
Cost design for predictive controllers: theoretical
considerations and application to the start-up of a

combined cycle power plant

Lars Grüne1,∗

Chair of Applied Mathematics, University of Bayreuth, 95440 Bayreuth, Germany

Matthias Höger, Kilian Link
Siemens Energy, Siemenspromenade 9, 91058 Erlangen, Germany

Abstract

We explain two aspects of the design of stage cost in MPC schemes. In the
theoretical part of this paper, we summarize recent result for the analysis
of MPC stability and performance for general cost functions based on strict
dissipativity and the turnpike property. In the application part, we explain
how to design an MPC controller for the challenging task of starting up
a combined cycle power plant. The paper thus describes the topic from
two sides and shows how the theoretical insights can inform decisions in
applications.
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1. Introduction

Predictive or Model Predictive Control (henceforth MPC) is one of the
most successful advanced control techniques. Its popularity stems on the one
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hand from the fact that, while the underlying idea is simple, its mathematical
analysis is challenging and its efficient implementation requires state-of-the
art techniques from optimization and numerics. This has led to a huge num-
ber of academic papers, survey articles and monographs, of which we only
mention Camacho and Bordons (2004), Rawlings et al. (2017), and Grüne
and Pannek (2017) as a small selection. On the other hand, MPC is also
very popular in industry, due to its ability to handle constraints, optimiza-
tion objectives, and nonlinear dynamics, see, e.g., Qin and Badgwell (2003),
Forbes et al. (2015), or Ferreau et al. (2016).

While often the constraint handling is the main argument for using MPC
in practice, because this is a feature that most classical controller designs do
not share, there is a growing interest in additionally guaranteeing the (ap-
proximate) minimization of certain performance criteria. The correspond-
ing branch of MPC research was originally termed “economic MPC” (Amrit
et al., 2011; Angeli et al., 2012; Faulwasser et al., 2018), but should probably
rather be called “general MPC”, as it incorporates general cost objectives that
should be minimized. A prime example of control problems in which this is
of high relevance are problems in which a certain objective should be reached
with minimal energy consumption. In Section 4 of this paper we present the
energy-optimal startup of a combined cycle power plant as industrial use case
from this field, which is published here for the first time.

The key idea of MPC is to optimize a certain objective over a finite
horizon, the prediction horizon, using an available model for computing the
future system trajectory inside the optimization algorithm, starting from the
estimated current state of the system. Then a first piece, in discrete time
usually the first value, of the resulting optimal control is applied. This process
is successively repeated on shifted horizons, resulting in an online algorithm
for computing a feedback controller and a corresponding closed-loop solution
(for a formalization see Algorithm 2.1, below). Clearly, for general optimal
control problems there is no guarantee that this procedure leads to a closed-
loop solution that has any (approximate) optimality properties. To this end,
certain properties are needed, and this is what we discuss in Section 3 of this
paper. We present a concise explanation why two classical properties from
mathematical systems theory and optimal control, i.e., strict dissipativity
and the turnpike property, enables near optimality of the MPC closed-loop.
While the results presented in this section are known, the presentation and in
particular the illustrating example in this section is new in this context. The
presentation borrows ideas from Grüne (2018) but focuses on those aspects
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that are most important for the use case and adds proof parts that are not
treated in this reference. In the use case, we then show which difficulties can
arise when applying these results and how to circumvent them.

The remainder of this paper is arranged as follows. In Section 2 we explain
the problem setting and present preliminary results. Section 3 introduces
the turnpike property and strict dissipativity and shows rigorously and by
means of a continuing example how these properties ensure near optimality
of the MPC closed-loop solution. Section 3 presents the use case of the
optimal startup of a combined cycle power plant and in particular discusses
the choice of the cost function for which the turnpike property can be ensured
with reasonable computational effort. Finally, Section 5 concludes the paper.

2. Setting and preliminaries

2.1. Optimal and model predictive control
In this article we consider nonlinear model predictive control (MPC)

schemes, where in each step of the scheme an optimal control problem of
the form

Minimize JN(x0, u) with respect to the control sequence u (2.1)

is solved. Here the objective is

JN(x0, u) =
N−1∑
k=0

ℓ(x(k), u(k))

with N ∈ N and x(·) satisfies the dynamics and the initial condition

x(k + 1) = f(x(k), u(k)), x(0) = x0 (2.2)

as well as the combined state and input constraints

(x(k), u(k)) ∈ Y ∀k = 0, . . . , N − 1 and x(N) ∈ X (2.3)

for all k ∈ N for which the respective values are defined. Here Y ⊂ X ×U is
the constraint set, X and U are the the state and input value set, respectively,
and X := {x ∈ X | ∃u ∈ U with (x, u) ∈ Y} is the state constraint set. The
sets X and U are metric spaces with metrics dX(·, ·) and dU(·, ·). Because
there is no danger of confusion we usually omit the indices X and U in the
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metrics. We denote the solution of (2.2) by xu(k, x0). Moreover, for the
distance of a point x ∈ X to another point y ∈ X we use the short notation
|x|y := d(x, y).

The basic MPC algorithm that builds upon this optimal control problem
then reads as follows. For the formal definition of an optimal control sequence
see Subsection 2.2, below.

Algorithm 2.1. (Basic Model Predictive Control Algorithm)
(Step 0) Fix an optimization horizon N ∈ N and set k := 0;

let an initial value xMPC(0) be given
(Step 1) Compute an optimal control sequence u⋆

N of Problem (2.1)
for x0 = xMPC(k)

(Step 2) Define the MPC feedback law value µN(xMPC(k)) := u⋆
N(0)

(Step 3) Apply the control value µN(xMPC(k)) to the plant,
obtain xMPC(k + 1), set k := k + 1 and go to (Step 1)

This algorithm generates a feedback law µN mapping X to U that is derived
from the first element u⋆

N(0) of an open loop optimal control sequence u⋆
N .

Controls in feedback form are indispensable to be able to react to devia-
tions between the theoretically planned solution and the behavior of the real
process. In MPC this feedback mechanism is realized by computing a new
optimal control based on the most current state information xMPC(k) (or
an estimate thereof). Typically2, one does not compute an explicit formula
for µN . Instead, the control value µN(xMPC(k)) is obtained by numerically
solving the optimal control problem in Step 1 of Algorithm 2.1 online once
xMPC(k) becomes available.

The nominal closed-loop system resulting from this algorithm is given by

xMPC(k + 1) := f(xMPC(k + 1), µN(xMPC(k))).

Nominal means that this would be the solution from Algorithm 2.1 if f
was an exact model for the plant. While this is hardly ever the case in
real-world applications, for studying theoretical properties of MPC is is a
justified simplifying assumption, because if the methods does not produce
good results in the absence of modeling errors, then we cannot expect it to
perform well in a real-world situation.

2An exception are so-called explicit MPC schemes (Alessio and Bemporad, 2009),
which, however, are only applicable for relatively low-dimensional systems.
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In our theoretical considerations we will also consider Problem 2.1 with
infinite time horizon N = ∞ and we write N ∈ N∞ := N ∪ {∞}.

For x0 ∈ X and N ∈ N we define the set of admissible control sequences
as

UN(x0) :=

{
u ∈ UN

∣∣∣∣ (xu(k, x0), u(k)) ∈ Y ∀ k = 0, . . . , N − 1
and xu(N, x0) ∈ X

}
and

U∞(x0) := {u ∈ U∞ | (xu(k, x0), u(k)) ∈ Y ∀ k ∈ N}.
The focus of this article is on stability and performance. To avoid difficul-
ties with the MPC scheme not being recursively feasible, during out theo-
retical considerations we assume that UN(x0) ̸= ∅ for all x0 ∈ X and all
N ∈ N∞. If desired, this assumption can be avoided using techniques from,
e.g., Faulwasser and Bonvin (2015), (Grüne and Pannek, 2017, Chapter 7),
(Kerrigan, 2000, Chapter 5), or Primbs and Nevistić (2000).

2.2. Dynamic programming
Dynamic programming is a classical technique to characterize optimal

controls and solutions. It can be used as the basis for computational schemes,
but these are very inefficient in high space dimensions. This is why here we
only use dynamic programming as a theoretical framework for analyzing
MPC schemes. The center piece of dynamic programming considerations is
the optimal value function

VN(x0) := inf
u∈UN (x0)

J(x0, u)

and we say that a control sequence u⋆
N ∈ UN(x0) is optimal for initial value

x0 ∈ X if J(x0, u
⋆
N) = VN(x0) holds.

For the finite horizon problem the following equations and statements
hold for all N ∈ N and all K ∈ N with K ≤ N (using V0(x) ≡ 0 in case
K = N). They all describe different ways to express the so-called dynamic
programming principle.

