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Summary/Zusammenfassung

1 Summary/Zusammenfassung

1.1 Summary

This thesis addresses the development of heterogeneous, nanostructured catalysts based on
earth-abundant metals and their application in thermal catalytic processes for complex organic
synthesis, with a particular emphasis on the production of amines, including

tetrahydroquinolines, as well as primary, secondary, and tertiary alkyl amines.

The first part of the thesis focuses on designing a novel synthesis protocol for a nanostructured
cobalt catalyst and its application in the selective hydrogenation of aromatic heterocycles. This
approach aimed at decoupling the metal and N/C sources, allowing for their independent
optimization for improved catalytic performance. Three components, an inexpensive metal
precursor  [Co(OAc); -4 H,O], an  easy-to-synthesize = N/C  precursor  (meso-
octamethylcalix[4]pyrrole), and a commercially available porous support material (SiO;) are
pyrolyzed at 800 °C under nitrogen atmosphere to form the Co/SiO> catalyst in a simple, single
synthesis step. Various parameters, including pyrolysis temperature, support materials, metal
precursors, and M/N ratios, were investigated to optimize catalyst activity. By varying the M/N
ratio from 1:1 to 1:10, it was found that a specific M/N ratio of 1:4 is optimal. This is due to
the microporous N/C structure or the optimal thickness of the embedding N/C layer, which
balances educt access and catalyst stability. Too thick a layer impedes access, while too thin a
layer risks cobalt leaching due to nanoparticle detachment. The catalyst with 1.81 wt% cobalt
loading showed the best activity, confirmed by ICP-OES. In summary, the reaction proceeds
efficiently and selectively with 5.0 mol% Co, 2.0 MPa H,, 70 °C, and 20 h reaction time.
HAADF-STEM showed homogeneous distribution of cobalt nanoparticles (4.8 nm). The
surface area of the support (194 m*/g) and corresponding catalyst (217 m?/g) was determined
by Nz physisorption, with an increase in surface area and additional microporosity due to carbon
black entrapment. HAADF-STEM combined with EDX and EELS, SEM-EDX, XPS, PXRD,
and PDF confirm that the particles are composed of metallic cobalt with cobalt oxide on their
surface. A total of 31 N-, O-, and S-heterocycles were selectively hydrogenated, with increased

conditions required for O- and S-heterocycles.

The second part of the thesis presents a new catalytic pathway for synthesizing hydroquinolines
directly from nitroaldehydes and ketones, given their importance in drug molecules and
precursors. The challenge of quinoline substrate synthesis is addressed by the Friedlinder

synthesis, which requires 2-aminoaldehydes that are challenging to prepare. This work solves
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the issue using a reusable Ni/N-SiC catalyst, enabling efficient 2-aminoaldehyde synthesis from
2-nitrobenzaldehyde, followed by the Friedlinder reaction and hydrogenation to
hydroquinolines. The N-SiC support is prepared by crosslinking the commercial
polycarbosilane SMP-10 and acrylonitrile with AIBN, followed by pyrolysis at 1000 °C under
nitrogen and base treatment to remove the Si-rich phase. Active nickel nanoparticles are
obtained on the N-SiC support by wet impregnation with Ni(NOs)2 - 6 H2O followed by
pyrolysis and reduction. SEM-EDX and HAADF-STEM show a homogeneous distribution of
nickel nanoparticles (8.5 nm). HAADF-STEM with EDX, HR-TEM with EELS and FFT, XPS,
and PXRD confirm metallic nickel nanoparticles with nickel oxide on their surface. Argon
physisorption shows a slight decrease in surface area from 580 m*g (N-SiC) to 563 m?%/g
(N1#/N-SiC). ICP-OES and CHN analysis confirm a nickel content of 4.0 wt%, with 83.3 % C,
5.7% N, and 7.0 % Si. Several parameters were screened in the one-pot reaction of
2-nitrobenzaldehyde with acetophenone to obtain 2-phenyl-1,2,3,4-tetrahydroquinoline,
divided into three steps: (A) selective hydrogenation of 2-nitrobenzaldehyde to 2-
aminobenzaldehyde with Ni/N-SiC, (B) Friedldnder synthesis with LiOH, and (C)
hydrogenation of 2-phenylquinoline to 2-phenyl-1,2,3,4-tetrahydroquinoline using the Ni/N-
SiC catalyst from (A). For step A, 4.0 mol% Ni, 0.5 mmol nitrobenzaldehyde, 0.5 mmol
acetophenone, 3 mL ethanol, 3.0 MPa Ha, 40 °C for 20 h are the best conditions. For step B,
0.3 mmol LiOH are added for 20 h at 60 °C. For step, C 5.0 MPa H», 120 °C for 48 h are
aligned. Step C is the most challenging, limiting step with a maximum yield of 91 % 2-phenyl-
1,2,3,4-tetrahydroquinoline in the benchmark synthesis. Using optimal conditions, 16
aldehyde-derived and 21 ketone-derived substrates were synthesized along with three highly

functionalized substrates and four precursors for bioactive drug molecules.

The third part of the thesis focuses on the synthesis of primary, secondary, and tertiary alkyl
amines, inspired by the hydroquinoline synthesis work. In addition to heterocyclic amines, the
synthesis of substituted alkyl amines is crucial for the synthesis of bioactive molecules. To
achieve this, a synthetic approach combining reductive amination and BH/HA using ammonia,
alcohols, aldehydes, ketones, and hydrogen with a CoSc/N-SiC catalyst is developed. The
catalyst is synthesized using N-SiC, Co(NO3)2 - 6 HoO and Sc(NO3)3 - 5 H>O as described in
the second part. HAADF-STEM shows a homogeneous distribution of Co nanoparticles
(13.9 nm), with orders of magnitude smaller Sc particles finely dispersed over the support, as
confirmed by EELS. XPS analysis shows that the Sc fraction is ten times higher than the Co
fraction, although the same concentration is expected. This indicates that Sc is finely dispersed

on the outer layer, while Co is present in the form of large particles, consistent with STEM-
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EELS results. ICP-OES (2.0 wt% Co, 2.0 wt% Sc) and SEM-EDX further confirm this. Using
the catalyst, 13 primary amines, 24 secondary amines, and 8 tertiary amines, including five

novel compounds, are synthesized.
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1.2 Zusammenfassung

Die Dissertation beschiftigt sich mit der Entwicklung heterogener, nanostrukturierter
3d-Metallkatalysatoren und deren Anwendung in thermisch-katalytischen Prozessen fiir
komplexe organische Synthesen. Ein besonderer Schwerpunkt liegt auf der Herstellung von

Tetrahydrochinolinen sowie priméren, sekundiren und tertidren Alkylaminen.

Der erste Teil der Arbeit konzentriert sich auf die Entwicklung eines neuartigen
Syntheseprotokolls fiir einen nanostrukturierten Kobaltkatalysator und dessen Anwendung fiir
die selektive Hydrierung von aromatischen Heterocyclen. Ziel war es, die Metall- und
N/C-Quellen zu entkoppeln, um eine unabhidngige Optimierung zur Verbesserung der
katalytischen Aktivitdt zu ermdglichen. Drei Komponenten, eine kostengiinstige Metallvorstufe
[Co(OAc): - 4 H2O], eine leicht herstellbare N/C-Vorstufe (meso-Octamethylcalix[4]pyrrol)
und ein pordses Trigermaterial (S102) wurden bei 800 °C in Stickstoffatmosphire pyrolysiert,
um den Co/SiO:-Katalysator in einem einfachen, einstufigen Syntheseschritt herzustellen.
Verschiedene Parameter wie Pyrolysetemperatur, Tragermaterialien, Metall-Prékursoren und
M/N-Verhéltnisse wurden untersucht, um die katalytische Aktivitit zu optimieren. Ein
M/N-Verhiltnis von 1:4 erwies sich als optimal, da die mikroporése N/C-Struktur bzw. die
optimale Dicke der eingebetteten N/C-Schicht den Zugang der Edukte und die Stabilitdt des
Katalysators begiinstigt. Eine zu dicke Schicht behindert die Zuginglichkeit, eine zu diinne
Schicht begiinstigt die Auswaschung von Kobalt durch Ablésung der Nanopartikel. Der
Katalysator mit 1,81 wt% Kobalt zeigte die beste Aktivitidt, was durch ICP-OES bestitigt
wurde. Zusammenfassend lduft die Reaktion bei 5,0 mol% Co, 2,0 MPa H», 70 °C und einer
Reaktionszeit von 20 Stunden effizient und selektiv ab. HAADF-STEM zeigte eine homogene
Verteilung der Kobalt-Nanopartikel (4,8 nm). Die spezifische Oberfliche des Tragers
(194 m?*/g) und des entsprechenden Katalysators (217 m?/g) wurde durch N,-Physisorption
bestimmt. Die Zunahme der Oberfliche und der Mikroporositdt ist auf die Generierung von
Aktivkohle zuriickzufiihren. HAADF-STEM in Kombination mit EDX und EELS, SEM-EDX,
XPS, PXRD und PDF zeigen, dass die Partikel aus metallischem Kobalt bestehen und von einer
Kobaltoxidschicht umgeben sind. Insgesamt wurden 31 N-, O- und S-Heterocyclen selektiv

hydriert, wobei fiir O- und S-Heterocyclen erhohte Reaktionsbedingungen erforderlich waren.

Im zweiten Teil der Arbeit wird ein neuer katalytischer Weg zur direkten Synthese von
Hydrochinolinen aus Nitroaldehyden und Ketonen vorgestellt, die fiir Arzneimittel und deren
Vorstufen von Bedeutung sind. Das Problem der Chinolin-Synthese wird durch die

Friedlinder-Synthese gelost, die schwer zugédngliche 2-Aminoaldehyde erfordert. Diese
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Schwierigkeit wird durch die Verwendung eines wiederverwendbaren Ni/N-SiC-Katalysators
gelost, der eine effiziente Synthese von 2-Aminoaldehyden aus 2-Nitrobenzaldehyden
ermdglicht, gefolgt von der Friedldinder-Reaktion und der Hydrierung zu Hydrochinolinen. Das
N-SiC Tragermaterial wird durch Vernetzung des Polycarbosilans SMP-10 mit Acrylnitril
mittels AIBN, anschlieBender Pyrolyse bei 1000 °C unter Stickstoffatmosphédre und
Basenbehandlung zur Entfernung der Si-reichen Phase hergestellt. Aktive Nickel-Nanopartikel
werden durch Nassimprignierung des N-SiC Trigermaterials mit Ni(NO3), - 6 H2O, gefolgt
von Pyrolyse und Reduktion, synthetisiert. SEM-EDX und HAADF-STEM Aufnahmen zeigen
eine homogene Verteilung der Nickel-Nanopartikel (8,5 nm). HAADF-STEM mit EDX, HR-
TEM mit EELS und FFT, XPS und PXRD Messungen bestitigen metallische Nickel-
Nanopartikel mit einer Nickeloxidoberflidche. Die Ar-Physisorption zeigt eine leichte Abnahme
der spezifischen Oberfliche von 580 m?*/g (N-SiC) auf 563 m?/g (Ni/N-SiC). ICP-OES und
CHN-Analyse bestitigen einen Nickelgehalt von 4,0 wt% mit 83,3 % C, 5,7 % N und 7,0 % Si.
Bei der One-Pot-Reaktion von 2-Nitrobenzaldehyd mit Acetophenon, zur Herstellung von
2-Phenyl-1,2,3,4-tetrahydrochinolin, wurden verschiedene Parameter untersucht und optimiert.
Die Reaktion besteht aus drei Schritten: (A) selektive Hydrierung von 2-Nitrobenzaldehyd zu
2-Aminobenzaldehyd mit Ni/N-SiC, (B) Friedlinder Synthese mit LiOH und (C) Hydrierung
von 2-Phenylchinolin zu 2-Phenyl-1,2,3,4-tetrahydrochinolin mit dem Katalysator aus (A). Fiir
Schritt A sind 4,0 mol% Ni, 0,5 mmol 2-Nitrobenzaldehyd, 0,5 mmol Acetophenon, 3 mL
Ethanol, 3,0 MPa H; und 40 °C fiir 20 h optimal. Fiir Schritt B werden 0,3 mmol LiOH bei
60 °C fiir 20 h zugegeben. Schritt C wird bei 5,0 MPa H> und 120 °C fiir 48 h durchgefiihrt.
Schritt C ist der anspruchsvollste und limitierende Schritt, mit einer maximalen Ausbeute von
91 % 2-Phenyl-1,2,3,4-tetrahydrochinolin in der Referenzsynthese. Unter optimalen
Bedingungen wurden 16 Aldehyd- und 21 Keton-Derivate sowie drei hochfunktionalisierte

Substrate und vier Vorstufen fiir bioaktive Wirkstoffe synthetisiert.

Der dritte Teil der Arbeit konzentriert sich auf die Synthese von priméren, sekundiren und
tertidren Alkylaminen, inspiriert von der Hydrochinolin-Synthese. Neben heterocyclischen
Aminen ist die Synthese substituierter Alkylamine fiir die Herstellung bioaktiver Molekiile von
entscheidender Bedeutung. Zu diesem Zweck wurde ein Syntheseansatz entwickelt, der die
reduktive Aminierung und das BH/HA Konzept kombiniert und Ammoniak, Alkohole,
Aldehyde, Ketone und Wasserstoff mit einem CoSc/N-SiC-Katalysator verkniipft. Der
Katalysator wird unter Verwendung von N-SiC, Co(NO3): - 6 H20 und Sc(NO3); - 5 H20, wie
im zweiten Teil der Dissertation dargestellt, synthetisiert. Die HAADF-STEM Aufnahmen

zeigen eine homogene Verteilung der Co-Nanopartikel (13,9 nm) mit deutlich kleineren
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Sc-Partikeln, die fein iiber den Tréger verteilt sind, wie durch EELS-Aufnahmen bestétigt wird.
XPS-Analysen zeigen, dass der Sc-Anteil zehnmal hoher ist als der Co-Anteil, obwohl gleiche
Konzentrationen erwartet werden. Dies deutet darauf hin, dass Sc in der dulleren Schicht fein
verteilt ist, wiahrend Co in Form von groflen Partikeln vorliegt, was mit den STEM-EELS
Ergebnissen iibereinstimmt. ICP-OES Messungen (2,0 wt% Co, 2,0 wt% Sc) und SEM-EDX
Aufnahmen bestdtigen dies ebenfalls. Mit dem Katalysator wurden erfolgreich 13 primére, 24

sekundire und 8 tertidre Amine synthetisiert, darunter fiinf neue Verbindungen.
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Introduction

2 Introduction

2.1 Sustainable Chemistry with Respect to Heterogeneous Earth-abundant
Metal Catalysis

The mathematician and physicist Jean Baptiste Joseph Fourier first formulated and established
the principle of the greenhouse effect in the atmosphere in 1824. He reported that the Earth is
much warmer than it would be without an atmosphere, which is good in principle. The reason
for this is that the atmosphere is very transparent to short-wave solar radiation. This is not the
case with infrared radiation. It is emitted from the Earth’s heated ground, and some of it reflects
back to the Earth. This is called the greenhouse effect.!!! This effect has increased massively
since industrialization and its pollution. Society, industry, and policymakers have long ignored
this phenomenon until it has long since affected everyone on the planet. The climate crisis is
undoubtedly one of the most pressing challenges of our time. Its consequences are far-reaching
and imminent. Extreme weather events such as heat waves, droughts and floods are increasing,
polar ice caps and glaciers are melting at an alarming rate, and sea levels are rising at an
extraordinary speed.”?] Today, society is more aware of this phenomenon as well as industrial
pollution and of its own responsibilities. Research is also shifting its focus to a science-based
approach to environmental protection.’) By developing a sustainable approach to the chemical
industry, society could enjoy the benefits of everyday products such as pharmaceuticals and
polymer-based materials, while conserving fossil resources and reducing climate change. In
1998, to address the sustainability aspect of chemical research, Anastas and Warner presented
the 12 Principles of Green Chemistry.[¥ This includes the design, development, and
implementation of chemical processes and products for the reduction or elimination of
substances hazardous to human health and the environment."! A chemical reaction must meet
the 12 principles to be classified as green. This was later simplified by the acronym
PRODUCTIVELY.!® Catalysts play a key role in green chemistry by reducing energy
requirements, providing catalysts instead of stoichiometric amounts of materials, improving
selectivity, and using less toxic materials.!”’ Supported metal catalysts are used in a wide range
of critical processes in the modern chemical industry including petrochemicals, energy storage,
and pollution control. Many modern products are synthesized with the help of catalysts. These
include high-temperature lubricants, high-performance polymers, and pharmaceuticals.®!
Depending on the aggregate state of the reactant and catalyst, a difference is made between
homogeneous and heterogeneous catalysis. Homogeneous catalysts are in the same phase as the

substrates being catalyzed, whereas heterogeneous catalysts are in a different phase.”! Because
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heterogeneous catalysts are easier to separate from the reaction solution, and thus more
recyclable and robust than their homogeneous counterparts, the class of heterogeneous catalysts
plays an important role in industry.'” However, many of the catalysts used are precious metal
catalysts. A promising approach is to replace them with earth-abundant metal catalysts, as they
are much more abundant in the earth’s crust, which directly translates into a lower price. For
example, 3d metal catalysts consist of essential elements of living bodies with relatively low
toxicity. Another advantage is that catalysts based on these abundant metals have a completely
different selectivity pattern than known precious metal systems, allowing new synthetic
pathways and reactions with a wider substrate range.'! Therefore, the use of reusable
nanostructured earth-abundant metal catalysts for a broad applicability in complex organic

synthesis as well as electrical and chemical storage applications is highly desirable.

In recent years, the Kempe group has established many fundamental works according to
heterogeneous catalysis used in organic synthesis. For example, the selective hydrogenolysis
of aryl ethers using a nickel catalyst!'?! and the hydrogenation of lignin with rhodium
nanoclusters have been carried out using a sustainable feedstock for important chemical
materials.['*! In addition, the synthesis of pyrroles, a very important class of compounds in
medicinal chemistry via acceptorless dehydrogenative condensation of secondary alcohols and
1,2-aminoalcohols mediated by an iridium catalyst has been introduced.['*! In addition, several
Fe, Co, and Ni catalysts that promote the selective and highly efficient hydrogenation of nitro
compounds to the corresponding amines have been published.!'>!%!"] Follow-up chemistry has
also been performed using the hydrogenation of nitro compounds and further chemical reaction
sequences to synthesize imines, benzimidazoles, 1H-perimidines, 3,4-dihydro-2H-pyrroles and
quinoxalines.!'®!":18] Moreover, the concept of reductive amination with aqueous ammonia
using Fe, Co, Ni, and a bimetallic catalyst (Co and Sc) was introduced for the synthesis of
primary, secondary, and tertiary amines.['”*) This concept was transferred to the reductive

S.[24

alkylation of nitrile compounds by aldehydes and ketones.[**! Since heterocycles play a key role

in the synthesis of biologically active molecules, synthesis concepts were introduced as well as
the selective hydrogenation of these compounds using Co, Pd, Ru, and Ir catalysts.[>>%¢]
Additionally, a cobalt-cerium deoxygenation catalyst was published for the use of late-stage
modification of biomass-derived molecules into fuels and chemicals.*”) Simple,
chemoselective hydrogenation of olefines has been investigated using a Ni catalyst with a
tremendous tolerance in functional groups.®! It has also been shown that reversible hydrogen
storage using a bimetallic palladium and ruthenium catalyst for both hydrogenation and

dehydrogenation of N-ethylcarbazole is possible.*”)
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2.2 N-doped Support Materials for Heterogeneous Catalysts

Most heterogeneous catalysts used in chemistry and industry are supported catalysts, where the
active component is carried by a support material. Porous solids such as y-Al>O3, SiO, TiO»,
Ce0», zeolites, or activated carbon are suitable as support materials in many applications.*”]
Since the interactions between the active phase and the support phase play an important role
for the activity in catalysis, the choice of a suitable support is of great importance for
heterogeneous catalysts. The properties required from the support material are diverse. They
range from chemical inertness, stability under reaction and regeneration conditions, and a high
surface area to highly oxidation and thermal shock resistant materials. The properties of the
support material should be individually tunable for each catalytic process. Moreover, carbon-
based carriers are widely used because of their microporous structures and excellent electrical
conductivity, which improve the catalytic activity drastically.*%3!! In this regard, substitutional
heteroatom doping of the carbon-matrix is a suitable way to optimize the intrinsic reactivity of
the active sites. Between the different dopants (e.g. B, P, F or S), N is the most intensively
studied element, which had already been investigated in the early 1960s.**) Over the past
decade, N-doping of carbon materials has enabled advances in many industrially important
processes, including oxidation, reduction, Fischer-Tropsch synthesis, and hydrogen evolution
reaction.!’!

Metal or metal oxide nanoparticles supported on N-doped carbon materials are promising
heterogeneous catalyst materials. The most common bonding forms of N-dopants in a given
carbon matrix are pyridine, pyrrole, graphitic (quaternary) and pyridine N-oxide forms (Figure
1a).243] Pyridine N atoms are mainly found at the edges or defects of graphitic carbon layers.
On the other hand, pyrrole N atoms are part of the five-membered ring. Graphitic (quaternary)

N atoms refer to N atoms that have replaced C atoms in the carbon backbone. The inclusion of

b
@) Pyridine N (b)
/ N
Pyrrole N
|
Graphitic N

Pyridine N-O
O y

Figure 1: (a) Common bonding situations of N atoms in carbon matrices. (b) Proposed metal-
nitrogen interaction: 6-bonding between an empty metal d-orbital (negative: blue, positive: red)
and a filled m-orbital (negative: pale blue, positive: violet) of the support; n-backbonding
between filled metal d-orbital and empty n*-antibonding orbital of the support.
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N-dopants results in defects or other imperfections in the graphite lattice. To describe the effect
of N-dopants, it is important to understand the atomic structure and electron delocalization of
N-dopants with neighboring C atoms. The incorporation of N into the graphite plane is
energetically favored because native point defects and N-dopants attract each other. In addition,
N-dopants lead to point defects with lower formation energy resulting in noticeable bond
disorder and latent strain. The two different electronic states of C and N generate permanent
dipoles that can be modulated by their defect types with different configurations.l*! Once N
atoms are introduced into the lattice, they influence the properties of the original carbon matrix
and thus, the metal (oxide) nanoparticles are attached to the support in several ways. Among
other things, defective CN positions, and N inclusions provide active centers for nucleation and

B7 Furthermore, in most cases, the binding energy for the

growth of metal nanoparticles.
formation of metal species is high for N-doped carbon materials. This leads to a high stability
of the synthesized catalysts. An explanation can be given by the interaction of an N species
with a metal center, which involves hybrid formation of the m-orbitals of N with the d-orbitals
of the transition metal (Figure 1b).543%! In addition, an enhanced metal-carrier interaction can
result from close contact with the N-induced defects.*”) This interpretation allows the view that
N-doped carbon materials can be considered as “solid ligands”.**#%] The interfacial charge
transfer at the metal-support binding site and the tunable acid-base character of the support
surface play an important role in the unique mode of interaction between metal, support, and
reactant in catalysis. As a result, there is an increase in the performance of the catalytic activity
of metal nanoparticles on N-doped carbon compared to the undoped analogues.*!!

The N-doping of carbon can be achieved by treatment with ammonia at high temperatures,

[43]

by gas-phase deposition of nitrogen-containing compounds, or by liquid-phase

(4] If N-doped carbon supports are already available,

polymerization of various compounds.
methods for subsequent loading, such as impregnation and deposition/precipitation, offer
simple fabrication options for carrier-fixed metal catalysts.[*”! Metal catalysts on N-modified
carbon supports can also be obtained by pyrolysis processes.*! Nitrogen-rich motifs and their
metal complexes are suitable precursors for this purpose.[*’] In the pyrolysis process, the
structure of the nitrogen-rich motif is partially or completely decomposed, allowing the
formation of metal nanoparticles. Similar N-doped carbon-fixed metal nanocatalysts can be
prepared by pyrolyzing carbon with metal salts and nitrogen sources, which are cheap and
readily available (e.g. inorganic metal salts). The most used nitrogen sources are melamine,

1,10-phenanthroline, dicyanidamide or triazine. Depending on the materials used, a clearly

distinguishable catalytic behavior can be observed.[*®!
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2.3 Polymer Derived Ceramics as Support Materials for Heterogeneous

Catalysts

Polymer derived ceramics (PDCs) have attracted considerable interest in the last 50 years due
to their excellent properties, and are used in a wide variety of applications.[*’ Unlike traditional
high-temperature ceramic manufacturing, PDC processing is a relatively new technology that
offers several advantages over conventional methods. In PDCs, the polymer is first generated,
then crosslinked or gelled, and finally converted into a ceramic component by pyrolysis at
suitable temperatures. The removal of organic components during pyrolysis by cleavage of C-H
bonds, releasing Ho, CHa, or other volatile compounds, leads to the formation of an inorganic
material. The ceramic material is obtained through a complex microstructural evolution that
depends on the thermal process and the heating temperature. The resulting nanoscale crystalline
phase is embedded in an amorphous matrix containing a free carbon phase.””! By using
different educts and different reaction types, the chemical and physical properties of the
preceramic polymer, such as elemental composition, solubility, fusibility, and viscosity, can be
adjusted. Special functional groups allow further modification of the polymer to create
completely new ceramic materials with high purity and homogeneous distribution of elements.
On the other hand, they provide 3-dimensional cross-linking to an unmeltable polymer, the so-
called greenbody, which is the prerequisite for ceramization. The transformation from
thermoset to the ceramic takes place at relatively low temperatures (< 1000 °C). Further, the
polymeric nanostructure has an influence on the structure of the ceramic, and can be therefore
tailored to the desired properties. Due to the different properties of the preceramic polymers
and the resulting ceramics, various applications have been established, such as ceramic fibers,
porous ceramics, polymer, and ceramic coatings, and as ceramic matrices.’!! Because of these
applications, combined with versatile forming methods, precursors such as polycarbosilanes
have led to the synthesis and commercialization of various Si- or B-based polymeric precursors,
such as polysiloxane, polysilazane, polyborazylene, and pure polycarbosilanes. These materials
allow a range of ceramic materials with different compositions such as silicon oxycarbide
(S10C), silicon oxycarbonitride (SiOCN), silicon carbonitride (SiCN), silicon boron
carbonitride (SiBCN), and silicon carbide (SiC).1*”! Therefore, PDCs can be categorized into
oxide ceramics, which contain an oxygen moiety, and non-oxide ceramics, which do not contain
any oxygen. These materials have advantageous properties in terms of oxidation resistance,
refractoriness, low creep rate, chemical and thermal durability, and stability, or even functional
properties such as piezo resistivity, that cannot be achieved by conventional ceramic synthesis

processes.>*! Such materials have a wide range of applications, including high-performance
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coatings, sensors, nanocomposites, and fibers. The potential of these and other applications,
such as energy technologies and catalysis, can be enhanced by the incorporation of metallic or
intermetallic nanoparticles or phases.[>*

There are several strategies to synthesize metal enhanced polymer derived non-oxide ceramics.
A chemical approach is to mix the preceramic polymers with metal or metal oxide powders
prior to crosslinking and pyrolysis. The molecular route involves the synthesis of
metallopolymers and the chemical modification of precursors using coordination compounds.
Further, PDCs can be used as support materials. The metal precursor is introduced to the support
by wet impregnation of metal salts or complexes. Subsequent pyrolysis results in the formation
of active catalyst species on the material, mostly nanoparticles. In this method, the active
catalyst species is generated only on the surface of the material. In contrast, the chemical
method also generates active species directly in the nanocomposite matrix. Therefore, it is very
important to have a high porosity to access the active metal centers in the nanocomposite matrix
for catalytic approaches.3433]

Our group established several works using a PDC support material denoted as N-SiC for the
synthesis of Fe/N-SiC and Co/N-SiC as well as CoSc/N-SiC nanostructured catalysts.[2%22-24]
Bdumler et al. synthesized at first the N-SiC material according to a modified procedure and
the corresponding Fe/N-SiC catalyst (Figure 2).2* For this, the commercially available

polycarbosilane SMP-10 and acrylonitrile are crosslinked to give the greenbody, which is

subsequent pyrolyzed at 1000 °C in a nitrogen atmosphere. The resulting ceramic is then

(a)
Z>CN
+
| Cross Linking Greenbody 1. Pyrolysis N-SIC
H Microphase 2. Base Treatment
| i
S.i Si Separation
H H
09n 0.1n
(b)
Wet Impregnation
N-SiC + Metal Precursor M/N-SiC

Pyrolysis/Reduction

Figure 2: (a) Synthesis pathway of N-SiC starting from the cross linking of acrylonitrile and
the polycarbosilane SMP-10 to the greenbody with subsequent pyrolysis and base treatment.
(b) Catalyst synthesis by wet impregnation of a metal precursor and N-SiC followed by
pyrolysis and reduction to obtain the active catalyst species (M/N-SiC).
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washed in NaOH to leach out the silicon-rich domains from the material to obtain a high surface
area with porosity (Figure 2a). For catalyst synthesis, the resulting N-SiC support is wet
impregnated with a metal precursor and the solvent is removed. The material is then pyrolyzed
and reduced to yield the active catalyst (Figure 2b). With the prepared catalysts Fe/N-SiC and
Co/N-SiC, the synthesis of primary amines via reductive amination of carbonyl compounds

[22,23

with NH3 was applied.l*?>?3! The concept was transferred to the reductive alkylation of nitriles

by aldehydes and ketones to receive secondary amines with a Co/N-SiC catalyst.!*!]
Furthermore, it is shown that a bimetallic CoSc/N-SiC catalyst can promote the general
synthesis of alkyl amines mediating two reactions, the BH/HA mechanism and reductive
amination with hydrogen to obtain primary, secondary, and tertiary amines, which is also part

of this dissertation.[*"]
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2.4 Aromatic Heterocycles in Chemistry

2.4.1 Synthesis Approaches to N-Heterocycles

Heterocycles are essential structural elements in chemistry, found in many natural products,
pharmaceuticals, and organic materials. They consist of rings containing at least one atom other
than carbon, such as nitrogen, oxygen, or sulfur, which gives them unique properties.’’! The
synthesis of N-heterocycles has attracted much attention due to their prevalence in natural
products and drugs.*® There are many aromatic heterocycles that vary in structure, ring size,
and number of nitrogen atoms in the ring motif. Common N-heterocycles include pyrrole,
imidazole, pyridine, pyrimidine, pyrazine, triazine, quinoline, isoquinoline, indole, or acridine
are well known and many synthesis protocols have been reported.’>! For example, the quinoline
motif is present in many bioactive natural products, and various quinolines are known to exhibit
a wide range of pharmacological properties. Quinoline derivatives, for instance, can be used as

anti-cancer,'®” anti-HIV,®!) anti-hypertensive,'®? anti-tuberculosis,®*! and anti-alzheimer!®¥
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drugs (Figure 3).
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Figure 3: Pharmacologically active molecules with a quinoline motif (motif shown in blue).
The drugs can be used as anti-tuberculosis, anti-hypertensive, anti-cancer, anti-HIV, and anti-
alzheimer agents.

Quinoline was first synthesized by Koenigs in 1879 by passing allyl aniline over lead oxide.!*"]
After, the Skraup synthesis, first published by Skraup in 1880 is the second synthetic approach

to quinoline. It is based on aniline, which is converted to quinoline in the presence of glycerol,
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sulphuric acid, and an oxidizing agent. Glycerol is first dehydrated to acrolein, which is required
as an a,B-unsaturated carbonyl compound for cyclization.l! Among many other methods
available for constructing the quinoline ring, the Friedldnder quinoline synthesis first published
by Friedldnder in 1882 has proven to be a very powerful tool for the synthesis of quinolines.”]
The condensation of 2-aminobenzaldehyde with acetophenone bearing a reactive methylene
group in the a-position is, for example, base-catalyzed to the product 2-phenylquinoline. The
reaction consists of two distinct steps. The condensation between the amino group and the
carbonyl group of the aldehyde, and the irreversible intramolecular condensation of the
methylene group or methyl group, and the carbonyl group in ortho-position in the aromatic
ring. Based on this, it is assumed that an aldol-type condensation is involved in the entire
condensation at a certain reaction stage. Thus, both acids and bases can catalyze this reaction.[®®]

Figure 4 shows the mechanism of the Friedldnder synthesis with 2-aminobenzaldehyde and

acetophenone base catalyzed with LiOH.

0.
Jj@ /[ THOH
o H O Lit
)f'\ H LI OH 2 H
H

\
H T
o
+ H,0 HoN

Figure 4: Reaction mechanism of the Friedldnder synthesis on the example with
2-aminobenzaldehyde and acetophenone catalyzed by LiOH.
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2.4.2 Selective Hydrogenation of Aromatic Heterocycles

The reduction of arenes to saturated cyclic compounds is of great interest for the production of
bulk and fine chemicals as well as for the synthesis of pharmaceuticals, and agrochemicals.[®’]
Hydrogenation is a particularly attractive reduction protocol because hydrogen is cheap,
abundant, atom-efficient, and sustainable.’”! Furthermore, arene hydrogenation is an elegant
way to chemically store hydrogen. Here, nanostructured and reusable catalysts are of particular
interest.”!) The reduction of N-heterocycles to the corresponding partially or fully saturated
derivatives has gained considerable importance due to their immense utility as biologically
active building blocks and important intermediates in the production of pharmaceuticals,

agrochemicals, and other fine chemicals.!?]

Selective hydrogenation of the aromatic ring is
extremely attractive to produce complex molecules. The generation of catalysts for this step is
therefore highly desirable. With respect to the quinoline motif, the selective hydrogenation to
1,2,3,4-tetrahydroquinoline (THQ), which is a component of various natural products and
synthetic bioactive compounds, leads to a high demand in synthetic pathways. Well known
drugs and natural products based on the THQ-motif are used as anti-bacterial,”’?! tubulin
polymerization inhibitor,”*! 5-HT3 receptor antagonist,!’” anti malaria,l’®! anti-fungal,[’”! and
anti-tumor!’® reagents (Figure 5). Many nanostructured 3d metal catalysts have been developed

for the selective hydrogenation of quinolines to THQs, mainly cobalt?7°8% and nickell*8!]

catalysts, and only a few iron/”*%2! catalysts are known in the literature.

hnd T
HN"; N
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Anti-Bacterial Tubulin Polymerization Inhibitor 5-HT3 Receptor Antagonist
® " o LT
©\/j\/\/\ N O ©\/j/
N H
|
Anti-Malarial Anti-Fungal Anti-Tumor

Figure 5: Pharmaceutical and drug molecules with a 1,2,3,4-tetrahydroquinoline motif (shown
in red). The drugs are active in several areas and often used in medicine.
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2.5 Synthesis Methods towards Amines

Amines represent a significant class of substrates with a wide range of applications across
numerous industrial sectors, including the pharmaceutical, polymer, agrochemical, dye,
surfactant, and fine chemical industries. The selective synthesis of differently substituted
primary, secondary, and tertiary alkylamines is particularly challenging because the alkylated
product amine is a better nucleophile and more reactive than the amine or ammonia starting
material.[>#3 There is a wide range of name reactions, such as the Gabriel synthesis, the
Hoffmann degradation, the Leuckart-Wallach reaction, or the Staudinger reaction to produce
amines. In addition, amination of alcohols, hydroamination, hydrogenation of nitro or cyano
compounds, or reductive amination allow the synthesis of amines. For all these reactions,
efficient catalytic and atom-efficient synthetic routes with few by-products are of great

interest. [

2.5.1 Reductive Amination of Carbonyl Compounds

The reductive amination of carbonyl compounds was introduced by Mignonac in 1921, using a
nickel catalyst and dry ammonia as nitrogen source.!®3 It is an important amine synthesis and
has been intensively studied in academia and industry for a century. In addition to aldehydes,
ketones, or amines, starting materials have been used that can be converted to carbonyl or amine
compounds in the presence of the same reducing agent and catalyst, such as carboxylic acids,
organic carbonates, nitriles, or nitro compounds. The reaction pathway for the reductive

amination of carbonyl compounds is shown in Figure 6.

J(J)\ + NH, iH -H,0 j\lJ\H + H, NH,
_— —_— —_—
R'R2 - NHs R" 2NHa + H,0 R'R2 R'OR2

Figure 6: Reaction mechanism of the reductive amination of carbonyls to give amines
introduced by Mignonac in 1921.

Aldehydes and ketones usually react with ammonia or amines by condensation to form a
hemiaminal (carbinolamine). Further elimination of H,O gives a Schiff base (imine). The
following reduction to the amine takes place in the presence of a reducing agent such as formic
acid, metal hydrides and molecular hydrogen, and/or a catalyst. The imine, as a reactive

intermediate, or the primary amine, due to its enhanced nucleophilicity, can act as an amination
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agent, and secondary and tertiary amines are often formed in parallel with the primary amine.
Selectivity control is therefore important and this is where catalysts play an essential role. On
the other hand, reductive amination is impressive in terms of product scope, as primary,
secondary, and tertiary alkyl amines are accessible, and hydrogen is the most attractive reducing
agent, especially when large scale product formation is an issue, as hydrogen is cheap and
abundant. Therefore, reductive amination is characterized by cheap and abundant starting
materials and a wide variety of substrates that can be converted and much effort has been put
into research and development of catalysts over the past decades.®® A large number of
applications for Raney Ni have been reported in the literature.l®”! However, in recent years,
nanostructured 3d metal catalysts based on Fe,!?*%8 Co,[®1 and Nil'>"l have been successfully

developed to provide reusability and facile handling of catalysts, as well as excellent selectivity.

2.5.2 Borrowing Hydrogen/Hydrogen Autotransfer Concept

The Borrowing Hydrogen/Hydrogen Autotransfer (BH/HA) concept was introduced by Winans
and Adkins in 1932, using a heterogeneous nickel catalyst for the alkylation of amines by

alcohols (Figure 7).°!

.R3
j>\H Cat. + H,N-R? Hjl\
R1 R2 . H2O R‘l R2
[Cat.]
Dehydrogenation Reduction
[Cat.]H,
/
e} 3 _R®
JJ\ + HoN-R _ N|
R1 R2 - H2O R'IJ\RZ

Figure 7: Alkylation of amines by alcohols following the Borrowing Hydrogen/Hydrogen
Autotransfer concept.
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This reaction is an important example of an alcohol refunctionalization reaction. It is highly
atom-efficient and sustainable because alcohols can be used and no additional hydrogen is
required. Alcohols can be produced from sustainable resources such as biomass.
Lignocellulose, an underutilized, indigestible, and abundantly available waste material, is

2] The alcohol starting

perfect for this purpose because it can be processed into alcohols.
material is first oxidized by dehydrogenation. The two hydrogen atoms are removed from the
alcohol and the catalyst stores the hydrogen. The carbonyl compound formed can undergo a
Schiff base reaction (condensation reaction) to form an imine intermediate, which can be
reduced using the hydrogen atom equivalents gained in the dehydrogenation step to yield an
alkylated amine (Figure 7). If ammonia is used as the nucleophile, as first demonstrated by the
Baiker group using a heterogeneous cobalt catalyst, the hydroxy group of the alcohol is directly

converted into an NH; group or a primary aliphatic amine.[**

Grigg®Y, Watanabe® and co-workers introduced the first homogeneous catalysts for the
BH/HA concept in 1981. Since then, numerous homogeneous transition metal catalyst systems
have been developed to provide an elegant and broadly applicable method for the selective
N-alkylation of amines by alcohols, as evidenced by numerous publications.[®®! Heterogeneous
transition metal catalysts remain underrepresented in the literature, although reports have been
published on catalysts with Fe,*”] Co,[2%% Ni,*1 and Cu,!'®! and are therefore of significant

interest due to their enhanced stability and reusability as well as their greater sustainability.
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3 Overview of Thesis Results

The thesis consists of three publications, which are presented in chapter 4 to 6. Two of them
have been published and one is submitted. The synopsis, chapter 3.1, gives an overview of the
individual publications of this thesis and discusses them in an overall context. The individual

contributions to the joint publications are described in detail in chapter 3.2.

3.1 Synopsis

Heterogeneous catalysis is a key technology which addresses sustainability in multiple areas
and contexts. Precious metals, which are very expensive and not readily available, are
commonly used in industrial catalytic systems and processes. Therefore, it is highly desirable
to replace precious metals with more abundant and available alternatives. In recent years, the
Kempe group has focused on the synthesis and design of novel heterogeneous, nanostructured
catalysts for complex organic syntheses. Here, the Kempe group made a decisive contribution
to this topic by introducing several earth-abundant metal catalysts for hydrogenation and
dehydrogenation reactions. Heterogeneous, nanostructured metal catalysts supported by porous
materials were developed for chemoselective hydrogenation and consecutive organic reactions.
The motif of the metal-salen complexes were successfully introduced as precursors for several
catalyst systems with different support materials. In addition, highly active nickel, cobalt and

iron systems were introduced with a wide product range and different reaction mechanisms.

However, the metal-salen method has the major disadvantage that the metal and
nitrogen/carbon (N/C) sources cannot be tuned individually. This makes it impossible to tune
the N-doping of the material to obtain materials with higher activity due to the doping and to
find an optimum in doping. The first publication of this thesis introduces a synthesis protocol
for nanostructured earth-abundant metal catalysts where both the metal and N/C content are
individually adjustable. Three components, an inexpensive metal precursor, an easy-to-
synthesize N/C precursor and a commercially available porous support material undergo
pyrolysis to give the catalyst material in a simple, single synthesis step. First, the N/C precursor
meso-octamethylcalix[4]pyrrole was synthesized. The basic motif is an N4-macrocycle without
n-m-stacking and a flat structure; therefore, it is excellent soluble for the wet impregnation
process and can be molecularly dispersed easily. For the catalyst synthesis, the N/C precursor

and cobalt acetate tetrahydrate are dissolved in methanol together with SiO; as support material.
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+ Co(OAc), - 4 H,0 1. Wet Impregnation

+ SiO, 2. Pyrolysis

“ ot
(A) Molecular Dispersion on SiO, Support “’ ¥
N/C Precusor (B) Formation of N-doped Carbon Shell ; r

meso-octamethylcalix[4]pyrrole (C) Determination of Metal to C/N Ratio

Figure 8: Synthesis procedure of the catalyst material starting with wet impregnation of meso-
octamethylcalix[4]pyrrole and Co(OAc): - 4 H,O with SiO> and subsequent pyrolysis. The key
is the spatially separated N/C and metal precursor to tune the N-doping of the material on a
mesoporous silica support to receive a highly active catalyst.

After the removal of the solvent at 70 °C, the sample was pyrolyzed under nitrogen atmosphere
to give the active catalyst material (Figure 8). In order to find the best catalyst, a variation of
several parameters was performed by testing the catalysts in the selective hydrogenation of
quinoline to 1,2,3,4-tetrahydroquinoline (see Chapter 4). By varying the metal to N/C ratio
(M/N ratio) from a ratio of 1:1 to 1:10 the nitrogen doping was increased. The high activity of
the Co/SiO> catalyst is due to a specific ratio of N/C precursor to cobalt precursor. A certain
amount of microporous N/C or a certain thickness of the embedding N/C layer is optimal for
educt access and catalyst stability. Too thick a layer may prevent educt access, and too thin a
layer may lead to cobalt leaching, as the metal nanoparticles are more easily removed from the
support. Maximum activity in the benchmark reaction is observed when a ratio of metal to N/C
precursor of 1:4 is used. More N-doping leads to a decrease in product yield to a certain plateau
at about 60 % yield. In the catalyst material study, 1.81 wt% cobalt is loaded on the material
which shows the best activity in the benchmark reaction with 5.0 mol% cobalt loading in the
catalysis. The pyrolysis temperature and different commercial support materials and cobalt
precursors were also tested. The best pyrolysis temperature was found to be 800 °C, while SiO»
as support material showed superior activity over other cobalt catalysts based on y-Al>,O3, TiO»,
and CeO:. Using activated carbon as support material only showed little activity in the
benchmark reaction. In addition, it is important which metal precursor is used in the wet
impregnation and pyrolysis process. Cobalt acetylacetonate, cobalt stearate and cobalt chloride
show little to no activity. Cobalt nitrate was able to show some activity. Furthermore, time-
conversion studies show that the conversion of quinoline to THQ is achieved after 17 h under
the optimal reaction conditions used. To ensure completion, a reaction time of 20 h was chosen.
In summary, with 5.0 mol% Co, 2.0 MPa H», 70 °C and 20 h reaction time, the reaction can be

carried out smoothly and selectively.
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In an attempt to gain more insight into the Co/SiO> catalyst, several characterization methods
were applied. First, Thermogravimetric Analysis (TGA) revealed the high volatility of the N/C
precursor and the decomposition of the metal precursor under catalyst synthesis conditions (see
Chapter 4). This ensures the molecular dispersion of the metal precursor on the support material
within the formation of N-doped carbon shells embedded nanoparticles and the carbon supply
during the pyrolysis process. ICP-OES analysis confirms the cobalt content of 1.81 wt% (see
Chapter 4). The surface characterization and pore size distribution of the catalyst were
determined via nitrogen physisorption measurements. The catalyst surface area of 217 m?/g
showed an increase compared to the support material SiO» (194 m?/g). This can be explained
by the formation of additional microporosity due to the carbon black formation during the
catalyst synthesis (see Chapter 4). Moreover, XPS analysis was conducted. It showed the
presence of metallic cobalt and cobalt oxide on the surface of the Co/SiO; catalyst (Figure 9f).
Three different nitrogen binding modes within the catalyst are suggested by detailed XPS
analysis. HAADF-STEM shows that the cobalt nanoparticles are homogeneously distributed
throughout the support and have an average particle size of 4.8 nm (Figure 8). This was also

confirmed by SEM-EDX measurements (see Chapter 4). To take a closer look at the active
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Figure 9: Characterization of the Co/SiO; catalyst. (a)-(d) HAADF-STEM images of Co/S10>
with representative EELS element maps of cobalt (b), carbon (c) and nitrogen (d). (¢) The PDF
of Co/Si0O2 was fitted with a Co fcc phase of 3.1 nm particle diameter and a graphitic domain,
both contributions shown in the offset. (f) XPS analysis of the surface area of the Co 2p3/; area
with an asymmetric fit shows Co metal (61 %) and cobalt oxide (39 %).
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catalyst species, HAADF-STEM analysis combined with EDX elemental mapping was
performed. Also, high resolution HAADF-STEM with EELS was performed to gain insight
into the close environment of the cobalt nanoparticles, consisting out of the interface of the
support matrix (carbon and SiO), the cobalt nanoparticles and the nitrogen environment
(Figure 9a-d). PDF and PXRD studies validate the results and reveal the active species to be

crystalline Co fcc structured nanoparticles with a maximum particle size of 3.1 nm (Figure 9e).

