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Abstract

Quantum mechanics is at the core of many modern devices and applications, spanning diverse
fields such as the design of efficient integrated circuits, mimicking photosynthesis for efficient solar
cells, or medical applications like the prediction of the effectiveness of vaccines. Computationally
efficient and accurate methods to describe the quantum nature of matter are required to predict
material properties and stimulate the search for new materials with the aid of theory and
computation. A variety of different computational methods exist to solve quantum mechanical
problems. Density functional theory (DFT) is the most prominent of these frameworks, offering
accurate predictions at moderate computational cost. While DFT is computationally efficient,
its accuracy is limited by approximate exchange-correlation functionals. Compared to DFT,
quantum Monte Carlo (QMC) methods provide a more precise description of quantum effects
based on classical random walks. This exact treatment of the correlation effects and its wave
function based character make QMC an ideal candidate for computing a wide range of electronic
structure properties with high precision. QMC calculations require a higher computational
cost compared to DFT but nevertheless represent a viable approach to the electronic structure
problem for larger systems relevant to real-world applications.

This thesis provides a self-contained review of these methods, especially variational and diffusion
Monte Carlo fundamentals, and focuses on the advantages that can be gained in combining
DFT and QMC methods. To correctly describe exchange and correlation effects within DFT,
sophisticated approximations to the exchange-correlation functional are required, whose quality
directly affects the quality of the computed results. The development of more powerful density
functional approximations is traditionally accelerated by comparison with exact results from
wave function based methods like QMC. The comparison of exact densities with densities from
DFT enables the assessment of how accurately a density functional reproduces the exact density.
Even more detailed insights into the properties of the true exchange-correlation functional are
available if the exact densities are inverted. The inversion is an intricate process in which the
central quantity of DFT, the true exchange-correlation potential, is recovered from the density.
The true exchange-correlation potential determines the true Kohn-Sham system and enables
detailed comparison with density functional approximations.

In the research that led to this thesis, a novel QMC code was developed that allows for a precise
representation of the true wave function with high computational efficiency. While previous
QMC methods focus on atom-centered basis sets or plain waves, a premier part of this work is
the representation of the orbitals on a real-space grid. The grid is specially tailored to allow
highly accurate all-electron calculations for small systems. With these orbitals, QMC energies
are calculated, recovering 90 to 97% of the correlation, confirming the accuracy of the QMC
wave function. The same grid is utilized to calculate the quasi-exact QMC densities with the
binning method. This method constructs a density histogram with significantly reduced variance
due to the specialized grid. Suggestions for an improved density estimation from first principles
and beyond the construction of a histogram are made.

The accurate densities are inverted to recover the quasi-exact exchange-correlation potentials
of DFT. The general limitations of the inversion of the Hohenberg-Kohn map are discussed in
detail. New inversion techniques are presented that extend the scope of present methods. A
special focus is put on densities that exhibit statistical fluctuations, and regularization schemes
are devised to lower and even remove statistical fluctuations. The inversion of the densities gives
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Abstract

insight into the exact structural properties of the exchange-correlation potential. Finally, QMC
and inversion methods are combined in a novel approach. Therein, refined orbitals from the
density inversion are leveraged to improve the wave function used in QMC calculations. The
partially surprising results of this approach are discussed and put into perspective.
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Kurzdarstellung

Die Quantenmechanik bildet das Fundament vieler moderner Geräte und Anwendungen, die
sich über verschiedenste Bereiche erstrecken – von der Entwicklung effizienter Mikroelektronik
über die Nachahmung der Photosynthese für effiziente Solarzellen bis hin zu medizinischen
Anwendungen, wie der Vorhersage der Wirksamkeit von Impfstoffen. Um ausgehend von theore-
tischen Überlegungen und computergestützten Verfahren Materialeigenschaften vorherzusagen
und neue Materialien zu finden, werden recheneffiziente und präzise Methoden benötigt, die die
quantenmechanische Natur der Materie beschreiben. Zur Lösung quantenmechanischer Probleme
steht eine Vielzahl verschiedener Rechenmethoden zur Verfügung. Die Dichtefunktionaltheorie
(DFT) ist hierbei das bekannteste Verfahren und ermöglicht präzise Vorhersagen bei modera-
ten Rechenkosten. Obwohl DFT recheneffizient ist, wird ihre Genauigkeit durch approximierte
Austauschkorrelationsfunktionale begrenzt. Im Vergleich zur DFT liefern Quantum-Monte-Carlo-
Methoden (QMC) eine präzisere Beschreibung quantenmechanischer Effekte, basierend auf
klassischen Zufallsbewegungen. Aufgrund der exakten Behandlung von Korrelationseffekten ist
das wellenfunktionsbasierte QMC ideal für die hochpräzise Berechnung vieler Eigenschaften
der elektronischen Struktur. QMC-Berechnungen erfordern zwar einen höheren Rechenaufwand
als DFT, stellen aber dennoch einen praktikablen Ansatz zur Berechnung der elektronischen
Struktur in größeren Systemen dar, die für reale Anwendungen relevant sind.

Diese Dissertation bietet eine in sich geschlossene Übersicht der verwendeten Methoden, insbe-
sondere die Grundlagen der Variations- und Diffusions-Monte-Carlo-Methoden, und konzentriert
sich auf die Vorteile, die sich aus der Kombination von DFT- und QMC-Methoden ergeben. Im
Zentrum dieser Arbeit stehen die Vorteile, die durch eine Kombination von DFT- und QMC-
Methoden erzielt werden können. Um Austausch- und Korrelationseffekte innerhalb der DFT
korrekt zu beschreiben, sind anspruchsvolle Näherungen an das Austauschkorrelationsfunktional
erforderlich, deren Qualität die Güte der berechneten Eigenschaften direkt beeinflusst. Die
Entwicklung leistungsfähigerer Dichtefunktional-Näherungen wird traditionell durch den Ver-
gleich mit exakten Ergebnissen aus wellenfunktionsbasierten Methoden wie QMC vorangetrieben.
Der Vergleich exakter Dichten mit DFT-Dichten ermöglicht eine Bewertung, wie akkurat ein
Dichtefunktional die exakte Dichte reproduziert. Noch detailliertere Einblicke in die wahren Ei-
genschaften der Dichtefunktionale werden gewonnen, wenn exakte Dichten invertiert werden, um
eine zentrale Größe der DFT, das wahre Austausch-Korrelationspotential, zu rekonstruieren. Das
wahre Austausch-Korrelationspotential bestimmt das exakte Kohn-Sham-System und ermöglicht
eine detaillierte Bewertung von Dichtefunktional-Näherungen.

In der Arbeit, die dieser Dissertation zugrunde liegt, wurde ein neuer QMC-Code entwickelt, der
eine genaue Darstellung der wahren Wellenfunktion mit hoher Recheneffizienz erlaubt. Während
bisherige QMC-Methoden auf atomzentrierte Basisfunktionen oder ebene Wellen verwenden,
ist ein zentraler Bestandteil dieser Arbeit die Darstellung der Orbitale auf einem Ortsraumgit-
ter. Dieses Gitter ist speziell auf hochpräzise Berechnungen für kleine Systeme einschließlich
der Kernelektronen ausgelegt. Mit diesen Orbitalen werden QMC-Energien berechnet, wobei
90 bis 97% der Korrelationseffekte wiedergewonnen werden, was die Genauigkeit der QMC-
Wellenfunktion bestätigt. Dasselbe Gitter wird verwendet, um die quasi-exakte QMC-Dichten
mittels Histogrammen zu berechnen. Diese Methode erstellt ein Dichtehistogramm mit erheblich
reduzierter Varianz aufgrund des spezialisierten Gitters. Ein grundsätzlich verbessertes Konzept
zur Schätzung der Dichte jenseits von Histogrammen wird vorgestellt.
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Kurzdarstellung

Die genauen Dichten werden invertiert, um die quasi-exakten Austausch-Korrelationspotentiale
der DFT zu rekonstruieren. Die generellen Grenzen der inversen Hohenberg-Kohn Abbildung
werden ausführlich diskutiert. Neue Inversionstechniken werden vorgestellt, die den Rahmen der
bisherigen Methoden erweitern. Ein besonderer Schwerpunkt liegt dabei auf der Inversion von
Dichten mit statistischen Fluktuationen. Es werden Regularisierungsschemata entwickelt, um diese
Fluktuationen zu reduzieren oder sogar vollständig zu entfernen. Die Inversion der Dichten gibt
Aufschluss über die exakten strukturellen Eigenschaften des Austausch-Korrelationspotentials.
Schließlich werden QMC- und Inversionsmethoden in einem neuartigen Ansatz kombiniert.
Dabei werden verfeinerte Orbitale aus der Dichteinversion genutzt, um die in QMC-Berechnungen
verwendete Wellenfunktion zu verbessern. Die teilweise überraschenden Ergebnisse dieses Ansatzes
werden diskutiert und eingeordnet.
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1. Introduction

It has been a long scientific journey from discovering quantum effects to today’s understanding
of the microcosm, with unprecedentedly accurate predictions like the standard model of particle
physics. While the fundamental interactions of the standard model’s particles are very precisely
described in modern physics, understanding extended composite systems is challenging. Beyond
the nano scale, at the length and time scales of extended molecular or periodic systems, the
prediction of electronic properties faces major challenges. From the sizes of a few atoms to small
biological units, classical theories are inaccurate and a full quantum mechanical description is
computationally infeasible. Exchange and correlation effects, genuine properties of matter due
to their quantum nature, play an important role in many aspects of such systems and are not
yet sufficiently understood. To tackle these challenges, a diverse landscape of computational
methods has emerged over the past decades, each with specific strengths, limitations, and further
refinements and extensions.

Understanding the quantum world allowed for inventions at the core of almost every modern
application. Many applications enabled by quantum physics originate from systems beyond the
scale of single atoms, such as solid-state physics or large molecular systems up to the protein scale.
Given the amount of scientific effort spent on understanding the effects of quantum mechanics and
developing its computational methods, it is no surprise that this laid the foundations of today’s
technologies and gave rise to the present information age. A prominent example is enabling the
miniaturization of transistors by exploitation of quantum effects in semiconductors to arrive at
length scales of a few tens of nanometers. The improved understanding of quantum effects is
also promising to mark the beginning of an age of energy. Examples on the energy-production
side are a better understanding of light-harvesting physics in photosynthesis or solar cells [1–3]
or the various quantum effects that play a role in nuclear fusion [4–11]. Additionally, energy
consumption can significantly be reduced by a more efficient design of electronic devices like
integrated circuits or by replacing electronic devices with optical technologies. The importance of
understanding the electronic structure of such systems cannot be underestimated. To give clear
evidence, from the ten most internally cited1 articles of the Physical Review journals, nine cover
electronic structure [12]. The four most internally cited articles [13–16] cover without exception
the topic of density functional theory (DFT) or quantum Monte Carlo (QMC) [12], with a total
of more than 123000 citations2.

The two approaches under consideration in this thesis are DFT and QMC. Due to its favorable
computational cost, the former is the workhorse for a vast community of quantum chemistry users.
While DFT is a density-based method without a proper description of the wave function, QMC
focuses on the wave function explicitly. QMC methods are less frequently used but are much more
accurate in revealing true insights into the nature of correlation effects. While both approaches
in principle allow the study of the exact properties of the wave function, the DFT approach
inevitably relies on approximations, while the QMC approach is more straightforwardly based on
first principles. Besides the differences between DFT and QMC regarding methodology, precision
and computation, a common variable between both is the density. In this thesis, accurate
densities are generated from the QMC approach. In a process called inversion, these exact
densities are mapped to central quantities of DFT to assess the quality of the approximations

1Internal citations cover only citations from within the Physical Review journals.
2According to Google scholar and mendeley.com, Feb. 2025.
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made in DFT. The calculation of accurate densities and the inversion process are challenging
tasks on their own. However, combining information from DFT and QMC offers vast mutual
benefits for both methods. With the quasi-exact quantities from inversion, the QMC calculations
might be enhanced to higher accuracy.

This introductory chapter is followed by an overview of the electronic structure problem
of this thesis in Chapt. 2 and the DFT method in Chapt. 3. The variational Monte Carlo
(VMC) method and properties of the wave function are presented in Chapt. 4 and Chapt. 5,
respectively. The diffusion Monte Carlo (DMC) method is explained in Chapt. 6. In Chapt. 7,
methods to calculate quasi-exact densities are presented. Some results of the QMC methods are
presented in Chapt. 9, which reports energies and densities. The densities are subsequently used
in Chapt. 8 and Chapt. 10, which links the two approaches of DFT and QMC to not only gain
insights into the correlation effects of an interacting system but also to assess the accuracy of the
exchange-correlation approximations and accelerate their development. Finally, Chapt. 11 paves
the way to further explore combinations of DFT and QMC, presents first results, and discusses
their implications.

2



2. Electronic structure calculations

This thesis covers time-independent, non-relativistic molecular systems exclusively. The standard
Hamiltonian for a molecular system with N electrons is given in the form

Ĥ =

N∑
k=1

(
−1

2
∇2

rk
+ vext(rk)

)
+ U(r1, . . . rN ). (2.1)

Throughout this thesis, Hartree atomic units, e = ℏ = me = 4πϵ0 = 1, are used. The static
external potential

vext(r) =

L∑
η=1

−Zη
|r− ξη|

+ ve(r) (2.2)

includes L classical ions of charges Zη at fixed coordinates ξη in the Born-Oppenheimer ap-
proximation [17]. A non-ionic external potential ve, modeling, for example, the interaction
of the electrons with an external field, might be present. Introducing the compact notation
R = (r1, . . . rN ) ∈ R3N for all electron coordinates, the full external potential can be written as

V (R) =

N∑
k=1

vext(rk), (2.3)

and the energy of the electron-electron interaction reads

U(R) =
N∑
k=1

N∑
l=k+1

1

|rk − rl|
. (2.4)

With the operator for the kinetic energy

T̂ = −1

2

N∑
k=1

∇2
rk

= −1

2
∇2

R, (2.5)

the Hamiltonian can be written in compact notation,

Ĥ = T̂ + V + U. (2.6)

A note on the notation: For a simplified notation, the gradient or Laplacian regarding the full
configuration R is used. The gradient with respect to R, denoted as ∇R, is the combined
gradients of all coordinates ∇R = (∇r1 , . . .∇rN ), while the Laplacian is the sum ∇2

R =
∑

k∇2
rk

.
No distinction of ∇R and ∇ will be made unless necessary.

The Schrödinger equation [18] for the Hamiltonian is the eigenvalue problem

ĤΨi(R) = EiΨi(R) (2.7)

with the ground state Ψ0 being the state of lowest energy E0. While this work is restricted
to Hamiltonians independent of spin, the spin coordinates enter the wave function due to the
spin-statistic theorem [19, 20]. With spin-space coordinates xk = (sk, rk) for every electron of

3



2. Electronic structure calculations

the system and again the compact notation X = (x1, . . .xN ) accounting for all coordinates, the
particles’ statistic can be applied. For fermions, which are the only particle kind treated here, the
symmetry character of Ψ is defined. Interchanging particle coordinates with some permutation π
from the symmetric group S(N) of degree N , the wave function transforms as

Ψ(πX) = Ψ(xπ(1), . . .xπ(N)) = sign(π)Ψ(X). (2.8)

Due to the non-separable form of the electron-electron interaction terms in U , the Schrödinger
equation, a 3N -dimensional partial differential equation (PDE), has no analytical solution for
most systems of interest. Many modern approaches to finding sufficiently accurate solutions of
the Schrödinger equation start with some non-interacting Hamiltonian excluding any two- or
higher-body terms. Omitting the many-body interactions separates the Schrödinger equation
in a set of single-particle, i.e. three-dimensional, Schrödinger-like equations. The set of orbitals
{φi} that solve the Schrödinger equation for a single-particle Hamiltonian, can be constructed
by significantly simpler means. Slater determinants Φ can be constructed from any selection of
orbitals,

Φ(X) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) . . . φ1(xN )
φ2(x1) φ2(x2) . . . φ2(xN )

...
...

. . .
...

φN (x1) φN (x2) . . . φN (xN )

∣∣∣∣∣∣∣∣∣ , (2.9)

to arrive at non-interacting wave functions, i.e. wave functions neglecting correlation effects but
satisfying the spin-symmetry of Eq. (2.8). The wave function can be expanded in the Slater
determinant space to restore the lost correlation,

Ψ =
∑
i

ciΦi. (2.10)

This expansion is guaranteed to fully recover the correlation of the original Hamiltonian if it covers
the complete Slater determinant space. Expansions in determinant space are computationally
expensive and often show slow convergence in the number of Slater determinants. Therefore,
many schemes to combine the single-particle orbitals more efficiently have been proposed to yield
insight into the properties of the interacting wave function. The strong dependency on Slater
determinants renders the orbitals a key ingredient in almost any quantum mechanical approach.
A popular example of a single-particle approach is the Hartree-Fock method. It minimizes the
energy expectation value of the fully interacting Hamiltonian evaluated with a single Slater
determinant by variation of its single-particle orbitals. The Hartree-Fock equations determine
the orbitals to construct the single Slater determinant with.

While the Hartree-Fock method is based on an energy minimization, in DFT the density plays
the central role. A special auxiliary single-particle Hamiltonian is constructed, such that its
orbitals give rise to a density that is the density of the exact ground state of the interacting
many-body Hamiltonian.
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3. Density functional theory

In DFT, the central quantity is the electronic one-body density. The accurate description of the
density enables to access many electronic properties of the system. The density is accompanied
by the in principle exact ground state energy of the electronic structure problem. This exactness
is one of the key features of DFT and allows a detailed analysis of the electronic and energetic
structure.

3.1. Fundamentals

At the core of DFT is the connection between the external potential and the density. The
Hohenberg-Kohn theorem [14] guarantees that the ground state density n0 of a fermionic system,
corresponding to the Hamiltonian of Eq. (2.1) with external potential vext and ground state Ψ0,
holds all information about its external potential, i.e. there is a unique mapping connecting the
density n0 and the potential vext. Although the Hohenberg-Kohn theorem does not hold for all
densities, it holds for densities that originate from a Hamiltonian with a local potential. Such
densities are called v-representable. The set of densities can be generalized by the Levy-Lieb
constrained search [21–23] to any density that stems from a ground state wave function, the so-
called N -representable densities. Starting from an external potential vext with either interacting
or non-interacting Hamiltonian and calculating its (non-degenerate) ground state wave function
Ψ0 together with the corresponding unique density n0, the ground state wave function is rendered
a functional of the density, Ψ[n]. This functional is defined on all N -representable densities.
The Levy-Lieb constrained search does not only reveal the unique mapping between different
potentials and the density. It further guarantees the existence of a universal density functional
for the total energy of the ground state for any vext,

E[n] = T [n] + U [n] +

∫
nvext = F [n] +

∫
nvext, (3.1)

whose minimizer is the ground state density. To simplify the notation, the arguments of functions
inside an integral and the integration variable are suppressed whenever reasonable in the notation
here and throughout this thesis. F [n] combines the universal functionals for the interacting
kinetic energy T [n] = ⟨Ψ[n]|T̂|Ψ[n]⟩ and the electron-electron interaction U [n] = ⟨Ψ[n]|U |Ψ[n]⟩.
If the true energy functional was known, a minimization process would yield the true ground
state energy and the true density. Since the density allows the straightforward evaluation of wave
function expectation values of any multiplicative one-body observable, it poses significant insight
into the electronic structure of a system. Despite these encouraging prospects, no sufficiently
accurate direct density functional approximation E[n] has been found. One important obstacle
is that it is very hard to find an accurate density functional for the interacting kinetic energy T [n].

The Kohn-Sham (KS) scheme [13], which is the workhorse of DFT, can remedy this shortcoming
as presented below. To this end, one can distinguish the space of v-representable densities by
interacting and non-interacting v-representable densities. Interacting v-representable densities
stem from the wave functions of interacting Hamiltonians, whereas the non-interacting v-
representable densities come from non-interacting Hamiltonians. Suppose a ground state density
is non-interacting v-representable. Then there exists a unique potential, denoted by vKS for
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3. Density functional theory

the reasons explained below, that reproduces the density in a non-interacting Hamiltonian
Ĥ = T̂ + vKS. Suppose, on the other hand, a ground state density is interacting v-representable.
Then there exists a unique potential vext that leads to the density via an interacting Hamiltonian
Ĥ = T̂ + V + U . A ground state density that simultaneously is interacting v-representable and
non-interacting v-representable uniquely links the two potentials vKS and vext. This assumption
is the working hypothesis of KS-DFT. The KS approach utilizes the non-interacting Hamiltonian
with potential vKS that corresponds to the density n0 to implement a reasonable functional
approximation to Eq. (3.1). To this end, the energy functional of the non-interacting system
Es[n] with some effective potential vKS is

Es[n] = Ts[n] +

∫
nvKS, (3.2)

where the non-interacting kinetic energy Ts is an explicit functional of the orbitals,

Ts = −1

2

∑
i

∫
φ∗
i∇2φi. (3.3)

The minimizing non-interacting density must, by construction of the KS scheme, be n0 and is
given by the density of the Slater determinant of the non-interacting system, viz., the sum over
the orbitals’ absolute value squares,

n0(r) =
∑
i

|φi(r)|2 . (3.4)

In contrast to the interacting energy functional E[n] of Eq. (3.1), the non-interacting functional
Es[n] is much more accessible due to its single-particle character. The minimization of Es with
respect to the orbitals and subject to orthonormalization constraints results in the KS eigenvalue
problem (

−1

2
∇2 + vKS(r)

)
φi(r) = εiφi(r), (3.5)

which is a standard computational problem on R3 and can be solved by various means. The KS
scheme is based on the connection of the interacting functional E[n] (with external potential
vext) and the non-interacting functional Es (with the potential vKS). By construction, both
functionals have the same minimizing density, n0.

δEs[n]

δn

∣∣∣∣
n0

=
δE[n]

δn

∣∣∣∣
n0

= 0 (3.6)

Therefore, the effective single-particle potential is fully determined,

vKS(r) = vext +
δT [n]

δn(r)
− δTs[n]

δn(r)
+
δU [n]

δn(r)
, (3.7)

up to a constant. Naturally, this non-interacting potential is not a trivial functional of the density
since it is burdened to maintain the unique map between a fully interacting Hamiltonian and
a conceptually much simpler non-interacting Hamiltonian. Therefore, it must also maintain
the uniqueness of the map of the corresponding wave functions. This complexity is reflected
in the contributions from the functional derivative of the interacting kinetic energy δT/δn and
the electron-electron interaction δU/δn. Despite this difficulties the KS approach allows for
calculating reasonable densities since many approximate xc functionals are able to capture a

6



3.1. Fundamentals

large fraction of physically relevant effects. One major contribution of U [n] is its mean-field
approximation, the Hartree energy

UH[n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| dr dr′, (3.8)

an explicit density functional with the functional derivative

vH(r) =
δUH[n]

δn(r)
=

∫
n(r′)

|r− r′| dr
′. (3.9)

Separating the Hartree energy UH from vKS in Eq. (3.7) and subsequently collecting the remaining
inaccessible contributions in the so-called exchange-correlation (xc) functional Exc is the final
step to cast the effective potential in the common form

vKS(r) = vext + vH(r) +
δExc[n]

δn(r)
. (3.10)

The exchange-correlation energy functional

Exc[n] = T [n]− Ts[n] + U [n]− UH[n] (3.11)

models all “remainder” exchange-correlation effects: Any electron-electron interaction beyond
the mean-field Hartree interaction, U − UH, and the difference between the fully interacting
kinetic and non-interacting kinetic energy, Tc = T − Ts. The energetic contributions of Exc are
comparably small to those of the external potential, the non-interacting kinetic energy, or the
Hartree energy in many relevant cases. Therefore, already an approximate representation of Exc

might yield a decent energy or density. This significantly contributes to the success of DFT.
Note that for small energy differences of chemical bonds, the contribution of Exc is nevertheless
often decisive.

The functional derivative of Exc[n] can be written as a local potential, leading to the exchange-
correlation potential, or xc potential,

vxc(r) =
δExc[n]

δn(r)
. (3.12)

The KS equations take their final form(
−1

2
∇2 + vext(r) + vH[n](r) + vxc[n](r)

)
φi(r) = εiφi(r). (3.13)

From the KS orbitals the KS Slater determinant Φ follows. The obvious challenge is an accurate
description of the xc energy functional Exc. Although a general true xc density functional is
guaranteed to exist, it is unknown in practice. The development of accurate approximations to it
remains a key task in the DFT research field.

The practical application of the KS scheme follows a reasoning process that is the reverse of
its derivation. First, a density functional approximation to the xc functional is chosen. With the
known form of some Exc, the functional derivative can be carried out. Then, the xc potential is
used in the KS equations with some initial guess for the density. The resulting orbitals give rise
to a new density, and the process is iterated. The self-consistent solution to the KS equations
is then the approximate ground state density of the approximate xc functional. The energy

7



3. Density functional theory

functional of DFT is given by the interacting energy functional E[n] with F = T + U replaced
by Eq. (3.11),

E[n] = Ts + UH +

∫
nvext + Exc =

∑
i

εi + Exc − UH −
∫
nvxc. (3.14)

Substituting the approximate density into the interacting energy functional E[n] yields the
corresponding approximate ground state energy. Thus, the xc functional Exc[n] takes the double
role of generating a reasonable ground state density in the KS equations on the non-interacting
side of the KS scheme while simultaneously approximating the energetic xc contributions beyond
the mean-field in the total energy functional on the interacting side [24].

While the development of increasingly sophisticated xc functionals continues, the predictive
power of DFT combined with its low computational cost makes it one, if not the, most widely
used computational approach in quantum mechanics. Many extensions of the above outline of
the DFT method exist, including time-dependent DFT [25], ensemble densities with fractional
orbital occupation [26], the generalized Kohn-Sham scheme [27, 28], relativistic DFT for the
Dirac equation [29, 30], etc. A relatively straightforward extension used in this thesis is the
inclusion of spin [31, 32]. Even though the above formulation does not treat a spin variable, the
spin-polarized KS scheme can readily be obtained by denoting spin-dependent quantities, like
the density, orbitals, and potentials, with a spin index.

3.2. Exact exchange

The xc energy can be split into contributions from exchange and correlation, Exc = Ex + Ec.
The correlation energy [33] is defined to capture all effects of the interacting wave function Ψ
that are beyond the description of a single Slater determinant Φ.

Ec = ⟨Ψ|Ĥ|Ψ⟩ − ⟨Φ|Ĥ|Φ⟩ (3.15)

From this definition, Ec = Tc + U − ⟨Φ|U |Φ⟩ follows and upon comparison with Eq. 3.11 an
corresponding definition for the exchange follows [33],

Ex = ⟨Φ|U |Φ⟩ − UH. (3.16)

The determinant Φ is the KS determinant build from the KS orbitals. The exchange energy is
no explicit functional of the density but can be expressed solely in terms of the orbitals.

Ex[{φσi}] = −1

2

∑
σ

Nσ∑
i,j=1

∫ ∫
φ∗
σi(r

′)φ∗
σj(r)φσi(r)φσj(r

′)

|r− r′| drdr′ (3.17)

Since Ex is a functional of the orbitals instead of the density, evaluating its functional derivative
δEx/δn is an intricate and demanding task. Nevertheless, the calculation of the functional
derivative of the exact exchange can be carried out by the chain rule. Various approximations [34–
38] and even exact schemes [39–43] exist to arrive at a self-consistent density accounting for the
exact exchange. In this thesis, the exact exchange is approximated by the Krieger-Li-Iafrate
(KLI) [34, 35] approximation and the corresponding calculations are denoted by the term xKLI.
A beneficial property of the xc potential arising from the exact exchange functional (even in the
KLI approximation) is its correct asymptotic behavior. The true xc potential has a Coulomb-like
decay [44] of

vxcσ(r)→ − 1

|r| +O
(

1

|r|3
)
, |r| → ∞ (3.18)
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3.3. Local density approximation

up to a constant irrespective of spin-channel or -polarization. For systems with a nodal structure
in the highest occupied molecular orbital (HOMO) that extends to infinity, a spin-dependent
constant offset in the xc potential might arise along the nodal surface, see Sec. 9.3 or Ref. [45].

3.3. Local density approximation

A class of xc functionals that shows tremendous success for its simplicity and computational
efficiency is the class of local density approximations (LDA). Due to this class, large systems
with several thousands of electrons can be analyzed, accounting for their quantum mechanical
nature. The LDAs cast the xc functional in the form

Exc[n] =

∫
n(r)ϵxc(n(r)) dr, (3.19)

with ϵxc being a function, not functional, of the density. This representation allows for a fast
evaluation of the xc potential and an accelerated self-consistent solution. From considerations of
the homogeneous electron gas [46] an approximation to the exact exchange functional can be
made to arrive at

ELDA
x [n] = −3

4

∫
n(r)

(
3

π
n(r)

) 1
3

dr (3.20)

with the corresponding exchange potential

vx(r) = −
(

3

π
n(r)

) 1
3

. (3.21)

While the assumption of a constant density or at least a slowly varying density seems crude, the
LDA exchange has proven to yield reasonable results for many systems beyond slowly varying
densities [46]. To accompany the exchange by a suitable functional for the correlation energy, the
results of QMC calculation of the homogeneous electron gas by Ceperley and Alder [16] are used
to parameterize the correlation as a function of the density. In this thesis, the Perdew-Wang
parameterization [47] is used for the LDA correlation. Although the LDA is not a reasonable
approximation for many systems [48, 49], and far better approximations exist, it represents a
sweet spot between computational cost and predictive power.

3.4. Limitations of DFT

Despite its great success, DFT faces severe challenges and fundamental shortcomings. One
example is the density-based nature of DFT. Most observables Â that are not explicit functionals
of the density are difficult or even impossible to evaluate, although the unique map from the
density to the wave function should in principle allow the evaluation of ⟨Ψ0[n]|Â|Ψ0[n]⟩. The KS
Slater determinant is a rather crude approximation to the ground state wave function, due to its
auxiliary character that is only intended to provide the correct density. Another limitation is that
the density is bound to the ground state wave function, making statements about excited states
a complicated objective. Furthermore, there seems to be a clear trade-off between the accuracy
of a density functional approximation and its computational cost. Suppose the limitations of
a certain functional or class of functionals are known, for example, regarding the prediction of
bond lengths, response to electrical fields, van-der-Waals interaction, etc. In that case, the DFT
user can try to choose the proper functional for a given task. This approach, however, requires a
posteriori information of the system under study and also the density functional approximation.
For systems not adequately representable by a single Slater determinant, i.e. that have a strong
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3. Density functional theory

static correlation character, many common DFT functionals might yield poor results [48, 49].
In the subsequent chapters, the VMC and DMC methods are outlined, which alleviate the
shortcomings of DFT at the cost of sacrificing DFT’s favorable computational efficiency.
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4. Variational Monte Carlo

The VMC method is a wave function-based method for finding an explicit and accurate represen-
tation of the wave function. Known exact properties of the wave function guide the search for
such representations. Sophisticated parametrizations of the wave function enable computational
optimization of the parameters. The optimization is a minimization of the wave function’s
energy expectation value in the spirit of the variational principle. The computationally expensive
evaluation of the energy expectation value is accomplished by Monte Carlo (MC) integration.

4.1. Variational principle

To start with, the energy expectation value for systems with Hamiltonian Ĥ is a functional of
the wave function,

E[ψ] =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ =

∫
ψ∗Ĥψ∫
|ψ|2 . (4.1)

In this thesis, wave functions with spin-arguments are denoted by a capital Ψ, whereas wave
functions only depending on the spatial coordinates are denoted by a lowercase ψ. For reasons
explained in Sec. 5.1 and Sec. A.1, the above energy functional is spin-free and therefore a
spin-free wave function ψ is its minimizer. While minimization of E[ψ] with normalization
constraints leads to the Schrödinger equation (2.7), the variational principle instead searches for
the ground state only. The search space for the wave function ψ is some subspace H ⊂ H(R3N )
of the corresponding Hilbert space. Note that symmetry restrictions due to spin-statistics already
constrain the full Hilbert space H(R3N ). For fermions, the subspace H respects the anti-symmetry
of the wave function. By definition, the minimum of the Hamiltonian’s expectation value is the
ground state energy

E0 = min
ψ∈H(R3N )

E[ψ] (4.2)

Moreover, the minimizing wave function is guaranteed to be the ground state ψ0. In the case
of a degenerate ground state, the energy E[ψ] is minimized by some element in the subspace
spanned by the degenerate ground states.

Suppose a sophisticated analytical ansatz for the wave function is available, including adjustable
parameters p = (p1 . . . pq) ∈ Rq. Then, the wave function ψT [p] probes the subspace H by
variation of the parameters. The wave function ψT is therefore called a trial wave function. Note
that a vast number of different forms of trial wave functions have been proposed, incorporating
different physical effects and exploiting numerical strategies [50–57]. Therefore, a variation in the
analytical form of the trail wave functions also probes the variational space. A parameterized trial
wave function implies that the probability distribution ψ2

T [p](R) and the Hamiltonian applied to

the trial wave function ĤψT [p](R) are known expressions of the parameters, and can be evaluated
at any coordinate R. Although the expressions are known, their evaluation is not necessarily
computationally cheap. With a given form and parametrization the energy functional becomes
an ordinary function of the parameter vector, E[ψT [p]] = E(p). Various standard q-dimensional
optimization strategies are readily available to find not only the minimizing parameters p0 but
also reasonable approximations to the ground state energy E(p0) and the ground state wave
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function ψT [p0]. The VMC energy

EVMC = E(p0) = min
p∈Rq

E(p) ≥ E0 (4.3)

is an upper bound to the ground state energy by the variational principle, and more appropriate
parameterizations ψT [p] allow for better estimates of E0.

While the idea is simple, evaluating E(p) is a major computational issue. The exponential
scaling of the integral of the energy expectation value in Eq. (4.1) with the number of electrons
renders the evaluation of a general trial wave function next to impossible with standard approaches
like finite differences or basis sets for the full configuration space, even for small systems. MC
methods are required to estimate E(p) and are discussed in the next section.

Note that the true ground state is generally beyond any ansatz with a finite number of
parameters. Nevertheless, very accurate trial wave functions exist that achieve chemical accuracy
for real systems [52] and can recover the correlation energy to more than 99%. The percentage
of correlation energy is a standard measure for the accuracy of a QMC energy. It relates the
calculated energy E with the Hartree-Fock energy EHF and an accurate estimate of the true
energy in the non-relativistic limit Enrl. The recovered correlation energy Ec for some calculation
is defined as the difference of the calculated energy to the Hartree-Fock energy, Ec = E − EHF.
The maximum correlation energy to recover is Enrl − EHF. Thus the percentage of correlation
energy recovered is given by

Ec(%) =
E − EHF

Enrl − EHF
. (4.4)

However, in the absence of more accurate ground state energies as reference, the gap between the
VMC and the ground state energy remains unknown. Note that the above definition of the correla-
tion energy differs from the correlation energy in DFT. The correlation energy in DFT is defined by
Eq. (3.15) and evaluated with the KS orbitals, and not with the Hartree-Fock orbitals, see Sec. 3.2.

The major advantage of the VMC method is the freedom in the analytic representation
of the trial wave function. This freedom allows more accurate representations beyond linear
combinations of Slater determinants. Its wave function can thus be more accurate compared to
methods like coupled cluster, configuration interaction, multi configurational self-consistent field,
etc. In Chapt. 5, properties of the exact wave function are studied and appropriate trail wave
functions are constructed in Sec. 5.3 to incorporate exact properties in the ansatz. In this work,
the variational ansatz only includes a single parameter since the focus of this thesis does not lie in
VMC optimization. A straightforward least squares minimization optimizes the single parameter.
Other properties of the trial wave function are fixed and not subject to an optimization. For
more sophisticated trial wave functions with a large number of parameters, however, a variety
of standard optimization strategies is available. Extensions of these strategies exist, that are
explicitly tailored to MC applications [50, 58–60].

4.2. Monte Carlo integration

The composite configuration R = (r1, . . . rN ) collecting all electron coordinates is an element
of the configuration space ΩN , where Ω might be the whole R3 or a finite region. Irrespective
of finiteness, the dimension of ΩN grows exponentially with the number of electrons N . The
major obstacle in utilizing the variational principle is the multidimensional integral in Eq. (4.1).
Suppose the integral E(p) for a single electron can be evaluated with m degrees of freedom,
e.g., by discretization on a grid with m grid points. For a many-body wave function of N
electrons, E(p) requires integration over mN degrees of freedom. This exponential wall limits the
evaluation of E(p) with standard measures to only a few electrons. For example, the relatively
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small nitrogen molecule with 14 electrons already has a configuration space of dimension 42.
To represent the full wave function of the nitrogen molecule on a grid, even for the smallest
possible grid of only two grid points per dimension, more than 4× 1012 grid points are required
to represent ΩN . Therefore, standard methods to solve the Schrödinger equation as a PDE on
its full configuration space are impossible for all but the tiniest systems.

The efficient evaluation of integrals in high-dimensional spaces is a key competence of MC
methods. In the following, the variational principle is rewritten to fit in the MC framework. A
detailed discussion of the MC approach is presented in Sec. C.2. The central step to make the
energy functional E[ψT ] of Eq. (4.1) compatible with MC integration is rewriting

E[ψT ] = ⟨ψT |ψT ⟩−1
∫
ΩN

ψ∗
T ĤψT =

∫
ΩN

|ψT (R)|2
⟨ψT |ψT ⟩

Ĥ(R)ψT (R)

ψT (R)
dR =

∫
ΩN

fEL[ψT ]. (4.5)

The normalized wave function probability f(R) = ⟨ψT |ψT ⟩−1|ψT (R)|2 qualifies as a probability
function on ΩN . Note that with a real representation of the trial wave function |ψT (R)|2 = ψT (R)2.
The second term in the integral is the so-called local energy,

EL[ψT ](R) = ψT (R)−1Ĥ(R)ψT (R). (4.6)

It results from applying the Hamiltonian to the wave function and dividing the result by the wave
function’s value. The local energy is no well-behaved quantity on the complete configuration space.
It shows discontinuities and different kinds of singularities at special points or hypersurfaces
of the configuration space, see Sec. 5.6. It is nevertheless evaluated numerically and various
measures are taken to remedy the consequences of its pathological behavior, cf. Sec 5.1, Sec. 5.4
and Sec. 6.13.

The integral can now be evaluated with the MC method and reduces to an average of EL[ψT ].
Suppose an infinite series R1,R2, . . . of random configurations is available, that are all distributed
according to f . In compact notation this reads Ri ∼ f for all i. The integral can be evaluated
by the law of large numbers [61],

E[ψT ] =

∫
ΩN

fEL[ψT ] = lim
M→∞

1

M

M∑
i=1

EL[ψT ](Ri). (4.7)

In practice, the series is finite, and the number of configurations M can be interpreted as the
degrees of freedom in the MC integration, which is limited to a large number in real applications.
The construction of such a series of configurations, of course, requires a method to draw random
variates, i.e., a numerical realizations of a random variable, that are distributed according to
f . The direct generation of random variates, however, is only possible for a limited number
of elementary probability distributions. The trial wave function is, in almost all cases, far too
complicated to sample it directly. The general purpose tool to generate such a series is the
Metropolis-Hastings (MH) algorithm [62, 63]. It constructs a Markov chain, R1,R2, · · · ∼ f ,
with superior efficiency compared to, for example, rejection sampling. It is described in detail in
C.4.

In short, the MH algorithm works as follows: First, it requires a target probability function f
and additionally a proposal transition probability G(R′ ← R) that assigns a probability for the
transition from any configuration R to any other configuration R′. This transition probability
must allow the efficient generation of a random configuration from the conditional probability
function G(· ← R). The dot in the first argument of the Green function is a placeholder, while
the second argument is actually inserted into the Green function to render it a probability
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distribution of a single variable. The MH algorithm then iteratively updates a configuration
Ri, with a random initial configuration R1. First, from the transition probability G(· ← Ri)
a configuration R′ is drawn. With the two configurations Ri and R′ the so-called acceptance
probability

p = A(R′ ← Ri) = min

[
1,
f(R′)G(Ri ← R′)

f(Ri)G(R′ ← Ri)

]
(4.8)

is calculated, cf. Sec. C.4. Next, the new element of the series is set to the proposed configuration
Ri+1 = R′ with probability p or is left unchanged Ri+1 = Ri with probability 1 − p. This
process is repeated to form a Markov chain of configurations. After a starting phase, in which the
dependence of the series on the initial configuration R1 has vanished, the series is guaranteed [63]
to be distributed according to f . Formally, the MH algorithm requires certain conditions on G
regarding ergodicity, cf. Sec. C.2, which are satisfied for a broad range of transition probability
distributions. After a reasonable number of configurations have been generated, the set of
configurations allows for the accumulation of the local energy by the law of large numbers.

Instead of an integer index i to label the elements of the Markov chain, a notion of time
τ can be introduced. Reinterpreting the MH algorithm as a stochastic equation of motion
that advances a given configuration by a time step ∆τ , the Markov chain can be written as
R(0),R(∆τ),R(2∆τ), . . . . The obvious interpretation would identify the configuration as a
classical particle subject to stochastic forces, in short R(τ). Although this shorthand notation
suggests a continuous time, the time evolution of the Markov chain is still discrete. The
sampling of integral (4.5), i.e. the generation of a Markov chain R(τ), can be parallelized trivially.
Instead of a single one, M configurations R1(τ), . . .RM (τ) can be instantiated and propagated
simultaneously, making the MC integration a powerful tool on modern distributed machines and
cluster computers. The normalized stochastic representation of ψ2

T for a time step τ is then given
by

f(R, τ) =
1

M

M∑
k=1

δ(R−Rk(τ)) (4.9)

This form will reappear in the DMC method with a different and more physical interpretation of
the time τ . Here Rk(0) are randomly chosen configurations. The initial ensemble of configurations
has to reach equilibrium at some time τeq = Teq∆τ . At equilibrium, the averages over all
observables become stationary in time τ , which is used to detect the equilibrium in actual
computations. The non-equilibrium distribution is usually discarded, and in the following, the
time variable τ denotes the time passed since equilibrium. After the equilibration phase, which
formally ensures the expectation value Exp [f(·, τ)] = Exp [f(·, τ + ∆τ)] for all τ > 0, statistical
certainty can be build up by sampling the equilibrium probability distribution for increasing
number of propagation steps T . The distribution at time τ = T∆τ including every configuration
reads

F (R) =
1

T

T∑
τ=1

f(R, τ) =
1

MT

T∑
τ=1

M∑
k=1

δ(R−Rk(τ)) (4.10)

and the energy of Eq. (4.7) can be estimated by

E[ψT ] =

∫
1

MT

T∑
τ=1

M∑
k=1

δ(R−Rk(τ))EL[ψT ](R)

=
1

MT

T∑
τ=1

M∑
k=1

EL[ψT ](Rk(τ))

(4.11)

This equation aligns with the law of large numbers in Eq. (4.7). Note the equivalence of the
law of large numbers and the representation of the probability distribution by an ensemble
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of Dirac distributions. In probability theory, representations using the Dirac measure are not
uncommon since the Dirac measure represents a single realization or measurement in continuous
space, bridging between discrete and continuous measures. For every configuration used in the
law of large numbers, a Dirac contribution is added to the corresponding representation of the
probability distribution F . With the target distribution being the trial wave function probability
ψ2
T , the MH algorithm only requires a proposal transition probability. Candidates are discussed

in the following section.

4.3. Green functions

The proposal transition probability kernel of the MH algorithm can be cast as a Green function.
It propagates a probability distribution f(R, τ) by a time step ∆τ to yield

f(R′, τ + ∆τ) =

∫
G(R′ ← R,∆τ)f(R, τ) dR (4.12)

and reduces to a Dirac distribution for a vanishing time step, G(R′ ← R, 0) = δ(R′−R). Instead
of the notation G(R′,R,∆τ) the arguments of the Green function are separated by an arrow,
G(R′ ← R,∆τ), to indicate the direction of the transition from configuration R to R′. While
the MH algorithm admits transition kernels that are not compatible with the notion of a time
step and do not reduce to a Dirac distribution, most reasonable transition kernels do, and the
terms proposal transition kernel and Green function will be used synonymously.

Any proposal kernel for some non-trivial f is situated between two limiting cases. The most
simple Green function is uniform sampling, G(R′ ← R) = const., but it is inefficient in almost
all cases and essentially resembles uniform rejection sampling. The acceptance rate, i.e., the
average of the acceptance probability A from Eq. (4.8) over the ensemble of configurations,
will be considerably smaller than one since most of the proposed moves are rejected, and the
configuration space is explored inefficiently.

The optimal case is the direct sampling from f , with G(R′ ← R) = f(R′). Of course, this
case contradicts the assumption that f is a non-trivial probability distribution, which cannot be
drawn from directly. Nevertheless, in this case, the acceptance rate is unity. New configurations
are independent of the previous ones, the configurations space is probed with high efficiency
and the serial correlation vanishes, cf. Sec. C.5. In general, the goal is to approximate the case
of optimal sampling G(R′ ← R) ≈ f(R′) resulting in little correlation and fast exploration of
the configuration space. At the same time, the Green function must allow the efficient drawing
of configurations. There are many choices for the Green function, balancing computational
expense and accurate description of the target distribution. If, for example, f is a function that
is computationally expensive to evaluate, a more accurate Green function might be appropriate.
If f is computationally cheap, a rather simple Green function can be utilized to the contrary.
Many sophisticated transition probabilities are parameterized in terms of elementary probability
distributions or their combinations with cleverly chosen parameters.

One simple but commonly used Green function is a uniform proposal in a confined region
enclosing R, for example, the Green function that is uniformly distributed in an n-dimensional
sphere around the center R. The sphere’s radius can be used to vary the acceptance rate. For
a proposal configuration in a small volume around R, the acceptance rate is higher compared
to a proposal in a larger volume. Furthermore, the maximum distance |R′ −R| for a single
propagation is limited by the extent of the sphere, limiting exploration of the state space. A
3N -dimensional normal distribution,

G(R′ ← R, σ) =
(
2πσ2

)−3N/2
exp

(
− 1

2σ2
∣∣R′ −R

∣∣2) , (4.13)
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is another prominent candidate. Centered around the coordinate R and equipped with an
adjustable scalar variance σ2, the normal distribution can be drawn from efficiently. It is also
possible to use the truly multidimensional normal distribution with an 3N -dimensional covariance
matrix instead of the scalar σ2, providing more adjustable parameters that can be adapted to
f . Both normal and uniform distributions have a key limitation. They propose updates with
strictly diffusive character, only differing in their underlying probability distribution. However,
they incorporate no information about the target function f .

To include information from f in the Green function, one can, for example, take a closer look
at the stationary Fokker-Planck equation [64, 65] of f(R, τ) with some diffusion constant D and
a spatially varying drift vector u, reading

0 = D∇2f(R)−∇(u(R) · f(R)) = ∇ · [D∇f(R)− u(R) · f(R)] . (4.14)

The divergence of the square brackets vanishes in equilibrium. Assuming in addition that also
the square brackets vanish leads to an expression for u,

u(R) = −D−1∇f(R)

f(R)
. (4.15)

With a known function u, an approximate solution to the time-dependent version of the above
equilibrium equation is given by

G(R′ ← R, τ) = (4πDτ)−3N/2 exp

(
− 1

4Dτ

∣∣R′ −R− u(R)τ
∣∣2) , (4.16)

cf. Sec. D.4. This Green function generates very reasonable proposal configurations with a high
acceptance rate. The proposal of a new configuration R′ is not only governed by a purely diffusive
random displacement but also exhibits the drift term u(R)τ , which points along the direction of
the steepest gradient of f . Although the Green function based on the Fokker-Planck equation is
a reasonable approximation, drawing a configuration from it is straightforward,

R′ = R + u(R)τ + ξ ∼ G(· ← R, τ), (4.17)

with a normally distributed 3N -dimensional random variable ξ with vanishing expectation value
and variance 2Dτ . The coordinate proposed by the drift alone, R + u(R)τ , often has a higher
probability than f(R), which increases the acceptance rate. The additional diffusion around the
drifted position allows for the non-deterministic exploration of configuration space, for example,
by escaping local maxima or advancing into low-probability regions. With the Green function
based on the Fokker-Planck equation, larger time steps are possible, which de-correlates the
Markov chain. The parameters D and τ of the proposal Green function are readily interpreted
from the Fokker-Planck equation to be the diffusion constant and the diffused time, respectively.
The time step, which equally affects drift and diffusion, should be limited to prevent u(R)τ from
overshooting the region of high probability. For a large diffusion constant and small time step, the
Green function character is almost pure diffusion, resembling the normally distributed proposal.
In the limit of vanishing D, the transition probability is dominated by the drift and becomes
purely deterministic, disqualifying as a proposal due to violation of ergodicity, see Sec. C.4.

