact that Theorem 8 implies the
existence of a piecewise affine function satisfying (8). By Arora et al.
[24, Theorem 2.1] this function can be represented by a deep neural
network with ReLU activation functions and at most [log,(n + 1)] + 1
layers. Statement (b) follows from Hornik et al. [25, Corollary 3.5]. []

3.3. Technical results on CLF-like functions

We end this section with two results on functions satisfying the
inequalities (1) and (2) in the CLF definition. The first result shows
that a minimum of such functions again satisfies these inequalities.

Proposition 10. Consider Lipschitz functions V; : O; > R, i =1,...,q,
with O; C R" being open sets. Assume that there are ay, a,,a; € K, such
each V; satisfies (1) and (2) for all x € O,. Then the function V defined for
xe0: =L o by

V(x)= min V(x)
i=1,....q

x€0;

satisfies (1) and (2) for all x € O.

Proof. It is obvious that the inequalities in (1) carry over to the
minimum of the V;. Concerning inequality (2), let x € O and let V; be
the function at which the minimum in the definition of V is realized
in this x, i.e., V(x) = V(x). Fix € > 0 and let 4, € U be a control value
that satisfies

DVi(x; f(x,u.)) < —az(llx])) +&.

By the definition of the Dini derivative, this implies that there is a
sequence ¢; \, 0 with x + t;f(x,u) €0 and

Vilx +t; f(x,u,)) — Vi(x)
lim ———————— < —y(||x[]) +&.

J—oo I/-

From this we conclude that
Vix+tf(x,u,))—V(x)
t
Vix+1t;f(xu))—V(x)

DV (x; f(x,u,)) = llrtr{}glf

< lim
Jjooo tj
Vx+1;f0xu)) = Vix)
= lim
j=eo t
Vi 1/ (xu) = Vi)
< lim
Jjoo t

J
< —as(llxl) + &

In turn, this yields

inf DV (x; f(x,u)) < —a3(||x]|) + &,

uelU

and since £ > 0 was arbitrary, the preceding inequality gives us (2). []

The second preparatory result shows that if a function satisfies the
inequalities (1) and (2) on a compact set, then it also satisfies these
inequalities with an adjusted family of «;’s on a neighborhood of this
compact set.

Lemma 11. Assume that f is locally Lipschitz in x uniformly in u and
bounded on B,.(0) x U for all r > 0. Let i € {1,...,q}, O; C R" be open
and bounded, and consider V; € Cf(O,-,]R). Assume there are ay,a,, a3 €
Ko, locally Lipschitz with constant L, on [0,sup.e|J, o, lIxIl], such that V;
satisfies (1) and (2) for all x € intK; for a compact set K; C O; with
K; = clint K;. Then, given € > 0, there exists 6 > 0, depending only on the
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bounds and Lipschitz constants of the involved functions, such that for all
x € (B5(K,)n 0,) \ B,(0) it holds that

2l < Vi) < 2l

inf DV,(xs £x,0) < =3 a5l

Proof. Let C := ||V}]|2. By definition of the C? norm, we know that V,
and DV; are bounded and Lipschitz with constant C on O,. Let L and M
be the Lipschitz constant and bound of f on B,(K;) x U, respectively,
and let n :=min{e;(r) | i =1,2,3,r > €}.

Now consider a point x € O; with x ¢ K; and x ¢ B,(0). Let y € K;
be a closest point in K; and let d = ||x — y|| be the distance of x to y
(and hence to K;). Then since K; = clint K; we can estimate
Vi(x) 2 V;(») = Clix = yll 2 ay(Iyll) — Cd

> o (llxID) = (C + L,d

and

Vix) < Vi3 + Clix = yll < ap(llylh + Cd
< a(llxI) +(C + Ly)d,

which leads to
inf DV;(x; f(x,u)) = inf DV;(x)f(x,u)
uelU uelU

< in[fj DV,(»f(y,u)+ CMd + CLd
ue

<-a(lyl) +(CM +CL)d
<—a(|IxI) +(CM + CL + La)d.

Now if we choose é such that (C+ L,)6 <n/2 and (CM +CL+ L,)é <
n/2, then the assertion follows. []

4. Representation by piecewise affine functions

Now we turn to our main result on the representation of CLFs by
piecewise affine functions. Before stating our main result, we first show
an approximation result for each component V; of V.

Lemma 12. Assume that f is bounded on B,(0) x U for all r > 0. Let
O; CR" be open and let V; € Cf(O,-,R). Then, for any compact set K C O;
and every v;,v, > 0 there is a piecewise affine function V" satisfying

@ (lxll) = vy < V) < ax(llxl) + vy ©
inf DV(x; £ (vw) < —ay(lxlD + v, 10
forall x € K.