With the optimal reaction conditions and catalyst characterization in hand, a substrate scope in
the hydrogenation of various N-, O- and S-heterocycles was established (Figure 10). First,
several quinoline derivatives were used in the hydrogenation to the corresponding 1,2,3,4-
tetrahydroquinolines (Figure 10a). To our delight, fifteen quinoline derivatives were selectively
hydrogenated under very mild conditions (5.0 mol% Co, 2.0 MPa H», 70 °C, 20 h). Five
examples led to an extraordinary yield of 99 % THQ. We were able to show that the nature and
position of the substituent is individually eligible. Both, electron-donating methyl substituents
and electron-withdrawing halogen substituents have been introduced. Moreover, methoxy,
hydroxy, and amine groups can be tolerated. Two functional groups can also be tolerated by
our catalyst. Some of the synthesized products above are used as precursors for drug molecules,

more specifically, for the synthesis of 5-HT3 receptor antagonists, anti-trypanosome drugs, and
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Figure 10: (a) Hydrogenation of quinolines to the corresponding THQs. (b) Products of the
hydrogenation of different N-, O- and S-heterocycles. Reaction conditions for (a) and (b):
5.0mo% Co (1.81 wt% Co, 0.01 mmol Co, 0.59 mg Co), 0.2 mmol substrate, 3 mL ethanol,
70 °C, 2.0 MPa Ha, 20 h. [a] 10 mol% Co, 120 °C, 5.0 MPa H,. [b] 100 °C, 3.0 MPa Ho.
[c] 15 mol% Co, 150 °C, 6.0 MPa Ha, 48 h. Isolated yields are given.
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tubulin polymerization inhibitors. After the successful hydrogenation of quinoline derivatives,
we tried different types of heterocycles (Figure 10b). Here we were able to convert several
classes of compounds into the corresponding selectively hydrogenated ones. For example, 2-
methyl-1,2,3,4-tetrahydroquinoxaline was obtained for the first time with a nanostructured
cobalt catalyst. Simple five- and six-membered N-heterocycles with substituents were also
generally applicable. This required a slight increase in the reaction conditions. Of all the
products, isonicotinamide stands out as a reversible organic hydrogen storage liquid for
potential hydrogen-powered fuel cells in mobile applications, and its hydrogenation is of great
interest. In addition, hydrogenation of indoles was possible. Indolines and their scaffold are
known as important pharmaceuticals and agrochemicals, and it is particularly useful to have
selective and easy access to this class of compounds. Besides that, larger heterocycles such as
acridine and phenanthroline-like molecules can be introduced in our protocol. More challenging
is the selective hydrogenation of O- and S-heterocycles, where we need to raise the conditions
for each class to harsher conditions. Since the associated products are important bioactive
compounds, a way to make the hydrogenation mild and smooth is of great importance. With
the Co/SiO; catalyst we were able to do this with two different benzofurans and two different
benzothiophenes. It should be noted that the yield for the sulfur-containing substrates is only
moderate. This is due to the strong binding of sulfur to the active metal sites of our catalyst
which poisons the catalyst. Therefore, the research so far has focused only on the pure
benzothiophene and not on some other derivatives. Here we were able to extend the state of the
art to a broader range. To demonstrate the reusability of the Co/SiO; catalyst, five consecutive
hydrogenation reactions of quinoline to THQ were performed and showed no loss of activity
(see Chapter 4). TEM measurements show no agglomeration or growth of nanoparticles in the
used catalyst. A particle diameter of 6.2 nm was observed, which is in good agreement with the
diameter of the freshly prepared catalyst (see Chapter 4). A hot filtration test was performed to
demonstrate that no active homogeneous species are formed during catalysis. No active sites
are leached from the catalyst. The leaching of the cobalt catalyst was determined by ICP-OES
and was found to be 0.7 % and is attributable to measurement inaccuracies (see Chapter 4). The
efficiency and practicality of the Co/SiO> catalyst was demonstrated in an upscaling experiment

with an overall THQ yield of 90 % (see Chapter 4).

Encouraged by the excellent results in the selective hydrogenation of N-heterocycles, a new
catalytic pathway for the direct synthesis of hydroquinolines from nitroaldehydes and ketones
was developed with a new nickel-based catalyst system. As mentioned in Chapter 2.4, several

N-heterocycles and selectively hydrogenated N-heterocycles are used in a wide range of drug
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molecules or as precursors. In particular, hydroquinolines play an important role in this scenario
and the most common way is to selectively hydrogenate the unsaturated compounds. However,
there is a problem of quinoline substrate synthesis, which can be easily solved by the attractive
Friedldnder synthesis. For this purpose, there is a huge demand for a large number of
2-aminoaldehydes, and their preparation is not very convenient. This problem can be solved by
the Ni/N-SiC catalyst presented in this work, which combines the attractive 2-aminoaldehyde
synthesis starting from 2-nitrobenzaldehyde with the subsequent Friedlinder reaction followed
by hydrogenation to hydroquinolines. The key in this work is the reusability and high selectivity

and activity of the Ni/N-SiC catalyst to allow different reaction conditions for each reaction.

First, the catalyst support N-SiC (a porous N-doped amorphous SiC) was prepared according
to previously published procedures based on the crosslinking of the commercial
polycarbosilane precursor SMP-10 and acrylonitrile using AIBN as initiator. The resulting
greenbody was pyrolyzed at 1000 °C under nitrogen atmosphere and the Si-rich phase was
partly removed by base treatment (see Chapter 2.3). By wet impregnation of N-SiC with
Ni(NO3)2 - 6 H20 in water, followed by pyrolysis at 700 °C (Nz flow), and reduction at 550 °C
(H2/N2 flow) after evaporation of the solvent at 105 °C, active nickel nanoparticles are obtained
on the support surface (Figure 11a-b). SEM-EDX analysis verified a homogeneous distribution
of nickel, nitrogen, carbon and silicon throughout the material and confirmed a smooth wet
impregnation process with no inadvertent elemental contamination (see Chapter 5). HAADF-
STEM imaging shows a homogeneous distribution of nanoparticles with an average diameter
of 8.5 nm. The presence of nickel nanoparticles embedded in a N-doped SiC matrix on the
support was confirmed using EDX element maps (Figure 11c-d). In addition, the EDX mapping
for the HAADF-STEM images of nitrogen, carbon and silicon can be seen in Figure 12a-c. This

gives a direct insight into the environment of the particles and the interface of the support matrix
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Figure 11: (a) Synthesis of Ni/N-SiC catalyst by wet impregnation of N-SiC and nickel nitrate
hexahydrate in aqueous solution followed by pyrolysis and reduction to nickel nanoparticles.
(b) HAADF-STEM analysis of the catalyst. (c) Enlargement of the HAADF-STEM image and
the corresponding particle distribution centered around 8.5 nm. (d) EDX elemental map of
nickel from the HAADF-STEM image in (c).
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Figure 12: (a)-(c) HAADF-STEM images of Ni/N-SiC with representative EDX element maps
for nitrogen (a), carbon (b) and silicon (c). (d) HR-TEM images of a nickel nanoparticle with
visible lattice spacings. (¢) FFT of the nanoparticle shown in (d). Examination of the diffraction
spots revealed two Miller planes (200 and 103) consistent with cubic nickel. (f) XPS analysis
of the Ni 2p3, region with an asymmetric fit before platinum sputtering shows a nickel oxide
coating on the cubic nickel nanoparticles. (g) XPS analysis after platinum sputtering shows the
degradation of the oxide coating on Ni’ nanoparticles. (h) Analysis of the nitrogen region

suggests different nitrogen binding models within the catalyst.

and the nickel nanoparticles. The carbon and silicon as well as nitrogen are connected to the
nickel nanoparticles and the particles are embedded in an N/C environment. Besides that, HR-
TEM combined with EELS with a line scan over a nickel nanoparticle, and placing the Ni(L3)
edge in relation to the Ni(L,) edge, confirms the presence of Ni’. No oxygen edge was detected
and therefore, metallic nickel nanoparticles on the N-SiC support are the active catalyst species
(see Chapter 5). Moreover, an FFT of a single nanoparticle was performed and one can see the
diffraction spots of two Miller planes consistent with cubic nickel (Figure 12d-e). XPS analysis
also confirms the presence of nickel oxide on the surface. After sputtering with Pt, the amount
of nickel oxide decreases. This indicates that the N1 nanoparticles are surrounded by a very thin
layer of nickel oxide on top of the surface (Figure 12f-h). Detailed XPS analysis of the nitrogen
region suggests three different bonding modes characteristic of the N-SiC support. In addition,
PXRD of the Ni/N-SiC catalyst was performed to gain further insight into the catalytic species.
It shows cubic nickel reflections as well as orthorhombic graphite for the support material. The
active sites can be assigned to a Ni fcc phase (see Chapter 5). Argon physisorption experiments

revealed the surface properties of the catalyst with a slight decrease in surface area from

43



Overview of Thesis Results

580 m?/g to 563 m?/g from the N-SiC support to the catalyst. The pore size distribution was
calculated by DFT. The pores are in the range of micropores (see Chapter 5). ICP-OES
investigations verify the nickel content of 4.0 wt% on the catalyst material. Further, CHN
analysis validates the composition of the catalyst material with 83.3 % C, 5.7 % N and 7.0 %
Si in addition to Ni (see Chapter 5).

To determine optimal reaction conditions, several parameters were screened in the benchmark
reaction of 2-nitrobenzaldehyde with acetophenone to obtain 2-phenyl-1,2,3,4-
tetrahydroquinoline (see Chapter 5). Since this is a sequential one-pot reaction, each parameter
must be optimized throughout the synthesis. Therefore, the synthesis is divided into three steps.
Step A is the selective hydrogenation of 2-nitrobenzaldehyde to 2-aminobenzaldehyde with
Ni/N-SiC catalyst. Step B is the Friedldnder synthesis catalyzed by a catalytic amount of LiOH
and step C is the subsequent hydrogenation of the formed quinoline to the corresponding THQ
using the Ni/N-SiC catalyst from step A. Overall, the direct synthesis of hydroquinolines is
carried out under the following conditions. For step A, 4.0 mol% Ni is used with 0.5 mmol
nitrobenzaldehyde, 0.5 mmol ketone, 3 mL ethanol, and 3.0 MPa H> pressure for 20 h at 40 °C
reaction temperature. Immediately thereafter, step B follows with the addition of 0.6 eq LiOH
and 20 h reaction time to obtain the quinoline. Step C is then performed by applying 5.0 MPa
H> pressure at 120 °C for 48 hours. In the entire reaction sequence, step C is the most
challenging step of the process and is the limiting factor for the yield. In the benchmark
synthesis, a maximum yield of 91 % 2-phenyl-1,2,3,4-tetrahydroquinoline is obtained.

To demonstrate the versatility and effectiveness of the synthesis protocol, a wide range of
substrates was established using the optimal reaction conditions. First, we investigated the
introduction of several different aldehyde derivatives into the synthesis protocol (Figure 13a).
In total, 16 substrates were synthesized. To our delight, several electron-donating substituents
in each position, such as methyl, are obtained in very high yields. This is an indication that the
nature and position of the substituents in the catalytic process can be highly variable. In
addition, electron-withdrawing substituents can be introduced easily. For example, it is possible
to address each substituent position with a chlorine group and even the more demanding
bromine group in very good yields. Further halogen substitutions with a fluorine group and a
sterically demanding CF3 group are obtained in excellent yields. The introduction of a methoxy
group as well as a bifunctional substrate bearing a bromine and a fluorine group is possible. It
is noteworthy that the difficulty of introducing halogen substituents due to the harsh conditions
in step C and thus dehalogenation during the synthesis is little or not observed. After the
variation of the aldehyde side, we investigated the variation of the ketone substrates in the
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Figure 13: Substrate scope of the direct synthesis of hydroquinolines. (a) Variation of the
aldehyde educts. (b) Variation of the ketone educts. Reaction conditions for (a) and (b): Step A:
29.3 mg Ni/N-SiC catalyst (4 mol% Ni, 0.02 mmol Ni, 1.17 mg Ni), 0.5 mmol aldehyde,
0.5 mmol ketone, 3 mL ethanol, 3.0 MPa Hy, 40 °C, 20 h. Step B: Addition of 0.3 mmol LiOH.
Then 60 °C, 20 h. Step C: 5.0 MPa Hy, 120 °C, 48 h. Isolated yields are given.

synthesis concept (Figure 13b). In summary, 21 different substrates have been synthesized with
good to excellent yields using different ketones. The introduction of electron-donating methyl
groups to the 2-phenyl group attached to the THQ in para-, meta- and ortho-position is shown.
Moreover, electron-withdrawing groups on the acetophenone motif such as halogen
substituents have been introduced. Fluorine groups can be tolerated at any substituent position
in good to very good yields. It should be noted that there is a decrease in yield in the 2-position
in the phenyl ring due to steric hindrance. Many more halogen substituents such as chlorine and
even bromine, besides the harsh conditions in step C, led to product formation and not to the
dehalogenated products. More sterically demanding groups such as fert-butyl or acetate can
also be tolerated in excellent yields. In addition, substrates with methoxy, dimethoxy, and amine
groups are synthesized. Overall, it can be suggested that a higher electron withdrawal is better
for the overall catalytic performance. Also, more aliphatic compounds, more sophisticated

compounds, and the introduction of substituents only at the 3-position of the quinoline using
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Figure 14: (a) Substrate scope of highly functionalized THQs varying both aldehyde and
ketone sides. (b) Application of synthesized THQs as precursor molecules for the synthesis of
bioactive molecules. Reaction conditions for (a) and (b): Step A: 29.3 mg Ni/N-SiC catalyst
(4 mol% Ni, 0.02 mmol Ni, 1.17 mg Ni), 0.5 mmol aldehyde, 0.5 mmol ketone, 3 mL ethanol,
3.0 MPa H, 40 °C, 20 h. Step B: Addition of 0.3 mmol LiOH. Then 60 °C, 20 h. Step C:
5.0 MPa H, 120 °C, 48 h. [a] Step B: 1.5 mmol LiOH. Isolated yields are given.

two aldehydes as well as simultaneously at the 2- and 3-positions, varying the ketone
substituents, show the versatility and independent approach of the synthesis protocol. To
proceed, we have synthesized products where we can vary both sides, aldehyde and ketone, to
obtain highly functionalized products. Both electron-withdrawing and electron-donating groups
are tolerated at the same time, making the products very interesting for further organic
chemistry (Figure 14a). To demonstrate the applicability of the catalyst and the applications of
our synthesized products, we synthesized several precursor molecules for the synthesis of
bioactive molecules which are used as drug molecules and pharmacologically active
compounds (Figure 14b). Furthermore, the synthesis protocol is upscaled easily and the catalyst
is reusable (see Chapter 5). After catalysis, no agglomeration of the nanoparticles was observed
in TEM images, and no homogeneous catalytically active species is formed during catalysis.

No irreversible leaching was observed (see Chapter 5).

As a result of the work to obtain THQs in the above work, the question of how to synthesize

primary, secondary, and tertiary alkyl amines arose. Since amines represent a significant class
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of compounds, and the synthesis of differently substituted primary, secondary, and tertiary alkyl
amines is inherently challenging, a synthesis approach was developed to facilitate the
production of these alkyl amines from ammonia, alcohols, aldehydes, ketones, and hydrogen.
The approach to the synthesis of amines was pursued following the interesting concept of
combining reductive amination (Chapter 2.5.1) and BH/HA (Chapter 2.5.2). The Kempe group
has made significant contributions to the field of reductive amination, publishing several
noteworthy studies on the use of heterogeneous 3d metal catalysts. Additionally, Kempe and
co-workers have conducted pioneering research on homogeneous 3d metal catalysts for the
BH/HA concept. The key to combining both concepts at once is a heterogeneous,
nanostructured, bimetallic Co/Sc catalyst capable of mediating both reactions or concepts

simultaneously with optimal efficiency.

The synthesis of the catalyst support based on the crosslinking of the polycarbosilane precursor
SMP-10 with acrylonitrile using AIBN, followed by pyrolysis and base treatment (see also
Chapter 2.3), follows the synthesis of N-SiC described in the work above. The metal
nanoparticles were prepared by wet impregnation of the N-SiC support and the two metal salts

Co(NO3)2 - 6 HoO and Sc(NOs)3 - 5 H2O in water, pyrolysis (700 °C, N2) and subsequent
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Figure 15: Synthesis and characterization of the CoSc catalyst. (a) Synthesis of the catalyst
via wet impregnation, pyrolysis and reduction. (b) HAADF-STEM overview image of the
CoSc/N-SiC catalyst. (c) Particle size distribution with a mean particle diameter of 13.9 nm.
(d) HAADF-STEM analysis of catalyst nanoparticles and (e) high-resolution image. (f)-
(g) STEM-EELS analysis shows that the nanoparticles consist of cobalt and that there is a
significant size difference with respect to the scandium particles, the latter being significantly
smaller and finely dispersed on the support material.
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reduction at 550 °C under forming gas (Figure 15a-b). Several analytical techniques were used
to characterize the CoSc/N-SiC catalyst and its active sites. The ICP-OES measurement shows
no significant deviation from the theoretical metal content of 2.0 wt% Co and 2.0 wt% Sc (see
Chapter 6). HAADF-STEM analysis revealed the presence of homogeneously distributed cobalt
nanoparticles with an average particle size of 13.9 nm (Figure 15b-c). In combination with
EELS (Figure 15d-g) STEM analysis shows that the scandium particles are orders of magnitude
smaller than the cobalt particles, with the former being finely dispersed on the N-SiC support.
SEM-EDX also confirmed the homogeneous distribution of cobalt nanoparticles and showed
that the remaining silicon, which was not removed from the support material, is distributed in
the same way as the scandium particles (see Chapter 6). To further investigate the nature of the
catalyst, XPS measurements were performed. Figure 16a shows a wide scan with the expected
signals for both the support material (Si2p, N 1s, C 1s, O 1s) and the supported catalyst particles
(Si2p, C 1s, O 1s, Sc 2p, Co 2p), as well as carbon and oxygen impurities. Additional ghost
signals, originating from Ga La radiation and shifted by 155.7 eV are marked with an asterisk.
Figure 16b shows the Co 2p3/» region. As expected, no support signals are visible. For the CoSc
catalyst there is a broad signal at 780 eV. Two binding energies at 780.6 eV and 786.4 eV for
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Figure 16: XPS spectra of the CoSc/N-SiC catalyst. (a) Wide scan with ghost peaks from Ga
La excitation (*). (b) Detailed Co 2p region. (c) Detailed Sc 2s region.
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the Co oxides and their shake-ups are shown. The splitting is characteristic for Co20O3 and/or
Co(OH),. In addition, a third energy of 777.3 eV is given for metallic Co. The observed binding
energies suggest that the surface Co is oxidized. Figure 16¢ shows the Sc 2s region. A single
species with a binding energy of 501.1 eV is found, indicating oxidized Sc considering the
literature binding energy for metallic Sc 0f 499 eV. Comparing the corrected signal areas of the
Co 2p and Sc 2s regions, the amount of Sc detected by XPS is 10 times higher than that of Co
(9.6:1.3 at%, Sc:Co), although the same concentration would be expected from the ICP-OES
results. Based on the high surface sensitivity of XPS and additional information from
microscopy, it can be concluded that Sc is finely dispersed on the outer layer, while Co is
present as or within larger particles. This suggests that the close proximity of the Co and Sc
oxide centers is advantageous for the combination of (de)hydrogenation and condensation steps

required in both catalytic reactions - reductive amination and BH/HA.

The BH/HA reaction of benzyl alcohol with gaseous ammonia was used to determine the
optimal reaction conditions for the CoSc/N-SiC catalyst (see Chapter 6). Solvent screening
revealed toluene as the most suitable solvent with a perfect volume of 2.0 mL for maximum
yield of benzyl amine. Potassium hydroxide in equimolar amounts, a temperature of 160°C and
2.0 MPa ammonia pressure were found to be optimal. For a better comparison of catalyst
activities, a variation of rare earth metals has been performed (see Chapter 6). The smaller the
rare earth metal used, the higher the selectivity of the catalyst. This resulted in Sc being the
most active. Neither Co nor Sc as a monometallic catalyst could provide the outstanding activity
of the bimetallic CoSc/N-SiC catalyst. Varying the support material resulted in activated carbon
showing only moderate activity, while y-Al>O3, TiO2 and SiO; showed little to no benzyl

alcohol conversion. Pure N-SiC showed no activity at all.

To demonstrate the applicability of the CoSc/N-SiC catalyst, a broad range of substrates was
synthesized. For clarity, the substrate scope is divided into three parts, one each for primary,
secondary, and tertiary amines. First, 13 primary amines were synthesized (Figure 17). Once
the aromatic ring of the benzyl alcohol derivative has been substituted, the reaction temperature
must be raised from 160 °C to 180 °C. This allowed for multiple electron-donating substituents
in different ring positions as well as electron-withdrawing substituents. Unfortunately, when
the CF3 group is in the ortho-position, there is too much steric hindrance for the reaction to
proceed. Due to side reactions, NO>, CN, and CONR> groups were not tolerated. A second
amine function within the alcohol was not a problem. The catalyst can be used to synthesize
two fully aliphatic amines from ketones by reductive amination. Biologically active molecules

can also be introduced into the reaction sequence. As can be seen, the bimetallic catalyst could
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Figure 17: Synthesis of primary amines using CoSc/N-SiC catalyst. Reaction condition:
28.8 mg CoSc/N-SiC catalyst (2.0 wt% Co, 1.5 mol% Co, 0.01 mmol Co, 0.58 mg Co, 2.0 wt%
Sc, 0.49 mol% Sc, 0.013 mmol Sc, 0.58 mg Sc), 0.5 mmol alcohol, 2.0 mL toluene, 0.5 mmol
KOH, 2.0 MPa NHs, 160 °C, 44 h. [a] 180 °C. [b] 0.5 mmol ketone, 3.5 mL aq. NH3-32 %,
1.0 MPa H>, 50 °C, 20 h. [c] 0.5 mmol ketone, 3.5 mL aq. NH3-32 %, 1.5 MPa H», 60 °C, 20 h.
[d] 0.25 mmol ketone, 0.3 mL ethanol, 3.2 mL aq. NH3-32 %, 1.5 MPa H,, 65 °C, 20 h.
Isolated yields of the converted hydrochloride salts are given.

also mediate the reductive amination of these ketones with aqueous ammonia. The next step
was to explore the substrate scope of secondary amines (Figure 18). We have already shown
that the catalyst can enable reductive amination of carbonyl compounds. Therefore, we
combined this with the BH/HA concept as a sequential reaction to produce more complex amine
structures. The same catalyst is reused for the second step, and in addition to neutralization,
0.8 mmol of carbonyl compound is added. The reductive amination part is then carried out at
100 °C and 4.0 MPa H» pressure. These conditions allow the synthesis of short, medium, and
long aliphatic moieties. Terminal hydroxy groups on the carbonyl compound were not a
problem for the catalyst nor were double branched or alicyclic ketones. The combination of an
aliphatic moiety with a terminal aromatic ring is possible as is the use of acetophenone and its
fluorine-substituted derivative in the reductive amination step. It must be said that the difficulty
of introducing halide substituted educts in the BH/HA step due to dehalogenation under these
harsh conditions is not a problem. The variation of the benzyl alcohol side of the amine is

associated with an increase in temperature to 180 °C and a methyl group in all ring positions as
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Figure 18: One pot synthesis of secondary amines using CoSc/N-SiC catalyst. Reaction
conditions for the first step: 28.8 mg CoSc/N-SiC catalyst (2.0 wt% Co, 1.5 mol% Co,
0.01 mmol Co, 0.58 mg Co, 2.0 wt% Sc, 0.49 mol% Sc, 0.013 mmol Sc, 0.58 mg Sc), 0.5 mmol
alcohol, 2.0 mL toluene, 0.5 mmol KOH, 2.0 MPa NH3, 160 °C, 44 h. [a] 180 °C. Reaction
conditions for the second step: 28.8 mg CoSc/N-SiC catalyst (2.0 wt% Co, 1.5 mol% Co,
0.01 mmol Co, 0.58 mg Co, 2.0 wt% Sc, 0.49 mol% Sc, 0.013 mmol Sc, 0.58 mg Sc), 0.8 mmol
carbonyl compound, 2.0 mL toluene, 0.05 mL 32 % HCIl, 4.0 MPa H», 100 °C, 20 h. [b] 150 °C.
Isolated yields of the converted hydrochloride salts are given.

well as a methoxy group is tolerated. Switching the carbonyl compound of the reductive
amination step from ketones to aldehydes, dibenzyl amine derivatives with electron-
withdrawing and electron-donating substituents, and variations on both sides are tolerated. Even
benzophenone as an educt is tolerated by raising the temperature to 150 °C in the second step.

The biggest challenge was the synthesis of tertiary amines (Figure 19). For the synthesis of
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Figure 19: One pot synthesis of tertiary amines using CoSc/N-SiC catalyst. (a) Reaction
conditions for the first step: 28.8 mg CoSc/N-SiC catalyst (2.0 wt% Co, 1.5 mol% Co,
0.01 mmol Co, 0.58 mg Co, 2.0 wt% Sc, 0.49 mol% Sc, 0.013 mmol Sc, 0.58 mg Sc), 0.5 mmol
alcohol, 2.0 mL toluene, 0.5 mmol KOH, 2.0 MPa NH3, 160 °C, 44 h. Reaction conditions for
the second step: 28.8 mg CoSc/N-SiC catalyst (2.0 wt% Co, 1.5 mol% Co, 0.01 mmol Co,
0.58 mg Co, 2.0 wt% Sc, 0.49 mol% Sc, 0.013 mmol Sc, 0.58 mg Sc), 0.8 mmol aldehyde,
2.0 mL toluene, 0.05 mL 32 % HCI, 4.0 MPa H», 100 °C, 20 h. Reaction conditions for the third
step: 28.8 mg CoSc/N-SiC catalyst (2.0 wt% Co, 1.5 mol% Co, 0.01 mmol Co, 0.58 mg Co,
2.0 wt% Sc, 0.49 mol% Sc, 0.013 mmol Sc, 0.58 mg Sc), 1.0 mmol aldehyde, 2.0 mL toluene,
0.05mL 32 % HCI, 4.0 MPa H», 140 °C, 20 h. (b) Reaction conditions for the first step:
38.4 mg CoSc/N-SiC, 0.5 mmol alcohol, 0.5 mmol n-pentylamine, 2.0 mL toluene, 0.5 mmol
KOH, Ar atmosphere, 140 °C, 44 h. Reaction conditions for the second step: 38.4 mg CoSc/N-
SiC, 2.0 mL toluene, 4.0 MPa H», 100 °C, 20 h. Reaction conditions for the third step: 38.4 mg
CoSc/N-SiC, 1.0 mmol aldehyde, 2.0 mL toluene, 0.05 mL 32 % HCI, 2.0 MPa H», 150 °C,
20 h. [a] Product isolated after second step. Isolated yields of the converted hydrochloride salts
are given.
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tertiary amines with three benzylic alkyl substituents, the consecutive synthesis was extended
by a third step (Figure 19a). For the synthesis, 1.0 mmol of another aldehyde was added and
the temperature was raised to 140 °C. The addition of 0.05 mL of concentrated HCI was
necessary to promote the tertiary imine formation of the secondary amine with the aldehyde.
The synthesis of three tertiary amines with one, two, and three different moieties is
demonstrated. Figure 19b shows a workaround approach for the synthesis of tertiary amines.
For the BH/HA step, the gaseous ammonia was replaced with n-pentylamine. The catalyst
loading was increased to 2.0 mol% Co and the temperature was lowered to 140 °C. Under an
argon atmosphere, the catalyst was able to generate the imine but not further hydrogenate it to
the corresponding amine. Therefore, an additional hydrogenation step was required to obtain
N-benzylpentan-1-amine (4.0 MPa H; at 100 °C for 20 h). By adding 1.0 mmol of aldehyde and
0.05 mL of concentrated HCI and slightly modifying the reaction conditions (2.0 MPa H>,
150 °C), five more tertiary amines were isolated. Unfortunately, the synthesis of branched alkyl
substituted tertiary alkyl amines derived from a ketone educt failed due to steric hindrance.
Despite the reaction protocol itself confirms the reusability of the CoSc/N-SiC catalyst, five
more consecutive runs of the first reaction step, the BH/HA reaction with the benchmark
substrate benzyl alcohol, were performed without any loss of activity (see Chapter 6). Upscaling
the reaction sequence by performing the above reaction with sequential reductive amination to
give N-benzylpentan-2-amine is not a problem. Using ten times the amount of educts, 76 %
yield can be isolated (see Chapter 6). To exclude the formation of homogeneous catalytic active
compounds, a hot filtration test was performed. The filtrate showed no activity and no
irreversible leaching of the active metal sites was observed (see Chapter 6). In addition,
competition experiments for BH/HA and reductive amination were performed to gain more

insight into the reaction sequence (see Chapter 6).
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Selective Hydrogenation of Aromatic Heterocycles

Christof Bauer,” Felix Miiller,” Sercan Keskin," Mirijam Zobel," and Rhett Kempe*™

Abstract: Nanostructured earth abundant metal catalysts that
mediate important chemical reactions with high efficiency
and selectivity are of great interest. This study introduces a
synthesis protocol for nanostructured earth abundant metal
catalysts. Three components, an inexpensive metal precursor,
an easy to synthesize N/C precursor, and a porous support
material undergo pyrolysis to give the catalyst material in a
simple, single synthesis step. By applying this catalyst syn-
thesis, a highly active cobalt catalyst for the general and

selective hydrogenation of aromatic heterocycles could be
generated. The reaction is important with regard to organic
synthesis and hydrogen storage. The mild reaction conditions
observed for quinolines permit the selective hydrogenation of
numerous classes of N-, O- and S-heterocyclic compounds
such as: quinoxalines, pyridines, pyrroles, indoles, isoquino-
line, aciridine amine, phenanthroline, benzofuranes, and
benzothiophenes.

A

Introduction

The reduction of arenes to saturated cyclic compounds is of
considerable interest for the production of bulk and fine
chemicals as well as the synthesis of pharmaceuticals and
agrochemicals.” Hydrogenation is an especially attractive
reduction protocol since hydrogen is inexpensive and abun-
dantly available and can be produced sustainably.”’ Further-
more, arene hydrogenation is an elegant way to store hydrogen
chemically. Here, nanostructured and reusable catalysts are
especially interesting.”) With regard to the selective hydro-
genation of N-heterocycles, nanostructured 3d-metal catalysts™
and especially cobalt catalysts®* have been developed.
Unfortunately, the applicability or scope of nanostructured 3d-
metal catalysts for the general and selective hydrogenation of
N-, O-, and S-heterocyclics is rather limited (see below, section
substrate scope). The key here might be novel synthesis

[a] C. Bauer, Prof. Dr. R. Kempe
Inorganic Chemistry Il - Catalyst Design
Sustainable Chemistry Centre
University of Bayreuth
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Commons Attribution License, which permits use, distribution and re-
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protocols for nanostructured 3d-metal catalysts to permit their
operation under mild reaction conditions. We introduce a
synthesis protocol for nanostructured earth abundant metal
catalysts recently."” Unfortunately, the flexibility with regards
to the ratio of the metal species and the N-doped carbon for
embedding the metal species (metal-N/C ratio) can only be
altered slightly by employing different (salen) ligands. As a
consequence, we have been searching for a catalyst synthesis
protocol having a high flexibility with regard of the ratio of N-
doped carbon to 3d-metal species. Three components, an
inexpensive metal precursor, a N/C precursor, and a porous
support material undergo pyrolysis to give the catalyst material
in a simple single synthesis step. The catalyst synthesis is highly
flexible about the earth abundant metal that is used. The metal
and the N/C precursors permit an optimization of the metal-N/C
ratio to boost catalyst performance. Small and reactive metal
nanoparticles embedded in a microporous N-doped carbon
matrix are formed during pyrolysis. By applying our catalyst
synthesis, a highly active cobalt catalyst for the selective
hydrogenation of aromatic N-, O-, and S-heterocycles could be
identified.

Results and Discussion

Our catalyst synthesis procedure, with spatially separated nitro-
gen/carbon and metal precursors and a (mesoporous) support
material, is shown in Figure 1a. First, the nitrogen/carbon
precursor meso-octamethylcalix[4]pyrrole was synthesized ac-
cording to an adapted literature procedure (Supporting
Information 2.1)"" For the catalyst synthesis, silica was
impregnated with meso-octamethylcalix[4]pyrrole and the met-
al precursor cobalt acetate tetrahydrate with a ratio of 4:1 in
methanol. After removal of the solvent at 70°C, the sample was
pyrolyzed under a nitrogen atmosphere at 800°C (Supporting
Information 2.2). Thermogravimetric analysis (TGA) shows the

© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
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Figure 1. Synthesis and characterization of the Co/SiO, catalyst. (a) Synthesis of the cobalt catalyst starting with wet impregnation of meso-
ocatmethylcalix[4]pyrrole and Co(OAc),-4 H,0 with SiO, and subsequent pyrolysis. (b) HAADF-STEM analysis suggests the presence of homogeneously
distributed Co nanoparticles with an average particle size of 4.8 nm. (c) XPS analysis of the surface area of the Co 2p.,, area with an asymmetric fit shows Co
metal (61%) and cobalt oxide (39%). (d)-(g) HAADF-STEM images of Co/SiO, (d), representative EELS element maps of cobalt (e), carbon (f) and nitrogen (g).
(h) Surface characterization and (i) pore size distribution of the catalyst via N, physisorption measurements (calculation model: N, at —196.15°C: slit/cylindric
pore, NLDFT equilibrium model). The specific surface area showed a slight increase from 194 m%/g of the support material to 217 m?/g of the catalyst. (j)
Detailed pore size analysis shows the generation of micropores. (k) The PDF of Co/SiO, was fitted with a Co fcc phase of 3.1 nm particle diameter and a
graphitic domain, both contributions shown in offset. () PXRD data of the catalyst Co/SiO, and the support material SiO,, together with their difference
(catalyst-support), which is supposed to be the active catalyst phase. The peaks of the active phase can be assigned to a cobalt fcc phase.
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volatility of the N/C precursor and the decomposition of cobalt
acetate under catalyst synthesis conditions (Supporting Infor-
mation 3.2). Inductively coupled plasma optical emission
spectrometry (ICP-OES) analysis of the catalyst revealed a cobalt
content of 1.81 wt.% (Supporting Information 3.1). The specific
surface area could be determined by nitrogen physisorption
measurements (Figure Th) and showed an increase in surface
area from 194 m?/g for the support material to 217 m?/g for the
catalyst. The pore size distribution of the catalyst material
(Figure 1i-j) indicates the generation of additional microporos-
ity compared to the pure silica support material, which is
mesoporous. The meso-octamethylcalix[4]pyrrole precursor
seems to form a microporous N-doped carbon layer, which
embeds the cobalt nanoparticles. The applied 800°C pyrolysis
temperature seem to be optimal for this process. A homoge-
neous distribution of the cobalt nanoparticles over the support
material (Figure 1b) and an average particle size of 4.8 nm could
be determined via high-angle annular dark field scanning
transmission electron microscopy (HAADF-STEM). In addition, X-
ray photoelectron spectroscopy (XPS) showed the presence of
metallic cobalt and cobalt oxide on the surface of the catalyst
material (Figure 1c). Detailed analysis of the nitrogen area
suggests different binding modes of nitrogen within the
catalyst (Supporting Information 3.3). Scanning electron micro-
scopy (SEM) in combination with energy dispersive X-ray
spectroscopy (EDX) confirmed the homogeneous distribution of
the cobalt nanoparticles over silica, as well as nitrogen and
carbon (Supporting Information 3.4). The presence of cobalt
nanoparticles embedded in a N-doped C matrix on the SiO,
support was again confirmed using HAADF-STEM in combina-
tion with EDX element maps (Supporting Information 3.5). To
obtain an insight into the direct environment of the nano-
particles, high resolution HAADF-STEM (Figure d) with electron
energy loss spectroscopy (EELS) was performed (Figure e-g). It
shows the interface of the support matrix and the cobalt
nanoparticles. The carbon component (C, blue) is connected to
the cobalt nanoparticles (Co, red) and a signal of nitrogen (N,
green) is present in the vicinity of the cobalt nanoparticles as
well as in the matrix. Pair distribution function (PDF) studies
and corresponding fits (Figure 1k) reveal the active species of
the catalyst. Crystalline Co face-centered cubic lattice (fcc)
nanoparticles with a spherical shape function indicate a
maximum particle size of 3.1 nm (Table S1). The first peak
occurring below 1.5 A is not consistent with pure Co fcc, which
has a nearest neighbor distance around 2.51 A."? However, this
peak matches very well with a C—C or a C—N bond distance of
N-doped graphite, which was formed via pyrolysis."” Figure 1
shows the PXRD data of the SiO, support and the Co/SiO,
catalyst. By subtracting the scattering contribution of the pure
support material from the catalyst signal, the cobalt loading can
be determined. The active sites can be assigned to a Co fcc
phase with slightly shifted Q values (Supporting Information
3.6).

To determine suitable reaction conditions for the hydro-
genation of aromatic heterocyclic compounds, the hydrogena-
tion of quinoline to 1,2,3,4-tetrahydroquinoline was chosen as a
benchmark reaction. The solvent screening revealed that

Chem. Eur. J. 2023, 29, 202300561 (3 of 7)

ethanol is the most suitable solvent for the model reaction
(Table S2-3). Next the reaction temperature (Table S4) and the
hydrogen pressure were screened (Table S5). The optimized
parameters of 3mL ethanol, 20 MPa H, and 70°C were
determined. The pyrolysis temperature was then varied, and
different commercially available support materials and cobalt
precursors were tested (Table 1). Lowering the pyrolysis temper-
ature to 700°C leads to a yield in the trace range, at 600°C no
conversion takes place. With the application of a higher
temperature (900°C) only traces of 1,2,3,4-tetrahydroquinoline
were found, indicating the superiority of the catalyst, that was
pyrolyzed at 800 °C. Pure SiO, support showed no conversion of
quinoline. The use of activated carbon as a catalyst support
material showed some activity in the selective hydrogenation of
quinoline, while cobalt catalysts based on other supports, such
as y-Al,0;, TiO, and CeO, are not suitable for this reaction under
the given conditions (Table 1). Further, the use of cobalt acetate
is important to the activity of the catalyst. The metal precursors
cobalt acetylacetonate, cobalt stearate and cobalt chloride
show little to no activity. The only metal precursor with some
activity of the final catalyst was cobalt nitrate. We continued
our investigation by varying metal loadings of the catalyst. The
experiments revealed that the catalyst with theoretically
4.0 wt.% (measured 1.81 wt.%) cobalt showed the best activity
(Table S6). Moreover, we examined the effect of the catalyst
loading upon catalysis. We observed that the best results were
obtained at 5.0 mol% catalyst loading (Table S7). Further, the
high activity of our catalyst is based on a specific ratio of the N/
C precursor to the cobalt precursor. We assume that a certain
amount of microporous N-doped carbon or a certain thickness
of the embedding N-doped carbon layer is optimal for educt
access and catalyst stability. A layer too thick might prevent
educt access and a layer too thin might lead to cobalt leaching
since the metal nanoparticles can be more easily removed from
the support. Maximum activity in our benchmark reaction is
observed if a ratio of metal to C/N precursor of 1:4 is used (M/N
ratio). More N-doping leads to a decrease of product yield into
a certain plateau at around 60% yield (Table1). Time
conversion studies (Supporting Information 4.2) show that the
conversion of quinoline to 1,2,34-tetrahydroquinoline is
achieved after 17 h under the applied optimal reaction
conditions. To ensure completion, a reaction time of 20 h was
chosen. In summary, the reaction can be carried out smoothly
and selectively with 5mol% Co, 2.0 MPa H,, 70°C and 20 h
reaction time. Very mild conditions for the benchmark reaction
using nanostructured cobalt catalysts have been disclosed by
Beller®® and Zhao"' and co-workers. Reaction conditions for the
work of the Beller group were: 4 mol% Co, 2.0 MPa H,, 100°C
and 48 h® and 9 mol% Co, 1.0 MPa H,, 70°C and 24 h.” The Co
catalyst developed by the Zhao group operates under the
following optimal reaction conditions: 2.0 MPa H,, 100°C, 3-
6 h_[7l

With the optimized reaction conditions in hand, we became
interested in the substrate scope of our catalyst system. As
shown in Scheme 1, a series of substituted and functionalized
quinolines underwent selective hydrogenation to produce
aliphatic cyclic derivatives in excellent yields under very mild

© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
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Table 1. Cobalt catalyst comparison.”’
/
N N
H

Entry M/N ratio Metal source Support material Pyrolysis temperature [°C] Yield [%]
™ 1:0 Co(OA),-4 H,0 Sio, 800 0

o 1:1 Co(OAc),-4 H,0 Sio, 800 traces
30 1:2 Co(OAG),-4 H,0 Sio, 800 n

4® 1:3 Co(OAC),-4 H,0 Sio, 800 16
50 1:4 Co(0Ac),-4 H,0 Sio, 800 88
6" 1:5 Co(OAC),-4 H,0 Sio, 800 62

7" 1:10 Co(0AC),-4 H,0 Sio, 800 60

8 1:4 Co(OAc),-4 H,0 Sio, 800 >99
9! 1:4 Co(OAc),-4 H,0 Si0, 600 0

10" 1:4 Co(OAc),-4 H,0 SiO, 700 traces
1® 1:4 Co(OAC),-4 H,0 Sio, 800 13
124 1:4 Co(OAC),-4 H,0 Sio, 900 traces
13 1:4 Co(OAc),-4 H,0 activated carbon 800 25

14 1:4 Co(OAC),-4 H,0 y-ALO, 800 0

15 1:4 Co(OAc),-4 H,0 Tio, 800 0

16 1:4 Co(OAc),-4 H,0 CeO, 800 0

17 1:4 Colacac), Sio, 800 0

18 1:4 Co(NO,),-6 H,0 Sio, 800 48

19 1:4 Col(ll)stearate Sio, 800 9

20 1:4 CoCl,-6 H,0 Sio, 800 0

21 1:4 o Sio, 800 0

[a] Reaction conditions: 5.0 mol % Co (1.81 wt.% Co, 0.01 mmol Co, 0.59 mg Co), 0.2 mmol quinoline, 3 mL ethanol, 70°C, 2.0 MPa H,, 20 h. Yields were
determined by GC using n-dodecane as an internal standard. [b] Same as [a] but 60 °C.

conditions. First, we applied our catalyst for the hydrogenation
of pure quinoline and achieved an excellent yield. Subsequent
investigations involved fifteen quinoline derivatives, which were
hydrogenated also under relatively mild conditions. This led to
the formation of 1,2,3,4-tetrahydroquinolines with up to 99%
isolated yields (Scheme 1, products 1, 6, 7, 9 and 10) indicating
that the catalytic process is able to proceed with considerable
variation in the nature and the position of the substituents. In
particular, both electron-donating methyl  substituents
(Scheme 1, products 2-8) and electron-withdrawing halogen
substituents (Scheme 1, products 9 and 10) yield the desired
product in high yield. Furthermore, the catalyst succeeds when
methoxy, hydroxy and amine groups (Scheme 1, products 11—
13) are present. Finally, the catalyst is also able to tolerate two
functional groups (Scheme 1, product 14 and 15) producing the
intended 1,2,3,4-tetrahydroquinolines in excellent yields. It is
worth mentioning some of the 1,2,3,4-tetrahydroquinolines
presented in Scheme 1 serve as precursors or intermediates for
the synthesis of bioactive molecules. In particular, products 1, 2
and 11 can result in 5-HT3 receptor antagonists, antitrypanoso-
mally drugs and tubulin polymerization inhibitors."" Following
the selective hydrogenation of quinolines, we became inter-
ested in the hydrogenation of other N-heterocycles. First,
quinoxaline could be converted to the corresponding hydro-
genated product (Scheme 2, product 16) under very mild
conditions. In addition, 2-methyl-1,2,3,4-tetrahydroquinoxaline
(Scheme 2, product 17) was obtained for the first time with a
nanostructured cobalt catalyst in good yield under mild
reaction conditions. Next, we were interested in the hydro-
genation of pyridines and pyrroles to demonstrate the superior

Chem. Eur. J. 2023, 29, 202300561 (4 of 7)

general applicability of our cobalt catalyst. To achieve good
yields, the reaction conditions had to be modified and required
5.0 MPa H,, 120°C and 10 mol% Co. Under these conditions, we
were able to hydrogenate pure pyridine efficiently (Scheme 2,
product 18) as well as isonicotinamide (Scheme 2, product 19)
which is known as a reversible organic hydrogen storage liquid
for potential hydrogen-powered fuel cells in mobile
applications."” Simple pyrrole and 2-methylpyrrole (Scheme 2,
products 20 and 21) could be also converted to the correspond-
ing hydrogenated products in good yields. We further tested
our catalyst in the hydrogenation of indoles. 2-methylindole as
well as 2,3,3-trimethylindolenin can be converted to the
products in excellent yields (Scheme 2, product 22 and 23).
Indolines and their scaffold are known as important pharma-
ceuticals and agrochemicals and it is particularly useful to have
a selective and simple access to this class of compounds."® As a
consequence, hydrogenation catalysis has been used to synthe-
size indolines."” The reduction of isoquinoline (Scheme 2,
product 24) was also performed. It is noteworthy, that drastic
conditions are needed for complete selective hydrogenation
compared to quinoline. When our catalyst is used with 9-
aminoacridine, we selectively obtain 1,2,3,4,5,6,7,8-octahydro-9-
aminoacridine (Scheme 2, product 25). This is in contrast to the
other products, as we were able to selectively hydrogenate the
phenyl rings instead of the N-heterocycle. We assume that
partial hydrogenation takes place in the N-heterocycle part and
subsequent rearrangement. In the case of phenanthroline and
benzo[h]quinoline, we were also able to selectively reduce the
N-heteroarene rings and the corresponding partially reduced
products were obtained in up to 81 % yield (Scheme 2, products
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Scheme 1. Hydrogenation of quinolines to the corresponding 1,2,3,4-
tetrahyrodquinolines. Reaction conditions: 5.0 mol % Co (1.81 wt.% Co,

0.01 mmol Co, 0.59 mg Co), 0.2 mmol substrate, 3 mL ethanol, 70°C, 2.0 MPa
H,, 20 h. Isolated yields are given.