Since in almost all applications R = (r1, . . . rN ) is a configuration involving multiple electron
coordinates, one can devise a Green function that moves each electron coordinate separately.
Starting with the first electron, an updated position to r1 is proposed, the acceptance probability
is calculated, and the electron’s new coordinates position is set accordingly. This process is
repeated until all electron coordinates in R are updated. In a QMC application, such a scheme
enables tailoring the proposal Green’s function to the update of a single electron. Instead of
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simultaneously drawing new random coordinates for each electron independently, the step-by-step
update only changes one electron coordinate at a time, which might allow a higher acceptance
rate. For example, it is possible to stochastically avoid updates that propose a configuration in
which two electrons are close to each other and are likely to be rejected since the wave function is
zero for electron coincidences. This is a reasonable approach for systems of many electrons [66].
Furthermore, the Sherman-Morrison formula [67] can be invoked to arrive at an efficient update
of the Slater determinants involved. For systems of only some electrons, the benefit of the
electron-by-electron update is marginal and therefore this scheme was not used in this thesis.

In a QMC code that features the DMC method, an equally convenient and efficient proposal
Green function for the VMC is a DMC Green function. The DMC Green function originates
from the imaginary-time Schrödinger equation and is usually quite accurate. Therefore, it can
also be applied within the VMC framework.

4.4. Observables

As seen in Sec. 4.2 the law of large numbers is utilized to calculate the energy of some parameterized
wave function ψT . Other observables can be calculated as well using the same ensembles of
configurations. For any local or semi-local observable Ô, its analogon to the local energy is

OL[ψT ](R) = ψT (R)−1ÔψT (R), (4.18)

where any operator action in Ô is carried out on the trial wave function. Thus, OL is a
multiplicative function without operator character. The expectation value of Ô is then evaluated
as in Eq. (4.11) by

⟨ψT |ÔψT ⟩
⟨ψT |ψT ⟩

=
1

MT

T∑
τ=1

M∑
k=1

OL[ψT ](Rk(τ)). (4.19)

Note that here and in the following, the notation for the time argument is slightly abused: Integer
time steps are not discriminated from the actual time. For example, while the summation index
τ = 1, . . . T is integer, it is used in the summation as the actual time in the expression Rk(τ)
instead of the formally correct Rk(τ∆τ). While this estimation of the observable’s expectation
value is fully justified, the same quantity can be estimated with less uncertainty by the following
consideration. In the MH algorithm an acceptance probability p is calculated to decide whether
the proposed configuration R′ or the last configuration R(τ) is used as the next element R(τ+∆τ)
of the Markov chain and the Markov chain reads{

R(0),R(∆τ), . . . ,R(τ),R′ with probability p

R(0),R(∆τ), . . . ,R(τ),R(τ) with probability 1− p.
(4.20)

Thus, the Markov chain at time τ + ∆τ is itself a random variable. By collapsing the Markov
chain to an actual variate, which is, of course, necessary to propagate the configurations further,
information is eliminated. However, both Markov chains can be accounted for when estimating
the observable’s expectation value. The corresponding representation of f(·, τ + ∆τ) is given by

f(R, τ + ∆τ) =
1

M

M∑
k=1

[
pk(τ)δ(R−R′

k(τ)) + (1− pk(τ))δ(R−Rk(τ))

]
, (4.21)

where pk(τ) is the acceptance probability for the proposed configuration R′
k(τ) at time τ . This

representation for f has a lower variance since the configurations’ contributions are weighted
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4. Variational Monte Carlo

according to their acceptance probabilities and, therefore, pose more statistical certainty compared
to the unweighted configurations. The estimate for the observable reads

⟨ψT |ÔψT ⟩
⟨ψT |ψT ⟩

=
1

MT

T∑
τ=1

M∑
k=1

[
pk(τ)OL(R′

k(τ)) + (1− pk(τ))OL(Rk(τ))
]
. (4.22)

This expression is of particular interest since all the required ingredients are already calculated
in the MH algorithm and the extra certainty is generated at no additional computational cost.

A note on the notation is appropriate here. While the estimators from Eq. (4.19) as well as
the above Eq. (4.22) have the same expectation value, they are not the same random variables,
which is already apparent from their differing variance. Therefore, they deserve a different label
and more precise notation to highlight their differences. Consistently maintaining this notational
precision throughout this thesis would overload the expressions and hinder clarity and readability.
In the following, the notation is kept short and no discriminating symbols for the estimators are
introduced, but sufficient explanation is given in the relevant cases.

Another central quantity alongside the total energy is the quantum variance Σ2 of the state
ψT , given by

Σ2[ψT ] =

〈
ψT

∣∣∣∣(Ĥ− E[ψT ]
)2∣∣∣∣ψT〉

⟨ψT |ψT ⟩
(4.23)

If ψT approaches an eigenstate of the Hamiltonian, Σ2[ψT ] approaches zero. This measure gives
additional insight into the accuracy of the trial wave function. In general, the variance of the
trial wave function will only approach zero but not be zero identically since any parametrization
for non-trivial systems cannot fully recover the true ground state. Since the variance is bound
from below by zero and has a defined limit for the ground state, it is a reasonable proxy for
quality of the trial wave function. In VMC optimization, the variance can be helpful to find the
optimal parameters [50, 58–60, 68]. The variance can be calculated from the identity〈

ψT

∣∣∣∣(Ĥ− Eref

)2∣∣∣∣ψT〉 =
〈(

Ĥ− Eref

)
ψT

∣∣∣(Ĥ− Eref

)
ψT

〉
, (4.24)

and its local representation reads

Σ2
L[ψT ](R) = (EL[ψT ](R)− Eref)

2 , (4.25)

with some reference energy Eref that is the best estimate for the VMC ground state energy
available. The estimation of the one-body electron density is another example of an estimator
and is analyzed in detail in Sec. 7.

So far, only the expectation values of the observables have been addressed. Stemming from
the summation of random variables, their estimators are random variables as well. They are thus
subject to statistical fluctuation and only reliable within some error range. The assessment of
the statistical error of the estimated expectation value is equally important to the interpretation
of the results of an MC calculation. The statistical error s [X] of some random variable X is
the square root of the variance of X, see Sec. C.1. While the estimation of the expectation
value is quite simple, this is not the case for the variance, cf. Sec. C.3. The variance can only
be evaluated trivially via the law of large numbers for independent and identically distributed
(i.i.d.) random variables. Even though the Markov chains Rk(τ) are independent for different
configurations k, they exhibit a natural, non-vanishing correlation in time τ . Sections C.5 and
C.6 discuss the calculation of the variance and its limitations.
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4.5. Convergence and analysis

4.5. Convergence and analysis

From the Markov chain of configurations (Rk(τ)) a series of local observations (OL(Rk(τ))
follows for every observable. With this series a histogram of the distribution of the random
variable OL can be calculated. The histogram grants insight into many aspects of the underlying
distribution. In Fig. 4.1 a histogram for the local energy of diatomic lithium Li2 is shown. The
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Figure 4.1.: The histograms of the local energy and the minimal distance of Eq. (4.26) are shown
with different bin sizes. The VMC calculation belongs to the diatomic Li2 and is based on orbitals
from LDA calculation and a simple Padé Jastrow factor for the electron-electron interaction.
The middle red line indicates the expectation value of the distribution, while the shorter lines
indicate the standard error centered around the expectation value. The differing resolution or
bin size of the left and right panel is due to the long tail and outliers in the local energy.

plot additionally shows the minimal electron-ion-distance,

den(R) = min
i,η

∣∣ri − ξη
∣∣ , (4.26)

where the minimization is over all electrons i of the configuration R and all ions η in the system.
This distance is an example of a regular observable. It is continuous and bound from below and
above. The evaluation of the local energy, on the other hand, is a highly non-trivial task. The wave
function’s Laplacian includes derivatives of functions with cusps, and evaluating the Hamiltonian’s
potentials U + V is complicated by the Coulomb singularity near particle coincidences. If, for
example, an electron approaches a nucleus, the singularity in the kinetic energy has to cancel with
the Coulomb singularity in V . While it is readily shown that the singularities cancel analytically
with a correct electron nuclear cusp, cf. Sec. B.1, an accurate numerical cancellation is much
more difficult to achieve. These pathologically difficult characteristics of the local energy are
derived in Chapt. B and visualized in Sec. 5.6. They are independent of any MC calculation
since they are analytical expressions of the trial wave function.

Fig. 4.2 represents a typical time evolution of the estimated observables. After an initial phase
of equilibration, the observables converge to their equilibrium value. The error of the estimate
decreases during the accumulation of more configurations. Fig. 4.2 visualizes an important fact
of the MC method. Although the VMC energy is an upper bound to the true ground state
energy, the naive interpretation of the estimated VMC energy might be non-variational: Unless
the VMC energy is converged and its statistical error is respected, it might be more negative
than the true ground state energy.
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Figure 4.2.: Time evolution of the local energy and the minimal electron-nucleus-distance for
the Li2 system based on a single-reference Slater-Jastrow trail wave function with LDA orbitals.
The errors and fluctuations are quite small, since a total of M = 3.2× 105 configurations are
propagated in parallel. The initial 1000 MC iterations are not shown, since the estimators show
larger fluctuations in this early phase of equilibration.
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5. Wave function

Although the exact wave function remains unknown for almost all systems of physical interest,
some of its properties are known rigorously. An example already mentioned in Sec. 4.5 is the
nuclear cusp of the wave function. In this chapter, the behavior of the exact and a single-reference
Slater-Jastrow trial wave function, their gradients, and their Laplacians near critical points in
the configuration space are derived.

To begin with, however, the standard representation of the wave function is modified to arrive
at its usual representation in DMC. The great redundancy of the wave function due to the
anti-symmetry can be reduced if the Hamiltonian is spin-independent. The wave function is then
represented in an equivalent but numerically more feasible way.

The conclusions of the analysis lead to construction principles for high-quality trail wave
functions.

5.1. Wave function representation

The total anti-symmetry of the wave function is crucial for describing indistinguishable particles
but also introduces redundancy in the representation of a quantum state. In the following, only
wave functions of definite spin are treated, as well as observables that respect the indistinguisha-
bility of particles and are therefore symmetric upon coordinate exchange. Additionally, the
Hamiltonian is required to be spin-independent. If the Hamiltonian had spin-contributions, the
eigenstates, especially the ground state, could have entangled spin states, i.e. correlated spin
states of different spin quantum numbers. This case is explicitly excluded in this thesis.

Consider a general Slater determinant of spin-space orbitals φi(x) in its explicitly anti-
symmetrized form

Φ(X) =
√
N !Â

N∏
i=1

φi(xi), (5.1)

with the anti-symmetrizer Â of N coordinates, that sums over signed permutations of the
symmetric group S(N),

Â =
1

N !

∑
π∈S(N)

sign(π)π. (5.2)

A Slater determinant of defined spin S = 1
2(Nα−Nβ) representing N fermions, with Nα electrons

in the α-channel and Nβ = N −Nα in the β-channel, reads

Φ(X) =
√
N !Â

∏
σ=α,β

Nσ∏
i=1

σ(si)φσi(Rσi), (5.3)

where the spin-functions {α, β} form an orthonormal spin basis. The symbols α and β serve
as both, spin functions and spin indices, with the intended meaning inferred from the context.
The spin-spatial orbitals φi(x) are reordered with respect to their corresponding spin-channel
to φσi(r). To simplify the notation, the configuration R is split in two configurations: The
configuration of the spin-α-channel, Rα = (r1, . . . , rNα), and the configuration of the spin-β-
channel, Rβ = (rNα+1, . . . , rN ). The separation of the configuration into spin channels is of
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mathematical and artificial character. Due to the anti-symmetrizer, any mapping of an electron
to a definite spin is undone, and the determinant remains inherently anti-symmetric and cannot
distinguish electrons or spins. However, the representation of Eq. (5.3) is more complicated
than necessary. It is shown in the appendix A.1 that the following partially anti-symmetrized
representation Φ̃ holds the same physical results as the fully symmetrized Slater determinant Φ
but is written as a product of spatial and spin coordinates.

Φ̃(X) =

(
Nα∏
i=1

α(si)

)(
N∏

i=Nα+1

β(si)

)
ϕ(R) (5.4)

The partially anti-symmetric spatial Slater determinant ϕ is a product of a normalized α- and
β-determinant

ϕ(R) = ϕα(Rα)ϕβ(Rβ). (5.5)

This representation fixes the first 1, . . . Nα coordinates, or equivalently the coordinates of Rα, to
the spin state of α, while all coordinates in Rβ are affiliated with the β channel. Therefore, the
representation of Eq. (5.4) is not totally anti-symmetric with respect to particle exchange. Nev-
ertheless, this form can be used equivalently for almost all calculations, namely overlap integrals
and expectation values, cf. A.1. The numerical advantage of this form is its computational cost.
While a determinant is usually calculated in O(N3) complexity, with the above representation,
only O(2(N/2)3) are required in a spin-unpolarized system. Since in QMC applications, the
most time is spent calculating the determinants and their derivatives, a gain in computational
efficiency of 300% is achieved.

This simplified representation is not restricted to a single Slater determinant. By linear
combination of Slater determinants, any correlated wave function with definite spin S can be
cast in the same partially anti-symmetric form since all building determinants of a correlated
wave function of definite spin must also be of definite spin. The representation analogous to
Eq. (5.4) for the correlated wave function is

Ψ̃(X) =

(
Nα∏
i=1

α(si)

)(
N∏

i=Nα+1

β(si)

)
ψ(R). (5.6)

While ψ is not a product, as is ϕ from Eq. (5.5), it has the same symmetries. For any two
permutations πα ∈ S({1, . . . Nα}) and πβ ∈ S({Nα + 1, . . . N}), i.e. permutations of the set of
the α- or β-channel coordinates, the wave function is anti-symmetric.

παψ(R) = sign(πα)ψ(R) (5.7)

πβψ(R) = sign(πβ)ψ(R) (5.8)

For any permutation π ∈ S({1 . . . N}) that does not reduce to two spin-channel-wise permutations,
the wave function has no definite permutation symmetry. To illustrate this symmetry, note that
the wave function evaluated with two identical electron coordinates ri = rj does not vanish
if i and j belong to different spin channels. This is in stark contrast to the usual form of the
wave function. The full symmetry is readily restored by anti-symmetrizing and subsequent
normalization

Ψ =

√
N !

Nα!Nβ!
ÂΨ̃ (5.9)

where the normalization accounts for symmetrizing the parts that are already partially sym-
metrized by the spin permutations.

In the following, the difference of Φ̃ and Φ (or Ψ̃ and Ψ), that is, full or partial anti-symmetry
wave functions, is omitted. Since every wave function in this work has definite spin and particle
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number, it is also sufficient to treat ψ(R) instead of Ψ̃(X). As an example of the consequences
of the wave function’s form, the Schrödinger Eq. (2.7) reduces to

Ĥψ(r1, . . . rN ) = Eψ(r1, . . . rN ). (5.10)

The explicit spin dependence of the wave function is completely omitted, while the total spin S
dictates the symmetries of ψ.

5.2. Cusp conditions

Whenever two (or more) particles from the Hamiltonian of Eq. (2.1) meet, their Coulomb
potential becomes singular. In order to satisfy the Schrödinger Eq. (5.10), the kinetic energy
has to cancel the singularity in the potential, which introduces distinct characteristics in the
wave function ψ at particle-coalescence points [69]. The cancellation of the singularity is a
strong enough requirement to impose conditions on the wave function that do not depend
on the location of the other non-incident particles. These are analyzed in the following to
construct trial wave functions that obey the properties of the exact wave function and thus
improve the quality of the trial wave function as well as regularize its drift and local energy
required in the QMC methods. A detailed derivation is presented in Sec. B. In this chapter, the
only coincidences discussed are electron-electron and electron-nucleus coincidences. At higher
orders, e.g., electron-electron-nucleus coincidences, the wave function also has a definite but more
complicated behavior. In principle, every order of particle coalescence could be included in the
trial wave function. However, due to electrons repelling each other, a higher-order coalescence
with several electrons involved is very unlikely.

For the electron-nucleus coalescence with a nucleus of charge Z, mass M and a separation
vector ε of nucleus and electron, the cusp condition reads

ψ(ε) = ψ(0) [1− Zµ|ε|+ w · ε] +O(|ε|2), (5.11)

where the effects of the reduced mass µ = (1+M−1)−1 ≈ 1 are omitted due to the large difference
of electron to nuclear masses. The vector w is unknown in general. The singlet electron-electron
coalescence with a reduced mass of µ = 1/2 of two electrons of opposite spin reads

ψ(ε) = ψ(0)

[
1 +

1

2
|ε|+ w · ε

]
+O(|ε|2), (5.12)

where ε is the separation of the incident electrons. The triplet electron incident, however,
naturally differs from the above form. Due to the anti-symmetry of the determinant, the wave
function must vanish. The corresponding cusp condition reads

ψ(ε) = w · ε
[
1 +

1

4
|ε|
]

+O(|ε|2). (5.13)

These conditions are satisfied by the exact wave function, i.e. any solution to Eq. (5.10), but
also offer constructive insight, from which improved trial wave functions can be constructed. As
a consequence of the cusp condition, the drift and local energy of trial wave functions exhibit
characteristic behavior, cf. Sec. B for a detailed derivation or Tab. 5.1 for an overview of the
irregularities.

5.3. Trial wave functions

High-quality trial wave functions do not only improve the variational energy from VMC, in
some cases recovering almost all correlation effects [50–52] but also allow for more accurate
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results from DMC due to more efficient numerics, lowered time-step and extrapolation-estimator
errors, etc. Therefore, it is desirable to incorporate the above exact cusp conditions into the trial
wave function. As will become apparent, exact cusp conditions are relatively straightforward to
implement in QMC. Any method based on the linear combination of Slater determinants that
genuinely do not show the electron-electron cusps would have to include an inefficiently large
amount of determinants to resemble the cusp. Although a vast number of sophisticated trial
wave functions exist, this work focuses on simple trial wave functions. The most straightforward
trial wave function would be a single Slater determinant ϕ. Since a single determinant can be
calculated much more efficiently without MC methods, this choice would be of little use. The
advantage of using MC integration is the unrestricted form of the trial wave function. It allows
the single Slater determinant to be combined with another function in an arbitrary way. A very
successful modification to apply to the Slater determinant is the Jastrow factor. The Jastrow
factor J alters the magnitude of the determinant ϕ by a simple multiplication.

ψT (R) = exp (J(R))ϕ(R) (5.14)

The Jastrow factor is non-negative on the entire configuration space due to the exponentiation,
does not alter the nodal structure of the determinant, and must be symmetric upon spin-particle
exchange since the determinant is anti-symmetric already. This form is very flexible and can
account for multiple electron correlation effects. The above form of the wave function is called a
single-reference Slater-Jastrow wave function. It is commonly used in QMC applications and is
the only trial wave function form used in this thesis.

In contrast, multi-determinant Slater-Jastrow wave functions replace the single determinant
with an expansion of determinants and allow for a more accurate description of the correlated wave
function, especially in cases where a single determinant is not sufficient to describe the state, i.e. in
systems dominated by static correlation. Another approach is a coordinate transformation T ,
called back-flow [54, 55], that alters the coordinates that enter the trial wave function as arguments,
introducing additional optimizable parameters. Such multi-determinant Slater-Jastrow wave
functions with back-flow take the powerful form

ψT (R) = exp (J(R))
∑
k

ckϕk(T (R)) (5.15)

and are able to describe many systems with high accuracy in VMC and DMC. Note that
the Jastrow factor in a multi-determinant wave function significantly reduces the number of
determinants required to describe the state. The linear combination of determinants, as well
as the back-flow transformation, are able to modify the topology of the wave function’s nodal
structure, which is an important capability in the DMC method, see Sec. 6.9.

5.4. Jastrow factors

The Jastrow factor defined above aims to incorporate properties of the exact wave function into
the trial wave function. There are many suggestions for elaborate forms [56, 70–72]. Jastrow
factors can lower the variational energy in VMC and simultaneously allow parametrization of the
trial wave function by parameterized Jastrow factors. A systematic way of categorizing different
forms is to split the Jastrow factor by the order of particle coalescence

J(R) = Jen(R) + Jee(R) + Jeen(R) + Jeee(R) + . . . , (5.16)

where most expansions do not go beyond electron-electron-nucleus terms. The electron-nucleus
Jastrow factor takes the general form

Jen(R) =
L∑
η=1

N∑
i=1

βηuen(|ξη − ri|), (5.17)
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which sums over all electron-nucleus pairs and thus is symmetric in the electrons. In this form,
uen is some function of the electron-nucleus distance and is restricted to have unit derivative at
particle coalescence, u′en(0) = 1. Upon comparison with the cusp condition (5.11), the parameter
βη is the Jastrow factor’s contribution to the wave functions nuclear cusp. However, the trial
wave function’s total cusp also holds a contribution from its Slater determinant, see Sec. B.1.
Slater determinants built from smooth orbitals, e.g., gaussian basis set orbitals, do not hold
a nuclear cusp. In such a case, the Jastrow factor enforces the correct cusp alone. The DFT
orbitals in the grid representation used in this work, however, already exhibit the correct nuclear
cusp. The electron-nucleus Jastrow factor then requires a vanishing cusp and therefore vanishes.

The electron-electron Jastrow factor Jee models two electrons approaching each other. Jee
splits in singlet and triplet terms including uSee for a total spin of S = 0 for the incident electrons
and uTee for S = ±1,

JSee(R) = βSee

Nα∑
i=1

Nβ∑
j=1

uSee(|Rαi −Rβj |)

JTee(R) = βTee
∑
σ=α,β

Nσ∑
i=1

Nσ∑
j=i+1

uTee(|Rσi −Rσj |),
(5.18)

where again with uS,Tee
′
(0) = 1 and by comparison with the cusp conditions of Eq. (5.13) and

Eq. (5.12) βSee = 1/2 and βTee = 1/4.
The functions uen and uS,Tee can be modeled with a variety of representations, e.g., polyno-

mials, Chebychev polynomials, B-Splines or Padé-forms, might include cut-off distances, and
can be rewritten to use modified variables to respect certain coordinate transformations [56].
Representations that are linear in the parameters, like Chebychev polynomials and B-Splines,
simplify the parameter optimization in VMC. However, the simplest Jastrow factor preserving
the exact cusp conditions is used here. The Padé form

u[b](r) =
r

1 + br
, (5.19)

with numerator and denominator degree of one, is the minimal Padé form that qualifies as a
Jastrow factor. It has unit derivative at particle coalescence and a single parameter b. Despite or
even because of its simplicity, it is used frequently in the literature [50, 51, 56, 73] and exhibits
excellent results for its simplicity [72].

From the variational principle and the cusp condition, one expects a lower energy if the cusp
condition is satisfied exactly and the variable parameters, bS and bT , are independent. If the
spatial coordinates Rα are discriminated from Rβ in the Jastrow factor, the wave function

is not an eigenfunction of the spin operator Ŝ2, as discussed in detail in Ref. [74]. However,
the introduced spin contamination is quite small. In contrast, if singlet and triplet cases are
treated identically, i.e. with identical value for the cusp parameters, βSee = βTee, and the variable
parameters, bS = bT , the Jastrow factor becomes symmetric. Then, the spin contamination
vanishes at the cost of violating the cusp condition. The resulting variational energy is higher
compared to the spin-contaminated case. According to Ref. [74], this dilemma can be resolved
by restricting the representation of the Jastrow factor. In this work, the issue is remedied with
an intermediate solution. The cusp condition is strictly enforced for singlet and triplet cusp
separately, but identical parameters are used bT = bS . Therefore, the complete Jastrow factor
used in the following is the electron-electron Jastrow factor in the Padé form, enforcing the
correct singlet and triplet cusp conditions

J(R) = Jee[b](R) = JSee[b](R) + JTee[b](R) (5.20)

with JS,Tee from Eq. (5.18) and uSee = uTee from Eq. (5.19).
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5.5. Drift and local energy

In addition to the value of the trial wave function, its drift and local energy have to be evaluated.
In VMC, the drift is required when using a drift-diffusion Green function. With the single-reference
Slater-Jastrow wave function given in Eq. (5.14), the gradient reads

∇ψT = eJ [ϕ∇J +∇ϕ] , (5.21)

which implies a drift of the form

u = 2D
[
∇J + ϕ−1∇ϕ

]
(5.22)

Due to the exponential form of the Jastrow factor, its contributions to the gradient are given
by the gradient of the Jastrow factor alone. For the determinantial part, the gradient must be
divided by the determinant’s value. This already hints at issues at the determinant’s nodes, see
Sec. B.2 for details. The Laplacian reads

∇2ψT = eJ
[
2∇ϕ · ∇J + ϕ∇2J +∇2ϕ+ ϕ|∇J |2

]
. (5.23)

It mixes the contributions from the Jastrow factor and the determinant. The resulting kinetic
energy is given by

KL = −Dψ−1
T ∇2ψT = −D

[
∇2J + |∇J |2 + 2ϕ−1∇ϕ · ∇J + ϕ−1∇2ϕ

]
(5.24)

For a numerically efficient evaluation of the determinant’s derivatives, see Sec. A.2. The evaluation
of the Slater determinant, its gradient and its Laplacian, of course, requires the evaluation of the
building orbitals. The orbitals used in this thesis are represented on a non-Euclidean but uniform
grid. See Sec. E for a detailed description of the method. In the conversion of the orbitals’ grid
representation to a continuous representation compatible with the QMC approaches, numerical
artifacts arise in the vicinity of the nuclei. Sec. E.4 explains how the artifacts arise and Sec. F
analyzes their magnitude for different grids.

The derivatives of the electron-electron Jastrow factor (in compact notation) can be calculated
analytically:

∇J = êk∇k
∑
i,j

βiju(rij) = êk
∑
i,j

βiju
′(rij)∇krij

= êk
∑
i,j

βiju
′(rij) [r̂ijδki − r̂ijδkj ] = êk

∑
i,j

[βik + βki]u
′(rki)r̂ki

(5.25)

with rij = |ri − rj | and r̂ij = (ri− rj)/rij . The values for βij must be chosen to match the triplet
or singlet case. The Laplacian is given by

∇2J = ∇k
∑
i,j

[βik + βki]u
′(rki)r̂ki =

∑
i,j

[βik + βki]
[
u′′(rki)r̂ki · r̂ki + u′(rki)∇kr̂ki

]
=
∑
i,j

[βik + βki]

[
u′′(rki) +

2u′(rki)

rki

] (5.26)

5.6. Trial wave function characteristics

In the previous sections, some exact properties are incorporated into the trial wave function to
more accurately approximate the exact wave function. Improvements to the trial wave function
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Table 5.1.: Classification of the irregularities of the true wave function and a trial wave function
satisfying the cusp conditions. The vector ε represents the distance to the critical point, the
symbol w and k represents some unknown vectors, Z is the nuclear charge, a some unknown
scalar, and E0 the exact ground state energy.

electron-nucleus electron-electron electron-electron wave function
singlet triplet node

ψT a(1− Z|ε|) + ε ·w a(1 + |ε|/2) ε ·w ε ·w
ψ0 a(1− Z|ε|) + ε ·w a(1 + |ε|/2) ε ·w ε ·w

u[ψT ]/2D −Zε̂ 1
2 ε̂

1
4 ε̂ + w

w·ε
w
w·ε

u[ψ0]/2D −Zε̂ 1
2 ε̂

1
4 ε̂ + w

w·ε
w
w·ε

EL[ψT ] w · ε̂ w · ε̂ k·ε
w·ε

k·ε
w·ε + a

w·ε

EL[ψ0] E0 E0 E0 E0

affect the QMC methods in various ways. For the reasons discussed above, the cusp conditions
are the most prominent example of how an improved trial wave function affects the QMC method.

In Chapt. B, the behavior of the exact ground state wave function and a trial wave function
that satisfies the cusp conditions is examined in detail. Tab. 5.1 provides an overview of the
kind of irregularity the wave function value, drift, or local energy shows in the cases of nuclear
and electron-electron cusps and nodes. Fixing the cusp conditions with proper Jastrow factors
renders the local energy more regular but does not entirely remove irregular behavior. The local
energy exhibits discontinuities in any case. For triplet electron incidences (and also at nodes),
the local energy still diverges, however, not due to the Coulomb singularity, which is remedied by
the cusp condition, but due to the node (induced by anti-symmetry in the triplet case). The drift
vector of a trial wave function with correct cusps points away from electron-electron incidences
as well as wave function nodes, whereas it points toward the nucleus for an electron-nucleus
coalescence. This behavior is much appreciated since thus the walker is stochastically repelled
from regions of low probability and, at the same time, notorious behavior of the local energy.

The behavior of the trial wave function of Eq. (5.14), its drift, and local energy can be visualized
near critical points. While the full configuration space cannot be plotted conveniently, slices or
hypersurfaces through the configuration space allow insights into the wave function’s behavior.
To this end, a configuration R is constructed, such that its first electron moves in the plain given
by r1(λ, µ) = η + λδu + µδv, where the vectors δu and δv are random vectors with δv · δu = 0
and |δv| = |δu|. The coordinate η represents the incident point. By sampling the parameters
(λ, µ) ∈ [−1, 1]2 the vicinity of the incident point can be depicted for any observable. The particle
coincidence is located at (λ, µ) = (0, 0). The other electrons 2, . . . N have randomly chosen but
fixed coordinates, such that every electron pair is well separated. The trail wave function used
for figures 5.1, 5.2, 5.3, and 5.4 is of the form of Eq. (5.14), was built from DFT orbitals from
the LDA, and represents the nitrogen molecule.

In Fig. 5.1 the nuclear cusp is plotted. The local energy exhibits a discontinuous jump and
numerical artifacts confined to a small region around the nucleus, cf. Sec. E.4. The singlet
electron incident is plotted in Fig. 5.2. While the trail wave function value is non-zero, it shows a
cusp, which leads to a discontinuity in the local energy. The triplet electron incident is plotted in
Fig. 5.3. Here, the wave function shows a node in the form of a straight line, i.e. is in accordance
with ε ·w. Since the local energy is divided by the value of the wave function, a singularity
arises in the local energy along the node. Additionally, a point discontinuity is present at the
incident point. Finally, the behavior of the local energy along a node is plotted in Fig. 5.4. Along
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the nodal line are two kinds of singularities. The kind that is present along the entire nodal
line is a/w · ε, where w indicates the direction of the nodal line. The other kind of singularity,
k · ε/w · ε, only occures at special points of the nodal line.
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Figure 5.1.: The value of the trial wave function (left panel) and its local energy (right panel) on
a two-dimensional plain through the nucleus are shown. The wave function value has the form of
a cusp. The dipole-type discontinuity w · ε̂ of the local energy is visible from the iso-lines and
the coloring. In addition to the discontinuity, numerical artifacts at the incident point are visible.
The white area indicates numerical values of the local energy that are diverging and exceed the
range of the color scale. These artifacts are discussed in Sec. E.4. The incident point η is the
nuclear coordinate.
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Figure 5.2.: The value of the trial wave function (left panel) and its local energy (right panel)
on a two-dimensional plane shows the singlet electron-electron incident. The value of the wave
function has a slightly visible cusp, highlighted by the iso-lines. Although no node is present in
the singlet incident, the local energy develops a dipole-type discontinuity, w · ε̂. The incident
point is given by the last electron coordinate η = r2. Additional iso-lines are added to highlight
the cusp.
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Figure 5.3.: The value of the trial wave function (left panel) and its local energy (right panel)
on a two-dimensional plane shows the triplet electron-electron incident. The large black line
indicates the wave function’s nodes. The cusp in the wave function is not visible. In the local
energy, however, the severe singularity of type k · ε/w · ε is a distinct characteristic. The straight
iso-line is the direction of the vector k, while the wave function’s node is aligned with the vector
w. The white area indicates numerical values of the local energy that are diverging and exceed
the range of the color scale. The incident point is given by the last electron coordinate η = rN .
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Figure 5.4.: The value of the trial wave function (left panel) and its local energy (right panel) on
a two-dimensional plain showing the trial wave function’s nodal structure sliced by the plain.
The large black line indicates the wave function’s nodes. Two types of singularities are present
near the nodes. Along the node a singularity of the form a/w · ε is always present. The vector w
represents the tangent along the node at every point. The second kind of singularity, k · ε/w · ε,
is also present in the triplet electron incidences and does only appear at distinct locations along
the node. It is characterized by the sign change of the local energy. At these distinct locations,
the local energy does not diverge along a single path across the node. The direction of this path
is given by the vector k and the path itself is given by the iso-lines crossing the node. There are
in total four such points in the figure, all located close to the central nodal arc.
To visualize the nodes, the incident point η was chosen randomly. Then, in almost all cases,
nodes appear naturally. The well-separatedness of the electrons ensures that the node is not due
to anti-symmetry.
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Optimizing a reasonable parameterized wave function within VMC generates a good approxi-
mation of the true ground state. In general, however, no trial wave function with a finite set of
parameters can reproduce the true ground state, leaving a gap between observables calculated
in VMC and the true ground state results. Although more elaborate trial wave functions can
significantly reduce this gap and reach errors smaller than chemical accuracy, the quality of
the VMC ground state is always bound by the quality of the parametrization. Since many
aspects of correlated wave functions might not yet be fully understood, it is tedious to adapt the
parametrization and generate ever more sophisticated trial wave functions.

A method that reaches beyond the limits of VMC and nevertheless benefits from sophisticated
trial wave functions and VMC methods is diffusion Monte Carlo (DMC). This method iterates
an initial guess for the wave function to an approximate ground state that improves upon the
trial wave function of VMC. While the DMC approach has certain limits, it is exact in principle
and provides results that are among the most accurate at a moderate computational cost. In
DMC, the MC approach is used to solve the Schrödinger equation by a diffusive process or more
precisely random walks. In opposition to VMC, the DMC method is not a mere minimization or
fit of parameters, as it is based on the Schrödinger equation directly instead of the variational
principle. Therefore, DMC extends over VMC by many means.

This chapter establishes a connection between the Schrödinger equation and a classical diffusive
process that can efficiently be carried out numerically.

6.1. Imaginary-time transformation

There is a long known and instructive link [75–77] from the trivially time-dependent Schrödinger
equation with ∂tĤ = 0,

i∂tψ(R, t) = Ĥψ(R, t), (6.1)

to a propagation scheme for the stationary Schrödinger equation: the imaginary-time propagation.
It maps the eigenvalue problem of Eq. (2.7) to a PDE of time and space that yields the ground
state. To begin with, the physical time t in the Eq. (6.1) is substituted with an imaginary time
τ = it and the energy scale is shifted by an offset energy EN .

−∂τψ(R, τ) =
(

Ĥ− EN
)
ψ(R, τ) (6.2)

This yields a real-valued PDE with the formal solution

ψ(R, τ) = Ĝ(τ)ψ(R, 0), (6.3)

where ψ(R, 0) is the initial state, and the imaginary-time propagator is given by

Ĝ(τ) = exp
(
−τ
(

Ĥ− EN
))

. (6.4)

The action of Ĝ(τ) on the initial state can be seen by the expansion in the basis of the
Hamiltonian’s eigenfunctions, Ĥψk = Ekψk. Assume the ground state has a non-vanishing
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contribution in the expansion, ⟨ψ(·, 0)|ψ0⟩ ≠ 0. Then the action of Ĝ(τ) can be written as a time
evolution of the coefficients

ψ(R, τ) = Ĝ(τ)ψ(R, 0) = Ĝ(τ)
∑
k

ck(0)ψk

=
∑
k

e−τ(Ek−EN )ck(0)ψk =
∑
k

ck(τ)ψk,
(6.5)

where the last equality defines the time dependence of the coefficients. The propagator amplifies
coefficients of low energy, Ek < EN and magnifies the ground state coefficient most. As a result,
the ground state dominates the expansion for large τ . In the limit of infinite imaginary time, only
the ground state survives the action of the propagator, and in the case of degeneracy, a mixture
of ground states. Note that the propagator Ĝ(τ) is not norm-conserving, and the propagated
wave functions are not normalized. For the steady-state solution, this implies

lim
τ→∞

|ψ(R, τ)|2 = lim
τ→∞

|c0(τ)|2 = lim
τ→∞

e−τ(E0−EN )c0(0)

=


0, E0 > EN

|c0(0)|2 , E0 = EN

∞, E0 < EN

(6.6)

From the norm of ψ(R, τ), the role of the offset energy EN becomes apparent. It serves as a
normalization constant for the ground state and therefore is referred to as the normalization
energy. It is utilized to control the growth or decay of the propagated wave function’s norm
in Sec. 6.6. Solving Eq. (6.3) for increasing τ , will propagate the initial wave function ψ(·, 0)
to its steady state ψ0. To solve Eq. (6.3), however, the exponential of the Hamiltonian has to
be approximated. In DMC, this approximation is the expansion of the exponential for short
times [53, 78]. The Baker-Campbell-Hausdorff [79] formula can be applied to the Hamiltonian to
arrive at the first-order approximation

Ĝ(τ) = e−(U+V−EN )e−τ T̂ +O(τ2) (6.7)

or the more accurate second-order approximation

Ĝ(τ) = e−
τ
2
(U+V−EN )e−τ T̂e−

τ
2
(U+V−EN ) +O(τ3), (6.8)

while the latter formula is used in DMC in practice. Since the expansion is more accurate for
small arguments, the time step τ should be chosen small enough. To nevertheless reach the
long-time limit, the Trotter-Suzuki formula [80, 81] is applied to the approximate exponential
with a small time step ∆τ ,

Ĝ(n∆τ) = Ĝ(∆τ)n. (6.9)

Note that many alternative operators to Ĝ(τ) also reveal the ground state. Such operators are
required to magnify the ground state coefficient more than any coefficient of states of higher
energy. Therefore, the approximations made here are not as severe and crucial as they might
appear as long as the propagator exhibits this property.

In the steady state, the propagator formally will not alter ψ(τ) from one step to another, but
it will become apparent in Sec. 6.4, that the numerical representations of ψ(τ) and ψ(τ + ∆τ)
differ. The solution of the propagator Eq. (6.3) in the long-time limit, i.e. the ground state, is, of
course, also the solution of the imaginary-time PDE of Eq. (6.2). The molecular Hamiltonian
of Eq. (2.1) expressed in terms of the kinetic energy, which includes the Laplacian, and local
potentials renders the explicit imaginary-time PDE to be

−∂τψ(R, τ) = −D∇2
Rψ(R, τ) + (V (R) + U(R)− EN )ψ(R, τ), (6.10)
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where the constant D = 1/2 is introduced to represent the prefactor of the kinetic energy and the
electron mass, in SI units D = ℏ2/2me. This PDE manifestly is a diffusion equation. The potential
contributions, V + U , act as a spatially varying sink-source term that creates or annihilates
total probability. This form of the stationary Schrödinger equation is the core of DMC since the
connection to the diffusion equation offers the opportunity to recast the Schrödinger equation
as a diffusion process or random walk. Although solving Eq. (6.10) for large τ would yield the
ground state, the PDE is still an equation of 3N coordinates, infeasible to solve with standard
PDE methods. In the next sections, Eq. (6.10) is therefore reformulated to fit in the framework
of MC methods, which enable the actual calculation of the ground state or at least reasonable
approximations.

6.2. The Green function

On the way to a framework compatible with MC, the PDE (6.10) has to be reformulated as an
integral equation. To this end, the Green function of the Eq. (6.10) is readily given by a kernel
representation for the propagator Ĝ(τ),

ψ(R′, τ) =

∫
G(R′ ← R, τ)ψ(R, 0) dR, (6.11)

or equivalently

−∂τG(R′ ← R, τ) = Ĥ(R′)G(R′ ← R, τ), (6.12)

subject to the initial condition G(R′ ← R, 0) = δ(R′−R). The exact Green function incorporates
the exact time evolution of an arbitrary initial wave function ψ(·, 0) to the ground state, comprising
an extensive amount of information in a rather direct form. However, no true Green function is
known for non-trivial systems, nor is the integration of the Green function in the 3N dimensional
configuration space by any means simple. The true Green function is a theoretical tool generally
unknown for most applications. For small times τ , however, there is a simple approximation to
the true Green function reading

G(R′ ← R,∆τ) = (4πD∆τ)−3N/2 exp

(
−|R

′ −R|2
4D∆τ

)

× exp

(
−∆τ

2

(
V (R′) + U(R′) + V (R) + U(R)− 2EN

))
,

(6.13)

see Sec. D.4 or Ref. [78, 82]. This form resembles the second-order expansion of Ĝ of Eq. (6.8).
While this form might not reveal its usefulness yes, it gives rise to approximations and reinter-
pretations of the PDE, which are covered in Sec. 6.4.

The first goal is now achieved, namely an integral representation of the wave function in the
long-time limit, and even a limiting case of the true Green function is available. However, a
severe caveat of the above Green function lies in the Coulomb singularities of the Hamiltonian
whenever two particles meet, leading to a singular contribution and, ultimately, reducing the
convenience of this approach substantially. In the next section this problem is accounted for
explicitly.

6.3. Importance sampling

One of the most commonly used techniques in the repertoire of MC theory is importance sampling.
It allows including prior knowledge about the solution in the problem. In the case of the diffusion

33



6. Diffusion Monte Carlo

Eq. (6.10), it allows remedying the singularities of the Hamiltonian to yield a Green function
without a singular exponent, which improves the quality of the results significantly. To this
end, Eq. (6.10) is multiplied with a time-independent wave function ψT . The role of ψT will
become apparent later. For now, ψT is some ansatz or candidate solution to the Schrödinger
equation. After some algebraic manipulation, a PDE for the quantity for f = ψTψ follows. The
contributions from the multiplicative potential and the time-derivative are readily recast to act
on f , while the Laplacian transforms as

ψT∇2ψ = ∇2(ψTψ)− ψ∇2ψT − 2∇ψT · ∇ψ =

= ∇2(ψTψ) + ψ∇2ψT − 2∇ · (ψ∇ψT ) =

= ∇2(ψTψ) + (ψTψ)
∇2ψT
ψT

− 2∇ ·
(
(ψTψ)ψ−1

T ∇ψT
)

= ∇2f + fψ−1
T ∇2ψT − 2∇ ·

(
fψ−1

T ∇ψT
)

(6.14)

The appearing gradient ∇ψT is included in the definition of the drift vector, already known from
the Green functions in VMC in Sec. 4.3 in Eq. (6.15). The drift vector reads

u(R) = 2Dψ−1
T (R)∇ψT (R). (6.15)

Inserting the importance-sampled Laplacian into the importance-sampled version of Eq. (6.10)
yields

−∂τf = −D∇2f + f
∇2ψT
ψT

+∇ · uf + (V + U − EN ) f =

= −D∇2f + fψT
−1
(
−D∇2 + V + U

)
ψT +∇ · uf − ENf

(6.16)

and again a known quantity, ψT
−1
(
−D∇2 + V + U

)
ψT can be identified in the equation. It

is the local energy EL = ψT
−1ĤψT from Eq. (4.6). Finally, the PDE takes the form of a the

sink-source drift-diffusion equation

−∂τf = −D∇2f +∇ · (uf)− Sf (6.17)

with a sink-source term
S(R) = EN − EL(R). (6.18)

Note that the derivatives acting on f are the time derivative and the Laplacian, and also the
second term on the right-hand side of Eq. (6.17), including the gradient, that acts on the product
of f and u. The diffusion Eq. (6.17) is almost of the same form as Eq. (6.10). The major
differences are the source term and the additional drift. In contrast to the non-importance
sampled equation (6.10) with source term V + U , the importance sampled source term S above
does not necessarily diverge at particle coincidences and can be a much more regular quantity.
Chapt. 5 is dedicated to constructing wave functions ψT , that render u and S more regular
functions. The above sink-source drift-diffusion equation describes an non-normalized distribution
or density profile subject to diffusion with diffusion constant D and drifting with a locally varying
drift vector u while gaining or losing total mass or normalization due to a local sink-source term
S.

The stationary Schrödinger equation is now cast in a form, that can be solved using MC
methods. Solving this PDE is equivalent to solving the Schrödinger equation within some
limitations further discussed in Sec. 6.9. As for the non-importance sampled diffusion equation,
there exists an integral kernel G̃,

−∂τ G̃(R′ ← R, τ) =
[
−D∇′2 +∇′ · u(R′)− S(R′)

]
G̃(R′ ← R, τ) (6.19)
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that has the same initial condition as G. The Green function G̃ propagates the importance
sampled probability f

f(R′, τ + ∆τ) =

∫
G̃(R′ ← R,∆τ)f(R, τ) dR. (6.20)

The kernel G̃ differs from the kernel G but can be retrieved by insertion of unity.

f(R′, τ) = ψT (R′)ψ(R′, τ)

= ψT (R′)

∫
G(R′ ← R, τ)ψ(R, 0) dR

=

∫
ψT (R′)G(R′ ← R, τ)ψT (R)−1f(R, 0) dR,

(6.21)

from which G̃(R′ ← R, τ) = ψT (R′)G(R′ ← R, τ)ψT (R)−1 follows. Since the propagator Ĝ(τ)
is not norm-conserving, the Green function can be split into a norm-conversing part G̃D, that
describes drift and diffusion, and a branching part G̃B that adjusts the norm of f ,

G̃ = G̃BG̃D. (6.22)

The reason for the naming of the branching Green function will become apparent in the following.
The short-time approximation to G̃D is derived in the appendix in Sec. D.1 for the case of

constant drift and source term and is also available from Refs. [53, 83]. In contrast to the
non-importance sampled Green function G, the importance sampled Green function G̃ is given
by the drift-diffusion part

G̃D(R′,R,∆τ) = (4πD∆τ)−3N/2 exp

(
−|R

′ −R−∆τu(R)|2
4D∆τ

)
(6.23)

and its sink-source contribution

G̃B(R′,R,∆τ) = exp

(
∆τ

2

(
S(R′) + S(R)

))
. (6.24)

The Green function G̃ does explicitly include a drift term, providing a deterministic directedness
in the transition probability, that modulates the Green function’s probability distribution to have
a higher probability in the regions where f has a higher probability. This is a major improvement
of the Green function on its own. Another great improvement of the importance sampling is
the new form of the branching Green function G̃B. Its source term S(R) = EN − EL(R) can be
much more regular compared to the source term of Eq. (6.13) with bare singularities. If exact
conditions for particle coincidences are incorporated into the trial wave function, as discussed in
Sec. 5.2 and in detail in the appendix in Sec. B, the local energy and the sink-source term show
significantly less severe irregularities.

It is no coincidence the importance sampling function shares the symbol ψT with the parame-
terized trial wave function of VMC. While in general, both functions, i.e. the trial wave function
of Chapt. 4 and the importance sampling function of this chapter, need not be identical, in the
majority of cases, the VMC trial wave function is used as the importance sampling function,
since it usually is the best approximation to the wave function available in DMC. In the limiting
case of a perfect trial wave function ψT = ψ0 with perfect normalization energy EN = E0, the
source term is given by S = EN − EL = 0 and G̃B = 1, and Eq. (6.17) describes the probability
of the exact ground state.

