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Summary 

Reagent an`bodies are widely used in research and diagnos`cs, yet more than half fail to 

recognize their targets or exhibit poor specificity, leading to unreliable results. Their produc`on 

relies on costly and `me-consuming immuniza`on processes that are difficult to reproduce. 

These challenges highlight the urgent need for alterna`ve, well-characterized binding systems 

that are both reliable and customizable. To address this, the mul`disciplinary PRe-ART project 

aims to replace conven`onal reagent an`bodies with engineered armadillo repeat proteins, 

which are designed to bind specific amino acid sequences through modular assembly.  

This thesis contributes to this objec`ve by focusing on the computa`onal design and analysis of 

binding modules within the designed armadillo repeat protein scaffold, with a par`cular 

emphasis on phosphorylated amino acids. Given that phosphoryla`on of serine, threonine, and 

tyrosine residues is cri`cal in signaling pathways and metabolism, the lack of high-performing 

monoclonal an`bodies for their detec`on presents a major challenge. To overcome this, a 

computa`onal pipeline was established to design binders for phosphotyrosine, phosphoserine, 

and phosphothreonine. The pipeline priori`zed key interac`ons while minimizing unfavorable 

muta`ons, leading to focused binder library sugges`ons to generate ra`onally designed libraries. 

Although experimental valida`on is ongoing, preliminary results indicate promising binding 

results. To improve the accuracy of computa`onal predic`ons, this thesis also evaluates different 

computa`onal methods that are used for binder library designs, providing insights into their 

predic`on accuracy upon point muta`ons. By evalua`ng strengths and weaknesses of these 

methods, systema`c tendencies of them were discovered and a complementary approach that 

enhances binder design reliability is proposed. Finally, to efficiently validate promising 

computa`onal predic`ons, binding affinity measurements for protein-pep`de interac`ons using 

dArmRPs within our research group were established. Implemen`ng this setup in our lab enabled 

faster and more prac`cal tes`ng of designed binders, providing a reliable framework for 

assessing the accuracy of computa`onal predic`ons.  
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Altogether, this thesis advances the understanding of protein-pep`de interac`ons and 

demonstrates how this knowledge can be leveraged for the ra`onal design of protein-based 

binders. By integra`ng computa`onal strategies with experimental valida`on, this work 

contributes to the development of reliable alterna`ves to tradi`onal reagent an`bodies. 
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Zusammenfassung 

Reagenzien-Antikörper sind in der Forschung und Diagnostik weit verbreitet, doch mehr als die 

Hälfte erkennt ihre Ziele nicht oder weist eine geringe Spezifität auf, was zu unzuverlässigen 

Ergebnissen führt. Ihre Herstellung beruht auf kostspieligen und zeitaufwändigen 

Immunisierungsverfahren, die sich nur schwer reproduzieren lassen. Diese Herausforderungen 

unterstreichen den dringenden Bedarf an alternativen, gut charakterisierten Bindungssystemen, 

die sowohl zuverlässig als auch anpassbar sind. Das multidisziplinäre Projekt PRe-ART zielt darauf 

ab, herkömmliche Reagenzien-Antikörper durch konstruierte Armadillo-Repeat-Proteine zu 

ersetzen, die durch modulare Zusammenstellung spezifische Aminosäuresequenzen binden 

sollen.  

Die vorliegende Arbeit trägt zu diesem Ziel bei, indem sie sich auf die rechnerische Entwicklung 

und Analyse von Bindungsmodulen innerhalb des entwickelten Armadillo-Repeat-Proteingerüsts 

konzentriert, wobei der Schwerpunkt auf phosphorylierten Aminosäuren liegt. Da die 

Phosphorylierung von Serin-, Threonin- und Tyrosinresten für Signalwege und den Stoffwechsel 

von entscheidender Bedeutung ist, stellt der Mangel an leistungsfähigen monoklonalen 

Antikörpern für deren Nachweis eine große Herausforderung dar. Um dieses Problem zu lösen, 

wurde eine computergestützte Pipeline zur Entwicklung von Bindereagentien für 

Phosphotyrosin, Phosphoserin und Phosphothreonin entwickelt. Die Pipeline priorisiert die 

wichtigsten Interaktionen und minimiert gleichzeitig ungünstige Mutationen, was zu gezielten 

Vorschlägen für Bindungsbibliotheken führt, um rational konzipierte Bibliotheken zu erstellen. 

Obwohl die experimentelle Validierung noch nicht abgeschlossen ist, deuten die vorläufigen 

Ergebnisse auf vielversprechende Bindungsergebnisse hin. Um die Genauigkeit der 

rechnerischen Vorhersagen zu verbessern, werden in dieser Arbeit auch verschiedene 

rechnerische Methoden bewertet, die für die Entwicklung von Bindungsbibliotheken verwendet 

werden, und Einblicke in ihre Vorhersagegenauigkeit bei Punktmutationen gegeben. Durch die 

Bewertung der Stärken und Schwächen dieser Methoden wurden systematische Tendenzen 

entdeckt, und es wurde ein komplementärer Ansatz vorgeschlagen, der die Zuverlässigkeit der 

Bindereagenziendesigns erhöht. Um vielversprechende rechnerische Vorhersagen effizient zu 
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validieren, wurden schließlich in unserer Forschungsgruppe Bindungsaffinitätsmessungen für 

Protein-Peptid-Wechselwirkungen mit dArmRPs durchgeführt. Die Implementierung dieses 

Aufbaus in unserem Labor ermöglichte eine schnellere und praktischere Prüfung der 

entworfenen Bindereagenzien und bot einen zuverlässigen Rahmen für die Bewertung der 

Genauigkeit der rechnerischen Vorhersagen.  

Insgesamt trägt diese Arbeit zu einem besseren Verständnis von Protein-Peptid-

Wechselwirkungen bei und zeigt, wie dieses Wissen für das rationale Design von proteinbasierten 

Bindereagenzien genutzt werden kann. Durch die Integration von Berechnungsstrategien mit 

experimenteller Validierung trägt diese Arbeit zur Entwicklung zuverlässiger Alternativen zu 

herkömmlichen Reagenzien-Antikörpern bei. 
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1. Introduc=on 

1.1 Proteins 

Proteins are fundamental macromolecules in all living organisms with diverse structures and 

functions. They are involved in nearly all biological processes, such as catalyzing biochemical 

reactions, regulating metabolism, facilitating protein synthesis, and modulating cellular signaling 

pathways (Pawson & Nash, 2003). These functions are primarily mediated through interactions 

with other molecules, such as small ligands, nucleic acids, and other proteins (Deribe, Pawson, & 

Dikic, 2010; Jones & Thornton, 1996; Marsh & Teichmann, 2015). Since proteins are involved in 

nearly every cellular process due to their interactions with other proteins, investigating proteins 

and their interaction partners is of great interest. 

Proteins binding to other proteins occurs when they proteins form physical contacts that can be 

either reversible or irreversible, arising through specific binding events that contribute to cellular 

function (de Las Rivas & Fontanillo, 2010). These interactions can occur through structured 

(folded) regions of proteins or flexible, unstructured amino acid stretches known as peptides. 

Peptides, despite their simplicity as short chains of amino acids, mediate up to 40% of protein-

protein interactions within cells, highlighting their biological importance (Diella et al., 2008; 

Petsalaki, Stark, García-Urdiales, & Russell, 2009). Understanding these interactions is crucial for 

advancing therapeutic development, synthetic biology, biotechnology, and fundamental biology 

(Fosgerau & Hoffmann, 2015). In this context, protein binders, which are protein-based affinity 

reagents that can selectively bind to target proteins, are becoming increasingly important tools 

for studying protein function in living cells and organisms (Harmansa & Affolter, 2018; Helma, 

Cardoso, Muyldermans, & Leonhardt, 2015). Protein binders are not only widely used as 

therapeutic agents for conditions such as cancer and autoimmune diseases (W. Chen, Ying, & 

Dimitrov, 2013; Weidle, Auer, Brinkmann, Georges, & Tiefenthaler, 2013), but are also 
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extensively employed as reagents in diagnostics, where they play a crucial role in detecting and 

quantifying specific proteins or biomarkers in various assays, including enzyme-linked 

immunosorbent assay (ELISA), western blots, affinity chromatography and 

immunohistochemistry (Alhajj, Zubair, & Farhana, 2025; Borrebaeck, 2000; Dimitrov, 2012).  

1.2 Tradi0onal Protein Binders (An0body-Based Scaffolds) 

Antibodies are the most widely used protein binding reagents both therapeutically and in 

diagnostic research. These are naturally occurring Y-shaped proteins produced by the immune 

system. They recognize and bind to epitopes on antigens, i.e., foreign molecules such as proteins 

that trigger an immune response, via highly variable regions known as complementarity-

determining regions. (Schroeder & Cavacini, 2010). However, despite their versatility, antibodies 

also present several challenges, including their large size, complex production processes, and 

potential for immunogenicity. Antibodies that are used in therapeutic purposes are thoroughly 

tested, requiring approval at multiple stages before clinical use. However, this is often not the 

case for reagent antibodies (Bradbury & Plückthun, 2015).  

Polyclonal antibodies, which are specific to multiple epitopes for instance, face significant 

challenges with batch-to-batch reproducibility (Bradbury & Plückthun, 2015). Each production 

batch may yield a different antibody mixture due to their reliance on the lifespan of the 

immunized animal. Once the animal is no longer available, reproducing an identical antibody 

mixture becomes nearly impossible, limiting their consistency over time. Monoclonal antibodies 

(mAbs) on the other side, have emerged as one of the most widely used and well-characterized 

protein binders that recognize specific proteins of interest since their first discovery in the 19th 

century (Lipman, Jackson, Trudel, & Weis-Garcia, 2005). These molecules can recognize and bind 

to specific target antigens with high affinity and specificity, while many commercial antibodies 

often lack these properties. Despite their advantages, mAbs present several limitations, including 

their complex production processes, potential for immunogenicity or even their intellectual 
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property protections (Reichen, Hansen, & Plückthun, 2014). The production of mAbs involves 

immunizing an animal, such as a mouse, with an epitope of a target antigen, stimulating the 

generation of  B cells that produce antibodies specific to the antigen. These B cells are then fused 

with myeloma cells to generate hybridomas, which then secrete the desired monoclonal 

antibody (Köhler & Milstein, 1975).  

The mAbs are usually selected for their specific target affinity by phage display (or other display 

techniques) where the mAb is expressed and presented on the phage (or cell) surface and the 

pools are subjected to several rounds of selection where the ones with best affinity are isolated, 

the DNA is extracted and further sequenced (Hanes & Plückthun, 1997; G. P. Smith, 1985). 

However, this technique relies on the immune system to recognize specific epitopes of antigens 

and, the immune response can lead to off-target binding, resulting in non-specific antibodies that 

may not bind as tightly or specifically as desired. In addition,the observation that batches of 

animal-derived antibodies widely vary has brought concern to the reproducibility of experiments 

(Baker, 2015). Furthermore, the production of these antibodies relies heavily on animal 

experiments, raising ethical questions, as it necessitates the use of live animals. This relience adds 

another layer of complexity to their widespread use. Production requires also significant amount 

of time and resources, since the process involves several steps of purification and 

characterization, selection has to be performed individually for each target and the selected 

binder is subsequently individually evaluated. Additionally, unlike well-characterized therapeutic 

antibodies, about half of the commercially available reagent antibodies have previously been 

shown to not function correctly either in terms of their specificity or in recognizing their target 

at all (Bradbury & Plückthun, 2015). Considering their shortcomings as being time- and resource-

consuming in addition to having significant specificity issues, and considering their extensive use 

in research and diagnostics, the development of alternative affinity reagents became of great 

interest (Banta, Dooley, & Shur, 2013; Forrer, Stumpp, Binz, & Plückthun, 2003). 
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1.3 Modular Pep0de Binders (Alterna0ves to An0body-based Scaffolds) 

Many protein scaffolds have been developed to bind epitopes, offering opportunities to design 

tailored applications (Skerra, 2007). These scaffolds include a variety of affinity reagents; 

however, some may have lower binding affinities than antibodies or may have limited target 

specificity (Luo, Liu, & Cheng, 2022). To address the limitations of antibodies, repeat proteins 

have emerged as promising scaffolds. Their modular, repeat-based structure allows for precise 

customization of binding properties, enabling high affinity and specificity. Unlike traditional 

antibodies, repeat proteins can be highly stable, can be produced in cost-effective bacterial 

systems, and exhibit low immunogenicity (Banta et al., 2013). Additionally, their ability to target 

both extracellular and intracellular proteins further increases their use in therapeutic, diagnostic 

context. A significant advantage of repeat proteins over conventional binders is their modular 

binding mechanism, where each repeat unit contributes to the interaction with the target in a 

predefined manner. This modularity facilitates engineering efforts to create binders tailored to 

specific sequences. One key area of interest for modular peptide binders is the detection of post-

translational modifications, which often occur in disordered or unfolded regions of proteins for 

example, e.g. on western blots. This capability is crucial for biochemical assays that rely on precise 

recognition of such modifications, positioning modular peptide binders as valuable tools in 

experimental biology. 

Among the repeat protein scaffolds, Designed Ankyrin Repeat Proteins (DARPins) stand out as a 

well-characterized and versatile example. DARPins offer customizable sizes and a concave 

binding site that is particularly favorable for engaging larger epitopes (Binz et al., 2004; Binz & 

Plückthun, 2005; Bradbury & Plückthun, 2015; Forrer et al., 2003). However, despite their 

advantages, DARPins must be developed anew for each target, requiring a time-intensive 

selection process using techniques such as ribosome display or phage display. Furthermore, their 

design is optimized for folded protein targets, making them less suitable for recognizing linear 

peptide sequences (Schilling et al., 2022). Nevertheless, DARPins are widely applied in fields 
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ranging from diagnostics to tumor targeting and even viral retargeting strategies (Münch et al., 

2011). 

In this context, armadillo repeat proteins (ArmRPs), which bind their peptides in an extended 

way, providing a pocket for each side chain, and giving access to a modular approach may provide 

an advantage. Their tandem repeat architecture enables the creation of continuous peptide-

binding surfaces, making them particularly well-suited for recognizing linear peptide targets in 

extended conformations.  

1.3.1 Naturally Occurring Armadillo Repeat Proteins  

Natural Armadillo Repeat Proteins (nArmRPs) were first discovered in the early 1990s in the fruit 

fly Drosophila, and were named "armadillo" because of the segmented and armored appearance 

of embryo’s lacking a functional version of the protein, reminiscent of the animal (Perrimon & 

Mahowald, 1987; Wieschaus & Riggleman, 1987). nArmRPs are a highly conserved protein family 

characterized by tandem repeat motifs, each typically consisting of around 42 amino acids that 

form three α-helices (H1, H2, H3), (Figure 1) and connecting loops. These helices fold into a 

triangular structural motif and stack in a repeating manner to create a superhelical structure 

(Peifer, Berg, & Reynolds, 1994; Reichen et al., 2014). While H3 contributes mainly to the 

interactions for target binding, H1 and H2 mainly make up the hydrophobic core (Groves & 

Barford, 1999). This unique conformation generates a groove or surface that facilitates 

interactions with other proteins (Coates, 2003; Kobe & Kajava, 2001). Short, stretched out 

pep`des bound by ArmRPs are in a highly conserved conformation, and antiparallel orientation 

--the protein's N-terminus interacts with the peptide's C-terminus--. ArmRPs bind to extended 

peptides always in a modular way providing a pocket for each side chain.  

The two well-characterized subfamilies of nArmRPs are importin-α and β-catenin, both of which 

are essential for key cellular processes such as cell adhesion and signaling pathways. They differ 

in net electrical charge of the target peptide and depending on the subfamily, bind to target 
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peptides containing either positively or negatively charged conserved residues. In the importin-

α subfamily, a conserved Asn residue in H3 is present in nearly all repeats and forms hydrogen 

bonds that stabilize the bound peptide in an extended conformation. On the other hand, β-

catenin contains substitutions such as histidine and glutamine in specific repeats, similar to Asn 

in importin-α subfamily for the peptide backbone stabilization. nArmRPs have characteristics to 

be used in the development of modular peptide binders, such as they bind extended peptides in 

a conserved, modular way and feature a repetitive, rigid structure ideal for engineering adaptable 

binding surfaces to match peptide lengths.  However, they have limitations which are discussed 

below in more detail.  

 

Figure 1: Structural representation of described nArmRPs. (A) Structure of S. cerevisiae importin-α (PDB-
ID: 1EE5). (B) Crystal structure of Zebrafish β-Catenin (PDB-ID: 2Z6G). (C) One internal ArmRP repeat 
consisting of helices H1, H2 and H3.  
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1.3.2 Engineering Designed Armadillo Repeat Proteins 

While natural nArmRPs show potential to be used as modular peptide binders with their binding 

modes, their variable curvature and low sequence identity among repeats restrict the amount of 

short peptides they can bind, particularly within a limited number of consecutive repeats. 

Additionally, the biophysical characteristics of these proteins are constrained by sequence 

diversity. Over more than ten years, the Plückthun Group successfully engineered a highly stable 

designed Armadillo Repeat Protein (dArmRP) by converting the irregular structure of natural 

ArmRPs into a protein with regular, stackable repeats, creating an efficient modular peptide 

binder (Gisdon et al., 2022).  

The design process involved using a consensus approach, where sequences from the internal 

repeats of proteins like importin-α and β-catenin were aligned to identify conserved residues 

critical for stability and binding (Parmeggiani et al., 2008). These residue contacts were further 

optimized using molecular dynamics simulations. To protect the hydrophobic core, N- and C-

terminal caps were created from the importin-α scaffold in Saccharomyces cerevisiae, with 

additional mutations suggested through further simulations (Alfarano et al., 2012; 

Madhurantakam, Varadamsetty, Grütter, Plückthun, & Mittl, 2012; Parmeggiani et al., 2008). The 

internal repeats, crucial for recognizing and binding target peptides, were optimized to improve 

both binding affinity and the biophysical properties of the protein. Reichen et al., 2016, identified 

a repeat pair from yeast importin-α with optimal curvature for binding extended peptides, which 

led to the design of dArmRP bound to a (KR)4 peptide with picomolar affinity. Hansen et al., 2016 

showed that increasing the number of internal repeats and peptide units improved binding 

affinity and contributes independently to the binding that confirms the modularity. Alanine 

scanning experiments confirmed that each binding pocket contributed regularly and consistently 

to the overall effect. Additionally, a crystal structure of the dArmRP with a bound (KR)5 peptide 

(PDB-ID: 5AEI) was obtained, where the main interactions between the peptide and the dArmRP 

could be identified. The arginine in the peptide interacts with the Asn side chain of a dArmRP 
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repeat as in importin-α, which generates general, unspecific affinity and ensures regularity 

(Figure 2).  

 

Figure 2: Structure of the dArmRP bound to peptide (KR)5. The peptide, bound in an anti-parallel 
orientation is shown in orange sticks (PDB-ID: 5AEI). The protein is depicted as ribbons with the N-terminal 
and C-terminal cap colored in white. The five internal repeats, represented as M1-M5, each possessing 
three α-helices, are colored dark. Conserved Asn in each repeat is colored yellow (Adapted from Hansen 
et al., 2016). 

An inherent problem with repeat proteins, particularly those like dArmRPs that bind repetitive 

sequences, is the potential for the target peptide to bind in multiple registers. The ways to 

overcome this issue, the peptide binding in different orientations, were examined by Ernst et al. 

2020. To prevent the peptide from binding in undesired orientations, a lock was incorporated 

into the dArmRP by grafting a hydrophobic binding site observed in beta-catenin onto the 

dArmRP, thereby locking the peptide with the complementary sequence in place.  This 

modification ensured that the peptide was locked in place with the complementary sequence 

aligned properly. The interaction of the lock was improved by mutual optimization of the pocket 

and the bound peptide, which were then confirmed by X-ray crystallography. Since dArmRPs are 
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designed as modular peptide binders, it is critical to carefully assess each module and the 

interactions between peptide side chains and the binding pockets. However, Hansen et al., 2016 

pointed out that the curvature of the dArmRP scaffold and peptide binding were significantly 

influenced by crystal contacts. To prevent any unwanted effects from these crystal contacts and 

to shield the binding surface, Designed Ankyrin Repeat Proteins (DARPins) were fused to the 

dArmRPs. The resulting crystal structure of this ring-like construct demonstrated a fully shielded 

binding surface, ensuring consistent and regular peptide binding (Figure 3, PDB-ID:6SA8, and 

Ernst et al., 2019). 