Proof. First observe that by standard constructions of simplicid grids
for any A > 0 we can find a grid covering K and satisfying the
requirements of Theorem 8. Defining C := ||V}||2 and choosing pr =p
from Theorem 8, this implies the first two inequalities with v, = (C, +
2)CA?, which can be made arbitrarily small. The Dini derivative of a
piecewise affine and continuous function satisfies

DV (x; f(x,u)) = DV/|s, f(x,u),

where DV|g, is the derivative of V" on one of the simplices
containing x. More precisely, the relevant simplex .S} is the one that
also contains x + hf(x,u) for sufficiently small 4 > 0, but this is not
relevant here, as the error estimate for the derivative in Theorem 8
holds for all simplices containing x. From this error estimates and
denoting by M a bound on || f(x, u)|, we obtain

IDV (x; f(x,u)) = DV;(x; f(x,w)
=DV |5, f(x.u) = DV;(x) f (x,u)
<M(Cg+ DHCA
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for all x € K, u € U. This carries over to the minimum over u and thus
shows the claim with v, = M(Cg + 1)C4, which can again be made
arbitrarily small. []

Of course, in the interest of stabilization to the origin, v,, v, ought to
be small, and the preceding result shows that v,, v, can indeed be picked
arbitrarily close to 0. As discussed after Eq. (5), we now assume that,
at least away from the origin, the minimum in Eq. (5) can be realized
as a minimum over finitely many functions V;. For systems admitting
such a CLF, the next theorem shows that for each £ > 0 there exists
a practical CLF that can be written as the minimum of finitely many
piecewise affine functions.

Theorem 13. Consider an open set O containing the origin and an & > 0.
Assume that there exists a semiconcave CLF on O that on O\ B,(0) is given
by a minimum over finitely many functions, i.e.,

V()= min V(x) forall x €0, =0\ B,(0),

with each V; being C2. Then for any compact set K C O with K = clint K
and cl B,(0) C int K there exists an e-PCLF V? on K that can be written as
the minimum of finitely many piecewise affine functions v, i.e.,

Proof. Consider the sets
C ={x€K, |V =V} and 0, :=intC,

Since the V; are continuous and K, is compact, the sets C; are compact,
hence closed. Moreover, K, c |J,_;  C; holds. We claim that

kK.c |J do an
i=1,..,N

holds. In order to prove (11), it is sufficient to show that each x € int K,

is contained in cl O; for some i. Hence, consider an arbitrary x € int K,

and the closed ball E(;(x) for a sufficiently small 6 > 0 such that

B;(x) C K,. Define Cj; := C; n By(x). Then

Bsxc |J G 12)
i=1,..,N

Now, if all closed sets C;; have empty interior, then it follows from

Baire’s Category Theorem that their union has empty interior, too, but

then the inclusion (12) cannot hold. Hence, at least one of the C;; has

nonempty interior.

Now consider a sequence §, — 0. Then the argument above implies
that there is a sequence of indices i and points x; € intC; ; CintC; =
0;,. Since &, — 0, it follows that x, — x as k — co. Since the i; can
only assume finitely many different values, there exists a subsequence
if,s k; — oo, such that i, = i’ for all / € N. Hence, x;, —» x as | —
and x;, € Oy for all / € N. Thus, x € c1Oy and (11) follows.

Now, by Lemma 3.2 in [26], for each i =1, ..., N, there exists a C®
function f; : R" - R, such that

¢1d(x,c10,) < f,(x) < crd(x,¢10)),

for constants ¢;,c, > 0. Replacing each V; by V; + f;, the assumptions
on V and V; obviously remain true, but now we have the additional
property that V(x) > V(x) + ¢;6 for all x € O; \ B;(O;). For these
modified ¥; we now pick 6 > 0 from Lemma 11 for K; := clO,. Next,
using Theorem 8 we approximate each V; by a piecewise affine function
VP with error in the function values < v, < /3 and error in the

derivatives < v;, where v, and v, will be determined below. Then it
follows that for all x ¢ Bs(K 1) we have

V()2 Vj(x)=6/3> min Vi(x)+5-6/3

> mi P(x) — - i ?(x).
i=111}1.r_%N Vi(x)—6/3+6-6/3> i=r1r,1.l.l.’}N Vi)
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for x € O;; := Bs(K;). This implies that for all x € K we obtain

min V?(x)= min V'(x). 13)
=1,....N i=l,...g '
x€0;;

By choosing v, and v, sufficiently small (depending on ¢), using
Lemma 12 we can ensure that V,.” satisfy (1) and (2) on Oy for suitably
adapted «a, a,, 3. Now the statement follows from Proposition 10 with
O;,; in place of O;, because by (13) the minimum in the assertion
coincides with the minimum in Proposition 10. []

In view of the discussion in Section 3.1, the assumption of semi-
concavity of the CLF in Theorem 13 is natural. As mentioned after
Definition 3, it is desirable to obtain e-PCLFs with small ¢ > 0. The
following corollary states that the existence of a piecewise affine e-PCLF
with arbitrary small £ > 0 can be concluded from Theorem 13.