In the following sections, it will become clear what specific properties the trial wave function
has to obey in order to yield the true ground state in the long-time limit.
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6.4. The diffusive process

Chapt. D gives a detailed overview of the reinterpretation of the diffusion equation and the
resulting numerical scheme to solve it, including drift and sink-source terms. Here, the key
elements are emphasized within their context. With an integral representation of the ground
state wave function and even a well-behaved Green function from the last section, the majority
of the formal derivation of the DMC scheme is complete. Next is the conceptual reinterpretation
of the integral equation. The notable difference between the ground state eigenvalue problem
and the diffusion equation is that the diffusion equation admits a probabilistic interpretation and,
with importance sampling, even a practical MC algorithm. To this end, assume the numerical
representation of the solution f is of the form

f(R, τ) =
M∑
k=1

λk(τ)δ(R−Rk(τ)) (6.25)

with positive numbers λk(τ), called weights, and norm Λ(τ) =
∑

k λk(τ). Note that f is

not normalized since Ĝ(τ) is not norm-conserving, and therefore Λ(τ) has an intrinsic time
dependence. The true solution f is certainly not composed of (a finite number of) Dirac
distributions. Nevertheless, this representation can be understood as an application of the law of
large numbers: Instead of the whole analytical function f , defined on the entire domain ΩN , the
distribution is replaced by a large but representative set of realizations, (λk(τ),Rk(τ)), where
k = 1, . . .M enumerates the parallelly propagated weights and configurations and τ acts as a
serial index for the Markov chain. The representation of Eq. (6.25) allows to store the distribution
of f only by its weights and configurations. To propagate this representation to the ground
state, any analytically known Green function can propagate f(·, τ) by Eq. (6.20) resulting in an
analytical expression for f(·, τ + ∆τ) due to the Dirac distribution.

f(R′, τ + ∆τ) =
M∑
k=1

λk(τ)G̃(R′ ← Rk(τ),∆τ) (6.26)

It is not possible in general to further propagate the above expression for f(·, τ +∆τ) by inserting
it into Eq. (6.20) again, since the integral over two Green functions,

f(R′′, τ + 2∆τ) =
M∑
k=1

λk(τ)

∫
G̃(R′′ ← R′,∆τ)G̃(R′ ← R(τ),∆τ) dR′, (6.27)

cannot be calculated in almost all cases. Therefore, the complexity of the above expression (6.26)
has to be reduced. The central idea that makes DMC practical is the collapse of the distribution
f(·, τ+∆τ) by drawing random variates from it. That is, for every configuration k in f(·, τ+∆τ), a
new configuration Rk(τ+∆τ) is drawn from the distribution G̃(· ← Rk(τ),∆τ) and subsequently
the distribution G̃(· ← Rk(τ),∆τ) is replaced by a Dirac distribution δ(· −Rk(τ + ∆τ)) centered
at the new configuration Rk(τ + ∆τ). The replacement of the full distribution G̃(· ← Rk(τ),∆τ)
by a single Dirac peak is a harsh approximation, but justified due to the conserved expectation
value.

Exp [Rk(τ + ∆τ)] =

∫
R′G̃(R′ ← Rk(τ),∆τ) dR′ (6.28)

Without conservation of the norm, G̃ is not a probability distribution and a configuration cannot
be drawn from it directly. In practice, the new configuration is drawn from the norm-conserving
drift-diffusion kernel G̃D only.

Rk(τ + ∆τ) ∼ G̃D(· ← Rk(τ),∆τ) (6.29)
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With the new configuration, the branching Green function G̃B is evaluated to update the weight

λk(τ + ∆τ) = λk(τ)G̃B(Rk(τ + ∆τ)← Rk(τ)). (6.30)

Thus, the probability distribution of the next time step becomes

f(R′, τ + ∆τ) =
M∑
k=1

λk(τ + ∆τ)δ(R′ −Rk(τ + ∆τ)). (6.31)

The propagated distribution is of the same form as Eq. (6.25), and the propagation can be
repeated iteratively. For every time step, a new distribution of the form of Eq. (6.25) is generated
with differing weights and configurations. This allows for propagation f for an arbitrary amount
of time. The numerical representation of f is essentially solving the PDE (6.17) of f in the
long-time limit, revealing the ground state in a stochastic sense. Although this approximation is
one of the most central steps in DMC, it also poses great consequences. While the expectation
value is conserved, the information about the variance and any higher moment is eliminated and
the resulting method requires a large amount of configurations to reduce statistical fluctuations.

Note that updating the configuration and weight as outlined above is an approximation. The
approximation’s character is explained in Sec. D.5 in detail. Even though approximate the
corresponding error contributes to the time-step error, vanishing in the limit ∆τ → 0.

The pair of weight and configuration, (λk(τ),Rk(τ)), is subject to an iterative update process
with combined deterministic and stochastic character. It thus performs a random walk in the
configuration space ΩN with some notion of size due to the weight λk(τ). It is therefore often
called a walker in the literature. At this point, the intended computational approach becomes
transparent. Instead of solving the imaginary-time PDE, for example, on a grid, the problem is
rewritten such that an ensemble of walkers explores the configuration space and approximates
the wave function by a set of Dirac distributions. This maps a high-dimensional PDE problem
to the problem of solving classical trajectories, a conceptual and computational improvement
that cannot be underestimated.

6.5. Approximate Green functions and the acceptance probability

At this point, it is worthwhile to recall that G̃ from the above sections is the true Green function
of the PDE (6.17) and therefore not only unknown in general but also a highly complicated
function. In applications, the Green function has to be approximated, with the short-time
approximation being the starting point. As the true Green function follows directly from the
Hamiltonian, an approximated Green function might correspond to a different Hamiltonian.
Consequently, an approximation to the Green function results in a different stationary state f
and thus a different ground state. Even worse, if the Green function does not satisfy detailed
balance, the existence of a stationary state is not guaranteed. This poses a severe mismatch in
the expectation values for any observable. Given that any Green function reduces to a Dirac
distribution in the limit of vanishing time, the error in f reduces with smaller time steps ∆τ . At
the same time, small steps increase serial correlation and limit exploration of the configuration
space. This error can significantly be reduced by an acceptance-rejection procedure [53, 83],
previously introduced for the MH algorithm in the VMC method.

In this regard, consider some approximate Green function and the limit of a perfect trial wave
function ψT → ψ0, and equivalently EL = E0 or G̃B = 1, in the whole configuration space. In
the absence of a branching term, the MH acceptance probability

A(R′ ← R) = min

(
1,
ψT (R′)2

ψT (R)2
G̃D(R← R′)

G̃D(R′ ← R)

)
(6.32)
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6. Diffusion Monte Carlo

preserves the correct stationary distribution ψ2
T = ψ2

0 for any value of τ used in the approximate
Green function. Therefore, an accept-reject step is necessary in the DMC algorithm, even in the
case of a perfect trial wave function. Note, however, that the above argument is only valid in the
limit of perfect trial wave function. For any deviation from the true ground state, the branching
term deviates from unity. The acceptance probability cannot include the branching Green
function, since it is mathematically only intended for norm-conserving transition probabilities.
Even if the scope of the acceptance probability is extended to cover unnormalized distributions,
f = ψTψ0 cannot be evaluated, and thus, the corresponding acceptance probability cannot be
calculated. The acceptance probability of Eq. (6.32) then usually is the best approximation to
the true acceptance probability. Some authors argue [84] that with the accept-reject step, the
equilibrium state of the drift-diffusion equation is conserved, while the error is attributed to the
reweightening due to the branching term.

The key observation is that for an approximate Green function, there remains a time-step
error in the equilibrium distribution despite the acceptance step. Thus, any improvement to the
quality of the Green function further reduces this time-step error, highlighting the importance of
an accurate Green function.

When rejecting some of the proposed walker updates, the formal time step ∆τ does not
correspond to the effective time step ∆τeff for that the walker actually diffuses. The latter
can be calculated by observation of the accepted and rejected walker displacements. A simple
approximation is ∆τeff = Exp [A] ∆τ , with the average acceptance probability, or acceptance
rate, Exp [A], but more elaborate approximations exist. For example, the diffused time can be
calculated from the length of the diffusive displacement by

∆τeff =
Exp

[
p|∆Rdiff|2

]
Exp [|∆Rdiff|2]

∆τ, (6.33)

where ∆Rdiff is the length of the proposed displacement from the diffusion part of the Green
function alone (excluding the displacement due to the drift), and p is the acceptance probability
of the proposed move. The effective time step should be used in the calculation of the branching
term in order to account for the actual diffusion time only. In many applications, however, the
effective time step is very close to the formal time step.

Furthermore, the acceptance probability introduces a notion of probability for the new con-
figuration R′, namely probability p, and the old configuration R, probability 1− p. This can
be exploited to arrive at a more accurate approximation to the updated weight compared to
Eq. (6.30) with the branching Green function of Eq. (6.24). In considering both outcomes with
their respective probabilities p and 1− p, respectively, the new weight reads

λ(τ + ∆τ) = λ(τ)

[
pG̃B(Rk(τ + ∆τ),Rk(τ)) + (1− p)G̃B(Rk(τ),Rk(τ))

]
(6.34)

By first-order expansion of the branching terms in the above equation and rearrangement into
an exponential, the weight reduces to

λ(τ + ∆τ) = λ(τ) exp

[
∆τeff

(p
2

(S(Rk(τ + ∆τ))− S(Rk(τ))) + S(Rk(τ))
)]

(6.35)

where the effective time step was used. This update of the weight incorporates the probabilities
for both configurations, increasing the statistical certainty and reducing the fluctuation of the
weight. The utilization of an acceptance probability in DMC has further consequences resembling
those in VMC, for example, an improved estimator for the observables, cf. Sec. 6.11.
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6.6. Population control

During the time evolution of the diffusion process, the weights experience growth in regions
of low local energy (below the normalization energy) and decay for the opposite case. The
normalization energy EN can be adjusted to control the evolution of the global weight Λ(τ)
and to force Λ(τ) to resemble some target weight Λ0. With the mean-field argument that the
weight of the propagated ensemble Λ(τ + ∆τ) is roughly given by the averaged branching Green
function applied to the current weight,

⟨Λ(τ + ∆τ)⟩ = ⟨G̃BΛ(τ)⟩ ≈ exp
(
∆τ S̄

)
Λ(τ), (6.36)

and the condition ⟨Λ(τ + ∆τ)⟩ = Λ0. The adjustment of the normalization energy for the time
step τ + ∆τ can be estimated with S̄ = EN − ĒL as

EN (τ + ∆τ) = Eref(τ)− ∆τ

∆τeff
ln

(
Λ(τ)

Λ0

)
. (6.37)

Usually, the target weight is the number of walkers that should be propagated in parallel,
Λ0 = M , where M is determined considering the reduction of correlation, hardware limitations,
and computational efficiency. The energy Eref(τ) is inserted for the averaged local energy ĒL
and is the best available guess for the ground state energy in at time τ . The normalization is
adapted in each time step to control the walker ensemble’s total weight.

However, there is a flaw in the branching diffusion process presented so far. To see it, note
that the branching term affects each walker’s weight in a multiplicative way. After T iterations
the weight of a walker takes the form

λ(T∆τ) =

T∏
τ=1

G̃B(τ)λ(0). (6.38)

For the sake of clarity, the dependence of G̃B on the walker trajectory is omitted in the notation.
For a short analysis, assume the initial weight λ(0) = 1 and that all branching terms G̃B(τ) for
τ = 1, . . . T are normally i.i.d. random variables, each with expectation value 1 and variance σ2.
This models a diffusive process with branching terms close to one, including fluctuations that
scale with σ2. Then, from an elementary calculation, the expectation value of λ(T∆τ) is unity.
Its variance to the contrary is increasing exponentially with T as (1 + σ2)T − 1. This example
illustrates the unpredictable nature of products of random variables, which is not limited to the
instructive example of normally distributed random variables.

Therefore, in an ensemble of several thousand walkers, a few will eventually build up excessive
weights during the random walk and dominate the distribution. The distribution of walkers is
then practically reduced to the few walkers with large weights, and the overall distribution loses
a large amount of statistical certainty. Serial correlation only increases the exponential scaling of
the variance.

A simple yet efficient reinterpretation of the distribution f alleviates this issue. Assume for
simplicity a distribution of a single walker,

f(R, τ) = λ(τ)δ(R−R(τ)). (6.39)

If the walker’s weight exceed some reasonable threshold λ(τ) > λmax > 1, the single walker can
be split,

f(R, τ) = αλ(τ)δ(R−R(τ)) + (1− α)λ(τ)δ(R−R(τ)) (6.40)

with some value for α ∈ [0, 1], but ideally α = 1/2. This is a most trivial rewriting. If the
diffusion process, however, is continued for both walkers independently, this manipulation ensures
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bound weights. Another approach must be pursued to treat walkers of little weight, which
practically do not contribute to the distribution. While it is possible to remove walkers with
weight λ(τ) < λmin < 1 with probability λ(τ), this introduces additional fluctuations in the
global normalization constant. A method that does not change the total weight is to join two
lightweight walkers and conditionally replace one with the other with probabilities corresponding
to their respective weights.

(λ1,R1), (λ2,R2) 7→
{

(λ1 + λ2,R1) with probability p = λ1/(λ1 + λ2)

(λ1 + λ2,R2) with probability p = λ2/(λ1 + λ2)
(6.41)

The merging of walkers is a “winner-takes-it-all” game in which one walker is removed from the
ensemble. The total weight is conserved, and a soft lower bound is imposed on the weights. The
size of the walker ensemble M at a given time τ is no longer constant but becomes a variable of time
M(τ). With an updated normalization energy and a birth-death process for the walkers, there is a
slight interaction between them. When walkers with large weights lower the normalization energy,
walkers with less weight are more prone to be removed. This evolutionary process promotes
walkers in beneficial regions with positive branching terms S(R) = EN − EL(R) > 0 and hence
in regions of low local energy. In the long-time limit of the diffusion process, the walkers do not
migrate to the beneficial regions, but walkers outside beneficial regions become extinct. This is
an important distinction between the spatial directedness of the walkers due to the drift, which
stems from the gradient and value of the trial wave function, and the branching term, which
originates from the local energy.

Without limiting the weights with a birth-death process, the VMC walker ensemble could
readily be retrieved from the DMC ensemble by neglecting the walkers’ weights. Thus, one could
simultaneously calculate DMC and VMC results with a single ensemble. With the birth-death
process, however, this is no longer possible since the weights have an actual impact on the walker
distribution by removing or adding walkers.

6.7. Simple propagation scheme

With the above sections in mind, a simple propagation scheme can be laid out. First, an ensemble
of some M(0) walkers with randomly chosen configuration and unit weight must be prepared.
The following procedure is repeated for each time step. For each walker k in the ensemble, the
walker must be propagated by first proposing a new configuration R′ ∼ G̃D(· ← Rk(τ),∆τ).
This is done by the proposal

R′ = Rk(τ) + ∆τu(Rk(τ)) + χ (6.42)

where χ is a normally distributed 3N -dimensional vector χ ∼ N 3N (0, 2D∆τ). The configuration
R′ would be distributed according to G̃D, not the MH acceptance-corrected distribution A× G̃D,
therefore the acceptance probability of Eq. (6.32) is evaluated and the configuration is accepted
with probability A. In the case of rejection, the configuration is not updated.

Rk(τ + ∆τ) =

{
R′ with probability A

Rk(τ) with probability 1−A
(6.43)

Next, the weight is adjusted by Eq. (6.35). Note that the weight is adjusted irrespective of
whether the move was accepted. After every walker was iterated, the new weight Λ(τ + ∆τ) is
calculated, and with it, a new normalization energy from Eq. (6.37). The joining or duplication
of walkers is carried out, resulting in a new number of walkers M(τ + ∆τ). If sufficiently
many iterations have passed, the dependence on the initial configuration has vanished and the
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equilibrium distribution is reached. From there on, the walker ensemble resembles the function
f = ψTψ0, and observables can be calculated by the law of large numbers, cf. Sec. 6.11. This
represents the essence of the DMC algorithm, although various improvements to this simple
scheme are possible as discussed in Sec. 6.13.

Although this simple Green function can give reasonable results, it reliably fails in many
physical systems for the following reasons: The approximation of constant drift and branching
term can always be made more accurate if the time step is lowered, but its accuracy breaks
down near a singularity in both the drift and the branching term independent of the time step.
Such singularities are common near particle coincidences or wave function nodes as discussed in
Chapt. 5.

Since the local energy and the drift term play an active role in the time evolution of the walkers’
stochastic trajectory, in most cases, their evaluation requires special care. With singularities
in both quantities near nodes or nuclei, they reach excessive values in certain critical points of
configuration space. Thus, their values have to be truncated to reasonable limits. Two different
truncation schemes are proposed in Ref. [85] and in Ref. [53].

As might have become apparent from the above sections and the various approximations, there
is some room left for improvements to the Green function. While the simple Green function of
Eq. (6.23) and Eq. (6.24) yields reasonable results, its time-step error, can be reduced significantly,
with the improvements discussed in Sec. 6.13.

The next sections reveal a conceptual weakness in the DMC method outlined so far and adapt
the DMC approach to remedy the problem.

6.8. Fermionic sign problem

Until now, it was silently assumed that the DMC probability distribution

f(R) = ψT (R)ψ0(R) (6.44)

indeed qualifies as a probability distribution, i.e. is normalizable and non-negative everywhere.
However, this is only true for the ground state of bosonic systems and generally violated for
fermionic systems. Fermionic many-body wave functions must have nodes due to their anti-
symmetry. These nodes are easily found whenever the two coordinates for the same spin coincide.
If, for some reason, ψT and ψ0 have identical nodes, f is non-negative. A short analysis of the
nodes of many-body wave functions is required to assess this possibility.

The configuration space of N electrons each moving in d dimensions is RdN (or a subset of
it). The manifold of the nodes induced by anti-symmetry is dN − d since the condition that two
electrons meet is given by a vector equality in d dimensions. The manifold of the general wave
function nodes, given by the single equation ψ = 0, has dimension dN − 1. The full and the
symmetry-induced nodal manifolds are of the same dimension only for the case d = 1, but in
d = 3 dimensions, the symmetry-induced nodes are a sub-manifold of the full nodal hypersurface.
The nodal hypersurfaces of ground state wave functions indeed make use of the full dimensionality
of 3N − 1 and are not restricted to the symmetry nodes by some strange incident. Therefore,
there is no hope that ψT and ψ0 share nodes by accident [86, 87].

If the sign problem is ignored and the diffusion process presented so far is utilized irrespective
of this limitation, the DMC distribution converges to the bosonic ground state, f = ψTψ

+
0 ,

since it has lower energy than the fermionic ground state ψ−
0 . The action of the operator
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Ĝ(τ) = exp
(
−τ Ĥ

)
on a mixture of bosonic and fermionic ground state reads

ψ(τ) = e−τĤ
(
c+(0)ψ+

0 + c−(0)ψ−
0

)
=

= c+e
−τE+

0 ψ+
0 + c−e

−τE−
0 ψ−

0 =

= c+(τ)ψ+
0 + c−(τ)ψ−

0

(6.45)

The fermionic ground state has a higher energy E−
0 > E+

0 and therefore the coefficient of the
bosonic ground state outcompetes the fermionic coefficient in magnitude in the long-time limit.

|c+(τ)|
|c−(τ)| =

|c+(0)|
|c−(0)|e

τ(E−
0 −E+

0 ) →∞, τ →∞. (6.46)

Furthermore, due to statistical fluctuations in the diffusion process, one cannot generate a
representation of the wave function with vanishing bosonic coefficients. There have been some
attempts to bypass the fermion sign problem, each with its benefits and limitations [88–91].

6.9. Fixed-node approximation

The most intuitive approach to acknowledge the fermion nodes is the fixed-node approximation
(FNA). It essentially enforces the non-negativity f ≥ 0 for an arbitrary but fixed trial wave
function ψT . Demanding a non-negative f = ψTψ and at the same time keeping the trial wave
function fixed, imposes additional constraints on the candidate ground state ψ. This constraint
must ensure non-negative f for any trial wave function given. Therefore, the nodes of ψ must be
identical to the nodes of ψT .

∀R ∈ ΩN : ψ(R, τ) = 0⇔ ψT (R) = 0 (6.47)

In general, the propagated wave function ψ(·, τ) cannot converge to the true ground state ψ0

with this constraint. It instead converges to the state of lowest energy that satisfies the additional
constraints and hence shares the nodes of ψT . The state the diffusion process converges to in the
FNA is called the fixed-node ground state, ψfn

0 , with a corresponding fixed-node energy Efn
0 .

The nodal surface of a wave function can be defined as

S[ψ] =
{
R ∈ ΩN

∣∣ψ(R) = 0
}
. (6.48)

The FNA energy is variational, i.e. the additional nodal constraints increase the ground state
energy by reducing the search space in the Hilbert space, cf. Eq. (4.2).

Efn
0 [S] = min

ψ∈H,S[ψ]=S

⟨ψ|Ĥψ⟩
⟨ψ|ψ⟩ ≥ E0 (6.49)

For any given nodes S this introduces the fixed-node error of the energy, E0−Efn
0 [S], which is of

quadratic order in the error of the fixed-node ground state δψ = ψ0 − ψfn
0 ,

Efn
0 = ⟨ψfn|Ĥfn

ψfn⟩ = ⟨ψ0 − δψ|Ĥ(ψ0 − δψ)⟩ =

= ⟨ψ0|Ĥψ0⟩ − 2⟨δψ|Ĥψ0⟩+ ⟨δψ|Ĥδψ⟩ =

= E0 − 2E0⟨δψ|ψ0⟩+O2(δψ) =

= E0 +O2(δψ),

(6.50)

since ⟨δψ|ψ0⟩ = 0. The probability distribution f does also show a fixed-node error, ψT δψ =
ψT (ψ0 − ψfn

0 ), however, linear in δψ.

42



6.9. Fixed-node approximation

If the trial nodes ST = S[ψT ] approach the true nodes S0 = S[ψ0], the nodal constraint is
satisfied already and the true ground state energy is recovered, Efn

0 [S0] = E0. Note that the trial
wave function is not required to approach the true ground state. The trial nodes approaching the
true nodes are sufficient. Therefore, the ground state energy and the ground state are functionals
of the nodal surface alone.

Unfortunately the analysis of topological characteristics and general structure of exact nodes
remains a challenging field of research [86, 87, 92–94]. This is not surprising, since the full
information of the ground state must be present in the nodal structure. The complexity of the
mapping from the nodes to the ground state resembles the complexity of the Hohenberg-Kohn
map, discussed in Sec. 3.1. Thus, only a few exact properties of ground state nodes are known.

So far, the diffusion process does not respect the nodes imposed by the trial wave function,
and a modification to it is required. Assume a walker that is subject to the previously derived
diffusion process with some finite time step is crossing a node of ψT during its random walk. Since
ψ shares the trial wave function’s nodes, f has quadratic nodes at ST . A node-crossing random
walk may be unlikely due to the little probability near the nodes and a drift vector repelling the
walker from the node, but it is still possible. With an increasing time step, the probability of
node-crossing increases. By reducing the time step further and further, the probability of the
walker crossing the trial nodes vanishes, since the acceptance probability is proportional to ψ2

T .
In the limit of a vanishing time step, the FNA holds automatically. However, any attempt to
cross the trial nodes must be rejected for a finite time step. This is accomplished by modification
of the acceptance probability, which is adjusted to vanish if nodes are crossed. For any proposed
move from R to R′ replace the MH acceptance probability by

Afn(R′ ← R) = A(R′ ← R)×
{

1, sign(ψT (R′)) = sign(ψT (R))

0, sign(ψT (R′)) ̸= sign(ψT (R))
(6.51)

This confines the random walk within a nodal pocket. A nodal pocket ω around some configuration
R0 is the region of space that is reachable by any continuous path that starts at R0 and does
not cross a node.

ω[ψ,R0] =
{
R ∈ ΩN

∣∣R ∈ γ(I) with γ : I → ΩN\S[ψ] : γ(0) = R0

}
(6.52)

The configuration R0 is restricted such that it does not lie on a node, i.e., ψT (R0) ̸= 0. The
configuration space is thus segmented into a number of mutually non-overlapping nodal pockets.
The trial wave function has constant sign inside a single nodal pocket. Using the manipulated
diffusion process has side effects on the resulting equilibrium distribution. These are discussed
next.

The Schrödinger equation solved by the fixed-node wave function differs from the original
Schrödinger equation in general and has a different Hamiltonian. The fixed-node Hamiltonian [95]
can be written down explicitly for any imposed nodes S.

Ĥ
fn

[S] = Ĥ + V fn

{
0, R ∈ S
1, R /∈ S

(6.53)

In addition to the molecular Hamiltonian Ĥ of the physical problem, it incorporates a non-
passable potential barrier, V fn →∞, at the nodes. Any wave function minimizing the action of

Ĥ
fn

[S] must vanish at the potential barriers. Solving the Schrödinger equation for the fixed-node
Hamiltonian in the whole configuration space is equivalent to solving it for each nodal pocket
separately since the nodes impose zero boundary conditions for each nodal pocket, and there is
no interaction between the solutions of different pockets. With an infinite potential barrier, the
wave function is also allowed to have discontinuous first-order derivatives at the node. Let the
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6. Diffusion Monte Carlo

set of all nodal pockets be {ωα} with ΩN\S = ∪αωα. In each pocket α, an independent wave
function

ψfn
α : ΩN → R+ with ψfn

α

∣∣
ΩN\ωα

= 0 (6.54)

solves the fixed-node Hamiltonian as an eigenstate with some energy Efn
α . Since each pocket wave

function is nodeless inside its pocket, one can utilize the standard diffusion process to converge it
to the bosonic ground state within the pocket.

Ĥ
fn
ψfn
α = Ĥψfn

α = Efn
α ψ

fn
α (6.55)

A wave function on the whole domain is given by some linear combination of the pocket wave
functions.

ψfn =
∑
α

cαψ
fn
α (6.56)

A wave function’s time evolution under the action of the propagation operator Ĝ
fn

(τ) corre-
sponding to the fixed-node Hamiltonian is given by

ψfn(τ) = Ĝ
fn

(τ)ψfn(0) =
∑
α

cα(0) exp
(
−τ
(

Ĥ− EN
))

ψfn
α

=
∑
α

cα(0) exp
(
−τ
(
Efn
α − EN

))
ψfn
α

=
∑
α

cα(τ)ψfn
α

(6.57)

Absorbing the exponential into the time dependence of the coefficient, it becomes apparent that
only the coefficients of minimal energy contribute to the wave function in the long-time limit.
The normalization enters by adjustment of the normalization energy EN , which has to be set
equal to the lowest Efn

α in order to maintain normalization in the long-time limit. Thus, the
branching part of the diffusion process depopulates nodal pockets of higher energy. While ψfn(τ)
is not necessarily an eigenfunction of the fixed-node Hamiltonian for any time τ ,

Ĥ
fn
ψfn(τ) =

∑
α

cα(τ)Efn
α ψ

fn
α → (min

α
Efn
α )ψfn

eq (6.58)

it is in the limit τ → ∞, since only coefficients with minimal pocket energy survive. Denote
the index of a nodal pocket with minimal energy by α̃. The fixed-node energy is then given by
Efn

0 = minαE
fn
α = Efn

α̃ . One might stumble upon the fact that now the wave function has a rather
strange form. It vanishes everywhere except for the nodal pocket ωα̃. In this form, the wave
function does not obey anti-symmetry and thus disqualifies as a solution. Anti-symmetrization
from Eq. (5.2) can restore the anti-symmetry.

ψfn(τ) =
1

N !

∑
π∈S(N)

sign(π)πψfn
α̃ (τ) (6.59)

The question arises whether, after the anti-symmetrization, some regions of configuration space
still have vanishing wave function amplitude, i.e. whether the anti-symmetrization is sufficient to
generate a qualified wave function from a single pocket. To this end, fortunately, one important
topological property of ground state nodes comes to aid: the tiling property [92]. It states that
there is only one unique nodal pocket, irrespective of the system under study. For any nodal
pocket ω and any configuration R /∈ ω that does not lie on a node, a permutation π can be found
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6.9. Fixed-node approximation

such that πR ∈ ω. Due to the tiling property, there are still an unknown number of nodal pockets,
but all are permuted copies of a single unique pocket. The two-nodal-domains conjecture [93]
even support significant evidence that there are at most two nodal domains, a positive and a
negative one. With the tiling property at hand, the solution of the fixed-node Hamiltonian on
a single nodal pocket is sufficient. The remaining configuration space is “filled” or tiled with
the wave function ψfn

α̃ by permutations. The minimization of the energy over all pockets α
becomes trivial. In fact, all nodal pockets are equivalent. This implies that the diffusive process
rejecting node-crossings indeed yields an equilibrium state that respects the nodes, represents
the fixed-node ground state, and results in an DMC energy variational in the nodes. The DMC
method based on the FNA is called fixed-node diffusion Monte Carlo (FNDMC).

Note that even without the rejection of node crossings in the standard diffusion process, node
crossings at small time steps are not probable. First, the acceptance probability lowers node
crossing probabilities, as mentioned above. Second, the drift vector near nodes points away from
the local nodal plane, cf. Eq. (B.31), and its magnitude scales inversely with the distance to the
node.

The diffusive process with node-crossing rejection is still not an algorithm free of errors for
finite time steps. Assume two configurations, R1 and R2, to be in the same nodal pocket as
depicted in Fig. 6.1. The straight line connecting both configurations passes through another

R1 R2

ψT > 0

ψT < 0

Figure 6.1.: Illustration of the cross-recross error. While moves across nodes are forbidden in
FNDMC, the DMC algorithm cannot efficiently notice double crossings. While a nodeless random
walk connecting R1 and R2 might have a rather different probability assigned to it, the shortcut
across the nodes introduces an error in the probability distribution.

nodal pocket, crossing two nodal surfaces. With a sufficiently large time step, a random walk
might lead from R1 to R2 by crossing and recrossing the nodal surface in a single time step. The
diffusive process has no indication that a node has been crossed and accepts the proposed move.
With a smaller time step, double node-crossings become less probable, and the random walk
eventually cannot step across the other nodal pocket within one move. Thus, the double-crossing
violates the FNA. Assume that the nodeless path of least length between R1 and R2 is the
one indicated in Fig. 6.1. A random walk along this path might be assigned a much smaller
probability since more distance has to be traveled. The shortcut of crossing and recrossing
therefore corrupts the probability distribution, introducing another contribution to the time-step
error, that can be extrapolated, see Sec. 6.15.

In the following, there will be no notational reminder for the FNA. Every DMC wave function
in this thesis is a fixed-node wave function and the terms FNDMC and DMC will be used
interchangeably.
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6. Diffusion Monte Carlo

6.10. Trial wave function nodes

The nodal structure of a trial wave function determines the fixed-node energy in a DMC
calculation. Therefore, the nodes play one of the most important roles in FNDMC. In a single-
determinant wave function without back-flow, the orbitals alone determine the nodal structure.
There is, however, a severe shortcoming of single-determinant nodes. The representation of a
single-reference wave function is based on the product of two determinants, one for each spin
channel, ϕ = ϕαϕβ. Therefore, the nodes of a single-reference wave function are given by the
condition ϕα(Rα) = 0 ∨ ϕβ(Rβ) = 0. The corresponding nodal structure

S[ϕ] = S[ϕα] ∪ S[ϕβ] =
{
R ∈ ΩN

∣∣ϕα(Rα) = 0
}
∪
{
R ∈ ΩN

∣∣ϕβ(Rβ) = 0
}

(6.60)

cannot represent the nodal structure of a general wave function due to its topology. A simple
instructive example is the two-dimensional case, where some function f(x, y) could exhibit nodes
in the form of, for example, a circle. A product function g(x)h(y) necessarily has nodes that
are given by intersecting horizontal and vertical lines in the x-y-plane and cannot resemble a
circle-like shape.

Studies on the topology of interacting and non-interacting wave functions have found several
cases where the non-interacting nodes also violate other topological characteristics of the inter-
acting wave function [86, 87, 93, 94]. With this limitation in mind, the expectations about the
FNDMC energy of a single-reference trial wave function must be reconsidered. The corresponding
FNDMC energy should not be expected to converge to the true ground state energy. The inter-
esting question is, instead, how close the FNDMC energy of the simple trial wave function is to
the true ground state energy compared to more elaborate methods, including Slater determinant
expansions. An important note on expansions in Slater determinant space is given in Ref. [86].
If an “inappropriate” determinant is included in the expansion the nodal structure might get
spoiled and the FNDMC energy increases. Thus, simply adding more determinants does not
guarantee to systematically improve the energy. However, a multi-reference trial wave function
can of course be highly beneficial to more accurately resemble the true wave function’s nodes.

For reasons explained in Chapt. 11 no determinantial superposition and no back-flow is used
in this thesis, and the trial wave function is restricted to the form of Eq. (5.14). With a single
determinant, its building single-particle orbitals play a vital role. They alone define the nodal
structure of the trial wave function. In this thesis, orbitals from DFT are used, which are
represented on a spatial grid that exploits the cylindrical symmetry of diatomic molecules,
cf. Chapt. E for details. The density functionals used to self-consistently calculate the orbitals
are the LDA in the Perdew-Wang parametrization [47] and the exact exchange functional in the
KLI approximation [34, 35].

The comparison of wave functions with different nodes and therefore DMC energies is given
in Sec. 9.1. The wave functions include the single-determinant Slater-Jastrow wave function
discussed in Sec. 5.3 generated with LDA or xKLI orbitals and multi-determinant Slater-Jastrow
wave functions.

6.11. Observables

Now that the diffusive process of DMC is adapted to deal with the fermion sign problem and an
ensemble of walkers that resemble the (fixed-node) ground state can be generated efficiently, the
evaluation of observables from the ensemble is discussed.

In VMC, the evaluation of observables beyond the energy is straightforward. ψT represents the
wave function and f = ψ2

T is accessable by the walker ensemble. In DMC, on the other hand, the
wave function ψ0 is not accessible analytically. The realized ensemble is f = ψTψ0. Whenever
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a walker ensemble is available for a certain distribution, expectation values can be estimated
by the law of large numbers, cf. Eq. (4.22) for the VMC case. In DMC, the walker ensemble
additionally holds weights, which have to be respected in the observable estimation. Although
the weights are genuinely random variables due to their coupling to the random configuration,
they are treated like deterministic weights in the statistical analysis of the observables. This is
solely due to the fact that the inclusion of the random nature of the weights would prohibit the
analysis of most of the observables’ statistical properties.

While in VMC the notion of time was an artificial relabeling with no physical meaning, in
DMC, time becomes a more central variable for several reasons. Recall the representation of the
walker ensemble at time τ is

f(R, τ) =

M(τ)∑
k=1

λk(τ)δ(R−Rk(τ)) (6.61)

with a normalization constant

Λ(τ) =

M(τ)∑
k=1

λk(τ). (6.62)

Time-averaged from the equilibration time, which is assumed to be τeq = 0, to the time T∆τ ,
the complete walker ensemble reads

F (R, T ) =
1

T

T∑
τ ′=1

M(τ ′)∑
k=1

λk(τ
′)δ(R−Rk(τ

′)) (6.63)

with normalization

Λ(T ) =
1

T

T∑
τ ′=1

M(τ ′)∑
k=1

λk(τ
′) =

1

T

T∑
τ ′=1

Λ(τ ′). (6.64)

Instead of a time-average over non-normalized distributions f(·, τ) one could argue to average
over normalized distributions Λ(τ)−1f(·, τ), therefore enforcing normalization of f(·, τ) in every
time step. The counter-argument is, that once the equilibrium state is reached, the operator Ĝ
is norm-conserving for the right choice of EN and thus the differing normalization constants at
different times are only the statistical fluctuations of the over all ensemble. A refinement of this
approach is required since the normalization energy is adjusted every time step to keep a constant
population of walkers, cf. Sec. 6.6. This refinement [53] will be omitted here for simplicity and
discussed in Sec. 6.13.

Next, a DMC estimator can be derived by generalizing Eq. (4.22) to a weighted ensemble by
inserting the ensemble F in the definition of the expectation value.

⟨ψ0|ÔψT ⟩
⟨ψ0|ψT ⟩

=

T∑
τ ′=1

M(τ ′)∑
k=1

λk(τ
′)OL(Rk(τ

′))

T∑
τ ′=1

M(τ ′)∑
k=1

λk(τ ′)

(6.65)

Depending on the character of the observable Ô, it might be necessary to exclude some of the
observations OL(Rk(τ

′)) from the above sum. The local energy and the drift vector are two
such observables that become very large in magnitude near either nodes or points of particle-
coincidences, cf. Sec. B. Truncation schemes have been proposed [53, 85] to limit the observed
values allowed for accumulation within some reasonable range.
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6. Diffusion Monte Carlo

With the same arguments made in the derivation of Eq. (4.22), the acceptance probabilities
pk(τ) can be incorporated in the estimator to reduce its variance, which reads

T∑
τ ′=1

M(τ ′)∑
k=1

λk(τ
′) [pk(τ

′)OL(Rk(τ
′)) + (1− pk(τ ′))OL(Rk(τ

′ − 1))]

T∑
τ ′=1

M(τ ′)∑
k=1

λk(τ ′)

. (6.66)

6.12. The extrapolation estimator

Now that an estimator for the distribution f = ψTψ0 is found, estimates over this distribution
can be calculated. However, the target quantity to obtain, the ground state energy, is not related
to ψTψ0 but to ψ2

0. The ground state energy can nevertheless be calculated, even with f = ψTψ0.
To this end, the trial wave function is expanded in eigenstates of the Hamiltonian, ψT =

∑
i ciψi,

and the overlap integral

⟨ψ0|ĤψT ⟩
⟨ψ0|ψT ⟩

=
⟨ψ0|

∑
i ciEiψi⟩

⟨ψ0|
∑

i ciψi⟩
=
⟨ψ0|Ĥψ0⟩
⟨ψ0|ψ0⟩

(6.67)

yields the ground state energy due to orthogonality, ⟨ψi|ψj⟩ = δij . In this work, the DMC energy
is calculated from the local energy with the estimator of Eq. (6.66). The growth estimator [53,
96], an energy estimate based on the evolution of the total weight common in DMC, is not used.
An unconverged wave function ψ = ψ0 + δψ with ⟨ψ|δψ⟩ = 0, however, is not an eigenstate of
the Hamiltonian and the above expectation value is contaminated.∫

fEL =
⟨ψ|ĤψT ⟩
⟨ψ|ψT ⟩

=
⟨ψ0|ĤψT ⟩
⟨ψ|ψT ⟩

+
⟨δψ|ĤψT ⟩
⟨ψ|ψT ⟩

= E0
⟨ψ0|ψT ⟩
⟨ψ|ψT ⟩

+
⟨δψ|ĤψT ⟩
⟨ψ|ψT ⟩

= E0
⟨ψ0|ψT ⟩

⟨ψ0|ψT ⟩+ ⟨δψ|ψT ⟩
+
⟨δψ|ĤψT ⟩
⟨ψ|ψT ⟩

= E0

(
1− ⟨δψ|ψT ⟩⟨ψ0|ψT ⟩

)
+
⟨δψ|ĤψT ⟩
⟨ψ0|ψT ⟩

+O(δψ2)

= E0 +
⟨δψ|Ĥ− E0|ψT ⟩
⟨ψ0|ψT ⟩

+O(δψ2)

(6.68)

Any error in the probability distribution f implies an error in the accumulated observables.
The error is of first order in the deviation of the unconverged state to the ground state and
simultaneously first order in the deviation of the trial wave function from the ground state.

In a QMC calculation, the two distributions available are ψ2
T and ψTψ0 with their respective

estimators for the observable Â

Am =
⟨ψ0|ÂψT ⟩
⟨ψ0|ψT ⟩

(6.69)

AT =
⟨ψT |ÂψT ⟩
⟨ψT |ψT ⟩

(6.70)

where Am is called the mixed estimator [97]. However, the desired estimator is

A0 =
⟨ψ0|Âψ0⟩
⟨ψ0|ψ0⟩

. (6.71)
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The distribution ψ2
0 is not realized in the VMC or DMC ensembles. Only in the limit ψT → ψ0

all estimators are equal. To analyze the order of errors in each estimator, define ψ0 = ψT + δψT
with ⟨ψ|δψT ⟩ = 0. Thus, the trial wave function is exact in the limit δψ → 0. The accumulation
procedure of Eq. (6.67) cannot be applied to any observable Â. It requires the ground state ψ0

to be an eigenstate of Â. For observables that commute with the Hamiltonian, [Ĥ, Â] = 0, the
eigenstates of Â can be chosen to be the eigenstates of Ĥ. Then the same arguments as above
apply, and Â can be estimated by the mixed estimator, Am = A0.

For observables that do not commute with the Hamiltonian, like the density, kinetic energy,
potentials, dipole moments, the above is not applicable. In this case, the mixed estimator is
fundamentally biased. However, from

⟨ψ0|ψ0⟩A0 = ⟨ψ0|Âψ0⟩
= ⟨ψ0|ÂψT ⟩+ ⟨ψ0|ÂδψT ⟩
= Am + ⟨ψT |ÂδψT ⟩+ ⟨δψT |ÂδψT ⟩
= Am + ⟨ψT |Âψ0⟩ − ⟨ψT |ÂψT ⟩+ ⟨δψT |ÂδψT ⟩
= 2Am − ⟨ψT |ÂψT ⟩+ ⟨δψT |ÂδψT ⟩
= 2Am −AT + ⟨δψT |ÂδψT ⟩

(6.72)

together with ⟨ψ0|ψ0⟩ = ⟨ψ0|ψT ⟩+ ⟨ψ0|δψT ⟩ a trivial but longer calculation shows

A0 = 2Am −AT +O(δψ2
T ), (6.73)

where the first order error cancels. This gives rise to an estimator for the ground state observable
that is quadratic in the error of the trial wave function, the so-called extrapolation estimator [97]

Ae = 2Am −AT . (6.74)

It can be verified, that Ae samples from the distribution (2ψ0−ψT )ψT with an error of quadratic
order in δψT .

Ae =
⟨(2ψ0 − ψT )|ÂψT ⟩
⟨(2ψ0 − ψT )|ψT ⟩

+O(δψ2
T ) (6.75)

The corresponding calculation is again elementary. The extrapolation estimator will become
particularly important for the evaluation of the density in Sec. 7.

6.13. The Umrigar-Nightingale-Runge Green function

So far, a reasonable approximation to the true Green function has been presented in Sec. 6.7. It
stems from the short-time approximation of a Schrödinger equation. However, there are some
flaws in the Green function, especially its behavior at special points or hypersurfaces of the
configuration space, like electron-nuclear coincidences or wave function nodes. As mentioned in
Sec. 6.2, the ideal Green function G(R′ ← R) is independent of its rightmost variable R and
represents the stationary solution as a function of its leftmost variable R′. The simple normally
distributed Green function is hence a good approximation for free electrons, since free electrons
move in Gaussian wave packages after localization. To also capture the electron behavior in
the proximity of a nucleus, Umrigar, Nightingale and Runge (UNR) [53] extended the simple
Green function by an exponential, hydrogen-like distribution to cover the limiting case of an
electron confined by an ion. For the Green function’s analytical form the reader is referred to
the instructive Ref. [53]. Its physical interpretation is insightful and mentioned in the following.

49



6. Diffusion Monte Carlo

Starting from the characteristic behavior of the wave function near critical points, cf. Sec. B,
the improved Green function takes into account the correct asymptotic behavior of the wave
function, its drift vector, and its local energy, going beyond the approximation of constant
drift and branching term. From the correct asymptotic behavior, a truncation method for
local energy and drift is devised to reject outliers more accurately. The drift-diffusion Green
function, proposing single electron displacements, is adjusted to conditionally sample from two
elementary probability distributions. In the vicinity of a nucleus, the Green function draws from
an exponential distribution that resembles the hydrogen-like 1s orbital, with high probability.
Sec. C.9 given a detailed explanation on how to draw samples from the exponential distribution
in three-dimensional space. Further away from a nucleus, the probability to draw from the
hydrogen-like distribution decreases while sampling from the normal distribution becomes more
probable. Additional measures are taken to increase the de-correlation of the proposed moves.

The branching Green function is also subject to improvements by incorporating the acceptance
probability weighting from Eq. (4.22) into the evaluation of the branching term of Eq. (6.24) and
applies a truncation scheme for the local energy. While the requirement to account for rejected
moves with an effective time step was explained in Sec. 6.5, the actual calculation of the effective
time step is refined in Ref. [53].

Another important improvement is the conception of a correct treatment of the weights,
together with the adjustment of the normalization energy. If the propagation operator Ĝ is
realized with a manually adjusted normalization energy for every time step, EN (τ), the ensemble
weight for this single time step λk(τ) are biased towards the normalization energy. The history of
the adjustments has to be remembered and included in the weighting of observables to account
for and remedy the bias of the manual adjustment.

6.14. Persistent walkers

The following section is an excerpt from the author’s publication [45] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

Over the course of the huge number of MC steps in a DMC run, when walkers explore the
configuration space, some of them can appear to become immobilized in configuration space
for many propagation steps. Proposed moves generated from the Green function are rejected
due to the walkers local environment, making the walker a persistent one. While this does not
influence the DMC run if the walker’s weight is reducing (i.e., if it is located in a region where
the local energy is above the normalization energy), it becomes a serious bias of the statistical
accumulation if its weight increases, and therefore the walker duplicates itself. Umrigar et al.
[53] chose to multiplicatively “boost” the acceptance probability by a constant factor to higher
values after a fixed number of rejections to cope with this problem. We found that the boosting
process in some cases requires too many steps to effectively prevent a persistent walker from
harming the statistical accumulation. Therefore, we here adjust the notion of when a walker can
be regarded as being persistent and propose appropriate actions.

Assume that in some calculation the average acceptance probability takes the value of p =
Exp [A]. A walker governed by this acceptance rate stays at its current location for one iteration
with probability P (1) = (1− p). The probability to stay at the same location for n consecutive
iterations is P (n) = (1 − p)n. The probability decreases exponentially with the number of
idle iterations n, resembling the geometric distribution. This equips every idle walker with a
probability. In a calculation there might be walkers with only a few idle steps n and therefore
(small but) reasonable probabilities P (n). On the other hand, if walkers are idle for many
iterations, this hints to some issue in their diffusive process. Their associated probability will
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become very small. If we chose a small threshold probability Pt, we can categorize the reasonable
idle times by P (n) > Pt, and the un-physical idle times by P (n) < Pt. Solving P (n) = Pt for

the number of idle steps, nidle(p, Pt) = ln(Pt)
ln(1−p) yields an estimate of how many idle iterations can

be regarded as physically reasonable, given the acceptance rate Exp [A] and some predefined
threshold probability Pt. Setting the threshold probability Pt to a small value, we can compute
the corresponding maximum number of idle steps nidle that a walker should be allowed to be
immobilized for. Every walker immobile for more than the determined nidle steps can be regarded
as persistent. Of course, the acceptance rate Exp [A] may be a poor indicator for the local
acceptance rate in some places of configuration space. However, by choosing a small enough
threshold Pt one can compensate for a locally lower acceptance rate.

The major advantage of this approach is incorporating the acceptance rate Exp [A] into the
definition of persistence. It relieves the user to set an actual number for nidle. At the same time,
the new criterion is more broadly applicable since varying acceptance rates readily adjust the
notion of persistence. The new parameter is the threshold Pt. It is an absolute probability, valid
independent of the system under consideration.

Once a walker is identified as persistent, we implement the boosting [53] of the acceptance
probability. Additionally, we set the walker’s branching term to one, essentially conserving its
weight during the boost process. Thus no duplication of a persistent walker is possible. As
this manipulates the diffusive process, an alternative would be to only ban the walker from
contributing to the statistical accumulation of the observables, while waiting for an accepted
move within the unchanged diffusion process.

6.15. Summary of errors

The DMC approach comes with various types of well understood errors, which the user has to
respect to generate reliable results. While, intuitively, errors seem to be a threat to the accuracy
of a method, all numerical calculations are bound to exhibit errors and understanding the errors’
behavior is central to assess the reliability of the methods. The error of a DFT calculation, in
contrast, usually cannot be assessed rigorously from within DFT.

The first and most prominent error of any MC application is the statistical error of the
stochastic estimates. At the same, this is a relatively pleasant type of error since it can be
estimated from the MC method. Methods to calculate the uncertainty of an MC estimate are
presented in Chapt. C.

The time-step error of DMC originates from a finite time step and formally vanishes in the
limit ∆τ → 0. This limit can never be realized since the DMC approach requires a finite time
step to explore the configuration space. There are many contributions to the time-step error
from various approximations, e.g., the approximate Green function, the approximate drawing
procedure discussed in Sec. D.5, the MH acceptance step, the cross-recross error, to only name a
few. The time-step error can nevertheless be readily assessed with an extrapolation. Therefore,
the DMC calculation is repeated several times with different time steps approaching zero. An
extrapolation to zero then yields the estimates free of the time-step error. This extrapolation
naturally is computationally quite expensive because multiple independent calculations are
required for a single extrapolation. In this thesis, some results are evaluated using a time-step
extrapolation. However, the time-step error can become small enough to be omitted entirely,
especially if the improved Green function from Sec. 6.13 is used. By comparison of the time-step
extrapolation, i.e. multiple values for some observable and its extrapolated value, the time step
can be chosen, such that the time-step error of a single calculation is in an acceptable range,
e.g., within the statistical error. In a conservative estimate, the time-step error is linear in the
time step, but some indication of Ref. [53] point to a quadratic scaling.
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6. Diffusion Monte Carlo

The FNDMC energy is a functional of the nodal structure of the trial wave function, cf. Sec. 6.9.
With the single-reference Slater-Jastrow trial wave function from Sec. 5.3 the true nodes of the
exact ground state cannot be resembled, cf. Sec. 6.10. In contrast, topological inconsistencies of
the trial wave function nodes are inevitable. Nevertheless, the FNDMC energy can reasonably
estimate the true ground state energy. The fixed-node error is assessed in Sec. 9.1 by comparison
to FNDMC energies in the literature.

