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Abstract 
High pressure and temperature deformation experiments, which require deviatoric stress 

measurements to be made as a function of sample strain rate, are important for determining the 

rheological properties of mantle rocks, which control plate motions and mantle convection. 

Classical deformation devices only operate at pressures up to 2 GPa. Large volume presses 

(LVP) can be used to deform rocks at higher pressures, but stresses must then be determined 

from the analysis of the distortion of powder X-ray diffraction (XRD) Debye rings, which not 

only requires a synchrotron X-ray source but results in large uncertainties and low sensitivity. 

This thesis describes the development, design, and testing of a novel method of stress 

determination in the LVP, which uses piezoelectric single crystal disks. A piezoelectric disk is 

placed in the deformation column of a 10 mm cubic LVP assembly with electrodes attached to 

the opposing faces. When the assembly is deformed at high pressure in a six ram multianvil 

press, the force applied to the crystal can be determined from the resulting piezoelectric charge. 

Using the area of the piezoelectric crystal and measured force, the deviatoric stress can be 

calculated. Piezoelectric crystals exhibit an Arrhenius-like decrease in electrical resistivity with 

increasing temperature, due to charge leakage. To mitigate this, the design incorporates several 

strategies: a large temperature gradient in the assembly to maintain low crystal temperatures 

during heating with an offset furnace, heating electrodes placed at a 90° angle to deformation 

direction to reduce ripple noise and keep the hot electrodes distant, a diamond heat sink between 

the piezoelectric crystal, and anvil and single crystal MgO surrounding the crystal to limit grain-

boundary conduction.  

The assembly has been tested at pressures between 1–7 GPa and temperatures of 25–1300 K. 

Initial experiments with α-quartz revealed excessive voltage drift during heating and anomalous 

charge reversals during deformation that can be attributed to ferrobielastic twinning driven by 

deviatoric stress. The critical switching stress is 400 MPa at 300 K and below 100 MPa at 473 

K. Among quartz-structured materials, the critical switching stress should be inversely 

proportional to the magnitude of the S14 elastic compliance coefficient. To address these issues, 

Ca3TaGa3Si2O14 (CTGS) was used to replace α-quartz in the assembly. CTGS exhibits 

significantly higher electrical resistance across all temperatures and does not undergo 

ferrobielastic switching. Literature data at 1 bar confirms that the S14 for α-quartz is 70 times 

larger than that for CTGS. 

To test the accuracy of piezoelectric stress determinations, deformation experiments were 

performed on San Carlos olivine at the P61B beamline of the DESY synchrotron at 1–7 GPa 
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and 600–1300 K. Stress determinations were also made by examining the distortion of sample 

XRD Debye rings. This results in a substantial spread in stress determination, however, 

depending on which reflections from lattice planes are examined. For San Carlos olivine, for 

example, stresses in some cases ranged between -2 to 4 GPa when 23 different lattice places 

were considered. The average XRD stress was found to be in good agreement with the 

piezoelectric-derived stress. However, whereas XRD cannot resolve stresses below 0.1 GPa 

and has uncertainties of ±0.1 GPa, the piezoelectric method is sensitive to stresses as low as 

0.01 GPa with an 18.5% uncertainty. One experiment revealed a ferrobielastic switch in CTGS. 

Four compression deformation experiments entered the steady state creep regime, which 

allowed parameters for a unified exponential flow law to be calculated, that agreed well with 

the range of previous literature values. Piezoelectric and XRD-calculated stresses were also in 

good agreement for room temperature deformation measurements made on Mg-Al spinel and 

MgO samples. 

Deformation experiments were also performed on single crystals of MgO and forsterite between 

1.5–3.0 GPa and 600–1300 K, with stresses measured only with the piezoelectric method. The 

experiments that reached creep regime were analyzed using the power law creep equation. The 

activation energies (E^*), 67 kJ/mol for forsterite, 77 kJ/mol for MgO, fit within the range of 

literature values. However, the activation volumes, 6.5 cm3/mol for forsterite, 9.9 cm3/mol for 

MgO, are larger than reported values from XRD measurements. 

To determine the effect of pressure on the S14 of CTGS and to determine its mechanical stability 

according to the Born stability criteria, Brillouin spectroscopy measurements were performed 

on CTGS in a diamond anvil cell (DAC) up to 10 GPa. The CTGS S14 value is average 5.5×10-

5 GPa-1 compared to α-quartz, 2.1×10-3 GPa-1, across the experimental pressure range, only 

surpassing it above 8 GPa. Additionally, the Born stability criteria were violated only at 104 

GPa, indicating that CTGS is exceptionally stable, unlike α-quartz, which undergoes 

amorphization by 35 GPa. This novel assembly and stress determination method will allow 

deformation experiments at pressures relevant to the Earth’s mantle to be performed with a 

higher accuracy than XRD measurements and without the need of a synchrotron facility. 
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Zusammenfassung 
Deformationsversuche bei hohem Druck und hoher Temperatur, bei denen die deviatorischen 

Spannungsmessungen als Funktion der Probenverformungsgeschwindigkeit durchgeführt 

werden, sind wichtig, um die rheologischen Eigenschaften von Mantelgesteinen zu bestimmen, 

die die Plattenbewegungen und die Mantelkonvektion steuern. Klassische Deformationsgeräte 

arbeiten nur bei Drücken bis zu 2 GPa. Großvolumenpressen (LVP) können verwendet werden, 

um Gesteine bei höheren Drücken zu verformen, aber die Spannungen müssen dann aus der 

Analyse der Verzerrung von Pulver-Röntgenbeugungs-Debye-Ringen (XRD) bestimmt werden, 

was nicht nur eine Synchrotron-Röntgenquelle erfordert, sondern auch große Unsicherheiten 

und eine geringe Empfindlichkeit mit sich bringt. Diese Dissertation beschreibt die 

Entwicklung, das Design und die Prüfung einer neuartigen Methode zur Spannungsbestimmung 

in der LVP, die piezoelektrische Einkristallscheiben verwendet. Eine piezoelektrische Scheibe 

wird in die Deformationssäule einer 10 mm kubischen LVP-Anordnung mit an den 

gegenüberliegenden Flächen angebrachten Elektroden eingesetzt. Wenn die Anordnung unter 

hohem Druck in einer Sechs-Stempel-Presse verformt wird, kann die auf den Kristall ausgeübte 

Kraft aus der resultierenden piezoelektrischen Ladung bestimmt werden. Unter Verwendung 

der Fläche des piezoelektrischen Kristalls und der gemessenen Kraft kann dann die 

deviatorische Spannung berechnet werden. Piezoelektrische Kristalle zeigen mit zunehmender 

Temperatur aufgrund von Ladungsverlusten einen Arrhenius-ähnlichen Rückgang des 

elektrischen Widerstands. Um dies zu mindern, beinhaltet das Design mehrere Strategien: ein 

großes Temperaturgefälle in der Anordnung, um niedrige Kristalltemperaturen während des 

Heizens mit einem versetzten Ofen aufrechtzuerhalten, Heizelektroden, die in einem Winkel 

von 90° zur Deformationsrichtung angeordnet sind, um Rauschstörungen zu reduzieren und die 

heißen Elektroden fernzuhalten, ein Diamant-Wärmeleiter zwischen dem piezoelektrischen 

Kristall und dem nächstgelegenen Stempel sowie Einkristall-MgO um den Kristall, um die 

elektrische Leitung an Korngrenzen zu minimieren. 

Die Anordnung wurde bei Drücken zwischen 1–7 GPa und Temperaturen von 25–1300 K 

getestet. Erste Experimente mit α-Quarz zeigten während des Heizens eine übermäßige 

Spannungsdrift und anomale Ladungsumkehrungen während der Verformung, die auf 

ferroelastische Zwillingsbildung durch deviatorische Spannung zurückgeführt werden können. 

Die kritische Umkehrspannung beträgt 400 MPa bei 300 K und unter 100 MPa bei 473 K. Unter 

den Quarz-strukturierten Materialien sollte die kritische Umkehrspannung umgekehrt 

proportional zur Größe des S14-Elastizitätsmoduls sein. Um diese Probleme zu lösen, wurde 

Ca3TaGa3Si2O14 (CTGS) verwendet, um α-Quarz in der Anordnung zu ersetzen. CTGS zeigt 
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über alle Temperaturen hinweg einen deutlich höheren elektrischen Widerstand und unterliegt 

keinem ferroelastischen Verhalten. Literaturdaten bei 1 bar bestätigen, dass das S14 für α-Quarz 

70-mal größer ist als das für CTGS. 

Um die Genauigkeit der piezoelektrischen Spannungsbestimmungen zu testen, wurden 

Deformationsversuche an San Carlos-Olivin an der P61B-Strahllinie des DESY-Synchrotrons 

bei 1–7 GPa und 600–1300 K durchgeführt. Spannungsbestimmungen wurden auch mithilfe 

der elastischen Verzerrung von XRD-Debye-Ringen durchgeführt. Dies führt jedoch zu einer 

erheblichen Streuung der Spannungsbestimmung, abhängig davon, welche Gitterebenen 

untersucht werden. Bei San Carlos-Olivin beispielsweise reichten die Spannungen in einigen 

Fällen zwischen -2 und 4 GPa, wenn 23 verschiedene Gitterebenen betrachtet wurden. Die 

durchschnittliche XRD-Spannung stimmte gut mit der piezoelektrisch abgeleiteten Spannung 

überein. Während XRD jedoch keine Spannungen unter 0,1 GPa auflösen kann und 

Unsicherheiten von ±0,1 GPa aufweist, ist die piezoelektrische Methode empfindlich 

gegenüber Spannungen von bis zu 0,01 GPa mit einer Unsicherheit von 18,5 %. Ein Experiment 

zeigte einen ferroelastischen Übergang in CTGS. Vier Kompressionsverformungsexperimente 

erreichten den stationären Kriechbereich, was die Berechnung von Parametern für ein 

einheitliches exponentielles Fließgesetz ermöglichte, die gut mit dem Bereich vorheriger 

Literaturwerte übereinstimmten. Piezoelektrische und XRD-berechnete Spannungen stimmten 

auch bei Raumtemperaturverformungsmessungen an Mg-Al-Spinel- und MgO-Proben gut 

überein. 

Deformationsversuche wurden auch an Einkristallen von MgO und Forsterit zwischen 1,5 – 3,0 

GPa und 600–1300 K durchgeführt, wobei die Spannungen nur mit der piezoelektrischen 

Methode gemessen wurden. Die Experimente, die den Kriechbereich erreichten, wurden unter 

Verwendung der Kriechgleichung des Potenzgesetzes analysiert. Die Aktivierungsenergien 

(E*), 67 kJ/mol für Forsterit, 77 kJ/mol für MgO, liegen innerhalb des Bereichs der 

Literaturwerte. Die Aktivierungsvolumina, 6,5 cm3/mol für Forsterit, 9,9 cm3/mol für MgO, 

sind jedoch größer als die berichteten Werte aus XRD-Messungen. 

Um den Effekt des Drucks auf das S14 von CTGS zu bestimmen und seine mechanische 

Stabilität nach den Born-Stabilitätskriterien zu überprüfen, wurden Brillouin-

Spektroskopiemessungen an CTGS in einer Diamant-Stempelzelle (DAC) bis zu 10 GPa 

durchgeführt. Der CTGS S14-Wert beträgt im Durchschnitt 5,5×10-5 GPa-1 im Vergleich zu α-

Quarz, 2,1×10-3 GPa-1, über den gesamten experimentellen Druckbereich und übertrifft ihn nur 

bei über 8 GPa. Zusätzlich wurden die Born-Stabilitätskriterien erst bei 104 GPa verletzt, was 
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darauf hindeutet, dass CTGS außergewöhnlich stabil ist, im Gegensatz zu α-Quarz, der bei 35 

GPa amorph wird. Diese neuartige Anordnung und Methode zur Spannungsbestimmung 

ermöglicht Deformationsversuche bei Drücken, die für den Erdmantel relevant sind, mit 

höherer Genauigkeit als XRD-Messungen und ohne die Notwendigkeit einer 

Synchrotronanlage. 
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Symbols and Units 
Symbol Meaning Units 

𝑃𝑜 hydraulic oil pressure bar 

𝜌 density g/cm3 

𝑅 electrical resistance ohm (Ω) 

𝜌𝑅 electrical resistivity Ω·m 

𝑇 temperature K, °C 

𝐸𝑎 activation energy eV 

𝜏 RC time constant seconds 

𝐹 force N 

𝜎𝑌  yield strength MPa, GPa 

𝑃ℎ hydrostatic pressure MPa, GPa 

𝐷𝑎,𝑏, 𝑑𝑎,𝑏 press ram 𝑎 to ram 𝑏 distance mm 

𝑞 electric charge C 

𝑃 electric polarization C/m2 

𝐸 electric field V/m 

𝜒𝑒 dielectric susceptibility dimensionless 

𝜀0 permittivity of free space 8.854 ⋅ 10−12 F/m 

𝑘 
Boltzmann constant 8.617 ⋅ 10−5 

eV/K 
𝜀𝑟 , 𝜅 relative permittivity, dielectric constant F/m 
𝐷 electric induction C/m2 
𝜎𝑖𝑗  stress component N/m2 

𝜀𝑖𝑗 strain component dimensionless 

𝑐𝑖𝑗 generalized elastic coefficient dimensionless 

𝑆𝑖𝑗 elastic compliance coefficient m2/N 

𝐶𝑖𝑗 elastic stiffness coefficient N/m2 

𝑑𝑖𝑗  piezoelectric strain coefficient C/N 

𝑒𝑖𝑗  piezoelectric stress coefficient C/m2 

X, Y, Z 
axes used to describe the orientation of piezoelectric 

crystal cuts 

dimensionless 

a, b, c unit cell lattice parameters Å 

α, β, γ angles between the unit cell lattice axes degrees 

𝐶𝐹 capacitance of integrating capacitor F 

A area m2 

𝜆 wavelength nm, Å, m 

𝑑(ℎ𝑘𝑙) (hkl) lattice plane d-spacing Å 

𝐺𝑟 Reuss shear modulus Pa 

𝐺𝑣 Voigt shear modulus Pa 

𝐺 Gibb’s free energy   J 

𝑉 Unit cell volume Å3 

𝐾 bulk modulus GPa 

𝐸 Young’s modulus GPa 

𝑛 stress exponent dimensionless 

𝜇 shear modulus GPa 
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1. Introduction 
Stress measurements in deformation experiments are crucial for understanding the rheology 

and viscosity of the Earth's mantle. These measurements help reveal how materials behave 

under different pressure and temperature conditions, which is essential for modeling mantle 

convection and tectonic processes. However, with the advent of large volume presses, 

traditional methods of calculating deviatoric stresses from applied loads have become less 

reliable. Frictional losses from gaskets and the transition from fluid to solid pressure media at 

higher pressures contribute to this issue. Earlier methods relied on fluid media like gas and 

liquid, which provided more accurate stress transmission. The solid media now used at higher 

pressures introduce additional friction and complexities, further complicating stress 

calculations. This necessitates the development of new techniques to accurately measure 

stresses within large volume devices. This thesis aims to address this challenge by first 

reviewing the evolution of large volume devices capable of high-pressure deformation 

experiments and then focusing on the detailed use of the 6-ram press. This review is essential 

as many critical procedures for calibrating and performing deformation experiments with this 

apparatus have not been previously documented. 

1.1. High pressure techniques 

1.1.1. History of large volume presses 
Percy William Bridgman heralded the age of high-pressure experiments in 1905. In that year, 

he pushed the experimental pressure limits available to researchers from 2,000 atmospheres, 

0.2 GPa, to over 7,000 atm. He continued his work, breaking through the 10,000 atm barrier (1 

GPa) and into the gigapascal age (McMillan, 2005). 
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Figure 1. The hydraulic press Percy Bridgman built, as described by Percy Williams in The 

Physics of High Pressure (1931) (Bridgman, 1931) 

 

By the time he won the Nobel Prize in Physics in 1946, the invention of what he called 

“Carboloy”, now commonly known as tungsten carbide, allowed for pressures above 100,000 

atm, or 10 GPa, to be reached (Bridgman, 1946). These first devices consisted of a single ram 

forcing a piston into a stationary confining chamber. Such a device would later be developed 

into what is now referred to as a piston-cylinder. Bridgman initially applied force using a screw 

compressor turned with an almost 2-meter-long wrench, but later advanced to using a hydraulic 

press.  

Further increases of pressure started to stagnate due to the limit of uniaxial compression 

inherent in piston-cylinder type of devices. A breakthrough occurred in 1958 when H. Tracy 

Hall published his design for the first multi-anvil apparatus (Hall, 1958) (MAA). This design 
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was a tetrahedral anvil apparatus, utilizing four separate hydraulic rams driven into a central 

tetrahedral-shaped cavity, where a high-pressure assembly consisting of a pyrophyllite 

tetrahedron was placed. The eventual dominance of MAA in large volume press designs can be 

traced back to this development. His first design could only reach 10 GPa and 3000°C (Hall, 

1958), but it opened the door to further improvements, and soon Akimoto and Fujisawa 

published their seminal paper on phase relations in the Mg2SiO4-Fe2SiO4 system (Akimoto & 

Fujisawa, 1968) at high pressure and temperature, and the study of the mantle beyond the 

transition zone began.  

Further improvements then came quickly, and Hall once again was the first to publish a cubic 

anvil design in 1967 in which 6 independent rams were employed, advancing into a cubic space 

(Hall, 1967). 

 

Figure 2. Tracy Hall and the cubic anvil apparatus that was developed at Brigham Young 

University, from Liebermann (2011) (Liebermann, 2011). 

Issues remained, however, with synchronization of the independent anvil movements to ensure 

a cubic space is maintained. To maintain equal ram advancement, the initial designs for 6 ram 

presses utilized a single hydraulic ram applying force along a single vertical axis. Four trapezoid 
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end blocks, which could slide along the inner surfaces of the upper and lower pyramid guide 

blocks, then converted this single vertical force to two horizontal perpendicular components 

(Osugi et al., 1964). In this way, the advancement of the horizontal rams matched the movement 

of the top ram. This design, known as the DIA-type (after ‘diamond’) was first described in  

literature in 1964 (Osugi et al., 1964).  

The nominal upper limit of tetrahedral- and cubic-anvil devices remained about 10 GPa due to 

insurmountable limitations of the design. Naoto Kawai wanted to go beyond this limit, and 

guided by his belief that maximum pressures that can be generated by MAA’s would be 

proportional to the 3/2 power of the number of anvils (Kawai, 1966; Liebermann, 2011), he 

decided to design an 8-anvil, or octahedral MAA to achieve higher pressures (Kawai, 1966). 

He did this by taking a sphere of a hard material, and dividing it by three planes into a number 

of tapering cones or wedge-shaped anvils, in this case eight, that when assembled back together 

formed an octahedral cavity where the high-pressure assembly was placed (Kawai, 1966).  

Kawai’s belief held, and pressures of up to 50 GPa were achieved by this split-sphere design 

(Kawai et al., 1970; Kawai & Endo, 1970).  The design was, however, quite cumbersome, 

requiring careful alignment of all the wedges, covering of the entire sphere with a single-use 

rubber shell, and then all soaked in an oil reservoir. As the sizes of the sphere increased, it 

magnified all the issues (Kawai et al., 1973). In 1973, Kawai simplified the design immensely 

(Kawai et al., 1973). By utilizing eight second-stage WC cubes, with one corner truncated on 

each, a central octahedral cavity was created by the inwards-oriented corner truncations, when 

the cubes were stacked in a 2×2×2 three-dimensional arrangement. This became known as a 

“Kawai cell” (Price, 2010).  

The second stage anvils consist of a sphere split into 6 wedges, with the apex truncated to form 

a square surface, which when assembled, three on the bottom, and three on the top, form a cubic 

cavity. Each set of 3 wedges are glued together in a hollow cylinder. The two cylinders are 

arranged opposing each other in a uniaxial press, with the top being lowered onto the bottom, 

and the Kawai cell placed in the cubic cavity. This final development of the design created the 

well-known and widely used Kawai-type apparatus known today.  

Generally, today, the most widely used MAA comes in two broad forms. MA 6-8 is the 

configuration that utilizes six outer anvils that when driven inwards transfer force into a cubic 

space that consists of eight inner cubic anvils truncated to form an octahedral space for the 

assembly. MA 6-6 meanwhile utilizes the same six outer anvils, but they drive inwards onto six 
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more truncated inner anvils, forming a cubic space for the assembly. Generally, MA 6-8 is 

capable of higher pressures than MA6-6. The MA 6-8 geometry currently holds the record for 

the highest pressures achieved in a large volume press, reaching up to 120 GPa at room 

temperature and 105 GPa at 1673 K (Yamazaki, 2020) with sintered diamond cubes. In practice, 

these pressures are difficult to achieve, requiring expensive cubes and vastly increased blowout 

rates. Most experimental work is done at lower pressures as ultra-high pressures shrink the 

sample volume so much that they approach those that can be produced in laser heated diamond 

anvil cells (DACs).  

A DAC is a high-pressure device that primarily uses two opposing diamonds, with parallel 

polished flat culet surfaces, to exert pressure onto a sample inside a metal gasket squeezed 

between the culet surfaces. While the DAC technique allows extremely high pressures, up to 1 

TPa (Dubrovinskaia et al., 2016) but usually below 400 GPa for beveled diamonds (O’Bannon 

et al., 2018), to be obtained, the sample volumes are notably small, often limiting the amount 

of material available for study. Nevertheless, mainly due to their suitability for in situ 

measurements, DACs have played a pivotal role in understanding material properties at 

conditions relevant to the deep Earth and other planetary interiors. 

1.1.2. Deformation at high pressure 
While high pressure records were being beaten through continuous developments in MAA 

devices, the goal of most researchers was to equalize stresses within the sample chamber and 

achieve pressures that were as close to hydrostatic as possible. This is only truly achievable if 

samples are surrounded by a fluid (Bassett, 2006). All high-pressure devices that use a solid 

pressure transmitting medium will invoke some amount of deviatoric stress due to the finite 

shear strength of all solids. Even so, most research aims to minimize deviatoric stress through 

strategic choices of confining material, annealing by heating, and precision of machining.  

Precision of machining is crucial in the design and operation of high-pressure apparatus because 

it ensures the geometric accuracy of the sample chamber, which is essential for distributing 

stresses evenly across the sample. However, the Earth is a dynamic system driven by heat flow 

from the interior to the exterior, most efficiently transported through convection. The internal 

transportation of solid material is driven by stresses generated through this heat-loss process, 

that in turn result in material strain. To experimentally simulate the dynamics of Earth and 

planetary interiors requires an understanding of the stress–strain response of materials under 

high pressures and temperatures.  
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In parallel with the development of higher confining pressures in MAA, work was being 

performed to increase the confining pressure limit at which samples could be exposed to 

controlled deviatoric stresses. The earliest pioneering work on deforming materials at high 

pressure was performed by F. D. Adams (Adams et al., 1901). It was self-evident that rocks, 

under a high differential load, crack and fail in a brittle manner, but geological field work 

showed that rocks can fold or even ‘flow’ under certain deformation conditions (Adams et al., 

1901). An obvious factor that allowed the ductile flow of rocks was pressure.  

These early experiments used a thick sleeve of wrought iron that was shrink-fitted by heating 

around a column of marble to provide confining pressure. Opposing hard pistons were then 

driven into the sample column to apply deviatoric stress (Adams et al., 1901). Adams succeeded 

in proving that rocks behave differently under confining pressure, changing in their response to 

stresses from brittle to more plastic behavior (Griggs, 1936). However, limitations in the 

process prevented him from measuring the strength of the materials.  

David Griggs used Bridgman’s new high-pressure apparatus (Bridgman, 1931) of two opposing 

pistons that used liquid as the confining pressure within the pressure cavity and a steel jacket to 

withstand the higher pressures. In addition to the method of measuring hydrostatic pressures, 

he obtained some of the first measurements of the strength of minerals at high pressure (Griggs, 

1936). By using a bottom piston to pressurize liquid kerosene surrounding a sample, a 

hydrostatic pressure of 10,000 atmospheres, or 1 GPa was achieved. By applying force to a 

secondary piston from above that was in direct contact with the sample, he could then apply a 

deviatoric stress, and by measuring the force applied and the sample displacement, it was finally 

possible to measure the strength of materials at high pressure.   

At some point in his career Griggs also developed a cubic-anvil device, where all six-anvils 

could be actuated independently (Wentorf, 1962) to obtain hydrostatic pressures up to 8 GPa. 

However, he later returned to his original piston-cylinder based concept and continued the 

development of what would come to be referred to as the Grigg’s apparatus. This design was 

similar to his first piston-cylinder-type devices, but instead of using a liquid confining pressure, 

he instead switched to using a solid pressure medium, which allowed higher pressures to be 

achieved. Pressures of approximately 4 GPa have been reached in modern Grigg’s apparatus’ 

(Kaboli et al., 2017; Renner et al., 2001; Weidner et al., 1998).  

Still, the use of a gas pressure medium has clear benefits. By using a gas or liquid, friction 

within the solid pressure transmitting medium is eliminated, and the force imposed through the 
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rams onto the sample to deform it can be assumed to be the actual stress on the sample (Griggs, 

1936; Paterson, 1970). By doing so, more accurate measurements can be made of the strength 

of materials. One such example of deformation experiments in a Grigg’s apparatus with direct 

stress measurement of single crystal olivine (Fo) is displayed in Figure 3, modified from 

(Demouchy et al., 2013). Notice that even with a direct and in situ measurement, there is still a 

wide spread in the measured stress-strain curves. However, the downside is that liquids and 

gases solidify at relatively lower pressures than can be reached by modern MAA (Klotz et al., 

2009). Silicone oils and various mixing ratios of ethanol, methanol, and water are ultimately 

limited to below 10 GPa before the mixtures freeze (Klotz et al., 2009). 