Corollary 14. Suppose the assumptions of Theorem 13 are satisfied for
each € > 0. Then for each compact set K C O and each € > 0 there exists
a continuous and piecewise affine e-PCLF on K.

Proof. This statement follows immediately from Theorem 13, because
the minimum of finitely many continuous and piecewise affine func-
tions is again a continuous and piecewise affine function. []

Remark 15. As discussed after Definition 3, it is not only desirable
to be able to choose £ > 0 as small as desired but also al’l(az(s)), as
this quantity determines the radius of the neighborhood of the origin
in which asymptotic stability does not hold. A look at the construction
of the piecewise affine e-PCLF via Lemma 12 reveals that as the
approximation becomes more and more accurate (in order to reduce
e > 0), the functions «; and «, for the piecewise affine e-PCLF approach
that of the semiconcave CLF from the assumption. This means that
when ¢ decreases to 0, «; and «, do not degenerate and consequently
a7 ! (ay(¢)) also tends to 0.

Remark 16. (i) In case the general assumption from Remark 7 fails,
i.e., if there is no CLF that is the minimum over finitely many C?
functions, Corollary 14 still holds if infinitely many functions are only
needed near the origin, i.e., if the assumption of Theorem 13 is still
satisfied for each ¢ > 0. Then the number N depends on ¢, but this
does not affect the validity of the approximation.

(i) If the inclusion (11) holds for infinitely many O; and V;, then
after enlarging the domains O; using Lemma 11, the inclusion

K.c |J Bs;0)

i=1,.,N
holds. Since K, is compact, finitely many B;(O;) will cover K, and we
can use these and the corresponding V; in the remainder of the proof
of Theorem 13. Whether suitable conditions on the infinitely many V;
(e.g., requiring that there are only countably many or requiring certain
regularity properties of the C;) allow to conclude (11) for infinitely

many O; and V; is an open question and subject to future research.
5. Representation of £-PCLFs by neural networks

We now turn to the representation of e-PCLFs via neural networks.
In this section, neural networks will be employed for the representation
of continuous piecewise affine and twice continuously differentiable
e-PCLFs on compact domains.” We first consider the case of ReLU
networks (which produce continuous piecewise affine functions after
training), for which the existence proof works similar to the proof of
Theorem 9(a).

2 The readers are referred to [23] for the technical terms in this paragraph.
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Corollary 17. Under the assumption of Theorem 13, for each compact set
K c O and each € > 0 there exists a continuous and piecewise affine e-PCLF
on K that can be represented by a neural network with ReLU activation
functions and at most [log,(n + 1)] + 1 layers.

Proof. Theorem 8 implies the existence of a piecewise affine function
satisfying (8). By Arora et al. [24, Theorem 2.1] this function can be
represented by a deep neural network with ReLU activation functions
and at most [log,(n + 1)] + 1 layers. []

While this result is theoretically appealing, its practical relevance
may be limited. The reason is that, as worked out in detail in [9], for
checking inequality (2) or (4) for a continuous and piecewise affine
function, the points at which the function is not differentiable need to
be treated differently depending on their local convexity or concavity:
While for points of nondifferentiability x at which ¥V is locally concave
it is sufficient to know that (2) or (4) are satisfied in all adjacent regions
in which V is smooth, if V is locally convex near x then additional
conditions need to be checked (see condition (iv) in Algorithm 2
in [9] for details). This does not only complicate the construction of
a loss function for the training of a neural network, but also requires
that sampling points are placed on each edge between two simplices
defining the piecewise affine function.

It is therefore desirable to avoid points of nondifferentiability in
which the function represented by the neural network is not locally
concave. Fortunately, this is possible if we design our function such
that it is the minimum of a finite number of smooth functions Vip R
i =1,...,N. This is because in this case points of nondifferentiability
x can only occur when the minimum is attained in two different VI.”
in any neighborhood of x and in such points the function must be
locally convex. The following theorem and the network construction in
its proof show how this can be achieved by suitably combining smooth
activation functions with ReLU neural networks.