The estimation of observables that do not commute with the Hamiltonian is biased by the
mixed-estimator. Although the extrapolation estimator remedies a large amount of this bias,
it might still be present in many observables, e.g., all observables, that directly stem from the
density or equivalently and local multiplicative observable. This is particularly probable for large
deviations of ψT from ψ0. The results from Sec. 9.2 allow some insights into the mixed estimator
bias and its extrapolation scheme.
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7. Estimating the charge density

With VMC and DMC methods at the disposal, any observable can be estimated. The wave
function based QMC approach promises to capture almost all correlation effects and the estimated
observables represent quasi-exact ground state properties. One such observable is the density. It
has its own connection to the wave function via the Hohenberg-Kohn theorem and is the central
quantity of DFT, cf. Sec. 3.1. However, to generate an estimate for the spatially resolved density
n(r) a estimation strategy is given below.

7.1. Binning technique

The following section is an excerpt from the author’s publication [45] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

To capture the electron density with spatial resolution, we use the binning technique. This
well-known approach generates a histogram of the underlying density by performing a Bernoulli
experiment for each bin at each walker realization. For VMC, where the many-body probability
function ψ2

T is known analytically, Ref. Assaraf et al. [98] introduced an improved estimator
for the density, based on derivatives of the trial wave function. In DMC, to the contrary, the
probability function ψTψ0 is only known in terms of its stochastic realizations, and thus such
approaches are not possible. Another density estimation common for Markov chains in general
is kernel density estimation, which can be understood as a regularization or smoothing of the
Dirac distribution. It maps the walker’s location in the configuration space (together with other
available information about the walker state, such as derivatives) to some function that estimates
the single walker‘s density. Often kernel density estimation produces visually more appealing
representations of the density compared to a simple histogram. However, a smoothing of the
density has no justification in QMC, e.g., using kernel density estimation near the nucleus, the
underlying kernel would hardly reproduce the electron-nucleus-cusp condition. Therefore, we
resort to the binning method in conjunction with our prolate spheroidal grid, see Sec. E.3.

To start with, the (symmetrized) one-body density operator reads

n̂(r,R) =
N∑
i=1

δ(r−Ri) (7.1)

with the ith electron coordinate denoted by Ri. The operator is applied to the probability
function f from Eq. (6.25). To represent the resulting continuous (mixed estimator) density

n(r) =

∫
ΩN

f(R)n̂(r,R) dR (7.2)

we introduce a discretization or binning of the domain of a single electron Ω into subdomains or
bins {ωj}, such that, ωj ∈ Ω pairwise disjoint and ∪jωj = Ω. The density integrated over any
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7. Estimating the charge density

such bin ω is

N(ω) =

∫
ω

n(r) dr =

∫
ΩN

f(R)
∑
i

∫
ω

δ(r−Ri) dr dR

=

∫
ΩN

f(R)
∑
i

1ω(Ri) dR = Exp

[∑
i

1ω(Ri)

]
,

(7.3)

where 1ω(r) is unity when r ∈ ω, and zero otherwise. For sufficiently small bins, where the density
has small variations over the bin’s extent, the density at some point r ∈ ωj is approximated by
the mean density n(r) = |ωj |−1N(ωj). Thus the binning estimator for the density of bin j is

ňj(R) = |ωj |−1
∑
i

1ωj (Ri) (7.4)

Evaluating the expectation of the density value with respect to the probability density f yields
the estimator of the density at bin j,

nj =

∫
f(R)ňj(R) dR =

= |ωj |−1
∑
k

λk

∫
δ (R−Rk)

∑
i

1ωj (Ri) dR =

= |ωj |−1
∑
ki

λk1ωj (Rki).

(7.5)

The coordinate Rki is the ith electron coordinate from walker k. To accumulate the density on
the entire domain, this results in the following scheme. For every electron i of every walker k, we
map the electron’s coordinate Rki to its corresponding bin ωj and increase the bin’s density by
the walker’s weight over the bin’s volume, |ωj |−1λk and repeat this for every time step.
We choose our bins ωj to align with the prolate spheroidal (PS) grid cells, sketched in Fig. E.2.
This has several advantages, as discussed in the next section.

7.2. Density fluctuations

The following section is an excerpt from the author’s publication [45] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

The density from any QMC approach comes with a statistical error. With the binning method,
the density not only depends on the realization of the walkers’ random walk and its inherent
fluctuations, but also on the volume of the bins. From Eq. (7.5), electrons visiting small bins
cause a greater change in the density than electrons in larger bins, which reflects in the variance
of the density. The variance of ňj with respect to a realization of f reads

Var [ňj ] =

∫
f(R)ň2j (R) dR− n2j =

= |ωj |−2
∑
k

λk
∑
i,i′

1ωj (Rki)1ωj (Rki′)− n2j (7.6)

By splitting the double sum into diagonal and off-diagonal parts, we arrive at

Var [ňj ] = nj
(
|ωj |−1 − nj

)
+ ρj (7.7)
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7.3. Density propagation technique

where
ρj = |ωj |−2

∑
k

λk
∑
i ̸=i′

1ωj (Rki)1ωj (Rki′). (7.8)

The first term of Eq. (7.7) resembles the typical Bernoulli variance of p(1 − p), modified to
account for the bin size. The additional term ρj represents the variance caused by statistical and
electronic correlations. Its only contributions arise from two electrons of the same walker being
in the same bin, and thus links the variance of the one-body density to the two-body density.
The |ωj |−2 scaling of the variance is apparent from Eqs. (7.5) and (7.7). Thus smaller bins result
in higher fluctuations.
Near a focal point in the PS grid the bin size becomes small enough to induce larger fluctuations
on a small scale, however, the vicinity of the nuclei is a region of high density and great statistical
significance. To the contrary, with few walkers visiting the regions far from the nuclei, the
increased bin volume counteracts the lack of statistical significance. Using the PS grid cells
as bins, the number of walkers visiting an individual bin does not needed to span the same
range of orders as the density, greatly lowering the fluctuations compared to bins of constant vol-
ume. This property of the variance of ňj reflects in the statistical error of its expectation value nj .

In Sec. G, we propose a conceptually simple a posteriori refinement procedure based on
extrapolation of the density to remedy the fluctuations in the notorious domains of the QMC
density. We will refer to those regularized or refined DMC (VMC) densities as rDMC (rVMC)
densities. If not explicitly mentioned, we always report regularized densities.

7.3. Density propagation technique

The binning method offers a simple method to calculate the one-body density with spatial
resolution. The random nature of the density estimation of the above sections is, however,
governed by large fluctuations. For every walker of N electrons accumulated to the density, N
weighted, independent Dirac distribution are added to the density field. Using kernel density
estimation, every inserted electron contributes with a smooth, or at least controlled, whole
function to the density. This renders densities from kernel estimation much more regular
and well-behaved. However, calculating the density with an arbitrary kernel is an additional
approximation, since the kernel is not justified from within QMC.
Upon second thought, however, there is a reformulation of the density estimator very similar
to kernel estimation, but based on the fundamentals of the DMC approach. Recall, that the
equilibrium state is not altered by a propagation step.

f(R′, τ + ∆τ) =

∫
G(R′ ← R,∆τ)f(R, τ) dR (7.9)

For the sake of notation an ensemble of a single walker is considered. With the Dirac representation
for the distribution at time τ ,

f(R, τ) = λ(τ)δ(R−R(τ)), (7.10)

the propagated distribution at time τ + ∆τ reads

f(R′, τ + ∆τ) = λ(τ)G(R′ ← R(τ),∆τ). (7.11)

Then, the mixed-estimator density from Eq. (7.2) is given by

n(r) =

∫
f(R′, τ + ∆τ)n̂(r,R′) dR′

= λ(τ)
∑
i

∫
G(R′ ← R(τ),∆τ)δ(r−R′

i) dR′.
(7.12)
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7. Estimating the charge density

Hence, the density is given by a smooth function, or at least a function of the same regularity
as the Green function G. The Dirac character of the density operator n̂(r), however, does only
collapse a single integral of the N integrals involved in the above equations. For Green functions,
that move electron by electron, and thus can be cast as

G(R′ ← R,∆τ) = gi(R
′
i ← R)Q(R1:N\i ← R), (7.13)

or equivalently, separate into a marginal transition kernel for some electron coordinate Ri and
some remainder marginal transition kernel for the remaining coordinates R1:N\i. Then, the
above density can be evaluated.

n(r) = λ(τ)
∑
i

∫
g(R′

i ← R(τ))Q(R′
1:N\i ← R(τ))δ(r−R′

i) dR′

= λ(τ)
∑
i

gi(r← R(τ))
(7.14)

With the marginal distribution Q integrated over the variables R1:N\i and its normalization
as a transition kernel, the contributions of Q vanish from the integral. The index i on the
marginal transition probability gi only denotes, which of the electrons in the walker to move. The
density above originates from a single walker, yet is given by a sum of functions, that are defined
on a larger domain. The contributions gi(r ← R(τ)) are usually not single or multiple Dirac
distributions, but regular functions. If a walker is accumulated to the density, every electron i is
considered separately. For every position r, at which the density should be calculated, the Green
function is evaluated for the transition, in which electron i moves from Ri(τ) to r, while all other
electrons are fixed at the positions R1:N\i(τ). For an ensemble the density is straightforwardly
extended to

n(r) =
∑
ki

λk(τ)gi(r← Rk(τ)). (7.15)

The above estimator is called the propagating estimator in the following.
This method allows to estimate the density not only inside bins, but at distinct locations.

However, the density can be discretized as in Sec. 7.1 to compare the results with the binning
technique. To this end, define the binned density of bin ωj with rj ∈ ωj as

nj = |ωj |−1
∑
ki

λk(τ)gi(rj ← Rk(τ)). (7.16)

Comparing the above and Eq. (7.5) the true nature of the propagating estimator is apparent.
Instead of the binning estimator 1ωj (Rki), which only locates and counts the electrons in their
respective bins, the propagating estimator propagates the Dirac distribution further in time to
arrive at a continuous representation of every electron’s contribution, gi(rj ← Rk(τ)), to the
density. The propagating estimator is guaranteed to have a smaller variance, compared to the
Bernulli-type binning. In principle any Green function can be used to estimate the density, that
is separable in the above sense of Eq. (7.13). This also allows for different Green functions for
the density accumulation and ensemble propagation.

However, approximate Green functions have to be corrected with the MH acceptance probability.
This acceptance step, as well as the branching contribution to the Green function in DMC
complicate the application of the propagating method. Not only has the acceptance probability
of any walker to be calculated for every bin j. Additionally the source term including the local
energy is required, if the Green function should capture the branching. This requirements manifest
in a large computational effort. The branching, and even the acceptance probability, could, of
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7.3. Density propagation technique

course, be omitted. However, the behavior of the resulting errors have yet to be examined. Note
that the transition kernel including the MH acceptance step of Eq. (C.22) is itself singular for
rejections. While the transitions to every other location can be calculated by gi(rj ← Rk(τ)),
the rejection probability for rj = Rki(τ) has to be calculated by Eq. (C.23). Therefore, a
discontinuous contribution to the density enter through the backdoor of the rejection probability.
With this consideration in mind, the propagating estimator is not entirely smooth. However, it
is significantly less noisy compared to the binning estimation. With the binning estimator the
contributions of a walker k to the density originate solely from the electron coordinates of Rk(τ),
while the propagated distribution of the walker contributes to the density in a broad region
around the electron coordinates. Only the rejection part of the propagated distribution results
in a discontinuous contribution at the non-propagated electron coordinates of Rk(τ), while it
has a significantly reduced magnitude. A promising advantage of the propagating estimator
is that exact properties of the density are respected. Suppose the Green function accurately
describes the electron-nucleus cusp. Since the propagating estimator inherits the characteristics
of the Green function, it also exhibits an accurate cusp. Compared to the binning method,
where an accurate cusp requires the accumulation of usually several billions of walkers, with the
propagating estimator an accurate cusp is given with a few walkers already. The propagating
estimator thus also directly benefits from the development of more accurate Green functions.

The proposal part of the Green function is usually a function that allows fast evaluation.
Therefore, it can efficiently pivot the regions of space or the set bins for low probability. Then,
truncation schemes can be deviced to only evaluate the acceptance probability or the source
term for locations with probabilities above a certain threshold. This reduces the computational
effort for regions that are unlikely to more than marginally contribute to the density.

To the best of the authors knowledge, a propagating estimator has not yet been mentioned
in the literature. Although first attempts to implement the above estimator were made in the
preparation of this thesis, and a proof of the concept was successful, some practical aspects
regarding possible biases and efficiency of the propagating estimator are not yet fully understood.
Further research is required to understand the resulting density estimates and to benchmark the
computational efficiency of the new estimator. The concept of the propagating estimator is not
limited to QMC applications but applies to general density estimation in MC applications.
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8. Inversion theory

In DFT, the central approximation that almost solely determines the quality of the results besides
numerical accuracy is the exchange-correlation energy functional Exc[n] from Eq.(3.11). The
true xc functional would allow for accurately calculating the energy and density of an interacting
system with the computational effort of calculating a non-interacting system. To guide the
development of xc functionals, comparison with quasi-exact methods is a traditional concept.
Comparison of energy values, i.e., DFT energies with true ground state energies from highly
accurate quantum chemistry methods, is the most apparent benchmark of an xc functional and
offers some indication of the deficits of the functional. However, there is little information to
compare, and the qualities that characterize a good xc functional remain shadowed. Unfortunately,
the true xc energy as a density functional is almost impossible to calculate numerically since
it incorporates the response to any density variation. While the xc functional determines the
total energy, its functional derivative, the xc potential vxc from Eq. (3.12), has a one-to-one
correspondence to the density. The xc potential therefore holds a significant fraction of the
information encapsulated in the xc energy functional but offers a richer comparison. The true xc
potential can be calculated from a given exact density in a process called inversion. Since the
xc potential is spatially resolved, the qualitative characteristics and even quantitative values of
an approximated xc potential can be evaluated against the true inverted xc potential. For this
reason, inversion has a long history and marked prominent changes in DFT development [99–115].

With quasi-exact densities from the QMC method, density inversion is the natural next step
to better understand and construct density functional approximations.

The following chapter is an excerpt from the author’s publication [116] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

8.1. The Kohn-Sham map

The Hohenberg-Kohn theorem (HKT) [14] establishes a one-to-one correspondence between a
density n and a potential v up to a constant. Therefore any KS potential directly leads to a
unique density and, in principle, any density must also lead to a unique (up to a constant) KS
potential. For the sake of clarity we omit spin indices here and in the following whenever it is
reasonable, even though some expressions might genuinely be spin-resolved. Since the Hartree
and the external potential (given the particle number) have their own one-to-one mapping with
the density in finite systems, the potential-density-map does not only connect the KS potential
with the density, but also the xc potential itself. Thus, we use the symbols for forward and
inverse maps for the KS as well as the xc potentials. The (forward) map from potential to
density is numerically rather simple, requiring the solution of the KS equations for all orbitals
contributing to the density,

F [vxc] = n. (8.1)

The inverse map

I[n] = vxc, (8.2)
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although guaranteed to exist and be unique by the HKT, is a much more intricate and difficult to
realize mapping. It belongs into the class of inverse problems [117] and is ill-posed [118], where
well-posedness requires the existence of a solution, its uniqueness, and the continuous dependence
on the initial conditions. A general approach to inverse problems is based on regularization
strategies [117], i.e. some well-chosen transformation of the input data to arrive at a well-posed
problem or at least render the inverse problem less ill-posed. With too little regularization,
the ill-posedness is still present, while too much regularization puts an unnecessary bias onto
the inverted potential. Between these limiting cases, there usually is an optimal range for the
regularization and often much effort has to be spend to find it. Determining the corresponding
potential for a given density (or given spin-densities) is a challenging task. On the other hand,
the quality of any candidate potential can readily be evaluated by its density’s difference to
the target density, since the forward map is realized with high accuracy at low computational
cost. HKT guarantees the one-to-one correspondence mathematically, based on the variational
principle by an energy difference. In the proof of the HKT one exploits that analytically one can
identify an infinitesimal amount of energy. In the numerical picture the guaranteed one-to-one
correspondence becomes volatile to the point where is breaks down, because all real numerics
works with a limited precision. A simple, well-known example for the non-uniqueness of the
potential in a finite-precision numerical realization is the following. Take any molecular potential-
density pair and add any positive function of small spatial extent to the original potential in
the far asymptotic region. The additional repulsive potential does not alter the density in
a numerically noticeable way, because in the far asymptotic region, the density already has
decayed to a number that is negligible in a calculation with finite numerical precision. Thus,
the density corresponding to the manipulated potential will be identical to the original density
within numerical accuracy, disproving the uniqueness of the potential to density in a numerical
representation. Analytically, however, the manipulated potential is linked to a new density that
differs from the original density, even if only ever so slightly. Revisiting the proof of the HKT
with the intention to allow for differing (spin-)densities and KS-Hamiltonians, yields insight to
the degree of uniqueness the HKT guarantees. With this strong form of the HKT [119–121], our
aim is to probe the environment around the potential and its corresponding density and make
the consequences of differing potentials with similar densities more transparent. For any two
KS potentials that share the same external potential, vKSσ and v′KSσ, and their corresponding
densities, nσ and n′σ, the argument of the HKT is based on the quantity

J =
∑
σ

∫ (
vKSσ − v′KSσ

) (
nσ − n′σ

)
≤ 0. (8.3)

Here and in the following, integrals without explicit notation of the variables that are being
integrated over denote volume integrations over the functions’ full domain. If the two potentials
are not equal, vKSσ ̸= v′KSσ, then J has to be strictly negative, J < 0, due to the variational
principle [14, 119]. Identical densities would contradict a negative J , hence nσ ̸= n′σ, uniqueness
is guaranteed, and the HKT follows. When the density (or potential) of one density-potential
pair approaches the density (or potential) of the other pair, the absolute value of J decreases
until it vanishes in the limiting case of identical densities (or potentials up to a constant). J
is at least quadratic in the density-potential variation, since a linear variation in density (or
potential) induces a linear variation in the potential (or density). Eq. (8.3) allows to quantify the
limitations on the numerical realization of the uniqueness of the potential-density map. While the
proof of the HKT starts from a given potential, J treats density and potential equally and allows
to assess the consequences of small differences in the density. With the numerical resolution
restricted to a small positive number ϵ, representing the floating point precision, one has J < −ϵ.
In this line of thought, any two numerical densities with J ∈ [−ϵ, 0] cannot be distinguished
from each other. While ϵ might be very small, the exponentially decaying asymptotic tail of the

60



8.1. The Kohn-Sham map

densities difference in Eq. (8.3) allows for significant variations in their corresponding potentials.
Splitting the KS potential in is constituents, allowing the external potential to cancel and

carrying out spin summation in the Hartree part, the fraction of J corresponding to the xc
potential is extracted,

J =

∫ (
vH − v′H

) (
n− n′

)
+
∑
σ

∫ (
vxcσ − v′xcσ

) (
nσ − n′σ

)
=JH +

∑
σ

Jxcσ. (8.4)

The Hartree contribution is a positive quantity JH > 0, which can be seen by the relation
−4πn = ∇2vH and the first Green identity. JH plays a role in many inversion methods and has
repeatedly been identified [101, 122–124]. The above arguments also transfer to Jxc and show
that xc potentials for densities that agree within numerical resolution can differ significantly, e.g.,
in regions of low density.

A weaker form of ambiguity of potential-to-density map stems from the Coulomb singularity
at the nuclei. In the presence of an Z/|r− ξ| divergence for a nucleus at ξ with charge Z, the
value of the xc potential at the nuclei becomes irrelevant. Although those points build a null
set, the Coulomb divergence dominates in close vicinity of the nuclei and renders the values of
the xc potential less important in those regions. Thus, the forward map is rather insensitive to
variations of the potential at the nuclei. For example, the xc potential associated with Generalized
Gradient Approximations (GGAs) typically diverges at the nuclei, yet GGAs can successfully
predict energies and other observables. However, the same consideration for the inverse map
yields a very different picture: A small variation of the density at the nuclei typically results
in a very large variation in the potential. In order for the density to correspond to a molecular
Hamiltonian, it has to satisfy the cusp condition,

d

d|ϵ| ln n̂(|ϵ|) = −2Z (8.5)

with a separation vector ϵ = r− ξ and |ϵ| the distance between the nucleus and some coordinate
r, where n̂ is the density spherically-averaged with respect to the nucleus’ position. This fixes
the density to an exponentially decaying form, with exponent proportional to Z. If the density
does obey the cusp condition, but with a slightly different exponent Z̃ ̸= Z, the xc potential
has to account for this deviation, as the external potential has a fixed singularity Z/|ϵ|. As a
consequence, the xc potential will develop a singularity of the type (Z̃ − Z)/|ϵ|. Thus, even
for tiny deviations Z̃ − Z ̸= 0, the spatial form of the inverted xc potential will be massively
affected: Small variations of the density yield diverging differences in the potential. The inversion
is thus ill-posed: While the forward map is straight forward, the inverse map is sensitive to
small changes in the density and many candidate potentials produce densities very close to the
reference density.

Numerically realizing an inversion therefore requires one to handle the ambiguity in the
potentials as good as possible. With ambiguity there is no predetermination of some characteristics
of the xc potential. This seemingly unfavorable aspect of inversion can be reinterpreted as an
advantage because it ultimately allows the user to select those characteristics. This is part of the
regularization that is necessary to handle inverse problems. Since the regularization influences the
inversion outcome, inversion schemes have to be chosen carefully. Fig. 8.1 illustrates how different
inversion methods that start from the same density can yields different inverted potentials.
For example, the asymptotic behavior of the xc potential is known to be −1/|r| from analytic
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considerations [44, 125], therefore this exact property can be incorporated into the inverted
potential manually. This is often realized with the Fermi-Amaldi potential [126, 127]

vFAxc = −N−1vH (8.6)

or other prototype xc potentials with correct asymptotic decay.

The ambiguity in the domain of the potentials significantly simplifies the development of Exc

functionals. While tailored variations in the xc energy functional result in desired variations in
the energy (and less considered variations in the xc potential), the density might remain almost
unchanged. This offers a path to lower the functional-driven error [128] of a density functional
approximation, without having to worry too much whether one might increase the density-driven
error.

With a substantial part of the mathematical rigor of the HKT hidden in numerically inaccessible
features of the density, numerical realization of the inverse map may be beyond reach in many cases.
With these limitations in mind, let us examine the use case of inversions, namely the generation
of xc potentials from high quality densities. Most of the time, such densities originate from a
method other than DFT, i.e. coupled cluster, Møeller-Plesset perturbation theory, configuration
interaction or QMC methods to only name a few. Those densities are never the true density, but
might be a very reasonable approximation to it for two reasons. In any methods to calculate
accurate densities there remains some conceptual convergence error. These can be the truncation
of an expansion in Slater determinants or the fixed-node approximation in DMC, for example.
Another error is given by the numerical representation, most often due but not limited to a
finite basis set. Any inverted xc potential can only refer to the (high-accuracy but approximate)
numerical density, which will be called the reference density from here on. While the errors in
the reference densities might be negligible for almost all applications and especially for visual
comparison, inverse problems are pathologically susceptible to numerical errors of the input
data [117], i.e. the reference density. We will discuss this in detail for the case of the statistical
fluctuations in DMC densities. In order to reproduce the slight inaccuracies of the reference
density, the inverted potential tends to build up significant spurious features, in some cases to an
extent where the inverted potential is useless.

In addition to the inverse problem being ill-posed, the v-representability problem can also
prevent one from being able to solve the inversion problem. Even when the exact interacting
density is non-interacting v-representable, its numerical representation might not be. In such
a case, all of the criteria for well-posedness, i.e., existence, uniqueness, and stability of the
solution, might be violated. The same applies if the exact density itself is not non-interacting
v-representable. In the following, however, we always assume that the densities that we feed into
the inversion are non-interacting v-representable.

8.2. Inversion techniques

The problem of inverting the KS map has been addressed many times and with various methods.
Wang and Parr [99] were amongst the first to compose an iterative scheme, that updates an
initial potential with feedback from the difference of the current and the reference density. Zhao
et al. [101] devised an extrapolation scheme to yield an inverted potential in the limit that the
Hartree potential of the reference and the inverted density be identical, i.e. JH = 0. The work of
Ref. [129, 130] retrieves the inverted potential from the comparison of a suitable DFT energy
density with the corresponding wave function energy density. Many more approaches to the
inverse problem exist [99–114].

In the following we present an iterative scheme to improve some initially guessed xc potential
by repeated application of an update rule until convergence. While our reference density is
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Figure 8.1.: Ambiguity: A schematic sketch of the mapping from xc potential space to density
space. The true map from the potential vxc to the density n is indicated by the solid line. Any
inversion (dashed lines) starts from the numerical approximation or representation ñ of the
true density n. Using different inversion methods, the approximate density ñ maps back to
different inverted potentials. While the differences in the density domain might appear small,
the differences between the inverted potentials can be large. In other words, a “small basin” in
density space can map to a “large basin” in potential space. Conversely, distinct potentials can
result in visually very similar densities. The question arises how to measure or quantify the
distinctness of densities in contrast to the distinctness of the corresponding potentials.
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Figure 8.2.: Starting point dependence: In the framework of iterative potential updates, the
initial xc potential poses a significant bias to the converged inverted potential. For example,
features in the asymptotic region of the target xc potential corresponding to the reference density
cannot be uniquely reconstructed.
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8. Inversion theory

denoted by n, the KS-density of the current iteration is denoted by n(i) or n′ if the precise
number of the iteration step does not matter. Any update rule can be written as

v(i+1)
xcσ = v(i)xcσ + ϵ∆vxcσ[n(i), n] (8.7)

where ϵ is some feedback strength to manipulate the speed of convergence and ∆vxc[n
′, n] aims

to improve the potential with information from the current and reference densities, n and n′,
respectively.

v(0)xc 7→ n(0)σ 7→ ∆vxcσ[n(0), n] 7→ v(1)xcσ 7→ . . . (8.8)

Any iterative update scheme has an intrinsic starting point dependence via the initial xc potential

v
(0)
xc . Two different starting potentials can converge to different self-consistent inverted potentials

with an almost identical density, see Fig. 8.2. Since the inverted potential is almost invariant
under changes of potential in low-density regions, as discussed in Sec. 8.1, the asymptotic behavior
of the initial density is practically left unaltered throughout the iterations. Solving the inverse
problem with a method based on update rules has an important technical advantage. Most
update rules fit into existing DFT codes with little effort, as the update of the xc potential in the
inverse problem is nothing more than the update of the xc potential in a self-consistent forward
problem. This is applicable to update rules that fall into the class of LDAs, GGAs, and even
meta-GGAs, where we denote an update rule as “falling into the LDA, GGA, or meta-GGA class”
when the update procedure requires only knowledge of the density, or density and gradient, or in
addition also the kinetic energy density, respectively.

The major quantity of the update rule is the update functional ∆vxc[n
′, n]. It should provide

the reasonable corrections to the potential in order to change the current density n′ in such a way
that it gets closer to the reference density n. The optimal update functional is the well-known
inverse response function χ−1, which is generally not known as an explicit functional of the
density

δv(r) =

∫
χ−1(r, r′)δn(r′) dr′. (8.9)

A successful update functional needs to satisfy several challenging requirement. First, the density
spans a wide range of values, often over several orders of magnitude, while the xc potential
has a very limited range of values (confined in the interval [−10, 1] for the potentials found
in this work). Second, the update functional has to convert the input densities to physically
reasonable potential updates. For efficient updates this requires the update functional to have
some incorporated knowledge of the non-locality of the KS equations, i.e. how a variation of the
potential alters the density. The more of this knowledge is implemented into an update rule, the
better can it predict reasonable potentials.

A common idea [120, 131] is the a priori determination of the direction of the update ∆vxc[n
′, n].

Imagine at some point r the current density n′(r) is less than reference density n(r). For the
densities to align, the update to the current potential should be negative, since a more negative
potential attracts more density, and thus increases n′(r). If ∆vxc has this property globally,
i.e. ∆vxc[n

′, n](r) < 0 when n′(r) < n(r) and vice versa for all r, we call ∆vxc sign-consistent.
Sign-consistency is no necessary requirement for an update rule to be successful, since the KS
equations themselves and the normalization of the density are non-local operations. Thus, even
if the update rule is sign-inconsistent, the KS scheme could (by the semi-local Laplacian, the
convoluting non-local Hartree potential and normalization) decrease the density in the next
iteration at some point despite the potential was decreased at the same point. Usually (in our
experience) the sign-consistency helps to accelerate convergence and update rules, while a large
violation of the sign-consistency tends to give less accurate results.

Many choices for update rules can be found in the literature [101, 112, 123, 124, 129–132]. In
the course of the research that led to this paper, we have tested various update rules, but in the
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8.2. Inversion techniques

following we focus on a few ones that we discuss below, because they appeared as particularly
advantageous to us.

To start with, the Hartree potential offers a special access to the inversion procedure. Up to a
constant, the Hartree potential has a unique relation to the density, since the Poisson equation
grants uniqueness for given boundary conditions. If the Hartree potentials of two densities align,
the densities must be equal. Since in addition, the Hartree potential readily converts a density
to a physical potential, the update

∆vHAR
xcσ = vH[n′]− vH[n] (8.10)

is well-known in inversion. The update is connected to the minimization of JH from Eq. (8.4),
where JH plays the central role of a minimizing functional in the inversion method devised
by Zhao et al. [101]. The Hartree update to the potential is arbitrarily smooth [133] due to
the integration of the density, i.e. it does not inherit any cusps or numerical artifacts of the
reference density. Its non-locality usually accelerates convergence, but simultaneously violates
sign-consistency. While the Hartree update is locally sign-consistent in a large portion of the
density’s domain, at points of rapid density changes, including its nuclear cusps, the smoothing
character of the Hartree potential prevents it to resemble those sharp details. The Hartree
potential at a nuclear cusp is smooth and of quadratic order with the distance to the nucleus.
From a multipole expansion of the Hartree potential, the update has the form of a dipole
potential in the asymptotic domain, ∆vHAR

xcσ → p · r̂/|r|2 with some vector p. Therefore slight
changes in the asymptotic regions are possible with the Hartree update without “overwriting” an
already existing −1/|r| behavior from the initial xc potential. The Hartree potential has no spin
dependence as it models electrostatic repulsion from electrons independent of the spin. However,
as an update in the inversion for a spin-polarized system, utilization of spin-dependent Hartree
potentials, vHσ = vH[nσ], is advantageous, since the density feedback is resolved in each spin
channel. Furthermore, the one-to-one correspondence due to the Poisson equation only holds per
spin channel in the spin-polarized case.

Another conceptually very transparent update rule [131] derives from a purely local approxi-
mation of the inverse response function.

∆vDEN
xcσ = n′σ − nσ (8.11)

The update to the potential at some point in space stems only from the density difference
at this point. This update is sign-consistent and needs to gain any non-local character from
repeated updates, that include non-locality from the KS equations into the inverted potential.
The way how this update rule handles the asymptotic region in unfortunate: Since ∆vDEN

xcσ decays
exponentially, as does the density, it renders the update unable to alter the potential even in the
near-asymptotic regions.

Additionally, the update does not map the wide range of density values to moderate xc
potential values, which leads to severe short-comings of the resulting update cycle. Not only is
the asymptotic domain of the potential almost unaffected by a DEN update. Additionally at the
nuclei the density differences are usually large and do not qualify as updates to the potential. In
an all electron calculation, the density is largest at the nuclei and usually also changes its values
at the nuclei from iteration to iteration in a self-consistent calculation upon distant variations of
the density due to normalization. The density differences in Eq. (8.11) at the nuclei inherit the
large magnitude and map it to the potential update. This leads to large spikes in the potential at
the nuclei, easily overshooting the optimal update. In the subsequent iteration the overshooting
is corrected for with a maybe even larger overshooting in the opposite direction. This leads to
oscillations in the iterative scheme and often introduces characteristic wiggles near the nuclei not
bound to the close vicinity of the nuclei. To prevent such behavior, the feedback strength ϵ has to
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8. Inversion theory

be lowered, even if the update would need strong feedback elsewhere, e.g., the asymptotic domain.
Modifications to scale the update by multiplication with powers of the distance, |r|(n′σ − nσ), or
in general some fixed local weights, w(r)(n′σ − nσ), to counteract the imbalance from nuclear
to asymptotic density values are presented in Ref. [131]. While these in principle can help to
improve the update, we have not found sufficient relieve from the above mentioned disadvantages
of this method.

To address the above issue, we introduce a weightening of the density difference with the
inverse Hartree potential w = v−βH [n] and some −1 < β <∞. Due to is smoothness and its strong
tendency to follow the magnitude of the density, the Hartree potential is an optimal candidate
for a weight function, without the necessity for the user to define the weight function w(r). Note
that the Hartree potential incorporates non-locality into the weight. Large density differences,
that stem from large absolute density values alone, are moderated by the weightening. However,
a large feedback due to a large relative density difference is not reduced by v−βH . One could argue
that a weightening that accomplishes the same and is yet even simpler is the inverse density
w(r) = n−1. But such a weight breaks down in the asymptotic region of molecular densities,
where the density decays exponentially, since the resulting potential update (n′σ − nσ)/nσ will
eventually diverge exponentially. The potential update resulting from the “density over Hartree”
approach is

∆vDoH
xcσ =

n′σ − nσ
vβH[n]

. (8.12)

The scaling parameter β allows for adaptation of the method, affecting the damping at the nuclei
as well as the asymptotic behavior, mimicking the same parameter from Ref. [131]. For the
purpose of this work, we only present results for β = 1.

Another approach to yield reasonable potential updates is to utilize a density functional
with potential vxc for the update potential, ∆vxc = vxc[n

′] − vxc[n]. Since the xc potential
of any reasonable density functional maps densities to potentials, one can utilize them in the
inversion process. Unfortunately, many density functionals yield potentials that have spurious
features (e.g., GGAs close to the nucleus). Furthermore, it has been argued that some recent
developments in DFT have led to better ground-state energies, but did not necessarily lead to
improved densities [134]. Therefore, and due to numerical considerations, we restrain to local
density approximations here.

∆vLDA
xcσ = −

(
vLDA
xσ [n′σ]− vLDA

xσ [nσ]
)

(8.13)

For the sake of transparency we employ the exchange part of the LDA vLDA
x = −Axn

1
3 in our

update rule omitting a correlation potential. The one-third exponent decreases large densities
and enhances lower densities, mapping the density scale to potential scales. While the LDA
update is strictly local and sign-consistent, oscillations at the nuclei are still possible, even though
much smaller compared to the DEN update.

Our final update rule to be presented combines the inverse Hartree weight with the LDA
update with some adjustments. Apparently the density to the power of one third as in the
exchange-only LDA is a good mapping of density values to potential values. In self-consistent
LDA calculations the xc potential shows a range of xc potential values that is in good agreement
with the values of the true potential. When dividing the LDA potential (differences) by the
Hartree potential, this property is lost. Therefore we introduce exponents for the potentials as a
parameter and tailor the expression to yield the LDA potential in the case of vanishing exponent.
The resulting update reads ∣∣vLDA

xσ [n′σ]
∣∣(1+β) − ∣∣vLDA

xσ [nσ]
∣∣(1+β)

vβH[n]
(8.14)
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8.2. Inversion techniques

The prefactors involved in vLDA
xσ , i.e., Ax and the factors related to spin scaling for polarized

densities, only introduce a global prefactor for the potential update, that unnecessarily scales
with β and forces the user to adapt the update strengths ϵ when varying β. We have found
the update rule to be more consistent across different systems without the scaled prefactors,
i.e. requiring less adjustment of the user. Since the Hartree potential is usually larger than the
xc potential, the above update has the tendency to show globally lower amplitudes for larger β.
We therefore also divide the Hartree potential in the denominator by the particle number N .
The resulting “LDA over Hartree” update is given by

∆vLoHxcσ =
n′σ

(1+β)/3 − nσ(1+β)/3
N−βvβH[n]

(8.15)

We denote the method by LoH(β), to state the used value for β. Then LoH(0) is equivalent to
the LDA-based update rule. Though the LoH(1) update does not directly resemble the DoH
update, it corrects the numerators exponents of the density to 2/3 when using a denominator
with a the non-exponentiated Hartree potential. The LoH rule is sign-consistent. Its update
damps the density feedback at the nuclei and improves the decay of the update in the asymptotic
region by weighting and adjustment of the density values with a power law. The parameter β can
be chosen in a relatively large range without affecting the results too much. At the same time the
dependence on β originates from the interplay of numerator and denominator and therefore, the
effects that changing β has on the update rule’s asymptotic behaviour are somewhat subtle and
not always straightforward to foresee. We illustrate the update rule in Fig. 8.3, where the updates
∆vxc in the course of an inversion of the reference xKLI density (with initial LDA potential and
the update rule HAR) at iteration 200 are plotted on the left panels, including several values of β.
The panels to the right, show the same for a reference density from QMC subject to statistical
fluctuations. The updates ∆vxc of course differ in absolute magnitude, therefore we normalize
them by division by their largest absolute value. The HAR update rule is not sign-consistent,
but follows the sign of the density difference roughly. The sign-consistent rules share nodes with
the difference of current and reference density. The update rules HAR, LDA and LoH are able to
update the inverted potential in the asymptotic regions compared to the exponentially decaying
DEN and DoH. The rule LoH(0), or LDA equivalently, have reduced exponential decay (by a
factor of 1/3 and get magnified in the asymptotic region due to the inverse Hartree weight, which
renders it capable of adjusting the asymptotic regions. The LoH rules of varying parameter show
that small values for β enforce a preferable scaling in the asymptotic region. Larger values of β
have fast exponential decay (with values of β > 3 even faster than for DEN or DoH) and focus
on corrections to the regions around the nuclei. On the other hand, low β map the orders of
magnitude of the density to an increasingly low range of potential values, squeezing the orders of
magnitude in the density. A reasonable range of β is therefore [0, 3], while values in the interval
]− 1, 0] still yield a sign consistent update, but tend to become less efficient as they do not take
into account the density any more as β → −1.

It is possible and in general also a good idea to combine the above update rules instead of
using a single one. We use different update rules in parallel, but sequential application is also
possible. Since each rule can holds its own feedback strength ϵ, cf. Eq. (8.7), we are free to assign
feedback parameters to the ingredient rules separately. This defines a large space of parameters
to explore and we explain which choices we took in the following.

Since the Hartree update reaches out to the asymptotic regions, has non-locality included,
and has superior smoothness, it is our base ingredient. Experience has shown that a feedback
feedback strength for the HAR update of 0.5 yields good results. On top of the HAR rule, we
try any other presented update rule. For example, we denote with “HAR+DEN” an inversion
in which the HAR rule was used with the DEN rule in parallel. Due to the large values of
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Figure 8.3.: The different update rules of Sec. 8.2 are compared, visualizing the properties
associated with the respective update rules. The upper left panel shows the update rules DEN,
HAR, DoH and LoH(0), while the lower left panel shows the update rule of LoH(β) for different
values of β. The density difference is apparent from the DEN method. The current density
n′ to evaluate the update rules is taken from the 200th update cycle for the inversion based
on the smooth HAR method for N2. The initial xc potential is the LDA potential from a
standard self-consistent DFT calculation. The reference density is the self-consistent density of
a DFT calculation of the exact exchange functional within the KLI approximation. The right
panels shows the same update rules as the left panels. However, the reference density is the
QMC-A density for the nitrogen molecule and the initial potential is the Fermi-Amaldi potential.
Therefore, the right panels visualize the effects of statistical noise in the reference density. The
update potentials ∆vxc have been normalized to their maximum value on the plotted interval for
easier visual comparability.
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8.3. Measuring inversion quality

density differences of the other rules we choose a feedback strength of 0.1 for every rule but HAR.
Note that by the combination of update rules, their effects on the potential could cancel each
other, slowing or even preventing convergence, but if feedback strengths and rules are chosen
carefully the opposite is more likely, i.e. combining the advantages of multiple rules. E.g. the
label HAR+LoH(0.5) corresponds to an update rule of ∆vxcσ = 0.5×∆vHAR

xcσ + 0.1×∆vLoHxcσ with
β = 0.5. While we have defined the update rule LDA in Eq. (8.13), we do not report any results
for this rule, since it is equivalent to LoH(0) up to a constant factor.

This concludes our presentation of the the update rules and their specific properties. In
Sec. I we address further technical details of the iterative scheme. The iterative scheme for
the inversion consists of two major choices: the initial xc potential and the update rule. Both
affect the converged inverted potential and thus might be seen as biases or constituents of the
regularization strategy. A third choice are the implementation details of the inversion procedure.
While they are more likely to decide about the stability of the inversion, i.e. if and how fast
convergence is achieved, they have less impact on the actual converged potential. Note that our
selection of update rules is tailored to the inversion of QMC densities, as explained in Sec. 10.3,
and special care was taken to ensure compatibility with statistical fluctuations in the reference
density. In general, a smoother reference density, e.g., one that admits derivatives, allows for
more sophisticated update rules, for example those of Refs. [112, 129, 130, 132]. While with less
regular reference densities one might have to restrain to pure HAR updates.

8.3. Measuring inversion quality

It is a known fact from previous work on KS inversion, that significantly different xc potentials
map to very similar densities [127, 135]. Consequently, similarity of densities in any metric
disqualifies as a measure to quantify closeness for xc potentials. Unfortunately, in the inversion
process the given reference density is the only reference point available for comparison and any
quality criterion regarding the inverted xc potential must ultimately rely on the comparison
of the densities. To this end we utilize two standard norms. The integrated absolute density
difference

D1[n
′, n] =

∑
σ

∫ ∣∣n′σ − nσ∣∣ ∈ [0, 2N ] (8.16)

and the infinity norm

D∞[n′, n] = max
σ,r

∣∣n′σ(r)− nσ(r)
∣∣ . (8.17)

While it most probably is not possible to bypass the issue of similar densities by the choice of a
superior metric, we additionally used the Wasserstein or Kantorovich–Rubinstein metric [136,
137] W2[n, n

′], that quantifies the Euclidean minimal transport of probability to align the two
densities, to measure the closeness beyond points-wise arguments with a measure explicitly
tailored to compare probability densities. We calculate the Wasserstein distance with the Python
optimal transport library POT. Although the xc potentials show a much larger deviation from
another, they cannot be compared with the metrics D1 and D∞, due to the ambiguous constant
offset in the potential. Even if we calculate the above metrics with an offset minimizing the
metric, due to the above discussed ambiguity in the asymptotic domains and at the nuclei, spatial
comparison is not a reasonable tool to compare potentials. Fortunately, the potential rather
directly gives rise to electronic properties such as the eigenvalues, energies, and all observables of
the KS Slater determinant. Comparing those indirect observables of the potential filters out the
auxiliary properties of the potential, that are not relevant for the actual physical interpretation.
The inspection of the KS energy spectrum, is an elegant way to assess how different features in
the xc potential affect the orbitals and their energies. For two potentials v and v′, compare their
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respective eigenvalues, (εσi) and (ε′σi), by the metric

∆ε[v, v′] =
1

N

∑
σ

Nσ∑
i=1

∣∣(εσi − εσi−1)−
(
ε′σi − ε′σi−1

)∣∣ . (8.18)

This metric compares the distance from one eigenvalue to the next for the two spectra and is
invariant under any potential offset. To make the metric comparable for systems of different
numbers of electrons, we divide by the particle number.

To further exploit the eigenvalue spectrum, one could consider the HOMO eigenvalue as a
quantity, that is in principle the exact ionization potential, I = −εHOMO. With the eigenvalues
being sensitive to a constant offset in the potential and therefore being connected to the
asymptotic behavior of the xc potential and its high ambiguity, we cannot directly expect the
HOMO eigenvalue to be close to the ionization potential. For example, an inversion initialized by
the xc potential of the LDA, will never exhibit the true −1/|r| behavior of the xc potential for
|r| → ∞. Its inverted potential will show some mixture of decay types, stemming from the initial
potential in the far asymptotic domain, while in the near asymptotic domain the update rule
could change the potential’s shape. Thus the potential offset is hard to quantify and therefore
its HOMO yields an incorrect ionization potential.

The next metric we discuss can only be applied if the true xc potential corresponding to the
reference density is known. For two potential-density pairs (vxc, n) and (v′xc, n

′) direct evaluation
of Jxc from Eq. (8.3) is possible.

Jxc[vxc, v
′
xc] =

∑
σ

∫ (
vxcσ − v′xcσ

) (
nσ − n′σ

)
. (8.19)

Evaluating Jxc with any current approximating potential-density pair and the true pair indicates
how close the pairs approach each other. The metric scales quadratic with the distance of the
pairs and reaches zero for identical pairs within the limitations discussed in Sec. 8.1.

We cannot directly apply the metric Jxc to a general inversion process, since the true xc
potential is of course not known initially. However, we follow [132] and abuse the above scheme
of the discriminator Jxc, inserting the xc potentials of the last two iterations together with the
current density and the reference density to get a spatially resolved convergence indicator

ζxcσ(r) =
(
v(k+1)
xcσ (r)− v(k)xcσ(r)

)(
nσ(r)− n(k)σ (r)

)
(8.20)

with integrated metrics

Zxc =
∑
σ

∫
ζxcσ and Zmax

xc = max
σ, r

ζxcσ(r) (8.21)

The inserted new potential and the reference density do not correspond to each other, i.e. the

reference density does not stem from the potential v
(k+1)
xcσ . Therefore there are no justifiable

bounds for Zxc as Jxc < 0. Although Zxc is a convenient number to monitor the inversion
iteration, it has some caveats. First a large constant potential offset from one iteration to the
next might spoil the interpretation of Zxc, if no measures are introduced to prevent the potential
from jumping up and down during the iterative updates. Further, Zxc can become zero even
though the density difference does not vanish. This is the case if the inversion cycle reaches a

stationary state with v
(k+1)
xcσ = v

(k)
xcσ due to limitations of the update rules.
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9. QMC results

The following chapter is an excerpt from the author’s publication [45] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

We have examined the energies and densities for the molecules Li2, N2 and the carbon atom.
The equilibrium bond lengths are those of Huber and Herzberg [138] rounded to the fourth digit
resulting in distances of R = 5.051 for Li2 and R = 2.0743 for N2. The atoms of the molecules
are placed at z = ±R/2 in the prolate spheroidal (PS) grid, while the carbon atom is located
at z = 1 on the z-axis. Following our grid analysis in Sec. F, we choose 181 × 181 grid cells.
Throughout this paper, we use Hartree atomic units unless specified otherwise.

9.1. QMC energies

To quantify the influence of the time-step error, we performed DMC calculations with the time
steps 1, 2, 3, 5, 7.5, 10, 15 and 20×10−3 a.u. and extrapolated to zero with a quadratic polynomial.
Tab. 9.1 lists the resulting energies. The coefficient of determination of the fit was 0.96, 0.99 and
0.99 for Li2, N2 and C, respectively. For Li2 the time-step error of the energy at a time step
of 0.001 a.u. is less than 10−5 a.u., while 1.1 × 10−3 a.u. for N2 and 4 × 10−4 a.u. for C. Our
default time step for the density calculations of 0.001 a.u. is therefore within chemical accuracy
(1kcal/mol ≈ 0.0016 a.u.) of the extrapolated energy, indicating a negligible time-step error of
the densities.
Optimization of the Padé Jastrow factor from Eq. (5.20) determines b to be 1.56, 3.60 and 3.20
for Li2, N2 and C, respectively. Table 9.1 shows reference energies and the results from this
work. It confirms the well known fact that the total energies from LDA are not impressive, and
the xKLI energies are close to the Hartree-Fock values. VMC, as expected with our simple trial
wave function, improves the DFT results only to about 20% to 50% correlation energy, while
Refs. [50, 56] recover up to 80% with a single determinant and high-quality Jastrow factors (not
shown in the table). The DMC energies from the real-space grid are in very good agreement
with the references based on basis sets, increasing the recovered correlation in all cases but
Li2@xKLI (where @xKLI here and in the following denotes the origin of the orbitals). The
improvement ranges from about 0.5 to 0.8% for carbon, 0.1 to 0.6% for Li2, and 2.3 to 5.7% for N2.

While LDA- and xKLI-based trial wave functions recover significantly different amounts of
correlation in VMC, the DMC energies are remarkably independent of the DFT functional,
indicating a strong alignment of their nodal structure. We also found the KS orbitals of the LDA
and xKLI to have remarkable spatial similarity (not shown). Although slight deviations in the
orbitals could lead to larger differences in their determinant’s nodes and thus the DMC energy,
this does not seem to be the case in the systems we studied.
The review on single-determinant DMC results for Li2 of Bressanini et al. [86], where basis sets
up to 6s4p2d1f were investigated, exemplifies the challenges associated with finding a basis set
that reliably represents the nodal structure. Inclusion of some orbital character even increases
the DMC energy by decreasing the node quality, while careful optimization of the basis set
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results in a very accurate DMC energy of −14.9923(2) [86]. Considerable effort must be invested
to explore the large parameter space of the basis sets even in the case of a molecule as small as Li2.

