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1 General introduction

Water is the most abundant constituent in flora and fauna and essential for the existence

of life. It is the vehicle for convective transport of solutes, i.e. mineral nutrients,

assimilates in plant cells, organs, tissues and even in ecosystems. Plant roots absorb

water from the root medium to its xylem across the root cylinder and transport to the

shoot along the xylem vessels. Different from nutrient ions, water flow in plants,

including the flow across roots involves no direct active pumping or do not use energy

(ATP). Both, across the root cylinder and in xylem vessels along the root, water flow is

down-hill (passive) following gradients in free energy (water potential) or pressure

(Chapter 1.1). Nutrient ions may be dragged with water to reach the plasmalemma

(“solvent drag”), or their movement is diffusional in nature in the absence of a drag.

Water uptake by plant roots can be described by simple force/flow relations analogous

to Ohm’s law and is characterized by hydraulic conductances or resistances or, when

referred to unit cross-section, hydraulic conductivities or resistivities (Chapter 1.2).

These parameters are known to be highly variable (1.3). This affects the water status of

plants. At a given rate of transpiration, the water supply by roots determines the water

status of the shoot and its ability to assimilate carbondioxide (Fig. 1). According to the

water demand from the shoot, roots can adapt or even regulate water flow changing the

pathways (apoplastic vs. cell-to-cell) or by regulating water channel (aquaporin)

activity. Since the pioneering work of Peter Agre and co-workers, there has been much

effort expended in identifying the molecular structure of water channels and their

significance to water transport across cell membranes (Murata et al. 2000; Ren et al.

2001). The regulation of water input by roots is as important as that of the output

(transpirational loss from stomata). Evidences collected over the past decade show that

the phenomenon of variable root hydraulics is not only related to the permeability of

root cell membranes to water (as it is largely for nutrient ions), but also depends on

some variability along the apoplastic passage. The presence of apoplastic barriers is

important (Casparian bands and suberin lamellae in the endo- and exodermis). The

anatomical complexity of the root dictates that the flow of water through it will also be

complex. The water flow in roots can be described by a composite transport model,
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which allows for differences in movement through membranes of individual cells and

along the apoplast, as well as through various tissues (Chapter 1.4).

In the following, recent findings are summarized which relate to apoplastic water

and ion flow in rice and corn roots. Results have been obtained using root pressure

probes, pressure chambers and different types pressure perfusion techniques.

Because of differences in the structure of roots of wetland plants (rice) from typical

herbaceous plants (corn), they do allow a more detailed view on root hydraulics

and tests of current models.

Background
1.1 Concept of water potential

Water potential (ψ) is the key parameter in water relations of plants. It is a quantitative

measure of water status of the plant and the driving force that moves water within plants

and across plant boundaries to the soil and atmosphere.

Water potential may be split up into four different components, written as the following:

  )1(,gP ψτπψ +−−=

where,

P - turgor pressure π  – osmotic pressure

τ – matric potential ψg – gravitation potential (= ρw⋅g⋅h; ρw= density of

water, g = gavity, h = height)

For the sake of simplicity, the matric and gravitation potential can be omitted in the

context of this thesis. They refer to effects of surface energy (surface tension) and

potential energy, respectively. The matric potential represents the interaction between

water and a solid matrix. The gravitational term must be considered when water moves

in tall trees and work against gravitation is required. It can be neglected at the organ or

cell level. Eventually, we get:

)2(.πψ −= P
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Here, we only consider the pressure and concentration dependence of the water

potential. Water potential can be directly derived from the chemical potential of water,

which is a quantitative expression of free energy associated with water. Considering the

pressure and concentration dependence of the chemical potential of water, we get:

)3(,ln
_

*
wwww aRTPV ++= µµ

µw is the chemical potential of water in a solution (J mol-1) and  µw* is the chemical

potential of pure liquid-water at the given temperature. The term wV P (J mol-1)

represents the pressure dependence of the chemical potential (volume work), where wV

is the partial molal volume of water ( wV  = 1.8 × 10-5 m3 mol-1) and P is the hydrostatic

pressure (Pa = J m-3 = N m-2). aw denotes the activity of water  or its molar fraction

(“Molenbruch” in German), which is a measure of water concentration (aw = 1 for pure

water and aw < 1 for solutions). According to Eq. (3), the presence of solutes in an

aqueous solution tends to decrease the activity of water (aw). In other words, the molar

fraction of water becomes lower than that of pure water when solutes added. The term

RT ln aw describes the contribution of the osmotic activity of water (osmotic work

term), which is usually expressed in terms of the osmotic pressure. It is valid that:

)4(.ln
_

πww VaRT −=

Chemical activity of the solute is related to the concentration. The presence of solutes can

lead to develop an osmotic pressure (π) in a solution. When increase the solute

concentration in a solution, it raises the osmotic pressure, indicating that π and aw change

to opposite directions (Eq. 4). When osmotic pressure increases, the chemical potential of

water tends to decrease.

Hence, the formula for the chemical potential of water can be re-written as:

)5(.
__

* πµµ wwww VPV −+=
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Water potential is proportional to the difference between chemical potential in the

solution and that of pure water (µw -  µw*) and is defined as:

)6(,/)(
_

*
www Vµµψ −=

or simply:

)7(.πψ −= P

The advantage of using water potential is that from µw, it has a straightforward plausible

meaning. The unit is that of pressure (J mol-1 / m3 mol-1 = Pa), but it relates to the free

energy or Gibbs/Helmholtz free energy, which is a measure of the maximal work, which

can be done by the water in a given process. The components of water potential, P and

π, are directly measurable. It is possible to predict the behavior of water flow on the

basis of two easily measured components (P and π) as well as driving force of water

flow as water moves along the water potential gradient (down-hill movement or from a

region of high water potential to a region of low water potential). In plants, water

movement within the plant body and/or water uptake by roots from the soil is

completely governed by the water potential gradient.

1.2 Water transport

In 1948, van den Honert introduced the idea that water movement in plants is analogous

to electricity flow. According to basic laws of electricity (Ohm’s and Kirchhoff’s laws),

when components of a circuit are arranged in series, their resistances are additive, and

when components are arranged in parallel, their conductances (the inverse of their

resistances) are additive. Applying Ohm’s law to plants, water flow within a plant is

usually related the difference in water potential (∆ψ):

)8(.tan ψ∆×= ceconducflowwater
 flow             force

According to fundamental principles of irreversible thermodynamics, all flows in a

system are governed by all forces, and those forces are linearly related to the flows. In
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case of just two forces, a gradient in concentration and pressure, water flow is driven by

the gradient of hydrostatic and/or osmotic pressure difference. Solute flow is driven by

solute concentration difference, but there is also a component related to the pressure

difference. Hence, there are couplings between flows such as, water, solute, and ion

(current) as well as they interact with forces. These couplings are systematically

described by the thermodynamics of irreversible processes (Kedem and Katchalsky,

1958).

1.2.1 Cell water relations

For the description of plant water and its interactions with solutes, the theory of

irreversible thermodynamics is especially useful. This is so because water flow

equilibrium (osmotic equilibrium) is well defined and most of the flows and forces can

be measured directly. In the following, the thermodynamic theory is applied to a single

cell in a medium to work out cell water relations and interactions between water and

solute flows. The cell interior (superscript ‘i’) and the medium (superscript ‘o’) are

treated as two-compartment system and it assumes that cell is surrounded by a

homogeneous membrane (Fig. 1). All forces acting on the flows are embraced, a

mathematical description for the water (Jv) and solute (Js) flows will be (Kedem and

Katchalsky, 1958):

( ) ( )[ ] )9(,1 o
s

i
ss

oi
v ccRTccRTLpPLp

dt
dV

A
J −⋅⋅+−⋅⋅−⋅=−= σ

                                    hydrostatic                                             osmotic

                                    water flow                                           water flow

( ) ( ) )10(,11 *
_

svss
o
s

i
ss

s
s JJcccP

dt
dn

A
J +⋅⋅−+−⋅=−= σ

                                       diffusional                     solvent-drag            active transport

                                           flow

where:

Jv [m ⋅ s-1] volume flow ≈ water flow

Js [mol ⋅ m-2 ⋅ s-1] solute flow

Js* [mol ⋅ m-2 ⋅ s-1] active solute flow
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A [m2] cell surface area

V [m3] cell volume

Lp [m ⋅ s-1 ⋅ MPa-1] hydraulic conductivity

P [MPa] cell turgor

ns [mol] content of permeating solutes `s` in the cell

∆π  [MPa] difference in osmotic pressure

σs [1] reflection coefficient of the solute

Ps [m ⋅ s-1] permeability coefficient for the solute `s`

C [mol ⋅ m-3] concentration of non-permeating solute

Cs [mol ⋅ m-3] concentration of permeating solute

sC  [mol ⋅ m-3] mean concentration of `s` in the membrane [(Co
s + Ci

s)/ 2]

t [s] time

R [J ⋅ mol-1 ⋅ K-1] universal gas constant (≈ 8.314)

T [K] absolute temperature

Fig. 1 Two-compartment model of osmosis of a cell. In the model, it is assumed that the inside and

outside are separated by a homogeneous membrane which possesses the same permeability characters in

each place. The outside atmospheric pressure is considered as zero and used as the reference. Since inside

of the system contain over pressure (P), or it is greater than in the outside, it develops hydrostatic water

flow (Jv) from internal to external medium. Osmotic water flow is driven by the difference in osmotic

pressure. Since Ci – Co > 0, the direction of osmotic water flow is opposite to the hydrostatic water flow.

Solute flow (Js) has three components. Diffusional flow occurs along the concentration gradient from

internal to external medium. Water flow couples with solute flow and drag them with water (solvent-

drag). The active component of solute flow (Js*), i.e., the component which relates the transport of solutes

to a metabolic reaction, e.g. the splitting of ATP and ATPase.

outside (′o′)

inside (′i′)

CiCo

Pi = PPo = 0

Water flow Solute flow Js

solvent-drag

diffusional flow

Co

osmotic flow

 hydrostatic flow

homogenous membrane active transport
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By convention, Eqs (1) and (2) define flows out of the cell as positive and flows into the

cell as negative. Water flow (Jv) has two components, a hydraulic flow driven by

gradient in hydrostatic pressure (Lp⋅ P; ambient atmospheric pressure is taken as a

reference) and an osmotic water flow driven by the difference in osmotic pressure (Lp⋅

∆π + Lp⋅ σs⋅∆π). The osmotic force is opposite to the hydrostatic (minus sign), which

build up in the cell as a consequence of the accumulation of solutes (Cs
i > Cs

o). Here,

both non-permeating and permeating solutes are considered. Total volume flow or water

flow (Jv) is resulted by both driving forces called as the hydraulic conductivity (Lp),

which is the water permeability of the membrane. The driving force represents a

modified water potential gradient (∆ψ = P – ∆π; π = RT⋅C = osmotic pressure). Since

the membrane is considered to be permeable to some solutes, the osmotic component

has to be modified by the reflection coefficient (σs), which denotes the passive

selectivity of the membrane and is usually between zero and unity. It can be also

interpreted as a measure of the interaction between water and solutes as they cross the

membrane. When σs = 0, the membrane does not distinguish between the solute and

water, and solute can readily cross the membrane. If σs = 1, the membrane is not

permeable to the solute (Ps = 0) and driving force will be equal to the water potential

difference  (Jv = Lp (P – RT ∆C) = Lp⋅∆ψ).

Solute flow (Js) has three components. The first term, the diffusional solute flow [Ps⋅

(Ci
s - Co

s)], which is driven by concentration difference according to Fick’s first law.

The coefficient relating force and flow in this case is called ‘solute permeability’ (Ps).

The solute permeability coefficient is the passive component of flow of a given solute

`s` across the membrane. The second component, [(1 - σs)⋅ sC ⋅ Jv] describes the

interaction between water and solutes as they cross the membrane. This is called

solvent-drag (the amount of solute dragged along with the water flow in permeable

membrane; σs < 1). For a semipermeable membrane (σs = 1; Ps = 0), the solvent drag

will vanish. On the other hand, for structures, which are not selective at all (σs = 0), the

term will be identical with the amount of solutes transported by ‘convection’ in a water

stream. The last term is the active component of solute flow (Js
*). It represents the

transport of a solute as a result of metabolic reaction. In contrast, the active component

is missing for the water flow, because no evidence for an active water flow (water

pumps driven by metabolic energy). For the solutes usually present in the cell, the
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plasma membrane represents a nearly perfect barrier, i.e.  σs is close to unity and Ps

close to zero. On the other hand when the passive selectivity of the cell wall is low ( σs

≈ 0) and Ps is high.

1.2.2 Water transport in roots

Water relations and water transport across tissues are more complicated than that of an

individual cell, where water crosses only the plasma membrane. At the tissue level,

there are three parallel pathways involve for the water flow – apoplast, symplast and

transcellular path, as well as the tissue cells arrange in series (Fig. 2).

1.2.2.1 Transport pathways in roots

The constitutes outside the plasma membrane of the living cells is termed “apoplast”

(Münch 1930). It includes cell walls, intercellular spaces, and the lumena of tracheary

elements. The symplast, on the other hand, is the continuum of cytoplasm

interconnected by plasmodesmata and excluding the vacuoles. Hence, the terms

‘apoplastic’ and ‘symplastic’ transport refer to movements within the two compartments

just defined. This may be a reasonable and largely sufficient description for ions, but it

definitely does not hold for water (Steudle and Peterson 1998). The simple reason is that

water moves across membranes by several orders of magnitude more rapidly than ions.

So, a third pathway for water flow must be considered, i.e. the one in which water

crosses membranes as well as the short distance of wall space between adjacent cells,

which is usually not rate limiting.  Hence, there would be three main pathways for water

flow in the root cylinder (Fig. 2).

(i) apoplastic path - around protoplasts

(ii) symplastic path - through plasmodesmata

(iii) transcellular or vacuolar path - crossing membranes

There could be, of course, combinations of pathways in that water may travel within the

symplast for some distance and may then cross the plasma membrane move within the

cell wall etc. (Steudle 2000b). Switching between pathways is important, because roots

can adjust their hydraulic conductivity according to the water demand from the shoot.
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Fig. 2 Pathways for the movement of water and solutes in roots. The apoplast provides a porous path to

water, solutes and even for nutrient ions but may be interrupted by Casparian bands in the endo- and

exodermis. But it is indicated here, that there may be some passage of water and solutes across the

Casparian bands. The symplastic path is through plasmodesmata and the cytosol of cells. Along the

transcellular path, water and solutes have to cross many membranes (two per cell layer). It is thought that

suberin lamellae in the endo- and exodermis may interrupt the water and solute flow through this path.

This path is especially important for water but is for minor important for solutes. Experimentally, the

symplastic and transcellular pathways cannot be separated. They are summarized as a cell-to-cell path

(modified from Steudle 2000a).

1.2.2.2 Steady-state water flow in roots

In tissues, as in isolated cells, water and solute interactions have to be considered. In

addition, active and passive components of solute flow should be distinguish. In the

apoplast, only passive (diffusional or convective) solute flow is possible. Both

compartments (apoplast and protoplasts) contribute quite differently to the overall tissue

volume. Usually, the apoplast contributes a few percent and the protoplasts more than

90% to the total volume. When a gradient of pressure is applied across a tissue, water

can use three different pathways as shown in Fig. 3.
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cell wall

plasma
membrane

plasmodesmata symplastic transport

apoplastic transport

transcellular transport

cell cell cell cell

Fig. 3 Schematic representation of the transport pathways across a tissue in one dimension (x). Only four

cells are shown. There is an apoplastic (cell wall), a symplastic (via plasmodesmata), and a transcellular

(vacuolar crossing membranes) pathway. The transcellular and symplastic path is summarized as cell-to-

cell path. acc and acw are the mean cross-sectional areas for the cell-to-cell and apoplastic paths,

respectively. ∆x is the thickness of a cell in direction x (modified from Molz and Ferrier, 1982).

With respect to the stationary hydraulic properties of tissues, when considering only two

parallel pathways (cell-to-cell and apoplastic) and their flows contribute to the overall

flow according to their hydraulic conductivities and cross-sectional areas. The overall

hydraulic conductivity of a tissue (Lpr) in one direction in m  s-1 MPa-1 would be:

)11(,
2 d

x
x

LpLpLp cw
cwccr

∆
⋅





∆
⋅+⋅= γγ

              cell-to-cell component cell wall component

where ∆x = cell thickness in x direction, d = tissue thickness, Lp and Lpr = hydraulic

conductivity of cell-to-cell path and of cell wall material in m ⋅ s-1⋅ MPa-1, respectively.

γcc and γcw are the fractional cross-sectional areas of the cell-to-cell and apoplastic path,

respectively. Here, hydraulic conductivity of the two parallel pathways are additive. The

hydraulic conductivity of the wall path is referred to both unit cross section and path

length, whereas Lp refers to unit cell surface area only. A factor of two in the cell-to-cell

component is employed, because two membranes would have to be crossed per cell

layer. But this theory holds only for hydrostatic gradients, which occur when tensions

are created in the xylem during transpiration. Osmotic water flow has not been added



13

here, since osmotic gradients will only cause small effective driving forces along the

apoplastic path. This is so because the reflection coefficient of cell wall material is

virtually zero, and nearly no selectivity in the apoplast (see 1.4). By contrast, during the

exchange of water between apoplast and protoplast, osmotic forces will be fully exerted.

1.2.2.3 Dynamic water and solute relations of tissues

During dynamic responses such as a change in water potential in a tissue, both the

storage properties and hydraulic resistances play an important role. Considering parallel

pathways of cell-to-cell and apoplast, and assuming a rapid equilibration between

protoplast and the adjacent apoplast, a diffusion type of process for the dynamics of

tissue water relation can be obtained. The ‘diffusivity’ (propagation of water potential

through a tissue) of tissue, Dt being (Molz and Ikenberry 1974):
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where Lpcw and Lp are the hydraulic conductivities of the wall and the membrane

respectively, and acw and acc denote the cross-sectional areas. ∆x is the thickness of cells

in the direction of the propagation of the change. Ccw and Cc are the storage capacities

of the pathways per cell. It can be seen that the conductances of the pathways are

additive and increase Dt, whereas increasing capacities damp the propagation in the

tissue. Hence, the physical meaning of Dt is straightforward. It should be stressed that

Dt is not a measure of a “diffusional mass flow” of water in the tissue, but rather

describes the rate of at which changes in water potential (free energy), cell volume and

turgor propagate following a change in water potential. The term “dffusivity” just

denotes the fact that the kinetics of the change is of a diffusion type as also observed

during ordinary diffusion driven by the thermal motion of molecules.

1.3 Variability of root hydraulics

Water uptake by roots has been shown to be variable for several reasons. The variability

of radial hydraulic conductivity is closely related to its complex structure. This
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phenomenon has been known for a long time (Brewig 1937; Brouwer 1954; Fiscus

1975; Kramer and Boyer 1995; Steudle 1989; 1994; Steudle and Frensch 1996; Steudle

and Peterson 1998). In the longer term (days, weeks), the capacity for water uptake is

related to root growth (i.e. increases in root-to-shoot ratio), development and aging or to

changes in root morphology and structure (e.g., suberization of roots). Suberization of

roots passes through different stages of development of the endo- and exodermis.

During state I, Casparian bands (CBs) are forming in transverse and radial walls of the

endo- and exodermis. They are primary cell wall modifications, encrusted with lignin as

a major component and, to a lesser extent with suberin, the latter assumed to provide

most of the resistance towards the movement of polar substances (Schreiber 1996; Zeier

and Schreiber 1998; Schreiber et al. 1999; Zimmermann et al. 2000). However, it is

usually assumed that CBs are perfect barriers to water and ion movement through the

apoplast (Robards and Robb 1972; Singh and Jacobson 1977; Peterson 1987; Peterson

1988; Enstone et al. 2003). During state II, suberin lamellae are laid down in both

anticlinal and tangential walls. It is thought that suberin lamellae of roots mainly affects

or limits the water flow across the cell-to-cell path. Eventually, cell walls are thickened

during state III, which results in the well-known U-shaped cell walls in the endodermis

(Steudle 2000b; Steudle and Peterson 1998).

In the shorter term, water uptake may be regulated by mechanisms which alter the

physical properties of roots, such as the switching between cellular and apoplastic

pathways (composite-transport model of root; Steudle 2001) or by a gating of water

channels (aquaporins) of root cell membranes (Azaizeh et al. 1992; Frensch et al. 1996;

Henzler et al. 1999; Steudle et al. 1987; Tyerman et al. 1999; Zhu and Steudle 1991).

There could be combinations of pathways in that water may travel within the symplast

for some distance and may then cross the plasma membrane and move into the cell wall

etc. (Steudle 2000b). Switching between pathways helps plant tissues, such as roots to

adjust their hydraulic conductivity according to the water demand from the shoot.

 1.4 The composite transport model of the root

Switching between water pathways may depend on both the forces that drive flows and

on the water permeability (hydraulic conductivity) of components of the pathway.
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Because of the porous nature of the apoplast (no selectivity for solutes or σs ≈ 0), it does

not provide a significant barrier for either water or solutes. It is well known that water

flow through the apoplast is hydraulic in nature, driven by gradients in hydrostatic

pressure (Steudle 2000a; 2000b; Steudle and Peterson 1998). There are also osmotic

water flows in the root cylinder, driven by gradients in osmotic pressure. Even though

osmotic gradients are important to drive water flow across membranes, it has less

impact or negligible effect on water flow through the apoplast, because this structure

does not select or distinguish between water and solutes (as opposed to cell membranes,

cell walls have no selective properties). An important feature of the model is that there

are two parallel pathways present which exhibit a quite different ‘passive selectivity’ as

expressed by their reflection coefficients (σs). To a first approximation, the cell-to-cell

(protoplastic) path is semipermeable, i.e. it exhibits a σs
cc of close to unity. The

apoplastic path, on the other hand having a reflection coefficient of virtually zero (σs
cw

≈ 0). The two pathways interact each other, and the interaction results in phenomena

such as a circulation flow of water and a low overall reflection coefficient of the root

(σsr) (Steudle and Frensch 1996; Steudle 1997; 2000a). This mean that root σsr is

smaller than unity. The overall reflection coefficient of the root (σsr) can be expressed as

the following (Steudle 1993):
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here:

σs
cc, σs

cw = reflection coefficient of cell-to-cell and apoplastic path, respectively

γcc, γcw = fractional contribution of pathways to overall cross sectional area (γcc + γcw =1)

Lpcc and Lpcw = hydraulic conductivity of respective pathways

Lpr = hydraulic conductivity of the root (Lpr = γcc ⋅ Lpcc + γcw ⋅ Lpcw)

Hence, the overall σsr in roots locates in between zero and unity as found for different

herbaceous and woody plants (Steudle et al. 1987; Peterson et al. 1993; Melchior and

Steudle 1993; Rüdinger et al. 1994; Steudle and Heydt 1997; Miyamoto et al. 2001;

Ranathunge et al. 2003). According to the model, at zero transpiration, water uptake

will be driven by osmotic forces (osmotic pressure difference or ∆π between xylem and
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soil solution) across the cell-to-cell path due to the active uptake of solutes by the root.

It will cause a high pressure in the xylem and results for some back flow of solution

along the non-selective apoplastic path (Fig. 4). The presence of apoplastic barriers,

such as CBs in the endo- and exodermis, may reduce backflow of water from the root to

the soil solution providing relatively high resistance.

        

cortex stele

rhizodermis

exodermis
cortical cells

endodermis
xylem vessels

root medium

apoplast
protoplasts

low salt
high
salt

atmospheric
pressure

root pressure

Jv
cc

Jv
cw

Fig. 4 Composite transport model of root (schematical). The root osmotic barrier is composed of cells

(protoplasts) and the apoplast. The apoplastic path may be interrupted by Casparian bands in the endo-

and exodermis. Water and solutes move along two parallel pathways (cell-to-cell and apoplastic routes,

which are denoted by superscripts ‘cc’ and ‘cw’, respectively). The cell-to-cell path has a high selectivity

(reflection coefficient, σsr
cc ≈ 1), and the apoplastic path has a very low selectivity for solutes (σsr

cc ≈ 0).

At low rates of transpiration, this results in a circulation of water in the root (denoted by Jv) and in a low

overall root σsr. The model explains variable root hydraulic conductivity which depends, in part, on the

nature of the driving force.

The hydraulic conductivity of roots depend on the force (osmotic or hydrostatic pressure

gradients) which drives water across roots. In the presence of both, osmotic or

hydrostatic forces, both pathways (apoplastic and cell-to-cell path) will be used with

different intensities. In the presence of a hydrostatic pressure gradient, e.g., generated

during transpiration, both pathways will be used. In this case, the hydraulic conductivity
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of the root is high. In the presence of an osmotic gradient, cell-to-cell transport will

dominate. The hydraulic conductivity of roots should differ depending on the

conditions. The physiological consequence of the composite transport is that water

uptake by root is adjusted according to the water demand from the shoot.

1.5 Problem in rice plants

Rice (Oryza sativa L.) is the most important, staple food crop in Asia, where it provides

35-80% of total calorie uptake. It has been estimated that half the world’s population

subsists wholly or partially on rice. Rice is the only major cereal crop that is primarily

consumed by human directly as harvested (IRRI 1997). About 60% of the rice area is

lowland or irrigated and accounts for 75% of total production. However, it has been

observed water shortage in rice plants showing leaf rolling and wilting symptoms during

day time (midday wilting), even they grow in lowland paddy fields, where water supply

from the wet soil should be no problem. This may cause to reduce the productivity or

rice yield (Hirasawa et al. 1992; 1996; Ishihara and Sato 1987; Jiang et al. 1988). On the

other hand, drought-affected lands with the shortage of irrigation water should be used

to grow rice in order to increase the production for rising Asian population. For that

reason, it is important to breed rice cultivars with greater water uptake rates. Hence, it is

important to find rice cultivars with higher root hydraulic conductivities (Lpr).

1.5.1 Composite transport in rice roots

To address the rice-water-shortage problem, much effort has been put into research

about the regulation of water losses via stomata and how external and internal factors

contribute to the regulation of the “output function”, but, only few research have been

done to study or investigate the “input function”. Usually, it is thought that the water

balance of plant shoots is maintained largely by the regulation of transpiration.

However, there is increasing evidence that the water balance can be also regulated at the

input, i.e. by a variation the capacity of roots to take up water (Brouwer 1954;

Weatherley 1982; Kramer and Boyer 1995; Steudle 2000a; 2000b). This allows for

some flexibility in the response of plants to water shortage according to the needs of

shoots. In rice, limitation of water uptake by roots may be due to the lack of ability to
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adjust the hydraulic conductivity according to the demand from the shoot. As a

consequence of insufficient water supply, tensions may be created in the xylem, which

result in cavitation and in an interruption of the connection between root and shoot.

Measured root hydraulic conductivity (Lpr) of rice with a root pressure probe located

lower than other field crops, such as maize (Miyamoto et al. 2001). Also, rice roots

develop apoplastic barriers in the endo- and exodermis and a sclerenchyma layer, which

may impede the apoplastic component of water flow across the root cylinder (Miyamoto

et al. 2001).

1.5.2 Aerenchyma and the outer part of rice roots

Wetland plants such as paddy rice commonly exposed to hypoxia and anoxia, the partial

and complete depletion of environmental oxygen. To survive plants in such oxygen

depleted root medium or habitat, oxygen should diffuse from shoots to root tips, which

require substantial amount of oxygen because of higher metabolic activities than that of

other plant parts. For this reason, rice plants develop a specialized tissue, aerenchyma,

abundant, large air spaces throughout the plant body, including in roots (Fig. 5).

Aerenchyma in rice roots is a constitutional character (always form during

development). The general pattern of cell death and collapse (lysigeny) during

aerenchyma formation in rice roots is consistent (Justin and Armstrong 1991).

Development of huge aerenchyma in the mid cortex of rice roots caused to separate

stele from the outer part of roots (OPR), which comprises only four cell layers;

outermost rhyzodermis, an exodermis, sclerenchyma fibre cells, and an innermost

unmodified cortical cell layer (Ranathunge et al. 2003; 2004) (Fig. 5).

When diffusing oxygen from basal parts of roots to the tip, it is at risk to lose oxygen

from root to oxygen depleted soil across the OPR. It has been observed that the OPR of

rice roots contain well developed barriers such as CBs and suberin lamellae to prevent

or minimize oxygen loss. This may cause problems for the water and ion uptake, when

the apoplastic passage is blocked by CBs and the cell-to-cell passage is affected by

suberin lamellae.
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Fig. 5 (A) Schematic diagram of a rice root cross-section. Huge air spaces or aerenchyma separates the

stele from the OPR. Spoke-like-structures which are made of remaining cortical cells or cell walls

connect the stele to the OPR. (B) The OPR comprises four cell layers: the outermost rhzodermis (rh), an

exodermis (ex), a fibre or sclerenchyma cells (scl), and an innermost unmodified cortical cell layer (co).

ae = aerenchyma. Bar is 100 µm.

1.6 Aims of the research

Previous research studies of rice roots with two different cultivars (cv. IR64 - lowland

and cv. Azucena - upland), which grow in two different conditions showed that their

hydraulic conductivities (Lpr) or radial water permeabilities were similar but smaller

than that of other cereal crops, i.e. corn (Miyamoto et al. 2001).

(1) To find out the locations of major apoplastic barriers in rice roots and their

relative resistances to the overall root water uptake  (hydraulic conductivity;

Lpr).

Although Miyamoto et al. (2001) suggested that the endodermis of rice roots probably

represents the major resistance/barrier in the system, they could not experimentally

prove it. In this study, we used same rice cultivars (IR64 - lowland, and Azucena -
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upland) to find out relative contribution of barriers [endodermis (internal barrier),

exodermis (external barrier), aerenchyma] to the overall radial water uptake rates. Since

the outer part of the root (OPR) is a well-defined structure, which comprises only four

cell layers in series, i.e. rhizodermis, exodermis, sclerenchyma and unmodified cortical

cell layer, it could be used for experimental purposes, such as to quantify water relation

parameters (hydraulic conductivity, diffusive water permeability, reflection coefficient

etc.) using a new pressure perfusion technique as well as to test ion permeability across

the barriers using a simple gravitational perfusion apparatus.

(2) To quantify the relative contribution of apoplastic and cell-to-cell paths to the

overall radial water flow across the outer part of the root (OPR)

Blocking the apoplastic pores either by China ink particles or by copper ferrocyanide

precipitates and closing the water channels in the cell-to-cell path by HgCl2, the relative

contribution of above paths to the overall radial water flow as well as the effectiveness

of the exodermal CBs as a barrier to the apoplastic water flow could be estimated.

(3) To check the chemical composition of suberin in apoplastic barriers of rice and

corn roots and their effectiveness to limit radial water uptake.

Suberin (mainly hydrophobic aliphatic suberin) is one of the major chemical compound

in roots that may act as an apoplastic barrier to water and ions. To confirm this idea,

total amounts of suberin were determined in rice and corn, and compared with their

radial hydraulic conductivities. Corn was used as a standard to compare with rice.

(4) To test the permeability of endodermal Casparian bands (CBs) for ions in rice

and corn roots.

It is usually assumed and well documented that exo- and endodermal CBs are

perfect apoplastic barriers and their permeability to water and nutrient ions is

“nil” (Robards and Robb 1972; Singh and Jacobson 1977; Peterson 1987). The validity

of this assumption was experimentally checked for above two rice cultivars as well as

for corn, which is grown completely in different conditions and holds a different

anatomical structure.
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This research work can be divided into following sub-sections to investigate above

hypotheses:

I Control of water uptake by rice (Oryza sativa L.): role of the outer part of the

root (Ranathunge  et al. 2003).

II Water permeability and reflection coefficient of the outer part of young rice

roots are differently affected by closure of water channels (aquaporins) or

blockage of apoplastic pores (Ranathunge et al. 2004).

III Blockage of apoplastic bypass-flow of water in rice roots by insoluble salt

precipitates analogous to a Pfeffer cell (Ranathunge et al. 2005).

IV The chemical composition of suberin in apoplastic barriers affects radial

hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64)

and corn (Zea mays L. cv. Helix) (Schreiber et al. 2005).

V A new precipitation technique provides evidence for the permeability of

Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza

sativa L.) (Ranathunge et al. 2005).

VI Apoplastic water transport in roots (Steudle and Ranathunge 2005).
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1.7 Materials and methods

Different methods have been employed for different kind of measurements as shown

below. In addition, in order to combine physiological data with root anatomy or their

modifications, several histochemical studies had been conducted using different staining

techniques.

1.7.1 Pressure chamber and root pressure probe

Two different rice cultivars were used for the experiments (upland cv. Azucena and

lowland cv. IR64). Hydraulic conductivity of whole root systems and excised roots

were measured with a pressure chamber (Fig. 6A) and a root pressure probe (Fig. 6B),

respectively.

Fig. 6 Pressure chamber (A) and root pressure probe (B) for measuring water flow across root systems

and individual roots of young rice plants. (A) The pressure chamber provided the steady-state water flow

across the roots by applying pneumatic pressure to the medium. By using silicone seals, the base of the

main tiller was tightly sealed to the pressure chamber. Cut ends of the remaining tillers were clamped and
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kept in the chamber. With the aid of a syringe, exuded xylem sap was collected in Eppendorf  tubes and

weighted. (B) Excised roots were connected to a root pressure probe. After steady root pressure had been

built up in the system, water flow was induced by either changing the pressure in the probe with the aid of

a metal rod or by changing the osmotic pressure of the medium. During measurements oil/water menisci

in the measuring capillary of the root pressure probe served as points of reference. From the pressure/time

curves obtained, parameters of water and solute flow were calculated.

1.7.1.1 Pressure chamber measurements

Measurement of xylem sap exudation from root systems in the absence of hydrostatic

pressure gradients (osmotic exudation)

In the absence of hydrostatic pressure gradients, differences in osmotic pressure (∆π in

MPa) between the medium (RT⋅Co) and xylem sap (RT⋅Ci) drove the water uptake per

unit area by the root (JVr in m3 m-2 s-1), i.e.:

( ) )14(.oi
srrsrrr CCRTLpLpJv −⋅×=∆⋅×= σπσ

Lpr and σsr represent the root’s hydraulic conductivity and reflection coefficient,

respectively. To calculate Lpr, a value of σsr = 0.4 was used for the reflection coefficient

of nutrient salts in xylem and medium (Ranathunge et al. 2003). More details are given

in Chapter 2.

Measurement of xylem sap exudation from root systems in the presence of hydrostatic

pressure gradients

Pressures in the root chamber were raised in steps of 0.03−0.05 MPa to up to 0.35 MPa

above atmospheric. Exuded xylem sap was collected and weighed. For a given applied

gas pressure (Pgas in MPa), volume exuded from the root system (V in m3) was plotted

against time. Slopes of these relations were calculated and referred to unit root surface

area. In hydrostatic experiments, hydraulic conductivity of root systems (Lpr in m s−1

MPa−1) was calculated from the slopes of JVr plotted against the overall driving forces

(Pgas + σsr ∆π) according ot the following relation:

[ ] )15(.)()( oi
srgasrsrgasrr CCRTPLpPLpJv −⋅+=∆⋅+= σπσ
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1.7.1.2 Root pressure probe measurements

Hydrostatic and osmotic relaxations were performed by either changing the xylem

pressure (moving the metal rod in the probe) or the osmotic pressure of the medium.

Transient responses in pressure were followed which allowed Lpr to be calculated from

rate constants, krw, or half-times of pressure relaxations (T1/2
w) according to Steudle et

al. (1987):

)16(,/)2ln(
2/1
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where ∆Pr/∆Vs (in MPa ⋅ m−3) is the elastic coefficient of the measuring system; Vs

denotes the water volume of the system, and Ar is surface area of the root. The ratio of

∆Pr/∆Vs was measured by inducing step changes in the volume and recording the

resulting changes in root pressure (∆Pr). Test solutions used in osmotic experiments

were prepared by adding either NaCl or ethanol to the root medium. Responses in root

pressure to changes of osmotic pressure of the medium were biphasic. Reflection

coefficients (σsr) of the root for these solutes were calculated using solute phase of the

curve. For more details, see Chapter 2.

1.7.2 Steady-state perfusion of root segments by pressure perfusion technique

Using a pressure perfusion technique, hydraulic and osmotic properties (hydraulic

resistance or conductivity, reflection coefficients, etc.) of the outer part of rice roots

(OPR) or peripheral layers were separated from that of the whole root (Fig. 7).

Perfusion of aerenchyma was conducted with root segments (root tip not intact),

excised at two difeerent zones from the root tip (20-50 mm and 50-100 mm). At a given

pump rate, nutrient solution was pumped into the root segment and the pressure of the

set up increased gradually until a stationary positive pressure was established, where the

volume flow produced by the pump equalled the radial volume flow across the OPR

(Fig. 7B). In a typical steady-state experiment, flow rate was varied step-wise with the

aid of the perfusion pump and resulting stationary pressures were measured. Increasing
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A

B

the pump rate linearly increased steady-state pressure. When plotting pump rate QV in

m3 s-1 vs. steady-state pressure (MPa), a straight line was obtained.

Fig. 7 (A) Pump perfusion setup: A syringe was mounted on a 12 step Braun-Melsungen pump that

produced pump rates between 1.7 × 10-9 and 1.1 × 10-7 mm3⋅s-1. One end of the root segment was used an

inlet. This was fixed to the syringe by a narrow and rigid Teflon tube. The other end was connected to a

pressure probe to measure resulting steady state pressures. (B) Schematic diagram with higher

magnification to show a root segment with its fixing points. At a given pump rate, stationary pressure was

established where the volume flow provided by the pump equalled the radial water/volume flow across

the outer part of the root (OPR).

Since the length and diameter of root segments were known, the hydraulic conductivity

of the outer part (LpOPR) was calculated:
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Here, QV is the pump rate, P the steady state pressure (reference: atmospheric pressure),

and Ar is the surface area of the root segment. Reflection coefficient of the outer part of

rice roots (σsOPR) were estimated adding NaCl (electrolyte) or mannitol (non-electrolyte)

to the external medium, and using the resulted pressure drop in the system. More details

are given in Chapter 2.

1.7.3 Diffusional water permeability across the OPR measured with HDO

Aerenchyma of root segments were perfused by 3 M solution of HDO displacing air.

The root segment was fixed to the pressure perfusion apparatus and held vertically to

allow perfusion of the solution by gravity (Fig 8). Radial water movement from the root

to the medium was near-isobaric (diffusive) to a good approximation and governed by

lateral diffusion of HDO across the OPR. A small pump was employed to mix external

solution to equalise distribution of HDO in external medium and minimise the thickness

of unstirred layers. For more details, see Chapter 3.

Fig. 8 Experimental setup to measure the

diffusional water permeability of the outer

part of rice roots. Open ends of root

segments were fixed to glass capillaries.

Aerenchyma within segments was rapidly

perfused with 3M heavy water (HDO). At

different time intervals, 50 µl of external

solution was taken out using a syringe and

concentration of diffused HDO into the

outer medium was measured with a

freezing point osmometer.
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The amount of the solute HDO that diffused to the outer medium was plotted against

time. Solute flow across the OPR (JsOPR in moles s-1 m-2) was obtained directly from the

slope of this curve divided by the surface area of the root segment. Since external

(diffused to outer medium) and internal (perfused through aerenchyma) HDO

concentrations were known, the driving force or concentration difference between inner

and outer compartments (∆Cs in moles s-1) could be evaluated. The diffusional water

permeability of the OPR (PdOPR in m s-1) was obtained according to:
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1.7.4 Blockage of apoplastic pores and/or water channels (aquaporins) in the

OPR of rice roots

The apoplastic pores (intermicrofibrillar spaces) in the OPR of rice roots were either

partially blocked by China ink particles (see Chapter 3) or clogged by brown copper

ferrocyanide precipitates {Cu[CuFe(CN)6]} analogous to Pfeffer cell (see chapter 4).

Root segments (two different root zones from the tip) were fixed to the pump perfusion

set-up, and aerenchyma was perfused with diluted China ink solution with rather high

flow rates to block the apoplastic pores in the OPR. In precipitation technique,

potassium ferrocyanide was offered on one side of the OPR and copper sulfate on the

other. Salts diffused across the barrier and formed a dense precipitates of copper

ferrocynide in the apoplast. In order to close water channels in the peripheral layers of

rice roots, 50 µM HgCl2 was added to the external medium of the pump perfusion

system for 30 min (see Chapter 3). Following these treatments, water relation

parameters of the OPR, i.e. hydraulic conductivity, reflection coefficient, and diffusive

water permeability were re-measured and compared with the control.

1.7.5 Analyses of chemical composition of apoplastic barriers in rice and corn

roots

Cell walls of rice and corn roots were digested incubating in enzymatic solutions and

separated stele from the peripheral cell layers or outer part of roots under a binocular

microscope using forceps in order to isolate apoplastic barriers, i.e. endodermis and
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exodermis. The amounts of suberin were estimated quantitatively by gas

chromatography and mass spectrometry following the procedures of tranesterification

and depolymerization of cell walls. Amounts of aliphatic and aromatic suberin as well

as their substance classes were quantify in the endodermis and exodermis and referred

either to the dry weight or to the surface area of the root. The amounts of these

apoplastic chemical compounds in roots of rice and corn were compared with their

respective radial water uptake rates or hydraulic conductivities (For more details, see

Chapter 5).

1.7.6 Permeability of Casparian bands (CBs) in corn and rice to ions

Ion permeability across the CBs of corn and rice roots were tested using a precipitation

technique. The test was based on suction of either 100 µM CuSO4 or 200 µM

K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or

transpirational stream (intact seedlings), and subsequent perfusion of xylem of those

root segments with the opposite salt, which resulted in precipitation of insoluble

Hatchett’s brown crystals of copper ferrocyanide (Cu2[Fe(CN)6]). In order to check the

rate of permeabilities of positively charged Cu2+ and negatively charged [Fe(CN)6]4-

ions through the negatively charged cell walls, giant Chara cell wall preparations were

used. More details are given in Chapter 6.