VN(x) = inf
u∈UK(x)

{JK(x, u) + VN−K(xu(K, x))}. (2.4)

If u⋆
N ∈ UN(x) is an optimal control for initial value x and horizon N , then

VN(x) = JK(x, u
⋆
N) + VN−K(xu⋆

N
(K, x)) (2.5)
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and

the sequence uK := (u⋆
N(K), . . . , u⋆

N(N − 1)) ∈ UN−K(xu⋆
N
(K, x))

is an optimal control for initial value xu⋆
N
(K, x) and horizon N −K.

(2.6)

Moreover, for all x ∈ X the MPC feedback law µN satisfies

VN(x) = ℓ(x, µN(x)) + VN−1(f(x, µN(x))). (2.7)

These relations hold in a similar way infinite horizon problem. More
precisely, for all K ∈ N it holds that

V∞(x) = inf
u∈UK(x)

{JK(x, u) + V∞(xu(K, x))}. (2.8)

If u⋆
∞ is an optimal control for initial value x and horizon N , then

V∞(x) = JK(x, u
⋆
∞) + V∞(xu⋆

∞(K, x)) (2.9)

and

the sequence uK := (u⋆
∞(K), u⋆

∞(K + 1), . . .) ∈ U∞(xu⋆
∞(K, x))

is an optimal control for initial value xu⋆
∞(K, x).

(2.10)

The goal of the ensuing Section 3 is to present fundamental results from
the last years, together with (as we hope) intuitive proofs for the core re-
sults, which show that MPC yields approximately optimal infinite horizon
solutions. In particular, this means that the stage cost used Problem (2.1) in
Step 1 of Algorithm 2.1 is not merely an auxiliary object, but indeed defines
in which sense the MPC solution is approximately optimal.

A priori, it is not clear, at all, whether the trajectory xMPC generated by
the MPC algorithm enjoys approximate optimality properties or qualitative
properties like stability. An important goal of the next section is thus to
give suitable conditions on the stage cost and the dynamics under which
such properties can be guaranteed. In order to measure the optimality of the
closed loop trajectory, we introduce its closed loop finite horizon value

J cl
K(x, µN) :=

K−1∑
k=0

ℓ(xMPC(k), µN(xMPC(k)))

and the infinite horizon averaged value

J
cl

∞(x, µN) := lim sup
K→∞

1

K
J cl
K(x, µN),
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where in both cases the initial value is xMPC(0) = x. In practical applica-
tions, one then has to find a tradeoff between the quantity that should be
minimized in the application, the conditions a cost function should satisfy
in order to guarantee near-optimal behavior of the MPC closed loop and
the necessity of being able to solve the resulting optimal control problem in
real time. We illustrate some of the challenges that come along with these
partially conflicting goals in an industrial use case in Section 4.

3. Turnpikes, Dissipativity, and MPC

3.1. The turnpike property and MPC
For MPC to produce approximately optimal infinite-horizon solutions,

we need a property of the optimal control problem that guarantees that
finite-horizon and infinite-horizon solutions are close to each other. Clearly,
if these solutions exhibit a very different behavior, then it is unlikely that
the concatenation of pieces of finite-horizon optimal trajectories can ever
approximate an infinite horizon trajectory. In this context, an important
question is in which sense they should be close. As we will see below, it
is sufficient that they are close in a weak sense, i.e., that their values (or,
rather, the values of pieces of such trajectories) does not differ much. This is
intuitively reasonable, since in the end we would like to produce a trajectory
whose value is close to the optimal one.

The next important question is whether there is any hope to identify a
class of optimal control problem that has this closeness property. Here, fortu-
nately, a classical property of optimal control problems comes to our help, the
so-called turnpike property. Informally, it describes the property that there
is a particular trajectory, the turnpike, which has the property that all opti-
mal trajectories stay near the turnpike most of the time. In many examples
the turnpike is an optimal equilibrium (von Neumann, 1945; Faulwasser and
Grüne, 2022), but it may also be an optimal growth path (Ramsey, 1928; von
Neumann, 1937), a periodic trajectory (Müller and Grüne, 2016; Zanon et al.,
2017), a general time-varying trajectory (Grüne and Pirkelmann, 2019), or —
in stochastic optimal control problems — even a stochastic process (Schießl
et al., 2025). The optimal control literature lists a huge number of examples
in which the turnpike property occurs and Google Scholar yields more than
50 000 citations when searching for turnpike property. The name turnpike
property was coined in Dorfman et al. (1958) and alludes to the use of the
name turnpike for toll roads or, more generally, highways: When driving on
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a network of roads, the turnpike is the one that brings the driver to her or his
destination in the fastest way. As an example for an optimal control problem
exhibiting the turnpike property, we consider the following simple optimal
investment problem.

Example 3.1. The following is a simplified version of a classical 1d macroe-
conomic model going back to Brock and Mirman (1972). The goal is to maxi-
mize the sum over a utility function that depends on the consumption in each
time step. The capital that can be consumed stems from an investment in
a firm, which yields a return depending on the amount of re-invested capital
in each time step. In mathematical notation, the invested capital at time k
is denoted by x(k) and the control u(k) specifies the invested capital at time
k + 1, leading to the (very simple) dynamics x(k + 1) = u(k). In one time
step, the capital increases to Ax(k)α, hence the amount of capital that is
available for consumption amounts to C(k) = Ax(k)α − u(k). In economics,
the utility function is a measure of the satisfaction the consumer gets from
the consumption. It is typically chosen to be concave (twice as much con-
sumption yields less than twice as much satisfaction) and the simplest choice
is the logarithm, i.e., ln(C(k)). Since the utility should be maximized but
in this article we make the convention that Problem (2.1) is a minimization
problem, we minimize the negative utility.

In formulas, the problem thus reads: Minimize the objective

N−1∑
k=0

ℓ(xu(k), u(k)) with ℓ(x, u) = − ln(Axα − u)

for the dynamics x(k + 1) = u(k). For the numerical simulation in Figure 1
we set A = 5 and α = 0.34 and impose the state and input constraints X =
U = [0, 10]. The figure shows that regardless of the length of the optimization
horizon N , most of the time the solutions are close to a value of ≈ 2.25,
indicated by the blue dashed line. This is a typical instance of the turnpike
property. Clearly, as one only gets utility from spending capital and utility
shall be maximized, at the end of the horizon the capital will always be 0.
However, in between for increasing N it stays longer and longer at a point that
can be seen as the optimal compromise between spending and re-investing.

Figure 1 already suggests that the turnpike property implies that initial
pieces of optimal trajectories with different horizons have almost identical
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Figure 1: Optimal trajectories for Example 3.1 for horizons N = 5, 7, . . . , 15

values and we will now prove formally that this is the case. When formally
defining the turnpike property, many different options are possible:

• Which trajectories exhibit the turnpike property? Choices are optimal
trajectories, near optimal trajectories, or trajectories with values below
a certain threshold.

• Which quantities exhibit the turnpike property? Possible quantities
are, e.g., states, outputs, controls, or adjoint states.

• How do we measure that trajectories stay near the turnpike? This
could be based on, e.g., measures, integrals, or exponentially decaying
bounds.

A selection of possible combinations of these options can be found in
Faulwasser and Grüne (2022). Here we limit ourselves to one particular
choice that has turned out to be suitable for analyzing MPC schemes. For
simplicity of exposition, we only consider the case when the turnpike is an
equilibrium.

Definition 3.2 (Turnpike property). Let (xe, ue) be an equilibrium of (2.2).
We say that the optimal control problem (2.1) has the turnpike property at
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xe, if for each δ > 0 there exists σδ ∈ L such that3 for all N,P ∈ N, x ∈ X
and u ∈ UN(x) with JN(x, u) ≤ Nℓ(xe, ue) + δ, the set

Q(x, u, P,N) := {k ∈ {0, . . . , N − 1} | |xu(k, x)|xe ≥ σδ(P )}

has at most P elements.

This formalization of the turnpike property specifies the number of excep-
tional points P at which a considered trajectory is not close to the turnpike
xe. The function σδ(P ) then defines the size of the neighborhood of the
turnpike, in which all but at most P points on the considered trajectory
lie. As σδ is an L-function, if P becomes larger and larger, the size of this
neighborhood shrinks to 0. Hence, σδ describes the tradeoff between how
close the trajectory it to the turnpike xe and for how many points (at most)
it is not that close. Here we demand that the turnpike property holds for
all trajectories whose value is smaller than the value in the equilibrium plus
some offset δ, where δ influences the size of the turnpike neighborhood, since
σδ depends on δ. Typically, a larger δ will lead to a larger σδ, i.e., to a
larger neighborhood. Under suitable bounds on the optimal value function
all optimal and near optimal trajectories satisfy the imposed inequality for
JN , cf. Remark 3.4, below.

