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Abstract

This text contains some notes on the Griesmer bound. In particular, we
give a geometric proof of the Griesmer bound for the generalized weights
and show that a Solomon–Stiffler type construction attains it if the min-
imum distance is sufficiently large. We also determine the parameters
of optimal binary codes for dimensions at most seven and the optimal
ternary codes for dimensions at most five.
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1 Introduction

The Hamming weight of a codeword equals the size of its support and the
minimum Hamming weight of a linear code is the minimum Hamming weight
of the non-zero codewords. For a subcode the support us given by the set of
all positions where at least one of the codewords in the subcode has a non-
zero entry. With this, the rth generalized Hamming weight of a linear code is
the size of the smallest support of an r-dimensional subcode. The generalized
Hamming weights can be used to describe the cryptography performance of a
linear code over the wire-tap channel of type II [29] and to determine the trellis
complexity of the code [6, 9, 10, 18]. From a geometrical point of view the
rth generalized Hamming weight of a linear code corresponds to the number
of points outside of a subspace of codimension r, where the points are the
one dimensional subspaces spanned by the columns of a generator matrix of
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the linear code, see e.g. [15, 27]. While one can easily find tables on the best
known bounds for the parameters of linear codes with respect to the minimum
Hamming distance for small parameters we were not able to find such a table for
the rth generalized Hamming weight. The aim of this paper is to tabulate those
numbers, where we will mainly use the geometric reformulation as multisets of
points in projective spaces. In [2] the authors gave a construction for additive
codes based on linear codes and their generalized Hamming weights. So, the
constructions studied in this paper also give constructions for additive codes and
the studied upper bounds show limitations for this specific construction. More
precisely, for all sufficiently large distances a Griesmer type bound for additive
codes can always be attained [20]. As we will see, this also holds for linear codes
and the rth generalized Hamming weight, but the mentioned construction of
additive codes results in optimal codes for a subset of the parameters only.

The remaining part of the paper is structured as follows. In Section 2 we
present the necessary preliminaries. In Section 3 we analyze the Griesmer bound
for the rth generalized Hamming distance. It turns out that a Griesmer code
with respect to the Hamming distance also attains the Griesmer bound for the
rth generalized Hamming distance. In Section 4, we determine the minimum
possible lengths of [n, k]q codes with given minimum rth generalized Hamming
weight d for some small parameters. We present our results in the geometric

version, i.e. we determine the maximum number m
(r)
q (k,w) of points in PG(k−

1, q) such that each subspace of dimension r contains at most w points. We

completely determine m
(r)
2 (k − 1, w) for all k ≤ 7 and m

(r)
3 (k − 1, w) for all

k ≤ 5.

2 Preliminaries

Linear codes. A linear [n, k]q code C is a k-dimensional subspace of Fn
q . For

c = (c1, . . . , cn) ∈ Fn
q we call

supp(c) := {1 ≤ i ≤ n : ci ̸= 0} (1)

the support of c and wt(c) = | supp(c)| its weight. More generally, for a vector
subspace C in Fn

q , we define its support as the set of all coordinate positions in
which the vectors of C are not identically zero. In other words,

supp(C) := {1 ≤ i ≤ n : ∃c = (c1, . . . , cn) ∈ C, ci ̸= 0} . (2)

For two Fq-vector spaces C, C ′ of Fn
q we write C ′ ≤ C if C ′ is a subspace of

C. The rth generalized Hamming weight of a linear code C [14, 19], denoted as
dr(C), is the size of the smallest support of an r-dimensional subcode of C , i.e.

dr(C) := min{| supp(C ′)| : C ′ ≤ C, dim(C ′) = r} . (3)

In particular, d1(C) is the minimum Hamming distance of the C. A linear code
of length n, dimension k and rth generalized Hamming weight equal to dr will be
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called an [n, k, dr]
(r)-code. The sequence (d1(C), . . . , dk(C)) is called the weight

hierarchy of a linear [n, k]q code C. Clearly, 1 ≤ d1(C) < d2 < · · · < dk(C) ≤ n
(cf. e.g. [29]).

Multisets of points in PG(k− 1,q). A multiset in PG(k−1, q) is a mapping
K : P → N0, from the pointset P of PG(r, q) to the set of non-negative integers,
which assigns a multiplicity to each point of P. This mapping is extended to
any subset Q of P by K(Q) =

∑
P∈Q K(P ). The integer K(Q) is called the

multiplicity of Q.
A multiset K is called an (n,w)-arc (resp. (n, u)-minihyper), if K(P) = n,

K(H) ≤ w (resp. K(H) ≥ u) for each hyperplane H in PG(k − 1, q), and there
is a hyperplane H0 with K(H0) = w (resp. K(H0) = u).

Let K be a multiset in PG(k − 1, q). We denote by wr the maximal mul-
tiplicity of a r-dimensional subspace of PG(r, q) with respect to K. In other
words,

wr := max {K(S) : S is a subspace of PG(k − 1, q),dim(S) = r} . (4)

Similarly, we denote by ur the minimal multiplicity of a r-dimensional subspace
of PG(r, q) with respect to K. In other words,

ur := min {K(S) : S is a subspace of PG(k − 1, q),dim(S) = r} . (5)

A multiset in PG(k − 1, q) of multiplicity n is called an (n,wr)
(r)-arc (resp

(n, ur)
(r)-minihyper) if each r-dimensional subspace of PG(k − 1, q) has multi-

plicity at most wr (resp. at least ur), and there exists an r-dimensional subspace
with this multiplicity.

It is known that there exists a one-to-one correspondence between the iso-
morphism classes of the linear [n, k]q-codes of full length (no coordinate is iden-
tically zero in all codewords) and the classes of projectively equivalent multisets
in PG(k − 1, q), where k ≥ 2. The correspondence can be described as fol-
lows. Let C be a linear code of full length with parameters [n, k, d]q, and let
G = (gT1 · · · gTn ), gi ∈ Fk

q , be a generator matrix of C. The columns gTi are con-
sidered as the homogeneous coordinates of points in PG(k−1, q). In this way, the
generator matrix G is associated with an ordered n-tuple of points (P1, . . . , Pn)
in PG(k − 1, q). This n-tuple defines a multiset K by K(P ) := |{i|Pi = P}|.
Clearly,

wr + dk−r−1 = n. (6)

This implies w0 < w1 < · · · < wk−1 = n. If s ≥ w0 is an integer, then K′ = s−K
is a multiset of cardinality svk − n with ur = svr+1 − wr, r = 0, 1, . . . , k − 1.
Here vr = (qr − 1)/(q − 1), as usual.

Definition 1. We denote by m
(r)
q (k,w) the maximal multiplicity of a multiset

in PG(k− 1, q) such that every r-dimensional subspace has multiplicity at most

w. In other words, m
(r)
q (k,w) is defined as the largest n for which there exists

an (n,w)(r)-arc in PG(k − 1, q).
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Double-counting directly gives:

Lemma 1. m
(r)
q (k,w) ≤ vk

vk−r
· w

Taking the union of two multisets of points gives:

Lemma 2. m
(r)
q (k,w′

r + w′′
r ) ≥ m

(r)
q (k,w′

r) +m
(r)
q (k,w′′

r )

In what follows we shall need multisets induced by a projection from a
subspace. Let K be a multiset in PG(k − 1, q). Fix an i-dimensional subspace
δ in PG(k − 1, q), with K(δ) = t. Let further π be a j-dimensional subspace in
PG(k − 1, q) of complementary dimension, i.e. i + j = k − 2 and δ ∩ π = ∅.
Define the projection φ = φδ,π from δ onto π by

φ :

{
P \ δ → π
Q → π ∩ ⟨δ,Q⟩. (7)

As before, P denotes the set of all points of PG(k − 1, q). Note that φ maps
(i+ s)-subspaces containing δ into (s− 1)-subspaces in π. Denote by P ′ the set
of all points in π. We define the induced multiset Kφ : P ′ → N0 by

Kφ(Q) =
∑

P :φ(P )=Q

K(P ).