 

Figure 3: Structure of the dArmRP bound to the peptide (KR)5 with fused DARPins. The peptide, bound 
in an anti-parallel orientation is depicted in orange (PDB-ID: 6SA8). The DARPin is colored in grey and the 
dArmRP is colored in purple (Figure is taken from Ayyildiz et al., 2024). 
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1.4 Predic0ve REagent An0body Replacement Technology (PRe-ART) 

The PRe-ART project aims to replace underperforming reagent antibodies with modular reagents 

based on a protein-peptide system. This modular reagents can be assembled to bind specifically 

and tightly to linear peptide targets for widespread use as protein-binding reagents. In doing so, 

it will remove the expense of a screening experiment for each new target by assembling 

prescreened modules to generate a binder specific to the full epitope (Gisdon et al., 2022). As a 

modular peptide binding scaffold, designed armadillo repeat proteins (dArmRPs) have been 

developed based on natural armadillo repeat proteins by the Plückthun group (see section 1.2.2). 

Importantly, the dArmRPs require a peptide target in an extended configuration, and the target 

protein must be in an unfolded state. Thus some of the potential applications of these binders 

are binding and recognition of unfolded stretches at the termini of proteins or in linker regions, 

denatured proteins in SDS-PAGE and western blots. Most importantly, many regions of particular 

interest, such as tails of receptors that are phosphorylated or the tails of histones that are 

methylated or acetylated (among others) are essentially unstructured, in addition to the 

intrinsically disordered proteins (IDPs). By generating individual armadillo repeat subunits that 

are dipeptide specific and sequence defined, peptide-specific, reproducible binder can be 

engineered by assembling the necessary modules (Figure 4). This makes them versatile and 

suitable for modifications in protein engineering approaches for further use in a wide variety of 

applications such as, with protein array systems for proteomics and clinical diagnostics based on 

this reagent platform, detection accessories, and protein purification kits.  
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Figure 4: Generation of specific peptide binders with dArmRPs. Pre-selected specific modules are 
assembled to bind a longer peptide without the need to performing additional selections (Adapted from 
Henning, PhD Thesis, 2017). 

One of the most important targets of the project is the development of binders for the 

phosphorylated amino acids in the context of detecting important phosphorylation sites. To 

exploit a catalog of pairs of binders for phosphorylated-unphosphorylated targets would enable 

visualizing the effect of candidate drugs on whole signaling pathways, and eventually to the 

entire phosphorylation based signaling of the cell (see section 1.5). Such an approach would 

accelerate mass spectrometry detection and thus permit to incorporate such a workflow in drug 

discovery programs. The ultimate aim is to have binding proteins for sites for which no traditional 

antibodies are available, or for which they are not specific enough. Initially this could be tested 

with those examples for which some traditional antibodies are available. Considering there are 

almost no antibodies available that exclusively recognize the non-phosphorylated form, this 

would fill a major gap in the field (for detailed information about PRe-ART, see Gisdon et al., 2022 

and  https://preart-2t.uni-bayreuth.de/).  

The modules or repeat units of dArmRPs where each module binds two adjacent amino acids in 

alternating orientations, are derived from the importin-alpha framework. One binding pocket 

exhibits specificity for arginine, while the other is binding to lysine, with the lysine pocket being 

comparatively shallower (Figure 5) (Hansen et al., 2016). The interactions between dArmRPs and 

individual residues are highly specific, with each amino acid fitting into its respective pocket. In 
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PReART, individual modules are engineered to recognize specific amino acids. Figure 5 shows the 

binding pockets for arginine at position 6, and lysine binding pocket at position 5 of the peptide. 

Throughout this thesis, argining pocket was the primary focus, with efforts concentrated on 

modifying its specificity to accommodate other amino acids through targeted mutations of 

binding pocket residues. 

 

Figure 5: Visual representation of the mutatable positions in the standard arginine and lysine pockets. 
The residues of one argining pocket are highlighed with residue names and numbers (green, as sticks). In 
the lysine pocket, possible residues to be mutated are colored in purple sticks. The scaffold used for 
representation is PDB-ID: 6SA8. 
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Developing modular, sequence-specific binding strands for linear epitopes using dArmRPs 

requires an interdisciplinary effort. PReART project uses a feedback loop that combines 

computational modeling with experimental approaches to iteratively develop novel dArmRP 

(modules) (Figure 6). To design new modules, a key focus is on altering the pocket residues of 

dArmRPs to achieve high affinity binding for a particular amino acid, while achieving specificity 

over other amino acids. The research methodology is explained below in more detail below. 

 

Figure 6: Workflow in the engineering of binding modules. Libraries are designed, synthesized, screened, and 
evaluated, providing feedback to the input techniques. The overall loop creates an ensemble of binding 
modules that can later be assembled to recognize predefined target peptides (Figure is taken from Gisdon et 
al., 2022). 
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1.5 Importance of Recognizing Phosphorylated Residues 

Phosphorylation is a common reversible post-translational modification where a phosphate 

group (PO4
3-) is added to a protein, typically by a protein kinase enzyme. This modification plays 

a crucial role in regulating the structure, function, localization, and activity of proteins within cells 

(Acconcia, Barnes, Singh, Talukder, & Kumar, 2007; Manning, Whyte, Martinez, Hunter, & 

Sudarsanam, 2002; Tarrant & Cole, 2009). Regarding cell signaling, phosphorylation is a critical 

mechanism in cellular signaling pathways; it transmits signals and can start a cascade of events.  It 

functions as a molecular switch, directly modulating protein activity (Ardito, Giuliani, Perrone, 

Troiano, & Muzio, 2017; Harsha & Pandey, 2010). Although phosphorylation can occur on several 

amino acid residues in proteins such as histidine, aspartic acid, and glutamic acid, it is most 

commonly found on serine and threonine residues and comparably less abundant but as crucial 

on tyrosine residues (Ardito et al., 2017; Ubersax & Ferrell, 2007). Phosphorylation of tyrosine, 

serine, and threonine residues represents distinct types of post-translational modifications with 

unique roles in cell signaling and regulation. While phosphorylated tyrosine residues 

predominantly mediate signaling pathways initiated by receptor tyrosine kinases, 

phosphorylated serine, and threonine residues are involved in a wide range of cellular processes 

and signaling pathways, regulating protein function, interactions and cellular responses. 

However, they collectively regulate protein function and interactions, albeit through distinct 

mechanisms. Notably, post-translational modifications often occur in unstructured protein 

regions, such as receptor tails or signal transduction regions (Dyson & Wright, 2005; N. Liu, Guo, 

Ning, & Duan, 2020).  

The focus of PRe-ART lies in harnessing the ability to bind linear target sequences in an unfolded 

state, thereby enabling specific targeting and investigation of post-translational modifications 

(Gisdon et al., 2022). Particularly intriguing is the prospect of developing binder pairs for 

phosphorylated and unphosphorylated targets, offering insights into the effects of candidate 

drugs on signaling pathways. This approach holds promise for integrating such workflows into 
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drug discovery endeavors. In addition, there is an opportunity to generate orthogonal pairs of 

binders that are identical, except having a pocket for Ser vs. pSer, Thr vs. pThr, and Tyr vs. pTyr 

and thereby, directly obtained from binding experiments of ratios of modified vs. unmodified 

amino acids on a particular receptor. Determination of modification content by binding proteins 

can be used with microscopy, ELISA, and miniaturized chips, and the current technology would 

expand this to less well-researched signaling proteins. 

1.6 Research Methodology in PRe-ART 

The design of specific protein-protein or protein-peptide interactions has seen rapid progress, 

driven by the use of both experimental screening and computational approaches (T. S. Chen & 

Keating, 2012). Experimental methods, such as molecular display technologies combined with 

fluorescence-activated cell sorting (FACS), enable the high-throughput screening of vast libraries 

of protein variants and facilitate the identification of those with desired binding properties. 

Computational modeling further enhances this process by identifying critical residues and 

predicting favorable mutations, thereby narrowing down the searchable sequence space and 

improving screening efficiency.  

In PReART, experimental and computational approaches are applied to engineer binding pockets 

within dArmRPs, that are proteins designed to recognize specific amino acid side chains. Given 

the vast search space resulting from the randomization of multiple interacting positions, a hybrid 

approach combining experimental screening with computational design is crucial. ParaMAX 

randomization, based on MAX randomization invented by the Hine group (Ashraf et al., 2013; 

Chembath et al., 2022) that restricts randomization to specified residues, is used to create 

focused libraries for screening. Yeast surface display, combined with FACS, proves effective for 

screening these libraries, especially when targeting positively charged peptides. Unlike ribosome 

and phage display systems, which face challenges with negatively charged peptides, yeast display 

ensures more successful selections. Next-generation sequencing (NGS) is employed to assess the 
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diversity and quality of the library before screening, further enhancing the precision of the 

process (Gisdon et al., 2020).  

1.7 Computa0onal Strategies in the Design of Specific dArmRP Modules 

Designing functional protein binding pockets is a significant challenge due to the vast 

combinatorial complexity of potential amino acid sequences and their corresponding structural 

conformations and interaction dynamics. Computational tools have become indispensable in 

addressing this complexity, enabling efficient pre-selection of potential binding modes for 

experimental validation. Since their emergence in the late 20th century, computational methods 

in protein engineering have evolved dramatically, from early protein folding predictions to state-

of-the-art tools for rational design and de novo generation of proteins. One of the earliest steps 

towards rational protein design was taken in the 1980s with the development of site-directed 

mutagenesis by allowing scientists to introduce specific mutations into proteins and study their 

effects. In 1993, Frances Arnold used directed evolution, a technique mimicking natural selection 

in the laboratory, to evolve enzymes with improved properties (K. Chen & Arnold, 1993). Her 

work ultimately led to her receiving the Nobel Prize in Chemistry in 2018. In 2003, the Baker 

group developed Rosetta, a software suite that revolutionized computational protein design by 

enabling more accurate predictions of protein structures and the design of novel proteins (Rohl, 

Strauss, Misura, & Baker, 2004). Later in 2003, Top7 that has not been observed in nature was 

designed by the Baker group using the RosettaDesign software (Kuhlman et al., 2003). In 2024, 

David Baker was honored with the Nobel Prize in Chemistry for his contributions to 

computational protein design. More recently, in 2020, the DeepMind AI program AlphaFold 

achieved unprecedented accuracy in predicting protein structures, marking a significant leap 

forward for computational biology and opening new avenues for protein design and engineering, 

also received the 2024 Nobel Prize in Chemistry (Jumper et al., 2021). Today, machine learning-

based applications are increasingly incorporated into protein design pipelines by many 
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researchers worldwide. However, these methods require careful consideration of high-quality 

data, relevant features, and appropriate models, as well as thorough validation through cross-

validation and independent test sets. Especially for protein-peptide and protein-protein systems, 

machine learning or deep learning based methods are not as widely used for protein-small 

molecule systems (Ayyildiz, Noske, Gisdon, Kynast, & Höcker, 2024).  

Recent advancements in computational protein design have significantly improved efficiency and 

accuracy through enhanced algorithms and computing technologies, such as GPUs and parallel 

processing (Lechner, Ferruz, & Höcker, 2018; H. Liu & Chen, 2023). These innovations enable 

flexible models, simultaneous sequence sampling, and tools like Molecular Dynamics (MD) 

simulations for analyzing protein stability and dynamics. Despite their potential, the high 

computational cost of MD simulations and the challenges of conformational space exploration 

still limits its usage (Lazim, Suh, & Choi, 2020). Tools such as Rosetta and FoldX are widely used 

to identify low-energy amino acid sequences that fold into target structures, addressing 

challenges in conformational space exploration and energy function accuracy. Within Rosetta, 

algorithms like FastDesign and CoupledMoves facilitate efficient exploration of sequence space. 

FastDesign optimizes sequences through iterative side chain repacking and energy minimization, 

while CoupledMoves simultaneously adjust backbone, sidechain conformations, and sequences 

to enhance sampling effectiveness. Engineered proteins would ideally have high specificities for 

their intended targets, but achieving interaction specificity by design can be challenging (T. S. 

Chen & Keating, 2012). To achieve the intricate level of specificity required for effective protein 

engineering, researchers often rely on a combination of computational tools that complement 

each other’s strengths. The complexity of protein-protein interactions, which involves not only 

the recognition of binding partners but also the precise alignment and stabilization of these 

interactions, demands sophisticated modeling approaches. Methods, such as flex ddG in Rosetta 

and BBK* in OSPREY, target single residue mutations, with flex ddG incorporating backrub motion 

to estimate binding affinity changes and BBK* efficiently approximating binding affinities with 

continuous flexibility (Barlow et al., 2018; A. A. Ojewole, Jou, Fowler, & Donald, 2018). 



 29 

 

For modeling and design of new pockets within PRe-ART project, the software suite ATLIGATOR 

was developed to identify promising mutations in binding pockets that may enable specific 

binding to desired peptides (Kynast, Schwägerl, & Höcker, 2022). Using a knowledge-based 

approach, ATLIGATOR extracts pairwise interactions from known structures to inform the design 

of new binding pockets, incorporating the detection of common interaction patterns for specific 

amino acid side chains. Binding pockets proposed by ATLIGATOR can be further evaluated using 

algorithms like flex ddG or BBK*. The calculation of binding energies has become a very valuable 

tool in specifying libraries for new binding pocket suggestions. Additional insights could be gained 

through Molecular Dynamics (MD) simulations. This combination of methods provides insights 

of potential binding pocket candidates.  
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2. Aim and Mo=va=on of the Thesis 

Reagent antibodies have long been fundamental in biomedical research and diagnostics, yet their 

widespread issues with specificity, poor characterization, and reliance on unstable cell lines 

undermine reproducibility. To overcome these limitations, the PRe-ART project aims to develop 

engineered binding proteins as a more reliable and customizable alternative. This objective is 

approached by combining protein engineering, library screening, and computational design. 

The goal of this thesis is to support the design of modular binders capable of recognizing 

phosphorylated amino acids, specifically phosphotyrosine, phosphoserine, and 

phosphothreonine thereby contributing to the development of a designed armadillo repeat 

protein module repertoire.  To achieve this, computational protein design methods were 

employed to generate binding modules within the designed armadillo repeat protein scaffold. 

The focus was on optimizing protein-peptide interactions and binding pocket specificity using the 

tools Rosetta and  ATLIGATOR, while molecular dynamics simulations provided structural insights 

into further binding behavior.  

To assess the computational methods that are employed during the binder development, a 

second objective was to systematically evaluate the programs predictive accuracy in assessing 

binding specificity upon mutations. The goal was to assess well-established algorithms and 

identify systematic trends and limitations in these approaches in order to help refine 

computational predictions and improve computational binder design strategies. Since the 

availability of benchmarks for these  is limited, more variants need to be experimentally tested. 

Accordingly, binding affinity measurements had to be established to enable quick and systematic 

assessment of designed binders, a setup that facilitates testing and refining of computationally 

designed binders. 
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3. Computa=onal Design of Specific Binding Pockets for 

Phosphorylated Amino Acids 

3.1 Key Aspects in Protein Binding Pocket Design 

A protein binding site, often referred to as the protein binding pocket or ligand binding site, is a 

specific region on the protein surface characterized by a cavity where molecules like small ligands 

or other proteins can attach. These binding pockets are typically defined by their three-

dimensional shape, chemical composition, and electrostatic properties, enabling selective 

interactions with ligands through noncovalent interactions such as hydrogen bonds, hydrophobic 

forces, and electrostatic interactions (Bartlett, Porter, Borkakoti, & Thornton, 2002; Henrich et 

al., 2010). Recognizing these interaction principles is essential, especially when modifying 

residues to enhance binding or creating entirely new binding sites. In addition to small molecules, 

proteins often interact with other macromolecules, such as peptides or proteins, forming larger 

complexes that rely on specific binding pocket interfaces for binding affinity (Eaton, Gold, & Zichi, 

1995). These interactions often require the optimization of small, highly specific binding sites, 

where minor adjustments in residue positioning can significantly affect both binding affinity and 

specificity. The complexity of designing such precise interfaces highlights the growing demand 

for sophisticated binding pocket design strategies that can accommodate both natural and 

synthetic peptides.  

When compared to general protein and antibody design, pocket design brings unique challenges. 

One major difficulty is maintaining overall protein stability and proper folding while shaping the 

desired pocket. Additionally, side chain atom comformations and interactions play a critical role 

in pocket design, requiring careful modeling (Dou et al., 2017; Zhang, Shen, Liu, & Zitnik, 2024). 
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Several computational methods have been developed to address these challenges in 

(re)designing binding pockets in proteins (Tinberg et al., 2013). Traditional computational 

approaches provide insights into protein-ligand interactions and guide binding site optimization 

for specific properties. For instance, PocketOptimizer (Noske, Kynast, Lemm, Schmidt, & Höcker, 

2023) uses scoring functions based on physical force fields to optimize binding pockets. Several 

Rosetta protocols, such as RosettaLigand, employ Rosetta's empirical-driven energy terms 

(Lemmon & Meiler, 2012). Docking tools such as AutoDock predict binding poses and estimate 

ligand binding affinity by calculating free energy changes through a semi-empirical scoring 

function, while HADDOCK is widely used for protein-protein and peptide docking, refining their 

structures through flexible docking protocols (Dominguez, Boelens, & Bonvin, 2003; Goodsell & 

Olson, 1990). 

As explained in the section above (see section 1.4), PRe-ART project is based on designed ArmRPs, 

and these proteins bind linear epitopes in an almost fully extended way. Because of the 

alternating "up" and "down" orientation of the side chains of the bound peptide (Figure 2), each 

repeat unit carries two separate pockets and thus binds two amino acid side chains (Arg and Lys) 

adjacent in the sequence (Figure 5). This thesis focuses on the upper binding pocket, often 

referred to as the Arg binding pocket, since it accommodates arginine in the consensus design. 

Fully randomizing binding pocket positions is not applicable for both the generation and, 

afterward, the screening of the library. Hence, computational methods can help reduce the size 

of libraries by limiting the possibilities of amino acids for one or more positions. One of the aims 

of this doctoral study is to computationally design binding pockets and suggest a binder library 

for each phosphorylated amino acid: phosphoserine, phosphothreonine, and phosphotyrosine. 

These binding pockets are designed always in the context of a longer peptide, and the pSer, pThr, 

or pTyr pocket are positioned at the sixth position of the peptide. 
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In below, computational approach for designing pTyr, pSer, and pThr libraries were explained. 

Several methods were used to suggest focused binder libraries for pTyr, pSer, and pThr. First, the 

amino acids that are interacting with one of three phosphorylated amino acids found in the 

protein data bank (PDB) were investigated, and the most common interaction partners, as well 

as common groups of interactions, were identified using ATLIGATOR and ATLIGATOR-web 

(Kynast & Höcker, 2023; Kynast et al., 2022). Second; the CoupledMoves algorithm from Rosetta 

was used to optimize the protein-peptide interface (Ollikainen, de Jong, & Kortemme, 2015). 

Third, several promising sequence candidates were evaluated using the flex ddG algorithm for 

analtysing probable specificity of binding (Barlow et al., 2018), and lastly, MD simulations were 

conducted to capture the behavior of peptide-ligand interactions in the modeled pocket for the 

most promising pocket sequence (Figure 7). 

 

Figure 7: The general computational engineering approach that was established for desinging binder 
libraries. Workflow outlining the key steps: (1) Pocket Discovery and Optimization and (2) Specificity 
Predictions, each incorporating methods used in these steps, (3) Library suggestion by focusing on crucial 
interaction and (4) MD Simulations for detailed protein-peptide interaction analysis. 
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3.2 Computa0onal Engineering Approach to Design Focused Libraries  

3.2.1 ATLIGATOR & ATLIGATOR-web 

Protein-protein or protein-peptide interactions are based on mutual interactions of amino acid 

residues, with certain residue-residue interactions being more crucial for overall interaction 

dynamics. Understanding how specific residue types interact is essential when creating newly 

designed proteins, specifically binding pockets. In this respect, ATLIGATOR (Atlas-based Ligand 

Binding Predictor) and ATLIGATOR-web toolchains, which support both manual and automated 

protein design backed by discovery algorithms, were used in this chapter. ATLIGATOR  is a 

knowledge-based  software tool written in Python, developed in-house to analyze protein-

protein and protein-peptide interactions. The program relies on two important data sources; the 

atlas, which contains pairwise ligand-binder interaction information extracted from the PDB, and 

pockets, which describe frequent interaction patterns of a ligand and multiple binder residues. 

In addition to analyzing the atlases and their pockets, the ATLIGATOR can further be used to 

design binding pockets for ligand amino acids of interest by either allowing direct grafting (quick 

graft) of frequent interaction motifs onto a scaffold protein or by performing the design process 

manually by allowing selection of mutation independently (manual design). An overview of the 

ATLIGATOR toolchain is given in Figure 8. Each section of the ATLIGATOR toolchain is explained 

in more detail below with the explanation of ATLIGATOR-web (Kynast & Höcker, 2023; Kynast et 

al., 2022). 
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Figure 8: Overview of the ATLIGATOR tool chain. The ATLIGATOR based on two data structures Atlas and 
Pockets, capturing pairwise interactions from protein structures. ATLIGATOR supports both statistical and 3D 
visualizations. Additionally, Pockets can be grafting into provided protein structure (Figure is taken from Kynast 
J.P. et al, 2022). 