The turnpike property implies that any two trajectories xuj
(·, xj), j = 1, 2

satisfying the bound on JNj
are σδ(P )-close to the turnpike and thus also to

each other for any M ∈ {0, 1, . . . ,min{N1, N2}} with M ̸∈ Q(x1, u1, P,N1)∪
Q(x2, u2, P,N2). Whenever Nj > 2P for j = 1 and 2, such an M exists and
we thus find a time M at which xu1(M,x1) ≈ xu2(M,x2).

Now, if both trajectories are optimal, we can use this to conclude that
their value summed up to time K only differs slightly. To this end, we
need one more ingredient. Namely, we need that the cost of the remaining
optimal trajectories starting from xu1(K, x1) and xu2(K, x2), respectively, are
also close to each other when xu1(K, x1) ≈ xu2(K, x2) holds. The following
assumption implies this property. It only requires closeness of the optimal
values near xe, which holds if and only if the values of the optimal trajectories
starting in x ≈ xe and xe, respectively, are close.

Assumption 3.3. (i) The optimal control problem has the turnpike property
from Definition 3.2.

3The space L contains all functions σ : [0,∞) → [0,∞) which are continuous and
strictly decreasing with limt→∞ σ(t) = 0.
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(ii) There exist functions γV ∈ K∞ and ωV ∈ L such that the inequality

|VN(x)− VN(x
e)| ≤ γV (|x|xe) + ωV (N)

holds for all x ∈ X and all N ∈ N∞.

Remark 3.4. We note that Assumption 3.3 implies that any optimal tra-
jectory satisfies the condition JN(x, u) ≤ Nℓ(xe, ue) + δ from Definition 3.2.
This is because for initial condition xe, staying in the equilibrium for all
k = 1, . . . , N is always an admissible trajectory, hence VN(x

e) ≤ Nℓ(xe, ue)
follows. Then Assumption 3.3 yields JN(x, u

⋆
N) = VN(x) ≤ Nℓ(xe, ue) + δ

with δ = γV (|x|xe)+ωV (N). Note that δ here depends on the distance of x to
the turnpike equilibrium xe. Generally, the larger δ is, the larger σδ(P ) is for
a fixed P . Hence, for a fixed number of exceptional points P , the closeness
of the optimal trajectory to the turnpike depends on its initial distance to the
turnpike.

With Assumption 3.3 we can prove the following lemma. In this lemma we
use the following notation for (in)equalities that hold up to an error term: for
a sequence of functions aJ : X → R, J ∈ N, and another function b : X → R
we write aJ(x) ≈J b(x) if limJ→∞ supx∈X |aJ(x) − b(x)| = 0 and we write
aJ(x) <∼J

b(x) if lim supJ→∞ supx∈X aJ(x) − b(x) ≤ 0. In words, ≈J means
“= up to terms which are independent of x and vanish as J → ∞”, and
<∼J

means the same for ≤. We note that precise quantitative statements
can be made for the error terms “hiding” in the ≈J -notation. Essentially,
these terms depend on the distance between the optimal trajectories to the
turnpike equilibrium xe, as measured by the function σδ in Remark 3.11(ii),
and by the functions from Assumption 3.3. For details we refer to (Grüne
and Pannek, 2017, Chapter 8).

Lemma 3.5. Let X be bounded, let Assumption 3.3 hold and assume ℓ(xe, ue) =
0. Then the following approximate equalities hold.

(i) V∞(x) ≈P JM(x, u⋆
∞) + V∞(xe) for all M ̸∈ Q(x, u⋆

∞, P,∞)

(ii) JM(x, u⋆
∞) ≈S JM(x, u⋆

N) for all M ∈ {1, . . . , N} with
M ̸∈ Q(x, u⋆

N , P,N) ∪Q(x, u⋆
∞, P,∞).

Here P ∈ N is an arbitrary number, S := min{P,N −M} and u⋆
∞ and u⋆

N

are the controls minimizing J∞(x, u) and JN(x, u), respectively.
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Proof: (i) The infinite horizon dynamic programming equation (2.9) yields

V∞(x) = JM(x, u⋆
∞) + V∞(xu⋆

∞(M,x)).

Hence, we obtain

V∞(x) = JM(x, u⋆
∞) + V∞(xe) +

[
V∞(xu⋆

∞(M,x))− V∞(xe)
]
.

From the turnpike property and Assumption 3.3 for N = ∞ we obtain that
the term in square brackets is ≈P 0 for all M ̸∈ Q(x, u⋆

∞, P,∞), which shows
(i).

(ii) The finite horizon dynamic programming equations (2.4) and (2.5)
imply that u = u⋆

N minimizes the expression JM(x, u) + VN−M(xu(M,x)).
Using the turnpike property and Assumption 3.3 this yields

JM(x, u⋆
N) + VN−M(xe) ≈S JM(x, u⋆

N) + VN−M(xu⋆
N
(M,x))

≤ JM(x, u⋆
∞) + VN−M(xu⋆

∞(M,x)) ≈S JM(x, u⋆
∞) + VN−M(xe).

for all M ̸∈ Q(x, u⋆
N , P,N) and S = min{P,N −M}.

Conversely, the infinite horizon dynamic programming equations (2.8)
and (2.9) imply that u⋆

∞ minimizes the expression JM(x, u⋆
∞)+V∞(xu⋆

∞(M,x)).
Using the turnpike property and Assumption 3.3 for V∞ this yields

JM(x, u⋆
∞) + V∞(xe) ≈P JM(x, u⋆

∞) + V∞(xu⋆
∞(M,x))

≤ JM(x, u⋆
N) + V∞(xu⋆

N
(M,x)) ≈P JM(x, u⋆

N) + V∞(xe)

for all M ̸∈ Q(x, u⋆
∞, P,∞). Combining these two approximate inequalities

then implies (ii). □
Figure 2 sketches the idea of the proof of (ii). The black solid line with

solid circles visualizes the finite horizon optimal trajectory xu⋆
N

and the blue
dashed line with blue solid dots visualizes the infinite horizon optimal tra-
jectory xu⋆

∞ . Since at time K the black and the blue trajectory are very close
to xe, Assumption 3.3 implies that the finite horizon trajectory of length
N −K starting in xu⋆

∞(K, x) (black dotted line and black and white circles)
has a value that is very close to the value of the black solid one. Likewise,
the infinite horizon trajectory starting in xu⋆

N
(K, x) (blue dotted line and

blue and white circles) has a very similar value as the tail of the dashed blue
infinite-horizon optimal trajectory starting at time K. As a consequence, if
the summed cost of the dashed blue trajectory up to time K would be much
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smaller than the cost of the solid black trajectory up to time K, the cost
of the dashed blue trajectory up to time K and the dotted black trajectory
from time K onward would be smaller than the cost of the dashed black
trajectory, which contradicts optimality of this trajectory. Likewise, up to
time K the cost of the solid black trajectory cannot be much smaller than
the cost of the dashed blue one.

. . .

xu⋆
N
(·, x)

xu⋆
∞(·, x)

xe

K N

Figure 2: Sketch of the idea of the proof of Lemma 3.5(ii)

Using this lemma we can prove the first theorem on the performance of
MPC.

Theorem 3.6. Consider the MPC scheme from Algorithm 2.1 with an op-
timal control problem (2.1) for which Assumption 3.3 holds, let ℓ(xe, ue) = 0
and X be bounded. Then there is δ1 ∈ L such that for all x ∈ X the closed
loop solution xMPC(k) generated by this scheme with xMPC(0) = x satisfies
the inequality

J cl
K(x, µN) + V∞(xMPC(K)) ≤ V∞(x) +Kδ1(N) (3.1)

for all K,N ∈ N.
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Proof: We pick x ∈ X and abbreviate x+ := f(x, µN(x)). For the cor-
responding optimal control u⋆

N , the relation (2.6) yields that u⋆
N(· + 1) is

an optimal control for initial value x+ and horizon N − 1. Hence, for each
M ∈ {1, . . . , N} we obtain

ℓ(x, µN(x)) = VN(x)− VN−1(x
+) = JN(x, u

⋆
N)− JN−1(x

+, u⋆
N(·+ 1))

= JM(x, u⋆
N)− JM−1(x

+, u⋆
N(·+ 1)),

where the last equality follows from the fact that the omitted terms in the
sums defining JM(x, u⋆

N) and JM−1(x
+, u⋆

N(· + 1)) coincide. Using Lemma
3.5(i) for N , x and M and for N − 1, x+ and M − 1, respectively, yields

V∞(x)− V∞(x+) ≈P JM(x, u⋆
∞) + V∞(xe)− JM−1(x

+, u⋆
∞)− V∞(xe)

≈P JM(x, u⋆
∞)− JM−1(x

+, u⋆
∞).