It is clear that For every subspace S in PG(k − 1, q) that contains δ, it holds
Kφ(φ(S)) = K(S) − t. In particular, if K is a (n,wr)

(r)-arc (resp. (n, ur)
(r)-

minihyper) then Kφ is an (n − t, wr − t)(r)-arc (resp. an (n − t, ur − t)(r)-
minihyper).

3 The Griesmer bound

It is well known that the Griesmer bound [12]:

n ≥
k−1∑
i=0

⌈
d

qi

⌉
=: gq(k, d). (8)

for the minimum length of an [n, k]q code with given minimum Hamming dis-
tance d is attained if d is sufficiently large. A similar estimate holds for the
rth generalized Hamming distance. This result was proved in [15, 13]. The
corresponding bound is called the generalized Griesmer bound. Similarly to the
classical Griesmer bound, this result is of purely geometric nature.

Below, we give a geometric proof of the generalized Griesmer bound.

Theorem 1. Let C be an [n, k, dr]
(r)-code, where 1 ≤ r ≤ k. Then

n ≥ dr +

k−r∑
i=1

⌈
dr
qivr

⌉
. (9)
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Proof. The result is clearly true for r = k. It is enough to prove it for codes of
full length, i.e. n = dk.

Let C be an [n, k, dr]
(r)
q code and let K be the (n,wk−r−1)

(k−r−1)-arc in
PG(k − 1, q) associated with it. Consider a point of maximum multiplicity w0.
The total multiplicity of the remaining points is n−w0, and there must be point

among them of multiplicity at least
n− w0

vk − 1
. Hence

w0 ≥
⌈
n− w0

qvk−1

⌉
.

This is the Griesmer inequality for r = k − 1 since w0 = n− dk−1.
Without loss of generality, we shall assume that C is not extendable in the

following sense. Every point in PG(k−1, q) is contained in a maximal subspace
of dimension r.

Fix a (k− r− 1)-dimensional subspace S of maximal multiplicity, i.e. multi-
plicity wk−r−1. There exist vk+1−vk−r points in PG(k−1, q) outside S. Hence
there is a point P /∈ S of multiplicity

t ≥ n− wk−r−1

qk−rvr
=

dr
qk−rvr

.

Consider a projection φ from P onto some hyperplane H ∼= PG(k − 2, q) with
P /∈ H. The induced arc Kφ has parameters (n−t, wr−t)(r). The image of every
subspace T through P is a subspace in H of dimension dimT − 1. Moreover,

K(φ)(φ(T )) = K(T )− t.

If we set w′
i = maxT :dimT=i Kφ(T ), we have w′

i ≤ wi+1 − t. If we also set
d′i = n− t− w′

k−i−2, we get dr ≤ d′r. By the induction hypothesis

n′ ≥ d′r−1 +

k−r−1∑
i=1

⌈
d′r−1

qivr−1
⌉.

Now using dr ≤ d′r, we obtain:

n′ = n− t = d′r +

k−r−1∑
i=1

⌈
d′i
qivr

⌉

= dr +

k−r−1∑
i=1

⌈
di
qivr

⌉
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This implies

n ≥ dr + t+

k−r−1∑
i=1

⌈
di
qivr

⌉

≥ dr +

⌈
dr

qk−rvr

⌉
+

k−r−1∑
i=1

⌈
di
qivr

⌉

= dr +

k−r∑
i=1

⌈
di
qivr

⌉
.

We shall denote the left-hand side of (9) by g
(r)
r (k, dr). The following theo-

rem is well-known (cf. e.g. [23])

Theorem 2. Let K be an (n, n−d)-arc in PG(k−1, q) and let C be an [n, k, d]q
code associated with K, If n = t+ gq(k, d), then

wj = t+

k−1∑
i=k−1−j

⌈
d

qi

⌉
(10)

Let k ≥ 1 and let d be a positive integer. The integer d can be written
uniquely as

d = σqk−1 −
k−2∑
i=0

εiq
i (11)

It is easily computed that

g(1)q (k, q) = σvk −
k−2∑
i=0

εivi+1. (12)

Let C be an [n = gq(k, d), k, d]
(1)
q -code and let K an arc (n, n−d)-arc in PG(k−

1, q) associated with C. By Theorem 2,

wk−1−j = σvk−j −
k−2∑
i=j

εivi+1−j . (13)

Since the maximal multiplicity of a point with respect to K is σ, K can be
represented as K = σχP −F , where F is a minihyper with parameters(

k−2∑
i=0

εivi+1,

k−2∑
i=0

εivi

)
(14)

with maximal multiplicity of a point not exceeding σ. Minihypers with the
above parameters, but without the restriction on the maximal point multiplicity,
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can always can be constructed as the sum of subspaces: εk−2 hyperplanes,
εk−3 hyperlines, and so on, ε1 lines and ε0 points. Such minihypers are called
canonical.

A canonical minihyper F in PG(k− 1, q) is said to be of type
∑k−2

i=1 εi[i− 1]
if it is the sum εk−2 hyperplanes, εk−3-hyperlines, and so on ε2 lines, and ε1
points. In other words, F =

∑
i χSi

, where exactly εj of the subspaces Si are
of (projective) dimension j − 1. The arc K obtained by subtracting F from s

copies of PG(K − 1, q) will be said to have type s[k − 1]−
∑k−2

i=1 [εi].
Minihypers with parameters(

k−2∑
i=r

εivi+1,

k−2∑
i=r

εivi+1−r

)(k−1−r)

(15)

can be constructed in a similar fashion as canonical minihypers, i.e. as the sum
of εk−2 hyperplanes, εk−3 hyperlines, and so on, εr subspaces of dimension r.

Theorem 3. Let F be a minihyper in PG(k − 1, q) with parameters given by
(15), 0 ≤ ε≤q − 1, and with maximal point multiplicity w0. Then for every
σ ≥ w0 the multise K = σ −F is a (multi)arc in PG(k − 1, q) with parameters(

n = σvk −
k−2∑
i=r

εivi+1, wk−r−1 = σvk−r −
k−2∑
i=r

εivi+1−r

)(k−1−r)

.

The code associated with K is a Griesmer code with respect to the rth generalized
Hamming weight.

Proof. The parameters of K are obvious. Furthermore

dr = n− wk−r−1 = vr(σq
k−r −

k−2∑
i=r

εiq
i−r+1).

Now it is a straightforward check that:

g(r)q (k, r) = dr + ⌈ dr
qvr

⌉+ · · ·+ ⌈ dr
qk−rvr

⌉

= vr(σq
k−r −

k−2∑
i=r

εiq
i−r+1) +

σqk−r−1 −
k−2∑
i=r

εi−r
i +

σqk−r−2 −
k−2∑

i=r+1

εi−r−1
i + . . .+ σ

= σvk −
k−2∑
i=r

εivi+1

= n
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If the maximal point multiplicity of F with parameters given by (15) is large,

say at least 1 +
∑k−2

i=r iεi, such minihypers can always be constructed. Thus we
have the following theorem, which is well-known, and essentially due to Solomon
and Stiffler [25].