26 and 27). In addition to N-heterocycles, we applied our
catalyst to the more challenging hydrogenation of O- and S-
heterocycles. The selective hydrogenation of benzofurans is of
great interest®'®'” because the associated products are impor-
tant bio-active molecules. With our catalyst, we are able to
selectively hydrogenate benzofuran to 2,3-dihydrobenzofuran
(Scheme 2, product 28). We had to modify the initial conditions
slightly i.e. 3.0 MPa H, and 100°C to obtain an excellent yield.
Moreover, we could also demonstrate the selective hydro-
genation of 5-bromobenzofuran (Scheme 2, product 29). Having
shown the successful hydrogenation of N- and O-heterocycles,
the compounds 5-methylbenzothiophene and 4-chlorobenzo-
thiophene were hydrogenated. To achieve a reasonable yield,
we had to modify the reaction conditions by using 6.0 MPa H,,
150°C, 48 h and 15 mol% Co (Scheme 2, product 30 and 31).
The hydrogenation of benzothiophenes is very challenging and
research has focused on benzothiophene."**” The strong bind-
ing of sulfur containing heterocycles to the active metal sites is
an additional hurdle.”" Very recently and parallel to our work,
Beller/Jagadeesh and coworkers introduced an earth abundant
metal based heterogeneous catalyst system able to hydro-
genate benzofuran derivatives and benzothiophenes.””

Chem. Eur. J. 2023, 29, 202300561 (5 of 7)
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Scheme 2. Products of the hydrogenation of different N-, O-, and S-hetero-
cycles. Reaction conditions: 5.0 mol% Co (1.81 wt.% Co, 0.01 mmol Co,
0.59 mg Co), 0.2 mmol substrate, 3 mL ethanol, 70°C, 2.0 MPa H,, 20 h.
Isolated yields are given. [a] 10 mol% Co (1.81 wt.% Co, 0.02 mmol Co,
1.18 mg Co), 0.2 mmol substrate, 3 mL ethanol, 120°C, 5.0 MPa H,, 20 h.
Isolated yields are given. [b] 5 mol% Co (1.81 wt.% Co, 0.01 mmol Co,

0.59 mg Co), 0.2 mmol substrate, 3 mL ethanol, 100°C, 3.0 MPa H,, 20 h.
Isolated yields are given. [c] 15 mol% Co (1.81 wt.% Co, 0.03 mmol Co,
1.77 mg Co), 0.2 mmol substrate, 3 mL ethanol, 150°C, 6.0 MPa H,, 48 h.
Isolated yields are given.

Regarding reusability, five consecutive runs were carried out
(Supporting Information 4.3) and the yields and initial rates
obtained indicate very good recyclability. As observed by TEM
measurements, there is no agglomeration or growing of nano-
particles in the used catalyst during catalysis. Moreover, particle
size distribution after catalysis with an average diameter of
6.2nm has been observed (Supporting Information 4.4.1). In
addition, a hot filtration test was performed, and the separated
solution showed no activity. This indicates that irreversibly
leached cobalt species play no significant role in arene hydro-
genation catalysis. The leaching of our catalyst was determined
by ICP-OES and found to be 0.7% (Supporting Information
4.4.3). To demonstrate the efficiency and practicality of our
cobalt catalyst, an upscaling of the benchmark reaction was
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performed using 10 mmol quinoline. This resulted in the
isolated yield of 90% of 1,2,3,4-tetrahydroquinoline (Supporting
Information 4.5).

Conclusion

In conclusion, we introduced a protocol to synthesize highly
active and selective nano-structured 3d-metal catalysts and
succeeded in identifying a selective cobalt hydrogenation
catalyst. A variation in the ratio of metal to N/C precursor can
be used to boost catalyst performance. Our catalyst can operate
under very mild conditions permitting the hydrogenation of
numerous classes of N-, O- and S-heterocycles selectively. The
discovered catalyst synthesis protocol might assist others to
find selective and highly active nanostructured 3d-metal
catalysts for arene hydrogenation and other important catalytic
transformations.

Experimental Section

Catalyst synthesis: To a suspension of meso-octameth-
ylcalix[4]pyrrole  (1.352 mmol, 579.32mg) in 12mL MeOH,
Co(OAc),-4 H,0 (0.338 mmol, 84.16 mg, 4 wt.% ideally) is added to
500 mg SiO, and the solvent is evaporated at 70°C under slow,
constant stirring. The active catalyst material is generated by
pyrolysis at 800°C under nitrogen flow, followed by pyrolysis at
550 °C under nitrogen flow.

Catalyst characterization: TEM was carried out by using a JEOL JEM
2200FS (200 kV) device. For the sample preparation, the samples
were suspended in chloroform and sonicated for 5min. For
analysis, LC200-Cu grids were used. Scanning transmission electron
microscopy (STEM) measurements were performed using a JEM-
ARM200F (JEOL) equipped with a cold emission gun, a STEM probe
corrector (CEOS GmbH), and an energy filter (GATAN). The micro-
scope was operated at 200 kV with a probe current of 80 pA. The
probe convergence semi-angle was 13.4 mrad (20 um condenser
lens aperture). The images were recorded with an annular dark-field
(ADF) detector using a detector distance of 8 cm resulting in a
collection angle of 68-280 mrad. The image size, pixel size, and
pixel dwell time of the STEM images were 1024x1024 pixels,
0.063 nm, and 16 pm, respectively. Electron energy loss spectro-
scopy (EELS) measurements were performed in STEM mode with
the same probe size, condenser lens aperture, and detector
distance. The energy dispersion of the spectrometer was set to
0.25 eV. The image collection semi-angle was 20.8 mrad. The image
size, pixel size, and pixel dwell time of the EELS spectrum images
were 100x100 pixels, 0.33nm, and 20 ms, respectively. X-ray
photoelectron spectroscopy (XPS) was performed using a Physical
Electronics Phi 5000 Versa Probe IIl instrument. As X-ray source a
monochromatic Al Ka with a spot size of 100 um (21.1 W) was used.
The kinetic pass energy of the photoelectrons was determined with
a hemispheric analyzer (45°) set to pass energy of 13 eV for high-
resolution spectra. Pore characterizations were carried out via
nitrogen physisorption measurements using a Nova2000e (Quanto-
chrome) apparatus. The pore size distribution was computed via
DFT calculations (calculation model: N, at —196.15 °C: slit/cylindrical
pore, NLDFT equilibrium model). The specific surface area was
calculated using p/p, values from 0.05-0.3 (BET). PXRD and PDF
measurements have been taken at the European Synchrotron
Radiation Facility (ESRF), beamline ID-15 A, which is equipped with
a PILATUS 2 M, S/N 24-0131, X series detector. The powder was

Chem. Eur. J. 2023, 29, 202300561 (6 of 7)

packed in Lindemann special glass capillaries with a diameter of
1 mm. Measurements were made for one minute at a photon
energy of 90 keV (30 images each 2 seconds). Distance calibration
was done with a CeO,, NIST 674b standard.

General procedure for the hydrogenation of aromatic hetero-
cycles: A 10 mL glass reaction vial was charged with a magnetic
stirring bar, 0.2 mmol substrate, 3 mL EtOH and 32.6 mg catalyst
(5.0 mol% Co). The vial was placed in a 300 mL high-pressure
autoclave (Parr Instruments). The autoclave was flushed three times
with 2.0 MPa hydrogen. Afterwards, 2.0 MPa hydrogen was applied,
and the reaction was stirred at 70°C for 20 h. After completion of
the reaction time, the autoclave was cooled to room temperature
and the hydrogen was released. The catalyst was removed by
filtration. The solvent was removed via rotary evaporation and high
vacuum. After purification via column chromatography, the product
was analysed by 'H- and “CNMR spectroscopy. NMR measure-
ments were performed using a Varian INOVA 300 (300 MHz for 'H,
75 MHz for * C) and a Varian INOVA 400 (400 MHz for 'H, 100 MHz
for Q) instrument at 296 K. For certain substrates, hydrogen
pressure, temperature and reaction time as well as catalyst loading
have been adapted.
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1 General considerations

All air- and moisture sensitive reactions were performed under dry argon or nitrogen
atmosphere using standard Schlenk and glove box techniques. Dried solvents were obtained
from a solvent purification system (activated alumina cartridges) or purchased from commercial
sources. Deuterated solvents were dried via molecular sieves. All chemicals were acquired from

commercial sources with purity over 95 % and used without further purification.

Pyrolysis of the catalyst were performed under nitrogen atmosphere in a ChemBET Pulsar

TPR/TPD instrument from Quantachrome.

Transmission electron microscopy (TEM) was carried out by using a JEOL JEM 2200FS
(200 kV) device. For the sample preparation, the samples were suspended in chloroform and
sonicated for 5 min. For analysis, LC200-Cu grids were used. Scanning transmission electron
microscopy (STEM) measurements were performed using a JEM-ARM200F (JEOL) equipped
with a cold emission gun, a STEM probe corrector (CEOS GmbH), and an energy filter
(GATAN). The microscope was operated at 200 kV with a probe current of 80 pA. The probe
convergence semi-angle was 13.4 mrad (20 um condenser lens aperture). The images were
recorded with an annular dark-field (ADF) detector using a detector distance of 8 cm resulting
in a collection angle of 68-280 mrad. The image size, pixel size, and pixel dwell time of the
STEM images were 1024 x 1024 pixels, 0.063 nm, and 16 pm, respectively. Electron energy
loss spectroscopy (EELS) measurements were performed in STEM mode with the same probe
size, condenser lens aperture, and detector distance. The energy dispersion of the spectrometer
was set to 0.25 eV. The image collection semi-angle was 20.8 mrad. The image size, pixel size,
and pixel dwell time of the EELS spectrum images were 100 x 100 pixels, 0.33 nm, and 20 ms,

respectively.

Scanning electron microscopy (SEM) and coupled energy dispersive X-ray spectroscopy
(EDX) measurements were carried out by using a Zeiss Ultra plus device. The acceleration
voltage was 20 kV. The detection was carried out with an in-lens backscatter detector. For a
conductive surface, the samples were sputtered with platinum (layer thickness: 1.3 pum) with

the Sputter Coater 208HR from Cressington.

Pore characterizations were carried out via nitrogen physisorption measurements using a
Nova2000e (Quantochrome) apparatus. The pore size distribution was computed via DFT
calculations (calculation model: N> at -196.15 °C: slit/cylindrical pore, NLDFT equilibrium
model). The specific surface area was calculated using p/po values from 0.05-0.3 (BET).

3
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PXRD and PDF measurements have been taken at the European Synchrotron Radiation Facility
(ESRF), beamline ID-15A, which is equipped with a PILATUS 2M, S/N 24-0131, X series
detector. The powder was packed in Lindemann special glass capillaries with a diameter of
1 mm. Measurements were made for one minute at a photon energy of 90 keV (30 images each
2 seconds). Distance calibration was done with a CeO2, NIST 674b standard. We use xPDFsuite
to calculate the G(r) function, and Diffpy-CMI for fitting.!'! Theoretical XRD patterns have
been created with the Mercury software!?), using Crystallographic Information Files of Co

(database code: ICSD 136039) and graphite (database code: ICSD 18838).1*!

The cobalt content was determined by ICP-OES. The fusion of the catalyst was carried out in a
Berghof Speed Wave 4 microwave, for the ICP-OES measurement an Agilent 5800 was used

(standing flame with axial and radial observation).

X-ray photoelectron spectroscopy (XPS) was performed using a Physical Electronics Phi 5000
Versa Probe I1I instrument. As X-ray source a monochromatic Al Ka with a spot size of 100 pm
(21.1 W) was used. The kinetic pass energy of the photoelectrons was determined with a

hemispheric analyzer (45°) set to pass energy of 13 eV for high-resolution spectra.
Elemental analyses were carried out on an Elementar UNICUBE® device.

NMR measurements were performed using a Varian INOVA 300 (300 MHz for 'H, 75 MHz
for 1*C), a Varian INOVA 400 (400 MHz for 'H, 100 MHz for '3C) and a Bruker Avance III
HD 500 (500 MHz for 'H, 125 MHz for '3C) instrument at 296 K. Chemical shifts are reported
in ppm relative to the residual solvent signal (CDCls: 7,26 ppm ('H), 77,16 ppm ('3C);
DMSO0-d6: 2.50 ppm ('H), 39.51 ppm (*C)), coupling constants (J) are reported in Hz.
Estimated 'H and '*C NMR spectra were simulated (DMSO-ds, 300 MHz) using ChemDraw
Professional Version 21.0.0.28.

GC analyses were carried out on an Agilent 6850 GC system equipped with an Optima 17
column (30 m x 0.32 mm x 0.25 pum).

The hydrogenation experiments were carried out with Parr Instrument stainless steel autoclaves

N-MTS5 300 mL equipped with heating mantles and temperature controller.
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2 Experimental procedures

2.1 Synthesis of meso-octamethylcalix[4]pyrrole

Meso-octamethylcalix[4]pyrrole was synthesized according to an adapted literature
procedure.! To a solution of 50 mL MeOH with 2.96 mL acetone (40 mmol) and 0.4 mL
concentrated H2SO4 (0,0075 mmol) were 2.78 mL pyrrole in 10 mL MeOH slowly added. The
reaction solution is stirred for 1.5 h at room temperature and then placed in the freezer (-24 °C)

overnight. The white precipitate is filtered, washed with cold MeOH, and dried under vacuo.

CHN (CagHieNa): C 78.1 (78.5), H 8.3 (8.5), N 13.0 (13.1),
IH NMR (500 MHz, CDCls, 296 K): 8 = 7.02 (s, 4H), 5.92-5.91 (d, J = 2.7, 8H), 1.53 (s, 24H)

13C NMR (125 MHz, CDCl3, 296 K): § = 138.45, 102.84, 35.21, 29.13 ppm.

Yield: 3.99 g (9.3 mmol, 93 %)

2.2 Catalyst synthesis

To a suspension of meso-octamethylcalix[4]pyrrole (1.352 mmol, 579.32 mg) in 12 mL
MeOH, Co(OAc); - 4 H>O (0.338 mmol, 84.16 mg, 4 wt% ideally), respectively Co(acac)a,
Co(NOs)2 - 6 H20, Co(Il)stearate) and CoClz - 6 H20, is added to 500 mg SiO> (respectively
activated carbon, y-Al203, TiO2, CeOz) and the solvent is evaporated at 70 °C under slow,
constant stirring. The active catalyst material is generated by pyrolysis at 800 °C under nitrogen

flow, followed by pyrolysis at 550 °C under nitrogen flow.

i 10 K/min
rr —2KMIN _ 5000c (05h) —— = 800°C (0,5 h)
N2 N2
- i 20 K/mi
20KImin_ 400 ec SKMIN _ 55500 (3h) S RT
2 N2 N
5

68



A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic

Heterocycles

2.3 Catalytic selective hydrogenation of aromatic heterocycles — general

procedure

A 10 mL glass reaction vial was charged with a magnetic stirring bar, 0.2 mmol substrate, 3 mL
EtOH and 32.6 mg catalyst (Co/SiO2, M/L = 1:4, 5.0 mol% Co). The vial was placed in a
300 mL high-pressure autoclave (Parr Instruments). The autoclave was flushed at least three
times with 2.0 MPa hydrogen. Afterwards, 2.0 MPa hydrogen was applied, and the reaction
was stirred at 70 °C for 20 h. After completion of the reaction time, the autoclave was cooled
to room temperature and the hydrogen was released. The catalyst was removed by filtration.
The solvent was removed via rotary evaporation and high vacuum. After purification via

column chromatography, the product was analysed by 'H- and '*C-NMR spectroscopy.
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3 Characterization of the catalyst

3.1 ICP-OES

25 mg of the sample were solved in 5 mL HNO; (65 % p.a.) and 2 mL HF (40 % supra) and

heated in the microwave at 210 °C for 40 min.

Theoretical Co content: 4.00 wt%

Measured Co content: 1.81 wt%

The huge difference is understandable, due to the loss of precursor materials in the nitrogen

stream of catalyst synthesis and the high sublimability of the precursor materials.

32 TGA
100
1 —— meso-octamethyl-
80 - \\ calix[4]pyrrole
—— Co/SiO2 impregnated
g 6. ——Co(OAc), - 4H,0
7
o
3 404
(]
1S
20 +
0

0 250 500 750 1000
temperature [°C]

Figure S 1: TGA analysis of meso-octamethylcalix[4]pyrrole (red), the impregnated precursor
materials (blue) and Co(OAc): - 4 H20 (green). Measurements were performed in the range of
30-1000 °C (heating ramp 10 K/min) in constant N2 flow.
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3.3 XPS
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Figure S 2: X-ray photoelectron spectra (XPS) of the surface area of the catalyst Co/SiOs.
(a) XPS survey of Co/SiO;. The catalyst contains Si, O, C, N and Co. (b) Analysis of the
nitrogen area suggests different binding models of nitrogen within the catalyst (graphitic: 8 %,
pyrrole-like: 41 %, pyridine-like: 51 %). (c) Analysis of the Co 2p3/2 area with an asymmetric
fit. It shows Co® (61 %) and cobalt oxide (39 %) on the surface.
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3.4 SEM-EDX

Figure S 3: Scanning electron microscopy (SEM) in combination with energy dispersive X-ray
(EDX) mapping of the catalyst. The measurements show a homogeneous distribution of the
cobalt nanoparticles over the entire material which indicates a smooth impregnation process.
The distribution of N, Si and O verifies a homogeneous surface of the support material.
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3.5 HAADF-STEM with EDX

600 —

Counts

CuKa

CoKesc
f — Cokb

Figure S 4: Characterization of the Co nanoparticles by high-angle annular dark-field scanning
TEM (HAADF-STEM) analysis combined with energy-dispersed X-ray (EDX element
mapping. SiO2 (Si: orange, O: magenta) is covered with homogeneously dispersed Co
nanoparticles (Co: green). The nanoparticles are embedded in a nitrogen doped carbon layer
(C: red, N: blue).
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3.6 PXRD and PDF

Figure S 5 (left) shows the PXRD data of the SiO> support (red) and the Co/SiO; catalyst (blue),
corrected for scattering of air and the capillary. Due to the low signal to noise ratio, as well as
the broad diffuse scattering beneath the diffraction peaks, common XRD refinements cannot
yield further insight into the nanostructurel®!, known as the "nanostructure problem".[]
Complementary, the atomic pair distribution function (PDF) technique not only utilizes the
sharp Bragg peaks, but also the diffuse scattering, representing the structural information as a
histogram of all interatomic distances. Structural models of cobalt and graphite combined with
a spherical shape function were used to fit the data. There seems to be no alteration of the
support’s crystal structure due to the loading since its peaks remain at the same positions and
keep their original shape. By subtracting the scattering contribution of the pure support, the
signal from the Cobalt loading can be isolated (Figure S 5, right). The catalyst data shows
several Bragg peaks on top of a broad and continuous intensity distribution, that is primarily
related to the crystallite size, as shown by Jiang et al..’? The peaks of the active phase, can be
assigned to a Co (fce) phase, i.e. (111), (200), (220) and (311) reflexes, while being slightly

shifted to lower Q values.

A" = | B | o s

1Q), au. _
1(Q), ..
8

5 6 H 3
Q[I/A] Q[UA]

Figure S 5: PXRD of the catalyst (blue) and the support SiO> (red) on the left side and the
difference PXRD, which is the active phase with the support contribution subtracted (blue) with

the Co (fcc) reference phase (orange).

PDF data and their corresponding fits are shown in Figure S 6. The active species of the catalyst
are best fitted using a fcc structure of pure Cobalt, with a spherical shape function indicating a
maximum particle size of 3.1 nm, and a goodness-of-fit value Ry of 0.27, with all but one peak
well described. The first peak occurring at 1.52 A cannot be described by a pure Cobalt (fcc)
species, which have their nearest neighbour distance at around 2.51 A However, this peak
matches very well a C-C bond distance of 1.54 A8 It can be fitted by introducing a graphite
phase (database code: ICSD 18838).[% Even though this phase does not fit to the cobalt phase,
11
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it can be explained because of the pyrolysis step at the catalyst synthesis and the formation of

N-doped graphite in the catalyst material.

G(r) [A]

-100

>
r(A]

Figure S 6: PDF of the active phase (orange) with its fit (blue) and the corresponding difference

curve (green). Contributions of co (purple) and graphite (bottom, orange) can be seen below.

Compared to bulk cobalt, the nanoparticles show a shrinkage of their unit cell and
corresponding cell volume by 1.35 % for all numbers (Table S 1). This phenomenon has been
observed before for various metal nanoparticles and is attributed to surface tension in particular
when crystal sizes become smaller than 5 nm.['”) Smaller crystals have a higher ratio of the
number of surface atoms compared to the total number of atoms, which induces a compression

of lattice parameters.

Table S 1: Results of PDF refinement for the cobalt phase. Unit cell parameters (starting values
in brackets); Biso: isotropic atomic displacement parameters, delta 2: correlated atomic motion
parameter; Ry: goodness of fit value.

Lattice parameter a, b 3.5390 (3.5551)
Lattice parameter ¢ 3.5390 (3.5551)
Cell volume 44.32 (44.93)
Size 3.17
Biso 0.6961
delta 2 3.000
Rw 0.27
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4 Catalytic studies

4.1 Screening of reaction parameters

Table S 2: Reaction parameters — solvent.

/
N N

H
Entry Solvent Yield [%]
1 Ethanol =50
2 Methanol 54
3 Water 0
4 Tetrahydrofuran 0
5 2-Methyltetrahydrofuran 0
6 Toluene 78
7 Xylene 51
8 Diglyme 0
9 1,4-Dioxane 0
10 Triethylamine 0

Reaction conditions: 5.0 mol% Co (1.81 wt% Co, 0.01 mmol Co, 0.59 mg Co), 0.2 mmol
quinoline, 3 mL solvent, 70 °C, 2.0 MPa Ha, 20 h. Yields were determined by GC using
n-dodecane as an internal standard.

Table S 3: Reaction parameters — amount of ethanol.

~
N N

H
Entry Solvent [mL] Yield [%]
1 1 24
2 2 97
3 3 >99
4 4 > 99
5 5 >99

Reaction conditions: 5.0 mol% Co (1.81 wt% Co, 0.01 mmol Co, 0.59 mg Co), 0.2 mmol
quinoline, ethanol, 70 °C, 2.0 MPa Hj, 20 h. Yields were determined by GC using
n-dodecane as an internal standard.

13

76



A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic

Heterocycles

Table S 4: Reaction parameters — reaction temperature.

e~
N N

H
Entry Temperature [°C] Yield [%]
1 40 0
2 50 0
3 60 88
4 70 >99
5 80 >99
6 90 >99
7 100 >99

Reaction conditions: 5.0 mol% Co (1.81 wt% Co, 0.01 mmol Co, 0.59 mg Co), 0.2 mmol
quinoline, 3 mL ethanol, 2.0 MPa Ha, 20 h. Yields were determined by GC using n-dodecane
as an internal standard.

Table S 5: Reaction parameters — Ha pressure.

o
N N

H
Entry Pressure [MPa] Yield [%]
1 1.0 20
2 2.0 >99
3 3.0 >99

Reaction conditions: 5.0 mol% Co (1.81 wt% Co, 0.01 mmol Co, 0.59 mg Co), 0.2 mmol
quinoline, 3 mL ethanol, 70 °C, 20 h. Yields were determined by GC using n-dodecane as an
internal standard.
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Table S 6: Reaction parameters — metal loading on catalyst.

e~
N N

H
Entry Metal loading [wt%] Yield [%]
1 1.0 0
2 2.0 0
3 3.0 17
4 4.0 (1.81) >99
5 5.0 88

Reaction conditions: 5.0 mol% Co (0.01 mmol Co, 0.59 mg Co), 0.2 mmol quinoline, 3 mL
ethanol, 2.0 MPa Ha, 70 °C, 20 h. Yields were determined by GC using n-dodecane as an
internal standard.

Table S 7: Reaction parameters — catalyst loading in catalysis.

-
N N

H
Entry Catalyst loading [mol%] Yield [%]
1 1.0 0
2 2.0 18
3 3.0 46
4 4.0 81
5 5.0 >99

Reaction conditions: Catalyst (1.81 wt% Co), 0.2 mmol quinoline, 3 mL ethanol, 2.0 MPa
Ha, 70 °C, 20 h. Yields were determined by GC using n-dodecane as an internal standard.
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Figure S 7: Reaction progress for the selective hydrogenation of quinoline (black) at different
intervals of time to the corresponding 1,2,3,4-tetrahydroquinoline (red). Reaction conditions:
0.2 mmol quinoline, 3 mL ethanol, 32.6 mg catalyst (5 mol%), 70 °C and 2.0 MPa hydrogen.
Yields werde determinde by GC using n-dodecane as internal standard.
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4.3 Reusability

The hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline was chosen to investigate the
recyclability of the novel Co/SiOs catalyst. A 10 mL reaction vial was charged with a magnetic
stirring bar, 0.2 mmol quinoline, 3 mL EtOH and 32.6 mg catalyst (5 mol% Co). The vial was
placed in a high-pressure autoclave (Parr Instruments) and the autoclave was flushed five times
with 2.0 MPa hydrogen. The autoclave was pressured with 2.0 MPa hydrogen and the reaction
was carried out for six hours at 70 °C to obtain 60 % yield. After six hours the autoclave was
opened and there the catalyst was washed three times with ethanol via centrifugation. Therefore,
the catalyst could be completely recovered. The yield of 1,2,3,4-tetrahydroquinoline was

determined by GC using n-dodecane as an internal standard (Figure S 8).
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Figure S 8: Results and the initial rates of the recycling experiment. There is no decrease of
the catalytic activity in five consecutive runs.
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4.4 Evaluation of the used catalyst

4.4.1 TEM measurements

The Co/SiOz catalyst was investigated with TEM measurements after the catalysis. The general
procedure for the hydrogenation of quinoline was applied in a 10 mL reaction vial. The vial
was charged with a magnetic stirring bar, 0.2 mmol quinoline, 3 mL EtOH and 32.6 mg catalyst
(5 mol% Co). The vial was placed in a 300 mL high-pressure autoclave (Parr Instruments) and
the autoclave was flushed three times with 2.0 MPa hydrogen. Afterwards, 2.0 MPa hydrogen
was applied, and the reaction was stirred at 70 °C for 20 h. After completion of the reaction
time, the autoclave was cooled down to room temperature and the hydrogen was released. The
catalyst was removed by centrifugation and the organic phase was separated. After, the catalyst
was washed three times with ethanol and dried in vacuo. The catalyst was characterized via

TEM measurements.

(a)

3 456 7 89
particle size [nm]

Figure S 9: (a) TEM characterization of the used Co/SiO; catalyst. There is no agglomeration
or growing of nanoparticles. The particle size distribution is homogeneous with an average
diameter of 6.2 nm. (b) HR-TEM measurement of the catalyst. The particles are in good shape
with the particles before catalysis.

4.4.2 Hot filtration test

To demonstrate the catalyst stability a hot filtration test was performed. Therefore, a 10 mL
reaction vial was charged with a magnetic stirring bar, 0.2 mmol quinoline, 3 mL ethanol and
32.6 mg catalyst (5 mol% Co). The vial was placed in a 300 mL high-pressure autoclave (Parr

Instruments) and the autoclave was flushed three times with 2.0 MPa hydrogen. Afterwards,
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2.0 MPa hydrogen was applied, and the reaction was stirred at the desired 70 °C. When 15 %
yield of 1,2,3,4-tetrahydroquinoline were generated, the hot catalytic mixture was filtered to
remove the catalyst. Afterwards, 0.2 mmol quinoline were added to the filtrate and the mixture
was stirred at the catalytic conditions mentioned above. The filtrate did not show any activity
and the desired product 1,2,3,4-tetrahydroquinoline was not generated. No other product was
to be seen either. The yield of 1,2,3,4-tetrahydroquinoline was determined by GC using

n-dodecane as an internal standard.

4.43 Leaching test

A leaching test was performed to demonstrate, that our catalyst does not form homogeneous
cobalt species. A 10 mL reaction vial was charged with a magnetic stirring bar, 0.2 mmol
quinoline, 3 mL ethanol and 32.6 mg catalyst (5.0 mol%). The vial was placed in a 300 mL
high-pressure autoclave (Parr Instruments) and the autoclave was flushed three times with
2.0 MPa hydrogen. After, 2.0 MPa hydrogen was applied, and the reaction was stirred at 70 °C
for 20 h. Upon completion of the reaction time, the autoclave was cooled to room temperature
and the hydrogen was released. The reaction mixture was separated from the catalyst and the
leaching amount of the Co/SiO: catalyst was determined via ICP-OES. The leaching rate of
cobalt is 0.7 %.

4.5 Upscaling of the reaction

The benchmark reaction, the selective hydrogenation of quinoline to 1,2,3,4-
tetrahydroquinoline, was used to carry out an upscaling experiment. For the reaction, 1630 mg
Co/Si0: (5 mol%), 10 mmol quinoline and 150 mL EtOH were stirred in a 200 mL glass vial
equipped with a magnetic stirring bar. The vial was placed in a 300 mL high-pressure autoclave
(Parr Instruments) and the autoclave was flushed three times with 2.0 MPa hydrogen. After
pressuring the autoclave with the desired 2.0 MPa hydrogen pressure, the reaction was stirred
for 20 h at 70 °C. The autoclave was cooled to room temperature and the hydrogen was
released. The reaction mixture was separated from the catalyst and the yield of 1,2,3,4-

tetrahydroquinoline was isolated. Yield: 90 % (1196 mg) as an oil.
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5 Characterization of isolated products

1,2,3,4-Tetrahydroquinoline (1)

5o

MW (CoHiiN) = 133.1 g/mol (M)

TH NMR (400 MHz, CDCl3, 296 K): 8 = 7.05 — 6.92 (m, 2H), 6.63 (td, J = 7.4, 1.2 Hz, 1H),
6.54 - 6.43 (m, 1H), 3.78 (s, 1H), 3.37 - 3.27 (m, 2H), 2.79 (t, ] = 6.4 Hz, 2H), 2.04 - 1.89
(m, 2H) ppm.

13C NMR (100 MHz, CDCls, 296 K): & = 144.87, 129.60, 126.81, 121.52, 117.02, 114.28,
42.08, 27.08, 22.29 ppm.

Yield: 99 % (25.8 mg) as an oil.

The spectroscopic data match those reported in literature.!'!) (CAS Number: 635-46-1)

2-Methyl-1,2,3,4-tetrahydroquinoline (2)

>l

MW (CioH13N) = 147.22 g/mol (M)

TH NMR (300 MHz, CDCls, 296 K): 8 = 7.10 — 6.89 (m, 2H), 6.63 (td, J = 7.4, 1.0 Hz, 1H),
6.49 (dd, J = 8.3, 0.9 Hz, 1H), 3.71 (s, 1H), 3.49 — 3.34 (m, 1H), 2.93 — 2.70 (m, 2H), 2.00 —
1.90 (m, 1H), 1.61 (dddd, J = 12.8, 11.5, 10.0, 5.5 Hz, 1H), 1.23 (d, J = 6.3 Hz, 3H) ppm.

13C NMR (75 MHz, CDCls, 296 K): 8 = 144.90, 129.39, 126.80, 121.21, 117.08, 114.11,47.27,
30.25, 26.72, 22.74 ppm.

Yield: 95 % (28.0 mg) as an oil.

The spectroscopic data match those reported in literature.!'?) (CAS Number: 1780-19-4)
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3-Methyl-1,2,3,4-tetrahydroquinoline (3)

oGy

MW (C1oH3N) = 147.22 g/mol (M)

TH NMR (300 MHz, CDCls, 296 K): = 6.97 (ddd, J = 7.6, 2.4, 0.7 Hz, 2H), 6.63 (td, ] = 7.4,
1.2 Hz, 1H), 6.54 — 6.45 (m, 1H), 3.86 (s, 1H), 3.29 (ddd, J =11.0, 3.7, 2.0 Hz, 1H), 2.95 — 2.88
(m, 1H), 2.78 (dd, J = 4.8, 2.0 Hz, 1H), 2.17 — 1.73 (m, 2H), 1.07 (d, ] = 6.6 Hz, 3H) ppm.

BC NMR (75 MHz, CDCl3, 296 K): & = 144.39, 129.61, 126.78, 121.18, 116.98, 113.94, 77.16,
48.93,35.57,27.27, 19.15 ppm.

Yield: 82 % (24.0 mg) as an oil.

The spectroscopic data match those reported in literature.['*l (CAS Number: 20668-20-6)

4-Methyl-1,2,3,4-tetrahydroquinoline (4)

TZ

MW (CioH13N) = 147.22 g/mol (M)

'H NMR (300 MHz, CDCls, 296 K): & = 7.13 — 6.78 (m, 2H), 6.65 (td, J = 7.4, 1.2 Hz, 1H),
6.48 (dd, J = 8.0, 1.2 Hz, 1H), 3.87 (s, 1H), 3.42 — 3.20 (m, 2H), 2.93 (dd, J = 12.5, 6.3 Hz, 1H),
2.06 —1.93 (m, 1H), 1.69 (dtd, J = 9.9, 6.3, 3.7 Hz, 1H), 1.31 (d, ] = 7.0 Hz, 3H) ppm.

13C NMR (75 MHz, CDCl3, 296 K): § = 146.29, 128.53, 126.81, 122.67, 117.01, 114.24,39.09,
30.32, 29.96, 22.76 ppm.

Yield: 68 % (20.0 mg) as an oil.

The spectroscopic data match those reported in literature.['¥] (CAS Number: 19343-78-3)
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5-Methyl-1,2,3,4-tetrahydroquinoline (5)
{ N
H

'H NMR (300 MHz, CDCl3, 296 K): = 7.08 — 6.78 (m, 1H), 6.65 — 6.49 (m, 1H), 6.48 — 6.36
(m, 1H), 3.83 (s, 1H), 3.42 — 3.22 (m, 2H), 2.73 (dt, ] = 13.1, 6.4 Hz, 2H), 2.33 — 2.18 (m, 3H),
2.10—-1.98 (m, 2H) ppm.

MW (CioH13N) = 147.22 g/mol (M)

13C NMR (75 MHz, CDCl3, 296 K): & = 145.04, 137.26, 126.24, 120.24, 118.95, 112.51, 41.65,
24.15, 22.63, 19.47 ppm.

Yield: 97 % (28.5 mg) as an oil.

The spectroscopic data match those reported in literature.l'*) (CAS Number: 58960-02-4)

6-Methyl-1,2,3,4-tetrahydroquinoline (6)

pe

MW (CioH13N) = 147.22 g/mol (M)

'H NMR (300 MHz, CDCls, 296 K): 8 = 6.84 (d, ] = 5.0 Hz, 2H), 6.45 (d, ] = 8.6 Hz, 1H), 3.68
(s, 1H), 3.36 — 3.26 (m, 2H), 2.79 (t, ] = 6.4 Hz, 2H), 2.26 (s, 3H), 2.04 — 1.92 (m, 2H) ppm.

13C NMR (75 MHz, CDCls, 296 K): 8 = 142.50, 130.14, 127.31, 126.27, 121.64, 114.52, 42.25,
27.00, 22.51, 20.50 ppm.

Yield: 99 % (29.0 mg) as an oil.

The spectroscopic data match those reported in literature.!'*) (CAS Number: 91-61-2)
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7-Methyl-1,2,3,4-tetrahydroquinoline (7)

oo

MW (C1oH3N) = 147.22 g/mol (M)

"TH NMR (300 MHz, CDCl3, 296 K): § = 6.87 (dd, J = 14.0, 5.8 Hz, 1H), 6.47 (t, ] = 9.3 Hz,
1H), 6.33 (d, J=11.9 Hz, 1H), 4.07 — 3.44 (m, 1H), 3.30 (dd, J = 14.3, 8.8 Hz, 2H), 2.84 — 2.68
(m, 2H), 2.34 — 2.18 (m, 3H), 2.04 — 1.88 (m, 2H) ppm.

BC NMR (75 MHz, CDCl3, 296 K): & = 144.69, 136.41, 129.45, 118.59, 117.96, 114.84, 42.09,
26.69,22.48,21.21 ppm.

Yield: 99 % (29.0 mg) as an oil.

The spectroscopic data match those reported in literature.['*l (CAS Number: 58960-03-5)

8-Methyl-1,2,3,4-tetrahydroquinoline (8)

Iz

MW (CioH3N) = 147.22 g/mol (M)

"H NMR (300 MHz, CDCls, 296 K): 6 = 6.86 (ddd, J = 10.1, 7.7, 0.6 Hz, 2H), 6.56 (t,] = 7.4
Hz, 1H), 3.38 (dd, ] = 6.9, 4.1 Hz, 2H), 2.79 (t, ] = 6.4 Hz, 2H), 2.08 (s, 3H), 1.97 — 1.89 (m,
2H), 1.59 (s, 1H) ppm.

13C NMR (75 MHz, CDCls, 296 K): 8 = 142.82, 127.97, 127.50, 121.32, 121.01, 116.53, 42.48,
27.42,22.29, 17.30 ppm.

Yield: 95 % (28.0 mg) as an oil.

The spectroscopic data match those reported in literature.!'*) (CAS Number: 52601-70-4)
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6-Chloro-1,2,3,4-tetrahydroquinoline (9)

H
MW (CoH;¢CIN) = 167.64 g/mol (M)

'H NMR (400 MHz, CDCls, 296 K): & = 7.06 — 6.74 (m, 2H), 6.38 (d, J = 8.0 Hz, 1H), 3.60
(s, 1H), 3.34 — 3.22 (m, 2H), 2.72 (t, J = 6.4 Hz, 2H), 1.99 — 1.83 (m, 2H) ppm.

13C NMR (100 MHz, CDCls, 296 K): & = 143.39, 129.14, 126.61, 122.98, 121.27, 115.19,
41.96, 26.98, 21.86 ppm.

Yield: 99 % (33.5 mg) as an oil.

The spectroscopic data match those reported in literature.!'3) (CAS Number: 49716-18-9)

8-Bromo-1,2,3,4-tetrahydroquinoline (10)

GO

Br
MW (CoH19BrN) = 212.09 g/mol (M)

TH NMR (300 MHz, CDCl3, 296 K): § = 7.23 (d, ] = 7.9 Hz, 1H), 6.89 (d, J = 7.2 Hz, 1H), 6.45
(t, J=7.7 Hz, 1H), 4.43 (s, 1H), 3.48 — 3.28 (m, 2H), 2.78 (t, ] = 6.3 Hz, 2H), 2.01 — 1.83 (m,
2H) ppm.

BC NMR (75 MHz, CDCl3, 296 K): § = 141.64, 129.95, 128.33, 122.78, 116.84, 108.65, 41.99,
27.39, 21.64 ppm.

Yield: 99 % (42.4 mg) as an oil.

The spectroscopic data match those reported in literature.!'>) (CAS Number: 937640-02-3)
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6-Methoxy-1,2,3,4-tetrahydroquinoline (11)

0
N
H

MW (CioH13NO) = 163.22 g/mol (M)

'H NMR (400 MHz, CDCls, 296 K): & = 6.66 — 6.55 (m, 2H), 6.46 (d, J = 8.5 Hz, 1H), 3.74 (d,
J=0.8 Hz, 3H), 3.50 (s, 1H), 3.30 — 3.22 (m, 2H), 2.77 (t, ] = 6.5 Hz, 2H), 2.00 — 1.89 (m, 2H)

13C NMR (100 MHz, CDCls, 296 K): & = 151.86, 138.97, 122.89, 115.60, 114.94, 112.96,
55.85, 42.40, 27.24, 22.52 ppm.

Yield: 89 % (29.1 mg) as a colourless oil.

The spectroscopic data match those reported in literature.['?) (CAS Number: 120-15-0)

8-Hydroxy-1,2,3,4-tetrahydroquinoline (12)

ve

OH
MW (CoH11NO) = 149.19 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 =8.90 (s, 1H), 6.52 — 6.41 (m, 1H), 6.36 (dd, J =
7.5,0.9 Hz, 1H), 6.27 (t, ] = 7.6 Hz, 1H), 4.64 (s, 1H), 3.25 — 3.13 (m, 2H), 2.63 (d, ] = 6.4 Hz,
2H), 1.82 — 1.71 (m, 2H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 143.25, 133.86, 120.39, 119.95, 114.76, 111.46,
40.97,26.55,21.87 ppm.

Yield: 87 % (25.9 mg) as a colourless oil.

The spectroscopic data match those reported in literature.['?! (CAS Number: 6640-50-2)
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8-Amino-1,2,3,4-tetrahydroquinoline (13)

O

NH,
MW (CoH2Nz) = 148.21 g/mol (M)

'TH NMR (300 MHz, CDCl3, 296 K): 8 = 6.68 — 6.45 (m, 3H), 3.46 — 3.06 (m, 5H), 2.77 (t, ] =
6.4 Hz, 2H), 1.97 — 1.86 (m, 2H) ppm.

13C NMR (75 MHz, CDCls, 296 K): 8 = 134.03, 133.95, 123.34, 121.22, 118.11, 114.16, 42.67,
27.13, 22.50 ppm.

Yield: 79 % (23.4 mg) as an oil.

The spectroscopic data match those reported in literature.!'® (CAS Number: 54012-92-9)

6-Methoxy-2-methyl-1,2,3,4-tetrahydroquinoline (14)

“CrL
N
H

MW (CoH11NO) = 177.25 g/mol (M)

'H NMR (300 MHz, CDCls, 296 K): & = 6.62 (d, J = 8.2 Hz, 2H), 6.47 (d, ] = 8.1 Hz, 1H), 3.75
(s, 3H), 3.48 (d, ] = 18.4 Hz, 1H), 3.35 (ddd, J = 12.2, 6.2, 3.1 Hz, 1H), 2.82 (dtd, J = 15.0,
11.7, 4.5 Hz, 2H), 2.01 — 1.86 (m, 1H), 1.60 (ddd, J =23.2, 11.8, 5.6 Hz, 1H), 1.22 (d,J = 6.2
Hz, 3H) ppm.

13C NMR (75 MHz, CDCl3, 296 K): 5 = 151.81, 138.96, 122.46, 115.33, 114.61, 112.83, 55.76,
47.47,30.34, 26.95, 22.57 ppm.

Yield: 94 % (33.3 mg) as a colourless oil.

The spectroscopic data match those reported in literature.!'®) (CAS Number: 42835-96-1)
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6-Chloro-2-methyl-1,2,3,4-tetrahydroquinoline (15)
Cl
L
MW (CioH12CIN) = 181.66 g/mol (M)

"H NMR (300 MHz, CDCls, 296 K): 8 = 6.90 (dd, J = 11.8, 2.6 Hz, 2H), 6.41 (d, ] = 8.3 Hz,
1H), 4.02 (s, 1H), 3.42 — 3.34 (m, 1H), 2.74 (ddd, ] = 9.2, 8.3, 4.6 Hz, 2H), 1.96 — 1.88 (m, 1H),
1.56 (dddd, J =12.9, 11.2,9.9, 5.6 Hz, 1H), 1.21 (d, J = 6.3 Hz, 3H) ppm.

13C NMR (75 MHz, CDCls, 296 K): 8 = 143.03, 128.83, 126.49, 122.85, 121.48, 115.23, 47.26,
29.62, 26.45, 22.39 ppm.

Yield: 86 % (31.2 mg) as a colourless oil.

The spectroscopic data match those reported in literature.l'” (CAS Number: 28328-97-4)

1,2,3,4-Tetrahydroquinoxaline (16)
H
L)
N
H
MW (CgHioNz) = 134.18 g/mol (M)
'"H NMR (400 MHz, CDCl3, 296 K): & = 6.63 — 6.43 (m, 2H), 3.65 (s, 1H), 3.42 (s, 2H) ppm.

13C NMR (100 MHz, CDCl3, 296 K): § =133.79, 118.87, 114.83, 41.51 ppm.

Yield: 81 % (21.7 mg) as a dark red oil.

The spectroscopic data match those reported in literature.!''! (CAS Number: 3476-89-9)
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2-Methyl-1,2,3,4-tetrahydroquinoxaline (17)
H
L
Nj\
H
MW (CoHi2Nz) = 148.21 g/mol (M)

'H NMR (300 MHz, CDCls, 296 K): § = 6.64 — 6.54 (m, 2H), 6.54 — 6.45 (m, 2H), 3.52 (dtd,
J=153,6.3,2.9 Hz, 3H), 3.32 (dd, ] = 10.7, 2.9 Hz, 1H), 3.04 (dd, J = 10.7, 8.2 Hz, 1H), 1.19
(d, J=6.3 Hz, 3H) ppm.

13C NMR (75 MHz, CDCl3, 296 K): §=133.67, 133.28, 118.81, 118.80, 114.58, 114.54,
110.63, 48.36, 45.83, 20.02 ppm.

Yield: 83 % (24.6 mg) as a brown solid.

The spectroscopic data match those reported in literature.!'8! (CAS Number: 6640-55-7)

Piperidine (18)
()
H
MW (CsH;N) = 85.15 g/mol (M)

'H NMR (300 MHz, CDCl3, 296 K): § = 2.82 —2.70 (m, 4H), 1.59 — 1.43 (m, 6H), 1.39 (s, 1H)
ppm.

13C NMR (75 MHz, CDCl3, 296 K): 8 = 47.55, 27.30, 25.21 ppm.

Yield: 85 % (14.5 mg) as a transparent liquid.