ATLIGATOR-web offers a graphical user interface (GUI) to the ATLIGATOR tool, providing easy 

access and connecting its functions through several subsections for navigation. The first 

subsection, structures, allows users to create a structure collection by either uploading structures 

directly from their computer or specifying PDB codes or entries from the SCOPe database, which 

enables having structures in the structure collection with shared evolutionary backgrounds. Once 

the structures are uploaded, detailed information on individual interactions between residue 

pairs can be stored and visualized in a database called atlases. An atlas is a collection of data 

points that describe interactions between ligand residues and binder residues. Furthermore, the 

• The ligand residue’s Ca atom is the origin.
• The ligand residue’s Cb atom is located on the x-axis of the in-

ternal coordinate system. (For glycine, we simulate a virtual Cb

atom for this purpose.)
• The ligand residue’s C atom (carbonyl carbon) lies within the

xy-plane.
• The ligand residue’s N atom is defined with a negative z-value.

Every atlas is composed of datapoints storing individual interac-
tions between two residues—a ligand and a binder residue. This col-
lection of datapoints is grouped into atlas pages including all
datapoints of a certain ligand residue type. Atlas pages are parti-
tioned further into atlas maps including all datapoints of a combin-
ation of one ligand residue amino acid type interacting with one
binder residue amino acid type (Fig. 2).

2.1.3 Spatial similarity function
To compare atlas datapoints with each other or with designable
binder residues we created a distance-orientation function to de-
scribe the spatial similarity of two residues R1 and R2. Assuming
that they are both represented in the same, internal or external, co-
ordinate system, their distance jR1 !R2j is defined as follows:

R1 ! R2j j ¼ fd Ca
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!!"""
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2

!!
! Ca

2
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# $
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!!
! Ca

1

!!
; CO

2

!!
! Ca

2

!!# $
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The equation considers positions of Ca atoms of both interacting
residues (where Ca

1 denotes the Ca atom of R1, etc.). Furthermore,
the angles between two characteristic orientation vectors, namely
those between Ca and Cb (referred to as primary orientation below)
as well as Ca and the carbonyl C (secondary orientation) of the
residues are compared. The weight factors fd, fo and fs can be
adjusted by the user; the default values are 1:0Å

!1
for fd and 2:0 for

both fo and fs.

2.1.4 Pocket mining
Ligand–binder interactions as shown in the atlas do not have a pure-
ly pairwise nature. Several binder residues can instead contribute to
binding one ligand residue. If similar binder residue groups form
interactions to ligand residues in various structures, interaction pat-
terns can be extracted and generalized. We call such a frequently
occurring interaction pattern a pocket. Such pockets can be detected
and extracted from an atlas database which is described below.

Itemset extraction. In its first step, the algorithm exploits the fact
that datapoints of the atlas include their origin. Hence, we group all
datapoints originating from the same ligand residue and call this a
natural pocket. To detect which pockets are frequent, we reduce the

Fig. 1. Overview of the ATLIGATOR toolchain. The python-based tools of ATLIGATOR include the extraction of pairwise interactions from a structure collection as well as
mining of frequent groups of interactions. Those tools as well as the input and output data can be accessed via a python API, meaning the source code as well as predefined
scripts. Both types of interfaces can be used to analyze extracted interactions to find patterns which can be employed for new designs. This can be achieved by visualizing atlas
statistics or 3D plotting of atlas and pockets. Moreover, ATLIGATOR includes the option to design new interaction sites based on binding pocket grafting

ATLIGATOR 5201
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tool facilitates the analysis of all pairwise interactions that a single residue forms with other 

residues in the selected structure collection. These pairwise interactions, stored in atlases, can 

then be exploited and grouped using algorithms within the next subsection, pockets. A pocket 

represents frequently occurring interaction patterns, where one residue's frequently interacting 

residues can be grouped and further analyzed.  In the last subsection, designs, discovered pockets 

for the targeted amino acid can be transferred onto a scaffold of choice with a grafting algorithm 

of ATLIGATOR. This grafting involves applying a spatial similarity function to determine optimal 

positions for the residues in the selected pocket. Selected (pocket) positions can then be mutated 

accordingly, either after grafting or manually without grafting. Finally, in this section, ATLIGATOR-

web has a function to relax this new scaffold, which uses the Rosetta fixbb side chain protocol to 

eliminate clashes and provide a more realistic representation. (Leaver-Fay et al., 2005). 

In this section, the ATLIGATOR tool and ATLIGATOR-web were used to design pTyr binding 

pockets and suggest libraries for experimental evaluation. The data collected for pTyr was used 

also to inform the designs of pSer and pThr binding pockets. All crystal structures that include 

pTyr in the PDB database were searched via in-house Python script and structures were 

downloaded. These structures were added to a created structure collection in ATLIGATOR-web. 

Since there are fewer structures for phosphorylated amino acids in the PDB than standard amino 

acids, not only intermolecular interactions but intramolecular interactions were included in the 

search. An atlas was generated based on this structure collection and was used to find frequent 

interaction patterns stored in a pocket. In the last step, 6SA8 with a bound (KR)5 peptide was 

uploaded as a scaffold, and the peptide position 6 was mutated to the targeted phosphorylated 

amino acid via the designs section in the ATLIGATOR-web. Both manual design where several 

promising amino acids were placed onto positions of inner shell residues and pocket grafting 

options were pockets that were suggested in previous steps placed onto a scaffold were used in 

order to determine the best possible combinations of mutations. Finally, the scaffold was 

minimized after every mutation. Here, primarily inner shell residues out of seven pocket residues 

that are position 3, 4, 6, and 7 were given more importance considering the distance between 
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ligand residue and pocket residue in terms of interactions (Figure 5). Structures were visualized 

via PyMOL to ensure the interaction between amino acids and the targeted residues. The current 

version of ATLIGATOR and ATLIGATOR-web do not support phosphorylated amino acids; 

therefore, the three most common phosphorylated amino acids, phosphotyrosine, 

phosphoserine, and phosphothreonine, were manually implemented in the local version in order 

to be able to mutate peptide position 6 to these amino acids via ATLIGATOR-web. All steps, 

except the pTyr search in the PDB database and implementation of phosphorylated amino acids, 

were carried out in the ATLIGATOR-web server. 

3.2.2 CoupledMoves 

Roseza, developed through a collabora`ve community effort, offers a wide range of protocols 

built on physics- and knowledge-based poten`als. One such protocol, CoupledMoves, is a Roseza 

protocol for designing flexible backbone structures in small-molecule binding sites, protein-

protein interfaces, and protein-pep`de interac`ons (Ollikainen et al., 2015). It allows subtle 

adjustments to the protein backbone and side chain rotamers while maintaining energe`cally 

favorable interac`ons. Unlike tradi`onal methods, CoupledMoves simultaneously moves the 

backbone and side chains during sampling rather than trea`ng them separately. This coupled 

movement of the backbone torsion angles (phi and psi), side chain conforma`ons, and ligand 

flexibility provides a more integrated and accurate approach to designing protein interac`ons. 

The protocol evaluates the energy of each conforma`on based on factors like van der Waals 

interac`ons, electrosta`cs, hydrogen bonding, and solva`on effects. Conforma`ons with lower 

or unchanged energy are accepted, while higher-energy states can be accepted probabilis`cally 

via the Metropolis criterion, allowing for occasional explora`on of less favorable states 

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). This process is repeated through 

mul`ple itera`ons un`l the most energe`cally favorable structure is selected. 
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As a difference to non-coupled flexible backbone approaches from Roseza, CoupledMoves, in 

the first two steps, moves the backbone and side chains and then follows the Monte-Carlo 

method to accept or reject the design instead of applying Monte-Carlo to accept or reject a|er 

each backbone and side chain moves (Rosenbluth & Rosenbluth, 1955). Unlike other flexible 

backbone design methods such as FastDesign or BackrubEnsemble (Loshbaugh & Kortemme, 

2020; Maguire et al., 2021; C. A. Smith & Kortemme, 2008), where the backbone flexibility and 

sequence design are separated for acceptance during the sampling trajectory, CoupledMoves 

combines both movements of backbone and side chains in a single step where Monte-Carlo 

acceptance/rejec`on comes a|er. The backbone move can be applied with ShortBackrubMover, 

which is the default se}ng, and or with kinema`c closure (KIC) with walking perturber or KIC 

with fragment perturber (Coutsias, Seok, Jacobson, & Dill, 2004). Nevertheless, CoupledMoves 

will not significantly alter the backbone. While CoupledMoves does not quan`ta`vely rank 

binding affini`es, it is a powerful tool for genera`ng combinatorial libraries for screening, as it 

has been successfully employed to design a virtual library of mutants for engineering enzyme 

specificity (Ashworth et al., 2022). 

In the thesis, CoupledMoves was used to explore and optimize the binder and the peptide 

interface interactions. CoupledMoves (version 57576) with KIC as backbone mover was used 

within Rosetta version 3.12. As an initial scaffold, binding pocket residues in the 6SA8 scaffold 

were mutated to Tyr-binder pocket residues based on the shared structure between pTyr and 

Tyr and similar interactions with similar residues could be a reasonable starting point. The 

peptide position 6 was mutated to pTyr via ATLIGATOR-web, and the peptide positions 4 and 8 

were mutated to alanines via PyMOL. In the resfile, all seven positions in a binding pocket were 

allowed to be mutatable to any amino acid and positions 322, 326, 445, 449, and 452 were set 

to be repacked and minimized in order to provide flexibility to pocket positions. The other 

parameters were kept to default. 400 independent runs with 5000 moves were performed, and 

a total of 400 conformations of designed sequences were obtained for each design. To analyze 

the results, the analyze_coupled_moves.py script provided by the CoupledMoves GitHub tutorial 
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was run, which includes the sequence-logo Python module in order to extract the most 

frequently found mutations for the positions given. The script compares the distributions of 

output sequences, which are mutations enriched in the mutated structure over the wild-type 

crystal structure. Each logo consists of stacks of symbols, one stack for each position in the 

sequence. The overall height of the stack indicates the sequence conservation at that position. 

Additionally, the height of symbols within the stack indicates the relative frequency of each 

amino or nucleic acid at that position. The width of the stack is proportional to the fraction of 

valid symbols in that position. CoupledMoves was only used for pTyr binding pocket design.  

3.2.3 Flex ddG 

Flex ddG is a method developed within the Rosetta macromolecular modeling suite to estimate 

changes in binding free energy (ΔΔG) caused by point mutations at protein-protein or protein-

peptide interfaces (Barlow et al., 2018). By incorporating backbone flexibility into the modeling 

process, flex ddG improves upon traditional rigid-body approaches, allowing for a more accurate 

representation of the conformational changes due to mutations. The method generates an 

ensemble of models by using the backrub protocol, which samples conformational changes 

around the specified mutation site, and calculates the average ΔΔG over this ensemble. The 

backrub protocol uses torsion angle minimization and side chain repacking, specifically targeting 

local backbone motions (Davis, Arendall, Richardson, & Richardson, 2006; Friedland, Linares, 

Smith, & Kortemme, 2008). This allows local conformational changes in protein structures, which 

has been shown to enhance the accuracy of stability predictions (Eccleston, Manko, Campino, 

Clark, & Furnham, 2023). It uses the Rosetta semi-empirical energy function and utilizes physical 

energies for the prediction with an optional generalized additive model (GAM) approach (Barlow 

et al., 2018). While it can be computationally intensive depending on the settings, flex ddG is 

particularly effective at capturing the nuanced effects of backbone and side chain adjustments, 

especially around the mutation site. 
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The flex ddG workflow begins with an initial structure undergoing global minimization and 

sampling of the backbone using the backrub approach before mutations are introduced. This is 

followed by packing of side chains on both wild-type and mutant models which both are 

minimized by Monte Carlo sampling of both backbone and side chain conformations. Then both 

models are scored via Rosetta’s energy function, and  the free energy difference (ΔΔG) between 

the wild-type and mutant protein is calculated (Equation 1) via:  

  

ΔΔG = ΔG!"# −	ΔG$%     Equation 1 

 

where 𝛥𝐺&'  is the wild-type free energy and 𝛥𝐺()* is the mutant free energy; therefore 

negative values indicate better binding. The obtained flex ddG scores represent binding affinity 

changes in kcal·mol⁻¹ relative to the respective alanine reference. Since relative ΔGs are 

calculated, it is not possible to draw a conclusion on the absolute binding affinity. But calculating 

the energy change allows to evaluate the stability of different amino acids binding to the 

respective binding pocket and thus allows to conclude about specificity.  

In this chapter, flex ddG is used to evaluate designed ArmRPs in terms of specificity to different 

peptide variants. The 6SA8 structure with a bound (KR)5 peptide was retrieved from the PDB 

database as a scaffold. Pocket residues were mutated to target specific amino acids based on 

previous studies. The peptide position 6 was first mutated from Arg to Ala to mitigate potential 

structural biases resulting from the initial positioning. Additionally, the flanking positions, peptide 

positions 4 and 8 were also mutated from Arg to Ala to prevent any interactions between these 

positions and the binding pocket of position 6. Structures were prepared in two ways; either all 

mutations including binding pocket and peptide mutations were applied using PyMOL’s 

molecular sculpting function, which returns local atomic geometries, or designed structures were 
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downloaded from ATLIGATOR-web after binding pocket and peptide positions were mutated and 

relaxed.  

The flex ddG protocol, as defined in Barlow et al., 2018, was modified for this study. The protein-

peptide complex was placed in the input folder, and the chain IDs to be mutated were specified 

in the chains_to_move.txt file located within the same folder. The protocol ddG-backrub.xml, 

provided on the flex ddG GitHub page, was adapted to support the three modified amino acids. 

The XML file was written using RosettaScripts which is a scripting language interface for creating 

custom Rosetta protocols. The mutations were applied through the specified line in the modified 

XML file (see below), with the rest of the script remaining unchanged. 

 

<MutateResidue name="mutate" target="6B" new_res="TYR:phosphorylated"/> 

<MutateResidue name="mutate" target="6B" new_res="SER:phosphorylated"/> 

<MutateResidue name="mutate" target="6B" new_res="THR:phosphorylated"/> 

 

The parameters for the protocol were set to the recommended values. An ensemble of 250 

output structures was generated, as this was decided as sufficient ensemble size to produce 

robust results for the system. For each structure, 35,000 Monte Carlo backrub steps were 

performed, with snapshots being saved every 7,000 steps, resulting in five final structures. The 

analyze_flex_ddG.py file, from the same GitHub page was used to analyze the results which 

returned the wild type and mutant interface dG. ddG score and the ddG score reweighted with 

the fitted GAM model were calculated and saved in a csv file. The ranking of the amino acids was 

calculated using the calculate_ranking.py script. The generated ensembles were extracted with 

extract_structures.py and visualized using PyMOL.  
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3.2.4 Molecular Dynamics (MD) SimulaNons 

MD simula`on is a computa`onal method used to study the behavior of atoms and molecules at 

the molecular level over `me. By capturing the mo`on of individual atoms and molecules within 

a system, MD simula`ons provide insights into the dynamic proper`es of complex biological 

structures such as proteins, enzymes, nucleic acids, and membranes (Zhang et al., 2009, Zhao 

and Caflisch 2015,  Perez et al., 2016, Hollingsworth and Dror, 2018). They are par`cularly 

valuable in ra`onal drug design to predict how drug molecules might bind to target proteins, 

evaluate drug stability, and assess drug-protein interac`ons. Addi`onally, MD simula`ons has 

played an important role in protein design, especially for protein-protein interfaces, such as in 

an`body-an`gen complexes (Childers et al., 2017, Kralj et al., 2021). 

MD simula`ons trace their origins to the 1950s, with inspira`on by Monte Carlo simula`ons. The 

founda`onal principles were established by Alder and Wainwright in 1957, building on earlier 

work by Metropolis et al. 1953 and Rosenbluth and Rosenbluth 1955. Since the first applica`on 

by Karplus and coworkers (McCammon, Gelin, and Karplus, 1977) by using empirical energy 

func`on, MD simula`ons have become a sophis`cated and prac`cal tool for studying dynamics 

and energe`cs of biomacromolecules, especially proteins (Dror, Dirks, Grossman, Xu, and Shaw, 

2012; Karplus and McCammon, 2002). The primary objec`ve is to gain a deeper understanding 

of molecular behavior by simula`ng and analyzing complex systems that would be difficult or 

imprac`cal to study experimentally, thereby revealing key aspects of their dynamic proper`es 

and/or behavior. To simulate molecular systems, MD simula`ons calculate the poten`al energy 

of the system by integra`ng Newton's second law of mo`on. This process involves calcula`ng 

the accelera`on of each atom based on the force ac`ng on it: 

F = ma      Equation 2 
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where F is the external force acting on the particle, m is the mass, and a is the acceleration. Using 

these forces, the acceleration of each atom in the system is calculated. By integrating the 

equations of motion, MD simulations generate a trajectory that describes the positions, velocities 

and accelerations of the particles over time. This trajectory allows for the calculation of average 

properties and the analysis of dynamic behaviors. Knowing the positions and velocities of atoms 

at any given moment enables the prediction of the system's state at any point in time. In MD 

simulations, the potential energy of a system at the atomistic level is calculated using a force 

field, which is a computational model that describes the forces between atoms or collections of 

atoms within molecules or between molecules. Force fields can be derived from experimental 

data, quantum mechanics calculations, or combination of both. While the concept is rooted in 

classical physics, force fields in chemistry are specifically parameterized to describe the energy 

landscape at the atomic scale. 

Force fields include two classes of interactions: Bonded interactions within molecules and non-

bonded interactions between molecules. Several popular force fields include, CHARMM 

(Chemistry at HARward Macromolecular Mechanics) (MacKerell et al., 1998), AMBER (Assisted 

Model Building with Energy Refinement) (Bayly et al., 1995), GROMOS (GROningen MOlecular 

Simulation) (Oostenbrink, Villa, Mark, and Van Gunsteren, 2004), and OPLS (Optimized Potentials 

for Liquid Simulations) (Jorgensen, Maxwell, and Tirado-Rives, 1996). These force fields differ in 

their energy functions and how they were parameterized,  yet they all calculate the total energy 

of a system by summing bonded and non-bonded potential energies as functions of atomic 

coordinates. The accuracy of an MD simulation depends heavily on the choice of force field, as it 

determines how forces and energies are modeled, and a force field should accurately reproduce 

the behavior of the system being simulated. A typical MD simula`on pipeline is shown in Figure 

9. 
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Figure 9: A common flowchart of MD simulation.  

One of the drawbacks of MD simulations is that they are computationally demanding, requiring 

significant resources to capture the motion of large biological systems over biologically relevant 

time scales. Many biological processes, such as protein folding, ligand binding, or conformational 

changes, occur on milliseconds to seconds time scales making them difficult to simulate directly. 

Challenges also include modeling large systems, force field inaccuracies, particularly for complex 

cases such as phosphorylated amino acids. Poor sampling of rare events and long-range 

interactions can also lead to incomplete or biased results. However, advances in GPU 

acceleration and supercomputers that allow microsecond-scale MD simulations for relatively 

large protein systems can be performed in just a few days, a process that would have been 

unimaginable just a few years ago. Enhanced sampling techniques, and improved force fields, 

including polarizable models, are helping overcome these challenges, making MD simulations 

more accessible and accurate. 
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In this thesis, MD simulations were performed as an additional analysis method to observe 

interactions between a promising binder obtained from previous methods with peptides 

containing pSer and pTYR at the peptide position 6. For this purpose, nanoscale molecular 

dynamics (NAMD) software was used to run simulations together with analyzing methods such 

as root-mean-square deviation, root-mean-square fluctuation, and protein-ligand interaction 

analysis. The initial structure of the complex was obtained from the PDB database (PDB ID: 6SA8) 

and ATLIGATOR-web was used to mutate peptide position 6 from Arg to initially pSer and pTyr. 

PyMOL was used to mutate peptide position 6 from Arg to Trp. For the simulations, a structure 

with the bound peptide was used. Simulation systems were built with CHARMM-GUI and were 

solvated with a rectangular box of TIP3P water of 15.0 Å and neutralized with 0.15 millimoles per 

liter of sodium chloride and appropriate counter ions were added to neutralize the overall charge 

of the system. 0.15 M NaCl ions were added additionally. The CHARMM36 force field was 

employed to describe the interactions within the system. The system was minimized for 10000 

steps with the conjugate gradient algorithm and equilibrated for 4 ns at a temperature of 310 

Kelvin by using a 2fs integration time-step. Three independent 30 ns production runs were 

performed. Each simulation was run with periodic boundary conditions, with a temperature of 

310 degrees Kelvin and a pressure of 1 atmosphere (NPT). Langevin dynamics was chosen as the 

control method to maintain a constant temperature (Chandrasekhar, 1943). The SHAKE 

algorithm was implemented to confine bonds involving hydrogen atoms in the confined state 

(Andersen, 1983). Descriptions of the simulations are given in Table 1.  
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Table 1: List of performed simulations with different systems. The binder sequence lists the residues in 
the side chain binding pocket 6 (see Figure 5). 