Theorem 4. If dr is large enough Griesmer [n = g
(r)
q (k, dr)]

(r)
q -codes do exist

for all q, k and r.

Next we are going to demonstrate that if a code attains the classical Griesmer
bound, it attains also the Griesmer bound for all generalized weights.

Theorem 5. Let C be an [n = gq(k, d), k, d]
(1)
q -code where d(1) = d is given by

(11). Then

dr(C) = vr ·

(
σqk−r −

k−1∑
i=r

εi−1q
i−r

)
−

r−1∑
i=1

εi−1vi,

and C attains the Griesmer bound for the rth generalized Hamming weight, i.e.

n = g
(r)
q (k, dr).

Proof. By (13) and (6), and using the obvious vi+r − vi = qivr, we get that

dr = n− wk−1−r

=

(
σvk −

k−1∑
i=1

εi−1vi

)
−

(
σvk−r −

k−1∑
i=r

εi−1vi−r

)

= σ(vk − vk−r)−
k−1∑
i=r

εi−1(vi − vi−r)−
r−1∑
i=1

εi−1vi

= vr ·

(
σqk−r −

k−1∑
i=r

εi−1q
i−r

)
−

r−1∑
i=1

εi−1vi.

Let us note that

r∑
i=1

εi−1vi ≤ (q − 1)

r∑
i=1

vi < (q − 1)vr + vr = qvr.

Now it is a straightforward check that

g(r)q (k, dr) = g(1)(k, d1).
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4 Exact values

In this section, we tackle the problem finding the exact value ofm
(r)
q (k−1, w) for

fixed k, r, w and q. It is in general hard to determine the values m
(r)
q (k − 1, w),

but there is one easy case for which the result is obvious:

Proposition 1. We have m
(0)
q (k − 1, s) = svk for each k ≥ 1 and each s ≥ 1.

The case r = 1 is of special interest. This is the problem of determinig the
largest size of a generalized cap – a (multi)set of points such that each line has
multiplicity at most w. In particular if w = 2 this is the notorious maximal cap
problem.

From the connection between the linear [n, k]q codes and the multisets of

points in PG(k − 1, q), we get that m
(r)
q (k − 1, w) is the largest integer n such

that n ≥ g
(k−r−1)
q (k, n − w). This integer will be called the Griesmer upper

bound for m
(r)
q (k − 1, w).

Another bound on m
(r)
q (k − 1) is the following. Set sr = w and sr+i =

m
(r+i−1)
q (r + i, sr), i = 0, . . . , k − 1− r. Then m

(r)
q (k − 1) ≤ sk−1. We call this

bound the coding upper bound for m
(r)
q (k − 1, w). In other words, the coding

upper bound uses recursively the parameters of optimal multiarcs, which in turn
can be obtained from the parameters of the optimal linear codes.

Example 1. For m
(4)
2 (6, 21) the Griesmer upper bound is 81 since

81 ≥ g
(2)
2 (7, 60) = 60 +

⌈
60

6

⌉
+

⌈
60

12

⌉
+

⌈
60

24

⌉
+

⌈
60

48

⌉
+

⌈
60

96

⌉
= 81,

while

82 < g
(2)
2 (7, 61) = 61 +

⌈
61

6

⌉
+

⌈
61

12

⌉
+

⌈
61

24

⌉
+

⌈
61

48

⌉
+

⌈
61

96

⌉
= 84.

The coding upper bound is 77. Here s4 = 21, s5 = m
(4)
2 (5, 21) = 39 since

there exists a binary [39, 6, 18]-code and there is no [40, 6, 19]-code (cf. Grassl’s

tables [11]). Furthermore, s6 = m
(5)
2 (6, 39) = 77 since there exists a [77, 6, 38]2-

code and there is no [78, 6, 39]2-code.

In Subsection 4.1 we determine the exact values of m
(r)
2 (k − 1, w) for all

k ≤ 7. We remark thatm
(6)
2 (7, w) is completely known (by the fact that we know

the optimal lengths of all binary 8-dimensional codes) while there only partial

results for m
(7)
2 (8, w). However, the determination of m

(6)
2 (7, w) is scattered

in many papers, so that we do not attempt to determine m
(r)
2 (8, w) here. In

Subsection 4.2 we determine the exact values of m
(r)
3 (k − 1, w) for all k ≤ 5.
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4.1 Exact values for m
(r)
2 (k − 1, w)

Proposition 2. It holds:

(a) m
(1)
2 (3, 3t+ 2) = 15t+ 8,

(b) m
(1)
2 (3, 3t+ 3) = 15t+ 15,

(c) m
(1)
2 (3, 3t+ 4) = 15t+ 16,

for all t ∈ N .

Proof. The upper bounds are given by the Griesmer upper bound. Construc-

tions for m
(1)
2 (3, 2) ≥ 8, m

(1)
2 (3, 3) ≥ 15, and m

(1)
2 (3, 4) ≥ 16 are given by an

affine solid, a solid, and a solid plus a point, respectively. Combining those exam-
ples with t copies of a solid yields the remaining upper bounds by Lemma 2.

w m
(1)
2 (3, w) construction upper bound

2 8 affine solid Griesmer upper bound
3 15 solid Griesmer upper bound
4 16 solid plus a point Griesmer upper bound

Table 1: Exact values for m
(1)
2 (3, w).

Corollary 1. m
(1)
2 (3, w) is given by the Griesmer upper bound for all w ≥ 2.

Proposition 2 can be generalized:

Proposition 3. For each r ≥ 2 and each t ∈ N we have

(a) m
(1)
2 (k − 1, 3t+ 2) = tvk + 2k−1,

(b) m
(1)
2 (k − 1, 3t+ 3) = (t+ 1)vk,

(c) m
(1)
2 (k − 1, 3t+ 4) = (t+ 1)vk + 1.

Proof. Constructions for m
(1)
2 (k−1, 2) ≥ 2k−1, m

(1)
2 (k−1, 3) ≥ vk, and m

(1)
2 (k−

1, 2) ≥ vk + 1 are given by an affine (k − 1)-space (type, a (k − 1)-space, and
an (k − 1)-space plus a point, respectively. Combining those examples with t
copies of a (k − 1)-space yields the remaining upper bounds by Lemma 2.

The upper bounds are given by the Griesmer upper bound. More precisely,
applying Theorem 1 with dk−2 = tvk + 2k−1 − 3t − 2 = (2t + 1) · 2vk−2 gives
n ≥ (2t+1) ·2vk−2+(2t+1)+(t+1) = tvk+2k−1 and applying Theorem 1 with
dk−2 = (2t+1)·2vk−2+1 gives n ≥ (2t+1)·2[r]2+(2t+2)+(t+1) = tvk+2k−1+2.
The other two cases are treated in a similar fashion.
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Corollary 2. For each k ≥ 3 we have that m
(1)
2 (k − 1, w) is given by the

Griesmer upper bound for all w ≥ 2.

Lemma 3. For k ≥ 5 we have m
(k−3)
2 (k − 1, k − 2) = k + 1.