1.7.7 Root anatomical studies

Root anatomical studies were done using different staining techniques i.e., Sudan red

7B and fluorol yellow 088 for suberin lamellae, berberine-aniline blue for Casparian

bands, phloroglucinol for lignin etc. Vitality of root cells were checked with Evan’s

blue and fluorescent dye uranin. For more details, see Chapters 2, 3, 4 and 6.
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1.8 Results and Discussion

1.8.1 Root anatomy: development of aerenchyma, Casparian bands (CBs) and

suberin lamellae in rice roots

There were no visible differences in the anatomy and development between the two

varieties used (upland rice variety, Azucena, and lowland rice variety, IR64). At a

distance of 10-15 mm from the root tip, cortical cells started to collapse and aerenchyma

gradually developed along roots. Fully developed aerenchyma was observed at a

distance of about 100 mm. At distances as short as 20 mm from the tip, suberin lamellae

were observed in the endodermis. At a distance of about 50 mm, depositions of

secondary suberin were laid down on the inner walls of endodermal cells. Thickness of

suberin lamellae in the endodermis increased along roots towards the root base. At a

distance of 100 mm from the tip, fully developed, u-shaped wall thickenings were

detected in the inner walls of endodermis. Even though suberin lamellae in the

exodermis were not as strongly developed as in the endodermis, exodermal

development started fairly close to the tip (30 mm). It matured at about 50 mm. As

typical for most roots, the endodermis started to develop CBs at distances closer to the

tip than the exodermis. In the endodermis, CBs were observed at distances of about 20

mm. Well developed endodermal CBs were found in mature part of roots (100 mm from

tip). No exodermal CBs were detectable at about 20 mm from the tip. Maturation of

exodermis started at a distances of about 30 mm. Well-developed bands were found at

about 50 mm. Highly lignified sclerenchyma was found below the exodermis at about

100 mm. Even at distances of 100 mm from the tip, no suberin could be detected in

sclerenchyma tissue by staining with Sudan Red 7B. Initiation of lateral roots was

observed at around 50-70 mm and 70-90 mm from the tip for IR64 and Azucena,

respectively (see Chapter 2, page 53).
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1.8.2 Comparison of hydrostatic and osmotic Lpr for single roots and root

systems

Fig. 9 Hydrostatic and osmotic Lpr for single roots (measured with a root pressure probe) and whole root

systems (measured with a pressure chamber) in two cultivars used. No significant differences were

observed between IR64 and Azucena (P = 0.05 level).

In rice (at least for the cultivars used in these experiments), the overall radial hydraulic

conductivity was lower than those of other cereal roots (Miyamoto et al. 2001). This has

been interpreted as a major limitation of rice roots to supply water to transpiring leaves.

The present study confirms this conclusion.

1.8.3 Reflection coefficients of rice roots

Average reflection coefficients for electrolyte, NaCl were σsr = 0.18 and 0.16 for IR64

and Azucena, respectively. They were significantly greater than those of ethanol, which

should rapidly permeate through root cell membranes (σsr = 0.04 and 0.08,
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respectively). Those values were significantly smaller than that of other herbaceous or

field crops, i.e. corn, wheat, barley, onion, Phaseolus spp. (Barrowclough et al. 2000;

Steudle et al. 1987; Steudle and Brinckmann 1989; Steudle and Frensch 1989)

indicating a substantial apoplastic bypass flow across the rice root cylinder. More

details are given in Chapter 2.

1.8.4 Hydraulic conductivity of the outer part of rice roots (OPR)

Hydraulic conductivity of the OPR (comprises only four cell layers, including an

exodermis with well developed Casparian bands and suberin lamellae) was measured

for two different root zones from the root tip, i.e. 20-50 mm (immature zone) and 50-

100 (mature zone, where apoplastic barriers have already well developed) using a

pressure perfusion experiment. No significant differences were observed between two

root zones used (P = 0.05 level). By contrast, hydraulic conductivity of the OPR of rice

roots was larger by a factor of 30 than that of the whole root or the endodermis/stele. As

long as flow across the OPR is hydraulic in nature, this means that OPR would not rate

limit water uptake (Ranathunge et al. 2003; see Chapter 2).

Fig. 10 Hydraulic conductivity of the whole root, and the OPR of two different root zones (20-50 and 50-

100 mm from the root tip) in two different rice cultivars. Hydraulic resistance of the OPR was 30-fold

smaller than that of the entire root.
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1.8.5 Diffusive water permeability across the OPR (PdOPR) of rice roots

Vertical perfusion of aerenchyma by near-isobaric heavy water (HDO) was performed

with excised rice root segments at 20-50 or 50-100 mm from the root apex. The

diffusional water permeability of the OPR (PdOPR) significantly decreased along the root

axis from apex to base. The PdOPR was larger by a factor of two to three in immature

(20-50 mm) compared to mature (50-100 mm) root segments (Table 1). Comparison of

bulk and diffusional permeabilities showed that the hydraulic/bulk water permeability

of the OPR (LpOPR or PfOPR) was 600 times larger than the diffusional water

permeability (PdOPR) at 20-50 mm from the apex and 1200-1400 larger at 50-100 mm

from the apex (Table 1). Such big Pf/Pd ratios are expected if the pathway involved a

rather long porous path, i.e. apoplast; this would offer a high diffusional resistance for

HDO, but should be highly permeable in case of a bulk (hydraulic) water flow (see

Chapter 3).

Table 1 Diffusional water permeability (Pd) of the outer part of rice roots, measured by rapidly perfusing

aerenchyma with isobaric water (containing HDO). Measurements were performed for two different

cultivars, IR64 and Azucena and two different distances from the root apex. Values are means ± SD with

the number of measured roots in parenthesis. For both cultivars, PdOPR significantly decreased along the

root from the apex (double-sided, unpaired t-test, P = 0.05). Immature root segments (20–50 mm from

root apex) showed significantly higher PdOPR values than mature segments (50–100 mm from the apex).

There were no significant differences observed for hydraulic/bulk water permeability of the OPR (LpOPR

or PfOPR) for either distance from the root apex (double-sided, unpaired t-test, P = 0.05). Hydraulic water

permeability of the OPR (LpOPR or PfOPR) was two to three orders of magnitude higher than diffusional

water permeability (PdOPR).

Rice cultivar Diffusive water permeability

of the OPR

(PdOPR) × 10-7 m⋅s-1

Hydraulic water permeability

of the OPR

(PfOPR) × 10-7 m⋅s-1

PfOPR /  PdOPR

Ratio

IR64

20-50 mm

50-100 mm

Azucena

20-50 mm

50-100 mm

3.5 ± 0.5 (7)a

1.4 ± 0.8 (6)b

3.0 ± 1.6 (7)a

1.0 ± 0.7 (6)b

2170 ± 683 (10)

1680 ± 255 (10)

1808 ± 703 (10)

1445 ± 417 (10)

 620

1200

 603

1445

  Different superscript letters indicate significant differences at P = 0.05 level



33

Control
0

20

40

60

80

100

120 20-50 mm 
50-100 mm

  HgCl2     China ink Precipitates

(L
p O

PR
 tr

ea
tm

en
t/c

on
tr

ol
) X

 1
00

1.8.6 Blockage of the apoplastic path and/or cell-to-cell path of the OPR

In order to quantify the relative contribution of the radial pathways (apoplastic vs. cell-

to-cell) to the overall water flow across the OPR of rice roots (LpOPR), three types of

experiments were conducted. Apoplastic pores of the OPR were either partially blocked

with China ink particles (see Chapter 3) or clogged with copper ferrocanide precipitates

(see Chapter 4). Whereas, aquaporins or water channels of the OPR were closed with

water channel blocker HgCl2. Relative reduction of the LpOPR in response to these

treatments is shown in figure 11.

Fig. 11 Reduction of LpOPR caused by different treatments (relative). Closure of water channels in the

OPR with 50 µM HgCl2 resulted in a ≈ 10% reduction of LpOPR, whereas, blockage of apoplastic pores

with China ink particles (partial) and copper ferrocyanide precipitates resulted in substantially greater

reductions, ≈ 30%  and ≈ 70%, respectively.

These results suggested proportionately greater apoplastic water flow across the OPR

(on average 66% - 75% of water used extraprotoplastic pathway) compared to cell-to-

cell water flow despite the existence of apoplastic barriers such as Casparian bands,

suberin lamellae in the exodermis, and lignified walls of sclerenchyma or fibre cells.

This was further supported by increment of σsOPR after treatments with apoplastic

blockers. Blockage of apoplastic pores either with China ink particles or with copper
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ferrocyanide precipitates increased σsOPR by 3-fold. These findings agree with earlier

observations of rice roots, which indicated a substantial apoplastic component for NaCl

and PTS (Yadev et al. 1996; Yeo et al. 1987). Nevertheless, it has been shown that the

endodermis represents the major hydraulic barrier, which is due to its strong

suberization (Miyamoto et al. 2001; Ranathunge et al. 2003). Most of the water

channels might be concentrated in the endodermis or the stele, as found for other

species (Schäffner 1998).

1.8.7 Amounts of suberin in apoplastic barriers in rice and corn roots; relates to

their radial water uptake rates

Aliphatic suberin is hydrophobic in nature and thought to be responsible for limiting

water uptake in roots (Schreiber 1996; Schreiber et al. 1999). As a comparison, the

amounts of aliphatic suberin in rice roots (in the outer part of roots as well as in the

central cylinder) was substantially greater than that of maize (in the rhizo-hypodermal

cell walls as well as endodermal cell walls). When comparing zones I (immature) and II

(mature) of rice, there was no pronounced trend of an increase in aliphatic suberin (Fig.

12). In corn, greater amounts of aliphatic suberin were observed in zone II (mature) than

in zone I (immature). For more details, see Chapter 5.

Fig. 12 Total amounts of aliphatic suberin released from both root zones and isolated cell wall samples of

rice [Oryza sativa L. cv. IR64; the outer part of roots (OPR) and central cylinders (CC)], and corn roots

[Zea mays L. cv. Helix; rhizodermal and hypodermal (RHCW) and endodermal cell walls (ECW)] related

to surface areas of the analyzed cell wall samples [µg cm-2]. Means ± SD (n = 3 replicates).
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Nevertheless, this pronounced difference in total amounts of aliphatic suberin in

apoplastic transport barriers in roots could help to explain why hydrostatic Lpr of rice

was significantly lower than that of corn, whereas osmotic Lpr was not significantly

different between both species (Fig. 13).
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Fig. 13 Hydraulic conductivities (Lpr) measured by using hydrostatic (hydrostatic Lpr) and osmotic

(osmotic Lpr) pressure gradients with the end-segments of rice (Oryza sativa L. cv. IR64) and corn roots

(Zea mays L. cv. Helix). In hydrostatic experiments, hydraulic conductivity was measured by changing

the root turgor pressure with the aid of the root pressure probe. In osmotic experiments, relaxations were

induced by changing the osmotic pressure of the external medium. Means ± SD (n = 6 roots). Bars

marked with asterisks indicate a statistically significant difference at 95% confident level (t-test).

But the simple conclusion that water permeability would be reduced as the amount of

suberin is increasing, is hard to justify according to recent results of water permeability

across the outer part of rice roots (LpOPR). The OPR of rice contains a large amounts of

suberin relative to that of corn but is, nevertheless, highly permeable to water.

Obviously analyses of total amounts of suberin deposited in apoplastic barriers and of

their detailed chemical structure are necessary but not the complete pre-requisite to

explain the observed changes in water permeability. The precise molecular and

topographical deposition of suberin in root cell walls has to be known as well. The latter

determines the reduction of porosity and permeability of roots. In order to make barriers
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really watertight, suberin should fill all wall pores (intermicrofibrillar spaces), i.e. it has

to impregnate the wall material (such as filling a sponge with water). In fact,

hydrophobic aliphatic suberin may have problems to fill pores made of rather

hydrophilic material such as cellulose. More details are given in Chapter 5.

1.8.8 Permeability of endodermal Casparian bands (CBs) in corn and rice to ions

Using an insoluble inorganic salt precipitation technique (analogous to Wilhelm

Pfeffer’s copper ferrocyanide artificial semipermeable membrane technique), the

permeability of cell walls and especially of endodermal CBs for ions was tested in

young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction

of either 0.1 mM CuSO4 or 0.2 mM K4[Fe(CN)6] into the root from its medium using a

pump (excised roots) or transpirational flow (intact seedlings), and subsequent perfusion

of xylem of those root segments with the opposite salt, which resulted in precipitation of

insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the

endodermis through the apoplast in both plant species (even though at small rates)

developing brown salt precipitates in cell walls of early metaxylem and on the passage

between CBs and early metaxylem (see pictures in Chapter 6). Hence, at least Cu2+ did

pass the endodermis with the water dragged across it. The results suggested that CBs

were no perfect barrier to apoplastic fluxes, at least for copper ions. In rice, this is in

line with earlier findings of apoplastic passage of ions (Na+) and tracer dye PTS (Yadev

et al. 1996; Yeo et al. 1987). Present findings are further supported by earlier

experimental findings of substantial endodermal apoplastic bypass of Ca2+ in rye (White

et al. 1992), Cl- in citrus (Storey and Walker 1999), as well as of the stress hormone

ABA in corn roots (Freundl et al. 1998; Hose et al. 2000; Schraut et al. 2004). On the

contrary, ferrocyanide ions failed to cross the mature endodermis of both corn and rice

at detectable amounts with the technique (concentration limit: 0.8 µM of apoplastic

copper concentration at a perfusion with 0.2 mM K4[Fe(CN)6]).

At places where lateral roots emerge from primary roots, the continuity of the

endodermis is lost (Peterson et al. 1981). It is, hence, expected that this allows some

leakage of water and solutes such as apoplastic dyes. In this study, dense brown

precipitates were observed around lateral root emergence points for corn and rice, which
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is in line with the earlier observations. These places may act as “open doors” not only

for water and apoplastic tracer dyes but also for ions to move freely though the apoplast

into the xylem (Clarkson 1993; Ranathunge et al. 2005).

Asymmetric development of precipitates (brown precipitates were developed at the side

where ferrocyanide was applied) suggested that the cation, Cu2+, moved faster than the

anion, [Fe(CN)6]4-, through cell walls including CBs. Using Chara cell wall

preparations (“ghost”) as a model system, it was shown that more ferrocyanide ions

retained inside wall-tubes than that of Cu2+, which had a higher permeation rate through

cell walls (see Chapter 6).  The results show that the permeability of CBs to ions is

fairly low though not vanishing. CBs represent no perfect barrier for ions, as is usually

thought. The permeability of CBs may vary depending on growth conditions, which are

known to affect the intensity of formation of bands. More details are given in Chapter 6.
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1.10 Short Summary

For rice, the overall radial hydraulic conductivity (Lpr) was lower than those of

other cereal roots (Miyamoto et al. 2001; Ranathunge et al. 2003). This, together with

the limited extension of root systems, is interpreted as a major limitation of rice roots to

supply water to transpiring leaves. The stele/endodermis, aerenchyma, and the outer

part of roots (OPR) arrange in series and their resistances to the overall radial water

flow are additive. However, the hydraulic resistance of the OPR was smaller by a

factor of 30 than the overall values of root Lpr. Hence, the endodermis rather than

the OPR limits water uptake. It appears that the OPR is constructed to provide a

substantial barrier for oxygen rather than for water. The latter is transported down to

root tips limiting root extension, which resulted to develop small rice root systems. Both

cultivars used here (IR64 and Azucena) developed strong barriers to radial oxygen loss

(ROL). The rates of ROL dramatically decreased along the root and reached values

close to zero in basal parts (Kotula and Steudle unpublished data). If the radial

permeability of oxygen were too high, this would even more limit the root size. The

data from this thesis show for the first time that radial uptake of water by rice roots is

not limited by the OPR. Theoretical estimations suggested that the endodermis

limits the rate of radial water flow and the resistance of the aerenchyma is in

between that of the endodermis and the OPR.

High values of the LpOPR could be either brought about by a large apoplastic component

of water transport or by a high permeability of membranes of the living cells in the OPR

or by both together. If there were a high apoplastic component, this would mean that

Casparian bands (CBs) in the exodermis were unusually permeable to water. In order to

quantify the relative contribution of the apoplastic vs cell-to-cell paths to the overall

LpOPR, apoplastic pores of the OPR were either partially blocked by China ink particles

(50 nm in diameter) or clogged with copper ferrocyanide precipitates. In another

experiment, water channels (aquaporins) of the OPR were blocked with water channel

blocker HgCl2. Resulted LpOPR values after the treatments suggested that

proportionately greater apoplastic water flow across the OPR compared to cell-to-

cell water flow. On average, 66-75% of water used extraprotoplastic path. This



46

finding was further supported by substantial increases of the reflection coefficient of the

OPR (σsOPR) after treatments with apoplastic blockers.

Strongest evidence in favour of a predominant apoplastic water transport came from the

comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic

water permeability (PfOPR) or hydraulic conductivity (LpOPR). The PfOPR was larger by

a factor of 600-1400 than PdOPR. To obtain such huge values of Pf/Pd ratios are

expected if the pathway involved a rather long porous path, i.e. a passage along the

apoplast; this would offer a high diffusional resistance for HDO, but should be highly

permeable in case of a bulk (hydraulic) water flow. Blockage of apoplastic pores with

copper ferrocyanide precipitates significantly affected the bulk rather than the diffusive

water flow and caused a 3-5-fold reduction of the PfOPR/PdOPR ratios. These findings

suggested a prominent apoplastic bypass flow across the OPR of rice.

Copper ferrocyanide precipitation technique with roots of rice and corn showed

that CBs of the exo- and endodermis were not completely impermeable to Cu2+

ions. When offering Cu2+ and Fe(CN)6
4- on different sides, brown copper

ferrocyanide crystals developed on the side where ferrocyanide was applied. This

indicated that positively charged copper ions was moving through the barrier and cell

walls, much faster than ferrocyanide with its four negative charges. There was a

patchiness in the formation of precipitates, which correlated with the maturation of the

exodermis in rice roots. Dense brown precipitates were observed around lateral root

emergence points. These places may act as “open doors” for water and apoplastic

tracer dyes. To some extent and depending on conditions and developmental state

of roots, also ions may move through the apoplast into the xylem and may lead to

increase the apoplastic bypass flow in roots.

Hydrophobic aliphatic suberin is one of the major chemical compound in plant roots

that may act as an apoplastic barrier to water. To confirm this idea, total amounts of

suberin were determined in corn and rice, and compared with their radial hydraulic

conductivities. On average, exodermal cell walls of rice contained 6-fold greater

aliphatic suberin than in corn hypodermis. In endodermal cell walls, amounts were

34-fold greater in rice than that of corn. Substantially higher amounts of suberin
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detected in apoplastic barriers of rice corresponded with substantially lower

hydrostatic Lpr compared to corn. As the OPR of rice is highly porous and fairly

permeable to water, it may argue that this holds true only for the endodermis. The

results imply that some caution is required when discussing the role of suberin in terms

of an efficient transport barrier for water. The simple view that just the amounts of

suberin play the important role may not hold. A more detailed consideration of both the

chemical nature of suberins and of the microstructure of deposits is required, i.e. how

suberin impregnate wall pores. For CBs, the work of Schreiber et al. (1999) indicated

that they contain substantial amounts of lignin (besides suberin), which may allow a

passage of polar solutes and water, at least to some extent and depending developmental

state.
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Abstract

A new pressure-perfusion technique was used to measure hydraulic and osmotic

properties of outer part of roots (OPR) of 30-d-old rice plants (lowland variety: IR64,

and upland variety: Azucena). The OPR comprised rhizodermis, exodermis,

sclerenchyma and one cortical cell layer. The technique involved perfusion of

aerenchyma of segments from two different root zones ( 20-50 mm and 50-100 mm

from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity

of the OPR (LpOPR = 1.2 × 10-6 m s-1 MPa-1) was larger by a factor of 30 than the overall

hydraulic conductivity (Lpr = 4 × 10-8 m s-1 MPa-1) as measured by pressure chamber

and root pressure probe. Low reflection coefficients were obtained for mannitol and

NaCl for the OPR (σsOPR = 0.14 and 0.09, respectively). The diffusional water

permeability (PdOPR) estimated from isobaric flow of heavy water was smaller by three

orders of magnitude than the hydraulic (LpOPR/PfOPR). Although detailed root anatomy

showed well-defined Casparian bands and suberin lamellae in the exodermis, the

findings strongly indicate a predominantly apoplastic water flow in the OPR. The LpOPR

of heat-killed root segments increased by a factor of only two, which is in line with the

conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR

was not limiting the passage of water across the root cylinder. Estimations of the

hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the

water flow, although the aerenchyma may contribute to the overall resistance. The

resistance of the aerenchyma was relatively low, because mono-layered cortical septa

crossing the aerenchyma (‘spokes’) short-circuited the air space between the stele and

the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water

permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to

medium are also low. It is concluded that in rice roots, water uptake and oxygen

retention are optimized in a way that hydraulic water flow can be kept high in the

presence of a low efflux of oxygen which is diffusional in nature.

Keywords Aerenchyma ⋅ Apoplastic transport ⋅ Exodermis ⋅ Hydraulic conductivity ⋅

Rice roots ⋅ Water transport
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Introduction

Usually, it is thought that the water balance of plant shoots is maintained largely by the

regulation of transpiration. Much is known about the regulation of water losses via

stomata and how external and internal factors contribute to the regulation of the “output

function”. Negative effects on water status lead to a closure of stomata. Among other

things, this involves the action of the stress hormone abscisic acid (ABA). However,

there is increasing evidence that the water balance can be also regulated at the input, i.e.

by a variation of the capacity of roots to take up water (Brouwer 1954; Weatherley

1982; Kramer and Boyer 1995; Steudle 2000a, 2000b). In fact, the “input function” may

be as important as the output. Water uptake by roots has been shown to be variable for

several reasons. In the longer term (days, weeks), the capacity for water uptake is

related to root growth (i.e. increases in root-to-shoot ratio), or to changes in root

morphology and structure (e.g. suberization of roots). In the shorter term (< day), water

uptake may be regulated by mechanisms which alter the physical properties of roots,

such as the switching between cellular and apoplastic pathways (composite-transport

model of root; Steudle 2001) or by a gating of water channels (aquaporins) of root cells

which may change in a diurnal rhythm (Henzler et al. 1999; Tyerman et al. 1999).

Switching of water pathways may depend on both the forces that drive flows and on the

water permeability (hydraulic conductivity) of components of the pathway. This allows

for some flexibility in the response of plants to water shortage according to the needs of

shoots.

For rice, water shortage may occur even when plants are growing in paddy fields

(Hirasawa et al. 1992). This may be due to a limitation on water uptake by rice roots,

which lack the ability to adjust the hydraulic conductivity according to the demand from

the shoot (Miyamoto et al. 2001). This is plausible because root systems of rice,

growing in the field are usually small. Also, rice roots develop apoplastic barriers in the

endo- and exodermis and a sclerenchyma layer which may impede the apoplastic

component of water flow across the root cylinder (Clark and Harris 1981; Miyamoto et

al. 2001). The aerenchyma may represent an additional barrier. As a consequence of

insufficient water supply, tensions may be created in the xylem which result in

cavitation and in an interruption of the connection between root and shoot. Miyamoto et
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al. (2001) showed that the hydraulic conductivity (Lpr) of rice roots is rather low in

comparison to other species (e.g. maize). They explained this in terms of a composite

transport model, which was also employed to interpret the lack of variability in root Lpr.

According to Miyamoto et al. (2001), the reason for the lack of flexibility of rice roots

to adjust to demands from the shoot was the fact that there was no or only a small

ability to switch between pathways, compared to other plants. Miyamoto et al. (2001)

measured overall root hydraulic conductivities, but could not quantify the contribution

of different parts or tissues of roots to the overall radial water flow (Lpr). Although they

concluded that the endodermis probably represented the most important resistance in the

system, direct evidence was lacking because they were unable to measure cell Lp to get

an idea about the trans-membrane component of water flow.

The present paper extends the work of Miyamoto et al. (2001) making use of a

perfusion technique to separate the hydraulic and osmotic properties (hydraulic

resistance or conductivity, reflection coefficients, etc.) of the OPR from that of the

whole root. We conclude that the OPR represents a surprisingly low resistance to

hydraulic (viscous) water flow. Under these conditions, water flow across the OPR must

have a strong apoplastic component despite the presence of a suberized exodermis and a

thick layer of sclerenchyma cells. It appears that the resistance of the endodermis/stele

is the largest component in the system, that of the aerenchyma is intermediate and that

of the OPR the least. The OPR was found to have a very low diffusional water

permeability. This is interesting as well. Because the flow of oxygen across the OPR is

diffusional in nature, it may suggest that the permeability of the OPR to oxygen is also

low. Overall, this may point to an ability of roots to retain oxygen in the presence of a

high capacity to take up water. This is advantageous to the plant because oxygen has to

be transported along the root without excessive losses to the medium.



55

Materials and methods

Plant material and growth conditions

Rice seedlings (Oryza sativa L. cv. Azucena and IR64 from the International Rice

Research Institute, Manila, Philippines) were grown in climatic chambers as detailed

previously (Miyamoto et al. 2001). The aerated hydroponic nutrient solution contained

0.09 mM (NH4)2SO4, 0.05 mM KH2PO4, 0.05 mM KNO3, 0.03 mM K2SO4, 0.06 mM

Ca(NO3)2, 0.07 mM MgSO4, 0.11 mM Fe-EDTA, 4.6 µM H3BO3, 1.8 µM MnSO4, 0.3

µM ZnSO4, 0.3 µM CuSO4. The osmotic concentration was 3 mM, which is equivalent

to an osmotic pressure of 0.0075 MPa, and the pH was 5.5-6.0. Plants used in

experiments were grown for 31−40 d. Overall, the upland variety Azucena grew

somewhat faster in hydroponics than the lowland variety, IR64. When used, roots of

IR64 from hydroponic culture were 290-360 mm in length. Overall shoot length was

330-350 mm (8th to11th leaf emergence). Azucena developed 500-555 mm roots and

shoot height was 480-515 mm (8th - 11th leaf emergence). Diameters of adventitious

roots for IR64 and Azucena were up to 0.9 mm and 1.2 mm, respectively. Diameters of

the stele for IR64 and Azucena were up to 290 µm and 370 µm, respectively.

Root anatomy and surface area of root systems

Freehand cross−sections were prepared from adventitious roots. Cross sections were

taken at the following distances from the root tip: 10, 20, 30, 50, 80, 100, 150, 200, and

250 mm. Sections were stained for 1.5 h with Sudan Red 7B at room temperature

(Brundrett et al. 1991). Sections were viewed using an optical microscope (DIALUX 22

EB, Leitz, Germany). For photographs, Kodak Elite 64 ASA film was used. To check

for Casparian bands, sections were stained for 1 h with 0.1% berberine hemisulfate and

for another hour with 0.5% aniline blue (w/v, Brundrett et al. 1988). Sections were

viewed under an epifluorescence microscope using an ultraviolet filter set (excitation

filter BP 365, dichroitic mirror FT 395, barrier filter LP 397; Zeiss, Oberkochen,

Germany). For photographs, Kodak Elite 200 ASA film was used. Surface areas of root

systems were determined using an image−analyzing system based on a video camera
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and software (image analysis; Skye Instruments, Llandrindod Wells, UK) as detailed

previously (Miyamoto et al. 2001). Surface areas of root systems for IR64 and Azucena

ranged between 1.8 and 3.0 × 10−2 m2 and 2.3 and 6.8 × 10−2 m2, respectively.

Pressure chamber measurements

Measurement of xylem sap exudation from root systems in the absence of

hydrostatic pressure gradients (osmotic exudation)

The procedures used in these experiments have been described in detail in the previous

paper (Miyamoto et al. 2001). Before starting these measurements, shoots were cut off

using a razor blade at distances of 40−70 mm from the base. All tillers except the main

stem were closed using clamps. Xylem sap exuding from the main stem was collected,

transferred to Eppendorf tubes, and weighed. In the absence of hydrostatic pressure

gradients, differences in osmotic pressure (∆π in MPa) between the medium (RT⋅Co)

and xylem sap (RT⋅Ci) drove the water uptake per unit area by the root (JVr in m3 m-2 s-

1), i.e.:

( ) )1(.oi
srrsrrr CCRTLpLpJv −⋅×=∆⋅×= σπσ

Lpr and σsr represent the root’s hydraulic conductivity and reflection coefficient,

respectively. To calculate Lpr, a value of σsr = 0.4 was used for the reflection coefficient

of nutrient salts in xylem and medium (Miyamoto et al. 2001). Osmotic concentrations

of the medium and of the xylem sap were measured using a freezing−point depression

osmometer (Osmomat 030; Gonotec, Berlin, Germany).

Measurement of xylem sap exudation from root systems in the presence of

hydrostatic pressure gradients

Plants used for measuring osmotic water flow were also employed to measure hydraulic

conductivity of root systems in the presence of hydrostatic pressure gradients

(Miyamoto et al. 2001). In order to induce water flows, pressures in the root chamber

were raised in steps of 0.03−0.05 MPa to up to 0.35 MPa above atmospheric. Exuded
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xylem sap was collected and weighed. For a given applied gas pressure (Pgas in MPa),

volume exuded from the root system (V in m3) was plotted against time (not shown).

Slopes of these relations were calculated and referred to unit root surface area.

Hydraulic conductivity of root systems (Lpr in m s−1 MPa−1 ) was calculated from the

slopes of JVr plotted against the overall driving forces (Pgas + σsr ∆π). Alternatively, Lpr

was determined from plots of JVr against Pgas in the range of high pressures, where the

contribution of the osmotic component of the driving force was small due to dilution

effects. Slopes of the plots were non-linear in the range of low pressures, i.e. root Lpr

depended on the magnitude of water flow as found for other species (Fiscus, 1975;

Rüdinger et al. 1994).

Root pressure probe measurements

Root pressure probe measurements were carried out as described previously (e.g.

Steudle et al. 1987; Steudle and Frensch 1989). Using cylindrical seals prepared from

liquid silicone material (Xantopren; Bayer, Leverkusen, Germany), excised end

segments of individual roots (i.e. tips intact) were tightly connected to a root pressure

probe. Segments had lengths of 150-200 mm and diameters of 0.8−1.2 mm for Azucena

or 0.6−1.0 mm for IR64. Usually, it took 5–12 h to establish stable root pressures.

Hydrostatic and osmotic relaxations were performed by either changing the xylem

pressure (moving the metal rod in the probe) or the osmotic pressure of the medium.

Transient responses in pressure were followed which allowed  Lpr to be calculated from

rate constants, krw, or half-times of pressure relaxations (T1/2
w) according to Steudle et

al. (1987):

)2(,/)2ln(
2/1

rsrrwrw LpVPATk ⋅∆∆⋅==

where ∆Pr/∆Vs (in MPa m−3) is the elastic coefficient of the measuring system; Vs

denotes the water volume of the system, and Ar is surface area of the root. The ratio of

∆Pr/∆Vs was measured by inducing step changes in the volume and recording the

resulting changes in root pressure (∆Pr). Surface areas were calculated from the lengths

and diameters of roots. Test solutions used in osmotic experiments were prepared by



58

adding either NaCl or ethanol to the root medium. Osmotic pressures of added solutes

were 0.13 MPa (50 mOsmol⋅kg-1) and 0.38 MPa (150 mOsmol kg-1), respectively.

Responses in root pressure to changes of osmotic pressure of the medium were biphasic.

There was a rapid water phase (water efflux or influx) followed by a slower solute

phase (water dragged by solute diffusion). From the solute phase, the permeability

coefficient for the given solute (Psr in m s−1) was calculated according to Steudle et al.

(1987):

)3(,)2ln(
2/1 x
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where ksr is the rate constant of permeation of a given solute (NaCl, ethanol) and Vx the

volume of xylem. Vx was 1% of root volume (Miyamoto et al. 2001). Root reflection

coefficients (σsr) were calculated using the following equation (Steudle et al. 1987):

( ) ( ) )4(.exp min
min tkPP

sr
rro
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Here, Pro is the original steady-state root pressure at the time when osmotic pressure

was changed and Prmin, the minimum root pressure according to water efflux. tmin is the

time required to reach the minimum (Prmin). Cutting experiments were conducted to

validate the readings of the root pressure probe at the end of each root pressure probe

experiment.

Steady state of perfusion of the outer part of root segments (OPR)

Perfusion of the OPR of segments (root tip not intact), including rhizodermis,

exodermis, sclerenchyma and another cortical cell layer (Fig. 2), was conducted with

root segments excised at two distances from the root tip (20-50 and 50-100 mm). At 20-

50 mm, aerenchyma was not fully developed, but at 50-100 mm it was. Aerated nutrient

solution was perfused through the aerenchyma, thus replacing the air with nutrient

solution. Then one end of the section was used as an inlet while the other end was

connected to a pressure probe, so that solution within  the root was under pressure and,

therefore flowed outwards across the OPR. A syringe was mounted on a high precision
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12-step Braun-Melsungen pump that produced defined pumping rates between 1.7×10-9

and 1.1×10-7 mm3 s -1. In the set-up shown in Fig. 1a, perfusion was performed from the

inlet side of the root segment, which was fixed to the syringe by a narrow, rigid Teflon

tube (inner diameter: 1.5 mm). The resulting steady-state pressure was measured using a

pressure probe as a manometer, which was fixed to the other end (outlet) of the root

segment. Nutrient solution was pumped into the root segment at a given pump rate and

the pressure increased gradually until a stationary pressure was established where the

volume flow produced by the pump equalled the radial volume flow across the OPR

(Fig. 1b).

Measurements required that root segments be tightly connected to the glass capillaries

(inner diameter: 1.3 mm). A polyacrylamide glue (UHU, Bühl, Germany) was used

which allowed connection of even wet tissue to glass. To make the seal mechanically

rigid, the glue was superposed with a molten mixture of beeswax-collophony (1:3; w/w;

Zimmermann and Steudle 1975). To test the tightness of the seal, two types of

experiments were performed. In the first type, aerenchyma was perfused with nutrient

solution to which the apoplastic fluorescent dye trisodium, 3-hydroxy-5,8,10-pyrene

trisulfonate (PTS: Bayer AG, Leverkusen, Germany) was added at a concentration of

0.02% (w/v). Under the microscope, leakages could be detected with UV light, looking

for fluorescence that occurred at leaks. In the second type of experiment, small leaks

were created by puncturing holes into the OPR of some root segments using a cell

pressure probe (tip diameter: 5 µm), and following the decrease in steady-state

pressures. Knowing the diameter of the tip of the needle, the size of the leak could be

estimated, thus, estimating an upper limit of the overall leakage which could have been

still present and relating this to the overall hydraulic conductance of OPR (see

Discussion).

In a typical steady-state experiment, flow rate was varied step-wise with the aid of the

perfusion pump and resulting stationary pressures were measured. Since the internal

volume of the system (water volume of syringe, tube, and aerenchyma) was quite large

(high damping), adjustment in steady-state (stationary) pressure required rather long

time intervals of about 1-2 h, although the hydraulic conductance was low. Increasing

the pump rate linearly increased the steady-state pressure. When plotting pump rate QV
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in m3/s vs. steady-state pressure (MPa), a straight line was obtained. Since the inner part

of the root (stele) did not contribute to the results, the slope was related to the

conductance of the outer part of the root (see Fig. 3). Since the length and diameter of

root segments were known as well, the hydraulic conductivity of the outer part (LpOPR)

was calculated:

)5(.rOPRv APLpQ ××=

Here, QV is the pump rate, P the steady state pressure (reference: atmospheric pressure),

and Ar is the surface area of the root segment. To avoid anaerobic conditions, aerated

nutrient solution was used for perfusion. Also, root segments were placed in a small

chamber and air-saturated nutrient solution was continuously circulated around to allow

saturation with oxygen throughout the experiment.

Fig. 1 a Pump perfusion set-up: A syringe was mounted on a 12 step Braun-Melsungen pump that

produced pumping rates between 1.7 × 10-9 and 1.1 × 10-7 mm3 s-1. Perfusion was performed from one

side of the root segment, which was fixed to the syringe by a narrow and rigid Teflon tube. The other end

was connected to a pressure probe to measure resulting steady-state pressures. b Schematic diagram to

show radial water flows across the outer part of root segment during pressure perfusion.
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In some experiments, steady-state pressure was first increased in steps and then

decreased again to test for reproducibility and for hysteresis effects due to changes in

root segments (data not shown). To characterize root anatomy, especially the anatomy

and developmental state of the OPR, a few segments were sectioned following a

pressure-perfusion experiment, stained (see above) and viewed under a microscope.

Since perfusion experiments lasted for 10-15 h, it was necessary to test for the viability

of root cells; Evans blue stain was used (Fischer et al. 1985).

Osmotic experiments with perfused root segments

The experimental set-up allowed estimation of reflection coefficients of the OPR by

measuring the changes in steady–state pressure caused by the addition of osmotic

solutes to the outer medium at a concentration of about 20 mM (0.05 MPa of osmotic

pressure). A non-electrolyte (mannitol) and an electrolyte (NaCl), which have a σsOPR of

virtually unity for plant cell membranes, were used as osmotica. The procedure assumed

that LpOPR values for the osmotic and hydrostatic type of experiments were equal.

Steam treatment

At the end of the pump perfusion experiment, root segments taken at either 20-50 mm,

or 50-100 mm from the root tip were exposed to steam for 20-30 s to kill the cells

(rhizodermis and cortical cells) at the OPR of the segments. New steady state pressures

were measured with respect to flow rates of the perfusion pump. The hydraulic

conductivity of the outer part of the root (LpOPR) was calculated following the steam

treatment. Changes in steady-state pressure were also measured by adding the non-

electrolyte mannitol at a concentration of 20 mM. Hence, reflection coefficients of the

OPR of steamed root segments  (σsOPR) were estimated.
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Results

Root anatomy: development of aerenchyma, Casparian bands (CBs) and suberin

lamellae

There were no visible differences in the anatomy and development between the two

cultivars used (upland rice, Azucena, and lowland rice, IR64). Therefore, photographs

taken from cross-sections of adventitious roots are shown only for IR64. At a distance

of 10-15 mm from the root tip, cortical cells started to collapse and aerenchyma

gradually developed along roots. Fully developed aerenchyma was observed at a

distance of about 100 mm (Fig. 2a-c). Aerenchyma was located in the central cortex

separating the inner part of the root from the outer (OPR). Well-defined OPR contained

only four cell layers (Fig. 2d-f). Rhizodermis was the outermost layer, which

surrounded an exodermis (hypodermis with CBs). A single layer of dead sclerenchyma

fibre tissue was laid down below the exodermis (Figs. 2e, f; Clark and Harris 1981). An

innermost unmodified cortical cell layer was adjacent to large air lacunae in the root.

These were separated from each other by radial, monolayered walls, which appeared as

spokes in cross-sections (Fig. 2c). At distances as short as 20 mm from the tip, suberin

lamellae were observed in the endodermis. At a distance of about 50 mm, depositions of

secondary suberin were laid down on the inner walls of endodermal cells. The thickness

of suberin lamellae in the endodermis increased along roots towards the root base (not

shown). At a distance of 100 mm from the tip, fully developed, u-shaped wall

thickenings were detected in the inner walls of endodermis (Fig. 2c). Even though

suberin lamellae in the exodermis were not as strongly developed as in the endodermis,

exodermal development started fairly close to the tip (30 mm). Slightly developed,

exodermal suberin lamellae were observed somewhat later than in the endodermis (at

about 30 mm), and these matured at about 50 mm (Sudan Red 7B staining; Fig. 2e). As

typical for most roots, the endodermis started to develop CBs at distances closer to the

tip than the exodermis. In the endodermis, CBs were observed at distances of about 20

mm (not shown). Well-developed endodermal CBs were found in the mature part of

roots (100 mm from tip). No exodermal CBs were detectable at about 20 mm from the

tip (berberine aniline blue; Fig. 2g). Maturation of exodermis started at a distances of

about 30 mm (Fig. 2h). Well-developed bands were found at about 50 mm (Fig. 2i).
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Fig. 2a–c Sections of roots of 30-day-old rice (Oryza sativa) plants. Development of aerenchyma at 20

(a), 50 (b) and 100 mm (c) from the tip. Freehand cross-sections were stained with Sudan Red 7B. d–f

The outer part of roots (OPR) contained four cell layers (rhizodermis, exodermis, sclerenchyma and one

cortical cell layer). Freehand cross-sections taken at 20 (d), 50 (e) and 100 mm (f) from the root tip were

stained with Sudan Red 7B. Arrowheads show suberin lamellae in exodermis. g-j Freehand cross-section

taken at 20 (g), 30 (h), 50 (i) and 100 mm (j) from the root tip were stained with berberine aniline blue
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(fluorescent dye). Arrowheads show Casparian bands in exodermis. k-m Freehand cross-sections (k) and

longitudinal sections (l, m), taken 50 mm from the root tip, stained with Evans Blue to check for the

viability of cells of the root segments after finishing the pump perfusion experiment. In killed cells, nuclei

were stained blue. n, o An experiment using the apoplastic fluorescent dye, trisodium, 3-hydroxy-5,8,10-

pyrene trisulfonate (PTS) to check for leaks at the points where root segments were fixed to glass

capillaries. Segments were viewed under UV light. Arrowhead shows PTS flux coming out after

puncturing the root with a 5-µm-diameter micro capillary. ae Aerenchyma, co cortical cells, ex

exodermis, fx fixing points of the root segment, rh rhizodermis, scl sclerenchyma fibre tissue. Bars = 90

µm (a-j), 40 µm (k-m), 20 mm (n, o).

Highly lignified sclerenchyma was found below the exodermis at about 100 mm. Even

at a distance of 100 mm from the tip, no suberin could be detected in sclerenchyma

tissue by staining with Sudan Red 7B. Initiation of lateral roots was observed at around

50-70 mm and 70-90 mm from the tip for IR64 and Azucena, respectively. Lateral roots

were fairly rare for those root segments. More root hairs were observed in the mature

(50-100 mm) than in the immature part (20–50 mm).

Steady-state hydraulic and osmotic exudation experiments with root systems

At a given air pressure applied to the external nutrient solution (Pgas), exuded volumes of

xylem sap (V) increased linearly with time, t. Water flows, JVr (volume per unit time and

surface area) obtained from these graphs (not shown) were then plotted against both the

gas pressure applied to the root system (Pgas) and the overall driving force, P = Pgas +

σsr. ∆π, whereby the reflection coefficient of nutrient salts was assumed to be 0.4 (also

not shown; Miyamoto et al. 2001). Hydraulic conductivities of whole root systems were

obtained as slopes of pressure/flow curves. Mean Lpr values (±SD) of IR64 and

Azucena were (4.0 ± 1.7) × 10-8 (n = 5 roots) and (2.8 ± 1.3) × 10-8  m s-1 MPa-1 (n = 5

roots), respectively (Table 1). There were no significant differences between varieties

(t-test; P = 0.05). Osmotic exudation rate and osmotic concentration of xylem sap were

measured at an external concentration of 0.0075 MPa. Osmotic Lpr was calculated as

the osmotic exudation rate per unit surface area of root system (Ar) and driving force

(difference in osmotic pressure between xylem sap and medium times reflection

coefficient of solutes). Mean osmotic Lpr  values (±SD) of IR64 and Azucena were (3.1

± 0.9) × 10-8 (n = 5 roots) and (2.4 ± 1.1) × 10-8  m s-1 MPa-1 (n = 5 roots), respectively
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(Table 1). As for the hydrostatic Lpr, there were also no significant differences in

osmotic Lpr  values, between the cultivars (t-test; P = 0.05). Osmotic Lpr and hydrostatic

Lpr values were in the same range.