The spectroscopic data match those reported in literature.!'”) (CAS Number: 110-89-4)
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Piperidine-4-carboxamide (19)

Iz

MW (CsHi12N20) = 128.18 g/mol (M)

"H NMR (300 MHz, CDCls, 296 K): 6 =7.17 (s, 1H), 6.67 (s, 1H), 2.90 (d, J = 12.1 Hz, 3H),
240 (t,J=11.9 Hz, 2H), 2.11 (ddd, J = 15.0, 7.9, 3.4 Hz, 1H), 1.64 — 1.48 (m, 2H), 1.37 (qd,J
=12.1, 3.9 Hz, 2H) ppm.

13C NMR (75 MHz, CDCl3, 296 K): 8 = 176.91, 45.71, 42.50, 29.54 ppm.

Yield: 92 % (23.6 mg) as a white solid.

The spectroscopic data match those reported in literature.”% (CAS Number: 39546-32-2)

Pyrrolidine (20)

-

MW (CsHoN) = 71.12 g/mol (M)

'H NMR (300 MHz, CDCls, 296 K): 8 = 2.79 (t, J = 5.0 Hz, 4H), 1.70 — 1.52 (m, 4H), 1.45 (s,
1H) ppm.

BC NMR (75 MHz, CDCl3, 296 K): § =47.21, 25.60 ppm.

Yield: 61 % (8.7 mg) as a transparent fluid.

The spectroscopic data match those reported in literature.' (CAS Number: 123-75-1)
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2-Methylpyrrolidine (21)

H
7
MW (CsHiiN) = 85.15 g/mol (M)

'H NMR (300 MHz, CDCls, 296 K): 8 = 3.06 — 2.95 (m, 2H), 2.77 (ddd, J = 10.7, 8.1, 7.0 Hz,
1H), 1.90 — 1.60 (m, 4H), 1.59 (s, 1H), 1.10 (d, ] = 6.2 Hz, 3H) ppm.

13C NMR (75 MHz, CDCls, 296 K): & = 54.63, 46.86, 33.80, 25.82, 21.32 ppm.

Yield: 74 % (12.6 mg) as a transparent fluid.

The spectroscopic data match those reported in literature.*”) (CAS Number: 765-38-8)

2-Methylindoline (22)

L

MW (CoHiiN) = 133.19 g/mol (M)

TH NMR (300 MHz, CDCl3, 296 K): 6 =7.12 (dd, J = 4.1, 3.7 Hz, 1H), 7.05 (td, J = 7.6, 0.6
Hz, 1H), 6.73 (td, J = 7.4, 0.9 Hz, 1H), 6.63 (d,J =7.7 Hz, 1H), 4.02 (ddq, J = 8.4, 7.9, 6.2 Hz,
1H), 3.77 (s, 1H), 3.18 (dd, J = 15.4, 8.5 Hz, 1H), 2.67 (dd, J = 15.4, 7.8 Hz, 1H), 1.35 - 1.29
(m, 3H) ppm.

13C NMR (75 MHz, CDCls, 296 K): 8 = 151.04, 128.95, 127.30, 124.78, 118.57, 109.22, 55.28,
37.84, 22.35 ppm.

Yield: 94 % (25.0 mg) as a transparent fluid.

The spectroscopic data match those reported in literature.?* (CAS Number: 6872-06-6)
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2,3,3-Trimethylindoline (23)

Cry-

TH NMR (300 MHz, CDCls, 296 K): 8 = 7.05 — 7.00 (m, 2H), 6.74 (dd, J = 10.6, 4.1 Hz, 1H),
6.63 (dd, ] = 7.3, 0.8 Hz, 1H), 3.72 (s, 1H), 3.52 (q, J = 6.5 Hz, 1H), 1.29 (s, 3H), 1.18 (d, J =
6.5 Hz, 3H), 1.05 (s, 3H) ppm.

MW (Ci1HisN) = 161.25 g/mol (M)

BC NMR (75 MHz, CDCl3, 296 K): § = 149.41, 139.25, 127.26, 122.37, 118.99, 109.53, 65.26,
43.49, 26.28, 22.48, 15.26 ppm.

Yield: 96 % (31.0 mg) as a yellow oil.

The spectroscopic data match those reported in literature./>*! (CAS Number: 18781-58-3)

1,2,3,4-Tetrahydroisoquinoline (24)

O

'"H NMR (400 MHz, CDCl3, 296 K): 8 =7.19 — 6.88 (m, 4H), 4.01 (s, 2H), 3.20 — 3.04 (m,
2H), 2.79 (t,J = 5.9 Hz, 2H), 1.67 (s, 1H) ppm.

MW (CoH11N) = 133.19 g/mol (M)

13C NMR (100 MHz, CDCls, 296 K): 8= 136.10, 134.87, 129.38, 126.26, 126.03, 125.75,
48.44, 44.01,29.29 ppm.

Yield: 87 % (25.9 mg) as a colourless oil.

The spectroscopic data match those reported in literature.!'®) (CAS Number: 91-21-4)
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1,2,3,4,5,6,7,8-Octahydroacridine-9-amine (25)

NH,

MW (Ci3H1sN2) = 202.30 g/mol (M)

TH NMR (300 MHz, CDCl3, 296 K): § = 5.18 (s, 1H), 2.55 (d, ] = 5.5 Hz, 4H), 2.32 (d, ] = 5.6
Hz, 4H), 1.78 — 1.61 (m, 8H) ppm.

13C NMR (75 MHz, CDCls, 296 K): = 152.27, 150.17, 112.21, 32.73, 23.48, 23.24, 23.01
ppm.

Yield: 97 % (39.2 mg) as a white solid.

The spectroscopic data match those reported in literature.>’! (CAS Number: 13415-07-1)

1,2,3,4-Tetrahydrobenzo|/]quinoline (26)
‘ £

TH NMR (300 MHz, DMSO-d6, 296 K): & = 8.66 (dd, J = 4.1, 1.7 Hz, 1H), 8.11 (dd, J = 8.3,
1.5 Hz, 1H), 7.41 — 7.36 (m, 1H), 7.04 (dd, J = 53.7, 8.2 Hz, 3H), 6.40 (s, 1H), 3.41 (s, 2H),
2.82 (d, J = 6.3 Hz, 2H), 1.93 — 1.89 (m, 2H) ppm.

MW (Ci3HisN) = 183.25 g/mol (M)

13C NMR (75 MHz, DMSO-d6, 296 K): § = 146.73, 140.70, 136.77, 135.70, 128.98, 127.03,
120.75, 115.46, 112.11, 109.53, 40.67, 26.69, 21.19 ppm.

Yield: 78 % (28.6 mg).

The spectroscopic data match those reported in literature.!'*! (CAS Number: 5223-80-3)
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1,2,3,4-Tetrahydro-1,10-phenanthroline (27)
< /Q )
\ N HN

"H NMR (300 MHz, DMSO-d6, 296 K): § =8.66 (dd, ] = 4.1, 1.7 Hz, 1H), 8.11 (dd, J = 8.3,
1.5 Hz, 1H), 7.38 (dd, ] = 8.2, 4.1 Hz, 1H), 7.12 (d, ] = 8.2 Hz, 1H), 6.94 (d, J = 8.2 Hz, 1H),
6.39 (s, 1H), 3.44 — 3.38 (m, 2H), 2.83 (t, ] = 6.3 Hz, 2H), 1.97 — 1.82 (m, 2H) ppm.

MW (C12H12N2) = 184.24 g/mol (M)

13C NMR (75 MHz, DMSO-d6, 296 K): & = 146.73, 140.70, 136.77, 135.70, 128.98, 127.03,
120.75, 115.46, 112.11, 40.67, 26.69, 21.19 ppm.

Yield: 81 % (29.8 mg).

The spectroscopic data match those reported in literature.l'' (CAS Number: 3188-84-9)

2,3-Dihydrobenzofuran (28)

C2

MW (CsHsO) = 120.15 g/mol (M)

TH NMR (300 MHz, CDCls, 296 K): 8 = 7.22 (d, ] = 7.3 Hz, 1H), 7.14 (t, ] = 7.7 Hz, 1H), 6.85
(dd, J=17.5,7.7 Hz, 2H), 4.58 (dd, J = 12.5, 4.9 Hz, 2H), 3.23 (t, J = 8.7 Hz, 2H) ppm.

BC NMR (75 MHz, CDCl3, 296 K): & = 160.09, 128.01, 126.96, 124.99, 120.41, 109.44, 71.09,
29.84 ppm.

Yield: 96 % (23.1 mg) as a colourless liquid.

The spectroscopic data match those reported in literature.**! (CAS Number: 496-16-2)
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5-Bromo-2,3-Dihydrobenzofuran (29)

T
(6]

MW (CsH7BrO) = 199.05 g/mol (M)

'H NMR (300 MHz, CDCls, 296 K): 8 =7.17 (dd, J = 8.4, 2.3 Hz, 2H), 6.67 (d, ] = 3.2 Hz,
1H), 4.57 (t, J = 8.7 Hz, 2H), 3.20 (t, ] = 8.7 Hz, 2H) ppm.

I3C NMR (75 MHz, CDCl3, 296 K): & = 160.52, 128.44, 127.39, 125.42, 120.84, 109.87, 71.52,
30.27 ppm.

Yield: 69 % (27.6 mg) as a white solid.

The spectroscopic data match those reported in literature.*”! (CAS Number: 66826-78-6)

5-Methyl-2,3-Dihydrobenzothiophene (30)

o

MW (CoH0S) = 150.24 g/mol (M)

TH NMR (300 MHz, CDCls, 296 K): 8 = 7.10 (d, J = 7.8 Hz, 1H), 7.02 (s, 1H), 6.96 — 6.90 (m,
1H), 3.39 — 3.29 (m, 2H), 3.24 (t, ] = 7.2 Hz, 2H), 2.28 (s, 3H) ppm.

13C NMR (75 MHz, CDCls, 296 K): 8 = 140.35, 138.05, 133.95, 128.16, 125.46, 121.96, 36.33,
33.65, 21.07 ppm.

Yield: 42 % (12.6 mg) as a colourless liquid.

The spectroscopic data match those reported in literature.?®! (CAS Number: 14450-23-8)
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4-Chloro-2,3-Dihydrobenzothiophene (31)

Cl

ou

'TH NMR (300 MHz, CDCl3, 296 K): § = 7.07 (m, 1H), 6.82 — 6.74 (m, 2H), 3.13 (d, J = 1.4
Hz, 4H) ppm.

MW (CsH;CIS) = 170.65 g/mol (M)

BC NMR (75 MHz, CDCl3, 296 K): & = 138.21, 130.96, 128.79, 125.03, 124.57, 124.30, 35.69,
32.30 ppm.

Yield: 31 % (10.6 mg) as a colourless liquid.

The spectroscopic data match those reported in literature.*”! (CAS Number: 1309361-57-6)
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PPM
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8

7 6 5
chemical shift (ppm)

77.16 Chioroform-d

48.93

4 8 @
| I |

—144.39
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chemical shift (ppm)
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ChemNMR 'H Estimation

1.16

7.22 278
6.72 1.92;1.67

6.85 N~ 309299
660 H
7.45

Estimation quality is indicated by color: good, medium, rough

ol 'Yy

ChemNMR '3C Estimation

N
108 H

Estimation quality is indicated by color: good, medium, rough
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26 Chioroform-d
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ChemNMR 'H Estimation

2.29

6.71 1.96

6.99 N~ 304
650 H
7.45

Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

136.7
118.9

126.7

N
1078 H

Estimation quality is indicated by color: good, medium, rough
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6 Chioroform-d
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ChemNMR 'H Estimation

554 7.01 279

\@(j 1.96

6.99 N~ 304
662 H

7.45
Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

130.8 27.3
21.6 406,

222
121.3
142.6

1271 N 418

135 H
Estimation quality is indicated by color: good, medium, rough

T T T T T
140 120 100 80 60 40 20 0
PPM
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— 7.26 Chioroform-d
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ChemNMR 'H Estimation

7.05 279

si@(j 1.96

217 g
' 675 H

7.45
Estimation quality is indicated by color: good, medium, rough

_\h‘ll | | | U J]

ChemNMR '3C Estimation

128.8 27.0

175 222
118.4
145.5
418
21.37736. N

133 H
Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation

6.90 279
6.90 1.96

6.99 N~ 3.04
H
212 699

Estimation quality is indicated by color: good, medium, rough

17.9
Estimation quality is indicated by color: good, medium, rough

T T T T T T T T T . T
140 120 100 80 60 40 20 0
PPM
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ChemNMR 'H Estimation

728 279
7.10 N~ 304
661 H

7.45
Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

128.7 26.5

Clez2 222

122.8
143.7
126.9 N 418

131 H
Estimation quality is indicated by color: good, medium, rough

‘ [ S —
140 120 100 80 60 40 20 0
PPM
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ChemNMR 'H Estimation

6.94 279

6.99
Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

1248 26.3
118.0 222
123.6
139.2
129.7
114.6 H
Br

Estimation quality is indicated by color: good, medium, rough

411

140 120 100 80 60 40 20 0
PPM
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ChemNMR 'H Estimation

6.79 279

7.45
Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

11565 273
9.

Ou 222
55.8 122.4
137.9

12.4 N~ 418

146 H
Estimation quality is indicated by color: good, medium, rough

[ ! T | T !
160 140 120 100 80 60 40 20 0
PPM
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7.26 Chioroform-d

77.16 Chioroform-d
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ChemNMR 'H Estimation

6.56 279
6.47 1.96

6.69 N~ 3.04
H

OH g oo

10.06

Estimation quality is indicated by color: good, medium, rough

=
oo
(o))
I

0
PPM
ChemNMR '3C Estimation
1221 27.3
118.6 222
121.5
114.0 £ 421
1417 ﬁ '
OH
Estimation quality is indicated by color: good, medium, rough
I I T \ \
140 120 100 80 60 40 20 0
PPM
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ChemNMR 'H Estimation

6.46 279
6.51 1.96
6.70 N~ 304
H
NH; 7.45

4.94
Estimation quality is indicated by color: good, medium, rough

| I | T [
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
115.8 27.0
118.0 222
122.2
112.4 U 418
1338 ” -
NH,
Estimation quality is indicated by color: good, medium, rough
T T T T T T T
140 120 100 80 60 40 20 0
PPM
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ChemNMR 'H Estimation

6.79 2.85;2.75

0 192167
3.70
263
6.63 N

667 N 1.19
7.45

Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

1155 24.0
48.

0o 319

123.0
137.9 )59.2

7
55.8

1123

143 H 208

Estimation quality is indicated by color: good, medium, rough

: ‘ : : FE— S
160 140 120 100 80 60 40 20 0
PPM
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— 7.26 Chioroform-d
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7 6 5
chemical shift (ppm)

— 77.16 Chioroform-d

=
=
Iz
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— 5576
— 4747
~3034
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2257
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ChemNMR 'H Estimation

7.28 2.85;2.75

Cl 1.92;1.67
263
7.10
N
661 N 1.19

7.45

Estimation quality is indicated by color: good, medium, rough

e i

ChemNMR '3C Estimation

1287 232
Clezz, 31.9

123.4
143.7 )59.2
20.8

126.8
128 H

Estimation quality is indicated by color: good, medium, rough

‘ ‘ —
140 120 100 80 60 40 20 0
PPM
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ChemNMR 'H Estimation

7.45
661 H
6.46@[N 3.29
6.46 Nj 3.29
661 H

7.45

Estimation quality is indicated by color: good, medium, rough

1094 H
Estimation quality is indicated by color: good, medium, rough

T T T T T T T T
140 120 100 80 60 40 20 0
PPM
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67

130



A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic

Heterocycles

ChemNMR 'H Estimation

7.45

661 H
6.46 N 3.353.10
6.46 N

661 H 124

7.45

Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

1094 H
17.9 N 626
137.4
1313{1
17.9 N i3
154 H ’

Estimation quality is indicated by color: good, medium, rough

T T T T v T T T
140 120 100 80 60 40 20 0
PPM
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— 7.26 Chloroform-d
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ChemNMR 'H Estimation

1.50

1.5001.50
2747274
H

20

Estimation quality is indicated by color: good, medium, rough

PPM

ChemNMR '3C Estimation

25.9
27.8027.8
47.9 N\ 7479

H

Estimation quality is indicated by color: good, medium, rough

50 ‘ 40 30 20 ‘ 10 0
PPM
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7.26 Chioroform-d
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ChemNMR 'H Estimation

244
1.86;1.61 1.861.61

2.79;2.69 N 2.79;2.69
H
20

Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

H,N__O
176.1

41.0
32.0 32.0

454\~ 45.1
H

Estimation quality is indicated by color: good, medium, rough

‘ ‘ ‘ ‘ ‘ ;
180 160 140 120 100 80 60 40 20 0
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ChemNMR 'H Estimation

20

H
275 N
Q 2.75
1.59
1.59
Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

H
471 __N

Q 471
25.7

25.7

Estimation quality is indicated by color: good, medium, rough

50 40 30 20 10 0
PPM
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7.26 Chioroform-d
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ChemNMR 'H Estimation

20

H

2.80:2.70 N2.85_1.06

1.64;1.54 1.66;1.41

Estimation quality is indicated by color: good, medium, rough
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I\ A

PPM

ChemNMR '3C Estimation

H
N56.5_ 209

v

240 337

Estimation quality is indicated by color: good, medium, rough
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PPM
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ChemNMR 'H Estimation

5.66
6.60
B8 N1
124
6.52
700 285260

Estimation quality is indicated by color: good, medium, rough

W bl

ChemNMR '3C Estimation

Estimation quality is indicated by color: good, medium, rough

T T ‘ ‘ T T
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-7.26 Chioroform-d
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ChemNMR 'H Estimation

1.14
7.14
6.88

1.14

1.19

5.66
Estimation quality is indicated by color: good, medium, rough

Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation

7.20 @Ga.ae
7.30 NH 1.91
7.40 3.81

Estimation quality is indicated by color: good, medium, rough

| Ik _ | | | ‘A i
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8 7 6
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PPM
ChemNMR '3C Estimation
127.5 28.1
126.9 44.3
125.7 ~NH
126.3 47.4
Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation

6.35
NH,
273 273
1.87 m 1.87
1.83 N 1.83
3.05 3.05

Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation
NH,
3559|262
227 22.7
227 155.6N/ 227
29.0 29.0

Estimation quality is indicated by color: good, medium, rough

PPM
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ChemNMR 'H Estimation

8.00 O 2.90

7.34 7.9;‘4';N 3.04

Estimation quality is indicated by color: good, medium, rough

ChemNMR '3C Estimation

118.2 126.0

124.8 120.4 422
Estimation quality is indicated by color: good, medium, rough

|
140 120 100 80 60 40 20 0
PPM

86

149



A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic

Heterocycles

342
341
339

7 6 5
chemical shift (ppm)

xide-d6

~-39.52 Dimethy! Sulfos

_~40.67
—26.69
—21.19

z I
146.73

T T T T T T T T T T T T T T T T T T T T T T
230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10
chemical shift (ppm)

87

150



A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic

Heterocycles

ChemNMR 'H Estimation

730 7.30

8.35 2.79
7.52 / 1.96
—N HN

8.78 7.45 3.04

Estimation quality is indicated by color: good, medium, rough

PPM

ChemNMR '3C Estimation
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The Synthesis of Hydroquinolines from Nitroaldehydes and
Ketones by Hydrogenation Sequences and Condensations

Christof Bauer®, Fatemeh Zareh®,”™ Lisa NuBlein,™ Johanna Frank, Maxime Boniface,

Thomas Lunkenbein,” and Rhett Kempe*®!

Catalytic reaction discovery or methodology development is
preferably performed with homogeneous catalysts, but hetero-
geneous catalysts allow the design of complex multistep
syntheses based on their reusability. We introduce here the
catalytic synthesis of hydroquinolines starting from nitroalde-
hydes, ketones and hydrogen. The reaction is complex and
proceeds via multiple selective hydrogenation and condensa-
tion steps. The nitroaldehyde is selectively hydrogenated

Introduction

The discovery of catalytic reactions or methodology develop-
ment is preferentially carried out with homogeneous catalysts."
Homogeneous or molecular catalysts are easily modified to
provide the activity and selectivity required to mediate novel
chemical reactions. In addition, detailed (structural) character-
ization of active catalysts is easier in comparison to heteroge-
neous or enzyme catalysts.” Heterogeneous catalysts, if reus-
able, can not only be used several times for the same reaction
but also in different reactions sequentially.”’ This quality might
open perspectives to rationally design and mediate complex
chemical reactions. We have introduced a complex condensa-
tion reaction where reusable noble metal catalysts were added
and removed to mediate a multistep hydrogenation and
dehydrogenation sequence and report here the direct syn-
thesis of hydroquinolines starting from nitroaldehydes and
ketones and (no break here)hydrogen (Figure 1). The starting
materials of our reaction are inexpensive, simple regarding their
structure and diversely available, and the hydroquinoline motif
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forming an aminoaldehyde, followed by a base-catalyzed
Friedldnder synthesis and selective quinoline hydrogenation.
The starting materials are inexpensive, simple regarding their
structure and diversely available, and the hydroquinoline motif
is part of numerous biologically active compounds. A nano-
structured earth-abundant metal catalyst mediates our reaction
most efficiently.
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/
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Figure 1. State of the art and reaction reported here. (a) Selection of
bioactive molecules with a 1,2,3,4-tetrahydroquinoline motif. (b) Selective
hydrogenation of 2-nitrobenzaldehyde to 2-aminobenzaldehyde.

(c) Friedldnder synthesis. (d) Selective hydrogenation of 2-phenylquinoline to
2-phenyl-1,2,3,4-tetrahydroquinoline. (e) The direct synthesis of tetrahydro-
quinolines.

is important, figures prominently among pharmaceuticals (Fig-
ure 1a) and its synthesis is intensively investigated.”) Our
reaction proceeds via multiple selective hydrogenation and
condensation steps. The nitroaldehyde is selectively hydro-
genated to an aminoaldehyde® (Figure 1b) followed by a base-
catalyzed Friedlénder synthesis” (Figure 1c) forming a quinoline
and a final selective quinoline hydrogenation step® (Figure 1d).
A novel reusable nickel catalyst mediates all hydrogenation
steps selectively. The reaction has a broad scope, an attractive
functional group tolerance and upscaling has been demon-
strated.
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Results and Discussion
Catalyst Synthesis and Characterization

The synthesis of our catalyst is shown in Figure 2a. The catalyst
support material N-SiC (a porous N-doped and Si-coated
carbon) was synthesized according to a procedure published
previously (Supporting Information 2.1).” Cross-linking of the
commercially available polycarbosilane precursor SMP-10 and
acrylonitrile using azobis(isobutyronitrile), pyrolysis and the
removal of the Si-rich phase by base treatment are the N-SiC
synthesis steps. The N-SiC support material was wet impreg-
nated with a solution of Ni(NO,),-6 H,O in water, followed by
pyrolysis (700°C) under nitrogen flow and reduction (550°C)
under forming gas (N,:H,, 90:10) to form the Ni/N-SiC catalyst
(Figure 2b and Supporting Information 2.2). Inductively coupled
plasma optical emission spectrometry analysis of Ni/N-SiC
showed no significant deviation from the theoretical nickel
content of 4.0 wt% (Supporting Information 3.1). Elemental
analysis revealed that Ni/N-SiC consists of 83.3% C, 5.7% N and
7.0% Si in addition to nickel (Supporting Information 3.2).
Scanning electron microscopy in combination with energy
dispersive X-ray spectroscopy (SEM-EDX) confirmed the homo-
geneous distribution of nickel over N-SiC (Supporting Informa-
tion 3.3) and verified a smooth wet impregnation process.

(a)

Ni(NO3); - 6 H:0
1. Pyrolysis
2. Reduction
N-SiC

500 nm

Scanning transmission electron microscopy (STEM) in combina-
tion with high-angle annular dark-field (HAADF) imaging
analysis revealed a homogeneous distribution of nanoparticles
over the support material (Figure 2b-c) and an average particle
size of 8.5 nm (Figure 2d). The presence of nickel nanoparticles
was confirmed using HAADF-STEM in combination with EDX
element maps (Figure 2e-h). High resolution transmission
electron microscopy in combination with electron energy loss
spectroscopy (EELS) with a line scan over one nickel nano-
particle was performed next (Supporting Information 3.5). The
resulting EELS spectrum and the calculated Ni(Ly) : Ni(L,)
intensity ration of 1.38 fit to the literature value consistent with
metallic Ni."” In addition, no oxygen was detected in the STEM-
EELS measurements. We propose that Ni/N-SiC consist of
metallic nickel nanoparticles supported by N-SiC. Fast Fourier
transformation of a single nickel nanoparticle (Supporting
Information 3.6) indicates cubic nickel. (no break here)X-ray
photoelectron spectroscopy (XPS) was performed to study the
surface of the cubic nickel nanoparticles (Supporting Informa-
tion 3.7). The spectra were measured before and after Pt
sputtering. The pre-sputtering spectrum shows the presence of
metallic nickel (49%) and nickel oxide (51%), while after
sputtering, the metallic nickel content increases to 89% and the
nickel oxide content decreases to 11%. We assume that the
nickel nanoparticles are surrounded by a very thin layer of
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Figure 2. Synthesis and characterization of the Ni/N-SiC catalyst. (a) Synthesis of the Ni/N-SiC catalyst: Wet impregnation of N-SiC with aqueous solution of
Ni(NO;), -6 H,0, pyrolysis and reduction. (b) HAADF-STEM analysis suggests the presence of homogeneously distributed nanoparticles. (c) Close-up of the
HAADF-STEM. (d) Nanoparticle distribution with an average particle size of 8.5 nm (150 particles counted). (e-h) HAADF-STEM images of Ni/N-SiC with
representative EDX element maps of nickel (e), nitrogen (f), carbon (g) and silicon (h). (i) PXRD of the Ni/N-SiC catalyst (black). The reflexes match those of
cubic nickel (red, reference code: 00-004-0850). (j) Surface characterization and (k) pore size distribution of the catalyst via Ar physisorption measurements
(calculation model: Ar at —186.15 °C on carbon: cylindric pores, non-local density functional theory equilibrium model). The specific surface area showed a
slight decrease from 580 m?/g of the support material to 563 m*/g of the catalyst.
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nickel oxide. Powder X-ray diffraction (PXRD) of Ni/N-SiC (Fig-
ure 2i) confirms cubic nickel (red) and orthorhombic graphite
(blue). The specific surface area was determined by argon
physisorption measurements (Figure 2j), which showed a slight
decrease of the surface area from 580 m?/g of the N-SiC support
to 563 m%/g of the catalyst. The pore size distribution of Ni/N-
SiC (Figure 2k) shows a predominance of micropores.

Optimization of Reaction Conditions

The reaction of 2-nitrobenzaldehyde with acetophenone to
form 2-phenyl-1,2,3,4-tetrahydroquinoline was chosen to deter-
mine suitable reaction conditions. The reaction is complex and
consists of three steps: the hydrogenation of nitrobenzalde-
hydes to aminobenzaldehydes (A), the Friedldnder synthesis (B)
and the hydrogenation of quinolines to 1,2,3,4-tetrahydroquion-

lines (C). A screening of different solvents revealed that 3 mL
ethanol is the best solvent for all three steps (Table $2-S3).
Several types of bases were investigated, with LiOH being the
best base used in a catalytic amount (Table S4-S5). The amount
of base seems to have an optimum. More base accelerates the
condensation steps but slows down the final hydrogenation
step. Investigation of the H, pressure, if needed, and time and
temperature revealed that the best conditions for step A are
40°C at 3.0 MPa hydrogen pressure for 20 h (Table S6-57). The
best yield for step B was obtained at 60°C for 20 h (Table S8),
and 120°C with 5.0 MPa hydrogen pressure for 48 h (Table S9-
S10) gave the best results for step C. Next, the pyrolysis
temperature for the catalyst synthesis was varied and different
commercially available support materials and nickel precursors
were tested for the overall reaction (Table 1). Lowering the
pyrolysis temperature below 700 °C reduced the yield obtained,
as did pyrolysis temperatures above 700°C. Different catalyst

Table 1. Nickel catalyst screening.”’

Overall Reaction

@(“ ) M +5H, O
- u -4H0 N O
Step A
-2H0 | G2 NinGic
Step C
Step B
IO (o] O R
LiOH P
o Ao —m— g
NH,
Entry Metal Source Support Material Pyrolysis Temperature [°C] Yield [%]
1 Ni(NO;),-6 H,0 N-SiC 500 45
2 Ni(NO),-6 H,0 N-SiC 600 48
3 Ni(NO,),-6 H,0 N-SiC 700 91
4 Ni(NO,),+6 H,0 N-SiC 800 28
5 Ni(NO),-6 H,0 N-SiC 900 8
6 Ni(NO,),-6 H,0 Activated Carbon 700 6
7 Ni(NO),-6 H,0 ¥-ALO; 700 0
8 Ni(NO,),-6 H,0 Tio, 700 0
9 Ni(NO5),+6 H,0 Sio, 700 0
10 Ni(NO),-6 H,0 CeO, 700 0
1 Ni(OAC),-4 H,0 N-SIC 700 4
12 Ni(acac),-2 H,0 N-SiC 700 51
13 Ni(ll)stearate N-SiC 700 12
14 NiCl,-6 H,0 N-SiC 700 4
15 - N-SiC 700 0

3.0 MPa H,, 40°C for 20 h. Step B: Addition of 0.3 mmol LiOH then 60 °C for 20
dodecane as an internal standard.

[a] Reaction conditions: Step A: 4 mol% Ni/N-SiC (0.02 mmol Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol,

h. Step C: 5.0 MPa H,, 120°C for 48 h. Yields were determined by GC using n-
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support materials, such as activated carbon, y-Al,O,, TiO,, SiO,
and CeO,, were investigated. They all showed no activity,
except for activated carbon with a very low yield of 6%. The
use of nickel nitrate as a metal precursor is important for the
superior activity and selectivity of our catalyst. Only a little
activity was observed for the metal precursors nickel acetate,
nickel stearate and nickel chloride. An important issue is the
smooth impregnation including the solubility of the nickel salt
used. It is solely the nickel acetylacetonate precursor that shows
a higher yield, with 51% of the product of interest. Variation of
the catalyst metal loading revealed that a catalyst with 4.0 wt%
nickel is optimal (Table S11) and 4.0 mol% Ni was identified as
the catalyst loading for the three reaction steps (Table S12).
Time conversion studies (Supporting Information 4.2) showed
that step A is complete after 15 h under the optimal reaction
conditions applied. The complete conversion of 2-aminobenzal-
dehyde with acetophenone to 2-phenylquinoline is achieved
after 14 h in step B. The selective hydrogenation of 2-phenyl-
quinoline to 2-phenyl-1,2,3,4-tetrahydroquinoline, step C, is the
most demanding step of the overall reaction. A maximum yield
of 91% was obtained after 42 h. In summary, the overall
reaction can be carried out applying the following reaction
conditions: Step A: 4.0mol% Ni (4.0 wt% Ni), 0.5mmol 2-
nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol,
3.0 MPa H,, 40°C and 20 h reaction time. Step B: Addition of 0.6
eq LiOH and 20 h reaction time. Step C: 5.0 MPa H,, 120°C and
48 h reaction time. Starting the reaction with step B s
challenging since there is no general amino aldehyde synthesis.

Substrate Scope

With the optimized reaction conditions in hand, we became
interested in the applicability of our complex reaction.
Aldehyde variations employing acetophenone are shown in
Scheme 1. Firstly, we applied our protocol to synthesize
products carrying electron-donating methyl substituents. The
products desired were obtained in mostly very good yields and
any position on the aryl ring of the 2-nitrobenzaldehyde
derivatives could be addressed (Scheme 1, products 1-4). In
addition, we can tolerate electron-withdrawing substituents
and, again, any position on the aryl ring of the 2-nitro-
benzaldehyde could be tolerated (Scheme 1, products 5-12),
albeit lower product yields were obtained. Furthermore, 8-
fluoro-2-phenyl-1,2,3,4-tetrahydroquinoline was synthesized in
a 96% isolated yield (Scheme 1, product 13) and a CF; group
was tolerated and an isolated yield of 95% was obtained
(Scheme 1, product 14). Moreover, we successfully synthesized
8-methoxy-2-phenyl-1,2,3,4-tetrahydroquinoline in a 93% iso-
lated yield (Scheme 1, product 15), and a product bearing two
different functional groups was also introduced (Scheme 1,
product 16).

We next investigated the ketone variation (Scheme 2). We
used the same conditions and isolated 21 different products.
Electron-donating methyl groups in the para-, meta- and ortho-
positions of the 2-phenyl substituent of the 1,2,3,4-tetrahydro-
quinoline were well tolerated (Scheme 2, products 17-19).
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Scheme 1. Direct synthesis of hydroquinolines with acetophenone and
variation of the nitroaldehyde educts. Reaction conditions: Step A: 29.3 mg
Ni/N-SiC catalyst (4 mol % Ni, 0.02 mmol Ni, 1.17 mg Ni), 0.5 mmol 2-
nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol, 3.0 MPa H,, 40°C
for 20 h. Step B: Addition of 0.3 mmol LiOH. Then 60 °C for 20 h. Step C:

5.0 MPa H,, 120°C for 48 h. Isolated yields are given.
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Scheme 2. Direct synthesis of hydroquinolines with 2-nitrobenzaldehyde
and a variation of the ketone educt. Reaction conditions: Step A: 29.3 mg Ni/
N-SiC catalyst (4 mol % Ni, 0.02 mmol Ni, 1.17 mg Ni), 0.5 mmol 2-nitro-
benzaldehyde, 0.5 mmol ketone, 3 mL ethanol, 3.0 MPa H,, 40°C for 20 h.
Step B: Addition of 0.3 mmol LiOH. Then 60 °C for 20 h. Step C: 5.0 MPa H,,
120°C for 48 h. Isolated yields are given.
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Similarly, it is possible to incorporate electron-withdrawing
groups and products with fluoro substituents in the para-,
meta- and ortho-positions of the 2-phenyl substituent which
were synthesized (Scheme 2, products 20-22). The conversion
of 2-fluoroacetophenone with 2-nitrobenzaldehyde was the
most challenging and resulted in an isolated product yield of
74%. We assume that the combination of electron-withdrawing
and steric hindrance is challenging. Chloro- (Scheme 2, prod-
uct 23) and bromo-substituted (Scheme 2, product 24) products
could be synthesized. Note that the difficulty of introducing
halogen-substituted educts into the procedure due to the harsh
conditions in step C did not occur in a large quantity. The tert-
butyl group could be introduced, giving 2-(4-(tert-butyl)phenyl)-
1,2,3,4-tetrahydroquinoline in an 87 % yield (Scheme 2, product
25) and a 1,2,3,4-tetrahydroquinoline bearing an acetate group
on the phenyl ring was also obtained in a very good yield
(Scheme 2, product 26). Methoxy groups are tolerated and a
dimethoxy derivative gives a higher yield (91%, product 28)
than a monomethoxy derivative (70%, product 27). The syn-
thesis protocol is also successful when an amine group is
present (Scheme 2, product 29). We next investigated the
synthesis of alkyl-substituted hydroquinolines: 2-phenethyl-
1,2,3 4-tetrahydroquinoline (Scheme 2, product 30) and 3-
methyl-1,2,3,4-tetrahydroquinoline (Scheme 2, product 31) were
synthesized. The latter example shows that we can use two
aldehydes in our catalytic synthesis. Furthermore, various 2,3-
disubstituted products, including three-cyclic products, were
synthesized (Scheme 2, products 32 to 37). Aldehyde and
ketone can be varied simultaneously and we obtained 6-fluoro-
2-(para-tolyl)-1,2,3,4-tetrahydroquinoline in a 72% yield
(Scheme 3, product 38). Moreover, 1,2,3,4-tetrahydroquinoline
with up to four different substituents was synthesized
(Scheme 3, product 39 and 40).

Our hydroquinoline synthesis is also interesting in terms of
applications (synthesis of biologically active ingredients [of
drug molecules], Scheme 3). Our benchmark substrate, product
41, can be easily converted into an ion channel inhibitor in one
step."”  2-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-1,2,3,4-tetrahydro-
quinoline (Product 42), which we synthesized in an 83%
isolated yield, can be easily converted to galipinine."” Alkaloids
from Galipea officinalis have long been known for their
medicinal effects and galipinine acts as an antiplasmodial and
cytotoxic agent against malaria. Product 43, synthesized from 2-
nitrobenzaldehyde and acetone in an 80% yield, can be
converted into the active ingredient of an antiparasitic drug.""*!
The synthesized 6-fluoro-2-methyl-1,2,3,4-tetrahydroquinoline
(Product 44, 85% yield) can be converted to flumequine, which
has antimicrobial activity, can be used as an antibacterial agent
and was first synthesized in 1972."%

An upscaling of the benchmark reaction was performed
using 10 mmol of 2-nitrobenzaldehyde and 10 mmol of aceto-
phenone. An isolated yield of 86% of 2-phenyl-1,2,3,4-tetrahy-
droquinoline was observed (Supporting Information 4.3). Exami-
nations of the catalyst after the direct synthesis of
hydroquinolines by TEM showed no agglomeration or growth
of the nickel nanoparticles of the catalyst used. Moreover, the
particle size distribution remains constant, with an average

Chem. Eur. J. 2025, 31, €202500462 (S of 6)
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Scheme 3. Highly functionalized 1,2,3,4-tetrahydroquinolines varying both
aldehyde and ketone sides and applications of synthesized substrates as
precursors for drug molecules. Reaction conditions: Step A: 29.3 mg Ni/N-SiC
catalyst (4 mol % Ni, 0.02 mmol Ni, 1.17 mg Ni), 0.5 mmol aldehyde,

0.5 mmol ketone, 3 mL ethanol, 3.0 MPa H,, 40°C for 20 h. Step B: Addition
of 0.3 mmol LiOH. Then 60 °C, for 20 h. Step C: 5.0 MPa H,, 120°C for 48 h.
[a] Step B: 1.5 mmol LiOH. Isolated yields are given.

particle diameter of 8.5 nm (Supporting Information 4.5.1). A
hot filtration test was subsequently conducted. The separated
solution showed no activity and the formation of other
products was not observed (Supporting Information 4.5.2).
Investigation of leaching via ICP-OES suggested negligible
leaching and reusability test indicated very good reusability.

Conclusions

In summary, we report a complex catalytic reaction mediated
by a reusable earth-abundant metal catalyst and a simple base
(catalyst). The reaction was designed to permit the conversion
of inexpensive, structurally simple and diversely available
starting materials (nitroaldehydes, ketones and hydrogen) into
an important class of N-heterocyclic compounds, namely,
hydroquinolines.
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1 General Considerations

All air- and moisture sensitive reactions were performed under dry argon or nitrogen
atmosphere using standard Schlenk and glove box techniques. Dried solvents were obtained
from a solvent purification system (activated alumina cartridges) or purchased from commercial
sources. Deuterated solvents were dried via molecular sieves. All chemicals were acquired from

commercial sources with purity over 95 % and used without further purification.

Pyrolysis of the catalyst was performed under nitrogen atmosphere in a ChemBET Pulsar

TPR/TPD instrument from Quantachrome.

Transmission electron microscopy (TEM) was carried out by using a JEOL JEM-2200FS. For
the sample preparation, the samples were suspended in chloroform and sonicated for 5 min. For
analysis, the suspension was dropcast on LC200-Cu grids. High-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) and electron energy loss
spectroscopy (EELS) measurements were performed using a JEM-ARM200F (JEOL, 200 kV),
equipped with a HAADF detector with a collection angle (inner and outer) of 68 - 280 mrad
and a Quantum Gatan image filter (GIF). EELS was acquired with a convergence angle of
20.8 mrad, a collection angle of 32 mrad, and a dispersion of 0.1 eV. STEM energy dispersive
X-ray (STEM-EDX) measurements were performed on a FEI Talos operated at 300 kV
equipped with a SuperX system offering a high solid angle and thus superior collection

efficiency.

Scanning electron microscopy (SEM) and coupled energy dispersive X-ray spectroscopy
(EDX) measurements were carried out by using a Zeiss Ultra plus device. The acceleration
voltage was 20 kV. The detection was carried out with an in-lens backscatter detector. For a
conductive surface, the samples were sputtered with platinum (layer thickness: 1.3 pm) with

the Sputter Coater 208HR from Cressington.

Pore characterizations were carried out via argon physisorption measurements using a 3P Micro
100 Surface Area and Pore Size Analyzer device. The pore size distribution was computed via
DFT calculations (calculation model: Ar at -186.15 °C: slit pore, MDFT equilibrium model).
The specific surface area was calculated by using p/po values from 0.005-0.1 (BET).

Powder X-ray diffraction (PXRD) data was collected at room temperature on a STOE STADI
P Mythen2 4K diffractometer (Ge(111) monochromator; Ag Kal radiation, L =0.5594 A),
optimized for PDF data collection using four Dectris MYTHEN2 R 1K detectors in Debye—
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Scherrer geometry.['! Samples were measured in 0.5 mm glass capillaries (Hilgenberg special-

purpose glass).

The nickel content was determined by Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES). The fusion of the catalyst was carried out in a CEM MARS 6
microwave, for the ICP-OES measurements a SPECTRO ARCOS (Spectro Ametek) was used.

X-ray photoelectron spectroscopy (XPS) was performed using a Physical Electronics Phi 5000
Versa Probe III instrument. As X-ray source a monochromatic Al Ka with a spot size of 100 um
(21.1 W) was used. The kinetic pass energy of the photoelectrons was determined with a

hemispheric analyzer (45°) set to pass energy of 13 eV for high-resolution spectra.
Elemental analyses were carried out on an Elementar UNICUBE® device.

GC analyses were carried out on an Agilent 6890N GC system equipped with a HP-5 column
(30 m x 0.32 mm x 0.25 pum).

For column chromatography, silica gel 60 (M = 60.09 g/mol, 0.063 - 0.200 mm particle size)
from Macherey-Nagel was used. For plate chromatography, silica gel 60 (M = 60.09 g/mol,

15 pm particle size) from Merck was used.

NMR measurements were performed using a Varian INOVA 300 (300 MHz for 'H, 75 MHz
for 13C) and a Varian INOVA 400 (400 MHz for 'H, 100 MHz for '*C) instrument at 296 K.
Chemical shifts are reported in ppm relative to the residual solvent signal (CDCls: 7,26 ppm
(*H), 77,16 ppm ('3C); DMSO-ds: 2.50 ppm (‘H), 39.51 ppm ('*C)), coupling constants (J) are
reported in Hz. Corresponding water peaks from the DMSO-ds exchanges are marked in the

spectra.

Unknown substrates or substrates with incomplete spectroscopic literature data were
additionally analyzed via liquid chromatography-high resolution mass spectra (LC-HRMS).
LC-HRMS were obtained from a Thermo Fisher scientific Q-Exactive instrument with a hybrid

quadrupole orbitrap analyzer in ESI+ mode.

The hydrogenation experiments were carried out in a 10 mL glass vial with Parr Instrument
stainless steel autoclaves N-MT5 300 mL equipped with heating mantles and temperature

controller.
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2 Experimental Procedures

2.1 Synthesis of the Support Material N-SiC

The applied support material was modified according to a known literature procedure.?! 0.200 g
StarPCS™ SMP-10, 0.988 mL (0.800 g, 15.08 mmol) acrylonitrile (AN) and 0.075 g
(0.46 mmol) azobis(isobutyronitrile) (AIBN) were dissolved in 4 mL dimethylformamide
(DMF). After polymerization and crosslinking for 16 h at 75 °C, the solvent was removed under

reduced pressure, the obtained greenbody was pyrolyzed using following program:

i i i 20 K/mi
RT —>5KI’\;“‘“ 200°C (0h) AK/min, w;““ 400°c (o) K/min_ KI/\‘I“'" 1000 °C (1 h) —»Nm'“ RT

2 2 9 2

The mass loss after pyrolysis was 45 %. After ball milling for 40 minutes, 500 mg of the
ceramic support material were washed by stirring in an aqueous solution of 6.7 mL NaOH
(c=1mol/L) and 5 mL MeOH at 90 °C for 24 h under aerobic conditions. Afterwards the
material was washed until neutrality and dried at room temperature to obtain the final N-SiC

ceramic.

2.2 Catalyst Synthesis

To an aqueous solution (20 mL H20) of Ni(NO3), - 6 H2O (0.681 mmol, 198.06 mg, 4.0 wt%)
1000 mg support N-SiC were added and the suspension was stirred at 105 °C. After evaporation
of the solvent, the active catalyst material is generated by pyrolysis under nitrogen atmosphere

at 700 °C followed by reduction at 550 °C (N2 : H2 90 : 10) with the following heating program:

) s
RT ““T\]&» 300°C (0.5 h) WK%» 700°C (0.5 h)
9 2
20 K/min 100 °C 5 K/min 550°C (3.0 h) 20 K/min RT
2 2/Hy Ny/H,
6
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2.3 Catalytic Procedures

2.3.1 Synthesis of Hydroquinolines from Nitroaldehydes and Ketones — General

Procedure

For step A a 10 mL glass reaction vial was charged with a magnetic stirring bar, 0.5 mmol
nitroaldehyde, 0.5 mmol ketone, 3 mL EtOH and 29.3 mg catalyst (4.0 mol% Ni, 4 wt% Ni,
0.02 mmol Ni, 1.17 mg Ni). The vial was placed in a 300 mL high-pressure autoclave (Parr
Instruments). The autoclave was flushed three times with 2.0 MPa hydrogen. Afterwards,
3.0 MPa hydrogen was applied, and the reaction was stirred at 40 °C for 20 h. After completion
of the reaction time, the hydrogen was released and subsequently started with step B. To the
reaction mixture 7.2 mg LiOH (0.3 mmol, 0.6 eq) were added. After, the reaction mixture was
stirred in the autoclave at 60 °C for 20 h to give the corresponding quinoline. Followed by
step C the autoclave was flushed again three times with 2.0 MPa hydrogen and pressured with
5.0 MPa hydrogen at 120 °C for 48 h to selectively hydrogenate the quinoline to the
corresponding 1,2,3,4-tetrahydroquinoline. At the end of the reaction time, the autoclave was
cooled down to room temperature and the hydrogen was released. The catalyst was removed by
filtration and the solvent was evaporated via rotary evaporation and high vacuum. If needed,
purification via column or plate chromatography was applied. The corresponding product yield

was analyzed by 'H and '*C NMR spectroscopy.
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3 Characterization of the Catalyst

3.1 ICP-OES

Theoretical Ni content: 4.00 wt%
Measured Ni content:  3.96 wt%

There is no difference between theoretical and measured nickel loading. The small difference
in the values (0.04 wt%, 1.0 % deviation) is due to measurement errors. Since the difference of
theoretical and measured contents are insignificant, we continued to use the theoretical value

of 4.00 wt% Ni loading on our catalyst.