Proof. A projective base (or frame) shows m
(k−3)
2 (k − 1, k − 2) ≥ k + 1. From

the Griesmer upper bound we conclude m
(k−3)
2 (k−2, k−2) ≤ k, so that we can

assume that a multiset M of at least k + 1 points contains the points spanned
by the k unit vectors. Any further point in M spanned by v ∈ Fk

2 then needs to
have Hamming weight k−1 or k, since otherwise k−1 points would be contained
in a subspace of codimension two. The sum of two different such vectors with
Hamming weight k or k−1 has Hamming weight strictly less than k−1, so that
we can find k − 1 points in a subspace of codimension two.

Note that ovoids imply m
(1)
q (3, 2) ≥ q2 + 1.

Proposition 4. We have

(a) m
(2)
2 (4, 7t+ 4) = 31t+ 16,

(b) m
(2)
2 (4, 7t+ 5) = 31t+ 17,

(c) m
(2)
2 (4, 7t+ 6) = 31t+ 24,

(d) m
(2)
2 (4, 7t+ 7) = 31t+ 31,

(e) m
(2)
2 (4, 7t+ 8) = 31t+ 32,

(f) m
(2)
2 (4, 7t+ 9) = 31t+ 33,

(g) m
(2)
2 (4, 7t+ 10) = 31t+ 40

for all t ∈ N . Moreover, we have m
(2)
2 (4; 3) = 6.

Proof. Lemma 3 yields m
(2)
2 (4, 3) = 6. Constructions for 4 ≤ s ≤ 10 are given

by multisets of points with types [4] − [3], [4] − [3] + [0], [4] − [2], [4], [4] + [0],
[4] + 2[0], and 2[4] − [3] − [2], respectively. Combining those examples with t
copies of a 4-space yields the remaining constructions by Lemma 2. The upper

bounds for m
(2)
2 (4, w) are given by the Griesmer upper bound for all w ≥ 4.

Corollary 3. m
(2)
2 (4, w) is given by the Griesmer upper bound for all w ≥ 4.

We can generalize Proposition 4 as follows:

Proposition 5. For each k ≥ 4 and all w ≥ 4 we have that m
(2)
2 (k − 1, w) is

given by the Griesmer upper bound.
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w m
(2)
2 (4, w) construction upper bound

3 6 projective base Lemma 3
4 16 [4]− [3] Griesmer upper bound
5 17 plus point Griesmer upper bound
6 24 [4]− [2] Griesmer upper bound
7 31 [4] Griesmer upper bound
8 32 plus point Griesmer upper bound
9 33 plus point Griesmer upper bound
10 40 2[4]− [3]− [2] Griesmer upper bound

Table 2: Exact values for m
(2)
2 (4, w).

Proof. The Solomon–Stiffler constructions for [k− 1]− [k− 2], [k− 1]− [k− 3],

[k−1], and 2[k−1]−[k−2]−[k−3] givem
(k−4)
2 (k−1, 4) ≥ 2k−2, m

(k−4)
2 (k−1, 6) ≥

3 · 2k−3, m
(2)
2 (k− 1, 7) ≥ vk, and m

(2)
2 (k− 1, 10) ≥ 5 · 2k−3. Adding points gives

m
(2)
2 (k − 1, 5) ≥ m

(2)
2 (k − 1, 4) + 1, m

(2)
2 (k − 1, 8) ≥ m

(k−4)
2 (k − 1, 7) + 1, and

m
(2)
2 (k − 1, 9) ≥ m

(2)
2 (k − 1, 7) + 2. For w > 10 the lower bounds 2 given by

m
(2)
2 (k − 1, w) ≥ m

(2)
2 (k − 1, w − 7) +m

(2)
2 (k − 1, 7).

The upper bounds are given by the Griesmer upper bound. More precisely,
applying Theorem 1 with dk−3 = (4t+2) ·2vk−3 gives n ≥ (4t+2) ·2vk−3+(4t+
2)+(2t+1)+(t+1) = t ·v+2k−1; applying Theorem 1 with dr = (4t+3) ·2vk−3

gives n ≥ (4t+3) ·2vk−3+(4t+3)+(2t+2)+(t+1) = t ·vk+3 ·2k−2; applying
Theorem 1 with dr = (4t+4) · 2vk−3 gives n ≥ (4t+4) · 2vk−3+(4t+4)+ (2t+
2) + t = t · vk + vk, and applying Theorem 1 with dr = (4t + 5) · 2vk−3 gives
n ≥ (4t+ 5) · 2vk−3 + (4t+ 5) + (2t+ 3) + (t+ 2) = t · vk + 5 · 2k−2.

So, the only non-trivial value that is not determined yet is m
(2)
2 (k − 1, 3).

The first values are given by m
(2)
2 (3, 3) = 5 and m

(2)
2 (4, 3) = 6.

w m
(2)
2 (5, w) construction upper bound

3 8 Lemma 4 Lemma 4
4 32 [5]− [4] Griesmer upper bound
5 33 plus point Griesmer upper bound
6 48 [5]− [3] Griesmer upper bound
7 63 [5] Griesmer upper bound
8 64 plus point Griesmer upper bound
9 65 plus point Griesmer upper bound
10 80 2[5]− [4]− [3] Griesmer upper bound

Table 3: Exact values for m
(2)
2 (5, w).

Lemma 4. We have n
(2)
2 (5, 3) = 8.
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Proof. A feasible example is given by
1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1


Let M be a multiset of n ≥ 9 points in PG(5, 2) such that each plane contains

at most three points. Since m
(2)
2 (5, 3) = 6 we assume w.l.o.g. that M contains

the six points spanned by the six unit vectors. Clearly, the maximum point
multiplicity is one and every additional point is spanned by a vector x with

Hamming weight at least 4. Since m
(3)
2 (5, 2; 4) = 7 we assume w.l.o.g. that M

also contains the point spanned by x = (1, 1, 1, 1, 0, 0)⊤. Let two further points
be spanned by y, z ∈ F6

2 . Since every plane contains at most three points we
have wt(y),wt(z) ≥ 4 and dH(x, z), dH(x, y), dH(y, z) ≥ 4. If wt(y) = 4, then
no such vector z exists, so that wt(y),wt(z) ≥ 5, which contradicts dH(y, z) ≥
4.

Lemma 5. We have m2
2(6, 3) = 11 and m

(2)
2 (7, 3) = 17.

Proof. An example showing m
(2)
2 (6, 3) ≥ 11 is given by

1000000 11 10
0100000 11 01
0010000 10 10
0001000 10 01
0000100 01 10
0000010 01 01
0000001 00 11


.

Let M be a multiset of n ≥ 12 points in PG(6, 2) such that each plane contains

at most three points. Since m
(2)
2 (5, 3) = 8 we assume w.l.o.g. that M contains

the seven points spanned by the seven unit vectors. Clearly, the maximum
point multiplicity is one and every additional point is spanned by a vector x
with Hamming weight at least 4. Via a small ILP computation we excluded

n ≥ 12. An example showing m
(2)
2 (7, 3) ≥ 17 is given by

10000000 1110 01111
01000000 1101 11101
00100000 1010 10011
00010000 1001 01110
00001000 0110 10101
00000100 0101 01011
00000010 0011 00111
00000001 0000 11111


.
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Again we can prescribe the eight points spanned by the unit vectors, so that
any further point is spanned by a vector x ∈ F8

2 with Hamming weight at least
4. If there is no point spanned by a vector with Hamming weight 4, than a
small ILP computations shows that the maximum cardinality is 16. So we can
additionally prescribe an arbitrary point spanned by a vector with Hamming
weight 4. Another ILP computation then shows that the maximum cardinality
is 17.

w m
(2)
2 (6, w) construction upper bound

3 11 Lemma 5 Lemma 5
4 64 [6]− [5] Griesmer upper bound
5 65 plus point Griesmer upper bound
6 96 [6]− [4] Griesmer upper bound
7 127 [6] Griesmer upper bound
8 128 plus point Griesmer upper bound
9 129 plus point Griesmer upper bound
10 160 2[6]− [5]− [4] Griesmer upper bound

Table 4: Exact values for m
(2)
2 (6, w).