 

Figure 3. Stress versus strain for constant displacement rate experiments on deformed olivine 

single crystals. (a) For group 2, illustrating the mechanical responses of olivine crystals under 

tri-axial compression parallel to directions [0vw], showing varying degrees of work hardening 

at different temperatures and strain rates. (b) For group 3, demonstrating the stress-strain 

behavior of olivine crystals under compressive loading parallel to directions [uv0], 

highlighting the complex mechanical responses and strain softening at different temperatures 

and strain rates. The experiments were conducted using a high-resolution gas-medium high-

pressure Grigg’s apparatus with a hydrostatic confining pressure of 300 MPa. Stresses 

measured in situ with a strain sensor. Modified from (Demouchy et al., 2013). 

 

Higher pressures can be achieved with heating to the melting temperature of the pressure 

medium, but high pressure and temperature gases and liquids retain large amounts of elastic 

energy. A gasket failure would then be dangerous and could result in an explosive release of 

pressure. These safety aspects have limited this technique to small pressure cavities, such as in 

the DAC. Various gases have been tested, but usually limited to noble gases and nitrogen to 
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eliminate chemical reactions between the gas and the sample. The best of these, He, still freezes 

at 11.6 GPa at room temperature (Zha et al., 2004). Even so, for truly hydrostatic conditions 

and the elimination of frictional-induced deviatoric stresses during deformation, a liquid or gas 

pressure transmitting medium is required.  

Paterson built upon Grigg’s design and developed the Paterson apparatus, or Paterson rig 

(Paterson, 1970), described in 1970, that uses a gaseous pressure transmitting medium. This, 

however, limits pressures to below 1 GPa generally (Paterson, 1990) with no heating, and for 

deformation experiments the limit is generally below 500 MPa (Li et al., 2023; Paterson, 1990). 

With heating, the pressure is also generally limited to below 500 MPa, regardless of the 

deformation geometry (Paterson, 1970). Another deformation geometry possible in the 

Paterson rig is that of a rotational, or torsion experiment. In this geometry, the piston, instead 

of being driven inwards, is connected to a motor, and rotated. The rotation applies torsion 

deformation on the sample through the frictional coupling between the sample and the piston. 

High strains can be accomplished by rotating the piston beyond a single rotation. 

 

Figure 4. Schematic design of a Paterson (left) and Griggs (right) apparatus. 

Several further devices have been developed in order to perform deformation experiments at 

pressures exceeding those that can be reached in the Griggs apparatus. A modified rotational 

Drickamer-type apparatus (Rotational Drickamer Apparatus, or RDA) has been shown to be 

capable of achieving very high strains and strain rates (0 to 10-3 s-1) in torsion, at pressures up 

to 15 GPa (Yamazaki & Karato, 2001). The Drickamer-type apparatus is an opposed anvil 
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design, similar to the Bridgman anvil apparatus or a DAC, but with a containment ring around 

the anvils. Deformation in an RDA is achieved through rotation of one anvil with a rotational 

motor or actuator (Yamazaki & Karato, 2001).  

However, quantifying the stress-strain relationships of materials is difficult. One of the reasons 

for this is because of the assumptions that must be made regarding the stress distribution across 

the sample (Kerber et al., 2019; Pugh, 1979). Apart from this, at higher pressures the hydrostatic 

stress across the sample is not uniform due to the torsion deformation. This can cause partial 

extrusion of the sample outwards and cause non-uniform strain around a specific radius around 

the circular sample. As a result of both of these complexities, the stress-strain relationship is 

difficult to characterize precisely or accurately (Pugh, 1979).  

The need for controlled, uniaxial or triaxial deformation at high-pressures led to further 

developments of the aforementioned DIA by Yanbin Wang et al., (Wang et al., 2003). Starting 

with a typical DIA geometry, two additional hydraulic rams were added within the guide blocks, 

referred to as differential rams, that advance the upper and lower anvils. The differential-DIA, 

or D-DIA was thus created.  
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Figure 5. Conceptual diagram of the principle of operation of a D-DIA and how deviatoric 

stresses can be applied once at high-pressure. Figure from Wang et al. (2003) (Wang et al., 

2003). 

 

The typical operational temperature and pressure range is the same as the DIA. The upper and 

lower outer guide block rams are brought to the target hydraulic oil pressure, while the 

differential rams are kept fully retracted. This results in the compressed assembly remaining 

cubic. To deform the sample, the hydraulic oil pressure in the differential rams is increased, 

advancing them into the assembly at a controlled rate. At the same time, the hydraulic oil 

pressure is reduced in the guide block rams, causing the four side anvils to retract (Wang et al., 

2003).  

By using linear displacement transducers in the guide blocks, the horizontal side rams, and the 

differential ram displacement rates can be measured to high precision, with rates of 10 μm/s 
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being possible. The deformation of the cubic assembly allows a cylindrical sample within the 

central column of the assembly, surrounded by hard materials such as alumina, to be deformed 

in pure shear, with no increase in confining pressure during deformation. The development of 

the D-DIA opened the door to solid-state deformation at axial strains beyond 30%, at 

hydrostatic pressures up to 15 GPa as reported by Wang et al., (2003). 

Since then, advancements in anvil material hardness, reduction of truncation sizes, and 

refinement of the design has enabled the D-DIA to reach hydrostatic pressures of up to 25 GPa 

(Kawazoe et al., 2010). Since 2003, many D-DIAs have been built and operated at synchrotron 

beamlines and labs around the world. Because the D-DIA operates with six truncated anvils 

compressing a cubic assembly, it fundamentally operates on the same principle as the initially 

developed cubic MAA. However, in a DIA, as well as all D-DIA, the cubic cavity in which the 

assembly is compressed does not remain uniform at very high loads because of elastic 

deformation of the guide blocks as well as non-uniform friction between the sliding surfaces 

(Manthilake et al., 2012). As the load is increased to achieve higher pressures, small differences 

in the coefficient of friction between the surfaces have a larger and larger effect, and coupled 

with deformation in a D-DIA, the compressed assembly becomes non-cubic.  

As opposed to a D-DIA, in a cubic press each anvil can be individually controlled by adjusting 

the oil pressure to each independent ram (Kawazoe et al., 2010; Manthilake et al., 2012; Osugi 

et al., 1964). The displacement rate can be dynamically adjusted to account for differential 

friction and ensure that the assembly remains cubic. However, the operation and control of ram 

displacements with sufficient precision to deform samples at controlled, low strain rates has 

been historically difficult and expensive (Carter et al., 1964; Shimada, 1981; Wang et al., 2003). 

Initial attempts suffered because anvils tended to advance at stepped, differential rates that were 

too slow to react to changes in sample strength. There were therefore issues with the precise 

control of strain rates (Carter et al., 1964; Shimada, 1981).  

Advancements in technology have made the implementation of high-pressure deformation 

experiments in a 6-ram cubic press viable (Manthilake et al., 2012; Sano-Furukawa et al., 2014). 

The ram positions can be measured accurately using various types of linear encoders. The oil 

pressure of each ram can be independently and precisely controlled, allowing the Programmable 

logic controller (PLC) to control absolute anvil movements with sub-micron precision. This is 

achieved through the use of independently driven oil pressurization pistons, which employ a 

closed-loop control function that combines information on the ram positions from the encoders. 
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1.1.3. Synchrotron x-ray diffraction 
X-ray diffraction (XRD) is a powerful method for determining the structure of crystalline 

materials by exploiting the diffraction phenomenon that occurs along the atomic planes of a 

crystal. These planes, integral to the crystal's structure, are part of what is known as the crystal's 

Bravais lattice. Their orientation, relative to the crystal lattice's parameters, is denoted using 

Miller indices, which are three integers labeled ℎ, 𝑘, and 𝑙. Each trio of Miller indices specifies 

a unique set of parallel lattice planes within the crystal, characterized by an arrangement of 

atomic positions on a plane. The distance between these parallel planes, orthogonal to their 

surface, is termed the d-spacing and is typically measured in Angstroms. A single set of these 

parallel planes is represented by the notation (ℎ𝑘𝑙).  

When the symmetry elements of the crystal lattice's space group are applied to a plane, the 

resulting set of planes, generated through the symmetry operations, are denoted as {ℎ𝑘𝑙}. This 

notation represents a family of lattice planes that are equivalent from a crystallographic 

perspective (Powell, 2010; Kholkin et al., 2008; Sun et al., 2020). The assortment of {ℎ𝑘𝑙} 

planes a crystal exhibits is distinctive to its space group, making the identification and 

characterization of crystalline materials based on their {ℎ𝑘𝑙} planes and respective d-spacings 

an invaluable tool. This characterization process aids in identifying the crystal structure, 

provides insights into the material's composition when atomic positions are known, and 

facilitates phase identification, crystallinity assessment, and the detection of defects or 

impurities within the lattice.  

When an X-ray beam interacts with a crystal lattice, the electrons surrounding the atoms act as 

diffraction centers. Given that the X-ray wavelength is on the order of atomic spacing, 

diffraction by lattice planes can lead to either constructive or destructive interference of the X-

rays, depending on the angle of diffraction and the lattice d-spacing.
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Figure 6. A schematic drawing of the principle of XRD diffracting and constructively 

interference from a set of lattice planes with a given d-spacing, d. Bragg’s Law is derived 

utilizing the given geometries. Figure modified from (Thomas, 2006). 

 

Illustrated in Figure 6 are two parallel planes within the crystal, referred to as Plane 1 and Plane 

2, each defined by a unique (ℎ𝑘𝑙) and separated by a distance d, the d-spacing. These planes 

act akin to partially reflective surfaces for incoming X-ray beams, labeled IB1 and IB2. which 

strike the lattice planes at an angle, 𝜃, known as the incident angle. This angle is identical for 

IB1 and IB2, considering the parallel nature of Plane 1 and Plane 2. As a result, both, IB1 and 

IB2  after diffracting from their respective planes, exit in the same direction, maintaining the 

angle 𝜃 as their reflection angle. However, the path traversed by IB1 is shorter than that of IB2, 

as it reflects off the upper plane. This difference in path length leads to a phase shift between 

the two beams upon reflection. For the phenomenon of constructive interference to occur, the 

path difference between the two beams must be an integer multiple of the X-rays' wavelength, 

𝜆. This condition ensures that the multitude of diffracted rays from the crystal lattice planes will 

predominantly constructively interfere. In Figure 6,  this path difference is quantified as twice 

the distance of 𝑥𝑦. Given that 𝑂𝑥𝑦 forms a right triangle, the path difference can be calculated 

as described in Eq. 1. As depicted, if the path difference, 2𝑥𝑦, equates to an integer multiple, 

𝑛, of the X-ray wavelength, 𝜆, constructive interference occurs. This relationship forms the 

basis of Eq. 2 known as the Bragg equation, which articulates Bragg’s Law of X-ray diffraction 

(Thomas, 2006). 

 𝑥𝑦 = 𝑑 sin 𝜃 Eq. 1 

 

 𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃 Eq. 2 

The Bragg condition is pivotal for the constructive interference of an X-ray beam, which occurs 

when the incident beam and the diffracted are at an angle 𝜃 relative to the lattice plane. The 

diffraction angle, denoted as 2𝜃, is the angle between the incoming and the diffracted beams. 

This angle is intricately linked to the wavelength (𝜆) of the X-ray beam and the interplanar 

spacing (𝑑ℎ𝑘𝑙) of the crystal lattice according to Bragg’s law in Eq. 2. As different lattice planes 

have variable d-spacings, a monochromatic X-ray beam, characterized by a single wavelength, 

will diffract at different angles 𝜃, resulting in a range of 2𝜃 values observed. This forms the 

basis of angle dispersive X-ray diffraction (XRD), where the diffraction pattern is analyzed as 

a function of the 2𝜃 angle. Conversely, when the incident X-ray beam comprises a continuous 
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spectrum of wavelengths, known as a white beam, the diffraction can be studied in an energy 

dispersive manner, rather than angle dispersion.  

The intensity of the X-ray source plays a pivotal role in the efficiency of XRD analysis. Brighter 

sources lead to higher counts in the detected X-ray signals, enabling quicker acquisition of 

diffraction patterns. Synchrotron facilities stand out as the premier sources of intense X-ray 

beams, thanks to their ability to accelerate electrons to high speeds along a circular trajectory 

with the aid of powerful magnets. These magnets provide the centripetal force necessary to 

keep the electrons in their circular path, causing them to emit radiation, including X-rays, as a 

byproduct of their acceleration. The high-energy environment of synchrotrons thus generates 

exceptionally intense X-ray beams.  

This intense X-ray illumination from synchrotrons opens advanced possibilities for XRD 

analysis. By directing this beam onto a sample situated in a press, XRD under specific 

conditions, such as elevated temperatures and high pressures, can be performed. This capability 

is crucial for identifying crystal phases, calculating unit cell volumes, and characterizing 

changes within the sample under study. Furthermore, the application of a wide X-ray beam 

enables the imaging of the sample via X-ray tomography. This technique leverages the 

differential absorption of X-rays by materials of varying densities within the sample, providing 

a detailed visualization of its internal structure without physical sectioning. 

 

1.1.4. Stress measurement with XRD 
X-ray diffraction (XRD) serves as a powerful method for quantifying lattice strain and 

estimating deviatoric stress by measuring variations in d-spacing between lattice planes. In a 

powder sample, crystallites aligned with the (hkl) plane under the Bragg condition have their 

plane normals at an angle of 90°−θ relative to the incident X-ray beam. These normals can 

orient in any direction around the incident beam axis, forming a continuous circular distribution. 

This distribution yields a diffraction cone that, upon intersecting with a detector, produces a 

Debye ring.  

Ideally, with a sufficient number of randomly oriented crystallites, this ring exhibits uniform 

diffraction intensity across its 360-degree azimuthal span, measured from the beam's direct path. 

If the sample lacks a sufficient count of crystallites, the ring appears discontinuous or spotty, 

as selective diffraction occurs when each crystallite's lattice plane redirects diffraction towards 

a specific azimuthal angle of the ring, correlating with the plane's orientation perpendicular to 
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the direct beam. A non-random orientation of diffractions from lattice planes in the sample 

concentrates intensity towards certain azimuthal angles, indicative of a preferred orientation.  

The sensitivity of the diffraction's azimuthal angle to the orientation of lattice planes directly 

reflects variations in d-spacing across these planes, accommodating orientations ranging from 

vertical to horizontal and any intermediate angle. This attribute of angle-dispersive XRD is 

crucial for identifying differences in d-spacings among lattice planes, thereby enabling the 

assessment of internal or microstress within the sample. In the context of stress analysis, angle-

dispersive XRD can reveal distortions in the Debye rings, transforming them from perfect 

circles into ellipses. This alteration signifies the presence of deviatoric stress, with the ellipse's 

minor axis indicating the direction of maximal stress and its major axis, the minimal stress 

direction.  

The Bragg equation, as shown in  Eq. 3, elucidates the relationship between d-spacing, 𝑑, and 

𝜃. 

 
𝜃 = sin−1(

𝑛𝜆

2𝑑
) 

Eq. 3 

It underscores the inverse relationship between d-spacing within the lattice and the diffraction 

angle 𝜃, with an increase in d-spacing leading to a decrease in 𝜃, and vice versa. Consequently, 

the azimuthal angle's linkage to d-spacing is inherently contingent on the orientation of the 
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diffracting crystal lattice relative to the 

external stress. Specifically, the  crystal lattice 

normal, when projected forward onto the 

detector screen, defines that crystal lattice’s 

azimuthal diffraction angle.  

A conceptual model illustrating this 

phenomenon is presented in Figure 7 (a) 

provides a 3-dimensional explanation of the 

diffraction from lattice planes within the 

crystal. They are shown as black bands and the 

normal to the lattice planes, in green, is labeled 

𝑛. Below that, (b) and (c) are viewed from the 

side, perpendicular to the X-ray beam in a 2-

dimensional view. As the d-spacing, 𝑑(ℎ𝑘𝑙)𝜎3, 

of the crystallite is smaller in (b) as compared 

to the d-spacing, 𝑑(ℎ𝑘𝑙)𝜎1 ,  in (c) of the 

crystallite, the diffraction angle 𝜃 is inversely 

related and smaller in (c) than (b). 

 

Figure 7. Schematic diagram, side view or 

perpendicular to the X-ray beam, illustrating 

how the d-spacing affects the diffraction angle 

θ. σ1 is the higher deviatoric stress state 

(vertical in the diagram) and σ3 is the lower 

deviatoric stress state. The red beam is the 

incoming X-ray beam that then diffracts from 

the lattice planes, shown as black bands. The 

3D view of the crystallite is shown at the top 

with the normal to the planes marked with the 

green arrow and n. 
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Figure 8. The same color and explanation for crystallites with lattice planes, as in Figure 7. 

Now, the view is parallel or along the X-ray beam. A subset of crystallites, with normals to the 

lattice planes marked with green arrows, is shown at different azimuthal angles of the normals. 

𝜎1 is the higher deviatoric stress direction, vertical in this case. The d-spacings of the lattice 

planes are smaller in the direction of their normals parallel to the higher deviatoric stress. The 

d-spacing shrinking is greatly exaggerated. The left side is in a hydrostatic condition, the right 

in a stressed state. The bottom half shows the resultant diffraction rings, in white, on the 

detector screen, in gray. 
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When multiple crystallites within the sample are considered, the idea is expanded in Figure 8. 

Now, a small subpopulation of the total crystallites is considered. The view is now parallel to, 

or down the X-ray beam. 𝜎1 is now vertical and 𝜎3 is horizontal. The smaller d-spacings of the 

crystallites with normals parallel to 𝜎1 cause a larger diffraction angle 𝜃. When the detector 

screen records the diffraction rings, they are now elliptical in the stressed state as compared to 

the hydrostatic state. The degree of this ellipticity is defined by the 𝜓 to 𝜃 relation which is, 

through the elasticity of the crystal, related to the stress state of the crystals. 

 

Figure 9. Schematic model of a diffraction experiment. Some anvils are removed and the 

assembly is cross-sectioned for clarity. The top section shows a hydrostatic condition. The 

bottom shows a deviatoric condition. 
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Figure 9 illustrates the effect of deformation on the resulting powder XRD pattern. Typically, 

the pattern's top is designated as an azimuthal angle of 0°, increasing counterclockwise. The X-

ray beam enters from the right, and as it diffracts through the sample, it forms Debye cones, 

which appear as bright circles on a 2D detector. Under hydrostatic conditions, 𝜃ℎ1 = 𝜃ℎ2 . 

However, under deviatoric stress, these cones become elliptical, altering the 2D pattern such 

that 𝜃𝑑1 > 𝜃𝑑2 indicating maximum diffraction angle at an azimuthal angle of 0° and minimum 

at 90°. From the variation as a function of azimuthal angle, the crystal's stress can be determined 

through lattice microstrain calculations, leveraging the material's known elastic compliance or 

stiffness coefficients.  

This methodology, initially described by (Singh et al., 1998) and further refined in subsequent 

studies (Burnley, 2015; Burnley & Kaboli, 2019; Duffy, Shen, Heinz, et al., 1999; Duffy, Shen, 

Shu, et al., 1999; Merkel et al., 2002), utilizes the following equations: 

 
𝜀(ℎ𝑘𝑙) =

𝑑(ℎ𝑘𝑙) − 𝑑0(ℎ𝑘𝑙)

𝑑0(ℎ𝑘𝑙)
 

Eq. 4 

 𝑑(ℎ𝑘𝑙) = 𝑑0(ℎ𝑘𝑙)[1 + (1 − 3 cos
2(𝜓))𝑄(ℎ𝑘𝑙)] Eq. 5 

 𝑄(ℎ𝑘𝑙) = (
𝜎

3
) {𝛼[2𝐺𝑟(ℎ𝑘𝑙)]

−1 + (1 − 𝛼)[2𝐺𝑣(ℎ𝑘𝑙)]
−1} Eq. 6 

In the context of X-ray diffraction analysis, the microstrain, 𝜀(ℎ𝑘𝑙), is quantified through Eq. 

4. This equation delineates the relationship between the d-spacing under deviatoric stress, 

𝑑(ℎ𝑘𝑙), and the d-spacing in a state of hydrostatic equilibrium, 𝑑0(ℎ𝑘𝑙). The resultant value of 

𝜀(ℎ𝑘𝑙) falls within a range from 0 to 1, offering a measure of the microstrain induced in the d-

spacing that is independent of the material’s properties, being analogous to macrostrain that is 

simply a measure of the change in length compared to the initial length. Eq. 5 further elaborates 

on the interplay between the azimuthal angle, 𝜓, and the measured d-spacing at this angle. 

𝑄(ℎ𝑘𝑙) is the lattice strain parameter and describes the stress experienced by a specific lattice 

plane by Eq. 6. This encapsulates the stress distribution within the crystal lattice, quantifying 

the deviation from the ideal, unstressed state. It’s a composite parameter that integrates the 

material’s microscopic stress, 𝜎  (Bassett, 2006; Lin et al., 2022; Merkel, 2006), with its 

microscopic elastic response, represented by the reciprocal of the Reuss and Voigt shear moduli 

𝐺𝑟(ℎ𝑘𝑙) and 𝐺𝑣(ℎ𝑘𝑙), respectively.  
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The weighting factor, 𝛼, allows for the interpolation between these two moduli, reflecting the 

degree to which the material behaves according to Reuss’s assumption of uniform stress (Reuss, 

1929) or Voigt’s assumption of uniform strain (Woldemar, 1928) continuities across the 

boundaries separating the crystallites, which have been shown to define the upper and lower 

bounds of the moduli (Singh et al., 1998). In the Ruess case, the stress is uniform throughout 

the polycrystalline aggregate. This implies that all crystallites experience the same stress, 

regardless of their orientation. Under this assumption, the strain in each crystallite may vary, 

depending on its orientation and elastic properties. The Reuss average represents the lower 

bound of the elastic moduli, as it assumes the most compliant response in the crystal. On the 

other hand, the Voigt assumption proposes that the strain is uniform across all crystallites in the 

polycrystalline material. That suggests that each crystallite undergoes the same amount of 

deformation, irrespective of its orientation. Consequently, the stress in each crystallite may 

differ, depending on its orientation and elastic properties. The Voigt average provides the upper 

bound of the elastic moduli, as it assumes the stiffest possible response of the material. The 

shear moduli 𝐺𝑟(ℎ𝑘𝑙) and 𝐺𝑣(ℎ𝑘𝑙) are defined distinctively for each crystallographic system, 

owing to the adaptability of this model to various material structures. For the cubic crystal 

system, the expressions for these moduli are specified in Eq. 7, Eq. 8, and Eq. 9 (Hearmon, 

1956; Singh et al., 1998) 

 
Γ(ℎ𝑘𝑙) =

ℎ2𝑘2 + 𝑘2𝑙2 + 𝑙2ℎ2

(ℎ2 + 𝑘2 + 𝑙2)2
 Eq. 7 

 
[2𝐺𝑟(ℎ𝑘𝑙)]

−1 = [𝑆11 − 𝑆12 − 3(𝑆11 − 𝑆12 −
1

2
𝑆44)Γ(ℎ𝑘𝑙)] Eq. 8 

 

𝐺𝑣 =
3𝑆11 − 3𝑆12 + 𝑆44
𝑆44(𝑆11 − 𝑆12)

 Eq. 9 

Γ(ℎ𝑘𝑙) is a geometric factor that relates the orientations of the crystal planes to their elastic 

response. For the other crystal systems, Eq. 7, Eq. 8, and Eq. 9 are different, generally increasing 

in complexity with decreasing crystal system symmetry. Fortunately, even when the crystal 

lattice is subjected to strain, it's feasible to ascertain the d-spacing as if the crystal were under 

hydrostatic conditions. This is accomplished by setting 𝑑(ℎ𝑘𝑙) = 𝑑0(ℎ𝑘𝑙), which necessitates 

that the expression (1 − 3 cos2(𝜓)) = 0. Solving for 𝜓 yields the azimuthal angle where the 

observed d-spacing aligns with what would be expected in a hydrostatic scenario. This angle, 

often referred to as the ‘magic angle’ (Guignard & Crichton, 2015) in literature, is 𝜓 = 54.74°. 

At this specific azimuthal angle, the d-spacing measured corresponds to the d-spacing 
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anticipated under hydrostatic conditions, facilitating the computation of hydrostatic pressure 

from the diffraction data.  

1.2. Strain 
Strain is a measure of the response of a material to stress. As a stress is applied to a crystal, the 

crystal will deform in some way, either elastically or inelastically. Elastic deformation is 

recoverable because it does not break bonds in the crystal lattice. Inelastic deformation does 

break bonds and because of this is not recoverable, at least not without the input of energy to 

return to the initial state.  

Within the elastic limit, strain is defined by considering an infinitesimal and uniform change in 

the position of points as compared to the unstrained body. The following formulation follows 

the method described by Patterson & Bailey (Patterson & Bailey, 2018). If we consider an initial 

set of orthogonal axes 𝒊, 𝒋, 𝒌 in the unstrained crystal, under a strain we would expect a change 

to a not necessarily orthogonal set 𝒊′, 𝒋′, 𝒌′. With this, we can now define 𝜀𝑖𝑗 as the symbol for 

strain, with dimensionless units, in Eq. 10 to Eq. 12. 

 𝒊′ = (1 + 𝜀𝑥𝑥)𝒊 + 𝜀𝑥𝑦𝒋 + 𝜀𝑥𝑧𝒌 Eq. 10 

 𝒋′ = 𝜀𝑦𝑥𝒊 + (1 + 𝜀𝑦𝑦)𝒋 + 𝜀𝑦𝑧𝒌 Eq. 11 

 𝒌′ = 𝜀𝑧𝑥𝒊 + 𝜀𝑧𝑦𝒋 + (1 + 𝜀𝑧𝑧)𝒌 Eq. 12 

If we define a point 𝑟 on an unstrained crystal that becomes 𝑟′ under a uniform infinitesimal 

strain, we can define Eq. 13 and Eq. 14. 

 𝒓 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 Eq. 13 

 𝒓′ = 𝑥𝒊′ + 𝑦𝒋′ + 𝑧𝒌′ Eq. 14 

By defining the displacement of the point as 𝒖 = 𝒓′ − 𝒓, we can define the effects of the 

transformation on each individual dimension with Eq. 15 to Eq. 17. 