Binder Sequence Peptide Variants Simulations 

LKMKARQ , LKFKARQ KRKRK(pTyr)KRKR 

3x30 ns per system LKMKARQ 
KRKRK(pSer)KRKR 

KRKRK(W)KRKR 

WT-binder KRKRK(R)KRKR 

 

For analysis, first, the 30 ns long trajectories were first aligned to their initial frames and RMSDs 

(root mean square deviation) was then calculated to monitor structural stability. RMSD provides 

a numerical measure of the average distance between the corresponding atoms of two structures 

and it is widely used to assess the stability of simulated biomolecular systems. To visualize the 

simulations, Visual Molecular Dynamics (VMD) was employed. To evaluate the interactions 

between the binding pocket and peptide residues, ProLIF (Protein-Ligand Interaction 

Fingerprints) tool with a particular focus on analyzing contacts at position 6 was used. ProLIF is a 

Python based library that generates interaction fingerprints over the trajectory, which can then 

be analyzed to identify key residues and interactions. These interactions can be for example 

hydrogen bonds, hydrophobic contacts, or π-stacking.  
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3.3 Generated Libraries for Phosphorylated Amino Acids 

3.3.1  pTyr Binding Pocket SuggesNon 

ATLIGATOR and ATLIGATOR-web 

In order to investigate amino acids and amino acid groups in which any of the three 

phosphorylated amino acids; pTyr, pSer, and pThr, commonly interact in nature, ATLIGATOR and 

ATLIGATOR-web were used as the first step of the design pipeline (Figure 7). All crystal structures 

that include pTyr in their sequences, independent of them being protein or peptide, were 

searched in the PDB database, and a structure collection via the ATLIGATOR-web interface was 

created. Due to the limited number of structures for phosphorylated amino acids deposited in 

the PDB, not only the intermolecular interactions but also intramolecular interactions were 

included in the search for pTyr’s interaction partners. In total, 697 structures that belong to 13 

SCOPe families were found and included in the structure collection (Figure 10-A). Following the 

ATLIGATOR-web pipeline, pairwise interaction patterns between amino acid residues were 

computed and stored in a database on the web. For the 697 structures, pTyr is found to have a 

total of 8581 data points, which means 8581 interactions with other amino acids. The most 

frequently found amino acids among these interactions belong to Arg and Lys, with 1700 and 

1133 data points, respectively. Following these two amino acids, Ser and His interact with pTyr 

with 925 and 666 data points, respectively (Figure 10-B). Thr and Ala were the following amino 

acids in the list with fewer interactions. Binding pockets based on these data points which were 

stored in the atlas, were created for pTyr. Then, with these data points, the most frequently 

found pockets were generated and are accessible in the pockets section. The most frequently 

found pocket for pTyr, was ''LKF'' with making up 13% of all pockets, followed by ''RRY'' and 

''KKFS'' pockets with 11% and 4% respectively. These pockets do not necessary cover all the 

binding pocket residues (Figure 5, 7 binding pocket residues), but make up motifs that can be 

used in the design step. All these suggested pockets included Arg or Lys residues (Figure 10-C). 
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Finally, under the design section, several designs were tested based on interaction patterns with 

the 6SA8 scaffold. For each mutation or mutation combination, minimization was carried out 

using Rosetta minimization in the background of ATLIGATOR-web. During several design trials, 

the design options manual design and pocket grafting were used either separately or together. 

In any of the cases, pTyr was never positioned deeper between the helices 2 and 3, but it rather 

stayed on the surface as shown in Figure 10-D. 

 

Figure 10: The results of the pipeline followed in ATLIGATOR-web. (A) Structure collection with all pTyr 
including structures were created with focus on one randomly selected structure. (B) Interaction patters of 
pTyr stored in atlas are listed. (C) Two of the most commonly found binding pockets for pTyr are given. (D) 
Binding modes of several designed binding pockets with pTyr in the peptide are shown. 

 

A BCollection of all pTYR including structures Interaction patterns of pTYR

Most frequently found binding pockets
C

LKF %13 RRY %11

D
Most found binding mode of pTyr

8581 total datapoints: 

• 1700 ARG
• 1133 LYS
• 925 SER
• 666 HIS 
• ... 
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Based on the interaction partners, discovered pockets and their placement on 6SA8, ATLIGATOR 

and ATLIGATOR-web analysis ended up with the following suggestions: For position 2 in the 

binding pocket, positively charged amino acids; Arg and Lys were found to be preferable 

particularly in the context of having positively amino acid in close proximity to pTyr in the peptide. 

In addition, during design trials using the pocket grafting option in ATLIGATOR-web, the 

discovered pockets were consistently grafted onto scaffold 6SA8 at pocket positions 2, 3 and 5. 

These positions are not only in closer proximity to pTyr but also highlight the potential 

importance of these sites. This observation was further explored in subsequent steps for 

designing a pTyr-binding pocket library.  

CoupledMoves  

Based on the results obtained from ATLIGATOR, the CoupledMoves algorithm was run to 

redesign the binding pocket of 6SA8 to accommodate a pTyr residue. Specifically, Arg at peptide 

position 6 was mutated to pTyr, binding pocket positions were mutated from wild type residues 

to Tyr-binder residues. Prior to running the algorithm, initial mutations were modeled in PyMOL. 

A total of 400 designed sequences were generated, from which a sequence logo was constructed 

to visualize the probability distribution of amino acids at each position within the binding pocket. 

Position 2 exhibited high conservation, predominantly favoring Lys, which appeared as the most 

energetically favorable amino acid, underscoring its critical role in binding specificity. Smaller 

amino acids such as Ala, followed by Thr, also showed moderate enrichment, potentially 

contributing additional space for accommodating pTyr at position 3. Position 7 showed a slight 

preference for Arg, consolidating the importance of a second positively charged residue in the 

binding pocket to complement Lys at position 2. Position 1 and position 4 displayed variability, 

likely due to their distance from the peptide and not having direct interactions with pTyr. This 

variability suggests that residues at these positions may have less impact on binding specificity 

and  a meaningful conclusion for these positions is more challenging (Figure 11-A).  
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In addition to sequence logo analysis, generated structures were analyzed via PyMol and notable, 

no structures were generated, in which pTyr was located deeper between the helices 2 and 3. 

Instead, pTyr appeared to interact more on the surface, which is an agreement with the 

ATLIGATOR-web results (Figure 11-B).  

Additionallly, flanking residues 4 and 8 were also mutated to valines intead of alanines, to 

evaluate their influence (Figure 11-C). However, no significant difference could have been 

observed in generated sequence logos or generated structures.  

 

Figure 11: CoupledMoves analysis for pTyr binding pocket design. (A) A Sequence logo is created for 
analysis of results. X-axis shows the seven position in the binding pocket with initial amino acids. (B) 
Representative structures out of generated structures visualized in PyMOL. (C) Peptide sequences with 
different flanking residues are shown, where the upper one containes alanines and the lower one 
containes valines, depicted as sticks. 

Flex ddG  

Building upon the binding pocket residues identified by CoupledMoves, the LKFKARQ residues 

within the binding pocket of the 6SA8 structure was selected for further evaluation using the flex 

ddG protocol to assess its specificity for pTyr compared to other amino acids. To prepare the 

system for these calculations, the pocket residues were mutated to LKFKARQ, and peptide 

positions 4, 6, and 8 were mutated to alanine in PyMOL. The flex ddG protocol was then used to 

perform single point mutations at peptide position 6, internally mutating it to all 20 amino acids, 

A B C

ALA-8

pTyr-6

ALA-4

VAL-8

VAL-4

pTyr-6
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including pTyr from the initial residue of Ala residue. Reweighted ΔΔG scores, fitted to the 

Generalized Additive Model (GAM), were computed and ranked to evaluate the impact of each 

mutation on binding affinity within the protein-peptide complex. Mutants with ΔΔG scores lower 

than 0 kcal·mol⁻¹ were considered potential candidates for improving binding affinity. However, 

pTyr was ranked among the least favorable target residues, with a positive ddG score, alongside 

other large amino acids such as Lys and Arg, for this particular binding pocket (Table 2). This 

suggests that, despite its intended specificity, the current binding pocket might be too compact 

to accommodate larger residues like pTyr, and more spacious binding pockets might be a more 

reasonable alternative. Despite the unfavorable ranking of the pTyr, other negatively charged 

amino acids, Glu and Asp, were ranked fifth and sixth, respectively. This may indicate that while 

the pocket may tolerate certain negatively charged residues, the specific structural or interaction 

properties of the target amino acid make it less favorable for binding. The high ranking of Trp, 

Phe and His could be explained by the potential for π-stacking interactions between the aromatic 

rings of these residues and the Phe at position 3 of the binding pocket, along with Rosetta’s 

general preference for aromatic residues (Ayyildiz et al., 2024), which may contribute to their 

lower ΔΔG values.  
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Table 2: Calculated ddG values of peptide variants with the binder LKFKARQ is ranked the most 
favorable to the least mutation. 

Residue Names Flex ddG Scores 
(kcal/mol)  

W -2.02 

F  -1.08 

H -0.95 

L -0.81 

E -0.78 

D -0.43 

V -0.13 

Q -0.09 

N 0.01 

Y 0.04 

I 0.09 

C 0.43 

T 0.50 

A 0.64 

G 0.74 

S 1.26 

P 2.15 

K 2.65 

pTyr 2.72 

R 3.24 

M 4.93 
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For further evaluation, the top-ranking mutations (Trp, Phe,His) and the pTyr mutation were 

visualized in PyMOL. The aromatic residues indeed formed stabilizing π-stacking interactions with 

the binding pocket, supporting their favorable ranking. For pTyr, several structures were found 

between the helices 2 and 3 unlike generated structures via ATLIGATOR and CoupledMoves. 

However, these structures were very rare and the distance between these helices was observed 

to be relatively small for larger amino acids such as pTyr. Therefore, a distance between residues 

located in position 2 and 6 was measured in one generated model as of 4.8 Å. This proximity likely  

contributes to steric clashes between side chains, which could explain the unfavorable ΔΔG for 

pTyr (Figure 12-A). Additionally, multiple structures of pTyr were found positioned further away 

from the pocket, emphasizing the challenges of fitting this residue within the compact binding 

pocket (Figure 12-B). 

 

Figure 12: Structures of Flex ddG calculation of the binder LKFKARQ with pTyr in the peptide. (A) The 
binding pocket residues and pTyr are shown in orange and green sticks respectively. Distance between 
Pos2 (Lys-368) and Pos6 (Arg-407) is shown as Å in yellow dash. (B) Some of the pTyr ensembles created 
by flex ddG are shown in sticks. 
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Flex ddG was run on a total of 30 different binder-peptide complexes, each having a binding 

pocket with variations in one or two positions, such as LKFKRAQ (which gives more space by 

placing a small amino acid at position 6) or LKEKRAQ (for testing one negatively charged amino 

acid in the binding pocket). Although none of the calculated sequences resulted in a negative 

ddG score for pTyr, the analysis provided valuable insights into key positions in the binding pocket 

and the amino acids that influence ddG values the most. These findings highlight the importance 

of certain residues and their impact on the specificity of the complex, laying the groundwork for 

library suggestion. 

Library SuggesJon 

To optimize pTyr binding, two distinct libraries, each with a size of 1.8 x 106 were suggested for 

further processing (Table 3). These libraries differ in the amino acid selection at the 5th and 6th 

position. Based on insights from ATLIGATOR, ATLIGATOR-web and CoupledMoves, position 2 was 

suggested to include a positively charged residue, Arg or Lys or partially positively charged 

residue such as His. Results from CoupledMoves were used as an input sequence for flex ddG 

calculations. Based on flex ddG predictions, positions 2, 3, 5 and 6 were identified as the key 

positions and having the main influence for the binding mode of pTyr. For the positions 5 and 6, 

to help avoiding an overrepresentation of positive charged residues for balanced electrostatic 

environment, only one of them were suggested to include positively charged residue. 

For Library 1, position 5 was suggested to include Arg, Lys, and His. However, this selection may 

reduce the available space within the pocket, potentially making it too small for optimal pTyr 

binding. Therefore, this library was designed with the intention of positioning pTyr on the surface, 

as observed in the structures generated by ATLIGATOR-web and CoupledMoves. In contrast, 

Library 2 included Arg, Lys or His at position 6, allowing for a larger binding space for pTyr, 

therefore allowing pTyr possibly to be between the two helices. This design aimed to provide 

sufficient room for pTyr to fit inside the pocket. Besides these positions, position 3 was 

specifically avoided for having one of the large amino acids, considering once more the size of 
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pTyr. Additionally, one of the charged amino acids based on not having too many charged 

residues in the pocket was also avoided for this position. Across all methods, pTyr consistently 

did not fit well between helices 2 and 3, reinforcing the need for a surface-binding. As such, 

Library 1 was designed with the assumption that pTyr would adopt a standing-up conformation 

and interact with the surface of the pocket, while Library 2 was designed to allow pTyr to 

potentially bind deeper inside the pocket (Table 3). 

Table 3: Suggested libraries for pTyr binder. Total number of amino acids for that position is written 
after amino acids, with “All” meaning 20 conanical amino acids. 

Positions Library 1 (size: 1.8 x 106) Library 2 (size: 1.8 x 106) 

1 All except CPG | 17 All except CPG | 17 

2  KRH | 3 KRH | 3 

3 FLIVASTMHN | 10 FLIVASTMHN | 10 

4 All except CPG | 17 All except CPG | 17 

5 KRH | 3 AVSTN | 5 

6 AVSTN | 5 KRH | 3 

7 all except CPGHKR | 14 all except CPGHKR | 14 
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3.3.2  pSer and pThr Binding Pockets SuggesNons 

Insights from pTyr binding pocket design 

The promising binder sequence for pTyr, LKFKARQ, was selected to test also for pSer binding, 

considering their shared negatively charged phosphate group, which may facilitate interactions 

with similar amino acids. This binding pocket was chosen from the Library 1, where position 6 of 

the binding pocket was designed to favor large and positively charged amino acid. In this context, 

Arg was selected, given pSer’s smaller size and its potential to fit between the helices 2 and 3, 

and forming favorable interactions with Arg in the binding pocket. Flex ddG calculations were 

performed on the complex, and the resulting ddG values are given in Table 2 and Table 4. The 

analysis ranked pSer as the second best choice for this pocket, following Trp in the peptide 

position at 6 (Table 4). The preference for Trp, despite its size, suggests that its side chain may 

form specific stabilizing interactions, such as π-stacking with nearby residues. To improve pSer 

binding over Trp, pocket position 3 was mutated from Phe to Met. This mutation worsened the 

binding for Trp while slightly improving it for pSer. Despite this change, Trp remained the top-

ranked amino acid for this binder (Table 5). The results support the hypothesis that this pocket is 

promising for establishing binding specificity, particularly for small residues like pSer. The 

observed improvements in pSer ranking after the Phe-to-Met mutation further suggests that 

optimizing pocket composition can selectively enhance affinity for desired residues. 
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Table 4: Calculated ddG values of peptide variants with the binder LKFKARQ. pSer in the peptide 
position 6 was included in the calculation in addition to previous calculated amino acids. 

Residue Names Flex ddG Scores 
(kcal/mol) 

W -2.02 

pSer -1.18 

F -1.08 

H -0.95 

L -0.81 

... -0.78 

pTyr 2.72 

R 3.24 

M 4.93 

Table 5:Calculated ddG values for some peptide variants with the binder LKMKARQ including pSer.  

Residue Names Flex ddG Scores 
(kcal/mol) 

W -1.6 

pSer -1.3 

F -0.1 

H -0.1 

pTyr 1.47 
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Molecular Dynamics SimulaJons 

Since the pocket with LKMKARQ showed promising results for pSer based on flex ddG predictions, 

short MD simulations were performed out to evaluate the interaction patterns throughout the 

simulation. Three independent 30 ns simulations were carried out for both peptides containing 

eitherpSer or Trp in the position 6 with the pocket LKMKARQ. Simulations were conducted always 

as protein-peptide complexes. Interaction analyses were conducted using ProLIF (called as 

fingerprint analysis) as an average of 3 independent simulations to quantify and compare the 

interactions between the binding pocket and the mutated peptide residues. In Table 2.3, the 

ligand column indicates the peptide sequence where position 6 was mutated to either pSer or 

Trp (pSer6 and Trp6). The interaction column lists the residues in the pocket that interacted with 

the ligand for at least 0.05% of the simulation time. The right column provides the frequency of 

each interaction as a percentage of all simulation frames.  

As expected, Asn372, which plays a critical role in the fixation of the backbone by interacting with 

the peptide (see section 1.2), showed interactions with the peptide in over 99% of the simulation 

frames, regardless of the mutation at position 2. In addition to Asn372, Arg407 emerged as a 

significant interacting residue in both cases. However, it interacted with pSer in 94% of the 

simulation frames, compared to 65% for Trp. This difference in interaction frequency highlights 

the potential for enhanced specificity toward pSer. In addition to Arg407, interactions with Lys2 

were observed in both Ser and Trp simulations, with Ser interacting with Lys2 in 75% of the 

simulation frames, compared to 87% for Trp, which is favored for Trp binding (Table 6, Table 7). 

Overall, the MD simulations confirm the flex ddG results, emphasizing the strong interaction 

between pSer and Arg407 as a key determinant of binding specificity.  
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Table 6: Interaction analysis of binder LKMKARQ with pSer mutation in the peptide.  

Ligand Interacting 
Residue Frequency (%) 

pSer6 

ASN372 0.99 

ARG407 0.94 

MET371 0.90 

LYS368 0.75 

GLN410 0.05 

Table 7: Interaction analysis of binder LKMKARQ with Trp mutation in the peptide.  

Ligand Interacting 
Residue Frequency (%) 

pTrp6 

ASN372 0.99 

ARG407 0.66 

MET371 0.90 

LYS368 0.87 

GLN410 --- 

 

To provide a baseline for comparison, extended MD simulations of 200 ns were performed on 

the wild-type protein-peptide complex. These simulations were repeated three times, yielding 

consistent and robust results. The WT complex demonstrated remarkable stability throughout 

the simulations, with arginines and lysines maintaining their positions within the binding pocket 

from the initial frame onward. RMSD plots for these simulations were highly stable, indicating no 

significant structural deviations or residue dissociations. For pTyr binding, several binding pockets 
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including different mutations and with the bound peptide including pTyr in peptide position 6 

were also simulated. Simulations for each protein-peptide complexes were performed once for 

30 ns. Despite the selection of initial structure with pTyr inside the helices 2 and 3, the simulations 

showed that pTyr consistently dissociated from the binding pocket within the first nanoseconds. 

These results are consistent with the previous methods suggesting that pTyr is binding in this 

conformation. However, no additional simulations were performed for pTyr. 

Library SuggesJon 

Based on the results from the previous analysis explained above, a single library with the size of 

4.5 x 106  was suggested for further evaluation (Table 8). While this library shares similarities with 

those previously suggested for pTyr except the positions 2 and 5. pSer and pThr are similar in size 

and structure; both are uncharged polar amino acids with a hydroxyl (-OH) group, with pThr 

having an additional methyl group. Considering this similarity, the same library should be tested 

for pSer and pThr. This increases the chances to find binders with a high affinity to either pSer or 

pThr, and specificity between these two amino acids could be investigated in later stages.  

Table 8: Suggested library for pSer binder. Total number of amino acids for that position is written after 
amino acids. 

Positions Library (size: 4.5 x 106) 

1 All except CPG | 17 

2  KRHTSHAQND | 10 

3 MLINQD | 6 

4 All except CPG | 17 

5 AVSTNDIL | 8 
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6 KRH | 3 

7 all except CPGHKRFYW | 11 
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4. Computa=onal Evalua=on of Pep=de Binding Specifici=es  

4.1 The Challenge of Compu0ng Single Residue Effects in Protein-Pep0de 

Interfaces  

Proteins are essential molecular machines that perform diverse cellular functions, often through 

specific interactions with other molecules (see section 1.1 and section 3). The individual 

interactions between amino acids in binding interfaces of protein and binding partners mostly 

determine the strength of the binding and its specificity towards its target/each other. Mutations 

in these residues can significantly alter binding affinity, affecting the protein’s activity, stability 

and function by inducing changes in the protein’s conformation. Even a single amino acid change 

can alter the binding affinity, either weakening it for one target or enhancing it for another, thus 

altering specificity.  