Lemma 6. We have m
(3)
2 (5, 11) = 38.

Proof. The lower bound is given by the unique [38, 6, 18]2 code [5], which is a
Griesmer code. A generator matrix is e.g. given by 00000100000000000000001111111111111111

00001000000001111111110000000111111111
00010000011110000111110001111000001111
00100001101110011000110110011001110011
01000010110111101011011010101010010101
10000011111010110101011101001100110110

 .

Let M be a multiset of points in PG(5, 2) with at most 11 points in each solid.

Considering projections through a point and m
2)
2 (4, 9) = 33 implies M(P ) ≤ 1

for every point P . Since m
(3)
2 (4, 11) = 21 we have M(H) ≤ 21 for every hyper-

plane H. Since m
(4)
2 (5, 20) = 38 we can assume the existence of a hyperplane

H⋆ with M(H⋆) = 21. There are exactly two [21, 5, 10]2 codes, see e.g. [1,
Theorem 6]. Prescribing these two possibilities for H⋆ a small ILP computation
quickly shows #M ≤ 38.

We remark that the Griesmer upper bound gives m
(3)
2 (5, 11) ≤ 41, while the

coding upper bound yields m
(3)
2 (5, 11) ≤ 39 via m

(4)
2 (5, 21) = 39. Note that the

complement of a hypothetical set of 39 points in PG(5, 2) points with at most
11 points per solid is a multiset of points of cardinality 24 that blocks every
solid at least four times. The union of a solid and a plane (plus two arbitrary
points) gives such an example as a multiset but not as a set of points.

14



Proposition 6. If w ≥ 12 or w ∈ {6, 8, 9, 10}, then m
(3)
2 (5, w) is given by

the Griesmer upper bound. Moreover, we have m
3)
2 (5, 4) = 7, m

(3)
2 (5, 5) = 11,

m
(3)
2 (5, 7) = 19, and m

(3)
2 (5, 11) = 38.

Proof. Using Lemma 3 and Lemma 6 we state thatm
(3)
2 (5, 4) = 7 andm

(3)
2 (5, 11) =

38, respectively. We consider the following constructions

� types t[5], t[5] + [0], t[5] + 2[0], t[5] + 3[0], t[5]− [4], t[5]− [4] + [0], t[5]−
[4] + 2[0], t[5]− [3], t[5]− [3] + [0], and t[5]− [2] for t ≥ 1;

� types t[5]− [4]− [3], t[5]− [4]− [2], and t[5]− [3]− [2] for t ≥ 2; and

� type t[5]− [4]− [3]− [2] for t ≥ 3.

So, it remains to provide constructions for w ∈ {5, . . . , 7, 19}. For w = 7 we
add an arbitrary point to an example for w = 6. For w ∈ {5, 6, 19} we provide
explicit examples: 00000100111

00001011111
00010001011
00100011100
01000011001
10000011010

 ,

 000000100001111111
000011000110001111
000100001110110011
001000011010011101
010000011101000111
100000010111101001

 , and

 0001000000000000111111111111111000000000001111111111000000000001111111111
0010000001111111000001111111111000000111110000001111000000111110000001111
0000001110000111001110000011111010011001110001110011010011001110001110011
0000010110111000110010001100111101100001110001111100101100001110001111100
0100111011001001010110010101011000101010110110010101000101010110110010101
1000110011010011100100100110001001011100011010111001001011100011010111001

 .

The Griesmer upper bound is not attained for w ∈ {4, 5, 7, 11} while it is for all
other cases w > 3 For w ∈ {5, 7} the coding upper bound is attained.

The stored generator matrices of [m
(3)
2 (5, w), 6]2 codes in the database of

best known linear codes (BKLC) in Magma give optimal examples for w ∈
{5, 6, 11, 19}. Note that for w = 6 we can take any [18, 6, 8]2 Griesmer code
and for w = 19 we can take any [73, 6, 36]2 Griesmer code.

Lemma 7. We have m
(4)
2 (6, 9) = 27 and m

(4)
2 (6, 10) = 28.

Proof. An example showing m
(4)
2 (6, 9) ≥ 27 is given by

000000100000000011111111111
000001000001111100000111111
000010001110111100011000011
000100010111000101111000101
001000011001001110101011100
010000001011011010110101010
100000010100110111010110001

 ,

so that adding an arbitrary point gives m
(4)
2 (6, 10) ≥ 28. For w = 9 the coding

upper bound is attained. Next we consider a multiset M of points in PG(6, 2)
such that every subspace of codimension two contains at most ten points. Start-

ing from m
(5)
2 (6, 10) = 18 we have used LinCode [4] to enumerate the two non-

isomorphic [18, 6, 8]2 codes. Prescribing the two possible configurations and an
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w m
(3)
2 (5, w) construction upper bound

4 7 projective base Lemma 3
5 11 BKLC/ILP Coding upper bound
6 18 BKLC/ILP Griesmer upper bound
7 19 plus point Coding upper bound
8 32 [5]− [4] Griesmer upper bound
9 33 plus point Griesmer upper bound
10 34 plus point Griesmer upper bound
11 38 BKLC/ILP Lemma 6
12 48 [5]− [3] Griesmer upper bound
13 49 plus point Griesmer upper bound
14 56 [5]− [2] Griesmer upper bound
15 63 [5] Griesmer upper bound
16 64 plus point Griesmer upper bound
17 65 plus point Griesmer upper bound
18 66 plus point Griesmer upper bound
19 73 BKLC/ILP Griesmer upper bound
20 80 2[5]− [4]− [3] Griesmer upper bound
21 81 plus point Griesmer upper bound
22 88 2[5]− [4]− [2] Griesmer upper bound
23 95 sum construction Griesmer upper bound
24 96 plus point Griesmer upper bound
25 97 plus point Griesmer upper bound
26 104 2[5]− [3]− [2] Griesmer upper bound
27 111 sum construction Griesmer upper bound
28 112 plus point Griesmer upper bound
29 119 sum construction Griesmer upper bound
30 126 sum construction Griesmer upper bound
31 127 plus point Griesmer upper bound
32 128 plus point Griesmer upper bound
33 129 plus point Griesmer upper bound
34 136 3[5]− [4]− [3]− [2] Griesmer upper bound

Table 5: Exact values for m
(3)
2 (5, w).
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arbitrary point making the span 7-dimensional, we have used an ILP computa-
tion to conclude #M ≤ 28. In the following we assume M(H) ≤ 17 for each

hyperplane. Since m
(3)
2 (5, 7) = 19 we also assume M(P ) ≤ 2 for every point P .

If there exists a solid S with M(S) ≥ 7, then we have #M ≤ 7 · 3 + 7 = 28, so
that we assume M(S) ≤ 6 for every solid S. We have used LinCode [4] to enu-
merate the four non-isomorphic [10, 5, 4]2 codes. Prescribing the four possible
configurations and two points that make the span 7-dimensional, we have used
ILP computations to conclude #M ≤ 28.