 𝑢𝑥 = 𝑥𝜀𝑥𝑥 + 𝑦𝜀𝑦𝑥 + 𝑧𝜀𝑧𝑥 Eq. 15 

 𝑢𝑦 = 𝑥𝜀𝑥𝑦 + 𝑦𝜀𝑦𝑦 + 𝑧𝜀𝑧𝑦 Eq. 16 

 𝑢𝑧 = 𝑥𝜀𝑥𝑧 + 𝑦𝜀𝑦𝑧 + 𝑧𝜀𝑧𝑧 Eq. 17 

Finally, we can define the strain tensor in matrix notation by taking the partial derivative of 

each function above with respect to the dimensional axes they define, forming the strain tensor 

according to Eq. 18 to Eq. 23. 

 
𝜀1 = 𝑒𝑥𝑥 =

𝜕𝑢𝑥
𝜕𝑥

 
Eq. 18 
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𝜀2 = 𝑒𝑦𝑦 =

𝜕𝑢𝑦

𝜕𝑦
 

Eq. 19 

 
𝜀3 = 𝑒𝑧𝑧 =

𝜕𝑢𝑧
𝜕𝑧

 
Eq. 20 

 
𝜀4 = 2𝑒𝑦𝑧 = 2𝑒𝑧𝑦 =

𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑦

 
Eq. 21 

 
𝜀5 = 2𝑒𝑥𝑧 = 2𝑒𝑧𝑥 =

𝜕𝑢𝑧
𝜕𝑥

+
𝜕𝑢𝑥
𝜕𝑧

 
Eq. 22 

 
𝜀6 = 2𝑒𝑥𝑦 = 2𝑒𝑦𝑥 =

𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
 

Eq. 23 

Thus, like stress, strain forms a second rank tensor with 6 independent strain components, as 

shown in Eq. 24. In this way, it is possible to categorize different types of deformation in 

materials. 

 
𝜺𝑖 = [

𝜀1 𝜀6 𝜀5
𝜀6 𝜀2 𝜀4
𝜀5 𝜀4 𝜀3

] Eq. 24 

 

1.3. Stress 
Stress is fundamentally defined as the force, 𝐹, per unit area, 𝐴, acting on an infinitesimally 

small material element, and it is described by a second-order tensor. When a material is 

subjected to hydrostatic loading, the forces are applied uniformially in all directions, resulting 

in an isotropic stress tensor whose normal components are identical. This common value is 

defined as pressure. In contrast, a general stress state may include both normal components, 

which resemble pressure, and shear components that lead to distortions in shape. The stress 

tensor can therefore be decomposed into an isotropic part, corresponding to the hydrostatic 

pressure, and a deviatoric part, which represents the shear stresses. Stress is usually denoted by 

the symbol 𝜎𝑦𝑥 with units N/m2. Stress will be described following the formulation of Patterson 

& Bailey (Patterson & Bailey, 2018). The subscript indicates that the force in the 𝑦-direction 

acts on the face perpendicular to the 𝑥-axis. Figure 10 illustrates how the stress components on 

the face normal to the 𝑥-axis, as expressed in Eq. 25, Eq. 26, and Eq. 27, combine to describe 

any possible state of stress on that face. 

 

𝜎𝑦𝑥 =
Δ𝐹𝑦

Δ𝑦Δ𝑧
 Eq. 25 
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𝜎𝑥𝑥 =
Δ𝐹𝑥
Δ𝑦Δ𝑧

 
Eq. 26 

 

 

𝜎𝑧𝑥 =
Δ𝐹𝑧
Δ𝑦Δ𝑧

 
Eq. 27 

 

 

 

 

Figure 10. Schematic definition of stress tensor 𝜎𝑖𝑗 , with only the forces on the 𝛥𝑦𝛥𝑧 face 

shown for simplicity. Each unique face of the cube thus defines three stress vectors. 

 

By systematically listing all the stresses possible on each face of the cube, a total of 18 stress 

components can be defined. However, if the cube is taken to be infinitesimally small, opposing 

faces vanish and the actual number of defined stress components collapses to just 9 components, 

forming a second-rank tensor shown in Eq. 28. 

 
𝝈𝑖𝑗 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] Eq. 28 

 

For convenience, the subscripts will be switched from tensor notation to matrix notation. The 

substitutions are shown in Table 1.  
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Table 1. Notation conversion table between tensor and matrix notation for subscripts. 

Tensor notation 11 22 33 23, 32 31, 13 12, 21 

Matrix notation 1 2 3 4 5 6 

 

The stress tensor is symmetric, meaning 𝜎𝑖𝑗 = 𝜎𝑗𝑖, and this will collapse the stress tensor to 

only 6 independent stress components, shown in Eq. 29 to Eq. 34, and the final second-rank 

tensor that is formed with matrix notation in Eq. 35. 

 𝜎1 = 𝜎𝑥𝑥 Eq. 29 

 

 𝜎2 = 𝜎𝑦𝑦 Eq. 30 

 

 𝜎3 = 𝜎𝑧𝑧 Eq. 31 

 

 𝜎4 = 𝜎𝑦𝑧 = 𝜎𝑧𝑦 Eq. 32 

 

 𝜎5 = 𝜎𝑥𝑧 = 𝜎𝑧𝑥 Eq. 33 

 

 𝜎6 = 𝜎𝑥𝑦 = 𝜎𝑦𝑥 Eq. 34 

 

 

𝝈𝑖 = [

𝜎1 𝜎6 𝜎5
𝜎6 𝜎2 𝜎4
𝜎5 𝜎4 𝜎3

] Eq. 35 

With this definition, the stress components 𝜎1, 𝜎2, and 𝜎3 are the stresses normal to the face and 

are called the principal stresses. 𝜎4 , 𝜎5 , and 𝜎6  on the other hand are the shear stresses. It 

becomes clear that if a crystal is held under hydrostatic pressure and no shear stresses are 

applied, the shear components go to zero (Eq. 36) and the principal stresses can be used to 

define the hydrostatic pressure, 𝑃ℎ (Eq. 37). 

 𝜎4 = 𝜎5 = 𝜎6 = 0 

 

Eq. 36 

 
𝑃ℎ =

𝜎1 + 𝜎2 + 𝜎3
3

 

 

Eq. 37 

While stress might be defined through the force on a crystal face, implying a mechanical force, 

the stress may come from many sources. Non-uniform heating, electric fields, and chemical 

diffusion can all impart stress on a material. In the case of electric fields, the coefficient that 

defines how much stress is generated by a unit of electric field, or vice-versa, in other words 

the slope of the correlation of a linear equation, is defined by the piezoelectric coefficients, as 

will be seen later. It is useful to define here special cases of stress that are named for ease of 

use. The name of the stress geometry along with the tensor form is shown in Eq. 38 to Eq. 41. 
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𝝈𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 = [
𝜎 0 0
0 0 0
0 0 0

] Eq. 38 𝝈ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = [
𝜎 0 0
0 𝜎 0
0 0 𝜎

] Eq. 39 

𝝈𝑝𝑢𝑟𝑒 𝑠ℎ𝑒𝑎𝑟 = [
𝜎 0 0
0 −𝜎 0
0 0 0

] Eq. 40 𝝈𝑠𝑖𝑚𝑝𝑙𝑒 𝑠ℎ𝑒𝑎𝑟 = [
0 𝜎 0
𝜎 0 0
0 0 0

] Eq. 41 

Deviatoric stress is the component of the stress tensor that represents shear stress and causes 

distortion or deformation in a material without changing its volume. It is defined by subtracting 

the isotropic pressure component from the total stress tensor, effectively isolating the shear 

component responsible for the shape changes. From this point forward, the symbol σ will be 

used exclusively to represent deviatoric stress to simplify the notation when discussing 

generalized deviatoric stress. Mathematically, if the total stress tensor is given by 𝜎𝑡𝑜𝑡𝑎𝑙 , then 

the deviatoric stress tensor is expressed as 

 
𝜎𝑑𝑒𝑣 = 𝜎𝑡𝑜𝑡𝑎𝑙 −

1

3
tr(𝜎𝑡𝑜𝑡𝑎𝑙)𝐼 

Eq. 42 

 

where tr(𝜎𝑡𝑟𝑎𝑐𝑒) is the trace of the stress tensor and 𝐼 is the identity tensor. This quantity 

represents the stresses that cause shape changes (shear deformations) without altering the 

volume. In the subsequent sections, 𝜎1, 𝜎2, and 𝜎3 will denote the principal stresses, ordered 

such that 𝜎1 is the maximum, 𝜎2 is the intermediate, and 𝜎3 is the minimum deviatoric stress. 

These values represent the magnitudes of the deviatoric stress along their principal directions 

and should not be confused with the diagonal elements of the full stress tensor (i.e., the 

hydrostatic stress). The only exception is in equations where the tensor notation is used 

precisely to refer to the complete stress state, including both deviatoric and hydrostatic 

components, in which case the full subscripted representation is maintained. Additionally, the 

term ‘stress’ will be used to describe deviatoric stress only, and not hydrostatic stress, or 

pressure, unless specifically referred as hydrostatic stress. 

1.4. Elasticity 
As previously mentioned, a material is said to undergo elastic strain if it is energetically 

reversible. In other words, if a material is deformed below the elastic limit, the stress placed on 

the material will cause strain but if the stress is removed, the material will revert to the initial 

shape before the application of stress with no additional energy input required. Since the bonds 

of the crystal are not broken within the elastic limit, only stretched or bent, Hooke’s law can be 

used to describe the deformation (C. Powell, 2010). 
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 𝜎𝑖𝑗 =∑𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙
𝑘𝑙

 

Eq. 43 

 𝜀𝑖𝑗 =∑𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙
𝑘𝑙

 
Eq. 44 

 

Eq. 43 and Eq. 44 introduces 𝐶𝑖𝑗𝑘𝑙  and 𝑆𝑖𝑗𝑘𝑙 , which are generalized elastic coefficients of 

materials. Depending on whether stress or strain is to be calculated, the tensor required to 

describe either is given a specific name and symbol. As seen in Eq. 43, if the strain is known 

and the stress is to be calculated, the elastic stiffness 𝐶𝑖𝑗𝑘𝑙 must be used. As a corollary, if the 

stress is known and the strain is to be calculated, the elastic compliance 𝑆𝑖𝑗𝑘𝑙 is used. 𝐶𝑖𝑗𝑘𝑙 and 

𝑆𝑖𝑗𝑘𝑙  are both elasticity coefficients, related by a tensor inversion. The elastic constants define 

the proportionality factor of strain to stress in the crystal, with the caveat that the strain is within 

the elastic limits of the crystal (Pabst & Gregorová, 2013).  

To relate two second rank tensors mathematically, a fourth rank tensor is necessary, which in 

matrix notation would be shown with two subscripts, as in Table 1. The compliance elastic 

tensor has an additional set of rules when simplifying the subscripts from tensor to matrix 

notation, as shown in Eq. 45. 

 𝑆𝑚𝑛 = 𝑆𝑖𝑗𝑘𝑙     when 𝑚 and 𝑛 are 1, 2, 3  

 𝑆𝑚𝑛 = 2𝑆𝑖𝑗𝑘𝑙   when 𝑚 or 𝑛 is 4, 5, 6 Eq. 45 

 𝑆𝑚𝑛 = 4𝑆𝑖𝑗𝑘𝑙   when 𝑚 and 𝑛 are both 4, 5, 6  

 

 𝜀1 = 𝑆11𝜎1 + 𝑆12𝜎2 + 𝑆13𝜎3 + 𝑆14𝜎4 + 𝑆15𝜎5 + 𝑆16𝜎6 Eq. 46 

In Eq. 46, an example calculation is shown for calculating the strain in the 1 direction in matrix 

notation, or 11 in tensor notation using the stress and elastic stiffness components. Physically, 

this means that to calculate the strain in the 𝑥-axis direction on the face of the material normal 

to the same axis, the stress from every other direction must be considered. Intuitively, this 

makes sense because at its core, this behavior stems from the interplay between atomic and 

molecular bonds in the crystal lattice. When stress is applied in one direction, it does not just 

cause strain in that single axis. Due to the interconnected nature of the lattice, stress in one 

direction can influence strain in others. This interdependence across different directions is why 

there is a need for the fourth-rank tensor: it provides a precise way to account for these multi-

directional interactions.  
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Essentially, the tensor rank gives us the tools to describe how atoms and molecules in a material 

respond collectively to external forces (Powell, 2010). If the same process as Eq. 46 is repeated 

for all six strain components, six equations are necessary and, in each equation, there are six 

elastic constants. Even though they are fourth rank tensors, they do not contain 81 terms as 

expected (3 × 3 × 3 × 3 = 81). They reduce due to symmetry to 36 independent components, 

6 ⋅ 6 = 36. A further reduction in the number of actual independent elastic constants arises 

from the property that strain and stress are symmetric tensors, shown using the full tensor 

notation in Eq. 47. 

 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 Eq. 47 

This will then reduce the number of independent elastic constants to the final count of 21, with 

the full fourth rank tensor of elastic constants shown in Eq. 48 with tensor notation. 

 

𝒄𝑖𝑗 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15 𝑐16
𝑐12 𝑐22 𝑐23 𝑐24 𝑐25 𝑐26
𝑐13 𝑐23 𝑐33 𝑐34 𝑐35 𝑐36
𝑐14 𝑐24 𝑐34 𝑐44 𝑐45 𝑐46
𝑐15 𝑐25 𝑐35 𝑐45 𝑐55 𝑐56
𝑐16 𝑐26 𝑐36 𝑐46 𝑐56 𝑐66]

 
 
 
 
 

 Eq. 48 

The Neumann-Curie principle also applies to the elastic constants. The higher the symmetry of 

the crystal, the fewer the independent terms required (Patterson & Bailey, 2018). For example, 

in cubic crystals the three lattice parameters are equal. This symmetry results in Eq. 49 and Eq. 

50 reducing the diagonal to only two independent constants. Inversion symmetry of the unit 

cell simplifies many of the off-diagonal elastic constants to zero (Eq. 51), and finally the mirror 

elements result in Eq. 52. Thus, in a cubic crystal, there are only three independent elastic 

constants. 

 𝑐11 = 𝑐22 = 𝑐33 Eq. 49 

 𝑐44 = 𝑐55 = 𝑐66 Eq. 50 

 0 = 𝑐14 = 𝑐15 = 𝑐16 = 𝑐24 = 𝑐25 = 𝑐26 = 𝑐34 = 𝑐35 = 𝑐36 = 𝑐45 = 𝑐46 = 𝑐56 Eq. 51 

 𝑐12 = 𝑐13 = 𝑐23 Eq. 52 

 

 

𝒄𝑖𝑗 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐12 0 0 0
𝑐12 𝑐11 𝑐12 0 0 0
𝑐12 𝑐12 𝑐11 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0
0 0 0 0 0 𝑐44]

 
 
 
 
 

 Eq. 53 
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The full elastic coefficient tensor of cubic crystals is, therefore, simplified to Eq. 53. The same 

process can be repeated for all 7 crystal systems. The symmetries of the resultant elastic 

constant tensors are shown in Figure 11. The symmetries present in each crystallographic point 

group simplify the elastic tensors as shown in the figure. Each tensor is symmetric, therefore, 

only the top half is shown. The cubic system has the most symmetry elements and thus the 

simplest tensor. The lack of symmetry elements in the triclinic crystal system means that each 

elastic component in the tensor is unique and is required to fully describe the elastic structure 

of the crystal. The rest of the systems are in between these two extremes. In the figure, matching 

colors signifies that the components are equal in value, and a black border is equal in value but 

opposite in sign. 
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Figure 11. Elastic tensors for all seven crystallographic systems. Each is shown under the 

crystallographic point groups they represent. Colors signify if the components are equal, 

including sign changes. 

 

1.5. Dielectrics 

1.5.1. Dielectric polarization 
When any dielectric is placed within an electric field, 𝑬 (with unit V/m), pre-existing dipole 

moments within the constituent molecules redistribute microscopically to align with the 

surrounding field or new dipole moments are created through charge separation, inducing a 

macroscopically polarized state. Dipole moments, 𝑝, form through the separation of positive 

and negative charges, of strength 𝑞, to a distance 𝑥. By convention it is a vector that points from 

the positive to the negative charge, described by Eq. 54. 
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 𝒑 = 𝑞𝑥 Eq. 54 

 𝑷 = 𝑁𝑞𝑥 Eq. 55 

 

The polarization, 𝑷, of the bulk crystal is expressed by the summation of the 𝑁 number of 

dipole moments within the volume, as seen in Eq. 55. The unit for 𝑃 is C/m2. This corresponds 

to another definition of 𝑷 as the surface density of bound charges near electrodes of a polarized 

dielectric capacitor. If the external electric field is sufficiently weak, the polarization of the 

dielectric, which opposes the external electric field, varies linearly with the strength of the 

external electric field (Patterson & Bailey, 2018), i.e., 

 𝑷 = 𝜀0𝜒𝑒𝑬 Eq. 56 

where 𝜒𝑒 is the dielectric susceptibility, a dimensionless parameter, and ε0 is the permittivity 

of free space, often referred to as the electrical constant, with the value 𝜀0 = 8.854 ⋅ 10
−12 F/m 

(American & Standard, 1984). 𝜒𝑒 is zero in a vacuum. Thus, 𝑷 describes the polarization as a 

product of the material properties of the dielectric in question. However, as can be seen by the 

non-zero value of 𝜀0 , space itself holds energy in an electric field. The result is that in a 

dielectric, one must account for both the polarization arising from the material itself and from 

the space it occupies. This results in an equation for the total electrically induced polarized state, 

𝑫, or in other words the electrical induction: 

 𝑫 = 𝜀0𝑬 + 𝑷 Eq. 57 

 

Combining Eq. 56 and Eq. 57, we can define the relative permittivity as 𝜀𝑟 = 1 + 𝜒𝑒  and 

therefore, 

 𝑫 = 𝜀𝑟𝜀0𝑬 Eq. 58 

 

Finally, we reach a definition of the dielectric constant 𝜅, which is equivalent to the relative 

permittivity 𝜀𝑟 . The relative permittivity depends on a multitude of factors relating to the 

material in question. While the relative permittivity is typically called the dielectric constant, 

this is not entirely accurate as it is not truly a constant. It is only a constant if the material and 

the external conditions it is subjected to are the same as when it was measured. The relative 

permittivity depends on factors such as, but not limited to, temperature, frequency of the 

external electric field, total strength of the external electric field, pressure, and the history of 

the material (Kholkin et al., 2008; Tichý et al, 2010; Yang, 2004).  

If the external electric field varies with time, in other words has a non-zero frequency, the 

relative permittivity varies with this frequency. Additionally, if the externally applied electric 
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field exceeds a material’s dielectric strength, dielectric breakdown occurs and the dielectric 

becomes a conductor, losing most of its electrically insulating properties. The exact mechanism 

of dielectric breakdown varies with specific materials. In solids the general mechanism is the 

stripping of outer valence electrons from the structure’s atoms, which then act as the charge 

carriers in the material and transport the electric charge. However, below the dielectric 

breakdown, polarization 𝑃  is induced according to Eq. 55. through microscopic charge 

redistribution, characterized by either the formation of new dipole moments or the alignment 

of pre-existing dipole moment (Yang, 2004).  

On a macroscopic level, if the electric field is not oscillated at a sufficiently high frequency 

(Guo, 2010; Kholkin et al., 2008; Tichý et al, 2010), but is kept static, the exact mechanism of 

microscopic redistribution has little effect. However, for transient or changing electric fields, 

the distinctions matter. The four atomic origins of dielectric polarization are electronic, ionic, 

orientational, and quasifree electron gas (Yang, 2004).  

Electronic polarization occurs on an atom-by-atom basis, as the electronic charge clouds around 

individual atoms are distorted in response to the external electric field (Patterson & Bailey, 

2018). The electronic charge cloud is created by the electron orbitals around the atom, which 

distort to oppose the electric field, forming dipole moments. Electronic polarization occurs in 

all dielectrics, whether ionic or covalent.  

Ionic polarization occurs through the physical displacement of ions in the structure. In an ionic 

crystal, the external electric field distorts the structure because of its interaction with the ions, 

causing displacements in ionic positions through bond angle bending and stretching. Negative 

and positive ions move in opposite directions relative to each other to oppose the electric field 

by inducing dipole moments. If the polarization can ‘freeze in’ below a critical temperature, the 

crystal is ferroelectric. Otherwise, if the polarization cannot be frozen in, the displacement 

recovers once the external electric field is removed, defining the material as non-ferroelectric.  

Orientational polarization occurs in molecules with permanent dipole moments. When an 

external electric field is applied, the molecules re-orient through rotational displacements to 

oppose the electric field. This is mostly relevant for liquids or gases and not solids where bonds 

within the structure restrict rotational movement.  

Quasifree electron gas polarization, is limited to metals (Patterson & Bailey, 2018) and is less 

relevant to this work, but originates when free electrons in the metal structure interact via the 
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Coulomb force and act as a quasifree electron gas. The source of polarization relevant to this 

work is ionic polarization, which gives rise to the piezoelectric effect in crystals. 

1.5.2. Dielectric electrical resistivity 
Apart from dielectric materials’ ability to develop a polarization in electric fields, they are also 

characterized by much lower resistivity compared to metals. Specifically, the DC charge 

transference is very low compared to metals (Poplavko, 2019). Since dielectrics typically have 

conduction band electron abundances that are many orders of magnitude below those of metals, 

electrical charge conduction is greatly hindered. Even so, no material has infinite resistance. 

Apart from the very few conduction band electrons, dielectrics can also conduct some charge 

through the movement of charged particles in the crystal lattice (Poplavko, 2019; Tichý et al, 

2010).  

Beyond the limited number of conduction band electrons, dielectrics can also permit some 

degree of charge movement through the migration of charged particles within their crystal 

lattice (Poplavko, 2019; Tichý et al, 2010). In an undisturbed state, without external influences, 

free charge carriers within dielectrics engage in random motion, driven by thermal energy 

(Gregori et al., 2017; Patterson & Bailey, 2018). The application of an external electric field, 

or in certain cases like pyroelectric crystals, the introduction of a temperature gradient, can 

instigate the movement of these charge carriers, enabling them to traverse the crystal structure, 

thereby facilitating charge transport and conduction (Gregori et al., 2017; Sherrit et al., 1992).  

Dielectric materials exhibit various modes of DC electrical conductivity, each influenced by 

their intrinsic properties, such as crystal structure, defect levels, and purity. One significant 

conduction method in dielectrics is ionic conductivity, which emerges primarily due to the 

movement of ions within the material. This mode is especially pronounced in ionic crystals or 

materials with a substantial ionic character. As the temperature rises, the kinetic energy of ions 

increases, overcoming potential barriers and leading to a heightened ionic mobility (Gregori et 

al., 2017; Lazzari et al., 1988). This relationship results in an exponential surge in conductivity 

with temperature, often described by the Arrhenius equation. For electrical resistivity, the 

equation is expressed as shown in Eq. 59. 

 
𝜌𝑅(𝑇) = 𝜌0𝑒

(
𝐸𝑎
𝑘𝑇
)
 

Eq. 59 

𝜌𝑅(𝑇) is the electrical resistivity at temperature T, 𝜌0 is a constant representing resistivity at an 

infinitely high temperature and is dependent on material properties, also commonly called the 

pre-exponential factor, 𝐸𝑎  is the activation energy necessary for ion migration, k is the 
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Boltzmann constant, and T is the absolute temperature in Kelvin. The term 𝑒
(
𝐸𝑎
𝑘𝑇
)
 illustrates the 

temperature’s impact on resistivity. As temperature increases, the exponential term decreases, 

thus reducing the resistivity. The activation energy 𝐸𝑎 indicates the energy barrier ions must 

surmount to migrate. A lower 𝐸𝑎 facilitates ion movement, leading to decreased resistivity.  

As an example of the effects of this exponential temperature correlation, the resistivity of CTGS, 

a dielectric crystal with composition Ca3TaGa3Si2O14, is plotted in Figure 12. versus 

temperature in degrees Celsius (Zhang & Yu, 2011). As can be seen, the resistivity of dielectrics 

as defined by the Arrhenius equation results in a rapidly decreasing resistance with temperature. 

 

Figure 12. CTGS resistivity as measured experimentally versus temperature. Modified from 

(Zhang & Yu, 2011). 

 

Oxygen vacancies in the crystal structure of certain dielectrics play a significant role by 

providing channels for ion migration, particularly for cations. These vacancies lower the 

activation energy (𝐸𝑎), facilitating ion movement even at lower temperatures (Gregori et al., 

2017; Nuernberg, 2020). The presence of oxygen vacancies thus significantly impacts the 

material's resistivity by enabling easier ion migration through the crystal lattice (Gregori et al., 

2017; Xiuwei, 2016).  

Another important aspect of dielectric conductivity is electronic conductivity. While typically 

low in dielectrics, it can become more pronounced in specific materials or under certain 

conditions. This form of conductivity involves the transport of electrons and holes and can be 
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influenced by impurities and defects. As temperature increases, more electrons gain sufficient 

energy to cross the band gap, enhancing electronic conductivity (Poplavko, 2019). Hopping 

conduction is relevant in amorphous materials or those with high disorder levels, where charge 

carriers (electrons or holes) move through localized states. Its temperature dependence is 

complex but generally increases with temperature as thermal activation aids the hopping 

process. Protonic conductivity is also notable, especially in materials containing hydrogen ions 

(protons), such as hydrates or those with hydrogen bonding. Like ionic conductivity, protonic 

conductivity increases with temperature as proton mobility improves (Poplavko, 2019; Tichý 

et al, 2010).  

Space charge conduction arises from the accumulation of charge carriers at interfaces or 

inhomogeneities within the dielectric (Gregori et al., 2017; Lazzari et al., 1988). Its temperature 

dependence varies, depending on the nature of the interfaces and the mobility of charge carriers 

involved. Although polarization and relaxation processes are not direct conduction mechanisms, 

they can contribute to apparent DC conductivity, especially at lower frequencies. These 

processes are highly temperature-sensitive, with different relaxation mechanisms becoming 

more significant at various temperatures. 