Table 1 Hydraulic conductivity (Lpr) of individual rice (Oryza sativa) roots and whole root systems,

which were grown in hydroponics with bubbled air for 31–40 days, as measured by the root pressure

probe (single roots) and pressure chamber techniques (root systems). With both techniques, root Lpr was

measured in response to changes in root or chamber pressure or to changes in the osmotic pressure of the

outer medium (osmoticum: 50 mOsmol/kg NaCl; see Material and Methods). Mean values of hydrostatic

and osmotic Lpr were calculated for individual roots and root systems. Number of roots measured are

given in parentheses. There were no significant differences of hydrostatic Lpr values for individual roots

and whole root systems. Lpr values of the cultivars Azucena and IR64 were in the same range, but the

means of hydrostatic Lpr of Azucena and IR64 for single roots were significantly higher than that of

osmotic Lpr (t-test, P = 0.05) [ratio: Lpr(hydrostatic)/Lpr(osmotic) = 3.5]. Overall, values obtained in this

paper were similar to those of Miyamoto et al. (2001), except osmotic Lpr for individual roots.

Rice variety Hydraulic conductivity of Hydraulic conductivity of             Reference
individual roots whole root system
Lpr × 10-8 [m . s-1 . MPa-1 ] Lpr × 10-8 [m . s-1 . MPa-1 ]

Hydrostatic Osmotic/NaCl Hydrostatic Osmotic

IR64 (lowland) 3.8 ± 0.6 (7)a 1.1 ± 0.5 (6)b 4.0 ± 1.7 (5) 3.1 ± 0.9 (5)     This paper
Azucena (upland) 4.0 ± 1.2 (7)a 1.1 ± 0.4 (6)b 2.8 ± 1.3 (5) 2.4 ± 1.1 (5)

IR64 5.0 ± 2.5 (8) 9.2 ± 3.0 (6) 5.6 ± 2.7 (18) 4.2 ± 2.5 (18)   Miyamoto
Azucena 4.7 ± 1.0 (10) 4.0 ± 2.5 (6) 6.3 ± 3.1 (14) 5.5 ± 3.7 (14)   et al. 2001

Different letters indicate significant differences at P = 0.05 level

Root pressure probe measurements with single roots: transient water flow

Hydrostatic Lpr for single roots as obtained with the root pressure probe were (3.8 ± 0.6)

× 10-8 (n = 7 roots) and (4.0 ± 1.2) × 10-8 m s-1 MPa-1 (n = 7 roots) for IR64 and

Azucena, respectively. These values were similar to those obtained in steady-state

experiments using the pressure chamber. From the water phase of biphasic osmotic

relaxations, osmotic Lpr was calculated. Osmotic Lpr of IR64 and Azucena were (1.1 ±

0.5) × 10-8 and (1.1 ± 0.4) × 10-8 m s-1 MPa-1 (n = 6 roots for each; Table 1). Hence,

hydrostatic Lpr was bigger than the osmotic Lpr by a factor of 3.6 (significant; t-test; P =

0.05). Even though this ratio was bigger than unity, it is significantly lower than that of
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corn (Zimmermann and Steudle 1998). The osmotic pressure of the medium was

changed by adding solutes like NaCl and ethanol. Average reflection coefficients for

NaCl were σsr = 0.18 and 0.16 for IR64 and Azucena, respectively. They were

significantly greater than those of ethanol, which should rapidly permeate root cell

membranes (σsr = 0.04 and 0.08, respectively; see Table 4).

Pressure perfusion of the outer part of root segments (OPR)

Fig. 3 Effect of heat-killing on the hydraulic conductivity of the OPR (cultivar IR64, 50–100 mm from

the tip) of rice. Pump rates (QV) plotted against steady-state pressures (P) of the root segment (control and

heat-killed). The slope increased after killing the root with steam for 20–30 s. Hydraulic conductivities of

the OPR were obtained from slopes of plots,  dividing by the surface area of the root segment (Ar = 1.1 ×

10-4 m2). In the example shown, LpOPR increased by 32% during heat-killing. This increase was much

smaller than would be expected if membranes (i.e. the cell-to-cell passage across the OPR) were rate-

limiting.

Root segments that were fixed to the pressure perfusion set up (Fig. 1a) took at least 2-3

h to build up stable pressure. Increasing the pump rate linearly increased steady-state

pressure. Plots of pump rates (QV in m3/s) vs. steady-state pressure (P in MPa) yielded a

straight line (Fig. 3).
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Table 2 Hydraulic conductivity of the outer part of rice roots (LpOPR), grown in hydroponic culture with

bubbled air for 31–40 days, measured by the pump perfusion technique (Fig. 1a). LpOPR values are given

for two different distances from the root tip for IR64 and Azucena separately. LpOPR values are also given

for excised root segments, treated with hot steam for 20-30 s to kill some of the living cells in the OPR.

Values are given for individual root segments, which were then averaged (means ± SD, n = number of

segments). There were no significant differences for LpOPR values along the root for either cultivar. Killing

the segments with hot steam affected LpOPR of immature part (20-50 mm) more significantly than  the

mature part (50-100 mm) (t-test, P = 0.05).  Ratios between the LpOPR of heat-killed roots and that of the

control were 2.6 ± 0.7 and 1.8 ± 0.3 for the immature part (20-50 mm) for IR64 and Azucena, respectively,

and 1.5 ± 0.4 and 1.4 ± 0.1 for the mature part (50-100 mm). Both ratios were significantly different from

unity and from each other ( t-test, P = 0.05).

Root Hydraulic conductivity of the OPR           LpOPR heat-killed/
number      LpOPR (10-6 m s-1 MPa-1)           LpOPR control
_____________________________________________________________________________________

     Control roots Heat-killed roots
     20-50 mm    50-100 mm 20-50 mm    50-100mm   20-50 mm    50-100 mm

__________________________________________________________________________________________________________
IR64 (lowland)
1 1.6        1.2 2.9         2.4            1.8 2.0
2 1.4        1.1 3.5         1.4            2.5 1.3
3 1.0        1.2 2.8         1.4            2.8 1.2
4 0.8        0.8 2.9         1.5            3.6 1.9
5 0.8        0.7 1.9         0.9            2.4 1.3
6 1.9        1.3   -           -        -   -
7 1.8        1.5   -           -        -   -
8 2.1        1.3   -           -        -   -
9 2.0        1.2   -           -        -   -
10 1.3        1.2   -           -        -   -
Mean 1.5a        1.1a 2.8b         1.6a      2.6 1.5
SD 0.5        0.3 0.6         0.4            0.7 0.4
n 10        10   5           5        5   5
__________________________________________________________________________________________________________
Azucena (upland)
1 1.4        1.1   -         1.5               - 1.4
2 0.7        0.6 1.6           -       2.3   -
3 0.9        0.8   -           -         -   -
4 2.0        1.5 3.0         2.1              1.5 1.4
5 1.9        1.0 3.4           -       1.8   -
6 0.7        0.3 1.3         0.4              1.9 1.3
7 1.9        1.4 2.9         1.9              1.5 1.4
8 0.8        0.4   -           -         -   -
9 1.0        0.7   -         1.0                 - 1.4
10 1.2        0.8   -         1.3                       - 1.6
Mean 1.3a        0.9a 2.5b         1.4a        1.8 1.4
SD 0.5        0.4 1.0         0.6              0.3 0.1
n 10        10   5           6          5   6

Different letters indicate significant differences at P = 0.05 level.
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When stable pressures were attained after each step change of QV, radial volume flow

across the OPR equalled the volume flow from the perfusion pump. No hysteresis was

observed in QV(P) curves, i.e. when pressures (pump rates) were increased, the same

results were obtained as during decreases, and LpOPR remained constant for the rather

long time intervals required for an experiment with a given root segment (data not

shown).

On average, LpOPR was 30 times larger than the overall radial hydraulic conductivity of

rice roots. With neither cultivar was there any significant difference in LpOPR along the

root axis over the first 100 mm (Table 2). Mean LpOPR values for root segments 20-50

mm from the tip for IR64 and Azucena were (1.5 ± 0.5) × 10-6 m s-1 MPa-1 and (1.3 ±

0.5) × 10-6 m s-1 MPa-1, respectively (n = 10 roots each). Values were (1.1 ± 0.3) × 10-6

m s-1 MPa-1 and (0.9 ± 0.4) × 10-6 m s-1 MPa-1 for root segments 50-100 mm from the

tip for IR64 and Azucena, respectively (n = 10 roots each).

When root cell membranes were damaged by treatment with steam, LpOPR values

increased significantly in both rice varieties and for both distances behind the tip, except

for Azucena at 50-100 mm (Table 2). However, in the latter case, there was also a

tendency for an increase of LpOPR. Mean LpOPR for heat-killed root segments 20-50 mm

from root tip for IR64 and Azucena were (2.8 ± 0.6) × 10-6 m s-1 MPa-1 and (2.5 ± 1.0) ×

10-6 m s-1 MPa-1, respectively (n = 6 and 5 roots each). Values of LpOPR for root

segments taken 50-100 mm behind the tip were (1.6 ± 0.4) × 10-6 m s-1 MPa-1 and (1.4 ±

0.6) × 10-6 m s-1 MPa-1, respectively (n = 5 and 6 roots each).  Heat-killed segments

with immature parts (20-50 mm) showed an increase of 87 and 92% of  LpOPR for the

two varieties. It was around 45 (IR 64) and 55% (Azucena) for the mature part (50-100

mm). For both varieties, means of ratios of individual segments (heat-killed/control)

were significantly higher for immature segments (20-50 mm) than for mature (50-100

mm). Ratios for root segments 20-50 mm from the tip were 2.6 ± 0.7 and 1.8 ± 0.3 for

IR64 and Azucena, respectively. Root segments 50-100 mm behind the tip showed

lower ratios for heat-killed/control of 1.5 ± 0.4 and 1.4 ± 0.1 for IR64 and Azucena,

respectively. The difference in the change may be interpreted by a larger contribution of

trans-membrane water flow and/or changes in the apoplastic component in younger

parts.
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Osmotic experiments with the OPR
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Fig. 4a, b Determination of reflection coefficients of the OPR. Steady-state pressures in segments,

perfused at a given rates (Fig. 1) decreased in response to changes in osmotic pressure of the outer

medium resulting from mannitol (a) and NaCl (b). Reflection coefficients of the OPR (σsOPR) were

calculated from pressure differences. They indicated reflection coefficients of as low as 0.1 and 0.09 for

mannitol and NaCl, respectively. Segments taken from IR64, 50–100 mm from tip.

Osmotic water flow was induced by changing the osmotic pressure of the outer medium

by adding either mannitol or NaCl. Efflux of water from the root caused the stationary

root pressure to decline. Maximum drops in pressure were used to calculate the

reflection coefficient of the OPR (σsOPR) for mannitol and NaCl (Fig. 4). After removing

the solutes, either the non-electrolyte mannitol or the electrolyte NaCl, from the outer

medium, excised root segments re-attained the original stationary pressure.

There were no significant differences in σsOPR values of mannitol and NaCl in either

cultivar (Table 3), and values were almost identical for mature (50-100 mm) and

immature parts (20-50 mm) of roots. Mean σsOPR for mannitol were 0.13 ± 0.04 and

0.15 ± 0.05 for immature root segments (20-50 mm) of IR64 and Azucena, respectively

(n = 6 and 8 roots each). Those for mature parts (50-100 mm) were 0.13 ± 0.04 and 0.14

± 0.10, respectively (n = 6 and 7 roots each).
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Table 3 Reflection coefficients of the outer part of rice roots (σsOPR), which were grown in hydroponics

with bubbled air for 31-40 days, as measured by the pump perfusion technique in the presence of an

outward water flow (Fig. 1b). Osmotic water flow was induced by increasing the osmotic pressure of the

medium by adding either 20 mOsmol/kg mannitol or 20 mOsmol/kg NaCl (=0.05 MPa of osmotic

pressure) to the external medium. Values shown are mean values ± SD with the number of measured

roots in parentheses. Reflection coefficients (σsOPR) for mannitol and NaCl are in similar range for both

cultivars, IR64 and Azucena, even at the two different distances from root tip. Heat-killing of the OPR

resulted in a significant reduction of σsOPR  for mannitol at both distances from root tip (t-test, P = 0.05).

The reflection coefficient for NaCl was lower in the OPR than that of whole individual roots (see Table 4)

measured with the root pressure probe.

Rice cultivar Reflection coefficient (σsOPR) of the outer part of the root segments

_____________________________________________________________________________________
      Control  Heat–killed roots

Mannitol NaCl   Mannitol
_____________________________________________________________________________________
IR64
20 –  50 mm 0.13 ± 0.04 (6)a 0.09 ± 0.02 (5)    0.04 ± 0.01 (5)b
50 – 100mm 0.13 ± 0.04 (6)a 0.11 ± 0.03 (5)       0.06 ± 0.01 (5)b

Azucena
20 –  50mm 0.15 ± 0.05 (8)a 0.08 ± 0.02 (5)        0.04 ± 0.01 (5)b
50 –100mm 0.14 ± 0.10 (7)a 0.09 ± 0.01 (5)     0.03 ± 0.02 (5)b

Different letters indicate significant differences at P = 0.05 level

Heat-killed roots showed significant reductions of σsOPR values for mannitol for both

rice cultivars for both root segments at two different distances from the tip, so that mean

σsOPR values for root segments 20-50 mm from the root tip, which had been killed with

steam, were 0.04 ± 0.01 and 0.04 ± 0.01 for IR64 and Azucena, respectively (n = 5 roots

each). Values were 0.06 ± 0.01 and 0.03 ± 0.02 for the mature part of the roots (50-100

mm; n = 5 roots each). The reflection coefficient (σs) for NaCl was smaller in the OPR

than that of whole rice roots (Table 4). Mean σs values in the OPR for NaCl were 0.09 ±

0.02 and 0.08 ± 0.02 for IR64 and Azucena at 20-50 mm from the tip, respectively (n =

5 roots each). At a distance of 50-100 mm, reflection coefficients were 0.11 ± 0.03 and

0.09 ± 0.01 for IR64 and Azucena, respectively (n = 5 roots each).
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Table 4 Reflection coefficients of single adventitious roots of rice (σsr), which were grown in

hydroponics with bubbled air for 31-40 days, as measured with the root pressure probe. Osmotic water

flow was induced by increasing the osmotic pressure of the medium by adding either 150 mOsmol/kg

ethanol or 50 mOsmol/kg NaCl. Values shown are mean values ± SD with the number of measured roots

in parentheses.

Rice variety Reflection coefficient (σsr) of excised roots Reference
___________________________________
Ethanol NaCl

_____________________________________________________________________________________
IR 64 0.04 ± 0.02(6) 0.18 ± 0.06(6) This paper
Azucena 0.08 ± 0.03(6) 0.16 ± 0.05(6)

IR64 0.09 ± 0.01(6) 0.28 ± 0.11(6) Miyamoto et al. 2001
Azucena 0.13 ± 0.07(7) 0.28 ± 0.17(6) Miyamoto et al. 2001

Since the water flows across the OPR was small during the osmotic experiment (JVr ≈

10-8 m s-1), effects of unstirred layers caused by a sweep-away effect (Dainty, 1963)

were also rather small. The actual change in concentration immediately at the outer

surface of the OPR was slightly smaller than the bulk concentration (factor of

exp(JVr⋅δ/Ds); JVr ≈ 10-8 m s-1, unstirred layer, δ = 100 µm and diffusion coefficient of

solutes used, Ds = 10-10 m2 s-1).
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Fig. 5 Reduction of steady-state pressure, after killing with hot steam for 20–30 s (IR64: 50–100 mm

from tip). The reflection coefficient (σsOPR = 0.05) obtained for mannitol for heat-killed root segments

was smaller than that of intact segments (Fig. 4).
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Tests for leaks and viability of cells of the OPR

At the end of the experiment, possible leaks at fixing points and in other part of the

roots were checked using PTS (Fig. 2n). Results from the root segments that showed

even small, microscopic leaks were discarded. At the end of the experiment, small leaks

were created by puncturing holes in the OPR using a cell pressure probe (tip diameter: 5

µm), and a stream of PTS coming out from the root was observed under UV light (Fig.

2o). The reduction in steady-state pressure was around 15% in the presence of a tiny

hole of 5 µm (Fig. 6). No leaks could be observed with PTS at the fixing points (see

Discussion).
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Fig. 6 Effect of puncturing of the OPR of rice roots (IR64: 20–50 mm from root tip). A small leak was

created by puncturing a hole in the outer part of the root segment using a cell pressure probe (tip

diameter: 5 µm). Pressure reduction was 15%. Reduction was less than calculated from Poiseuille’s law

(see Discussion). The experiment indicates that any leaks at the points of fixation of root segments to

glass capillaries were small. When segments were properly fixed, no visible efflux of dye could be seen in

these areas

Since the experiments lasted for 10-15 h, the viability of the cells in the root segments

was checked using Evans blue. This stain cannot penetrate through the membrane in

living cells and did not stain the nuclei and cytoplasm dark blue (Fig. 2l). The nuclei

and cytoplasm of cells in heat-killed root segments were stained dark blue (Fig. 2m).
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Discussion

The data show that the OPR offers only a small resistance to the radial passage of water,

even when the exodermis is fully developed. It appears that rice roots differ from those

of other plants where the exodermis contributes substantially to the overall root Lpr. In

young corn roots, formation of an exodermis decreased root Lpr 4-fold (Zimmermann

and Steudle 1998). In onion, development of an exodermis during root maturation

substantially reduced the hydraulic conductivity during root development (Melchior and

Steudle 1993). There are to date no data for LpOPR of aerenchymatous roots of

hygrophytes other than rice. However, the diffusional water permeability (Pd) of the

OPR of sand sedge (Carex arenaria) was surprisingly small at (1-2) × 10-8 m s-1, which

is equivalent to only (7-15) × 10-11 m s-1 MPa-1. The values of Pd for perfused corn roots

having an aerenchyma was also small, as was that for sleeves prepared from young corn

roots (6-13) × 10-7 m s-1, equivalent to (4-8) × 10-9 m s-1 MPa-1 (Robards et al. 1979;

Clarkson et al. 1987).

For rice, the overall radial hydraulic conductivity was lower than those of other cereal

roots (Miyamoto et al. 2001). This has been interpreted as a major limitation of rice

roots to supply water to transpiring leaves. The present study confirms this conclusion.

However, because the hydraulic resistance of the OPR of rice roots was quite small

(present study), it should have little or no influence on overall water uptake. Hence, the

overall radial hydraulic conductivity must be limited by some other parts of the

pathway. The present study on LpOPR was possible due to the presence of aerenchyma in

roots of rice providing an opportunity to clearly separate resistances without removing

the stele from the roots prior to measurements. A tissue of defined structure such as the

OPR (four cell layers in series), possessing structural features that have been described

as apoplastic barriers in other species, can be analyzed in great detail to test existing

models of water transport such as the composite transport model (Steudle 2000a).

However, before the data obtained by the new pressure perfusion technique can be

considered as real, a few possible sources of error have to be considered.

Leaks in the areas where isolated segments were glued to capillaries could have led to

misleadingly high values of LpOPR. To demonstrate that leaks did not occur, two types
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of tests were performed. In one type, segments were perfused with PTS solution to

detect leakages under UV light (Fig. 2n). When properly glued to capillaries, no visible

leakage was detected in the areas where the sections were fixed. In a second type of

experiment, perfused sections were punctured using tips of pressure probes with a

diameter of as small as 5 µm; significant leaks of PTS were detected. However, these

leaks, even though they were easily detectable by dye leakage, caused a reduction of

stationary pressure of only 15% (Fig. 6). This was less than expected for a hole of 5 µm

in diameter (Poiseuille’s law; thickness of the OPR = 85 µm), which may be explained

by a contraction of the hole when the tip was removed. We may conclude that leaks at

the points of attachment to capillaries were small, if any. Macroscopic leaks in other

parts of sections caused by handling the segments during fixation and the like were

immediately evident during dye perfusion. Data collected from these segments were

discarded. We could find no leaks in the areas where secondary roots emerged from the

roots, even though PTS clearly stained the narrow xylem in these initials (not shown).

Although the ability of the OPR to retain the apoplastic dye PTS was rather high, this

does not mean that the apoplastic path was completely impermeable to it. In elution

experiments with roots preloaded with PTS, Yeo et al. (1987) showed that there was an

apoplastic bypass of this solute in rice. However, this general permeability of the dye

was relatively small compared with leaks caused by inappropriate fixation or handling.

The lack of hysteresis effects and the presence of viable cells not staining with Evans

blue strongly suggest that the observed large values of LpOPR were not due to tissue

damage. As the perfusion solution (nutrient solution saturated with air) had an oxygen

activity similar to that of air, there should have been no shortage of oxygen within root

segments caused by the fact that the air in aerenchyma was replaced by nutrient

solution. The external medium was saturated with air as well and rapidly circulated

around sections.

Since the measurements were sound, the high hydraulic conductivity of the OPR can be

considered real. High LpOPR could be brought about by a large apoplastic component of

water transport or by a high permeability of membranes of the living cells in the

rhizodermis, exodermis, and internal cortical cell layer of the OPR. If there were a high

apoplastic component, this would mean that Casparian bands in the exodermis (Fig. 2j)

were quite permeable to water. In both cases (dominating cell-to-cell or apoplastic
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transport), the sclerenchymatous layer consisting of dead cells (Harris and Clark 1981),

should have been fairly permeable to water as well. To date, there are, for technical

reasons, no data of the Lp of membranes of cells of the OPR in rice roots (Miyamoto et

al. 2001). Treatment with the water channel blocker mercuric chloride (HgCl2) did not

significantly affect LpOPR. It is astonishing that differences in LpOPR between younger

(20-50 mm from the tip) and older (50-100mm) sections were rather small. In younger

sections, suberin lamellae were not mature, but Casparian bands were already fully

developed. Detailed chemical analysis of the changes and composition of apoplastic

barriers with respect to water transport (suberin lamellae and Casparian bands) as done

for corn roots in relation to hydraulic properties of roots (Zimmermann et al. 2000) is

needed for rice. Recent experiments, however, in which the apoplastic path was blocked

off, indicate that this passage rather than the cell-to-cell component is the dominant path

for water flow in the OPR of rice (data not shown).

The hydraulic resistance of the OPR was smaller by a factor of 30 than the overall

values of root Lpr as measured by Miyamoto et al. 2001 and verified in this paper. This

may indicate that water uptake may be limited at the endodermis/stele rather than at the

OPR. However, caution is needed since this conclusion assumes that water flow across

the OPR is hydraulic and not diffusive in nature (see below). Depending on the

resistances, tensions (gradients in water potential created by transpiration) in root

vessels, which drive water flow, would drop across the endodermis/stele (Miyamoto et

al. 2001). However, the additional resistances across the aerenchyma and OPR may also

play a role.

The resistance to water vapor in the aerenchyma is diffusional in nature. It can be

calculated using the theory developed by Nobel and Cui (1992) for air gaps between

roots and dry soil. The theory assumes a steady state flow of water vapor across the

gaps according to Fick’s first law. This flow is driven by a difference in water vapor

concentration, which can be recalculated into a difference in water potential to give

hydraulic conductivities in the usual units of m s-1 MPa-1 (as used here) rather than

permeabilities in units of m s-1. For a typical rice root, the thickness of the aerenchyma

would be 225 µm, the radius of the stele 190 µm, and the thickness of the OPR 85 µm

(overall root diameter:1 mm). Considering the cylindrical geometry of the system, this
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results in a hydraulic conductivity of aerenchyma of LpAER = 1.5 × 10-8 m s-1 MPa-1. By

a factor of 2.7, this value is smaller than that of entire roots (about 4 × 10-8 m s-1 MPa-1;

Table 1) and could be limiting. However, LpAER represents a lower limit of the

resistance of the entire aerenchyma, because there should be a flow of liquid water

bypassing air-filled lacunae along the spokes in the cortex of rice roots. Spokes consist

of monolayers of cortical cells that were not removed during the formation of lacunae.

Most of the cells in spokes appear to be alive. As in a wick, liquid water should be

dragged along the spokes from the OPR to the stele together with nutrient ions. At the

OPR, the fractional area occupied by spokes was between 15 and 25% (length: 225

µm). There are no data available for the hydraulic conductivity of spokes, but we could

either use the same value as that of the OPR (mean of 1.2⋅10-6 × 85⋅10-6 = 1 × 10-10 m2 s-

1 MPa-1) or a typical value of the hydraulic conductivity of cell wall material (Steudle

1989). Both approaches result in a hydraulic conductivity of 1 × 10-10 m2 s-1 MPa-1,

which is referred to both unit cross sectional area and unit length. Using a hydraulic

conductivity of spokes of 1 × 10-10 m2 s-1 MPa-1, we get LpSPK = 7.4 × 10-8 m s-1 MPa-1.

By a factor of 5, this is larger than LpAER. The overall Lp value for the aerenchyma

(spokes and gas transport = LpAER + LpSPK) will be 8.9 × 10-8 m s-1 MPa-1. This is larger

by a factor of only two than the value given for the overall transport (4 × 10-8 m s-1

MPa-1). However, the measured value of LpOPR was larger than the overall value for the

aerenchyma by a factor of 15. It should hold that the overall hydraulic resistivity (1/Lpr)

is given by the sum of the three resistivities arranged in series, i.e. 1/Lpr = 1/LpEND +

1/(LpSPK + LpAER) + 1/LpOPR. Using the values given above, this yields an LpEND = 7.2 ×

10-8 m s-1 MPa-1, which is similar to that of the overall value of the aerenchyma. So, the

result is that the overall hydraulic resistance of the rice root may be similarly referred to

that of the endodermis/stele and aerenchyma (spokes). By far, the smallest of the three

resistors in series is at the periphery (OPR).

The calculation suggests that the spokes play an important role in the overall hydraulic

conductivity and in the water supply of the plant, as they definitely do in the supply

with nutrient ions. They bridge or short-circuit the high resistance to water of the

aerenchyma. However, some caution is necessary because the absolute value of the

hydraulic conductivity of spokes is not known for sure. The values used to calculate

water transport along spokes may be a lower limit because of some film transport along
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the spokes outside the walls. Hence, the contribution of this component to the overall

resistance or resistivity could be smaller than calculated, although not negligible. If so,

calculations of the previous paragraph would be in agreement with the result that the Lpr

measured by steady-state technique (pressure chamber) were similar to those measured

by root pressure probe. The former should have included all layers in series, whereas

the latter tended to involve just the endodermis/stele (Miyamoto et al. 2001).

In the calculations of LpAER, we assumed that flow in the vapour phase was diffusional

in nature, which is reasonable. In the liquid phase, we assumed a hydraulic mechanism,

which should be also reasonable. Across the OPR, differences in water potential may be

small, which may be compensated for by a high LpOPR. In order to compare the LpOPR of

1.2 × 10-6 m s-1 MPa-1 with water permeabilities in units of m s-1 (such as diffusional

water permeabilities of plant cell membranes), we may give it as an ‘osmotic

permeability coefficient’, Pf (Pf = Lp⋅RT/Vw; Vw = molar volume of liquid water). Re-

calculation of LpOPR yields a PfOPR = 1.6 × 10-4 m s-1. This figure is larger than that of Pf

of cell membranes (Maurel 1997; Hertel and Steudle 1997) or tissues (House 1974) by

one to two orders of magnitude. It is much larger than diffusional water permeabilities

(Pd) of cells and tissues as given in the same sources. Ratios of  Pf/Pd > 1 have been

interpreted as indicative of a transport across pores such as in the apoplast of tissues.

Provisional data on the PdOPR of rice roots obtained from isotopic water flow [isobaric

perfusion with heavy water (HDO)] gave values of PdOPR that were smaller by three

orders of magnitude [Pd ≈ 2.5 × 10-7 and 5.7× 10-8 m s-1 for immature (20-50 mm from

tip) and mature (50-100 mm from tip) root zones, respectively; Ranathunge, Kotula,

Steudle in preparation]. The huge difference between PfOPR and PdOPR is a strong

indication of a water flow dominated by a porous rather than by a membrane-bound

passage in the OPR. This means that either the Casparian bands in the exodermis are

fairly permeable to water (Hose et al. 2001), or that this structure develops in a

somewhat patchy way, i.e. with arrays lacking Casparian bands and suberin lamellae.

However, there is, to date, no anatomical evidence for the latter.

The present values of PdOPR for rice roots were similar to those of the OPR of Carex

arenaria measured with tritiated water by Robards et al. (1979; PdTHO = 2 × 10-8 m s-1).

Both, rice and Carex had values smaller than those of aerenchymatous corn roots grown
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at low oxygen or of sleeves prepared from basal young corn roots immersed in culture

solution (PdTHO = 10-7 to 10-6 m s-1 depending on the position; Clarkson et al. 1987).

When exposed to moist air, PdTHO was much smaller (≈ 2 × 10-8 m s-1). Under these

conditions, roots developed several layers of sclerenchyma underlying the hypodermis.

It is known that exposure of corn roots to moist air induces an exodermis as well

(hypodermis with Casparian bands; Zimmermann et al. 2000). The early results of

Robards et al. (1979) and of Clarkson et al. (1987) indicate that Carex arenaria

expressing an aerenchyma constitutively (as rice), has a somewhat lower diffusional

permeability to water and solutes than aerenchymatous corn roots or sleeves prepared

from corn.

Rice roots often grow in anaerobic soils. Oxygen diffuses from shoots to root tips within

the aerenchyma, and radial losses of oxygen from roots to the anaerobic root medium

are relatively small. Hence, the OPR should have relatively low permeability for oxygen

than water. On the other hand, there should be a sufficient hydraulic permeability to

take up water. Obviously the problem is solved in rice in that water uptake is hydraulic

in nature and oxygen losses are diffusive. Data describing flows of oxygen across roots

of intact rice plants are available (Colmer et al. 1998). Recently, it was found that some

rice cultivars allow to diffuse oxygen from aerenchyma to the outer surface of roots in

order to keep the rhizosphere aerobic under flooded conditions. This is important for the

population of ammonia-oxidizing bacteria that convert ammonium forms to nitrate,

which is highly available for rice plants (Briones et al. 2002). However, there are no

data yet available on the permeability coefficient of the OPR for oxygen and how this

would change with growing conditions (e.g. oxic vs. anoxic/hypoxic conditions) in

parallel with the permeability to water (LpOPR and PdOPR). Quantitative values are

required to understand how LpOPR and PdOPR would change under different conditions.

Provisional data show that the overall root Lpr did not change much when roots were

grown in anoxic conditions (data not shown). However, there are anatomical responses

caused by changing conditions which may alter permeabilities, namely for oxygen (data

not shown).

The picture of a dominating apoplastic rather than cell-to-cell transport of water within

the OPR is in line with the values of reflection coefficients found in this paper for a
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non-electrolyte (mannitol) and an electrolyte (NaCl). They were as low as 0.1 or even

lower. For both solutes, plant cell membranes would exhibit a σs ≈ 1. Measured values

of 0.14 and 0.09, respectively, indicate an apoplastic component with a σs ≈ 0.

According to the composite transport model, this is evident because the parallel

pathways should contribute to the overall value according to their hydraulic

conductances. Reflection coefficients of the OPR were somewhat smaller than those of

the entire roots, which also comprise the endodermis and stele. This is also

understandable in terms of composite transport. There is evidence that there is a

significant apoplastic bypass for solutes such as NaCl and PTS in rice roots (Yeo et al.

1987; Miyamoto et al. 2001).

In conclusion, the transport data presented indicate that the hydraulic conductivity of the

OPR of rice roots is larger by a factor of 30 than that of the endodermis/stele. As long as

flow across the OPR is hydraulic in nature, this means that the OPR would not rate-limit

water uptake.  The fact that the diffusional water permeability (PdOPR) was smaller by a

factor of 700 (20-50 mm from tip) and 1,300 (50-100 mm from tip) than the hydraulic

conductivity (LpOPR/PfOPR) points to a dominating apoplastic water flow in the OPR, as

do the low reflection coefficients. However, under conditions where water flow is

diffusional in nature, the OPR may limit water uptake. It appears that, in rice, water

uptake and oxygen retention are optimized in a way that hydraulic water flow can be

kept high in the presence of a low efflux of oxygen which is diffusional in nature. The

structural basis for this is not yet known. Namely, it is not known how high rates of

apoplastic transport can be brought about in the presence of well-developed Casparian

bands in the exodermis. To further work out limitations to water and oxygen flow in

rice roots, present work in the lab aims at combined measures of the water (PdOPR and

LpOPR, PfOPR) and oxygen permeability [measurement of radial oxygen loss (ROL) and

of forces driving O2 movement within the OPR] along developing roots that have been

grown under hypoxic and oxic conditions which affect ROL and root anatomy. This

work, using cell pressure probes, should also provide measures of water permeability

(hydraulic conductivity) of cells and of the role of water channels (aquaporins) in the

OPR.
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Abstract

The relative contribution of the apoplastic and cell-to-cell paths to the overall hydraulic

conductivity of the outer part of rice roots (LpOPR) was estimated using a pressure

perfusion technique for 30-day-old rice plants (lowland cultivar: IR64 and upland

cultivar: Azucena). The technique was based on the perfusion of aerenchyma of root

segments from two different zones (20-50 and 50-100 mm from the root apex) with

aerated nutrient solution using precise pump rates. The outer part of roots (OPR)

comprised outermost rhizodermis, exodermis, sclerenchyma fibre cells and the

innermost unmodified cortical cell layer. No root anatomical differences were observed

for the two cultivars used. Development of apoplastic barriers such as Casparian bands

and suberin lamellae in the exodermis were highly variable. On average, mature

apoplastic barriers were observed at around 50-70 mm from the root apex. Lignification

of the exodermis was completed earlier than that of sclerenchyma cells. Radial water

flow across the OPR was impeded either by partially blocking off the porous apoplast

with China ink particles (diameter: 50 nm) or by closing water channels (aquaporins) in

cell membranes with 50 µM HgCl2. Reduction of LpOPR was relatively larger in the

presence of an apoplastic blockage with ink (≈30%) than in the presence of the water

channel blocker (≈10%) suggesting a relatively larger apoplastic water flow. The

reflection coefficient of the OPR (σsOPR) for mannitol significantly increased during

both treatments. It was larger when pores of the apoplast were closed, but absolute

values were low (overall range of σsOPR = 0.1 to 0.4), which also suggested a large

contribution of the non-selective, apoplastic path to overall water flow. The strongest

evidence in favour of a predominantly apoplastic water transport came from the

comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic

water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a

factor of 600-1400 compared with PdOPR. The development of OPR along roots resulted

in a decrease of PdOPR by a factor of three (segments taken at 20-50 and 50-100 mm

from root apex, respectively). Heat-killing of living cells resulted in an increase of PdOPR

for both immature (20-50 mm) and mature (50-100 mm) root segments by a factor of

two. Even though both pathways (apoplast and cell-to-cell path) contributed to the

overall water flow, the findings indicate predominantly apoplastic water flow across the

OPR, even in the presence of apoplastic barriers. Low diffusional water permeabilities
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may suggest a low rate of oxygen diffusion across the OPR from aerenchyma to the

outer anaerobic soil medium (low PO2OPR). Provisional data of radial oxygen losses

(ROL) across the OPR suggest that, unlike water, rice roots efficiently retain oxygen

within the aerenchyma. This ability strongly increases as roots/OPR develop.

Key words: aerenchyma, apoplastic transport, bulk flow, diffusional water permeabilty,

exodermis, hydraulic conductivity, rice root, water channels.

Introduction

Water transport within plants can be divided into several discrete steps, one of which is

the radial water flow from soil solution to root xylem vessels. It is known that radial

water flow across roots is highly variable. This is due to a considerable variability in

root hydraulic conductivity, which differs between plant species and in response to

environmental conditions (Brouwer, 1954; Kramer and Boyer, 1995; Steudle, 2000a,

2000b, 2001; Weatherley, 1982). Growth conditions strongly influence the architecture

of roots including their anatomy and morphology (Steudle, 2000a; Steudle and Peterson,

1998). Physical and physiological processes can regulate water uptake by roots as well

(Steudle, 2000b; Steudle, 2001). Over the long term (days, weeks), the capacity to take

up water can be related to root growth or structural, morphological, and anatomical

changes of roots (i.e. development of apoplastic barriers). In the short term (<day), root

hydraulics are adjusted or are even regulated by physical properties, such as switching

between cell-to-cell and apoplastic pathways. Cell-to-cell water flow is regulated by

gating of water channels (aquaporins) in the plasma membrane (Henzler and Steudle,

1995; Javot and Maurel, 2002; Steudle, 2001; Tyerman et al., 1999). The well-

established composite transport model has been used to explain the variable

permeability of roots to water (Steudle, 2000a, 2000b; 2001; Steudle and Frensch, 1996;

Steudle and Peterson, 1998). The switching of water pathways may depend on both the

driving forces and the water permeability of components of the pathway. This may

allow some flexibility in the response of plants to water shortage according to the

demand from the shoot.

Even for rice crops in paddy fields, water shortage may occur during the day with the

appearance of wilting symptoms (Hirasawa et al., 1992, 1996). The hydraulic
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conductivity of rice roots is somewhat lower than other crop species because of a lack

of flexibility in adjusting to demand from the shoot (Miyamoto et al., 2001; Ranathunge

et al., 2003). Apoplastic barriers in rice roots such as well developed exo- and

endodermis with Casparian bands and lignified sclerenchyma cells may restrict the

water movement through cell walls (Clark and Harris, 1981; Miyamoto et al., 2001;

Ranathunge et al., 2003). The aerenchyma may represent an additional barrier.

Comparison of detailed measurements of the overall hydraulic conductivity of rice roots

(Lpr) with that of the outer part of roots (LpOPR) showed that the contribution of the

endodermis/stele to the hydraulic resistance of rice roots was largest, followed by that

of the aerenchyma (Ranathunge et al., 2003). Despite presence of the exodermis and

sclerenchyma cells, the outer part of roots (OPR) had a hydraulic conductivity that was

larger by factor of 30 than that of whole roots or root systems (Ranathunge et al., 2003).

Hence, water flow across the OPR must have either a strong apoplastic component or a

prominent membrane bound passage of water or both in parallel. Low reflection

coefficients of the OPR (σsOPR) to non-permeating solutes like mannitol pointed to a

dominant apoplastic flow and a fairly porous apoplastic path rather than to a large

transmembrane component of water flow across the OPR. These observations are in line

with earlier findings of a substantial apoplastic transport of NaCl and the apoplastic dye

trisodium, 3-hydroxy-5, 8,10-pyrene trisulfonate (PTS) across the entire root cylinder of

rice. (Yeo et al., 1987; Yadav et al., 1996).

In this study, we extend the previous work on the hydraulic and osmotic properties of

the OPR of rice roots has been extended in order to get an estimation of the contribution

of pathways (apoplastic versus cell-to-cell components). Two different cultivars, a

lowland (IR64) and an upland (Azucena) have been used again which may differ in

their ability to take up water (root Lpr). Even though both pathways in roots contribute

to the overall high water permeability across the OPR, it was found that the contribution

of the apoplast was larger than that of the transmembrane passage of water flow

favouring the presence of significant apoplastic bypasses. This was also suggested from

experiments in which either the apoplastic passage was partially blocked using a

suspension of China ink particles of an average diameter of 50 nm, or the membrane

permeability was reduced using the water channel blocker HgCl2. Treatments created a

significant reduction in LpOPR, but the reduction caused by blockage of the apoplast by
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ink particles was larger by a factor of 3 than that following HgCl2 treatment. Blockage

caused a much bigger increase in the reflection coefficient of the OPR, when the

apoplast was blocked. As expected in the presence of a fairly porous apoplastic bypass,

there were huge differences between osmotic (bulk) and diffusional water

permeabilities.

Materials and methods

Plant materials and growth conditions

Rice seedlings [Oryza sativa L. cv. Azucena (upland) and IR64 (lowland) from the

International Rice Research Institute, Manila, Philippines] were grown from seeds in

climatic chambers using aerated hydroponics as detailed previously (Ranathunge et al.,

2003). Plants used in experiments were grown for 31-40 d including the time for

germination.

Plant morphology and root anatomy

Height of young rice plants used in experiments was 330-350 mm and 480-515 mm

(eighth to eleventh leaf emergence) for IR64 and Azucena, respectively. Root lengths

were typically 290-360 mm (IR64) and 500-550 mm (Azucena). Freehand cross-

sections were taken at distances of 20, 50 and 100 mm from the root apex and stained

with Sudan Red 7B at room temperature for 1.5 h (Brundrett et al., 1991) to observe

development of aerenchyma along the roots. Sections were viewed using an optical

microscope (DIALUX 22 EB, Leitz, Germany) and photographed using Kodak Elite 64

ASA film. To confirm the presence of suberin lamellae in the exodermis, freehand

cross-sections were stained for 1 h with Fluorol Yellow 088 (Brundrett et al., 1991) and

viewed under an epifluorescence microscope using an ultraviolet filter set (excitation

filter BP 365, dichroitic mirror FT 395, barrier filter LP 397; Zeiss, Oberkochen,

Germany). To detect lignin in cell walls of the OPR, freehand cross-sections were

stained for several minutes with phloroglucinol/hydrochloride at room temperature

(Jensen, 1962). Lignin stained as a bright red layer within the cell walls.
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Measurement of hydraulic conductivity of the outer part of roots (OPR) by

pressure- perfusion

Root segments were excised 20-50 mm or 50-100 mm from the root apex. Aerenchyma

was not fully developed at 20-50 mm from the apex, but it was at 50-100 mm. Both

ends of each segment were fixed to glass capillaries with an inner diameter of 1.3 mm

(Fig. 1A).