In the real-space grid approach, convergence of the orbitals and thus the nodal surface is very
transparent and systematic, and a situation where including ”unsuitable” basis functions lowers
the nodal quality does not occur. We find a monotonous convergence of the DMC energy as a
function of our grid spacing, i.e., there is only one parameter that is optimized. In practice, we
do this in seven steps, cf. Chapt. F. It is further interesting to note that while on the one hand
the one-determinant VMC energy of -109.4520(5) reported in Ref. [50] for N2 is noticeably lower
than our VMC energy of -109.10316(5) due to the better Jastrow factor that was used in Ref. [50],
on the other hand our one-determinant DMC energy using the real-space grid, -109.5183(3), is
lower than the literature value for the one-determinant DMC energy [50] of -109.5039(1).

The optimal nodes representable with a single determinant are generally unknown, except for
small systems of high symmetry [86]. Taking the wave function of Ref. [86] as a proxy for this
limit, the nodal manifold from our real-space grid orbitals is within a third of chemical accuracy
to this proxy.

Regarding our treatment of persistent walkers, cf. Sec. 6.14, we note the following: In our
DMC calculations we found a ratio of persistent to total walkers of about 1 × 10−9, 2 × 10−7

and 8 × 10−8 for Li2, N2 and C, respectively, with a threshold probability of Pt = 10−7. The
threshold number of idle steps to identify persistent walkers are nidle = 3, 6 and 5.

Table 9.1.: Energies and percentage of recovered correlation energy Ec from different methods.
The referenced calculations in this table use basis set orbitals and employ elaborate Jastrow
factors up to three-body terms. Our calculations are spin-polarized with orbitals on a PS grid
of dimension 181× 181, a simple Pade-Jastrow and a single determinant (SD). We use a time
step of 0.001 a.u. and extrapolated to zero for the DMC run based on LDA orbitals. The
bottom two rows show results for multi-determinantial wave functions (MD). References for the
Hartree-Fock energy and the non-relativistic limit were taken from Refs. [139, 140], and Refs. [56,
57], respectively. The percentage values for the correlation energies given here may differ slightly
from the ones given in the cited literature due to small differences in the reference values for
the Hartree-Fock energies or the non-relativistic limits. For the sake of transparency and easier
understanding of the table all results of this work are marked by an asterisk.

C
(
3Π0

)
Li2

(
1Σ+

g

)
N2

(
1Σ+

g

)
E Ec(%) E Ec(%) E Ec(%)

DFT@LDA* −37.468 540 −144.39 −14.724 422 −118.82 −108.695 827 −54.33
DFT@xKLI* −37.691 862 0.59 −14.870 580 −0.79 −108.985 178 −1.57

VMC[J+SD]@LDA* −37.722 50(2) 20.47(2) −14.913 02(1) 33.48(1) −109.089 05(8) 17.36(1)
VMC[J+SD]@xKLI* −37.735 69(2) 29.04(1) −14.930 64(3) 47.70(3) −109.103 16(5) 19.94(1)

DMC[J+SD]1 −37.829 66(4) 90.04(3) −14.991 67(2) 96.99(2) −109.5039(1) 93.00(2)
DMC[J+SD] −37.8295(2) 3 89.9(1) −14.9911(1) 2 96.53(8) −109.487(1) 2 89.9(2)
DMC[J+SD]@LDA* −37.830 37(1) 90.503(8) −14.991 70(1) 97.02(1) −109.516 75(3) 95.343(5)
DMC[J+SD]@xKLI* −37.830 44(1) 90.548(7) −14.991 43(4) 96.79(3) −109.516 86(3) 95.361(5)
DMC[J+SD]@LDA, ext.* −37.830 71(4) 90.72(3) −14.991 83(9) 97.11(7) −109.5183(3) 95.62(5)

DMC[J+MD]1 −37.836 20(1) 94.287(5) −14.994 56(1) 99.322(8) −109.5206(1) 96.04(2)
DMC[J+MD] −37.840 80(6) 3 97.27(4) −14.9938(1) 2 98.71(8) −109.505(1) 2 93.2(2)
1Toulouse and Umrigar, (2008), Ref. [50]
2Filippi and Umrigar, (1996), Ref. [56]
3Buend́ıa et al., (2009), Ref. [57]
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9.2. QMC densities

9.2. QMC densities

The DMC density for Li2 based on a calculation that started from LDA orbitals is shown in
Fig. 9.1. We plot the density on a logarithmic scale to highlight its high resolution and global
smoothness. The density accurately shows its distinct features: The nuclear cusps of purely
exponential form are present at the Li ions. The asymptotic decay is continuous up to radii of
about 12 to 15 a.u. and density values of order 10−7. Beyond this domain the noise slowly starts
to increase in the low-density regime - an inevitable feature of MC at low probabilities. Despite
the density values ranging from 10−10 at boundaries of the simulation box to 101 at the nuclei,
the density is smooth throughout the physically relevant domain. Plotting the density with a
linear instead of a logarithmic scale or with iso-surfaces could not render any of the mentioned
fluctuations. Here, the beneficial effect of the spatially varying size of the PS grid cells comes
into play, effectively sampling larger bins in regions of low density and small bin at the nuclei.
The σ-type bond is visible between the atoms upon closer inspection, see Fig. 9.2 for a more
detailed view of this region.
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Figure 9.1.: Bare DMC density of Li2 based on LDA orbitals. The density is smooth up to
density values of the order 10−7, rendering the density without significant noise to a radial
extent of about 15 a.u. From there on stronger fluctuations build up until the density values are
dominated by noise at distances of about 20 a.u. The color reflects the magnitude of the density.
Note that the curved (gray) lines indicate straight lines in the PS coordinate system, but do not
correspond to the PS grid, which is more fine-grained.

Let us shortly estimate the computational demands to recover a smooth density from QMC.
With a total of Nr walker realizations in a QMC calculation, any bin ω is stochastistcally visited
by an average of Nrn|ω| walkers, where n is the average density over the extent of the bin. For
instance, bins at which the density of Fig. 9.1 has decayed to 10−8 have a volumes of about
0.1 to 1a30. For those bins to be visited 100 times during the QMC run, one requires a total
number of walker realizations of about 1010 to 1011. In our calculations of the density we aim
for Nr > 1011. To make efficient use of our computational infrastructure, 6.4× 105 walkers are
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9. QMC results

propagated in parallel. The number of propagation steps in our calculations is around 6× 105.
In practice, we reach reasonable computation times by parallelizing the calculations over several
hundred cores. Although the serial correlation is greatly reduced by the parallel sampling, we
used data blocking with a block length of 25 to reduce the remaining serial correlation in the
sample averaged over the parallel walkers.
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Figure 9.2.: The estimated error of the DMC@LDA density for Li2. From independent density
calculations, we estimated the standard deviation of a single density realization. The dark
blue line shows a realization of the density, while the light blue halo region is its standard
deviation. Note that the confidence band is the error of a single realization, not of the mean of
all calculations. For clarity of visualization we plotted the confidence band around the mean of
all density calculations. The gray crosses indicate the sampled densities. While the global plot
scales the density logarithmically, the insets do not.

To estimate the statistical error of the DMC density we performed 10 independent calculations
of the density. Standard statistics yield the error halo for the DMC density, shown in Fig. 9.2
along the molecular axis. The statistical error of the density in the physically relevant domains
is not recognizable by eye. We again chose to show the logarithmic density to visualize the
asymptotic realm, where the fluctuations of the density are bound to increase. We heavily
zoomed in on the most intricate features of the density: the cusp, the inter-atomic partition and
an asymptotic region, where the density is at the edge of actual physical relevance.
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9.2. QMC densities

As expected, the error increases in the region far from any ion, since only a small fraction of
electrons ever visits this region. However, even in the logarithmic representation the error at low
density turns out to be quite small, with a relative value of about 6% at a density of 2× 10−6.
In the entire moderate to high-density region, the relative error becomes negligible, effectively
vanishing within the line width.

Between the ions the density takes values of about 6.6× 10−3 and shows a variation stemming
from the σ-bond on the order of 4× 10−4 (difference from maximum to minimum), making it a
challenging region to describe accurately. The density’s absolute (statistical) error constitutes
about 2 × 10−5. Therefore, the relative error of the density is in the range of 3 × 10−3. The
density’s σ-bond variation is resolved with an error of about 5%.

While increased stochastic fluctuations of the density close to the grid foci, or equivalently the
nuclei, are inevitable due to smaller bins, the wiggles in the “cusp” inset are not of statistical
origin only. As discussed in Chapt. F, some inaccuracies arise from converting the discrete
grid-representation of the orbitals’ derivatives to continuous space.

The refinement procedure, presented in Chapt. G, can be used to remedy any of the remaining
artifacts discussed above. For example, a systematic error occurs in the immediate vicinity of
the nuclei due to the larger variance that results from small bins, and the evaluation of the
numerical derivatives, cf. Chapt. G. However, this error is embedded in the much larger domain
of exponential decay due to the cusp condition, therefore the proper cusp can readily be restored
with the extrapolation scheme that we discuss in detail in the Supplemental Material. This
analysis shows that overall the acquired density is suitable not only for visual inspection, but
also for subsequent analysis with high numerical requirements, e.g., inversion of the density to
its KS potential.

The orbitals that build the trial wave function can have a major influence on the DMC density.
With a single-determinant the orbitals alone define the nodal structure and therefore the quality
of the DMC ground state. The electronic structure of the carbon atom with four electrons in
the up- and two in the down-channel in combination with the orbital nodal line of the highest
occupied (molecular) orbital (HOMO), further discussed in Sec. 9.3, make this system challenging
to handle. The DFT densities of LDA and xKLI differ significantly from each other, and thus the
carbon atom is a well-suited, natural test case for investigating how DMC results depend on the
starting orbitals. The DFT and DMC densities (spin-up) are presented in Fig. 9.3 for the carbon
atom. The DMC energies from LDA and xKLI are very similar, compare Tab. 9.1. Therefore,
one would expect that their DMC densities should also be similar. We find this to be true in
the high-density regime. However, the DMC density shows a non-negligible dependence on the
functional at lower density, most prominently seen in the insets for the asymptotic decay in
Fig. 9.3 at z ≈ 5 a.u. For xKLI the DMC and DFT densities almost match, which underlines the
quality of the DFT-density from xKLI. Since the xKLI approximation incorporates the correct
−1/ |r| asymptotic decay of the exact xc potential, it is not surprising that it performs better
than LDA, for which the potential decays exponentially. The DMC@LDA density does not fully
converge to the DMC@xKLI density in the asymptotic region, but one sees that the features
stemming from the LDA are partially corrected for.

The densities show a different peak value at the nucleus, leading to the conclusion that
the different methods locally predict different densities. This is a side-effect of the density
normalization, since any non-norm-conserving change in the density leads to a global multiplicative
scaling in the density (a constant additive offset in the logarithmic plot), and therefore different
values at its cusp.

One might be surprised by the noticeable orbital-dependence of the DMC density, given that the
DMC energies hardly showed such a dependence. However, the finding becomes understandable
at least partially as a consequence of the different character of the observables. While both are
evaluated with the mixed estimators, only the density suffers from the mixed estimator bias.
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Figure 9.3.: Investigation of the orbital-dependence of DMC densities. We compare the DFT
and refined DMC (mixed estimator) spin-up densities for LDA and xKLI orbitals for the carbon
atom. Solid lines show the DMC densities, dashed lines their DFT counterpart. Values from
LDA and xKLI are colored blue and red, respectively.

Therefore, the DMC densities in Fig. 9.3 have a stronger dependence on the trial wave function,
as the DMC process samples ψTψ0, not ψ2

0. Another reason for why the density shows a more
pronounced dependence on the starting orbitals than the energy is the “probability regime” in
which these observables are evaluated. While the energy is only marginally affected by regions
of low wave function probability, the density is essentially capturing these regions with spatial
resolution. Thus, the energy depends only weakly on the quality of the nodal manifold in low
probability regions, if at all. The density, however, can discriminate nodal quality differences in
those low-probability regions. Therefore, one can find different densities that yield very similar
energies.

We have found qualitatively similar results for Li2 and N2, but on the quantitative level, the
orbital dependence is much weaker for these molecules than for the carbon atom. This can at
least partially be explained by the observation that the LDA and xKLI orbitals are very similar
for Li2 and N2, and thus essentially represent the same starting point for DMC.

To assess the impact of the mixed estimator bias and its correction from Eq. (6.74), we next
investigate the quality of the mixed estimator extrapolation scheme from Sec. 6.12. Therefore,
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Figure 9.4.: Demonstration of the quality of the mixed estimator extrapolation: Plots of the
DFT, rVMC, rDMC and erDMC densities for the carbon atom based on LDA and the erDMC
density from xKLI orbitals. Although DFT, VMC and DMC lead to somewhat different densities
in certain regions of space, the extrapolations based on xKLI and LDA align perfectly. This is
not due to LDA and xKLI being the same starting point, see Fig. 9.3. All densities are spin-up
densities.

we inspect the DFT, VMC, DMC and extrapolated density of the carbon atom based on LDA
orbitals in Fig. 9.4. While the detailed behavior of the densities is not important to estimate the
extrapolation quality, the differences of the densities are, and especially the comparison of DMC
and VMC results. While small in the core-valence region, the density difference is noticeable at
the cusp and in the asymptotics. If the deviation of the density due to ψ0 − ψT is beyond linear
scaling, the extrapolation could not restore the unbiased density. From the densities generated
with the LDA alone, one could not benchmark the extrapolation estimator, since a second-order
deviation cannot be remedied and we have no indication of leaving the linear regime. Luckily, by
comparison to the extrapolated densities generated from xKLI, we can assert such behaviour.
The orbitals of xKLI differ significantly from the orbitals of the LDA, as discussed in Sec. 9.3.
These differences are reflected in the QMC densities. If the extrapolation was incorrect, LDA and
xKLI would yield different extrapolated densities. In Fig. 9.4 we plot all densitities, including the
extrapolated ones. The extrapolated xKLI density is in perfect agreement with the one based on
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9. QMC results

LDA. This does not only indicate that the deviations remain within the linear regime, but also
verifies the extrapolation. The bias of the mixed estimator therefore can efficiently be eliminated.
We note in passing that also for Li2 and N2 the extrapolated densities from LDA and xKLI are
in good agreement.

9.3. Orbital nodal features in the carbon atom density

The density that one obtains for the carbon atom with the LDA or EXX functionals is not
spherically symmetric. The 3Π0 ground state is reflected in a single-particle occupation scheme
that follows Hund’s rule, 1s22s22p2↑↑. While the spin-down channel has no explicit p-orbital
character, in the spin-up channel the two (degenerate) HOMO orbitals are of p-type with
l = |m| = 1. Schematically, one can think about their angular dependence in the form

φH(r, ϑ, ϕ) ∼ r sinϑe−Zr/2e±iϕ, (9.1)

though one should keep in mind that the orbitals realized in an actual DFT calculation are not
of the exact hydrogen-orbital form of Eq. (9.1). However, this form illustrates the aspect that is
decisive for the following discussion: This carbon-atom density realizes the special situation of a
nodal surface in the orbital density of the highest occupied orbital(s) [141], with a nodal line
along the z-axis, where ϑ = 0. Situations with a nodal surface of the highest occupied orbital
have found special interest in DFT [142–145], e.g., because of their possible consequences for the
asymptotic structure of the xc potential.

The nodal surface induces a non-spherically symmetric decay of the carbon atom density of
the schematic form

n = nR + nH = nR + 2|φH|2, (9.2)

where nR is the residual density without contributions from the HOMO orbital. While the
HOMO orbital dominates the exponential decay anywhere except ϑ = 0, the HOMO-1 orbital
governs the decay along ϑ = 0, or z = 0 equivalently. Since DFT guarantees an exact density for
the exact xc potential, the density has solid physical meaning - beyond any doubts about the
auxiliary character of KS quantities such as eigenvalues and orbitals. In the following we analyze
densities that result from DMC calculations, i.e., from beyond the single particle representation,
with respect to the question of whether they show the characteristic features that are associated
with the nodal surface. To this end we calculate two densities, DMC@LDA and DMC@xKLI,
and analyze their asymptotic decay. We implicitly define the spatially resolved asymptotic
exponential decay rate γ for a density n by

n(r) = n0(r̂) exp−γ(r̂)r (9.3)

at |r| → ∞, where r̂ = r/|r|. As any bound density decays exponentially [125], γ can at most
depend on the angles, γ(r̂) = γ(ϑ, ϕ), for large |r|. Due to symmetry restrictions from the PS
coordinates and the doubly occupied p-type orbital from Eq. (9.1), γ in our case can only depend
on ϑ.

We now aim to quantify the value of γ(ϑ) for different angles ϑ. For every ϑ we consider a
straight line starting from the carbon atom and forming an angle ϑ with the z-axis. For example,
ϑ = 0 represents a line from (0, zcarbon) to (0, zmax) in cylindrical coordinates, while ϑ = 90◦

yields the line from (0, zcarbon) to (ρmax, zcarbon). Along this straight line we construct the density
by interpolating from its values on the PS grid. Such radially extending slices of the density
are shown in Fig. 9.5. Although the densities at ϑ = 90◦ and 180◦ show a distinct gap in their
magnitude, it is their slope that holds the information about the decay rates. For every slice
we fit the density along the line to the exponential form of Eq. (9.3), omitting the core region
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Figure 9.5.: The DFT and eDMC density along the z-axis (ϑ = 180◦) and the angle ϑ = 90◦ are
shown for the functionals LDA and xKLI. We fit the graphs in the indicated interval from 2.5
to 4 a.u. Visually it is difficult to distinguish the decay rates γ (slope) from the amplitudes n0
(offset), see Fig. 9.6 for the angle-dependence of γ. We plot the decay along ϑ = 180◦ instead of
ϑ = 0◦, since the PS grid is more fine-grained on the negative part of the z-axis (from −zmax to
zcarbon) than on the positive side (from zcarbon to zmax), see Fig. E.2.

(r < 2.5 a.u.) as well as the asymptotic region dominated by noise (r > 4 a.u.). This yields the
decay rate as a function of the angle γ(ϑ).

The coefficient of determination in all fits exceeded 0.999, confirming that we consistently
fitted only the pure asymptotic decay with our choice for the radial interval. Furthermore, we do
not use the density from our refinement procedure to calculate the decay rate.

The results are shown in Fig. 9.6 for eDMC and DFT densities based on LDA and xKLI. The
decay rates from eDMC align with the rate from DFT@xKLI. They approach their extrema at 0◦

and 90◦ with a quadratic behavior, which reflects the node of second order of the orbital-densities,
since the HOMO orbitals have a node of first order and the HOMO density results from squared
orbitals. The LDA underestimates the decay for all angles. This is a consequence of the decay
rate being coupled to the HOMO eigenvalue [125] by γ = 2

√−2ϵH and the well-known fact
that the ϵH of LDA does not accurately reflect the true density decay. However, the decisive
observation is that also the DMC densities show a substantial change in the decay rate when
ϑ varies from 90◦ to 0◦ (or 90◦ to 180◦). Thus, the DMC densities show the signature of the
nodal line in a very similar way as the DFT densities. The results further show that this is not
caused by the potential shortcoming of the DMC method to not be able to change the density in
the asymptotic region: One can clearly see that the DMC calculation changes the density in the
asymptotic region, as the decay rate of the DFT@LDA density is changed significantly by the
subsequent DMC calculation.

The finding that the density obtained from the DMC method shows the characteristic features
of the nodal line is of relevance in the context of the question whether the (exact) KS potential
can have a uniform asymptotic decay, or must be expected to have unusual, potentially diverging
features in some regions of space: These different options have been discussed in detail based on
an expansion in Dyson orbitals in Ref. [143]. Following Gori-Giorgi et al., the observation that the
ground-state density shows a different decay along the nodal surface leads to the conclusion that
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Figure 9.6.: The asymptotic decay of the densities is dominated by the lower rate of the HOMO
2p orbital over a large range of angles, but approaches the larger rate of the HOMO-1 decay of
2s-type when approaching the z-axis or the angles 0 and 180◦, equivalently. This behavior is
observed irrespectively of the functional or method. The values of γ near an angle of ϑ = 0, 180◦

show some noise. This is due to the interpolation on the grid, which becomes a slightly inferior
extrapolation when approaching the z-axis, since the grid points do not lie on the z-axis directly.

the corresponding (exact) KS potential can be expected to decay regularly, without unpleasant
surprises on or in the vicinity of the nodal plane.
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10. Inversion results

The following chapter is an excerpt from the author’s publication [116] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

10.1. The forward KS-map

Computing the forward KS map is a standard PDE eigenvalue problem, which can be done fast
and at low computational cost. We use an elaborate and efficient numerical all-electron approach
for the forward problem, with a prolate spheroidal coordinate system tailored to exploit the
symmetry of diatomic molecules and atoms [146]. This two-dimensional grid concentrates grid
points near the nuclei for accurate representation of the Coulomb potential. Our goal is to build
inversions on this grid.

However, before studying the inverse problem it is natural to explore the properties of the
forward problem. We examine the behavior of the forward map by varying the xc potential. Since
by the HKT an auxiliary KS potential holds the full information of an interacting wave function,
it should be assumed, that changes in the KS potential lead to complicated and nonlinear
changes in the density. A natural way to perturb the KS potential is a mixing of different xc
functionals, since artificial potential variations such as noise, bumps, kinks, ramps, etc. could
introduce unnatural potentials. In Sec. J we examine the linear mixing of xc potentials. Our

linear interpolation of two xc potentials v
(0)
xc and v

(1)
xc , and their respective densities n(0) and n(1),

is given by v
(λ)
xc = (1− λ)v

(0)
xc + λv

(1)
xc . We chose a large range for the values of λ not restricted

to interpolation, for which λ ∈ [0, 1], but extrapolating the potentials. The linear perturbation
allows to predict the linear response of eigenvalues and the total energy within DFT in advance,
since the KS Slater determinant and DFT are based on a variational principle, and thus can be
estimated with the Hellmann-Feynman theorem [147]. Due to the Hellmann-Feynman theorem
only the explicit change in the potential enters the linear response, while the induced density
variation does not contribute to the energy or eigenvalues. This allows the density to respond
in a much more complicated way, because the energetic linear response is decoupled from the
density’s linear response. If we, for the moment, naively consider the density to only respond
in the linear regime, the two known densities for λ = 0 and λ = 1 fix the linear response and

allow a linear prediction of the density, n
(λ)
lin = (1− λ)n(0) + λn(1). First, the range of the linear

regime, i.e. the range for λ in which the density response linearly with negligible contributions
from higher orders, is unknown and second higher order responses could become non-negligible
even with small values of λ. Given the complexity of the true KS map and its requirement
to compress the full information of an interacting wave function to a single density, one could
assume that the response should be rather non-trivial. The results of this analysis are in detail
shown in Sec. J. Surprisingly the density response is linear over an unexpectedly large interval
for λ. Even if the xc potentials look nothing like a reasonable physical potential any more,
the density remains in the linear response regime. A spatially resolved analysis of the density
response shows how the density responds in a linear and point-wise way. The naive prediction

n
(λ)
lin does in fact resemble the actual density to high accuracy. Thus a reasonable estimate of an
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Table 10.1.: Metrics of a “simple” inversion of the carbon atom: The self-consistent xKLI density
is chosen as the reference density and various inversions are performed starting from the xc
potential of a self-consistent LDA calculation. We report inversions based on the update rules
HAR, HAR+DEN, HAR+LoH(0) and HAR+LoH(1).

method D1 D∞ W2 Jxc optimal
×10−3 ×10−2 ×10−5 ×10−5 iteration

HAR 6.28 13.4 4.52 −20.9 254
HAR+DEN 4.97 3.45 4.32 −11.7 184
HAR+LoH(0.0) 3.09 9.32 1.98 −6.71 373
HAR+LoH(1.0) 3.13 5.48 3.01 −5.43 399

inter- and extrapolated density might be available without actual evaluation of the forward map.
This has several implications, e.g., for the development of density-reproducing density functional
approximations, various numerical applications, density inversion, etc. We suggest an inversion
procedure based the local linearity of the KS map in Sec. K.

10.2. Simple inverse problems

In this section, we carry out inversions for simple cases. Our goal is to present insights independent
of numerical artifacts of the reference density, e.g., the limitations of inversion in general and
the capabilities of the update rules. We therefore invert densities, that itself stem from a DFT
calculation. We use the same numerical approach, described in Sec. 10.1, for the generation of
the reference densities and their inversion. First we do a standard DFT calculation for some xc
functional, which yields energies, its density and its xc potential. Next, we do an inversion of
this density as the reference density. While the xc potential to the reference density is available
to us, we do not use this reference xc potential in the inversion process, as this would render
the inversion trivial. Nevertheless, with a known reference xc potential we are in the the unique
position to compare any inverted potential to the true xc potential, as well as its eigenvalues,
eigenstates, etc. and calculate Jxc.

A challenging system even for simple inversions is the carbon atom. Due to spin maximizing,
its occupation is spin-polarized with four spin-up electrons in the configuration (1s2s)2p2 and
two spin-down electrons in (1s2s). The xKLI density shows a non-spherical asymptotic decay
due to a nodal line of the HOMO orbital, see Sec. 9.3, and as a result its xc potential builds
up a ridge along some axis [141–145]. The LDA xc potential does not show such complicated
features, and therefore the xc potentials of LDA and xKLI are very distinct. With an reference xc
potential (xKLI) exhibiting correct asymptotic decay, an asymptotic ridge, inter-shell bumps and
quadratic behavior at the nuclei on one side and an initial xc potential (LDA) with exponential,
spherically symmetric decay and cusps at the nuclei on the other, this could to the contrary be
seen as an extraordinary hard inverse problem. In such a situation we do not expect to recover
the reference xc potential by inversion, especially not for the case of the xKLI potential, since an
asymptotic nodal ridge lies beyond the update rules capabilities and also beyond the general
limitations of the inversion mentioned in Sec. 8.1.

With these prerequisites we inverted the xKLI density (reference density) with an initial xc
potential from an LDA calculation. From the update rules introduced above we show the results
for HAR, HAR+DEN, HAR+LoH(0) and HAR+LoH(1) in Fig. 10.1 alongside with the inversion
metrics in Tab. 10.1. In these calculations, the HAR update rule uses spin-resolved Hartree
potentials. From the initial LDA potential no update rule converges to the xKLI potential, as
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Figure 10.1.: “Simple” inversions for the carbon atom. The reference density originates from a
standard DFT calculation for the exact exchange in KLI approximation (with its xc potential
given by the solid black line), while the initial potential (dashed blue line) is the self-consistent
LDA potential. Different update rules are examined with their xc potentials indicated by the
lines of different colors and dash styles. The inverted potentials resemble only some of the
features of the target xc potential. The upper insets zoom in on the nucleus and the location of
an inter-shell bump.

expected, but to an intermediate potential, that holds some features of the LDA and some of the
xKLI potential. For example, no inverted potential is quadratic at the nucleus, which ultimately
stems from the construction of the update rules and the initial potential. However, the inter-shell
bump, where the density takes values of about 7 × 10−2, is partially generated by all update
rules, but has a local maximum only for HAR+LoH(0) and a saddle point for HAR+LoH(1).
The nodal ridge in the reference xKLI potential is not recovered by any update rule (not shown),
as expected. Despite of this great structural difference in the inverted xc potentials, the density
differences in Tab. 10.1 are rather small. However, since density differences tell little about
the quality of the potentials, we also compare the occupied spectrum of the KS systems in
Fig. 10.2. From Fig. 10.2 it becomes apparent that the structural deviations of the xc potentials
do not greatly influence the eigenvalues or eigenstates. While the LDA shows distinctly different
eigenvalues compared to xKLI, the inverted potentials recover great similarity to xKLI eigenvalue
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Figure 10.2.: Comparison of the eigenvalue spectrum of a “simple” inversion of the carbon atom
with a reference density from xKLI and an initial potential from LDA. Left of the respective
ticks on the horizontal axis are the spin-up eigenvalues, right of it the spin-down eigenvalues.
Dashed lines correspond to unoccupied states. The eigenvalues of the referential xKLI calculation
are highlighted with horizontal lines for comparison to the inverted eigenvalues. Note that the
HOMO eigenvalues in the up-channel are doubly degenerate. Energies are given in Hartree units.

spectrum in the examined energy range. While the HAR and HAR+DEN rules show inferior
density metrics, they lead to reasonable spectral properties, with slightly worse eigenvalues for
HAR. The updates from HAR+LoH(1) as well as HAR+LoH(0) further improve the inversion
for the density metrics as well as the eigenvalue metric.

The above methodology might be called an inverse crime [127, 148], i.e. evaluating the forward
map with the same numerical methods that the inverse map relies on. In our case the above study
is solely dedicated to the numerical understanding of the inverse map. In the following we apply
the inversion procedure to densities from a different numerical approach. From comparing the
inversions for the carbon atom to the inversions that we did for the dimers Li2 and N2, we learned
that the HAR method discriminating spin channels is more accurate for truly spin-polarized
systems, i.e., the carbon atom, than the HAR method that uses the spin-averaged potential.
However, when we calculate the inversions for the spin-unpolarized systems Li2 and N2 with
two independent spin channels, a spin-resolved Hartree potential update decreases the accuracy
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10.3. QMC density inversion

slightly. Therefore, we used the spin-resolved HAR method only with truly spin-polarized
systems.

10.3. QMC density inversion

The reference densities of this section stem from QMC methods, more precisely from fixed-node
diffusion Monte Carlo with a single-determinant Slater-Jastrow trial wave function. The densities
are computed with the binning method and are extrapolated to reduce the mixed estimator bias.
We use the densities published in Ref. [45]. As those densities are given on a large grid, infeasible
for efficient inversion, we describe an interpolation scheme to reduce their dimensionality in
Sec. H. The key challenge of inverting the QMC densities is the presence of statistical noise.
This noise is point-wise in the density and, while unnoticeable to the bare eye for most regions
of space, the asymptotic domain as well as the vicinity of the nuclei are affected by noise. As
conjured above for the example of an incorrect nuclear cusp, inverting a density with even the
slightest numerical artifacts might have severe impact on the inverted potential. Therefore we
use the regularization scheme of Ref. [45] to remedy the critical statistical fluctuations of the
density at the nuclei by invoking the cusp condition [69], cf. Sec. H for details.

We have inverted seven different reference densities from QMC calculations. The QMC method
requires starting orbitals, for which we chose DFT orbitals from the LDA functional in the
Perdew-Wang parametrization for the densities labeled “QMC-A” and exact exchange orbitals
with a local potential in the KLI approximation for the density-label “QMC-B” for every system.
The systems under study are the nitrogen molecule (with a bond length of 2.0743 from Ref. [138]),
Li2 (with a bond length of 5.051 from Ref. [138]) and the carbon atom. Additionally we calculated
another density based on LDA orbitals for Li2 labeled “QMC-C”. This density is entirely analog
to the “QMC-A” density, but with different statistical fluctuations, i.e. a different seed for the
random number generator. We carried out inversions with initial xc potentials from self-consistent
LDA and xKLI calculation as well as from the Fermi-Amaldi potential. We have conducted
inversions for every reference density, every initial potential and every update rule of Sec. 8.2
with values β = −0.1, 0.1, 0.25, 0.5, 1, 2 and 3 for the LoH update. However, only a subset of the
results are reported due to the large number of inversions.

To begin with, we inspect the metrics of the inversions for the nitrogen molecule in Tab. 10.2
comparing different update rules and initial xc potentials.

One of the most “pleasant” inversion for nitrogen is generated by HAR+LoH(1)[xKLI],
i.e. an inversion using the update rule HAR+LoH(1) and an initial xc potential from the xKLI
approximation, and illustrated in Fig. 10.3. The inversion features inter-shell bumps and correct
asymptotic decay inherited from the xKLI potential. It is smooth and shows no artifact even
in the vicinity of the nuclei. The inverted density matches the reference density, up to D1/
N < 0.05%. Thus, more than 99.95% of the recovered electron density per electron is distributed
correctly. The inversion converged to Zxc < 2× 10−7. This qualifies this specific inversion as a
success. Nevertheless other inversions show similar metrics albeit with different features in the
potential. An example of those is HAR+LoH(0)[xKLI], also shown in Fig. 10.4, which shows
numerical artifacts in the asymptotic domain, and HAR+DEN[FA] from Fig. 10.5 with more
deviating but still comparable metrics and much larger fluctuations at the nuclei.

Examination of Tab. 10.2 highlights some of the features of the update methods. The overall
best results are those starting from the xKLI potential. The Fermi-Amaldi potential is still a
good starting potential. The LDA shows inferior metrics, most properly due to the incorrect
asymptotic behavior. The deviation among update rules is more subtile, except for HAR and
HAR+DEN. The rule HAR does not fully recover the density, since it breaks sign-consistency
on a relatively large scale, imposing a strong regularization on the inversion. Its metrics reflect
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Figure 10.3.: A three-dimensional representation of the inverted xc potential of the nitrogen
molecule in a plane through the molecular axis. The reference density QMC-B was inverted
with the update rule HAR+LoH(1) with an initial xKLI xc potential. Despite the stochastic
fluctuations in the reference density, the inverted potential has experienced enough regularization
to exhibit a smooth behavior. The inter-shell bumps are clearly visible around the nuclei. Note,
the inverted axis for the potential. The coloring was chosen to resolve the key features of the
potential.

its limitations, while the resulting inverted potentials are smooth, see Fig. 10.4 and 10.5. With
direct density feedback, the rule HAR+DEN excels to minimize the metric D∞ compared to
even the best other update rules. The D∞ metric is most affected by the density deviations
at the nuclei, where the density takes its maximum values, thus HAR+DEN best resembles
the density at the nuclei. This may come at the cost of introducing artifacts in the inverted
potential and missing to reproduce other properties, such as the eigenvalues. For the case of
HAR+LoH(0.5)[xKLI], which is marked with a dagger in Tab. 10.2, the inversion cycles almost
diverged and subsequently recovered slightly, see Sec. I.1. From the metric D∞ alone, one would
hardly recognize the failure of this inversion, which highlights the importance of different metrics
to indicate the success of an inversion. The metrics D1 and W2 clearly mark the inversion as an
outlier with respect to the others.

The parameter β in the rule LoH offers a way to continuously choose between smoothness
of the resulting xc potentials at slightly unresolved density differences on the one hand and
an accurate restoration of the reference density sacrificing regularity in the xc potential and
introduction of artifacts. For the inversions started with an xKLI potential, except the outlier,
the update rule LoH(β) shows monotonously decreasing D∞ with increasing β, bridging from
the rule HAR to HAR+DEN. The different LoH rules improve upon HAR or HAR+DEN in the
Wasserstein metric W2. The metric D1 has a minimum for HAR+LoH(1) with maximum values
for HAR and HAR+DEN, indicating a “sweet spot” for the parameter β = 1.

A spatial comparison for some of the inversions is given in Fig. 10.4 with the xKLI initial
potential and Fig. 10.5 with the Fermi-Amaldi initial potential. Irrespective of the update method
significant changes are made to the initial potential, in particular for the Fermi-Amaldi potential,
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10.3. QMC density inversion

Table 10.2.: Metrics of inversion for the N2 molecule. Inversions are performed for the density
QMC-B. The entry marked by an asterisk (*), HAR+LoH(1), is an example of a very successful
inversion and shown in Fig. 10.3. The rule HAR+LoH(0.5)[xKLI], marked by a dagger (†), is
an example of an unstable inversion attempt. The inversion procedure did not converge with
the same “soft” parameters of the other inversions, cf. Sec. I. While for further analysis the
specific inversion attempt based on the rule HAR+LoH(0.5)[xKLI] should not be trusted, it is
not impossible to carry out successful inversions for the combination HAR+LoH(0.5)[xKLI].

method v
(0)
xc D1 D∞ W2 Zxc

×10−3 ×10−1 ×10−5 ×10−7

HAR FA 14.8 5.94 1.65 −6.2
HAR+LoH(0.0) FA 11.1 6.38 0.81 −10.2
HAR+LoH(1.0) FA 11.1 5.90 1.01 −7.2
HAR+DEN FA 9.7 2.97 0.83 −5.3

HAR LDA 16.5 8.32 1.47 −19.6
HAR+LoH(0.0) LDA 13.8 8.10 1.15 −22.3
HAR+LoH(1.0) LDA 12.7 7.22 1.21 −14.1
HAR+DEN LDA 11.2 3.59 1.06 −9.2

HAR xKLI 9.7 6.33 1.83 −1.3
HAR+LoH(-0.1) xKLI 7.9 6.20 1.27 −2.3
HAR+LoH(0.0) xKLI 7.6 6.11 1.24 −2.1
HAR+LoH(0.25) xKLI 7.6 6.02 1.41 −2.0
HAR+LoH(0.5) † xKLI 10.1 6.32 2.15 −7.6
HAR+LoH(1.0) * xKLI 6.6 5.27 1.29 −1.5
HAR+LoH(2.0) xKLI 7.9 4.72 1.46 −2.5
HAR+LoH(3.0) xKLI 7.9 4.13 1.55 −2.5
HAR+DEN xKLI 10.0 3.73 1.91 −6.1

and both initial potentials converge toward the same target potential. Inter-shell bumps build up
in the inversions started from Fermi-Amaldi potential. This suggests that the inter-shell bumps
are crucial to the potential in order to generate the reference density. In the case of HAR[xKLI]
the inter-shell bumps in the inter-atomic bond region are accompanied by a repulsive bump
in the xc potential at z = 0, which lowers the density in the σ-type bond region between the
nuclei. This cannot be deduced from any of the other inversion due to the lack of such a repulsive
bump or the magnitude of the surrounding artifacts. Focusing on the nuclei, HAR+DEN shows
a diverging potential with strong wiggles in vicinity of a nucleus. The potentials of the other
update rules approach the nuclei more regular. The regularity of the HAR update is outstanding
with a smooth potential almost everywhere. The other updates show numerical artifact already
in the inter-atomic bond region.

Note that from a single inversion at hand one would easily be led to the conclusion, that the
numerical wiggles in either the inter-shell bumps or the inter-atomic bonds are pure noisy, with
no physical meaning, and potentially very volatile to any changes in the numerical setup. With
a closer look at the artifacts and the comparison of the two figures Fig. 10.4 and Fig. 10.5 it
becomes clear that the wiggles are not chaotic numerical artifacts, but are highly correlated and
share many characteristics. They serve the purpose to reproduce the statistical fluctuations of
the reference density. The same holds for inversions started from LDA (not shown). It is ironic,
that the numerical artifact associated with noise is one of the most consistent features across all
inversions. This again highlights the very construction principle of the inversion - to reproduce a
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Figure 10.4.: Different inverted xc potentials for the reference density QMC-B of the N2 molecule.
Starting from the xc potential of an xKLI calculation, the inverted potentials stem from the
update rules HAR, HAR+DEN, HAR+LoH(0) and HAR+LoH(1).

reference density - and aligns with the observation, that the numerical artifacts of the reference
density tend to be overemphasized in the inverted potential.

The major conclusion to draw from this series of inversions for the nitrogen molecule, is the
necessity of inter-shell bumps in the potential. Further, there is a potential bump at z = 0, that
lowers the density in the σ-type bond region for the rule HAR[xKLI]. This bump is not present in
the inverted xc potential of HAR[FA], which indicates a bias by the initial xc potential. Further
conclusions, that go beyond analyzing the specific system, are for example the superiority of the
xKLI and Fermi-Amaldi potentials compared to LDA as an initial xc potential. Within the set
of update rules that we studied, the update rule LoH(β) with β ∈ [0, 1] appear as reasonable
intermediate candidates, capturing important aspects of both the smoothness of HAR as well as
the density reconstruction of HAR+DEN. Any inverted potentials that are outliers with respect
to the ensemble of the other inverted potentials shown should be treated with care. If some
inverted potential shows qualitatively differing artifacts, and the origin thereof is not explained
within the construction of the update rule or the initial potential, caution is advised.

In the presence of statistical fluctuations, it is difficult to decide which characteristics of the
inverted potentials actually stem from the reference density’s noise, and to distinguish such
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Figure 10.5.: Different inverted xc potentials for the reference density QMC-B of the N2 molecule.
Starting from the Fermi-Amaldi xc potential (generated from the reference density), the inverted
potentials stem from the update rules HAR, HAR+DEN, HAR+LoH(0) and HAR+LoH(1).

artifacts from true characteristics that are independent of the noise. Therefore, we perform a
series of identical inversions for two densities of the Li2 system, QMC-A and QMC-C, that differ
by their statistical fluctuations only. The QMC densities represent the same physical system and
are methodically identical, their differences stem solely from a different set of random numbers.
That being said, the densities can nevertheless slightly differ in quality, where we refer to the
quality relevant for inversion, which can be unexpected as seen in the above examples. These
difference could manifest in subtle features of the density, such as an unnatural bump in the
density in the far asymptotic region. The obvious question to address, namely whether the
statistical differences generate different inverted potentials, can partially be answered beforehand.
The pure Hartree update HAR should yield a smooth potential, since its updates average over
the fluctuations. The updates incorporating local density feedback, are bound to show larger
dependencies on the noise. In Fig. 10.6 we compare the inverted potentials for the rules HAR,
HAR+DEN and HAR+LoH(1) and find essentially the above prediction: The HAR updates are
visually indistinguishable despite the noise, expect for the pathological vicinity of the nuclei,
where they differ only slightly. The rule HAR+DEN does not improve over HAR much, since in
the Li2 system the absolute value of the density is close to the range of xc potential values and the

89



10. Inversion results

direct density feedback from DEN therefore comparably weak. The rule HAR+LoH(1) exhibits a
stronger dependence on the noise point-wise, but conserves the qualitative potential. While the
capability of the update rule to locally adjust the potential from direct feedback of the density is
an advantage for densities free of numerical artifacts, it can become a hindrance in the presence
of noise, artificial wiggles, or spikes. To conclude with, the parts of the inverted potential, that
stem from the densities’ fluctuations, are clearly visible as noisy or artificial details and cannot be
mistaken for distinct characteristics. These findings are supported by Tab. 10.3. The metrics for
both densities are in close agreement to each other. The Wasserstein metric shows essentially no
difference between the reference densities QMC-A and QMC-C. This indicates that the numerical
artifacts of the reference densities, despite having impact on the inverted potentials, mostly spend
this impact on less relevant, auxiliary characteristics of the inverted xc potential, that have little
physical meaning. One can additionally assess the consequences of different fluctuations in the
reference densities manifesting in the eigenvalues of the inverted xc potentials. For a non-trivial
inversion (with unknown reference xc potential) it is not possible to measure the quality of the
eigenvalues with respect to the true reference spectrum, as shown in Fig. 10.2. However, the
eigenvalue spectra can be compared among different inversions. Fig. 10.7 shows the eigenvalues
for the inverted potentials of Fig. 10.6 and Tab. 10.3. Clearly the eigenvalues are in very good
agreement. Therefore the distinct numerical artifact visible in Fig. 10.6 must almost purely be
of auxiliary type and do not influence the resulting physical interpretation of the KS system.
This is reassuring to see, since apparently the xc potential equipped with artificial deviations
below a certain magnitude does not change its physical implications. Another perspective on
the small dependence of the physically meaningful quantities on the artifacts present in the xc
potential is the one of averaging over the fluctuations. Consider the reference density, n, to be
the true density, n0, with an additional scalable artifact-density, thus n = n0 + λna with scaling
parameter λ. Then, within the linear approximation to the forward KS map of Sec. 10.1 the
corresponding true xc potential is vxc = vxc0 + λvxca. From the Hellmann-Feynman theorem
the eigenvalues obey εi(λ) = εi(0) + λ ⟨φi|vxca|φi⟩. The artificial contributions of the potential
are averaged over the orbital’s density, which allows fluctuations to cancel out. Even without
the linear approximation to the forward map, the true density response, cf. Eq. (J.2), does also
average fluctuations of the potential in the overlap integrals ⟨φi|vxca|φj⟩ of the response function.

We cannot generalize these findings to other types of numerical artifacts, that are non-statistical
in nature, such as limited basis set, incomplete configuration interaction or other biases. From the
above it seems that noise in the reference density has mild consequences for the KS observables.
Other types of artifacts might also influence the inverted potentials in a specific and systematic
way. Such biases could, to the contrary, be smooth and thus be more subtle to detect, and may
require a detailed analysis on their own. As a final comment on the oftentimes cumbersome
inversion process, we show the evolution of the inversion over the course of the repeated application
of the update rule in Sec. I.
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10.3. QMC density inversion

Table 10.3.: Metrics of the inversion of two QMC densities (QMC-A and QMC-C) for the Li2
molecule, that differ in their statistical fluctuations only, for the update rules HAR, HAR+DEN,
HAR+DoH, HAR+LoH(0) and HAR+LoH(1). All inversions shown below were started from the
Fermi-Amaldi potential.

ref.-den. method D1 D∞ W2 Zxc

×10−3 ×10−2 ×10−4 ×10−9

QMC-A HAR 7.59 2.28 1.23 −4.07
QMC-A HAR+DEN 7.12 1.73 1.21 −4.47
QMC-A HAR+DoH 7.52 2.15 1.23 −5.32
QMC-A HAR+LoH(0.0) 3.64 2.08 0.92 −3.14
QMC-A HAR+LoH(1.0) 4.77 1.96 1.07 −3.49

QMC-C HAR 8.63 2.21 1.24 −3.80
QMC-C HAR+DEN 7.71 1.77 1.21 −3.67
QMC-C HAR+DoH 6.58 2.03 1.17 −3.24
QMC-C HAR+LoH(0.0) 2.90 1.95 0.89 −7.04
QMC-C HAR+LoH(1.0) 4.26 1.88 1.06 −4.32

91



10. Inversion results

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0
intermolecular z-axis [a.u.]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

xc
-p
ot
en
tia

l[
a.
u.
]

QMC-A: HAR
QMC-C: HAR
QMC-A: HAR+DEN
QMC-C: HAR+DEN
QMC-A: HAR+LoH(1)
QMC-C: HAR+LoH(1)

−2.75 −2.50 −2.25
−2.5

−2.0

−1.5

nucleus

−1 0 1

−0.40

−0.35

−0.30

−0.25

inter-atomic
bond

5.0 7.5
−0.30

−0.25

−0.20

−0.15

−0.10

inter-shell
bump

Figure 10.6.: Inverted xc potentials of the two densities QMC-A and QMC-C for the Li2
molecule, that differ in their statistical fluctuations only, for the update rules HAR, HAR+DEN,
and HAR+LoH(1) starting from the Fermi-Amaldi potential. The HAR densities are not
distinguishable by the eye in the main plot and HAR+DEN only marginally differs from HAR
(mostly in the high-density regions). While the HAR+LoH(1) updates are much more “noisy”,
their corresponding densities are also closer to the reference density, see the metrics in Tab. 10.3
or Fig. 10.7 for the exact values.
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Figure 10.7.: The KS energy eigensystem for the same items as in Fig. 10.6. While originating
from different inverted xc potentials, the energy spectrum is remarkably similar. The marginal
differences in the lower eigenvalues at about −2.07 a.u. stem from the finite accuracy of the KS-
solver. The update rules with a direct local feedback introduce a slight symmetry breaking of the
spin channels. Nevertheless, note that the relatively noisy xc potentials from the HAR+LoH(1)
update result in spectra visually almost indistinguishable from the smoother xc potentials of
HAR or HAR+DEN. The eigenvalues have been shifted to align in the lowest up-eigenvalue due
to the invariance of the KS system to a constant offset in the potential. Note the different scale
of the plot for the two lowest eigenvalues, which is close to the accuracy to which the forward
solver computes eigenvalues. The lowest two eigenvalues are almost degenerate and match within
their line width.
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11. Second order QMC

The toolset presented so far allows for generating accurate xc potentials from QMC densities. To
this end, a standard DFT calculation is carried out to yield orbitals and a KS Slater determinant.
The orbitals are used in VMC and DMC calculations to estimate the quasi-exact QMC density by
extrapolating the mixed estimator error. Several inversions are carried out from the quasi-exact
density to arrive at multiple candidate xc potentials. The reliability of the xc potential or its
specific characteristics can be assessed from the multitude of potentials. However, the inverted
xc potential corresponds to an inverted KS system, i.e., a density and a set of orbitals. These
orbitals are accurate approximations of the orbitals of the true KS system and thus incorporate
the physics of the true density. Additionally, they are expected to outcompete DFT orbitals
from any a priori density functional approximation.