The contribution of each conduction mechanism depends heavily on the material's 

characteristics and environmental conditions. For these experiments, the primary contributors 

to conduction are space charge conduction and the mobility of charge carriers influenced by 

temperature. Within the piezoelectric crystal, increased charge carrier mobility is likely the 

dominant source of conduction. At the crystal's surface, particularly along grain boundaries, 

interfacial conduction is probably the main source of charge movement, especially in high 

hydrostatic pressure environments like those inside an LVP, where grain boundaries play a 

crucial role in charge conduction. 

1.5.3. Piezoelectric phenomenon 
Piezoelectricity was first noted by Jacques Curie and Pierre Curie in 1880 (Curie & Curie, 1880). 

The Curie brothers only initially discovered the direct piezoelectric effect, i.e., a build-up of 

voltage across the crystal faces under mechanical pressure of certain crystals. The first reported 

piezoelectric crystals were tourmaline, quartz, topaz, cane sugar, and Rochelle salt (potassium 

sodium tartrate). Further investigation in 1881 deduced that the converse piezoelectric effect 

must also exist according to fundamental thermodynamic principles (Lippmann, 1881). That 

same year, the Curie brothers confirmed and reported the existence of the converse effect 

(Jacques & Curie, 1881).  
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The name chosen for this phenomenon was piezoelectricity, coming from the Greek piezein, 

meaning “pressure” coupled with “electricity” (Kholkin et al., 2008). The Curie brothers 

observed that when certain crystals had mechanical force applied across them, any electrodes 

placed on opposite crystal faces along the applied force, or stress, developed a voltage across 

them. By thermodynamic principles, the crystals must, as was discovered, also develop stress 

across them when placed inside an electric field, as shown in Figure 13. Although both the 

converse and direct effects are thermodynamically equivalent, since piezoelectricity was first 

discovered through the application of a force and the measurement of a voltage, the naming 

convention has remained. 

 

Figure 13. Conceptual diagram of the (a) direct and (b) converse piezoelectric effect in static, 

compression, and tension. The double-ended arrow with a ‘P’ on the crystal indicates the 

direction of the dipole moments in the crystal under consideration, and the positive and 

negative signs indicate the polarized direction of the dipole moments in the crystal. 

 

Early on, it was noted that not all crystals are piezoelectric, with the reason for this becoming 

clear with the development of the theory of piezoelectricity and continual development in the 

understanding of the underlying crystallography that gives rise to piezoelectricity. 

Piezoelectricity relies on a separation of charges through the displacement of ions. If the crystal 

structure is symmetric, a displacement of, for example, a positive ion in one direction would be 
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accompanied by the displacement of a negative ion in the opposite direction by an equal amount 

(Kholkin et al., 2008), resulting in a net neutral charge. Because of this, only polar structures 

can give rise to unsymmetric charge separations. This immediately eliminates all nonpolar 

crystals from displaying any sort of piezoelectric effect, in accordance with the Neumann-Curie 

principle: (Poplavko, 2019) 

The symmetry of a physical property of a crystal is not lower than the symmetry of the structure. 

 

In other words, if the crystal structure is symmetric (i.e., has a center of inversion), then any 

physical properties will also be symmetric. Any positive charge displacement is counteracted 

by an equal negative charge displacement, resulting in a neutral charge.  

Of the 32 crystallographic classes, 21 have no inversion point. In other words, they are non-

centrosymmetric. Although cubic class 432 has no inversion point, piezoelectric charges 

developed along the <111> polar axes cancel each other out, eliminating the possibility of a 

piezoelectric effect in this class. Thus, only 20 crystallographic classes can potentially exhibit 

piezoelectric effects. In this group, 10 crystallographic classes are pyroelectric. Pyroelectric 

crystals develop a voltage potential across the crystal faces with a change in uniform heating, 

similar to how piezoelectric crystals only generate a voltage potential across the crystal faces 

with a change in uniform stress (Poplavko, 2019).  

The 10 pyroelectric crystallographic classes are further subdivided into the ferroelectric and the 

non-ferroelectric crystals. Ferroelectric crystals, as described previously, become electrically 

polarized in an externally applied electric field, as do all dielectrics. However, the 

distinguishing feature of ferroelectric crystals is that they can retain a spontaneous nonzero 

polarization even when the applied electric field is removed. Additionally, the direction of the 

dipole moment can be flipped with sufficiently high application of a reverse electric field. The 

spontaneous nonzero polarization is limited to temperatures below the Curie temperature of the 

specific material. Above this, the thermal energy and subsequent lattice vibrations are high 

enough to disrupt the induced polarization by overcoming the energy barrier needed to revert 

the ionic positions to their original position and reduce the dipole moment to zero. Non-

ferroelectric crystals as a corollary cannot retain a spontaneous non-zero polarization upon 

removal of the electric field. The other 10 piezoelectric classes are not pyroelectric and exhibit 

only mechanical stress induced polarization. Table 2 breaks down the 32 crystallographic 

classes into their respective electric properties.  
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Table 2. Breakdown of the 32 crystallographic classes into the properties of ferroelectricity, 

pyroelectricity, piezoelectricity, and the leftover classes with no asymmetric electrical 

properties. 

 

Piezoelectric crystals, being non-centrosymmetric, consist of an ordered arrangement of 

positive and negative ions with no center of inversion. The dipole moment of each individual 

unit cell within the crystal lattice structure can be described by the location of the average center 

of positive charge from the cations and the average center of negative charge from the anions 

that make-up the unit cell respectively. In the non-ferroelectric and non-pyroelectric crystals in 

a hydrostatic stress state and at a steady-state uniform temperature, the crystals always have 

overlapping centers of the positive and negative charge in space. So, 𝑥 = 0 for each unit cell 

according to Eq. 54 and with no dipole moments, there is no polarization 𝑷 of the crystal from 

ionic sources.  

Thermal energy is always present in any real-world material and the effect is a constant 

vibrational motion of the ions in the unit cell. By chance, these vibrations can induce a 

temporary dipole moment if the negative and positive charge centers from the ions happen to 

separate. However, these dipole moments are generally disregarded on any meaningful 

timescale. Entropically, it is unlikely given a large ensemble of states that the unit cells, when 

taken over a macroscopic volume, would acquire a non-zero polarization state. Furthermore, 

these states are brief in time and averaged over a meaningful time scale the centers of negative 

and positive charge overlap.  

When a deviatoric stress is applied to a crystal, such as through a mechanical load, the crystal 

initially deforms elastically. This elastic strain is recoverable after the removal of stress because 

the atomic bonds are only stretched or rotated, not broken. In piezoelectric crystals, elastic 

microstrain gives rise to polarization. In non-centrosymmetric crystals, elastic strain causes 

asymmetric distortion of anions and cations within the unit cell, creating charge separation, as 

illustrated in Figure 14. This charge separation generates a dipole moment, which collectively 

defines the polarization of the crystal. Even in polycrystalline materials with randomly oriented 

grains (i.e., no fabric or lattice preferred orientation), the material can remain macroscopically 

neutral. 
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When a mechanical force is applied to a piezoelectric crystal, the elastic strain distorts the unit 

cell both macroscopically and microscopically. Due to the lack of inversion symmetry, this 

distortion shifts the positions of anions and cations non-symmetrically. If the dielectric had low 

electrical resistance, charges could flow and neutralize the polarization quickly. However, 

because dielectrics typically have high resistance, the polarization leads to a relatively stable 

and static induced charge across opposing faces of the crystal.  

By attaching electrodes to the crystal faces, the polarization induces a charge in the electrodes 

themselves through Eq. 57, proportional to the polarization. This induction of charges on the 

electrodes is what is measured in piezoelectric stress sensors, usually by measuring the flux of 

electric charges from opposing electrodes, in other words the electric current.

 

Figure 14. Conceptual diagram of a simplified explanation of the atomistic origin of the 

piezoelectric effect. Shown is a generalized cross-section of a hexagonal crystal lattice. The 

averaged positive and negative charges are shown for each, as well as the dipole moment 

orientation, or polarization. The crystal under elastic compression, hydrostatic conditions, and 

under elastic tension is shown. 

 

The unique properties of dielectrics, mainly the fact that they consist of ionically bonded anions 

and cations and the high electrical resistance owing to no electrons in the conduction bands, is 

what allows a measurable piezoelectric effect. Piezoelectric materials are widely used in both 

engineering and scientific applications, such as electric actuators, high-frequency transducers, 

stress sensors, and many more applications too numerous to list. 

1.5.4. Piezoelectric tensors 
As discussed previously, the piezoelectric property of a crystal describes the proportionality of 

the mechanical stress of the crystal lattice to the induced charge polarization in the bulk crystal. 

The polarization, since it is the sum of all dipole moments in the crystal (Eq. 55) in other words 
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a summation of vectors, is also a vector (C. Powell, 2010). A vector is a first-rank tensor. To 

be able to relate a first-rank tensor to a second-rank tensor, a third-rank tensor is required 

(Patterson & Bailey, 2018). In this case, polarization is the first-rank tensor, stress is the second-

rank tensor, and piezoelectricity is thus the third-rank tensor.  

 
𝑷 = 𝒅𝝈 Eq. 60 

 
𝑷𝑘 =∑𝒅𝑘𝑖𝑗𝝈𝑖𝑗

𝑖𝑗

 Eq. 61 

 
𝑷𝑘 =∑𝒆𝑘𝑖𝑗𝜺𝑖𝑗

𝑖𝑗

 Eq. 62 

 

This is described by Eq. 60, using the full tensor notation for the subscripts. 𝑃 is the polarization 

vector, 𝑑 is the piezoelectric strain coefficient, and 𝜎 is the stress. The piezoelectric charge 

coefficient has units of C/N (Tichý et al, 2010). To relate the strain, 𝜀, to the polarization 𝑃, a 

second piezoelectric coefficient, called the stress coefficient, is defined in symbol 𝑒. The unit 

for this is C/m2(Tichý et al, 2010). These two ways to describe the piezoelectric properties of a 

material can be related to each other through the elasticity, described in Eq. 63. 

 𝒆𝑖𝑗𝑘 = 𝒅𝑖𝑞𝑝𝑪𝑞𝑝𝑗𝑘 Eq. 63 

Once again, the fact that stress is a symmetric tensor means that the notation can be simplified 

to the matrix notation for both piezoelectric coefficients. For 𝑒, the notation is straightforward, 

but 𝑑 requires the conversion rules in Eq. 64. 

 𝑑𝑖𝑞 = 𝑑𝑖𝑘𝑙 when 𝑘 = 𝑙 and 𝑞 is 1, 2, 3  

 𝑑𝑖𝑞 = 2𝑑𝑖𝑘𝑙 when 𝑘 ≠ 𝑙 and 𝑞 is 4, 5, 6 Eq. 64 

Expanding Eq. 61 to the full tensor form but simplifying the subscripts to the matrix notation, 

the calculation of the induced polarization from a stress state on the crystal can be calculated if 

the full piezoelectric charge tensor is known for the crystal as in the middle matrix in Eq. 65 (C. 

Powell, 2010). 

 

[
𝑃1
𝑃2
𝑃3

] = [

𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 𝑑16
𝑑21 𝑑22 𝑑23 𝑑24 𝑑25 𝑑26
𝑑31 𝑑32 𝑑33 𝑑34 𝑑35 𝑑36

]

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6]
 
 
 
 
 

 Eq. 65 

Once again, crystal symmetries work in our favor. The complexity reduces greatly for most 

crystal systems as the symmetry elements drive many of the components in the piezoelectric 
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charge coefficient tensor to zero. Quartz, for example, at ambient pressure and temperature is 

stable in the α-quartz phase which has the 𝑃3121  or 𝑃3221  space group, which are 

enantiomorphic, with hexagonal point group 32 (Cook & Weissler, 1950; Mansfel’d et al., 

1997). In this space group, only two independent piezoelectric charge coefficients are required 

to fully describe this crystal’s piezoelectric properties. 

 

𝑑𝑖𝑗 = [
𝑑11 −𝑑11 0 𝑑14 0 0
0 0 0 0 −𝑑14 2𝑑11
0 0 0 0 0 0

] Eq. 66 

The piezoelectric charge coefficient tensor is shown in Eq. 66 using matrix notation. If the 

values of 𝑑11 and 𝑑14 are known the expected polarization vector induced by the crystal during 

any known stress state can be calculated. First, the hydrostatic stress state is calculated below 

to show that under hydrostatic stress, the piezoelectric state does not generate any polarization. 

Using Eq. 35, Eq. 39 and Eq. 66 and the relationship between them described by Eq. 65, the 

polarization of α-quartz in the hydrostatic state can be calculated with Eq. 67. 

 

[
𝑃1
𝑃2
𝑃3

] = [
𝑑11 −𝑑11 0 𝑑14 0 0
0 0 0 0 −𝑑14 2𝑑11
0 0 0 0 0 0

]

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
0
0
0 ]
 
 
 
 
 

 Eq. 67 

Decomposing the matrix multiplication to explicit algebraic equations, Eq. 68 to Eq. 70 is 

defined. 

 𝑃1 = 𝑑11𝜎1 − 𝑑11𝜎2 Eq. 68 

 𝑃2 = 0 Eq. 69 

 
𝑃3 = 0 Eq. 70 

Since a hydrostatic condition is assumed, 𝜎1 = 𝜎2 , and thus 𝑃1 = 0 , and no piezoelectric 

polarization is induced in the crystal as all polarization vector components are equal to zero. 

This holds true for all non-pyroelectric piezoelectric crystals (C. Powell, 2010). Because of this, 

even if the crystal is under high pressure, for example pressures expected in the Earth’s lower 

crust or upper mantle, if the pressure is hydrostatic, no piezoelectric charges are generated on 

the crystal faces. This property of piezoelectric crystals is what allows the deviatoric stress, 

regardless of the magnitude of the hydrostatic stress, to be measured. 
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1.5.5. Piezoelectric crystal orientations 
In the industrial manufacturing and preparation of piezoelectric crystals, the system to describe 

the orientation of prepared crystals has been largely standardized (American & Standard, 1984). 

To simplify the description of crystal orientations required for a specific use-case, the X, Y, Z 

axes are defined. These are defined to always be at right angles to each other in space and form 

a right-handed system.  

Since the 𝑎, 𝑏, 𝑐 lattice parameters that define the edges of the unit cells of crystals are not 

necessarily at right angles, except for the cubic, tetragonal, and orthorhombic, the XYZ axis 

system does not necessarily correspond to the lattice parameters of the crystal. The choice of 

how to align the XYZ axes to the crystal lattice parameters is defined to coincide with specific 

sign conventions.  

Not all the sign conventions are necessary to be described, but since the two piezoelectric 

crystals under consideration are in the 32 point group, P321 space group, discussion of these 

is necessary. Since they are in the trigonal crystal system, the symmetry consists of a three-fold 

rotation, the axis of which is called the 𝑐 axis. Trigonal systems have three equivalent secondary 

axes, 𝑎1, 𝑎2, and 𝑎3. These lie 120 degrees apart on the plane normal to the 𝑐 axis (American & 

Standard, 1984; C. Powell, 2010).  

When defining the orientation of the XYZ axis to the trigonal crystal system, the first step is to 

define the Z axis parallel to the 𝑐 axis. The direction of the X axis is then assigned to coincide 

with any of the 𝑎 axes, and finally the Y axis is defined as perpendicular to both the Z and X 

axes, the direction of which is assigned to form a right-handed system.  

The question remains as to which of the 𝑎 axes are assigned to the X axis. By conventional 

standard, +X is assigned to the 𝑎 axis that results in a positive piezoelectric coefficient along it 

(American & Standard, 1984). The geometrical relationship between these can be visualized, 

as in Figure 15, shown in relation to the trigonal unit cell such as that of α-quartz and CTGS 

crystals. 
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Figure 15. Trigonal unit cell shown with the unit cell axes a1, a2, and c shown as well as the X, 

Y, and Z axes used to define the piezoelectric crystal cuts. Also shown are the a and c unit cell 

parameters and the right-handed α and 120° γ angles. 

 

When specifying piezoelectric crystals, manufacturers will label them with terms such as “X-

cut”, “Y-cut”, etc. This describes a crystal oriented such that the normally parallel cut surface 

of interest is the plane that has the named axis normal to it. Therefore, an X-cut α-quartz crystal, 

for example, would be a crystal where the surface of interest is oriented such that it has the X 

axes and crystallographic 𝑎1 axis normal to it, with the Y and Z axes, as well as the c axis, in 

the plane (American & Standard, 1984). In this orientation, when a deviatoric stress is applied 

to the crystal faces parallel to the X-cut plane, the piezoelectric coefficients used to calculate 

either the stress or strain experienced by the crystal, for both α-quartz and CTGS, are 𝑑11 and 

𝑒11 respectively. 

1.6. Brillouin Spectroscopy 
Brillouin spectroscopy is a technique that probes the velocities of phonons within a crystal 

structure using their interaction with photons. This offers insights into the mechanical properties 

and acoustic phonon dispersion. This interaction leads to a shift in the energy and momentum 

of the scattered photons, providing a direct probe into the material’s mechanical and elastic 

properties (Wolff et al., 2021).  

When light passes through a transparent crystal, most photons are elastically scattered through 

so-called Rayleigh scattering. These photons retain their energy and thus the incoming light has 

the same wavelength as the outgoing light. However, a small fraction undergoes inelastic 
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scattering with the phonons, exchanging energy with the material’s vibrational modes. This 

energy exchange results in a frequency and wavelength shift of the scattered light. If the photon 

gains energy it is defined as an anti-Stokes shift and if it loses energy, it is a Stokes shift (Wolff 

et al., 2021).  

The frequency shift of the small fraction of photons that interact inelastically is directly related 

to the acoustic phonon velocities in the material, which in turn are governed by its mechanical 

properties such as elasticity (Ugarak et al., 2023). By analyzing the distribution of this Brillouin 

phase shift, one can infer the material’s elastic moduli and other mechanical characteristics.  

This is a similar process to Raman scattering (RS) spectroscopy; however, RS is the photon’s 

interaction with the optical modes of the crystal lattice which cause a shift in the photon’s 

energy that is multiple orders of magnitude higher, typically larger than 1 THz (Scarponi et al., 

2017). Because of this, Brillouin spectroscopy requires spectrometers that are exceptionally 

sensitive to small frequency shifts, much more-so than Raman spectrometers. The shifts are on 

the order of double-digit GHz in Brillouin spectroscopy for most materials, corresponding to 

phonon wavelengths on the order of the optical wavelength used in the experiment (Ugarak et 

al., 2023).  

The principle of Brillouin spectroscopy relies on the conservation of energy and momentum 

during the light-phonon interaction, described by Eq. 71 and Eq. 72 respectively (Wolff et al., 

2021). 

 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 − 𝐸𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = ±𝐸𝑝ℎ𝑜𝑛𝑜𝑛 Eq. 71 

 �⃗� 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 − �⃗� 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = ±𝑞 𝑝ℎ𝑜𝑛𝑜𝑛 Eq. 72 

𝐸  and �⃗�  represent the energy and momentum of the photons, and 𝑞 𝑝ℎ𝑜𝑛𝑜𝑛  represents the 

momentum of the phonons. The plus sign represents the anti-Stokes scattering and the minus 

sign the Stokes scattering.  

In a typical Brillouin spectroscopy measurement, the basic components are a laser source with 

a precise monochromatic wavelength, a goniometer to allow access to the sample’s anisotropy, 

and a high-resolution spectrometer. Typically, the interferometer used in Brillouin spectroscopy, 

and the one used in this study, is a Fabry-Pérot  (Blachowicz et al., 1996; Ike et al., 2007). It 

exploits the interference of multiple beams reflected between two parallel, highly reflective 

surfaces to selectively transmit light of specific wavelengths. Its implementation in Brillouin 

spectroscopy is required because of the minute frequency shifts, offering the required resolution 

to separate the shift from the Rayleigh scattered portion.  
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When light enters the interferometer, it is repeatedly reflected between the two mirrors, 

accumulating a phase difference with each reflection (Dil et al., 1981; Mock et al., 1987). For 

certain wavelengths, the phase difference results in constructive interference, similar to XRD 

but in the visible portion of the light spectrum. In this case, the constructive and destructive 

interference is described by Eq. 73. 

 2𝑑 cos(𝜃) = 𝑚𝜆 Eq. 73 

In this equation, 𝑑 is the separation between the mirrors, 𝜃 is the angle of the incidence of the 

light within the interferometer, 𝑚 is an integer that describes the order of the interference, and 

𝜆 is the wavelength of the light. By precisely moving one of the mirrors using a highly precise 

piezoelectric actuator, the distance between the mirrors can be scanned through the wavelength 

range under consideration. Using a Fabry-Pérot interferometer, enough precision is gained in 

selectively allowing specific wavelengths of light to pass through so that it becomes possible to 

separate the small shift from the Rayleigh scattering.  

In addition to determining photon speeds, Brillouin spectroscopy is a robust method for 

assessing the directional dependence of these speeds in single crystals. This approach can even 

be applied under extreme conditions, such as within diamond anvil cells, to prove material 

behavior at high pressures. In a typical experiment, the incident light is inelastically scattered 

by thermally excited acoustic photons, leading to subtle shifts in its frequency. These shifts, 

which usually fall in the range of 0.01 to 10 GHz (Kojima, 2022; Speziale et al., 2014), are 

directly related to the collective motion of particles in the medium. Because the dispersion of 

these frequency shifts reflects the viscoelastic properties of the material, this method provides 

critical insights into its elastic moduli, internal stresses, and anisotropic characteristics. 

As described previously, the frequencies of the incident light, 𝑘𝑠, and scattered light, 𝑘𝑖 are 

approximately equal, 𝑘𝑠 ≈ 𝑘𝑖. The scattering geometry between the incident and scattered wave 

normal defines the wavevector, 𝑞 , of induced vibrational energy within the medium, the 

geometry of which is shown schematically in Figure 16 (Dil et al., 1981; Kojima, 2022; Mock 

et al., 1987). 
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Figure 16. Schematic diagram of the incident and scattered light and the wavevector of the 

induced vibrational energy within the medium. The scattering angle is also shown. Figure 

modified from (Speziale et al., 2014). 

 

The relationship between the incident light and wavevector is described below, Eq. 74. 

 
𝑞 = 2𝑘𝑖 sin (

𝜃

2
) Eq. 74 

 

 
𝜔𝑠 = 𝜔𝑖 ± 2𝑣𝑘𝑖 sin (

𝜃

2
) Eq. 75 

 

In these equations, 𝑞 is the magnitude of the scattering wave vector, 𝑘𝑖  is the wave vector of 

the incident light, 𝜃 the scattering angle, 𝜔𝑠 the frequency of the scattered light, 𝜔𝑖 frequency 

of the incident light, and 𝑣 the velocity of the acoustic phonons in the medium. Eq. 74 describes 

the magnitude of the scattering wave vector and Eq. 75 the frequency of the scattered light 

relative to the incident frequency.  

The similarity to the Bragg equation is because fundamentally, both involve a scattering of 

electromagnetic radiation through interaction with a medium (Powell, 2010; Patterson & Bailey, 

2018). The spectrum of the scattered light creates doublets at frequencies described by Eq. 75 

due to the ±. The two-way interaction with 𝑘𝑠  and 𝑘𝑖  by the wavevector 𝑞  increases or 

decreases the energy of the scattered light. An increase in energy of the scattered light increases 

the frequency, called an Anti-Stokes scattering, as opposed to a Stokes scattering event in which 

the energy and thus frequency is reduced (Speziale et al., 2014; Wolff et al., 2021).  
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In the Brillouin spectroscopy method this minute frequency shift is measured. Crystalline solids 

contain three acoustic modes. 𝑉𝑠1 is the fast quasi-shear acoustic mode, 𝑉𝑠2 is the slow quasi-

shear acoustic mode, and 𝑉𝑝  is the quasi-longitudinal mode. Each of these, in an idealized 

Brillouin spectrum, creates a doublet of Stokes and Anti-Stokes scattering peaks when plotted 

as intensity versus frequency shift. An idealized spectrum is illustrated in Figure 17 (Speziale 

et al., 2014). 

 

Figure 17. Idealized Brillouin spectrum showing the elastic peak and the Anti-Stokes and 

Stokes velocity peaks from the material. There are two shear and one longitudinal peak. 

 

Fundamentally, Brillouin and Raman spectroscopy both measure phonons within the crystal 

lattice. However, Brillouin spectroscopy measures low energy, long-range phonons on the 

acoustic branch of the frequency and wavevector dispersion relation. Raman measures higher 

frequency and thus higher energy phonons on a unit cell scale, probing the optical branch 

instead (Polian, 2003). The wavenumber of typical Raman measurements ranges from a 

minimum of roughly 100 cm-1 to over 2000 cm-1, while Brillouin spectroscopy is lower energy 

and within the single-digit wavenumbers.  

Since the Brillouin peaks are much closer to the elastic peak, or the Rayleigh scattered peak, a 

much more precise interferometer is required to separate the small frequency shift from the 

much brighter elastic peak. A Faby-Perot interferometer is capable of the precision necessary 
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to separate the peaks from the elastic peak. For this work, the TFP-1 tandem 3+3 pass Fabry-

Perot interferometer was used from Table Stable Ltd (Lindsay et al., 1981; Mock et al., 1987). 

The internal operating principle is described by the schematic in Figure 18. 

 

Figure 18. Schematic diagram of the operating principle of the TFP-1 tandem 3+3 pass Fabry-

Perot interferometer from the operating manual of the Table Stable Ltd TFP-1 interferometer. 

FP1 is the first Fabry-Perot etalon that the light encounters and FP2 is the second etalon in 

the sequence. 𝐿1 is the distance between the mirrors of FP1 while 𝐿2 represents the effective 

optical path length of the second Fabry-Perot etalon FP2, given by the equation provided. 𝜃 is 

the angle of the translation stage. This adjusts the alignment of FP2 to control the optical path 

difference. The direction of movement arrows move the whole stage to scan 𝐿1 and 𝐿2 distances. 

 

Light is passed between two parallel mirrors. On each reflection, the light interferes with itself 

either constructively or destructively depending on the distance between the mirrors, 𝐿, and 

whether this distance is an integer multiple of the wavelength of light, 𝜆. 