Understanding and modifying protein–target interactions is the key to design of binding proteins 

to target other proteins or peptides. To assess how mutations affect binding affinity in protein-

protein complexes, reliable 3D structures are often needed, and experimental methods like 

Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) provide valuable 

insights, although they can be costly and resource-intense. Computational pre-evaluations can 

help narrow down candidates for experimental testing, using methods like binding free energy 

calculations to predict mutation impacts. Binding free energy (ΔG) measures the stability and 

strength of a protein complex, with lower (more negative) values indicating stronger interactions. 

Accurate modeling of bound and unbound states is essential, and methods like thermodynamic 

integration, molecular dynamics simulations, or quantum mechanics approaches often correlate 

well with experimental results, despite being time-intensive. Recent advances in machine 

learning and deep learning offer promising enhancements in both speed and accuracy for binding 

free energy predictions. For example, neural networks are being used to estimate binding affinity 
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from molecular structures, though challenges remain in seamlessly integrating these models into 

workflows (Bogdanova & Novoseletsky, 2024; Guo & Yamaguchi, 2022). ML methods can require 

large datasets and may be sensitive to specific features or parameters, limiting their 

generalizability across systems. Additionally, while most approaches predict binding versus non-

binding outcomes, estimating the effects of single mutations remains particularly challenging. 

In this section, conceptually different computational methods to address the challenge of 

accurate prediction of single residue effects in protein-protein interfaces were evaluated. Here, 

three established, physics-based approaches, namely flex ddG from Rosetta Design Suite, BBK* 

from OSPREY and PocketOptimizer developed in our group, were compared to highlight their 

strengts and weaknesses via using a novel dataset of single point mutations. On the one hand, 

flex ddG calculates the change in binding affinity (ddG) upon mutation, and creates diverse 

ensembles with the backrub approach (see section 3.2). It offers accurate and reliable predictions 

by allowing for local backbone flexibility and utilizing a sophisticated energy function. On the 

other hand, OSPREY employs deterministic algorithms to guarantee finding the global minimum 

energy conformation in a discrete conformational space. The K* algorithm within OSPREY 

optimizes protein sequence and structure simultaneously, evaluating both the bound and 

unbound states of a protein-ligand complex and approximating the partition function for direct 

calculation of binding affinities. In addition to these methods, PocketOptimizer, an in-house tool 

is included. PocketOptimizer generates an ensemble of the remodeled bound state and 

determines the energetically best combination of sidechain rotamers and the ligand 

conformation and position in the binding pocket.  
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4.2 Available Computa0onal Design Tools  

4.2.1 OSPREY 

The OSPREY (Open-Source Protein REdesign for You) suite is a comprehensive computational 

platform for protein engineering and redesign (Hallen et al., 2018; A. Ojewole et al., 2017). Its 

primary aim is to identify protein mutants with desired target properties, such as improved 

stability or altered binding affinity. It is one of the most commonly used protein design software, 

where application fields ranging from drug discovery and antibody design (Rudicell et al., 2014; 

Surpeta, Sequeiros-Borja, & Brezovsky, 2020). 

OSPREY has been successfully applied to optimize protein small molecule interactions (Guerin, 

Kaserer, & Donald, 2022; Kaserer & Blagg, 2018) as well as to design peptide inhibitors of protein–

protein interactions (Roberts, Cushing, Boisguerin, Madden, & Donald, 2012). Central to 

OSPREY’s design capabilities is its ability to model protein flexibility and explore large 

conformational spaces, which is critical for predicting realistic structures as proteins naturally 

undergo conformational changes. This flexibility is represented through rotamers, which are 

discrete conformations of amino acid side chains. To overcome the limitations of traditional 

discrete rotamer modeling, OSPREY incorporates continuous rotamers, enabling a more accurate 

representation of side chain flexibility (Gainza, Roberts, & Donald, 2012; Georgiev, Lilien, & 

Donald, 2008). By evaluating the energetic favorability of these rotamers in different contexts, 

OSPREY constructs conformational ensembles, which represent multiple low-energy states 

instead of relying on a single global conformation. To optimize the search process, OSPREY 

initially narrows the search space by applying a range of algorithms derived from extensions of 

the dead-end elimination (DEE) technique. DEE systematically exludes rotamers that cannot 

contribute to the global minimum energy conformation (GMEC) or any low-energy state, even 

when accounting for backbone and side chain flexibility. Once the search space is narrowed, 

OSPREY applies a branch-and-bound algorithm, which efficiently explores the remaining 
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conformations to identify the GMEC, if desired, it provides a list of low energy structures. This 

algorithm, inspired by the A* search technique, is particularly effective in balancing 

computational cost with thorough exploration. 

To further enhance its capabilities, OSPREY integrates the K* algorithm, which approximates 

protein–ligand binding constants based on an ensemble-based approach. Unlike methods that 

rely solely on the GMEC, K* evaluates multiple low-energy conformations, increasing the 

likelihood of identifying biologically relevant binding modes. The binding constant (Ka) derived 

from K* is represented as the ratio of partition functions for the bound and unbound states. This 

provides a robust metric for binding affinity, with the Log10 K* score serving as a predictive 

measure with higher values indicate stronger binding affinities, while lower values suggest 

weaker interactions. By comparing Log10 K* scores for the wild-type and mutated structures, 

OSPREY can assess the impact of specific mutations on binding affinity and stability.Building on 

K*, the BBK* (Branch-and-Bound K*) algorithm further optimizes the search for protein-ligand 

solutions by incorporating a branch-and-bound strategy that systematically explores 

conformational spaces. The BBK* algorithm is based on the approximation of the partition 

functions for the bound (protein-ligand complex) and unbound (free protein and ligand) states 

of a system (Table 9). The calculated K* scores for a protein-ligand complex are defined as the 

quotient of the bound and unbound partition function and were proven to exactly approach the 

binding affinity constant Ka under accurate conditions (Krismer et al., 2024; Lilien, Stevens, 

Anderson, & Donald, 2005). BBK* uses shortcuts to efficiently explore conformational space, 

skipping configurations that cannot contribute meaningfully to the solution. 

Beyond its algorithm, OSPREY employs a comprehensive scoring function to evaluate the 

energetic impact of protein-ligand interactions. This scoring function considers van der Waals 

interactions, electrostatics, solvation effects, and hydrogen bonding, providing a detailed picture 

of the factors driving binding affinity.  
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In this study, the BBK* algorithm implemented in OSPREY3.2.304 (Hallen et al., 2018) was used 

for prediction calculations. After structure preparation (for details see end of the section 4.2), 

side chains of binding pocket residues were selected to be flexible with continuous flexibility 

given to inner shell residues (Figure 5, position 3, 4, 6, and 7). For models based on the crystal 

structure 6SA8, peptide position 6 was also given as continuous flexiblity position and it was 

mutated to alanines together with peptide position 4 and 8 as the initial amino acids and set to 

be mutated to other amino acids of interest. For models based on the crystal structure 5AEI 

structure, continuous flexibilty was applied to respective positions. For the data processing, the 

comparison of the predicted scores were restricted to the available experimental data. The 

obtained K* scores from BBK* were converted into approximate pKD values. As an uncertainty 

range, the obtained upper and lower bounds of the K* score were taken (Ayyildiz et al., 2024).  

4.2.2 RoseSa  

As discussed in sections 3.3.2 and 3.3.3, the Rosetta Design Suite offers a comprehensive 

framework for computational protein design studies. Specifically, the flex ddG protocol within 

Rosetta calculates changes in binding affinity upon mutation via incorporating backrub motion 

and generating a diverse ensemble. For its energy function it uses a physics-based force field that 

includes also empirical terms (Table 9).  

In this work, the flex ddG algorithm implemented in Rosetta 3.12 was used for prediction 

calculations. After structure preparation for each binder (for details see end of the section 4.2), 

a Python script was modified for calculations. For each model, 250 output structures were 

generated allowing backrub for 35000 steps. For models based on 6SA8, peptide position 6 was 

mutated to alanines together with peptide position 4 and 8 as an initial amino acids and set to 

be mutated to all other interested amino acids. Models based on the 5AEI structure, peptide 

position 4 was mutated to alanine together with peptide position 2 and 6 and position 4 was set 

be mutated to all other amino acids of interest. For modeling, the Talaris all-atom energy function 
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was used and the score analysis was performed as described using the corresponding reweighting 

scheme based on a generalized additive model. For data processing, the comparison of the 

predicted scores were restricted to the available experimental data. The obtained K* scores from 

BBK* were converted into approximate pKD values. 

4.2.3  PocketOpNmizer 

PocketOptimizer is an in-house computational tool designed for the targeted optimization of 

binding pockets to improve ligand binding affinity, specificity, and overall stability, making it 

particularly useful for protein engineering and drug discovery (Noske et al., 2023).  

The software provides a modular framework, allowing users to combine different modules and 

guiding them step-by-step through the design process. Within this flexible setup, users can 

experiment with a variety of force fields, sampling procedures, and scoring functions to identify 

the most effective binding-pocket mutations. PocketOptimizer supports both the CHARMM36 

and AMBER ff14SB force fields, enabling physics-based modeling of molecular interactions. To 

predict mutations that enhance binding affinity, PocketOptimizer generates an ensemble of the 

bound state and determines the optimal combination of side chain rotamers and ligand positions 

within the binding pocket. Using the Dunbrack rotamer library which is a statistical collection of 

preferred side chain conformations based on high-resolution protein structures, the software 

explores realistic configurations for each mutation. In addition, C.M. Lib backbone-independent 

rotamer library is also provided as an option. The scoring function then calculates binding 

energies in kcal·mol⁻¹, with the energy function assessing mutations by determining their 

energetic impact on binding affinity. Through iterative calculations and energy assessments, 

PocketOptimizer selects mutations that yield the most favorable binding energy and it plays an 

essential role in the rational design of proteins for targeted applications. 
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In this section, PocketOptimizer 2.0 was used for prediction calculations with the Amber ff14SB 

force field (Noske et al., 2023). After structure preparation for each binder (for details see end of 

the section 4.2), all pocket positions were mutated to the respective pocket residues before the 

energy calculations in both crystal structure complexes (PDB-IDs: 6SA8 and 5AEI). Rotamers from 

the Dunbrack backbone-dependent rotamer library were selected for rotamer sampling for all 

pocket positions, and for the mutatable ligand position the C.M. Lib backbone-independent 

rotamer library was used. One combination of pocket rotamers and a single ligand pose was 

selected by PocketOptimizer that represent the GMEC (Table 9). No error is computed since there 

is only one complex structure. 

Table 9: Summary of used algorithms. Run times are estimated times for dARmP protein-peptide 
complex.   

Method Summary Run time (for 
dArmRP system) 

Flex ddG 
(Rosetta) 

Calculates the binding affinity change of the complex. It is 
backrub-based approach to generate diverse ensembles. 

2-5 days 

BBK* (OSPREY) Approximation of the partition function for binding affinity 
estimation. It provides continuous flexibilty.  

days to weeks 

PocketOptimizer 
(in-house) 

Identificatiın of GMEC for remodeled bound state. It has 
static rotamers. 

hours 
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The methods described above were applied to a dArmRP system, as described in Ayyildiz et al., 

2024. Two high-quality crystal structures of these proteins were used to compare computational 

predictions with experimental binding affinities. This approach aimed to assess the strengths and 

limitations of the methods, thereby not only evaluating the influence of structural differences on 

prediction but also providing critical insights to refine design strategies with greater precision. 

Based on the predictions of above mentioned methods, the benefit of a complementing 

combination of results from various computational sources will also be shortly discussed. 

The evaluation included five experimentally validated designed binders, each including a distinct 

binding pocket; Arg-binder (WT-binder or Arg binding pocket) (Figure 5), Tyr-binder, Trp-binder, 

His-binder and Ile-binder (Stark et al., 2024). As most interactions at the protein-peptide interface 

remained constant, the focus was placed on a small variable interaction region. To generate 

peptide variants for analysis via the different methods, first peptide position 4, 6, 8 of the 6SA8 

scaffold, or at the peptide position 2, 4, 6 of the 5AEI scaffold, were mutated from arginines to 

alanines.Before performing the calculations, structure preparation was conducted using two 

structures, PDB IDs 6SA8 and 5AEI, both of which were solved in complex with the (KR)5 ligand 

and obtained from the Protein Data Bank. Both of these two scaffolds were used for calculations 

in order to observe the effect of structural differences on the results. The 6SA8 scaffold includes 

a dArmRP-fusion with a designed ankyrin repeat protein (DARPin), which was specifically 

engineered to protect the peptide-binding interface from crystal contacts and thus altered the 

binding complex geometry (see section 1.2). To reduce computational cost, the DARPin 

component was removed, along with all ions and water molecules, using MolekuleKit. The 

necessary mutations for the binders were introduced using PyMOL version 2.3, while protonation 

of the models was carried out using MoleculeKit, which uses PropKa 3.2.   
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4.3 Predic0on Performance Tested on a dArmRP Benchmark 

To evaluate the accuracy of the computational predictions, three key analyses were performed. 

First, the predicted binding specificities were compared with experimentally determined values 

using Pearson correlation, a statistical measure that quantifies the linear relationship between 

two variables, commonly used to assess predictive accuracy in computational modeling. Second, 

to examine method-specific biases toward different amino acid types, a relative bias was 

calculated for each target peptide based on the corresponding amino acid with the available data 

set. Third, computational methods were systematically compared to identify their 

complementary strengths and limitations, providing insights into their relative performance. 

4.3.1 EvaluaNon of PredicNve Methods for Pocket Specificity Analysis 

In Figure 13, correlation plots of BBK*, flex ddG and PocketOptimizer for the Arg-binder using 

6SA8 as a scaffold are given. In the experiments the Arg-binder demonstrates high specificity, 

with low nanomolar KD values for the positively charged amino acids Arg and Lys, and micromolar 

KD values for the negatively charged amino acids Asp and Glu. This highlights a clear distinction 

for Arg, except in comparison with Lys. However, KD values for other amino acids cluster near the 

center, with partially overlapping error margins, which makes them hard to distinguish. The 

specificity prediction of BBK* shows the strongest overall agreement with the experimental data, 

achieving a Pearson’s R correlation of 0.861. It accurately captures the distinction between 

positively charged residues and negatively charged residues, with a slight overprediction for His. 

All other amino acids cluster in the middle which reflects their close experimental values (Figure 

13-A). In contrast, flex ddG shows the lowest correlation among the three methods with 0.317 as 

Pearson’s R, although it captures the overall trend by accurately identifying between positively 

charged residues and negatively charged residues. Aromatic residues such as Trp and Phe, which 

were predicted to be bound more tightly than Arg, could be one reason for this lower correlation 

(Figure 13-B). Meanwhile, PocketOptimizer achieved a moderate correlation with 0.562 
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Pearson’s R, and demonstrated a similar ability to distinguish positively charged amino acids from 

negatively charged ones, but with less accuracy than BBK* (Figure 13-C).  

 

Figure 13: Correlation of calculated and experimentally determined binding specificities using crystal 
structure 6SA8. Specificity predictions compared to experimental data for the Arg-binder pocket (Linear 
fits shown in dashed lines). Binding specificity predictions from (A) BBK*, (B) flex ddG and (C) 
PocketOptimizer were correlated with experimentally determined binding specificities. Pearson 
correlations are given inside the corresponding plots (Adapted from Ayyildiz et al., 2024). 

The same set of calculations was performed using the crystal structure 5AEI (Figure 14). The 

predictions obtained with BBK* and PocketOptimizer closely resembled those based on the 

scaffold 6SA8. While BBK* predictions remained consistent across these two scaffolds, the 

PocketOptimizer predictions exhibited a stronger emphasis on Phe and His when using the 5AEI 

structure. In the case of flex ddG, Pearson’s R correlation was lower when using the 5AEI 

structure, likely due to the peptide variants containing positively and negatively charged amino 

acids were being effectively distinguished only when the 6SA8 structure was used (Figure 13). 

Additionally, small amino acids such as Gly, Ala, and Ser were generally predicted to have lower 

binding affinities compared to most other amino acids.  

Pearson’s R: 0.861 Pearson’s R: 0.317 Pearson’s R: 0.562
A B C
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Figure 14: Correlation of calculated and experimentally determined binding specificities using crystal 
structure 5AEI. Specificity predictions compared to experimental data for the Arg-binder pocket (Linear 
fits shown in dashed lines). Binding specificity predictions from (A) BBK*, (B) flex ddG and (C) 
PocketOptimizer were correlated with experimentally determined binding specificities. Pearson 
correlations are given inside the corresponding plots (Adapted from Ayyildiz et al. 2024). 

Despite variability in correlation values, all three methods showed some ability to reproduce the 

experimental trends for specific amino acids. BBK* and PocketOptimizer results closely aligned 

with the experimental data, while flex ddG demonstrates potential despite its lower overall 

correlation for the Arg-binder in both scaffolds.  

Following the evaluation of the Arg-binder, the four other binders, Tyr-, Trp-, His-, and Ile-binder, 

whose sequences are known, were modeled using PyMOL and the methods were assesed the 

same way as the Arg-binder. BBK* predictions calculated using the structure 6SA8, show a range 

of correlations across the four pockets with Pearson’s R values of 0.259, 0.355, 0.813 and 0.166, 

for Tyr, Trp, His and Ile binding pockets, respectively (Figure 15). While Pearson’s R values for Tyr 

and Trp pockets are not as high as for the Arg pocket, Tyr is predicted as the 4th best ligand for 

its pocket, and Trp is predicted as the 3rd best ligand, indicating that the method captures general 

trends. However, a noticeable overprediction emerges in these pockets where His and Arg are 

predicted to be better than they really are in Tyr and Trp pockets. For the His binding pocket 

BBK* achieves a very good prediction, where His is accurately ranked as one of the top ligands. 

However, an overprediction can be also seen in this pocket where Arg is predicted to be better 

Pearson’s R: 0.872 Pearson’s R: 0.048 Pearson’s R: 0.517A B C

Pearson’s R: 0.861 Pearson’s R: 0.317 Pearson’s R: 0.562
A B C
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than His for the His pocket. This suggests a potential tendency for BBK* to overrepresent the 

positively charged amino acids. The value for His in the His binding pocket might even be 

benefiting from this overprediction. For the Ile pocket, BBK* predictions exhibit poor correlation 

and overprediction of His and Arg, which contributes to the overall poor agreement (Figure 15-

A). 

On the other hand, flex ddG achieves moderate to strong correlations for Tyr and Trp pockets 

with 0.656 and 0.774 Pearson’s R compared to BBK*. For the Tyr-binder, Tyr is ranked as one of 

the best ligands together with other aromatic residues and for the Trp binder, Trp is accurately 

ranked as the best ligand, aligning well with the experimental data. However, a positive tendency 

for aromatic residues could be observed which also shows in the His and Ile-binder. In the His-

binder, His is predicted to be the 3rd best ligand for its pocket, however, the over prediction of 

Tyr and Trp plays a role in the lower R value of 0.311. The Ile-binder shows the lowest correlation 

among all binders and all methods, with a near-zero correlation (R: 0.03) and a tendency for Tyr, 

Trp, His and Phe residues can be also observed for this binder’s prediction (Figure 15-B).  

PocketOptimizer on the other hand shows a more uniform, though moderate performance across 

all evaluated pockets, with R values of 0.569, 0.566, 0.624 and 0.194 for Tyr, Trp, His and Ile 

binders, respectively. However, in the Tyr, Trp and His binder plots, it is possible to observe some 

tendencies for certain amino acids, such as His, Arg and Trp. This may indicate that although 

PocketOptimizer carries some similarities to both BBK* and flex ddG, it does not demonstrate 

this as much as the other methods do, which may explain the more uniform and moderate 

performance of it. However, the most challenging case of the Ile binder shows also only a weak 

correlation of 0.166 R (Figure 15-C). In summary, the Ile binder correlations are consistently poor 

across all methods (Ayyildiz et al., 2024).  

The predictions based on the scaffold 5AEI, show only slight differences among binders and 

methods (see Appendix for the correlation plots calculated using  5AEI scaffold). 
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Figure 15: Correlation between calculated binding specificity predictions and experimental binding 
specificities for the Tyr, Trp, His, and Ile binding pockets using 6SA8 as scaffold. Correlation between 
experimental measurements for each binder with the calculations from BBK* (A), from flex ddG (B) and 
from PocketOptimizer (C) are given with their corresponding Pearson correlations (Taken from Ayyildiz et 
al., 2024). 

Overall, the results highlight the strengths and limitations of each method. BBK* shows strong 

alignment with the experimental data for the His binder, but it also shows tendencies that affect 

its performance in other pockets. Flex ddG demonstrates the best overall performance for the 

Tyr and Trp-binder, however, as with BBK*, its tendencies for these amino acids affect its 

performance for other binders. PocketOptimizer provides more balanced predictions but lacks 

the precision of the other methods in specific cases. These observations emphasize the 

importance of combining these methods to improve the overall prediction accuracy.  