Lemma 8. We have m
(4)
2 (6, 20) = 71.

Proof. An example showing m
(4)
2 (6, 20) ≥ 71 is given by

00000010000000000000000000000000000000111111111111111111111111111111111
00000100000000000000011111111111111111000000000000000011111111111111111
00001000000011111111100000000011111111000000001111111100000000011111111
00010000111100001111100000111100001111000011110000111100000111100001111
00100001001101110001100011001100110011001100110011001100111001100110011
01000001010110110010101101010101010101110101010101010101011010101010101
10000001111011010100110110100110010110011010011001011010001011001101001

 .

Next we consider a multiset M of points in PG(6, 2) such that every subspace

of codimension two contains at most 20 points. Starting from m
(4)
2 (5, 20) = 38

we have used LinCode [4] to construct the unique [38, 6, 18]2 code [5]. Prescrib-
ing the corresponding unique configuration and a further point that makes the
span 7-dimensional, we have used an ILP computation to conclude #M ≤ 71.

Observing m
(5)
2 (6, 37) = 71 finishes the proof.

Lemma 9. We have m
(4)
2 (6, 22) = 82 and m

(4)
2 (6, 23) = 83.

Proof. An example showingm
(4)
2 (6, 22) ≥ 82 is given by each of the 11 [82, 7, 40]2

Griesmer codes [5]. One generator matrix is e.g. given by
0000001000000000000000000000000000000000000111111111111111111111111111111111111111
0000010000000000000000001111111111111111111000000000000000000011111111111111111111
0000100000011111111111110000000111111111111000000011111111111100000000111111111100
0001000011100000011111110001111000001111111000111100000001111100001111000001111100
0010000101100011100011110110011000110000111011001100011110011100110011001110001100
0100000110101100101100111010101001010011001101010101100110101101010101010110010100
1000000111010101010101011101001010010101010110100110101010110110010110011010100100

 ,

so that adding an arbitrary point gives m
(4)
2 (6, 23) ≥ 83. For s = 22 the

Griesmer upper bound is attained. Next we consider a multiset M of points
in PG(6, 2) such that every subspace of codimension two contains at most 23

points. Starting from m
(4)
2 (5, 23) = 34 we have used LinCode [4] to construct

the unique [45, 6, 22]2 code [5]. Prescribing the corresponding configuration
and an arbitrary point making the span 7-dimensional, we have used an ILP
computation to conclude #M ≤ 83. In the following we assume M(H) ≤ 44

for each hyperplane. Since m
(3)
2 (5, 20) = 80 we also assume M(P ) ≤ 1 for

every point P . We have used LinCode [4] to enumerate the unique [44, 6, 21]2
code with maximum column multiplicity one. Prescribing the corresponding
configuration and an arbitrary point making the span 7-dimensional, we have
used an ILP computation to conclude #M ≤ 83. In the following we assume
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M(H) ≤ 43 for each hyperplane. If there exists a solid S with M(S) ≥ 13,
then we have #M ≤ 7 · 10 + 13 = 83, so that we assume M(S) ≤ 12 for every
solid S. We have used LinCode [4] to construct the unique [23, 11, 5]2 code [24].
Prescribing the corresponding configuration and two points that make the span
7-dimensional, we have used an ILP computation to conclude #M ≤ 83.

Proposition 7. If w ≥ 24 or w ∈ {7, 11, 14, 16, . . . , 19, 22}, then m
(4)
2 (6, s)

is given by the Griesmer upper bound. Moreover, we have m
(4)
2 (6, 5) = 8,

m
(4)
2 (6, 6) = 12, m

(4)
2 (6, 8) = 20, m

(4)
2 (6, 9) = 27, m

(4)
2 (6, 10) = 28, m

(4)
2 (6, 12) =

36,
(4)
2 (6, 13) = 43, m

(4)
2 (6, 15) = 51, m

(4)
2 (6, 20) = 71, m

(4)
2 (6, 21) = 75, and

m
(4)
2 (6, 23) = 83.

Proof. For m
(4)
2 (6, 9) = 27 and m

(4)
2 (6, 10) = 28 we refer to Lemma 7. For

m
(4)
2 (6, 20) = 71 we refer to Lemma 8. Form

(4)
2 (6, 22) = 82 andm

(4)
2 (6, 23) = 83

we refer to Lemma 9. We consider the following constructions

� types t[6], t[6]− [5], t[6]− [4], t[6]− [3], and t[6]− [2] for t ≥ 1;

� types t[6]−[5]−[4], t[6]−[5]−[3], t[6]−[5]−[2], t[6]−[4]−[3], t[6]−[4]−[2],
and t[6]− [3]− [2] for t ≥ 2;

� types t[6] − [5] − [4] − [3], t[6] − [5] − [4] − [2], t[6] − [5] − [3] − [2], and
t[6]− [4]− [3]− [2] for t ≥ 3; and

� type t[6]− [5]− [4]− [3]− [2] for t ≥ 4,

as well as adding up to four additional points to those constructions. By se-
lecting the removed subspaces more carefully than by a chain, we can also have
constructions for [6] − [3] − [2], 2[6] − [5] − [3] − [2], 2[6] − [4] − [3] − [2], and
3[6]− [5]− [4]− [3]− [2], i.e. for w ∈ {27, 43, 51, 67}, which meet the Griesmer
upper bound. The case w = 5 is treated in Lemma 3. For w ∈ {8, 12, 15, 38}
the best known construction can be obtained by adding an arbitrary point to a
construction for w − 1. For w ∈ {6, 7, 11, 13, 14, 21} we give explicit examples
found by ILP searches.

000000100111
000001001011
000010010011
000100011100
001000011111
010000001101
100000011001

 ,


0000001000001111111
0000010001110001111
0000100110010010111
0001000011100110011
0010000010111100101
0100000101101101001
1000000011011011001

 ,


00000010000000000000111111111111111
00000100000111111111000001111111111
00001000011000011111001110000011111
00010001111001100111010110001100001
00100000101110100011011010010101110
01000001011011111001100100101000110
10000000110011101010100111000111010

 ,


0000001000000000000011111111111111111111111
0000010000011111111100000000011111111111111
0000100001100001111100001111100000001111111
0001000110101110011100110111100011110001111
0010000011010110001111001001100100110010111
0100000111011000100101010010101001010111011
1000000100101011100110111000110100010011101

 ,


00000010000000000000000001111111111111111111111100
00000100000000111111111110000000000011111111111100
00001001111111000000011110000000111100001111111100
00010000000111000011101110011111000100010001111111
00100000011001001100110110100011011101110010001111
01000000101010011111000011101101001010110100010111
10000001010010100101011010110100101111011000100111

 ,
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
000000100000000000000000000000000000001111111111111111111111111111111111111
000001000000000000000111111111111111110000000000000000000111111111111111111
000010000000001111111000000001111111110000000001111111111000000000111111111
000100000111110001111000111110000111110000111110000111111000001111000011111
001000001001110110011011000110011000110011000110011000111001110011001100111
010000011110011010101101011010101011011101011010101001011010110101010101001
100000011010101101001110101011001001100110101011001011101100010110011010011

 ,

For w ∈ {36, 37, 39} we can take [138, 7, 68]2, [145, 7, 72]2, and [153, 7, 76]2 Gries-
mer codes [28]. For w ∈ {6, 8, 12, 13, 15, 21} the coding upper bound is attained.
All other upper bounds are given by the Griesmer upper bound.