 
𝑚𝜆 = 2𝑛𝐿 cos(𝛼) Eq. 76 

This is described by Eq. 76. 𝑛 is the refractive index of the medium between the mirrors, 𝑚 is 

an integer, and 𝛼 is the incidence angle which is normally 0°. By setting the mirrors at a specific 

and precise distance apart, they act as a narrow band-pass filter for that specified wavelength 

of light (Dil et al., 1981; Speziale et al., 2014).  
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In a Fabry-Perot interferometer, the translation stage is scanned back and forth to vary the 

mirror gap, labeled in Eq. 93. This makes it possible to scan through the wavelengths that are 

transmitted, resulting in a variable narrow band-pass filter. The tandem portion of the 

description describes the use of two mirror gaps that are scanned and the 3+3 pass means that 

light is reflected by the mirrors to pass through the mirror gap three times (Lindsay et al., 1981; 

Mock et al., 1987). By synchronizing the timing of the variable mirror gap with the photon 

counter, the photons can be accurately assigned to the correct wavelengths, ensuring the 

frequency resolution necessary for Brillouin spectroscopy.  

Brillouin spectroscopy can be used on both opaque bulk material and transparent materials 

through transmission. In this work, measurements were taken on thin, transparent platelets in a 

forward symmetric geometry. The advantage is that knowledge of the refractive index of the 

material is not necessary (Speziale et al., 2014). The geometry is shown schematically in Figure 

19. In this geometry, the incident laser light, 532 nm from a Nd:YVO4 source, enters the thin 

sample and refracts at a scattering angle of 𝜃 along 𝑘𝑠. 

 

Figure 19. Forward symmetric geometry on a thin, transparent platelet sample for Brillouin 

spectroscopy. 

 

The plane wave of the acoustic lattice vibrations within the sample travel along 𝑞. This vector 

defines the direction along which the velocity measurements are taken. By rotating the thin 

platelet around the normal vector to the surface, at angles of 𝜒, sound velocity measurements 

are taken along the plane of the platelet. The wave equation for a linear elastic anisotropic solid, 

in a Cartesian reference system, is described by Eq. 78. Plane wave solutions of the equation 

come in the form of Eq. 77 and substituting this into Eq. 78, Eq. 79 is created. By defining 
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direction cosines 𝑛 =
𝑞
|𝑞|⁄  and phase velocity 𝑣 = 𝜔 𝑞⁄ , Eq. 80 below can be created (Speziale 

et al., 2014).  

 
𝑢𝑖 = 𝑢𝑖

0𝑒𝑖(𝑞𝑥−𝜔𝑡) Eq. 77 

 

𝜌
𝜕2𝑢𝑖
𝜕𝑡2

= 𝐶𝑖𝑗𝑘𝑙
𝜕2𝑢𝑘
𝜕𝑥𝑗𝜕𝑥𝑙

 Eq. 78 

 
(𝐶𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑙 − 𝜌𝜔

2𝛿𝑖𝑘)𝑢𝑘
0 = 0 Eq. 79 

 

|𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙 − 𝜌𝑣
2𝛿𝑖𝑘| = 0 Eq. 80 

In the equations, 𝑢𝑖
0 is the polarization,  𝛿𝑖𝑘 is Kronecker delta and 𝜌 the density of the crystal. 

𝑣 is the sound velocity as measured from the Brillouin spectra peaks. The equation is a cubic 

equation in 𝑣2 with three real solutions that can be expressed in closed form with Cardan’s 

method. This is solved numerically using a least-square method to determine the independent 

𝐶𝑖𝑗𝑘𝑙 elastic stiffness coefficients.  

Since point group 32 has 6 independent elastic stiffness coefficients (Powell, 2010; Kholkin et 

al., 2008), two platelets at different lattice orientations are required to solve for all 6 coefficients. 

Since ferrobielastic twinning in both α-quartz and CTGS depends on the magnitude of the S14 

elastic stiffness coefficient, determining this value at multiple pressures is required for 

determining the relative ferrobielastic twinning potential of CTGS, as compared to α-quartz. 

Ideally, S14 should be as small as possible to avoid ferrobielastic twinning.  

As described previously, the elastic stiffness matrix 𝐶𝑖𝑗  is inverted to derive the elastic 

compliance matrix 𝑆𝑖𝑗. For point group 32, the Voigt elastic stiffness and compliance tensors 

are listed in Eq. 81 and Eq. 82 (Powell, 2010). 

 

𝐶𝑖𝑗 =

(

 
 
 
 

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 𝐶14

0 0 0 0 𝐶14
1

2
(𝐶11 − 𝐶12))

 
 
 
 

 Eq. 81 
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𝑆𝑖𝑗 =

(

 
 
 

𝑆11 𝑆12 𝑆13 𝑆14 0 0
𝑆12 𝑆11 𝑆13 −𝑆14 0 0
𝑆13 𝑆13 𝑆33 0 0 0
𝑆14 −𝑆14 0 𝑆44 0 0
0 0 0 0 𝑆44 −2𝑆14
0 0 0 0 −2𝑆14 2(𝑆11 − 𝑆12))

 
 
 

 Eq. 82 

 

Eq. 80 solves for the elastic stiffness coefficients. Conversion between 𝐶𝑖𝑗 and 𝑆𝑖𝑗 is described 

by Eq. 83. 

 𝑆𝑖𝑗 = 𝐶𝑖𝑗
−1 Eq. 83 

 

The piezoelectric crystal measures the deformation stresses at high hydrostatic pressure above 

1 GPa. The elastic stiffness tensor of CTGS has been previously measured at room pressure 

(Dudka, 2016; Shi et al., 2007; Suhak et al., 2018; Zu et al., 2016) but no high-pressure 

measurements have been made. To acquire Brillouin spectra on CTGS at higher pressures a 

diamond anvil cell (DAC) was utilized.  

2. Methods 

2.1. Large volume press for deformation 

2.1.1. 6-ram press 
The MAVO LPQ7-2400-100 is a large loading capacity press (24 MN), manufactured by Max 

Voggenreiter GmbH in Mainleus, Germany. It employs six individual rams actuating into a 

central cubic cavity. The rams are maintained in position by a radially symmetrical support 

frame made up of 4×4 hardened steel plates arranged contrarily to counterbalance the outward 

thrust exerted by the rams. The press is designed to handle 8 MN of force from each ram at a 

maximum oil pressure of 630 bar (Manthilake et al., 2012). Each ram has a stroke of 100 mm, 

permitting a wide range of assembly sizes. The manufacturer specifies that the oil pressure to 

load relation is linear and is described by Eq. 84, where 𝐹𝑟 is the force per ram in MN and 𝑃𝑜 is 

the hydraulic oil pressure in bar. 

 
𝐹𝑟 =

4𝑃𝑜
315

 
Eq. 84 

 

Each of the six rams is fitted with a Heidenhain linear displacement encoder—positioned 

behind each ram between the hardened steel plates that comprise the press frame. They are 

connected to the rear surface of each anvil post through a steel rod which passes through the 
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center of the hydraulic ram. The anvil positions are tracked through the relative distance 

between the rear of the anvil and the ideally rigid steel outer frame. These sensors have a 

precision of 0.1 μm. Based on the data gathered from these sensors, the press can be 

programmed to extend or retract any opposing pair of rams at a user-defined speed, specified 

in microns per minute, thereby achieving uniaxial deformation under high pressure conditions.  

 

Figure 20. The MAVO 6-ram press as described in the text. A horizontal section is shown 

through the central region of the press. Four of the hydraulic rams and the rods which connect 

the displacement encoders with the rear surface of the rams are shown, with the top ram 

removed in the image for clarity (Manthilake et al., 2012). 

 

The six exterior rams, or first stage anvils, incorporate 27 mm truncated edge length (TEL) 

tungsten core anvils, which drive second stage anvils. These second stage anvils consist of a 

tungsten-carbide (WC) core and an outer steel casing for support. The steel casing has a 

diameter of 50 mm, pressure-fitted around a 35 mm diameter WC core. These secondary anvils, 

measuring 37.5 mm in height, press onto a cubic assembly along a square 10 mm TEL. 

Multiplying the area of each anvil surface by the number of rams, 6, provides a combined 

pressing area of 600 mm2. By utilizing the simple relation of force per area, high-pressures, 𝑃, 

can, in theory, be achieved according to Eq. 85. 

 
𝑷 =

𝑭

𝑨
 

Eq. 85 
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Where 𝐹  is force, and 𝐴 is area. If we solve this simple relation for a force of 8 MN (the 

maximum force per ram) and an area of 100 mm2, we arrive at a naïve pressure of 80 GPa as 

the maximum theoretical pressure utilizing the 10 mm TEL anvils. In reality, the maximum 

achievable pressure is much lower due to effects of gasket friction, material flow, and ultimate 

strength limits of anvil materials. 

 

Figure 21. The second stage anvils images and drawings. (a) a section of the assembly, with 

only four anvils shown and the placement of gaskets and the central cubic assembly. (b) three 

different views of an anvil. (c) A drawing of the anvil with the WC core and steel mantle labeled. 

(d) Drawing of the steel mantle with measurements in units of mm. (e) Drawing of the WC core 

that is fit into the steel mantle, once again with units of mm. 

 

The second stage anvils used are manufactured by Hawedia (type ha-co6%). The tungsten 

carbide contains 6% cobalt as a binder and has a grain size <0.6 μm. Hawedia’s catalogue 

claims that their WC ha-co6% material has a Vickers hardness (HV) of 1800HV30, however, 

in the literature it is reported to be up to 2040HV30 (Ishii et al., 2016). Vickers hardness is 

measured by indenting a square-based pyramid at a fixed load, in this case HV30 referring to 

30 kilogram-force (kgf). By measuring the diagonal length left by the indenter in the material 
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and thus the surface area of imprint, once can calculate the Vickers hardness number, or HV, 

according to Eq. 86. 

 
𝐻𝑉 =  

𝑖𝑛𝑑𝑒𝑛𝑡𝑒𝑟 𝑓𝑜𝑟𝑐𝑒 [𝑘𝑔]

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑝𝑟𝑖𝑛𝑡 [𝑚𝑚2]
 

Eq. 86 (Tekkaya & 

Lange, 2000) 

 

An empirical relationship between Vickers hardness and yield strength (𝜎𝑌) in MPa for an 

isotropically hardening material is described by  

 
𝐻𝑉 =  

2.475 𝜎𝑌
9.807 [𝑚/𝑠2]

 
Eq. 87 (Tekkaya & Lange, 

2000) 

When calculated using Eq. 87 for 1800HV30, 𝜎𝑌 is found to be 7130 MPa, or 7.13 GPa. For 

2040HV30, 𝜎𝑌  is found to be 8080 MPa, or 8.18 GPa. This correlates well with the 

manufacturer’s claim of a ‘compressional strength’ >7 GPa (Ishii et al., 2016). This simple 

calculation agrees remarkably well with quasi-static compression experiments on commercially 

available tungsten carbide. Hydro Carbide Tool Company brand HCUS06 tungsten carbide 

material with 6% Co and 0.8 μm grain size failed in compression at 7.4±0.1 GPa (Swab & 

Pittari III, 2023) under quasi-static compression. This calculation is without considering the 

effect of the gaskets or frictional losses. The empirical relationship in Eq. 87 applies solely to 

the physical properties of the tungsten carbide itself, without accounting for the specific 

application geometry.  

If the desire is to stay below a pressure of 7 GPa on the second stage anvil’s truncation, i.e. the 

surface that acts directly upon the cubic assembly, to avoid anvil breakage and a blowout, we 

can calculate, using Eq. 85, the force that can be safely imparted by the first stage anvils. 

Assuming the area of the second stage anvil truncation to be 100 mm2, the force beyond which 

𝜎𝑌 is overcome, per anvil, is calculated as 700 kN, or 0.7 MN. In practice, however, gasket 

extrusion increases this limit by a substantial amount. 

Because of gasket extrusion into the space between the anvils, the effective surface area on 

which the ram force acts is increased due to gasket-anvil friction (Zhang et al., 2018). The result 

is that the actual pressure experienced by the second stage anvils decreases. Commonly, gaskets 

are manufactured from pyrophyllite, a mineral with the chemical formula Al2Si4O10(OH)2. 

Pyrophyllite has been traditionally used owing to its ease of machining, relatively small 

compressibility, low strength, and good thermal and electrical insulation (Fang et al., 2007). As 

the press load increases, the low strength pyrophyllite begins to flow outwards through the gap, 



2. Methods 

54 

 

increasing its surface area. This supports the anvils and allows higher ram loads to be applied 

before breakage.  

Initially, the internal pressure of the gasket (Pg) lags behind the pressure inside the cubic 

assembly (Pc). The amount of flow depends on multiple factors, but the result is that the surface 

area of gasket-to-anvil contact increases (Zhang et al., 2018). At sufficiently high loads, the 

ratio of the surface area on the truncation of the relatively incompressible second stage anvils, 

versus the area on the sides of the anvils supported via gasket extrusion, decreases enough that 

the gaskets support the majority of the additionally added press load. As a result, Pg > Pc, and 

increasing ram load serves to increase Pg more than Pc (Li et al., 2007; Zhang et al., 2018). The 

pressure inside the cubic assembly will then start to plateau, limiting the maximum attainable 

pressures. The pressure gradient across the gasket can also limit the maximum attainable 

pressure. 

 Δ𝑃 =  𝑃𝑐 − 𝑃𝑔 Eq. 88 (Zhang et al., 2018) 

If ΔP, defined in Eq. 88 is not too large, it can be overcome by the static friction between the 

gasket and anvil and by the internal friction of the gaskets, confining the pressure. This pressure 

gradient across the gasket is what limits the attainable pressure in the assembly. However, when 

ΔP passes a certain threshold, one study has proposed this to be 0.9 GPa (Zhang et al., 2018), 

either the static friction or internal friction or both, can be exceeded, causing a sudden and 

uncontrolled outward extrusion of material. This is referred to as a ‘blowout’. Usually, this limit 

is reached before the 𝜎𝑌 of the anvils themselves.  

Gasket extrusion thus has multiple effects. First, it allows for higher press loads to be applied 

by distributing the load over a larger surface area of the secondary anvils, limiting the pressure 

on the anvils but also on the central cubic assembly. Secondly, through friction it serves to 

contain the pressure of the assembly within the cubic space defined by the second stage anvils, 

that would otherwise cause material to flow out through the anvil gaps. Finally, it ultimately 

limits the highest achievable hydrostatic pressure in the cubic assembly through static and 

internal friction failure. 

2.1.2. Displacement encoder calibration 
The encoders that measure the displacement of each ram are attached to their respective steel 

frame plates. Therefore, all anvil displacements are measured relative to the outer steel frame 

of the press. As mentioned, each ram acts upon four steel frames that form complete rings 

around the whole press vertically, so that each opposing ram acts outwardly upon the same set 

of steel plates. Each steel plate is 90 mm thick and all four create a strong frame that can 
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withstand, at the highest achievable press load, up to 8 MN of force acting outwards. This is 

because each anvil, at the maximum oil pressure, can apply 8 MN of force. However, the frame 

does still bow outwards elastically.  

Ideally, if the frame was entirely symmetric, the elastic deformation would be isotropic and the 

compressed internal cavity would remain uniformly cubic. However, while the horizontal rams 

deform the press frame in a mainly isotropic manner due to the symmetry of the press frame in 

this plane, the vertical axis does not have the same symmetry and is anisotropic compared to 

the horizontal plane. Because of this anisotropy, as the frame elastically deforms during press 

loading the encoders either underestimate or overestimate the anvil positions differentially 

along the 3 axes.  

 

Figure 22. Render of MA 6-8 geometry. (a) The central octahedron shown above with the 

truncated cube below. The octahedron is shown larger for clarity. (b) The assembly geometry 

before the insertion of the last anvil. The truncated corners are inserted against the central 

octahedron. (c) Finally, the complete assembly ready to be inserted into the MAA. The assembly 

shown is a 14/8, defined as an edge length of 14 mm for the octahedron and a truncated edge 

length of 8 mm on the cubic anvils. Gaskets are not shown. 

 

This positioning mismatch results in a lowering in symmetry of the otherwise cubic space at 

high press loads. In the MA 6-8 geometry, shown in Figure 22, the non-uniform chamber 

compressed by the first stage anvils results in high differential stresses on the second stage 

anvils, which drastically lowers the maximum achievable pressure. This is because some of the 

anvils will advance further than others and the gasket materials along the anvil edges experience 

a higher Pg.  
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As the Pc could still be similar because it is defined by the average load from all anvils, 

according to  Eq. 88 (Zhang et al., 2018), the ΔP for the gaskets and anvils that have advanced 

further is higher than for those that have not. If this reaches a critical threshold, the internal or 

static friction of the gasket material can be exceeded, resulting in a sudden outflow of gasket or 

assembly material and a rapid forward movement of the cubic anvil. This often leads to a full 

blowout and a failure of the experiment, in addition to anvil destruction. The MA 6-6 geometry 

can experience similar problems, but it is less sensitive to mismatch in the position of the first 

stage rams. In the MA 6-8 geometry, each inner cubic anvil is in contact with three outer rams. 

Any differential outer ram movement will cause massive internal shear stresses on the inner 

second-stage anvils. The MA 6-6 inner anvils are in contact with only one outer ram, such that 

differential outer ram movement will not induce large shear stresses on the inner anvils. In this 

geometry, mismatch errors in ram position result in non-hydrostatic stress in the assembly 

instead of catastrophic failure.  

Regardless, as hydrostatic stress is at least the initial goal, the elastic deformation of the outer 

frame needs to be compensated by proportionately increasing the stroke of rams experiencing 

the most frame deformation. This calibration will be referred to as the frame bending calibration. 

If the amount of frame bending is known at specific hydraulic oil pressures along the MAA’s 

full pressure range, an equation can be fitted to compensate the mismatch on the ram position. 

Using this mismatch error equation, the software corrects for the anvil displacement as the 

pressure increases to maintain cubic compression of the inner anvils.  

There are multiple ways to measure the amount of press frame bending. Since the bending is 

relative to the press itself, one can measure the frame displacement relative to the laboratory 

frame of reference, as has been successfully performed in the past (Sano-Furukawa et al., 2014). 

Another method is to measure the anvil gap within the inner cubic space at different press loads. 

By placing a material within the inner cubic space that can flow and plastically deform and 

retain the deformation after load is removed, one can measure the opposing face-to-face 

distances on the resulting cube. Any differences in the resulting form are the result of the frame 

bending.  

In this study, the press was calibrated using this method by employing a copper polyhedron. 

Copper is soft and plastically deforms under stresses typically applied by the first stage anvils, 

making it ideal for this type of anvil geometry calibration. If the copper flows outwards 

sufficiently far enough to form gaskets between the anvils, friction will begin to support the 
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ram load and frictional isotropy cannot be assumed. For this reason, the load is limited to avoid 

gasket formation.  

The first stage tungsten cored anvils have 27 mm edge length faces. This would form a 19.68 

cm3 cubic volume if the anvils were to be driven forward until the edges were in contact. A 

copper edge-truncated cube is employed with a 35 mm edge length and with edges truncated 

inwards to create square faces 10 mm in length. This forms a polyhedral with 12 hexagonal 

faces and 8 cubic faces. The volume is 21.78 cm3, ensuring that even if the copper was to be 

entirely deformed into a cube, it would not allow the brittle first stage anvils to make contact. 

The copper polyhedron is placed in the press and a specified ram load is applied, dwelling for 

about 10 minutes, and then decompressed. The copper is pressed into a cube with rounded edges 

that have not formed gaskets as the material flows outwards. By measuring the face-to-face 

length of each axis, keeping track of the face alignment, the divergence in the ram encoder 

position can be measured. This is then repeated for multiple pressures as the frame bends 

nonlinearly with pressure.  

The rams below and above, ram 1 and 2 respectively, are taken as the baseline and the position 

encoding of the other ram pairs, rams 3 and 4, and rams 5 and 6, is adjusted to match them. 

Once multiple hydraulic oil pressures have been measured in this way, a polynomial function 

is fitted to the residuals and added to the anvil positions to correct for the frame bending. The 

process for the frame bending correction for rams 3 and 4 is shown below, along with an 

illustration of the geometry and measurement variables in Figure 24. The same process is 

repeated for rams 5 and 6. The calibration procedure was first developed and described in Manthilake et al. (2012). 

After compression, the deformed copper cube face-to-face distances are measured with a 

micrometer with 1 μm precision, defining 𝑑3,4 and 𝑑1,2. 

 𝑑3,4 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑚 3,4 

𝑑1,2 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑚 1,2 

𝑑1,2 − 𝑑3,4
2

= 𝑟𝑎𝑚 3,4 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =  𝐶3,4 

𝐷3,4(𝑐) = 𝐷3,4 + 𝐶3,4 

Eq. 

89 

 

The ram 3,4 correction factor, 𝐶3,4, calculated per Eq. 89, is added to the position of rams 3 and 

4, correcting for the frame bending along that axis. The same procedure is applied to rams 5 

and 6. Each correction is for a specific hydraulic oil pressure. The process is repeated at multiple 
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oil pressures and a polynomial equation is fitted to the correction factors for each opposing ram 

pair as a function of oil pressure.  

During normal operation, the required frame bending correction is determined from each 

polynomial at each oil pressure and the result is added to the linear encoder distance 

measurements, which allows the PLC to automatically correct for frame bending at any pressure. 

The correction polynomials used at the time of the experiments in this study is plotted in Figure 

23. Subsequent runs have shown that this method results in a cubic compression precision of 

±10 μm along each axis. 

 

Figure 23. Frame bending correction polynomials of rams 3 and 4 (3,4) and 5 and 6 (5,6). The 

correction is added to the ram position to ensure a cubic space between the anvils. 
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Figure 24. Geometry and measurement variables of a frame bending calibration run, showing 

a cross section through rams 1, 2, 3, and 4. (a) Ram and copper arrangement before 

deformation. Dx shows the ram advancement and retraction directions, and the signs the 

positive and negative directions of the ram movement directions. (b) Rams and copper 

arrangement after deformation. dx,y marks the face-to-face distance measurements made, as per 

Eq. 89. 

 

Figure 25. Image of a copper edge-truncated cube before deformation (left) and the resultant 

shape after deformation (right). The deformed copper on the right was deformed to 4 MN. For 

scale, the edge length of the square face of the copper polyhedra on the left is 10 mm in length. 
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2.2. Piezoelectric assembly 

2.2.1. 15/10 cubic assembly design 
For the following description of the cubic assembly, the part label will be provided in 

parenthesis. The part labels will refer to Figure 26, Table 3, and Figure 27. In Figure 26, 

images were taken of all the parts laid out to provide a sense of scale between them and the full 

parts list required, with the top providing the part labels and the bottom a more oblique view. 

Table 3 provides the bill of materials (BOM) of the assembly, with the part label, part name, 

quantity required for one full assembly, and the material of each part. 

 

Figure 26. Images taken of the assembly parts laid out. The top picture shows a top view with 

the parts labeled. The bottom picture shows a side view. The anvils and alignment cage are 

omitted from the image and described elsewhere. 
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Table 3. The bill of materials (BOM) for the 15/10 assembly. The anvils and alignment cage 

are omitted. 

Part 

label 
Part name Quantity Material 

A Truncated cube 1 Cr-doped magnesia 

B Bottom electrode 1 Molybdenum 

C Bottom insulating ring 1 Magnesia 

D Bottom plug 1 Porous zirconia 

E Furnace sleeve 1 Magnesia 

F Furnace 1 Graphite 

G Top insulating ring 1 Magnesia 

H Top electrode 1 Molybdenum 

I Side electrode 1 Molybdenum 

J Top plug 1 Non-porous zirconia 

K Piezoelectric stack sleeve 1 Single-crystal magnesia 

L Insulating rods 2 Alumina ceramic 

M Protective coils 2 Copper 

N Piezoelectric electrodes 2 Copper 

O Piezoelectric crystal 1 Quartz/CTGS 

P Heat sink disk 1 Diamond 

Q Protective foil 1 Copper 

R Gaskets 12 Pyrophyllite 

S Wire insulation 2 PTFE 

T Piezoelectric wires 2 Platinum 

 



2. Methods 

62 

 

 



2. Methods 

63 

 

Figure 27. Assembly part dimensions and blueprints, organized by part label. See text and 

Table 3 for full description. 

The cubic assembly consists of a 15 mm cube, with edges cut to create 10 mm edge length faces 

suitable for the anvils (A). The assembly utilizes Chromium-doped magnesium oxide (MgO), 

or magnesia. Within the cube, a 6 mm hole is drilled directly through the center of the cube 

between opposing faces, wherein the assembly column is positioned. At the top, it contains a 

sintered diamond disk, 4 mm diameter and 1 mm in height (P). To safeguard the tungsten 

carbide anvil from the diamond disk potentially indenting it, a copper foil of 80 μm thickness 

and 6 mm in diameter (Q) is placed on top of the diamond disk, between it and the anvil.  

Below this, the top piezoelectric electrode is placed, a copper foil, 80 μm thickness and 4 mm 

in diameter (N). Into this copper foil two holes, 0.6 mm in diameter, are laser cut, 2 mm apart. 

Through these holes a 0.3 mm platinum wire is weaved through and pressed flat (T), as seen in 

Figure 28 (c). This wire conducts the piezoelectric charge from the top of the crystal out of the 

assembly to be measured. Below this, the piezoelectric crystal is placed, 4 mm in diameter and 

1 mm thick (O). The piezoelectric crystal is X-cut. To ensure full surface conduction from the 

crystal into the copper foil and platinum wire, the crystal is sputter gold-coated using a 

Cressington Sputter Coater 108-Auto.  

Before sputtering, cyanoacrylate glue is applied to the outside edges of the piezoelectric crystal 

as shown in Figure 28 (a). To properly measure the charges across the disk surfaces, they must 

be kept electrically isolated, and the glue ensures that no gold is sputtered onto the edges, thus 

keeping the two opposing faces electrically isolated. Once the glue is applied, the gold is 

sputtered to each side of the crystal, three times per side for 120 seconds per application. A total 

of 360 seconds of gold sputtering is applied per side to ensure that the gold layer is thick enough 

for high electrical conductivity. According to the manufacturer’s specifications, this results in 

a total gold sputtering thickness of 120 nm. After sputtering, the cyanoacrylate glue is carefully 

removed with a razor blade. It’s critical that no glue residue is left on the edges as it acts as an 

electrical conductor at high pressures, so the crystal edges are briefly sanded using 600 grit SiC 

sandpaper to remove all glue residue, with the final gold coated crystal shown in Figure 28 (b).  