Putting the two (approximate) equations together and using Lemma
3.5(ii) yields

ℓ(x, µN(x)) ≈S V∞(x)− V∞(x+). (3.2)

for all M ∈ {1, . . . , N} satisfying M ̸∈ Q(x, u⋆
N , P,N) ∪ Q(x, u⋆

∞, P,∞) and
M − 1 ̸∈ Q(x+, u⋆

N(·+ 1), P,N − 1) ∪ Q(x+, u⋆
∞(·+ 1), P,∞). Since each of

the four Q sets contains at most P elements, their union contains at most
4P elements and hence if N > 8P then there is at least one such M with
M ≤ N/2.

Thus, choosing P = ⌊(N − 1)/8⌋ yields the existence of M ≤ N/2 such
that (3.2) holds with S = ⌊(N − 1)/8⌋, implying that ≈S in (3.2) can be
replaced by ≈N . Hence, the error in (3.2) can be bounded by δ1(N) for a
function δ1 ∈ L, yielding

ℓ(x, µN(x)) ≤ V∞(x)− V∞(x+) + δ1(N). (3.3)

Applying (3.3) for x = xMPC(k), k = 0, . . . , K − 1, we can then conclude

J cl
K(x, µN) =

K−1∑
k=0

ℓ(xMPC(k), µN(xMPC(k)))

≤
K−1∑
k=0

(
V∞(xMPC(k))− V∞(xMPC(k + 1)) + δ1(N)

)
≤ V∞(x)− V∞(xMPC(K)) +Kδ1(N).
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This proves the claim. □
Inequality (3.1) is not self-explaining. What is states is that if we con-

catenate the closed loop trajectory (xMPC(0), . . . , xMPC(K)) and the infinite
horizon optimal trajectory emanating from xMPC(K), then the overall cost
J cl
K(x, µN)+V∞(xMPC(K)) is less than the optimal cost V∞(x) plus the error

term Kδ1(N). In other words, for large N the initial piece of the MPC closed
loop trajectory is an initial piece of an approximately optimal infinite horizon
trajectory.

Remark 3.7. If we assume that V∞ is bounded from below on X (which is
a mild assumption), then (3.1) implies

J
cl

∞(x, µN) ≤ lim sup
K→∞

1

K

(
V∞(x)−V∞(xMPC(K))+Kδ1(N)

)
= δ1(N). (3.4)

This is an estimate for the long term average cost J cl

∞ of xMPC. Particularly,
since the turnpike property implies that ℓ(xu⋆

N
(k), u⋆

N) ≈ ℓ(xe, ue) most of the
time, we obtain that 1

N
VN(x) ≥ ℓ(xe, ue) − C/N for some constant C > 0.

As we have assumed that ℓ(x,e, ue) = 0, this implies J
cl

∞(x, u) = 0 for all
admissible control sequences u. Thus, (3.4) says that the infinite horizon
average cost J

cl

∞(x, µN) of the MPC closed loop is near optimal, up to the
term δ1(N) which tends to 0. Hence, (3.4) is intuitively easier to understand
than (3.1). Moreover, it has the advantage that it can be extended to the case
ℓ(xe, ue) = 0, because a constant that is added to ℓ simply appears additively
in J

cl

∞(x, µN), i.e., we obtain J
cl

∞(x, µN) ≤ ℓ(xe, ue) + δ1(N).
Yet, (3.4) is also weaker than (3.1). This is because a closed loop so-

lution that produces very large cost up to some time K̂ but then constantly
produces stage costs ℓ(xMPC(k), µN(xMPC(k))) ≤ δ1(N) will satisfy (3.4) but
not (3.1), since without averaging the large cost on the interval {0, . . . , K̂}
cannot in general be compensated for at times k > K̂. Thus, while (3.4)
makes transparent that MPC produces near optimal cost in the long run,
(3.1) also implies that MPC yields good performance on finite time horizons.

3.2. Strict dissipativity and MPC
While (3.1) and (3.4) already yield valuable information on the closed-

loop performance of MPC, more structured behavior can be observed in
simulations. In particular, one sees that the closed loop solutions converge
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to a neighborhood of the turnpike equilibrium xe and it would be desirable
if we could prove this and estimate the size of this neighborhood. Moreover,
it would be desirable to give an estimate for J cl

K without having to use the
infinite-horizon optimal value function, which would then be interpretable
also in the case that ℓ(xe, ue) ̸= 0.

To this end, we make use of the following systems theoretic property.

Definition 3.8 (Strict Dissipativity and Dissipativity). We say that an
optimal control problem with stage cost ℓ is strictly dissipative at an equilib-
rium (xe, ue) ∈ Y if there exists a storage function λ : X → R bounded from
below and satisfying λ(xe) = 0, and a function ρ ∈ K∞ such that for all
(x, u) ∈ Y the inequality

ℓ(x, u)− ℓ(xe, ue) + λ(x)− λ(f(x, u)) ≥ ρ(|x|xe) (3.5)

holds.

We note that the assumption λ(xe) = 0 can be made without loss of generality
because adding a constant to λ does not invalidate (3.5).

Example 3.9. One checks with elementary computations that the optimal
control problem from Example 3.1 is strictly dissipative at the equilibrium
(xe, ue) ≈ (2.2344, 2.2344) with λ(x) ≈ 0.2306x. This example falls into the
class of optimal control problems with linear dynamics, strictly convex cost
(in x) and convex constraints. For this kind of problems, a general procedure
for computing xe, ue and λ is known, see Damm et al. (2014, Proposition
4.3), which was applied here.

The observation that strict dissipativity is the “right” property in order
to analyze economic MPC schemes was first made by Diehl et al. (2011),
where strict duality, i.e., strict dissipativity with a linear storage function,
was used. The extension to the nonlinear notion of strict dissipativity was
then made by in Angeli and Rawlings (2010).

Remark 3.10. While at a first glance this is not obvious, at all, it turns out
that strict dissipativity is essentially equivalent to the existence of the turn-
pike property from Definition 3.2. More precisely, it was shown in Grüne
and Müller (2016, Corollary 4.2) that, under mild technical conditions, for
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a system that is locally controllable in a neighborhood of xe, strict dissipa-
tivity holds if and only if the turnpike property from Definition 3.2 holds.
Example 4.3 in Grüne and Müller (2016) shows that the implication “turn-
pike property ⇒ strict dissipativity” fails to hold when removing the local
controllability, although it is an open question whether we could replace it by
a weaker property. The converse implication “strict dissipativity ⇒ turnpike
property” holds regardless of whether the system is locally controllable or not.

Remark 3.11. Besides the turnpike property, strict dissipativity implies

(i) The equilibrium (xe, ue) ∈ Y from Definition 3.8 is a strict optimal
equilibrium in the sense that ℓ(xe, ue) < ℓ(x, u) for all other admissible
equilibria of f , i.e., all other (x, u) ∈ Y with f(x, u) = x. This follows
immediately from (3.5).

(ii) Under mild technical conditions, nonlinear detectability implies strict
dissipativity, see Höger and Grüne (2019). This means that if we design
the cost ℓ such that a trajectory not converging to xe (eventually) yields
a positive cost, i.e., that the distance |x|xe is detectable through ℓ, then
the optimal control problem is strictly dissipative.

(iii) If we define the modified or rotated cost ℓ̃(x, u) := ℓ(x, u)− ℓ(xe, ue) +
λ(x) − λ(f(x, u)), then this modified cost satisfies ℓ̃(xe, ue) = 0 and
ℓ̃(x, u) ≥ ρ(|x|xe), i.e., it is a so-called positive definite cost w.r.t. xe.

The last property enables us to use the optimal control problem with
modified cost ℓ̃ as an auxiliary problem in our analysis. For this purpose we
define the functional and optimal value function for ℓ̃ as

J̃N(x0, u) =
N−1∑
k=0

ℓ̃(x(k), u(k)), ṼN(x0) := inf
u∈UN (x0)

J̃(x0, u).

The relation between J̃N and JN is then given by

J̃N(x, u) = JN(x, u) + λ(x)− λ(xu(N, x))−Nℓ(xe, ue). (3.6)

In addition to the rotated cost, we consider the shifted cost ℓ̂(x, u) := ℓ(x, u)−
ℓ(xe, ue) and denote the corresponding objective and optimal value function
by ĴN and V̂N , respectively.
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In what follows, we combine arguments from Grüne (2013); Grüne (2016);
Grüne and Stieler (2014). As in the previous section, we have to assume that
near xe the values of the optimal value function do not change too much.
Now we need it both for the original cost ℓ̃ and

To this end we make the following assumptions.