The stored generator matrices of [m
(4)
2 (6, w), 7]2 codes in the database of

best known linear codes (BKLC) in Magma give optimal examples for

w ∈ {6, 7, 9, 11, 13, 14, 20, 21, 22, 36, 37, 39}.

Lemma 10. We have m
(3)
2 (6, 4) = 9 and m

(3)
2 (6, 5) = 19.

Proof. Examples showing m
(3)
2 (6, 4) ≥ 9 and m

(3)
2 (6, 5) ≥ 19 are given by

0 0 0 0 0 1 1 1 1
0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 0 1
1 1 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0


and 

1000000000111101101
0100000101010111001
0010000111100010011
0001000110111000110
0000100011011100011
0000010100100111110
0000001010010011111


,

respectively. For upper bounds are obtained by ILP computations prescribing
the seven points generated by the unit vectors in F7

2.

Lemma 11. We have m
(3)
2 (6, 6) = 28.

Proof. An example showing m
(3)
2 (6, 6) ≥ 28 is given by

0000000000001111110000111111
0000000001110001110111000111
0001111110000001110001001011
1110001110000000000011011101
0001110000001111111111000000
0110110110110110110000000000
1101101101101101100000000000

 .

Let M be a multiset of n points in PG(6, 2) such that every solid contains at
most six points. We have used LinCode [4] to enumerate the two non-isomorphic
[18, 6, 8]2 codes. Prescribing the two possible configurations and an arbitrary
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w m
(4)
2 (6, w) construction upper bound

5 8 projective base Lemma 3
6 12 BKLC/ILP Coding upper bound
7 19 BKLC/ILP Griesmer upper bound
8 20 plus point Coding upper bound
9 27 BKLC/ILP Coding upper bound
10 28 plus point Lemma 7
11 35 BKLC/ILP Griesmer upper bound
12 36 plus point Coding upper bound
13 43 BKLC/ILP Coding upper bound
14 50 BKLC/ILP Griesmer upper bound
15 51 plus point Coding upper bound
16 64 [6]− [5] Griesmer upper bound
17 65 plus point Griesmer upper bound
18 66 plus point Griesmer upper bound
19 67 plus point Griesmer upper bound
20 71 BKLC/ILP Lemma 8
21 75 BKLC/ILP Coding upper bound
22 82 BKLC/ILP Griesmer upper bound
23 83 plus point Lemma 9
24 96 [6]− [4] Griesmer upper bound
25 97 plus point Griesmer upper bound
26 98 plus point Griesmer upper bound
27 105 [6]− [3]− [2] Griesmer upper bound
28 112 [6]− [3] Griesmer upper bound
29 113 plus point Griesmer upper bound
30 120 [6]− [2] Griesmer upper bound
31 127 [6] Griesmer upper bound
32 128 plus point Griesmer upper bound
33 129 plus point Griesmer upper bound
34 130 plus point Griesmer upper bound
35 131 plus point Griesmer upper bound
36 138 BKLC/ILP Griesmer upper bound
37 145 BKLC/ILP Griesmer upper bound
38 146 plus point Griesmer upper bound
39 153 BKLC/ILP Griesmer upper bound
40 160 2[6]− [5]− [4] Griesmer upper bound
41 161 plus point Griesmer upper bound
42 162 plus point Griesmer upper bound
43 169 2[6]− [5]− [3]− [2] Griesmer upper bound
44 176 2[6]− [5]− [3] Griesmer upper bound
45 177 plus point Griesmer upper bound

Table 6: Exact values for m
(4)
2 (6, w) – part 1.
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w m
(4)
2 (6, w) construction upper bound

46 184 2[6]− [5]− [2] Griesmer upper bound
47 191 sum construction Griesmer upper bound
48 192 plus point Griesmer upper bound
49 193 plus point Griesmer upper bound
50 194 plus point Griesmer upper bound
51 201 2[6]− [4]− [3]− [2] Griesmer upper bound
52 208 2[6]− [4]− [3] Griesmer upper bound
53 209 plus point Griesmer upper bound
54 216 2[6]− [4]− [2] Griesmer upper bound
55 223 sum construction Griesmer upper bound
56 224 plus point Griesmer upper bound
57 225 plus point Griesmer upper bound
58 232 sum construction Griesmer upper bound
59 239 sum construction Griesmer upper bound
60 240 plus point Griesmer upper bound
61 247 sum construction Griesmer upper bound
62 254 sum construction Griesmer upper bound
63 255 plus point Griesmer upper bound
64 256 plus point Griesmer upper bound
65 257 plus point Griesmer upper bound
66 258 plus point Griesmer upper bound
67 265 3[6]− [5]− [4]− [3]− [2] Griesmer upper bound
68 272 3[6]− [5]− [4]− [3] Griesmer upper bound
69 273 plus point Griesmer upper bound
70 280 3[6]− [5]− [4]− [2]

Table 7: Exact values for m
(4)
2 (6, w) – part 2.
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point making the span 7-dimensional, we have used an ILP computation to
conclude #M ≤ 25. In the following we assume M(H) ≤ 17 for each hy-
perplane. We have used LinCode [4] to enumerate the three non-isomorphic
[17, 6, 7]2 codes. Prescribing the three possible configurations and an arbitrary
point making the span 6-dimensional, we have used an ILP computation to con-
clude #M ≤ 28. In the following we assume M(H) ≤ 16 for each hyperplane.
We have used LinCode [4] to enumerate the four non-isomorphic [10, 5, 4]2 codes.
Prescribing the four possible configurations and two points that make the span
6-dimensional, we have used ILP computations to conclude #M ≤ 28.

Lemma 12. We have m
(3)
2 (6, 11) = 72.

Proof. An example showing m
(3)
2 (6, 11) ≥ 72 is given by

100000011011100011101001110000110011101011010001010111001001011111111100
010000010110010010011101001000101010011110111001111100101101110010000010
001000001111011001101110001100001101111010010100011101010010111001000010
000100000010001101000111101110010110111101001010100111001101111000100010
000010000000110111110111000111000011001111001101011010100010111100010010
000001000001001010001111110011101001110110100110001110110101011100001010
000000111110100111011010010001010111110100100010111010010011110000000110

 .

Let M be a multiset of n points in PG(6, 2) such that every solid contains at

most eleven points. We have M(H) ≤ m
(3)
2 (5, 11) = 38 for every hyperplane

H, so that #M ≤ m
(5)
2 (6, 38) ≤ 72.

Proposition 8. If w ≥ 12 or w ∈ {8, 9, 10}, then m
(3)
2 (6, w) is given by the

Griesmer upper bound. Moreover, we have m
(4)
2 (6, 4) = 9, m

(4)
2 (6, 5) = 19,

m
(4)
2 (6, 6) = 28, m

(4)
2 (6, 7) = 35, and m

(4)
2 (6, 11) = 72.