Below the piezoelectric crystal, another identical copper foil (N) is placed, with the same two 

holes laser cut and the platinum wire (T) weaved through them and pressed flat. This acts as 

the second, bottom face piezoelectric electrode.  
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Figure 28. The piezoelectric stack construction is shown. (a) shows the crystal before gold 

coating, with just the glue applied on the outer edges. (b) is after gold coating and removal of 

the glue. The circuit diagram shows that the opposing faces are not electrically connected. (c) 

is how the platinum wire is weaved through the copper disks, the top and bottom respectively. 

Finally, (d) is the full piezoelectric stack, with the top and bottom copper foils with the platinum 

wire weaved through. To line up with the holes in the magnesia sleeve (K), the wires are aligned 

135° apart. 

 

Finally, the whole piezoelectric stack, the final construction shown in Figure 28 (d), with the 

diamond disk is placed in a single-crystal MgO, or magnesia sleeve (K), with appropriate holes, 

0.85 mm diameter, drilled through with a diamond drill bit for the platinum wires (N). The 
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piezoelectric stack is supported by a nonporous yttria-stabilized zirconia plug (J). This zirconia 

is nonporous so it acts as a strong deformation piston on the sample. The stronger the other 

parts within the deformation column, the more the strain applied to the assembly will be 

accommodated by the sample. Zirconia was chosen over alumina due to the lower thermal 

conductivity of zirconia as opposed to alumina. Zirconia’s thermal conductivity varies with the 

porosity and temperature, but literature suggests a range of 2—3 Wm-1K-1  (Klemens, 1996; 

Schlichting et al., 2001). Compared to this, alumina’s thermal conductivity varies from 10—30 

Wm-1K-1  (Bansal & Zhu, 2005; Sciamanna et al., 2015). 

Below this zirconia plug is the sample chamber, 4 mm in diameter and 4 mm in height, that 

holds the sample to be deformed. Below the sample is another zirconia plug (D), but this one is 

porous. This is to ensure that there is some porosity in the deformation column to accommodate 

the initial required shrinkage during compression up to the target pressure. For sample heating, 

a graphite furnace (F) is placed on the outside of a magnesia sleeve (E) that contains the sample 

chamber. The graphite furnace is electrically connected to the side anvil at 90 degrees to the 

deformation column with a molybdenum ring (H) that is placed around another magnesia 

electrical insulation ring (G). Through the 1.5 mm hole drilled through the side of the magnesia 

cube (A), a molybdenum rod (I) is inserted that contacts this top molybdenum ring (H). The 

Mo rod acts as the top furnace electrode, allowing the side anvil to provide the electrical charge 

to heat up the sample. Thus, the assembly uses an unconventional heating geometry where the 

bottom anvil and the side anvil, forming a 90° angle, are used as the charge conductors for 

heating.  

Two holes are drilled into the magnesia cube (A) for the platinum wires (T) that connect to the 

piezoelectric crystal (O). The hole placements and geometry are shown in Figure 27. To 

accommodate these two wires, the gaskets that attach to those edges have matching holes drilled 

into them (R). These are shown in the figure as the two gaskets with holes. The rest of the 

gaskets (R), which with the two drilled gaskets form a total of 12 pyrophyllite gaskets, are 

whole and undrilled. Finally, the two alumina rods (L) are inserted around the platinum wires 

(T) and into the magnesia cube (A), from the cube surface to the single-crystal magnesia sleeve 

(K) around the piezoelectric stack. These are placed to provide some tougher protection for the 

wires. Without these, the failure rate due to the platinum wires (T) pinching and breaking was 

unacceptably high.  

As protection for the platinum wires (T) in the pyrophyllite gaskets as the gaskets extrude (R), 

copper coils (M) are inserted around the wires through the pyrophyllite gaskets. As the gaskets 
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extrude, these copper coils slide and extend along the platinum wire, in a sense ‘lubricating’ the 

wire at high pressure so they don’t get pulled and cut by the flowing pyrophyllite at high 

pressure. 

 

Figure 29. A cross-section of a completed assembly, showing the orientation of the parts and 

general geometry. 

2.2.2. Electrical conductivity design considerations 
Due to the high sensitivity of these techniques to electrical resistance, the assembly was 

designed to:  
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(1) minimize electrical conductivity around the crystal through the surrounding material, and 

(2) keep the piezoelectric crystal below 200 °C during deformation experiments, even if the 

sample is heated to high temperatures.  

These two requirements constrained and largely guided the design of the assembly.  

For consideration (1), both the materials surrounding the piezoelectric crystal and the assembly 

process itself were iterated and refined over time. To ensure near-anhydrous run conditions, 

parts A, C, D, E, G, J, and K were fired at 1000 °C for at least 1 hour before final assembly, a 

common practice in large volume press experiments (Keshav et al., 2005; Leinenweber et al., 

2012). If the assembly could not be completed and run within a few hours after firing, the parts 

were stored in a 120 °C drying oven to prevent moisture absorption. Firing effectively removed 

both water and oils potentially transferred from handling. In this study, experiments with 

unfired parts encountered issues with low resistivity, particularly under high pressures, resulting 

in significant voltage drift.  

To minimize contamination, all fired parts were handled with latex or nitrile gloves, as oils 

from hands can introduce organic materials that act as charge carriers. These materials shift 

resistivity from bulk conduction through the ceramic to surface conduction along grain 

boundaries, with organic ions acting as charge carriers (Freund et al., 1993; Korobeynikov et 

al., 2005; Malki et al., 2014). Magnesia (MgO), in particular, is prone to surface conduction 

along grain boundaries. As temperature rises, bulk charge carriers form within the magnesia 

crystals, typically as electron holes or cation vacancies, and gradually diffuse to the surface. 

Once at the surface, these carriers move more rapidly along grain boundaries than through the 

bulk (Freund et al., 1991, 1993; Kang, 1994).  

Two methods are essential to limit this electrical conduction mechanism: preventing the 

introduction of charge carriers like water or organic material and reducing the number of grain 

boundaries. This was the primary reason for using a single-crystal magnesia sleeve (K) around 

the piezoelectric crystal. Although the sleeve inevitably cracked under compression, breaking 

into smaller pieces, it still significantly reduced the number of grains and grain boundaries. The 

switch from polycrystalline to single-crystal magnesia dramatically improved experimental 

success rates and minimized voltage drift, especially at higher temperatures.  

Additionally, because the platinum wires carrying the piezoelectric charge must pass through 

pyrophyllite gaskets, which form a contact point between the anvils, electrical conduction 

through the pyrophyllite becomes a concern. Pyrophyllite, a hydrated aluminous phyllosilicate 
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mineral with the chemical formula Al2Si4O10(OH)2, has a high electrical resistivity of 

approximately 1011 Ω·m at room temperature and 1 bar (Hicks & Secco, 1997). However, at 

elevated temperatures, pyrophyllite undergoes a dehydroxylation reaction that releases H2O, 

which not only alters the H₂O fugacity but also introduces charge carriers, significantly 

reducing its resistivity (Hicks & Secco, 1997; H. Wang et al., 2011). This reduction forms a 

conductive path that lowers the resistance across the piezoelectric crystal, allowing current to 

pass from one platinum wire to the anvil, through the extruded pyrophyllite gasket, and along 

the second platinum wire.  

Early experiments in this project revealed unexpectedly high conductivity as the sample was 

heated, a phenomenon consistent with previous findings. At pressures of 4–7 GPa , the 

resistance in the temperature range of 285–450 K remains similar to that at room temperature 

and 1 bar, but above approximately 500 K, the resistance drops sharply (Hicks & Secco, 1997). 

Given the high power required to heat such a large assembly, the pyrophyllite gaskets can 

exceed 500 K during experiments, which likely triggers a shift in conduction mechanism—

from electronic to ionic—driven by dehydration and the release of charge carriers within the 

pyrophyllite (Fang et al., 2007; Hicks & Secco, 1997; Ter Heege & Renner, 2007).  

To mitigate this, the pyrophyllite gaskets are pre-fired at temperatures above 950 K to induce 

partial dehydration and remove excess H2O, ensuring that less water is released under high-

pressure, high-temperature conditions (Leinenweber et al., 2012; Sano-Furukawa et al., 2014; 

Wang et al., 2003). Firing above 1300 K causes further decomposition of pyrophyllite into 

mullite and silica phases, which is undesirable (Hulse & Graf, 1965). Therefore, to reduce 

electrical conductivity during experiments, the gaskets are fired at 1073 K for 3 hours before 

use, and if assembly is delayed, they are stored in a 120 °C drying oven. After implementing 

these procedures, the sudden drop in electrical resistance at higher temperatures was no longer 

observed.  

Additionally, to further reduce the risk of electrical conduction, particularly in the presence of 

high humidity or surface contamination, polyimide tape (commonly known by the trademark 

Kapton® from DuPont) is applied to the exposed surfaces of the anvils. As the pyrophyllite 

gaskets extrude outward, this tape provides a high-resistivity barrier that limits conduction, 

especially if moisture in the air ‘wets’ the extruded gaskets. The tape is applied to the anvils 3.5 

mm below the un-extruded gasket location, as shown in Figure 30. 
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Figure 30. Anvil wrapped in polyimide film tape, illustrating two different views. The square 

truncated edge length, clearly visible on the left anvil, is 10 mm in length. 

 

2.2.3. Thermally activated electrical conduction design considerations 
Since both the piezoelectric crystal (O) and the surrounding material (K) are dielectrics, the 

electrical resistivity drops exponentially with increasing temperature. Additionally, as the 

temperature increases, changes in temperature have a larger effect on the voltage drift of the 

measurements. The requirement that temperature be kept to a minimum at the piezoelectric 

crystal is what led to the current design of the assembly, shown in Figure 29. 

The assembly was specifically designed to keep the piezoelectric crystal at the lowest possible 

temperature while heating the sample during an experimental deformation. This was achieved 

through a furnace (F) that is offset in the assembly, to the lower part away from the piezoelectric 

crystal, resulting in an asymmetric assembly in the vertical direction. This is also why zirconia 

was chosen as the plug (J) placed below the piezoelectric crystal rather than other high strength 

ceramics such as alumina. As mentioned previously, zirconia has a lower thermal conductivity 

and thus less heat is conducted into the piezoelectric crystal.  

Additionally, the top electrode (N) placed on the piezoelectric crystal (O) must be kept 

electrically isolated from the top anvil, but it also must conduct heat well into the anvil. The 

ideal material for this is diamond, which is why a sintered diamond disk (P) is placed above the 

electrode and, along with a thin copper foil, is in contact with the much lower temperature 

tungsten carbide anvil. In this way, less heat is conducted into the piezoelectric crystal because 

of the zirconia plug and the heat that is conducted is quickly pulled away through the diamond 
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disk and into the anvil. To categorize the effectiveness of this geometry, a power/temperature 

calibration run was performed with two thermocouples placed in different positions within the 

assembly. 

 

Figure 31. The temperature of the sample area and the piezoelectric crystal area (PZE) is 

plotted versus the power in watts through the furnace. The sample is shown with solid lines and 

the PZE crystal with dashed lines. Multiple pressures are shown. 

 

The first thermocouple was placed in the piezoelectric crystal area. For this run, the assembly 

was made with precisely the same geometry, but the piezoelectric crystal was removed and 

instead a type S thermocouple was placed, welded together right in the middle of where the 

central point of the piezoelectric crystal would be. A magnesia disk was placed instead of the 

piezoelectric crystal with a hole drilled through it for the thermocouple wires. In the same 

assembly, the sample was replaced with another plug of magnesia, and a central well was drilled, 

and a second type S thermocouple inserted, entering from the bottom of the assembly, and 

welded together in the central area of the sample region. A four-hole alumina rod was used to 

guide the wires into the assembly.  

Then, the sample was heated to 25—1200 °C at five different pressures, starting from 1 GPa to 

5 GPa, in increments of 1 GPa. The temperature at the piezoelectric crystal (PZE) and the 

sample region was measured for each heating cycle. As can be seen in Figure 31, the 
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temperature at the piezoelectric crystal region is between 4 to 6 times lower than the sample 

region and never goes above 200 °C. The offset furnace as well as the zirconia plug and 

diamond disk thus ensures the piezoelectric crystal does not get hot enough for thermally 

activated electrical conduction to be unmanageable. Changes in temperature are still certainly 

an issue and a source of error since the charge integrating device is highly sensitive to resistance 

changes. However, since the piezoelectric crystal does not, under normal experimental 

conditions, go above 200 °C, the voltage drift resulting from temperature changes is low. 

 

Figure 32. Schematic diagram of the assembly showing the temperature distribution and 

temperature gradient within the assembly. PZE is the piezoelectric crystal (red in this diagram), 

and sample is the heating temperature at the sample area. 

 

2.2.4. Effects of change in electric resistivity 
The design of the integrating capacitor in our voltage measurement device comes with a critical 

limitation: any pre-existing charge on the capacitor can dissipate if the resistance across it 

decreases. Indeed, due to the operational characteristics of the IVC102 switched integrator 

transimpedance amplifier, any resistance lower than infinite will gradually discharge the 

capacitor, even when the integrated charge is ostensibly zero.  

To quantify this effect, a Hochpräzisions-Widerstands-Dekade Typ 1424, which is utilized for 

precision resistance calibrations, was employed to measure the voltage drift across the capacitor 

at various resistance levels, ranging from 0.1 Ω to 100 kΩ. This device boasts a minimal error 

margin of 0.1% as claimed by the manufacturer. Furthermore, additional ceramic capacitors 
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were integrated to broaden the resistance scope up to 170 MΩ, albeit with a slightly higher 

claimed error rate of 1%.  

The resulting voltage drift on the integrator device is plotted in Figure 33. For each specified 

resistance value, the voltage was recorded for approximately one minute. The plot reveals that 

the maximum drift peaks at -35 volts/second near zero ohms, subsequently diminishing as 

resistance rises. For instance, at the highest resistance the device can muster, i.e. 111,111 Ω, 

the drift measures -0.77 volts/second.  

Under experimental conditions akin to those described in Eq. 97 and Eq. 98 this level of drift 

would impose an error of -152 MPa per second on the calculated stress. Such a significant drift 

would render the device incapable of accurately measuring stress during deformation 

experiments. To mitigate this, the device features a front-mounted dial, denoted as 'C' in Figure 

37. This dial allows for the introduction of an artificial voltage drift, in either direction, to 

counterbalance the observed drift. By carefully adjusting the dial while monitoring the 

measurement software, one can effectively neutralize the drift resulting from resistance. The 

dial's range extends to a maximum of 1.836 V/s in the positive direction and -2.186 V/s in the 

negative.  

Any residual drift, due to imprecisions in the dial's setting, can be accounted for by subtracting 

the baseline voltage drift recorded before deformation begins. By fitting a linear line to this 

baseline drift and deducting it from the voltage readings, one could, in theory, nullify any 

measurement errors attributable to electrical resistance. 
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Figure 33. Voltage drift across the capacitor at multiple resistance values. The vertical axis 

units are volts/second of drift. The horizontal axis is plotted in logarithmic scale and is the 

resistance in ohms. 

 

In the initial stages of experimentation, it was observed that, despite utilizing the front-mounted 

dial to counteract initial voltage drift, the voltage readings during deformation exhibited 

excessively rapid changes. These variations were so swift that they suggested two possibilities: 

either the stress measured was reaching implausibly high levels in the order of hundreds of 

gigapascals, or the voltage drift was fluctuating within the duration of the experiment. The latter 

was considered the more probable scenario, given the inherent sensitivity of voltage drift to 

resistance changes. Even minor fluctuations in resistance can result in a significant alteration 

of the voltage drift.  

The relationship between voltage drift and resistance was analyzed. Data from these 

observations, as seen in Figure 33, were employed to derive Eq. 90, an empirical formula 

capturing the essence of this relationship: 
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 ΔV = −𝑎 ∙ e−b/R + 𝑑 ∙ tan−1(𝑒 − 𝑅) + 𝑐 
Eq. 90 

 fitting parameters = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  

Here, ΔV  represents the voltage drift in volts per second, 𝑅  the resistance in ohms, and 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are fitting parameters. Through fitting of these constants, the equation achieved an 

exceptional goodness of fit, with 𝑅2 = 0.999967 . For the fitting process, the inherently 

negative voltage drift was multiplied by -1 to facilitate a more straightforward fitting procedure. 

 

Figure 34. The voltage drift vs. resistance across the charge integrating device is plotted, 

similar to Figure 33, but the data is now fitted with Eq. 90. The value of the fitting parameters 

is shown below the legend. The residuals of the fitting are shown in the bottom plot. 

This precise fit allows the equation to serve as a predictive tool for estimating voltage drift as a 

function of resistance. For example, if the resistance encountered by the piezoelectric crystal 

during an experiment is 50 MΩ, application of Eq. 90 yields a voltage drift of 1.167×10-2 

volts/second. Unaccounted for, this drift introduces an error in the measured stress of 2.313 



2. Methods 

75 

 

MPa per second according to Eq. 95 and Eq. 96. If resistance drops by 0.2 MΩ to 49.8 MΩ 

during the experiment, this results in a new drift error of 2.314 MPa per second. This seemingly 

negligible change, if not detected, manifests as an apparent stress change on the crystal, 

undetectable through voltage measurements alone. The induced error accumulates at a rate of 

1.406×10-3 MPa per second, calculated by the difference in the drift rates. Over an hour, the 

cumulative error in stress would amount to 5.063 MPa, the product of the drift error rate and 

the number of seconds in an hour, i.e., 1.406×10-3 MPa/second × 3,600 seconds.  

Given that both α-quartz and CTGS crystals are dielectric in nature and their resistance is 

inversely proportional to temperature as explained by the Arrhenius equation, maintaining a 

constant temperature during experiments is paramount. This is due to the charge integrator's 

high resistance sensitivity, which can significantly impact the voltage drift. Although 

temperature can be largely controlled, some experiments have demonstrated a discernible shift 

in voltage drift during the deformation phase, evidenced by a change in the drift slope compared 

to the pre- and post-deformation periods. Without the ability to precisely determine the 

resistance change over time, a simplified model is applied to experiments that exhibit notable 

voltage drift shifts. Resistance across the crystal can be measured during the deformation, but 

not simultaneously with charge integration.  

If the charge accumulation in the integrating capacitor is stopped for resistance measurements 

to be made, any stress accumulated during that time would essentially be lost information. The 

time spent measuring the resistance would be time in which the stress state is not recorded and 

since the piezoelectric method only records changes in stress and not the absolute stress, 

interpolating the stress in this gap of time would be problematic. For all experimental runs, a 

specialized fitting routine has been developed to adjust for any shift in voltage drift that occurs 

due to resistance changes during deformation.  

In the absence of exact information regarding the timing of the voltage shift, a simplified 

quadratic equation is utilized, defining a smooth curve to bridge the slope change. This 

approach is demonstrated in Figure 35 with data from a deformation experiment. Plot (a) in 

Figure 35 presents the raw voltage measurements from the charge integrator. The onset and 

completion of deformation are indicated by dashed green and red vertical lines, respectively. 

After adjusting the dial to minimize voltage drift, a span of background drift is recorded for at 

least one minute before and after deformation. These segments of drift are then linearly fitted, 

as depicted in plot (b) of Figure 35 with the red and green lines, showcasing drift rates of 

1.887×10-3 volts per minute before deformation and -1.882×10-2 volts per minute post-
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deformation. The negative shift in slope post-deformation suggests a slight decrease in 

resistance across the crystal.  

To correct this drift, a piecewise quadratic function is formulated, enabling a seamless transition 

of the slope between the commencement and conclusion of deformation. The time and voltage 

at the deformation's initiation are denoted as 𝑥1 and 𝑦1 while 𝑚1 is the slope determined from 

the pre-deformation voltage drift. Conversely, the end time of deformation is represented by 𝑥2 

and 𝑚2 is the slope from the linear fit to the post-deformation voltage drift. 

 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 Eq. 91 

 𝑎 =
𝑚2 −𝑚1

2(𝑥2 − 𝑥1)
 Eq. 92 

 𝑏 = 𝑚1 − 2𝑎𝑥1 Eq. 93 

 𝑐 = 𝑦1 − 𝑎𝑥1
2 − 𝑏𝑥1 Eq. 94 
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Figure 35. An example of data acquired from an experiment, showing the voltage on the 

vertical axis and time on the horizontal. The progression of fitting from (a) to (d) is described 

in the text. 

 

Eq. 91 represents the quadratic function employed to adjust for changes in voltage drift during 

the deformation process. To determine the coefficients of this quadratic function, the points and 

slopes delineated by the onset and conclusion of the deformation are utilized, following the 

formulas of Eq. 92, Eq. 93, Eq. 94. The coefficients computed as per the equations listed 

configure the quadratic curve, which is visualized as a blue curve in plot (c) in Figure 35. This 

curve is designed to align with the solid green and red lines that represent the pre-deformation 

and post-deformation voltage drift slopes, respectively. The interpolation achieved by the 

quadratic function is smooth, bridging the gap between the two linear segments effectively.  

Once this quadratic correction is applied to each voltage data point, subtracting it yields an 

adjusted dataset. The resulting corrected voltage data exhibit zero drift in both the pre-



2. Methods 

78 

 

deformation and post-deformation phases, depicted as the orange line in plot (d) in Figure 35. 

Given that direct measurement of resistance across the crystal during deformation is not feasible 

as mentioned previously, the approach of smooth interpolation via the quadratic function acts 

as a pragmatic approximation.  

The correction routine is systematically applied to all experimental readings prior to calculating 

the deviatoric stress, particularly when a significant variance is observed between the pre- and 

post-deformation voltage drift slopes. Considering the inability to directly measure the 

resistance across the crystal concurrently with charge integration, the method of employing a 

quadratic function for drift correction is acknowledged as a provisional yet pragmatic approach. 

This technique provides a means to approximate and mitigate the impact of voltage drift on 

stress calculations, but it is not without its limitations. The quadratic interpolation acts as a best-

fit correction for the observed drifts; however, it operates under the assumption that the change 

in drift is the primary function of resistance alterations, which may not encapsulate all the 

variables affecting the system. Moreover, the inability to measure resistance in real-time 

alongside charge integration introduces an element of uncertainty.  

Although the fitting process is carefully designed to adjust for drift between known points, the 

actual resistance path during deformation may involve complexities that the quadratic function 

cannot fully capture. To enhance the accuracy of this method, future refinements would 

necessitate a technique that allows for the simultaneous measurement of resistance and charge 

integration. This concurrent measurement would provide a direct correlation between resistance 

changes and voltage drift, thereby reducing reliance on post-experimental corrections. Such 

advancements would significantly improve the precision of stress measurements, ultimately 

leading to a more accurate interpretation of the crystal's response to deformation. Until such a 

method is developed, the current approach remains a necessary compromise, enabling the 

continuation of experiments and providing a foundation for future methodological 

improvements. Most deformation experiments do not display a significant drift and this 

technique provides an adequate compromise. If the drift becomes too large, detectable with 

unreasonably high voltage changes, the deformation is abandoned. Because, with CTGS as the 

piezoelectric crystal with a diameter of 4 mm, 1 V represents 198 MPa, a reasonable estimate 

for the stress can be made during the experiment and anomalies in the measurement detected. 

2.2.5. Deformation geometry 
The 6-axis MAVO press has the distinctive capability of allowing individual manipulation of 

each anvil. Under high-pressure conditions, the anvils can be programmed to move inwards or 
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outwards at a predetermined rate. However, due to the specific role of anvil 1 (the bottom anvil) 

in managing the sample's hydrostatic pressure, it is not allocated for motion-induced 

deformation, as its primary function is to maintain the user-determined oil pressure. This static 

positioning of anvil 1 subsequently requires anvil 2 to remain in a motionless relative position, 

as it serves as its counterforce.  

As a practical workaround to impart deformation at high pressure, anvils 3 and 4 are instructed 

to move inward at a specified rate, while anvils 5 and 6 are tasked to retreat outwards at an 

equally defined rate. Theoretically, stress is postulated to be uniaxial and radially symmetric, 

maintaining a constant volume space, but in practical applications, this is not the case. While 

volume conservation is observed, the resulting stress deviates from radial symmetry. Within 

the six-dimensional press structure, anvils 3 and 4 are responsible for applying the σ1 stress, 

anvils 5 and 6 operate in the σ3 direction through their outward retreat, and anvils 1 and 2 align 

with the σ2 direction. Consequently, the stress imparted on the sample during deformation 

exhibits a triaxial nature. 
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Figure 36. Scanning electron microscope image in secondary electron mode of an assembly 

that was deformed at high pressure and temperature, with parts labeled according to Table 3. 

J is the dense zirconia and the edges have been labeled to show that the zirconia rod retains 

close to 90° angles at the corners. Contrast that with part D that is made of crushable, or high 

porosity, zirconia that shows an indentation into it from the sample, MgO in this case, due to 

deformation. 

 

To promote a homogenous strain distribution on the sample as the anvils advance, rods made 

of zirconia, positioned above the sample, are chosen for their high shear strength. Notably, the 

low-porosity zirconia rod situated atop the sample ensures that the load on the sample is spread 

uniformly across its surface. This observation was confirmed through Scanning Electron 

Microscopy (SEM) imaging, which showed that a flat and uniform interface surface is 

maintained between the sample and zirconia. Notably, the low-porosity zirconia maintained a 

square corner of 90° angle, deviating by less than one degree, as evidenced by SEM imaging in 

Secondary Electron (SE) mode.  
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As long as the sample has a lower yield strength than the zirconia rods, the assumption is made 

that the strain imposed by the anvils during deformation is accommodated by the sample and 

not other parts within the assembly. This assumption is not necessary in synchrotron 

experiments, as the strain can be directly measured in situ using X-ray radiography during the 

experiment. This is of course not possible off the beamline. 