3.2 CHN Analysis

Table S 1: CHN analysis of the support material N-SiC and the Ni/N-SiC catalyst.

Entry Material C [%] H [%] N [%] Si [%]
1 N-SiC 82.7 0.1 6.7 10.5
2 Ni/N-SiC (4 wt% Ni) 83.3 0.0 5.7 7.0

The silicon content was calculated as the difference of the abovementioned elements (C, H,
N) and the Ni content to 100 %. Theoretical and measured Ni content via ICP-OES in
brackets.
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3.3 SEM-EDX

Figure S 1: Scanning electron microscopy (SEM) in combination with energy dispersive X-ray
(EDX) mapping of the catalyst Ni/N-SiC. The measurements show a homogeneous distribution
of the nickel nanoparticles over the entire material which indicates a smooth impregnation
process. The distribution of N, Si, C and O verifies a homogeneous surface of the support
material.
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3.4 HAADF-STEM with EDX

500 nm

Figure S 2: Characterization of the Ni nanoparticles by high-angle annular dark-field scanning
TEM (HAADF-STEM) analysis combined with energy-dispersed X-ray (EDX) element
mapping. The support material N-SiC (N: green, Si: orange, C:red) is covered with
homogeneously dispersed Ni (Ni: blue) nanoparticles. The nanoparticles are embedded in the
nitrogen, silicon doped carbon layer of the N-SiC support. Oxygen (O: violet) is also present
because of the sample preparation at ambient air.

10
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3.5 HR-TEM with EELS
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Figure S 3: (a) HR-TEM (high resolution transmission electron microscopy) with a line scan
over one nickel nanoparticle and (b) the detailed image of the scanned particle. (c) The resulting
EELS spectrum of the nickel area. The EELS spectrum fits to the literature measurements of
Ni’. The calculated Ni(Ls):Ni(L>) intensity ratio of 1.38 (Ni’ reference: 1.41, Ni*
reference: 1.84) agrees with the literature value.l®! (d) The measured EELS spectrum of the
oxygen area. There is no oxygen edge detected. This confirms that there is no nickel oxide

species on the catalyst.

11
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3.6 HR-TEM with FFT

Figure S 4: (a)-(c) HR-TEM images of different nickel nanoparticles. One can see very clearly
the lattice spacings in the nanoparticles. (d) FFT of the nanoparticle depicted in (c). The
examination of the diffraction spots revealed two miller planes (200 and 103) consistent with
those of cubic nickel.

12
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3.7 XPS
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Figure S 5: X-ray photoelectron spectra (XPS) of the surface area of the catalyst Ni/N-SiC.
(a) XPS survey of Ni/N-SiC. The catalyst contains Si, O, C, N and Ni at the surface.
(b) Analysis of the Ni 2p3/ area pre-Pt sputtering with an asymmetric fit. It shows Ni® (49 %)
and nickel oxide (51 %) on the surface. (c) Analysis of the Ni 2ps/ area post-Pt sputtering with
an asymmetric fit. It shows Ni’ (89 %) and nickel oxide (11 %). (d) Analysis of the nitrogen
area pre-Pt sputtering suggests different binding models of nitrogen within the catalyst
(graphitic: 4 %, pyrrole-like: 51 %, pyridine-like: 45 %). (¢) Analysis of the nitrogen area post-
Pt sputtering suggests different binding models of nitrogen (graphitic: 6 %, pyrrole-like: 49 %,
pyridine-like: 45 %).
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4 Catalytic Studies

4.1 Screening of Reaction Parameters

Table S 2: Reaction parameters — solvent.

Step A Step B Step C
Cft;ﬂzét LoH CE?IE'/I? O
@ﬁ *@ @ﬁ *@‘ﬁ‘~ e
v

Entry Solvent Yield [%]

1 Ethanol 91

2 Methanol 65

3 Water 48

4 Dimethylformamide 0

5 2-Methyltetrahydrofuran 0

6 Toluene 0

7 Methylcyclohexane 0

8 Diglyme 0

9 1,4-Dioxane 34

10 Triethylamine 0

Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt% Ni, 0.02 mmol
Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL solvent,
3.0 MPa Ha, 40 °C, 20 h. Step B: Addition of 0.3 mmol LiOH. Then 60 °C, 20 h. Step C:
5.0 MPa H», 120 °C, 48 h. Yields were determined by GC using n-dodecane as an internal
standard.

14
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Table S 3: Reaction parameters — amount of ethanol.

Step A Step B Step C
catalyst catalyst
+3 Hz L|OH +2 H2
21,0 “2H,0 Hzo N O
\'
Entry Ethanol [mLj] Yield [%]
1 | 26
2 2 63
3 3 91
4 4 86
5 %) 81

Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt% Ni, 0.02 mmol
Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, ethanol, 3.0 MPa
Ha, 40 °C, 20 h. Step B: Addition of 0.3 mmol LiOH. Then 60 °C, 20 h. Step C: 5.0 MPa Ha,
120 °C, 48 h. Yields were determined by GC using n-dodecane as an internal standard.

15
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Table S 4: Reaction parameters — base.

Step A Step B Step C
Tt Liok Tote O
d /[K©-2H20 ©\) )K@_szo‘\/j\‘_, N O
v
Entry Base Yield [%]
1 LiOH 91
2 NaOH 79
3 KOH 84
4 KO'Bu 0
5 Na-HMDS 0
6 Amberlyst 21 47
7 Amberlyst 26 54
8 CaO 0
9 MgO 0
10 K>COs 0
11 Na,COs 0
12 CaCOs 0
13 BaCOs 0
14 SrCO; 0

Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt% Ni, 0.02 mmol
Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol,
3.0 MPa Ha, 40 °C, 20 h. Step B: Addition of 0.3 mmol base. Then 60 °C, 20 h. Step C:
5.0 MPa H», 120 °C, 48 h. Yields were determined by GC using n-dodecane as an internal
standard.

16
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Table S 5: Reaction parameters — amount of base.

Step A Step B Step C
oty Lok o O
@5 *@ @ﬁ *@ ‘ﬁ‘
v
Entry LiOH [mmol] LiOH [eq] Yield [%]
1 0.00 0.0 0
2 0.05 0.1 28
3 0.10 0.2 30
4 0.15 0.3 35
5 0.20 0.4 36
6 0.25 0.5 49
7 0.30 0.6 91
8 0.35 0.7 61
9 0.40 0.8 45
10 0.45 0.9 39
11 0.50 1.0 34
12 0.75 15 31

Reaction conditions: Step A:29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt% Ni, 0.02 mmol
Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol,
3.0 MPa Ha, 40 °C, 20 h. Step B: Addition of LiOH. Then 60 °C, 20 h. Step C: 5.0 MPa Ha,
120 °C, 48 h. Yields were determined by GC using n-dodecane as an internal standard.

17
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Table S 6: Reaction parameters — reaction temperature for step A.

Step A
? o catalyst
. *+3Hp
L 0 e @ﬁ *@
NO,

Entry Temperature [°C] Yield [%]
1 30 66
2 40 >99
3 50 93
4 60 90
5 70 15

Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt%, 0.02 mmol
Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol,
3.0 MPa Ha, 20 h, at desired temperature. Yields were determined by GC using n-dodecane as
an internal standard.

Table S 7: Reaction parameters — Ha pressure for step A.

Step A
IO o catalyst
. +3H,
OO @ﬁ *@
NO,

Entry H:z Pressure [MPa] Yield [%]
1 1.0 65
2 2.0 82
3 3.0 >99
4 4.0 >99
5 5.0 >99

Reaction conditions: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt%, 0.02 mmol Ni,
1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol, Ha,
40 °C, 20 h. Yields were determined by GC using n-dodecane as an internal standard.
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Table S 8: Reaction parameters — reaction temperature for step B.

Step A Step B
? 0 catalyst O AN
1 +3H, _LiOH_ g
OO @ﬁ *@ e
N02
I 1 v
Entry Temperature [°C] Yield [%]
1 30 61
2 40 83
3 50 95
4 60 >99
5 70 >99
6 80 >99
7 90 >99
8 100 >99

Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt% Ni, 0.02 mmol
Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol,
3.0 MPa Ha, 40 °C, 20 h. Step B: Addition of 0.3 mmol LiOH. Then 20 h reaction time at
desired temperature. Yields were determined by GC using n-dodecane as an internal standard.

Table S 9: Reaction parameters — reaction temperature for step C.

Step A Step B Step C
catalyst catalyst
+3 Hz LiOH +2 H2
@ﬁ *@ @ﬁ *@ e
v
Entry Temperature [°C] Yield [%]
6 80 64
7 90 68
8 100 73
9 110 86
11 130 71

Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt% Ni, 0.02 mmol
Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol,
3.0 MPa Ha, 40 °C, 20 h. Step B: Addition of 0.3 mmol LiOH. Then 60 °C, 20 h. Step C:
5.0 MPa Ha, 48 h reaction time at desired temperature. Yields were determined by GC using
n-dodecane as an internal standard.
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Table S 10: Reaction parameters — Hz pressure for step C.

Step A Step B Step C

catalyst catalyst

*+3Hy _LioH_ *+2H,

2 H,0 T2 H,0 H20 ﬂ O

v
Entry H: Pressure [MPa] Yield [%)]

1 2.0 22
2 3.0 32
3 4.0 34
4 5.0 91
5 6.0 48

Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst, 4 mol% Ni (4.0 wt% Ni,
0.02 mmol Ni, 1.17 mg Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL
ethanol, 3.0 MPa H>, 40 °C, 20 h. Step B: Addition of 0.3 mmol LiOH. Then 60 °C, 20 h.
Step C: Ha, 120 °C, 48 h reaction time. Yields were determined by GC using n-dodecane as
an internal standard.

Table S 11: Reaction parameters — metal loading.

Step A Step B Step C
catalyst catalyst
*+3Hp LiOH *2Hy
d )b -2 H,0 d )b -2 Hzo ” O
Vv
Entry Metal loading [wt% Ni] Yield [%]
1 1.0 11
2 2.0 23
3 3.0 36
4 4.0 91
5 5.0 16

Reaction conditions: Step A: Ni/N-SiC catalyst, 4 mol% Ni (0.02 mmol Ni, 1.17 mg Ni),
0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol, 3.0 MPa H», 40 °C,
20 h. Step B: Addition of 0.3 mmol LiOH. Then 60 °C, 20 h. Step C: 5.0 MPa H, 120 °C,
48 h. Yields were determined by GC using n-dodecane as an internal standard.
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Table S 12: Reaction parameters — catalyst loading to substrate ratio.

Step A Step B Step C

catalyst catalyst

+3 Hz L:OH +2 H2

21,0 “2H,0 Hzo N O

\'
Entry Catalyst loading [mol% Ni] Yield [%)]

1 0.0 0
2 1.0 30
3 2.0 58
4 3.0 73
5 4.0 91
6 5.0 84

Reaction conditions: Step A: Ni/N-SiC catalyst (4 wt% Ni), 0.5 mmol 2-nitrobenzaldehyde,
0.5 mmol acetophenone, 3 mL ethanol, 3.0 MPa Ha, 40 °C, 20 h. Step B: Addition of 0.3 mmol
LiOH. Then 60 °C, 20 h. Step C: 5.0 MPa H, 120 °C, 48 h. Yields were determined by GC
using n-dodecane as an internal standard.
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4.2 Time-Conversion-Plot

Step A Step B Step C
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Figure S 6: Time-Conversion-Plot of the direct synthesis of 2-phenyl-1,2,3,4-tetrahydro-
quinoline (V). The reaction progress was observed at different time intervals during each step.
Reaction conditions: Step A: 29.3 mg Ni/N-SiC catalyst (4.0 wt% Ni, 0.02 mmol Ni, 1.17 mg
Ni), 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL ethanol, 3.0 MPa H», 40 °C.
Step B: Addition of 0.3 mmol LiOH. Then 60 °C. Step C: 5.0 MPa Ha, 120 °C. Yields were
determined by GC using n-dodecane as an internal standard.
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4.3 Upscaling of the Reaction

The benchmark reaction which is the synthesis of 2-phenyl-1,2,3,4-tetrahydroquinoline from
2-nitrobenzaldehyde and acetophenone was used to carry out an upscaling experiment. For the
reaction, 586.0 mg Ni/N-SiC catalyst (4.0 mol% Ni, 4 wt% Ni, 0.02 mmol Ni, 1.17 mg Ni),
10 mmol 2-nitrobenzaldehyde, 10 mmol acetophenone and 60 mL EtOH were stirred in a
100 mL glass vial equipped with a magnetic stirring bar. The vial was placed in a 300 mL high-
pressure autoclave (Parr Instruments) and the autoclave was flushed three times with 2.0 MPa
hydrogen. After pressuring the autoclave with the desired 3.0 MPa hydrogen pressure, the
reaction was stirred for 20 h at 40 °C. After completion of the reaction time, the hydrogen was
released and subsequently started with step B. To the reaction mixture 144 mg LiOH
(6.0 mmol, 0.6 eq) were added. After, the reaction mixture was stirred in the autoclave at 60 °C
for 20 h to give the corresponding 2-phenylquinoline. Followed by step C the autoclave was
flushed again three times with 2.0 MPa hydrogen and pressured with 5.0 MPa hydrogen at
120 °C for 48 h to selectively hydrogenate the 2-phenylquinoline to the corresponding
2-phenyl-1,2,3,4-tetrahydroquinoline. The autoclave was cooled to room temperature and the
hydrogen was released. The reaction mixture was separated from the catalyst and the yield of

2-phenyl-1,2,3,4-tetrahydroquinoline was isolated. Yield: 86 % (1799 mg) as an oil.
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4.4 Reusability

The hydrogenation of 2-nitrobenzaldehyde to 2-aminobenzaldehyde was chosen to investigate
the recyclability of the Ni/N-SiC catalyst. A 10 mL reaction vial was charged with a magnetic
stirring bar, 0.5 mmol 2-nitrobenzaldehyde, 3 mL EtOH and 29.3 mg catalyst (4.0 mol% Ni,
4 wt% Ni, 0.02 mmol Ni, 1.17 mg Ni). The vial was placed in a high-pressure autoclave (Parr
Instruments) and the autoclave was flushed three times with 2.0 MPa hydrogen. The autoclave
was pressured with 3.0 MPa hydrogen and the reaction was carried out for 20 h at 30 °C to
obtain 70 % yield. After 20 h the autoclave was opened and there the catalyst was washed three
times with ethanol via centrifugation. Therefore, the catalyst could be completely recovered.
The yield of 2-aminobenzaldehyde was determined by GC using n-dodecane as an internal
standard (Figure S 7). The Ni/N-SiC catalyst demonstrates reusability without any loss of

activity.

100 -

yield [%]

1 2 3 4 5
number of runs

Figure S 7: Results and the initial rates of the recycling experiments. There is no decrease in
catalytic activity in five consecutive runs in the hydrogenation of 2-nitrobenzaldehyde to 2-
aminobenzaldehyde.
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4.5 Evaluation of the Used Catalyst

4.5.1 TEM Measurements

(a)

4 6 8 10 12
particle size [nm]

Figure S 8: TEM characterization of the used Ni/N-SiC catalyst. (a) Particle size distribution
of the nanoparticles after catalysis. The distribution is homogeneous with an average diameter
of 8.0 nm, close to the same average diameter as before catalysis (8.5 nm). (b) — (e) There is no
agglomeration or growing of nanoparticles in the Ni/N-SiC catalyst after catalysis. (f) HR-TEM
measurement of the catalyst. The particles are in good shape with the particles before catalysis.
(g) One can see the lattice spacing of nickel. (h) Line profile of the particle in (g). The average
lattice spacing found is 1.74 A and is in good accordance with the d(200) spacing of 1.76 A of
cubic nickel (reference code: 00-004-0850).
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The Ni/N-SiC catalyst was investigated with TEM measurements after the catalysis (Figure S
8). The general procedure for the catalytic reaction was applied (Section 2.3.1). For step A the
vial was charged with a magnetic stirring bar, 0.5 mmol 2-nitrobenzaldehyde, 0.5 mmol
acetophenone, 3 mL EtOH and 29.3 mg catalyst (4.0 mol% Ni, 4 wt% Ni, 0.02 mmol Ni,
1.17 mg Ni). The vial was placed in a 300 mL high-pressure autoclave (Parr Instruments). The
autoclave was flushed three times with 2.0 MPa hydrogen. Afterwards, 3.0 MPa hydrogen was
applied, and the reaction was stirred at 40 °C for 20 h. After completion of the reaction time,
the hydrogen was released and subsequently started with step B. To the reaction mixture 7.2 mg
LiOH (0.3 mmol, 0.6 eq) were added. After, the reaction mixture was stirred in the autoclave
at 60 °C for 20 h to give the corresponding quinoline. Followed by step C the autoclave was
flushed again three times with 2.0 MPa hydrogen and pressured with 3.0 MPa hydrogen at
120 °C for 48 h to selectively hydrogenate the quinoline to the corresponding 1,2,3,4-
tetrahydroquinoline. At the end of the reaction time, the autoclave was cooled down to room
temperature and the hydrogen was released. The catalyst was removed by centrifugation and
the organic phase was separated. After, the catalyst was washed three times with ethanol and

dried in vacuo. The catalyst was characterized via TEM measurements.

4.5.2 Hot Filtration Test

To demonstrate the catalyst stability a hot filtration test was performed. Therefore, a 10 mL
reaction vial was charged with a magnetic stirring bar, 0.5 mmol 2-nitrobenzaldehyde, 3 mL
EtOH and 29.3 mg catalyst (4.0 mol% Ni, 4 wt% Ni, 0.02 mmol Ni, 1.17 mg Ni). The vial was
placed in a 300 mL high pressure autoclave (Parr Instruments) and the autoclave was flushed
three times with 2.0 MPa hydrogen. Afterwards, 3.0 MPa hydrogen was applied, and the
reaction was stirred at the desired 40 °C. When 15 % yield of 2-aminobenzaldehyde were
generated (after 3 h reaction time), the hot catalytic mixture was filtered to remove the catalyst.
Afterwards, 0.5 mmol 2-nitrobenzaldehyde were added to the filtrate and the mixture was
stirred at the catalytic conditions mentioned above. The filtrate did not show any activity and
the desired product 2-aminobenzaldehyde was not generated. No other product was to be seen
either. The yield of 2-aminobenzaldehyde was determined by GC using n-dodecane as an

internal standard.
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4.5.3 Leaching Test

A leaching test was performed to demonstrate that our catalyst does not form homogeneous
nickel species. For step A the vial was charged with a magnetic stirring bar, 0.5 mmol
2-nitrobenzaldehyde, 0.5 mmol acetophenone, 3 mL EtOH and 29.3 mg catalyst (4.0 mol% Ni,
4 wt% Ni, 0.02 mmol Ni, 1.17 mg Ni). The vial was placed in a 300 mL high-pressure autoclave
(Parr Instruments). The autoclave was flushed three times with 2.0 MPa hydrogen. Afterwards,
3.0 MPa hydrogen was applied, and the reaction was stirred at 40 °C for 20 h. After completion
of the reaction time, the hydrogen was released and subsequently started with step B. To the
reaction mixture 7.2 mg LiOH (0.3 mmol, 0.6 eq) were added. After, the reaction mixture was
stirred in the autoclave at 60 °C for 20 h. Followed by step C, the autoclave was flushed again
three times with 2.0 MPa hydrogen and pressured with 3.0 MPa hydrogen at 120 °C for 48 h.
Upon completion of the reaction time, the autoclave was cooled to room temperature and the
hydrogen was released. The reaction mixture was separated from the catalyst and the leaching
amount of the Ni/N-SiC catalyst was determined via ICP-OES. The measured nickel amount of
the used Ni/N-SiC catalyst was 3.94 wt%. The slightly different values (0.06 wt%, 1.5 %
deviation) from the original 4.0 wt% nickel loading is negligible. Since the difference between
the initial nickel loading and the measured nickel loading is insignificant, it can be said that our

catalyst is not leaching at all.

29

196



The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

5 Characterization of Isolated Products

5-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (1)

I N
H

'H NMR (400 MHz, DMSO-d6, 296 K): § = 7.48 — 7.35 (m, 4H), 7.35 — 7.28 (m, 1H), 6.86 (t,J =
7.7 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.43 (d, J = 7.2 Hz, 1H), 5.96 (s, 1H), 4.38 (dd, ] = 8.6, 3.0
Hz, 1H), 2.75-2.62 (m, 1H), 2.58 —2.51 (m, 1H), 2.15 (s, 3H), 2.09 (dt, ] = 14.1, 4.4 Hz, 1H), 1.97
—1.86 (m, 1H) ppm.

MW (C16H7N) = 223.32 g/mol (M)

3C NMR (100 MHz, DMSO-d6, 296 K): § = 145.49, 145.23, 135.75, 128.21, 126.84, 126.47,
125.87, 118.19, 117.45, 112.02, 54.17, 30.67, 22.73, 19.17 ppm.

Yield: 90 % (100 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:2).

The spectroscopic data match those reported in literature.! (CAS Number: 2912523-66-9)

6-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (2)

I N
H

TH NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.41 — 7.29 (m, 4H), 7.25 (ddd, J = 6.5, 4.0, 1.9 Hz,
1H), 6.69 (d, J = 2.3 Hz, 1H), 6.50 (d, ] = 7.9 Hz, 1H), 5.81 (s, 1H), 4.36 (d, J = 7.1 Hz, 1H), 2.80
~2.70 (m, 1H), 2.55 - 2.51 (m, 1H), 2.13 (s, 3H), 2.01 — 1.92 (m, 1H), 1.87 — 1.75 (m, 1H) ppm.

MW (Ci6Hi7N) = 223.32 g/mol (M)

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.42, 143.05, 129.21, 128.20, 126.99, 126.82,
126.43, 123.71, 119.52, 113.73, 54.63, 30.46, 25.41, 20.16 ppm.

Yield: 82% (92mg) as an oil. The product was purified via plate chromatography
(n-pentane : EtOAc, 30:1).

The spectroscopic data match those reported in literature.! (CAS Number: 876491-83-7)
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7-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (3)

I N
H

MW (CisHi7N) = 223.32 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): & =7.41 — 7.17 (m, 5H), 6.73 (dd, J = 7.5, 4.0 Hz,
1H), 6.40 (d, ] = 2.6 Hz, 1H), 6.27 (dd, ] = 7.6, 2.6 Hz, 1H), 5.94 (s, 1H), 4.41 — 4.33 (m, 1H),
2.75 - 2.64 (m, 1H), 2.4 (dd, J = 9.3, 4.3 Hz, 1H), 2.12 (t, ] = 5.2 Hz, 3H), 2.01 — 1.89 (m,
1H), 1.80 (dtd, ] = 17.0, 8.6, 4.3 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.44, 145.17, 135.22, 128.60, 128.24, 126.84,
126.41, 116.68, 116.43, 114.03, 54.43, 30.46, 24.93, 21.03 ppm.

Yield: 89 % (99 mg) as an oil. The product was purified via plate chromatography
(n-pentane : EtOAc, 30:1).

The spectroscopic data match those reported in literature.’) (CAS Number: 876491-82-6)

8-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (4)

I N
H

MW (Ci6H17N) = 223.32 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.38 — 7.29 (m, 4H), 7.24 (td, ] = 6.1, 2.7 Hz, 1H),
6.77 (dd, J = 28.2, 7.4 Hz, 2H), 6.41 (t,J = 7.4 Hz, 1H), 5.24 (s, 1H), 4.52 (dt, ] = 6.5, 3.2 Hz,
1H), 2.77-2.70 (m, 1H), 2.46 (t, ] = 5.8 Hz, 1H), 2.08 (s, 3H), 2.03 — 1.95 (m, 1H), 1.89 — 1.80
(m, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.79, 142.85, 128.19, 127.76, 126.68, 126.62,
126.21, 120.78, 119.44, 115.29, 54.54, 29.83, 25.15, 17.50 ppm.

Yield: 94 % (105 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 7:1).

The spectroscopic data match those reported in literature.!®) (CAS Number: 876491-80-4)
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5-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (5)

Cl

YO
H
MW (Ci5H14CIN) = 243.73 g/mol (M)

TH NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.39 — 7.29 (m, 4H), 7.29 — 7.22 (m, 1H), 6.87 —
6.84 (m, 1H), 6.58 (dd, J = 8.0, 1.0 Hz, 1H), 6.44 (td, J = 7.3, 1.2 Hz, 1H), 6.02 (s, 1H), 4.40
(dd, 1 =4.9, 1.7 Hz, 1H), 2.82 — 2.72 (m, 1H), 2.54 (dd, ] = 11.0, 5.6 Hz, 1H), 2.02 — 1.94 (m,
1H), 1.84 (ddd, J = 13.0, 8.9, 4.4 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.36, 128.70, 128.33, 128.23, 126.88, 126.47,
126.43, 119.47, 115.39, 113.55, 54.45, 30.24, 25.38 ppm.

Yield: 71 % (87 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.!”’ (CAS Number: 2793403-68-4)

6-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (6)

Cl
N
VO

MW (Ci5H4CIN) = 243.73 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): § = 7.39 — 7.32 (m, 4H), 7.29 — 7.21 (m, 1H), 6.89 —
6.85 (m, 1H), 6.60 (d, ] = 7.9 Hz, 1H), 6.49 — 6.41 (m, 1H), 6.03 (s, 1H), 4.41 (d, ] = 6.5 Hz,
1H), 2.75 (dd, J = 9.8, 5.5 Hz, 1H), 2.55 (t, J = 5.3 Hz, 1H), 1.98 (dd, J = 11.3, 5.2 Hz, 1H),
1.90 — 1.77 (m, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): 8 = 145.37, 144.87, 128.70, 128.23, 126.87, 126.47,
126.42, 119.48, 115.41, 113.56, 54.47, 30.26, 25.37 ppm.

Yield: 89 % (108 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:2).

The spectroscopic data match those reported in literature.® (CAS Number: 1206880-24-1)
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7-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (7)

Cl I N
H

MW (Ci5H14CIN) = 243.73 g/mol (M)

"TH NMR (400 MHz, DMSO-d6, 296 K): 6 = 7.45 - 7.18 (m, 5H), 6.87 (d, ] = 7.6 Hz, 1H), 6.62
(dd, J=15.5, 5.1 Hz, 1H), 6.49 — 6.41 (m, 1H), 6.03 (s, 1H), 4.42 (t, ] = 5.2 Hz, 1H), 2.84 —
2.65 (m, 1H), 2.60 —2.50 (m, 1H), 2.04 — 1.93 (m, 1H), 1.89 — 1.75 (m, IH) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.37, 144.73, 130.74, 130.08, 128.32, 128.23,
127.04, 126.87, 126.43, 119.49, 118.35, 113.56, 54.48, 30.26, 25.38 ppm.

Yield: 70 % (85 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 10:2).

The spectroscopic data match those reported in literature.””) (CAS Number: 2642399-25-3)

8-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (8)

‘ N
a M
MW (C1sH1sCIN) = 243.73 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.38 — 7.21 (m, SH), 7.10 (d, J = 7.9 Hz, 1H), 6.88
(d,J=7.4 Hz, 1H), 6.50 (t, J = 7.7 Hz, 1H), 5.71 (s, 1H), 4.64 — 4.58 (m, 1H), 2.79 — 2.67 (m,
1H), 2.46 (dd, J = 9.8, 6.5 Hz, 1H), 2.04 — 1.87 (m, 2H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.00, 140.63, 128.30, 127.55, 126.83, 126.79,
126.05, 122.05, 116.73, 115.79, 53.84, 28.78, 24.44 ppm.

Yield: 74 % (90 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:2).

The spectroscopic data match those reported in literature.”’ (CAS Number: 2793403-77-5)
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5-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (9)

Br

N
e
MW (Ci5sH14BrN) = 288.19 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): § = 7.42 — 7.29 (m, 4H), 7.25 (ddt, J = 7.3, 5.7, 2.2 Hz,
1H), 6.86 (d, J = 6.2 Hz, 1H), 6.59 (dd, J = 8.0, 1.0 Hz, 1H), 6.45 (td, J = 7.3, 1.2 Hz, 1H), 6.03 (s,
1H), 4.43 —4.35 (m, 1H), 2.84 - 2.71 (m, 1H), 2.54 (dd, J = 10.8, 5.5 Hz, 1H), 2.04 — 1.93 (m, 1H),
1.89 — 1.76 (m, 1H) ppm.

3C NMR (100 MHz, DMSO-d6, 296 K): & = 145.37, 145.29, 128.71, 128.24, 126.88, 126.48,
126.43,119.48, 115.41, 113.56, 54.47 30.26, 25.37 ppm.

Yield: 71 % (102 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 15:1).

The spectroscopic data match those reported in literature.'”? (CAS Number: 957211-73-3)

6-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (10)

Br O
e
H

MW (Ci5sH14BrN) = 288.19 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.35 (1, ] = 3.4 Hz, 4H), 7.26 (dd, ] = 8.7, 4.0 Hz, 1H),
6.85(d, J=7.0 Hz, 1H), 6.58 (d, ] = 7.7 Hz, 1H), 6.44 (t, ] = 7.1 Hz, 1H), 6.02 (s, 1H), 4.40 (d,J =
6.8 Hz, 1H), 2.82 — 2.70 (m, 1H), 2.54 (t, ] = 5.2 Hz, 1H), 2.02 — 1.93 (m, 1H), 1.88 — 1.75 (m, 1H)

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.37, 145.29, 128.71, 128.23, 126.88, 126.47,
126.43, 119.48, 115.40, 113.55, 54.46, 30.25, 25.37 ppm.

HRMS (ESI*) Calculated for CisH4BrN: 288.03751; found: 288.03824.

Yield: 86 % (124 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 15:1).

The spectroscopic data is insufficient reported in literature.'') (CAS Number: 2247450-56-0)

32

201



The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

7-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (11)

BrIN
H

MW (CsH14BrN) = 288.19 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): 6 = 7.41 — 7.29 (m, 4H), 7.28 — 7.21 (m, 1H), 6.86 (d, ] =
6.5 Hz, 1H), 6.61 — 6.54 (m, 1H), 6.45 (td, J = 7.3, 1.1 Hz, 1H), 6.02 (s, 1H), 4.40 (dd, J=8.2,3.4
Hz, 1H), 2.82 — 2.70 (m, 1H), 2.54 (dd, J = 10.8, 5.3 Hz, 1H), 2.02 — 1.93 (m, 1H), 1.83 (ddd, J =
12.7, 8.8, 4.7 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.38, 145.31, 128.73, 128.25, 126.90, 126.50,
126.44, 119.51, 115.43, 113.58, 54.48, 30.27, 25.38 ppm.

HRMS (ESI*) Calculated for C;sH;4BrN: 288.03751; found: 288.09561.

Yield: 78% (112mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 15:1).
The spectroscopic data is insufficient reported in literature.!''’ (CAS Number: 2322842-03-3)

8-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (12)

N
Br

"H NMR (400 MHz, DMSO-d6, 296 K): § = 7.44 — 7.31 (m, 4H), 7.30 — 7.20 (m, 1H), 6.86 (d, J =
6.8 Hz, 1H), 6.59 (dd, J = 8.0, 1.0 Hz, 1H), 6.45 (td, J = 7.3, 1.1 Hz, 1H), 6.03 (s, 1H), 4.45 — 4.35
(m, 1H), 2.82 — 2.72 (m, 1H), 2.54 (dd, J = 10.8, 5.3 Hz, 1H), 2.03 — 1.94 (m, 1H), 1.88 — 1.77 (m,

MW (CisH14BrN) = 288.19 g/mol (M)

1H) ppm.

3C NMR (100 MHz, DMSO-d6, 296 K): § = 145.38, 145.30, 128.71, 128.24, 126.88, 126.48,
126.43, 119.49, 115.39, 113.56, 54.46, 30.25, 25.37 ppm.

HRMS (ESI*) Calculated for C,sH;4BrN: 288.03751; found: 288.04372.

Yield: 68 % (98 mg) as an oil. The product was purified via plate chromatography (n-pentane : EtOAc,
30:1).

The spectroscopic data is insufficient reported in literature.
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8-Fluoro-2-phenyl-1,2,3,4-tetrahydroquinoline (13)

H
F
MW (C;5sH14FN) = 227.28 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): 6 =7.35 (dd, J = 5.5, 3.2 Hz, 4H), 7.32 — 7.23 (m,
1H), 6.89 (dd, J=11.5, 8.2 Hz, 1H), 6.76 (d, J = 7.2 Hz, 1H), 6.54 — 6.40 (m, 1H), 5.89 (s, 1H),
4.53 (dd, J=6.4, 3.2 Hz, 1H), 2.83 — 2.72 (m, 1H), 2.53 (dd, J = 4.5, 2.8 Hz, 1H), 2.06 — 1.87
(m, 2H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 151.25, 148.89, 145.11, 133.24, 133.12, 128.21,
126.78, 126.20, 124.30, 122.71, 114.57, 112.33, 53.46, 29.31, 24.31 ppm.

Yield: 96 % (109 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.l”) (CAS Number: 2891730-99-5)

2-Phenyl-7-(trifluoromethyl)-1,2,3,4-tetrahydroquinoline (14)
F,;C N
<IN

MW (Ci6H14F3N) = 277.29 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.35 (d, J = 4.3 Hz, 4H), 7.27 (dt, ] = 8.5, 4.2 Hz,
1H), 7.06 (d, ] = 7.8 Hz, 1H), 6.90 (s, 1H), 6.72 (d, ] = 7.8 Hz, 1H), 6.58 (s, 1H), 4.48 (d, ] =
6.0 Hz, 1H), 2.87 —2.75 (m, 1H), 2.59 (dt, J = 16.5, 5.1 Hz, 1H), 2.01 (ddd, J = 14.8, 9.5, 5.0
Hz, 1H), 1.89 — 1.78 (m, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.75, 144.65, 129.35, 128.36, 127.66, 127.35,
127.08, 126.38, 126.04, 123.75, 123.34, 111.03, 109.10, 54.18, 29.44, 25.18 ppm.

Yield: 95 % (132 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.!'?) (CAS Number: 2098241-71-3)
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8-Methoxy-2-phenyl-1,2,3,4-tetrahydroquinoline (15)

MW (CisH17NO) = 239.32 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): & =7.32 (dd, J = 6.6, 2.7 Hz, 4H), 7.29 — 7.20 (m,
1H), 6.67 (d, ] = 7.9 Hz, 1H), 6.56 (d, ] = 7.5 Hz, 1H), 6.48 (t, ] = 7.7 Hz, 1H), 4.99 (s, 1H),
4.51 —4.41 (m, 1H), 3.75 (s, 3H), 2.82 — 2.70 (m, 1H), 2.54 (t, ] = 5.7 Hz, 1H), 1.99 (dd, J =
10.7, 5.7 Hz, 1H), 1.89 (ddd, ] = 16.3, 8.0, 4.3 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.61, 145.28, 134.14, 128.25, 126.85, 126.23,
121.16, 119.77, 115.12, 115.10, 107.87, 55.24, 53.98, 29.65, 24.79 ppm.

HRMS (ESI*) Calculated for C1¢Hi7NO: 240.13715; found: 240.13829.

Yield: 93 % (111 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 7:1).
Spectroscopic data is insufficient reported in the literature.[' (CAS Number: 872273-99-9)
6-Bromo-7-fluoro-2-phenyl-1,2,3,4-tetrahydroquinoline (16)
Br.
F O N O
MW (CisHisBrFN) = 306.18 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): & = 7.34 (dd, J = 8.6, 4.5 Hz, 4H), 7.30 — 7.23 (m, 1H),
6.89 — 6.82 (m, 1H), 6.39 (s, 1H), 6.22 (td, J = 8.6, 2.6 Hz, 1H), 4.41 (ddd, J = 8.2, 3.4, 1.6 Hz, 1H),
2.77 - 2.66 (m, 1H), 2.52 (dd, J = 8.4, 3.4 Hz, 1H), 2.04 — 1.93 (m, 1H), 1.88 — 1.75 (m, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 162.79, 160.43, 146.81, 146.70, 144.81, 129.82,
129.72,128.31, 127.02, 126.41, 115.51, 115.49, 54.16, 30.01, 24.68 ppm.

HRMS (ESI*) Calculated for CisHi3BrFN: 307.02564; found: 307.05951.

Yield: 93 % (142mg) as an oil. The product was purified via plate chromatography
(n-pentane : EtOAc, 30:1).

The spectroscopic data is insufficient reported in literature.
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2-(2-Methylphenyl)-1,2,3,4-tetrahydroquinoline (17)

I N
H

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.48 — 7.35 (m, 1H), 7.25 — 7.12 (m, 3H), 6.88 (t, ] =
7.3 Hz, 2H), 6.59 (d, J = 7.9 Hz, 1H), 6.46 (dd, J = 10.3, 4.2 Hz, 1H), 5.89 (s, 1H), 4.60 (d, ] = 8.0
Hz, 1H), 2.88 — 2.74 (m, 1H), 2.66 — 2.53 (m, 1H), 2.34 (s, 3H), 1.97 (dd, J = 8.7, 4.5 Hz, 1H), 1.73
(dtd, J=14.4,9.8, 4.9 Hz, 1H) ppm.

MW (C16H17N) = 223.32 g/mol (M)

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.71, 143.01, 134.33, 130.21, 128.68, 126.53,
126.45, 126.04, 125.87, 119.44, 115.31, 113.52, 50.92, 28.34, 25.57, 18.64, 18.62 ppm.

Yield: 81 % (90mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.!'*! (CAS Number: 123612-58-8)
2-(3-Methylphenyl)-1,2,3,4-tetrahydroquinoline (18)

N

e
"H NMR (400 MHz, DMSO-d6, 296 K): §=7.19 (dt, ] = 19.2, 7.7 Hz, 3H), 7.07 (d, ] = 7.3 Hz,
1H), 6.92 - 6.83 (m, 2H), 6.60 (dd, J = 8.0, 1.0 Hz, 1H), 6.45 (td, J = 7.3, 1.2 Hz, 1H), 5.98 (s, 1H),

4.38 —4.33 (m, 1H), 2.83 — 2.72 (m, 1H), 2.54 (dt, J = 17.0, 5.5 Hz, 1H), 2.30 (s, 3H), 1.97 (ddd, J
=13.3,8.7,4.7 Hz, 1H), 1.87 - 1.76 (m, 1H) ppm.

MW (Ci6Hi7N) = 223.32 g/mol (M)

3C NMR (100 MHz, DMSO-d6, 296 K): & = 145.40, 145.23, 137.23, 128.68, 128.13, 127.51,
127.01, 126.45, 123.59, 119.50, 115.37, 113.56, 54.57, 30.36, 25.55, 21.13 ppm.

Yield: 91 % (102 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 20:1).

The spectroscopic data match those reported in literature.!'>) (CAS Number: 1495968-76-7)
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2-(4-Methylphenyl)-1,2,3,4-tetrahydroquinoline (19)
N
% ®

"H NMR (400 MHz, DMSO-d6, 296 K): = 7.23 (d, ] = 8.0 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 6.86
(dd, J=14.5, 7.4 Hz, 2H), 6.58 (d, ] = 8.0 Hz, 1H), 6.4 (td, ] = 7.3, 1.2 Hz, 1H), 5.96 (s, 1H), 4.35
(d, J=7.0 Hz, 1H), 2.81 — 2.69 (m, 1H), 2.59 — 2.50 (m, 1H), 2.28 (s, 3H), 1.95 (dd, J = 12.9, 3.7
Hz, 1H), 1.86 — 1.73 (m, 1H) ppm.

MW (C16H17N) = 223.32 g/mol (M)

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.42, 142.27, 135.87, 128.77, 128.70, 126.45,
126.33, 119.49, 115.34, 113.54, 54.21, 30.28, 25.41, 20.70 ppm.

Yield: 84 % (94 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 7:1).

The spectroscopic data match those reported in literature.!"® (CAS Number: 123612-59-9)

2-(2-Fluorophenyl)-1,2,3,4-tetrahydroquinoline (20)

L)
e
H
MW (C15H14FN) = 227.28 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): & = 7.42 — 7.16 (m, 4H), 6.87 (dd, ] = 14.6, 7.5 Hz,
2H), 6.59 (dd, J = 7.9, 3.2 Hz, 1H), 6.46 (dd, ] = 16.1, 7.7 Hz, 1H), 6.03 (d, J = 12.9 Hz, 1H),
4.77—4.67 (m, 1H), 4.40 (d, ] = 7.0 Hz, 1H), 2.76 (ddd, J = 16.5, 11.1, 6.4 Hz, 1H), 2.60 —2.50
(m, 1H), 2.06 — 1.93 (m, 1H), 1.84 (ddd, ] = 17.5, 8.3, 4.5 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): 5 = 145.34, 128.68, 128.21, 126.85, 126.58, 126.45,
126.40, 124.29, 119.47, 115.60, 115.39, 113.54, 54.45, 47.75, 25.34 ppm.

Yield: 74 % (84 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 15:1).
The spectroscopic data match those reported in literature.['”) (CAS Number: 897931-78-1)
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2-(3-Fluorophenyl)-1,2,3,4-tetrahydroquinoline (21)
Loy
H

MW (CisHi4FN) = 227.28 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.48 — 7.27 (m, 4H), 7.25 (ddd, ] = 5.7, 4.0, 2.3
Hz, 1H), 6.86 (d, ] = 6.5 Hz, 1H), 6.59 (dd, ] = 8.0, 1.0 Hz, 1H), 6.45 (td, ] = 7.3, 1.2 Hz, 1H),
6.02 (s, 1H), 4.40 (ddd, J = 8.3, 3.3, 1.7 Hz, 1H), 2.81 — 2.72 (m, 1H), 2.54 (dd, J = 10.8, 5.4
Hz, 1H), 2.03 — 1.94 (m, 1H), 1.88 — 1.78 (m, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.38, 145.30, 128.72, 128.55, 128.24, 126.88,
126.56, 126.48, 126.43, 119.49, 115.41, 113.56, 54.47, 30.26, 25.38 ppm.

Yield: 91 % (103 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 7:1).

The spectroscopic data match those reported in literature.”) (CAS Number: 221910-33-4)

2-(4-Fluorophenyl)-1,2,3,4-tetrahydroquinoline (22)

N
H
=

MW (Ci5sHi4FN) = 227.28 g/mol (M)

'H NMR (400 MHz, DMSO-ds, 296 K): 8 = 7.34 (dd, ] = 7.2, 1.8 Hz, 3H), 7.29 — 7.22 (m, 1H),
6.92 — 6.82 (m, 2H), 6.59 (dd, ] = 8.0, 1.0 Hz, 1H), 6.45 (td, J = 7.3, 1.2 Hz, 1H), 6.02 (s, 1H),
4.47-435 (m, 1H), 2.77 (ddd, ] = 15.1, 9.6, 5.3 Hz, 1H), 2.54 (dd, ] = 10.6, 5.2 Hz, 1H), 2.03
~1.94 (m, 1H), 1.88 — 1.77 (m, 1H) ppm.

13C NMR (100 MHz, DMSO-de, 296 K): 8 = 145.31, 128.72, 128.24, 126.88, 126.49, 126.44,
119.50, 119.45, 115.41, 113.57, 54.48, 30.26, 25.38 ppm.

Yield: 83 % (94 mg) as an oil. The product was purified via plate chromatography
(n-pentane : EtOAc, 20:1).

The spectroscopic data match those reported in literature.['! (CAS Number: 1402568-43-7)
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2-(4-Chlorophenyl)-1,2,3,4-tetrahydroquinoline (23)

N
e
Cl

MW (Ci5H14CIN) = 243.73 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.27 (ddd, ] = 20.5, 8.4, 2.3 Hz, 4H), 6.83 (dd, J
=143, 7.3 Hz, 2H), 6.55 (d, J = 8.0 Hz, 1H), 6.45 — 6.37 (m, 1H), 6.00 (d, ] = 17.4 Hz, 1H),
4.40 — 431 (m, 1H), 2.78 — 2.63 (m, 1H), 2.46 (dd, J = 6.9, 3.1 Hz, 1H), 1.98 — 1.87 (m, 1H),
1.77 (ddd, J = 13.2, 9.0, 4.5 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 145.29, 144.35, 131.26, 128.70, 128.22, 126.87,
126.42, 119.49, 115.41, 113.56, 54.48, 30.26, 25.37 ppm.

Yield: 75 % (91 mg) as an oil (diastereomeric mixture). The product was purified via column

chromatography (n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.'” (CAS Number: 78318-05-5)

2-(4-Bromophenyl)-1,2,3,4-tetrahydroquinoline (24)

I N
H

Br
MW (CisH14BrN) = 288.19 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): § = 7.40 — 7.29 (m, 4H), 7.28 — 7.22 (m, 1H), 6.87 (d,
J=5.6 Hz, 1H), 6.58 (d, ] = 7.9 Hz, 1H), 6.44 (td, J= 7.3, 1.1 Hz, 1H), 6.02 (s, 1H), 4.40 (d, J
= 6.8 Hz, 1H), 2.81 —2.72 (m, 1H), 2.55 (t, J = 5.4 Hz, 1H), 2.01 — 1.95 (m, 1H), 1.83 (ddd, J
=12.8,8.1, 4.4 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.38, 145.30, 128.71, 128.24, 126.88, 126.48,
126.43, 119.48, 115.39, 113.55, 54.46, 30.25, 25.36 ppm.

Yield: 72 % (104 mg) as an oil (diastereomeric mixture). The product was purified via column

chromatography (n-pentane : EtOAc, 15:1).