A

B

C
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4.3.2 Tendencies of PredicNve Methods  

Computational methods can overestimate the energetic contributions of certain amino acids, 

leading to systematic biases in binding predictions. Therefore, in this study further analysis to 

quantify these effects has been conducted. To this end, a relative bias was calculated for each 

target peptide in relation to its corresponding amino acid (Figure 16). The results indicate a 

consistent tendency to overemphasize larger amino acids while underestimating smaller ones. 

This is evident in the distribution of relative offsets, where predictions for small amino acids such 

as Gly, Ala, and Ser are shifted towards the left, whereas larger amino acids appear shifted 

twoards the right. Such biases may stem from the nature of rotamer sampling, which can lead to 

excessive packing within the binding pocket. Additionally, limitations in the scoring functions may 

contribute to this effect by failing to fully account for steric constraints or the reduced interaction 

surface of smaller residues. It is important to note that Lys, Glu, and Asp are represented by fewer 

data points, suggesting pointing a lower availability of reliable predictions for these amino acids. 

In contrast, Leu and Ile appear more evenly distributed, indicating a more balanced modeling of 

their energetic contributions across different binding pockets. Interpreting these biases is further 

complicated by the small dataset, as well as the lack of experimental validation for several binding 

pockets, which limits the robustness of the analysis. Moreover, while relative offsets were 

applied to correct for these biases, their normalization introduces variability in absolute error, 

leading to potential inconsistencies across different pockets. Despite these challenges, 

addressing such biases is essential for improving computational design strategies.  
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Figure 16: Individual relative offsets from optimal fit for individual amino acid targets. Amino acids are 
listed at the y-axis according to their relative mass (Figure is taken from Ayyildiz et al., 2024).   
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4.3.3 CorrelaNon of ComputaNonal PredicNons  

The variability in predictive performance across five binding pockets for individual computational 

methods highlights the limitations of relying on a single approach. To address this, predictions 

from the three methods were correlated, with the expectation that their combined strengths 

could offer deeper insights for designing and evaluating new binding pockets.  

In Figure 17, the correlation between the three methods based on their predictions from two of 

the five binders are given. In the Arg binding pocket, flex ddG showed limitations in accurately 

predicting Arg. However, the other two methods, outperformed flex ddG, providing a more 

reliable assessment (Figure 17-A). On the other hand, in the Tyr binding pocket, flex ddG 

demonstrated better accuracy, and corrected the overestimation tendencies observed for His 

and Arg amino acids in BBK* and PocketOptimizer (Figure 17-B). The correlations for the 

remaining three binders show slight variations, which can be found in Appendix. 

 

Figure 17: Correlation of specificity predictions from all three methods. BBK*, flex ddG, and 
PocketOptimizer predictions for (A) Arg and (B) Tyr binders were obtained using the crystal structure 6SA8 
as the scaffold (Figure is adapted from Ayyildiz et al., 2024). 

Tyr-binderArg-binder

A B



 79 

The underlying hypothesis was that correlating these methods would help alleviate individual 

biases by allowing opposing tendencies to cancel each other out. Besides the results presented 

in Figure 17, the biases largely remained, likely due to the similar tendencies shared across 

methods. This finding underscores an important consideration in computational binding pocket 

design; while method combination remains a promising strategy for reducing systematic errors, 

its effectiveness depends on the diversity of the underlying algorithms. These results highlight 

the distinct strengths and weaknesses of the three methods, emphasizing their complementary 

nature and their relative contributions to capturing binding specificity. More broadly, they 

underscore the value of integrating multiple computational approaches to enhance predictive 

accuracy and address the challenges posed by diverse binding pockets. With access to more high-

quality experimental data and further refinement of predictive models, it may become possible 

to better characterize these interactions and improve computational design strategies. 

Additionally, incorporating methods with fundamentally different scoring principles or including 

more comprehensive predictive calculations could further improve bias correction and enhance 

the robustness of computational predictions.
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5. Experimental Evalua=on of Pep=de Binding Specifici=es  

5.1 The Experimental Set-up 

Within PReART, the aim is to create specific binding pockets for each amino acid and facilitate 

the combination of these designed binding modules in a required way without any exhausive 

computational or experimental work. As explained in previous chapters, the computational 

pipeline for specificity prediction of promising sequences from designed pocket libraries, was 

established in Bayreuth. Based on computational suggestions, libraries are then produced 

produced by our collaboration partners at Aston University (UK) and tested at Universität Zürich 

(CH).  However, this workflow can be inconveniently time-consuming and quick testing of some 

mutations for any interesting binding pocket or pocket combinations based on computational 

work would be useful. Therefore, I established the experimental workflow for affinity 

measurements of binder-peptides in our lab. In this thesis, “binder” refers to any designed 

armadillo scaffold without its peptide bound, “binding pocket” (Figure 5) refers to one module 

of the binder that consists of seven amino acids that can be mutated in order to alter binding 

specificity and/or binding affinity towards amino acids in the peptide position six and “peptide” 

refers to an extended peptide that is bound to a binder.  

In this section, the established protocol will be explained in detail. The initial plasmids for the 

expression of the WT-binder and WT-peptide were received from the Plückthun Lab. The WT- 

binder is a designed armadillo repeat protein that consists of 5 internal modules and includes a 

lock for Q and A amino acids of the bound peptide, which prevents peptide sliding. The WT- 

peptide construct includes superfolderGFP that is needed for the fluorescence binding assays. 

The arginine residue at position 6 of the WT-peptide was mutated to different amino acids via 

site directed mutagenesis. All proteins were expressed in E.coli, purified and affinity constants 

(KD) were measured and compared to measurements from the Plückthun Lab. After the 
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successful establishment of the protocol, three promising GLN-binders – referring to three 

different binding pockets - that were designed for a glutamine residue at position 6 in the peptide 

to have a high affinity and a specifity (Bachelor Thesis, Freund 2021), were tested experimentally.   
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5.2 Experimental Methods  

Cloning of pepJde variants via Site Directed Mutagenesis  

To ensure that the protocol was correctly established, the binding constants of the WT-binder to 

different peptide variants was measured. To generate the different peptide variants, the WT-

peptide plasmid, KRKRKRQRAR-sfGFP, was mutated at position 6. Forward and reverse 

oligonucleotides for the mutation of the codons for Arg to the ones for Gln, Glu, Asn, Tyr, Leu, 

and Ser were designed using the Agilent Genomics QuickChange® PrimerDesign webtool, and the 

genes were ordered from Eurofins. PCR mixture with 10 µM of each respective forward and 

reverse strands of oligonucleotides were annealed in a total volume of 50 µL with ddH2O (see 

Table 5.1, 5.2 PCR mixture and PCR profile). 

Table 10: Composition of the PCR reaction. Reaction was followed with to amplify double stranded DNA 
with specific primers.  

Compound Final Concentration Volume 

Primer forward (fw) 10 µM 2.5 µL 

Primer reverse (rw) 10 µM 2.5 µL 

deoxyribose nucleoside 

triphosphate (dNTPs) 
0.3 µM 1.5 µL 

DNA template 50-100 ng 1 µL 

KAPA HiFI High Fidelity Buffer 5x - 10 µL 

KAPA Polymerase 2u/μl 0.5 µL 
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ddH2O - ad 50 µL 

Table 11: Site-directed mutagenesis PCR temperature profile. 

Steps Temperature (°C) Duration (seconds) Cycles 

Initial Denaturation 96 30 1 

Denaturation 96 10 

28 Annealing 53 10 

Elongation 72 240 

Final elongation 72 420 1 

Hold 4 ¥ - 

1 µL DpnI (20000 units/ml) were added to the PCR products for the digestion of the original 

plasmid and incubated at 37 °C for about 1 hour. Then, it was used to transform TOP10 cells as 

described below (see Protein Transformation, Expression and Purification). 2-3 colonies were 

picked from each plate and resuspended in 8mL LB media with 8 µL AMP (from 100 μg/mL). These 

pre-cultures were put into a 37 °C shaker overnight, then DNA was prepared using a kit (Table 

4.7), and a sample was prepared  for sequence verification by Eurofins. 

Golden Gate cloning 

Gene fragments for 3 GLN-binders were ordered from Twist, as these binders required several 

mutations in the binding pocket of the WT-binder. These gene fragments were cloned into 

pEM3BTC vector (Michel, Plückthun, & Zerbe, 2018) by Golden-Gate cloning (Table 5.3). The 

reaction was set-up in a microcentrifuge tube on ice. DNA fragments were mixed with nuclease-

free water. NEBridge Ligase Master Mix was added and mixed by pipetting 3 times, as a last 
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component Type IIS restriction enzyme was added and mixed by pipetting 5 times. The mixture 

was incubated at 37 °C for 15 min and deactivated by heating at 60 °C for 5 min. 10 µl of the 

product was transformed into chemically competent cells by following the steps described below 

(see Protein Transformation, Expression and Purification) and they were verified by sequencing.  

Table 12: Golden-Gate protocol. (Taken from NEB website) 

Components Amount 

NEBridge Ligase Master Mix 5 µl 

DNA Fragments* 0.05 pmol each 

Type IIS Restriction Enzyme** x µl 

Nuclease-free Water Y µl 

Total Reaction Volume 15 µl 

*DNA Fragments = Vactor and Insert, 0.05 pmol in a 1:1 ratio (ratio could be optimized but wasn’t necessary 
here)  

**Type IIS Restriction Enzyme = BsaI-HFv2 (NEB #R3733)  1 µl (20 U) 

Protein TransformaJon, Protein Expression and PurificaJon 

All provided DNAs which include genes encoding WT-protein, WT-peptide, in addition to 

sequence verified genes DNAs of three GLN-binders and peptide variants were used for 

transforming cells in the following way; 50 µL of chemically competent E. coli cells were thawed 

on ice for 5 minutes, 1-2 µL (≈ 150 ng) of plasmid DNA was added and the cells were incubated 

for 10 minutes on ice followed by a heat shock at 42 °C for 1 minute. Cells were incubated on ice 

for 2 minutes, then 900 µL LB medium were added and the cells were incubated for 45 minutes 

at 37 °C in 800 rpm for regeneration. Afterwards, 200 μL of the transformation reaction cells were 
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plated on LB-agar plates supplemented with 100 µg/ml ampicillin (AMP). Plates were incubated 

at 37 °C overnight. When transforming cells with plasmid DNAs encoding HRV-3C protease, which 

is necessary to separate the (His)6-tagged GB1 domain, instead of AMP, kanamycin was used.  

For plasmid amplification 50 ng of the DNA were used to transform into E. coli TOP10 or DH5α 

competent cells the plates were incubated at 37 °C overnight. The next day, 5 mL E.coli TOP10 or 

DH5α cultures were grown in LB-medium overnight at 37 °C. The plasmids were purified by using 

NucleoSpin® Plasmid kit (Machery & Nagel) according to the manufacturer’s instructions. The 

DNA concentration was determined by measuring the absorbance at 260 nm with an UV/Vis 

spectrometer (Equation 3). Samples were applied on a μ-cuvette (Eppendorf). A260/A280 ratios 

were used to assess purity of the DNA samples. The DNA samples whose sequence were known 

were stored at -20. 

C = A+,-x	50	
µ.
!/

                            Equation 3 

c: DNA concentra`on µg/ml 

A260: Absorbance at 260 nm 

 

For the expression of proteins, first a pre-culture was prepared by inoculating with a single colony 

that was picked from plates after the transformation. Each colony was mixed with 15 ml LB and 

100 µg/ml AMP, and then pre-culture was incubated overnight or at least 6 hours at 37 °C at 180 

rpm. 10 ml pre-culture were transferred into autoclaved 1 L TB media, and expression was 

induced at OD600 of 0.6-0.9 with 1 mM IPTG. The expression culture was incubated for 16 hours 

at 30 °C and 240 rpm.  

Cells were harvested by centrifugation at 4 °C, with 4000 rpm for 15 minutes. Supernatant was 

discarded and the cell pellets were resuspended in 30 ml Buffer A (see Table 4.6). If not used 
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immediately, the resuspended cell pellets were once more centrifuged at 15000 rpm on the 

bench centrifuge for 10 minutes and cell pellets were stored at -20 °C (JLA-8.1000 Beckmann 

Coulter rotor). Resuspended cells were lysed with a Branson Ultrasonics 250 Sonifier by 

sonification of cells 3x3 minutes with one minute break in between on ice, using a duty cycle of 

40% and an output power of 4 for releasing the intracellular components including proteins. After 

sonification, the lysate was centrifuged for 1 hour at 18000 rpm and 4 °C to separate the soluble 

protein from cellular debris.  

The pellet was discarded, and the supernatant was collected and loaded onto a 5 ml HisTrap HP 

column to purify by Immobilized Metal Affinity Chromatography (IMAC). The HisTrap column was 

previously equilibrated with 10 column volumes of buffer A (see Table 5.6). Samples were washed 

with 15 column volumes of buffer A, and eluted with 100 ml gradient buffer A to buffer B. The 

eluted 3C-protease was dialyzed overnight in 2 liter dialysis buffer in a 12-14 kDa MWCO dialysis 

membrane at 4 °C. The previously purified 3C-proteases (about 2 mg) was added to eluted 

proteins for the cleavage of (His)6-GB1 fusion and they were also dialyzed overnight in 2 liter 

dialysis buffer in a 12-14 kDa MWCO dialysis membrane at 4 °C. After separation of the target 

protein from (His)6-tagged species, the sample was reapplied on a 5 mL HisTrap HP column, and 

purified protein was collected. These samples were dialyzed twice overnight, once in 2 liter 

analysis buffer, once for at least 8 hours and again for at least 3 hours. All the samples that were 

not used immediately were flash-frozen in liquid nitrogen and stored at -80 °C. Proteins intended 

for affinity measurements were also dialyzed in PBS buffer. However, no differences could be 

measured in the measurements between the samples dialyzed in analysis or PBS buffer. 

Protein concentrations were determined using an UV/Vis spectrometer (BioPhotometer) to 

measure the absorbance at 280 nm and the concentration was determined using the Beer-

Lambert Law in which the concentration of the absorbing species can be obtained with the 

measured absorbance and the corresponding molar extinction coefficient of the target protein 

(Equation 4), obtained from ExPASy ProtParam Tool.  
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A+0- =	
c	x	d	x	ε+0-	.

MW  

 

c	 = 	 	2!"#	3	4$	.
6	3	7!"#

                      Equation 4 

c : Protein concentration [g/l] 

A280: Absorbance at 280 nm 

MW: Molecular weight [g/mol] 

d: Path length [cm] 

ε280: Molar extinction coefficient at 280 nm [ 1/ m x cm] 

 

Before the binding affinity assay, the purity of all protein variants was analyzed with non-reducing 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Samples were prepared 

by adding 20 µl of protein samples mixed with 20 µl dye buffer (Lämmli) containing DTT and 

heated at 99 °C for 5 minutes before the application on the gel. PierceTM unstained protein MW 

marker (ThermoFisher) was used as a standard, and staining was performed with InstantBlue and 

de-stained with ddH2O. Gels were imaged using the E-Box VX2 20 M. The composition of SDS-

PAGE and SDS-sample buffer is given in Table 4.6. Proteins (when needed) were concentrated to 

up to 500 µM for the affinity measurements using Amicon® Ultra-15 ml tubes with 10K cutoff, by 

following the guidelines of the manufacturer. The proteins were stored at room temperature, at 

4°C and at -80°C, for stability observations. 
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Circular dichroism spectroscopy 

All circular dichroism (CD) measurements were performed on a JASCO-710 spectropolarimeter 

with a peltier element to analyze secondary structure of the protein and its thermal stability. The 

measurement was conducted in a 1 mm quartz cuvette at 20°C (0.1 nm data pitch, response 2 s, 

100 nm min-1 scanning speed, and 1.0 nm bandwidth). Far-UV spectra were recorded from 195 

to 260 nm with a pitch of 0.1 nm at 20°C. Each protein was recorded five times and results were 

averaged. The CD signal was corrected by buffer subtraction and converted to mean residue 

ellipticity (MRE). Folding-unfolding-refolding mechanism was also monitored by following the 

change in the molar ellipticity at 222 nm from 20°C to 90°C with a temperature increase of 1 

°C/min. After buffer subtraction CD data was converted to the mean residue ellipticity using 

Equation 5.  

[θ]MRE  = 	8	∙	4$
:-		∙	;	∙	6	∙	(=	>	:)

       Equation 5 

 

[θ]MRE : Mean Residue Ellipticity [6@.	∙;!+
6!A/

] 

MW: Molecular Weight [ .
!A/

] 

c: Concentration [!.
!/

] 

n: Number of amino acids 

d: Path length [cm] 
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DissociaJon Constant (KD) DeterminaJon by Fluorescence Anisotropy 

All affinity measurements were conducted by fluorescence anisotropy (Cheow et al., 2014; Rossi 

& Taylor, 2011). Fluorescence anisotropy is a technique that measures the degree of polarization 

of fluorescent light emitted by a molecule when it is excited with polarized light. This technique 

provides information about the rotational motion and interactions of molecules in their 

environment. In this thesis, it is used to study protein-ligand interactions by measuring the 

binding of a fluorescent ligand (peptide-GFP) to a larger protein (binders). The background of the 

technique can be summarized as following:  

The fluorophore is excited with polarized light. The emitted light is then measured in two 

orthogonal polarization directions: parallel (Ivv) and perpendicular (IvH) to the excitation light 

(Equation 6). Fluorescence anisotropy (A) is calculated using the formula with the correction 

factor (G): 

A = 	BCC>	DBCE
BCC	F+BCE

         Equation 6 

 

A higher anisotropy value indicates less rotational motion, suggesting larger or more rigid 

molecules. Lower anisotropy indicates more rapid rotational motion, suggesting smaller or more 

flexible molecules. Anisotropy can be used to study the binding interactions between a protein 

and a ligand. As the ligand binds to the protein, its rotational freedom decreases, resulting in 

increased anisotropy. By measuring anisotropy at various ligand concentrations, the binding 

constant (KD) can be determined. 

In this thesis, all measurements were conducted on the TECAN Spark® II microplate reader using 

flat-black 96-well plates (ThermoFisher). The concentration of the WT-peptide containing sfGFP 

was kept constant (100 μl peptide/well) at a concentration of 10 nM whereas the binders were 
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diluted (dilution factor 0.6) over the plate with a 10 µM starting concentration (Figure 18). For 

each plate quadruplicates were pipetted whereby one dataset consists out of 24 measured 

points. 100 μl PBS buffer (pH 7.4, 137 mM NaCl, 3 mM KCl, 8 mM NaPi, 45 mM KPi) supplemented 

with Tween 20 (0.05%) was added to each well. The polarization data was averaged and fitted in 

the Fit-o-Mat (Möglich, 2018) with the Hill-Langmuir equation. 

Normalized data was generated by normalizing each separate dataset of one plate, followed by 

averaging all normalized quadruplicate values. 

 

Figure 18: Pipetting scheme for the fluorescence anisotropy measurements. Wells A to D are the starting 
wells with the highest binder concentrations and wells E to H are the 13 to 24th wells used after A-D 12. 

  

Methods 

 
 

23 

concentrations varied due to the purification yield ranging between 25-5 µM. In a 

96 well plate (NuncTM 96-well MicroWellTM transparent) 180 µl of enzyme solution 

was prepared. The plate was incubated at 27 °C for 5 min before 20 µl of each 

substrate concentration was added simultaneously as in the pipetting scheme 

(Figure 3). The product formation was measured at 380 nm given an extinction 

coefficient of 15,800 M-1cm-1 [33] for 20 min every 6 s. As negative control the assay 

buffer was used. 

 
Figure 3: Pipetting scheme for the activity assay. 200 µl reaction mixtures ranged from 2 mM (A1) 
to 31.25 µM (H1). Enzyme concentrations varied between 5-20 µM. 

To analyse activity, the background reaction (buffer only) was subtracted. Next, the 

linear phases of the graphs for each substrate concentration were fitted to a linear 

model (ΔA,-.) to get initial reaction velocities by the use of the Lambert-Beer law 

(( 6 )): 

v. =
ΔA,-.
d ∙ ε,-.

 

ΔA,-.:  Difference of product absorbance at 380 nm over [/0] 

d:  Pathlength (0.54 cm) 

ε,-.:  Extinction coefficient at 380 nm [ /
!∙()] 

v0:  Initial velocity [!0 ] 
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5.3 Materials Used in Experimental Set-up 

Table 13: List of used bacterial strains.  