Theorem 18. Under the assumption of Theorem 13, for each compact set
K C O and each ¢ > 0 there exists a continuous -PCLF on K, which is
the minimum over N twice continuously differentiable functions and can be
represented by a neural network with at most [log,(N)] + 1 hidden layers,
of which one uses a smooth activation function as specified in Theorem 9(b)
and the remaining layers use ReLU activation functions.

Proof. We first follow the proof of Theorem 13, replacing the piecewise
affine approximations V;* provided by Theorem 8 with C? approxima-
tions V;* provided by Theorem 9(b). This results in an e-PCLF of the
form min,_; y V;’, where each of the V;* can be represented by a
neural network with one hidden layer. We combine the hidden layers
of these N neural networks in the first hidden layer of the network we
construct.

Now we observe that the minimum min{x, y} of two reals x,y € R
can be realized in an NN by a ReLU layer with 4 nodes, since

min{x, y} = %(p(x +y) = p(=x—y) = plx—y)—p(y — x))

, where p(x) = max{x,0} is the ReLU activation function. Hence, by
adding another [log,(N)| additional ReLU layers (with at most 2N,
N, N/2, ... 4 nodes), the network represents the desired function

6. Illustrative example

We illustrate our numerical findings by the following two
-dimensional control system known as Artstein’s circles [1], whose
dynamics is given by

(—x% + x%)u )

—2X XU

x = f(x,u) = ( (14
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X3

X

Fig. 1. Invariant sets for the solutions of (14).

Fig. 2. Piecewise affine PCLF for Artstein’s circles.

with u € U = [-1, 1]. The solutions of this control systems evolve on
the circles shown in Fig. 1, where u determines whether the solutions
move clockwise or counterclockwise.

It is known that this system admits a CLF, but not a smooth one.
In fact, in order to asymptotically stabilize the system at 0, at some
point on each circle a discontinuous decision to move clockwise or
counterclockwise must be taken. A natural choice for the points where
the direction of movement changes is the x,-axis. A known CLF for this
system is

V(x) = /4x +3x3 - |xy], (1s)

in which the nondifferentiability, which corresponds to the change of
direction, occurs precisely at x; =0, i.e., on the x,-axis.

Fig. 2 shows a piecewise affine PCLF computed with the mixed
integer programming based technique proposed in [9]. One clearly sees
that also in this CLF the concave “ridge” at which the direction of
movement changes (approximately) lies on the x,-axis.

Fig. 3 shows a piecewise smooth PCLF represented by a neural
network of the form discussed in Theorem 18 and its proof. The
wireframe in the lower part of the figure shows the expression on the
left hand side in (4). The nondifferentiability of the function is clearly
visible and again lies along the x,-axis.

The corresponding neural network architecture® is depicted in
Fig. 4. It consists of two shallow subnetworks W, and W,, each
containing M = 32 neurons using the sigmoid activation function. The
subnetworks are trained using supervised learning to approximate the
target functions V;(x) = 4 /4x% + 3x§ - x; and V3(x) = 4x% + 3x§ + X1,
ensuring that their outputs satisfy W, (x) ~ V,(x) and W,(x) = V,(x). The

3 We refer the readers to [23] for an explanation of the technical terms in
this paragraph.
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Fig. 4. Neural network architecture for representing the PCLF from Fig. 3.

training is conducted by minimizing the mean squared error between
the network outputs and the values of V| and V, over a set of training
samples generated from the known functions ¥, and V,. To compute
the minimum of the two functions, the neurons zj,...,z, use the
ReLU activation function together with fixed weights as described in
the proof of Theorem 18. Note that the purpose of this example is
to demonstrate that a neural network can represent a valid PCLF as
opposed to proposing a general numerically viable method for finding
one; indeed, the training process here relies on the explicit knowledge
of the functions being approximated.

7. Conclusion and future work

We have shown that nonsmooth CLFs can be approximated by
piecewise affine functions and by suitably designed neural networks,
provided they can be expressed as the minimum over finitely many
smooth functions. Approximation here is to be understood in an e-
practical sense on compact subsets of the state space. These results on
the one hand justify the algorithmic approach using piecewise affine
functions presented in [9], because they show that the piecewise affine
functions PCLFs constructed in this reference exist. On the other hand,
the results yield a neural network architecture that is able to ex-
press nonsmooth CLFs. This motivates the development of unsupervised
training algorithms that are able to learn nonsmooth CLFs without a
priori information on their functional form, which will be an important
topic of future research.
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