The spectroscopic data match those reported in literature.!'”) (CAS Number: 1494687-58-9)
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2-(4-(tert-butyl)phenyl)-1,2,3,4-tetrahydroquinoline (25)
v
H

MW (C1sH2:N) = 265.40 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): 8 = 7.36 (d, ] = 8.2 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 6.86
(d, J=7.9 Hz, 2H), 6.57 (d, ] = 7.8 Hz, 1H), 6.44 (t,J = 7.3 Hz, 1H), 5.96 (s, 1H), 4.35 (dd, J = 8.3,
2.3 Hz, 1H), 2.84 — 2.73 (m, 1H), 2.56 (dt, J = 16.2, 4.9 Hz, 1H), 2.02 — 1.92 (m, 1H), 1.87 — 1.75
(m, 1H), 1.28 (s, 9H) ppm.

3C NMR (100 MHz, DMSO-d6, 296 K): & = 149.27, 145.47, 142.17, 128.68, 126.41, 126.21,
124.96, 119.45, 115.35, 113.54, 54.38, 34.17, 31.21, 30.31, 25.69 ppm.

Yield: 87 % (115mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 20:1).

The spectroscopic data match those reported in literature.!® (CAS Number: 1483366-75-1)

Methyl-4-(1,2,3,4-tetrahydroquinolin-2-yl)benzoate (26)

e
O\

(o]
MW (C17Hi7NO,) = 267.33 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 =7.96 (dd, J = 5.5, 2.7 Hz, 2H), 7.57 — 7.49 (m,
2H), 6.91 (dd, J = 11.9, 7.4 Hz, 2H), 6.63 (d, J = 7.9 Hz, 1H), 6.50 (dd, J = 10.3, 4.2 Hz, 1H),
6.17 (s, 1H), 4.54 (s, 1H), 3.01 — 2.67 (m, 2H), 2.04 (dd, J = 6.8, 4.3 Hz, 1H), 1.91 — 1.86 (m,
1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 165.63, 150.98, 145.01, 129.50, 129.18, 128.74,
126.71, 126.56, 119.49, 115.61, 113.63, 60.60, 54.10, 29.92, 25.02 ppm.

Yield: 92 % (123 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 10:3). There are ethyl acetate residues in the spectra.

The spectroscopic data match those reported in literature.!'® (CAS Number: 2170087-20-2)
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2-(4-Methoxyphenyl)-1,2,3,4-tetrahydroquinoline (27)

H O
H
O/
MW (CisH17NO) = 239.32 g/mol (M)

"H NMR (400 MHz, DMSO0-d6, 296 K): § = 7.27 (d, J = 8.3 Hz, 2H), 6.93 — 6.82 (m, 4H), 6.57
(d,J=7.9 Hz, 1H), 6.44 (t, ] = 7.3 Hz, 1H), 5.92 (s, 1H), 4.34 (d, ] = 6.5 Hz, 1H), 3.74 (d, ] =
1.1 Hz, 3H), 2.82 - 2.71 (m, 1H), 2.59 - 2.51 (m, 1H), 1.99 — 1.90 (m, 1H), 1.80 (ddd, J = 17.0,
8.4,4.5 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 158.23, 145.42, 137.14, 128.66, 127.45, 126.39,
119.46, 115.32, 113.59, 113.52, 55.02, 53.92, 30.38, 25.50 ppm.

Yield: 70 % (84 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.['¥! (CAS Number: 221910-30-1)

2-(3,4-Dimethoxyphenyl)-1,2,3,4-tetrahydroquinoline (28)
(L)oo
H
o~

MW (Ci17H19NO2) = 269.34 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = 6.99 — 6.83 (m, SH), 6.58 (d, J = 8.0 Hz, 1H), 6.44
(t,J=7.3 Hz, 1H), 5.92 (s, 1H), 4.32 (d, ] = 7.4 Hz, 1H), 3.73 (d, ] = 3.9 Hz, 6H), 2.83 — 2.74
(m, 1H), 2.60 —2.53 (m, 1H), 1.96 (dd, J =9.2, 3.1 Hz, 1H), 1.87 — 1.79 (m, 1H) ppm.

3C NMR (100 MHz, DMSO-d6, 296 K): & = 148.65, 147.79, 145.46, 137.64, 128.67, 126.40,
119.53, 118.36, 115.40, 113.60, 111.66, 110.25, 55.57, 55.42, 54.36, 30.49, 25.74 ppm.

Yield: 91 % (123 mg) as white crystals. The product was purified via column chromatography
(n-pentane : EtOAc, 10:3).

The spectroscopic data match those reported in literature.!'”) (CAS Number: 1498916-68-9)

41

210



The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

3-(1,2,3,4-Tetrahydroquinolin-2-yl)aniline (29)
O N O NH,
H

MW (Ci5HisN2) = 224.31 g/mol (M)

'H NMR (400 MHz, DMSO0-d6, 296 K): 8 = 6.97 (t, ] = 7.7 Hz, 1H), 6.92 — 6.80 (m, 2H), 6.58 (dd,
J=7.2,5.0 Hz, 2H), 6.54 — 6.38 (m, 3H), 5.90 (s, 1H), 5.01 (s, 2H), 4.23 (d, ] = 6.8 Hz, 1H), 2.75
(td, 7=9.7, 4.8 Hz, 1H), 2.61 —2.52 (m, 1H), 1.92 (d, J = 3.5 Hz, 1H), 1.78 (td, J = 8.2, 3.9 Hz, 1H)
ppm.

3C NMR (100 MHz, DMSO-d6, 296 K): § = 148.60, 145.99, 145.50, 128.65, 126.41, 119.50,
115.17, 114.06, 113.44, 112.59, 111.87, 54.87, 30.41, 25.63 ppm.

HRMS (ESI*) Calculated for CisHisNa: 225.13762; found: 225.13863.

Yield: 89 % (100 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 10:5). There are ethyl acetate residues in the spectra.
The spectroscopic data is insufficient reported in literature.

2-Phenethyl-1,2,3,4-tetrahydroquinoline (30)

e
H
MW (Ci7H19N) = 237.35 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): § = 7.27 (dt, ] = 14.3, 7.0 Hz, 4H), 7.17 (t, ] = 7.0 Hz,
1H), 6.82 (d, J = 7.4 Hz, 2H), 6.50 (d, ] = 7.9 Hz, 1H), 6.39 (t, ] = 7.3 Hz, 1H), 5.58 (s, 1H),
3.17(d, J=5.8 Hz, 1H), 2.76 — 2.61 (m, 4H), 1.94 — 1.87 (m, 1H), 1.79 — 1.66 (m, 2H), 1.54 —
1.47 (m, 1H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.23, 142.20, 128.69, 128.30, 126.32, 125.73,
125.67, 119.77, 115.15, 113.46, 50.09, 37.89, 31.21, 27.22, 25.80 ppm.

Yield: 69 % (82 mg) as an oil. The product was purified via column chromatography

(n-pentane : EtOAc, 10:3).

The spectroscopic data match those reported in literature.*”) (CAS Number: 101583-63-5)
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3-Methyl-1,2,3,4-tetrahydroquinoline (31)

e

MW (CioH13N) = 147.22 g/mol (M)

TH NMR (400 MHz, DMSO-d6, 296 K): 8 = 6.91 — 6.71 (m, 2H), 6.50 — 6.29 (m, 2H), 5.62 (s,
1H), 3.16 (ddd, J = 11.2, 5.7, 3.6 Hz, 1H), 2.74 (t, ] = 10.3 Hz, 1H), 2.70 — 2.62 (m, 1H), 2.30
(dd, J=15.8, 10.0 Hz, 1H), 1.86 (qd, J = 10.1, 3.8 Hz, 1H), 0.96 (d, J = 6.6 Hz, 3H) ppm.

3C NMR (100 MHz, DMSO-d6, 296 K): & = 144.88, 128.97, 126.34, 119.43, 115.02, 113.01,
47.67,39.52, 35.14, 26.38, 18.88 ppm.

Yield: 86 % (63 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.*'! (CAS Number: 20668-20-6)

3-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (32)

e
H
MW (C16Hi7N) = 223.32 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): = 7.25 — 7.03 (m, 5H), 6.91 — 6.85 (m, 2H), 6.59 (d,
J=8.0 Hz, 1H), 6.45 (t, ] = 7.2 Hz, 1H), 6.07 (s, 1H), 4.40 (s, 1H), 2.83 (dd, ] = 16.0, 4.8 Hz,
1H), 2.42 —2.24 (m, 1H), 2.16 — 2.10 (m, 1H), 0.69 (d, J = 6.8 Hz, 3H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 144.88, 140.13, 129.09, 128.34, 127.01, 126.47,
118.58, 115.31, 113.17, 57.64, 32.71, 31.02, 15.29 ppm.

Yield: 79 % (88 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.*") (CAS Number: 24005-26-3)
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3-Ethyl-2-phenyl-1,2,3,4-tetrahydroquinoline (33)

N
Y0
MW (C17H1oN) = 237.35 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): & = 8.28 (s, 1H), 8.01 — 7.93 (m, 2H), 7.71 (ddd, J =
8.3, 6.9, 1.4 Hz, 1H), 7.62 — 7.40 (m, 6H), 3.35 (s, 1H), 3.19 — 3.09 (m, 1H), 2.77 (q, J = 7.5
Hz, 2H), 2.62 (t, ] = 6.3 Hz, 1H), 1.81 — 1.72 (m, 1H), 1.13 (t, J = 7.5 Hz, 3H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): 8 = 159.86, 145.78, 140.55, 134.97, 134.89, 128.70,
128.06, 127.24, 126.47, 119.78, 114.97, 113.29, 40.78, 26.72, 25.44, 21.57, 14.56 ppm.

Yield: 81 % (96 mg) as an oil (diastereomeric mixture). The product was purified via column

chromatography (n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.??! (CAS Number: 2690326-14-6)

3-Methyl-2-(para-tolyl)-1,2,3,4-tetrahydroquinoline (34)
N
% P

MW (Ci7H9N) = 237.35 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): § = 7.21 — 7.07 (m, 4H), 6.91 — 6.83 (m, 2H), 6.59 (d,
J=8.0 Hz, 1H), 6.45 (t, ] = 7.2 Hz, 1H), 6.07 (s, 1H), 4.40 (s, 1H), 2.83 (dd, ] = 15.9, 4.6 Hz,
1H), 2.33 (dd, ] = 16.2, 7.4 Hz, 1H), 2.28 (s, 3H), 2.14 (dd, J = 9.6, 5.6 Hz, 1H), 0.69 (d, J =
6.8 Hz, 3H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 144.88, 140.13, 135.63, 129.09, 128.34, 127.01,
126.47, 118.58, 115.31, 113.17, 57.64, 32.71, 31.02, 20.67, 15.29 ppm.

Yield: 69 % (82 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.>*! (CAS Number: 1378900-79-8)
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1,2,3,4,4a,9,9a,10-Octahydroacridine (35)

CrO0

MW (Ci3H7N) = 187.29 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = 6.77 — 6.70 (m, 2H), 6.37 (d, ] = 7.8 Hz, 1H), 6.30 (t,
J =7.3 Hz, 1H), 5.39 (s, 1H), 3.34 — 3.31 (m, 1H), 2.72 (dd, J = 16.2, 5.4 Hz, 1H), 2.35 (dd, J =
16.3,4.0 Hz, 1H), 1.79 (s, 1H), 1.63 (d, J = 12.6 Hz, 1H), 1.48 (dd, J = 29.1, 9.6 Hz, 3H), 1.26 (t,J
=7.7 Hz, 4H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 144.50, 129.14, 126.18, 117.76, 114.73, 112.74,
49.05, 32.20, 30.73, 26.92, 24.29, 24.18, 20.43 ppm.

Yield: 93 % (87 mg) as white crystals. The product was purified via column chromatography
(n-pentane : EtOAc, 15:1).

The spectroscopic data match those reported in literature.?*! (CAS Number: 92039-20-8)

2-(Tert-butyl)-1,2,3,4,4a,9,9a,10-octahydroacridine (36)

Iz

MW (C;7H25N) = 243.39 g/mol (M)

'H NMR (400 MHz, DMSO-d6, 296 K): 8 = (d, ] = 7.4 Hz, 2H), 6.43 (d, J = 7.7 Hz, 1H), 6.37 (td,
J=7.3,1.1 Hz, 1H), 5.32 (s, 1H), 3.39 (d, ] = 2.7 Hz, 1H), 2.95 (dd, ] = 16.1, 5.7 Hz, 1H), 2.30 (d,
J=16.0 Hz, 1H), 1.90 — 1.76 (m, 2H), 1.53 — 1.38 (m, 2H), 1.29 (d, ] = 4.1 Hz, 1H), 1.23 (s, 1H),
1.10 (t, J = 12.0 Hz, 1H), 0.97 (d, J = 12.2 Hz, 1H), 0.79 (s, 9H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): 8 = 144.71, 129.21, 126.14, 117.62, 114.87, 112.80,
48.04, 47.45,39.94, 33.64, 33.37, 32.20, 31.31, 27.47, 20.16 ppm.

Yield: 89 % (108 mg) as white/yellow crystals. The product was purified via column
chromatography (n-pentane : EtOAc, 15:1).

The spectroscopic data match those reported in literature.>’! (CAS Number: 113146-51-3)
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2-Phenyl-1,2,3,4,42,9,9a,10-octahydroacridine (37)

N
H

MW (C1sH2N) = 263.38 g/mol (M)

H NMR (400 MHz, DMSO-d6, 296 K): § = 7.35 — 7.05 (m, 5H), 6.89 — 6.75 (m, 2H), 6.49 (d, J =
8.0 Hz, 1H), 6.38 (t, ] = 7.3 Hz, 1H), 5.47 (s, 1H), 3.49 (s, 1H), 2.98 (dd, J = 16.2, 5.0 Hz, 1H), 2.71
—2.58 (m, 1H), 2.33 (d, ] = 16.4 Hz, 1H), 2.01 (s, 1H), 1.92 (d, ] = 12.7 Hz, 1H), 1.80 — 1.62 (m,
2H), 1.52 (d, J = 12.0 Hz, 1H), 1.41 (t, ] = 9.4 Hz, 2H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): § = 147.16, 144.64, 129.22, 128.26, 126.53, 126.24,
125.77, 117.49, 115.00, 112.89, 47.80, 43.05, 34.11, 33.33, 32.93, 31.00, 27.00 ppm.

Yield: 62 % (82 mg) as white crystals. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.*) (CAS Number: 2108737-33-1)
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6-Fluoro-2-(para-tolyl)-1,2,3,4-tetrahydroquinoline (38)
T
N
e

'H NMR (400 MHz, DMSO-d6, 296 K): § = 7.23 (d, ] = 8.0 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 6.85
(m, 1H), 6.57 (d, J = 8.0 Hz, 1H), 6.47 — 6.40 (m, 1H), 5.96 (s, 1H), 4.35 (d, J = 7.7 Hz, 1H), 2.75
(ddd, J=15.1, 9.6, 5.3 Hz, 1H), 2.54 (t, ] = 5.3 Hz, 1H), 2.28 (s, 3H), 1.95 (dd, J = 12.5, 3.5 Hz,
1H), 1.85 - 1.75 (m, 1H) ppm.

MW (Ci6Hi6FN) = 241.31 g/mol (M)

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.40, 142.26, 135.86, 128.76, 128.69, 126.44,
126.31, 119.47, 115.33, 113.51, 54.20, 30.26, 25.39, 20.70 ppm.

HRMS (ESI) Calculated for CisH¢FN: 242.13395; found: 242.13281.

Yield: 72 % (87 mg) as an oil. The product was purified via plate chromatography (n-pentane : EtOAc,
30:1).

The spectroscopic data is insufficient reported in literature.
6-Bromo-2-(4-chloro-3-methylphenyl)-7-fluoro-1,2,3,4-tetrahydroquinoline (39)
Br O
F N
O
Cl

MW (Ci6H14BrCIFN) = 354.65 g/mol (M)

H NMR (400 MHz, DMSO-ds, 296 K): 8= 7.36 (d, ] = 8.2 Hz, 1H), 7.32 (s, 1H), 7.17 (d, ] = 8.1 Hz,
1H), 6.84 (t, = 7.5 Hz, 1H), 6.36 (s, 1H), 6.21 (td, J = 8.8, 2.6 Hz, 1H), 4.38 (d, ] = 6.4 Hz, 1H), 2.76
—2.65 (m, 1H), 2.46 (t, ] = 5.3 Hz, 1H), 2.31 (s, 3H), 2.00 — 1.90 (m, 1H), 1.84 — 1.72 (m, 1H) ppm.

BC NMR (100 MHz, DMSO-de, 296 K): & = 160.42, 146.59, 143.85, 135.19, 131.66, 129.83, 129.22,
128.67, 125.70, 115.52, 101.44, 99.39, 53.52, 29.87, 24.62, 19.68 ppm.

HRMS (ESI*) Calculated for C,¢H14BrCIFN: 353.14268; found: 353.06294.

Yield: 66 % (177 mg) as an oil. The product was purified via plate chromatography (n-pentane : EtOAc,
30:1).

The spectroscopic data is insufficient reported in literature.
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Sequences and Condensations

6-bromo-2-(4-chloro-2-fluoro-5-methylphenyl)-7-fluoro-1,2,3,4-tetrahydroquinoline (40)
Br.
LI
F N
e
Cl

MW (Ci6H13BrCIF2N) = 372.64 g/mol (M)

"H NMR (400 MHz, DMSO-ds, 296 K): § =7.18 (d, J = 7.4 Hz, 1H), 6.86 (t, ] = 7.5 Hz, 1H),
6.37 (dd, J=11.7, 2.7 Hz, 1H), 6.35 (s, 1H), 6.23 (td, J = 8.6, 2.6 Hz, 1H), 4.66 (s, 1H), 2.77 —
2.66 (m, 1H), 2.52 (d, ] = 5.6 Hz, 1H), 2.25 (s, 3H), 1.98 (dt, J = 15.3, 5.1 Hz, 1H), 1.88 — 1.75
(m, 1H) ppm.

13C NMR (100 MHz, DMSO-ds, 296 K): § = 162.79, 158.84, 146.49, 133.24, 130.91, 129.74,
128.98, 128.33, 115.40, 114.90, 101.71, 99.15, 47.66, 28.19, 24.49, 20.45 ppm.

HRMS (ESI*) Calculated for Ci6H3BrCIF2N: 370.99895; found: 371.04563.

Yield: 63 % (117 mg) as an oil. The product was purified via plate chromatography
(n-pentane : EtOAc, 50:1).

The spectroscopic data is insufficient reported in literature.

48

217



The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-Phenyl-1,2,3,4-tetrahydroquinoline (41)

I N
H

TH NMR (400 MHz, DMSO-d6, 296 K): & = 7.37 — 7.25 (m, 4H), 7.20 (ddd, J = 5.7, 5.1, 2.2 Hz, 1H),
6.90 — 6.74 (m, 2H), 6.54 (d, J = 8.0 Hz, 1H), 6.40 (td, J = 7.3, 1.2 Hz, 1H), 5.97 (s, 1H), 4.40 — 4.30
(m, 1H), 2.76 — 2.66 (m, 1H), 2.47 — 2.42 (m, 1H), 1.98 — 1.89 (m, 1H), 1.84 — 1.72 (m, 1H) ppm.

MW (CsHisN) = 209.29 g/mol (M)

13C NMR (100 MHz, DMSO-d6, 296 K): § = 145.37, 145.29, 128.71, 128.23, 126.87, 126.47,
126.42, 119.49, 115.40, 113.55, 54.46, 30.25, 25.36 ppm.

Yield: 91 % (95mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.'! (CAS Number: 24005-23-0)

2-(2-(Benzol[d][1,3]dioxol-5-yl)ethyl)-1,2,3,4-tetrahydroquinoline (42)

O 0
N O
H >
o
MW (CisH19NO,) = 281.35 g/mol (M)

'"H NMR (400 MHz, DMSO-de, 296 K): 3 =6.69 (dd, J = 11.7, 8.4 Hz, 4H), 6.56 (d, ] = 7.9
Hz, 1H), 6.37 (d, ] = 7.9 Hz, 1H), 6.26 (t, ] = 7.3 Hz, 1H), 5.82 (s, 2H), 5.41 (s, 1H), 3.01 (d, J
=6.3 Hz, 1H), 2.61 — 2.50 (m, 2H), 2.37 (d, J = 1.3 Hz, 2H), 1.80 — 1.71 (m, 1H), 1.55 (qd, J =
13.1, 6.6 Hz, 2H), 1.35 (ddd, J = 15.1, 9.6, 4.9 Hz, 1H) ppm.

13C NMR (100 MHz, DMSO-ds, 296 K): 8 = 147.18, 145.22, 145.14, 135.99, 128.67, 126.30,
120.97,119.77,115.15, 113.44, 108.74, 108.05, 100.56, 49.91, 38.05, 30.85, 27.22, 25.80 ppm.

Yield: 83 % (117 mg) as an oil. The product was purified via plate chromatography
(n-pentane : EtOAc, 20:1).

The spectroscopic data match those reported in literature.*') (CAS Number: 375395-24-7)
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Sequences and Condensations

2-Methyl-1,2,3,4-tetrahydroquinoline (43)

ol

MW (CioH13N) = 147.22 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): § = 6.82 (t, ] = 7.2 Hz, 2H), 6.45 — 6.35 (m, 2H), 5.50
(s, 1H), 3.33 —3.23 (m, 1H), 2.71 (ddd, J = 16.4, 11.3, 5.5 Hz, 1H), 2.60 (dt, J = 16.2, 4.5 Hz,
1H), 1.88 — 1.76 (m, 1H), 1.41 (dtdd, J =13.0, 11.4, 5.2, 1.7 Hz, 1H), 1.12 (dd, ] = 6.3, 1.9 Hz,
3H) ppm.

13C NMR (100 MHz, DMSO0-d6, 296 K): & = 145.38, 128.69, 126.27, 119.54, 115.14, 113.28,
46.16, 29.70, 26.09, 22.17 ppm.

Yield: 80 % (59 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 10:1).

The spectroscopic data match those reported in literature.*'! (CAS Number: 1780-19-4)

6-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (44)

F@\/j\
N
H

MW (C1oH2FN) = 165.21 g/mol (M)

"H NMR (400 MHz, DMSO-d6, 296 K): 8 = 6.73 — 6.55 (m, 2H), 6.42 (dd, J = 9.6, 5.1 Hz, 1H),
5.46 (s, 1H), 3.28 — 3.18 (m, 1H), 2.72 (ddd, ] = 16.8, 11.4, 5.7 Hz, 1H), 2.66 — 2.54 (m, 1H), 1.86
—1.75 (m, 1H), 1.38 (dddd, 1 =12.7, 11.4, 9.8, 5.4 Hz, 1H), 1.11 (d, ] = 6.2 Hz, 3H) ppm.

13C NMR (100 MHz, DMSO-d6, 296 K): & = 154.98, 141.99, 120.97, 114.79, 113.92, 112.80,
46.23,29.39, 26.12, 22.06 ppm.

Yield: 85% (70 mg) as an oil. The product was purified via column chromatography
(n-pentane : EtOAc, 15:1).

The spectroscopic data match those reported in literature.*') (CAS Number: 42835-89-2)
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Sequences and Condensations

6 NMR Spectra

5-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (1)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

6-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (2)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

7-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (3)

methyl Sulfoxide-d6
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

8-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (4)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

5-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (5)

imethyl Sulfoxide-d6
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

6-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (6)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

7-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (7)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

8-Chloro-2-phenyl-1,2,3,4-tetrahydroquinoline (8)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

5-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (9)

Dimethyl Suifoxide-06
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

6-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (10)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

7-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (11)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

8-Bromo-2-phenyl-1,2,3,4-tetrahydroquinoline (12)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

8-Fluoro-2-phenyl-1,2,3,4-tetrahydroquinoline (13)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-Phenyl-7-(trifluoromethyl)-1,2,3,4-tetrahydroquinoline (14)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

8-Methoxy-2-phenyl-1,2,3,4-tetrahydroquinoline (15)

3
k-]
£
a
£
]
£

water

. 1
£ gf g & 2 £ 4%
ooooo s = - 28 38
T T T T T T
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1
chemical shift (ppm)
2
g
3
E
3
£
-® e
23 b3 28
is ia & 2%
% \ | I

! i
} '
T T T T T T T T T T T T T T T T T T T T
230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 SO 40 30
chemical shift (ppm)

65

234



The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

6-Bromo-7-fluoro-2-phenyl-1,2,3,4-tetrahydroquinoline (16)

imethyl Sulfoxide-d6
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(2-Methylphenyl)-1,2,3,4-tetrahydroquinoline (17)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(3-Methylphenyl)-1,2,3,4-tetrahydroquinoline (18)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(4-Methylphenyl)-1,2,3,4-tetrahydroquinoline (19)

imethyl Sulfoxide-d6
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(2-Fluorophenyl)-1,2,3,4-tetrahydroquinoline (20)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(3-Fluorophenyl)-1,2,3,4-tetrahydroquinoline (21)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(4-Fluorophenyl)-1,2,3,4-tetrahydroquinoline (22)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(4-Chlorophenyl)-1,2,3,4-tetrahydroquinoline (23)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(4-Bromophenyl)-1,2,3,4-tetrahydroquinoline (24)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

2-(4-(Tert-butyl)phenyl)-1,2,3,4-tetrahydroquinoline (25)
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The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations

Methyl-4-(1,2,3,4-tetrahydroquinolin-2-yl)benzoate (26)
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2-(4-Methoxyphenyl)-1,2,3,4-tetrahydroquinoline (27)
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2-(3,4-Dimethoxyphenyl)-1,2,3,4-tetrahydroquinoline (28)
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3-(1,2,3,4-Tetrahydroquinolin-2-yl)aniline (29)
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2-Phenethyl-1,2,3,4-tetrahydroquinoline (30)
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3-Methyl-1,2,3,4-tetrahydroquinoline (31)
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3-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (32)
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3-Ethyl-2-phenyl-1,2,3,4-tetrahydroquinoline (33)
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3-Methyl-2-(para-tolyl)-1,2,3,4-tetrahydroquinoline (34)
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1,2,3,4,4a,9,9a,10-Octahydroacridine (35)
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2-(Tert-butyl)-1,2,3,4,42,9,9a,10-Octahydroacridine (36)
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2-Phenyl-1,2,3,4,42,9,9a,10-octahydroacridine (37)
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6-Fluoro-2-(para-tolyl)-1,2,3,4-tetrahydroquinoline (38)
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6-Bromo-2-(4-chloro-3-methylphenyl)-7-fluoro-1,2,3,4-tetrahydroquinoline (39)
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6-Bromo-2-(4-chloro-2-fluoro-5-methylphenyl)-7-fluoro-1,2,3,4-tetrahydroquinoline (40)
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2-Phenyl-1,2,3,4-tetrahydroquinoline (41)
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2-(2-(Benzo|d][1,3]dioxol-5-yl)ethyl)-1,2,3,4-tetrahydroquinoline (42)
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2-Methyl-1,2,3,4-tetrahydroquinoline (43)
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6-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (44)
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Abstract: Amines are a very important class of compounds and the selective synthesis of differently
substituted primary, secondary and tertiary alkyl amines is challenging. Here we present the synthesis of
primary, secondary, and tertiary alkyl amines from ammonia and alcohols, aldehydes, ketones and hydrogen by
combining borrowing hydrogen or hydrogen autotransfer and reductive amination with hydrogen. The key is a
nanostructured, bimetallic Co/Sc catalyst able to mediate both reactions or concepts efficiently. We observe a
broad product scope, a very good functional group tolerance, upscaling is easily accomplished and our catalyst
is reusable.

Keywords: amines; borrowing hydrogen; cobalt; reductive amination; scandium

Introduction

Amines are one of the most important classes of
chemical compounds and are present in many bulk and
fine chemicals,”! drugs,” agro chemicals and
materials.”) The selective synthesis of differently
substituted primary, secondary and tertiary alkyl
amines is especially challenging since the alkylated
product amine is a better nucleophile and more reactive
than the amine or ammonia starting material. Two
broadly applied and green or sustainable and selective
methods have been developed a century ago namely

Adv. Synth. Catal. 2023, 365, 4654—4661 Wiley Online Library

4654

the reductive amination® (Scheme 1A) introduced by
Mignonac in 1921"! and the borrowing hydrogen'® or
the hydrogen auto-transfer” (BH HA) concepts'™
(Scheme 1B) introduced by Winans and Adkins in
1932.") Both methods have strengths and weaknesses
in comparison to each other. The BH HA approach is
highly selective in the first alkylation step while an
already alkylated primary or secondary amine is
challenging to be modified. The reductive amination is
rather unselective in the primary alkylation step if
ammonia is employed but selective and efficient
regarding the introduction of an already alkylated

© 2023 The Authors. Advanced Synthesis & Catalysis
published by Wiley-VCH GmbH
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A) Reductive amination (Mignonac 1921

R;= R® Catalyst R;_

0+ e NH

R2 NHz +Hz R2 \R:‘
-H0

B) Borrowing hydrogen (Winans/Adkins 1932)
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- Catalyst NTR?
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Scheme 1. Combination of reductive amination employing
hydrogen (A) and borrowing hydrogen (B) permits the general
synthesis of alkyl amines (C).

amine. We concluded that a catalyst mediating both
reactions would permit to use the one or the other
reaction or concept if they are strong and could give
rise to a general catalytic access to primary, secondary,
and tertiary alkyl amines. We have introduced the first
Co!"" and Cr'""! catalyst for BH HA and highly efficient
and selective nanostructured catalysts for the synthesis
of primary amines via reductive amination employing
hydrogen."*") A nanostructured Co catalyst for the
synthesis of alkyl amines via BH HA has been
introduced by Beller and Jagadeesh and coworkers
recently." No potential use of that catalyst in
reductive amination employing hydrogen has been
reported. Furthermore, nanostructured Co catalysts for
the general synthesis of primary alkyl amines via
reductive amination from carbonyl compounds and
ammonia employing hydrogen as the reducing agent
have been disclosed."*'¥) Here, the potential use as
catalysts in BH HA based amine alkylation has not
been disclosed. Furthermore, Beller and Jagadeesh and
coworkers introduced a general alkyl amine synthesis
namely the nickel mediated hydrogenative coupling of
nitriles and amines recently."® We report here on the
synthesis of primary, secondary, and tertiary alkyl
amines from ammonia and alcohols, aldehydes, and
ketones with hydrogen as a reducing agent for the
amination step (Scheme 1C). The key is a nano-
structured, bimetallic Co/Sc catalyst able to mediate
BH HA and reductive amination with hydrogen
efficiently. Our catalyst is based on 3d metals with a

Adv. Synth. Catal. 2023, 365, 4654—4661
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high abundancy in the earth’s crust with Sc being more
abundant than Co.""” Our catalyst is easy to synthesize
and based on a N-doped and Si-doped porous carbon
support developed by us."®! While numerous catalysts
that mediate reductive amination employing hydrogen
or borrowing hydrogen-based amine alkylation are
known, the combination of both approaches seems not
been reported yet. We observe a broad product scope, a
very good functional group tolerance, upscaling is
easily accomplished and our catalyst is reusable.

Results and Discussion
Catalyst Synthesis and Characterization

The synthesis of the catalyst support follows an already
published procedure, based on the crosslinking of the
commercially available polycarbosilane precursor
SMP-10 and acrylonitrile applying azobisisobutyroni-
trile as an initiator."*'"" The resulting greenbody was
pyrolyzed at 1000°C under nitrogen atmosphere (see
Supporting Information 2.1). By means of this process
a microphase separated, silicon rich NC-material is
created. To obtain the final N—SiC support material, an
activation step is required. By treatment with 1 M
NaOH at 85°C overnight, a significant percentage of
the Si rich domains are washed out and thus creating
free C—N—H, groups.""” The metal nanoparticles could
be introduced via wet impregnation of the N—SiC
support and the two metal salts Co(NO;),-6 H,O and
Sc(NO;);-5 H,0 in water, pyrolysis (700°C, N,) and
subsequent reduction (550°C, N,/H,). The measured
metal content, identified via inductively coupled
plasma optical emission spectroscopy (ICP-OES) anal-
ysis, showed no significant deviation from the theoret-
ical metal content of 2 wt% for Sc and Co. Scanning
transmission electron microscopy in combination with
high-angle annular dark-field imaging (HAADF-
STEM) analysis (Figure 1A and B) revealed homoge-
neously distributed Co nanoparticles with an average
particle size of 13.9 nm. In combination with electron
energy loss spectroscopy (EELS, Figure 1C), the
STEM analysis could also show that the scandium
particles are smaller by orders of magnitude than the
cobalt ones with the former finely distributed over the
support material. Scanning electron microscopy (SEM)
in combination with energy dispersive X-ray spectro-
scopy (EDX) also confirmed the homogeneously
distributed cobalt nanoparticles and revealed, that the
remaining silicon, which was not removed from the
support material, is allocated in the same way as the
scandium particles (see Supporting Information Fig-
ure S2). To further explore the nature of our catalyst
material, X-ray Photoelectron Spectroscopy (XPS) was
performed. The spectra of the support without metal
particles (black) and the metal particles on the support
(green) are shown in Figure 2. In Figure 2A, a wide
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porous N-doped
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Figure 1. Synthesis and characterization of the Co catalyst: (A)
Synthesis of the crosslinked material, followed by pyrolysis and
NaOH treatment to obtain the support material; wet impregna-
tion, pyrolysis and reduction led to the active Co/Sc catalyst.
(B) HAADF-STEM analysis of the nanoparticles combined
with STEM-EELS analysis (C) revealed the size difference of
cobalt and scandium particles with the latter being significantly
smaller and finely distributed over the support material.

scan with the expected signals for both, the support
material (Si 2p, N 1s, C 1s, O 1s) and the supported
catalyst particles (Si 2p, C 1s, O 1s, Sc 2p, Co 2p) and
carbon and oxygen impurities, are shown. Additional
ghost signals, originating from Ga Lo radiation and
shifted by 155.7eV, are marked with a “*”. In
Figure 2B, the Co 2p;, region is shown. For the
support, as expected, no signals are visible. For the
supported Sc/Co catalyst, a broad signal arises at
780 eV. Two binding energies at 780.6 and 786.4 eV
for Co oxides and their shake-ups, respectively, are
indicated."” The splitting is characteristic for Co,0;
and/or Co(OH),. Additionally, a third energy at
777.3 eV for metallic Co is indicated.''”*” The binding
energies suggest that the surface Co is oxidized. The
Sc 2s region is shown in Figure 2C. A single species
with a binding energy of 501.1 eV is found, indicating
oxidized Sc when considering the literature binding
energy for metallic Sc of 499 eV."*! Comparing the
corrected signal areas of the Co 2p and the Sc 2s
region, the amount of Sc detected by XPS is 10 times
higher than that of Co (9.6 : 1.3 at%, Sc : Co), albeit
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the same concentration is expected from ICP-OES
results. Because of the high surface sensitivity of XPS
and additional information from microscopy; we
conclude that Sc is finely dispersed on the outer layer,
while Co is present as or inside of bigger particles. We
assume that the close proximity of the Co and Sc oxide
centres are beneficial for the combination of
(de)hydrogenation and condensation steps needed in
both catalytic reactions - reductive amination and BH
HA.

Optimization of the Reaction Conditions

To determine the optimal reaction conditions, the BH
HA reaction of benzyl alcohol with gaseous ammonia
has been selected as a benchmark for all screenings
(see Supporting Information 2.4). The solvent screen-
ing revealed that toluene was the most suitable. The
toluene amount was set to 2.0 mL since this delivered
the maximum yield of benzyl amine. Furthermore,
potassium hydroxide in equimolar amounts as well as
a temperature of 160°C were determined. The ammo-
nia pressure was kept at 20 bar. For the comparison to
other catalysts, the rare earth metal was varied
(Table 1). It could be shown that the selectivity of the
catalyst is higher the smaller the used rare earth metal
is, which led us to Sc as the most active. Neither Co
nor Sc as monometallic catalysts could deliver the

Table 1. Catalyst Screening.”

Catalyst
©/\OH ¢ NHg A ©/\NH2
-H0

Entry Metal(s) Support Yield/%
1 Co/La N-SiC 5
2 Co/Gd N-SiC 9
3 Co/Lu N-SiC 54
4 Co/Sc N-SiC 99
5 Fe/Sc N-SiC 7

Ni/Sc N-SiC 33
7o Fe N-SiC 0
8!l Ni N-SiC 12
9l Co N-SiC 16
10" Sc N-SiC 32
11 Co/Sc Activated C 67
12 Co/Sc AlLO, 2
13 Co/Sc TiO, 0
14 Co/Sc SiO, 0
15 - N-SiC 0

1) Reaction conditions: 1.5 mol% Co/Fe/Ni, 0.85 mol% La,
0.74 mol% Gd, 0.66 mol% Lu, 0.49 mol% Sc, pyrolyzed at
700°C, 0.5 mmol benzyl alcohol, 2.0 mL toluene, 0.5 mmol
KOH, 160°C, 44 h, 20 bar NHj;. Yields were determined by
GC using n-dodecane as an internal standard.

11,5 mol% Fe/Ni/Co/Sc.
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Figure 2. XPS spectra: (A) wide scan (ghost peaks from Ga La excitation (*)), (B) Co 2p, (C) Sc 2s.

outstanding activity of the bimetallic material. The
variation of the support material revealed that only
activated carbon could show a decent activity while
Al,O3, TiO,, SiO, and N—SiC without a metal loading
indicated little to no conversion of benzyl alcohol. The
superiority of the N—SiC material as a catalyst support
is based on its unique structure with free C—N—H,
functionalities and an Si coating."”!

Substrate Scope

After the optimized reaction conditions have been
determined, we became interested in the applicability
of our catalyst system and investigated the substrate
scope. The product yields are given for the isolated
corresponding hydrochloride salts of the synthesized
amines. For better clarity, we split the substrate scope
in three parts, one for primary, secondary, and tertiary
amines each. First, we wanted to show that the catalyst
permits the synthesis of different primary amines
(Scheme 2). We discovered that as soon as the
aromatic ring of the benzyl alcohol derivate was
substituted, we had to raise the reaction temperature
from 160 to 180°C. With that done, several electron
donating substituents in various ring positions (prod-
ucts 2-5) as well as electron withdrawing substituents
(6, 7) could be tolerated. Unfortunately, there is too
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much steric hindrance to the reaction if the CF; group
is placed in the ortho position. NO,, CN and CONR,
groups were also not tolerated due to numerous side
reactions. A second amine function within the alcohol
did not pose any problem (8). To further show the
applicability of our catalyst we synthesized two
completely aliphatic amines (products 9 and 10) from
ketones like we did in our previous work with a single
metal Co/N—SiC catalyst employed in the reductive
amination."” The conversion of three biologically
active molecules (11-13) could also be accomplished.
As it can be seen, the bimetallic CoSc/N—SiC catalyst
could also mediate the reductive amination of these
ketones with aqueous ammonia. Next, we explored the
synthesis of secondary amines. Since we already
showed above that the catalyst can permit the reductive
amination of carbonyl compounds, we combined
borrowing hydrogen and reductive amination as a
consecutive reaction to give rise to more complex
amine structures. The same catalyst is reused for the
second step and beside neutralization, 0.8 mmol
carbonyl compound was added (Scheme 3). The
reductive amination part then proceeds at 100°C and
40 bars of hydrogen pressure. Under these conditions,
short, medium and long aliphatic moieties could be
introduced (Scheme 3, substrates 14-16). The presence
of a terminal hydroxy group on the carbonyl compound
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Scheme 2. Synthesis of primary amines employing a Co/Sc-
catalyst. Isolated yields of the converted hydrochloride salts.
Reaction conditions: 1.5 mol% Co, 0.49 mol% Sc, 0.5 mmol
alcohol, 2.0 mL toluene, 0.5 mmol KOH, 160°C, 44 h, 20 bar
NH;. [a] 180°C. [b] 0.5 mmol ketone, 50°C, 20 h, 10 bar H,,
3.5 mL aq. NH; 32%. [c] 0.5 mmol ketone, 60°C, 20 h, 15 bar
H,, 3.5 mL aq. NH; 32%. [d] 0.25 mmol ketone, 65°C, 20 h,
15 bar H,, 3.2 mL aq. NH; 32%, 0.3 mL EtOH.

did not present any difficulties for our catalyst (17).
Even double branched (18) or alicyclic ketones (19)
could be tolerated in good to median yields. Combin-
ing an aliphatic part with a terminal aromatic ring led
to substrate 20. Furthermore, acetophenone and its
fluoro-substituted derivative could be employed in the
reductive amination step (21 and 22). Note that the
difficulty to introduce halogenide substituted educts in
the borrowing hydrogen step due to dehalogenation
under these harsh conditions could thus be compen-
sated. When varying the benzyl alcohol side of the
amine (23-26), the temperature had to be raised to
180°C again. Hence, a methyl group in all ring
positions as well as a methoxy group could be
tolerated. Moving forward, we switched the carbonyl
compound of the reductive amination step from
ketones to aldehydes. Besides dibenzyl amine (27), its
methyl- (28), ethyl- (29), fluoro- (30) and methoxy-
substituted (31) derivatives could be synthesized with
very good yields. Varying both sides was also possible
at 180°C for the first step and gave rise to multiple
products (32-35) with small to more bulkier substitu-
ents. Lastly, the addition of benzophenone as an educt
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Scheme 3. One pot synthesis of secondary amines employing a
Co/Sc-catalyst. Isolated yields of the converted hydrochloride
salts. Reaction conditions for first step: 1.5mol% Co,
0.49 mol% Sc, 0.5 mmol alcohol, 2.0 mL toluene, 0.5 mmol
KOH, 160°C, 44 h, 20 bar NH,. [a] 180 °C. Reaction conditions
for second step: 1.5mol% Co, 0.49 mol% Sc, 0.8 mmol
carbonyl compound, 2.0 mL toluene, 100°C, 20 h, 40 bar H,,
0.05 mL 32% HCIL. [b] 150°C.

could also be accomplished by increasing the temper-
ature of the second step from 100 to 150°C (36). To
complete our work, we studied the synthesis of (differ-
ently substituted) tertiary amines, which presented a
major challenge overall. For the synthesis of tertiary
amines with three benzylic alkyl substituents
(Scheme 4, upper half), we extended our consecutive
synthesis by a third step, which involves the addition
of 1.0 mmol of a further aldehyde as well as an
increase in temperature to 140°C. The addition of
0.05 mL concentrated hydrochloric acid was necessary
since it supports the tertiary imine formation of the
secondary amine with the aldehyde. Utilizing this
three-step synthesis protocol we were able to synthe-
size three tertiary amines with one, two and three
different moieties in good to very good yields (37-39).
Next, we established a workaround approach
(Scheme 4, lower half). For the borrowing hydrogen
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Scheme 4. One pot synthesis of tertiary amines employing a
Co/Sc-catalyst. Isolated yields of the converted hydrochloride
salts. Substrates 37-39: Reaction conditions for first step:
1.5 mol% Co, 0.49 mol% Sc, 0.5 mmol alcohol, 2.0 mL toluene,
0.5 mmol KOH, 160°C, 44 h, 20 bar NH;. Reaction conditions
for second step: 1.5mol% Co, 0.49 mol% Sc, 0.8 mmol
aldehyde, 2.0 mL toluene, 100°C, 20 h, 40 bar H,, 0.05 mL
32% HCIL. Reaction conditions for third step: 1.5 mol% Co,
0.49 mol% Sc, 1.0 mmol aldehyde, 2.0 mL toluene, 140°C,
20 h, 40 bar H,, 0.05 mL 32% HCI. Substrates 40—45: Reaction
conditions for first step: 2.0 mol% Co, 0.65 mol% Sc, 0.5 mmol
alcohol, 0.5 mmol n-pentylamine, 2.0 mL toluene, 0.5 mmol
KOH, 140°C, 44 h, Ar atmosphere. Reaction conditions for
second step: 2.0 mol% Co, 0.65mol% Sc, 2.0 mL toluene,
100°C, 20 h, 40 bar H,. Reaction conditions for third step:
2.0 mol% Co, 0.65mol% Sc, 1.0 mmol aldehyde, 2.0 mL
toluene, 150°C, 20 h, 20 bar H,, 0.05 mL 32% HCI. [a] Product
isolated after second step.

step we switched the gaseous ammonia with n-pentyl-
amine. By increasing the catalyst loading to 2.0 mol%
Co and lowering the temperature to 140 °C under argon
atmosphere, the catalyst was able to generate the
imine, but not to hydrogenate it further to the
corresponding amine. Thus, we had to implement an
extra hydrogenation step by applying 40 bars of
hydrogen pressure at 100 °C for 20 h, which led to the
desired product (40). By then adding 1.0 mmol
aldehyde and 0.05 mL of concentrated hydrochloric
acid as well as slightly adjusting the reaction con-
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ditions (150°C, 20 bar H,), five more tertiary amines
could be isolated (41-45) with products 39 and 42-45
not yet known to literature. Unfortunately, the syn-
thesis of tertiary alkyl amines carrying one branched
alkyl substituent (resulting from a ketone educt) failed
due to steric overloading. For the synthesis of such
secondary alkyl amines, see Scheme 3. Although our
reaction protocol alone confirms the reusability of our
bimetallic catalyst system, we investigated it further
for five consecutive runs of the first reaction step - the
borrowing hydrogen reaction of our model substrate
benzyl alcohol. Five consecutive runs without any loss
of activity could be accomplished (see Supporting
Information 2.4.3). Furthermore, we confirmed the
upscaling capabilities of our catalyst by carrying out
the above reaction and the consecutive reductive
amination to give rise to product 14 (Scheme 3) again -
but this time with ten times the amount of all
compounds involved. This led to 76% yield of the
isolated product (see Supporting Information 2.4.4).
Finally, a hot filtration test was performed and the
filtrate did not show any catalytic activity (see
Supporting Information 2.4.5). In addition, competition
experiments have been conducted for BH HA and the
reductive amination (see Supporting Information
2.4.6).

Conclusion

In conclusion, we report on the synthesis of primary,
secondary, and tertiary alkyl amines combining the
borrowing hydrogen or hydrogen auto-transfer concept
and the concept of reductive amination employing
hydrogen. We use green or sustainable starting materi-
als namely ammonia and alcohols or aldehydes and
ketones and hydrogen for our amine synthesis. The key
is a nanostructured, bimetallic Co/Sc catalyst able to
mediate both reactions or concepts. Both metals are of
high abundance in the Earth’s crust with Sc being the
more abundant 3d metal. We observe a broad product
scope with five examples not known to literature yet, a
very good functional group tolerance, upscaling is
easily accomplished and our catalyst is reusable.