            
Fig. 1 (A) Pump perfusion setup: a syringe was mounted on a Braun-Melsungen pump that created pump

rates between 1.7 × 10-9 and 1.1 × 10-7 mm3 s-1. One end of the root segment was used as an inlet. This

was fixed to the syringe by a narrow and rigid Teflon tube. The other end was connected to a pressure

probe to measure resulting steady state pressures. (B) Schematic diagram to show radial water flow across

the outer part of the root segment during pressure perfusion. At a given pump rate, stationary pressure

was established where the volume flow provided by the pump equalled the radial volume flow across the

outer part of the root (OPR).

One of the glass capillaries (inlet side) was connected to a syringe while the other

(outlet side) was connected to a pressure probe by a narrow, rigid Teflon tube (inner

diameter: 1.5 mm). The syringe was mounted on a 12-step Braun-Melsungen pump that

produced defined pumping rates (water flows; Qv) between 1.7 x 10-9 and 1.1 x 10-7

mm3⋅s-1. Perfusion was commenced from the inlet side of root segment. Aerated nutrient

solution was perfused through the aerenchyma, displacing air. At a given pump rate,
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nutrient solution was pumped into the root segment and the pressure increased gradually

until a stationary pressure was established where the volume flow produced by the

pump equalled the radial volume flow across the OPR (Fig. 1B). The resulting steady-

state pressures were measured using a pressure probe as a manometer. Stationary

pressures were measured with respect to the flow rates. The hydraulic conductivity of

the outer part of the root (LpOPR in m s-1 MPa-1) was calculated according to Eq. 1:

( )1.rOPR APLpQv ××=

Here, QV is the pump rate in m3⋅s-1, P is the steady-state pressure in MPa (reference:

atmospheric pressure), and Ar is the surface area of the root segment (m2). To avoid

anaerobic conditions, root segments were placed in a small chamber and air-saturated

nutrient solution was continuously circulated around the roots. A poly-acrylamide glue

(UHU, Bühl, Germany) was used to fix root segments to glass capillaries, which

allowed successful connection of tissues to glass, even when wet. To make the seal

mechanically rigid, the glue was superimposed with a molten mixture of

beeswax/collophony (1:3; w/w Zimmermann and Steudle, 1975). The tightness of the

seal was tested at the end of the experiments by perfusion with nutrient solution which

contained the apoplastic fluorescence dye 0.02% PTS (trisodium, 3-hydroxy-5,8,10-

pyrene trisulfonate) as described previously (Ranathunge et al., 2003). In cases where

root segments were not sealed properly to glass capillaries, the pressure-perfusion data

were discarded. Given that the pressure-perfusion experiments lasted for 10-15 h, root

segments were randomly selected for treatment with Evan’s Blue stain in order to test

for the viability of the OPR cells (Fisher et al., 1985).

Osmotic experiments with perfused root segments

Reflection coefficients of the OPR (σsOPR) were estimated by measuring changes in

steady–state pressures caused by adding 14 mOsmol/kg mannitol (equivalent to 0.035

MPa of osmotic pressure) to the external medium, which did not change the hydraulic

conductivity of the OPR (LpOPR). Hence, comparing the osmotic pressure applied with

the change in hydraulic pressure gives the reflection coefficient (σsOPR ≡ -LpDOPR/LpOPR;

LpDOPR = osmotic coefficient of the OPR). Mannitol was used as the test osmoticum
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since it has a σ of unity for plant cell membranes. The nutrient solution in the external

medium was replaced with mannitol solution and the decline in steady-state pressures

was observed. Maximum drops in pressures were used to calculate σsOPR. Original

steady-state pressures were obtained following the removal of mannitol from the

external medium.

Blockage of cell-to-cell path of the OPR with water channel blocker HgCl2

50 µM HgCl2 was used as the blocking agent for cells of the OPR. After estimating the

original steady-state pressures and reflection coefficients of the OPR (control), HgCl2

was added to the external medium of the root segments for 30 min, during which the

direction of pumping was reversed (pump rate of 1.7 × 10-12 m3⋅s-1). This established a

slightly negative pressure gradient across the OPR (- 0.02 MPa relative to atmospheric

pressure) drawing HgCl2 deeper into the tissue. Mercuric chloride could be also added

to the perfusion medium. However, it was then difficult to get rid of it after the

treatment. Excess HgCl2 was flushed from the system before new steady-state pressures

and reflection coefficients were measured using the same flow rates as during the

control. Following measurements, Hg2+ bound to the cell membranes of the OPR was

scavenged by 4 mM 2-mercaptoethanol (Carvajal et al., 1996; Henzler and Steudle,

1995).

Blockage of porous apoplast by China ink particles

China ink particles (Rotring-Werke Riepe KG, Hamburg, Germany) were used to block

apoplastic pores in the OPR in order to investigate the contribution of the apoplastic

path to overall water movement across the OPR. Prior to use, commercial China ink

was diluted 1:1 with nutrient solution and cleared of small molecular weight compounds

by dialysis against the nutrient solution. The osmotic concentration of the purified ink

suspension was the same as that of nutrient solution. The diameter of ink particles was

51 ± 22 nm as measured using a Particle Sizing System (PSS Nicomp, Santa Barbara,

California, USA) by courtesy of Professor S.D. Tyerman, University of Adelaide,

Australia. Root segments (20-50 mm or 50-100 mm from the root apex), previously

used to measure the original steady-state pressures and reflection coefficients, were
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perfused with the diluted, purified China ink suspension for at least 1 h at relatively

high flow rates directed from the inside to the outside, as described above, to block off

pores in the apoplast (0.1 MPa pressure difference between aerenchyma and medium).

Following ink treatment, root segments were perfused with nutrient solution to sweep

away excessive ink particles trapped inside the aerenchyma. As for the control, the

resulting new steady-state pressures and reflection coefficients of the OPR were

measured. The diluted, purified ink suspension was not toxic to cells of the OPR.

Diffusional water permeability across the OPR with heavy water (HDO)

                       
 Fig. 2 Experimental set-up to measure the diffusional water permeability of the outer part of rice roots. Open

ends of root segments were fixed to glass capillaries. Aerenchyma within segments was rapidly perfused with

3M heavy water (HDO). At different time intervals, concentration of HDO diffusing into the outer medium

was measured with a freezing point osmometer. The external solution was stirred vigorously throughout the

experiment, using a small pump.
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Steady-state perfusion using heavy water (HDO) was performed with root segments

excised at either 20-50 or 50-100 mm from the root apex.

A 3 M solution of HDO was perfused through the aerenchyma of root segments,

displacing air with solution. The root segment was held vertically to allow perfusion of

the solution by gravity (Fig 2). The upper, open end of the segment (used as an inlet)

was connected to a syringe by a Teflon tube filled with 3 M HDO. The other end of the

root segment remained open as an outlet. As shown in Fig. 2, the syringe was placed 0.8

m above the root segment providing a gravitational force of 0.008 MPa, significantly

less than in the previous pump perfusion experiment (0.04-0.05 MPa; see above).

Hence, water movement was near-isobaric (diffusive) to a good approximation and

governed by the lateral diffusion of HDO across the OPR. Root segments were bathed

in aerated nutrient solution of known volume (5 ml). At different time intervals, 50 µl of

the outer medium was taken out by a syringe and the HDO concentration of each

sample was measured by a freezing point osmometer. The successive reduction of

volume of the outer medium was accounted for. Since HDO and H2O form mixed

crystals, the freezing point of samples containing HDO increased above that of distilled

water in proportion to concentration, as verified by a calibration curve (freezing points

of distilled water: 0°C; pure D2O: +4°C). Measurements of diffusional water flow did

not require that root segments to be so tightly connected to the glass capillaries (inner

diameter 1.3 mm) as during steady-state perfusion. Poly-acrylamide glue was sufficient

to connect wet tissue to glass. A small pump was employed to mix external solution in

order to equalize the distribution of HDO in the external medium and to minimize the

thickness of unstirred layers (Fig. 2).

In typical diffusional experiments, heavy water was perfused through the aerenchyma

and diffused across the OPR to the external medium. The amount of the solute HDO

that diffused to the outer medium was plotted against time. Solute flow across the OPR

(JsOPR in moles s-1 m-2) was obtained directly from the slope of this curve divided by the

surface area of the root segment. Since the external (diffused to outer medium) and

internal (perfused through aerenchyma) HDO concentrations were known, the driving

force or concentration difference between the inner and outer compartments (∆Cs in
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moles s-1) could be evaluated. The diffusional water permeability of the OPR (PdOPR in

m s-1) was obtained according to Eq. 2:

  ( )2.
s

sOPR
dOPR C

JP
∆

=

The external concentration was usually much smaller than the internal, i.e. the back

flow of HDO could be neglected. In order to compare the bulk/hydraulic water

permeability (PfOPR) across the OPR with diffusional water permeability (PdOPR), the

hydraulic conductivity of the OPR (LpOPR) was converted to PfOPR (House, 1974):

( )3.
w

OPR
fOPR V

RTLpP ×
=

Here, Vw, was molar volume of liquid water. Since the units of the PfOPR were m s-1, the

PfOPR:PdOPR ratio was calculated directly. Following the diffusional permeability

experiments, root segments were taken from the chamber and exposed to steam for 20-

30 s to kill part of the living cells of the OPR. Then the diffusion experiment was

repeated with steam-treated root segments.

Results

Root anatomy

No visible anatomical or developmental differences were observed in the adventitious

roots of the rice cultivars IR64 (lowland) or Azucena (upland). Therefore, Fig. 3 only

refers to cross-sections of the lowland variety, IR64. At 20 mm from the root apex,

cortical cells had partially collapsed to form large, gas-filled spaces, commonly called

aerenchyma (Fig. 3A). At 100 mm from the apex, development of aerenchyma was

complete (Fig. 3B).  The initiation of cortical cell collapse was observed 5-6 cell layers

from the innermost cortical layer. The OPR was separated from the stele by the large

gas-filled spaces of aerenchyma. The OPR comprised rhizodermis, exodermis,

sclerenchyma (fibre cells), and one unmodified cortical cell layer. The dense packing of

sclerenchyma cells with thick cell walls indicated some physical strength of the OPR of

rice roots. The cytoplasm of sclerenchyma cells was rarely observed closer to the root

base, suggesting that they were definitely dead. Diamond-shaped air spaces were visible
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between the exodermis and the rhizodermis of the OPR where they loosely connected to

each other. The OPR was connected to the stele by 40 to 50 spokes, i.e. monolayers of

cells, which separated the different voids of the aerenchyma.

Weakly developed suberin lamellae were observed in the exodermis at a distance of 20

mm from the root apex (Fig. 3C), however, lamellae were fully mature at 50 mm from

the root apex (Fig. 3D). No suberin was detected in sclerenchyma cell walls, even in

mature zones close to the root base. Sections taken at 50-100 mm from the apex showed

weak deposits of lignin in the external tangential cell walls of sclerenchyma tissue (Fig.

3E). At a given distance from the root apex, more lignin was observed in the exodermis

than in the sclerenchyma.

                       
Fig. 3 (A-D) Cross-sections of roots of 30-d-old rice (Oryza sativa); cultivar IR64 plants. (A-B)

Development of aerenchyma at 20 (A) and 100 mm (B) from the root apex. Freehand cross-sections were

stained with Sudan Red 7B. (C-E) Freehand cross-sections taken at 20 (C), 50 (D), and 100 mm (E) from

the root apex stained with Fluorol Yellow 088 (C, D) and phloroglucinol/hydrochloride (E), respectively.

Arrowheads show suberin lamellae in the exodermis (C, D) and lignin in cell walls of sclerenchyma and

exodermis (E), respectively. (ae = aerenchyma); bar = 100 µm.
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Pressure-perfusion experiments with rice root segments

Two to three hours after fixing root segments to the pressure-perfusion pump, stable

pressures were established. These long time intervals were caused by the large volume

(as compared to the conducting area of root segments) of the system, including the

syringe and tubing). Increasing pump rates linearly increased steady-state pressures.

Stepwise increasing the pump rate (QV in m3 s-1) and then decreasing it again resulted in

the same pressure/flow curves and LpOPR. There was no hysteresis in the QV(P) curves.

Neither IR64 (lowland) nor Azucena (upland) showed significant differences in LpOPR

measured over the first 100 mm from the root apex (Table 1). The OPR was quite

permeable to bulk water. At 20-50 mm from the root apex, LpOPR values were (0.98 ±

0.30) × 10-6 and (0.99 ± 0.20) × 10-6 m s-1 MPa-1 for IR64 and Azucena, respectively (n

= 9 root segments each). Similar values were found for root segments at 50-100 mm

from the apex (Table 1).

Table 1 Hydraulic conductivity of the outer part of rice roots (LpOPR) treated with either 50 µM HgCl2 or

diluted China ink. Plants were grown for 31-40 d in aerated hydroponic culture. Measurements were

performed using pump perfusion technique. LpOPR given for two different distances from the root apex

and two cultivars, IR64 and Azucena. Values are means ± SD (n = 9 root segments). Using ratios of

treatment / control, both treatments significantly reduced LpOPR compared with the control (double-sided,

unpaired t-test, P = 0.05). While LpOPR of segments perfused with China ink was significantly lower

compared to segments treated with 50 µM HgCl2 treatment (double-sided, unpaired t-test, P = 0.05).

Hydraulic conductivity of the outer part of the root,
LpOPR (10-6 m s-1 MPa-1)

LpOPR treatment / LpOPR control

20-50 mm 50-100 mm

Rice cultivar

control HgCl2
treated

control HgCl2
treated

20-50 mm 50-100 mm

IR64
Azucena

0.98 ± 0.30
0.99 ± 0.20

0.87 ± 0.27
0.92 ± 0.23

0.81 ± 0.21
0.77 ± 0.20

0.74 ± 0.18
0.70 ± 0.18

0.90 ± 0.10a
0.91 ± 0.08a

0.92 ± 0.03a
0.91 ± 0.04a

control ink treated control ink treated
IR64
Azucena

0.98 ± 0.50
0.90 ± 0.33

0.75 ± 0.42
0.73 ± 0.28

0.74 ± 0.33
0.80 ± 0.18

0.44 ± 0.17
0.59 ± 0.19

0.75 ± 0.09b
0.81 ± 0.06b

0.67 ± 0.13b
0.73 ± 0.10b

IR64
Azucena

1.50 ± 0.50
1.30 ± 0.50

1.10 ± 0.30
0.90 ± 0.40  Ranathunge et al. 2003

Different letters indicate significant differences at P = 0.05 level

When all data were pooled and compared, the addition of 50 µM HgCl2 to the external

medium did not significantly affect LpOPR (t-test; P = 0.05) because of a large variation
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between root segments. However, when the results were presented as ratios of

treatment/control LpOPR, the addition of HgCl2 reduced LpOPR significantly, by 10% in

both cultivars and at both distances from the root apex (Table 1; t-test, P = 0.05).

Fig. 4 Schematic diagram to show blockage of apoplastic (cell wall) pores in the outer part of rice roots

(OPR) with China ink particles (particle diameter: 51 nm) after perfusing root segments with ink for 1 h.

Root segments that were perfused with China ink for 1 h, to block the porous apoplast

of the OPR (Fig. 4), had visibly darker root surfaces than controls (Fig. 5). Treatment

with China ink decreased radial water flow across the OPR by 25% at 20-50 mm from

the root apex, giving rates of (0.75 ± 0.42) × 10-6 and (0.73 ± 0.28) × 10-6 m s-1 MPa-1

for IR64 and Azucena, respectively (Table 1; n = 9 root segments). The reduction was

30% at 50-100 mm from the apex, giving rates of  (0.44 ± 0.28) × 10-6 and (0.59 ± 0.19)

× 10-6 m s-1 MPa-1 (n = 9 root segments). Means of the treatment/control ratios of LpOPR

of individual roots were significantly smaller than, unity (t-test; P = 0.05).

                

Fig. 5 Outer appearance of rice root

segments (cv. IR64) after perfusion

with either China ink (A,C) or

nutrient solution (B) for 1 h. (A)

50-100 mm from the root apex, (B,

C) 20-50 mm from the root apex.

Bar = 10 mm.
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Overall, the treatment/control ratios of LpOPR obtained from the China ink treatment

were significantly smaller (the effect of China ink treatment was bigger) than the ratios

obtained from HgCl2 treatment. This was true for both rice cultivars at 20-50 mm and

50-100 mm from the root apex (t-test; P = 0.05; Fig. 6). It may suggest that more water

passed through the apoplast rather than crossing the transmembrane passage.

Fig. 6 Effect of treatments with 50 µM HgCl2 and China ink on hydraulic conductivity of outer part of

rice roots (LpOPR; cv. IR64). (A) 20–50 mm from the root apex; (B) 50-100 mm from the root apex,

respectively. Treatment/control ratios were calculated to remove substantial variations between roots
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(Table 1). According to the ratios, both treatments showed significant reductions of LpOPR (double-sided,

unpaired t-test, P = 0.05). Reduction of LpOPR with China ink was significantly higher than that of 50 µM

HgCl2 treatment (double-sided, unpaired t-test, P = 0.05).

Osmotic experiments with the outer part of rice roots

Efflux of water from the root segments was induced by adding 14 mOsmol/kg mannitol.

The resulting outward water flow caused a decline in stationary pressures of root

segments at constant LpOPR (see materials and methods; Fig. 7A, D as controls). The

original steady-state pressures were restored on removal of mannitol from the external

medium.

Before adding 50µM HgCl2, steady-state pressures of root segments were reduced to

sub-atmospheric levels (slightly negative ≈ -0.02 MPa with reference to atmospheric

pressure) as shown in Fig. 7B. This resulted in drawing HgCl2 deeper into the tissues.

Higher steady-state pressures were obtained following the HgCl2 treatment than the

control at the same pump rate (Fig. 7C). Root segments treated with HgCl2, showed

larger drops in steady-state pressures upon the addition of mannitol than controls (Fig.

7A, C). In root segments 20-50 mm from the root apex, the HgCl2 treatment increased

the σsOPR from 0.12 ± 0.04 to 0.23 ± 0.05 in IR64 and 0.10 ± 0.02 to 0.20 ± 0.04 in

Azucena (t-test; P = 0.05; n = 6 root segments). There was a similar increase in σsOPR

for root segments 50-100 mm behind the root apex (Table 2). On average for both root

segments, the addition of HgCl2 increased the σsOPR by a factor of about two.
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Fig. 7 (A, C-E) Typical experiments showing drop of steady-state pressures in response to changes in

osmotic pressure through the addition of mannitol to the outer medium for control root segments (A, D)

or segments treated with either 50 µM HgCl2 (C) or China ink particles (E) (cv. IR64, 20-50 mm from the

root apex). Blockage of cell-to-cell path with HgCl2 increased the reflection coefficient (σsOPR) from 0.11

(A) to 0.21 (C). Reversed usage of pump resulted for a slightly negative pressure gradients (reference to

atmospheric pressure) in root segments (B). Partial blockage of apoplast with ink particles caused an

increase in stationary pressure by 37% from 0.035 to 0.048 MPa, and caused σsOPR to rise from 0.11 (D)

to 0.34 (E).

Root segments perfused with diluted China ink for 1 h, developed higher stationary

pressures than controls. The decline in stationary pressures upon the addition of

mannitol was larger than that of controls (Fig. 7E). At a distance of 20-50 mm from the

root apex, σsOPR increased from 0.13 ± 0.04 to 0.40 ± 0.09 in IR64 and 0.11 ± 0.03 to

0.27 ± 0.04 in Azucena (Table 2; n = 6 root segments). Similar results were obtained for

root segments taken 50-100 mm from the root apex for both cultivars. Overall, China

ink perfusion of root segments increased the σsOPR by a factor of about three. The

increase in σsOPR due to the China ink treatment was significantly greater than that due

to the HgCl2 treatment (t-test; P = 0.05).
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Table 2 Reflection coefficient of the outer part of rice roots (σsOPR) for mannitol for root segments treated

either with 50 µM HgCl2 or perfused with China ink. Plants were grown for 31-40 d in aerated

hydroponic culture. The σsOPR given for two different distances from the root apex and two cultivars,

IR64 and Azucena. Values are means ± SD (n = 6 root segments). The reflection coefficient (σsOPR) for

mannitol did not differ significantly between cultivars or over different root segments (20-50 mm or 50-

100 mm from the root apex). Root segments treated with either HgCl2 or perfused with China ink showed

a significant increase in σsOPR for mannitol over control values (double sided, unpaired t-test, P = 0.05).

Root segments perfused with China ink had significantly higher σsOPR values than those treated with

HgCl2 (double sided, unpaired t-test, P = 0.05).

Reflection coefficient of the outer part of rice roots (σsOPR) for mannitolRice cultivar

control 50µM HgCl2 treated control ink perfused

IR64
20-50 mm
50-100 mm
Azucena
20-50 mm
50-100 mm

0.12 ± 0.04a
0.14 ± 0.04a

0.10 ± 0.02a
0.13 ± 0.03a

0.23 ± 0.05b
0.28 ± 0.07b

0.20 ± 0.04b
0.21 ± 0.03b

0.13 ± 0.04a
0.11 ± 0.03a

0.11 ± 0.03a
0.12 ± 0.06a

0.40 ± 0.09c
0.35 ± 0.06c

0.27 ± 0.04c
0.30 ± 0.05c

Mannitol NaCl Reference

IR64
20-50 mm
50-100 mm
Azucena
20-50 mm
50-100 mm

0.13 ± 0.04 (n = 6)
0.13 ± 0.04 (n = 6)

0.15 ± 0.05 (n = 8)
0.14 ± 0.10 (n = 7)

0.09 ± 0.02 (n = 5)
0.11 ± 0.03 (n = 5)

0.08 ± 0.02 (n = 5)
0.09 ± 0.01 (n = 5)

Ranathunge et al. 2003

Ranathunge et al. 2003

Different letters indicate significant differences at P = 0.05 level

Diffusional water permeability of the OPR with heavy water

Vertical perfusion of aerenchyma by near-isobaric heavy water (HDO) was performed

with rice root segments 20-50 mm or 50-100 mm from the root apex. The amount of

HDO diffused into the external medium increased with time (Fig. 8). At any time, the

external concentration of HDO was substantially smaller than that of HDO perfused

through the aerenchyma, which was constant. Killing the roots by exposing them to

steam for 30 s, doubled the radial diffusion of HDO across the OPR into the external

medium for both immature (20-50 mm) and mature (50-100 mm) root segments for both

cultivars used (t-test; P = 0.05).
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Fig. 8 Increases of external HDO concentration with time for root segments 20-50 mm or 50-100 mm

from the root apex (cv. IR64). The amount of HDO, diffused into the outer medium was significantly

higher for immature segments (20-50 mm from the apex) than mature (50-100 mm from the apex)

(double-sided, unpaired t-test, P = 0.05). By a factor of two, heat-killing of root segments increased the

difusional water permeability (PdOPR) at both distances from the root apex.

The diffusional permeability of the OPR (PdOPR) was obtained as defined by equation 2.

Since the concentration of HDO in the aerenchyma was much larger than that of the

external medium, this concentration was used as the driving force in equation 2. The

diffusional water permeability of the OPR significantly decreased along the root axis

from apex to base (t-test; P = 0.05; n = 6-7 roots). PdOPR was larger by a factor of two to

three immature (20-50 mm) compared with mature (50-100 mm) root segments.  The

PdOPR of root segments 20-50 from the root apex were 3.5 ± 0.5 and 3.0 ± 1.6 × 10-7 m s-

1 in IR64 and Azucena, respectively. At a distance of 50-100 mm from the apex, values

were 1.4 ± 0.8 and 1.0 ± 1.6 × 10-7 m s-1 in IR64 and Azucena, respectively. Steam

treatment of root segments increased PdOPR by a factor of about two for both rice

cultivars at both distances from the root apex. Comparison of bulk and diffusional

permeabilities showed that the hydraulic/bulk water permeability of the OPR (PfOPR)

was 600 times larger than the diffusional water permeability (PdOPR) at 20-50 mm from

the apex and 1200-1400 larger at 50-100 mm from the apex (Table 3).
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Table 3 Diffusional water permeability (Pd) of the outer part of rice roots, measured by rapidly perfusing

aerenchyma with isobaric water (containing HDO). Plants were grown for 31-40 d in aerated

hydroponics. Measurements were performed for two different cultivars, IR64 and Azucena and two

different distances from the root apex. Values are means ± SD with the number of measured roots in

parenthesis. PdOPR values are given for control (living) and steam-treated root segments. For both

cultivars, PdOPR significantly decreased along the root from the apex (double-sided, unpaired t-test, P =

0.05). Immature root segments (20–50 mm from root apex) showed significantly higher PdOPR values than

mature segments (50–100 mm from the apex). Steam-treated root segments increased the PdOPR by a

factor of two on average for both cultivars and over both distances from the root apex (double-sided,

unpaired t-test, P = 0.05). There were no significant differences observed for hydraulic/bulk water

permeability of the OPR (PfOPR) for either distance from the root apex (double-sided, unpaired t-test, P =

0.05). Hydraulic water permeability of the OPR (PfOPR) was two to three orders of magnitude higher than

diffusional water permeability (PdOPR).

Diffusional water permeability of the
OPR (PdOPR) × 10-7 m s-1

Rice cultivar

Control roots Steam-treated roots

Hydraulic water permeability
of the OPR
(PfOPR) × 10-7 m s-1

PfOPR / PdOPR
Ratio

IR64
20-50 mm
50-100 mm

Azucena
20-50 mm
50-100 mm

3.5 ± 0.5 (7)a
1.4 ± 0.8 (6)b

3.0 ± 1.6 (7)a
2.0 ± 0.7 (6)b

5.1 ± 0.7 (6)
2.7 ± 2.2 (5)

5.8 ± 2.8 (5)
2.0 ± 1.0 (5)

2170 ± 683 (10)
1680 ± 255 (10)

1808 ± 703 (10)
1445 ± 417 (10)

 620
1200

603
1445

Different letters indicate significant differences at P = 0.05 level
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Discussion

The present study provides further evidence of the passage of water through both the

apoplast and the cell-to-cell path of the OPR of young rice roots. The passage across the

two parallel pathways has been partially inhibited by either affecting water channel

activity with HgCl2 or by closing pores in the apoplast with ink particles. Blocking off

the apoplast is not easy. To the authors’ knowledge, the technique used here is unique.

The results suggest that both pathways contribute to the overall water flow. The

contribution of the apoplast appeared to be bigger, although roots develop apoplastic

barriers as revealed by anatomical studies (e.g. suberin lamellae, Casparian bands).

Because it comprises just four cells layers, the OPR of rice is a useful and well-defined

structure for studying the tissue transport of water in the presence of apoplastic barriers.

The anatomy of the OPR can be easily characterized by observing the development of

an exodermis and sclerenchyma and the deposition of apoplastic barriers in parallel with

changes in transport. Current models of tissue (root) water transport may be applied

(Steudle, 2000a, 2001; Steudle and Frensch, 1996; Steudle and Peterson, 1998).

Ranathunge et al. (2003) have shown that the apoplast contributes to most of the radial

permeability for water of the LpOPR. This is supported by the current results.

 The absolute figure of LpOPR was larger by a factor of 30 than the overall Lpr value of

rice roots. It seems that at least these two rice cultivars differ from other crop plants

where the contribution of the hydraulic resistance of the exodermis is much bigger.

Maturation of the exodermis substantially reduced the radial water flow in onion

(Melchior and Steudle, 1993). In young corn plants, development of the exodermis

caused in a 4-fold reduction of root Lpr (Zimmermann and Steudle, 1998).

Even for the same cultivar grown under similar conditions, detailed anatomical studies

of the OPR of rice roots confirmed that exodermis maturation was highly variable, as

previously shown by Perumalla and Peterson (1986) for onion and corn roots. The

specialized type of hypodermis (exodermis) observed in the rice cultivars allowed a

rather free flow of bulk water across the periphery of roots. Even though fully matured

exodermis with Casparian bands was found beyond 60–80 mm from the root apex, this

did not significantly reduce radial water flow across the OPR. This may be due to local
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disruption of the exodermis when developing lateral roots from the pericycle allowing

high apoplastic bypasses through these cracks (Peterson et al., 1981). In roots lacking

an exodermis, water and ions can potentially move apoplastically through the cell walls

of the epidermis and cortex as far as the endodermis (Peterson, 1988). Despite having

the exodermis, the OPR was reasonably permeable for water. Preliminary results

showed that charged ions could also pass through premature Casparian bands in the rice

exodermis, at least to some extent (data not shown). This is an agreement with earlier

findings of Flowers and co-workers of an apoplastic bypass flow of sodium and the

apoplastic tracer PTS (Yadav et al., 1996; Yeo et al., 1987).

It may be argued that the exodermis is permeable because of the patchiness of

Casparian bands or because of the presence of passage cells lacking suberin lamellae. It

is known that rice roots contain passage cells in the exodermis (Clark and Harris, 1981).

However, in these histochemical studies it was not possible to confirm large number of

passage cells in the exodermis for the rice cultivars used here. There was no evidence

for patchiness of the exodermis. On the contrary, maturation of Casparian bands and

suberization of the hypodermis was fairly uniform along the roots for both cultivars. It

was fully completed at a distance of 50-60 mm from the apex. It was known that the

presence of suberin lamellae in hypodermal cell walls of corn sleeves did not

necessarily indicate a low permeability to water or solutes (Clarkson et al., 1987). This

is an agreement with the present data.

The permeability properties of the apoplastic barriers for water or solutes are related to

the amount and chemical composition of aliphatic and aromatic suberin and lignin

(Hose et al., 2001; Schreiber et al., 1999; Zimmermann et al., 2000). Neither uniseriate

sclerenchymatous layer formed of short fibres (Clark and Harris, 1981) nor suberized

and lignified mature exodermis greatly impeded the radial bulk flow of water across the

OPR much. Histochemical studies with rice roots showed that lignification of the

exodermis started as close as 50 mm from the root apex. No lignin was detected in

sclerenchyma fibre cells at the same distance. According to Clark and Harris (1981),

lignified sclerenchyma fibre cells without cytoplasm were observed as far as 150 mm

from the root apex. Unusually low amounts of lignification of sclerenchyma fibre cells
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at distances of up to 100 mm may indicate a rather high permeability of this structure,

which is largely composed of cellulose.

Basically, radial water flow across the roots could use either the apoplastic or cell-to-

cell pathways or both. There is strong evidence that water channels (aquaporins) play a

central role in plant water relations (Chrispeels and Maurel, 1994; Henzler and Steudle,

1995; Javot and Maurel, 2002; Maurel, 1997; Steudle and Peterson, 1998; Steudle,

2001; Tyerman et al., 1999, 2002). Water channel activity can be affected by different

parameters such as high salinity, nutrient deprivation, drought, diurnal rhythms, and

heavy metals (Azaizeh and Steudle, 1991; Carvajal et al., 1996, 1999, 2000; Henzler et

al., 1999; Henzler and Steudle, 1995; North and Nobel, 2000). The exact mechanisms

of the gating of channels are poorly understood (Steudle, 2000a, 2000b, 2001; Tyerman

et al., 1999, 2002; Ye et al., 2003; Wan et al., 2003). A tentative indicator of water

channel involvement is the observation that heavy metals like Hg2+ can reversibly

reduce the hydraulic conductivity of roots by binding to –SH groups of water channels

(Barrowclough et al., 2000; Carvajal et al., 1996; Henzler and Steudle, 1995; Maggio

and Joly, 1995; North and Nobel, 2000; Wan and Zwiazek, 1999). According to

authors’ best knowledge, this is the first study in which water channels were blocked off

with HgCl2 only for a part of roots (just its outer part or periphery).

For Agave deserti, the reduction of radial hydraulic conductivity was 60% in the

presence of 50 µM HgCl2 under wetted conditions (Martre et al., 2001). It was 4-fold in

the basal root zones of onion (Barrowclough et al., 2000). These figures differ from the

OPR of rice roots which showed only 10% reduction. The main reason for that might be

that apoplastic barriers like Casparian bands, suberin lamellae or lignin restricted the

penetration of even non-dissociated HgCl2 into OPR and to plasma membranes.

Perhaps, the reduction of the radial water flow across the OPR resulted of only a closure

of water channels in the rhizodermis and external membranes of the exodermis.

Alternatively, the water channels in the OPR may not contain many –SH groups or

these groups are difficult to access with HgCl2 because of the suberization. Hence, roots

were not particularly sensitive to HgCl2. Since the major barrier to radial water flow in

rice roots was the endodermis (Miyamoto et al., 2001; Ranathunge et al., 2003), most of
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the water channels might be located around the endodermis as found for other species

(Schäffner, 1998).

Blockage of the apoplastic pathway by ink treatment reduced LpOPR by 30% which was

significantly larger than the 10% inhibition caused by HgCl2. Perhaps, the ink

suspension used could not effectively close all pores in the cell walls because of the

relatively large particle sizes. The mean was 51 ± 22 nm which is bigger than the

diameter of interfibrillar pores (interstices) which are about 5-30 nm (Nobel, 1999).

Partial blockage of the apoplast in the OPR reduced radial water flow by more than the

water channel blocker HgCl2, suggesting relatively large apoplastic bypasses. There is a

need for better apoplastic blockers. Tests are underway with suspensions of particles of

smaller mean diameter, which should result in a larger reduction of LpOPR of, say, by a

factor of 5-10. Completeness of blockage may be tested by measuring the reflection

coefficient, which should increase when blockage of the apoplast is complete or nearly

so.

The picture of a dominating apoplastic rather than cell-to-cell path for radial water flow

within the OPR is in line with the low overall reflection coefficients (σsOPR ≈ 0.1; Table

2; Ranathunge et al., 2003) as well as the doubling of σsOPR upon partial pore closure by

ink particles. The solute mannitol used to measure effects on σsOPR does not permeate

plant cell membranes and should have a σs
cc ≈ 1 along the cell-to-cell path (nearly

semipermeable membranes). Unlike membranes, however, apoplast should have σs
cw ≈

0 with virtually no selectivity expected (Steudle, 2000a, 2000b). Roots, having complex

structures with the two pathways arranged in parallel as well as in series, then overall σs

usually locates in between 0 and 1, which can be calculated using a relation derived

from basic irreversible thermodynamics (Kedem and Katchalsky, 1963a, 1963b). Partial

closure of apoplastic pores with ink resulted in a decrease of the movement of solutes

(mannitol) through the apoplast leading to a higher σsOPR than the treatment with the

water channel blocker HgCl2.

According to the composite transport model, which may be applied for complex

structures such as roots, the overall reflection coefficient (σs) for a parallel arrangement

of membranes should decrease after closing water channels with HgCl2 (assuming that
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σs
cc ≈ 1 and σs

cw ≈ 0). Data presented in this paper showed the opposite trend: σs

increased after HgCl2 treatment. The OPR of rice roots contain 4 cell layers in series,

indicating that both parallel and serial membrane models contribute to the overall

reflection coefficient. It is not clear why this deviation occured but it may arise because

the OPR comprises both parallel (apoplast versus cell-to-cell) and four different series

layers of cells, which may differ in their transport properties. For example, the Kedem-

Katchalsky (1963b) treatment of patchy membrane systems predicts that, in a series

array, the overall reflection coefficient would be the weighed sum of individual arrays,

whereby the series elements contribute according to their solute (mannitol)

permeability. It cannot be excluded that the permeability of mannitol of different layers

is affected by HgCl2 treatment, although direct evidence is missing.

In order to compare the LpOPR (units: m s-1 MPa-1) with the osmotic water permeability,

Pf in units of m s-1, equation (3) was used. Pf rather than Lp is usually given in animal

physiology (e.g. Table 5.6 in House, 1974). The diffusional permeability of the OPR of

rice roots (PdOPR) was much lower than the osmotic water permeability (PfOPR).

Absolute values of PdOPR were bigger than those of sleeves of the aerenchymatous

species Carex arenaria (≈10-8 m s-1; Robards et al., 1979), but smaller than the PdOPR of

sleeves obtained from aerenchymatous corn roots (≈10-6 to 10-7 m s-1, depending on the

position from the root apex; Clarkson et al., 1987). By a factor of as large as 600-1400,

the osmotic water permeability (PfOPR) was greater than that of diffusional water

permeability (PdOPR). These values were larger than the Pf/Pd ratio of artificial

membranes (Pf/Pd = 1-730; Table 4.4 in House, 1974) and various animal tissues (Pf/Pd

= 1-300; Table 9.5 in; House, 1974). It should be noted that, in the present experiments,

diffusional water flows were measured under near-isobaric but not completely isobaric

conditions. Hence, Pd may be overestimated, and the big ratios represent a lower limit.

Such large Pf/Pd ratios are expected if the pathway involved a rather long porous path;

this would offer a high diffusional resistance for HDO, but should be highly permeable

in case of a bulk (hydraulic) water flow. In single-file pores such as water channels,

ratios of Pf/Pd>1 are a measure of the number of water molecules aligned within the

pore (Levitt, 1974). It is well documented that Pf/Pd ratios may be overestimated in the

presence of unstirred layers, which affect Pd rather than Pf. However, during the

measurements in this study, the solutions in both compartments (aerenchyma and
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external solution) were well-stirred, tending to reduce the effect. Hence, large ratios

were not due to effects of unstirred layers. In the context of the other findings of (i)

effects of blocking experiments and (ii) low reflection coefficients, the huge Pf/Pd ratios

provide the strongest evidence for a major passage of water along the apoplast, even in

the presence of apoplastic barriers.

Rice roots often grow under water-logged conditions in hypoxic soil environments. At

first sight, a low diffusional permeability (as found for water) may also refer to oxygen,

which diffuses from the shoot to root tips through the aerenchyma under hypoxic

conditions (Armstrong, 1979; Colmer et al., 1998). To reach root tips, it is required that

there are no excessive losses to the soil, i.e. PO2 should be low. The differences between

diffusional (HDO) and bulk water (Lp) permeabilities indicate that this could be

achieved by differences in the transport mechanism (diffusional versus bulk flow;

Ranathunge et al., 2003). Hence, rice roots could have rather high bulk water

permeability in the presence of a low permeability to oxygen, which reduces radial

oxygen losses (ROL). This would be favourable to the plant. The present data show that

the diffusional water permeability was reduced by only a factor of 3 as roots developed.

At the same time, radial oxygen loss (ROL) drastically decreased along the roots and

ends up with rates of close to zero at a distance of 50 mm from the root apex for the

cultivars used (Kotula L, Ranathunge K, Steudle E, Lafitte R, unpublished data).

Apparently, the diffusion of oxygen from aerenchyma to the outer medium is strongly

restricted by the existence of apoplastic barriers, which retain oxygen more effectively

than water. This may point to differences in the transport path for the two compounds.

However, there are, to date, no data of the permeability coefficients of oxygen across

the OPR to compare with permeabilities of water and how this would change during

root development. These values are badly needed.

The data show that apoplastic water flow contributes much more to the overall water

flow across the OPR of rice roots than the transmembrane component. The findings

suggest that exodermal apoplastic barriers such as Casparian bands and suberin lamellae

are fairly permeable to water. Partial blockage of the porous apoplast with ink particles

proportionately reduced the radial water flow across the OPR more than HgCl2 did

along the cell-to-cell path, suggesting that there were prominent apoplastic bypasses.



110

This was in line with substantial relative increases of σsOPR in response to blockage of

the apoplast with ink rather than the cell-to-cell path. However, absolute values of

reflection coefficients remained rather low. The diffusional water permeability (PdOPR)

was smaller by two (for immature root segments) or three (for mature root segments)

orders of magnitude than the osmotic (PfOPR). This strongly supported the view that

there was substantial apoplastic transport of water across the OPR of rice, even in the

presence of Casparian bands and suberin lamellae. Diffusional and bulk water

permeabilities did not decrease much during root development. Hence, the small effect

of root development on the diffusional permeability of water differed from that found

for oxygen (Colmer et al., 1998). This suggested that the two diffusants use different

pathways within the OPR.
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Abstract

Precipitates of insoluble inorganic salts were used to clog apoplastic pores in cell walls

of the outer part of rice roots (OPR) in two rice cultivars (lowland cv. IR64 and upland

cv. Azucena). Aerenchyma of two different root zones (20-50 and 50-100 mm from the

apex) was perfused with 1 mM potassium ferrocyanide (K4[Fe(CN)6]) while the whole

root segments were bathed in 0.5 mM copper sulfate medium (CuSO4). In another

experiment, salts were applied on opposite sides of the OPR. The copper-ferrocyanide

precipitation technique resembles the famous osmotic experiments of the German

botanist Wilhelm Pfeffer, in which he used them with clay diaphragms. Precipitates

were observed on the side where ferrocyanide was applied, suggesting that Cu2+ and

SO4
2- were passing the barrier including the Casparian bands (CBs) of the exodermis

much faster than ferrocyanide. There was a patchiness in the formation of precipitates,

correlated with the maturation of the exodermis. The intensity of copper ferrocyanide

staining decreased along developing rice roots. No precipitates were observed in mature

parts beyond 70-80 mm from the root apex, except for sites around the emergence of

secondary roots, which were fairly leaky to both water and ions. Blockage of the

apoplastic pores with precipitates caused a massive three- to four-fold reduction of

hydraulic conductivity of the OPR (LpOPR). The reflection coefficient of the OPR

(σsOPR) increased in response to the blockage with precipitates. The osmotic versus

diffusive water permeability ratios of the OPR (PfOPR/PdOPR) were around 600 for

immature and 1200 for mature root segments. Treatment significantly affected the bulk

rather than the diffusive water flow and caused a three- to five-fold reduction of the

PfOPR/PdOPR ratios. Results indicated that despite the existence of an exodermis with

Casparian bands, most of the water moved around cells rather than using the cell-to-cell

passage.

Key words: aerenchyma; apoplast; Casparian bands; exodermis; hydraulic conductivity;

rice roots; wall precipitates.
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Introduction

In the past, the phenomenon of variable hydraulics of roots has been explained in terms

of a composite transport model. The complex ‘composite anatomical structure’ of roots

results in ‘composite transport’ of both water and solutes (Steudle and Peterson 1998).

The parallel arrangement of the apoplastic and cell-to-cell paths and the switching

between pathways are important features of this model. The apoplastic

(extraprotoplastic/cell wall) component of water flow may be restricted by the existence

of barriers such as Casparian bands. Along the cell-to-cell path (transmembrane and

symplastic component via plasmodesmata), aquaporins, plasmodesmata, and suberin

lamellae may regulate the intensity of water flow (Oparka and Prior 1992; Peterson and

Cholewa 1998; Tyerman et al. 1999; Javot and Maurel 2002; Tyerman et al. 2002). By

switching between apoplastic and cell-to-cell paths, the composite transport model

allows for an adjustment or even a regulation of water uptake according to the demand

from the shoot. The model may also be applied to rice roots, which have aerenchyma

that separates the stele from the outer part of the root (OPR). The OPR comprises an

innermost unmodified cortical layer, sclerenchyma cells, an exodermis, and outermost

rhizodermis (Ranathunge et al. 2003).