This makes the inverted orbitals ideal candidates for performing another QMC calculation with
them again. Intuitively, the superior orbitals, enriched with the information of the quasi-exact
density, should result in a better description of the system and also a lower DMC energy. The
QMC calculation utilizing inverted orbitals is called second-order QMC in the following. The
outcome of a second-order QMC calculation is given below. Higher orders, which were not
calculated in the scope of this thesis, result from repeated cycles of QMC calculations and
inversions, cf. Fig. 11.3.

Note that this procedure is an extraordinarily subtle task. The various hyper-parameters in a
QMC calculation have to be chosen from experience and specifically for the system under study.
The inversion of the resulting QMC density is a challenge on its own. The ambiguity in the
inverted xc potential also manifests in the orbitals, even though in a less severe and obvious
way. However, even calculating a single higher-order cycle requires a large amount of human and
computer time. For the DMC method, the nodes of the trial wave function alone determine the
DMC energy. In the case of a single-determinant trial wave function, the orbitals alone determine
the nodes. While the single determinant has an incorrect topological nodal structure, cf. Sec. 5.6,
there is nevertheless a determinat with the optimal nodal structure, i.e. single-determinant
nodes, that minimize the DMC energy. The inverted orbitals are a promising candidate for
approximating the optimal single-determinant nodes.

11.1. QMC results from inverted orbitals

The process to a second order of QMC depends on many hyper-parameters and qualitative
choices. The procedure to arrive at a second order is therefore outlined below.

With the results and experience gathered from the previous sections, the systems Li2 and N2

are chosen for the second-order QMC calculation. First, with the DARSEC code a standard
DFT calculation in the xKLI approximation is performed on a 181 × 181 grid. The resulting
orbitals are used in the QMC calculations. In VMC, the Jastrow parameter is optimized. The
subsequent DMC calculation uses the optimized trial wave function. The resulting QMC density,
estimated by the extrapolation estimator based on the VMC and DMC densities, is then subject
to the refinement process described in Sec. G. To this point, the procedure represents a standard
QMC calculation. Next, the refined density on the 181× 181 grid is reduced to a grid of extent
103 × 103, which is necessary to achieve the desired accuracy in the inversion process since
larger grids slow down the inversion significantly. To this end, the density on the larger grid is
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11. Second order QMC

Table 11.1.: Second order DMC results based on the initial xKLI calculation and the update
rule HAR for the systems Li2 and N2. The second-order DMC results are given in the last row.
The other results are already reported in Tab. 9.1.

Li2 N2

energy variance Σ2 energy variance Σ2

DFT@xKLI −14.870 580 −108.985 178
VMC@xKLI −14.930 64(3) 0.406 71(4) −109.103 16(5) 4.7855(2)
DMC@xKLI −14.991 43(4) 0.382 04(4) −109.516 86(3) 4.3839(1)
2nd order DMC −14.991 724(6) 0.383 453(9) −109.516 77(4) 4.4015(1)

interpolated and subsequently evaluated at the grid points of the smaller grid. The reduction
of the grid is an additional step in the regularization scheme used in inversions. The inversion
uses the update rule HAR since this update rule is found to be the most reliable and stable
and yields smooth xc potentials. The inverted xc potential is represented on the 103× 103 grid
and has to be extrapolated to the more accurate grid of 181× 181 grid points, for the reasons
described in Sec. E.4 and Sec. F. This is again accomplished by interpolation. The inverted xc
potential on the 181× 181 grid is again used in a DFT calculation to self-consistently calculate
the orbitals, i.e., the xc potential is kept fixed while the Hartree potential and the orbitals are
converged to self-consistency. This step might seem irrelevant since the inverted orbitals could
be extrapolated from the inversion grid of size 103× 103 to the accurate 181× 181 grid directly.
However, the extra DFT calculation ensures a consistent KS system, with correctly normalized
orbitals and potentials represented on the same grid. At this point, the inversion of the QMC
density yields an accurate KS system that can be studied on its own. With the resulting DFT
orbitals, the second-order DMC calculation is finally carried out. From the second-order DMC
calculation, energies and densities for Li2 and N2 are available. The evolution of the total energy
over the course of the second-order QMC calculation is given in Tab. 11.1. The evolution of the
density is given by Fig. 11.1 and Fig. 11.2.

Note that the Jastrow parameter is not reoptimized with the new orbitals of the second order.
Instead, the Jastrow parameter is the same as in the original QMC calculation. This should not
influence the DMC results, since the Jastrow factor does not alter the nodes.

For Li2, the DMC energy in second order improves over the first-order DMC energy, while for
N2 the second-order DMC energy is slightly worse than in first order. However, the differences
are in the range of the time-step error or the range of the DMC energies of different orbitals,
cf. the extrapolated results for DMC based on LDA orbitals from Tab. 9.1. The variances for the
second-order wave function increase slightly for both systems, indicating less eigenstate character.
This is likely related to the fixed Jastrow parameter, which, in second order, is not optimized for
the new orbitals. The second order therefore is not significantly improving the QMC results, and
hence, neither the nodes nor the remaining aspects of the trial wave function. This contradicts
the intuitive assumption that the inverted orbitals are well-suited for representing the nodes.

A remarkable fact concerning DFT orbitals is that for reasonable density functional approxi-
mations as different as LDA and xKLI, but also other density functional approximations like
PBE [149] or SCAN [150], their orbitals are very similar (not shown). The orbitals only slightly
differ quantitatively but show the same qualitative behavior. Since intricate quantitative details
in the orbitals can nevertheless significantly affect the Slater determinant’s nodes, the orbitals
could have a severe impact on the DMC energy. From the results in Tab. 11.1, however, this
is not apparent. Neither the first order DMC energies depend significantly on the used density
functional, cf. Tab. 9.1, nor the second-order DMC energies differ from the first order energies.

In Fig. 11.1 and Fig. 11.2, the densities for first and second order are quite aligned. There is
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no significant qualitative difference in the densities. This is an expected result, as densities for
the same system tend to be very similar, for example, cf. Fig. 9.3 or Fig. H.3. However, some
slight changes in the density can be identified. For example, the density at the inter-atomic bond
of Li2 is increasing in the second order. For the nitrogen molecule, the inter-atomic density is
slightly flattened in the second order. The figures 11.1 and 11.2 show DFT and DMC densities,
the latter being biased by the mixed-estimator bias. The VMC densities or extrapolated densities
are not shown.

The inverted xc potential can be compared to the original xc potential in the lower panels
of Fig. 11.1 and Fig. 11.2. The difference in the potentials is significant compared to the
difference in the densities. For both systems, inter-shell bumps arise. Note that the original and
inverted xc potentials are not connected to the second-order DMC results but are only shown for
completeness.

Whether the reported differences in energies and densities of the second order are self-consistent
and can be confirmed in higher orders of the feedback loop between DFT and QMC or vanish,
change, or oscillate with higher orders, requires the realization of further iterations of the feedback
cycle.

11.2. Outlook

Although the second-order DMC energies do not consistently improve upon the first-order
energies, the second-order densities do change, and therefore the underlying orbitals and the KS
Slater determinant. The examination of third and higher orders is hence an interesting outlook.
It is common for a self-consistent iteration not to show monotonous improvements in its first
steps. Fig. 11.3 puts the higher orders in an iterative scheme, where inverted orbitals from a
QMC density are fed back into the QMC method to calculate the next order. Higher orders
could reveal if the self-consistent cycle is only oscillating around the results of the first order, or
if a significant improvement is reached before self-consistency is achieved.

Iterating higher orders of the DFT-QMC cycle to self-consistency generates a unique KS system
whose properties are yet to be determined. Two leading principles govern the self-consistent
cycle. First, the QMC method aims to find a state of minimal energy constrained by the given
nodes, which directly originate from the orbitals. Second, the inversion conserves the quasi-exact
QMC density with some KS orbitals. If the QMC methods recover the true ground state density
in the self-consistent limit, then the corresponding inverted KS system must also resemble the
true density. A KS system that reproduces the true density is the true KS system. Hence, the
orbitals must play a double role in generating the true density and, at the same time, should
yield optimal nodes for the DMC wave function. Only if the true KS system coincidentally
also provides the optimal single-determinantal nodes can the iterative scheme reach both goals
simultaneously. This hope is questioned by Ref. [151], at least for a model system with reduced
dimensionality and some model interaction. Without this coincidence, the iterative scheme might
converge to some intermediate Slater determinant, deviating from the true KS system and also
deviating from the optimal single-determinant energy.

Nevertheless, this KS system might be of interest since the DMC enhances the given orbitals
via a refined density in every iteration. Interesting cases to further analyze by higher order
QMC are the Li-atom or the Be-atom, for which the exact nodes are analytically known [86]
and available for comparison. Additionally, the limit of vanishing electron-electron interaction
strength might give further insights. In this limit, the non-interacting system with vanishing
effective potential, vKS = 0, yields the true wave function. It also exhibits the true nodes and, at
the same time, the true density. Deviating from this limit slightly, for example, with the help of
the Hellmann-Feynman theorem, might allow for assessing the role of the effective potential.

97



11. Second order QMC

−20 −15 −10 −5 0 5 10 15 20
10−10

10−8

10−6

10−4

10−2

100

de
ns
ity

[a
.u
.]

initial DFT den
DMC den
inverted DFT den
2. order DMC den

−20 −15 −10 −5 0 5 10 15 20
intermolecular z-axis [a.u.]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

xc
-p
ot
en
tia

l[
a.
u.
]

initial DFT vxc
inverted DFT vxc

2.50 2.55
5

6

7

electron-nuclear
cusp

5 6

0.00050

0.00075

0.00100

core-valence
transition

−1 0 1
0.0065

0.0070

0.0075

interatomic
bond

Figure 11.1.: Upper panel: Densities of the diatomic lithium Li2 system starting from a standard
DFT calculation based on the xKLI functional approximation to second-order QMC. Lower
panel: The original xc potential from the self-consistent DFT calculation and the xc potential
inverted from the first-order QMC density.
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Figure 11.2.: Upper panel: Densities of the nitrogen molecule N2 system starting from a standard
DFT calculation based on the xKLI functional approximation to second-order QMC. Lower
panel: The original xc potential from the self-consistent DFT calculation and the xc potential
inverted from the first-order QMC density.
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Figure 11.3.: The sketch of an iterative scheme to couple the QMC approach and density-
inversion. From some initial orbitals a QMC calculation generates a quasi-exact density. The
density is inverted to yield a KS system with inverted orbitals and therefore an inverted Slater
determinant. Then the QMC calculation can be restarted with the inverted quantities. Iteration
of the scheme defines a feedback loop, which might converge to some self-consistent solution.
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12. Conclusion

This thesis provides a detailed self-contained introduction to the variational and diffusion
Monte Carlo methods and their underlying concepts. The presented QMC methods have been
implemented in a new and efficient QMC code that allows for exploring new computational
strategies. The trial wave function used in QMC is deliberately kept simple in this first study.
Although more sophisticated forms of trial wave functions, mainly multi-determinantial wave
functions including sums over Slater determinants, are readily available and might be implemented
in the future, this work focuses on the orbitals’ representation on a specialized real-space grid.
In a coordinate system such as the prolate spheroidal coordinates, with singular contributions to
the gradient and Laplacian, converting the finite difference representation of the orbitals to a
continuous representation is challenging. The interpolation from the real-space grid has been
tailored thoroughly to accurately describe the orbitals in the vicinity of the nuclei and let the
wave function’s cusp cancel the Coulomb singularity. The resulting energies are highly accurate,
recovering 90 to 97% of all correlation effects.

The corresponding QMC densities are estimated on a histogram that resembles the densities’
characteristics to reduce the variance significantly. With this specialized binning method, quasi-
exact densities are readily available. However, the proposed propagating estimator promises to
enhance the quality of the resulting density further. The fluctuations of the QMC densities are
analyzed to assess the statistical error of the densities. The regions of large density fluctuations,
i.e., in the vicinity of the nuclei and the asymptotic domain, are remedied by a regularization
technique that exploits the exact exponential behavior of the density in these regions of space.
Thus, densities with minimal fluctuations can be constructed.

With such densities available, inversions of the KS map are carried out, i.e., an xc potential
is deduced from a given density. Inversion problems are ill-posed and notoriously unstable in
their results for the xc potential as well as their computational procedure. The pathological
characteristics of inversions are studied in detail, and the general limitations of density inversions
are elaborated. The inverse problem is shown to be bound to a significant level of ambiguity
in the xc potential, and the chosen inversion algorithm already determines some properties of
the resulting potentials. A range of iterative inversion procedures have been developed that
are capable of inverting densities with statistical noise. The presence of noise in the density
reveals how the inversion overemphasizes numerical artifacts. With this general assessment of
the inversion process, accurate xc potentials are constructed and their properties are determined
reliably. The inverse problem is contrasted with the exceptionally well-behaved forward KS map
and its extensive linear regime for the density response to variations in the potential. A new
inversion procedure based on potential fitting is proposed from the forward map’s linearity.

Finally, a concept to improve QMC results with the aid of the exact KS orbitals is realized by
combining the central topics of this thesis: accurate QMC results, estimation of the density, and
reliable inversions. The exact KS orbitals construct a presumably superior trial wave function.
However, the results based on this second-order wave function resemble the original QMC results
calculated with approximate DFT orbitals. An outlook of the second-order approach discusses
improving the second-order scheme.
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A. Slater determinants

This chapter discusses properties of Slater determinants and numerical approaches for their
efficient evaluation. The Slater determinant handles the anti-symmetry requirement for fermionic
wave functions and thus introduces great redundancy in the description of the state, and
potentially also in practical calculations. To avoid numerical redundancies and to arrive at
efficient computations, the representation of the wave function is slightly altered in Sec. A.1. In
Sec. A.2, the evaluation of Slater determinants and their derivatives is accelerated by the matrix
determinant lemma.

A.1. Product representation

This section shows that a partially anti-symmetrized form of the wave function suffices to describe
the state and that full anti-symmetry is not required in QMC.

With the antisymmetrizer of Eq. (5.2), the standard form of a Slater determinant of Eq. (5.3)
can be rewritten in a simple but lengthy calculation as

Φ(X) = ÑÂ

(
Nα∏
i=1

α(si)

)(
N∏

i=Nα+1

β(si)

)
ϕ(R). (A.1)

The partially anti-symmetric form

ϕ(R) = ϕα(Rα)ϕβ(Rβ) (A.2)

is the product of spin-free, normalized, and anti-symmetric determinants, ϕα,β, of the α- and
β-channel orbitals, reading

ϕσ(Rσ) =
√
Nσ!Â

Nσ∏
i=1

φσi(Rσ,i), σ = α, β. (A.3)

The product ϕ is anti-symmetric for each spin channel separately, but has no definite symmetry
for permutations exchanging coordinates corresponding to different spins. The normalization
factor

Ñ = (N !/Nα!Nβ!)
1
2 (A.4)

accounts for and corrects the double countings due to multiple anti-symmetrizers (one in Eq. (A.1)
and one for each spin channel in Eq. (A.3)).

Omitting the normalization factor and anti-symmetrizer in front of Eq. (A.1) results in a wave
function

Φ̃(X) =

(
Nα∏
i=1

α(si)

)(
N∏

i=Nα+1

β(si)

)
ϕ(R) (A.5)

that is not fully anti-symmetric in its coordinates but nevertheless normalized. This form yields
expectation values and overlap integrals identical to those from the fully anti-symmetrized form
Φ. The proof follows below. Additionally, this form attaches the first Nα coordinates to the
α channel and the remaining ones to the β channel, meaning the first Nα coordinates are the
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arguments to the Slater determinant of the α-orbitals, and vice versa. Φ̃ is only anti-symmetric
in the spatial coordinates of each spin channel separately but asymmetric across spin channels.
The advantage of expression (A.5) is its product form of functions of spin and spatial coordinates,
cf. Sec. 5.1.

To prove the equivalence of Φ̃ and Φ regarding overlap integrals, suppose Φ̃′ and Φ̃ are of
the form of Eq. (A.5) with the same spin configuration but different spatial parts, ϕ′ and ϕ,
respectively, and Ô is a spin-independent and symmetric observable. Then

⟨Φ̃′|Ô|Φ̃⟩ =
∑
s1...sN

(
Nα∏
i=1

|α(si)|2
)(

N∏
i=Nα+1

|β(si)|2
)∫

ϕ′
∗
(R)Ôϕ(R) dR (A.6)

=

∫
ϕ′

∗
(R)Ôϕ(R) dR. (A.7)

Note that the spin functions α, β form an orthonormal basis,∑
s

σ(s)σ′(s) = δσ,σ′ with σ, σ′ ∈ {α, β}. (A.8)

Next, the same calculation is written down for the corresponding fully symmetrized determinant
of Eq. (A.1).

⟨Φ′|Ô|Φ⟩ =
Ñ2

N !2

∑
s1...sN

∫ ∑
π,τ∈S(N)

sign(π)sign(τ)

× α∗(sπ(1))α(sτ(1)) . . . β
∗(sπ(N))β(sτ(N))ϕ

′∗(πR)Ôϕ(τR) dR

=
Ñ2

N !2

∑
π,γ∈S(N)

sign(πγπ)

×
[ ∑
s1...sN

α∗(sπ(1))α(sγπ(1)) . . . β
∗(sπ(N))β(sγπ(N))

]

×
∫
ϕ′

∗
(πR)Ôϕ(γπR) dR

=
Ñ2

N !

∑
γ∈S(N)

sign(γ)

×
[ ∑
s1...sN

α∗(s1)α(sγ(1)) . . . β
∗(sN )β(sγ(N))

]∫
ϕ′

∗
(R)Ôϕ(γR) dR

(A.9)

The permutation τ was substituted with γπ, and the reordering of the coordinates in s1, . . . sN and
R subsequently eliminates any action of the permutation π, making the sum over π count all N !
permutations in the symmetric group S(N). Note that the last step reveals ⟨Φ′|Ô|Φ⟩ = Ñ⟨Φ̃′|Ô|Φ⟩.

Due to orthonormality of the spin functions, the expression in the square brackets is either zero
or one. If γ maps any index from {1 . . . Nα} to {Nα + 1 . . . N} the square bracket is zero, and
the corresponding summand does not contribute to the summation. The remaining permutations
with non-zero summands are restricted to

γ({1 . . . Nα}) = {1 . . . Nα} (A.10)

γ({Nα + 1 . . . N}) = {Nα + 1 . . . N} (A.11)

Therefore, every permutation γ can be split into γ = γαγβ with γα ∈ S({1 . . . Nα}) and γβ ∈
S({Nα + 1, . . . N}). A permutation such as γαγβ acting on the spatial Slater determinant ϕ is
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readily evaluated as

ϕ(γαγβR) = ϕα(γαγβRα)ϕβ(γαγβRβ) = ϕα(γαRα)ϕβ(γβRβ)

= sign(γα)ϕα(Rα)sign(γβ)ϕβ(Rβ)

= sign(γαγβ)ϕ(R).

(A.12)

Together this yields

⟨Φ′|Ô|Φ⟩ =
Ñ2

N !

∑
γα∈S({1...Nα})

∑
γβ∈S({Nα+1,...N})

sign(γαγβ)

∫
ϕ′

∗
(R)Ôϕ(γR) dR

=
Ñ2

N !

∑
γα∈S({1...Nα})

∑
γβ∈S({Nα+1,...N})

sign(γαγβ)2
∫
ϕ′

∗
(R)Ôϕ(R) dR

=Ñ2Nα!Nβ!

N !

∫
ϕ′

∗
(R)Ôϕ(R) dR

=

∫
ϕ′

∗
(R)Ôϕ(R) dR = ⟨Φ̃′|Ô|Φ̃⟩.

(A.13)

This concludes the proof of ⟨Φ′|Ô|Φ⟩ = ⟨Φ̃′|Ô|Φ̃⟩.

A few notes are appropriate: First, the reduced symmetry of Φ̃ can always be restored to
full anti-symmetry by Φ = ÑÂΦ̃. However, ÑÂ is only norm-conserving when acting on wave
functions with the symmetry of Φ̃ of Eq. (A.5). Further ÑÂ commutes with any symmetric
observable, e.g., the Hamiltonian, and therefore Φ̃ has the same eigenvalue structure as Φ with
symmetric operators. As a major consequence of the above, the partially anti-symmetrized Slater
determinants of a non-interacting Hamiltonian build an orthonormal basis equivalent to the basis
of fully anti-symmetrized Slater determinants. Thus, the form of reduced symmetry also exists
for correlated wave functions, as stated in Sec. 5.1.

A.2. Fast determinant evaluation

In a QMC calculation, a heavily repeated and computationally demanding task is the evaluation
of Slater determinants. Often, not only is the value of the determinant required but its gradient
is also used in the drift vector and the Laplacian in the local energy. The standard evaluation of
the determinant of a n× n matrix is a numerically expensive calculation of complexity O(n3).
To evaluate probability, drift, and local energy of a Slater determinant ϕ at some coordinate
R therefore requires 1 + 3× n+ n determinant evaluations, resulting in a complexity of O(n4).
Alternatives exist to evaluating every determinant itself and instead using the properties of Slater
matrices

∀i, j : Mij(R) = φi(rj). (A.14)

Derivatives of a Slater determinant ϕ = detM with respect to a single electron coordinate
correspond to single-row or -column change of the Slater matrix. Let Lk be a differential operator
that only acts on the variable rk. Then, by Laplace expansion of the determinant, its derivative
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is

Lkϕ(R) = Lk

n∑
i=1

(−1)k+iφi(rk)ϕ�
ik(R) =

=
n∑
i=1

(−1)k+iϕ�ik(R)Lkφi(rk) =

= det


φ1(r1) . . . Lφ1(rk) . . . φ1(rn)

...
...

...
φk(r1) . . . Lφk(rk) . . . φk(rn)

...
...

...
φn(r1) . . . Lφn(rk) . . . φn(rn)

 .

(A.15)

ϕ�ik is the sub-determinant, without orbital i and without coordinate k. For Slater determinants,
constructing the determinant and taking the derivative commutes. The derivative of the Slater
matrix is different from the Slater matrix only in a single column. This property allows the
application of the matrix determinant lemma, which is shortly stated here for completeness. Let
u,v ∈ Rn be column-vectors and M ∈ Rn×n a non-singular matrix with determinant ϕ = detM.
The matrix

M′ = M + uvT =


M11 + u1v1 . . . M1n + u1vn
M21 + u2v1 . . . M2n + u2vn

...
. . .

...
Mn1 + unv1 . . . Mnn + unvn

 (A.16)

originates from M by addition of a dyadic product only. The determinant of M′ is given by the
matrix determinant lemma as

ϕ′ = detM′ =
(
1 + vTM−1u

)
ϕ. (A.17)

If the inverse M−1 is known, the new determinant can be calculated with O(n2) complexity in
general.

Comparing Eq. (A.15) and Eq. (A.16), the derivative of a Slater matrix can be cast as a dyadic
update with vectors

∀i : ui = Lφi(rk)− φi(rk) (A.18)

∀j : vj = δkj (A.19)

The specific form of u with the subtraction of the original value φi(rk) = Mik results in the
special formula

Lkϕ = ϕ

(
1 +

∑
i

M−1
ki (Lφi(rk)− φi(rk))

)
=

= ϕ

(
1 +

∑
i

M−1
ki Lφi(rk)−

∑
i

M−1
ki Mik

)
=

= ϕ
∑
i

M−1
ki Lφi(rk)

(A.20)

which has even less complexity than the general case, namely the complexity O(n) of a scalar
product. The gradient in x-, y- and z-direction and the Laplacian result from replacing L by ∂x,
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∂y, ∂z and ∇2, respectively. For every coordinate R, one thus computes the inverse matrix in
O(n3) runtime first from a LU decomposition. Then, the determinant is generated trivially from
the LU matrices, and the gradients and Laplacians of the determinant follow with O(n) runtime.
Overall, the evaluation reduces to a computational cost of O(n3).
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B. Critical characteristics of wave functions

Wave functions exhibit special characteristics near certain points or hypersurfaces in configuration
space, like particle coincidences or wave function nodes. In the following, the characteristics of
the exact and the single-reference Slater-Jastrow wave function are derived and compared.

To first assess the general behavior of the wave function when two particles meet, consider
the particles A and B with charges qA and qB and with masses mA and mB. Both particles
are assumed to interact with each other and are accounted for in the Hamiltonian. Let the
separation of the two coinciding particles be ε = rA − rB, defining a relative coordinate. The
corresponding center-of-mass coordinate is s = (mArA +mBrB)/(mA +mB) with the reduced
mass µ = mAmB/(mA + mB). The Hamiltonian can be expressed in the new coordinates
accounting for the transformed kinetic contributions ∇2

A/2mA +∇2
B/2mB,

Ĥ = Ĥs(s, R̃) +
1

2(mA +mB)
∇2

s +
1

2µ
∇2

ε +
qAqB
|ε| . (B.1)

This renders the singularity to be placed at ε→ 0, irrespective of s. The operator Ĥs unites all
remaining parts of the Hamiltonian that are smooth, with R̃ representing all particle coordinates
except those of particles A and B. Note that any pair of particles, other than particles A and
B, is assumed to be well separated with some sufficient lower bound on their distance, such
that their potential and kinetic contributions in the Hamiltonian can be neglected compared
to the singular contributions of the meeting particles. The coordinate-transformed Schrödinger
equation in the vicinity of the singularity ε→ 0 with a non-vanishing wave function value was
shown to impose a cusp in the wave function by Kato [69]. Ref. [152] gives a comprehensive
review. The wave function has the asymptotic form

ψ(ε) = ψ(0) [1 + qAqBµ|ε|+ w · ε] +O(|ε|2), (B.2)

with some vector w, that depends on the location of the other particles and is usually unknown,
w = w(R̃). This form is realized in the case of electron-nucleus coincidences and electron-electron
coincidences for electrons of opposite spin. This particular form for the non-vanishing case is
often written using the spherically averaged wave function

ψ̂(|ε|) =
1

4π

∫
ψ(ε) dΩε, (B.3)

where the integration is over the spherical coordinates Ωε of the relative coordinate ε around the
coincident point ε = 0. With ψ̂ the cusp condition takes the form

lim
|ε|→0

∂|ε| ln ψ̂(|ε|) = qAqBµ, (B.4)

in which the scalar product or dipole contribution w · ε was averaged out. Although the averaged
form is often used in the literature, omitting the dipole contribution neglects a characteristic of
the cusp, and the non-averaged form is preferred in the following.
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B. Critical characteristics of wave functions

The case of a particle incident with vanishing wave function is not covered by Eq. (B.2). In
Ref. [152], this case is also analyzed for two meeting electrons. Applied to the electron-electron
coalescence, the cusp condition reads

ψ(ε) = w · ε
[
1 +

1

4
|ε|
]

+O(|ε|2). (B.5)

B.1. Electron-nucleus coalescence

Applying the cusp condition to the case of an electron approaching a nucleus of charge Z and
reduced mass µ, its value, gradient, and Laplacian read

ψ(ε) = ψ(0) [1− Zµ|ε|+ w · ε] +
1

2
ε · tε +O(|ε|3), (B.6)

∇εψ(ε) = ψ(0) [−Zµε̂ + w] + tsε +O(|ε|2), (B.7)

∇2
εψ(ε) = ψ(0)

[
−2Zµ

|ε|

]
+ tr (t) +O(|ε|1). (B.8)

Here, t is some matrix with symmetric part ts = (t+ tT )/2. The reduced mass µ ≈ 1 is neglected
due to the large nuclear mass compared to the electron mass. For an exact wave function ψ = ψ0,
the local energy EL is constant, and can be written as

EL(ε) = Es −
Z

|ε| −D
∇2

εψ0(ε)

ψ0(ε)
= Es − tr (t) . (B.9)

The energy Es corresponds to Ĥs and incorporates the bound kinetic and potential energy of
all other particles. The Coulomb singularity of the potential energy is canceled exactly by the
singularity of the kinetic energy.

The drift velocity uk of the exact wave function for electron k is governed by the limiting
behavior of

uk(ε) =2D
∇εψ0(ε)

ψ0(ε)
= 2D

−Zε̂ + w + tsε

1− Z|ε|+ ε ·w → 2D (−Zε̂ + w) . (B.10)

Thus, the drift velocity points to the nucleus, up to a constant vector, showing a cusp but neither
a discontinuity nor a divergence.

Next, the trial wave function is examined. The Jastrow factor and Slater determinant both
contribute to the cusp condition. The Jastrow factor, which might explicitly incorporate a nuclear
cusp in Jen, readily splits into a smooth and a cusped part

J = Js(s, R̃) + βu(|ε|), (B.11)

with a Jastrow parameter β. Expanded to second order in ε, the Jastrow factor reads

J − Js = βu(|ε|) = β

(
|ε|+ u′′(0)

2
|ε|2
)

+O(|ε|3), (B.12)

with u(0) = 0 and u′(0) = 1 from Eq. (5.19). To access the cusp in the Slater determinant,
assume any orbital φi in ϕ has a cusp at the nuclear position of magnitude αi (and a dipole
contribution wi) and treat the orbital as a function of ε.

φi(ε) = φi(0) [1 + αi|ε|+ wi · ε] +O(|ε|2) (B.13)
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The spin dependence of the orbital and determinant is suppressed for clarity. Define, for the
brevity of notation, a Slater determinant ϕ�ik, omitting the kth coordinate and the ith orbital,

ϕ�ik(R1:N\k) = detφ1:N\i(R1:N\k). (B.14)

Then, expanding the determinant at the nucleus in a Laplace expansion yields

ϕ(R) =
∑
i

(−1)k+iϕ�ik(R1:N\k)φi(rk) = Ŝikφi(rk), (B.15)

where the last term defines the operator Ŝik for simpler notation. Note that any choice for
k ∈ {1, . . . N} is legitimate. Then, both expansions can be inserted into the Eq. (5.21) for the
gradient of the trial wave function.

∇εψT = eJs Ŝikφi(0)
[

(αi + β) ε̂ + wi

]
+O(|ε|) (B.16)

This shows that the trial wave function’s cusp is inherited from the cusp of the Jastrow factor
and the Slater determinant’s cusp.

The cusp condition is fulfilled only if the term (αi + β)ε̂ is independent of the orbital index i
since only in this case can the expression reduce to the exact cusp condition. Additionally, the
magnitude of the cusp is fixed to

∀i : αi + β = −Z. (B.17)

Hence, every orbital has to individually fulfill the cusp condition with the same cusp. If all
orbitals simultaneously fail to reproduce the cusp but have a common, identical cusp, the Jastrow
factor can compensate for the global error. In the standard case, either the orbitals or the
Jastrow satisfy the cusp condition.

The summation in Ŝik averages over the dipole vectors wi to yield some new vector w̄. The
drift velocity at the nucleus is then given by

uk(ε) = 2D [(α+ β)ε̂ + w̄] = 2D [−Zε̂ + w̄] (B.18)

Determining the behavior of the local energy requires an longer but elementary calculation.
Taking the transformed Hamiltonian into account and applying it to the trial wave function
yields

EL(ε)− Es = − Z|ε| −
1

2

α+ β

|ε| + βε̂ · w̄ +O(0) = βε̂ · w̄ +O(0). (B.19)

The cusp condition of Eq. (B.17) is enforced in the last equal sign to cancel the singularities.
For a trial wave function that violates the cusp condition, its local energy exhibits a Coulombic
divergence at the nucleus. For exact cusps in the trial wave function, there still is a discontinuity
in EL due to ε̂ · w̄.

B.2. Electron-electron coalescence

The same analysis can be applied to the electron-electron coalescence points with the distinction
of the triplet and singlet cases. When two electrons approach another with opposite spin (singlet)
or parallel spin (triplet), from Eq. (B.2) and Eq. (B.5) the exact wave function at the incident
point reads

ψ(ε) =

{
ψ(0)

(
1 + 1

2 |ε|
)

+O(|ε|2), singlet

ε ·w
(
1 + 1

4 |ε|
)

+O(|ε|3), triplet.
(B.20)
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To arrive here, qAqB = 1 and µ = 1/2 are used. The gradient

∇εψ(ε) =

{
1
2ψ(0)ε̂ +O(|ε|), singlet(
1 + |ε|

4

)
w + 1

4(ε ·w)ε̂ +O(|ε|2), triplet
(B.21)

is bound at the coalescence point, while the drift vector

u(ε) = 2D

{
1
2 ε̂, singlet
1
4 ε̂ + w

ε·w , triplet
(B.22)

shows a discontinuity in singlet and triplet cases. The triplet case even features a singularity,
which is entirely due to the node in the wave function and not caused by the Coulomb singularity.
For the trial wave function of Eq. (5.14), the partially anti-symmetric Slater determinant is not
analytically accessible. A generic expansion reads

ϕ(ε) = ϕ(0) + g · ε +
1

2
ε · tε +

1

6
k⊗ ε⊗ ε⊗ ε +O(|ε|4), (B.23)

or in index notation with Einstein summation,

ϕ(ε) = ϕ(0) + giεi +
1

2
tijεiεj +

1

6
kijkεiεjεk +O(|ε|4). (B.24)

In the partial anti-symmetrized form of Eq. (5.5) and for the triplet case, the anti-symmetry
imposes ϕ(−ε) = −ϕ(ε). The determinant will show a node of first order in the triplet case,
ϕ(0) = 0, and t must either be zero or at least skew-symmetric. The higher orders are the
gradient gi = ∂iϕ(0), Hessian tij = ∂i∂jϕ(0) and the triple derivative tensor kijk = ∂i∂j∂kϕ(0).
The expansions gradient and Laplacian are given by

∇ϕ(ε) = g + tSε +O(|ε|2),
∇2ϕ(ε) = tr (t) + k∗∗ · ε +O(|ε|2),

(B.25)

with tS = (t + tT )/2 and k∗∗ = êi(kijj + kjij + kjji)/3.
The Jastrow factor Jee, on the other hand, is tailored to the electron-electron coalescence. It

can, again, be split into a smooth and a cusped part,

J − Js = βeeu(|ε|) = βee

(
|ε|+ u′′(0)

2
|ε|2
)

+O(|ε|3). (B.26)

The cusp parameter βee is either βSee = 1/2 or βTee = 1/4. The full trial wave function’s drift vector
from Eq. (5.22) is

uk(ε)/2D = βeeε̂ +
g + tSε

ϕ(0) + g · ε = βeeε̂ +

{
ϕ(0)−1g singlet
g
g·ε triplet.

(B.27)

Both spin scenarios show a cusp of the form βeeε̂, and at the triplet coalescence, the drift vector
diverges. The local Laplacian of the trial wave function in the singlet case reads

∇2
εψT (ε)

ψT (ε)
= β2ee +

{
2βee
|ε| + 3βeeu

′′(0) + ϕ(0)−1 (tr (t) + 2βeeg · ε̂) singlet
4βee
|ε| + 5βeeu

′′(0) + k∗∗·ε
g·ε triplet.

(B.28)

Inserting the above kinetic contributions into the full Hamiltonian and separating the smooth
contributions yields a local energy of the form

EL − Es =
1

|ε| −
{

2βee
|ε| + 2ϕ(0)−1βeeg · ε̂ singlet
4βee
|ε| + k∗∗·ε

g·ε triplet
= −

{
2ϕ(0)−1βeeg · ε̂ singlet
k∗∗·ε
g·ε triplet

. (B.29)
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The last equal sign imposes the correct values for the electron-electron cusps βee, and the Coulomb
singularity cancels for the triplet and singlet case. Nevertheless, for both multiplets, the local
energy is discontinuous due to the scalar products in the remaining terms. For the triplet case,
k∗∗ ∦ g in general, and the local energy diverges for the direction ε̂ ⊥ g even for |ε| > 0. Note
that this divergence is not due to the Coulomb potential, since the Coulomb singularity cancels
out, but due to the node and the definition of the local energy with the inverse wave function
value.

B.3. Nodes

The exact and trial wave functions, fermionic states, have nodes. The nodes originating from the
anti-symmetry are predictable. They give rise to the nodal hyperplanes, ri = rj for all i ̸= j, also
called Pauli planes. The nodes not related to anti-symmetry are not predictable in almost all
relevant cases since the Slater determinant or the expansion thereof vanishes by a complicated
interplay of all involved orbitals. In the vicinity of a non-trivial node, ψ(Rn) = 0, the wave
function usually is regular without cusps. An expansion of the coordinate vector R = Rn + ε
allows casting the wave function as

ψ(R) = ψ(Rn) + g · ε +
1

2
ε · tε +

1

6
k⊗ ε⊗ ε⊗ ε +O(|ε|4)

= |g| |ε⊥|+
1

2
ε · tε +

1

6
k⊗ ε⊗ ε⊗ ε +O(|ε|4)

. (B.30)

The expansion coefficients, g, t and k, are analogous to Sec. B.2. Additionally, g is a vector
normal to the nodal hypersurface at Rn. Since the gradient g = ∇ψ(Rn) at the node points
away from the nodal surface, g · ε = |g| |ε⊥|, while ε⊥ is the vector component of ε parallel to
the gradient and perpendicular to the nodal surface. Further, |ε⊥| is the shortest distance from
R to the tangent plane of the nodal surface at Rn.

The drift vector then takes the form

u(R) = 2D

(
g

|g| |ε⊥|
+

tSε

|g| |ε⊥|

)
+O(|ε|) (B.31)

with symmetric part tS as in Sec. B.2. Without the cusp condition, as in the triplet case, the
drift vector exhibits directionally singular behavior only.

The Laplacian reduces to

∇2
εψ(ε) = tr (t) + k∗∗ε +O(|ε|2), (B.32)

with k∗∗ as above. This renders the local energy

EL − Es = −D∇
2
εψ(ε)

ψ(ε)
= −D tr (t) + k∗∗ · ε

|g| |ε⊥|
+O(|ε|). (B.33)

For an exact ground state, the local energy is a constant, EL = E0. Thus, the exact wave
function must satisfy tr (t) = 0 and k∗∗ ∥ g to prevent singular behavior in the local energy.
For a trial wave function, i.e., not an eigenfunction of the Hamiltonian in practice, directional
divergencies of the two kinds tr (t) /g · ε and k∗∗ · ε/g · ε are present at the nodes if tr (t) ̸= 0.
Although the local energy of a trial wave function diverges at the nodes, the contribution to the
total energy originating from the point Rn on the nodal surface is bound since the total energy
integrates over the product of the trial wave function and local energy.
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C. Probability theory

This chapter aims to briefly overview the probability theory affiliated with Monte Calo methods.
It is not a deep dive into the mathematical intricacies but a shallow summary of the tools used
in this thesis. For a more precise introduction to probability theory the reader is referred to
Ref. [61, 153]. The main topics are the Metropolis-Hastings algorithm, the estimation of random
variables, and statistical correlation.

C.1. Definitions

Here, a random variable X on some space Ω is defined via its corresponding probability density
function f : Ω→ R+. The function f defines a probability density f(x) for every element x ∈ Ω.
The random variable X describes the generic outcome of a random experiment in which some
element of Ω is realized with probabilities according to f . This relation is denoted X ∼ f and
X is said to be distributed according to f . In the following, the space Ω is always continuous
and may be represented by Rn. The random variable X encapsulates the probabilistic character
in a single variable, giving rise to an elegant algebraic formulation of probability theory. The
distribution f carries the equivalent information, often more accessible regarding computation
as the random variable X, but is not as compelling regarding algebraic relations of random
variables. The distribution f maps each x ∈ Rn to some positive probability density with the
normalization

∫
Ω f(x) dx = 1.

From this shorthand definition of a random variable, the expectation value of some function
g(X) can be calculated by

Exp [g(X)] =

∫
g(x)f(x) dx. (C.1)

The above formula links the random variable with its probability distribution function in defining
an algebraic function Exp [·] for random variables. Another key quantity is the variance of a
random variable

Var [g(X)] =

∫
f(x) (g(X)− Exp [g(X)])2 dx = Exp

[
g(X)2

]
− Exp [g(X)]2 (C.2)

While the expectation value gives a notion of what to expect from realizations of g(X), the
variance quantifies the probability of how close a number of realizations is to the expectation value
on average. Whenever the variance is available, the standard deviation can also be calculated.

s [g(X)] =
√

Var [g(X)] (C.3)

It is an error measure, quantifying the same information as the variance but in a more accessible
way.

For two random variables X and Y with joint probability distribution f , i.e., a probability
distribution that takes x and y as arguments and returns the probability for the tuple (x, y), the
covariance of X and Y is defined as

Cov [X,Y ] =

∫
(X − Exp [X]) (Y − Exp [Y ]) f(x, y) dx dy

= Exp [XY ]− Exp [X] Exp [Y ]

(C.4)
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With the definitions of the expectation value, the variance, and the covariance, the theoretical
tools for the following statistical analysis are set.

C.2. Monte Carlo integration

In this thesis, the probability distribution under study is, in the majority of cases, a high-
dimensional one. Key target quantities to calculate are averages over the distribution of f in the
form of Eq. (C.1). The integration over the high-dimensional domain Ω of f cannot be carried
out by standard numerical means, and the central theorem to tackle the integration is the law of
large numbers [61]. It allows for the estimation of the value of an integral of the form

I =

∫
g(x)f(x) dx = Exp [g(X)] . (C.5)

To this end, m random variables (xi) with xi ∼ f,∀i = 1, . . .m, are required. The generation
of these random variables is discussed in Sec. C.4. Then, the estimate from the law of large
numbers reads,

Im =
1

m

m∑
i=1

g(xi) (C.6)

and in the limit m→∞, the estimate is guaranteed to converge to the true value of the integral,

I = lim
m→∞

Im. (C.7)

In the case of independent and identically distributed (i.i.d.) variables (xi) with finite variances
Var [g(X)] and Var [xi] for each i, the variance of the estimate Im is given by

Var [Im] =
Var [g(xi)]

m
=

Var [g(X)]

m
(C.8)

The mathematical nature of the convergence is omitted here for the sake of simplicity. The
estimation of I by a sample, i.e., a series of random variates (xi), is called Monte Carlo integration.
The uncertainty of the estimate, its standard deviation, scales as

s [Im] =
√

Var [Im] =

√
Var [g(X)]√

m
(C.9)

The great advantage of this integration method is the scaling of its uncertainty as m−1/2

independent of dimension of Ω. Although the scaling of the uncertainty is not fast in an intuitive
sense, it easily outcompetes numerical schemes in higher dimensions.

C.3. Estimators

Applying the law of large numbers to the expectation value yields an estimator

µ̌ [g(X)] =
1

m

m∑
i=1

g(xi). (C.10)

The estimate’s accuracy increases with sample size m and converges by the law of large numbers
in the limiting case

Exp [g(X)] = lim
m→∞

µ̌ [g(X)] (C.11)
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In the following i.i.d. samples, i.e., Cov [g(xi), g(xk)] = δikVar [g(xk)], are assumed. Applying the
same estimator scheme to the variance Var [g(X)], i.e., applying the law of large numbers to the
expectation values in the definition of the variance, gives an estimator for the variance

σ̌2b [g(X)] =
1

m

m∑
i=1

(g(xi)− µ̌ [g(X)])2 . (C.12)

While the above variance estimator σ̌2b [g(X)] converges in the limit of infinite m, it is biased for
any finite m. This is apparent from its expectation value

Exp
[
σ̌2b [g(X)]

]
= Exp

[
(g(xi)− µ̌[g(X)])2

]
= Var [g(xi)− µ̌[g(X)]]

= Var [g(xi)] + Var [µ̌ [g(X)]]− 2Cov [g(xi), µ̌ [g(X)]] =

= Var [g(X)]

(
1 +

1

m

)
− 2

m

m∑
k=1

Cov [g(xi), g(xk)]

=

(
1− 1

m

)
Var [g(X)] ̸= Var [g(X)] .

(C.13)

This example shows that the estimation of random variables can become cumbersome, even if the
estimators have a defined limit in which their target value is recovered. An unbiased estimator
for the variance employs the so-called Bessel correction m/(m− 1) and reads

σ̌2 [g(X)] =
1

m− 1

m∑
i=1

(g(xi)− µ̌ [g(X)])2 . (C.14)

To estimate integrals via the law of large numbers, the main quantity of interest is, of course,
the expectation value. However, to assess the statistical certainty of the estimated value, its
corresponding statistical error, the standard deviation, is required. The variance itself is also
important in some cases. All quantities have to be estimated by an appropriate estimator. While
µ̌ [g(X)] qualifies as an estimator of the expectation value, the estimation of the variance of either
g(X) or µ̌ [g(X)] is achieved by σ̌2 [g(X)] and σ̌2 [µ̌ [g(X)]], respectively. From the variance of
the estimator of the mean, an uncertainty for the estimated mean can be defined via the standard
deviation.

š [µ̌ [g(X)]] =
√
σ̌2 [µ̌ [g(X)]] (C.15)

However, estimating the standard deviation from an estimated variance is biased since the
square root is a non-linear operator. Without the assumption of an i.i.d. sample and thus a
serially correlated sample, the calculation of the variance is much more complicated as covariances
Cov [xi, xj ] have to be taken into account.

C.4. Metropolis-Hastings algorithm

To use the law of large numbers, that is, to estimate integrals of a probability distribution
f by averaging realizations of that distribution, an efficient method is required to generate
random variates distributed according to f , i.e., to sample the function. Random variables of
simple distributions, like the uniform, normal, or Poisson distributions can be sampled directly.
Unfortunately, it is impossible for most probability distributions of real applications to efficiently
and directly draw a variate from it. In many cases, the probability distribution even is a
computationally expensive function to evaluate. However, multiple implicit schemes allow for
sampling such distribution. A successful approach is to start with some initial random guess for
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a random variate and generate new variates from the information of the previous variates. The
result of such a process is called a Markov chain. Formally, it is defined as a random process in
which every new variate only depends on its (direct) ancestor. The corresponding Markov process
can be tailored to generate the desired set of variates for the law of large numbers, i.e. ensure
(x0,x1, . . . ) with xi ∼ f for all i. However, in almost any case, the Markov chain shows serial
correlation, i.e. statistical dependence between chain elements. The correlation complicates the
estimation of the uncertainty of the mean estimator, the variance, and higher moments of the
distribution, cf. the following Sec. C.5. Since the elements of the Markov chain xi belong to some
Rm and resemble stochastic trajectories, bold symbols highlight their multi-dimensional character
and relation to classical mechanics. Random variables from a discrete space, or state space, are
associated with states. For random variates from a continuous space, the term configuration
references the variates.

The popular Metropolis-Hastings algorithm [62, 63] provides a universal method to construct
such a series by defining the Markov process. Any time-independent Markov process without
memory can be represented by a single transition probability density kernel T (y ← x), that
specifies the probability to transition from configuration x to configuration y in a single step. A
transition kernel has to satisfy the normalization∫

T (y← x) dy = 1 (C.16)

and is non-negative. The normalization ensures that the probability to arrive at any configuration
y, starting from an arbitrary configuration x, is unity. Every ergodic transition kernel (see below)
is guaranteed to have a stationary distribution

f(y) =

∫
T (y← x)f(x) dx = T̂(y)f. (C.17)

And an initial probability distribution f0 can be converged to the stationary distribution f by
repeated application of the kernel.

f = lim
n→∞

T̂
n
f0 (C.18)

A transition kernel is ergodic, or equivalently irreducible, if it allows the transition from any
configuration x to any other configuration y with positive probability in a finite amount of steps,
i.e., if a finite number n exists such that∫

· · ·
∫
T (y← xn−1) . . . T (x1 ← x) dxn−1 . . .x1 > 0. (C.19)

This requirement ensures that the complete configuration space is accessible by transitions irre-
spective of the starting state and does not separate into subspaces between which no transitions
are possible. Ergodicity is met for all cases present in this work.

Assume the target distribution to draw from is f . The Markov process defined by T should
be tailored to have an equilibrium state identical to f . There are infinitely many transition
kernels with equilibrium distribution f , i.e. there is no unique map between transition kernel and
equilibrium distribution. A sufficient condition for the transition kernel T to have the equilibrium
distribution f is detailed balance or equivalently reversibility

T (y← x)f(x) = T (x← y)f(y). (C.20)

Detailed balance ensures that the transported probability T (y ← x)f(x) for the transition
y ← x is identical to the transported probability T (x← y)f(y) of the reverse process x← y.
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C.4. Metropolis-Hastings algorithm

The transported probability T (y ← x)f(x) is given by the probability density f(x) for the
configuration x multiplied by the probability T (y← x) of the transition from configuration x to
y. Note that detailed balance is not a necessary condition, and there are transition kernels that
might violate it but nevertheless converge to f in the long-time limit. However, detailed balance
is a convenient choice. If the kernel T satisfies detailed balance with the distribution f , then it
automatically yields this distribution as its limiting distribution, since∫

T (y← x)f(x) dx =

∫
T (x← y)f(y) dx = f(y), (C.21)

where the last step follows from the normalization of Eq. (C.16). Detailed balance ensures the
existence of an equilibrium distribution. The uniqueness follows from the two additional criteria
of aperiodicity and positive recurrence. Aperiodic transition kernels prevent periodic flow in
configuration space, i.e. that a configuration is not deterministically revisited after a fixed number
of steps. The transition kernel is positive recurrent if the number of steps to revisit an arbitrary
configuration has a finite expectation value.