Experimental Section
Synthesis of the Support Material

For the preparation of the N-SiC support material 0.200 g
SMP-10 (StarPCS™), 0.987 mL (0.800 g, 15.08 mmol) acryl-
onitrile and 45 mg (0.28 mmol) azobis(isobutyronitrile) were
dissolved in 4 mL dimethylformamide and crosslinked for 16 h
at 75°C. After solvent removal under reduced pressure, the
obtained greenbody was pyrolyzed at 1000°C under nitrogen
flow. After ball mining for 40 min, 0.400 g of the ceramic were
washed by stirring in solution of 5.3 mL aq. NaOH (1 M) and
4mL MeOH at 85°C for 24 h. Afterwards the material was
washed until neutrality and dried at room temperature.
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Synthesis of the Catalyst

1000 mg N-SiC were impregnated with 98.75 mg Co(NO;),-6
H,O and 143 mg Sc(NOs),-5 H,0 in 20 mL H,O and stirred at
110°C until the solvent was completely removed. Afterwards,
the material was pyrolyzed at 700 °C under nitrogen atmosphere
and reduced at 550 °C under forming gas (90:10, N,:H,).

Catalytic Procedures

The first step of the catalytic reaction (borrowing hydrogen/
hydrogen autotransfer) of benzyl alcohol and its derivates was
carried out after the procedure described in the following: A
magnetic stirring bar, 0.5 mmol alcohol, 2.0 mL toluene (freeze
pumped), 0.5 mmol KOH (28 mg) and 28.8 mg of cobalt/
scandium-catalyst (2.0 wt% Co, 1.5 mol% Co, 0.58 mg Co,
2.0 wt% Sc, 0.49 mol% Sc, 0.58 mg Sc) were placed directly
into a 130 mL high pressure autoclave (Parr Instruments) and
flushed with argon for 10 seconds. The autoclave was placed in
a liquid nitrogen bath for 5 min whereafter gaseous ammonia
was condensed inside for 5 s. The autoclave was then heated to
the desired temperature and the reaction was stirred for 44 h.
After cooling to room temperature and release of the ammonia
pressure, the autoclave was opened and 0.8 mmol of the
carbonyl compound as well as one drop of concentrated
hydrochloric acid for the neutralization of the remaining
ammonia was added. The autoclave was then flushed three
times with 10 bars of H,, pressurized with 40 bars of H, and
heated to 100°C for 20 h. In case of the synthesis of tertiary
amines, the autoclave was opened again after cooldown and
pressure release and 1.0 mmol of aldehyde as well as one drop
of concentrated hydrochloric acid were added. The autoclave
was flushed again three times with 10 bars of H,, pressurized
with 20 bars of H, and heated to 140°C. To obtain the amine
hydrochloride salts, the remaining solution was filtrated into a
round bottom flask to remove the catalyst. After the addition of
30 mL of diethyl ether and 0.5 mL HCI in ether (2 M) the
precipitate was filtrated, dried under reduced pressure and the
resulting solid was then further analyzed by NMR spectroscopy.
This was carried out after every step from which the product
should be obtained for characterization. For the synthesis of
amines with a non-branched aliphatic moiety a slightly different
method was used. For the first step, a magnetic stirring bar,
0.5 mmol benzyl alcohol or its derivates and 0.5 mmol of n-
pentylamine together with 0.5 mmol of KOH (28 mg), 2 mL of
freeze pumped toluene and 38.4 mg of cobalt/scandium-catalyst
(2.0wt% Co, 2.0mol% Co, 0.77mg Co, 2.0wt% Sc,
0.65 mol% Sc, 0.77 mg Sc) were placed inside a pressure tube
and flushed with argon. The tube was heated to 140°C for 44 h.
After cooling, the whole content was transferred to an
autoclave, flushed with 10 bars of H, three times and
pressurized with 40 bars of H, to hydrogenate the remaining
double bond. After cooldown, 1.0 mmol of aldehyde as well as
one drop of concentrated hydrochloric acid were added. The
autoclave was flushed with 10 bars of H, three times,
pressurized with 20 bars of H, and heated to 150°C for 20 h. To
obtain the amine hydrochloride salts, the remaining solution
was filtrated into a round bottom flask to remove the catalyst.
After the addition of 30 mL of diethyl ether and 0.5 mL HCl in
ether (2 M) the precipitate was filtrated, dried under reduced
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pressure and the resulting solid was then further analyzed by
NMR spectroscopy.
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1 General considerations

All air- and moisture sensitive reactions were performed under dry argon or nitrogen
atmosphere using standard Schlenk and glove box techniques. All dried solvents were
obtained from a solvent purification system (activated alumina cartridges) or purchased from
Acros. Deuterated solvents were dried via molecular sieves. All chemicals were acquired from
commercial sources with purity over 95 % and used without further purification. The precursor
SMP-10 was purchased from Starfire Systems, New York, USA. Pyrolysis of the support
material was carried out under nitrogen atmosphere in a high temperature furnace (Gero,
Berlin, Germany). Pyrolysis and reduction of the catalyst were performed under nitrogen or
forming gas (90/10) atmosphere in a ChemBET Pulsar TPR/TPD instrument from
Quantachrome. For the STEM investigations a JEOL JEM-ARM 200F with cold FEG
emission gun was used equipped with a CEOS Cs corrector, a HAADF detector and a
GATAN EELS spectrometer. The EELS mapping was carried out with a collecting semi-
angel of 120 mrad and a dispersion of 1 ev/ch.

IR spectra were collected on a JASCO FT/IR-6100 apparatus in a measuring range from
4000-400 cm".

Pore characterizations were carried out via argon sorption measurements using a 3P Micro
100 Surface Area and Pore Size Analyzer device. The pore size distribution was computed via
DFT calculations (calculation model: Ar at -186.15 °C on cylindrical pore, MDFT equilibrium
model). The specific surface area was calculated by using p/po values from 0.005-0.1 (BET).
The cobalt and scandium contents was determined by ICP-OES. The fusion of the catalyst
was carried out in a Berghof SpeedWave 4 microwave, for the ICP-OES measurement a
Varian Vista Pro was used.

X-ray photoelectron spectroscopy measurements were conducted in a dedicated instrument
described in detail elsewhere.l The instrument is equipped with a non-monochromatized
Specs XR 50 NAP dual Al/Mg anode for X-ray generation. The spectra in this work were
attained in Mg mode. A modified Omicron EA 125 hemispherical analyzer was used. The
catalyst particles were glued onto vacuum copper tape and introduced to the vacuum right
after opening. The data was signal to 101.9 eV.? For the fitting of non-metallic signals, a
Gaussian-Lorentzian function was chosen (GL(30) as implemented in Casa XPS). For
quantification, the intensities of the respective regions were divided by theoretically derived
sensitivity factors.?!

NMR measurements were performed using a Varian INOVA 300 (300 MHz for 'H, 75 MHz for
3C) or a Bruker Avance Il HD 500 (500 MHz for 'H, 125.7 MHz for "*C, 376 MHz for '°F)
instruments at 296 K. Chemical shifts are reported in ppm relative to the residual solvent signal
(DMSO-d6: 2.50 ppm ('H), 39.51 ppm ('C)), coupling constants (J) are reported in Hz.
Estimated 'H and "*C NMR spectra were simulated (DMSO-ds, 300 MHz) using ChemDraw
Professional Version 21.0.0.28.

GC analyses were carried out on an Agilent 6850 GC system equipped with an Optima 17
column (30 m x 0.32 mm x 0.25 ym).

Unknown substrates with incomplete spectroscopic literature data were additionally analyzed
via liquid chromatography high resolution mass spectra (LC-HRMS). LC-HRMS were obtained
from a Thermo Fisher scientific Q-Exactive instrument with a hybrid quadrupole orbitrap
analyzer in ESI+ mode.

The hydrogenation as well as ammonia experiments were carried out with Parr Instrument
stainless steel autoclaves N-MT5 250 mL and 130 mL respectively equipped with heating
mantle and temperature controller.
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2. Experimental procedures

2.1 Synthesis of the support material

For the preparation of the N-SiC support material a known literature method was modified.®!
200 mg SMP-10 (StarPCS™), 0.987 mL (0.800 g, 15.08 mmol) acrylonitrile and 45 mg
(0.28 mmol) azobis(isobutyronitrile) were dissolved in 4 mL dimethylformamide and
crosslinked for 16 h at 75 °C. After solvent removal under reduced pressure, the obtained
greenbody was pyrolyzed using the following program:

5 K/min 1 K/min 5 K/min 10 K/min
20 °C —— 200 °C (0 h) —— 400 °C (0 h) —— 1000 °C (1 h) —— 20 °C

After ball mining for 40 minutes, 400 mg of the ceramic were washed by stirring in solution of
5.3 mL ag. NaOH (1 M) and 4 mL MeOH at 85 °C for 24 h. Afterwards the material was washed
until neutrality and dried at room temperature.

2.2. Synthesis of the catalyst

1000 mg N-SiC were impregnated with 98,75 mg Co(NOs3). - 6 H.O and 143 mg
Sc(NOs)2 - 5 H20 in 20 mL H20 and stirred at 110 °C until the solvent was completely removed.
Afterwards, the material was pyrolyzed and reduced using the following program:

2 K/min o~ _10 K/min % 20 K/min o~ 5 K/min _ = 20 K/min i
RT N, 300 °C N, 700 °C (0.5 h) N, 100 °C N,/H, 550 °C (3 h) No/H, 40°C

2.3 Catalytic procedures

The first step of the catalytic reaction (borrowing hydrogen/hydrogen autotransfer) of benzyl
alcohol and its derivates was carried out after the procedure described in the following: A
magnetic stirring bar, 0.5 mmol alcohol, 2.0 mL toluene (freeze pumped), 0.5 mmol KOH
(28 mg) and 28.8 mg of cobalt/scandium-catalyst (2.0 wt% Co, 1.5 mol% Co, 0.58 mg Co,
2.0 wt% Sc, 0.49 mol% Sc, 0.58 mg Sc) were placed directly into a 130 mL high pressure
autoclave (Parr Instruments) and flushed with argon for 10 seconds. The autoclave was placed
in a liquid nitrogen bath for 5 minutes whereafter gaseous ammonia was condensed inside for
5 seconds. The autoclave was then heated to the desired temperature (160 °C for benzyl
alcohol and 180 °C for derivates) and the reaction was stirred for 44 h. After cooling to room
temperature and release of the ammonia pressure, the autoclave was opened and 0.8 mmol
of the carbonyl compound as well as one drop of concentrated hydrochloric acid for the
neutralization of the remaining ammonia was added. The autoclave was then flushed three
times with 10 bars of hydrogen, pressurized with 40 bars of hydrogen and heated to 100 °C
for 20 h. In case of the synthesis of tertiary amines, the autoclave was opened again after
cooldown and pressure release and 1.0 mmol of aldehyde as well as one drop of concentrated
hydrochloric acid were added. The autoclave was flushed again three times with 10 bars of
hydrogen, pressurized with 20 bars of hydrogen and heated to 140 °C. To obtain the amine
hydrochloride salts, the remaining solution was filtrated into a round bottom flask to remove
the catalyst. After the addition of 30 mL of diethyl ether and 0.5 mL HCI in ether (2 M) the

4
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precipitate was filtrated, dried under reduced pressure and the resulting solid was then further
analyzed by NMR spectroscopy. This was carried out after every step from which the product
should be obtained for characterization.

For the synthesis of amines with a non-branched aliphatic moiety (substrates numbers 40-45),
a slightly different method was used. For the first step, a magnetic stirring bar, 0.5 mmol benzyl
alcohol or its derivates and 0.5 mmol of n-pentylamine together with 0.5 mmol of KOH (28 mg),
2 mL of freeze pumped toluene and 38.4 mg of cobalt/scandium-catalyst (2.0 wt% Co, 2.0
mol% Co, 0.77 mg Co, 2.0 wt% Sc, 0.65 mol% Sc, 0.77 mg Sc) were placed inside a pressure
tube and flushed with argon. The tube was heated to 140 °C for 44 h. After cooling, the whole
content was transferred to an autoclave (130 mL, Parr Instruments), flushed with 10 bars of
hydrogen three times and pressurized with 40 bars of hydrogen to hydrogenate the remaining
double bond. After cooldown, 1.0 mmol of aldehyde as well as one drop of concentrated
hydrochloric acid were added. The autoclave was flushed with 10 bars of hydrogen three times,
pressurized with 20 bars of hydrogen and heated to 150 °C for 20 h. To obtain the amine
hydrochloride salts, the remaining solution was filtrated into a round bottom flask to remove
the catalyst. After the addition of 30 mL of diethyl ether and 0.5 mL HCI in ether (2 M) the
precipitate was filtrated, dried under reduced pressure and the resulting solid was then further
analyzed by NMR spectroscopy.

279



General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH

2.4 Catalytic studies

2.4.1 Screening of reaction parameters for the Borrowing Hydrogen/Hydrogen Autotransfer
step

Solvent screening of the model substrate benzyl alcohol

Catalyst
OH . NH3 Ar NH,
- H,0
Solvent Yield / %
Xylene 52
THF 28
Toluene 99

Reaction conditions: 0.5 mmol benzyl alcohol, 1.5 mol% cobalt; 0.49 mol% scandium, 2.0 mL solvent,
0.5 mmol KOH, 160 °C, 44 h, 20 bar NHs. Yields determined by GC using n-dodecane as an internal
standard.

Screening of the toluene amount

Catalyst
OH |  NH, Ar NH,
= H20
Volume toluene / mL Yield / %
0.5 94
1 95
2 99
5 77

Reaction conditions: 0.5 mmol benzyl alcohol, 1.5 mol% cobalt; 0.49 mol% scandium, 0.5 mmol KOH,
160 °C, 44 h, 20 bar NHs. Yields determined by GC using n-dodecane as an internal standard.

Base screening

Catalyst
OH NH; Ar NH,
-H,0
Base Yield / %
KOtBu 64
NaOH +
KOH 99
Amberlyst A-26 9

Reaction conditions: 0.5 mmol benzyl alcohol, 1.5 mol% cobalt; 0.49 mol% scandium, 2 mL toluene,
0.5 mmol base, 160 °C, 44 h, 20 bar NHs. Yields determined by GC using n-dodecane as an internal
standard.
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Screening of the KOH amount

Catalyst
OH NH; Ar NH,
-H,0

KOH amount/ eq. Yield / %
0 -
0.5 59
1 99
2 99

Reaction conditions: 0.5 mmol benzyl alcohol, 1.5 mol% cobalt; 0.49 mol% scandium, 2 mL toluene,
160 °C, 44 h, 20 bar NHs. Yields determined by GC using n-dodecane as an internal standard.

Screening of the reaction temperature

Catalyst
OH NH; 2} NH,
-H,0
Temperature / °C Yield / %
120 -
140 78
160 99

Reaction conditions: 0.5 mmol benzyl alcohol, 1.5 mol% cobalt; 0.49 mol% scandium, 0.5 mmol KOH,
2 mL toluene, 44 h, 20 bar NHs. Yields determined by GC using n-dodecane as an internal standard.

2.4.2 Screening of reaction parameters for the Reductive Amination step

The only parameters varied here are temperature, hydrogen pressure and reaction time since
all other parameters are predetermined due to the consecutive nature of the reaction. As a
model substrate, the reductive amination of 2-pentanone with benzyl amine was used.

Screening of the reaction temperature

0 Catalyst J\/\
SARIP Sy o
- H,0

H
Temperature / °C Yield / %
60 35
80 71
90 91
100 99

Reaction conditions: 1.5 mol% Co (2.24 wt% Co, 0.0075 mmol Co, 0.44 mg Co), 0.5 mmol benzyl amine;

0.8 mmol 2-pentanone, 20 h, 40 bar Hz, 2 mL toluene; yields were determined by GC using n-dodecane
as an internal standard.
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Screening of the hydrogen pressure

0 Catalyst J\/\
©/\NH2 N N H, ©/\N
-H,0

H
H: pressure / °bar Yield / %
20 53
30 84
40 99

Reaction conditions: 1.5 mol% Co (2.24 wt% Co, 0.0075 mmol Co, 0.44 mg Co), 0.5 mmol benzyl amine;
0.8 mmol 2-pentanone, 100 °C, 20 h, 2 mL toluene; yields were determined by GC using n-dodecane
as an internal standard.

Screening of the reaction time

0 Catalyst J\/\
SO NP Sy o
-H,0

H
Reaction time / h Yield / %
16 92
20 99

Reaction conditions: 1.5 mol% Co (2.24 wt% Co, 0.0075 mmol Co, 0.44 mg Co), 0.5 mmol benzyl amine;
0.8 mmol 2-pentanone, 100 °C, 40 bar H2, 2 mL toluene; yields were determined by GC using
n-dodecane as an internal standard.
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2.4.3 Reusability

The reusability of the catalyst was investigated using the borrowing hydrogen reaction of
benzyl alcohol with gaseous ammonia. The reaction was carried out for 24 h under the
optimized reaction conditions to obtain 60 % yield of benzyl amine, which was determined by
GC using n-dodecane as an internal standard. After each run, the reaction mixture was
centrifuged and separated from the catalyst using Pasteur pipettes. The catalyst was washed
two times with toluene and used directly for the subsequent run. The procedure was carried
out 5 times without a significant loss of activity (Fig. S1). The turnover number (TON) for each
run is given in the figure below. It was calculated via the mmol amount of obtained product
divided by the mmol amount of metal in the catalyst used.

100

80

yield / %

14.1

o™ o i
N~ wn (o]
i e | 0 |

TON =13.8

TON
TON
TON
TON

1 2 3 4 5
runs

Figure S1: Reusability of the CoSc/N-SiC catalyst for 5 consecutive runs. Reaction conditions for
approximately 60 % yield: 1.5 mol% Co, 0.49 mol% Sc, 0.5 mmol benzyl alcohol; 20 h, 20 bar NH3;
yields were determined by GC using n-dodecane as an internal standard. The turnover number for each
run is given in the respective column.
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2.4.4 Up-scaling

The borrowing hydrogen reaction of benzyl alcohol to benzyl amine and subsequent reductive
amination with 2-pentanone to the corresponding amine was performed as up-scaling
experiment. For the reaction, 288 mg CoSC/N-SiC (1.5 mol% Co, 0.49 mol% Sc), 5 mmol
benzyl alcohol (320 pl), 5 mmol KOH (280 mg) and 20 mL toluene were put into a 250 mL high
pressure autoclave (Parr Instruments) and pressurized with 20 bar NH3 via condensation. The
reaction was carried out under the optimized reaction conditions (160 °C, 44 h). After 44 h, the
autoclave was cooled to room temperature, opened and 10 drops of aq. HCI (32 %) as well as
8 mmol 2-pentanone were added. The autoclave was then closed again, pressurized with
40 bar Hz and heated to 100 °C for 24 h. The yield of N-(1-Methylbutyl)-benzenemethanamine
was 76 % and determined by GC using n-dodecane as an internal standard.

2.4.5 Hot filtration test

To assess the heterogenicity of the catalyst, a hot filtration test was performed. For this, a
magnetic stirring bar, 0.5 mmol benzyl alcohol, 2.0 mL toluene (freeze pumped), 0.5 mmol
KOH (28 mg) and 28.8 mg of cobalt/scandium-catalyst (2.0 wt% Co, 1.5 mol% Co, 0.58 mg
Co, 2.0 wt% Sc, 0.49 mol% Sc, 0.58 mg Sc) were placed directly into a 130 mL high pressure
autoclave (Parr Instruments) and flushed with argon for 10 seconds. The autoclave was placed
in a liquid nitrogen bath for 5 minutes whereafter gaseous ammonia was condensed inside for
5 seconds. The autoclave was then heated to 160 °C and the reaction was stirred for 18 h to
obtain 30 % yield of benzylamine. After cooling to approx. 80 °C, the reaction mixture was
filtrated hot to remove the catalyst and re-added to the autoclave. After the addition of 0.5 mmol
of benzyl alcohol, the reaction was carried out again, following the procedure above. After 44 h,
no further formation of benzylamine could be observed. The yield of the product was monitored
via GC using n-dodecane as an internal standard.

2.4.6 Competition experiments

To check the selectivity of the catalyst, two different competition experiments were conducted. First,
the borrowing hydrogen step was carried out as described above (section 2.3) with the exception,
that 0.5 mmol benzyl alcohol were switched for a combination of benzyl alcohol, 4-methyl-benzyl
alcohol and 4-trifluoromethyl-benzyl alcohol (0.167 mmol each). After the reaction time was over,
the resulting solution was analyzed via GC with n-dodecane as an internal standard. The results
are shown in Table S9.
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Table S9: Borrowing hydrogen competition experiment.
NH,
CoSc/N-SiC

0.167 mmol OAOH @A
Ar
0.167 mmol OH ¥ Ny ——— NH,
-H,0
OH
0.167 mmol J@/\ /©/\NH2 3
FaC FaC

Product Yield / %
1 43
2 27
3 14

Reaction conditions: 1.5 mol% Co, 0.49 mol% Sc, 2.0 mL toluene, 0.5 mmol KOH, 160 °C, 44 h, 20 bar NHs. Yields
were determined by GC using n-dodecane as an internal standard.

It can be seen that at 160 °C the selectivity of the catalyst is highest towards the formation of
benzylamine and lowest towards the formation of 4-trifluoromethyl-benzyl amine. The remaining
15 % of product could be determined as various coupling products of the various benzyl amines
with the intermediate aldehyde products.

To check the selectivity of the catalyst in the reductive amination step, 0.5 mmol of benzyl amine
were used and 0.167 mmol each of benzaldehyde, 4-methyl-benzaldehyde and 4-fluoro-
benzaldehyde were added. The reaction was carried out as described at point 2.3. GC analyses
revealed the results in Table S10.

Table $10: Reductive amination competition experiment.

0.167 mmol

N
©/\O ©ﬁ”® i
CoSc/N-SiC
X Ar N
NHz + 0167 mmol /@AO _— ©AH/\©\ 2
-H,0
o
F

0.167 mmol @Hn 3
F
Product Yield / %
1 56
2 34
3 4

Reaction conditions: 1.5 mol% Co, 0.49 mol% Sc, 2.0 mL Toluene, 100 °C, 20 h, 40 bar Hz. Yields were determined
by GC using n-dodecane as an internal standard.

The selectivity of the catalyst is highest towards the formation of product 1 and lowest towards the
formation of product 3. The remaining 5 % of product are the hydrogenated aldehydes.

11
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3. Characterization of the catalyst

3.1 ICP-OES

The elemental amounts were determined via a microwave digestion in a MARS 6 from CEM
followed by ICP-OES analysis in a SPECTRO ARCOS device from Spectro.

Theoretical Co content: 2.00 wt%

Measured Co content: 2.06 wt%
Theoretical Sc content: 2.00 wt%
Measured Sc content: 2.09 wt%

Since the differences of theoretical and measured contents are insignificant and most likely caused
by measuring errors, we continued to use the theoretical values.

3.2 SEM/EDX

SEM/EDX measurements were performed to determine the distribution of the individual
elements of the support material. As shown in Figure S3, all studied elements can be described
as homogeneously distributed.

Figure S2: Scanning electron microscopy (SEM) in combination with energy dispersive X-ray (EDX)
mapping. The measurements show the distribution of the elements on the sample surface.

12
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3.3 Argon physisorption
A B
N-SiC support 0,004+ 5
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Figure S3: A Surface characterization and B pore size distribution of the catalyst and activated N-SiC
support via argon physisorption measurements. Calculation model: Ar at 87 K on carbon (cylindr. pores,

NLDFT equilibrium model). The specific surface showed a slight decline from 545 m?2/g of the activated
support material to 468 m2/g of the catalyst.
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4. Characterization of the isolated products

Phenylmethanaminium chloride (1)

O/\Nchr

MW = 143.61 g/mol

'TH NMR (300 MHz, DMSO-Dg): & = 8.70 (s, 3 H), 7.56-7.36 (m, 5 H), 4.01 (q, J= 5.8 Hz,
2 H) ppm

13C NMR (75 MHz, DMSO-Dg): 8 = 134.6, 129.5, 129.0, 128.8, 42.5 ppm
Yield: 99 % (71 mg) as a white solid.

The spectroscopic data match those reported in literature.’) (CAS Number: 3287-99-8)

p-tolylmethanaminium chloride (2)

MW = 157.64 g/mol

TH NMR (300 MHz, DMSO-Dg): § =8.54 (s, 3 H), 7.40 (d,J="7.8 Hz,2 H), 7.24 (d, J = 7.8 Hz,
2 H), 4.04-3.91 (m, 2 H), 2.32 (s, 3 H) ppm

3C NMR (75 MHz, DMSO-Dg): & = 138.2, 131.5, 129.6, 129.4, 42.4, 21.2 ppm
Yield: 89 % (70 mg) as a white solid.

The spectroscopic data match those reported in literature.!® (CAS Number: 26177-45-7)
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m-tolylmethanaminium chloride (3)

o

MW = 157.64 g/mol

'TH NMR (300 MHz, DMSO-Dg): & = 8.59 (s, 3 H), 7.33-7.29 (m, 3 H), 7.18 (d,J= 6.9 Hz,
2 H),3.95 (s,2 H), 2.31 (s, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): § = 138.1, 134.5, 130.0, 129.4, 128.9, 126.5, 42.5, 21.4.
Yield: 81 % (64 mg) as a white solid.

The spectroscopic data match those reported in literature.!®) (CAS Number: 42365-50-4)

o-tolylmethanaminium chloride (4)

NHz*Cr

MW = 157.64 g/mol

TH NMR (300 MHz, DMSO-Dg): & = 8.58 (s, 3 H), 7.42-7.40 (m, 1 H), 7.24-7.18 (m, 3 H),
3.95(q,J=5.5Hz,2 H), 2.32 (s, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): & = 136.7, 132.4, 130.3, 129.2, 128.4, 126.0, 39.4, 18.9 ppm
Yield: 74 % (58 mg) as a white solid.

The spectroscopic data match those reported in literature.'® (CAS Number: 14865-38-4)
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(4-Methoxyphenyl)methanaminium chloride (5)

NHs*CI
~o

MW = 173.64 g/mol

'H NMR (300 MHz, DMSO-Ds): 8 =8.51 (s, 3 H), 7.47 (m, 2 H), 6.98 (m, 2 H), 4.01-3.88 (m,
2 H), 3.79-3.77 (s, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): § = 159.8, 131.0, 126.5, 114.4, 55.7, 42.1 ppm
Yield: 81 % (70 mg) as a white solid.

The spectroscopic data match those reported in literature.[ (CAS Number: 14865-38-4)

(4-Trifluoromethoxy)methanaminium chloride (6)

F1Gs
0

MW =227.61 g/mol

'"H NMR (500 MHz, DMSO-D): 6 = 8.67 (s, 3 H), 7.68 (d,J= 8.5 Hz, 2 H), 7.42 (d, J= 8.3 Hz,
2 H), 4.05 (s, 2 H) ppm

13C NMR (126 MHz, DMSO-De¢): & = 148.7, 134.2, 131.7, 123.6, 121.6, 119.5, 117.4, 41.7
ppm

YF NMR (376 MHz, DMSO-D6): § = -59.9 ppm
Yield: 87 % (99 mg) as a white solid.

The spectroscopic data match those reported in literature.l”! (CAS Number: 403841-98-5)
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(4-Trifluoromethyl)methanaminium chloride (7)

F3C

MW =211.61 g/mol

"H NMR (500 MHz, DMSO-Ds): 8 = 8.63 (s, 3 H), 7.70 (dd, Ji = 8.2 Hz, J> = 23.9 Hz, 4 H),
4.06 (s, 2 H) ppm

13C NMR (126 MHz, DMSO-Dy): 6 = 138.9, 129.8, 125.4, 125.3, 122.8, 41.56 ppm
1F NMR (376 MHz, DMSO-D6): § = -61.1 ppm
Yield: 87 % (99 mg) as a white solid.

The spectroscopic data match those reported in literature.®) (CAS Number: 3047-99-2)

(4-Diethylamino)methanaminium chloride (8)
/\

I/©/\NH3*C|-
P

MW = 214.74 g/mol

ZIT Q'

'H NMR (300 MHz, DMSO-Ds): § = 13.20 (s, 1 H), 8.76 (s, 2 H), 7.89-7.77 (m, 3 H), 4.03 (s,
2 H), 3.50 (s, 4 H), 0.99 (t, /= 7.1 Hz, 6 H) ppm

13C NMR (75 MHz, DMSO-Dg): § = 137.9, 135.9, 132.0, 130.7, 130.4, 123.2, 52.2, 41.4, 9.94
ppm

Yield: 70 % (88 mg) as a white solid.

Not all the protons of the amino group are visible due to the exchange of deuterium with the
NMR solvent. The spectroscopic data match those reported in literature.[”) (CAS Number:
104566-33-8)
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Heptan-2-aminium chloride (9)

NH,*CI

MW = 151.68 g/mol

IH NMR (300 MHz, DMSO-De): & = 8.10 (s, 3 H), 3.07-3.02 (m, 1 H), 1.59-1.52 (m, 1 H),
1.39-1.32 (m, 1 H), 1.26-1.20 (m, 6 H), 0.82 (t, /= 7.0 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): 6 =47.1, 34.4, 31.4, 24.8, 22.3, 18.5, 14.3 ppm
Yield: 76 % (58 mg) as a white solid.

The spectroscopic data match those reported in literature.!'”) (CAS Number: 6159-35-9)

Dodecan-2-aminium chloride (10)

NH3*CI

MW = 221.81 g/mol

'H NMR (300 MHz, DMSO-Dg): & = 8.54 (s, 3 H), 3.21 (s, 1 H), 1.74 (s, 1 H), 1.49-1.21
(m, 20 H), 0.91-0.87 (m, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): 8 = 61.9, 31.8, 29.5, 29.5, 29.3, 29.3, 29.2, 22.6, 18.4, 14.5
ppm

Yield: 85 % (94 mg) as a white solid.
Not all the protons of the amino group are visible due to the exchange of deuterium with the

NMR solvent. The spectroscopic data match those reported in literature.l’) (CAS Number:
205746-45-8)
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1-(2-methoxyphenyl)propan-2-aminium chloride (11)

o

MW =201.69 g/mol

TH NMR (500 MHz, DMSO-Dg): 8 = 8.29 (s, 3H), 7.23 (dd, J = 10.8, 4.8 Hz, 1H), 7.15 (dd, J
=7.4, 1.5 Hz, 1H), 6.98 (d, ] = 8.2 Hz, 1H), 6.89 (t, ] = 7.4 Hz, 1H), 3.77 (s, 3H), 3.37 (s, 1H),
3.01 (dd, J=13.1, 5.1 Hz, 1H), 2.70 (dd, J = 13.0, 9.3 Hz, 1H), 1.08 (d, J = 6.5 Hz, 3H) ppm

3C NMR (126 MHz, DMSO-D¢): §=157.7, 131.3,128.8, 125.0, 120.8, 111.3,55.7,47.1, 35.3,
18.1 ppm

Yield: 79 % (80 mg) as a white solid.

The spectroscopic data match those reported in literature.!® (CAS Number: 72739-03-8)

Nabumetone-NH3*Cl- (12)

NH5*CI"

oo

MW = 265.78 g/mol

TH NMR (500 MHz, DMSO-Dg): 8 = 8.17 (s, 3 H), 7.71 (dd, J; = 8.7 Hz, J> = 3.1 Hz, 2 H),
7.59 (s, 1 H), 7.30 (dd, Ji = 8.4 Hz, /,=1.7Hz, 1 H), (d, J= 2.5 Hz, 1 H), (dd, J1 = 8.9 Hz,
J>=2.6 Hz, 1 H), 3.8 (s, 3 H), 3.1 (s, 1 H), 2.77-2.71 (m, 2 H), 2.00-1.94 (m, 1 H), 1.80-1.76
(m, 1 H), 1.22 (d, J = 6.5 Hz, 3 H) ppm

3BC NMR (126 MHz, DMSO-Ds): 8 = 157.2, 136.5, 133.2, 129.2, 129.0, 128.0, 127.3, 126.4,
119.0, 106.2, 55.5, 46.8, 36.2, 31.2, 19.6, 18.5 ppm

Yield: 81 % (107 mg) as a white solid.

The spectroscopic data match those reported in literature.!® (CAS Number: 2247686-16-2)
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Stanolone-NH3*CI- (13)

NH,*CI

MW = 327.94 g/mol

TH NMR (500 MHz, MEOH-Dx): 6 = 7.84 (s, 3 H), 3.55-3.48 (m, 2 H), 1.95-1.15 (m, 20 H),
1.02-0.84 (m, 6 H), 0.7 (s, 3 H) ppm

13C NMR (126 MHz, MEOH-Ds): § = 81.0, 54.2, 53.9, 50.9, 50.8, 50.3, 44.7, 42.6, 38.9, 36.5,
36.3,35.7,35.4,35.3,35.1, 32.5, 31.3, 31.2, 31.1, 30.6, 29.2, 28.0, 27.8, 26.1, 25.8, 23.9, 22.8,
22.8,20.4,20.0, 11.1, 10.3, 10.2 ppm

Yield: 51 % (42 mg) as a white solid (diastereomeric mixture).
Not all the protons of the amino group are visible due to the exchange of deuterium with the

NMR solvent. The spectroscopic data match those reported in literature.!'!] (CAS Number:
2365462-75-3)

N-(1-methylbutyl)-benzenemethanamine hydrochloride (14)

cr
©ANJ\/\
H,
MW = 213.75 g/mol

TH NMR (300 MHz, DMSO-Dg): § = 9.29 (s, 2 H), 7.64-7.62 (m, 2 H), 7.45-7-40 (m, 3 H),
4.13(q,J=13.2 Hz,2 H), 3.08 (s, 1 H), 1.82-1.79 (m, 1 H), 1.53-1.50 (m, 1 H), 1.40-1.38 (m,
1 H), 1.29-1.24 (m, 4 H), 0.9 (t, /= 7.3 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dy): § = 132.8, 130.5, 129.2, 129.1, 53.3, 47.4, 34.5, 18.7, 15.9,
14.2 ppm

Yield: 81 % (87 mg) as a white solid.

The spectroscopic data match those reported in literature.!'?) (CAS Number: 2103392-27-2)
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N-(1-methylhexyl)-benzenemethanamine hydrochloride (15)
CI—J\/\/\
Oh:
H,
MW = 241.80 g/mol

'H NMR (300 MHz, DMSO-Dg): § = 9.44 (d, J = 43.5 Hz, 2H), 7.70 — 7.59 (m, 2H), 7.46 —
7.34 (m, 3H), 4.11 (s, 2H), 3.05 (s, 1H), 1.90 — 1.77 (m, 1H), 1.59 — 1.45 (m, 1H), 1.35 - 1.18
(m, 9H), 0.86 (t, J = 6.8 Hz, 3H).

13C NMR (75 MHz, DMSO-Dg): § = 132.8, 130.6, 129.2, 129.0, 53.4, 47.4, 32.3, 31 .4, 25.0,
22.4,15.9, 14.3 ppm

Yield: 79 % (96 mg) as a white solid.

The spectroscopic data match those reported in literature.!'*! (CAS Number: 92330-45-5)

N-(1-methylundecyl)-benzenemethanamine hydrochloride (16)

CI'J\/\/\/\/\/
(O
H
MW = 311.94 g/mol
'H NMR (300 MHz, DMSO-Dg): 8 =9.44 (s, 1 H), 9.30 (s, 1 H), 7.67-7.64 (m, 2 H), 7.48-7.41
(m, 3 H), 4.17-4.12 (m, 2 H), 3.08 (s, 1 H), 1.91-1.79 (m, 1 H), 1.57-1.42 (m, 1 H), 1.33-1.26

(m, 19 H), 0.88 (m, 3 H) ppm

13C NMR (75 MHz, DMSO-Dy): 8 = 132.2, 130.0, 128.7, 128.5, 52.9, 46.8, 31.8, 31.2, 28.9,
28.6,24.7,22.0, 15.4, 13.9 ppm

Yield: 79 % (123 mg) as a white solid.

The spectroscopic data match those reported in literature.!'3! (CAS Number: 1427378-88-8)
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4-|(Phenylmethyl)amino]-1-pentanol hydrochloride (17)

CI-J\/\/
©/\N OH
)
MW = 229.75 g/mol

"H NMR (300 MHz, DMSO-Dg): 8 =9.51 (s, 1 H), 9.36 (s, 1 H), 7.66-7.63 (m, 2 H), 7.40-7.37
(m, 3 H), 4.90 (s, 2 H), 4.11 (s, 2 H), 3.43-3.38 (t, /= 6.2 Hz, 2 H), 1.98-1.88 (m, 1 H), 1.65-
1.54 (d, ] = 6.5 Hz, 3 H) ppm

3C NMR (75 MHz, DMSO-Dg): § = 132.7, 130.5, 129.1, 128.9, 60.8, 53.7, 47.6, 29.5, 28.80,
16.1 ppm

Yield: 75 % (86 mg) as a white solid.

No spectroscopic data in the literature but known substrate. (CAS Number: 1514217-60-7)

N-(1,3-dimethylbutyl)-benzenemethanamine hydrochloride (18)

Ccr
H,
MW = 227.78 g/mol

TH NMR (300 MHz, DMSO-De): & = 9.40 (s, 2 H), 7.68-7.65 (m, 2 H), 7.46-7.41 (m, 3 H),
4.15 (s, 2 H), 3.16-3.09 (m, 1 H), 1.31 (d, J= 6.5 Hz, 3 H), 1.70-1.65 (m, 2 H), 1.52-1.46 (m, 1
H), 0.91 (d, /=9 Hz, 3 H), 0.81 (d, /=9 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Ds): § = 132.8, 130.6, 129.2, 129.0, 51.9, 47.3, 24.5, 24.0, 21.4,
16.2 ppm

Yield: 75 % (85 mg) as a white solid.

The spectroscopic data match those reported in literature.!'*! (CAS Number: 2375135-37-6)
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N-(1-cyclohexylethyl)-benzenemethanamine hydrochloride (19)

IO

MW = 253.81 g/mol

"H NMR (300 MHz, DMSO-Ds): 6 =9.57 (s, 1 H), 9.10 (s, 1 H), 7.71-7.68 (m, 2 H), 7.47-7.42
(m, 3 H), 4.19-4.12 (m, 2 H), 2.92 (s, 1 H), 1.82-1.53 (m, 6 H), 1.24-1.02 (m, 8 H), ppm

13C NMR (75 MHz, DMSO-Dy): § = 132.5, 130.8, 129.3, 129.0, 57.5, 48.0, 29.7, 26.3, 26.2,
25.8,12.1 ppm

Yield: 66 % (84 mg) as a white solid.

The spectroscopic data match those reported in literature.!'>) (CAS Number: 177721-69-6)

a-methyl-V-(phenylmethyl)-benzenepropanamine hydrochloride (20)

MW = 275.82 g/mol
TH NMR (300 MHz, DMSO-Dg¢): & = 9.49 (d, J = 7.8 Hz, 2 H), 7.66-7.22 (m, 10 H), 4.156
(s, 2 H), 3.10 (s, 1 H), 2.76-2.57 (m, 2 H), 2.24-2.19 (m, 1 H), 1.89-1.85 (m, 1 H), 1.39
(d, J= 6.5 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dy): 8 = 140.7, 132.2, 130.1, 128.7, 128.5, 128.4, 128.2, 126.0,
52.5,46.8,33.7, 30.8, 15.4 ppm

Yield: 68 % (94 mg) as a white solid.

The spectroscopic data match those reported in literature.!'®) (CAS Number: 1158736-70-9)
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o-methyl-NV-(phenylmethyl)-benzenemethanamine hydrochloride (21)

TR0

MW = 247.77 g/mol

'H NMR (300 MHz, DMSO-Dg): & = 10.48 (s, 1 H), 9.90 (s, 1 H), 7.69-7.39 (m, 10 H), 4.35
(s, 1 H), 3.99 (s, 1 H), 3.80 (s, 1 H), 1.68 (d, J= 6.4 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-De): § = 137.8, 132.4, 130.6, 129.4, 129.3, 129.2, 129.0, 128.5,
57.7,48.8,20.3 ppm

Yield: 78 % (97 mg) as a white solid.

The spectroscopic data match those reported in literature.!'”) (CAS Number: 49746-32-9)

4-fluoro-a-methyl-N-(phenylmethyl)-benzenepropanamine hydrochloride (22)
Ccr
N
¥
* F

MW = 265.76 g/mol

TH NMR (300 MHz, DMSO-Ds): & = 10.42 (s, 1 H), 9.92 (s, 1 H), 7.77-7.72 (m, 2 H), 7.56-
7.53 (m, 2 H), 7.42-7.28 (m, 5 H), 4.40 (s, 1 H), 4.00 (s, 1 H), 3.80 (s, 1 H), 1.67 (d, J= 6.5 Hz, 3
H) ppm

13C NMR (75 MHz, DMSO-Dg): § = 162.6 (d, Jcr= 245.1 Hz), 134.0, 134.0, 132.4, 130.9 (d,
Jer=8.4 Hz), 130.6, 129.2, 129.0, 116.2 (d, Jcr= 8.4 Hz), 57.0, 48.7, 20.2 ppm

1F NMR (376 MHz, DMSO-D6): § = -113.1 ppm

Yield: 81 % (108 mg) as a white solid.

The spectroscopic data match those reported in literature.!'8! (CAS Number: 820245-52-1)
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4-methyl-N-(1-methylbutyl)-benzenemethanamine hydrochloride (23)

CI-/k/\
JOR:
H,
MW = 227.78 g/mol

'H NMR (300 MHz, DMSO-De): 5 =9.52 (s, 1 H), 9.38 (s, 1 H), 7.55 (d, ] = 8.0 Hz, 2 H), 7.24
(d,J=7.8 Hz,2 H), 4.08 (s, 2 H), 3.04 (s, 1 H), 2.33 (s, 3 H), 1.87-1.77 (m, 1 H), 1.57-1.21 (m,
6 H), 0.88 (t, /= 7.3 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dy): § = 138.6, 130.6, 129.6, 129.5, 52.9, 47.0, 34.4, 21.3, 18.7,
15.8, 14.2.ppm

Yield: 82 % (93 mg) as a white solid.

No spectroscopic data in the literature but known substrate. (CAS Number: 1020964-62-8)

4-methoxy-N-(1-methylbutyl)-benzenemethanamine hydrochloride (24)

MW = 243.78 g/mol

TH NMR (300 MHz, DMSO-Dg): & = 9.27 (s, 2 H), 7.59-7.56 (m, 2 H), 7.01-6.98 (m, 2 H),
4.08 (s, 2H), 3.79 (s, 3 H), 3.06 (s, 1 H), 1.87-1.77 (m, 1 H), 1.56-1.21 (m, 6 H), 0.90
(t,J=0.89 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-D¢): & = 132.1, 124.5, 114.4, 55.7, 52.9, 46.8, 34.5, 18.7, 15.9,
14.2 ppm

Yield: 81 % (84 mg) as a white solid.

No spectroscopic data in the literature but known substrate. (CAS Number: 1019472-43-5)
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3-methyl-N-(1-methylbutyl)-benzenemethanamine hydrochloride (25)

Ccr
\©/\NJ\/\
Ho
MW = 227.78 g/mol

'H NMR (300 MHz, DMSO-De): 8 = 9.32 (s, 2 H), 7.47-7.22 (m, 4 H), 4.10 (s, 2 H), 3.09 (s, |
H), 2,35 (s, 3 H), 1.87-1.78 (m, 1 H), 1.57-1.21 (m, 6 H), 0.90 (t, /= 6.8 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): 6 = 138.3, 132.6, 131.1, 129.8, 129.0, 127.6, 53.3, 47.4, 34.5,
31.2,21.4,18.7,16.0, 14.2 ppm

Yield: 77 % (88 mg) as a white solid.

No spectroscopic data in the literature but known substrate. (CAS Number: 1019491-23-6)

2-methyl-N-(1-methylbutyl)-benzenemethanamine hydrochloride (26)

S50

MW = 227.78 g/mol
TH NMR (300 MHz, DMSO-Ds): 8 =9.37 (d, J = 9.5 Hz, 2 H), 7.65-7.62 (m, 1 H), 7.30-7.22
(m, 3 H), 4.10 (t, /= 6.8 Hz, 2 H), 3.23 (s, 1 H), 2,40 (s, 3 H), 1.87-1.78 (m, 1 H), 1.57-1.21
(m, 6 H), 0.90 (t, /= 7.2 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Ds): 6 = 138.0, 131.4, 131.3, 130.8, 129.3, 126.4, 54.3,44.7, 19.7,
18.9, 15.9, 14.2 ppm

Yield: 69 % (79 mg) as a white solid.

No spectroscopic data in the literature but known substrate. (CAS Number: 1019545-40-4)
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N-(phenylmethyl)-benzenemethanamine hydrochloride (27)

MW = 233.74 g/mol

THNMR (300 MHz, DMSO-D¢): & = 10.06 (s, 1 H), 7.63-7.41 (m, 10 H), 4.14-4.11
(m, 4 H) ppm

13C NMR (75 MHz, DMSO-Dy): & = 132.4, 130.7, 129.3, 129.0, 50.0 ppm
YF NMR (376 MHz, DMSO-D6):  =-113.1 ppm
Yield: 91 % (106 mg) as a white solid.

The spectroscopic data match those reported in literature.'”) (CAS Number: 20455-68-9)

4-methyl-N-(phenylmethyl)-benzenemethanamine hydrochloride (28)

L

MW = 247.77 g/mol

'"H NMR (300 MHz, DMSO-Dg): & = 9.91 (s, 1 H), 7.62-7.24 (m, 9 H), 4.18-4.07 (m, 4 H),
2.34 (s, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): & = 138.8, 138.2, 131.9, 131.4, 130.1, 129.1, 129.1, 129.0,
128.8, 128.5, 128.5, 126.8, 49.4, 49.3, 20.7 ppm

Yield: 89 % (110 mg) as a white solid.