Assumption 3.12. (i) The optimal control problem is strictly dissipative in
the sense of Definition 3.8.

(ii) There exist functions γV̂ , γṼ and γλ ∈ K∞ as well as ω, ω̃ ∈ L such
that the following inequalities hold for all x ∈ X and all N ∈ N∞:

(a) |V̂N(x)− V̂N(x
e)| ≤ γV̂ (|x|xe) + ω(N)

(b) |ṼN(x)− ṼN(x
e)| ≤ γṼ (|x|xe) + ω̃(N)

(c) |λ(x)− λ(xe)| ≤ γλ(|x|xe)

Part (ii) of this assumption is a uniform continuity assumption in xe. For
the optimal value functions VN and ṼN it can, e.g., be guaranteed by local
controllability around xe, see (Grüne, 2013, Theorem 6.4). We note that this
assumption together with the obvious inequality VN(x

e) ≤ Nℓ(xe, ue) and
boundedness of X implies VN(x) ≤ Nℓ(xe, ue)+δ with δ = supx∈X γV̂ (|x|xe)+
ω(0). Hence, the optimal trajectories have the turnpike property according
to Remark 3.11(ii).

With these assumptions and notation we can now prove the following
relations. For simplicity of exposition in what follows we limit ourselves to a
bounded state space X. If this is not satisfied, the following considerations
can be made for bounded subsets of X. As we will see, dynamic programming
arguments are ubiquitous in the following considerations.

Lemma 3.13. Let X be bounded. Then under Assumptions 3.12 the follow-
ing approximate equalities hold.

(i) VN(x) ≈S JM(x, u⋆
N) + VN−M(xe) for all M ̸∈ Q(x, u⋆

N , P,N)

(ii) VN(x
e) ≈S Mℓ(xe, ue) + VN−M(xe) for all M ̸∈ Q(xe, u⋆e

N , P,N)

(iii) ṼN(x) ≈N VN(x) + λ(x)− VN(x
e)

(iv) VN(x) ≈N VN−1(x) + ℓ(xe, ue)

Here P ∈ N is an arbitrary number, S := min{P,N −M}, u⋆
N is the control

minimizing JN(x, u), u⋆e
N is the control minimizing JN(x

e, u), and Q is the
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set from Definition 3.2 (which exists because of Remark 3.10). Moreover, (i)
and (ii) also apply to the optimal control problem with stage cost ℓ̃.

Proof: We first observe that it is sufficient to prove all statements under
the assumption ℓ(xe, ue) = 0. This is because the addition of a constant c
to ℓ cancels out in all four approximations. This is because in (i), (ii), and
(iv) it appears as Nc on both sides, while in (iii) it appeary as Nc and −Nc
on the right hand side. We can thus assume without loss of generality that
VN = V̂N and JN = ĴN .

(i) Using the constant control u ≡ ue we can estimate VN(x
e) ≤ JN(x

e, u) =
Nℓ(xe, ue). Thus, using Assumption 3.12 we get JN(x, u

⋆
N) ≤ Nℓ(xe, ue) +

γV̂ (|x|xe) + ω(N), hence the turnpike property from Remark 3.11(ii) applies
to the optimal trajectory with δ = γV̂ (|x|xe) + ω(N). This in particular
ensures |xu⋆

N
(M,x)|xe ≤ σδ(P ) for all M ̸∈ Q(x, u⋆

N , P,N).
Now the dynamic programming equation (2.5) yields

VN(x) = JM(x, u⋆
N) + VN−M(xu⋆

N
(M,x)).

Hence, (i) holds with remainder terms R1(x,M,N) = VN−M(xu⋆
N
(M,x)) −

VN−M(xe). For any P ∈ N and any M ̸∈ Q(x, u⋆
N , P,N) the inequality

|R1(x,M,N)| ≤ γV̂ (|xu⋆
N
(M,x)|xe) +ω(N − M) ≤ γV̂ (σδ(P )) + ω(N − M)

holds, and thus (i).
(ii) From the dynamic programming equation (2.4) and u ≡ ue we obtain

VN(x
e) ≤ Mℓ(xe, ue) + VN−M(xe).

On the other hand, from (2.5) we have

VN(x
e) = JM(x, u⋆e

N ) + VN−M(xu⋆e
N
(M,xe))

= J̃M(x, u⋆e
N )︸ ︷︷ ︸

≥0

−λ(xe) + λ(xu⋆e
N
(M,xe)) +Mℓ(xe, ue) + VN−M(xu⋆e

N
(M,xe))

≥ VN−M(xe) +Mℓ(xe, ue) +
[
VN−M(xu⋆e

N
(M,xe))− VN−M(xe)

]
+

[
λ(xu⋆e

N
(M,xe))− λ(xe)

]
Now since VN−M and λ satisfy Assumption 3.12(ii) and xu⋆e

N
(M,xe) ≈P xe for

all M ̸∈ Q(xe, u⋆e
N , P,N), we can conclude that the differences in the squared

brackets have values ≈S 0 which shows the assertion.
(iii) Fix x ∈ X and let u⋆

N and ũ⋆
N ∈ UN(x) denote the optimal control

minimizing JN(x, u) and J̃N(x, u), respectively. We note that if the optimal
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control problem with cost ℓ is strictly dissipative then the problem with cost
ℓ̃ is strictly dissipative, too, with bounded storage function λ ≡ 0 and same
ρ ∈ K∞. Moreover, VN(x) ≤ Nℓ(xe, ue) + γV̂ (|x|xe) + ω(N) and ṼN(x) ≤
Nℓ̃(xe, ue)+γṼ (|x|xe), since VN(x

e) ≤ Nℓ(xe, ue) and ṼN(x
e) = 0. Hence, the

turnpike property from Remark 3.11(ii) applies to the optimal trajectories
for both problems, yielding σδ ∈ L and Q(x, u⋆

N , P,N) for xu⋆
N

and σ̃δ̃ and
Q̃(x, ũ⋆

N , P,N) for xũ⋆
N
. For all M ̸∈ Q̃(x, ũ⋆

N , P,N)∪Q(xe, u⋆e
N , P,N) we can

estimate

VN(x) ≤ JM(x, ũ⋆
N) + VN−M(xũ⋆

N
(M))

≤ JM(x, ũ⋆
N) + VN−M(xe) + γV̂ (σ̃δ̃(P )) + ω(N −M)

≤ J̃M(x, ũ⋆
N)− λ(x) + λ(xe) +Mℓ(xe, ue) + VN−M(xe)

+ γV̂ (σ̃δ̃(P )) + γλ(σ̃δ̃(P )) + ω(N −M)

<∼S
ṼN(x)− λ(x) + VN(x

e)

for S = min{P,N −M}, where we have applied the dynamic programming
equation (2.4) in the first inequality, the turnpike property for xũ⋆

N
and As-

sumption 3.12 and (3.6) in the second and third inequality and (i) applied to
ṼN , and (ii) applied to ℓ in the last step. Moreover, λ(xe) = 0 and ṼN(x

e) = 0
were used.

By exchanging the two optimal control problems and using the same
inequalities as above, we get

ṼN(x) <∼S
VN(x) + λ(x)− VN(x

e)

for all M ̸∈ Q(x, u⋆
N , P,N) ∪ Q̃(xe, ũ⋆e

N , P,N). Together this implies

ṼN(x) ≈S VN(x) + λ(x)− VN(x
e)

for all M ̸∈ Q(x, u⋆
N , P,N)∪Q̃(x, u⋆

N , P,N)∪Q(x, u⋆e
N , P,N)∪Q̃(xe, ũ⋆e

N , P,N)
and S = min{P,N −M}.

Now, choosing P = ⌊N/5⌋, the union of the four Q-sets has at most 4N/5
elements, hence there exists M ≤ N/5 for which this approximate inequality
holds. This yields S = ⌊N/5⌋ and thus ≈S implies ≈N , which shows (iii).

(iv) Let u⋆
N−1 denote the optimal control for initial value x ∈ X and

horizon length N − 1. We apply (i) with N − 1 in place of N , choosing
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P = ⌊N/2⌋ and M ≤ N/2 − 1, which implies that S = O(N) and thus ≈S

implies ≈N . This yields

VN−1(x) ≈N JM(x, u⋆
N−1) + VN−M−1(x

e).