 Even though rice is grown in paddy fields, symptoms of water shortage may occur

during daytime, resulting in leaf rolling (Hirasawa et al. 1992; Hirasawa et al. 1996).

This has been attributed to the hydraulic resistance of rice roots being higher than that

of other crop plants due to a lack of flexibility in switching between pathways and

adjusting to demand from the shoot (Miyamoto et al. 2001; Ranathunge et al. 2003).

Even though there are apoplastic barriers in rice roots in both the exo- and endodermis

(Clark and Harris 1981; Ranathunge et al. 2003), there are substantial apoplastic

bypass-flows of polar solutes such as NaCl across the entire root cylinder (Yeo et al.

1987; see Discussion). For water, it has been shown that the main resistance in rice

roots is located in the endodermis (Miyamoto et al. 2001; Ranathunge et al. 2003).

Despite the presence of a suberized exodermis with Casparian bands (CBs) and an

additional layer of lignified fibre cells, the OPR had the lowest resistance of any part of

the radial path; the resistance of aerenchyma was calculated to be intermediate

(Ranathunge et al. 2003). The low resistance of the OPR might be due to the fact that
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lignin rather than suberin is the major chemical component of rice CBs as found for

other plant species (Schreiber 1996; Zeier and Schreiber 1998).

Researchers are interested in distinguishing relative contributions of apoplastic and cell-

to-cell paths for the overall radial water flow across roots. For rice, Ranathunge et al.

(2004) presented evidence that the relative contribution of the apoplastic path was much

larger than that of cell-to-cell path for overall radial water flow. This suggested that the

CBs of the OPR was not a major barrier to water flow. Using a perfusion technique, the

authors showed huge ratios between the bulk and diffusional permeabilities of the OPR,

which are indicative of a dominating porous path. Ranathunge et al. (2004) used ink

particles of a mean diameter of 50 nm to clog apoplastic pores and decreased hydraulic

conductivity of the OPR (LpOPR) by 30%. The effect was larger than that of the water

channel blocker HgCl2 but the technique, perhaps, was not sufficient enough to block

most of the apoplastic pores.

In the present study, the technique of blocking the apoplastic path was improved using

insoluble salt precipitates. We perfused the aerenchyma and added one component (salt)

to the perfusion medium and the other to the outside. Salts diffused across the apoplast

of the OPR and formed a coloured precipitate where they met. Copper sulfate and

potassium ferrocyanide were used in millimolar concentrations. These formed reddish

brown precipitates of copper ferrocyanide (Hatchett’s brown) that were visible from the

outside of the root. The technique was adapted from the famous experiments of

Wilhelm Pfeffer (1921), who used a precipitation technique to produce semipermeable

precipitation membranes in clay diaphragms. For the first time, Pfeffer’s technique was

used in a living plant tissue. Upon blockage of the apoplast we found a several-fold

decrease in the hydraulic conductivity, consistent with the former idea of a dominating

apoplastic water flow.
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Materials and methods

Plant material

Rice (Oryza sativa L.) seeds (International Rice Research Institute, Manila, Philippines)

of IR64 (lowland cultivar) and Azucena (upland cultivar), the same cultivars used in

previous studies (Ranathunge et al. 2003, 2004), were germinated on moistened filter

paper placed within a Petri dish under light conditions (500 µmol m-2 s-1 of PAR).

Seedlings with 15 mm long roots and shoots were transferred to aerated hydroponic

culture and grown in climatic chambers as previously described by Miyamoto et al.

(2001). After 31-40 d growth, roots were excised at the basal node of the stem and used

in experiments.

Plant morphology and root anatomy

The shoot heights of young rice plants used in the experiments were 340 ± 10 mm and

500 ± 15 mm for IR64 and Azucena, respectively. Roots were 320 ± 40 mm (IR64) and

530 ± 25 mm (Azucena) long. Two different root zones (20-50 and 50-100 mm from the

root apex) were employed for measurements. The aerenchyma was not fully developed

at 20-50 mm from the root apex, as it was at 50-100 mm. Freehand cross-sections were

made approximately 70 mm from the root apex and stained with 0.05% Toluidine blue

O at room temperature for 2 min (O’Brien et al. 1964) to observe the emergence of

secondary roots from the primary root. Sections were examined using a light

microscope and photographed using Kodak Elite 64 ASA film.

Blocking the apoplast of the OPR by precipitates

Selection of salts

Insoluble salts were used to block apoplastic pores in the OPR. The reaction between

CuSO4 and K4[Fe(CN)6] gave rusty brown, insoluble crystals (precipitates) of

Cu2[Fe(CN)6] or Cu[CuFe(CN)6]. Equivalent precipitates using FeSO4 and K4[Fe(CN)6]

resulted in a bluish colour of K[FeIIIFeII(CN)6] due to contamination by FeIII (Holleman
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and Wiberg 1995). As CuSO4 permeated the OPR faster than the ferrocyanide,

precipitates largely occurred at the side where the ferrocyanide was offered. Different

combinations of CuSO4 and K4[Fe(CN)6] were tested to find the combination that

yielded the most intense precipitates. This occurred when 0.5 mM CuSO4 was offered

outside and 1.0 mM K4[Fe(CN)6] offered inside the aerenchyma of root segments. This

combination effectively clogged the apoplastic pores in the OPR. FeSO4 and

K4[Fe(CN)6] were tested in the same way. However, in some experiments 1 mM of both

solutions were used, or the sides of application were reversed.

                                       
Fig. 1 Diagram of a root perfusion set-up with an attached root segment, bathed in 0.5 mM CuSO4 or 1

mM K4[Fe(CN)6]. Open ends of root segments were fixed to glass capillaries (inner diameter: 1.3 mm).

Aerenchyma of root segments was rapidly perfused either by 1 mM K4[Fe(CN)6] or 0.5 mM CuSO4 by

gravity to develop precipitates of copper ferrocyanide in the apoplast of the outer part of the root (OPR;

see Figs. 4b-d).

Root segments excised either at 20-50 mm or 50-100 mm from the root apex were fixed

to glass capillaries (inner diameter: 1.3 mm), using a polyacrylamide glue (UHU, Bühl,

Germany), and then connected to the simple perfusion apparatus shown in Fig. 1. The

upper, open end of the root segment (used as an inlet) was connected to a syringe by a
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Teflon tube filled with either CuSO4 or K4[Fe(CN)6] solution. The other end of the root

segment was connected to a glass capillary, and remained open as an outlet. The syringe

was placed 0.7 m above the root segment providing a gravitational force of 0.007 MPa,

and the root segment was held vertically to allow perfusion of the solution by gravity.

K4[Fe(CN)6] solution was perfused through the aerenchyma of the root segment,

displacing air, while the whole root segment was bathed in CuSO4 solution. Trials were

carried out for the combinations given above.

Selection of optimum time period for perfusion

Perfusion of inorganic salt solutions was conducted for four different time periods (2, 3,

4, 5 h) to determine the optimum time for the development of insoluble crystals to clog

apoplastic pores in the cell walls of the OPR. Freehand cross-sections were prepared

and coloured crystals in the cell walls were viewed using an optical microscope

(DIALUX 22EB, Leitz, Nürnberg, Germany) after each period of perfusion. A period of

3 h was established to be the optimum time period for perfusion.

Measurement of radial water flow across the outer part of roots (OPR) by steady-

state of perfusion

Measurements were done for two different root zones (root tip not intact) of 20-50 mm

and 50-100 mm from the apex. Control (pre-perfused with water instead of salt

solutions) or treated (apoplastic pores in the cell walls of the OPR blocked off by

precipitates) root segments were attached to the pump perfusion apparatus as previously

detailed by Ranathunge et al. (2003). A syringe filled with aerated nutrient solution was

mounted on a pump (high-precision, 12-step) and connected to the inlet side of the root

segment, while a pressure device (pressure probe) was connected to the outlet side.

Aerated nutrient solution was perfused through the aerenchyma of rice root segments at

a rate of 1.7 × 10-12 m3 s-1 and resulting steady-state pressures (P in MPa above

atmospheric) were measured. The hydraulic conductivity of the OPR (LpOPR in m s-1

MPa-1) was calculated using equation 1:

( )1.rOPR APLpQv ××=

where Qv is the pump rate (in m3 s-1), and Ar is the surface area of the root segment (m2).
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To avoid anaerobic conditions, root segments were placed in a small, open chamber and

nutrient solution was continuously circulated around them. The effectiveness of the

seals (places where the open ends of root segments attached to glass capillaries by using

a polyacrylamide glue and a molten mixture of bee’s-wax:colophony) were tested

before and after experiments by passing a fluorescent dye, 0.01% trisodium,3-hydroxy-

5,8,10-pyrene trisulfonate (PTS: Bayer AG, Leverkusen, Germany) through the root

segments and checking for leakages into the outer medium. At the end of the

experiment, only segments without leaks were used to calculate the LpOPR.

Determination of reflection coefficient of the OPR (σsOPR) for perfused root

segments

The reflection coefficient of the OPR (σsOPR: passive selectivity of cell membrane for a

given solute) was determined from the change in steady-state pressure in response to

adding osmotic solutes to the external medium. Mannitol (20 mOsmol kg-1, equivalent

to 0.05 MPa of osmotic pressure) was used as the test solute, as it has a σ of unity (ideal

semi-permeable) for plant cell membranes (Steudle and Tyerman 1983). Replacing the

external nutrient solution with mannitol brought about a decline of steady-state

pressure. Its maximum drop was used to calculate σsOPR. The original steady-state

pressure was obtained following the removal of mannitol from the external medium.

Measurements were carried out for control and treated root segments (apoplastic pores

in the cell walls of the OPR clogged with salt precipitates), separately. At the end of the

experiment, root segments were randomly selected; freehand longitudinal sections were

made and stained with Evans blue for 20 min in order to check the viability of cells in

the OPR (Fischer et al. 1985). Longitudinal sections were soaked in 10 mM

ethylenediamine tetra-acetic acid (EDTA) for 30 min and washed with distilled water to

dissolve precipitated salt crystals in cell walls, prior to staining with Evans blue.

Diffusional water permeability across the OPR (PdOPR) with heavy water (HDO)

Control and treated (apoplastic pores in the OPR blocked off with precipitates) rice root

segments were attached to a perfusion apparatus similar to that illustrated in Fig. 1. The
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technique was based on a steady-state perfusion of 3 M HDO through aerenchyma of

root segments, displacing air. The upper, open end of the root segment (used as an inlet)

was attached to a small reservoir by a Teflon tube filled with 3 M HDO. The other end

was kept open as an outlet. The root segment was placed 0.8 m (gravitational force =

0.008 MPa) below the small reservoir, and held vertically to allow perfusion of the

solution by gravity. Such small forces allowed the measurement of diffusion of HDO

across the OPR, i.e. the lateral water movement from aerenchyma to external well was

nearly isobaric. The root segment was placed in a small chamber with known volume (5

ml) of nutrient solution and stirred continuously using a small pump to minimize the

thickness of unstirred layers. At different time intervals, 50 µl of the external medium

was taken out using a syringe, and the HDO concentration of each sample was

measured by a freezing point osmometer (Ranathunge et al. 2004). The amount of HDO

diffusing to the outer chamber was plotted against time. The solute/HDO flow across

the OPR (JsOPR in mol s-1 m-2) was obtained, dividing the slope of the curve by the

surface area of the root segment. ∆Cs (mol s-1) was evaluated using the HDO

concentration difference between the internal (perfused through aerenchyma) and

external (diffused into the external chamber) media. The diffusional water permeability

of the OPR (PdOPR) was obtained according to Eq. 2:

( )2.
s

sOPR
dOPR C

JP
∆

=

Further details are given in Ranathunge et al. (2004).  At the end of the experiment, root

segments were randomly selected and stained with Evans blue to confirm the viability

of cells in the OPR.

Measurement of the PdOPR for HgCl2 treated root segments

Prior to treatment with mercurials, PdOPR was measured for control root segments using

perfusion of aerenchyma with HDO as described above. In order to close the water

channels (aquaporins) in cell membranes of the OPR, 50 µM HgCl2 was added to the

outer surface of rice root segments for 20 min (Carvajal et al. 1996; Henzler and Steudle

1995). Excess HgCl2 was flushed from the outer surface of root segments with the aid

of flowing distilled water. New PdOPR values were obtained for root segments by
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perfusing 3 M HDO through aerenchyma that had been treated with 50 µM HgCl2. The

toxicity of 50 µM HgCl2 applied for 20 min to rice root segments was investigated by

staining them with Evans blue as described above.

Photography

All photographs were taken either by using slide film, white-light illumination with

Kodak Elite 64 ASA or using a digital camera (Sony-DSC-F505V, Sony Corporation,

Tokyo, Japan).

Comparison of bulk/hydraulic water permeability with diffusional water

permeability across the OPR

In order to compare the bulk/hydraulic water permeability (PfOPR) across the OPR with

diffusional water permeability (PdOPR), the hydraulic conductivity of the OPR (LpOPR)

was converted to PfOPR, according to House (1974):

( )3.
w

OPR
fOPR V

RTLp
P

×
=

Here, 
wV  is the partial molar volume of liquid water. The PfOPR/PdOPR ratio was obtained

directly; hence the units were m s-1 for both the PfOPR and PdOPR.
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Results

Anatomy

Since there were no visible anatomical or developmental differences between cultivars

(upland cv. Azucena and lowland cv. IR64), all pictures presented in this paper are only

for cv. Azucena. Immature regions of rice roots (around 10 mm from the apex)

consisted of closely packed flattened cells (Clark and Harris 1981; Ranathunge et al.

2004). However, it changed dramatically along the root, from apex to base, modifying

its structure. As close as 20 mm from the root apex, cortical cells had partially collapsed

to form large, air-filled spaces (aerenchyma) as a result of lysigeny (Evans 2003;

Ranathunge et al. 2004). In both cultivars, aerenchyma formed as cells in the mid cortex

died, which caused separation of the stele from the OPR.  OPR consisted of four

discrete layers. The outermost rhizodermis, hypodermis with Casparian bands, a layer

of sclerenchyma and the innermost unmodified cortical cell layer. Casparian strips in

the hypodermis started to develop approximately 30 mm from the root apex. Fluorol

Yellow 088 stained complete suberin lamellae in the hypodermal cell walls at a distance

of 50 mm from the root apex in both cultivars (Ranathunge et al. 2003; 2004).

Identification of precipitated salt crystals along the root axis

        

Fig. 2 Naked eyed (a,b) and stereo microscopic (c,d) views of the outer surface of rice root segments (cv.

Azucena) after perfusion of aerenchyma with 1 mM K4[Fe(CN)6] for 3 h. 0.5 mM CuSO4 was used as the

external medium. In all cases, copper ferrocyanide precipitates formed in cell walls of the inner

unmodified cortical layer of the OPR (see Figs 4b,c), but were visible from outside. (a) Uniformly
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distributed brown precipitates were observed throughout the immature (20-50 mm from the apex) root

segments, (b) no precipitates were observed beyond 70-80 mm from the root apex in mature (50-100 mm)

root segments. Stereo-microscopic observations showed brown precipitate patches on root surfaces,

where the density was higher in immature (approximately 35 mm from the apex; c) and lower in mature

(approximately 65 mm from the apex; d). Arrowheads show brown precipitate patches on the root

surface. Bar = 1 mm.

Uniformly distributed brown precipitated crystals of Cu2[Fe(CN)6] (= Cu[CuFe(CN)6];

Holleman and Wiberg 1995) were observed on the surface of immature root segments

(20-50 mm from the apex; Fig. 2a) after perfusing aerenchyma with 1 mM K4[Fe(CN)6]

for 3 h, while it was placed in a chamber filled with 0.5 mM CuSO4. The brown colour

gradually faded along the mature part of the root segment (between 50-80 mm from the

apex) and it was not visible approximately 70-80 mm from the apex (Fig. 2b). In

contrast, stereo microscopic observations showed irregular brown patches on the root

surface, where the intensity and density were higher in immature (Fig. 2c) and lower in

mature (Fig. 2d) root segments. Brown, precipitated salt crystals were observed as rings

around the points where secondary roots emerged from the primary root (Fig. 3a), even

when treated (perfusing aerenchyma with 1 mM K4[Fe(CN)6] while keeping 0.5 mM

CuSO4 as the external medium) for a time as short as 1 h. Development of secondary

roots from the pericycle (Fig. 3b) created regions of discontinuity in the endo- and

hypodermal Casparian bands and regions of intense precipitates.

Fig. 3 Emergence of secondary roots from a primary rice root. (a) Brown copper ferrocyanide precipitates

were observed as rings around the points where secondary roots emerge from the primary root

(arrowheads). Here, aerenchyma was perfused by 1 mM K4[Fe(CN)6] and 0.5 mM CuSO4 was applied as

the external medium for 1 h. Bar = 1 mm. (b) Emergence of a secondary root from a primary root as it

breaks the OPR. Free-hand cross-section taken approximately 70 mm from the root apex, stained with

toluidine blue O. Bar = 200 µm.
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Precipitated salt crystals in cell walls of the OPR

Blue salt crystals of K[FeIIIFeII(CN)6] were observed in the walls of the inner

unmodified cortical cells of the OPR (Fig. 4a) after perfusing the aerenchyma with

K4[Fe(CN)6] while the whole root segment was bathed in FeSO4 medium. The bluish

colour resulted from the fact that part of the FeII offered in the medium was oxidized to

FeIII thus causing the precipitation of “Berliner Blau” (Holleman and Wiberg 1995). But

majority of precipitate was white coloured Fe2[Fe(CN)6]. Apparently, the diffusion of

FeII/FeIII into the aerenchyma via apoplastic pores (intermicrofibrillar spaces) was much

faster than that of Fe(CN)6
4- (from the aerenchyma to the external chamber) because

crystals were deposited in cell walls of the inner cortical layer of the OPR. Dense, rusty

brown deposits characteristic of iron(III) hydroxide were seen in the walls and lumens

of the rhizodermal cells (Fig. 4a). Because of the obvious iron(III) toxicity to the

rhizodermal cells, such root segments were discarded without using for further

permeability measurements.

Perfusion of root segments with K4[Fe(CN)6] while they were bathing in CuSO4

medium resulted in the development of brown, insoluble crystals of Cu[CuFe(CN)6] in

cell walls (especially inner tangential) of the cortical layer (Fig. 4b,c). Dense, brown

crystals were observed in the walls of cortical files of cells around the secondary roots.

These cortical cell chains did not collapse but continued to expand in a radial direction

(Fig. 4d). Cells of newly emerged secondary roots from the primary root were

completely covered with brown precipitate (Fig. 4d). When salts were applied on

opposite sides of the OPR, brown crystals were observed in cell walls of the

rhizodermis and especially in outer tangential walls of the exodermis (Fig. 4e). Even

though Cu2+ could pass through the immature hypodermal Casparian bands, this

structure appeared to be rather impermeable to Fe(CN)6
4-.
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Fig. 4 (a-e) Free-hand cross-sections of rice root segments (cv. Azucena), made after blocking off the

apoplast of the OPR with precipitated salt crystals. (a) Blue salt crystals of K[FeIIIFeII(CN)6] deposited in

the walls of inner unmodified cortical cells as a result of perfusion of aerenchyma by 1 mM K4[Fe(CN)6]

and simultaneous application of FeIII contaminated 1 mM FeSO4 to the external medium for 3 h. Cross-

section was made approximately 60 mm from the root apex. Heavy depositions of rusty brown oxidised

iron (FeIII) in the walls and cytoplasm of the outermost rhizodermis. (b-d) Brown precipitated salt crystals

of Cu2[Fe(CN)6] deposited in cell walls inner to the exodermal ring. Here, 1 mM K4[Fe(CN)6] was

perfused trough the aerenchyma and 0.5 mM CuSO4 was applied to the outer medium for 3 h. Continuous

brown precipitates in cell walls of the inner unmodified cortical cells of the OPR in immature root zones

(b), but it was discontinuous in mature (c). Cross-sections were taken at 35 mm and 65 mm from the root

apex, respectively. Arrowheads show places without precipitates. (d) Dense, brown precipitated crystals

in cell walls where the secondary roots emerge breaking the outer surface of the primary root. Arrowhead

shows the lateral root. (e) Brown precipitated copper ferrocyanide crystals in the apoplast (cell walls) of

the rhizodermis as a result of simultaneous application of 0.5 mM CuSO4 inside aerenchyma and 1 mM

K4[Fe(CN)6] into the external medium for 3 h. Cross-section was made approximately 40 mm from the

root apex. Bar = 50 µm. rh = rhizodermis, scl = sclerenchyma, ex = exodermis, co = cortical cell layer, ae

= aerenchyma.

Hydraulic/bulk water flow across the OPR

After fixing root segments to the pressure-perfusion pump, about 1.5-2 h of perfusion

was required to obtain steady-state pressures. This is due to the large internal volume of
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the system (compared to conducting area of the root segment), which dampens pressure

changes. There was a linear relationship between pump rate (Qv) and steady-state

pressure (P). Further details are given in Ranathunge et al. (2003). Since water

permeability across the OPR was temperature sensitive, measurements were done at

constant temperature (25°C). Compared to whole roots or root systems, the OPR was

quite permeable to water (Ranathunge et al. 2003). In controls, hydraulic/bulk water

flow across the OPR (LpOPR) was similar for both cultivars (t-test, P > 0.05; Table 1).

Even though there was a 20-25% reduction of the LpOPR in mature versus immature

segments, it did not differ significantly along the root axis over the first 100 mm from

the apex (Table 1; t-test, P > 0.05). This small reduction of the LpOPR did not correlate

with maturation of Casparian bands or increased suberin deposits in the hypodermis

either for IR64 or Azucena. In precipitation treatments, LpOPR measurements were only

done for root segments containing salt crystals in walls of the inner cell layers (Fig.

4b,c). When crystals were only present in walls of the rhizodermis (Fig. 4e), segments

were not employed for LpOPR measurements. In these roots, during perfusion under

pressure, the bulk flow of water from the aerenchyma to the external medium tended to

wash out precipitated crystals from intermicrofibrillar spaces of the cell walls.

Table 1 Hydraulic conductivity of the outer part of young rice roots (LpOPR) for control and treatment

(blockage of the apoplastic pores by precipitates of copper ferrocyanide). Plants were grown for 30-40 d

in aerated hydroponic culture. Measurements were performed using a pump perfusion technique. Means ±

SD are given for two different root zones and two different cultivars, IR64 and Azucena. Number of

measured roots is given in parenthesis.

Hydraulic conductivity of the outer part of the root, LpOPR (10-7 m s-1 MPa-1)

IR64 Azucena

Treatment

20–50 mm 50-100 mm 20-50 mm 50-100 mm
Control roots
Roots with
precipitates

Average
factor of
reduction

14.8 ± 3.8 (15)a
  4.2 ± 1.3 (07)b

     3.6 ± 1.2

11.4 ± 1.9 (15)a
  3.6 ± 1.1 (06)b

     3.2 ± 0.8

12.5 ± 4.1 (15)a
  3.6 ± 1.0 (09)b

     3.5 ± 1.3

9.0 ± 2.8 (15)a
2.2 ± 0.9 (10)c

    4.1 ± 1.6

Different letters indicate significant differences at P = 0.05 level. Statistical analysis was based on t-test

(hence, lack of homogeneity of variances in samples, data were transformed to logarithmic scale, before

running the t-test).
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Compared with the control, blockage of apoplastic pores in cell walls of the OPR by

insoluble crystals caused a 3- to 4-fold (66-75%) reduction of LpOPR in both cultivars

and both root zones (Table 1). At a distance of 20-50 mm from the root apex, LpOPR

decreased from (14.8 ± 3.8) to (4.2 ± 1.3) × 10-7 m s-1 MPa-1 in IR64 and (12.5 ± 4.1) to

(3.6 ± 1.0) × 10-7 m s-1 MPa-1 in Azucena. Similar reductions were obtained for root

segments taken 50-100 mm from the apex (Table 1).

Reflection coefficients of modified OPR

Reflection coefficients were measured with two different root zones (20-50 and 50-100

mm from the apex) for control and treated root segments. This involved altering water

flow by changing the osmotic pressure of the outer medium by adding 20 mOsmol kg-1

(equivalent to 0.05 MPa of osmotic pressure) mannitol. Efflux of water (exosmosis)

from root segments caused stationary pressures to decline at constant LpOPR.

Comparison of the osmotic pressure applied with the change in hydraulic pressure gives

the reflection coefficient (σsOPR ≡ -LpDOPR / LpOPR; LpDOPR = osmotic coefficient of the

OPR).

Table 2 Reflection coefficient of the outer part of young rice roots (σsOPR) for the permeating solutes

NaCl and mannitol. Mean values ± SD are given for two different root zones and two different cultivars,

IR64 and Azucena for control and the treatment (blocking off the apoplastic pores in cell walls of the

OPR with precipitates). Number of measured roots is in parenthesis. Plants were grown in aerated

hydroponics for 30-40 d.

Reflection coefficient of the outer part of rice roots (σsOPR) Rice cultivar

Control roots∗

         NaCl                                  Mannitol
Roots with precipitates

Mannitol
IR64
  20-50 mm
  50-100 mm
Azucena
  20-50 mm
  50-100 mm

 0.09 ± 0.02 (5)                      0.13 ± 0.04 (6)a
 0.11 ± 0.03 (5)                      0.13 ± 0.04 (6)a

 0.08 ± 0.02 (5)                      0.15 ± 0.05 (8)a
 0.09 ± 0.01 (5)                      0.14 ± 0.10 (7)a

0.24 ± 0.03 (5)b
0.26 ± 0.05 (5)b

0.26 ± 0.06 (5)b
0.28 ± 0.04 (5)b

Different letters indicate significant differences at P = 0.05 level. Statistical analysis was based on t-test

(data distributed normally). ∗Ranathunge et al. 2003.

Table 2 summarizes reflection coefficients of the OPR of young rice roots. As shown by

Ranathunge et al. (2003), the σsOPR did not change along the root axis (t-test; P > 0.05).
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Clogging apoplastic pores in the OPR caused an increase in the σsOPR for mannitol by a

factor of about 2 in both immature and mature root zones. As observed in the control,

the σsOPR for mannitol did not change along the root axis (t-test; P = 0.05).

Investigation of viability of cells in the OPR

Since the experiments were time consuming (approximately 10-12 h), it was essential to

check the viability of the cells, namely in the presence Cu2+ which may be toxic to plant

cells at mM concentrations (Murphy et al. 1999). Evans blue is a non-penetrating dye in

living cells; it cannot cross an intact membrane (Taylor and West 1980). In living cells,

the cytoplasm and nuclei did not stain (Fig. 5a). If cells were dying or dead, the plasma

membrane should be leaky allowing the dye to diffuse into the cell. Nuclei and

cytoplasm of dead cells were stained dark blue (Fig. 5b). Results confirmed that the

cells in the root segments used for permeability measurements were alive.

           
Fig. 5 Free-hand longitudinal sections of rice roots (cv. Azucena), taken approximately 60 mm from the

root apex, stained with Evans blue to check the viability of cells in the outer part of the root at the end of

the pump perfusion experiment. In dead cells, nuclei were stained blue (arrowheads). (a) A few dead cells

(<5%) were observed at the end of the pump perfusion experiment (8-10 h after excising from the intact

plant). (b) Number of dead cells was more than 70%, 36 h after excising from the intact plant.  Bar = 50

µm.

Diffusional water permeability of the OPR (PdOPR)

Vertical perfusion of root segments (aerenchyma) by heavy water (HDO) was

performed for root zones at 20-50 and 50-100 mm from the apex for the control and two

different treatments, i.e. either by blocking off apoplastic pores in the OPR with salt

crystals or closing the membrane water channels with 50 µM HgCl2. Amounts of HDO

that diffused into the external chamber increased linearly with time (Fig. 6). Both

treatments (precipitates and HgCl2) reduced the diffusion of HDO into the external
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medium compared with that of the control. At any time and up to 200-250 min from the

start, the external HDO concentration was substantially smaller than the concentration

of perfused HDO in the aerenchyma. Hence, the concentration of HDO perfused

through the aerenchyma was used as the driving force in equation 2.

Fig. 6 Increases of HDO concentration in the external medium with time for root segments of control and

treatment (addition of 50 µM HgCl2 to the outer surface of the root segment for 20 min, aiming to close

the water channels in membranes of the OPR). Root segment was taken at 20-50 mm from the root apex

(cv. Azucena). The amount of HDO diffused into the outer medium was reduced by about 20-30% after

the treatment.

The diffusive water permeability of immature root segments, which had been excised at

20-50 mm from the root apex, had significantly higher values than that of mature (50-

100 mm) root zones as shown in Table 3 (t-test; P < 0.05). Those values were same for

both cultivars. Even though blockage of apoplastic pores with insoluble salt crystals

reduced the PdOPR compared to the control, treatments did not cause significant changes

at P = 0.05 level. However, there was a large variation between root segments. When

results were presented as ratios, blockage of apoplastic path reduced the PdOPR by about

20% in Azucena for both root zones. For IR64, reductions were 12% at 20-50 mm and

23% at 50-100 mm, respectively (Table 3).
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Table 3 Diffusional water permeability of the outer part of rice roots (PdOPR), measured by rapidly

perfusing aerenchyma of root segments with near-isobaric water (HDO) in control and after blockage of

the apoplastic pores of the OPR with precipitates. Plants were grown in aerated hydroponics for 30-40 d.

PdOPR is given for two different distances from the root apex and two cultivars, IR64 and Azucena. PdOPR

significantly decreased along the root from the apex at P = 0.05 level. The blockage of apoplastic pores of

the OPR with precipitates did not significantly decrease PdOPR at P = 0.05.  Values are means ± SD with

the number of measured roots in parenthesis.

Diffusional water permeability of the OPR (PdOPR); 10-7 m s-1

IR64 Azucena

Type of the
treatment

20–50 mm 50-100 mm 20-50 mm 50-100 mm
Control (A)
Roots with
precipitates (B)
 (B)/(A) ratio

3.6 ± 0.6 (7)a
2.9 ± 0.7 (6)a

0.81 ± 0.24

1.5 ± 0.4 (6)b
1.2 ± 0.5 (6)b

0.80 ± 0.39

3.4 ± 0.7 (7)a
3.0 ± 0.9 (6)a

0.88 ± 0.32

1.3 ± 0.4 (6)b
1.0 ± 0.5 (6)b

0.77 ± 0.44

Different letters indicate significant differences at P = 0.05 level. Statistical analysis was based on t-test

(data distributed normally).

For both cultivars and root zones, closure of water channels in cell membranes of OPR

with 50 µM HgCl2 caused approximately 30% reduction of PdOPR (Table 4). Toxicity of

HgCl2 was tested with Evans blue stain. Cells of the central cortex and the rhizodermis

in the OPR were alive even when treated with 50 µM HgCl2 for 20 min (data not

shown).

Table 4 Diffusional water permeability of the outer part of rice roots (PdOPR) measured with near-isobaric

water (HDO) for control and after treating with 50 µM HgCl2 for 20 min. PdOPR is given for two different

root zones and two cultivars, IR64 and Azucena. Values are means ± SD and number of measured roots

(n) is six. Treatment (50 µM HgCl2)/control ratios were calculated to remove variabilities between roots

and the reduction of PdOPR is given as a percentage.

Diffusional water permeability of the OPR
(PdOPR); 10-7 m s-1

Rice cultivar

Control 50 µM HgCl2

50 µM HgCl2 /
control ratio

Reduction as a %

IR64
  20-50 mm
  50-100 mm

Azucena
  20-50 mm
  50-100 mm

3.2 ± 0.9
1.5 ± 0.5

3.4 ± 0.6
1.6 ± 1.0

2.3 ± 0.5
1.2 ± 0.4

2.4 ± 0.8
1.3 ± 0.9

0.71 ± 0.07
0.74 ± 0.15

0.68 ± 0.15
0.74 ± 0.11

29 ± 07
26 ± 15

32 ± 15
26 ± 15
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Bulk/Hydraulic versus diffusive water permeability of the OPR

Using equation 3, LpOPR values obtained by pressure perfusion were converted to

osmotic/hydraulic water permeability (PfOPR) to compare bulk and diffusive (PdOPR)

water permeabilities in the same units. There were huge differences between PfOPR and

PdOPR of roots from both cultivars (Table 5). The PfOPR was about 600 times greater than

the PdOPR in immature root zones (20-50 mm). It was larger by a factor of 1200 in

mature root zones (50-100 mm). Blockage of apoplastic pores with salt crystals caused

a three- to five-fold reduction of PfOPR/PdOPR ratio in both rice cultivars and both root

zones indicating that the treatment with salt crystals did reduce LpOPR(PfOPR)

substantially more than PdOPR.

Table 5 Ratios between hydraulic/osmotic water permeability (PfOPR) and diffusional water permeability

of the OPR (PdOPR) for control and the treatment (roots with precipitates). Plants were grown in aerated

hydroponics for 30-40 d. Prior to calculating the ratios, hydraulic conductivity of the OPR (LpOPR; m s-1

MPa-1), was converted to hydraulic/osmotic water permeability (PfOPR), which has the same units (m s-1)

as diffusional water permeability (PdOPR). PfOPR values are means ± SD with the number of measured

roots in parenthesis. PfOPR/PdOPR ratios are given for two different root zones and two rice cultivars, IR64

and Azucena. Blocking off the apoplastic pores of the OPR with precipitates reduced the PfOPR/PdOPR ratio

by a factor of three to five relative to the control.

Hydraulic water permeability of the OPR (PfOPR)
(10-7 m s-1)

PfOPR / PdOPR RatiosRice cultivar

Control Roots with ppt. Control Roots with ppt.

IR64
20-50 mm
50-100 mm

Azucena
20-50 mm
50-100 mm

2124 ± 498 (7)a
1681 ± 179 (7)a

1782 ± 545 (7)a
1265 ± 355 (7)a

573 ± 113 (6)b
483 ± 145 (6)b

491 ± 142 (9)b
296 ±  69 (8)c

  607 ± 163
1200 ± 360

  594 ± 236
1265 ± 407

212 ± 68
  402 ± 180

144 ± 56
227 ± 45

Different letters indicate significant differences at P = 0.05 level. Statistical analysis was based on the t-

test (hence, lack of homogeneity of variances in samples, data were transformed to logarithmic scale

before running the t-test).
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Discussion

According to authors’ best knowledge, this is the first study in which inorganic salt

precipitates have been successfully used to block off intermicrofibrillar spaces in the

apoplast of living tissue and to measure responses in water transport. In a different

approach, Enstone and Peterson (1992) introduced berberine hemisulphate and

potassium thiocyanate sequentially into the xylem to check the permeability of

endodermal Casparian bands of onion, corn and broad bean roots. The present technique

was based on Wilhelm Pfeffer’s successful development of artificial semi-permeable

precipitation membranes using cells with clay diaphragms to verify van’t Hoff’s theory

of osmosis (van’t Hoff 1887; Pfeffer 1921). Pfeffer used precipitation membranes

(invented by Traube, 1867) of insoluble copper ferrocyanide, which clogged the pores

within the diaphragms. In Pfeffer’s experiments, diluted solutions of CuSO4 and

K4[Fe(CN)6] were placed on either side of the diaphragms. When we used the technique

with living tissue, great care was given to check the toxicity of the chemical salts (in

millimolar concentrations) to living cells. The FeSO4/K4[Fe(CN)6] treatment was

discarded because of the toxicity of iron to living cells, even when used in millimolar

concentrations (Dobermann and Fairhurst 2000). In contrast, the reaction between 0.5

mM CuSO4 and 1 mM K4[Fe(CN)6] produced small, insoluble salt crystals of

Cu2[Fe(CN)6] or Cu[CuFe(CN)6] which could successfully clog pores with average

diameters of 5-30 nm (Nobel 1999) in cell walls of the OPR. The solubility product of

Cu2[Fe(CN)6] at 25°C is 1.3 × 10-16 M3 (Hill and Petrucci 1999). So, the concentration

of Cu2+ and [Fe(CN)6]4- ions in a solution of pure water containing a precipitation of

Cu2[Fe(CN)6] would be 8.04 µM and 4.02 µM, respectively. Thus, the concentrations of

applied salts during the experiment should have been sufficient even to produce

precipitates in the apparent free spaces in the apoplast, because we offered much higher

concentrations than required (0.5 mM and 1 mM for Cu2+ and [Fe(CN)6]4-,

respectively). It was shown that salts and crystals did not affect the viability of root cells

during treatments.

Blockage of the apoplast by insoluble salt crystals (precipitates) reduced LpOPR by a

factor of three to four. However, blockage may have not been complete. It cannot be

ignored that a small amount of water moved radially along the continuum of middle
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lamellae where the access of Cu2+ and [Fe(CN)6]4- may have been limited. Groh et al.

(2002) presented evidence that 2-4% of water could move along the middle lamellae of

isolated phellems of trees. The present results imply that at least two-thirds to three-

quarters of water is crossing the OPR apoplastically. Although segments taken from a

distance of 50-100 mm from the tip were less stained than those from 20-50 mm, the

percent-reduction in LpOPR was similar indicating that the contribution of apoplastic

flow was less in more mature parts where the exodermis was mature. It would be

interesting to see changes at older regions of the root; these have not yet been measured.

In the range of up to 100 mm, the relative contribution of the apoplast is larger than the

cell-to-cell path despite the existence of apoplastic barriers in the OPR such as

Casparian bands and lignified walls of sclerenchyma (Ranathunge et al. 2003).

The present results agree with our previous findings that blockage of the apoplast with

ink particles reduced the overall hydraulic conductivity of the OPR. However, blockage

with ink particles resulted in a reduction of only 30%; this was much less than with that

by precipitates. The present reduction was much more pronounced than that caused by

the water channel blocker HgCl2. Closure of water channels in the membranes of the

OPR reduced the LpOPR by only 10% (Ranathunge et al. 2004). Although the closure of

water channels by HgCl2 may have been incomplete, the present results do indicate a

dominating apoplastic water flow across the OPR rather than a cell-to-cell flow. This

agrees with earlier observations of rice roots, which indicated a substantial apoplastic

component for NaCl and PTS (Yadev et al. 1996; Yeo et al. 1987; see Introduction).

Root anatomical features support the view of a non-dominant cell-to-cell water flow

across the OPR. The symplasmic continuum could be limited by formation of a

suberized exodermis (Ranathunge et al. 2004) as well as scarcity of pitting and

plasmodesmata in the sclerenchymatous layer (Clark and Harris 1981). Nevertheless, it

has been shown that the endodermis represents the major hydraulic barrier, which is due

to its strong suberization (Miyamoto et al. 2001; Ranathunge et al. 2003). Most of the

water channels might be concentrated in the endodermis or the stele, as found for other

species (Schäffner 1998).

There was a striking asymmetry in the development of precipitates. They only occurred

on the side where ferrocyanide was added suggesting that Cu2+ and SO4
2- rather than
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[Fe(CN)6]4- were passing the barrier including Casparian bands of the hypodermis

(when not completely matured). The reason may be that, unlike CuSO4, ferrocyanide

with its four negative charges moved very slowly across the barrier. In view of the

general attitude that Casparian bands of the hypodermis are completely impermeable for

ions, the finding of a considerable permeability of Casparian bands to CuSO4 is

unusual. One may argue that the permeation properties of the exodermis of the OPR of

rice may be unusual because we used hydroponically grown rather than soil-grown rice.

Experiments with the latter and with other cereals (corn) are under way to check the

permeability of their exodermis using the precipitation technique. Currently, the

technique is also being used for the endodermis of rice and for species lacking

aerenchyma.

At a distance of up to 70-80 mm from the apex, apoplastic salt precipitates revealed a

somewhat patchy structure of the exodermis (Figs 2c,d). However, our histochemical

studies failed to show hypodermal passage cells lacking suberin lamellae. The

patchiness might be correlated with the maturation of Casparian bands in the

hypodermis, which was not uniform. Some of the hypodermal Casparian bands of

hydroponically grown rice stained with fluorescent dye berberine may have been not

completely functional and did not completely block off ions and water (Ranathunge et

al. 2003). However, from an anatomical point of view, stained bands did look like intact

Casparian strips. Further investigations are required to confirm the idea that Casparian

bands in the exodermis of rice roots have an unusual high permeability. By using other

combinations of salts (ions) which form precipitates (e.g. of BaSO4 or Ca-oxalate), the

idea should be followed further. Perhaps, the unusual high permeability of Casparian

bands is due to a different chemical composition as compared with bands of other

species. For example, when lignin is a major chemical component of bands rather than

suberin, the high permeability to polar solutes may be understandable (Schreiber 1996;

Zeier and Schreiber 1998). A chemical analysis of bands is required.

It has been postulated that places where secondary roots emerge from primary roots are

leaky to water and solutes (Peterson et al. 1981). In this study, dense precipitates have

been observed around secondary roots. These places may act as ‘open doors’ for

relatively free movement of water and nutrient ions. This is in agreement with Peterson
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and co-workers who used the apoplastic tracer PTS (Peterson et al. 1981). Zimmermann

and Steudle (1998) observed that the radial PTS flow into the xylem was similar in

exodermal and non-exodermal corn roots suggesting a rate limitation at the endodermis.

In mature rice root segments, local disruptions of the exodermis when developing

secondary roots from the pericycle are most likely to allow for high apoplastic bypasses.

When secondary roots mature, we observed that bypasses were healed in more basal

parts of the roots. No precipitates were observed around mature secondary roots situated

beyond 150 mm from the apex (data not shown).

The picture of a dominating apoplastic rather than cell-to-cell path for bulk water flow

across the OPR was consistent with low reflection coefficients (σsOPR ≈ 0.1; Table 2),

which were smaller by a factor of two to three than those of whole roots (σsr = 0.20 to

0.30 for NaCl; Ranathunge et al. 2003). Apoplastic blockage by precipitates caused an

increase of σsOPR by a factor of two for mannitol. This is smaller than one would expect

according to the composite transport model of the root assuming a σs
cc ≈ 1 for the cell-

to-cell passage (semipermeable membranes; Steudle and Frensch 1996). The small

effect is not completely understood, but may be related to the fact that precipitates

especially blocked the pores in tangential cell walls of the OPR rather than radial and

transverse as observed in cross-sections (Figs 4b,c). Therefore, there was also an effect

on the cell-to-cell passage. According to the composite transport model, this may have

added up to the overall σsOPR, which was smaller than one would expect at first glance.

