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Optimal additive and linear b-symbol codes for large distances
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For a finite alphabet A a code C of length n and minimum distance d is a
subset of A" such that any two elements differ in at least d positions. E.g.
C' = {cabbdb, beabbd, abedbdb, cdadcece, acdede, dacced, debdaa, bdeada, cbdaad} is a
code with length 6 and minimum distance d = 5 over the alphabet A = {a, b, ¢, d}.
Given parameters n, d, and #.A4, the aim is to maximize the code size #C'". In our
example size 9 is indeed maximal [3]. Alternatively, one can minimize n given d,
#A, and #C. For alphabet A =T, we say that C is linear if it is linearly closed.
The parameters of a linear code are related by the so-called Griesmer bound [6, 12]
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where k = log, #C'. Interestingly enough, this bound can always be attained with
equality if the minimum distance d is sufficiently large [12]. If C is only additively
closed we call it additive. Each additive code is linear over some subfield so that
we set A = Fn and assume that C' is linear over Fy, so that #C = q~.

Let G € F’;X” be a generator matrix of a linear code C| i.e. a matrix whose rows
form a basis of C'. The columns of G span 1-dimensional subspaces which form a
multiset of n points in the projective geometry PG(k — 1, ¢) such that each hyper-
planes contains at most n — d points [5]. Similarly, an additive code over A =T
is given as the F,-row span of a full-rank matrix G € F’;hxn Choosing an [F-basis
B of Fyn we can rewrite G as Ge Fkixn Writing Fy ~ Faw]/ (w? +w + 1), we
can start with the generator matrix of a linear code, interprete it as the generator
matrix of an additive code and use the basis B to obtain the example
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The blocks of h subsequent columns span subspaces of dimension at most h, which
are elements in PG(k—1, ¢) of geometric dimension at most h—1. Indeed, additive
codes over A = F » with length n, minimum distance d, and size ¢* are in one-to-
one correspondence to multisets of n subspaces of geometric dimension at most h—1
in PG(k—1, q) such that each hyperplane contains at most n—d of those subspaces
[1]. Replacing those subspaces by their contained points we obtain a multiset of
points that corresponds to a linear code over F, with length n - (¢" —1)/(q¢ — 1)
and minimum distance ¢"~!-d (assuming some non-degeneracy) [9]. Applying the
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Griesmer bound (1) to the obtained linear code yields, see [1, Theorem 12],
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One main conclusion of our work is that this bound can always be attained with
equality if the minimum distance d is sufficiently large. Reverting the above chain
of changes between coding theory and geometry boils down to the problem of
partitioning a multiset of points into subspaces of geometric dimension A — 1,
which is rather hard in general, so that we consider a special subclass.

Each minimum distance d € N can be uniquely written as d = o¢*~1 — Z;:ll €
¢!, where 0 € Nand ¢; € {0,1,...,¢— 1} for all 1 <i < k — 1. With this, the
Griesmer bound from (1) is attained with equality, i.e. n = g4(k, d), iff
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In order to describe a special variant of the Solomon—Stiffler construction, see [12],
we assume a chain S; < Sy < --+ < Si of subspaces S; with algebraic dimension
i in PG(k — 1,q). For each subspace T we denote its characteristic function by
X1, i.e. x7(P) =1 if point P is contained in T" and x7(P) = 0 otherwise. With
this, M = oxs, — Zi:ll €iXxs; s a multiset of points whose corresponding linear
code attains the Griesmer bound (1) if o > Ei:ll giand 0 < g < ¢qg—1, ie.
if d is sufficiently large. More generally, we say that a multiset of points M in
PG(k—1,q) has type U[k‘]—Zfz_ll g;[i], wherec € Nand ¢; € Zforalll <i < k—1,
it M =oxs, — Zf:_f eixs;.- Note that o needs to be sufficiently large. We say
that a multiset of points is h-partitionable if it can be written as the sum of
characteristic functions of subspaces of algebraic dimension h.

Theorem ([9]) Let ¢ be a prime power, k > h > 1, g := ged(k, h), and 1, ...,e5-1 €
Z such that ¢"~% divides ¢; for all 1 <i < h and Zi:ll €+ % =0 (mod q;:ll).
Then, there exists a ¢ € N such that there exists an h-partionable multiset of

k—1
points in PG(k — 1, ¢q) with type <O’ +t- qh_l) [k] = > ei[i] for all t € N.
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We remark that the stated conditions are also necessary for the assumed chain
S1 < .-+ < Sk and that the corresponding proof is constructive. As an example
we mention the existence of a 2-partionable multiset of points in PG(7,2) with
type ¢[8] — [7] — [5] — [3] for each ¢t > 3. Those 85t — 55 lines in PG(7,2) have the
property that each hyperplane contains at most 21¢—13 lines, i.e. the corresponding
additive code C; over F, has length n; = 85t — 55, minimum distance d; = 64t —
42, and cardinality #C; = 28. We remark that Fy-linear codes with the same
minimum distance and cardinality require lengths at least 85t — 53, i.e. additive
codes outperform linear codes for the stated parameters of d, #.A4, and #C.



Corollary For given ¢, k, h, and sufficiently large d the Griesmer bound for
additive codes (2) can always be attained. Moreover, additive codes outperform
linear codes if h does not divide k or if the the difference of (2) and (1) is positive.

Open problem Find constructions for additive codes outperforming linear codes
for relatively small minimum distances, see e.g. [2, 7, 8, 9], or decrease the necessary
o in the Solomon—-Stiffler type construction. Find improved upper bounds.

In storage applications the reading device is sometimes insufficient to isolate
adjacent symbols, which makes it necessary to adjust the standard coding-theoretic
error model. Cassuto and Blaum studied a model where pairs of adjacent symbols
are read in every step and introduced the so-called symbol-pair metric for codes
[4]. This notion was generalized to the b-symbol metric where b-tuples of adjacent
symbols are read at every step [13]. For linear codes each b subsequent columns of
a generator matrix span a subspace with dimension at most b, so that the Griesmer
bound for additive codes (2) applies [11]. Again, the Griesmer bound can always
be attained if the minimum distance is sufficiently large [10].

Open problem Find Griesmer type bound bounds and attaining Solomon—Stiffler
type constructions for other metric spaces.
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