The proof of (i) moreover shows that |xu⋆
N−1

(M,x)|xe ≤ σδ(P ). Defining
a control u by setting u(k) := u⋆

N−1(k) for k = 0, . . . ,M − 1 and u(M +
k) := u⋆

N−M(k), where u⋆
N−M denotes the optimal control for initial value

xu⋆
N−1

(M,x) and horizon N −M . Since P = O(N), we obtain

JN(x, u) = JM(x, u⋆
N−1) + VN−M(xu⋆

N−1
(M,x)) ≈N JM(x, u⋆

N−1) + VN−M(xe).

Now a feasible trajectory of length N −M for initial value xe is to use ue in
the first step and to use the optimal control for xe horizon N − M − 1 for
the remaining steps, leading to the cost ℓ(xe, ue) + VN−M−1(x

e). With this
we can estimate

VN(x) ≤ JN(x, u) ≈N JM(x, uN−1) + VN−M(xe)

≤ JM(x, uN−1) + ℓ(xe, ue) + VN−M−1(x
e) = VN−1(x) + ℓ(xe, ue).

□
Using Lemma 3.13(iii) and (iv) and the dynamic programming equation

(2.7), for x+ = f(x, µN(x)) we obtain

ṼN(x
+) ≈N VN(x

+) + λ(x+)− VN(x
e)

≈N VN−1(x
+) + ℓ(xe, ue) + λ(x+)− VN(x

e)

= VN(x)− ℓ(x, µN(x)) + ℓ(xe, ue) + λ(x+)− VN(x
e)

≈N ṼN(x)−ℓ(x, µN(x)) + ℓ(xe, ue) + λ(x+)− λ(x)︸ ︷︷ ︸
=−ℓ̃(x,µN (x))

. (3.7)

This implies that the modified optimal value function decays in each step,
except for an error term which vanishes as N → ∞. Since ṼN(x) ≥ ρ(|x|xe)
and ℓ̃(x, µN(x)) ≥ ρ(|x|xe), from this we can conclude that as k → ∞ the
closed loop solution xMPC(k) converges to a neighbourhood of xe, which
shrinks down to xe for N → ∞ (for a rigorous application of this argument
see (Grüne and Pannek, 2017, Section 8.6)). In fact, due to the upper bound
on ṼN induced by Assumption 3.12(ii), we can even conclude the existence
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of β ∈ KL and η ∈ L such that for all x ∈ X the MPC closed loop solution
xMPC(k) with xMPC(0) = x satisfies

|xMPC(k)|xe ≤ max{β(|x|xe , k), η(N)} (3.8)

for all N, k ∈ N, cf. (Grüne and Pannek, 2017, Theorem 8.33). This means
that the optimal equilibrium xe is practically asymptotically stable for the
MPC closed loop.

Example 3.14. Figure 3 shows the MPC closed-loop trajectories (red solid)
and corresponding open-loop trajectories (black dashed) for Example 3.1 with
N = 3 (left) and N = 5 (right). In addition the blue dashed line indicates the
optimal equilibrium xe, i.e., the turnpike. One clearly sees that the closed-
loop solutions converge to a neighborhood of xe that shrinks with increasing
N , but not to xe itself.
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Figure 3: MPC closed-loop and open-loop trajectories for Example 3.1 for horizons N = 3
(left) and N = 5 (right)

Remark 3.15. As discussed in and after Remark 3.4, the constants that
affect the error of the “ ≈N ” approximation depend on the distance of x to xe.
This means that in order to obtain a decay of ṼN via (3.7), one may need a
larger prediction horizon N if X is large. Yet, the error only needs to be small
relative to |ℓ̃(x, µN(x))|, which because of Remark 3.11(iii) also becomes large
as |x|xe becomes large. This is why no or only a moderate increase of N is
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needed when the initial condition x is far away from the turnpike equilibrium
xe. Intuitively speaking, the cost may “guide” the optimal solutions towards
the turnpike if it increases with the distance of the state from the turnpike.

As Example 3.14 shows, already in very simple examples exact conver-
gence to the optimal equilibrium xe will not hold for the MPC closed loop.
Hence, unless additional techniques are introduced (cf. Remark 3.19, below)
practical asymptotic stability of xe is in general the best one can obtain.
This also explains the factor K before δ1(N) in the estimate from Theorem
3.6 (and likewise in Theorem 3.16, below). Since the trajectory always has
a little distance to the optimal equilibrium, in each step we collect a small
error and these errors sum up from 0 to K − 1, resulting in the factor K in
front of the error term. However, as we will discuss in Remark 3.17(ii) and
Example 3.18, below, the relative error usually stays bounded independent
of K.

Due to the fact that the closed loop solution converges to a neighbourhood
of xe, we can now give a characterization of the optimality of J cl

K(x, µM) that
does not rely on the optimal value functions of the infinite horizon problem.

Theorem 3.16. Consider the MPC scheme from Algorithm 2.1 with an op-
timal control problem (2.1) satisfying Assumption 3.12 and let X be bounded.
Then there are δ1, δ2, δ3 ∈ L such that for all x ∈ X the closed loop solution
xMPC(k) generated by this scheme with xMPC(0) = x satisfies the inequality

J cl
K(x, µN) ≤ inf

u∈UK
δ(K)

(x)
JK(x, u) + δ1(N) +Kδ2(N) + δ3(K) (3.9)

for all K,N ∈ N, where

UK
δ(K)(x) := {u ∈ UK(x) | |xu(K, x)|xe ≤ δ(K)}

with δ(K) := |xMPC(K)|xe.

Proof: From (3.7) we obtain

ℓ̃(x, µN(x)) ≈N ṼN(x)− ṼN(f(x, µN(x))).

We denote the error in this approximate equation by δ2(N). Summing
ℓ̃(x, µN(x)) along the closed-loop trajectory then yields

K−1∑
k=0

ℓ̃(xMPC(k), µN(xMPC(k))) ≤ ṼN(x)− ṼN(xMPC(K)) +Kδ2(N). (3.10)
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Now the dynamic programming equation (2.4) and Assumption 3.12(ii) yield
for all K ∈ {1, . . . , N} and all u ∈ UK

δ(K)(x)

J̃K(x, u) = J̃K(x, u) + ṼN−K(xu(K, x))︸ ︷︷ ︸
≥ṼN (x)

− ṼN−K(xu(K, x))︸ ︷︷ ︸
≤γ

Ṽ
(δ(K))

≥ ṼN(x)− γṼ (δ(K)). (3.11)

Due to the non-negativity of ℓ̃, for K ≥ N we get J̃K(x, u) ≥ ṼN(x) for all
u ∈ UK(x). Hence (3.11) holds for all K ∈ N. Moreover, we have ṼN(x) ≥ 0.
Using (3.10), (3.11), (3.6) and the definition of δ2, for all u ∈ UK

δ(K)(x) we
obtain

J cl
K(x, µN(x)) =

K−1∑
k=0

ℓ̃(xMPC(k), µN(xMPC(k)))− λ(x) + λ(xMPC(K))

≤ ṼN(x)− ṼN(xMPC(K)) +Kδ2(N)− λ(x) + λ(xMPC(K))

≤ J̃K(x, u) + γṼ (δ(K))− ṼN(xMPC(K)) +Kδ2(N)− λ(x) + λ(xMPC(K))

= JK(x, u) + γṼ (δ(K))− ṼN(xMPC(K)) +Kδ2(N)− λ(xu(K, x))

+ λ(xMPC(K))

≤ JK(x, u) + γṼ (δ(K)) +Kδ2(N) + 2γλ(δ(K)).

Now from (3.8) we obtain

γṼ (δ(K)) + 2γλ(δ(K)) ≤ sup
x∈X

γṼ (β(|x|xe , K)) + 2γλ(β(|x|xe , K))︸ ︷︷ ︸
=:δ3(K)

+ γṼ (κ(N)) + 2γλ(κ(N))︸ ︷︷ ︸
=:δ1(N)

which finishes the proof. □
The interpretation of this result is as follows: among all solutions steering

x into the δ(K)-neighbourhood of the optimal equilibrium xe, MPC yields
the cheapest one up to error terms vanishing for large K and larger N .

Remark 3.17. (i) In Theorem 3.6 we had to make the assumption ℓ(xe, ue) =
0 in order to obtain a well defined optimal value function V∞ for the inequality
(3.1). For the result in Theorem 3.16 we did not need to make this assump-
tion, because in the final result V∞ does not appear, in the assumption we
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could replace it by V̂∞, which uses the cost ℓ̂ that satisfies ℓ̂(xe, ue) = 0 by
construction, and in the proof of the underlying Lemma 3.13 we could assume
that V̂N = VN without loss of generality since its assertions are invariant un-
der additions of constants to ℓ.