Proof. For m
(3)
2 (6, 4) = 9 and m

(3)
2 (6, 5) = 19 we refer to Lemma 10. For

m
(3)
2 (6, 6) = 28 we refer to Lemma 11. For m

(3)
2 (6, 11) = 72 we refer to

Lemma 12. We consider the following constructions

� types t[6], t[6]− [5], t[6]− [4], and t[6]− [3] for t ≥ 1;

� types t[6]− [5]− [4], t[6]− [5]− [3], t[6]− [5], t[6]− [4]− [3], and t[6]− [4]
for t ≥ 2,

as well as adding up to four additional points to those constructions. Examples

showing m
(3)
2 (6, 7) ≥ 35 given by

10010101101010110101110101100001111
01010001011011000111000010101110100
00110100001001000011000111010011111
00001100111000100001001011101101101
00000011111000010000100111110110110
00000000000111110000011111111000111
00000000000000001111111111111111000

 .

For m
(3)
2 (6, 19) ≥ 145 we can use a [145, 7, 72]2 Griesmer code [28]. The upper

bound m
(3)
2 (6, 7) ≤ 35 is given by the coding upper bound. All other upper

bounds are obtained from the Griesmer upper bound.

The stored generator matrices of [m
(3)
2 (6, w), 7]2 codes in the database of best

known linear codes (BKLC) in Magma give optimal examples for w ∈ {5, 7, 19}.
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w m
(3)
2 (6, w) construction upper bound

4 9 ILP Lemma 10
5 19 BKLC/ILP Lemma 10
6 28 ILP Lemma 11
7 35 BKLC/ILP Coding upper bound
8 64 [6]− [5] Griesmer upper bound
9 65 plus point Griesmer upper bound
10 66 plus point Griesmer upper bound
11 72 Lemma 12 Lemma 12
12 96 [6]− [4] Griesmer upper bound
13 97 plus point Griesmer upper bound
14 112 [6]− [3] Griesmer upper bound
15 127 [6] Griesmer upper bound
16 128 plus point Griesmer upper bound
17 129 plus point Griesmer upper bound
18 130 plus point Griesmer upper bound
19 145 BKLC/ILP Griesmer upper bound
20 160 2[6]− [5]− [4] Griesmer upper bound
21 161 plus point Griesmer upper bound
22 176 2[6]− [5]− [3] Griesmer upper bound
23 191 sum construction Griesmer upper bound
24 192 sum construction Griesmer upper bound
25 193 sum construction Griesmer upper bound
26 208 2[6]− [4]− [3] Griesmer upper bound

Table 8: Exact values for m
(3)
2 (6, w).
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4.2 Exact values for m
(r)
3 (k − 1, w)

Proposition 9. If w ≥ 3 , then m
(1)
3 (3, w) is given by the Griesmer upper

bound. Moreover, we have m
(1)
3 (3, 2) = 10.

Proof. The upper bound m
(1)
3 (3, 2) ≤ 10 follows from the coding upper bound

and all other upper bounds follow from the Griesmer upper bound. The ex-

istence of an ovoid in PG(3, 3) yields m
(1)
3 (3, 2) ≥ 10. A [27, 4, 18]3 Griesmer

code yields m
(1)
3 (3, 3) ≥ 27. Note that Griesmer [n, 4, d]3 codes exist for all

d ≥ 16.

We remark that we have m
(1)
q (3, 2) = q2 + 1 for all q > 2 [3, 22]. Moreover,

we have m
(1)
4 (3, 3) = 31 and m

(1)
5 (3, 3) = 44 [8].

Lemma 13. We have m
(2)
3 (4, 4) = 20.

Proof. An example showing m
(2)
3 (4, 4) ≥ 20 is given by

10000220001102111221
01000002221001121111
00100212202022200211
00010202111222011010
00001111021120010111

 .

After prescribing the unique [10, 4; 6]3 code a small ILP computation verifies

m
(2)
3 (4, 4) ≤ 20.

Lemma 14. We have m
(2)
3 (4, 6) = 38.

Proof. An example showing m
(2)
3 (4, 6) ≥ 38 is given by(

10000012010111221202110002001212201211
01000212122122010222212210101011010111
00100201200121120102201121120200101221
00010120120101221221201022020122110002
00001222222222222222010111222102221202]

)
.

After prescribing the three non-equivalent [15, 4; 9]3 codes small ILP computa-

tions verify m
(2)
3 (4, 6) ≤ 38.

Lemma 15. We have m
(2)
3 (4, 11) = 91.

Proof. An example showing m
(2)
3 (4, 6) ≥ 38 is given by the [91, 5, 60]3 code in

the database of best known linear codes (BKLC) in Magma. After prescribing the

unique non-equivalent [32, 4; 21]3 code an ILP computation verifiesm
(2)
3 (4, 11) ≤

91.

Proposition 10. If w ≥ 18 or s ∈ {7, 9, 10, 12, 13, 14, 15, 16}, then m
(2)
3 (4, w)

is given by the Griesmer upper bound. Moreover, we have m
(2)
3 (4, 3) = 11,

m
(2)
3 (4, 4) = 20, m

(2)
3 (4, 5) = 29, m

(2)
3 (4, 6) = 38, m

(2)
3 (4, 8) = 56, m

(2)
3 (4, 11) =

91, and m
(2)
3 (4, 17) ∈ {143, . . . , 146}.
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Proof. For m
(2)
3 (4, 4) = 20 we refer to Lemma 13 and for m

(2)
3 (4, 6) = 38 we

refer to Lemma 14. For m
(2)
3 (4, 11) = 91 we refer to Lemma 15. For w ∈

{7, 9, 12, 13, 16} the existence of [55, 5, 36]3, [81, 5, 54]3, [108, 5, 72]3, [121, 5, 81]3,
and [136, 5, 90]3 Griesmer codes yields the lower bounds. For w ∈ {10, 14, 15}
the lower bound is attained by adding arbitrary points. Also m

(2)
3 (4, 8) ≥ 56 is

given by adding a point. Since Griesmer [n, 5, d]3 codes do exist for all d ≥ 100,

m
(2)
3 (4, w) is given by the Griesmer upper bound for all w ≥ 18. For w ∈

{3, 4, 5, 6, 11} the stored generator matrices of [n, 5]3 codes in the database of

best known linear codes (BKLC) in Magma yield m
(2)
3 (4, 3) ≥ 11, m

(2)
3 (4, 4) ≥ 20,

m
(2)
3 (4, 5) ≥ 29, m

(2)
3 (4, 6) ≥ 38, and m

(2)
3 (4, 11) ≥ 91, respectively.

The coding upper bound gives m
(2)
3 (4, 3) ≤ 11, m

(2)
3 (4, 5) ≤ 29, m

(2)
3 (4, 8) ≤

56, and m
(2)
3 (4, 17) ≤ 146. All other upper bounds are given by the Griesmer

upper bound.

Proposition 11. If w ≥ 3, then m
(1)
3 (4, w) is given by the Griesmer upper

bound. Moreover, we have m
(1)
3 (4, 2) = 20.

Proof. For m
(1)
3 (4, 2) = 20 we refer e.g. to [21, 17].1 The [81, 5, 54]3 and the

[121, 5, 81]3 Griesmer codes give examples for m
(1)
3 (4, 3) ≥ 81 and m

(1)
3 (4, 4) ≥

121, respectively. m
(1)
3 (4, 5) ≥ 122 is obtained by adding an arbitrary point.

The other lower bounds follow from the fact that Griesmer [n, 5, d]3 codes exist
for all d ≥ 100. The upper bounds are given by the Griesmer upper bound
except for w = 2.

We have m
(1)
4 (4, 2) = 41 [26, 7]2 and m

(1)
3 (5, 2) = 56 [16]3.
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