The spectroscopic data match those reported in literature.!'”! (CAS Number: 1158274-26-0)
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4-ethyl-N-(phenylmethyl)-benzenemethanamine hydrochloride (29)

MW =261.79 g/mol

TH NMR (300 MHz, DMSO-Dq): & = 9.93 (s, 1 H), 7.63-7.27 (m, 9 H), 4.13-4.09 (m, 4 H),
2.64 (q,J= 6.2 Hz, 2 H), 1.20 (t, J= 7.0 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): & = 144.5, 131.9, 130.1, 129.1, 128.8, 128.5, 127.9, 127.8,
49.5,49.3,27.9, 15.6 ppm

Yield: 88 % (115 mg) as a white solid.

No spectroscopic data in the literature but known substrate. (CAS Number: 1158454-56-8)

4-fluor-N-(phenylmethyl)-benzenemethanamine hydrochloride (30)

cr
N
©/\H2/\©\
' F
MW = 251.73 g/mol

TH NMR (300 MHz, DMSO-D¢): & = 9.97 (s, 1 H), 7.70-7.60 (m, 4 H), 7.46-7.43 (m, 3 H),
7.31-7.26 (m, 2 H), 4.15 (q, J = 6.8 Hz, 4 H) ppm.

13C NMR (75 MHz, DMSO-Dg): § = 162.8 (d,J=245.1 Hz), 133.2, 132.4, 130.6, 129.3, 129.0,
116.0, 115.7, 50.1, 49.4 ppm.

1F NMR (376 MHz, DMSO-D6): 8 = -113.1 (dq, Ji = 8.9 Hz, J>» = 5.5 Hz) ppm
Yield: 84 % (106 mg) as a white solid.

The spectroscopic data match those reported in literature.!'”! (CAS Number: 55097-55-7)
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4-methoxy-N-(phenylmethyl)-benzenemethanamine hydrochloride (31)

cr
OE QL
+ 2 O/
MW = 263.77 g/mol

'H NMR (300 MHz, DMSO-Dg): & = 9.81 (s, 1 H), 7.61-7.43 (m, 7 H), 7.01-6.98 (m, 2 H),
4.18-4.08 (m, 4 H), 3.80 (s, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): & = 159.65, 133.04, 132.02, 131.82, 131.29, 130.17, 128.83,
128.73, 128.58, 123.67, 121.64, 113.91, 55.21, 49.35, 49.15 ppm

Yield: 85 % (106 mg) as a white solid.

Not all the protons of the amino group are visible due to the exchange of deuterium with the
NMR solvent. The spectroscopic data match those reported in literature.l'”) (CAS Number:
58405-57-5)

4-fluoro-N-[(4-methyl]phenylmethyl)-benzenemethanamine hydrochloride (32)

Ccr
ST EQL
Ha
* F
MW = 265.76 g/mol

TH NMR (300 MHz, DMSO-Ds): § = 10.06 (s, 1 H), 7.73-7.68 (m, 2 H), 7.52 (d, J= 7.8 Hz,
2 H), 7.26-7.16 (m, 4 H), 4.11 (d, J= 6.8 Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): & = 163.6, 160.4, 137.8, 132.2, 132.1, 129.7, 128.7, 128.6,
128.4,127.8, 115.0, 114.7, 49.0, 48.4, 20.3 ppm

YF NMR (376 MHz, DMSO-D6): § = -113.1 (m) ppm
Yield: 82 % (118 mg) as a white solid.

Not all the protons of the amino group are visible due to the exchange of deuterium with the
NMR solvent. The spectroscopic data match those reported in literature.l*”) (CAS Number:
774554-55-1)
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4-methoxy-N-[(4-methyl]phenylmethyl)-benzenemethanamine hydrochloride (33)

CI
Jomas!
2
+ O/
MW =277.79 g/mol

'H NMR (300 MHz, DMSO-Ds): & = 10.00 (s, 1 H), 7.63-7.50 (m, 4 H), 7.22 (d, /= 7.8 Hz,
2 H), 6.99-6.94 (m, 2 H), 4.15 (s, 2 H), 4.06 (s, 2 H), 3.80 (s, 3 H), 2.34 (s, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): 8 = 159.4, 137.7, 132.5, 131.3, 130.8, 129.7, 128.7, 128.6,
128.5,123.4, 113.7, 113.6, 55.2, 54.9, 48.8, 20.3 ppm

Yield: 81 % (112 mg) as a white solid.

Not all the protons of the amino group are visible due to the exchange of deuterium with the
NMR solvent. The spectroscopic data match those reported in literature.*') (CAS Number:
1158430-76-2)

3,5-dimethoxy-N-[(4-methoxy|phenylmethyl)-benzenemethanamine hydrochloride (34)

MW = 323.82 g/mol

'H NMR (300 MHz, DMSO-D¢): & = 9.85 (s, 1 H), 7.54-7.51 (m, 2 H), 7.01-6.98 (m, 2 H),
6.84 (d, J= 6.8 Hz, 2 H), 6.54-6.53 (t, J = 6.6 Hz, 1 H), 4.04 (s, 4 H), 3.80-3.77 (m, 9 H) ppm

13C NMR (75 MHz, DMSO-Dg): 8 = 160.4, 159.6, 134.0, 131.8, 123.6, 113.8, 107.8, 100.5,
55.4,55.3,55.1,49.3, 49.0 ppm

Yield: 78 % (126 mg) as a white solid.

The spectroscopic data match those reported in literature.>?! (CAS Number: 356093-54-4)

30

304



General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH

4-tertbutyl-N-[(4-methoxy|phenylmethyl)-benzenemethanamine hydrochloride (35)

MW = 319.87 g/mol

TH NMR (300 MHz, DMSO-D¢): & = 9.75 (s, 1 H), 7.52-7.41 (m, 6 H), 6.99-6.93 (m, 2 H),
4.15-4.00 (m, 4 H), 3.76 (s, 3 H), 1.27 (s, 9 H) ppm

13C NMR (75 MHz, DMSO-Dg): § = 160.1, 151.8, 132.2, 130.4, 129.5, 125.8, 124.1, 114.4,
55.7,49.7,49.5,34.9,31.5 ppm

Yield: 74 % (123 mg) as a white solid.

The spectroscopic data match those reported in literature.**] (CAS Number: 2245774-03-0)

a-phenyl-NV-(phenylmethyl)-benzenepropanamine hydrochloride (36)

Ccr

N
: Hp O
MW = 309.84 g/mol

'H NMR (300 MHz, DMSO-De): & = 10.62 (s, 2 H), 7.72 (d, J = 7.4 Hz, 4 H), 7.46-7.31 (m,
11 H), 5.46 (s, 1 H), 4.09-4.00 (m, 2 H) ppm

13C NMR (75 MHz, DMSO-Dg): 6 = 137.2, 131.7, 131.0, 129.4, 129.1, 129.0, 128.5, 65.1, 49.8
ppm

Yield: 79 % (122 mg) as a white solid.
Not all the protons of the amino group are visible due to the exchange of deuterium with the

NMR solvent. The spectroscopic data match those reported in literature.l'”! (CAS Number:
23934-60-3)
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N,N-bis(phenylmethyl)-benzenemethanamine hydrochloride (37)

+
cr

g

MW = 323.86 g/mol

'"H NMR (300 MHz, CDCl3): 8 = 11.53 (s, 1 H), 7.62-7.61 (m, 6 H), 7.43-7.42 (m, 9 H) 4.20-
4.19 (d, J=17.5 Hz, 6 H) ppm

13C NMR (75 MHz, CDCl3): § = 131.4, 129.9, 129.4, 128.8, 56.0 ppm
Yield: 73 % (118 mg) as a white solid.

The spectroscopic data match those reported in literature.**) (CAS Number: 7673-07-6)

4-fluoro-N,N-bis(phenylmethyl)-benzenemethanamine hydrochloride (38)

MW = 341.85 g/mol

'H NMR (300 MHz, DMSO-Ds): 5 = 11.82 (s, 1 H), 7.67 (d, J = 32 Hz, 6 H), 7.41 (s, 6 H),
7.23 (t,J = 7.8 Hz, 2 H), 4.25-4.22 (m, 6 H) ppm

13C NMR (75 MHz, DMSO-Dq): 8 = 163.0 (d, J= 246.5 Hz), 134.5, 134.3, 131.9, 130.5, 129.8,
129.1, 126.8, 126.8, 116.1, 115.8, 56.7, 56.0 ppm

YF NMR (376 MHz, DMSO-D6): § =-112.2 ppm
Yield: 77 % (132 mg) as a white solid.

The spectroscopic data match those reported in literature.>’) (CAS Number: 359445-99-1)
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N-(4-fluorobenzyl)-N-(4-methoxybenzyl)-1-(p-tolyl)methanamine hydrochloride (39)

o

Cr

MW = 385.91 g/mol

'"H NMR (300 MHz, DMSO-Dg): & = 11.30 (s, 1 H), 7.68-6.95 (m, 12 H), 4.22-4.13 (m, 6 H),
3.77 (s,3 H), 2.3 (s, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): 8 = 164.6, 160.9 (d, J = 72.8 Hz), 139.3, 134.3, 134.3, 134.2,
133.5,131.9, 131.8, 129.8, 127.4, 126.8, 122.0, 116.2, 115.9, 114.5, 56.5, 56.1, 55.7, 55.4, 21.3

ppm

19F NMR (376 MHz, DMSO-D6): § = -112.2 ppm

HRMS (ESI) Calculated for C23H2s0FN: 350.1915; found: 350.1904

Yield: 65 % (125 mg) as a colorless oil.

Unknown substrate with incomplete spectroscopic literature data was additionally analyzed via

LC-HRMS.

N-pentyl-benzenemethanamine hydrochloride (40)

MW = 199.72 g/mol

'H NMR (300 MHz, DMSO-Dg¢): § = 9.46 (s, 2H), 7.63 — 7.54 (m, 2H), 7.45 — 7.36 (m, 3H),
4.09 (s, 2H), 2.80 (dd, J = 18.0, 9.9 Hz, 2H), 1.70 — 1.54 (m, 2H), 1.26 (d, J = 4.0 Hz, 2H), 0.88
—0.83 (m, 3H) ppm

13C NMR (75 MHz, DMSO-Ds): § = 132.6, 130.6, 129.3, 129.0, 50.2, 46.8, 28.6, 25.3, 22.1,
14.2 ppm

Yield: 88 % (89 mg) as a white solid.

The spectroscopic data match those reported in literature.!'”) (CAS Number: 90389-36-9)
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N,N-dibenzylpentan-1-aminium chloride (41)

zI Q"

MW = 303.87 g/mol

'H NMR (300 MHz, DMSO-Dg): 8 = 11.60 (s, 1 H), 7.76-7.41 (m, 10 H), 4.33-4.12 (m, 4 H),
2.85-2.81 (m, 2 H), 1.78-1.73 (m, 2 H), 1.29-1.09 (m, 4 H), 0.81 (m, 3 H) ppm

13C NMR (75 MHz, DMSO-De¢): & = 131.9, 130.6, 129.8, 129.2, 56.4, 51.3, 28.7, 22.5, 21.9,
14.1 ppm

Yield: 67 % (102 mg) as a colorless oil.

Not all the protons of the amino group are visible due to the exchange of deuterium with the
NMR solvent. The spectroscopic data match those reported in literature.[*’) (CAS Number:
79865-95-5)

N-benzyl-N-(4-fluorobenzyl)pentan-1-aminium chloride (42)

T

MW =321.86 g/mol

ZT 10"

TH NMR (300 MHz, DMSO-Dg): 8 = 11.55 (s, 1 H), 7.79-7.68 (m, 4 H), 7.42-7.40 (m, 2 H),
7.25 (td, J; = 8.8 Hz, J> = 1.7 Hz, 3 H) 4.30-4.24 (m, 4 H), 2.80-2.77 (m, 2 H), 1.73-1.69 (m, 2
H), 1.18-1.04 (m, 4 H), 0.78-0.75 (m, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): § = 164.2, 161.8, 134.3, 134.2, 130.6, 129.7, 129.1, 126.9,
126.9, 116.1, 115.9, 56.3, 55.6, 51.2, 28.7, 22.5, 21.9, 14.1 ppm

YF NMR (376 MHz, DMSO-D6): § =-112.1 (m) ppm

HRMS (ESIY) Calculated for Ci9H2sFN: 286.1966; found: 286.1954

Yield: 60 % (96 mg) as a colorless oil.

Not all the protons of the amino group are visible due to the exchange of deuterium with the

NMR solvent. Unknown substrate with incomplete spectroscopic literature data was
additionally analyzed via LC-HRMS.
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N-benzyl-N-(4-chlorobenzyl)pentan-1-aminium chloride (43)
|

T

MW = 338.32 g/mol

ZI Q!

'H NMR (300 MHz, DMSO-Ds): & = 11.72 (s, 1 H), 7.78-7.46 (m, 9 H), 4.34-4.28 (m, 4 H),
2.96-2.82 (m, 2 H), 1.81-1.73 (m, 2 H), 1.25-1.09 (m, 4 H), 0.87-0.79 (m, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): 8 = 134.1, 133.3, 131.3, 130.0, 129.1, 129.0, 128.6, 128.6,
55.0,50.8, 28.1, 22.0, 21.4, 13.5 ppm

HRMS (ESI") Calculated for C19H25CIN: 302.1670; found: 302.1658

Yield: 67 % (105 mg) as a colorless oil.

Not all the protons of the amino group are visible due to the exchange of deuterium with the
NMR solvent. Unknown substrate with incomplete spectroscopic literature data was

additionally analyzed via LC-HRMS.

N-benzyl-N-(4-methoxybenzyl)pentan-1-aminium chloride (44)

MW =333.90 g/mol

'H NMR (300 MHz, DMSO-De¢): § = 11.45 (d, ] = 60.4 Hz, 1H), 7.73 (s, 1H), 7.63 (d, ] = 8.2
Hz, 3H), 7.41 (s, 1H), 6.96 (d, ] = 8.3 Hz, 4H), 4.21 (dd, J = 18.0, 6.8 Hz, 4H), 3.76 (s, 3H),
2.76 (s, 2H), 1.71 (s, 2H), 1.14 (d, J = 6.7 Hz, 2H), 1.06 (d, ] = 6.5 Hz, 2H), 0.77 (dd, J = 9.3,
4.8 Hz, 3H) ppm

BC NMR (75 MHz, DMSO-Dg): & = 159.8, 132.9, 131.3, 130.3, 129.2, 128.7, 121.8, 114.0,
55.2,55.1,50.4, 50.0, 28.3, 22.1, 21.5, 13.6 ppm

HRMS (ESI") Calculated for C20H2sNO: 298.2165; found: 298.2153
Yield: 61 % (97 mg) as a colorless oil.
Unknown substrate with incomplete spectroscopic literature data was additionally analyzed via

LC-HRMS.
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N-benzyl-N-(4-ethylbenzyl)pentan-1-aminium chloride (45)
I

Tl

MW =331.91 g/mol

ZI Q"

'"H NMR (300 MHz, DMSO-Dg): & = 11.42 (s, 1 H), 7.76-7.17 (m, 9 H), 4.31-4.17 (m, 4 H),
2.83-2.80 (m, 2 H), 2.67-2.60 (m, 4 H), 1.80-1.75 (m, 2 H), 1.22-1.09 (m, 5 H), 0.80 (t,J = 7.1
Hz, 3 H) ppm

13C NMR (75 MHz, DMSO-Dg): & = 145.5, 131.9, 130.7, 129.2, 128.6, 128.5, 127.8, 127.8,
56.1,51.1,28.7,28.4,22.6,21.9, 15.8, 14.1 ppm

HRMS (ESI*) Calculated for C21H3oN: 296.2373; found: 296.2361
Yield: 58 % (91 mg) as a colorless oil.

Unknown substrate with incomplete spectroscopic literature data was additionally analyzed via
LC-HRMS.
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

ChemNMR "H Estimation

“Cl
831
Hj

7.73 748 264 N
: ‘ : 3.58
7.06
\O 7.34

723 778
Estimation quality is indicated by color: good, medium, rough
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cl

;

NHg
129.0 1278 31.2 48.0

200 13494,
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129- 185
132.
2.8,
56.
105.4 126.1

Estimation quality is indicated by color: good, medium, rough
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
1.14 _
162;1.42111.96 + Cl
= 352NH, >
Estimation quality is indicated by color: good, medium, rough
,;L iR JIA'L il MMANJ.L L
T T T T T | T T T T T T T T T T T
9 8 7 6 5 4 3 2 1 0
PPM
Estimation quality is indicated by color: good, medium, rough
J al \
T T | T T T T T T T T T T T T T T T
90 80 70 60 50 40 30 20 10 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
7.16 4.5&1 358131
7.25 N
Hy 195 0.89
7.22 716 5,
7.25
Estimation quality is indicated by color: good, medium, rough
AR th l“‘ M JJJJA ”
T T T T \ T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
129.0 50.531 56.418-1
128.6 N
125.7 129.0
128.6
Estimation quality is indicated by color: good, medium, rough
T T ‘ T T \
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
7.16 4.5!531 35126 128
7.25 N
H, 195 125 088
7.22 716 5,
7.25
Estimation quality is indicated by color: good, medium, rough
|
0 | LLA
T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
129.0 50.531 567285 227
128.6 N
©1/32'\6H2 331 318 141
125.7 129.0
128.6
Estimation quality is indicated by color: good, medium, rough
T T ‘ T T T \
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
7.16 4.5!531 353125 126 126 126 0.88
7.25 N
H, 195 125 126 126 126
7.22 716 5,
7.25
Estimation quality is indicated by color: good, medium, rough
|
M o A H J‘u\ J-
T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
129.0 50.531 567288 296 296 319 141
128.6 N
©1/32'\6H 331 296 296 293 227
2
125.7 129.0
128.6
Estimation quality is indicated by color: good, medium, rough
T T ‘ T T T ‘ \
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
716 458! 1.46
725 KIJQB/\/OHA'M
H, 195 380
7.22 716 5,
7.25
Estimation quality is indicated by color: good, medium, rough
N l | i lm,
T T T T \ T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
1200 505! 27.6
128.6 N S OH
13261, 201 628
125.7 129.0
128.6
Estimation quality is indicated by color: good, medium, rough
T T ‘ T T \
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

18:
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166 091
7.16 4.5!531 Mz
7.25 N
H, 189 0.91
7.22 716 5,
7.25
Estimation quality is indicated by color: good, medium, rough
“ I -
T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
. 186 232
129.0 50.531 539 |235
128.6 N
125.7 129.0
128.6
Estimation quality is indicated by color: good, medium, rough
T T ‘ T T T \
140 120 100 80 60 40 20 0
PPM
74
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
716 458! 2,1.38
725 N & 1.53;1.43
H,
7.22 7.161,62,1.38 1.46;1.44
7.25 1.53;1.43
Estimation quality is indicated by color: good, medium, rough
.’
P\ ;uL A s“'h !
T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
184
1200 5046 31.7
125.6©/\;\] i~ 258
13263
2
125.7 129.0 317 26.0
128.6 25.8
Estimation quality is indicated by color: good, medium, rough
T T ‘ T T T \
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
716 458!
725 N 7.24
H, 230
7.22 716 5, 7.24 7.19
7.25 7.24
Estimation quality is indicated by color: good, medium, rough
/1 Jl“, J‘ ‘IL S L
T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
129.0 50.531 56'331.14212841
128.6 N 2 128.5
©1/32'\6H2 35.9
125.7 129.0 128.1 125.9
128.6 1285
Estimation quality is indicated by color: good, medium, rough
T T T T T T T T T
140 120 100 80 60 40 20 0
PPM
78
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

21:

— 1048

990

WILEY-VCH

NF * N
|
A 1 ‘
| L |
T e - T — T
13 12 1 10 6 2 1
f1 (ppm)

57.7

4838

203

T T T T T T
230 220 210 200 190 180

T T T T
170 160 150 140

T T - T
130 120 110 100
f1 (ppm)

79

353



General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
199
7.16 4.5@1 4.967-20
7.25 N 7.30
H,
7.22 7.16 4 ,7.20 7.22
7.25 7.30
Estimation quality is indicated by color: good, medium, rough
A I
T T ‘ I T \ T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR "3C Estimation
221
1200 49.6! géme.s
1zs.s©/\ﬁ ‘ 131.8
1326
2
125.7 129.0 128.8 125.9
128.6 131.8
Estimation quality is indicated by color: good, medium, rough
T T T T T T T T T T T
140 120 100 80 60 40 20 0
PPM
80
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

22:
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
199
716 458! :
7.25 N 7.16
H,
7.22 716 4 ,7.18 F
7.25 7.16
Estimation quality is indicated by color: good, medium, rough
|
‘R I“l . A
T T T I T \ T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR "3C Estimation
221
1200 49.6!
1zs.s©/\ﬁ 115.4
1326
2 160.1
125.7 129.0 129.3 E
128.6 115.4
Estimation quality is indicated by color: good, medium, rough
T I T T T T T T T T
160 140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
186
7.1 459CI@31\
7.01 N
Hy 195 0.89
7.1
219 70 2
Estimation quality is indicated by color: good, medium, rough
| i
S L .\m LA lJJL n
T T T ‘ T T \ ‘ T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
1289 502C! 56.4 181
128.9 NI
129.6H2 353 14.1
128.9
2137100
Estimation quality is indicated by color: good, medium, rough
‘ T T T T T I T
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
7.16 4.5&1 358131
6.81 N
3.81 Hp 195 0%
5 716,
6.81
Estimation quality is indicated by color: good, medium, rough
'J' h | ' 1“1 L “
T T T ‘ T T \ ‘ T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
130.0 50§J_ 56.418-1
114.2 N
Sofer, 130.0
114.2
Estimation quality is indicated by color: good, medium, rough
T T T T T T T T T T T
160 140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
166
231 7.07 45431 358131
”2 195 0.89
6.98 7.06 5,
7.43
Estimation quality is indicated by color: good, medium, rough
| e
el | A [ .
T T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
183
218 3&1303 50.591 56.4 181
132.5”2 s A
126.0 126.0
128.5
Estimation quality is indicated by color: good, medium, rough
T T ‘ T T T T T T .
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
229 166
4.5§1J§8/m31\
7.24 N
H, 195 08
7.05 M 4,
7.15
Estimation quality is indicated by color: good, medium, rough
| e
h i 1l
T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
188 183
136.8 47Af31 56,4181
130.3 N
129.3H2 353 14.1
125.6 128.9
125.6
Estimation quality is indicated by color: good, medium, rough
T I T T
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

27:
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR 'H Estimation
716 398Clags 7.16
7.25 N 7.25
Ha
7.22 716 ;,7.16 7.22
7.25 7.25
Estimation quality is indicated by color: good, medium, rough
7
T T I T | T T | T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
1200 523Cls23 1200
128.6©ﬁﬁ/\‘i©128.6
1326}
2
125.7 129.0 129.0 125.7
128.6 128.6
Estimation quality is indicated by color: good, medium, rough
‘ T T I
14‘10 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR 'H Estimation
716 398Clags 7.11
7.25 N 7.01
Ha
7.22 746 35711
7.25 s 7.01 2.19
Estimation quality is indicated by color: good, medium, rough
T T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
1200 523Cls23 128.0
128.6 @/\;\]/\Q@fﬁa
1326
2 135.4
125.7 1290 128.9
128.6 1289 213
Estimation quality is indicated by color: good, medium, rough
T T T T T T \‘ T T T T T
140 120 100 80 60 40 20 0
PPM
95

369



General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR 'H Estimation
7.16 3.95C+|3.98 7.16
7.25 N 7.00
Ha 1.18
7.22 716 5 ,7.16
7.25 7.00 272
Estimation quality is indicated by color: good, medium, rough
T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
1200 523Cls23 1280
128.6 @Aﬁ/\g@ii
1326
2 141.3 145
125.7 1290 128.9
128.6 1276 282
Estimation quality is indicated by color: good, medium, rough
T T T T T T T T T T T T
140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR 'H Estimation
716 398Clags 7.14
7.25 N 7.1
Ha
7.22 716 5,714 F
7.25 7.1
Estimation quality is indicated by color: good, medium, rough
M
T T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
1200 523Cls23 13056
1286 @/\f\]/\@@m
1326
2 159.9
125.7 129.0 130.6 F
128.6 115.4
Estimation quality is indicated by color: good, medium, rough
T T T T | T T T | T [ T [ T
160 140 120 100 80 60 40 20 0
PPM
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

31:
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General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH
ChemNMR "H Estimation
716 398Clags 7.16
7.25 N 6.81
Ha _ 381
7.22 716 5 ,7.16 o
7.25 6.81
Estimation quality is indicated by color: good, medium, rough
i)
T T T T T T T T T
8 7 6 5 4 3 2 1 0
PPM
ChemNMR '3C Estimation
1200 523Cls23 130.0
1286 @/\ﬁ/\@@:u
1326
2 157.6_55.8
125.7 129.0 130.0 O/
128.6 114.2
Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation
711 398Clses 7.14
7.01 N 7.11
Hz
TN 55744
219 704 e 7.1 R
Estimation quality is indicated by color: good, medium, rough
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ChemNMR '3C Estimation
1289 523Cls23 1306
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1296y
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2137150 115.4 3
Estimation quality is indicated by color: good, medium, rough
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ChemNMR "H Estimation
711 398Claes 7.16
7.01 N 6.81
7.1 H2716 P
219 704 e 6.81 2
Estimation quality is indicated by color: good, medium, rough
AL il
T T T 1 T 1 T i T T T T T 1 T
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PPM
ChemNMR '3C Estimation
1289 523Cls23 130.0
128.9 N 24, 1422
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128.9 %30 0 dd 2
2137150 114.2 @
Estimation quality is indicated by color: good, medium, rough
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716 398Clags 653
6.81 N Ol
H 3.81
3.81 2
\O 7.16 5,653 6.29
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(2N
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Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation
716 398Clags 7.0
6.81 N 7.29
3.81 Ha 1.33
\0 7.16 ;,7.08
6.81 7.29 133
1.33
Estimation quality is indicated by color: good, medium, rough
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Estimation quality is indicated by color: good, medium, rough
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7.29
7.18
746 3.98Cl
7.25 5N
20
7.22 716 5,718
7.25 7.29
Estimation quality is indicated by color: good, medium, rough
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Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation
7.22
7.25 7.25
= 7.16
7.14 glg
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7.16
7460K©
7.25
Estimation quality is indicated by color: good, medium, rough
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Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation
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ChemNMR 'H Estimation
716 398331 120 0.68
7.25 ;\]/\/\/
H, 201 128
7.22 716 4,
7.25
Estimation quality is indicated by color: good, medium, rough
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Estimation quality is indicated by color: good, medium, rough
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ChemNMR 'H Estimation
0.88
1.28
L 120
7.16 450 *
7A25©/\N 3.22
7.16
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ChemNMR "H Estimation
0.88
1.28
£ 120
7.6 4.50 ¥
7.25 @/\N 3.22
7.14
7.22 7460 7.1
7.25
7.14 F
7.1
Estimation quality is indicated by color: good, medium, rough
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224
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Estimation quality is indicated by color: good, medium, rough
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ChemNMR "H Estimation
0.88
1.28
£ 120
7.6 4.50 ¥
7.25 @/\N 3.22
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Estimation quality is indicated by color: good, medium, rough
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ChemNMR "H Estimation
0.88
1.28
Gh 120
7.16 450 %
7.25 ©/\N 3.22
7.16
7.22 7460 6.81
7.25 381
7.16 0/
6.81
Estimation quality is indicated by color: good, medium, rough
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Estimation quality is indicated by color: good, medium, rough
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ChemNMR "H Estimation
0.88
1.28
£ 120
7.6 4.50 ¥
7.25 @/\N 3.22
7.16
7.22 7460 7.00
7.25 118
7.16
700 272
Estimation quality is indicated by color: good, medium, rough
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T T T T T T T T T T !
140 120 100 80 60 40 20 0
PPM
137

411



General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH

6 References

[1] J. Pantforder, S. Pdllmann, J. F. Zhu, D. Borgmann, R. Denecke, H.-P. Steinriick, Rev.
Sci. Instrum. 2005, 76.

[2] A. Ermolieff, P. Bernard, S. Marthon, J. Da Camargo Costa, J. Appl. Phys. 1986, 60, 3162—
3166.

[3] a) C. R. Brundle, B. V. Crist, J. Vac. Sci. Technol. 2020, 38; b) W. S. M. Werner, W. Smekal,
C. J. Powell, Simulation of electron spectra for surface analysis (SESSA) version 2.2.0
user s guide, National Institute of Standards and Technology (U.S.), Gaithersburg, MD,
2021.

[4] L. F.B.Ribeiro, O. Flores, P. Furtat, C. Gervais, R. Kempe, R. A. F. Machado, G. Motz, J.
Mater. Chem. A 2017, 5, 720-729.

[5] C. Baumler, C. Bauer, R. Kempe, ChemSusChem 2020, 13, 3110-3114.

[6] G.Hahn, P. Kunnas, N. de Jonge, R. Kempe, Nat. Catal. 2019, 2, 71-77.

[7] K. Murugesan, M. Beller, R. V. Jagadeesh, Angew. Chem. Int. Ed. 2019, 58, 5064—-5068.

[8] K. Tokmic, B. J. Jackson, A. Salazar, T. J. Woods, A. R. Fout, J. Am. Chem. Soc. 2017,
139, 13554—13561.

[9] E. S. Reckzeh, G. Karageorgis, M. Schwalfenberg, J. Ceballos, J. Nowacki, M. C. M. Stroet,
A. Binici, L. Knauer, S. Brand, A. Choidas et al., Cell Chem. Biol. 2019, 26, 1214-1228.e25.

[10]E. Rohrmann, H. A. Shonle, J. Am. Chem. Soc. 1944, 66, 1516—1520.

[11]R. V. Jagadeesh, K. Murugesan, A. S. Alshammari, H. Neumann, M.-M. Pohl, J. Radnik,
M. Beller, Science 2017, 358, 326-332.

[12]M. S. Kwon, S. Kim, S. Park, W. Bosco, R. K. Chidrala, J. Park, J. Org. Chem. 2009, 74,
2877-2879.

[13]C. Wang, A. Pettman, J. Basca, J. Xiao, Angew. Chem. Int. Ed. 2010, 49, 7548-7552.

[14]S. Sato, T. Sakamoto, E. Miyazawa, Y. Kikugawa, Tetrahedron 2004, 60, 7899—-7906.

[15] A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff, R. D. Shah, J. Org. Chem.
1996, 61, 3849-3862.

[16]Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue, J. Xiao, Chem. Eur. J. 2013, 19, 4021-4029.

[17]R. Kempe, T. Schénauer, S. L. J. Thoma, L. Kaiser, M. Zobel, Chem. Eur. J. 2020.

[18]S. Liang, P. Monsen, G. B. Hammond, B. Xu, Org. Chem. Front. 2016, 3, 505-509.

[19]L. Xing, C. Cheng, R. Zhu, B. Zhang, X. Wang, Y. Hu, Tetrahedron 2008, 64, 11783—
11788.

[20]T. Yan, B. L. Feringa, K. Barta, ACS Catal. 2016, 6, 381-388.

[21]K. Sarkar, K. Das, A. Kundu, D. Adhikari, B. Maji, ACS Catal. 2021, 11, 2786-2794.

[22]L. H. S. Smith, T. T. Nguyen, H. F. Sneddon, D. J. Procter, Chem. Commun. 2011, 47,
10821-10823.

138

412



General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH

[23]S. Mizuta, K. Watanabe, N. Nishida, T. Hamada, T. Ishikawa, Y. Tanaka, H. Otaki, J.
Yasuda, S. Urata, WO2018181892A1, 2018.

[24]M. Ruiz - Castafieda, A. M. Rodriguez, A. H. Aboo, B. R. Manzano, G. Espino, J. Xiao, F.
A. Jalon, Appl. Organometal. Chem. 2020, 34.

[25]P. Ye, Y. Shao, X. Ye, F. Zhang, R. Li, J. Sun, B. Xu, J. Chen, Org. Lett. 2020, 22, 1306—
1310.

139

413



General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination

WILEY-VCH

Author Contributions

Matthias Elfinger carried out the catalyst synthesis, catalytic reactions and catalyst
characterization. Jérg Schmauch carried out the STEM-EELS measurements. Michael Moritz
measured the XPS samples, Michael Moritz, Christian Papp and Christoph Wichmann
performed XPS data analysis and evaluation. Matthias Elfinger and Rhett Kempe co-wrote the
manuscript. Christof Bauer revised the manuscript and supporting information and corrected
the data and carried out the necessary experiments as well as co-wrote the manuscript.

140

414



List of Publications and Conference Contributions

7 List of Publications and Conference Contributions

7.1 Publications

1. C. Biaumler, C. Bauer and Rhett Kempe, ChemSusChem 2020, 13,3110 — 3114.
“The Synthesis of Primary Amines through Reductive Amination Employing an Iron

Catalyst”

2. C. Bauer, F. Miiller, S. Keskin, M. Zobel and R. Kempe, Chem. Eur. J. 2023, 29,
€202300561.
“A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic

Heterocycles”

3. R. Loukrakpam, B. F. Gomes, M. Prokop, C. Bauer, M. Kutter, F. Baier, R. Kempe and C.
Roth, J. Power Sources 2023, 569, 232905.

“Challenges and limitations of accelerated stress testing in GDE half-cell set-ups”

4. M. Elfinger, C. Bauer, J. Schmauch, M. Moritz, C. Wichmann, C. Papp and R. Kempe, Adv.
Synth. Catal. 2023, 24, 4654 — 4661.

“General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination”

5. C.Bauer, F. Zareh, L. Niif8lein, J. Frank, M. Boniface, T. Lunkenbein and R. Kempe, Chem.
Eur. J. 2025, €202500462.
“The Synthesis of Hydroquinolines from Nitroaldehydes and Ketones by Hydrogenation

Sequences and Condensations”

415



List of Publications and Conference Contributions

7.2 Conference Contributions

2022 “Linking Hydrogenation and Friedldnder Synthesis* — Invited Talk

30" Colloquy on Organometallic Chemistry for Catalysis, Poznan, Poland

2023 “A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of

Aromatic Heterocycles” — Poster Presentation

31* Colloquy on Organometallic Chemistry for Catalysis, Bayreuth, Germany

2024 “Polymer Derived Ceramics in Catalysis” — Participation

3™ Symposium on Materials Chemistry for New Properties and Functions, Tokyo, Japan

416



Acknowledgement/Danksagung

8 Acknowledgement/Danksagung

8.1 Acknowledgement

My deepest gratitude goes to my academic advisor, Prof. Dr. Rhett Kempe, who gave me the
opportunity to conduct research on this highly interesting and future-oriented topic under
excellent working conditions. I am grateful for the many constructive scientific as well as non-
scientific discussions and last but not least for the trust he placed in me by granting me the

greatest possible scientific freedom during this dissertation.

I would like to express my heartfelt thanks to Dr. Christine Denner for the smooth integration
into her research group, the excellent supervision and her friendly support at every stage of my
doctoral studies. In particular, I am thankful for the numerous REM-EDX measurements and

the daily morning coffee breaks.

My sincere thanks also go to my lab colleagues who accompanied me (at various stages)
throughout my doctoral studies: Dr. Christoph Baumler, Dr. Mara Klarner, Dr. Matthias
Elfinger, Dr. Barbara Klausfelder, Dr. Timon Schonauer, Christoph Maier, Sandra Bieger,
Marie Bergmann, Franziska Kreft, Fatemeh Zareh — you have positively shaped my time at the
chair with your collegial and supportive working atmosphere in the lab, the many scientific
discussions, and not least our friendly interactions. Furthermore, I would like to thank
Alexander Goller, Patrick Wolff, Fabian Lukas, André Dickert, Christian Heber, Christoph
Unger, Jannis Lipp, Paula Simon, Martin Schlagbauer, Felix Leowsky-Kiinstler, Johannes
Porschke, Tobias Schwarz, Hendrik Kempf, Max Leinert, Tobias Seifert, Niko Sila, Dr. Torsten
Irrgang and Dr. Winfried Kretschmer for the unforgettable time at the Sustainable Chemistry
Centre. In addition to coffee breaks, many after-work beers, and numerous BBQ events, the

sailing excursions organized by the chair will always stay with me.

I would like to thank all of my interns, especially Lisa Nii3lein and Johanna Frank, who not
only provided great support during their theses and daily lab work but also became very dear to

me.

A big thank you goes to Tina Fell, Heidi Maisel, Anna-Maria Dietl, Sandra Keller and Dana

Dopheide for all their technical and organizational help throughout my doctoral studies.

I am grateful for the excellent collaboration with Prof. Dr. Christina Roth, Dr. Rameshwori
Loukrakpam and Sven Hornig as part of our joint project within the SFB 1585 MultiTrans. |

greatly appreciated the open communication, the willingness to discuss, and the constructive

417



Acknowledgement/Danksagung

working atmosphere. I would like to thank my collaboration partners, Dr. Sercan Keskin at
INM — Leibniz Institute for New Materials in Saarbriicken, as well as Prof. Dr. Mirijam Zobel
and Felix Miiller from the Institute of Crystallography at RWTH Aachen, for the constructive
cooperation. I am also grateful to PD Dr. Thomas Lunkenbein and Dr. Maxime Boniface for
hosting me at the Fritz Haber Institute of the Max Planck Society in Berlin and for the fruitful
measurements I was able to conduct there. For various measurements, I would like to thank Dr.

Tanja Feller, Dr. Ulrike Lacher, Alexander Berger and Felix Baier.

A very special thank you goes to Prof. Dr. Kazuhiko Maeda, who warmly welcomed me into
his research group during my research stay at the Tokyo Institute of Technology. Many thanks
to the entire group, especially Chomponoot Suppaso, Yura Jang and Xian Zhang, for the
unforgettable trips in the Land of the Rising Sun.

I would like to thank the SFB 1585 of the German Research Foundation (DFG) and the EFR
Green Hydrogen Scholarship of the German Academic Exchange Service (DAAD) for
providing research funding, as well as for financing this dissertation and my research stay in
Japan. I am also grateful to the Graduate School at the University of Bayreuth for the financial

support of numerous training opportunities.

A special thanks go to my friends Anika, Lisa, Hania, Mirco, Johannes and Fabian, who

enriched my time in Bayreuth.

I thank the alumni association “Chemiker Spass Gesellschaft”, CSG e.V., for the great time, the
many friendships that were formed, and for the opportunity to lead and shape the organization.
I would also like to thank my shooting friends at the club "Unteres Tor" in Bayreuth, who gave

me a second home for my passion, olympic sport shooting.

Finally, I am endlessly grateful to my family — especially my parents, Klaus and Anita — for
their incredible support. Thank you for your motivation, love, trust, and support in all aspects

of my life.

418



Acknowledgement/Danksagung

8.2 Danksagung

Mein besonderer Dank gilt meinem akademischen Lehrer, Prof. Dr. Rhett Kempe, der mir die
Moglichkeit gegeben hat, unter ausgezeichneten Arbeitsbedingungen an diesem sehr
interessanten und zukunftstrichtigen Thema zu forschen. Ich bedanke mich fiir die vielen
konstruktiven wissenschaftlichen, aber auch nicht-wissenschaftlichen Diskussionen und nicht
zuletzt fiir das Vertrauen, mir die groBtmogliche wissenschaftliche Freiheit wihrend dieser

Promotion zu gewihren.

Ich mochte mich sehr herzlich bei Dr. Christine Denner fiir die reibungslose Integration in ihre
Arbeitsgruppe, die ausgezeichnete Betreuung und die freundschaftliche Unterstiitzung in jeder
Phase meiner Promotion bedanken. Insbesondere bedanke ich mich fiir die zahlreichen REM-

EDX-Messungen und die tdglichen morgendlichen Kaffee-Runden.

Mein grofler Dank gilt auch meinen Laborkolleginnen und -kollegen, die mich (teilweise)
wihrend meiner Doktorarbeit begleitet haben: Dr. Christoph Baumler, Dr. Mara Klarner, Dr.
Matthias Elfinger, Dr. Barbara Klausfelder, Dr. Timon Schonauer, Christoph Maier, Sandra
Bieger, Marie Bergmann, Franziska Kreft, Fatemeh Zareh — ihr habt die Zeit am Lehrstuhl
durch die kollegiale und unterstiitzende Arbeitsatmosphire im Labor, durch zahlreiche
wissenschaftliche Diskussionen und nicht zuletzt durch unseren freundschaftlichen Umgang
positiv gepragt. Des Weiteren mochte ich mich bei Alexander Goller, Patrick Wolff, Fabian
Lukas, André Dickert, Christian Heber, Christoph Unger, Jannis Lipp, Paula Simon, Martin
Schlagbauer, Felix Leowsky-Kiinstler, Johannes Porschke, Tobias Schwarz, Hendrik Kempf,
Max Leinert, Tobias Seifert, Niko Sila, Dr. Torsten Irrgang und Dr. Winfried Kretschmer fiir
die unvergessliche Zeit am Sustainable Chemistry Centre bedanken. Neben den Kaffeepausen,
vielen Feierabend-Bieren und zahlreichen Grillveranstaltungen wird mir vor allem das

Lehrstuhl-Segeln fiir immer in Erinnerung bleiben.

Ich bedanke mich bei all meinen Praktikantinnen und Praktikanten, insbesondere bei Lisa
NiiBlein und Johanna Frank, die mich nicht nur wéihrend ihrer Abschlussarbeiten tatkréftig bei
der tiglichen Laborarbeit unterstiitzt und neue Impulse gegeben haben, sondern mir auch sehr

ans Herz gewachsen sind.

Ein grofles Dankeschon geht an Tina Fell, Heidi Maisel, Anna-Maria Dietl, Sandra Keller und

Dana Dopheide fiir jegliche technische und organisatorische Hilfe im Promotionsalltag.

419



Acknowledgement/Danksagung

Ich bin dankbar fiir die groBartige Kooperation mit Prof. Dr. Christina Roth, Dr. Rameshwori
Loukrakpam und Sven Hornig im Rahmen unseres gemeinsamen Projekts im SFB 1585
MultiTrans. Die offene Kommunikation, Diskussionsbereitschaft und konstruktive
Arbeitsatmosphire habe ich sehr geschétzt. Ich bedanke mich bei meinen Kooperationspartnern
Dr. Sercan Keskin am INM — Leibniz-Institut fiir Neue Materialien in Saarbriicken sowie bei
Prof. Dr. Mirijam Zobel und Felix Miiller vom Institut fiir Kristallographie an der RWTH
Aachen flir die konstruktive Zusammenarbeit. Ebenso danke ich PD Dr. Thomas Lunkenbein
und Dr. Maxime Boniface fiir den Gastaufenthalt am Fritz-Haber-Institut der Max-Planck-
Gesellschaft in Berlin und die lohnenden Messungen, die ich durchfiihren durfte. Fiir zahlreiche
Auftragsmessungen bedanke ich mich bei Dr. Tanja Feller, Dr. Ulrike Lacher, Alexander

Berger und Felix Baier.

Ein sehr groBles Dankeschon geht an Prof. Dr. Kazuhiko Maeda, der mich in seiner
Arbeitsgruppe wihrend meines Forschungsaufenthalts am Tokyo Institute of Technology
herzlich willkommen hiefl. Vielen Dank an die gesamte Arbeitsgruppe, insbesondere an
Chomponoot Suppaso, Yura Jang und Xian Zhang fiir die unvergesslichen Ausfliige im Land

der aufgehenden Sonne.

Dem SFB 1585 der Deutschen Forschungsgemeinschaft und dem EFR-Zukunftsstipendium
,,Qriner Wasserstoff* des Deutschen Akademischen Austauschdiensts danke ich fiir die
Bereitstellung von Forschungsgeldern sowie die Finanzierung dieser Doktorarbeit und meines
Forschungsaufenthalts in Japan. Fiir die finanzielle Unterstiitzung zahlreicher

FortbildungsmafBnahmen danke ich der Graduate School der Universitit Bayreuth.

Ein besonderer Dank gilt meinen Freunden Anika, Lisa, Hania, Mirco, Johannes und Fabian,

die die Zeit in Bayreuth sehr bereichert haben.

Ich danke der Chemiker Spass Gesellschaft, CSG e.V., fiir die groBartige Zeit, die vielen
entstandenen Freundschaften und dafiir, dass ich den Verein fiihren und prigen durfte.
Ebenfalls bedanke ich mich bei meinen Schiitzenbriidern und -schwestern vom ,,Unteren Tor*
in Bayreuth, die mir eine zweite Heimat fiir meine Passion, das olympische SportschieB3en,

gegeben haben.

Nicht zuletzt bin ich meiner Familie — insbesondere meinen Eltern Klaus und Anita — unendlich
dankbar fiir ihre unbeschreibliche Unterstiitzung. Danke fiir eure Motivation, Liebe, Vertrauen

und Unterstiitzung in allen Belangen meines Lebens.

420



(Eidesstattliche) Versicherungen und Erklarungen

9 (Eidesstattliche) Versicherungen und Erklirungen

§ 9 Satz 2 Nr. 3 PromO BayNat

Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbststindig verfasst und keine
anderen als die von mir angegebenen Quellen und Hilfsmittel benutz habe (vgl. Art. 97 Abs. 1
Satz 8 BayHIG).

§ 9 Satz 2 Nr. 3 PromO BayNat

Hiermit erklére ich, dass ich die Dissertation nicht bereits zur Erlangung eines akademischen
Grades eingereicht habe und dass ich bereits diese oder eine gleichartige Doktorpriifung

endgiiltig nicht bestanden habe.

§ 9 Satz 2 Nr. 4 PromO BayNat

Hiermit erkldre ich, dass ich keine Hilfe von gewerblichen Promotionsberatern
bzw. -vermittlern oder &hnlichen Dienstleistern in Anspruch genommen habe noch kiinftig in

Anspruch nehmen werde.

§ 9 Satz 2 Nr. 7 PromO BayNat

Hiermit erkldre ich mein Einverstindnis, dass die elektronische Fassung meiner Dissertation
unter der Wahrung meiner Urheberrechte und des Datenschutzes einer gesonderten

Uberpriifung unterzogen werden kann.

§ 9 Satz 2 Nr. 8 PromO BayNat

Hiermit erkldre ich mein Einverstindnis, dass bei Verdacht wissenschaftlichen Fehlverhaltens
Ermittlungen durch universititsinterne Organe der wissenschaftlichen Selbstkontrolle

stattfinden kOnnen.

Bayreuth, den 06.08.2025 Christof Bauer

421