Bacteria (E.coli) strain  

BL21 (DE3) E. coli B F− dcm ompT hsdS(rB
−mB

−) gal 
λ(DE3) 

TOP10 

F− mcrA ∆(mrr-hsdRMS-mcrBC) 
Φ80LacZ∆M15 ∆LacX74 recA1 araD139 
∆(araleu) 7697 galU galK rpsL (StrR) end 
A1 nupG 

DH5α 
F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 
deoR nupG purB20 φ80dlacZΔM15 
Δ(lacZYA-argF)U169, hsdR17(rK–mK+), λ– 

Table 14: List of used media and antibiotics. 

Growth media and 
antibiotics Content Manufacturer 

Lysogeny broth (LB) 

 

Tryptone (10 g/l), yeast extract (5 
g/l), NaCl (10 g/l), pH 7.0 ± 0.2 

Carl Roth Terrific broth (TB) 
Caseine 12 g/l, Yeast extract 24 
g/l, K2HPO4 9.4 g/l, KH2PO4 2.2 

g/l, pH 7.2 ± 0.2 

Ampicillin (Amp)  

Kanamycin (Kan)  
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Table 15: List and composition of used buffers.  

Purification Buffers  Content pH 

Buffer A 

 

50 mM Na2HPO4xH2O, 20 mM 
imidazole,500 mM NaCl, (NaN3 – 30 

µM - optional) 
7.7 

Buffer B 
50 mM Na2HPO4xH2O, 500 mM 

imidazole,500 mM NaCl, (NaN3 – 30 
µM - optional) 

7.7 

Dialysis Buffer 50 mM Na2HPO4xH2O,100 mM NaCl, 
(NaN3 – 30 µM - optional) 7.7 

Analysis Buffer 20 mM Na2HPO4xH2O,150 mM NaCl, 
(NaN3 – 30 µM - optional) 7.0 

PBS 137 mM NaCl, 3 mM KCl, 8 mM 
Na2HPO4xH2O, 1.5 mM KH2PO4 7.0 

SDS-PAGE   

Stacking gel 45 mL Separating Gel Mix, 10% Aps 
0.5 ml, TEMED 0.05 ml - 

Separating gel 24 mL Separating Gel Mix, 10% Aps 
0.25 ml, TEMED 0.025 ml - 

SDS-Loading Buffer 

200 mM DTT, 100 mM Tris pH 6.8 

20% (w/v) glycerol,4% SDS 
bromphenol blue 

- 

SDS Staining Solution 
Coomassie Blue G-250 (110 g), 

phosphoric acid (80 g), ethanol, (50 
g), water (850 mL) 

- 

Running Buffer (10x) - - 
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Analytics   

CD 10 nM NaH2PO4xH20 7.5 

Table 16: List of purification kits. 

Name of Kit Supplier 

NucleoSpin® Plasmid Macherey-Nagel 

Table 17: List of used enzymes and respective buffers. 

Enzyme & Respective 
Buffers Supplier 

3C Protease  In-house preparation (Plückthun 
Lab) 

BamHI 

New England Biolabs 

DpnI 

Phusion® HF DNA 
polymerase 

Phusion HF buffer  

T4 DNA Ligase 

T4 DNA Ligase Buffer 

SDS loading Buffer 

SDS staining solution 
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Running Buffer (10x) 

Table 18: List of chemicals. 

Chemicals Manufacturer 

Agarose Carl Roth 

Coomassie Brilliant Blue 
G-250 SERVA 

DTT Carl Roth 

Ethanol Carl Roth 

Glycerol VWR Chemicals 

HCl Fisher Chemicals 

Imidazole Sigma-Aldrich 

Isopropyl-β-D-
thiogalactopyranoside 
(IPTG) 

VWR Chemicals 

NaCl Fisher Chemicals 

Na2HPO4 Grüssing GmbH 

NaH2PO4 Grüssing GmbH 

NaOH AppliChem 

Sodium Azide (NaN3) VWR Chemicals 

Tween 20  
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Table 19:List of  used equipments. 

Name Manufacturer 

ÄktaTM Pure GE Healthcare 

BD 53 Heating Cabinet Binder 

BioPhotometer®  Eppendorf AG 

C24 Incubator Shaker New Brunswick Scientific GmbH 

Centrifuge 5424 Eppendorf AG 

Centrifuge 5810 R Eppendorf AG 

CD spectrophotometer-J710 JASCO Corporation, Tokyo (JPN) 

Electrophoresis Power Supply-EPS 
301 

GE Healthcare 

HisTrap™ HP column 5mL 

Incubator Binder 

Incubator Shaker Series Innova® 4 New Brunswick Scientific GmbH 

JA 25.50 Rotor 
Beckmann Coulter 

JLA 8.1000 Rotor 

Nun 96-MicroWell flat black Thermo Scientific 

pH 211 Microprocessor pH Meter Hanna instruments 

Research® plus pipettes: 0.1-2.5 μL, 
0.5-10 μL, 10-100 μL,100-1000 μL, 

Eppendorf AG 
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8-channel 0.5-10 μL, 8-channel 30-
300 μL 

Spark® multimode microplate 
reader TECAN 

Sonifier 250 (CE) Branson Ultrasonics 

Thermoblock Dixell 

Vortex Mixer VWR  

Table 20: List of consumables. 

Name  Company 

Amicon® Ultra-15 
centrifugal filter 10 kDa 
MWCO 

Merck 
Milli-Q water system 

MWCO Millipore 
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5.4 Establishing the Purifica0on Protocol with WT Proteins 

After transformation in E.coli BL21 cells with the received plasmids, WT-binder and WT-peptide 

were expressed and purified from the soluble fraction of the cells using the IMAC protocol 

described above (see section 5.2). Both could be purified with high yields (WT-binder: 1.73 mg/ml 

~35 ml and WT-peptide: 9.12 mg/ml 10 ~ml total). An SDS-PAGE was used to check the purity of 

the proteins obtained (Figure 19).  

 

Figure 19: Purification of WT-binder and WT-peptide. (A) Purification followed on SDS-PAGE. The red 
arrows mark the proteins of interest after reverse IMAC (RV-IMAC, see section 5.2) and final corresponds 
to proteins collected after second analysis ON; upper SDS-PAGE shows WT-peptide, bottom one shows 
WT-binder. (B) Elution profiles of proteins after second IMAC. Absorption [mAU] is represented in blue. 
For the RV-IMAC chromatogram the concentration of Buffer B is represented in green.  

 

WT-peptide-RVIMAC

WT-binder-RVIMAC

WT-peptide

WT-binder

A B

Conc B
UV 280

Conc B
UV 280
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After successful purification of the proteins, dissociation constants (KD) were determined by 

fluorescence anisotropy according to a protocol where sfGFP-labeled peptides were used at a 

constant concentration while binders pipetted in decreasing concentration (5.2.1 Exprimental 

Methods). 

 

Figure 20: Determining the dissociation constant of WT-binder and WT-peptide using fluorescence 
anisotropy. Measurement was carried out at a constant peptide concentration of 5 nM and a starting 
concentration of 5 µM protein. Baseline is normalized (see section 5.2). The obtained KD is 3.35 nM which 
is fits with the KD measured in Plückthun Lab (3.3 nM). 

After successfully establishing the KD measurements protocol, the residue at the peptide position 

6, KRKRKRQRAR, was mutated from Arg to Gln, Glu, Asn, Tyr, Leu, and Ser by site-directed 

mutagenesis. The sequences for peptide-Q (KRKRKQQRAR), peptide-E, peptide-N, peptide-M, all 

with sfGFP were confirmed by Sanger sequencing (Eurofins Genomics). Each mutant peptide was 

expressed and purified with the same protocol, and resulted in high yields as comparable to WT-

peptide. However, with Tyr, Ser and Leu, no colony with the desired sequences were found and 

remained to be tested. It should be mentioned that with these constructs double mutations have 

been observed in the peptide, such as; KRKRKYKYQRAR, where two positions of the peptide 

contained Tyr, instead of only at position 6. The peptide also consisted of 12 residues instead of 

10. After sequencing, peptide variants with the correct sequences were used to transform BL21 

Binding experiment of 
designed armadillo repeat 
protein-peptide complex 
with fluorescence 
anisotropy. The KD is 
calculated as 3.35 nM. 
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cells. They were expressed and purified and dissociation constants for WT-binder with different 

peptide variants were measured as described in 5.2.1 Experimental Methods(Table 5.12). In 

general, the determined binding constants are lower than the ones our colleagues in Zürich 

reported. In particular measurements with the E-peptide deviated by tenfold. However, the 

overall trend stayed the same. 

Table 21:The KD values of the WT-binder with peptide variants. Values are compared to values 
measured in Plückthun Lab. KD are given as nM.  

Measurements WT-peptide Peptide-Q Peptide-N Peptide-E 

KDs in Bayreuth 3.35 ± 0.7 22.9 ±  3.6 80.0 + 17.2 117.0 + 13.6 

KDs in Zurich 3.3 37.2 + 10.4 136.1 + 23.9 1343.0 + 323 
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5.5 Tes0ng of Gln-Binder Designs 

After successful establishment of the binding assay, three GLN-binders designs were tested. 

Binders are named as Binder-1,-2, and -3. Binder-1 (pocket sequence: qEsqqeR) is selected to be 

tested first as it was predicted to be the best binder for the GLN-peptide (KRKRKQQRAR), and 

Binder-2 (pocket sequence is: qEsqqQK) was predicted to be the second best binder for GLN-

peptide according to the computational analysis (Freund E., Bachelor Thesis, 2021). The small 

letters in the pocket sequence refer to no mutations at this position, while capital letters refers 

to mutation at this position to the written amino acid. Both sequences were included in the GLN 

binder library suggested by Freund, for further evaluation by the Hine and Plückthun groups. The 

Binder-3 (pocket sequence: qDRqRQE) was optimized with PocketOptimizer (Noske et al., 2023) 

which is based on Binder-1, and whose sequence was not included in the above-mentioned 

library (Freund, Bachelor Thesis, 2021).  

All binders were initially tested with peptide-Q to measure binding affitinity. Given the 

expectation of high affinity, the first assay was set up with a starting concentration of 5 μM of 

Binder-1 and 5 nM of peptide-Q. However, no binding was observed. Further raising of the 

starting concentration of Binder-1 up to 167 μM, binding to peptide-Q could still not be detected. 

This was unexpected, as the peptide residues, except for the mutation of position 6 from Arg to 

Gln, remained the same. While Binder-1 was hypothesized to have higher affinity to peptide-Q 

over WT-peptide, the observed trend of binding curve would likely fall within the micromolar 

range, which is higher than expected or beneficial within the frame of the PRe-ART project.  

To ensure that Binder-1, which contains two mutations in the binding pocket, still folds correctly, 

circular dichroism (CD) spectroscopy was performed. The resulting spectra showed a 

predominantly alpha-helical structure, consistent with the profile of WT-binder. Binding affinities 

for Binder-2 and Binder-3 were measured in the same way as Binder-1, and none of the proteins 

showed a promising binding curve. Similar to Binder-1, their CD spectra closely resembled those 

of the WT-binder. 



 101 

One possible explanation for the significant decrease in binding affinity, despite the proteins 

being correctly folded, could be issues related to the pocket formation itself. Specifically, highly 

charged residues such as R and E in the binding pocket, may block the binding site or alter the 

overall structure. Additionally, oligomerization could prevent the binding as well, further blocking 

interactions with the peptide.  

Despite the challenges in identifying a high-affinity and specific binder among millions of 

sequences, this study provides insights into binder selection and highlights critical considerations 

for improving future design strategies. 

Here, the successful development and validation of a binding assay for protein-peptide 

interactions, based on designed armadillo repeat protein variants, has been presented. This assay 

enables rapid and direct evaluation of potential binding pockets predicted by computational 

methods, thereby contributing to a deeper understanding of these computational approaches 

and facilitating improvements in future predictive accuracy. The assay demonstrates reliability, 

with all components, including proteins and peptides, being purifiable in a time-efficient manner 

and yielding high concentrations. Furthermore, the system supports versatility, as different 

binder sequences can be readily generated through site-directed mutagenesis. Once all peptide-

sfGFP constructs are purified, assay preparation and execution can be achieved with efficienctly. 
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6. Conclusion and Outlook 

The overall goal of this thesis is to contribute to the computational design of protein binding 

modules capable of specifically recognizing amino acids, using a regularized armadillo repeat 

protein scaffold as part of the PRe-ART project. By integrating multiple computational strategies 

and validating key aspects, this work provides a systematic approach to developing and assessing 

binder libraries, with a particular focus on phosphorylated amino acids.  

A computational workflow was established to design targeted binder libraries  for pTyr, pSer and 

pThr by identifying critical interactions and evaluating pocket specificity. Through this approach, 

certain residues at key positions such as Arg and Lys were identified as crucial for binding 

phosphorylated amino acids. The findings provide insights into how pTyr specifically interacts 

within natural as well as potential new binding pockets. Subsequently, two targeted libraries for 

pTyr and one targeted binder library for pSer and pThr were suggested. The designed libraries 

were followed up with in-vitro studies by our collaboration partners. The libraries were 

generated and preliminary in-vitro results confirm the ability of selected variants to bind pTYR 

with high affinity and specificity. In addition, results also hint at the ability of several sequences 

to successfully distinguishing pTyr from its unmodified counterpart, Tyr. This first validation 

underscores the potential of computational protein design. The followed workflow is general and 

can also be applied for designing specific binders for other amino acids.  

To further refine computational binder design, this work also assessed the predictive accuracy of 

three well-established computational protein design methods for evaluating single mutations in 

a protein-peptide system of dArmRP. Since these methods are essential not only for designing 

phosphorylated binders but also for developing binders for other amino acids in the future, their 

accuracy and reliability were systematically analyzed. A standardized framework was developed 

to ensure a consistent comparison of their predictions, revealing distinct tendencies across the 

three approaches. While BBK* and flex ddG demonstrated high accuracy in certain cases, their 
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predictive power was influenced by systematic biases. PocketOptimizer, on the other hand, 

provided more balanced predictions but lacked the precision required in specific contexts. These 

findings underscore the challenges of single-residue predictions and emphasize the importance 

of understanding method-specific tendencies. Based on these results, a complementary analysis 

integrating predictions from all three methods was suggested, which could enhance the accuracy 

of computational binder design. Moreover this work established a test set that will serve as 

benchmark for future method development. 

Beyond computational predictions, during this work,  I established an experimental workflow for 

testing binding modules in the designed armadillo repeat protein system in our lab. Point 

mutations introduced through site-directed mutagenesis enabled the generation of peptide 

variants, which were expressed and purified with high yields for binding experiments. Three 

binders with distinct binding pockets were also successfully expressed and purified, providing a 

solid foundation for future experimental validation. Binding affinity experiments for the wild-

type binder-peptide system yielded results that were consistent with both computational 

predictions and prior studies from our collaboration partners. The system established in this work 

enables the rapid and efficient evaluation of designed binding pockets, making it a valuable tool 

for future protein engineering efforts. 

Overall, this thesis presents a comprehensive and integrative approach to design and evaluate 

protein binding pockets, bridging computational predictions with experimental validation. The 

computational workflow developed here is generalizable and can be applied to other amino 

acids, expanding its potential use in rational protein design. Moreover, by critically assessing 

computational methods and establishing experimental validation strategies, this work lays the 

foundation for future advancements in designing highly specific protein binders. As more high-

quality experimental data become available and computational tools continue to evolve, further 

improvements in predictive accuracy and design strategies can be achieved, ultimately 

broadening the applicability of protein engineering approaches. 
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Building on these findings, future work could focus on expanding the binder library design 

strategy to a broader range of amino acids and post-translational modifications, particularly in 

cases where structural data is limited. Another important direction would be refining the 

computational methods used for single-residue predictions by incorporating hybrid approaches 

that combine physics-based modeling with machine learning techniques. Finally, applying these 

strategies to biologically or therapeutically relevant targets could help bridge the gap between 

computational protein design and real-world applications. 
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Appendix 

A1 CoupledMoves Resfile.  

 
NATRO 
start 
322 A NATAA 
326 A NATAA 
361 - 374 A NATAA 
401 - 416 A NATAA 
445 A NATAA 
449 A NATAA 
452 A NATAA 
1 - 10 B NATAA 
364 A ALLAA 
368 A ALLAA 
371 A ALLAA 
403 A ALLAA 
406 A ALLAA 
407 A ALLAA 
410 A ALLAA 
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A2 flex ddG XML file for pTyr mutation. 

<ROSETTASCRIPTS> 
  <SCOREFXNS> 
    <ScoreFunction name="fa_talaris2014" weights="talaris2014"/> 
    <ScoreFunction name="fa_talaris2014_cst" weights="talaris2014"> 
      <Reweight scoretype="atom_pair_constraint" weight="1.0"/> 
      <Set fa_max_dis="9.0"/> 
    </ScoreFunction> 
  </SCOREFXNS> 
 
  <!-- ### Only required input file (other than PDB) - mutation resfile ### -- 
>  
 
 
 <!-- #### All residues must be set to be NATAA packable at top of resfile ###  
--> 
  <TASKOPERATIONS> 
    <ReadResfile name="res_mutate" filename="%%mutate_resfile_relpath%%"/> 
  </TASKOPERATIONS> 
  <RESIDUE_SELECTORS> 
    <Task name="resselector" fixed="0" packable="0" designable="1"  
task_operations="res_mutate"/> 
    <Neighborhood name="bubble" selector="resselector" distance="8.0"/> 
    <PrimarySequenceNeighborhood name="bubble_adjacent" selector="bubble"  
lower="1" upper="1"/> 
    <StoredResidueSubset name="restore_neighbor_shell"  
subset_name="neighbor_shell"/> 
    <Not name="everythingelse" selector="restore_neighbor_shell"/> 
  </RESIDUE_SELECTORS> 
  <TASKOPERATIONS> 
    <OperateOnResidueSubset name="repackonly"  
selector="restore_neighbor_shell"> 
      <RestrictToRepackingRLT/> 
    </OperateOnResidueSubset> 
    <OperateOnResidueSubset name="norepack" selector="everythingelse"> 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
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   <UseMultiCoolAnnealer name="multicool" states="6"/> 
    <ExtraChiCutoff name="extrachizero" extrachi_cutoff="0"/> 
    <InitializeFromCommandline name="commandline_init"/> 
    <RestrictToRepacking name="restrict_to_repacking"/> 
  </TASKOPERATIONS> 
  <FILTERS> 
  Calculates the side-chain RMSD before and after simulation 
  <SidechainRmsd name="rmsd" threshold="10" include_backbone="1"  
res1_pdb_num="6" res2_pdb_num="6"/> 
  </FILTERS> 
 <MOVERS> 
    <StoreResidueSubset name="neighbor_shell_storer"  
subset_name="neighbor_shell" residue_selector="bubble_adjacent" />    
 
 <AddConstraintsToCurrentConformationMover name="addcst"  
use_distance_cst="1" coord_dev="0.5" min_seq_sep="0" max_distance="9"  
CA_only="1" bound_width="0.0" cst_weight="0.0"/> 
    <ClearConstraintsMover name="clearcst"/> 
    <MinMover name="minimize" scorefxn="fa_talaris2014_cst" chi="1" bb="1"  
type="lbfgs_armijo_nonmonotone" tolerance="0.000001"  
max_iter="%%max_minimization_iter%%"  
abs_score_convergence_threshold="%%abs_score_convergence_thresh%%"/> 
    <PackRotamersMover name="repack" scorefxn="fa_talaris2014"  
task_operations="commandline_init,repackonly,norepack,multicool"/> 
    <MutateResidue name="mutate" target="6B" new_res="TYR:phosphorylated"/> 
    <ReportToDB name="dbreport" batch_description="interface_ddG"  
database_name="ddG.db3"> 
      <ScoreTypeFeatures/> 
      <ScoreFunctionFeatures scorefxn="fa_talaris2014"/> 
      <StructureScoresFeatures scorefxn="fa_talaris2014"/> 
    </ReportToDB> 
    <ReportToDB name="structreport" batch_description="interface_ddG_struct"  
database_name="struct.db3"> 
      <PoseConformationFeatures/> 
      <PdbDataFeatures/> 
      <JobDataFeatures/> 
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<ResidueFeatures/> 
      <PoseCommentsFeatures/> 
      <ProteinResidueConformationFeatures/> 
      <ResidueConformationFeatures/> 
    </ReportToDB> 
    <SavePoseMover name="save_wt_bound_pose" restore_pose="0"  
reference_name="wt_bound_pose"/> 
   <SavePoseMover name="save_backrub_pose" restore_pose="0"  
reference_name="backrubpdb"/> 
    <SavePoseMover name="restore_backrub_pose" restore_pose="1"  
reference_name="backrubpdb"/> 
    <InterfaceDdGMover name="int_ddG_mover"  
wt_ref_savepose_mover="save_wt_bound_pose" chain_name="%%chainstomove%%"  
db_reporter="dbreport" scorefxn="fa_talaris2014"/> 
   
  <ScoreMover name="apply_score" scorefxn="fa_talaris2014_cst" verbose="0"/>   
<!-- This ParsedProtocol allows the ddG calculation to take place multiple  
times along the backrub trajectory, if desired --> 
    <ParsedProtocol name="finish_ddg_post_backrub"> 
      <Add mover_name="save_backrub_pose"/> 
      <Add mover_name="structreport"/> 
      <Add mover_name="repack"/> 
      <Add mover_name="addcst"/> 
      <Add mover_name="minimize"/> 
      <Add mover_name="clearcst"/> 
      <Add mover_name="save_wt_bound_pose"/> 
      <Add mover_name="structreport"/> 
      <Add mover_name="restore_backrub_pose"/> 
      <Add mover_name="mutate"/> 
      <Add mover_name="addcst"/> 
      <Add mover_name="minimize"/> 
      <Add mover_name="clearcst"/> 
      <Add mover_name="structreport"/> 
      <Add mover_name="int_ddG_mover"/> 
    </ParsedProtocol> 
    Set side-chain moves to only include residues within 6 angstrom shell 
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<Sidechain name="sidechain"  
task_operations="restrict_to_repacking,commandline_init,extrachizero"/> 
    <BackrubProtocol name="backrub" mc_kt="1.2"  
ntrials="%%number_backrub_trials%%"  
pivot_residue_selector="restore_neighbor_shell"  
task_operations="restrict_to_repacking,commandline_init,extrachizero"  
recover_low="0" trajectory_stride="%%backrub_trajectory_stride%%"  
trajectory_apply_mover="finish_ddg_post_backrub"/> 
    During Monte Carlo, alternate between backrub moves (75%) and side-chain  
moves (25%) 
    <ParsedProtocol name="backrub_protocol" mode="single_random"> 
     <Add mover_name="backrub" apply_probability="0.75"/> 
     <Add mover_name="sidechain" apply_probability="0.25"/> 
    </ParsedProtocol> 
 Set up Monte Carlo simulation with 10,000 steps and kT=0.6 
  <GenericMonteCarlo name="backrub_mc" mover_name="backrub_protocol"  
scorefxn_name="fa_talaris2014"/> backrubtrials="10000" temperature="0.6"  
preapply="0"/> 
  </MOVERS> 
  <APPLY_TO_POSE> 
  </APPLY_TO_POSE> 
  <PROTOCOLS> 
    <Add mover_name="addcst"/> 
    <Add mover_name="apply_score"/> <!-- Necessary to initialize neighbor graph  
--> 
    <Add mover_name="neighbor_shell_storer"/> 
    <Add mover_name="minimize"/> 
    <Add mover_name="clearcst"/> 
    Calculate RMSD before simulation 
    <Add filter_name="rmsd"/> 
    Run backrub simulation 
    <Add mover_name="backrub_mc"/> 
    Calculate RMSD after simulation 
    <Add filter_name="rmsd"/> 
  </PROTOCOLS> 
  <OUTPUT /> 
</ROSETTASCRIPTS>  
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A3  OSPREY BBK* running file. 