Now that the formal connection from the target distribution f to some transition kernel T is
established, a constructive representation of the transition kernel is required that satisfies the
detailed balance. Therefore, T is cast as a conditional transition, i.e. T is split into a proposal
transition kernel G and an accetpance probability A,

T (y← x) = A(y← x)G(y← x) +R(x)δ(y − x) (C.22)

While G(y ← x) proposes a transition, the acceptance probability A(y ← x) reweights the
probability of the proposed transition. The rejection probability R(x) accounts for the probability
of the transition x← x, that is, to stay in the configuration x.

R(x) = 1−
∫
A(y← x)G(y← x) dy (C.23)

In this form, the kernel satisfies the normalization of Eq. (C.16) without any constraint on A
or G, but not necessarily the detailed balance Eq. (C.20). Imposing detailed balance leads to a
condition on A.

A(y← x) =
f(y)G(x← y)

f(x)G(y← x)
A(x← y) (C.24)

There are many possible forms for A that satisfy this condition, leading to Gibbs sampling or
Hamiltonian Monte Carlo. However, the most popular one is the Metropolis-Hastings acceptance
probability [62, 63]:

A(y← x) = min

[
1,
f(y)G(x← y)

f(x)G(y← x)

]
(C.25)

With this choice for A, the Markov process is fully defined. Despite the multiple choices already
taken (imposing detailed balance and choosing the MH acceptance probability), there is still
great freedom in the choice of G, as long as G renders the total transition kernel ergodic. There
is a soft but important condition on G regarding the numerical implementation: The proposal
transition should allow for numerically efficient sampling.

The optimal choice without any rejections (A = 1) implies G(y← x) = f(y), which contradicts
the assumption that f is computationally expensive to sample and G(· ← x) can be sampled
efficiently. Nevertheless, this points to the fact that a weak dependence of G(y← x) on x and a
big overlap with f(y) is beneficial.
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Next, the algorithm is outlined, that follows from the MH choice for the acceptance probability.
The algorithm utilizes repeated application of the transition kernel to some initial distribution to
arrive at the equilibrium distribution.

With some choice for G, a target distribution f and some initial choice for the Markov chain
x0, a new configuration y1 is drawn from the proposal kernel y1 ∼ G(· ← x0). For the proposed
transition from x0 to y1 the acceptance probability p = A(y1 ← x0) is calculated. With
probability p, the proposed new configuration y1 is accepted to be the next configuration in the
Markov chain, x1 = y1. With the reverse probability 1− p the Markov chain’s next configuration
is x1 = x0, i.e. the Markov process remains in the current configuration x0. Iteration of the
scheme,

yi+1 ∼ G(· ← xi) (C.26)

xi+1 =

{
yi+1 with probability A(yi+1 ← xi)

xi, with probability 1−A(yi+1 ← xi),
(C.27)

yields the Markov chain (x0,x1, . . . ). Note that the Markov chain requires a certain and previously
unknown number of iterations neq to become independent of the initial configuration x0 and
resemble the equilibrium distribution f(x), since detailed balance only holds in equilibrium.
Applying T̂ to some initial distribution does not yield the equilibrium distribution immediately.
However, it drives the distribution towards the equilibrium distribution by the usual argument
of a power method. In this regard, it is worthwhile to note that the eigenvalues of a transition
kernel have the upper bound of one.

Many proposal transition probabilities are compatible with a parameter that scales the
broadness, or variance, of the distribution. Thus, it is possible to introduce the notion of a
time step ∆t. Then the transition kernel is interpreted to propagate a configuration xi to some
stochastically chosen configuration xi+1 ∼ T (· ← x,∆t) in the time ∆t. The distance |xi+1 − xi|
is interpreted as a distance traveled in the time step ∆t and the passed time t = i∆t scales with
the number of iterations i. This allows for interpreting the Markov chain as a dynamic process in
time x(t), although the time is not a continuous variable and stays discrete in this picture. This
view on the MH algorithm aligns with the method of Green functions, see Sec. 4.3 or Sec. 6.2,
where different proposal kernels are discussed. Another advantage of the MH algorithm is its
genuine support for parallelization. Assume, not only a single configuration, x(t), is propagated,
but an whole ensemble, (xk(t)). The propagation of the individual configurations is completely
independent of the remaining ensemble. The ensemble propagation can be spread out across
different parallel units, enabling straightforward parallelization.

C.5. Serial correlation

This section reviews the effects of serial correlation, or autocorrelation, in the Markov chain. The
correlation quantifies any statistical dependence between two random variables X and Y . The
correlation is given by the algebraic relation

ρ [X,Y ] =
Cov [X,Y ]√

Var [X] Var [Y ]
. (C.28)

The elements of the Markov chain x(t) exhibit a natural correlation. Note that in equilibrium,
the Markov chain is invariant under translation in time. Thus, the autocorrelation A, i.e., the
correlation of the time series x(t) with itself after some time interval, depends only on the time
difference only

A(t) = ρ
[
x(t′ + t),x(t′)

]
= ρ [x(t),x(0)] . (C.29)
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Different Markov chains generated with the MH algorithm differ in their autocorrelation. In the
case of an optimal proposal kernel G(y← x) = f(y) the autocorrelation vanishes, since every
element of the Markov chain is independent from its ancestor elements. For any non-optimal
proposal, the autocorrelation is non-vanishing and ranges in the interval [−1, 1] depending on
the proposal transition probability. However, according to Reynolds [154], the serial correlation
of a Markov chain at equilibrium decays multi-exponentially. This limits the magnitude of the
autocorrelation for large times. In the following, the correlation is assumed to decay with a single
exponent,

A(t) = exp(−t/Tc) = χt. (C.30)

This approximation simplifies analytic considerations and focuses on the autocorrelation in the
long-time limit. Therefore, neighbouring elements of the Markov chain are strongly correlated,
and the correlation vanishes exponentially with the time interval between elements with some
decay constant χ = exp(−1/Tc). High correlation times Tc correspond to χ close to one, while a
vanishing correlation time Tc = 0 results in χ = 0. The correlation time Tc is the typical time
scale on which the correlation decays. Note that this is not necessarily a reasonable approximation
for short to intermediate times, where the correlation also can become negative.

C.6. Estimators with reduced correlation

Estimating expectation values by the law of large numbers in Eq. (C.10) depends heavily on
how well the generated Markov chain describes the underlying probability distribution. If a
Markov chain has a large serial correlation, the exploration of the configuration space is limited.
While the expectation value is recovered in the long-time limit, for finite times the correlation
introduces a potentially large uncertainty to it. For a chain x(t) with t = 1, . . . T , the uncertainty
manifests in the variance of the mean-estimator

Var [µ̌ [g(x)]] =
1

T 2
Cov

[
T∑
t=1

g(x(t)),

T∑
t′=1

g(x(t′))

]

=
1

T 2

T∑
t,t′=1

Cov
[
g(x(t)), g(x(t′))

]

=
1

T 2

 T∑
t=1

Cov [g(x(t)), g(x(t))] +
∑
t̸=t′

Cov
[
g(x(t)), g(x(t′))

]
=

Var [g(x)]

T

1 +
1

T

∑
t̸=t′

ρ
[
g(x(t)), g(x(t′))

]

(C.31)

Discarding the assumption of an i.i.d. sample, the above is a refinement of Eq. (C.14) to the
correlated case. Thus, Eq. (C.14) disqualifies as an estimator for the variance in the presence of
correlation. While the last term in Eq. (C.31) could be estimated, it is a more convenient and
reliable approach to generate an uncorrelated sample from the correlated Markov chain. The
correlation can be reduced with the introduction of new variables that represent an averaging
over the variables xk(t). First, the effect of parallel samples is discussed. Then, a method to
transform the original Markov chain into a less correlated one is reviewed.
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C.6.1. Parallel sampling

As mentioned above, the parallel generation of multiple independent Markov chains poses a
computational advantage. In addition, averaging over the parallelly propagated configurations
reduces the uncertainty of estimates and the covariance. Assume m independent Markov processes
x1(t), . . .xm(t) are computed in parallel. Then, the covariances between the configurations are
given by ρ [xk(t),xk′(0)] = δkk′χ

t. The arithmetic mean over the m configurations at time t is
given by the sample average

Z(t) =
1

m

m∑
k=1

xk(t), (C.32)

and, of course, conserves the expectation value. The variance of the sample at time t can be
determined with the variance of an i.i.d. sample and takes the form

Var [Z] =
Var [x]

m
. (C.33)

It monotonously reduces with the size of the sample. The covariance of two sample averages at
different times becomes

Cov [Z(t),Z(0)] =
1

m2

m∑
k,k′=1

Cov [xk(t),xk′(0)] =
1

m2

m∑
k=1

Cov [xk(t),xk′(0)] =
1

m
Cov [x(t),x(0)] .

(C.34)
Thus, variance and covariance are affected in the same way by the parallelization. In the
correlation coefficient, the reduction factors 1/m cancel exactly, and the correlation is not
affected by the sample-averaging,

ρ [Z(t),Z(0)] = ρ [x1(t),x1(0)] . (C.35)

Nevertheless, parallel sampling significantly reduces statistical uncertainty. Each Markov chain,
independent of the other chains, explores the configuration space along its trajectory. It is
not unusual to parallelly propagate hundreds or even beyond thousands of Markov processes,
rendering the increase in exploration and statistical certainty a very attractive option. With, for
example, a 104 parallelly propagated Markov chains, the statistical error bars can be lowered by
a factor of 100 compared to a single Markov chain.

C.6.2. Data blocking

A second method exists, reformulating the sampling within a single Markov chain. This method
is called data blocking or binning analysis [84]. A serially correlated time series x(t) with
t = 1, . . . T = nB is chunked in blocks of length B and averaged to get the blocked time series
y(b), where the new index b accounts for the respective block.

y(b) =
1

B

(b+1)B−1∑
t=bB

x(t) =
1

B

B−1∑
t=0

x(t+ bB) (C.36)

Instead of the series x(t) of length T = nB, the chunked sample (y(b)) has lengths n. The
blocking transformation conserves the expectation value. To calculate the correlation, first rewrite
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the covariance of y for b > 0

Cov [y(b),y(0)] =
1

B2

B−1∑
t,t′=0

Cov
[
x(t+ bB),x(t′)

]
=

=
Var [x]

B2

B−1∑
t,t′=0

χ|bB+t−t′| =

=
Var [x]

B2
χ(b−1)B+1

(
1− χB
1− χ

)2

,

(C.37)

where the last equality follows from the formula Eq. (C.65) derived in Sec. C.10. The variance,
on the other hand, follows from the covariance for the case b = 0, which is not covered by the
above formula. Instead Eq. (C.61), also derived in Sec. C.10, is used to arrive at

Var [y] =
Var [x]

B2

B−1∑
t,t′=0

χ|t−t′| =

=
Var [x]

B2

(
B

1 + χ

1− χ − 2χ
1− χB
(1− χ)2

)
=

=
Var [x]

B

(
1 + χ

1− χ −
2χ

B

1− χB
(1− χ)2

)
.

(C.38)

The correlation for b > 0 is hence

ρ [y(b),y(0)] = χ(b−1)B+1 (1− χB)2

(1− χ2)B − 2χ(1− χB)
(C.39)

Clearly, the correlation of y(b) decays exponentially faster than the correlation of x(t). Comparing
the correlation between two consecutive chunked variables y(1) and y(0) and two consecutive
variables of the original Markov chain yields

r =
ρ [y(1),y(0)]

ρ [x(1),x(0)]
=

(1− χB)2

(1− χ2)B − 2χ(1− χB)
≤ 1 (C.40)

The positive ratio can only lower the correlation or does not alter it in the limiting case B = 1.
The above ratio sets a scale for the choice of the block length B, given the correlation coefficient
χ, which is a constant of the Markov chain or transition kernel under study. With large enough
B, the Markov chain can be decorrelated, and its variance can be calculated using the formula
for the i.i.d. case. The autocorrelation formula with an assumed autocorrelation time for the
blocked series TBc can be invoked to recast the correlation reduction.

r =
exp(−t/TBc )

exp(−t/Tc)
(C.41)

Solving for the blocked autocorrelation time yields

TBc = Tc
1

1− Tc ln r
. (C.42)

The correlation time of the blocked versus the original Markov chain is shown in Fig. C.1. For
increased correlation, a larger block size effectively reduces the correlation. For example, to
arrive at a correlation time of about TBc = 1, with an unblocked correlation time of Tc = 8, a
block length B = 10 is sufficient. A small block length is already able to reduce the correlation
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time significantly. The block lengths B = 50 and B = 100 reduce the blocked correlation time to
below one, even for large correlations.

However, the reduced correlation comes at the cost of fewer observations since B elements
of the original Markov chain are collapsed into a single element of the chunked Markov chain.
This loss in the number of observations results in a larger statistical uncertainty. An optimal B
therefore is large enough to significantly decorrelate the Markov chain but at the same time small
enough to prevent unnecessary elimination of data. The block length B is a hyper-parameter of
the MC integration and has to be chosen for each system individually from experience.
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Figure C.1.: A plot of Eq. (C.42) for various values of the block length B. With a high correlation
time, a larger block length is required to decorrelate the Markov chain. The shown graphs
become linear relations for large correlation times. Non-linear behavior is only present for small
correlation.

C.7. Weighted estimators

In a DMC calculation, the observables have to be evaluated from a weighted ensemble, cf. Sec. 6.11.
That is a Markov process for combined weights and configurations, (λ(t),x(t)). The weight
is readily incorporated in the stochastic process since it can be seen as one component of the
multi-dimensional vector of the Markov process alongside the configuration. The weight is
naturally a random variable, subject to fluctuations, induced by the random walk of the walker’s
coordinate vector.

However, in the following the weights are treated as deterministic variables, with a fully
deterministic time evolution, to simplify the calculations. Without this assumption, i.e. accounting
for the random character of the weights, analytical expressions for the estimators are simply not
accessible for analytic calculations.

In this section the estimators of a sample (λ(t),x(t)) of length t = 1, . . . T are rewritten to
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C.7. Weighted estimators

account for the weight. First, assume an i.i.d. sample. The estimator of the expectation value is

µ̌ [x] =
1

Λ

T∑
t=1

λ(t)x(t), (C.43)

with a normalization of

Λ =

T∑
t=1

λ(t) and Λ2 =

T∑
t=1

λ(t)2. (C.44)

For clarity and to prevent an overcomplicated notation, the weighted estimators are not presented
for some function g(x) but for the expectation value of x alone. The results of the following
analysis, of course, apply to the more general case of a function wrapped around x, since every
function of a random varibale is again a random variable.

The uncertainty of the expectation estimator for i.i.d. samples follows from the corresponding
variance.

Var [µ̌ [x]] =
1

Λ2

T∑
t=1

λ(t)2Var [x(t)] =
Λ2

Λ2
Var [x] (C.45)

The reduction of the variance due to a larger sample is, hence, Λ2/Λ
2, which reduces to the

known 1/T for uniform weights from Eq. (C.12). From the estimator for the expectation value
above, the variance estimator

σ̌2b [x] =
1

Λ

T∑
t=1

λ(t) (x(t)− µ̌ [x])2 (C.46)

follows. However, this estimator is again biased and a extended notion of the previously mentioned
Bessel correction is required to correct it. To derive the correction for the weighted case, the
correction from Eq. (C.14) for a uniform-weight sample must be extended. The corrected,
unbiased variance estimator is given by

σ̌2 [x] =
Λ2

Λ2 − Λ2
σ̌2b [x] =

Λ

Λ2 − Λ2

T∑
t=1

λ(t) (x(t)− µ̌ [x])2 . (C.47)

From the unbiased estimator the weighted Bessel correction is identified as Λ2/(Λ2 − Λ2), which
reduces to the known T/(T − 1) for uniform weights. The proof is straightforward but lengthy.
First, the biased estimator is expanded

Λσ̌2b [x] =

T∑
t=1

λ(t) (x(t)− µ̌ [x])2

=

T∑
t=1

λ(t) [(x(t)− Exp [x])− (µ̌ [x]− Exp [x])]2

=

T∑
t=1

λ(t)
[
(x(t)− Exp [x])2 − 2(x(t)− Exp [x])(µ̌ [x]− Exp [x]) + (µ̌ [x]− Exp [x])2

]
=

T∑
t=1

λ(t)(x(t)− Exp [x])2 − 2Λ(µ̌ [x]− Exp [x])2 + Λ(µ̌ [x]− Exp [x])2

= ΛVar [x]− Λ(µ̌ [x]− Exp [x])2 = ΛVar [x]− Λ(µ̌ [x]− Exp [µ̌ [x]])2.

(C.48)
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Then, the expectation value of the unbiased estimator

Exp
[
σ̌2 [x]

]
= Exp

[
Λ2

Λ2 − Λ2

[
Var [x]− (µ̌ [x]− Exp [µ̌ [x]])2

]]
=

=
Λ2

Λ2 − Λ2

[
Exp [Var [x]]− Exp

[
(µ̌ [x]− Exp [µ̌ [x]])2

]]
=

=
Λ2

Λ2 − Λ2
[Var [x]−Var [µ̌ [x]]]

(C.49)

is combined with Eq. (C.45) to result in the Bessel correction.

Exp
[
σ̌2 [x]

]
=

Λ2

Λ2 − Λ2

[
1− Λ2

Λ2

]
Var [x] = Var [x] (C.50)

The analytic formula for the variance of the expectation estimator, including serial correlation
and weights, is intricate.

Var [µ̌ [x]] =
1

Λ2

T∑
t,t′=1

λ(t)λ(t′)Cov
[
x(t),x(t′)

]
=

=
1

Λ2

 T∑
t=1

λ(t)2Var [x(t)] +
∑
t̸=t′

λ(t)λ(t′)Cov
[
x(t),x(t′)

] (C.51)

As in the unweighted case, it poses a dead end for analytic considerations, and the only alternative
to calculate the variance is again decorrelation. For a decorrelated Markov chain, the variance is
estimated by the above σ̌2 [x].

C.8. Numerical evaluation of the variance

The numerical calculation of the variance has some fundamental difficulties. Suppose multiple
i.i.d. Markov chains are combined into a single sample (xi) of large size i = 1, . . . n, irrespective
of how many Markov chains are merged and how long each Markov chain is. Its variance is
given by Eq. (C.14). For the sake of clarity, an unweighted sample is assumed without the Bessel
correction and the special case g = id. The simplified estimator reads

σ̌2 [x] =
1

n

n∑
i=1

(xi − µ̌ [x])2 . (C.52)

To calculate the variance, however, first an estimated value for the mean µ̌ [x] is required. With
n ranging into the orders of beyond 1010 and x being high-dimensional, it is impossible, and also
computationally inefficient, to store the full sample (xi) first and evaluate the estimators after
the generation of the sample. The estimators have to be recast to allow for an iterative updating,
where new elements of the series are accumulated “on-the-fly” to the estimators. A first attempt
to rewrite Eq. (C.52) is the well-known alternate representation of the variance

σ̌2 [x] =
1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

. (C.53)

A straightforward implementation leads to the two estimators

S1(n) =

n∑
i=1

xi

S2(n) =
n∑
i=1

x2i ,

(C.54)
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which recover the expectation value by µ̌ [x] = S1(n)/n and the variance by σ̌2 [x] =
(
S2(n)− S2

1(n)/n
)
/

n and allow for iterative accumulation by

S1(n+ 1) = S1(n) + xn+1

S2(n+ 1) = S2(n) + x2n+1.
(C.55)

However, the great disadvantage of this scheme is its numerical volatility. The two sums reach
large values over the course of the accumulation. The variance is given by the difference of these
large numbers and is thus subject to critical cancelation. This can be circumvented since the
variance is invariant under a shift, Var [x− a] = Var [x] for any constant a. Applied to the sums
S1 and S2, this yields a new scheme:

S1(n) =

n∑
i=1

(xi − a) = S1(n− 1) + (xn − a)

S2(n) =

n∑
i=1

(xi − a)2 = S2(n− 1) + (xn − a)2

µ̌ [x] = S1(n)/n+ a

σ̌2 [x] =
S2(n)

n
−
(
S1(n)

n

)2

(C.56)

The critical cancellation is alleviated if a is close to the true expectation value Exp [x]. In the
limit a→ Exp [x] the variance is govered by S2(n) since S1(n) averages to zero. The shift requires
an a priori estimated value for Exp [a], and in an actual implementation, the shift is iteratively
adapted. It is also possible to change the shift from one value to another during the accumulation
with the proper corresponding modifications to S1 and S2, which are straightforward to derive
but not presented here.

With the above scheme, the variance can be calculated on-the-fly. As more elements of the
Markov chain are considered and the accumulators S1 and S2 are growing, the shift can be refined.
The accumulators thus never exceed the threshold for critical cancellation. While this scheme
was derived with the above-mentioned simplifications, it is readily extended to weighted samples,
a general observable g(x) instead of x, and able to take into account the Bessel correction.

C.9. Multivariant exponential distribution

The Green function from Sec. 6.13, tailored to more accurately reproduce the true Green function
in the vicinity of nuclei and nodes of the trial wave function, requires drawing from an exponential
distribution in three dimensions. The distribution of interest is known, for example, from the
hydrogen-like atom, and reads

f(r) =
γ3

π
e−2γ|r| (C.57)

with a scale parameter −2γ, that resembles the density of an atom of charge γ. For the sake of
completeness, this section is dedicated to how to draw from this distribution since the literature
on this specific distribution appears to be scattered. To draw a vector from this distribution, it
is convenient to change to spherical coordinates since the distribution does not depend on the
direction of r. Note that since f does not factorize into marginal distributions for the coordinates
x, y, and z, one cannot draw an exponential random variable for every coordinate and combine
them into a vector. With r = rêr(θ, φ) the angles θ ∼ U(0, π) and φ ∼ U(0, 2π) are readily
drawn uniformly from their respective intervals. The radius itself is not distributed with a
one-dimensional exponential distribution. However, the radial distribution is readily identified

127



C. Probability theory

by marginalizing the angular variables. For some function g of the radius, the expectation value
can be written as

Exp [g(r)] = Exp [g(|r|)] = 4γ3
∫ ∞

0
g(r)e−2γrr2 dr. (C.58)

This reveals the distribution of the radius as 4γ3r2e−2γr, which can be found to be the Gamma
distribution [61] with shape parameter α = 3 and scale parameter λ = 2γ. More precisely, it is
the Erlang distribution, since α is a positive integer.

fΓ(r) =
λα

Γ(α)
rα−1e−λr (C.59)

Therefore, to draw a vector distributed with f , two angles must be drawn from the uniform
distribution and a radius from the Erlang distribution, r ∼ Erlang(α = 3, λ = 2γ). Since
the Erlang distribution represents a random variable, that is the sum of α one-dimensional
exponential random variables, and exponential variables can be generated from uniform variables,
this chain of transformation can be used to arrive at

r = − 1

λ

α∑
i=1

lnui ∼ Erlang(α, λ) (C.60)

where ui ∼ U(0, 1). In the present case for a single vector r ∼ f , five uniform variables are
required, two for the angle and three for the radius.

C.10. Covariance-related formulas

This section covers the tedious derivation of covariance-related formulas, that are given here to
relief Sec. C.6 from it. Let n ∈ N, a ∈ R and 0 < a < 1, then

S0 :=
n∑

i,j=1

a|i−j| = n
1 + a

1− a − 2a
(1− an)

(1− a)2
. (C.61)

Proof:

S0 : =
n∑

i,j=1

a|i−j| = n+ 2
n−1∑
k=1

(n− k)ak = n+ 2

[
n

(
n−1∑
k=0

ak − 1

)
−
n−1∑
k=1

kak

]

= n+ 2

[
n

(
1− an
1− a − 1

)
− (n− 1)an+1 − nan + a

(1− a)2

]
= n+ 2

[
n

(
(1− an)(1− a)− (1− a)2

(1− a)2

)
− (n− 1)an+1 − nan + a

(1− a)2

]
= n+ 2

−nan − na+ nan+1 − na2 − (n− 1)an+1 + nan − a
(1− a)2

= n+ 2
−na+ an+1 − na2 − a

(1− a)2
= n+ 2a

n(1− a) + an − 1

(1− a)2

= n+ 2a
n(1− a)− (1− an)

(1− a)2
= n

[
1 +

2a

1− a

]
− 2a(1− an)

(1− a)2

= n
1 + a

1− a − 2a
(1− an)

(1− a)2

(C.62)
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Here the two formulas

N∑
i,j=1, i ̸=j

a|i−j| = 2

N−1∑
δ=1

(N − δ)f(0, δ) (C.63)

and
n−1∑
k=1

(n− k)ak = a
an + n(1− a)− 1

(1− a)2
(C.64)

are required. The first originates from a reordering of the summation to count the number of
summands with the same exponent. The second is a well-known equation related to the geometric
series.

With the same assumptions on a, and n− 1 < m ∈ N, the following holds.

Sm :=
n∑

i,j=1

a|i−j+m| = am−n+1 (1− an)2

(1− a)2
(C.65)

Proof: The integer m is bigger than any difference i− j in the sum and the abolute value in the
exponent can be omitted. Then

Sm : =
n∑

i,j=1

a|i−j+m| =
n−1∑
i,j=0

ai−j+m = am
n−1∑
i=0

ai
n−1∑
j=0

a−j

= am
1− an
1− a

1− a−n
1− a−1

= am
1− an
1− a

1− a−n
1− a−1

= −am (1− an)(a− a−n+1)

(1− a)2
= − am+1

(1− a)2
(1− an)(1− a−n)

=
am+1

(1− a)2
(an + a−n − 2) = am−n+1 (1− an)2

(1− a)2
.

(C.66)
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The diffusion equation (6.17) is the central equation for DMC. With a vanishing sink-source
term, it also plays a vital role in efficient VMC. This chapter is dedicated to understanding the
basic properties of this PDE, devising first approximations to its Green function, and recasting
it in a framework compatible with MC.

A suitable starting point is the Fokker-Planck equation [64, 65]

∂tp(r, t) = −∇ [u(r, t)p(r, t)] +
1

2
tr (∇∇ [D(r, t)p(r, t)]) , (D.1)

that specifies the time evolution of a probability distribution p(r, t) with an initial condition
p(r, 0) in the presence of a drift u and a diffusion matrix D. This work’s drift and diffusion are
time-independent, allowing for a stationary state of p. The time evolution reaches this steady
state after sufficient propagation time when the dependence on the initial condition is weak
enough. The above Fokker-Planck equation does not include a source term, that is required for
the DMC method. With a source term added and the other properties inserted, the diffusion
equation under study reads

−∂tp(r, t) = −D∇2p(r, t) +∇ · [u(r)p(r, t)]− S(r, t)p(r, t). (D.2)

The source term S and the drift vector u show intricate behavior in real DMC applications.
Their spatial dependence on the coordinate vector r even possesses singularities. For the sake of
simplicity, both quantities are assumed to be continuous here.

D.1. Fundamental solution

Consider a constant drift u without a source term S = 0 in the diffusion equation on the domain
with r ∈ Rn. The initial value problem can be written

−∂tp(r, t) = −D∇2p(r, t) + u ·∇p(r, t) (D.3)

p(r, 0) = p0(r) (D.4)

lim
|r|→∞

p(r, t) = 0. (D.5)

To arrive at an analytic solution, define the Fourier transformation in symmetric form,

p̂(k, t) = FT [p(r, t)] =
1

(2π)
n
2

∫
p(r, t)e−ir·k dr. (D.6)

p(r, t) = FT −1[p̂(k, t)] =
1

(2π)
n
2

∫
p̂(k, t)eik·r dk (D.7)
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D. Drift-diffusion equation

The diffusion equation is recast in Fourier space by substituting p(r, t) by the backward transfor-
mation Eq. (D.7).

0 = −∂tp(r, t) +D∇2p(r, t)− u ·∇p(r, t)

⇔ 0 =
1

(2π)
n
2

∫ [
−∂tp̂(k, t) +D∇2p̂(k, t)− u ·∇p̂(k, t)

]
eik·r dk

⇔ 0 =

∫ [
−∂tp̂(k, t)−D|k|2p̂(k, t)− iu · kp̂(k, t)

]
eik·r dk

⇔ 0 = −∂tp̂(k, t)−D|k|2p̂(k, t)− iu · kp̂(k, t).

(D.8)

The resulting equation can be solved by separation of variables

p̂(k, t) = p̂(k, 0) exp
[(
−D|k|2 − iu · k

)
t
]

= p̂0(k)ĝ(k, t) (D.9)

with
ĝ(k, t) = exp

[(
−D|k|2 − iu · k

)
t
]
. (D.10)

Now that the problem is solved in Fourier representation, the convolution theorem can be applied
to the product p̂0ĝ.

p(r, t) = FT −1[p̂0(k)ĝ(k, t)] =
1

(2π)
n
2

(p0 ∗ g)(r, t) (D.11)

To resolve the convolution with g, the backward Fourier transformation must be applied to ĝ.

g(r, t) =
1

(2π)
n
2

∫
e−D|k|2t−i(ut−r)·k dk

=
n∏
i=1

1√
2π

∫
e−Dk

2
i t−i(uit−ri)·ki dki

=
n∏
i=1

1√
2Dt

e
−(uit−ri)

2

4Dt

=
1

(2Dt)
n
2

e
−|r−ut|2

4Dt

(D.12)

This removes the imaginary unit from the equations. Finally, the solution to Eq. (D.3) is given
by

p(r, t) =
1

(2π)
n
2

∫
p0(r

′)g(r− r′, t) dr′ =

=
1

(4πDt)
n
2

∫
p0(r

′) exp

[
−|r− r′ − ut|2

4Dt

]
dr′.

(D.13)

The corresponding Green function is readily read from this equation to be the normal distribution

GD(r, r′, t) =
1

(4πDt)
n
2

exp

[
−|r− r′ − ut|2

4Dt

]
. (D.14)

This is the drift-diffusion Green function for constant drift in n dimensions. It propagates any
initial probability distribution p0(r) for the given time t by the kernel integral

p(r′, t) =

∫
GD(r′, r, t)p0(r) dr (D.15)

The exact Green function of the diffusion equation with coordinate-dependent drift and sink-
source terms of the DMC Eq. (6.17) clearly will differ from the Green function found here.
Nevertheless, the above Green function poses a significant part of much more elaborate Green
functions and can be utilized as a short-time approximation, as will become apparent in the next
sections.
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D.2. Stochastic trajectories

D.2. Stochastic trajectories

The Green function found in Eq. (D.14) is relatively simple and only solves a diffusion equation
with constant drift. It does not describe more complex diffusion equations exactly that, for
example, show coordinate-dependent drift. For this section, however, assume the Green function
GD, that solves some diffusion equation under study, is already found and not bound to be of
the form (D.14). Nevertheless, for illustration of the concepts and instructive insights, the Green
function for constant drift will be used as an example in the following.

Due to the high number of dimensions, the n-dimensional integral in Eq. (D.15) can neither
be calculated analytically nor numerically with standard integration schemes for some arbitrary
initial probability distribution. Thus, even with the full Green function at hand, the time
evolution p(r′, t) is not accessible, and a different approach is required to reach the steady state.

Recall that the solution of the diffusion equation, p(r, t), is a probability distribution. As such,
it can either be interpreted as an ensemble representation of infinitely many particles in the
absence of uncertainty or describe a single or more particles with uncertainty. To begin with,
assume the probability distribution p describes the location of a single particle in the presence
of uncertainty. If the drifting and diffusing particle has the definite position r(t) at time t, the
probability distribution at this time is given by a deterministic Dirac distribution

p(r, t) = δ(r− r(t)). (D.16)

Next, the particle is subject to some general drift-diffusion process described by GD for some
time interval ∆t. After this time, the distribution has broadened due to diffusion, its mean
might be shifted, and its shape may has changed compared to the original distribution. The new
distribution is, of course, given by propagation with the Green function.

p(r′, t+ ∆t) =

∫
GD(r′, r,∆t)δ(r− r(t)) dr = GD(r′, r(t),∆t) (D.17)

In the simple case of Eq. (D.14) of constant drift,

p(r′, t+ ∆t) =
1

(4πD∆t)
n
2

exp

[
−|r

′ − r(t)− u∆t|2
4D∆t

]
, (D.18)

with a displacement u∆t given by the drift vector. The broadening of the distribution can be
described by the variance of the normal distribution σ =

√
2D∆t and is increasing with time.

If the particle described by p(r,∆t) drift-diffuses for an additional time interval ∆t, the
resulting probability is

p(r, t+ 2∆t) =

∫
GD(r− r′,∆t)p(r′, t+ ∆t) dr′

=

∫
GD(r− r′,∆t)GD(r′ − r(t)) dr′.

(D.19)

The integral with a double Green function can be solved analytically for a constant drift since
integrals over two Gaussian kernels can be evaluated analytically. However, this is not possible
for more realistic Green functions of different shapes, and therefore, p(r, t+ 2∆t) is inaccessible.
One might question why the calculation of p(r, t+ 2∆t) should be written as a two-step process
instead of direct propagation from time zero to time 2∆t. This will become clear later when
it is established that the Green function above only stays a reasonable approximation to more
complex problems when used with small time steps ∆t, which motivates splitting a large time
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D. Drift-diffusion equation

interval into multiple smaller steps. Instead of repetitively calculating a new distribution from
an ever-increasing series of Green function integrals

p(r, t+ n∆t) =

∫
· · ·
∫
GD(r, rn−1) . . . GD(r1, r0)p(r0, t) dr0 . . . drn−1 (D.20)

the focus can be put on

r(t+ ∆t) ∼ p(·, t+ ∆t) = GD(·, r(t)), (D.21)

recalling its nature as a random variable. Then, the key idea to solve the diffusion process is to
collapse the propagated probability distribution p(r, t+ ∆t), or, equivalently, its random variable
r(t+ ∆t). This is accomplished by drawing a random variate from it, i.e., generating a random
realization. For the simple case of the Green function Eq. (D.14) with constant drift, such a
realization would be

r(t+ ∆t) ∼ N (r(t) + u∆t, 2D∆t), (D.22)

where N (µ, σ2) denotes the normal distribution with expectation value µ and variance σ2. This
distribution is easily drawn from utilizing standard random number generators and, for example,
the Box-Muller transformation. The probability distribution p̃ that describes the distribution
after the collapse of the uncertainty is again a Dirac distribution,

p̃(r) = δ(r− r(t+ ∆t)). (D.23)

The expectation value of p̃ is r(t+ ∆t), and since r(t+ ∆t) is by construction the expectation
value of p(r, t+ ∆t), the collapse conserves the expectation value. The variance of p̃ of course
vanishes, compared to the uncollapsed distribution. Thus, the essential approximation of this
approach is that the collapsed distribution replaces the uncollapsed,

p(r, t+ ∆t) = p̃(r) = δ(r− r(t+ ∆t)). (D.24)

This yields an iterative scheme, where at any time t from the deterministic position r(t) a new
distribution p(r, t+∆t) is generated from propagation of δ(r−r(t)), and is subsequently collapsed
to r(t+ ∆t).

r(t)
propagation7→ GD(r, r(t))

collapse∼ r(t+ ∆t)
propagation7→ · · · (D.25)

The series (r(∆t), r(2∆t), . . . ) is a Markov chain since the generation of any next step r(t+ ∆t)
depends only on the current state r(t). Clearly, the collapse of the probability distribution to a
Dirac distribution eliminates information about the full distribution. A large number of time
steps are required to restore this information. However, most of the eliminated information is not
required for the accurate evaluation of expectation values. Another view of the approximation
is the law of large numbers. The distribution GD(·, r(t)) is approximated by a single random
variate of itself, instead of a whole set of variates. The error that is introduced by the application
of the law of large numbers with only a single variate has to be remedied with a large propagation
time. After an initial phase of convergence to the steady state, which eliminates the dependence
on the initial position r(0), the probability distribution p(r, t) is independent of time, and all
random variates resemble the same distribution in the long-time limit.

In the limit of small time steps ∆t, the above process might be interpreted as a continuous
process and can be reformulated into a classical (ordinary) but stochastic differential equation

ṙ = ξ with ξ ∼ GD(·, r). (D.26)
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D.3. Sink-source term

For the case of constant drift, examination of the equation of motion yields

ṙ = u + ξ with ξ ∼ N (0, 2D). (D.27)

This suggests the notion of a continuous stochastic trajectory r(t) with a stochastic equation of
motion or a Langevin-type equation. Integrating the equations of motion yields

r(t) = r(0) + ut+

t∫
0

ξ(t′) dt′. (D.28)

The expectation value Exp [r(t)] = r(0) + ut averages out the random displacement. The drift
guides the particle, or equivalently its corresponding distribution, in the direction u. However,
its variance is ever-increasing and reveals the random character of the trajectory.

Var [|r(t)|] =

t∫
0

t∫
0

Cov
[
ξ(t′), ξ(t′′)

]
dt′ dt′′

= Var [ξ] t = 2Dt

(D.29)

The random displacement ξ(t) is an uncorrelated and independent random variable for each time
step, Cov [ξ(t), ξ(t′)] = Var [ξ] δ(t− t′).

Returning to a general drift-diffusion equation, Eq. (D.26) is still valid. A variate for ξ drawn
from an arbitrary Green function, ξ ∼ GD(·, r), can still be described by some vector u and
some diffusive random displacement ξ′ with zero mean, Exp

[
ξ′
]

= 0. The drift vector is in
general allowed to depend on the coordinate u(r). Simultaneously, the diffusive displacement ξ′

is drawn from a zero-mean distribution that might depend on r. The equations of motion can be
integrated numerically, discretizing the timeline into time steps ∆t with a discrete time evolution

r(t+ ∆t) = r(t) +
(
u(r) + ξ′(t)

)
∆t (D.30)

with some i.i.d. realization of ξ′(t) for every single time step.

The notable conceptual advantage of the classical stochastic trajectory of Eq. (D.26) compared
to the PDE formulation of Eq. (D.3) cannot be underestimated. Instead of solving a PDE, which
becomes exponentially infeasible with increasing dimensions, a classical trajectory, even though
stochastic, can be solved with a minimal computational cost, even in high-dimensional spaces.

D.3. Sink-source term

In Eq. (D.2) an additional sink-source term, S, is present. It modulates the normalization
constant of p. Assuming both a constant source term S and constant drift, the diffusive process
reads

−∂tp(r, t) = −D∇2p(r, t) + u ·∇p(r, t)− Sp(r, t), (D.31)

This equation is not norm-conserving since S adds or removes probability. The interpretation of
p as a probability distribution can therefore no longer hold. A reinterpretation of the solution p
to a concentration profile with undetermined total mass is required. Equivalently, the process
can be generalized to consist of a probability distribution f and a normalization constant λ that
together solve the Eq. (D.31) as a tuple (f, λ) with p = λf . Hence, f(·, t) represents the spatial
probability distribution as a normalized probability density function subject to a time evolution,
while λ(t) holds a global (positive) normalization that also changes with time.
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Repeating the derivations made in Sec. D.1 with an additional constant source S, the corre-
sponding Green function reads

G(r′, r,∆t) =
exp [S∆t]

(4πD∆t)
n
2

exp

[
−|r

′ − r− u∆t|2
4D∆t

]
. (D.32)

The Green function splits into two conceptually different factors, G = GD × GB. While
the drift-diffusion part GD is a valid, i.e., normalized, transition probability, the branching
Green function GB accounts for the increase or decay of total normalization. In the simple
case above, both factors can be easily identified. The drift-diffusion Green function is the same
as in Sec. D.1. The branching Green function, however, takes the form GB = exp [S∆t]. In
this simple formulation, the effect of the sink-source term is trivial, increasing or decreasing
the total normalization at a constant rate. The branching term prevents the interpretation of
Eq. (D.31) as a single stochastic trajectory since usually a particle moving along a trajectory has
a normalized probability. However, the introduction of a weight term alongside the coordinate
in a tuple, (λ(t), r(t)), allows one to stay very close to the trajectory interpretation Eq. (D.26).
A simple and illustrative example of such a process is that of a raindrop falling to the ground
(drift) while experiencing random collisions (diffusion) with other raindrops and an increase of
mass due to the collisions or condensation and evaporation in more humid or more dry air.

The tuple (λ(t), r(t)) has coupled equations of motion. For every update of the coordinates,
there is a corresponding update to the weight of the form

λ(t+ ∆t) = GB(∆t)λ(t) = exp [S∆t]λ(t) (D.33)

In differential form, the equations of motion read

ṙ = u + ξ (D.34)

λ̇ = Sλ, (D.35)

with λ > 0 for all times.

D.4. Short-time approximation

To better approximate a solution to the full DMC diffusion process of Eq. (D.2), the coordinate
dependency of the drift vector u(r) and sink-source term S(r) has to be respected. Assuming
both terms have only small deviations on a small length scale compared to the displacement ṙ∆t,
the simple Green function of Eq. (D.32) can be used to propagate the probability distribution
for small enough time steps. Insertion of the local values of u(r) and S(r) into the equation of
motion yields

ṙ = u(r) + ξ

λ̇ = S(r)λ
(D.36)

with ξ ∼ N (0, 2D). The assumption is particularly relevant for small time steps ∆t. Integration
of the equations of motion along the trajectory r(t) results in

r(t) = r(0) +

t∫
0

(
u(r(t′)) + ξ(t′)

)
dt′

λ(t) = exp

 t∫
0

S(r(t′)) dt′

λ(0)

(D.37)
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D.4. Short-time approximation

With the spatial dependence inserted into the equations of motion, the previously mostly trivial
equations of motion become much more useful to approximate Eq. (D.2) immediately. Instead
of a particle drifting with a constant vector, the drift vector now changes depending on the
coordinate of the particle. Furthermore, depending on its location in space, the particle can gain
or lose normalization. This allows the time evolution to exhibit much more details. Note that
the source term S only influences the normalization as a side effect and has no influence on the
trajectory.

With some numerical discretization scheme for the time steps ∆t, a numerical integration
yields the trajectory. A rather simple but sufficient approach is the Euler method,

r(t+ ∆t) = r(t) + [u(r(t)) + ξ(t)] ∆t (D.38)

λ(t+ ∆t) = exp [S(r(t))∆t]λ(t). (D.39)

An improved numerical integration scheme to the classical problem is to approximate the
integrals in Eq. (D.37) to a higher order. Recalling that the evaluation of u(r) and S(r) might
be computationally expensive, higher orders might also slow down the propagation. However,
for the weight a simple yet considerably improved integration compared to Eq. (D.39), a simple
Crank-Nicolson scheme, uses the information of the location of r(t+ ∆t) for integration of S:

λ(t+ ∆t) = exp

[
∆t

2
(S(r(t+ ∆t)) + S(r(t)))

]
λ(t) (D.40)

Since the source term S has to be evaluated at r(t + ∆t) in any case for the next iterations,
it poses no additional computational cost to include the information available in S(r(t+ ∆t))
already in the present iteration. From this weight update, a Green function for the branching
can be inferred.

GB(r′, r,∆t) = exp

[
∆t

2

(
S(r′) + S(r)

)]
(D.41)

This completes the derivation of the Green function in its short-time approximation. It takes the
final form,

G(r′, r,∆t) =
1

(4πD∆t)
n
2

exp

[
−|r

′ − r− u∆t|2
4D∆t

]
exp

[
∆t

2

(
S(r′) + S(r)

)]
. (D.42)

Note that the same Green function can be derived following Feynman et al. [20] using his path
integral formalism. Furthermore, using the Baker-Campbell-Hausdorff formula [79] to expand
the operator Ĝ from Chapt. 6 in second order (cf. Eq. (6.8)) also corresponds to the above Green
function of Eq. (D.42). The expansion to first order (cf. Eq. (6.7)) corresponds to the Green
function with branching term from Eq. (D.33), where the contributions from configuration r′ in
the branching term are omitted.

The short-time approximation works best for slowly varying drift and source terms. However,
in the DMC use case with both terms showing intricate behavior, including discontinuities and
singularities, the Green function does not accurately capture the distribution characteristics near
those irregularities. Although significant improvement to the Green function can be made in this
case, discussed in Sec. 6.13, the short-time approximation remains at the core of DMC.

Note that the transition from constant to spatially varying drift and source was accomplished
by simply adding the spatial dependence in the equations of motion (D.36) that originally were
derived for constant drift and source. This shortcoming will be addressed in the next section.
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D.5. Revealing approximations

This section reviews the stochastic realization of the short-time approximation to the Green
function from the previous section, revealing the approximations made therein.

Although various authors refer to the numerical scheme described above, the given derivations
lack certain details and do not show all approximations involved [53, 96, 155].

The connection between the equilibrium distribution p and a classical stochastic trajectory or
random walk was already highlighted in Sec. D.2. Compared to Sec. D.2, the Green function of
Eq. (D.2) is not normalized anymore, which introduced the notion of a weight in addition to the
random walk in sec. D.3. The weighted random walk still assumes to collapse the propagated
probability distribution into the deterministic Dirac distribution. Assume, at some time t, the
distribution is given by

p(r, t) = λ(t)δ(r− r(t)). (D.43)

Propagating p with an arbitrary Green function G results in

p(r′, t+ 1) = λ(t)G(r′, r(t)) (D.44)

and a new weight and position have to be generated from p(r′, t + 1). The core idea in
Sec. D.2, namely to collapse the probability distribution to a single position, remains the same.
However, in the presence of a spatially varying source term S(r) and therefore the spatially
varying branching Green function GB(r′, r,∆t) from Eq. (D.41), the differentiation between the
probability distribution GD(r′, r,∆t) to draw a new coordinate from and the weight adjustment
from the branching Green function GB(r′, r,∆t) is not possible anymore. Instead of the drift-
diffusion distribution alone, now the product of drift-diffusion and branching Green function is
the full unnormalized distribution λ(t)G(·, r(t)) to draw from. The product distribution has a
normalization constant, which simultaneously is the new weight. It can be calculated from

λ(t+ 1) =

∫
p(r′, t+ 1) dr′ = λ(t)

∫
G(r′, r(t)) dr′. (D.45)

With the known normalization constant λ(t + 1), the normalized Green function to draw the
displacement from is readily given by

r(t+ 1) ∼ p(r′, t+ 1)

λ(t+ 1)
=

λ(t)

λ(t+ 1)
G(r′, r(t)) (D.46)

In practice, however, λ(t + 1) cannot be calculated since it includes the high-dimensional
integration in Eq. (D.45). Hence, the update is handled differently in practice: Due to the lack
of alternatives, the new configuration is simply drawn from the drift-diffusion part GD of the full
Green function G = GD ×GB only,

r̃(t+ 1) ∼ GD(r′, r(t)). (D.47)

Whereas in Eq. (D.23), the replacement conserved the expectation value exactly, the above
certainly is an approximation and therefore introduces some error.

The error in the expectation value of r(t+ 1) can be understood from the mean-value theorem
extended to vector-valued functions of several variables applied to the correct distribution from
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Eq. (D.46).

Exp [r(t+ 1)] =
λ(t)

λ(t+ 1)

∫
r′G(r′, r(t)) dr′

=
λ(t)

λ(t+ 1)

∫
r′GD(r′, r(t))GB(r′, r(t)) dr′

=
λ(t)

λ(t+ 1)

[
êiGB(ξi, r(t))

∫
r′iGD(r′, r(t)) dr′

]
= b⊙ Exp [r̃(t+ 1)]

(D.48)

with the vector

b =
λ(t)

λ(t+ 1)


GB(ξ1, r(t))
GB(ξ2, r(t))

. . .
GB(ξn, r(t))

 (D.49)

and where ⊙ denotes the Hadamard or element-wise product. With the right choice for all ξi,
the above relation is guaranteed to hold. From the mean-value theorem, every ξi is formally
bound only within the support (the domain of non-vanishing values) of GD(r′, r(t)). Suppose
GD is given by a normal distribution, then its support is the whole configuration space. However,
since GD is a rapidly decaying function centered around r(t) + ∆tu(r(t)), every ξi is limited
with high probability to a small volume, decreasing in size with smaller time steps. Thus, b
approaches element-wise unity in the limit of zero time step, i.e. b = (1, 1, . . . ). For finite time
steps, drawing from GD instead of GDGB poses an error to the expectation value of the random
walk of linear order in the deviation from the correct choices for ξi.