Unlike LpOPR, the PdOPR significantly decreased along the root axis. Development of

exodermal suberin lamellae may impede plasma membrane and restrict HDO diffusion

across membranes of the OPR. These are barriers for water and ion movement from the

apoplast to the symplast, and vice versa, of individual cells (Peterson and Cholewa

1998). The reduction of PdOPR along the root nicely correlated with the increment of

rhizodermal-exodermal suberin along rice roots (data not shown). Unlike LpOPR, the

reduction of PdOPR was in the same range for both treatments used (either blockage of

apoplastic pores with precipitates or closure of water channels with 50 µM HgCl2).

Development of precipitates was not uniform in cell walls. Dense precipitates were

observed in the tangential walls (Figs 4b,c). Less or no precipitates were found in the

radial and anticlinal cell walls. So it is clear that precipitates in the cell walls could not
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completely block the diffusion of HDO across membranes and allowed a flow of HDO

at the direction of the radial and anticlinal cell walls resulting in a lower effect than

expected.

The strongest evidence in favour of a predominantly apoplastic water flow came from

comparing the ratios between PfOPR and PdOPR  (PfOPR = LpOPR × RT/Vw). For a pore-less

membrane, such as an oil film, the Pf/Pd ratio is around 1. In particular, if Pf/Pd is

significantly greater than 1, one can surmise that water crosses a porous path

(Finkelstein 1987). In Chara, >90% of the water moves through water channels, which

represent single-file-pores, and the Pf/Pd ratio is around 40 (Henzler et al. 2004). The

PfOPR/PdOPR ratios for rice roots were as large as 600–1200, depending on the position of

the root (Ranathunge et al. 2004). This provided strong evidence that water moved

through a fairly porous path. Blockage of the apoplastic path by precipitates caused a 3-

5-fold reduction of PfOPR/PdOPR ratio (Table 5) indicating that the treatment did

significantly affect the bulk rather than diffusive water flow. Solutions in both

compartments (inside aerenchyma and external medium) were well stirred, so these

large ratios could not be obtained due to unstirred layers, which mainly affect Pd rather

than Pf. Effects of unstirred layers of solution at the inner and outer surfaces can be

corrected according to Finkelstein (1987), i.e. 1/(PdOPR)obs = 1/(PdOPR)cor + δ1/Dw +

δ2/Dw, where the resistances are in series. Here, (PdOPR)obs, (PdOPR)cor = observed and

corrected permeability coefficients, Dw = self diffusion coefficient of HDO (24 × 10-10

m2 s-1), δ1, δ2 = thickness of inner and outer unstirred layers (pessimistic assumption of

50 µM each used). The observed values underestimated the corrected value by less than

2% in both root zones as well as in both control and treatment. Hence, large ratios were

not due to unstirred layers, and did reflect an intrinsic property of the composite barrier.

We show for the first time that salt precipitates in the apoplast of the OPR of rice roots

substantially affect the hydraulic conductivity of this tissue. Despite the existence of an

exodermis with Casparian bands, the results indicate a preferred flow of water around

cells rather than a cell-to-cell passage. At least in the immature parts of the roots,

charged ions such as Cu2+ or SO4
2- could pass through the exodermis and

sclerenchymatous layer. Asymmetrical development of precipitates suggested that Cu2+

and SO4
2- moved faster than Fe(CN)6

4- across the exodermis and sclerenchyma layer.
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There was a patchiness of the formation of precipitates, which may correlate with the

maturation of the exodermis. However, in mature parts, places of emergence of

secondary roots were fairly leaky to both water and ions. Blockage of the apoplastic

pores with precipitated salt crystals caused a massive three- to four-fold reduction of

LpOPR suggesting that there were prominent apoplastic bypasses. This finding was in

line with increments of σsOPR in response to the blockage of apoplastic path with

precipitates. Huge PfOPR/PdOPR ratios suggested a predominant apoplastic water flow

across the OPR as well. Blockage of apoplastic path with precipitates caused a three- to

five-fold reduction of PfOPR/PdOPR ratios and the treatment significantly affected the bulk

water flow rather than the diffusive water flow.
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Abstract

Apoplastic transport barriers of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L.

cv. Helix) roots were isolated enzymatically. Following chemical degradation

(monomerization, derivatization), amounts of aliphatic and aromatic suberin monomers

were analyzed quantitatively by gas chromatography and mass spectrometry. In corn,

suberin was determined for isolated endodermal (ECW) and rhizo-hypodermal (RHCW)

cell walls. In rice, the strong lignification of the central cylinder (CC), did not allow

isolation of endodermal cell walls. Similarly, exodermal walls could not be separated

from the rhizodermal and sclerenchyma cell layers. Suberin analyses of ECW and

RHCW of rice, thus, refer to either the entire CC or to the entire outer part of the root

(OPR), the latter lacking the inner cortical cell layer. In both species, aromatic suberin

was mainly composed of coumaric and ferulic acid. Aliphatic suberin monomers

released from rice and corn belonged to five substance classes: primary fatty acids,

primary alcohols, diacids, ω-hydroxy fatty acids, and 2-hydroxy fatty acids with ω-

hydroxy fatty acids being the most prominent substance class. Qualitative composition

of aliphatic suberin of rice was different from that of corn; (i) it was much less diverse,

and (ii) besides monomers with chain lengths of C16, a second maximum of C28 was

evident. In corn, C24 monomers represented the most prominent class of chain lengths.

When total amounts of suberin were related to surface areas of the respective tissues of

interest (hypodermis and/or exodermis and endodermis), exodermal cell walls of rice

contained, on average, six-times more aliphatic suberin than in corn. In endodermal cell

walls, amounts were 34-fold greater in rice than that of corn. Significantly higher

amounts of suberin detected in apoplastic barriers of rice corresponded with

substantially lower root hydraulic conductivity (Lpr) compared to corn, when water flow

was driven by hydrostatic pressure gradients across the apoplast. As the OPR of rice is

highly porous and permeable to water, it argued that this holds true only for the

endodermis. The results imply that some caution is required when discussing the role of

suberin in terms of an efficient transport barrier for water. The simple view that just the

amounts of suberin play the important role, may not hold. A more detailed consideration

of both the chemical nature of suberins and of the microstructure of deposits is required,

i.e., how suberins impregnate wall pores.
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sclerenchyma cells.
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Introduction

Hydraulic properties of roots largely vary between species (Kramer and Boyer 1995).

They are strongly affected by environmental conditions, which result in changes in root

anatomy and morphology (Steudle and Peterson 1998). To explain variable water

uptake, a composite transport model has been set up, which includes physical as well as

physiological elements (Steudle, 2000, 2001). According to the model, there are three

parallel pathways of water uptake from the soil solution into the central cylinder of the

root: (i) the apoplastic pathway around protoplasts, (ii) the symplastic pathway through

plasmodesmata, and (iii) the transcellular pathway with the water molecules moving

from one living cell to the next by crossing two plasma membranes and part of the

apoplast at each cell layer. The symplastic and transcellular components together are

usually considered as the cell-to-cell path, since it is, to date, not possible to separate

them experimentally. Along the cell-to-cell path, water transport may be regulated in

terms of an expression and/or activation of aquaporins and development of suberin

lamellae (Peterson and Cholewa 1998; Tyerman et al., 1999). The hydraulic

conductivity of the apoplastic path may be decreased by the deposition of suberin in

Casparian bands in the cell wall (Zimmermann et al., 2000).

Chemically, apoplastic barriers of roots are depositions of the biopolymers lignin and

suberin within the cell wall matrix, which may occlude wall pores previously filled with

water (Schreiber et al., 1999). Among the different substances, aliphatic suberin rather

than lignin or aromatic suberin has the most pronounced effect on the barrier function of

biopolymers (Schreiber et al., 1999). In the endodermis of primary roots, the deposition

of apoplastic barriers first occurs when Casparian bands form in the primary state of

endodermis (for a review see Ma and Peterson 2003). Later, many species form suberin

lamellae at the inner tangential surfaces of endodermal cells (with the exception of the

passage cells; secondary developmental state of endodermis). Frequently, apoplastic

barriers are found in the hypodermis of roots (Hose et al., 2001). Either suberin lamellae

are deposited at the inner surfaces of hypodermal cell walls, or even Casparian bands

are formed prior to the deposition of lamellae. A hypodermis with Casparian bands is

called an exodermis (Peterson and Perumalla 1984).
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Environmental stresses i.e. drought and salt stress, as well as growth conditions,

intensify the formation of apoplastic barriers in roots (North and Nobel 1994; Radin and

Matthews 1989; Reinhardt and Rost 1995). For example, cultivation of corn seedlings

in aeroponic induced an exodermis in  primary roots which is not expressed in

hydroponic culture (Zimmermann et al., 2000). In turn, water uptake was substantially

reduced. Hence, ‘root hydraulics’ are efficiently controlled or are even regulated by

modifying the hydraulic resistance along the apoplastic and cell-to-cell pathways by the

deposition of the hydrophobic biopolymer suberin.

When rice is grown in paddy fields, one would expect that its hydraulics would  not

limit water uptake. However, this is not so. In rapidly transpiring shoots of field-grown

rice, a water shortage has been observed, even when roots were exposed to a medium

fully saturated with water (Hirasawa et al., 1992; 1996). The explanation for this

observation is that radial water transport across rice roots is limiting, and that high

demands for water from the shoot were not met by the supply from the root. This

hypothesis is supported by the fact that there are pronounced apoplastic transport

barriers in rice roots, i.e. well developed exodermal and endodermal cell layers in

addition to a lignified layer of sclerenchyma cells at the inner side of the exodermis

(Ranathunge et al., 2003). Not surprisingly, the measured overall radial hydraulic

conductivity of rice roots was significantly lower than that of roots of other cereals such

as corn (Miyamoto et al. 2001).

In this investigation, we aim to provide more detailed information on the structural

reasons for the differences between in the hydraulics of roots of rice and corn. The

chemical composition of endodermal and exodermal cell walls of corn roots has been

worked out in great detail (Zeier et al., 1999). To date, nothing is known about the

chemical composition of apoplastic barriers in rice roots. Corn was selected for

comparison, because (i) it is a closely related crop species, but cultivated under

completely different conditions. (ii) Corn roots also exhibit depositions of suberin in

endodermal and hypodermal cell walls despite having a different root anatomy from

that of rice (Zeier et al., 1999). (iii) It has been shown that environmentally induced

changes in the composition of apoplastic barriers influence radial hydraulic conductivity

of water in roots (Zimmermann et al., 2000). Chemical analyses have been related to
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changes in the hydraulic conductivity of both species to answer the question whether or

not the lower hydraulic conductivity of rice roots can be explained by differences in the

density and/or chemical composition of apoplastic barriers.

Materials and methods

Plant materials and cultivation

Seeds of rice (Oryza sativa L. cv. IR 64; International Rice Research Institute, Manila,

Philippines) were germinated for 5 days on wet filter paper in the light at 27oC.

Cultivation of seedlings was continued for another 35 d in climatic chambers on an

aerated hydroponic culture system with 12 h light (500 µM m-2 s-1 of PAR) and

temperatures varying between 27°C during the day and 22°C at night. The nutrient

solution was replaced every week. It contained (in mM): 0.09 (NH4)2SO4, 0.05 KH2PO4,

0.05 KNO3, 0.03 K2SO4, 0.06 Ca(NO3)2, 0.07MgSO4, 0.11 Fe-EDTA, and the

micronutrients (in µM) 4.6 H3BO4, 1.8 MnSO4, 0.3 ZnSO4 and 0.3 CuSO4.

Seeds of corn (Zea mays L. cv. Helix; Kleinwanzlebener Saatzucht AG,

Kleinwanzleben, Germany) were germinated for 5 d on wet filter paper in the dark.

Cultivation was continued for another 7 days in climatic chambers on an aerated

hydroponic culture system (14 h light; PAR: 500-600 µM m-2 s-1) and day/night

temperatures of 20/ 17°C. The nutrient solution contained (in mM): 0.7 K2SO4, 0.1 KCl,

2 Ca(NO3)2, 0.5 MgSO4, 0.1 KH2PO4, with the micronutrients (in µM) 1 H3BO4, 0.5

MnSO4, 0.5 ZnSO4, 0.2 CuSO4, 0.01(NH4)6Mo7O24, and 200 Fe-EDTA.

Roots of 12-d-old corn plants had an average length of 0.26 m. Roots of 40-d-old rice

plants were 0.45 m long. For chemical analysis, roots of both species were divided into

two different zones. In younger root zones (zone I), laterals were not yet (corn) or were

not very frequently (rice) emerged. In older root zones (zone II), both species had well

developed laterals. Average lengths of zone I of corn and rice roots were 0.11 m and

0.06 m, respectively. Average lengths of zone II of corn and rice roots were 0.15 m and

0.39 m, respectively.
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Light microscopy

Freehand cross-sections were made at different distances from the root tip with both

species. To examine the developmental stages of rice endodermis, cross sections were

taken at 30, 50, 100 and 200 mm from the root tip. Since exodermis of rice mature

within short length of the root, to check the exodermis, cross sections were made at 30

and 60 mm from the tip. As did for rice, for the corn endodermis, cross sections were

taken at 50, 60, 100 and 150 mm and for the corn hypodermis at 60 and 120 mm.

Sections were stained with Sudan Red 7B at room temperature for 1.5 h to visualize the

suberin lamellae and to count the passage cells (Brundrett et al. 1991). Sections were

examined using a light microscope (DIALUX 22 EB, Leitz, Germany) and

photographed using Kodak Elite 64 ASA film.

Cell wall isolation and preparation

About 20-50 g fresh weight (FW) of material from either zones I or II of roots of rice

and corn were incubated separately in enzymatic solutions of cellulase (Onozuka R-10,

Serva) and pectinase (Macerozyme R-10, Serva) in citric buffer (0.01 M) adjusted to pH

3.0. After several days, cell walls, which had resisted the enzymatic attack, could be

sampled under a binocular using a forceps. By pulling, central cylinders of corn roots

could be separated from cortical sleeves, and endodermal cell walls (ECW) enclosing

xylem vessels could successfully be isolated from the rest of the stele as well (Zeier et

al., 1999). Rhizodermal and hypodermal cell walls  (RHCW) of corn roots could not be

separated from each other and were always isolated and analyzed together. Isolated wall

samples were washed in borate buffer (0.01 M, pH 9.2), dried and stored over silica gel.

Cell walls of the central cylinder of rice including the endodermis as the most outer cell

layer completely resisted the enzymatic attack. Therefore, suberin analyses of the

endodermis of rice roots had to be carried out for entire isolated central cylinders (CC).

The central cortex of rice roots was composed of an aerenchyma, which separated the

stele from four cell layers at the root periphery: rhizodermis, exodermis, sclerenchyma

and one layer of unmodified cortical cells. These four cell layers have been called outer

part of roots (OPR: Ranathunge et al., 2003). During enzymatic treatment, only walls of
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the innermost unmodified cortical layer of the OPR could be digested away. Hence,

wall preparations used for analyses still consisted of walls of rhizodermal, exodermal,

and sclerenchymatous cells. With the exception of the innermost cortical layer, they

were identical with those of the outer part of roots (OPR) as used in transport studies by

Ranathunge et al. (2003). Cell wall preparations of rice were washed and stored as

described above.

Suberin analysis

Prior to transesterification cell wall preparations were thoroughly extracted for 16 h

using a mixture (1:1; v:v) of chloroform (Roth, Karlsruhe, Germany) and methanol

(p.a.; Roth) at 40°C. For suberin depolymerization, the resulting extracted samples of

known dry weight (between 1 to 10 mg) were transesterified as described in detail by

Zeier and Schreiber (1998) using a mixture of methanol/borontrifluoride (MeOH/BF3;

Fluka), according to the procedure of Kolattukudy and Agrawal (1974). Released

suberin monomers were derivatized for 40 min at 70°C using a 1:1 mixture of 10 µl dry

pyridine (GC-grade, Merck, Darmstadt, Germany) and 10 µl of BSTFA (N,N-bis-

trimethylsilyltrifluoroacetamide; Machery-Nagel, Düren, Germany). This procedure

converted free carboxy- and hydroxyl groups to their trimethylsilyl (TMS) esters and

ethers, respectively.

TMS-derivatives were analyzed by means of gas chromatography (GC) and mass

spectroscopy (MS). Released monomers were quantified by a gas chromatography and

flame ionization detection (GC-FID; HP 5890 Series II, Hewlett-Packard, Palo Alto,

California, USA) using the HPChemStation software (Hewlett-Packard) and referring to

an internal standard (20 µg dotriacontane). Monomers were identified using gas

chromatography connected with a quadrupole mass selective detector (HP 5971A,

Hewlett-Packard).

Results of suberin analyses were either expressed on the basis of total dry weight of

original isolates used for the depolymerization or to the surface area of layers where

apoplastic barriers are located (exodermis, hypodermis, and endodermis, respectively).

Surface areas were calculated from root lengths and diameters obtained by light

microscopy of root cross sections. For 10 individual root samples, correlations between
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sample dry weights and corresponding surface areas have been worked out, whereby

weights of wall preparations (ranging between 100 µg and 1 mg; see above) were

precisely determined using a microbalance with an accuracy of 1 µg (Sartorius

Microwaage, Göttingen, Germany). Using ratios between dry weights of wall

preparations and surface areas, suberin amounts obtained by chemical analysis could be

recalculated and related to surface areas.

Root-pressure probe experiments

Root pressure probe experiments were performed as described earlier for corn and rice

(Miyamoto et al., 2001; Zimmermann et al., 2000). Excised root segments were tightly

connected to a root pressure probe using a cylindrical silicone seal prepared from liquid

silicone material (Xantopren from Bayer, Leverkusen, Germany). Segments of corn

roots used had a length of between 75-120 mm and diameters between 0.65-1.1 mm.

End segments of rice roots were 150-200 mm long (diameter: 0.8-1.2 mm). In corn,

stable root pressures were normally observed after 1 to 3 h, whereas in rice it took

between 5 to 12 h (Miyamoto et al., 2001). Root segments fixed to the probe were

bathed in nutrient solution, which circulated along the roots to avoid problems with

unstirred layers. Hydrostatic and osmotic relaxations were performed by either changing

xylem pressure (moving the metal rod in the probe) or the osmotic pressure of the

external medium. Test solutions used in osmotic experiments contained 20-40 mM

NaCl (≈ 40-80 mOsmol/kg of osmotic concentration, which is equivalent to osmotic

pressures of 0.1-0.2 MPa) in addition to the nutrients of the medium. Transient changes

of pressure were followed. Root hydraulic conductivity (Lpr) was calculated according

to eqn 1 using half-time of water exchange (Tw
1/2) or rate constants krw (Steudle et al.,

1987):
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Ar is the effective surface area of the root investigated and ∆Pr/∆Vs (in MPa m-3) is the

elastic coefficient of the measuring system. ∆Pr/∆Vs was measured by inducing step-

changes in the volume and recording the resulting changes in root pressure (∆Pr ).
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Responses in root pressure to changes in osmotic pressure were biphasic, with a rapid

water phase (efflux or influx) followed by a slower solute phase.

At the end of each experiment, the proper functioning of the mounted root was tested by

cutting off the root at the seal and checking the decrease of the time constants of

pressure relaxations. When root xylem remained open during fixation to the probe, there

was a drastic decrease in Tw
1/2 after the cut. If not, the data obtained from the

experiment was discarded.

Statistics

 Suberin analyses and root pressure probe experiments were done for the same set of

plants cultivated together at the same time under identical conditions. Radial hydraulic

conductivity of rice and corn roots was determined measuring 6 replicates for each

species. Hydraulic conductivities measured with the roots of this set of rice plants have

already been communicated in a separate publication (Ranathunge et al., 2003),

whereas hydraulic conductivities measured with the corn roots for this set of corn plants

are presented here for the first time. Suberin composition of isolated cell wall samples

of corn (ECW and RHCW) and rice (CC and OPR) were determined analyzing three

replicates. Each replicate consisted of roots sampled from at least 20-30 individual

plants. Results are given as means ± SD. To check for statistical significance, t-tests

were conducted between pairs of means.
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Results

Root anatomy

                     
Fig. 1 Light microscopic pictures of Sudan Red 7B stained freehand cross-sections of rice (Oryza sativa

L. cv. IR64) and corn (Zea mays L. cv. Helix) roots. (A) Rice endodermis (en) 30 mm behind the root

apex with suberin lamellae and passage cells (black arrowheads). (B) Rice endodermis (en) 100 mm

behind the root apex in its tertiary developmental state with passage cells (black arrowheads). (C) Rice

endodermis (en) 200 mm behind the root apex in its tertiary developmental state without passage cells.

(D) Rice exodermis (ex) 60 mm behind the root apex with well-developed suberin lamellae. The outer

part of the rice root (OPR) is characterized by 4 cell layers: the rhizodermis (rh), the exodermis (ex), the

sclerenchyma (scl) and the layer of unmodified cortical cells (co). (E) Corn endodermis (en) 50 mm

behind the root apex in its primary developmental state with Casparian bands (black arrowheads). (F)

Corn endodermis (en) 150 mm behind the root apex in its secondary developmental state with well-

developed suberin lamellae and passage cells (black arrowheads). (G) Corn hypodermis (hy) and

epidermis (ep) 60 mm behind the root apex. The hypodermis is characterized by a patchy suberization



158

with passage cells (black arrow heads). (H) Corn hypodermis (hy) and epidermis (ep) 120 mm behind the

root apex. The hypodermis is still characterized by a patchy suberization with passage cells (black arrow

heads).

In rice roots, endodermal suberin lamellae appeared 30 mm behind the root tip (Fig. 1A)

and all endodermal cells had suberin lamellae at 50 mm with 5-8 passage cells. At 100

mm, endodermal cells were characterized by U-shaped tertiary cell wall depositions,

and there were on average, still 5-8 passage cells (Fig. 1B). At 200 mm behind the root

tip, no passage cells were observed in the endodermis (Fig. 1C). In rice, exodermal

suberin lamellae started to develop 30 mm behind the root tip, and they were fully

developed at about 60 mm behind the tip (Fig. 1D). In corn, there were no endodermal

suberin lamellae at a distance of 50 mm behind the root tip (Fig. 1E). But it started to

appear at 60 mm behind the root tip. They were fully developed at distances of between

100 and 150 mm behind the tip (Fig. 1F). On average, the endodermis had 3-4 passage

cells at 100 mm and this number decreased up to 2-3 at 150 mm behind the root tip.

Suberin lamellae in the corn root hypodermis appeared at 60 mm behind the root tip

(Fig. 1G), but the deposition of suberin lamellae in the hypodermis was not complete

even at a distance of 120 mm behind the root tip (Fig. 1H).

Suberin composition

Average lengths of zone I of corn and rice roots were 0.11 m and 0.06 m, respectively.

Average lengths of zone II of corn and rice roots were 0.15 m and 0.39 m, respectively.

In isolated OPR of zone II of rice, chain lengths distributions of aliphatic suberin

monomers belonging to the five detected substance classes ranged from C16 to C30 (Fig.

2A). Chain lengths of C16 and C28 were the most abundant in rice suberin, but chain

lengths C22 and C24 could not be detected. As in the OPR of zone II, similar qualitative

suberin compositions were also found for the CC of root zone II and for the OPR and

CC of root zones I of rice (data not shown). Chain length distribution of the five

substance classes in the RHCW in zone II of corn roots ranged from C16 to C26 with C24

being the most abundant chain length (Fig. 2B). A similar qualitative pattern of suberin

composition such as that shown in Fig. 2B was found for the ECW of root zone II and

for RHCW and ECW of root zones I of corn (data not shown).
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Fig. 2 Chain lengths distribution and substance class composition of (A) aliphatic suberin amounts

released from the outer part of roots (OPR) isolated from zone II of rice (Oryza sativa L. cv. IR64) roots

in comparison to suberin amounts released from (B) rhizodermal and hypodermal cell walls (RHCW)

isolated from zone II of corn roots (Zea mays L. cv. Helix). Means ± SD (n = 3 replicates).

When comparing zones I and II of rice, there was no pronounced trend of an increase in

aliphatic suberin (Fig. 3A). ω-Hydroxy fatty acids formed the most prominent substance

class of rice root suberin (Fig. 3A). In corn, greater amounts of aliphatic suberin were

observed in zone II than in zone I (Fig. 3B). Similar to rice, ω-hydroxy fatty acids

represented the most prominent class of substances of aliphatic suberin in corn roots

(Fig. 3B).
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Fig. 3 Substance class composition of (A) aliphatic suberin amounts released from the outer part of roots

(OPR) and central cylinders (CC) isolated from zones I and II of rice (Oryza sativa L. cv. IR64) roots in

comparison to aliphatic suberin amounts released from (B) rhizodermal and hypodermal (RHCW) and

endodermal cell walls (ECW) isolated from zones I and II of corn roots (Zea mays L. cv. Helix). Means ±

SD (n = 3 replicates).

Total amounts of suberin

When referring the total amounts of aliphatic suberin released from the OPR and CC of

both zones of rice roots to the dry weight of the isolated cell wall material, there were

no differences between root zones. However, in corn roots there was a pronounced

increase of suberin amounts, when comparing zones I and II (Fig. 4A). Compared to

suberin amounts of both root zones of rice, suberin amounts in zone I of corn were

lower. However, suberin amounts in root zone II of corn were higher (Fig. 4A).

Referring suberin amounts to root surface areas, a completely different picture emerged.
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By factors of six and 34, aliphatic suberin contents were, on average, larger in both

zones of rice roots than in corn (OPR vs. RHCW and CC vs. ECW, respectively; Fig.

4B). In both species, there was a slight trend of increasing aliphatic suberin amounts

along the roots from root zone I to II (Fig. 4B).
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Fig. 4 (A) Total amounts of aliphatic suberin released from both root zones and isolated cell wall samples

of rice [Oryza sativa L. cv. IR64; outer part of roots (OPR) and central cylinders (CC)], and corn roots

[Zea mays L. cv. Helix; rhizodermal and hypodermal (RHCW) and endodermal cell walls (ECW)] related

to dry weights of the analyzed cell wall samples [µg mg-1] in comparison to (B) total amounts of aliphatic

suberin related to surface areas of the analyzed cell wall samples [µg cm-2]. Means ± SD (n = 3

replicates).

In both species, aromatic suberin was basically composed of coumaric and ferulic acids.

When referring to dry weight of the isolated wall material, amounts of aromatic suberin

were similar in the OPR and CC of both root zones of rice (Fig. 5A). Compared to rice,

total amounts of aromatic suberin of corn were lower by a factor of three to four (Fig.
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5A). Referring aromatic suberin to root surface areas, much higher differences emerged

between rice and corn. The amount of aromatic suberin in rice OPR was, on average,

larger by factor of 80 than that of corn RHCW and it was factor of 50, when comparing

rice CC with corn ECW (Fig. 5B). The reason for the changes is that dry weights are

larger in rice than in corn, and this vanishes, when referring to surface areas, which

were similar. However, reference to surface area is physiologically relevant. In both

species, contents of aromatic suberin were greater in root zone II as compared with zone

I (Fig. 5B).
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Fig. 5 (A) Total amounts of aromatic suberin released from both root zones and isolated cell wall samples
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[Zea mays L. cv. Helix; rhizodermal and hypodermal (RHCW) and endodermal cell walls (ECW)] related

to dry weights of the analyzed cell wall samples [µg mg-1] in comparison to (B) total amounts of aromatic

suberin related to surface areas of the analyzed cell wall samples [µg cm-2]. Means ± SD (n = 3

replicates).
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Hydraulic conductivities

Table 1 Hydraulic conductivities of end segments of 30-day-old rice (Oryza sativa L. cv. IR64; A), and

12-day-old corn roots (Zea mays L. cv. Helix; B) measured with the root pressure probe. Plants were

cultivated in aerated hydroponics, and hydrostatic pressure gradients between the xylem and the medium

were induced by hydrostatic relaxations. Osmotic water flow was induced by adding NaCl to the external

nutrient solution.

A
Root
(rice)

Surface area of
measured rice
root segments

[mm2]

Hydraulic conductivity Lpr,
as measured in

hydrostatic relaxations
[m s-1 MPa-1 10-8]

Hydraulic conductivity Lpr,
as measured in

osmotic relaxations
[m s-1 MPa-1 10-8]

1 438 3.3 0.9
2 535 3.6 0.9
3 273 3.0 0.7
4 326 4.4 1.0
5 374 4.0 2.0
6 531 3.3 1.0

mean 413 3.7 1.1
SD 108 0.6 0.5

B
Root
(corn)

Surface area of
measured corn
root segments

[mm2]

Hydraulic conductivity Lpr,
as measured in

hydrostatic relaxations
[m s-1 MPa-1 10-8]

Hydraulic conductivity Lpr,
as measured in

osmotic relaxations
[m s-1 MPa-1 10-8]

1 350 9.9 1.1
2 390 4.7 0.27
3 310 8.6 1.4
4 380 6.5 0.31
5 320 15 1.0
6 280 13 1.5

mean 339 9.5 0.93
SD 42 3.7 0.52

By a factor of about 10, radial hydraulic conductivity of the distal segments of corn

roots (Lpr) was higher, when measured in the presence of a hydrostatic pressure gradient

compared to an osmotic pressure gradient (Table 1). Compared to corn roots, Lpr of rice

roots measured in the presence of a hydrostatic pressure gradient was lower by a factor

of 2.6 (significant at the 95%-level; Fig. 6). In the presence of an osmotic pressure

gradient, however, radial hydraulic conductivities of the two species  were not

significantly different (t-test; Fig. 6).
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Fig. 6 Hydraulic conductivities (Lpr) measured by using hydrostatic (hydrostatic Lpr) and osmotic

(osmotic Lpr) pressure gradients with the end-segments of rice (Oryza sativa L. cv. IR64) and corn roots

(Zea mays L. cv. Helix). Data of rice are from Ranathunge et al. (2003) and data of corn were taken from

Table 1. In hydrostatic experiments, hydraulic conductivity was measured by changing the root turgor

pressure with the aid of the root pressure probe. In osmotic experiments, relaxations were induced by

changing the osmotic pressure of the external medium. Means ± SD (n = 6 roots). Bars marked with

asterisks indicate a statistically significant difference at 95% confident level (t-test).
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Discussion

According to the composite transport model of the root, water transport in the apoplast

can be distinguished from water transport along the cell-to-cell path by the type of

pressure gradient applied. In the presence of an osmotic pressure gradient, water flow is

largely restricted to the cell-to-cell rather than to the apoplastic path around protoplast.

In the presence of hydrostatic pressure gradients, there will an apoplastic water flow on

top of the cell-to-cell component. There was no difference in the osmotic Lpr between

rice and corn roots, but there was a pronounced difference when comparing hydrostatic

Lpr., Hydrostatic Lpr was smaller by a factor of 2.6 in rice than in corn (Fig. 6). This

suggested differences in the apoplastic component, which affected by apoplastic

barriers.

Differences in the formation and/or structure of apoplastic barriers between roots of

both species support this view as indicated by light microscopy and histochemistry. Our

data show that the exodermis of rice was already fully developed at 30-60 mm from the

root tip (including a suberin lamella). In hydroponically grown corn, an exodermis is

missing (Zimmermann et al., 2000) and in the hypodermis, suberin lamellae started to

deposit quite far away from the root tip (at around 60 mm), and it was still patchy at

mature root zones (at around 120 mm). Furthermore, apoplastic barriers in the rice

endodermis (Casparain bands and a suberin lamella) developed much earlier compared

to corn. But rice endodermis retained greater number of passage cells without

developing suberin lamellae than that of corn at mature parts of the root.

Roots of the two species showed differences in both the qualitative chemical

composition of suberin and in the total amounts of these compounds, which were

quantified. It is known that the biopolymer suberin forms most of the barrier against

water transport, and that the aliphatic domain should be more efficient than the aromatic

(Schönherr, 1982; Vogt et al., 1983). Therefore, analyses were restricted to the aliphatic

suberin, although it has been shown that apoplastic barriers in roots contain significant

amounts of other biopolymers such as lignin, carbohydrates and cell wall proteins

(Schreiber et al., 1999). Comparing the qualitative composition of aliphatic suberins of

rice with corn, it is evident that rice is much less diverse. All 5 substance classes
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(primary fatty acids, primary alcohols, diacids, ω-hydroxy fatty acids and 2-hydroxy

fatty acids) could only be detected at lower chain lengths between C16 and C20). The

chain lengths C22 and C24 were completely missing and higher chain lengths from C26 to

C30 were only represented by ω-hydroxy fatty acids (Fig. 2A). In corn, chain lengths of

the monomers continuously increased from C16 to C26. Each chain length was formed by

at least two, in most cases three or more substance classes leading to a suberin with a

larger variation in terms of detected monomers. Although, there are obvious differences

in the qualitative suberin composition between both species, it is difficult to deduce

functional differences between both types of suberin in terms of barrier properties.

However, based on the lower diversity of monomers and especially on the longer chain

lengths formed by only one substance class, we would speculate that rice suberin is

more hydrophobic than that of corn.

When proceeding from the younger (zone I) to the older part of the root (zone II), a

pronounced developmental gradient was evident in corn hypodermis and endodermis

(Zeier et al., 1999). In all five substance classes, amounts of monomers significantly

increased by factors between 3 to 15 in corn depending on the root zone and the

substance class (Fig. 3B). In rice, gradients in suberin development were less (Fig. 3A).

Obviously, the amounts of suberin required for the formation of the apoplastic barriers

were already fully deposited in zone I of rice roots, and there was no need for further

deposition of suberin in zone II (Fig. 3A). We conclude that, unlike corn, there were

already well-suberized apoplastic arrays in younger parts of rice roots as it was also

evident from the microscopic investigations of the roots. In corn roots, however, there

was a pronounced developmental gradient along the root, which became also evident

form the microscopic investigations (Fig. 1). For rice, this may represent an adaptation

to the flooded habitat, where it is normally growing. Comparing the total amounts of all

monomers added, the developmental gradient of aliphatic suberin along corn roots is

clear compared to rice. However, this was not the case for the aromatic suberin

monomers detected.

From light microscopy and histochemistry it is evident that most of the aliphatic suberin

monomers released from the different isolated cell wall samples should be located in the

apoplastic barriers of the endo- and hypo- or exodermis of both species. Therefore, it
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seems questionable comparing the chemical composition of apoplastic barriers between

different species such as rice and corn, by relating detected suberin amounts to the dry

weight of the isolated cell wall samples. Only with the corn endodermis, isolated cell

wall samples (ECW) really represented the suberized apoplastic barrier of interest. This

was not the case with the hypodermis of corn, since isolated cell wall material was

composed of hypodermal and rhizodermal cell walls (RHCW), although microscopy

and histochemistry clearly showed that the aliphatic suberin was mostly deposited in the

hypodermal cell walls (Fig. 1). For rice, this argument becomes even more important,

since suberin in the exodermis had to be analyzed using isolated cell wall samples

composed of three cell layers (OPR). Finally, the endodermal suberin could only be

analyzed using complete central cylinders (CC), due to the fact that lignified walls

resisted enzymatic degradation in rice.

Consequently, detected amounts of suberin will necessarily underestimate the actual

suberin content in the barrier, when are related to cell wall isolates containing additional

cell wall material leading to increased dry weights. Therefore, data of Figures 4A and

5A were re-plotted referring suberin amounts to the surface areas of the respective

tissues of interest (exodermis, hypodermis and endodermis). Physiologically, reference

to surface area makes more sense when comparing different species.

The pronounced differences between rice and corn became visible, when suberin

amounts were related to surface areas. Amounts of aliphatic suberin in rice exodermis

were on average 6-times higher compared to corn hypodermis and in rice endodermis,

on average, 35-fold more suberin was deposited compared to corn endodermis (Fig.

4B). In both species, there was a slight trend to increase the amounts of aliphatic suberin

along the roots from zone I to zone II. When compared the aromatic suberin, even larger

differences were obtained re-plotting them and referring to the unit surface area of

roots. The amounts of aromatic suberin were, on average, 50 to 80-times greater in

apoplastic barriers of rice compared to corn (Fig. 5B). However, in contrast to aliphatic

suberin, quantification of aromatic suberin could be overestimated. It is known that

aromatics (ferulic and coumaric acids) are also covalently linked to normal non-

lignified or suberized cell walls in grasses (Chabbert, 1994). This is also evident from

the pronounced autofluorescence of all cell walls in corn and rice roots, indicating the
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existence of aromatic compounds in nearly all cell walls. Nevertheless, this pronounced

difference in total amounts of aliphatic suberin in apoplastic transport barriers in roots

could help to explain why hydrostatic Lpr of rice was significantly lower than that of

corn, whereas osmotic Lpr was not significantly different between both species.

The simple conclusion that water permeability would be reduced as the amount of

suberin is increasing, is hard to justify according to recent results of water permeability

across the outer part of rice roots (LpOPR). The OPR of rice contains a large amounts of

suberin relative to that of corn but is, nevertheless, highly permeable to water. It was

shown that the LpOPR was larger by a facror of 30 than the overall Lpr of intact rice

roots, which contained both  exo- and endodermis, arranged in series (Ranathunge et al.,

2003). Clogging off the apoplastic pores of the OPR by small ink particles or and

copper-ferrocyanide precipitates substantially decreased the apoplastic water flow

(Ranathunge et al., 2004, 2005). The effect was even more pronounced when insoluble

salts were precipitated in the OPR (Ranathunge et al., 2005), These results suggest that

wall pores of the OPR were still open despite containing large amounts of suberin. In

rice, there is even an apoplastic bypass-flow of ions (Yadev et al., 1996; Yeo et al.,

1987). We conclude that, at least for rice, any conclusion drawn from suberin contents

about the water permeability would be premature.

Schreiber et al. (2004) described a comparable situation for suberized periderm of

potato. Wound periderm of potato, having about 60% of the suberin amounts detected in

native periderm, had water permeabilities which were about 100-times higher. This is

difficult to explain in terms of suberin content as well. In wound periderm, the major

function of suberin obviously is related to pathogen defence rather than in the protection

of living tissue from desiccation. In a similar way it could be argued that strong suberin

depositions in rice OPR have to protect rice roots grown in paddy fields from pathogen

attack. However, it is more likely that suberin deposition prevents losses of oxygen

from the rice aerenchyma as indicated by measurement of changes of the permeability

coefficient of oxygen along developing rice roots (Kotula and Steudle, in preparation).

Obviously analyses of total amounts of suberin deposited in apoplastic barriers and of

their detailed chemical structure are a necessary but not the complete pre-requisite to

explain the observed changes in water permeability. The precise molecular and
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topographical deposition of suberin in root cell walls has to be known as well. The latter

determines the reduction of porosity and permeability of roots. In order to make barriers

really water-tight, suberin should fill all wall pores (intermicrofibrillar spaces), i.e. it

has to impregnate the wall material (such as filling a sponge with water). In fact,

hydrophobic aliphatic suberin may have problems to fill pores made of rather

hydrophilic material such as cellulose. To date, virtually nothing is known about the

microstructure of apoplastic barriers. Histochemistry does not help much here.

Techniques are required to resolve, with high spatial resolution, porosity in arrays

containing apoplastic suberin depositions such as the precipitation techniques

mentioned above or molecular techniques (i.e. suberin-specific antibodies).

The results show that the deposition of suberins in root cell walls do not

straightforwardly allow conclusions about the degree of inhibition of water and ion

transport. Comparison between roots of rice and corn indicates that the main hydraulic

resistances were located at the endodermis having 35-times more suberin in rice than in

corn. Future work relating the radial hydraulic conductivity of roots to the existence of

apoplastic transport barriers badly requires to answer the following questions: (i) To

what extent does the hypodermis of corn roots contribute to the overall resistance of the

radial water flow and is it similar or completely different from rice? (ii) What is the

exact local deposition of suberin in apoplastic barriers and are there techniques

available offering the necessary spatial resolution? (iii) To what extent are additional

structural biopolymers such as lignin or cell wall proteins import constituents of

apoplastic barriers in rice roots? This information is required for a better understanding

of the structure and the function of suberized apoplastic barriers in roots.
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Abstract

Using an insoluble inorganic salt precipitation technique, the permeability of cell walls

and especially of endodermal Casparian bands (CBs) for ions was tested in young roots

of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100

µM CuSO4 or 200 µM K4[Fe(CN)6] into the root from its medium using a pump

(excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of

xylem of those root segments with the opposite salt component, which resulted in

precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+

could cross the endodermis apoplastically in both plant species (though at low rates)

developing brown salt precipitates in cell walls of early metaxylem and in the region

between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the

endodermis dragged along with the water. The results suggested that CBs were not

perfect barriers to apoplastic ion fluxes, at least for copper. In contrast, ferrocyanide

ions failed to cross the mature endodermis of both corn and rice at detectable amounts.

The concentration limit of apoplastic copper was 0.8 µM at a perfusion with 200 µM

K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+,

moved faster than the anion, [Fe(CN)6]4-, through cell walls including CBs. Using

Chara cell wall preparations (“ghosts”) as a model system, it was observed that,

different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a

substantially lower permeability of the latter which agreed with the finding of an

asymmetric development of precipitates. In both, corn and rice roots, there was a

significant apoplastic flux of ions in regions where laterals penetrated the endodermis.

Overall, the results show that the permeability of CBs to ions is fairly low though not

zero. CBs do not represent perfect barrier for ions, as is usually thought. The

permeability of CBs may vary depending on growth conditions, which are known to

affect the intensity of formation of bands.

Key-words: apoplast; Casparian band; corn root; endodermis; ion permeability; rice

root; salt precipitates.
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Introduction

In the plant body, the apoplast denotes the extraprotoplastic compartment. It comprises

cell walls, gas- or water-filled intercellular spaces, and the xylem. Chemically, cell

walls are highly complex, i.e. they contain cellulose and matrix materials such as

hemicellulose, pectic substances and structural proteins (Peterson & Cholewa 1998).

The pectic substances are made of galacturonic acids entities with –COOH groups

(carboxyl groups), which are responsible for the overall negative fixed charge of the cell

wall. Cell walls provide mechanical strength to the plant, as well as functioning as a

porous network involved in a diverse range of passive transport processes (gas, water,

nutrient ions, assimilates). The porous network consists of intermicrofibrillar and

intermicellar spaces that range in size from 3.5 to 30 nm (Shepherd & Gootwin 1989;

Chesson, Gardner & Wood 1997; Nobel 1999), and therefore it does not represent a

major barrier for both water and nutrient flows, even when considering relatively large

molecules.