2.2.6. Charge measurement process 
In this experimental setup, known as the piezoelectric assembly, a piezoelectric crystal is 

positioned with electrodes on opposite sides. Platinum wires, insulated with 

polytetrafluoroethylene (PTFE) sleeves, connect the electrodes, preventing any electrical 

contact with the second-stage anvils and the outer alignment cube. These wires are threaded 

through drilled holes in the cube and gaskets, allowing for a clean exit from the assembly. 

Outside the alignment cube, the wires are soldered to an ultra-low capacitance shielded cable, 

selected for its optimal electrical properties. The Lapp Kabel UNITRONIC® BUS PB cable, 

with a maximum mutual capacitance of 30 nF/km and a conductor resistance of 186 Ω/km is 

used for this purpose. Its impedance rating of 150 ± 50 Ω, makes it particularly well-suited for 
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the experiment. Choosing a cable with low capacitance and resistance is essential due to the 

small current generated by the crystal during deformation. 

 

Figure 37. The charge integrating device and the software custom built for it. The top image is 

of the front of the device, with the key front components labeled. The bottom image is a 

screenshot of the custom software built for measuring the voltage during a deformation 

experiment. See the text for details on each component. The software was developed by Gerald 

Bauer (Bayerisches Geoinstitut, University of Bayreuth). 

The cable is connected to a charge integrating device built specifically for these experiments. 

An image of the front of the charge integrating device, as well as a screenshot of the software 

custom-built for these measurements, is shown in Figure 37. In the top part of the figure, 

components on the front of the device are labeled with letters.  

‘A’ is the on/off switch for the device, which powers the entire system. ‘B’ is a button that 

resets the current voltage as well as the overflow counts, both positive and negative, back to 

zero. This is essential for initializing the measurement process to avoid overflow above 10 V 

or below -10 V as the voltage is briefly non-linear during the switch. ‘C’ is the black dial that 

adds or subtracts a constant voltage drift to the measurement voltage in the integrating 

capacitor; this is crucial for calibration purposes, and the directions for inducing a positive or 
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negative voltage drift are indicated. ‘D’ is the 5-pin DIN connector port, which connects the 

cable to the piezoelectric crystal. This DIN connector includes an outer screw for grounding, 

reducing electrical interference and ensuring accurate measurements. ‘E’ is a switch that 

enables or disables the voltage drift set by the knob associated with ‘C’. This allows the user to 

apply or remove the voltage drift during different stages of the experiment. ‘F’ displays the 

current voltage, labeled as “Int. Volt.”, and keeps a count of the number of positive and negative 

overflow resets to the voltage, labeled “Qin Cnt.” and “Qout Cnt.”, respectively. This feature 

allows for monitoring and documenting the experiment's progress in the absence of a 

connection to a computer. Lastly, ‘G’ comprises two banana plugs that permit the direct 

measurement of the voltage. These are typically left unplugged during experimental runs to 

minimize noise and thus maintain the integrity of the data collected. Below the device is a 

screenshot of the custom software that records voltage measurements during an experiment. 

The voltage is represented by the yellow line on the plot. On the left side of the interface, the 

current voltage measurement, denoted as “U(Q)”, and the overflow counts are prominently 

displayed.  

A simplified block diagram of the charge integrator circuit is depicted in Figure 38. This device 

integrates the charge generated by the crystal throughout the experiment by utilizing a capacitor, 

Cx. The charge accumulating on the crystal surface causes the capacitor to charge, and this 

capacitor possesses a capacitance of 9.964×10-9 F, with a precision of ±1%. As the capacitor 

collects charge, the resulting voltage is measured in real-time. The variation in voltage is then 

transformed into a digital signal by a digital-to-analog converter (DAC), operating at a sampling 

rate of 93.88 Hz. This digital signal is transmitted to a computer via USB and logged for analysis. 

The integrator capacitor has a finite charge capacity; hence, when the voltage reaches the 

thresholds of +10 V or -10 V, the system activates switch S2 to discharge the capacitor in less 

than a microsecond. Concurrently, switch S1 is opened, temporarily halting charge 

accumulation. Once the capacitor is discharged to 0 V, switch S2 opens, and switch S1 closes, 

allowing the process of charge accumulation and integration to resume. Consequently, the 

voltage oscillates between -10 and +10 V. 
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Figure 38. Block diagram schematic of the charge integrator. Piezo is the piezoelectric crystal, 

Sx are switches, Cx is the integrating capacitor. Block diagram provided by the electrical 

engineering team at University of Bayreuth. 

 

This voltage is used to calculate the force exerted on the crystal, as described by Eq. 95: 

 
𝐹𝑁 =

∆𝑉 ∙ 𝐶𝐹
𝑑11

 Eq. 95 

In this equation, 𝐹𝑁 is the force in Newtons, ∆𝑉 the change in voltage, 𝐶𝐹 the capacitance of 

the integrating capacitor (𝐶𝑥) in Farads, and 𝑑11 the piezoelectric strain coefficient specific to 

an X-cut crystal deformed along the X axis. Given that the diameter and area of the crystal are 

known, the force measured can be used to determine the deviatoric stress the crystal experiences 

during deformation, as per Eq. 96: 

 
𝜎11 =

𝐹𝑁
𝐴

 Eq. 96 

   

Here, 𝜎11 signifies the stress along the 𝑑11 axis of the crystal, and 𝐴 is the crystal's area along 

this axis. A pivotal aspect of these measurements is that the absolute voltage measured across 

the capacitor does not hold significance for our calculations; instead, it is the change in voltage, 

represented by ∆𝑉, that is instrumental. This change in voltage, occurring as a result of the 

crystal's deformation, is utilized to calculate the stress applied to the crystal. The rationale 

behind this is that the system is designed to integrate the charge over time. To discern the actual 

charge from the integrated value, we take the derivative of the voltage measurement. In practical 

terms, this derivative corresponds to ∆𝑉, the change in voltage across the capacitor. 
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"To ensure measurement accuracy and account for potential voltage drift over time, a baseline 

voltage is established before each experimental run. This baseline is recorded for at least one 

minute prior to the start of deformation to set a reference point. After deformation, recording 

continues for a minimum of one minute to capture the final voltage, thus determining the net 

change. The knob labeled 'C' on the front of the integration device (see Figure 37), is used to 

manually adjust for any baseline voltage drift during the measurements. Although this knob 

compensates for some drift, any remaining drift constitutes a constant error in the measurement, 

which should be minimized.  

For example, if deformation results in a total ∆𝑉 of 1 V, Eq. 95 can be used along with the 

known capacitance of the integrator's capacitor and the piezoelectric strain coefficient for 

CTGS (4.00×10-12 C/N as per Table 4) to calculate the force on the crystal. This force is 

computed as 2,490 N using Eq. 97. Given a crystal diameter of 4.00 mm (area = 1.26×10-5 m2),  

Eq. 98 is then applied to find the stress: 

 
𝐹𝑁 =

(1 𝑉) ∙ (9.964 × 10−9 𝐹)

4.00 × 10−12 𝐶/𝑁
= 2,490 𝑁 

Eq. 97 

 
𝜎11 =

2,490 𝑁

1.26 × 10−5 𝑚2
= 1.98 × 108

𝑁

𝑚2
= 198 𝑀𝑃𝑎 

Eq. 98 

As shown in Eq. 98, the crystal experiences a deviatoric stress of 198 MPa. It is important to 

note that any voltage drift not corrected manually introduces a consistent error margin in the 

stress measurement, quantifiable as a specific number of MPa per second, based on the 

equations and the observed rate of voltage drift described previously. 

2.3. Piezoelectric crystals 

2.3.1. Quartz 
Quartz has been widely studied in geological sciences partly as a result of its abundance, 

forming about 15% of the Earth’s crust by mass (Pabst & Gregorová, 2013). but also because 

of its commercial manufacture and use in a multitude of applications. Quartz has many 

polymorphs, the most geologically relevant being α-quartz, β-quartz, coesite, and stishovite. On 

the other hand, tridymite and cristobalite are rarely found in nature (Pabst & Gregorová, 2013).  

However, quartz is also piezoelectric, being non-centrosymmetric. Due to quartz being one of 

the most common piezoelectric crystals used extensively in manufacturing, sensor applications 

and computing, the elastic and piezoelectric properties have been very precisely constrained. 

The piezoelectric properties of α-quartz have been measured precisely at many temperatures 

(Cook & Weissler, 1950).  
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α-quartz has a displacive polymorphic, non-quenchable transition, referred to as an inversion, 

from trigonal  (P3121) to hexagonal (P6222) β-quartz, at 573 °C at 1 bar (Nesse, 2018). However, 

since quartz is not commonly used at high temperatures in most applications, there is less 

precise information on the properties of β-quartz. β-quartz is still piezoelectric, but d11 vanishes 

at the inversion temperature, and d14 changes from having a strong positive correlation with 

temperature to having a slight negative one (Cook & Weissler, 1950).  

Since d11 varies less than d14 with temperature, for this work, the piezoelectric crystals were X-

cut to minimize temperature effects. With an X-cut crystal, d11 is the piezoelectric coefficient 

that converts stress to charge polarization. Any changes in the piezoelectric coefficient, if left 

uncorrected, result in a systematic error in the calculation of stress. If the coefficient increases, 

for example, the slope of the charge generated would also increase. To reduce this source of 

systematic error, d11 was chosen over d14. Because d11 vanishes across the α-quartz to β-quartz 

transition, it was necessary to keep the temperature of the piezoelectric crystal below the 

transition temperature of 573 °C at 1 bar of hydrostatic pressure. 

Even though the assembly was designed to keep the piezoelectric crystal’s temperature below 

the β-quartz transition, even when the central region of the assembly might reach higher 

temperatures, other complications emerge when using quartz for stress measurements. A 

significant issue is that α-quartz natural undergoes ferrobielastic twinning. In quartz, as in many 

feroic materials, the crystal can form mimetic twin domains that are susceptible to reorientation 

under an appropriate coercive stress (Shiau et al., 1984). In practice, this phenomenon appears 

in α-quartz as Dauphiné twinning, or as Brazil law twins when both twin variants coexist within 

a single crystal. 

In both α-quartz and β-quartz, the structure consists of silica tetrahedra that link together to 

form spirals, extending parallel to the c-axis. When viewed down the c-axis, these spirals 

produce a hexagonal symmetry in β-quartz (Nesse, 2018). Being a displacive polymorph, in α-

quartz the silica tetrahedra distort, rotating by 23.3° (Thompson et al., 2011), and reducing the 

symmetry to trigonal. This symmetry is enantiomorphic with space groups of P3221 and P3121 

respectively, related by a 180° structural rotation about the optic axis (Pabst & Gregorová, 

2013).  

While the enantiomorphic forms are equivalent from a thermo-mechanical viewpoint, they are 

sometimes called electric twins because they are not equivalent from a piezoelectric, or 

dielectric dipole viewpoint. In fact, twins have equal but opposite dipole moments. For the 
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purposes of this work, what this means is that effectively the piezoelectric constant d11 of α-

quartz has the opposite sign between the two Dauphiné twins (Yamni, 2001). Additionally, the 

signs of the elastic compliance coefficient 𝑆14 reverse (Mansfel’d et al., 1997). The elastic 

compliance reversal is not particularly relevant to this work, unlike the reversal of the 

piezoelectric coefficient. 

From a thermodynamic perspective, ferrobielastic switching occurs when a twin state attains a 

lower Gibbs free energy than its counterpart. Importantly, the reorientation involves only minor 

atomic displacements, so the process does not require the breaking of Si-O bonds. Under 

constant temperature, the Gibbs free energy difference between the two Dauphiné twin states 

is expressed by Eq. 99 (Shiau et al., 1984) 

 Δ𝐺 =  2𝑑11(𝐸1𝜎1 − 𝐸1𝜎2 − 2𝐸2𝜎6) + 2𝑆14(𝜎1𝜎4 − 𝜎2𝜎4 + 2𝜎6𝜎6) Eq. 99 

(Shiau et 

al., 1984) 

 

In Eq. 99, the first term emphasizes the contribution of the piezoelectric coefficient 𝑑11 along 

with its driving forces. These are the product of the electric field 𝐸 and the stress 𝜎. This 

ferroelastoelectric term represents the energy difference between the twin states as established 

by previous experimental studies. (Laughner et al., 1979). Achieving switching via this 

mechanism requires applying both a high mechanical stress and a strong electric field 

simultaneously. 

In our experimental setup, while there are large mechanical stresses, there is no electric field 

imposed across the crystal besides the small field imposed by the piezoelectric charge, which 

is discharged through the electrodes quickly. Thus, this term’s contribution to switching and 

twin-formation is minor. In fact, experiments have shown that with application only of 

mechanical stress coupling the 𝑆11  direction and no electric field, no twinning is observed 

(Laughner et al., 1979). Therefore, for our experimental setup, only the second term of Eq. 99 

is relevant and is responsible for twinning problems present in α-quartz as a piezoelectric sensor.  

The second term of Eq. 99 involves the compliance coefficient S14. The compliance coefficient, 

𝑆𝑖𝑗𝑘𝑙, is given by 

 𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙  

 

Eq. 100 (Knowles & Howie, 

2015) 
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Where 𝜀𝑖𝑗  is strain and 𝜎𝑘𝑙  is stress. By applying various mechanical stress combinations, 

switching can be achieved, and twins formed. The stress required to initiate twinning is called 

the coercive stress, σc. It has been shown by experimental work that initiation of crystal 

twinning requires a lower σc for higher temperatures, i.e. it has an inverse correlation (Shiau et 

al., 1984). 

 

Figure 39. Relationship between coercive stress (𝝈𝒄 ) and temperature. The data points 

represent experimental results from S. Shiau et al. (Shiau et al., 1984). The two linear fits 

demarcate the temperature threshold to initiate twinning with a given deviatoric stress, with 

distinct slopes (S) and intercepts (I) before and after a sudden change in slope. The point at 

which the slope changes was optimized for minimal error. This point was determined by 

systematically sampling values over the temperature range and selecting the value that 

minimized the difference between the two linear fits. 

 

This type of ferrobielastic twinning occurs when stresses are applied transversely to 𝑑11, or X, 

for example along Y or Z, as shown in Figure 15, and not normal to X. However, solid-state 

deformation, especially at a high confining pressure, is not a simple uniaxial system. Static 
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friction can cause transient stresses in unexpected directional axes to build and release. This is 

usually only expected during either compression to the necessary hydrostatic pressure or 

pumping down at the end of the experiment.  

As mentioned previously, however, the press does not perform truly uniaxial deformation. 

While two opposing rams advance along the crystals X direction, increasing 𝜎11, to sustain 

equal volume in the sample space, some rams must be retracted. Due to inherent design 

limitations, one set of two opposing rams must be kept at constant pressure and thus cannot 

advance, leaving the only possibility to retract just two opposing rams. In practice, this results 

in a pure shear stress on the sample.  

In this stress geometry, the second term of Eq. 99 (Shiau et al., 1984) becomes relevant. When 

the coercive stress is reached, the α-quartz begins to twin (Shiau et al., 1984; Yamni, 2001). 

Because the Dauphiné twins have opposite signs of 𝑆14 and 𝑑11, a high enough stress can cause 

the second term to flip the sign of the whole equation and make the opposite Dauphiné twin 

more stable.  

Previous work has shown that if the crystal is small enough and the temperature low enough, 

the twinning can occur over the whole crystal suddenly. In this case, the polarization vector 

would switch directions near instantaneously, the result of an enantiomorphic switch from 

either P3221 to P3121, or vice-versa. If the charge is measured from the crystal during this 

sudden twinning, the charge would reverse in flow, i.e., the voltage generated reverses in sign 

suddenly.  

However, at higher temperatures (Roughly above 150° C as reported in literature (Mansfel’d et 

al., 1997; L. A. Thomas et al., 1951; Yamni, 2001), but with a wide range) or higher hydrostatic 

pressure (Bertagnolli et al., 1979; Laughner et al., 1979), the whole crystal does not twin at 

once. Dauphiné twinning begins at nucleation sites formed by either point defects or 

dislocations in the crystal structure (Bertagnolli et al., 1979). These domains then grow over 

time, slowly twinning the whole crystal.  

During this growth, the crystal consists of two distinct domain groups, one with space group 

P3221 and another with P3121. The polarization vector, as described before, is reversed between 

these two domains, the result of a sign flip of each component in the 𝑑𝑖𝑗 and 𝑒𝑖𝑗 tensors. When 

measuring the voltage or charge on the crystal faces as it deforms, the twinning results in a 

smooth reversal of the trend. Depending on the number of twin domains formed and the 

physical size of the crystal, this voltage sign reversal could either occur in larger discrete steps, 
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that could be seen on a time plot of voltage or charge, or form a smooth reversal curve (Shiau 

et al., 1984).  

In this study, any smooth reversal in the charge or voltage caused by Dauphiné twinning would 

be indistinguishable from a change in stress on the crystal during deformation. The large 

sensitivity of this switching to coercive stress, temperature, and defect density makes the exact 

point of twinning unpredictable during deformation experiments. Coercive stress, which is the 

minimum stress required to initiate twinning, varies significantly with both temperature and the 

crystal’s internal structure. As temperature increases, the crystal’s resistance to deformation 

decreases, lowering the coercive stress needed for twinning (Bertagnolli et al., 1979; Shiau et 

al., 1984; Yamni, 2001). This temperature-dependent behavior adds complexity, particularly 

when experiments are conducted over a wide temperature range.  

Defects in the crystal structure, such as dislocations or point defects, also play a crucial role in 

the initiation of twinning. These defects serve as nucleation sites, making twinning highly 

sensitive to the crystal's defect density (Guzzo & Boy, 2000; Mansfel’d et al., 1997). Variations 

in defect density, whether between different crystals or within a single crystal, further contribute 

to the unpredictability of the twinning process. 

In the context of triaxial deformation using a multi-anvil cubic press, additional complexity 

arises from the presence of a shear stress component associated with the 𝑆14 term. This shear 

component interacts with the crystal’s internal defect structure and plays a significant role in 

determining the conditions under which the coercive stress is reached, and twinning occurs. 

There is also hysteresis in the coercive stress (𝜎𝑐). Each time a crystal twins under stress, the  

𝜎𝑐 decreases (Herzbach & Müser, 2006; Yamni, 2001), making subsequent twinning easier. 

Because of the inherent error introduced by ferrobielastic switching in α-quartz, its use in this 

study has been limited to low-temperature and low-stress deformation experiments. 
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Figure 40. An example of the effect of ferrobielastic switching in an experiment conducted with 

this assembly utilizing α-quartz as the piezoelectric crystal. The switch is seen happening at 

around 450 MPa. This experiment was deformation of water ice at 2.3 GPa in compression. 

 

As a clear example of the issue of ferrobielastic switching in α-quartz for this assembly, Figure 

40 plots the stress, as measured through the charge induced by the polarization of α-quartz, on 

the vertical axis and the strain on the horizontal axis, for a deformation experiment performed 

on water ice at room temperature and 2.3 GPa. At this pressure and temperature, water is solid 

(French et al., 2009; Salzmann, 2019).  

As can be seen by the vertical red line at the start, the initial stress as deformation is started is 

positive. The stress increases close to linearly until a strain of 0.05. At this point, the slope 

begins to decrease, which could be interpreted as the end of the elastic regime and the 

commencement of the creep regime. However, it continues to decrease and at 0.07 strain it 

actually reverses direction. Even though this is a compressive experiment, and stress should not 

realistically decrease at such a point, it continues to do so. At the end of the uniaxial 

compressive experiment, the stress, as measured by the α-quartz piezoelectric crystal, is 
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apparently negative.  This is unlikely and no clear mechanism can explain why a compressive 

experiment would result in an initial increase in stress, then a plateau followed by a smooth 

transition to a decrease in stress and finally a negative stress, as compared to the beginning of 

the deformation, of -80 MPa.  

Indeed, according to Figure 39, a ferrobielastic switch in α-quartz, at room temperature, would 

be expected at roughly 400 MPa, and would therefore provide a better explanation of the 

behavior. 

 

Figure 41. Figure 3 modified from Shiau et al. (Shiau et al., 1984) showing force applied on 

an α-quartz crystal (horizontal axis) while the charge developed along the surface is measured 

(vertical axis). Shown is only the compressive section of the curve, with the load reducing 

section removed for conciseness. The compressive force was applied at 250 °C and 1 bar of 

pressure. 

 

This case becomes stronger when compared to literature data on surface charge measurements 

made during compressive force experiments on α-quartz, as shown in Figure 41, which is 

modified from figure 3 in Shiau et al. (Shiau et al., 1984). In this case, the stress applied, which 

is plotted on the horizontal axis, is measured externally with a force sensor, and the vertical axis 

shows the charge developed across the crystal surface.  
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As an analogue to the experimental plot from this study, shown in Figure 40, the stress 

measured in this study is calculated from the surface charge density of the crystal during 

deformation, so the axes are directly comparable. As can be seen in Figure 41, as force, or 

stress, is applied to the crystal, the charge generated is initially negative. As a result of 

ferrobielastic switching, there is a change in the gradient of surface charge with stress and the 

charge then becomes positive. This change in the curvature of the charge density looks 

remarkably similar to the measurements from this study in Figure 40. The similarity in the 

charge response observed in Figure 40 and the similar stress state at which it occurs compared 

to literature data (Mansfel’d et al., 1997; Shiau et al., 1984) are strong indicators that 

ferrobielastic switching is occurring.  

The recognition of this effect leads to the search for a different piezoelectric crystal to be used 

in these experiments. 

2.3.2. CTGS 
The relatively low temperature of transition from α-quartz to β-quartz (570 °C), coupled with 

the problem of ferrobielastic twinning, means that for higher temperature and higher stress 

applications, new piezoelectric crystals are required. While α-GaPO4, which has the same 

crystal class as quartz, has a higher phase transition temperature to the β-GaPO4 phase, at 930 °C 

(Beaurain et al., 2006; Kosinski et al., 2001), it still undergoes ferrobielastic twinning. Another 

issue with GaPO4 is that it cannot be grown with the relatively affordable and mass producible 

Czochralski (CZ) method (Beaurain et al., 2006). It must be grown hydrothermally instead, a 

slow process that results in much smaller crystal sizes. This makes it commercially unviable for 

mass production in sensors.  

CTGS (Ca3TaGa3Si2O14) is a crystal also of the same crystal class as quartz but is part of the 

langasite group of crystals. The langasite group of crystals was first reported in 1993 (Shannon, 

1993), with the name coming from the first described phase being La3Ga5SiO14 (commonly 

reported as LGS), or langasite. The langasite group has the generalized chemical formula 

A3BC3D2O14 (Zhang et al., 2009). The A and B sites are a decahedron coordinated by eight 

oxygen atoms and an octahedron coordinated by six oxygen atoms, respectively. The C and D 

sites are tetrahedra, with the C being larger than the D site, thus the larger cations tend to go 

into the C site. The C and D sites form layers, alternating along the 𝑐 axis with the A and B 

layers.  
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Figure 42. Crystal structure of CTGS, generated with the software VESTA (Momma & Izumi, 

2011, p. 3). Two views are presented and the lattice orientation described to the left of each. 

The black lines are unit cell boundaries. The legend of the polyhedra are provided on the right 

Crystal structure file from Ai et al., (2024). 

 

The langasite group can be broken down into two subgroups, an ordered and disordered group. 

In the disordered group, Ga3+ cations occupy three positions, the B, C, and half of the D sites. 

Si4+ occupies the other half of the D site. The ordered group meanwhile has only one cation 

type occupying each site (S. Zhang et al., 2009). The langasite group is still being studied 

extensively for use in higher temperature applications where the piezoelectric effect is used to 

measure environmental properties (Fritze et al., 2003). In general, langasite group crystals have 

higher piezoelectric strain coefficients than quartz, ranging from factors of 2 to 3. This is desired 

in almost every application as a higher piezoelectric coefficient means a higher precision in, for 

example, force measurements.   

As can be seen in Table 4 (Zhang et al., 2009), the disordered langasite structures tend to have 

lower resistivity. The explanation typically given is that  oxygen vacancies are the main charge 

carriers in langasite group crystals at temperatures below roughly 300° C, and the activation 
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energy for oxygen vacancy migration is, therefore, the main factor controlling the electrical 

conductivity (Zhang et al., 2009). 

Table 4. Properties of disordered and ordered langasite-structure piezoelectric single crystals. 

All measurements except resistivity (𝜌𝑅) taken at room temperature. ρ is density in g/cm3, ε11 is 

the dielectric coefficient, S11 is the compliance coefficient, d11 the piezoelectric coefficient, and 

ρR is the resistivity. The values in the 11 direction are provided since this is the direction of σ1 

in the experiment. Table modified from Zhang et al., (2009). 

Name Composition Structure 𝜌 

[g/cm3] 

𝜀11 𝑆11 

[m2/N] 

×10-24 

𝑑11 

[C/N] 

×10-12 

𝜌𝑅 

[Ω·m] 

At 500° C 

LGS La3Ga5SiO14 Disordered 5.85 18.0 8.86 6.20 9.0×104 

LTG La3Ta0.5Ga5.5O14 Disordered 6.12 19.6 9.07 7.10 1.5×105 

LNG La3Nb0.5Ga5.5O14 Disordered 5.95 20.7 9.27 7.40 5.0×105 

LTGA La3Ta0.5Ga5.3Al0.2O14 Disordered 6.07 21.0 9.15 6.60 2.2×105 

LNGA La3Nb0.5Ga5.3Al0.2O14 Disordered 5.90 19.5 9.90 6.90 1.1×106 

SNGS Sr3NbGa3Si2O14 Ordered 4.65 12.4 8.80 5.40 6.3×105 

STGS Sr3TaGa3Si2O14 Ordered 5.12 11.8 8.69 4.90 3.7×106 

CNGS Ca3NbGa3Si2O14 Ordered 4.15 17.5 8.75 4.00 6.9×105 

CTGS Ca3TaGa3Si2O14 Ordered 4.63 16.5 8.95 4.00 1.7×107 

CTAS Ca3TaAl3Si2O14 Ordered 4.04 13.0 8.51 4.30 2.7×107 

 

In the ordered langasite group crystals, the oxygen vacancies are trapped in deeper potential 

wells due to the longer-range ordering (Pisarevsky et al., 2004). To hopefully optimize the 

electrical properties of the piezoelectric crystal used in this study, an ordered crystal was chosen. 