From this limit with λ(t+ 1) = λ(t)GB(ξ, r(t)) also an approximation for the new weight can
be deferred as

λ(t+ 1) = λ(t)GB(r(t+ 1), r(t)) (D.50)

where r(t + 1) was inserted for ξ. Then, this weight does not require the full integration of
Eq. (D.45) but only requires S to be evaluated at a single point, r(t+ 1). This choice for ξ is
somewhat arbitrary and introduces a linear error but stays within the probable constraints of
the mean-value theorem. Nevertheless, this arbitrariness also poses the opportunity to improve
the weight update, see Sec. 6.5, where another approximation is introduced that is more along
the line of the analytical form of λ(t+ 1) in Eq. (D.45).

With all these approximations in mind, the probability distribution realized in practice becomes

p(r′, t+ 1) = λ(t+ 1)δ(r′ − r̃(t+ 1)) (D.51)

with r̃(t+ 1) from Eq. (D.47) and λ(t+ 1) following from Eq. (D.50).
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E. DARSEC

In this thesis, all DFT calculations have been carried out with the DARSEC code [146]. The
computational framework in which DARSEC solves the DFT calculations is presented below.
DARSEC calculations are restricted to systems of axial symmetry to remove the axial angle from
the numerical equations. The remaining two-dimensional problem is solved with grid methods.
The DARSEC grid is additionally tailored to the geometry of atoms and diatomic molecules. The
resulting non-Euclidean grid allows for a very accurate representation of the orbitals, enabling
accurate all-electron calculations for diatomic molecules.

The non-interacting Schrödinger equation of a diatomic system is given by the Hamiltonian

Ĥ = −1

2
∇2 + v(r), (E.1)

v(r) = vi(r) + ve(r) = − ZA
|r− ξA|

− ZB
|r− ξB|

+ ve(r), (E.2)

with ion A of charge ZA at ξA and ion B of charge ZB at ξB. The ions A and B comprise the
diatomic molecule or, in the case of ZA = 0, the atom. Without loss of generality, the ions can
be placed at ξA = (0, 0,−R/2) and ξB = (0, 0, R/2), to align the inter-atomic axis with the
z-axis of the coordinate system. Their separation or bond distance is given by R = |ξB − ξA|.
An additional potential ve, which could model electric fields, harmonics potentials, potential
steps, etc. , might enter the Hamiltonian if ve(r) is invariant to rotations around the z-axis or,
equivalently, if ve is a function of the variables z and

√
x2 + y2 alone. Then, the Hamiltonian has

cylindrical symmetry and could be expressed in a cylindrical coordinate system with coordinates
ρ =

√
x2 + y2, φ, and z. While a cylindrical coordinate system would allow the separation of

the Hamiltonian, the use of an ellipsoidal coordinate system offers a more numerically efficient
approach. The corresponding coordinates are the prolate spheroidal (PS) coordinates.

In cylindrical as well as PS coordinates, the Hamiltonian is independent of the azimuthal
angle, ∂Ĥ/∂φ = 0. Thus, the solution of the Schrödinger equation can be cast as a product of
an angular solution and a solution in the ρ-z plane or the µ-ν-plane of the PS coordinates. In
the following, the PS coordinate system and its grid are introduced together with details of the
numerical scheme for the DFT calculation relevant to this work. The sections below do not cover
every detail and intricacy of the DARSEC approach; they only review the aspects that are of
special interest in this work. For a deeper insight into the DARSEC approach, refer to Ref. [146].

E.1. Prolate spheroidal coordinates

Grids suitable to describe diatomic molecules in an all-electron approach require high resolution
at the nuclei. For computational efficiency, the regions far away from any nuclei, where orbitals
show small variations, should be represented with lower resolution. A uniform grid in the natural
coordinates of the PS coordinate system meets these requirements. It features two focal points
along the z-axis, where the nuclei are located, that show a fine-grain resolution. In the asymptotic
domains, the grid’s resolution is lower.
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E. DARSEC

Any Euclidean point r ∈ R3 is represented in PS coordinates by the coordinate vector
q = (µ, ν, φ) ∈ P , with P = [0,∞]× [0, π]× [0, 2π]. The transformation formula is given by

T : P → R3, (µ, ν, φ)→ r = a

sinh(µ) sin(ν) cos(φ)
sinh(µ) sin(ν) sin(φ)

cosh(µ) cos(ν)

 (E.3)

The positive constant 2a defines the distance between the focal points (0, 0,±a). For simplicity,
denote the focal point at (0, 0,−a) with A and the focal point at (0, 0,+a) with B, as depicted
in Fig. E.1.

z

ρ

z = −a z = +a
A B

µ
=
co
ns
t

ν = const

r

rA

rB

Figure E.1.: A sketch of the prolate spheroidal coordinate system with distances to the foci and
isolines for the coordinates native variables µ and ν. By rotation of this plane with the azimuthal
angle φ, the whole three-dimensional space is covered.

The distances from any point r to either focus are given by

rA(x, y, z) =

√
x2 + y2 + (z − a)2 (E.4)

rB(x, y, z) =

√
x2 + y2 + (z + a)2. (E.5)

Together with the angle φ, the distances rA and rB are a unique representation of the point r
and the reverse transformation reads

T−1 : R3 → P, (x, y, z)→ q =

arcosh
(
rA+rB

2a

)
arccos

(
rA−rB

2a

)
arctan

( y
x

)
 . (E.6)

Scale factors are required to evaluate quantities from differential or integral calculus.

hµ = hν = a
√

sinh(µ)2 + sin(ν)2 (E.7)

hφ = a| sinh(µ) sin(ν)| (E.8)

With them, integration in Euclidean space is possible in the PS coordinates with the corresponding
Jacobi determinant

det J(µ, ν, φ) = hµhνhφ = a3 sinh(µ) sin(ν)
(
sinh2(µ) + sin2(ν)

)
. (E.9)
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E.2. Representation of the orbitals

For example, the integral over the Euclidean region T (p) with a corresponding rectangular PS
region p = [µ0, µ1]× [ν0, ν1]× [φ0, φ1] ∈ P , the is accessible by by change of coordinates.∫

T (p)

f(r) dr =

µ1∫
µ0

ν1∫
ν0

φ1∫
φ0

f(T (q)) detJ(q) dφdν dµ (E.10)

For calculations, including vector calculus, the gradient operator takes the form

∇ =
∑
i

êi
hi
∂i = ah−2

µ

cosh(µ) sin(ν) cos(φ)
cosh(µ) sin(ν) sin(φ)

sinh(µ) cos(ν)

 ∂µ

+ ah−2
ν

sinh(µ) cos(ν) cos(φ)
sinh(µ) cos(ν) sin(φ)
− cosh(µ) sin(ν)

 ∂ν

+ ah−2
φ

− sinh(µ) sin(ν) sin(φ)
sinh(µ) sin(ν) cos(φ)

0

 ∂φ,

(E.11)

from which also the Laplacian

∇2 = h−2
µ

(
∂2µ + ∂2ν + coth(µ)∂µ + cot(ν)∂ν

)
+ h−2

φ ∂2φ = ∇2
µν + h−2

φ ∂2φ (E.12)

follows. Here ∇2
µν denotes the Laplacian acting on the coordinates µ and ν only. This particular

form allows the Schrödinger equation to be separated into a two-dimensional µ-ν solution and an
angle-dependent part.

E.2. Representation of the orbitals

The solutions of the non-interacting Schrödinger equation from the Hamiltonian of Eq. (E.1)
admit orbitals to be of the product form

φm(µ, ν, φ) = φ̃m(µ, ν)ϕm(φ), (E.13)

with a seperated system of equations for φ̃m and ϕm. Both functions have symmetry constraints
and boundary conditions. Firstly, the angular equation simplifies to ϕ′′m = −m2ϕm and ϕm
requires 2π-periodicity due to axial symmetry. Additionally, the functions {ϕm} need to span an
orthonormal basis. ∫ 2π

0
ϕ∗mϕm′ = δmm′ (E.14)

The defining properties of ϕm are independent of representation. However, some representation
must be chosen in practice. A common choice for ϕm is the complex representation

ϕm =
eimφ√

2π
, (E.15)

which is most suited for analytic calculations. However, for the numerical implementation with a
real ground state, a real representation, e.g.,

ϕm =


√

2π m = 0
1√
π

cos(mφ) m > 0
1√
π

sin(mφ) m < 0

, (E.16)

143



E. DARSEC

is mandatory. Some further relations required in the following are

−
∫ 2π

0
|ϕ′m|2 =

∫ 2π

0
ϕ∗mϕ

′′
m = −m2. (E.17)

Inserting the Laplacian term −m2 back into the to equations for φ̃m and focusing on the µ-ν
coordinates, the orbitals obey(

−1

2
∇2
µν +

m2

2h2φ
+ vi(µ, ν) + ve(µ, ν)

)
φ̃m(µ, ν) = ϵmφ̃m(µ, ν). (E.18)

This PDE is solved numerically with a uniform grid in the µ-ν-plain. The boundary conditions
dictate vanishing φ̃m at infinity, introducing the boundary condition φ̃m → 0 for µ → ∞. At
the z-axis, given by either µ = 0 or ν = 0, π (exclusive), the orbitals must have a continuous
derivative, whereas at the focal positions, µ = 0 ∧ ν = 0 and µ = 0 ∧ ν = π, they show a cusp in
the presence of an ion.

E.3. The prolate spheroidal grid

The PS grid is not only used in the DARSEC code to perform DFT calculations, where it is a
mandatory tool to achieve the desired accuracy at low computational cost. It also supports the
accumulation of the QMC densities in defining the bins for the density histogram of Sec. 7. A
sketch of the grid in Euclidean space is given in Fig. E.2. In the coordinates µ and ν, the grid is
regular and uniform and thus not shown explicitly. The uniform grid for the two-dimensional PS

z

ρ

ν0

ν1

ν2

ν3

ν4
ν5

ν6

ν7

ν8

ν9

ν10

µ0
µ1

µ2
µ3

µ4

Figure E.2.: A sketch of the PS grid with a resolution of Nν = 11 and Nµ = 5. The grid points
are given by the crosses. The solid lines indicate the isolines running through the grid points,
while the dashed lines envelop each grid point’s corresponding grid cell. A single grid cell is
highlighted for the grid index (i, j) = (3, 7).

space is the direct product of two one-dimensional grids for µ and ν. It is given by only three
parameters: the number of grid points for both coordinates, Nµ and Nν , and the radial extent
µmax. The grid spacing for each coordinate is given by

∆µ =
µmax

Nµ
, (E.19)

∆ν =
π

Nν
. (E.20)
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E.4. Evaluation of orbital derivatives

Grid points for µ and ν are found at the coordinates

µ(i) = ∆µ

(
i− 1

2

)
, ∀i ∈ {1, . . . , Nµ}, (E.21)

ν(j) = ∆ν

(
j − 1

2

)
, ∀j ∈ {1, . . . , Nν}. (E.22)

Thus, the entire set of grid points is given by

G = {(µ(i), ν(j))|i = 1, . . . , Nµ ∧ j = 1, . . . , Nν}. (E.23)

For given coordinates (µ, ν), in the respective bounds, the closest grid point can be calculated by

i(µ) =

⌊
1

2
+

µ

∆µ

⌋
, (E.24)

j(ν) =

⌊
1

2
+

ν

∆ν

⌋
. (E.25)

Note the difference between a grid point (µ(i), ν(j)) and the corresponding grid cell Pij , which is
the set of all coordinates that are closer to the grid point of index (i, j) than to any other grid
point. The Euclidean volume of the grid cell Pij is covered by the integral of Eq. (E.10), which
in this case reads

vol(Pij) =
2πa3

12

[
− (cosh(3µ)− 9 cosh(µ))

∣∣∣µi+∆µ/2

µi−∆µ/2
cos(ν)

∣∣∣νi+∆ν/2

νi−∆ν/2

+ (cos(3ν)− 9 cos(ν))
∣∣∣νi+∆ν/2

νi−∆ν/2
cosh(µ)

∣∣∣µi+∆µ/2

µi−∆µ/2

]
.

(E.26)

The smallest volumes in the grid are those of indices (0, 0) and (0, Nν) with a volume of
approximately

vol(P00) = vol(P0Nν ) ≈ πa3

4
∆µ2∆ν2

(
∆µ2 + ∆ν2

)
. (E.27)

Compared to the volume of the grid cells in an Euclidean uniform grid in two dimensions, e.g.,
in a cylindrical grid for the variables (ρ, z) with cell volume ∆ρ∆z, the volume in the PS grid
depends on the sixth power of the grid spacings. This scaling certainly allows for much finer grid
resolution near the focal points or ion locations.

E.4. Evaluation of orbital derivatives

In a standard DFT calculation, the most relevant derivative is the Laplacian. The orbitals’
gradients are rarely calculated explicitly. In a QMC calculation, however, the gradient of the
orbitals enters the local energy and the drift term. To utilize finite-difference orbitals in QMC,
the orbitals’ values, gradients, and Laplacians have to be available at any point in continuous
space to calculate the value, gradient, and Laplacian of the corresponding Slater determinant,
the key ingredient of the QMC trial wave function. The obvious approach to evaluate orbitals in
the continuum is the interpolation of the orbitals from their values at the grid points. Since the
PS coordinates allow the separation of the orbitals, the interpolation is only required for the
two-dimensional µ-ν-space. The angular solution can be calculated analytically. The interpolation
of the orbitals includes an intrinsic but rather small error for orbitals with little variations. The
derivatives evaluated in PS coordinates, however, include multiple singular terms in the gradient
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and Laplacian due to the singularities in the inverse scale factors, h−2
µ = h−2

ν and h−2
φ . These

singularities are located at the foci, (µ = 0) ∧ (ν = 0, π), for hµ = hν and along the entire the
z-axis, (µ = 0) ∨ (ν = 0, π), for hφ.

Within the DARSEC code, the divergencies cancel out with high accuracy since the numerical
treatment is consistent, e.g., the finite-difference approach, orders of expansions, etc. For
interpolations that yield a continuous function, however, the DARSEC representation is not
suitable since Lagrange interpolations corresponding to the finite-difference approach of DARSEC
are not continuous. Thus, in the QMC method, B-Splines are used to interpolate the orbitals’ grid
values with continuity across grid cells. With the B-Spline representation, a different numerical
framework is used, and the divergencies of the gradient and Laplacian become a major obstacle
in QMC since the cancellation of singularities happens with far less accuracy. While some
cancellations will remain difficult, for example, those of the kinetic energy with a Coulomb
singularity near a nucleus, others can be tailored to lower the interpolation error.

A large source of interpolation error is introduced if an orbital is represented by a single
B-Spline and its derivatives are calculated from the B-Spline representation. While this seems
most consistent, the polynomial B-Spline cannot exhibit the correct singular behavior of the
orbital at the z-axis. Therefore, derivatives of the orbital must be calculated separately with
a separate B-Spline representation. The following discusses optimal representations for the
Laplacian and the gradient.

At the core of the (non-interacting) kinetic energy is the Laplacian of the orbitals. In PS
coordinates and applied to the DARSEC orbitals of Eq. (E.13), it reads

∇2φm = ϕm(∇2
µν −m2h−2

φ )φ̃m (E.28)

One might be tempted to separate the terms including ∇2
µν and m2, evaluate each term inde-

pendently and rearrange them to yield the Laplacian. With such a separation, however, both
terms become divergent, and the rearrangement cannot fully cancel the singularities to arrive at
regular behavior. Thus, the Laplacian is best approximated if a distinct B-Spline is constructed
for the full eq. (E.28).

To evaluate the gradient, the form

∇φm = ϕm

gr cos(φ)
gr sin(φ)

gz

+ gtϕ
′
m

− sin(φ)
cos(φ)

0

 (E.29)

has proven to have fewer numerical errors at the singular sites, with the constituents

gr(µ, ν) = ah−2
µ (cosh(µ) sin(ν)∂µφ̃m + sinh(µ) cos(ν)∂νφ̃m) (E.30)

gz(µ, ν) = ah−2
µ (sinh(µ) cos(ν)∂µφ̃m − cosh(µ) sin(ν)∂νφ̃m) (E.31)

gt(µ, ν) = ah−2
φ φ̃m sinh(µ) sin(ν) = h−1

φ φ̃m. (E.32)

With B-Splines for the expressions gr, gz and gt, no divergent terms are present in the formula
for the gradient besides the intrinsic singularities present “inside” gr, gz and gt.

A simple quality check on the orbitals’ derivatives can be carried out with the aid of Green’s
first identity. ∫

φ∗
m∇2φm = −

∫
|∇φm|2 (E.33)
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E.4. Evaluation of orbital derivatives

Written out in terms of the above-defined expressions, this yields∫
φ∗
m∇2φm =

∫
|ϕm|2φ̃∗

m

(
∇2
µνφ̃m −m2h−2

φ φ̃m
)

=

∫
φ̃∗
m

(
∇2
µνφ̃m −m2h−2

φ φ̃m
)

=

∫
φ̃∗
m∇2

µνφ̃m −m2

∫
|gt|2

(E.34)

for the Laplacian and

−
∫
|∇φm|2 = −

∫
|ϕm|2(g2r + g2z) + |ϕ′m|2g2t

= −
∫ (
|gr|2 + |gz|2

)
−m2

∫
|gt|2

(E.35)

for the gradient. The last equation holds because the gradient norm separates since its constituents
are orthogonal. These identities can be evaluated numerically to assess the quality of the orbitals’
numerical representation.
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F. Influence of the orbitals’ grid on QMC

The following section is an excerpt from the author’s publication [45] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

Here we aim to analyze the dependence of the QMC results on the grid and converge them
with respect to our grid parameters, as the quality and consistency of the orbitals has a great
impact on QMC – as already pointed out in Ref. [86] in the context of basis-set represented
orbitals. Within our grid there are three parameters to adjust: The number of grid points along
the two PS axes, Nν and Nµ, and the total extent of the grid by Rmax, or equivalently µmax.
We chose Rmax to yield densities of the order 10−8 to 10−10 at the border of the simulation
box. This might seem unnecessary, since densities of this magnitude do not contribute to any
physical effects, but we deliberately sampled this regions to test our numerical methods. To
determine the required accuracy for the number of grid points we examined the grid of Nν ×Nµ

in the range of 55× 55, 79× 79, 103× 103, 121× 121, 151× 151, 181× 181 and 211× 211 for
Li2 based on LDA orbitals. For each of those grids we calculated the DFT, VMC and DMC
energies. The results are shown in Fig. F.1. While a grid of around 103× 103 cells suffices to
converge the DFT energy, for VMC and DMC the energies converge only at around 151× 151
and beyond. Note that our notion of convergence stems from the behaviour of the graphs shown
in Fig. F.1, while convergence within an error range of chemical accuracy (0.0016 a.u.) would be
reached with a less strict criterion. The variance of the DMC ground state reaches a plateau at
this grid parameters, reflecting the improvement in grid accuracy. While the DFT energies are
decreasing with increasing grid accuracy, the QMC energies have lower energies for insufficient
grid resolution. This is particularly important to note, since an unconverged grid would yield
“variationally better” results.

Considering this convergence analysis, we performed all QMC calculation with a grid of
181× 181 grid cells to yield accurate energies. Note that densities would already be accurate
with a smaller grid as long as one is not interested in the direct vicinity of the nuclei.
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Figure F.1.: Effects of the grid resolution on energies from DFT (LDA), VMC and DMC as well
as the ground state variance for DMC in Li2 based on LDA orbitals in Hartree units. VMC and
DMC energies converge at about 151× 151 grid cells, while the LDA energies converge with less
grid points at about 103× 103 cells. The DMC variance is strictly decreasing with more accurate
grids. This indicates that the QMC convergence is determined by the accuracy of the conversion
of the derivatives from discrete orbitals to the continuous representation in the QMC code.
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Figure F.2.: Densities for the grid parameters 55× 55, 103× 103 and 181× 181 for DMC and
55× 55 for VMC. The density along the z-axis is plotted in panel A. Panels B, C and D zoom in
on the nuclear cusp, the region of the core-valence transition, and the bond region, respectively.
The DMC densities align perfectly anywhere except the nuclei. At the focal points numerical
artifacts govern the density in DMC, increasing in magnitude with coarser grids. To the contrary
the VMC density does not show numerical issues beyond statistical noise, even for the rather low
grid resolution of 55× 55.
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G. Regularization of noisy densities

The following section is an excerpt from the author’s publication [45] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

Naturally, the density has large statistical errors in the asymptotic regions. In our approach the
core regions in addition show large fluctuations due to the high resolution of the grid at its focal
points and the decreasing grid cell volume. As can be seen from Eq. (7.5), the fluctuations of
the density estimation in a bin depend on the bin’s volume, leading to infinite variance in the
limit of vanishing bin size.

These fluctuations, either due to the lack of density or small bins, occur on a scale that does
not influence the quality of the over-all density: the low-density regime beyond density values of
10−8 in the asymptotic region has little physical meaning, while the volume around the focal
points with large statistical noise is of negligible extent. To nevertheless obtain a smooth density
on the entire domain, we invoke an extrapolation procedure that replaces the density in vicinity
of the PS foci (e.g., the nuclei in the case of Li2) with an extrapolation from the close-by grid
points. This procedure is also applied in the asymptotic domain and explained in detail in the
following.

First the whole domain Ω of the density is split in four sectors: Two sectors around each of
the two focal points, one sector for the asymptotic domain, and the remainder. This is visualized
in Fig. G.1 for the Li2 molecule. To define these domains, we introduce distance measures

distA(r) = min (|r + aêz|, |r− aêz|) , (G.1)

dist±F(r) = |r∓ aêz|. (G.2)

The asymptotic domain is then given by distA(r) > rmin
A , whereas the focal sites are identified via

dist±F(r) < rmax
F . The parameters rmax

F , rmin
A are chosen such that the noisy areas are confined

within the domains, but in addition also a reasonable amount of trustworthy data are contained
within the domains.

Next, we define two subdomains in the focal and asymptotic domains: The first subdomain Ωsrc

is chosen such that its density values are trustworthy, i.e. have low noise. This source-subdomain’s
data is then used to optimized the parameters of a fitting function by least squares. The second
subdomain, Ωfit, selects the density that is dominated by noise. Its density is replaced completely
by data from the fit. Thus we extrapolate the local behaviour of the density in the source region
to the fit region. The resulting six sub-domains are

Ωsrc
A =

{
r ∈ Ω|rmin

A < distA(r) < rmax
A

}
(G.3)

Ωfit
A = {r ∈ Ω|rmax

A < distA(r)} (G.4)

Ωsrc
±F =

{
r ∈ Ω|rmin

F < dist±F(r) < rmax
F

}
(G.5)

Ωfit
±F =

{
r ∈ Ω|dist±F(r) < rmin

F

}
, (G.6)

while the remainder is

ΩD = Ω\ ∪ {Ωfit
A ,Ω

src
A ,Ωfit

+F,Ω
fit
−F,Ω

src
+F,Ω

src
−F}. (G.7)
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G. Regularization of noisy densities

Around both foci and the asymptotic we now have isolated a trust region with valid density values
and the regions with notorious fluctuations that we want to replace. Note that the density in the
remainder domain is not altered by our procedure. Thus, the scale on which we manipulate the
over-all density is tiny and the remainder domain covers almost entirely the domain of physical
importance. The number of grid points subject to refinement shown in Fig. G.1 is only a small
fraction of the total number of grid points and is visually over-represented in the Euclidean space.

Figure G.1.: Partitioning of the density’s support in the refinement procedure, here shown for
the Li2 molecule. In the (beige) source sub-domains an appropriate extrapolating fit is optimized.
The fit is applied to the fit-only sub-domains (orange) replacing their original density values. A
smooth transition between data and fit is used in the beige domains to avoid discontinuities at
the boundaries to the data-only domain (blue). The QMC density is not manipulated in the
data-only domain, which covers almost all of the physically relevant space.

To restore the density in the subdomains of high statistical fluctuations, an appropriate fit
function has to be chosen. We use a cusp-form fit (including the often spherically averaged dipole
contribution) for the focal points occupied with ions, and an exponential polynomial form for
vacant focal points (viz. in the carbon atom),

ncusp = n0 exp (−(γ + p cosϑ)r) , (G.8)

nsmooth = n0 exp
(
−γr − σ2r2 − κr3

)
, (G.9)

where r and ϑ are the polar coordinates centered at the closest ion (in the case of a vacant
focus, the closest ion is the one on the other focus). For the asymptotic decay there are multiple
reasonable fits available. The simplest is a s-type exponential decay, but to better represent the
density in the near-asymptotic regions, any LCAO-type fit can be used. For Li2 and N2 the decay
is straightforward to capture, e.g., using s-orbitals centered at each atom of the molecule. The
carbon atom shows an-isotropic exponential decay, which is best represented with s-type orbital
for the non-HOMO part of the density and an additional 2p±1-type orbital for the HOMO-density.
The fits are optimized with data from the trustworthy source domain.

Combining the bare QMC density values in the source region with the density values from
the fit in the neighboring fit-only region would introduce a small discontinuity at the boundary,
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especially if the fit or the density have poor quality, or if the spatial boundaries are inappropriately
chosen. Therefore, we mix the bare QMC density with the fitted density by introducing weights
that smoothly interpolate both densities in the source sub-domain, r ∈ Ωsrc,

nrefined(r) = nfit(r)×W (r) + nQMC(r)× (1−W (r)), (G.10)

where the weights are

W (r) = I

(
dist±F,A(r)− rmin

±F,A

rmax
±F,A − rmin

±F,A

)
. (G.11)

I is a smooth transitioning function with I(0) = I ′(0) = I ′(1) = 0 and I(1) = 1. Here, we chose
I(x) = (3− 2x)x2, but other choices are equally justified.

This concludes the refinement procedure. The results can be inspected in Fig. G.2. The four
spatial boundary parameters rmin

F , rmax
F , rmin

A and rmax
A are adapted for every system to reflect

the densities’ behavior. While this procedure might seem to introduce a significant dependence
on the user-defined parameters and fit functions, varying the parameters in a reasonable range
does only marginally influence the resulting refined density. This is a direct consequence of the
electron-nuclear cusp condition and the exponential asymptotic decay of the density, governing
the behavior of the density in the domains we extrapolate in. For the refinement of the carbon
atom shown in Fig. G.2 and G.3 we use rmin

+F = 0.03 a.u. and rmax
+F = 0.10 a.u. for the focus with

the C atom and rmin
-F = 0.06 a.u. and rmax

-F = 0.20 a.u. for the vacant focus, while rmin
A = 5 a.u.

and rmax
A = 7 a.u. in the asymptotic region. The fit at the carbon atom is Eq. (G.8), while the

fit at the unoccupied focus is (G.9). The fit in the asymptotic domain could be chosen from a
broader variety of fitting functions and spatial parameters, but we restrain to the LCAO fit of
type 1s2p(±1) with variable coefficients and decay rates.
The resulting density meets high numerical standards in terms of smoothness with little remaining
statistical noise and conserves the original features of the density.
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G. Regularization of noisy densities
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Figure G.2.: The refinement improves the density in those domains where QMC shows large
fluctuations. At the PS focus occupied by the carbon atom at z = 1, the density is higher (thus
has less noise) compared to the unoccupied focus at z = −1, where larger fluctuations arise due to
the lack of walkers visiting the corresponding bins around the empty focus. Fit-only subdomains
are textured with a light-red diagonal pattern, while source subdomains use a light-blue crisscross
texture.
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Figure G.3.: With the regularization of the refinement procedure the statistical noise can be
eliminated. The 1s2p(±1) fit in the asymptotic domain decays with different decay rates
depending on the direction, thus including the nodal line of the carbon atom, extrapolating the
density to values beyond 10−11.
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H. Preparation of densities for inversion

The following section is an excerpt from the author’s publication [116] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

We use the QMC densities from our recent article Ref. [45]. These highly accurate ab initio
densities were calculated with the FNDMC method and thus are subject to statistical fluctuations
and some biases, discussed in Sec. 7.2. The FNDMC method requires a set of single particle
orbitals, for which we chose the LDA and xKLI orbitals. These should not be confused with
the DFT reference densities or initial xc potentials of this work. In Sec. G we further devised a
regularization method to remedy most of the statistical fluctuations close to any nuclei as well
as in the asymptotic domain of the system. While it is possible to eliminate the fluctuations
in the density’s asymptotic domain, here we restricted ourselves to regularization of the cusp.
Regularization in the asymptotic domain did only marginally influence our inversions and we
want to avoid any superfluous regularization. To arrive at a very high accuracy in the QMC
calculation we calculated the QMC densities on a 181×181 grid in prolate spheroidal coordinates.
To perform an inversion with a grid of such an extent is tedious and unnecessary for the accuracy
of the inversion. Therefore we reduce the grid to size 103× 103 to accelerate the inversion. The
PS grid does not allow to simply merge neighboring bins, and we explain our reduction procedure
in the following:
First we interpolate the density on the fine grid. Next, we split every grid cell in the coarse grid
into a small subgrid of size m ×m and evaluate the interpolation at those subgrid points to
represent the interpolated density from the fine grid. The value of the density in the coarse grid
is the integral of the values on the subgrid. We found m = ⌈Nfine/N coarse⌉ = 2 to be sufficient
for all our cases. The densities resulting from the reduction process are almost indistinguishable
from the densities on the finer grid. Since our systems N2 and Li2 are symmetric with respect to
the z-axis, we could further symmetrize the density to lower the magnitude of numerical artifacts,
but we deliberately allowed the asymmetries to investigate their consequences in the resulting
inverted xc potentials. The figures H.1, H.2 and H.3 show the reference densities we used.
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H. Preparation of densities for inversion

−2 0 2 4 6
intermolecular z-axis [a.u.]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

de
ns
ity

[a
.u
.]

QMC-A / erDMC@LDA
QMC-B / erDMC@xKLI

1.025 1.050
70

80

90

100

nucleus

1.5 2.0

0.2

0.3

0.4

0.5

core-valence
transition

−0.25 0.00 0.25

0.36

0.37

0.38

0.39

inter-atomic
bond

Figure H.1.: Reference densities for the nitrogen molecule N2 used for the inversion. The DMC
densities are extrapolated to reduce the mixed estimator bias and are regularized at the cusp.
The QMC calculations are based on LDA and xKLI orbitals.
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Figure H.2.: Reference densities for the carbon atom C used for the inversion. The DMC
densities are extrapolated to reduce the mixed estimator bias and are regularized at the cusp.
The QMC calculations are based on LDA and xKLI orbitals.
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H. Preparation of densities for inversion
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Figure H.3.: Reference densities for the lithium dimer Li2 used for the inversion. The DMC
densities are extrapolated to reduce the mixed estimator bias and are regularized at the cusp.
The QMC calculations are based on LDA and xKLI orbitals.
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I. Iterative inversion scheme

The iterative process of updating the potential with feedback from the density can suffer from
instabilities inherent to feedback loops. A common strategy to avoid instabilities is the adjustment
of the feedback strength ϵ. Ideally ϵ is lowered before instabilities arise and increased if the
feedback has too little effects on the density. While the latter does affect performance, the former
decides whether the inversion is successful or fails. A common situation, in which the update
cycles could diverge, is an excessive feedback strength. A mismatch in the density is then mapped
to a potential update that overshoots the mismatch, leading to a new mismatch of the densities
but with changed sign. Thus oscillations arise with potentially increasing magnitude. Such
oscillations often start at the nuclei, where the density takes large values. Additionally, changes
in the density anywhere in space affect the density non-locally due to normalization, contributing
to an initial large mismatch at the nucleus that could trigger divergence by oscillation. The
oscillatory feedback is not bound to the nuclei and possibly propagates into a larger environment.
Update rules like DEN, that do not mediate the wide range of density values to the range of
reasonable potential values, heavily suffer from such oscillations. If oscillations are detected early,
the feedback strength can be lowered. This prevents a divergence but also lowers the feedback at
other locations, and the updates might become effectively unable to apply the required changes
to reconstruct the density. Therefore it is vital to use update rules that map density mismatches
to reasonable potential updates.

Another question is how to detect feedback oscillations early. While the spatially resolved
auto-correlation of the density, A(r,m) = Corr[n(i+m)(r), n(i)(r)], gives a hint to local oscillations,
it is memory-inefficient to calculate and tedious to analyze. While one could reduce the spatial
dimensionality of A(r,m) to for example only monitor the auto-correlation of the density at
the nuclear position, we found it sufficient to lower the feedback strength by a constant factor
(usually close to but lower than one) after some fixed number of iterations. We choose to reduce
the feedback to 90% every 30 iteration, ϵ→ 0.9× ϵ, which works with our choice for the initial
feedback strength.

For some inversions of the QMC-B reference density for the nitrogen molecule based on an
initial xKLI potential, we plot the metric D1 with a log-log scale in Fig. I.1. First of all, the
inversion greatly improves the density only in the first hundreds of iterations, while subsequent
updates typically yield only small improvements to the density. The graphs do not reach a
stable plateau in any inversion we considered, and therefore further updates provide further
improvements to the density. Despite small incremental improvements of the density the required
iterations become exponentially larger, e.g., the first 103 iterations improve the inverted density
from D1 ≈ 0.4 to D1 ≈ 3× 10−3, but the last 103 only further to not even D1 ≈ 2× 10−3 for
HAR+LoH(1), such that the inversion is beyond practical improvement at some iteration.

163



I. Iterative inversion scheme
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Figure I.1.: Evolution of the inversion process for the nitrogen molecule (with the reference
density QMC-B and xKLI initial potential) in a log-log-plot. The iteratively updated xc potentials
do not produce monotonically improving densities, but improve logarithmically with rather large
fluctuations and outliers. Despite the noise the converging metrics follow a distinct average
graph, even in the case of intermediate to large deviations as present in the evolution of the
rule HAR+LoH(1) for at about 50 iterations. The inversion HAR+DEN failed at about 200
iterations, and its optimal inverted potential is determined from the preceding iterations. The
rule HAR+LoH(0.5) almost diverged at about the 100th iteration, but recovered subsequently.
Inversions of this type most often show extremely large artifacts, e.g., wiggles in the asymptotic
domain, broken symmetries, etc., and cannot be expected to yield physical insights, even if the
metrics converge after a divergence-like event in the iteration.
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J. The forward KS-map in detail

The following section is an excerpt from the author’s publication [116] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

This section explains the method and presents the results of the analysis of the forward KS map
summarized in Sec. 10.1. To start with the variation we apply to the xc potential, we utilize a

linear mixture, i.e. an interpolation or extrapolation, of two xc potentials v
(0)
xc and v

(1)
xc

v(λ)xc = (1− λ)v(0)xc + λv(1)xc (J.1)

Alternatively we perturbe v
(0)
xc by v

(1)
xc − v(0)xc . Note that mixing potentials differs from mixing

functionals. Mixing two functionals results in a new xc functional, which has some self-consistent
xc potential and valid xc and total energies. Mixing two xc potentials and self-consistently
obtaining the corresponding density (which essentially also converges the a priori unknown
Hartree potential), however, results in a KS potential, that does not come with a corresponding
energy functional and a corresponding energy functional might not even exist. As already
mentioned in Sec. 10.1, the linear variation in the potential results in a linear response in the
eigenvalues and total energies due to the Hellmann-Feynman theorem. On the other had, the
density is assumed to respond in an intricate way. Approximations to the KS potential are
designed to map to the exact interacting wave function and therefore the potential and the
density aim to compress the full information of the exact wave function. The complexity of
the compression originates from the complexity of the Hohenberg-Kohn map and even small
variations of the KS potential should therefore manifest in the density in a subtle way. The
formal connection of an infinitesimal variation of the xc potential and to its infinitesimal density
response is given by

dnσ(r)

dλ
=
∑
i ̸=a

φ∗
σi(r)φσa(r)

ϵσi − ϵσa

〈
φσa

∣∣∣v(1)xc − v(0)xc

∣∣∣φσi〉 . (J.2)

and is thus only valid for vanishing magnitudes for λ. The Taylor expansion of the density
inherits this constraint, being valid only for small |λ− λ0|, intuitively.

n(λ) = n(λ0) +
dnσ
dλ

∣∣∣∣
λ0

(λ− λ0) (J.3)

Assume the density to only respond in the linear regime for the moment. From the densities at
λ = 0 and λ = 1 the linear map is fully determined. The linear prediction reads

n
(λ)
lin = (1− λ)n(0) + λn(1). (J.4)

In reality the density cannot respond purely linear. The values of λ for which the density responds
linearly might be very limited to the reference potentials at λ = 0 and λ = 1 and higher order
terms could become important even with small deviations in λ. We will clarify the questions
of how the density response in first order and to which extend the linear regime is valid in the
following.
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J. The forward KS-map in detail
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Figure J.1.: Sketch of the interpolation or extrapolation between two xc potentials v
(0)
xc and v

(1)
xc ,

for which the corresponding densities, n(0) and n(1), are known. Since the forward KS map F
transports the full information of the ground state, it could return rather unpredictable and
artificial densities for the interpolation and especially extrapolation. However, we show evidence
for a regular and even strongly linear response in the density. While our sketch suggestively
shows a linear response, this cannot be inferred to the KS map a priori.
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To start with, we chose v
(0)
xc = vxKLI

xc and v
(1)
xc = vLDA

xc in the Perdew-Wang parametrization [47]
with their corresponding densities n(0) = nxKLI and n(1) = nLDA for diatomic lithium Li2. With
λ ∈ [−6, 7] we interpolate and also extrapolate far beyond λ ∈ [0, 1], exploring the xc potentials
along the straight line passing through vxKLI

xc and vLDA
xc in xc potential space, see Fig. J.1 Next,

we calculate the densities n(λ) = F [v
(λ)
xc ] for numerous values of λ in the interval. F is the forward

KS map, cf. (8.1). To this end, we fix the xc potential in a DFT calculation and self-consistently
solve for the Hartree potential. Thereafter the densities for different values of λ can be compared.
Fig. J.2 shows the results of this analysis. The interpolated potentials at the bounds of the
interval for λ, shown in the upper left and upper right panels, have a strong artificial character.
Thus, the extrapolation is taken to the extreme at these values. Nevertheless the graphs of the
metrics are uniform over the whole range. The density metric D1 evaluated at the xKLI density
(where λ = 0) and the density n(λ) for some other λ stays in the linear regime to very good
accuracy over the large extend for λ. To the right (positive λ) the graph is only slightly convex,
and concave to the left (negative λ). This is an indication, that the density itself responds in a
mostly linear way. More importantly, the linear response is entirely given by the corresponding

linear interpolation of the densities, n
(λ)
lin , at least in the integrated metric D1[n

(λ), n
(λ)
lin ]. As

expected Jxc is quadratic in λ.

While Fig. J.2 grants insights to the the extend of the linear regime for the integrated density
metric D1, it does not spatially resolve the density response. To get a better understanding of
how the density is affected by the potential variation, we plot the density response against its
potential variation in Fig. J.3, in the following way: In our prolate spheroidal grid, we first choose
a set of random coordinates {ri}. For each coordinate ri we evaluate the density n(λ)(ri) and

the potential v
(λ)
xc (ri) for every λ. We plot all potential-density pairs (nλ(ri), v

λ
xc(ri)) as points

(where the potential value corresponds to the values along the horizontal axis and the density
corresponds to the vertical axis). The points are colored to discriminate the respective value of
λ. Starting from a single random coordinate r0 and a single value λ = 0 (corresponding to the

xKLI approximation) we draw the potential-density pair point (n(0)(r0), v
(0)
xc (r0)). Step by step

drawing the density-potential pair for different values of λ with a different color, the pair-point
will slightly shift, since the values of potential and density change. This perturbation by λ is
therefore represented by a series of points or a string of beads. For λ = 0 (xKLI) we colored
the point black as a guide for the eye, whereas at λ = 1 (LDA) we increased the points size
slightly. Repeating the process for many randomly chosen coordinates ri, we can represent the
density response by a collection of strings of beads. Note that this representation is not invariant
with respect to a constant offset in the potential, causing stretched or compressed strings of
beads. We have aligned the xc potentials to be zero at the boundary of the simulation ellipsoid
to construct Fig. J.3.

Fig. J.3 covers many aspects of the KS map. First, focusing on the black points of the xKLI
density, as expected in molecular systems mostly low density values correspond to potentials close
to zero, whereas high densities map to low potential. For the LDA, the density-potential map
is directly given by the functional construction, resulting in a predefined graph. For the xKLI
functional, this mostly remains true, with the exception for densities of the order of about 10−2

or xc potentials in the range −0.4 to −0.2, where the inter-shell bumps are located, bifurcating
the graph slightly. The LDA potential is less negative than the xKLI potential, therefore higher
values of λ (which mean higher contribution from LDA) are mostly shifted to a more positive
potential. As a result the strings of bead are mostly red on their right end. This is not true
for the regions of inter-shell bump, where the xc potential of xKLI characteristically has larger
potential than LDA.

Next, focus on the orientation of the strings of beads, i.e. the first order density response. In
the high-density regime, we can directly see that large changes in the xc potential affect the
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J. The forward KS-map in detail
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Figure J.2.: The xc potential interpolation from self-consistent xKLI to LDA with large extrap-

olation for Li2. The upper insets shows the interpolated xc potential v
(λ)
xc along the inter-atomic

axis for different values of λ. The corresponding densities n(λ) deviate from the xKLI density
(at λ = 0) almost entirely linear in the metric D1[n

(λ), n(0)]. Furthermore, the linear prediction

for the density n
(λ)
lin covers the entire linear response, since its deviation from the actual density

is quadratic, c.f. D1[n
(λ), n

(λ)
lin ]. Note that at extreme extrapolation the potentials have strong

artificial character, but are not far outside the linear regime, apparently. The behavior of Jxc is
clearly quadratic as expected.
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Figure J.3.: The response of the density to a linear perturbation in the potential for Li2. For
a number of random coordinates we plot the density value versus the potential value at these
coordinates for different values of the mixing parameter λ. The color indicates the value of
the mixing parameter. The xKLI calculation (λ = 0) is marked with black circles, the LDA
calculation (λ = 1) with enlarged circles. Most of the density responds in the linear regime,
significant higher orders almost exclusively appear at low density. The inset zooms in on the
region of potential and density, where the non-linear behavior of the KS increases.
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J. The forward KS-map in detail

density only marginally indicated by a almost horizontal string of beads, as expected with the
linear behavior of D1 in Fig. J.2. This behavior is a clear trend only at high densities and breaks
down at the inter-shell bumps, where the density responds much more detailed. The astonishing
fact is, that the density responds mostly linear to changes in the potential, indicated by straight
strings of beads. The linearity persists to high accuracy from the high density regime to density
values of approximately 10−2, where slight curvature of the strings of beads is visible, and breaks
down only for very low densities and therefore regions of physically less relevance, which have
almost negligible contribution to the total energy. The increasing quadratic contributions can be
seen for density values of about 10−4 and lower. The common assumption [132] that an increased
potential dictates a reduced density and vice versa, would forbid strings of beads to extend in
the direction of the first and third quadrant. The assumption holds in the case of moderately
high densities from about 10 to 10−1. However, at lower densities, starting at about 0.1, and
also the highest densities above about 5, this directional restriction is not met. For densities
from 10−2 to 10−1 an increased potential even corresponds to an increased density. This again
highlights the non-local character of the KS map.

The linear prediction n
(λ)
lin is the dominating contribution to the density response. Thus

within the limitations discussed above (e.g., a non-linear response in the low densities regime)
a reasonable estimate of the resulting density at any λ is available without evaluation of the
KS map. We have found the same behavior for interpolations from xKLI to PBE and SCAN
potentials. The above implies linearity of the KS map only along a the straight line, but in
conjunction with interpolations in different directions (e.g., PBE or SCAN) is indicates linearity
to some extend in a larger scope.

F
[
(1− λ)v(0)xc + λv(1)xc

]
= (1− λ)F

[
v(0)xc

]
+ λF

[
v(1)xc

]
(J.5)
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K. An efficient inversion procedure based on KS
linearity

The following section is an excerpt from the author’s publication [116] including minor
adjustments, see the Statement of authorship for an explanation of the authorship.

Here we propose an iterative inversion scheme, not based on update rules, but solely on mini-
mization. We have not yet carried out any such inversions, due to time constraints. In Sec. 10.1
we illustrated the linearity of the KS map for interpolation/extrapolation of two xc potentials,

v
(0)
xc and v

(1)
xc . Assume that some reference density n, whose xc potential vxc we are interested

in, is “close” to the densities on the line of inter-/extrapolation, n(λ). Then, the inverted xc
potential can readily be calculated by minimizing the cost K =

∫
|n− n(λ)|2 with respect to λ

to yield some optimal λ∗. For reference densities that lie on the line of interpolation, K will

vanish. The true xc potential is then given by vxc = (1− λ∗)v
(0)
xc + λ∗v

(1)
xc . Let us generalize this

idea to a mixture of multiple xc potentials (and their corresponding densities), with the set of

potential-density pairs (v
(i)
xc , n(i)) for i = 1, . . .m and mixing parameters λ1, . . . λm.

vxc(λ1, . . . , λm) =

m∑
i=1

λiv
(i)
xc (K.1)

Those potential-density pairs could for example be generated from common density functional
approximations. We still assume linearity for the mixing even in the multidimensional case since
interpolation in many variables can be executed step by step for each constituent xc potential.
Thus we know a reasonable linear prediction for any given set of (λ1, . . . , λm),

nlin(λ1, . . . , λm) =
m∑
i=1

λin
(i) (K.2)

We can optimize the linear prediction to resemble the reference density n by minimization of
some cost function

K(λ1, . . . , λm) = ∥nlin(λ1, . . . , λm)− n∥, (K.3)

where any reasonable metric ∥·∥ can be used. The minimizing parameters (λ∗1, . . . , λ
∗
m) correspond

to a minimizing density n∗ and a candidate minimizing xc potential v∗xc =
∑m

i=1 λ
∗
i v

(i)
xc . If the

reference density lies within the span of the densities {n(i)}i=1,...m, the cost vanishes, the optimal
density is the reference density n∗ = n and with linearity the true xc potential is found by
linearity as v∗xc = vxc. With any non-linearity in the KS map the optimal xc potential will
deviate from the true xc potential. This is also the case if the reference density is not in this
span, indicated by a non-vanishing cost. In this case we nevertheless get some optimal mixing
parameters, density and candidate potential v∗xc. Note that up to this point the forward map
F was only evaluated m times to generate the initial potential-density pairs. We can now
evaluate the forward map with the candidate potential v∗xc to get its actual density F [v∗xc]. Let
us suggestively denote this new potential-density pair with (v∗xc, F [v∗xc]) = (vm+1

xc , nm+1). While
this might not be an accurate estimate of the true xc potential and the reference density (due
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K. An efficient inversion procedure based on KS linearity

to nonlinearity or an insufficient span), we now can restart the minimization procedure with a

new set of potential-density pairs, (v
(i)
xc , n(i)) for i = 1, . . .m+ 1, to more accurately recover the

reference density by an increased span. Iterating this scheme will produce new potential-density
pairs that increase the span and closer and closer resemble the true pair. Eventually the reference
density will lie in the span over which the minimization is taken, such that the reference density is
reconstructed. Additionally, after the density has become a good approximation to the reference
density, new pairs will probe the close environment to the reference density, where linearity
eventually must hold. Note that the deviation of the optimal density n∗ to the actual density of
the predicted potential F [v∗xc] is key to the process, since it enriches the span of densities with
linearly independent densities. Thus, far from the linear regime the algorithm mainly enlarges
the span, while close to the reference density it solidifies the accuracy of the recovered density.
With a reasonable linear prediction of the optimal density n∗, the evaluation of the forward map
is significantly easier than a common self-consistent DFT calculation, since the xc potential is
not self-consistently updated but fixed and the Hartree potential vH[n∗] is already close to its
self-consistent final form. The implementation of the algorithm is straightforward and rather
simple. It only requires a solver for the forward problem and some minimization procedure.
From the ever increasing span of densities and potentials, those pairs, that contribute little to
the optimal pair can be excluded, to retain a reasonable number of parameters or dimensions
for the minimization. Furthermore, casting the inversion as a minimization problem allows to
add constraints or costs to the minimization. Two necessary constraints, that we omitted so
far for simplicity, are

∑
i λi = 1 and nlin ≥ 0 to ensure a normalized and non-negative density.

Cost functions could for example incorporate weights to the density, include integral kernels or
penalize the lack of exact characteristics of the density, such as the cusp condition.
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