Usually, flows of water across cell walls or the apoplast are driven by hydrostatic

pressure gradients and are viscous in nature. Nutrient ions may be dragged with the

water to reach the plasmalemma (“solvent drag”), or may move by diffusion in the

absence of a drag (Nobel 1999). The velocity of water and nutrient movement may be

hampered by friction and tortuosity along the porous path (Sattelmacher 2001). It may

be reduced by adsorption or fixation to negatively charged cell wall matrix (in case of

cations) or by repulsion (in case of anions; Clarkson 1991; Marschner 1995). Moreover,

in roots, water and ion movement through the apoplast may be hampered by the

presence of Casparian bands (CBs) in radial and transverse walls of the endo- and

exodermis, and there may be suberin lamellae as well.

The Casparian band is a primary wall modification, encrusted with lignin as a major

component and, to a lesser extent with suberin, the latter assumed to provide most of the

resistance towards the movement of polar substances (Schreiber 1996; Zeier &

Schreiber 1998; Schreiber et al. 1999; Zimmermann et al. 2000). It is usually assumed

that CBs are perfect barriers to water and ion movement through the apoplast (Robards

& Robb 1972; Singh & Jacobson 1977; Peterson 1987; Enstone, Peterson & Ma 2003).
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However, results from recent studies suggested that CBs are imperfect barriers to

apoplastic fluxes of water, dissolved solutes and ions, i.e. Ca2+, Zn2+, Cd2+, and

apoplastic tracer dyes, as well as for the stress hormone ABA (Sanderson 1983; Yeo,

Yeo & Flowers 1987; White, Banfield & Diaz 1992; Steudle, Murrmann & Peterson

1993; Yadav, Flowers & Yeo 1996; Freundl, Steudle & Hartung 1998; Steudle &

Peterson 1998; Schreiber et al. 1999; Hose et al. 2001; White 2001; White et al. 2002;

Ranathunge, Steudle & Lafitte 2003; 2005; Lux et al. 2004). In rice roots, the

permeability of CBs in the exodermis for water and different ions (copper and

ferrocyanide) has been intensively studied by Ranathunge et al. (2003; 2005). The

results suggested a substantial apoplastic bypass flow of water across the mature

exodermis and, surprisingly, even divalent Cu2+ ions were able to cross the barrier, at

least to some extent. Since findings were contrary to general assumption that the

permeability of CBs to water and nutrient ions is nil, it is important to test the validity

of such statements verifying by direct experimentation.

In the present study, we extended our previous research on permeability of CBs of the

rice endodermis (with its specialized root anatomy) incorporating ‘normal’ (less

modified) roots of corn as another test object. We applied 100 µM CuSO4 to the root

medium, and subsequently perfused xylem vessels with 200 µM K4[Fe(CN)6]. Those

salts moved through the apoplast and readily precipitated as Hatchett’s brown

Cu2[Fe(CN)6], where they met. Suction of CuSO4 from the root medium, either by using

a pump (excised roots) or the transpirational stream (intact seedlings), dragged Cu2+

ions into the stele with the water flow through the apoplast crossing the endodermis, and

developed brown precipitates just opposite to CBs and in the passage between CBs and

early metaxylem. The observation was evident even in some regions of basal, mature

root zones of both plant species suggesting that CBs are “imperfect barriers” to nutrient

salts, at least for Cu2+ and SO4
2- ions. A striking asymmetry in the development of

precipitates (on the side where ferrocyanide was applied) proposed that movement of

copper ions through cell walls was faster (less hindered) than that of ferrocyanide. This

hypothesis was tested using cell wall preparations of Chara internodes as a model

system. It was shown that at points where lateral roots emerged from the primary root

were leaky for both, Cu2+ and [Fe(CN)6]4- ions.
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Materials and methods

Plant materials

Seeds of maize (Zea mays L. cv. Helix; Kws Saat AG, Einbeck, Germany) were

germinated for 4 d on wet filter paper in the dark. Seedlings were raised hydroponically

under well-aerated conditions in a solution containing (a) macronutrients (mM) 0.7

K2SO4, 0.1 KCl, 2.0 Ca(NO3)2, 0.5 MgSO4, 0.1 KH2PO4 and (b) micronutrients (µM) 1

H3BO3, 0.5 MnSO4, 0.5 ZnSO4, 0.2 CuSO4, 0.01 (NH4)6Mo7O24, 200 Fe-EDTA, at a pH

of 6.0 (Steudle & Frensch 1989). Roots from 7- to 10-d-old plants were used. They

were 160-220 mm long and 0.8 to 1.2 mm in diameter.

Seeds of rice [Oryza sativa L. cvs. Azucena (upland) and IR64 (lowland)] were

germinated for 5-6 d in the light in a climate chamber on tissue soaked with tap water.

Seedlings were transferred to a hydroponic culture system which containing (a)

macronutrients (in mM) 0.09 (NH4)2SO4, 0.05 KH2PO4, 0.05 KNO3, 0.03 K2SO4, 0.06

Ca(NO3)2, 0.07 MgSO4, 0.11 Fe-EDTA and (b) micronutrients (in µM) 4.6 H3BO3, 1.8

MnSO4, 0.3 ZnSO4 and 0.3 CuSO4, with pH of 5.5-6.0. Boxes of nutrient solution (10

L) accommodated 12 seedlings as described by Miyamoto et al. (2001). Roots from 30-

to 40-d-old plants (including the time for germination) were used for experiments. The

lengths of root systems of Azucena and IR64 were 350-550 mm and 250-450 mm,

respectively. Average diameters of adventitious roots of Azucena and IR64 were 1.2

and 0.9 mm, respectively.

Test of apoplastic permeability (including the endodermis) of CuSO4 and

K4[Fe(CN)6] in corn roots

Four different types of experiments were employed to check for the permeability of cell

walls including Casparian bands (CBs) in the endodermis for the above salts. The

reaction between CuSO4 and K4[Fe(CN)6] developed rusty-brown, insoluble crystals

(precipitates) of Cu2[Fe(CN)6] or Cu[CuFe(CN)6], which were easy to detect in cross

sections (for details, see Ranathunge et al. 2005). Low concentrations of copper sulfate
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and potassium ferrocyanide were used to treat roots to minimize adverse effects to

living tissues.

In experiment one, intact seedlings of 10-d-old corn were transferred to a beaker and

roots were covered with an aluminium foil, leaving only the shoot exposed to sunlight.

100 µM CuSO4 and 200 µM K4[Fe(CN)6] were sequentially applied to the root medium

of transpiring corn seedlings and allowed to transpire for 2 h in each salt on a sunny

summer day outside the lab with an average light intensity of 700 Wm-2 of PAR. In

some experiments, the sequence of salt application was reversed.

In experiment two, roots were excised near the kernel under water and fixed to a glass

capillary (inner diameter of 1.3 mm) using a polyacrylamide glue (UHU, Bühl,

Germany), which was then superposed with a molten mixture of beewax-collophony

(1:3 w/w; Zimmermann & Steudle 1975). The other end of the glass capillary was fixed

to a vacuum pump (Vacuumbrand GmbH, Wertheim, Germany) through a connector as

shown in Fig. 1a. The entire root was dipped in 100 µM CuSO4 solution and a suction

of –0.07 MPa applied from the pump for 90 min to drag CuSO4  radially into the root

through the apoplast. In some experiments, only the tip part was dipped in CuSO4 and

suction was created (20 mm from the tip where vessels were not yet developed). At the

end of this period, the tip part of the root was removed (20 mm from the tip) and the

remainder was fixed to the perfusion set-up using a silicone seal (Fig. 1b). Proper

tightening of the screw cap and rubber silicone seal ensured a flow only through open

xylem vessels of the root. The other end of the root segment, which had already been

connected to the glass capillary, remained open as an outlet. The syringe was placed 0.7

m above the root (gravitational force of 0.007 MPa) and xylem vessels perfused with

200 µM K4[Fe(CN)6] under gravity for 3 h. The external medium of 100 µM CuSO4

was continuously stirred using a pump. In some experiments, the side of salt application

was reversed (suction was created applying 200 µM K4[Fe(CN)6] to the root medium

and xylem vessels were perfused with 100 µM CuSO4).

In the third experiment, 100 µM CuSO4 was applied to the root medium of transpiring

corn seedlings for 2 h and subsequently perfused the xylem vessels with 200 µM

K4[Fe(CN)6] under gravity as described in the experiment two.
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In experiment four, to check for the toxicity of chemicals used (especially CuSO4),

root exposure time to the salts as well as the concentrations has been increased. Xylem

vessels of root segments were perfused with 1000 µM K4[Fe(CN)6] for as long as 48 h

while they were bathing in 500 µM CuSO4 medium. In some experiments the side of

salt application was reversed.

Figure 1 Experimental set-up to check the permeability of the apoplast including Casparian bands of the

endodermis in corn and rice roots. (a) Excised roots were connected to a vacuum pump through a

connector, and the root medium of either 100 mM CuSO4 or 200 µM K4[Fe(CN)6] was sucked into the

stele for 90 min. Afterwards, tip parts of roots were removed and segments fixed to the perfusion

apparatus (b). Xylem of root segments was perfused with the opposite salt that of in the root medium,

under gravity for 3 h.
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Test of apoplastic permeability (including the endo- and exodermis) of CuSO4 and

K4[Fe(CN)6] in rice roots

Two different types of experiments were employed to assess the apoplastic permeability

(including the endo- and exodermis) of rice roots for these salts. Here, 100 µM CuSO4

was sucked into the stele from the root medium in excised roots as did in corn, and

xylem vessels and aerenchyma of root segments were subsequently perfused with 200

µM K4[Fe(CN)6] for 3 h. (experiment five). In experiment six, above treatment was

repeated for roots after removing or damaging the outer part or peripheral layers of

roots using a razor blade and fine-tipped forceps under a dissecting microscope

(Makroskop M 420, Wild, Heerbrugg, Switzerland). Five roots were tested in each

experiment, (n = 5).

Vitality test

Since permeability experiments lasted for several hours (4-5 h) and even low Cu2+

concentrations may be toxic to plant cells (Murphy et al. 1999), it was essential to check

viability of root cells at the end of the experiments. Free-hand longitudinal sections were

made and stained either with 0.5% (w/w) Evan’s blue for 15 min (Taylor & West 1980) or

with fluorescent dye 0.01% (w/v) uranin (disodium fluorescein) for 10 min (Stadelmann &

Kinzel 1972) to determine cell vitality.

Photography

At the end of the experiments with corn and rice roots, free-hand cross-sections were

made at different distances from the root tip (3, 20, 40, 60, 80, 100 mm) and observed

under a light microscope to localize copper ferrocyanide precipitates in the treated roots.

Sections stained with uranin were observed under a fluorescent microscope with blue

filters (Zeiss, Oberkochen, Germany). Photographs were taken either using a Kodak

Elite 64 ASA film (Kodak limited, England, UK) or using a digital camera (Sony-DSC-

F505V; Sony Corporation, Tokyo, Japan).



181

Cell pressure probe measurements

It may be argued that applied copper altered (decreased) the water permeability through

plasma membranes tending to increase the relative amount of water that crosses the

endodermis through the apoplast. This idea was tested measuring the hydraulic

conductivity of individual cortical cells (Lp) of corn roots by a cell pressure probe as

previously described (Steudle 1993), assuming that endodermal cells would behave

similar as other cortical cells. Lp of the cells of the outer cortex were measured for

control as well as re-measured after sucking 100 µM CuSO4 into the stele from the root

medium for 90 min. A total of five cells was measured from five roots (n = 5).

Measurements of Chara cell wall permeability for copper sulphate (CuSO4) and

potassium ferrocyanide (K4[Fe(CN)6])

In order to isolate internodal cell walls, the nodes of mature cells of Chara corallina

were excised and the cellular contents flushed out gently with a syringe. To remove

plasmalemma and other residues, the cell wall tubes were perfused with pure ethanol

followed by water. Kannula needles from which pointed ends were removed (Braun

Melsungen AG, Melsungen, Germany) were glued to open ends of the cell wall tubes

using a polyacrylamide glue (UHU, Bühl, Germany) and superposed with a molten

mixture of beewax-collophony (Fig. 2).

Figure 2 Pump perfusion set-up: Open ends of cleared Chara cell wall preparations (untreated walls or

ghosts containing copper ferrocyanide precipitates) were fixed to kannula needles (without pointed end),

and inlet ends connected to a Braun-Melsungen pump through a Teflon tube. The pump created pump

rates of 3 to 6 × 10-11 m3 s-1. The other ends (outlet ends) of  preparations were connected to a pressure
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probe to measure steady-state pressures resulting in the system. At steady-state, the volume flow provided

by the pump equaled the radial volume flow across wall preparations.

One kannula needle (inlet end) was connected to a 12-step Braun-Melsungen pump

using a Teflon tube. The outlet end was fixed to a pressure probe to measure steady-

state pressures in the system as described by Ranathunge et al. (2003). A syringe was

filled with 100 mOsmol/kg CuSO4 and mounted on the pump, and the cell wall tube

was perfused at a pump rate of either by 3 × 10-11 or 6 × 10-11 m3 s-1. Pressure in the

system increased gradually until a stationary pressure established. A defined volume of

distilled water (2 mL) was added to the external chamber as the bathing medium of the

cell wall tube. To prevent evaporation, the chamber was covered with a lid. It was

stirred throughout the experiment. At different time intervals, 50 µl of the outer medium

was taken out by a pipette and the CuSO4 concentration of each sample was measured

by a freezing point osmometer. Hence, the amount of CuSO4 that permeated to the

external medium was measured and plotted against time. The rate of CuSO4 permeation

was directly obtained from the slope of this curve (mOsmol kg-1 s-1). In another

experiment, cell wall-tubes were perfused with 100 mOsmol/kg K4[Fe(CN)6] to

measure the rate of permeation for this solute as well.
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Results

Apoplastic permeability of CuSO4 and K4[Fe(CN)6] in corn roots

Sequential application of 100 µM CuSO4 and 200 µM K4[Fe(CN)6] to the root medium

in transpiring seedlings resulted in a development of copper ferrocyanide precipitates in

the outer layers of corn roots (experiment one). Dense brown Cu2[Fe(CN)6]

precipitates were accumulated between the epidermis and the hypodermis as a result of

diffusion of salts into the root close to the tip (3 mm from the tip; Fig. 3a).

           
Figure 3 (a, b) Cross-sections of corn roots: treated subsequently by adding 100 µM CuSO4 and 200 µM

K4[Fe(CN)6] to the root medium of transpiring seedlings. (a) Brown precipitates were accumulated in

between the epidermis and the hypodermis at close to the root tip (3 mm from the tip). These two cell

layers were stained with brown copper ferrocyanide crystals. In mature parts at 70 mm (b) from the tip,

epidermal cell walls were stained with brown precipitates. (b) Lateral root emerging points from the

primary root were stained dark brown indicating that these areas provided some kind of an ‘open door’

for ion intake. Arrowheads show brown precipitates in cell walls. Bars = 50 µm. co, cortical cells; en,

endodermis; ep, epidermis; hy, hypodermis; lr, lateral roots.

In addition, these two cell layers were stained with brown crystals. No

mature/functional xylem vessels were observed in this region. In mature parts,

precipitates were only observed in outer tangential walls of the epidermis (Fig. 3b).

Sequential salt applications developed a semipermeable precipitation membrane/barrier

in outer walls of the epidermis, preventing further movement or drag of ions

apoplastically into the inner tissues with the water. Lateral root emergence points on the

primary root were stained dark brown. At these points, salts could move into inner
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layers of the cortex. Cells in the lateral roots were covered with dense brown crystals

(Fig. 3b).

In experiment two, suction of 100 µM CuSO4 from the root medium into the stele in

entire roots and subsequent perfusion of 200 µM K4[Fe(CN)6] through xylem vessels

under gravity resulted in development of brown crystals in the walls of the stele.

Precipitates were especially concentrated around the early metaxylem vessels as well as

in cell walls of the passage between the endodermis and early metaxylem (Figs 4a, b).

          
Figure 4. (a)-(d) Free-hand cross-sections of corn roots, made after sucking 100 µM CuSO4 into the stele

from the root medium using a vacuum pump, followed by perfusing xylem with 200 µM K4[Fe(CN)6].

Brown precipitates were found in cell walls of the early metaxylem, and along the passage between CBs

of endodermis and xylem vessels at 40 (a) and 70 mm (b) from the root tip. Cell walls of the pith also

stained with brown crystals. (c, d) Intense, brown precipitates were found in cell walls at places where

laterals penetrated through the endodermis. Arrowheads show precipitated brown crystals in the apoplast

(cell walls). Stalked-arrowheads show embolised early metaxylem vessels. Bars = 50 µm. emx, early

metaxylem; en, endodermis; lmx, late metaxylem, lr, lateral roots.

Drifting precipitation towards the metaxylem was common (Fig. 4b). Cell walls of 3-5

early metaxylem vessels were stained with brown crystals, which represented 18-35%

from the total xylem strands. Observations were similar for middle (40 mm from the tip:
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Fig. 4a) and basal parts of the root (70 mm from the tip; Fig. 4b). Brown crystals were

noticed in the parenchyma cell walls of the pith (Fig. 4a). To develop drifting

precipitates in cell walls towards the xylem vessels, Cu2+ ions should have crossed the

endodermis apoplastically, where Casparian bands (CBs) do exist in the radial and

transverse walls as primary cell wall modifications. Treatment of CuSO4 only for the

root tip, instead of the entire root resulted in no brown crystals in the stele. Neither

hydroponically-grown corn nor rice developed functional xylem closer to root tips. It

started to function approximately 20 mm beyond the root tip, however at this distance,

both, corn and rice started to develop CBs in the endodermis (Zimmermann & Steudle

1998; Ranathunge et al. 2003; 2004). Emergence of laterals from the pericycle resulted

in a discontinuity of the endodermis, allowing a free movement of Cu2+ ions into the

stele through the apoplast. In such places, intense brown crystals were observed in cell

walls throughout the stele. Similarly [Fe(CN)6]4- could leak out, and brown crystals

developed in cell walls of the cortex (Figs 4c, d).

In experiment three, the transpirational stream dragged CuSO4 from the root medium

into the stele. Subsequent perfusion of K4[Fe(CN)6] through xylem vessels resulted in

development of brown crystals in cell walls of the stele, but precipitates were less

intense than in the experiment with vacuum suction (experiment two; Fig. 5a).

          
Figure 5 (a, b) Free-hand cross-sections of corn roots (70 mm from the tip), prepared after adding 100

µM CuSO4 to the root medium of transpiring corn seedlings followed by perfusing xylem vessels with

200 µM K4[Fe(CN)6]. (a) Walls of cells in between the endodermis and metaxylem were stained light

brown, but too faint to be visible in print. (b) Dense brown precipitates in the walls of early metaxylem at

places laterals emerged. Arrowheads show brown precipitates in cell walls. Bars = 50 µm. co, cortical

cells; en, endodermis; emx, early metaxylem; lmx, late metaxylem; lr, lateral roots; px, protoxylem.
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Intense brown precipitates were noticed around lateral root emergence points (Fig. 5b).

When salt application was reversed, brown crystals were observed neither in the cortex

nor in the stele. Possible reasons would be either [Fe(CN)6]4- could not cross the

exodermis at detectable amounts or Cu2+ had to move a long way from the stele to the

medium under simple diffusion instead of solvent drag mechanism.

Long term treatment of roots with higher salt concentrations (experiment four) resulted

in cell death and disintegration of the tissue. This led to develop a leaky structure, which

allowed free movement of salts from external to inner xylem and vice versa. Well-

plasmolysed cells were evident in the cortex as well as in the stele (Figs 6a, b).

Plasmalemmata were still attached to the radial walls of plasmolysed cells in the

endodermis (Fig. 6b). Brown crystals were observed inside the plasmolysed cytoplasm

and cell walls.

          
Figure 6 (a, b) Long term treatment (48 h) of corn root segments with 500 µM CuSO4 and 1000 µM

K4[Fe(CN)6] caused cell death or loss of integrity of plasma membrane. (a, b) Well-plasmolysed cells in

the mid cortex and in the stele with localized brown crystals in the cytoplasm. (b) Plasmalammata were

attached to the radial walls of plasmolysed cells in the endodermis. Arrowheads show shrank dead

cytoplasm with brown crystals. Bar = 50 µm. co, cortical cells; en, endodermis.

Test of apoplastic permeability of CuSO4 and K4[Fe(CN)6] in rice roots

In experiment five, water dragged CuSO4 from the root medium into the mid cortex

crossing the exodermis and developed brown crystals reacting with ferrocyanide in cell

walls of the cortex up to the endodermis (Figs 7a, b). No precipitates were observed in

the stele. Since [Fe(CN)6]4- could not cross the exodermis at sufficient rates

(Ranathunge et al., 2005), no precipitates were found either in the epidermis or in the
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outer tangential walls of the exodermis, but sclerenchyma cell walls were intensively

stained brown (Fig. 7a). Once the side of salt application was reversed, brown crystals

were only found in the cell walls of the epidermis and in the outer tangential walls of

the exodermis bordering epidermis (data not shown, but see Ranathunge et al. 2005).

          
Figure 7 (a, b) Free-hand cross-sections of rice roots (80 mm from the root tip), made after sucking 100

µM CuSO4 into the root from the medium and subsequently perfusing the stele and aerenchyma with 200

µM K4[Fe(CN)6]. (a, b) Brown crystals were in cortical cell walls and in spoke like structures up to the

endodermis. (a) Sclerenchyma cell walls were stained with brown crystals, too. Arrowheads show brown

precipitates in cortical cell walls as well as in spoke like structures. Bar = 50 µm. ae, aerenchyma; en,

endodermis; OPR, outer part of the root; sp, spoke like structure; st, stele.

When the permeability of CBs in the endodermis of rice roots was investigated, salts

were directly applied to the endodermis by perfusion of the aerenchyma (experiment

six). In immature parts (20 mm from the root tip), suction of 100 µM CuSO4 from the

root medium and subsequent perfusion of 200 µM K4[Fe(CN)6] through xylem vessels

(or vice versa) resulted in development of brown precipitates inside the stele as well as

in the cortex external to the endodermis (Figs 8a, b). At this distance, CBs of the

endodermis have already started to develop but not yet fully matured (Ranathunge et al.

2003). At 40 mm from the tip, the development of CBs was complete (Ranathunge et al.

2003), but it was evident that Cu2+ ions still could cross the endodermis apoplastically,

and brown crystals developed and accumulated at the inner side to the CBs bordering to

the pericycle (Fig. 8c). Even in mature root zones (at a distance of beyond 60 mm from

the tip), intense brown crystals were observed in the walls of some early metaxylem

vessels (Figs 8d, e). The number of stained vessels (1-3 out of 12-15) was similar in

both at 60 and 100 mm from the root tip (Figs 8d, e).
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Figure 8 Cross-sections of OPR removed/damaged rice roots, prepared after either sucking 100 µM

CuSO4 into the stele from the root medium, followed by perfusion of the xylem with 200 µM

K4[Fe(CN)6] (a-e) or treating roots with salts in the opposite way (sucking 200 µM K4[Fe(CN)6] into the

stele, followed by perfusion of the xylem with 100 µM CuSO4; f-h). (a, b) In immature parts (20 mm

from the tip), brown crystals deposited in the apoplast of the stele and the cortex. In mature zones, when

copper was applied from the outside, brown precipitates deposited at the inner side to Casparian bands

bordering to the pericycle (40 mm from the tip; c) as well as in the cell walls of the early metaxylem at 60
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(d) and 100 mm (e) from the tip. When ferrocyanide was applied from the outside, light brown

precipitates accumulated outside to the Casparian bands bordering cortical cells at 40 (f), 60 (g), and 100

mm (h) from the root tip. Arrowheads show brown crystals in the apoplast or cell walls. Bars = 50 µm.

ae, aerenchyma; co, cortical cells; emx, early metaxylem; en, endodermis; lmx, late metaxylem.

Once CuSO4 was applied from the inside, brown precipitates were observed just outside

to the CBs of the endodermis bordering the cortical cell layer, but precipitates were less

intense (Figs 8f-h). Obviously [Fe(CN)6]4- ions failed to pass CBs of the mature

endodermis in detectable amounts. Movement of Cu2+ from the stele to outer cortex

crossing the endodermis appeared to be low under gravity (0.007 MPa of pressure),

which did not account the solvent drag effect. By contrast, vacuum suction (-0.07 MPa),

which is analogous to transpiration, dragged more Cu2+ into the stele apoplastically, as

already seen for corn. In addition, intense brown precipitates were noticed at the places

where laterals penetrated through the endodermis (Figs 9a, b).

Figure 9 (a, b) Intense brown crystals deposited at the places where laterals emerged from the primary

root discontinuing the endodermis. Copper and ferrocyanide ions could cross the barrier moving through

these cracks developing brown precipitates at 80 (a) and 100 mm (b) from the root tip. Bar = 50 µm. co,

cortical cells; en, endodermis; lr, lateral roots.

Vitality of root cells

The vitality of cells in salt-treated roots (namely in the presence of copper ions) was

examined in two ways, i.e. with Evan’s blue, a non-permeating dye in living cells, and

with the fluorescent dye uranin. Evan’s blue cannot pass an intact, healthy plasma

membrane (Taylor & West 1980). If cells are dying or dead, the plasma membrane loses

integrity becoming leaky for the dye, allowing it to diffuse into the cell.  The cytoplasm

and nuclei of dead cells are stained blue. In the experiments, salt treated root cells did
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not stain blue either in corn (Fig. 10a) or in rice (Fig. 10b) confirming that those roots

used for permeability measurements were alive. The tests with the fluorescent dye

uranin supported these results. With uranin, the cytoplasm and nuclei of cells were

stained green in both treated corn and rice roots indicating that those cells were alive

(Figs 10c, d).

          
Figure 10 Free-hand longitudinal sections of corn (a, c) and rice (b, d), taken 60 mm from the root tip,

stained with either Evan’s blue (a, b) or uranin (c, d) to check the viability of cells at the end of the

experiments. Generally, in dead cells, cytoplasm and nuclei are stained dark blue with Evan’s blue. But,

after treatments, in both species, cytoplasm and nuclei were not stained indicating that roots are alive after

the treatment. It was further confirmed by stained living cells with uranin. Bar = 50 µm. co ,cortical cells;

lr, lateral roots.

Hydraulic conductivity (Lp) of individual cortical cells

The Lp (∝ T1/2
w; half-time of water exchange) values of control and Cu2+ treated

individual cortical cells of outer cortex, measured from water flow generated by a cell

pressure probe, did not differ significantly from each other (T1/2
w values of control and

Cu2+ treated cells were 2.3 ± 0.4 and 2.9 ± 0.5 s, respectively.) However, once the

control/Cu2+ treated ratio was prepared, in order to reduce the variability between cells

(Ye, Muhr & Steudle 2005), CuSO4 treatment reduced the membrane water

permeability by 30 ± 17%. As in the case of Lp, CuSO4 treatment resulted in decline of

the cell turgor by 31 ± 9%. The results do show some membrane alteration to ions by

the CuSO4 treatment, probably partial inhibition of ion channels leading to lower ion
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uptake compared to the control. It may be resulted in a small decline of cell turgor than

that of the control (see Discussion).

Radial wall permeability rates of copper sulphate and potassium ferrocyanide in

Chara cell wall preparations

Chara cell-wall tubes were perfused either with 100 mOsmol/kg CuSO4 or 100

mOsmol/kg K4[Fe(CN)6]. The amount of salts permeated into the external medium

increased with time (Fig. 11). When wall-tubes were perfused with the pump rate of 3 ×

10-11 m s-1, higher stationary pressures were generated for ferrocyanide (∼ 0.06 MPa)

than for copper sulphate (∼ 0.03 MPa) indicating that more ferrocyanide ions were

retained inside wall preparations. However, in that case, the permeability rate of

ferrocyanide was greater than that of copper sulphate. It is correlated with the solvent

drag effect (drag of ions through the pores by water, induced by hydrostatic pressure

difference), which was bigger for the former than the latter. Once the pump rate was

doubled only for CuSO4, similar stationary pressures were obtained for both salts (∼

0.06 MPa). In that case, the hydrostatic pressure gradient through the wall was similar

for both salts, and the permeability rate of CuSO4 through Chara cell wall-tubes was

greater by a factor of ∼1.5 than that of K4[Fe(CN)6] (Fig. 11). The back flow and

dilution of internal perfused solution was negligible (< 5-7%) because of the large

internal volume of the experimental set-up.  The results showed that movement of

copper ions through cell walls was faster (less hindered) than that of ferrocyanide.
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Figure 12 (a, b) Increases of either copper sulphate or potassium ferrocyanide concentration in the

external medium with time for untreated Chara cell wall preparations. With similar pump rates, cell wall

preparations retained more potassium ferrocyanide than that of copper sulphate resulting higher steady-

state pressures in the system. In this situation, solvent drag effect for ferrocyanide was greater than that of

copper, hence higher permeation rates were observed for ferrocyanide (a). Once similar steady-state

pressures (similar pressure gradients from wall tubes to external medium) were obtained for both salts

changing pump rates, permeation rate of copper through cell walls was greater than that of ferrocyanide

(b).
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Discussion

The results provide direct anatomical evidence that Casparian bands (CBs) do allow

some passive passage of ions besides water. In the precipitation technique used, 100 µM

CuSO4 and 200 µM K4[Fe(CN)]6 were applied either in the xylem or in the medium of

roots. Those salts were dragged into the xylem with the water (solvent drag), either by

transpiration (intact plants) or pump suction (excised roots). The presence of

precipitates of insoluble copper ferrocyanide at the endodermis close to CBs and

drifting precipitation towards the metaxylem vessels indicated a passage of ions across

CBs. However, this finding does not mean that CBs do not represent a substantial

barrier for ions. It just means that the barrier is not completely impermeable.

Before the data obtained from the new precipitation technique can be considered as real,

a few possible sources of error or artifacts have to be considered. (i) A great care was

given when handling roots in the experiments without exposing to physical stresses or

bending the roots to prevent structural defects in the CBs or endodermis. Even roots

with tiny natural wounds could be identified during the experiments because of heavy

brown precipitates accumulated at wounding places within short period of time. Such

roots were discarded without using for further experiments. (ii) It was concerned about

the possible effects of Cu2+ toxicity on the plasma membrane. That could create a leaky

structure for ions. Viability tests with sensitive dyes proved that Cu2+ treated roots were

alive and plasma membranes were intact even at the end of the experiments.

Furthermore, if membranes were damaged or leaky, brown precipitates could have been

observed everywhere in the roots. However, in these experiments, brown crystals were

localized to certain places, and this clearly indicated that Cu2+ treated roots were alive.

(iii) The idea of the transition metal, Cu2+ can reduce water flow through membranes,

resulting in a relatively greater apoplastic flow was tested. Copper ions may inhibit

water channel (aquaporin) activity similar to mercurials (HgCl2) by attachment to SH

groups of cystein residues (Henzler & Steudle 1995; Maurel 1997; Zhang & Tyerman

1999). Hence, it may be argued that Cu2+ treatment artificially increased the apoplastic

water flow creating a relatively greater solvent drag effect, which led to drag Cu2+

across CBs. It was found that, even though, Cu2+ treatment reduced the membrane water

flow across cortex cells, the effect was as small as 30% and substantially smaller than
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that of HgCl2 (as one would expect according to the higher affinity of  Hg2+ to

sulfhydryl groups as compared with Cu2+). For example, in wheat root cells, Hg2+

reduced the membrane water flow by 75% (Zhang & Tyerman 1999). Reduction was 9-

fold in onion and 7-fold in corn (Barrowclogh, Peterson & Steudle 2000; Wan, Steudle

& Hartung 2004). The present results showed that Cu2+ did affect the membrane water

permeability but not as substantial as Hg2+. This may have increased the pressure

gradient across the endodermis, thus leading to a somewhat bigger water flow across

CBs. Anyhow, even if there was a relative increase in the apoplastic component, this

does not affect the conclusion that CBs are not completely interrupting the apoplastic

water and ion flow.

In addition to dye-vitality tests, the pressure-probe experiments have been used as an

another indicator to check the vitality of root cells after the CuSO4 treatment. If cells are

dead, no turgor pressure as well as no responses to pressure relaxations can be expected.

However, measurements with cell pressure probe proved that root cell membranes were

intact even after the Cu2+ treatment, also turgor was reduced by 31%, perhaps, by

inhibiting nutrient uptake besides the water.

There is already some evidence that CBs are permeable to water, at least to some extent

(Steudle 1989; Steudle, Murrmann & Peterson 1993; Zimmermann & Steudle 1998;

Steudle & Peterson 1998). The results of the present study support and extend this view

in that ion movement is incorporated as well. In the past, a substantial contribution of

the apoplastic path to both water and solutes has been inferred from comparison

between cell Lp and root Lpr and from measurements of root reflection coefficients (σsr)

and permeability coefficients (Psr) (Steudle & Frensch 1989; Steudle & Peterson 1998;

Zimmermann & Steudle 1998). For technical reasons, there are, to date, only a few

direct results indicating a permeability of CBs to water and ions. Zimmermann &

Steudle (1998) grew corn seedlings under different conditions. In hydroponics, roots

developed no exodermis but in aeroponics they did. This corresponded to a substantially

lower hydraulic conductivity. However, solute permeability was not much affected. The

findings have been interpreted that water flow was not completely interrupted by CBs

and solute permeability was limited at the endodermis. In rice, anatomical studies

showed the presence of an exodermis, which, however, was permeable to both water
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and ions. Ranathunge et al. (2003; 2004) experimentally demonstrated that despite the

existence of an exodermis with CBs, most of the water moved around cells rather than

using a cell-to-cell passage. In copper ferrocyanide precipitation experiments, brown

precipitates were noticed at the side where ferrocyanide was applied, suggesting that

copper ions were passing the barrier including the exodermal CBs (Ranathunge et al.

2005). This and the present evidence are in line with earlier findings of an apoplastic

passage of ions (Na+) and tracer dye PTS in rice roots (Yeo et al. 1987; Yadev et al.

1996). Present findings are further supported by earlier experimental findings of

substantial endodermal apoplastic bypass of Ca2+ in rye (White et al. 1992), Cl- in citrus

(Storey & Walker 1999), and heavy metals, i.e. Zn2+ in Thlaspi caerulescens (White et

al. 2002), Cd2+ in Salix (Lux et al. 2004) as well as of the stress hormone ABA in corn

roots (Freundl et al. 1998; Hose, Steudle & Hartung 2000; Schraut, Ullrich & Hartung

2004).

It may be argued that movement of Cu2+ into the stele through the endodermis is

exclusively through the plasma membrane using ion channels or Cu2+ transporters. If

this was true, the findings could be interpreted as a cellular movement of Cu2+ across

the endodermis rather than through the apoplast. However, apoplastic Cu2+ flow could

be substantial because (i) according to the authors’ best knowledge, neither Cu2+

channels nor Cu2+ transporters were yet found in the plasma membrane of root cells,

though Zn2+ transporters were found in Arabidopsis thaliana and heavy metal sensitive

Thalspi caerulescens (Pence et al. 2000; Hussein et al. 2004). (ii) Other ion channels

transporting divalent cations (such as Ca2+ channels) are expected to be sufficiently

selective to prevent movement of Cu2+ and of other heavy metals to the xylem (White

2001). (iii) Heavy metal cations (i.e. Cu2+, Zn2+) are usually absorbed by roots as

chelates after binding to organic acids, amino acids or peptides as a detoxifying

mechanism, and move through the apoplast without binding to negatively charged cell

walls (Marschner 1995; Hall 2002). (iv) If majority of Cu2+ ions move through the

membrane, that leads to increase the Cu2+ concentration in the cytosol. So, most of

cytosolic Cu2+ should be pumped into the vacuole (vacuolar compartmentalization) as

well as adsorb onto the cell walls as heavy metal tolerance mechanisms (Hall 2002).

Hence, intense, brown crystals could be expected in cell walls especially of the

endodermis and all over the stele. However, in these experiments, crystals were
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localized into certain places. (v) Most important, however, was the finding, in both

species, that precipitates were found just opposite to CBs and on the passage between

CBs and early metaxylem (drifting precipitation towards the early metaxylem) where

they had be swept to the stele with the water flow across CBs. Massive precipitates

were also observed at places where secondary root initials immerged through the

endodermis. These findings could not be interpreted in terms of an artifact during the

preparation of sections. One could argue that during sectioning, the barrier between two

compartments separated by the endodermis destroyed and led to brown precipitates.

However, in this case brown crystals should have been observed also along the

membranes of tangential walls of the endodermis. (v) Moreover, brown copper

ferrocyanide precipitates were only noticed in the cell walls rather than in the symplast,

suggesting that most of the used ions moved through the apoplast. All these evidences

clearly show that there was some movement of Cu2+ ions via the apoplast with the

transpiration stream, i.e. CBs were not completely impermeable.

When considering the structure of the root, one can argue that Cu2+ could enter to the

stele apoplastically at the root tip, where CBs were nonexistent. This idea could be

excluded because no functional or mature xylem vessels were detected closer to the root

tip in hydroponically grown corn and rice, and started to develop at around 20 mm from

the tip. However at this distance, both, corn and rice started to develop CBs in the

endodermis (Zimmermann & Steudle 1998; Ranathunge et al. 2003). On the other hand,

if Cu2+ entered to the stele from the root tip and moved upward, brown crystals could be

observed in all xylem poles rather than in few localized precipitates. However, we

didn’t notice such observations. Even though, corn and rice, both exist passage cells in

the endodermis, they do contain CBs in transverse and radial cell walls as primary cell

wall modifications (Clark & Harris 1981; Zimmermann & Steudle 1998; Ranathunge et

al. 2003). Hence, the idea that ions move apoplastically only at the passage cells can be

excluded.

The technique used here was very sensitive, hence very low concentrations of salts in

the apoplast could be detected. At 25°C, the solubility product of Cu2[Fe(CN)6] is 1.3 ×

10-16 M3 (Hill & Petrucci 1999). So, when we perfused the xylem with a K4[Fe(CN)6]

solution of 200 µM, we may have detected copper ions in the apoplast at a
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concentration of as low as 0.8 µM (assuming 200 µM [Fe(CN)6]4- throughout the

apoplast). The absence of brown precipitates in the symplast, neither imply that lack of

a flux through the cell-to-cell path (symplastic path through plasmodesmata and

transmembrane path) nor all ions moved through the apoplast crossing the endodermal

CBs. This may be due to either the insufficient concentration and accumulation of Cu2+

and [Fe(CN)6]4- in the symplast for a precipitate to form or the used method to detect

crystals was not sensitive enough for less intense crystals in the symplast. Hence, results

can be interpreted in terms of an apoplastic as well as cell-to-cell flow of ion rather than

an exclusive membrane bound ion flow.

When salts were provided at different sides of the barrier, an asymmetric development

of precipitates were obtained. This suggested that the cation, Cu2+, moved faster than

the anion [Fe(CN)6]4- through cell walls. This is in agreement with the previous finding

of Ranathunge et al. (2005) for the OPR of rice roots. In order to check this hypothesis,

Chara cell wall preparations (“ghost”) were used as a model system. It has been

suggested that the effective diameter of the wall-pores in Chara ranged between 2-10

nm besides some pores with diameters of greater than 10 nm (Berestovsky, Ternovsky

& Kataev 2001; Dainty & Hope 1959). Steady-state perfusion of salts through cell wall-

tubes showed that retention of ferrocyanide inside wall-tubes was greater than that of

copper, which had a higher permeation rate through cell walls to the outer medium. Cell

wall pectic substances are generally made of galacturonic acid entities with –COOH

groups, which are responsible for the overall negative charge of the cell wall. Those

negatively charged cell walls might repel and restrict movement of anions through the

large intermicrofibrillar spaces (Clarkson 1991).

At places where lateral roots emerge from primary roots, the continuity of the

endodermis is lost (Peterson, Emanuel & Humphreys 1981). It is, hence, expected that

this allows some leakage of water and solutes such as apoplastic dyes. In this study,

dense brown precipitates were observed around lateral root emergence points for corn

and rice, which is in line with the earlier observations. These places may act as “open

doors” not only for water and apoplastic tracer dyes but also for ions to move freely

though the apoplast into the xylem (Clarkson 1993; Ranathunge et al. 2005). In

mature/basal parts, discontinuity of the endodermis in roots of corn and rice, as well as
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local disruptions of the exodermis in rice, when lateral roots develop from the pericycle,

are most likely to allow substantial apoplastic bypasses. Those sites may act as a locus

for water, dye and ion movement into the xylem, likely to be healed when laterals

mature (Peterson et al. 1981; Ranathunge et al. 2005).