However, there is no straightforward way to interpret (3.1) if ℓ(xe, ue) ̸=
0. If this is desired, the concept of overtaking optimality can be employed, as
it was done in the context of time-varying problems in Grüne and Pirkelmann
(2019).

(ii) In fact, ℓ(xe, ue) ̸= 0 is the typical situation, since there will usually
be a certain minimal non-zero cost that cannot be avoided (or a non-zero
yield that can be achieved in case ℓ is a negative yield) in the long run. In
this case, the optimal cost JK grows linearly in K, just as the error term
Kδ2(N). This implies that the relative error behaves like ∼ δ2(N) and is
thus independent of N .

Example 3.18. For Example 3.1 we have evaluated J cl
K(x, µN) for x = 5 and

N = 2 and N = 5 numerically. The values are plotted in Figure 4. The effect
of the Kδ2(N) term is visible in the steeper slope of the red dashed curve,
leading to visibly smaller values for sufficiently large K. The asymptotic slope
of the infinite horizon optimal solution is ℓ(xe, ue) ≈ −1.4673 and differs
from the slope of J cl

K(x, µ5) by less than 10−3. This difference would not be
discernible in the plot and is thus not shown.
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Figure 4: MPC closed-loop values Jcl
K(x, µN ) for N = 2 (solid black) and N = 5 (red

dashed). The right figure is a zoom into the lower right corner of the left one.
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Remark 3.19. By using so-called terminal ingredients in (2.1), i.e., termi-
nal costs

JN(x0, u) =
N−1∑
k=0

ℓ(x(k), u(k)) + F (x(N))

with F : Xf → R and terminal constraints x(N) ∈ Xf , one can improve
the above results. For the dissipativity-based analysis of MPC, such terminal
ingredients in which F is a local control Lyapunov function were introduced
in Amrit et al. (2011). An alternative linear terminal cost was suggested in
Zanon and Faulwasser (2018).

If Xf and F are suitably designed, then δ1 in Theorem 3.6, δ2 in Theorem
3.16, and η in (3.8) can be set to 0, i.e., removed from the respective inequal-
ities. In particular, we can obtain “true” instead of only practical asymptotic
stability. However, the design of Xf and F with these properties may not
always be feasible, particularly for complex and high-dimensional problems
such as in the use case we will present in Section 4. Hence, in practical
applications often no terminal ingredients are used.

We would like to note that the results from this section have been ex-
tended in various ways. For instance, in many examples it can be observed
that the error terms δj(N) converge to 0 exponentially fast as N → ∞, i.e.,
that they are of the form δj(N) = CΘN for C > 0 and Θ ∈ (0, 1). Condi-
tions under which this can be rigorously proved can be found in Grüne and
Stieler (2014). Another extension concerns replacing the optimal equilibrium
xe by a periodic orbit. Corresponding results can be found, e.g., in Angeli
et al. (2012); Müller and Grüne (2016); Zanon et al. (2017). An extension
to general time-varying problems can be found in Grüne and Pirkelmann
(2019) and a first result for stochastic MPC schemes is given in Schießl et al.
(2024), based on stochastic dissipativity and turnpike results from Schießl
et al. (2025).

4. Use case: Startup of a combined cycle power plant

CCPPs (Combined cycle power plants) generate electrical energy via a
combination of gas and steam turbines. Their superior efficiency stems from
the fact that the exhaust gas from the gas turbine produces steam for a
steam turbine. Thermodynamically, it is a combination of the Brayton cycle
of the gas turbine (GT) with the Rankine water steam cycle including the
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𝑢1: exhaust gas temperature
𝑢2: HP turbine control valve
𝑢3: HP bypass valve

𝑢4: IP bypass valve
𝑢5: HP spray valve
𝑢6: RH spray valve

𝑣1: IP turb. control valve
𝑣2: LP turb. control valve
𝑣3: LP bypass

Stack

Gas Turbine
Clutch

Generator

Condenser

Cold Water

Heat Recovery Steam Generator
𝑢1

𝑢3

𝑢4

𝑢2

𝑢5

𝑢6

𝑣1

𝑣2𝑣3

High Pressure (HP)

Low Pressure (LP)

Intermediate Pressure (LP)

Figure 5: Top: Combined cycle power plant in Mellach, Austria (C. Stadler/Bwag,
wikipedia). Bottom: Schematic sketch of the plant architecture

steam turbine (ST). This way, up to 64% efficiency can be reached, and even
more if the remaining heat is used for district heating. Historically CCPPs
had the purpose to server as medium and peak load units, that delivered the
residual load for the less flexible nuclear and coal fired power plants. Today,
they fulfill the same purpose and supply the residual load for renewables,
however, with much higher flexibility requirements in a much more dynamic
market environment.

4.1. Control objective
The goal of the control is to develop control strategies for flexible, fast,

and economic start-up. The corresponding cost function for power plants in
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general is

min
u∈U

Φ = CFfatigue +

∫ tf

ts

(cfuel − rproduction) dt (4.1)

This cost function covers all all economically relevant factors from ts the begin
of the startup until tf , the end of the startup. Although ts is typically easy to
identify, since it is the time at which the GT is switched on by the operators,
tf is more difficult to identify since it requires the CCPP to reach a specified
load level and several more conditions must be met. In the integral part, all
costs related to the operation are lumped into cfuel, which includes, e.g., the
cost of CO2, maintenance cost, and so on. Revenue-generating earnings are
lumped into rproduction. It should be mentioned that, especially rproduction is a
time-dependent function, since electricity rates usually change significantly
during CCPP startup. In contrast to the integral and time-dependent part,
CFfatigue represents the financial loss caused by the degradation of compo-
nents during the period of transient operation. The special thing about this
term is that a statement can only be made if the entire horizon of the process
is considered.

Modifications to (4.1) are often needed to take into account the processes
of customer organizations or the design of the market. A strongly simplified
variant of (4.1) is

min
u∈U

Φ =

∫ tf

ts

ṁfueldt, (4.2)

which was recently implemented in several power plants. Here, at tf the
CCPP must have reached a specified load level with the ST in operation
to allow a central dispatcher to operate the plant according to the mar-
ket boundary conditions from that point in time. In this simplified cost the
revenue-generated earnings are neglected, fuel consumption is used as a proxy
for the costs of the operations, and the term measuring degradation of com-
ponents is replaced by constraints on the thermal stress, see below. Thus,
the task is to reach a given set with minimal energy consumption, which is
a typical “economic” MPC problem. Suitable implementations of this cost
function will be discussed later.

Especially during start-up, the operation of complex systems is subject
to many restrictions. To name a few limitations that need to be considered:

• Maximal pressures and temperatures.

• Maximal and minimal mass flow rates.
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• Maximal or minimal change rates.

• Maximal and minimal thermal stress induced by temperature changes.

While it might look beneficial for the optimization goal to ramp up the GT
load as fast as possible, the optimal solution is much different in reality. On
one hand due the limitations above, on the other due the fact several criteria
need to be met before the conditions of the produced steam allow safe ST
operation and all produced steam is dumped to the condenser i.e. wasted
until then. Furthermore the GT, the heat recovery steam generator, the main
steam piping and the ST need to be heated up to their operation temper-
ature. Since these components cool down to lower temperatures the longer
the shutdown period is, startups of cold plants after longer shutdown periods
take significantly longer compared to hotter plants after shorter shutdown
periods.

Technically, the MPC solution described below is implemented by calcu-
lating set points via MPC and sending them to the DCS (distributed control
system = the conventional controller) of the power plant. Underlying con-
trollers inside the DCS try to act according to the MPC set points. Thus,
the hierarchical control structure “MPC → DCS → actuators” arises. For
instance, the MPC controller may produce a temperature set point and DCS
adjusts injection valve position such that measurement is driven towards this
set point. Additional constraints that need to be taken into account are:

• Safety critical limitations, like too high pressures, which may lead to
plant trips triggered by the fail-safe system. These are already main-
tained by the DCS, i.e., before the plant reaches a critical state, coun-
termeasures are taken. Nevertheless, to avoid unplanned unavailability
of the plant, which causes high cost for the plant owner, these con-
straints must be modeled as well.

• The control behavior of relevant DCS logics, such as ramp-rate limita-
tions on set points or start criteria for the steam turbine. In order not
to generate set points that violate these logics, they must be integrated
as constraints in the MPC scheme.

• Model scope constraints, i.e., the model must be evaluated only in
regions in which it is physically meaningful. For instance, we assume
there is no backward flow through the components.
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4.2. Model
The plant model consists of (sub-)models each representing relevant real

plant components, for instance pipes, valves, heat-exchangers, gas-/steam-
turbine. The basic principle for all those components are mass rate and
energy rate balances, which lead to the following first principle equations.
We note that the control inputs of the system are the quantities denoted u1

to u6 and v1 to v3 in the scheme in Figure 5.

