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For a finite alphabet A a code C of length n and minimum distance d is a
subset of An such that any two elements differ in at least d positions. E.g.
C = {cabbdb, bcabbd, abcdbb, cdadcc, acdcdc, dacccd, dcbdaa, bdcada, cbdaad} is a
code with length 6 and minimum distance d = 5 over the alphabet A = {a, b, c, d}.
Given parameters n, d, and #A, the aim is to maximize the code size #C. In our
example size 9 is indeed maximal [3]. Alternatively, one can minimize n given d,
#A, and #C. For alphabet A = Fq we say that C is linear if it is linearly closed.
The parameters of a linear code are related by the so-called Griesmer bound [6, 12]

(1) n ≥
k−1∑
i=0

⌈
d

qi

⌉
=: gq(k, d),

where k = logq #C. Interestingly enough, this bound can always be attained with
equality if the minimum distance d is sufficiently large [12]. If C is only additively
closed we call it additive. Each additive code is linear over some subfield so that
we set A = Fqh and assume that C is linear over Fq, so that #C = qk.

Let G ∈ Fk×n
q be a generator matrix of a linear code C, i.e. a matrix whose rows

form a basis of C. The columns of G span 1-dimensional subspaces which form a
multiset of n points in the projective geometry PG(k− 1, q) such that each hyper-
planes contains at most n− d points [5]. Similarly, an additive code over A = Fqh

is given as the Fq-row span of a full-rank matrix G ∈ Fk×n
qh

. Choosing an Fq-basis

B of Fqh we can rewrite G as G̃ ∈ Fkh×n
q . Writing F4 ≃ F2[ω]/

(
ω2 + ω + 1

)
, we

can start with the generator matrix of a linear code, interprete it as the generator
matrix of an additive code and use the basis B to obtain the example

(
0 1 1 1 1
1 0 1 ω ω2

)
→


0 1 1 1 1
0 ω ω ω ω
1 0 1 ω ω2

ω 0 ω ω2 1

 →


00 10 10 10 10
00 01 01 01 01
10 00 10 01 11
01 00 01 11 10

.

The blocks of h subsequent columns span subspaces of dimension at most h, which
are elements in PG(k−1, q) of geometric dimension at most h−1. Indeed, additive
codes over A = Fqh with length n, minimum distance d, and size qk are in one-to-
one correspondence to multisets of n subspaces of geometric dimension at most h−1
in PG(k−1, q) such that each hyperplane contains at most n−d of those subspaces
[1]. Replacing those subspaces by their contained points we obtain a multiset of
points that corresponds to a linear code over Fq with length n · (qh − 1)/(q − 1)
and minimum distance qh−1 ·d (assuming some non-degeneracy) [9]. Applying the
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Griesmer bound (1) to the obtained linear code yields, see [1, Theorem 12],

(2) n ≥

⌈
gq
(
r, d · qh−1

)
· (q − 1)

qh − 1

⌉
=


(q − 1) ·

r−1∑
i=0

⌈
d · qh−1−i

⌉
qh − 1

 .

One main conclusion of our work is that this bound can always be attained with
equality if the minimum distance d is sufficiently large. Reverting the above chain
of changes between coding theory and geometry boils down to the problem of
partitioning a multiset of points into subspaces of geometric dimension h − 1,
which is rather hard in general, so that we consider a special subclass.

Each minimum distance d ∈ N can be uniquely written as d = σqk−1−
∑k−1

i=1 εi ·
qi−1, where σ ∈ N and εi ∈ {0, 1, . . . , q − 1} for all 1 ≤ i ≤ k − 1. With this, the
Griesmer bound from (1) is attained with equality, i.e. n = gq(k, d), iff

(3) n = σ · q
k − 1

q − 1
−

k−1∑
i=1

εi ·
qi − 1

q − 1
.

In order to describe a special variant of the Solomon–Stiffler construction, see [12],
we assume a chain S1 ≤ S2 ≤ · · · ≤ Sk of subspaces Si with algebraic dimension
i in PG(k − 1, q). For each subspace T we denote its characteristic function by
χT , i.e. χT (P ) = 1 if point P is contained in T and χT (P ) = 0 otherwise. With

this, M = σχSk
−

∑k−1
i=1 εiχSi

is a multiset of points whose corresponding linear

code attains the Griesmer bound (1) if σ ≥
∑k−1

i=1 εi and 0 ≤ εi ≤ q − 1, i.e.
if d is sufficiently large. More generally, we say that a multiset of points M in

PG(k−1, q) has type σ[k]−
∑k−1

i=1 εi[i], where σ ∈ N and εi ∈ Z for all 1 ≤ i ≤ k−1,

if M = σχSk
−

∑k−1
i=1 εiχSi

. Note that σ needs to be sufficiently large. We say
that a multiset of points is h-partitionable if it can be written as the sum of
characteristic functions of subspaces of algebraic dimension h.

Theorem ([9]) Let q be a prime power, k > h ≥ 1, g := gcd(k, h), and ε1, . . . , εk−1 ∈
Z such that qh−i divides εi for all 1 ≤ i < h and

∑k−1
i=1 εi · qi−1

q−1 ≡ 0 (mod qg−1
q−1 ).

Then, there exists a σ ∈ N such that there exists an h-partionable multiset of

points in PG(k − 1, q) with type
(
σ + t · qh−1

qg−1

)
[k]−

k−1∑
i=1

εi[i] for all t ∈ N.

We remark that the stated conditions are also necessary for the assumed chain
S1 ≤ · · · ≤ Sk and that the corresponding proof is constructive. As an example
we mention the existence of a 2-partionable multiset of points in PG(7, 2) with
type t[8]− [7]− [5]− [3] for each t ≥ 3. Those 85t− 55 lines in PG(7, 2) have the
property that each hyperplane contains at most 21t−13 lines, i.e. the corresponding
additive code Ct over F4 has length nt = 85t− 55, minimum distance dt = 64t−
42, and cardinality #Ct = 28. We remark that F4-linear codes with the same
minimum distance and cardinality require lengths at least 85t − 53, i.e. additive
codes outperform linear codes for the stated parameters of d, #A, and #C.
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Corollary For given q, k, h, and sufficiently large d the Griesmer bound for
additive codes (2) can always be attained. Moreover, additive codes outperform
linear codes if h does not divide k or if the the difference of (2) and (1) is positive.

Open problem Find constructions for additive codes outperforming linear codes
for relatively small minimum distances, see e.g. [2, 7, 8, 9], or decrease the necessary
σ in the Solomon–Stiffler type construction. Find improved upper bounds.

In storage applications the reading device is sometimes insufficient to isolate
adjacent symbols, which makes it necessary to adjust the standard coding-theoretic
error model. Cassuto and Blaum studied a model where pairs of adjacent symbols
are read in every step and introduced the so-called symbol-pair metric for codes
[4]. This notion was generalized to the b-symbol metric where b-tuples of adjacent
symbols are read at every step [13]. For linear codes each b subsequent columns of
a generator matrix span a subspace with dimension at most b, so that the Griesmer
bound for additive codes (2) applies [11]. Again, the Griesmer bound can always
be attained if the minimum distance is sufficiently large [10].

Open problem Find Griesmer type bound bounds and attaining Solomon–Stiffler
type constructions for other metric spaces.
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