In conclusion, the data show that the application of a new precipitation technique

provides evidence of some permeability of endodermal CBs for ions such as Cu2+ in

roots of corn and rice. Permeability of the endodermal CBs of corn and rice were

intensively tested with copper and ferrocyanide ions. Under suction or transpirational

flow, Cu2+ could cross the endodermis apoplastically in both plant species (even though

at small rates) suggesting that CBs are not perfect barriers to apoplastic fluxes, at least

for copper ions. The hypodermis of corn and exodermis of rice could not occlude the

movement of Cu2+ into the mid cortex via the apoplast. On the contrary, ferrocyanide

ions failed to cross the mature endodermis of both corn and rice as well as the

exodermis of rice in detectable amounts. Asymmetric development of precipitates

provided evidence that the cation, Cu2+ moved faster than the anion, [Fe(CN)6]4-,

through cell walls, most likely because of four negative charges of the ferrocyanide ion

which are likely to be repelled by negatively charged cell walls. Using Chara cell wall

preparations (“ghost”) as a model system, it was shown that more ferrocyanide ions

remained inside wall-tubes than copper ions, which had a higher permeation rate

through cell walls. In roots, there was a significant apoplastic flux of ions in regions

where laterals penetrated the endodermis and exodermis, and Cu2+ and [Fe(CN)6]4- ions

could freely cross the barriers through the apoplast developing brown copper

ferrocyanide precipitates. Overall, the conventional assumption that “the permeability of

CBs to water, nutrient ions is nil” (Peterson & Cholewa 1998) should be modified,

although we agree that permeability of CBs to ions should be fairly low. It may vary

depending on growth conditions, which have an impact on the intensity of bands. By

using other combinations of salts that form precipitates i.e. calcium oxalate, barium

sulphate, this idea can be tested. These types of experiments are under way.
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Abstract

Results obtained from combined measurements at the cell and root levels (cell and root

pressure probe) indicate an important role of apoplastic water transport in roots, even in the

presence of apoplastic barriers (Casparian bands and suberin lamellae in the endo- and

exodermis). The composite transport model of the root explains the variable root hydraulic

conductivity (Lpr) and its physiological benefits, as well as low root reflection coefficients

and the switching between pathways (apoplastic vs. cell-to-cell) depending on demands for

water from the shoot. Switching between pathways provides a coarse, and changes in

aquaporin activity a fine regulation of root Lpr. Recent measurements of the hydraulics of

rice roots support the composite transport model and the view that apoplastic barriers

exhibit water permeabilities of larger than usually assumed.
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Introduction

Different from ions, water flow across roots involves no active pumping. Both, across

the root cylinder and in xylem vessels along the root, water flow is down-hill following

gradients in free energy (water potential) or pressure. Water uptake by plant roots can

be described by simple force/flow relations analogous to Ohm’s law and is

characterized by hydraulic conductances or resistances. The latter parameters are known

to be highly variable. This affects the water status of plants. At a given rate of

transpiration, the water supply by roots determines the water status of the shoot and its

ability to assimilate carbon dioxide. The regulation of water input by roots is as

important as that of the output (stomata). For technical reasons, much is known about

the regulation of the latter, but little about the regulation of water uptake. Evidence

collected over the past decade shows that the phenomenon of variable root hydraulics is

not only related to the permeability of root cell membranes for water (as it largely is for

nutrient ions), but also depends on its apoplastic passage. The presence of apoplastic

barriers is important (Casparian bands and suberin lamellae in the endo- and

exodermis). The anatomical complexity of the root dictates that the flow of water

through it will also be complex. Flow is best described by a composite transport model

which allows for differences in movement through membranes of individual cells and

along the apoplast, as well as through various tissues (see reviews: Hose, Clarkson,

Steudle, Schreiber and Hartung, 2001; Steudle 2000a, 2000b; 2001; 2002a, 2002b;

Steudle and Frensch 1996; Steudle and Heydt 1997; Steudle and Peterson 1998). In the

following, recent findings are summarized which relate to apoplastic water flow in

roots. Results have been obtained using cell and root pressure probes (Steudle 1993) and

different types of pressure chambers and pressure perfusion techniques for herbacous

(maize, sunflower, bean, onion, barley) and woody (oak, spruce, beech) plants. Some

recent results for rice have been added (Ranathunge et al. 2003; Ranathunge et al.

2004). Because of differences in the structure of roots of wetland plants, they allow a

more detailed view on root hydraulics and tests of current models as do others.
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Water flow in roots is variable: flows and forces

The numerous factors which affect the capability of roots to take up water may be

classified in two groups, i.e. those which affect the hydraulic resistance of roots and those

which refer to the different forces that move water. The hydraulic resistance depends on

the size of root systems, i.e. on the area available for water uptake. However, it also very

much depends on the specific hydraulic conductivity which is a measure of conductance

per unit surface area (sometimes also given per unit root length) and per unit driving force

given in units of a pressure (Pa or MPa). Hydraulic conductivities (Lpr in m s-1 MPa-1)

rather than conductances are used for a quantitative comparison of roots of different

species or roots at different developmental states of a given species.

Usually, the radial transport of water across the root cylinder rather than the axial transport

within the root xylem dominates the overall water uptake by plant roots (Steudle &

Peterson, 1998). When referred to unit area of outer root surface, the radial flow of water

across a root (JVr in m3⋅m-2⋅s-1) is given by:

     JVr = Lpr [Pr - σsr(πx - πm)]  .                                                    (1)

The expression in brackets represents the driving force, which comprises the pressure

difference between root xylem and soil solution (root xylem pressure Pr referred to

reference atmospheric pressure), and the difference in osmotic pressure between the two

compartments (xylem, πx, and root medium, πm). In case of a transpiring plant, Pr would

be negative, but may be also positive in the absence of transpiration (root pressure). It

can be seen from Eq. (1), that the osmotic component is modified by the root reflection

coefficient, σsr. This indicates that roots may not behave like an ideal semipermeable

osmometer and σsr < 1. The reflection coefficient is a measure of the selectivity of roots

to solutes such as nutrient ions or others present in xylem sap and soil solution.
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Pathways for water in roots

In the root cylinder, water uses the pathway(s) of lowest resistance. Usually, this is the

apoplast, i.e. the passage around protoplasts. During root development this may change by

the formation of Casparian bands and suberin lamellae in the endo- and exodermis.

Casparian bands are formed in one or more layers of the hypodermis (exodermis) or in the

endodermis by the deposition of suberin and lignin in anticlinal cell walls. They may

largely interrupt water and ion flow and enforce a transmembrane movement of these

compounds. Depending on the species, but also on the root’s developmental and

physiological state, root Lpr comprises different components. It clearly incorporates the Lp

of root cell membranes, which, in turn, has a symplastic (mediated by plasmodesmata) and

a transmembrane component. The latter is dominated by aquaporins or water channels, the

activity of which is subjected to some “gating” by different internal or external parameters

such as drought, high salinity, temperature, nutrient status, or diurnal rhythm. Aquaporins

are thought to be the molecular basis of water relations (Clarkson et al. 2000; Henzleret al.

1999; Javot and Maurel 2002; Maurel 1997; Maurel and Chrispeels 2001; Schäffner 1998;

Steudle 2000a, 2000b; 2001; Steudle and Henzler 1995; Tyerman et al. 1999; Tyerman et

al. 2002; Ye et al. 2003). The symplastic and transmembrane components cannot be

separated to date experimentally, and are, hence, summarized as a cell-to-cell component,

which is measurable using the cell pressure probe (Steudle 1993). Pressure probes also

permit measurement at the root level (individual roots and root systems; Hose et al. 2000).

Comparison of data allowed conclusions about pathways and transport models (see

reviews).

Driving forces during water uptake and losses: composite transport

According to Eq. (1), there are two distinct driving forces for water. Provided that the

reflection coefficient is unity (semipermeable osmotic barrier), they can be summarized by

an overall difference in water potential. The hydrostatic driving force (Pr) should dominate

in transpiring plants where transpiration from leaf surfaces causes tensions in the root

xylem and the xylem osmotic pressure is rather small. On the other hand, there should be

positive root pressures in its absence, when osmotic forces dominate. From Eq. (1), one

would expect that root Lpr is the same regardless of a pressure (hydrostatic) or osmotic
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driving force (hydrostatic or osmotic water flow). However, this not so. Differences can be

as large as a few orders of magnitude in woody and up to a factor of ten in herbaceous

species (see reviews). The reason for the deviations is that, in the presence of osmotic

forces across the root cylinder, the driving force along the apoplast is small due the low

selectivity and low reflection coefficient of the cell wall compartment (σcw ≈ 0). Along the

cell-to-cell passage this is different (σcc ≈ 1). Overall, the contribution of the apoplast to

osmotic water uptake should be small. This is different, when pressure gradients are

present which are effective both along the apoplastic and cell-to-cell pathways.

Differences are well understood in terms of the ”composite transport model”. Composite

transport explains the contribution of different pathways to overall root Lpr and the

switching between pathways depending on conditions. The term “composite transport”

results from irreversible thermodynamics where it has been used to explain the overall

permeability of patchy membranes in terms of permeabilities of individual arrays (see

reviews). To some extent, the theory implies a non-additive of coefficients. The

composite transport of roots explains the findings of (i) variable root Lpr, (ii) low

reflection coefficients, (iii) differences between osmotic and hydrostatic root Lpr (i.e.

the switching), and differences between species (e.g. herbaceous vs. woody; Steudle and

Frensch 1996; Steudle and Peterson 1998).

When used with roots, the parallel arrangement of apoplastic and cell-to-cell pathways

is the most relevant feature. Composite transport is more efficient in explaining variable

root Lpr and the other findings as do other models, which assume a variation in driving

force or of root membrane permeability (e.g. Fiscus 1975; Weatherley 1982).

Composite transport in roots of herbaceous plants

Most of the evidence in favour of the composite transport model has been derived from

pressure probe work (cell and root level) with excised roots of herbaceous plants such as

corn, bean, onion, or sunflower. Some of the evidence is summarized in the following.

Early work with the root pressure probe indicated that roots behave like osmometers,

though not like ideal ones (low root σsr; see reviews). Results indicated an apoplastic

bypass for both water and small solutes, which also referred to the endo- and exodermal
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Casparian bands. Apoplastic barriers, however, showed some flexibility in their

selectivity and permeability depending on the species, growth conditions, and

developmental state of these structures (Barrowclough et al. 2000; Frensch et al. 1996;

Hose et al. 2001). For example, in roots of corn and sunflower the rather big ABA

molecule could be swept from the root medium into the root xylem by solvent drag

(Freundl et al. 1998; 2000). The fact that the solvent drag was bigger in roots of corn

than in those of sunflower may indicate that the amount of “porosity” of Casparian

bands is bigger in the former. It turned out that reflection coefficients for ABA (as

estimated from solvent drag) depended on pH. At slightly alkaline pH = 8, when ABA

was present in anionic form, the reflection coefficient was bigger than at slightly acid

(pH = 4.8), when part of the ABA was present in unsdissociated form. As a general rule,

uncharged solutes were more permeable than charged nutrient ions.

Figure 1 A, B Freehand cross-sections of 8-d-old maize plants stained with berberine-aniline blue and

viewed under an epifluorescence microscope. Lignified vessels and Casparian bands appear bright. In A

(hydroponic culture), the distance from the tip was 80 mm. rh=rhizodermis, hy= hypodermis without

Casparian bands; en=endodermis (primary state) with Casparian bands (arrowheads); p=mature

protoxylem. In B (aeroponic culture), the distance from the root tip was 50 mm. ex=mature exodermis,

(secondary state) with Casparian bands (arrowheads). C, D Cross-sections of 30-d-old rice plants were

stained with Sudan Red 7B. Development of aerenchyma at 20 (C) and 100 mm (D) from the root tip

.ae=aerenchyma, OPR=outer part of the root.
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In corn roots, the effect of a Casparian bands in the exodermis was tested for by

growing roots with and without an exodermis. The existence of an exodermis caused a

decrease of root hydrostatic root Lpr by a factor of 3.6 at constant root membrane Lp

(Zimmermann and Steudle 1998). There was no change in the presence of low osmotic

gradients as expected from the composite transport model. Results were correlated with

chemical analyses in different root zones, which indicated that aliphatic suberin in

Casparian bands of the exodermis caused the decrease in root Lpr (Zimmermann et al.

2000).

Despite these results, there is still a lack of information of how different growth conditions,

stresses and other treatments affect the permeability of apoplastic barriers (see Schreiber et

al. this issue). From the work of Schreiber’s group in Bonn much is known about the

chemical composition of apoplastic barriers (Schreiber et al. 1999). However, there is still

considerable uncertainty about the actual porosity and submicroscopic structure of these

barriers (Hose et al. 2001; Ma and Peterson 2003) As they form, permeability is reduced,

but rarely to zero. Passive selectivity (reflection coefficients) increases as the cell-to-cell

path becomes more important for water and solutes. Different from Casparian bands, there

is much less quantitative evidence about the role of suberin lamellae.

Physiological benefits of composite transport

Composite transport of water in roots is beneficial for the plant. It provides a mechanism to

regulate water uptake according to the needs of the shoot. In the presence of high rates of

transpiration, demands for water are high. Under these conditions, water flow across the

root is hydraulic in nature and root Lpr high. Both, the apoplastic and the cell-to-cell

pathways are used. When transpiration is switched off, the cell-to-cell passage is left which

has a relatively high resistance. This prevents water losses to a dry soil during the night.

This type of a physical adjustment due to a switching on or off of the apoplastic passage

has been termed a “coarse regulation”. It allows rapid changes of root Lpr according to the

needs of the plant. It would explain most of the variability in root Lpr. Under conditions of

water shortage, plants develop roots, which are heavily suberized and have a low root Lpr

because of substantial apoplastic barriers. These barriers prevent water losses to the dry

soil, but should have a negative effect on water uptake, when conditions become more
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favorable. The disadvantage can be compensated for by the existence of water channels

which are under metabolic control and are inhibited/gated by factors such as heavy metals,

hypoxia, nutrient deficiency, low temperature, drought and high salinity (see reviews).

Water channel activity may provide a “fine regulation” of water uptake and the only way

to take up water under harsh conditions.

Apoplastic barriers are much discussed in relation to water uptake. However, they are

probably as important as barriers preventing excessive water losses to the dry soil under

conditions of water shortage in the absence of a sufficient transpirational force for water

uptake (Stavosky and Peterson 1993; Steudle 2000b; Taleisnik et al. 1999). Although it

is well documented that roots suberize in response to drought and other stresses, there

are hardly measurements of changes in root Lpr and in root cell Lp. These measurements

are badly needed, as is the comparison between cell and root level to work out

contributions of pathways (Azaizeh et al. 1992). Besides the interplay between the

physical switching between pathways and water channel activity, there are of course

other means for plants to regulate water uptake such as by root growth under favorable

and root death under adverse conditions. However, these responses are on a much

longer time scale compared to those mentioned above.

Composite transport in rice roots

Wetland plants such as paddy rice develop root systems, which grow into hypoxic

substrates at the risk that oxygen delivered from the shoot down to root tips would be

largely lost by radial diffusion across the outer part of the OPR (= outer parts of roots;

Ranathunge et al. 2003). Hence, there should be barriers such as Casparian bands and

suberin lamellae to prevent these losses.  In Fig. 1D, it is shown that the OPR of rice

roots has a well-developed exodermis with Casparian bands and suberin lamellae. This

may cause problems for the water uptake, when the passage across Casparian bands is

blocked and the cell-to-cell passage affected by suberin lamellae. Accordingly, it has

been shown that rice plants, even though rooting in a wet substrate, may suffer from

water shortage (Hirasawa et al. 1992).
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Figure 2 (A) Pump perfusion setup: A syringe was mounted on a Braun-Melsungen pump (not shown)

that created pump rates between 1.7 × 10-9 and 1.1 × 10-7 mm3 s-1. One end of the root segment was used

as an inlet. This was fixed to the syringe by a narrow and rigid Teflon tube. The other end was connected

to a pressure probe to measure resulting steady state pressures. (B) Schematic diagram to show radial

water flow across the outer part of the root segment during pressure perfusion. At a given pump rate,

stationary pressure was established where the volume flow provided by the pump equaled the radial

volume flow across the outer part of the root (OPR).

For the first time, we studied the hydraulics of rice roots in some detail using pressure

chambers and probes as well as a new perfusion technique (Fig. 2). The results indicated

the importance of apoplastic water transport, at least in the OPR.  Miyamoto et al. (2001)

showed that root Lpr and σsr were rather low which was interpreted as a major resistance at

the endodermis and some apoplastic bypass of water and solutes despite suberization.

When the small size of rice root systems is taken into account, the water supply of the

shoot must indeed be quite limited.
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Table 1 (A) Hydraulic conductivity (Lpr) of individual rice (Oryza sativa, L.) roots, whole root systems and

outer part of roots (LpOPR), which were grown in hydroponics with bubbled air for 31-40 days, as measured

by the root pressure probe (single roots), pressure chamber techniques (root systems) and pressure perfusion

technique (outer part of roots). (B) Calculated treatment / control ratios of LpOPR after perfusing root segments

(two different distances from the root tip) either diluted China ink suspension or treated with 50 µM HgCl2 for

20 minutes. Ratio of bulk (PfOPR) and diffusional (PdOPR) water permeability of the OPR also given for two

different distances from the root tip. (C) Reflection coefficients of single adventitious roots (σsr) and outer

part of roots (σsOPR) as measured with root pressure probe or pump perfusion technique. Osmotic water flow

was induced by increasing the osmotic pressure of the medium by adding different osmotica.

 A
Hydraulic conductivity (Lp) × 10-8 m s-1 MPa-1

Outer part of the root
(OPR)

References
Whole root

systems Individual roots
20-50 mm 50-100 m

Hydrostatic

Osmotic
(NaCl)

4.0 ± 1.7
5.6 ± 2.7

3.1 ± 0.9
4.2 ± 2.5

3.8 ± 0.6
5.0 ± 2.5

1.1 ± 0.5
9.2 ± 3.0

150 ± 60
-

-
-

110 ± 30
-

-
-

Ranathunge et al 2003
Miyamoto et al. 2001

Ranathunge et al 2003
Miyamoto et al. 2001

B
Treatment /control ratio of

LpOPR

Distance
from root
tip (mm) HgCl2/contr

ol
Ink / control

Ratio of bulk (PfOPR) and
diffusional (PdOPR) water
permeability of the OPR

References

20-50
50-100

0.90 ± 0.10
0.92 ± 0.03

0.75 ± 0.09
0.67 ± 0.13

620
1200 Ranathunge et al. 2003

C
Reflection coefficient (σsr) of excised roots

Ethanol NaCl References

Whole root 0.04 ± 0.02
0.09 ± 0.01

0.18 ± 0.06
0.28 ± 0.11

Ranathunge et al. 2003
Miyamoto et al. 2001

Reflection coefficient (σsOPR) of outer part of the
root ReferencesDistance

from the root
tip (mm) Mannitol NaCl

20-50
50-100

0.13 ± 0.04
0.13 ± 0.04

0.09 ± 0.02
0.11 ± 0.03 Ranathunge et al. 2003

In subsequent measurements, a new perfusion technique was used to measure the OPR

separately and to get more detailed information as to whether the exo- or the endodermis

was limiting water uptake. Despite suberization of the exodermis, the LpOPR was larger by

a factor of 30 than the overall root Lpr (Table 1A) and σOPR siginifcantly smaller than the

overall σsr (Table 1C). So, despite suberization there was a considerable bypass of water
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and small solutes in the exodermis as proposed for other species (see above). A dominating

apoplastic transport component was also indicated by the fact the diffusional water

permeability (measured with heavy water) was smaller than the bulk water permeability by

a factor of as large as 600-1200 (Table 1B). The partial blockage of the apoplastic pathway

by China ink particles and of the transmembrane path with the water channel blocker

mercuric chloride indicated that the former treatment was more effective. This was in line

with the idea of a dominating apoplastic water flow. The rice system shows that apoplastic

transport of water is possible even in the presence of a well-developed exodermis with

apoplastic barriers. Anatomical studies did not reveal any kind of patchiness or of other

irregularities of the exodermis.
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8 Summary

Roots of plants growing in waterlogged soils, such as paddy rice, are exposed to an

anaerobic and chemically reduced environment. Rice plants usually form a large

amount of aerenchyma that facilitates the movement of oxygen from the shoots to the

root tips, but at the risk that oxygen would be largely lost by radial diffusion across the

peripheral layers or outer part of the root (OPR). The OPR of rice roots comprises, an

outermost rhizodermis (epidermis), one layer of exodermis, sclerenchyma cell

layer and an innermost unmodified cortical cell layer. To restrict or minimize

radial oxygen loss (ROL) from aerenchyma to the external anaerobic soil

substrate, rice roots develop barriers in the outer layers. The OPR of rice roots has

a well-developed exodermis with Casparian bands (CBs) and suberin lamellae, in

addition to a lignified sclerenchyma cell layer. This may cause problems for the water

uptake, when water flow across the apoplast is blocked by CBs and the cell-to-cell

passage affected by suberin lamellae. Accordingly, it has been shown that rice plants,

even though rooting in a wet substrate, may suffer from water shortage showing

leaf-rolling and wilting symptoms during the day time (Hirasawa et al. 1992).

For rice, the overall radial hydraulic conductivity (Lpr), measured with the

pressure chamber and root pressure probe was lower than those of other cereal

roots. This has been interpreted as a major limitation of rice roots to supply water to

transpiring leaves. The stele/endodermis, aerenchyma, and the outer part of roots (OPR)

arrange in series and their resistances to the overall radial water flow are additive.

However, the hydraulic resistance of the OPR, a tissue of defined structure with

four cell layers in series including an exodermis (hypodermis with CBs and well

developed suberin lamellae) was smaller by a factor of 30 than the overall values of

root Lpr. As long as flow across the OPR is hydraulic in nature, this means that OPR

would not rate limit water uptake. Hence, the overall radial hydraulic conductivity must

be limited by some other parts of the pathway. Estimations of hydraulic properties of

aerenchyma suggested that the endodermis was rate limiting water flow, although

the aerenchyma may contribute to the overall resistance. The resistance of the

aerenchyma was relatively low, and locates in between the endodermis and the

OPR. Mono-layered cortical septae crossing the aerenchyma (‘spokes’) short-circuited
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the air space between the stele and the OPR. The spokes form hydraulic bridges, may

act like wicks.

High values of the overall hydraulic conductivity of the OPR (LpOPR) could be brought

about by a large apoplastic component of water transport or by a high permeability of

membranes of the living cells in the OPR or by both together. If there were a greater

apoplastic component, this would mean that CBs in the exodermis were quite permeable

to water. In order to assess the relative contribution of the apoplastic and cell-to-

cell paths to the overall LpOPR, apoplastic pores of the OPR were either partially

blocked by China ink particles or clogged with copper ferrocyanide precipitates.

In another experiment, water channels (aquaporins) of the OPR were blocked with

water channel blocker HgCl2. New LpOPR measurements after the treatments

suggested that proportionately greater apoplastic water flow across the OPR (on

average 66-75% of water used extraprotoplastic pathway) compared to cell-to-cell

water flow, despite the existence of apoplastic barriers such as CBs, suberin

lamellae in the exodermis, and lignified walls of sclerenchyma. This was further

supported by an increment of the reflection coefficient of the OPR (σsOPR) after

treatments with apoplastic blockers. Treatments with China ink particles or copper

ferrocyanide precipitates increased the σsOPR by 3-fold.

Strongest evidence in favour of a predominant apoplastic water transport came from the

comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic

water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a

factor of 600-1400 than PdOPR. Such huge values of Pf/Pd ratios are expected if the

pathway involved a rather long porous path, i.e. apoplast; this would offer a high

diffusional resistance for HDO, but should be highly permeable in case of a bulk

(hydraulic) water flow. Blockage of apoplastic pores with copper ferrocyanide

precipitates significantly affected the bulk rather than the diffusive water flow and

caused a 3-5-fold reduction of the PfOPR/PdOPR ratios. These findings also indicated a

prominent apoplastic bypass flow across the OPR of rice roots indicating that CBs in

the exodermis were not perfect barriers to water.
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It is usually assumed and well documented that exo- and endodermal CBs are

perfect apoplastic barriers and their permeability to water and nutrient ions is

“nil” (Robards and Robb 1972; Singh and Jacobson 1977; Peterson 1987). The validity

of this assumption was experimentally checked for above two rice cultivars as well as

for corn using a new precipitation technique (copper ferrocyanide). Corn was used as a

standard, which is grown in completely different conditions and holds a different

anatomical structure. The technique used here resembles Pfeffer’s famous precipitation

technique for producing artificial osmotic cells. Cu2+ and [Fe(CN)6]4- ions were offered

on different sides of the barrier (external medium and xylem). Results showed that

Cu2+ were passing the barrier including the CBs of the exodermis and endodermis,

developing brown copper ferrocyanide crystals on the side where ferrocyanide was

applied. Since the passage across the membranes could be excluded, the result indicated

that copper was moving through the barrier and cell walls much faster than

ferrocyanide. There was patchiness in the formation of precipitates, correlated with the

maturation of the exodermis in rice roots. Dense brown precipitates were observed

around lateral root emergence points. These places may act as passages not only

for water and apoplastic tracer dyes but also for ions to move through the apoplast

into the xylem and may lead to increase the apoplastic bypass flow in roots. This

does not mean that there was no difference on the permeability of CBs for water and

solute ions. What it means is that the barriers were not completely impermeable to polar

solutes and to the water, still exhibiting a selectivity (as shown by the fact that the

negatively charged ferrocyanide was not passing at measurable amounts). Overall, the

results showed that the permeability of CBs to ions was fairly low, but bands were

not perfect barriers to ions or even apoplastic tracer dyes.  This result differs from

textbook knowledge (Strasburger et al. 1998).

Suberin (mainly hydrophobic aliphatic suberin) is one of the major chemical

compounds, which may act as an apoplastic barrier to water in roots. To confirm this

idea, total amounts of suberin were determined in corn and rice, and compared with

their radial hydraulic conductivities. On average, exodermal cell walls of rice

contained 6-fold greater aliphatic suberin than in corn hypodermis. In endodermal

cell walls, amounts were 34-fold greater in rice than that of corn. Significantly

higher amounts of suberin detected in apoplastic barriers of rice corresponded
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with substantially lower root hydraulic conductivity (Lpr) compared to corn, when

water flow was driven by hydrostatic pressure gradients across the apoplast. As the

OPR of rice is highly porous and permeable to water, it argued that this holds true only

for the endodermis. The results imply that some caution is required when discussing the

role of suberin in terms of an efficient transport barrier for water. The simple view that

just the amounts of suberin play the important role, may not hold. A more detailed

consideration of both the chemical nature of suberins and of the microstructure of

deposits is required, i.e. how suberin impregnate wall pores.

In conclusion, rice roots often grow in anaerobic (hypoxic or anoxic) soils. Oxygen

diffuses from shoot to root tips within the aerenchyma, and radial oxygen loss

(ROL) from roots to the anaerobic root medium are relatively small. Hence, the

OPR should have a low permeability for oxygen. On the other hand, there should

be a sufficient hydraulic permeability to take up water. It appears that in rice,

water uptake and oxygen retention are optimized in a way that hydraulic water

flow can be kept high in the presence of a low efflux of oxygen, which is diffusional

in nature.

Brief Summary

(1) In rice roots, the main hydraulic barrier locates inside the root, namely the
endodermis. The outer part of the root (OPR), which includes the exodermis with
well developed Casparian bands (CBs) and sclerenchyma fibre cells is highly
permeable for water.

(2) Field-grown rice plants develop small roots systems in order to diffuse oxygen
from basal parts of the root to the tip effectively, without losing to the anaerobic
soil medium. In addition, the apoplastic barriers of the OPR limit or restrict the
radial oxygen loss (ROL) from aerenchyma to the soil medium.

(3) A proportionately greater apoplastic water flow across the OPR (on average 66-
75% of water used extraprotoplastic pathway) compared to cell-to-cell water
flow, despite the existence of apoplastic barriers such as CBs, suberin lamellae in
the exodermis, and lignified walls of sclerenchyma.

(4) Exo- and endodermal CBs of rice and corn roots do allow for a small passage of
divalent ions, Cu2+, but severely hinder negatively charged ions, such as
[Fe(CN)6]4-. Hence the permeability of CBs to ions is fairly low, but bands are
not perfect barriers to ions
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(5) The hypothesis of a substantial apoplastic transport of water across the exodermis
of rice OPR is supported by the comparison of osmotic (Pf) and diffusive (Pd)
water permeabilities (Pf/Pd ratios). This ratio was as large as 600-1400. By a
factor of 3-5, blockage of the apoplastic pores of the OPR with copper
ferrocyanide precipitates declined this ratio.

(6) The permeability of CBs to the divalent cation Cu2+ is directly demonstrated by
using a new precipitation technique for both rice and corn. The permeability
decreases during the root development. The secondary (lateral) root emergence
points from the primary root are leaky for water and ions.

(7) The amounts of aliphatic suberin correlate with the changes of hydraulic
conductivities (Lpr) or radial water permeabilities of roots. But a more detailed
consideration of both the chemical nature of suberins and of the microstructure of
deposits is more useful, i.e. how suberin impregnate wall pores.

(8) The results do not indicate that CBs allow a free passage to ions through the
apoplast. Bands restrict ion movement, but it is not complete. Hence, the
conventional assumption that “the permeability of CBs to water and nutrient ions
is nil” should be modified.
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9 Zusammenfassung

Die Wurzeln von Hygrophyten, die, wie etwa der Reis, in wasserreichen Böden

wachsen, sind einer anaeroben und chemisch reduzierenden Umgebung ausgesetzt.

Reispflanzen bilden normalerweise ein großes Aerenchym, welches den axialen

Transport des Sauerstoffs vom Spross bis in die Wurzelspitzen erleichtert. Sie tun dies

jedoch unter der Gefahr, dass große Mengen Sauerstoff durch Radialdiffusion über die

äußeren Teile der Wurzel (OPR1) verlorengehen. Der OPR der Reiswurzeln besteht, von

außen nach innen gesehen, aus der Rhizodermis (Epidermis), einer Schicht Exodermis,

einer Schicht Sklerenchym und einer unveränderten inneren Schicht von Cortexzellen.

Um den radialen Verlust des Sauerstoffs (ROL2) aus dem Aerenchym zum umgebenden

anaeroben Bodensubstrat einzuschränken, sollte es Barrieren in den äußeren Schichten

der Reiswurzeln geben. Das OPR der Reiswurzeln hat zusätzlich zu der

ligninangereicherten sklerenchymatischen Zellschicht eine gut entwickelte Exodermis

mit Casparyschen Streifen (CBs3) und Suberinlamellen. Dies könnte bei der

Wasseraufnahme Probleme verursachen, wenn der apoplastische Fluß durch die

Casparychen Streifen blockiert und der Durchgang von Zelle zu Zelle durch das

Vorhandensein von Suberinlamellen reduziert ist. Es konnte gezeigt werden, daß

Reispflanzen selbst dann, wenn sie in einem feuchten Substrat wurzeln, unter

Wassermangel leiden können, was sich durch das Einrollen der Blätter und durch

Symptome des Welkens während des Tages bemerkbar macht (Hirasawa et al. 1992).

Das Problem der Wasseraufnahme durch die Reiswurzel ist wichtig, vor allem im

Hinblick auf die Züchtung von Reissorten, die auf bewässerten Böden oder gar unter

Trockenstress gezogen werden. Weltweit sind Züchter daran interessiert. Reissorten zu

entwickeln, die mit weniger Wasser auf relativ trockenen Böden auskommen. Deshalb

wurden die Untersuchungen in dieser Arbeit in Zusammenarbeit mit dem IRRI

(International Rice Research Institute, Manila, Philippinen) durchgeführt, von dem auch

die verwendeten Reissorten stammten.

Bei den Reispflanzen war die hydraulische Leitfähigkeit des Wurzelzylinders (Lpr), die

mit die Druckkammer und mit der Wurzeldruckmesssonde gemessen wurde, niedriger

als die von anderen Getreidewurzeln. Dies ist als Ursache dafür gedeutet worden, daß

                                                          
1 OPR = Outer Part of the Root        2 ROL = Radial Oxygen Loss         3 CBs = Casparian bands
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beim Reis die Wasseraufnahme durch die Wurzeln die Versorgung des Sprosses eher

begrenzen kann als bei anderen Gräsern. Hinzu kommt die relative geringe Ausdehnung

des Wurzelsystems im anaeroben Substrat. Die Stele/Endodermis, das Aerenchym und

der äußere Teil der Wurzeln (OPR) sind in einer Schichtenfolge angeordnet, und ihre

hydraulischen Widerstände addieren sich zum Gesamtwiderstand. In der vorliegenden

Arbeit sollte die relative Bedeutung der verschiedenen Widerstände quantifiziert

werden. Der hydraulische Leitfähigkeit des OPR, ein Gewebe mit klar definierter

Struktur mit vier aneinandergereihten Zellschichten, welche die Exodermis einschließt

(Hypodermis mit Casparycher Streifen und gut entwickelten Suberinlamellen), war um

den Faktor 30 höher als das Lpr der ganzen Wurzel. Solange der Fluß durch den OPR

hydraulisch ist, bedeutet dies, daß der OPR die Wasseraufnahme nicht begrenzt.

Folglich ist die hydraulische Radialleitfähigkeit an anderer Stelle eingeschränkt.

Theoretische Überlegungen zu den hydraulischen Eigenschaften des Aerenchyms

zeigten, daß es die Endodermis ist, die den Wasserfluss begrenzt, obgleich das

Aerenchym zum gesamten Widerstand beitragen kann. Der Widerstand des Aerenchyms

lag zwischen dem der Endodermis und dem des OPR. Die einschichtigen kortikalen

Septae, die das Aerenchym kreuzen („Speichen“), überbrücken den Luftraum zwischen

dem Wurzelinneren und dem OPR. Ähnlich einem Docht, verhalten sich die Speichen

wie hydraulische Brücken, über die das Wasser von den äußeren Teilen der Wurzel in

deren Inneres gesogen wird .

Die hohen Werte der gesamten hydraulischen Leitfähigkeit des OPR (LpOPR) können

entweder auf eine große apoplastische Komponente des Wassertransportes oder durch

eine hohe Durchlässigkeit der Membranen der lebenden Zellen im OPR (Aquaporine)

oder durch beides zusammen hervorgebracht werden. Gäbe es einen größeren

apoplastischen Anteil, hätte dies zur Folge, daß die CBs in der Exodermis ziemlich

wasserdurchlässig wären. Um den relativen Beitrag des apoplastischen Weg und des

Weges von Zelle zu Zelle zum gesamten LpOPR zu ermitteln, wurden die apoplastischen

Poren des OPR ganz oder teilweise durch Chinatuschepartikel (mittlerer Durchmesser:

50 nm) geschlossen oder mit Fällungen von Kupfer-hexacyanoferrat(II) verstopft. In

einem anderen Experiment wurden die Wasserkanäle (Aquaporine) des OPR mit dem

Wasserkanal-Blocker HgCl2 geschlossen. Die im Anschluß an diese Behandlungen

erfolgten neuerlichen LpOPR-Messungen zeigten, dass im Vergleich zum Wasserfluß von
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Zelle zu Zelle ein erheblicher Anteil von mindestens 66-75% des Wassers

(Cu2[Fe(CN)6]-Präzipitate) durch den Apoplasten floss. Im Vergleich damit war die

Inhibierung mit den Tuschepartikeln geringer (30%). Da Inhibierungen des

Membrantransportes des Wassers ausgeschlossen werden konnten, zeigt das Ergebnis,

dass trotz des Bestehens apoplastischer Barrieren (CBs und Suberinlamellen in der

Exodermis, ligninhaltige Wände des Sklerenchyms) ein substantieller apoplastischer

Wasserfluß durch den OPR erfolgt. Diese Schlussfolgerung wird gestützt durch die

Tatsache, dass nach den Behandlungen mit apoplastischen Blockern die

Reflexionskoeffizienten des OPR (σsOPR) deutlich zunahmen. Behandlungen mit

Chinatintepartikeln oder mit Kupfer-hexacyanoferrat(II)-Partikeln erhöhten das σsOPR

um das Dreifache.

Die stärkste Beweiskraft eines überwiegend apoplastisch erfolgenden Wassertransportes

lieferte der Vergleich zwischen der diffusiven (PdOPR, gemessen mit schwerem Wasser,

HDO) und der osmotischen Wasserdurchlässigkeit (PfOPR) bzw. der hydraulische

Leitfähigkeit (LpOPR). PfOPR war um einen Faktor 600-1400 größer als PdOPR. So hohe

Werte im Verhältnisse von Pf zu Pd sind zu erwarten, wenn der Wasserweg eine

ziemlich lange poröse Strecke durchläuft, die dem Tracer HDO einen hohen

Diffusionswiderstand entgegensetzt. Für den viskosen (hydraulischen) Wasserfluss

sollte eine solche Barriere aber in hohem Maße durchlässig sein. Das Blockieren der

apoplastischen Poren mit Partikeln von Kupfer-hexacyanoferrat(II)-Partikeln (s.o.)

beeinflusste den hydraulischen Wasserfluss konsequenterweise erheblich mehr als den

diffusiven. Sie verursachte eine Verringerung der PfOPR/PdOPR Verhältnisse um das Drei-

bis Fünffache. Die Befunde deuten auf eine erhebliche apoplastische Komponente des

Wasserflusses im OPR der Reiswurzeln hin. Sie zeigen, dass die CBs in der Exodermis

des OPR für das Wasser keine unüberwindbaren Barrieren darstellen.

Um die Ionendurchlässigkeit der exodermalen CBs bei Reis sowie der endodermalen

CBs von jungen Reis- und von Maispflanzen zu überprüfen, wurde ebenfalls die neue

Fällungstechnik  verwendet, wobei Cu2+ und das Hexacyanoferrat(II)-Anion auf jeweils

verschiedenen Seiten der Barriere (Medium bzw. Xylem) angeboten wurde. Die

Ergebnisse zeigten, daß Cu2+ und SO4
2- für die Barrieren (einschließlich der CBs der

Exodermis und der Endodermis) letztlich permeabel war. Im Gegensatz dazu war die
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Permeabilität für das Hexacyanoferrat(II)-Anion gering. Infolgedessen bildeten sich die

Niederschläge jeweils auf der Seite aus, auf der [Fe(CN)6]4- appliziert worden war. Dies

zeigte, dass das Kupfer-Ion sehr viel schneller die Barrieren und die Zellwände

durchläuft als das Hexacyanoferrat(II)-Ion. Die Unterschiede in der Permeabilität wurde

der Tatsache zugeschrieben, dass die Zellwände im Apoplasten Kationenaustauscher

darstellen, die stark negativ geladene Ionen aufgrund Coulombscher Wechselwirkungen

zurückstoßen. Je nach dem Entwicklungszustand der Exodermis der Reiswurzeln fanden

sich Unterschiede in deren Permeationseigenschaften für die Ionen. Um

Seitenwurzelinitialen herum wurden dichte braune  Niederschlag beobachtet. Diese

Stellen können als "offene Türen" nicht nur für Wasser und apoplastische

Farbindikatoren (tracer dyes) dienen. Im Einklang mit der Literatur sind sie auch für

ionische Substanzen relativ leicht passierbar. Die Ursache dafür ist, dass in den frühen

Stadien der Seitenwurzelbildung, die Kontinuität von Exo- und Endodermis

unterbrochen ist. Insgesamt zeigten die Resultate, dass die CBs für die Ionen doch

ziemlich undurchlässig waren, obwohl sie weder für die Ionen noch für die

apoplastischen Farbindikatoren nicht wirklich unüberwindliche Barrieren darstellen.

Vor allem das hydrophobe aliphatische Suberin soll die Leitfähigkeit apoplastischer

Barrieren in Wurzeln gegenüber dem Wasser und anderen polaren Stoffen reduzieren.

Um diese Annahme zu bestätigen, wurden die Gesamtmengen von Suberin in Mais- und

Reiswurzeln bestimmt und mit den radialen hydraulischen Leitfähigkeiten korreliert. Im

Durchschnitt enthielten die exodermalen Zellwände von Reis um das Sechsfache mehr

aliphatisches Suberin als die in der Hypodermis von Mais. In endodermalen Zellwänden

waren die Mengen bei Reis sogar um den Faktor 34 höher als bei Mais. Die signifikant

höheren Suberinmengen, die in den apoplastischen Barrieren von Reis gefunden

wurden, korrelierten mit einer deutlich geringeren hydraulischen Leitfähigkeit der

Wurzel (Lpr) bei Reis im Vergleich mit Mais, wenn der Wasserfluss nach

hydrostatischen Drucksteigerungen vorwiegend durch den Apoplasten erfolgte. Da bei

Reis der OPR relativ porös und daher wasserdurchlässig ist, ließ dies den Schluß zu, daß

dies ausschließlich für die Endodermis zutrifft. Darüberhinaus zeigen die Resultate, daß

einige Vorsicht geboten ist, wenn man die Wirksamkeit des Suberin als

Transportbarriere für Wasser diskutiert. Die einfache Annahme, dass lediglich die

Menge des Suberins wichtig ist, läßt sich möglicherweise nicht aufrechterhalten. Eine
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genauere Kenntnis sowohl der chemischen Zusammensetzung der Suberine als auch der

Mikrostruktur der porösen Matrix ist notwendig, d.h. eine Untersuchung darüber, wie

die Suberine die Wandporen imprägnieren.

Zusammenfassend läßt sich sagen,

(1) dass in der Reiswurzel die hydraulischen Barriere vor allem im Wurzelinneren

lokalisiert sind. Der OPR setzt dem Wasser einen relativ geringen Widerstand

entgegen. Dies kann beim Sauerstoff anders sein.

(2) Im Freiland ist die geringe Größe des Wurzelsystem offenbar sauerstofflimitiert..

(3) Die hohe hydraulische Leitfähigkeit des OPR ist auf eine relativ hohe apoplastische

Komponente zurückzuführen, selbst in Gegenwart Casparyscher Streifen in der

Exodermis.

(4) Der Apoplast, einschließlich der Casparyschen Streifen, ist selbst für zweiwertige

Kationen passierbar, wenn auch eingeschränkt.. Er ist wenig permeabel für

mehrfach negativ geladene Anionen.

(5) Die Hypothese eines substantiellen apoplastischen Transportes des Wassers durch

die Exodermis wird durch den Vergleich von osmotischer und diffusiver

Wasserpermeabilität gestützt (Pf/Pd.Verhältnis). Verschluss der Casparyschen

Streifen durch Salzfällung verringert Pf/Pd erheblich.

(6) Eine Permeabilität des zweiwertigen Kations Cu2+ ist Mithilfe einer neuartigen

Fällungsmethode direkt nachweisbar, und zwar sowohl beim Reis als auch beim

Mais. Die Permeabilität nimmt während der Wurzelentwicklung und der damit

einhergehenden Entwicklung der CBs und Suberinlamellen ab. Im Einklang mit der

Literatur findet sich an Orten, an denen Initialen von Seitenwurzeln die Endodermis

durchbrechen, eine besonders hohe Kationen- und wohl auch Wasserpermeabilität.

(7) Die Menge des aliphatischen Suberins korreliert mit den Änderungen der

hydraulischen Leitfähigkeit (Lpr) oder der radialen Wasserpermeabilität der

Wurzeln. Eine detaillierte Betrachtung sowohl der chemischen Struktur als auch der

Mikrostruktur der Einlagerung der Suberine ist sinnvoller, z.B. wie die Suberine der

Wandporen Imprägnierung.
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(8) Die Ergebnisse bedeuten nicht, dass CBs gar kein Rückhaltevermögen für Ionen

besitzen. Sie besagen lediglich, das CBs der Endodermis sowohl für Wasser als

auch für Ionen eine Permeabilität besitzen, die von Null abweicht. In Lehrbüchern

wird oft davon ausgegangen, dass CBs völlig impermeabel sind. Nach den

Ergebnissen dieser Arbeit sind diese Aussagen zu modifizieren.
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