• Conservation of mass, described by the equations

ṁ =
∑
i∈Im

ṁi [kg · s−1]

with the variables

m: system mass [kg]
mi: mass of medium entering (> 0) / leaving (< 0) the system [kg]
Im: set of indices for medium entering/leaving the system.

• Conservation of energy, leading to the equations

d

dt
(mu) =

∑
i∈IQ

Q̇i −
∑
i∈IW

Ẇi +
∑
i∈Im

hmi
ṁi [W ]

where the variables are:

m: system mass [kg]
u: specific internal energy of system [J · kg−1]
Qi: heat transfer into (> 0) / out (< 0) of the system [J ]
Wi: work performed by (> 0) / on (< 0) the system [J ]
mi: mass of medium entering (> 0) / leaving (< 0) the system [kg]
hi: specific enthalpy of medium entering / leaving the system [J ·kg−1]
IQ: set of indices for heat transferred into/out of the system
IW : set of indices for work performed by/on the system
Im: set of indices for medium entering/leaving the system.

• Steady state momentum balance, leading to pressure loss equa-
tions of the type

∆p = f(vfluid)

∆p: pressure difference between inlet and outlet of a component
v: velocity of flow
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• Convective heat transfer, e.g., between steam and wall, described
by

Q̇ = α · A · (T − Tf ) [W ]

with
Q: heat transfer [J ]
α: heat transfer coefficient [W ·m−2 ·K−1]
A: contact area between fluid and material [m2]
T : material temperature [K]
Tf : fluid temperature [K].

• Conductive heat transfer inside the material:

Q̇ = λ · A · dT
dx

[W ]

Q: heat transfer [J ]
λ: conductivity [W ·m−1 ·K−1]
A: cross-sectional area [m2]
T : material temperature [K]
x: location [m].

Moreover, the kinetic energy of the rotating shaft and the work
performed by turbines are taken into account in the model.

After coupling the equations, the overall model consists of coupled ordi-
nary and partial differential equations as well as algebraic equations. The
model equations, the path and box constraints and the cost functions are
implemented in Modelica®,4 and its optimization extension Optimica, see
Åkesson (2008). After spatial discretization, the model consists of about
1200 equations with 600 variables and 4500 parameters and constants. By
means of model reduction techniques (for instance, by eliminating alias vari-
ables and parameters), the model is reduced to a size of about 30 differential
states, 300 algebraic states, and 430 constraints. CasADi is used to apply a
collocation method on the optimal control problem in order to obtain a non-
linear program (NLP) that can be solved with IPOPT. This NLP consists
of about (30 + 300)×N variables and approximately 430×N5 (in-)equality
constraints, where N denotes the number of collocation points.

4https://modelica.org/
5The exact number differs since not each constraint is implemented in all collocation

points
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4.3. Designing the cost and the turnpike
A direct formulation of the optimization objective as an infinite horizon

functional is ∫ ∞

t0

χ(x(t))mfuel(t)dt, (4.3)

with χ(x) = 1 if the startup finalized conditions are not yet met at state x
and χ(x) = 0 otherwise. Given the complexity of the model, it is difficult to
check rigorously whether the resulting optimal control problem is strictly dis-
sipative. Numerical simulations suggest that the turnpike property is present,
hence by Remark 3.10 it is likely that also strict dissipativity holds. However,
the optimization horizon needed to realize the turnpike property is relatively
large. This is because due to the choice of χ the above cost grows quickly
(even discontinuously) near the turnpike, but it does not increase further
when the state moves further away from the turnpike. Hence, there is no
significant guiding effect towards the turnpike as described in Remark 3.15
and thus a long prediction horizon is needed to obtain the turnpike property,
which in turn is needed to ensure good performance of the MPC controller.
A consequence of this long prediction horizon is that solving the resulting
optimization problem needs a long time, which leads to the problem that this
solution is very difficult to implement in real time. Changing the optimiza-
tion objective by including a component that penalizes the distance to the
desired load level might change this, but this would also change the optimal
solutions, which would not be fuel-optimal anymore, which is undesirable.
Hence, we have to find another way to circumvent this problem.

The chosen remedy for this problem is to compute the optimal solution
for the functional (4.3) offline and use it as a reference xref (t) for an MPC
scheme with tracking-type cost. To this end, two selections of variables z ∈ Z
and y ∈ Y are tracked by minimizing the functional∫ tf

t0

∑
z∈Z

λz(z(t)− zref (t))
2 +

∑
y∈Y

λy max{0, y(t)− yref}dt

with weights λz > 0 and λy > 0. The aim of this functional is to drive and
keep the quantities z close to zref , which denotes quantities obtained from
the optimal trajectory of the offline optimal control problem. These are the
quantities we want to track as good as possible. The quantities y represent
the temperature differences in the thick walls modeling the thermal stress.
These are special in the case that we do not necessarily want to track the
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corresponding yref , but only want to avoid by penalization that the y val-
ues become larger than the corresponding reference values yref . Examples
for such variables are temperature differences in thick-walled components.
Large temperature difference (for instance, the modulus of surface temper-
ature minus wall middle temperature) means high thermal stress. If during
the reference tracking MPC start-up the temperature differences get larger
than in the reference, we want to penalize this. On the other hand, if the tem-
perature difference is lower compared to the reference, then we do not want
to track the corresponding reference, as this would mean that we increase
the thermal stress just for the sake of tracking.

The initial state x0 of the MPC problem results from the cool down
behavior of the power plant during shutdown. Depending on the shutdown
period and other boundary conditions it strongly differs and is not known
in the offline phase. Since a wide range of cool down states of the power
plant needs to be covered, a whole dictionary of optimal start-up trajectories
for different x0 should be available, from which the most suitable should be
chosen at run time. The ability of MPC to control the system back to the
reference when it is not exactly at the reference implies that it is sufficient
to have references that start near the true x0 but not necessarily exactly
at this point. With this tracking approach and the above functional, the
optimal reference trajectory defines the (now time-varying) turnpike of the
MPC problem, which is not known exactly but is expected to be close to the
reference trajectory. As a consequence, the initial distance to the turnpike
becomes smaller, hence the optimization horizon can be reduced to a couple
of minutes, which in turn reduces the computation times for the optimization,
leading to a real-time capable scheme.

4.4. Findings of the on-site implementation
The following figures show experimental results that were obtained during

implementation of the Siemens Energy product “Low Loss Start (NMPC)”
at several CCPP units. In all units the predictive optimal start-up control as
discussed above has been successfully implemented and performs as expected.
Therefore it is used daily by the customers to their satisfaction. In all graphs
the following color code is used:

• solid black: the optimal reference used for the tracking MPC

• solid red, green, purple, and orange: results from MPC controlled op-
timal start-up
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• dashed light blue, red, green, and pink: results from conventional start-
up

Figure 6: Plant load over time

Figure 7: Amount of burnt fuel over time

Figures 6 and 7 show that the start-up controlled with MPC reaches the
desired load level about 40% faster and needs about 40% less fuel for this.
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Figure 8: Opening of high-pressure bypass valve over time

Figure 8 reveals one of the fundamental differences between the conven-
tional start-up and the one controlled by MPC: With MPC, the high-pressure
bypass valve is closed much earlier and thus directs much more steam to the
steam turbine at earlier times then in the conventional way. As a conse-
quence, the steam turbine can be ramped up much faster, allowing to reach
the desired load level significantly earlier, as Figure 9 shows.

Finally, Figure 10 shows that by directing more steam earlier to the steam
turbine the MPC controller not only leads to a much faster and energy ef-
ficient start-up, but also achieves a more gentle warming up of the thicked-
walled components, in which the temperature gradient is significantly smaller
than in the conventional start-up.

5. Conclusions

In this paper we have shown how MPC with approximately optimal per-
formance can be achieved for a challenging industrial use case. In this use case
the direct optimization of the desired cost functional leads to prohibitively
large computation times. This is because for this cost long prediction hori-
zons are needed in order to obtain the turnpike property that ensures ap-
proximately optimal performance of the MPC closed-loop. A remedy is the
computation of optimal reference trajectories in an offline phase and the use

35



Figure 9: Speed of steam turbine over time

Figure 10: Temperature difference in thick walled component

of an auxiliary cost penalizing deviations of selected quantities from the ref-
erence quantities in the online scheme. For this cost the turnpike property is
obtained for significantly shorter prediction horizons, allowing for a real-time
implementation of the MPC controller.
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