 
###  
OSPREY 3.2  
### 
import osprey 
from osprey import jvm 
def show_energy_breakdowns(confAnalysis): 
    t = jvm.getInnerClass(osprey.c.energy.ResidueForcefieldBreakdown, 'Type') 
    print("Forcefield breakdown:  
\n{}\n".format(confAnalysis.breakdownEnergyByPosition(t.All))) 
    print("Electrostatic breakdown:  
\n{}\n".format(confAnalysis.breakdownEnergyByPosition(t.Electrostatics))) 
    print("van der Waals breakdown:  
\n{}\n".format(confAnalysis.breakdownEnergyByPosition(t.VanDerWaals))) 
    print("Solvation breakdown:  
\n{}\n".format(confAnalysis.breakdownEnergyByPosition(t.Solvation))) 
    print("Offsets breakdown:  
\n{}\n".format(confAnalysis.breakdownEnergyByPosition(t.Offsets))) 
osprey.start(heapSizeMiB=30000, 
 enableAssertions=False, 
 stackSizeMiB=None, 
 garbageSizeMiB=10000, 
 allowRemoteManagement=False, 
    attachJvmDebugger=False 
 ) 
# read a PDB file for molecular info 
mol = osprey.readPdb('./osprey_Arg-binder.pdb’) 
# choose a forcefield 
ffparams = osprey.ForcefieldParams() 
#ffparams = osprey.ForcefieldParams(osprey.Forcefield.AMBER) 
 
#ffparams.solvationForcefield = osprey.SolvationForcefield.PoissonBoltzmann 
templateLib = osprey.TemplateLibrary( 
 
       ffparams.forcefld, 
   ) 



 123 

 
# define the protein strand 
#protein = osprey.Strand(mol, templateLib=templateLib, residues=[‘178’, ‘514’]) 
#protein.flexibility[‘371’].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeR 
otamers()#.setContinuous() 
#protein.flexibility['407'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeR 
otamers() 
protein = osprey.Strand(mol, templateLib=templateLib, residues=['179', '514']) 
protein.flexibility['364'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRo 
tamers()#.setContinuous() 
protein.flexibility['368'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRo 
tamers().setContinuous() 
protein.flexibility['371'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRo 
tamers().setContinuous() 
protein.flexibility['403'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRo 
tamers() 
protein.flexibility['406'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRo 
tamers()#.setContinuous() 
protein.flexibility['407'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRo 
tamers().setContinuous() 
protein.flexibility['410'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRo 
tamers().setContinuous() 
#protein.flexibility['414'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeR 
otamers()#.setContinuous() 
# define the ligand strand 
ligand = osprey.Strand(mol, templateLib=templateLib, residues=['1', '10']) 
#ligand.flexibility['6'].setLibraryRotamers(osprey.WILD_TYPE).addWildTypeRota 
mers().setContinuous() 
ligand.flexibility['6'].setLibraryRotamers(osprey.WILD_TYPE, 'ARG', 'SER',  
'GLY', 'VAL', 'LEU', 'ILE', 'MET', 'PHE', 'TYR', 'TRP', 'ASN', 'HIS', 'ALA',  
'ASP', 'GLU', 'GLN', 'LYS').addWildTypeRotamers().setContinuous() 
# make the conf space for the protein 
#bbflex1protein = osprey.c.confspace.CATSStrandFlex(protein,'367','372') 
#bbflex2protein = osprey.c.confspace.CATSStrandFlex(protein,'406','414') 
 
#proteinStrandAndFlex = [protein, bbflex2protein, bbflex1protein] 
 
proteinStrandAndFlex = [protein] 
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proteinConfSpace = osprey.ConfSpace([proteinStrandAndFlex]) 
# make the conf space for the ligand 
bbflex = osprey.c.confspace.CATSStrandFlex(ligand,'2','8') 
ligandStrandAndFlex = [ligand, bbflex] 
#ligandStrandAndFlex = [ligand] 
ligandConfSpace = osprey.ConfSpace([ligandStrandAndFlex]) 
# make the conf space for the protein+ligand complex 
complexConfSpace = osprey.ConfSpace([proteinStrandAndFlex,  
ligandStrandAndFlex]) 
parallelism = osprey.Parallelism(cpuCores=16) 
gpuParallelism = osprey.Parallelism(cpuCores=4, gpus=1, streamsPerGpu=1) 
minimizingEcalc = osprey.EnergyCalculator(complexConfSpace, ffparams,  
parallelism=parallelism, isMinimizing=True) 
# BBK* needs a rigid energy calculator too, for multi-sequence bounds on K* 
rigidEcalc = osprey.SharedEnergyCalculator(minimizingEcalc,  
isMinimizing=False) 
## define energies of conformations? 
#def confEcalcFactory(confSpace, ecalc): 
# eref = osprey.ReferenceEnergies(confSpace, ecalc) 
# return osprey.ConfEnergyCalculator(confSpace, ecalc,  
# configure BBK* 
bbkstar = osprey.BBKStar( 
 proteinConfSpace, 
 ligandConfSpace, 
 complexConfSpace, 
 numBestSequences=18, 
 epsilon=0.68, # you probably want something precise  
 writeSequencesToConsole=True, 
 writeSequencesToFile='bbkstar.results.tsv' 
) 
# configure BBK* inputs for each conf space 
for info in bbkstar.confSpaceInfos():        
 print ("### Started: {}".format(info)) 
        # how should we define energies of conformations? 
        eref = osprey.ReferenceEnergies(info.confSpace, minimizingEcalc) 
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 # reference energy with residue entropy 
        #eref = osprey.ReferenceEnergies(info.confSpace, minimizingEcalc,  
addResEntropy=True) 
        info.confEcalcMinimized = osprey.ConfEnergyCalculator(info.confSpace,  
minimizingEcalc, referenceEnergies=eref) 
        # with residue entropy 
        #info.confEcalcMinimized = osprey.ConfEnergyCalculator(info.confSpace,  
minimizingEcalc, referenceEnergies=eref, addResEntropy=True) 
        # compute the energy matrix 
        ematMinimized = osprey.EnergyMatrix(info.confEcalcMinimized,  
cacheFile='emat.{}.dat'.format(info.id)) 
        def makeAStarMinimized(rcs, emat=ematMinimized): 
            return osprey.AStarTraditional(emat, rcs, showProgress=False)     
info.confSearchFactoryMinimized =  
osprey.BBKStar.ConfSearchFactory(makeAStarMinimized) 
       # BBK* needs rigid energies too 
        confEcalcRigid =  
osprey.ConfEnergyCalculatorCopy(info.confEcalcMinimized, rigidEcalc) 
        ematRigid = osprey.EnergyMatrix(confEcalcRigid,  
cacheFile='emat.{}.rigid.dat'.format(info.id)) 
        def makeAStarRigid(rcs, emat=ematRigid): 
            return osprey.AStarTraditional(emat, rcs, showProgress=False) 
        info.confSearchFactoryRigid =  
osprey.BBKStar.ConfSearchFactory(makeAStarRigid) 
        # how should we score each sequence? 
        # (since we're in a loop, need capture variables above by using  
defaulted arguments) 
        def makePfunc(rcs, confEcalc=info.confEcalcMinimized,  
emat=ematMinimized): 
                return osprey.PartitionFunction( 
                        confEcalc, 
                        osprey.AStarTraditional(emat, rcs,  
showProgress=False), 
                        osprey.AStarTraditional(emat, rcs,  
showProgress=False), 
                        rcs 
                ) 
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        info.pfuncFactory = osprey.KStar.PfuncFactory(makePfunc) 
import jpype 
 
import jpype.imports 
from jpype.types import * 
import java.lang 
# run BBK* 
try: 
    scoredSequences = bbkstar.run(minimizingEcalc.tasks) 
except java.lang.Exception as ex: 
    print(ex) 
   ex.printStackTrace() 
    exit(1) 
# make a sequence analyzer from the configured KStar instance 
# (you could also give it a configured BBKStar instance if you have that instead) 
analyzer = osprey.SequenceAnalyzer(bbkstar) 
# use results 
numConfs = 500 # Number of conformations written in PDB output 
for scoredSequence in scoredSequences: 
 print("result:") 
 print("\tsequence: {}".format(scoredSequence.sequence)) 
 print("\tK* score: {}".format(scoredSequence.score)) 
 # write the sequence ensemble, with up to numConfs of the lowest-energy  
conformations 
 analysis = analyzer.analyze(scoredSequence.sequence, numConfs) 
 print(analysis) 
 counter = 0 
 for confAnalysis in analysis.ensemble.analyses: 
  print ("####Note-counter: Sequence {}, Conformation  
{}".format(scoredSequence.sequence, counter)) 
  show_energy_breakdowns(confAnalysis) 
  counter+=1 
 analysis.writePdb( 
  'seq.{}.pdb'.format(scoredSequence.sequence), 
  'Top {} conformations for sequence {}'.format(numConfs,  
scoredSequence.sequence) 
 ) 
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A4. flex ddG running files for specificity evaluations. 

 
Import socket 
import sys 
import os 
import subprocess 
use_multiprocessing = True 
if use_multiprocessing: 
    import multiprocessing 
    max_cpus = 64  
rosetta_scripts_path =  
os.path.expanduser("/rosetta/3.12/main/source/bin/rosetta_scripts.static.linuxgccrelease") 
nstruct = 250  
max_minimization_iter = 5000  
abs_score_convergence_thresh = 1.0  
number_backrub_trials = 35000  
backrub_trajectory_stride = 5000  
path_to_script = 'ddG-backrub.xml' 
residue_to_mutate = ('B', 6, '') # Residue position to perfrom saturation mutatagenesis. Format: (Chain, PDB  
residue number, insertion code). 
def run_flex_ddg_saturation( name, input_path, input_pdb_path, chains_to_move, mut_aa, nstruct_i  
): 
    output_directory = os.path.join( './output_saturation') 
    if not os.path.isdir(output_directory): 
        os.makedirs(output_directory) 
    mutation_chain, mutation_resi, mutation_icode = residue_to_mutate 
    resfile_path = os.path.join( output_directory, 'mutate_%s%d%s_to_%s.resfile' % (mutation_chain,  
mutation_resi, mutation_icode, mut_aa) ) 
    with open( resfile_path, 'w') as f: 
        f.write( 'NATRO\nstart\n%d%s %s PIKAA %s\n' % (mutation_resi, mutation_icode, mutation_chain,  
mut_aa) ) 
    flex_ddg_args = [ 
        os.path.abspath(rosetta_scripts_path), 
        "-s %s" % os.path.abspath(input_pdb_path), 
        '-parser:protocol', os.path.abspath(path_to_script), 
        '-parser:script_vars', 
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       'chainstomove=' + chains_to_move, 
 
        'mutate_resfile_relpath=' + os.path.abspath( resfile_path ),        
 'number_backrub_trials=%d' % number_backrub_trials, 
        'max_minimization_iter=%d' % max_minimization_iter, 
        'abs_score_convergence_thresh=%.1f' % abs_score_convergence_thresh, 
        'backrub_trajectory_stride=%d' % backrub_trajectory_stride , 
        '-restore_talaris_behavior', 
        '-in:file:fullatom', 
        '-ignore_unrecognized_res', 
        '-ignore_zero_occupancy false', 
        '-ex1', 
        '-ex2', 
    ] 
    log_path = os.path.join(output_directory, 'rosetta.out') 
    print( 'Running Rosetta with args:' ) 
    print( ' '.join(flex_ddg_args) ) 
    print( 'Output logged to:', os.path.abspath(log_path) ) 
    print() 
    outfile = open(log_path, 'w') 
    process = subprocess.Popen(flex_ddg_args, stdout=outfile, stderr=subprocess.STDOUT, close_fds  
= True,  
cwd = output_directory) 
    returncode = process.wait() 
  outfile.close() 
if __name__ == '__main__': 
    mutation_chain, mutation_resi, mutation_icode = residue_to_mutate 
    cases = [] 
    for nstruct_i in range(1, nstruct + 1 ): 
        for case_name in os.listdir('inputs'): 
            case_path = os.path.join( 'inputs', case_name ) 
            for f in os.listdir(case_path): 
                if f.endswith('.pdb'): 
                    input_pdb_path = os.path.join( case_path, f ) 
                    break 
            with open( os.path.join( case_path, 'chains_to_move.txt' ), 'r' ) as f: 
                chains_to_move = f.readlines()[0].strip() 
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            for mut_aa in 'ACDEFGHIKLMNPQRSTVWY': 
                cases.append( ('%s_%s%d%s' % (case_name, mutation_chain, mutation_resi,  
mutation_icode),  
 
case_path,  
input_pdb_path, chains_to_move, mut_aa, nstruct_i) ) 
    if use_multiprocessing: 
   pool = multiprocessing.Pool( processes = min(max_cpus, multiprocessing.cpu_count()) ) 
    for args in cases: 
        if use_multiprocessing: 
            pool.apply_async( run_flex_ddg_saturation, args = args ) 
        else: 
            run_flex_ddg_saturation( *args ) 
    if use_multiprocessing: 
        pool.close() 
        pool.join() 
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A5. Experimental binding affinity data for binders. 

Table 22: Experimental binding affinity data for Arg-binder used for comparison with calculated 
scores. 

Arg-binder (QWSQQEW) 
Peptide KD [nM] Error [nM] 
R 2.787 0.85 
K 2.85 0.44 
Q 37.245 37.245 
V 41.055 25.52 
A 57.57 4.79 
S 57.64 13.0 
H 61.8 23.48 
I 63.63 4.14 
G 65.665 24.19 
Y 82.52 1.94 
F 105.92 29.81 
L 113.95 1.63 
M 128.64 44.92 
N 136.1 23.90 
W 176.3 26.45 
D 1334 651.95 
E 1343.5 323.15 

Table 23: Experimental binding affinity data for Tyr-binder used for comparison with calculated 
scores. 

Tyr-binder (KEVLIRQ) 
Peptide KD [nM] Error [nM] 
Y  5  -  
W  62  -  
M  111  -  
H  127  -  
F  148  -  
R  162  -  
I  199  -  
L  327  -  
A  636  -  
V  731  -  
T  1296  -  
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Table 24: Experimental binding affinity data for Trp-binder used for comparison with calculated 
scores. 

Trp-binder (TATAWRT) 
Peptide KD [nM] Error [nM] 
W  64  21  
Y  135  11  
F  176  15  
H  218  73  
I  223  42  
N  230  -  
T  236  46  
L  241  119  
V  340   80  
R  428  28  
M  435  -  
S  500  -  
A  806  -  

Table 25: Experimental binding affinity data for Ile-binder used for comparison with calculated scores. 

Ile-binder (FALYDRV) 
Peptide KD [nM] Error [nM] 
I  28  1  
L  43  8  
M  61  -  
V  73  34  
R  93  -  
Y  90  12  
W  155  36  
A  173  -  
H  227  63  
F  241  150  
T  325  100  
Q  470  -  
S  507  -  

 

 



 132 

Table 26: Experimental binding affinity data for His-binder used for comparison with calculated scores. 

His-binder (DYTDWQA) 
Peptide KD [nM] Error [nM] 
H  8  -  
R  104  -  
Y  292  -  
M  425  -  
W  430  -  
A  436  -  
N  727  -  
I  740  -  
T  930  -  

A6.  Correlation between predicted and experimentally determined binding specificities. 

 

Figure 21: Correlation between calculated binding specificity predictions and experimental binding 
specificities for the Tyr, Trp, His, and Ile binding pockets using 5AEI as scaffold. Correlation between 
experimental measurements for each binder with the calculations from BBK* (A), from flex ddG (B) and 
from PocketOptimizer (C) are given with their corresponding Pearson correlations (Taken from Ayyildiz et 
al., 2024). 

A

B

C
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A7.  Correlation between predicted and experimentally determined binding specificities. 

 

Figure 22: Correlation of specificity predictions from all three methods. BBK*, flex ddG, and 
PocketOptimizer predictions for (A) His and (B) Trp and (C) Ile binders were obtained using the crystal 
structure 6SA8 as the scaffold. 

 

 

 

 

 

 

 

 

 

 

His-binder Ile-binder

A B C



 134 

A8  Primers. 

Table 27: Used primers for peptide variants.  

Primer Name Primer Sequence (5'-3') 

QA6Q-sfGFP-forward CCAAACGCAAGCGTAAGCAGGCACGTCAGCGCGGCG 

QA6Q-sfGFP-reverse CGCCGCGCTGACGTGCCTGCTTACGCTTGCGTTTGG 

QA6E-sfGFP-forward CCAAACGCAAGCGTAAGGAAGCACGTCAGCGCGGCG 

QA6E-sfGFP-reverse CGCCGCGCTGACGTGCTTCCTTACGCTTGCGTTTGG 

QA6Y-sfGFP-forward CCAAACGCAAGCGTAAGTATGCACGTCAGCGCGGCG 

QA6Y-sfGFP-reverse CGCCGCGCTGACGTGCATACTTACGCTTGCGTTTGG 

QA6L-sfGFP-forward CCAAACGCAAGCGTAAGCTGGCACGTCAGCGCGGCG 

QA6L-sfGFP-reverse CGCCGCGCTGACGTGCCAGCTTACGCTTGCGTTTGG 

QA6N-sfGFP-forward CCAAACGCAAGCGTAAGAACGCACGTCAGCGCGGCG 

QA6N-sfGFP-reverse CGCCGCGCTGACGTGCCAGCTTACGCTTGCGTTTGG 

QA6S-sfGFP-forward CCAAACGCAAGCGTAAGAGCGCACGTCAGCGCGGCG 

QA6S-sfGFP-reverse CGCCGCGCTGACGTGCGCTCTTACGCTTGCGTTTGG 

QA6M-sfGFP-forward CCAAACGCAAGCGTAAGATGGCACGTCAGCGCGGCG 

QA6M-sfGFP-reverse CGCCGCGCTGACGTGCCATCTTACGCTTGCGTTTGG 
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