Purchase enquiries for both CTAS and CTGS were made, but CTGS was more readily available 

and was thus chosen. The crystal structure of CTGS is shown from two views in Figure 42. 

Since low electrical resistance is critical for the stress measurements in this study, CTGS was 

chosen due to its markedly higher resistance values compared to α-quartz or even GaPO4. 
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Previous literature data has shown that CTGS has an electrical resistance that is several orders 

of magnitude higher than α-quartz (S. Zhang et al., 2009).  

 

Figure 43. Literature data of measured electrical resistivity of α-quartz, GaPO4, and CTGS. 

Sensitivity, i.e., the piezoelectric strain coefficient d11 in pC/N is on the vertical axis and 

temperature on the horizontal axis. All crystals plotted at a constant resistivity of 106 Ω·cm. 

Modified from Shujun & Yu (Zhang & Yu, 2011) 

 

This is evident in Figure 43, where α-quartz, GaPO4, and CTGS are plotted at a constant 

electrical resistivity of 106 Ω·cm. As these materials are dielectrics, their electrical resistance 

decreases with temperature following Arrhenius-like behavior. Consequently α-quartz at 

300 °C has the same resistivity as CTGS at 1000 °C. This trend holds true at all temperatures 

unless a phase transition is crossed, melting occurs, or new electrical conduction mechanisms 

are engaged (Zhang et al., 2009; S. Zhang & Yu, 2011). In addition, the piezoelectric strain 

coefficient d11, on the vertical axis, shows that CTGS has roughly double the sensitivity as α-

quartz.  
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In addition to these two reasons, and perhaps most critically, CTGS was chosen because, after 

an extensive literature review, no evidence was found for the occurrence of ferrobielastic 

switching in this material, as found for α-quartz. Additionally, experimental data from this study 

measured no ferrobielastic switching in any experimental run with CTGS as was seen in α-

quartz commonly, except for perhaps a single one at the beamline. Theoretically, all minerals 

in the P321 space group have enantiomorphic forms, or electric twins (Konstantinova et al., 

2022; Poplavko, 2019). CTGS does grow in one of two twinned forms, P3221 and P3121 (Kong 

et al., 2018; Konstantinova et al., 2022; Suhak et al., 2018), but it seems to not undergo 

ferrobielastic switching as readily as α-quartz.  

There are multiple possible reasons as to why this is the case. One possibility is that while 

CTGS does have a small amount of disordering, one study finding that 2.9% of Ca atoms are 

displaced into the general site that O atoms are normally in (Dudka, 2016), this is still the lowest 

among the langasite-group crystals (Dudka, 2016; Konstantinova et al., 2022) and CTGS is 

actually the most ordered in the group. Ferrobielastic twinning still requires dislocations or 

defects to serve as nucleation sites for the twinning process (Guzzo & Boy, 2000; Mansfel’d et 

al., 1997) that allow the twinned domains to grow and ultimately convert the whole crystal. The 

high-level of ordering in CTGS may result in fewer nucleation sites.  

However, the most likely reason for the lack of an observable ferrobielastic effect in CTGS is 

due to the exceptionally low value of the 𝑆14 and 𝐶14 elastic coefficients. Studies disagree on 

the precise 𝐶14 elastic coefficient of α-quartz, but most report that at 1 bar and room temperature, 

α-quartz’ 𝐶14 elastic coefficient ranges between -18.20 and -15.7 GPa (Calderon et al., 2007; 
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Heyliger et al., 2003) for both natural and synthetic crystals. However, most work reports that 

CTGS’ 𝐶14 elastic coefficient is well below 1 GPa, never exceeding 0.77 GPa (Ma et al., 2017) 

and some report it as low as 0.44 GPa (Zu et al., 2016).  

Recalling Eq. 99 (Shiau et al., 1984), specifically the second term, the whole term is multiplied 

by 𝑆14 twinning under a mechanical load only with no applied electric field (the first term of 

Eq. 99 (Shiau et al., 1984)), a small value of 𝑆14 is preferred. CTGS, among all the langasite-

group minerals, fits this criterion best. Since CTGS has no quartz-like α to β transition, up to 

its melting temperature, irregularity or a lowering of the piezoelectric sensitivity is avoided. 

Studies disagree on the 1 bar melting temperature of CTGS, but even the lowest temperature of 

1400 K (Ma et al., 2017) is far above any temperatures expected to be imposed onto the crystal 

during an experimental deformation run. Figure 44 plots some of the reported melting 

temperatures of CTGS.  

Figure 44. Various reported 

melting temperatures from studies 

on CTGS. The height of the black 

bars encompasses each respective 

studies’ reported melting 

temperature range for CTGS, in K. 

The sources used are Wang et al. 

(2003), Yu et al. (2011), Ma et al. 

(2017), Suhak et al. (2018), and 

Ouyang et al. (2021). 
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By choosing CTGS for the experiments in this study compared to α-quartz, clear benefits are 

gained in terms of a higher piezoelectric coefficient, higher resistivity at all temperatures, lack 

of an α to β structural transition, and the apparent absence of ferrobielastic switching. 

2.4. X-ray diffraction 

2.4.1 X-ray diffraction to verify piezoelectric assembly 
High pressure piezoelectric stress determination is a novel method, and an extensive literature 

review did not reveal any other applications of piezoelectric crystals to measure high-pressure 

and -temperature deformation stresses in large volume presses. For any new measurement 

method to be verified for accuracy and precision, a comparison to established or trusted 

methods must be undertaken.  

For example, a naïve assumption could be that measuring the additional oil pressure required 

to advance the pistons, as compared to the hydrostatic oil pressure, it would be possible to 

measure the stress required to deform. However, in any apparatus that deforms a solid media, 

the force applied onto the anvil is not representative of the stress the actual sample within the 

assembly experiences. Frictional losses with the pyrophyllite gaskets, stress transmitting around 

the sample through the assembly, and frictional losses within the assembly itself decouple the 

force to advance the ram from the actual stress the sample is exposed to (Passelègue et al., 2020; 

Walker et al., 1990).  

This method can only be used if the hydrostatic pressure media is a liquid or gas, and the 

advancing ram is in contact with the sample only. In this case, as it advances within the pressure 

media, the force required to move it can be considered as directly representative of the force 

applied to the anvil from the exterior, assuming that the friction along the seal can be quantified 

beforehand. This technique has been used with Paterson apparatus (Fischer & Paterson, 1992; 

Paterson, 1970; Violay et al., 2015, 2017) before. Since this high-pressure device uses an inert 

gas to apply confinement, the assumption of hydrostatic conditions within the sample chamber 

is safe to make.  

In this case, to avoid the issue of seal friction when using an external load cell on the ram, 

internal load cells can be used. An example of one such internal load cell is a Wheatstone bridge 

which precisely records resistance variations along a conductor. Since, when a conductor strains 

the resistance changes due to the change in conduction length through it, a material with known 

strain-stress relations can be used as a stress sensor (Meyer et al., 2023). This sensor type is 

relatively robust and can withstand high-pressures and -temperatures, within limits. The 

pressures are limited by the solidus of the pressure media and the mechanical robustness of the 
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Wheatstone bridge. In practice, this limit is about 500 MPa and up to 800 °C (Cornelio & Violay, 

2020; Eccles et al., 2005; Meyer et al., 2023; Noël et al., 2019; Walker et al., 1990).  

While useful, this is clearly far below the pressure and temperature capabilities of large volume 

presses such as D-DIA and cubic presses. The only in situ method previously available for 

measuring the stress of a sample directly has been XRD at a synchrotron facility. By measuring 

the microstrain of lattice planes within a crystal at pressure, once can derive the stress. Since 

this technique has been widely used for decades (Burnley & Kaboli, 2019; Duffy, Shen, Heinz, 

et al., 1999; Singh et al., 1998), this was chosen as the method to verify the viability of the 

piezoelectric method.  

To this end, deformation experiments were undertaken at a synchrotron facility where the stress 

of a deforming sample was measured using the Singh et al. (1998) method, previously described 

with Eq. 4 to Eq. 6, and the piezoelectric crystal method simultaneously. The XRD stress 

measurement method was used as the standard to compare to the piezoelectric crystal method. 

All experiments were performed at the Deutsches Elektronen-Synchrotron DESY, PETRA-III 

synchrotron located in Hamburg, Germany. The P61B beamline end station at DESY is ideal 

for these experiments as it contains a cubic six-ram large volume press, identical in geometry 

to the press at BGI. The LVP there is an Aster-15 Voggenreiter GmbH 6 ram press with a 

maximum load on each axis of 5 MN, for a total load of 15 MN (Farla et al., 2022).  

Besides the lower achievable maximum force compared to the MAVO press at BGI, the 

identical geometry of the press at P61B allowed for the maximum possible relation of 

experiments at the beamline with experiments done in-house at BGI. As such, the cubic 

assembly itself was kept identical to the experiments at BGI, apart from an initial experimental 

run at P61B in which the assembly cube was made of boron-epoxy instead of the Cr-doped 

MgO typically used at BGI. This was chosen at the time due to uncertainty if the x-ray beam 

was bright enough to pass through the MgO cube. X-ray absorption of materials is positively 

correlated with increasing atomic number and density (Heismann et al., 2003). By using a 

boron-epoxy cube, the density is reduced and since boron has a lower atomic number as 

compared to Mg, the x-rays are attenuated to a lesser degree. The requirement is that the boron 

is amorphous to avoid diffraction peaks from it (Besson et al., 1992). These can interfere with 

the peaks from the sample.  
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After that initial beamtime, it was made obvious that the x-ray beam at P61B is sufficiently 

bright to not cause issues of attenuation from Cr-doped MgO cubes and so subsequent 

experiments utilized an identical assembly to the one described previously. 

2.4.2. P61B beamline at DESY 
The P61B beamline at PETRA-III is a white beam. The previous discussion on XRD techniques 

and the measurement of stress assumed a monochromatic x-ray beam. A monochromatic beam 

consists of x-rays of a singular energy. According to the Bragg equation (Eq. 2), the d-spacing 

variation in a crystal, measured with a monochromatic beam, alters the diffraction angle as a 

function of the d-spacing. However, with a white beam, which contains a wide range of x-ray 

energies, the d-spacing affects the energy distribution at a specific diffraction angle instead. 

 
𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃 Eq. 101 

The Bragg equation is shown again above, Eq. 101. In the case of white beam diffraction, the 

diffraction angle 𝜃 is kept constant and the d-spacing, 𝑑ℎ𝑘𝑙, will change the energy distribution 

of the diffracted x-rays. Specifically, if the d-spacing decreases, for example due to stress from 

the vertical direction, the wavelength 𝜆 would decrease. To relate the energy with wavelength, 

the Planck-Einstein relation in Eq. 102 is used. 

 
𝐸 = ℎ𝑓 Eq. 102 

 

𝐸 =
ℎ𝑐

𝜆
 Eq. 103 

𝐸  is the energy of a photon, ℎ  is Planck’s constant, and 𝑓  is the frequency of the 

electromagnetic wave. Since the speed of light, 𝑐  is related to the wavelength 𝜆  and the 

frequency 𝑓 by 𝑐 = 𝜆𝑓, it can be substituted into Eq. 102 to derive Eq. 103. In this way, the 

energy of peaks from the XRD pattern can be converted to wavelengths and then using the 

Bragg equation, the d-spacing 𝑑ℎ𝑘𝑙 can be calculated. Thus, the d-spacing of lattice planes can 

be calculated. 

The DESY PETRA-III synchrotron is 6 GeV with a beam current of 100 mA. The 

circumference is 2304 m. At the P61B beamline, the energy range available for diffraction is 

30 – 160 keV with a 2.2 × 1.7 mm beam size. The beam can be blocked with slits to smaller 

apertures to a minimum of 10 × 10 μm (Farla et al., 2022). The detection system consists of two 

high-purity germanium solid-state detectors, Ge-SSD, manufactured by Mirion (Canberra) for 

ED-XRD. Radiography is used to image the sample and the system at P61B uses a white-beam 

X-ray microscope manufactured by Optique Peter.  
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The two detectors, D1 and D2, are mounted on translation stages and goniometers, and can be 

placed at multiple 2𝜃 and azimuthal angles. D1 can be rotated vertically from 3° to 23° 2𝜃 and 

horizontally from 3° to 10° to cover a limited azimuthal range. D2 can rotate horizontally 

between 3° and 10° 2𝜃. An image of the press inside the experimental hutch with the detectors 

shown, mounted to the extruded aluminum rails, is shown in Figure 45. In hydrostatic 

experiments, only a single detector is required. However, in deformation experiments the 

energy distribution around the azimuthal angle is not identical due to stresses. To measure the 

stress, a minimum of two detectors is required, placed at different azimuthal angles. 

 

Figure 45. An image of the P61B beamline hutch. The Aster-15 press is shown to the right and 

the two detectors on the aluminum rails are on the left side (Farla et al., 2022).  

 

In the case of the deformation experiments at P61B to verify the piezoelectric stress 

measurement technique, the detectors were placed at the same angle 2𝜃. This simplifies the 

calculation of stress since if the 2𝜃 angles are identical any difference in peak positions between 

the two detectors is due to stress only. To measure stress, the detectors were placed at different 



2. Methods 

103 

 

positions around the azimuthal angle. D1 was placed at 0° and D2 at 90°. The geometry is 

shown in Figure 46. As stated, 𝜃1 = 𝜃2. In the hydrostatic condition, the energy distribution at 

each point along the diffraction Debye cones is equal along the same 2𝜃 angle everywhere 

around the azimuthal angle. 

 

Figure 46. A render of the geometry and conceptual explanation of the experimental setup at 

P61B for the deformation experiments. The hydrostatic condition is shown in the top half and 

the deviatoric in the bottom half. The x-ray beam enters from the right side into the sample and 

diffracts to the left side in the diagram. 

 

In the deviatoric stress condition, shown in the bottom half of Figure 46, the energy distribution 

is distorted into an elliptical shape. Because of the placement of D1 and D2, they both capture 

the maximum and minimum elliptical energy distribution along the azimuthal conditions 

respectively. D1 is along the deformation axis and D2 perpendicular to this axis. The elliptical 

distribution with azimuthal angle describes a sinusoidal function, with D1 defining the 

minimum amplitude and D2 the maximum amplitude. The general convention is to define the 
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vertical axis as 0° azimuth (Burnley, 2015; Burnley & Kaboli, 2019; Duffy, Shen, Heinz, et al., 

1999; Singh et al., 1998), increasing counterclockwise so detector D2 is at 90° azimuth. In this 

geometry, the d-spacings recorded by detector D1 decrease with the applied stress as they are 

perpendicular to 𝜎1, whereas at D2 d-spacing increase slightly as they are parallel to 𝜎1. A 

sinusoidal curve can be fitted to these two positions, as shown in Figure 47, illustrating the 

decrease in d-spacing at 0° azimuth, i.e. at detector D1. The data was measured at P61B on 

MgO, with no heating, peak (111) only. 

 

Figure 47. An example of the sinusoidal distribution of the d-spacings as measured at detector 

D1 (0°) and D2 (90°). The data was measured on MgO undergoing deformation with no heating. 

The gray vertical line represents the ‘magic angle’ of 54.74°. This defines the d-spacing of the 

MgO assuming hydrostatic conditions. 

 

Eq. 104 — Eq. 106 describe the sinusoidal function for the case where d-spacings are provided 

by only two detectors, at azimuthal angles of 0° and 90°. 

 𝑑ℎ𝑘𝑙(𝜓) = 𝐴 cos(2𝜓) + 𝐵 Eq. 104 

 

𝐴 =
𝑑ℎ𝑘𝑙(0°) − 𝑑ℎ𝑘𝑙(90°)

2
 Eq. 105 

 
𝐵 =

𝑑ℎ𝑘𝑙(0°) + 𝑑ℎ𝑘𝑙(90°)

2
 Eq. 106 
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In Figure 47 the sample of polycrystalline MgO is being deformed uniaxially and as the stress 

increases, the d-spacing at the azimuthal angle of 0° shows decreases, while the value at 90° 

shows a slight increase. The hydrostatic pressure at which the sample is being deformed can be 

determined by the d-spacing at the ‘magic angle’ (Guignard & Crichton, 2015) azimuth of 

54.74°, where the deviatoric contribution to the lattice strain vanishes (Duffy, Shen, Shu, et al., 

1999). This is derived by solving for 𝜓  in this relation: (1 − 3 cos2(𝜓)) = 0 . For the 

experiments at P61B, MgO was used as the pressure standard for all runs. The d-spacing of the 

sinusoidal wave at 54.74° azimuth was used in a 3rd order Birch-Murnaghan (3BM) (Birch, 

1978) equation of state to calculate the experimental hydrostatic pressure. 

 

𝑃(𝑉) =  
3𝐵0
2
[(
𝑉0
𝑉
)

7
3⁄

− (
𝑉0
𝑉
)

5
3⁄

] {1 +
3

4
(𝐵0

′ − 4) [(
𝑉0
𝑉
)

2
3⁄

− 1]} 
Eq. 
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Where 𝑃 is pressure, 𝑉 is compressed volume, 𝐵0 is the bulk modulus, 𝐵0
′  is the derivative of 

the bulk modulus with respect to pressure, and 𝑉0 is the 1 bar reference volume (Birch, 1978). 

Eq. 107 calculates the pressure at room temperature, to which a thermal pressure correction is 

added (Tange et al., 2009). The equation of state parameters for MgO used in the thermal 

pressure-corrected 3BM are listed in Table 5. 

Table 5. EOS parameters for MgO used to calculate the hydrostatic pressures in some of the 

runs. 𝑉0 was calculated from a 1 bar XRD taken of MgO at the start of every experiment. 𝑉0: 

reference 1 bar volume; 𝐾𝑇0 : reference isothermal bulk modulus; 𝛩0 : reference Debye 

temperature; 𝛾0 : reference Grüneisen parameter; 𝑎, 𝑏 : volume-independent adjustable 

parameters. Values from (Tange et al., 2009). 

𝑉0 [Å
3] 𝐾𝑇𝑜 [𝐺𝑃𝑎] 𝐾𝑇0

′  Θ0 [𝐾] 𝛾0 𝑎 𝑏 

From XRD 160.64(18) 4.221(11) 761(13) 1.431(14) 0.29(4) 3.5(5) 

 

All XRD patterns were fitted peak-by-peak using Pseudo-Voigt profiles with the software 

PDIndexer (Yusuke, 2010), if the patterns were clean enough for automated sequential analysis, 

or PeakPo (S.-H. Dan Shim, 2022) if they were not and required manual fitting. Since the 

piezoelectric stress measurement technique determines only the changes in stress, rather than 

absolute values, the initial deviatoric stress state needs to be normalized. The curve is then 

offset so the first measurement point begins at this normalized initial stress state. When 

comparing with XRD-derived stress measurements, since the XRD technique can measure 

absolute stress, the piezoelectrical stress measurement data was normalized to match the first 
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XRD stress point. This initial stress state is unknown for deformation experiments where XRD 

was not performed and in those cases, the initial deviatoric stress state is assumed to be 0 MPa. 

This is quite reasonable if the sample is initially annealed at high temperature to relax stresses 

prior to deformation.  

The samples deformed at P61B are synthetic Mg-Al spinel (MgAl2O4), synthetic MgO, and 

natural San Carlos olivine (α-(Mg,Fe)2SiO4). 

2.4.3. P61B anvils and pressure/temperature calibration 
Since the anvils used at BGI are tungsten carbide, they would attenuate the x-ray beam almost 

completely when used at the beamline and under high pressures because the gap between the 

anvils, sustained by the pyrophyllite gaskets, becomes too small to allow a 5° 2𝜃 diffracted 

beam angle in the horizontal direction. 5° was chosen because the beamline has Pb X-ray 

emission lines at 74.97 KeV (Kα1), 72.80 KeV (Kα2), and 84.94 KeV (Kβ) and 5° 2𝜃 placed 

these in the least intrusive position relative to the sample peaks (Jonnard & Bonnelle, 2011). 

To overcome the attenuation issue, custom anvils were machined. 

Polycrystalline diamond (PCD) is an ideal material choice for this purpose as it has similar or 

higher strength than WC anvils but because it mainly consists of polycrystalline diamond, it 

attenuates x-rays much less than WC. For this reason, WD960C wire drawing blanks were 

purchased from Sumitomo Electric Carbide, Inc. These are polycrystalline diamond wire 

drawing blanks with a metal binder supported by a pressure fitted outer steel ring. The PCD is 

~92% polycrystalline diamond with the rest being the metal binder.  A side view of the anvil is 

shown in Figure 48. 

 

Figure 48. The WD960C wire drawing blank, as received from Sumitomo. The outer steel 

pressure ring and PCD are shown in a cross section. The PCD diameter change through the 

blank is exaggerated. In reality, it only varies by 3%. The wider diameter of the PCD is 16 mm. 
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The WD960C wire drawing blank had to be machined further into a 15/10 anvil. One end was 

truncated to a 10 mm square, with the sides cut down at a 45° angle. The Aster-15 LVP press 

can be rotated along the vertical axis by ±15°. During XRD acquisition, the press is rotated, 

usually only ±3° around this axis. This rotation allows the x-ray beam to diffract a larger number 

of crystallites within the sample and improves the pattern quality. To allow for this rotation, the 

PCD anvils had one side cut down, or ‘shaved off,’ more than the other three sides. The drawing 

of the final anvil after machining, including this extra cut, is shown in Figure 49. 

 

Figure 49. Schematic drawing of the final PCD anvil after machining. The darker gray is the 

PCD and the lighter gray is the pressure fit steel ring. Notice that one side has a deeper side 

cut to allow for a wider x-ray diffraction angle. 

 

The assembly for P61B required only two of these PCD anvils. The other 4 can be typical WC 

anvils supplied by Hawedia GmbH. The WC supplied is type ha-co6%, which means it contains 

6% cobalt as a binder. The schematic drawing for these anvils is shown in Figure 50. These 
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were cut to the same dimensions as the PCD anvil except for the extra side shaved off. The 

arrangement of the two PCD anvils was chosen to allow for the greatest possible angle of 

rotation. One was placed upstream of the beam with the shaved-off side facing the beam and 

the other was placed downstream of the beam with the shaved-off side facing the beam but from 

the other direction. 

 

Figure 50. Schematic drawing of the WC anvils used for synchrotron experiments. Supplied by 

Hawedia. Contains 6% cobalt as a binder. 

 

As shown, two PCD anvils are positioned upstream and downstream, allowing for maximum 

rotational range of the press. The render displays the 1 bar arrangement, where the gaskets are 

relatively uncompressed. At high pressures, however, the gaskets collapse significantly, and the 

gaps between the anvils shrink dramatically. Under these conditions, the rotational range is 

limited to ±3° rotation range only. With the D2 detector placed horizontally at an azimuthal 

angle of 90° and a 2θ angle of 5°, the gap at high pressure allows for a minimum 2θ of 8° 
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towards the D2 detector, with less rotation available on the opposite side. The D1 detector, 

vertically positioned at an azimuthal angle of 0°, is unaffected by the anvil gap. 

 

Figure 51. An equatorial cross-sectional view of the arrangement of the anvils for the P61B 

assembly. The x-ray beam is labeled, as well as the materials of the anvils shown. The top and 

bottom anvil are not shown for clarity. The two thin wires are the piezoelectric wires as they 

exit the assembly through the gaskets. 

 

Due to the ASTER-15 LVP showing an open circuit anvil-to-anvil resistance of approximately 

20 MΩ, the anvils were fully covered with polyimide film tape, except for the areas under the 

gasket and on the front truncation.  
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Figure 52. Views and drawings of the 3D printed plastic alignment cage for the DESY P61B 

beamtimes. The slots cut out along the X-ray beam are to limit X-ray absorption. The holes on 

the edges are for the electrode wires. The wall thickness of the alignment cage is 2 mm. All 

units shown are in mm. 
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T To conduct current for the heating furnace, aluminum foil was placed on the backs of the two 

WC anvils. The anvils were aligned and held in place using a 3D-printed plastic alignment cage. 

Since the temperature of the anvils and the alignment cage can exceed 150 °C during heating, 

stereolithography (SLA) printing with standard resin was chosen to prevent melting, which 

would occur with a fusion deposition modeling (FDM) printer. The alignment cages were 

printed using a Phrozen Sonic XL 4K LCD SLA 3D printer with ABS-like resin. Portions of 

the alignment cage were cut away along the X-ray beam path to avoid shadowing in the 

radiography image, despite the plastic’s low molecular mass and expected low X-ray absorption. 

The dimensions and design of the alignment cage are shown in Figure 52. 

 

Figure 53. Pictures taken of the assembly at the P61B beamtimes at DESY, PETRA-III. (A) 

shows the SLA resin 3D printed alignment cage with extra holes cut through two opposite edges 

where the x-ray beam passes through. (B) shows a top view of the completed and ready 

assembly before compression. The aluminum foil placed on a WC anvil for heating is shown. 

The two red wires are for the piezoelectric crystal. (C) shows the assembly from a front view. 
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Two PCD anvils are shown facing the camera. The two red wires, connected to the piezoelectric 

crystal, are soldered to the wires from the well-shielded cable. 

 

Pictures of the 3D printed alignment cage and PCD anvils are shown in Figure 53. Notice the 

generous use of polyimide tape on the outside of the anvils to eliminate the low resistance 

measured between the first stage anvils of the ASTER-15 LVP. The 3D printed alignment cage 

was found to be re-usable multiple times even though after runs it had slight yellowing and 

embrittlement due to the elevated temperatures.  

Since the ASTER-15 LVP press has a lower maximum force of 5 MN per ram (versus 8 MN 

for the MAVO press at BGI), the relation of oil pressure to force per ram is different. This had 

to be corrected. For all experiments, the oil pressure to sample pressure calibration curves were 

obtained from Sano-Furukawa, A. et al (Sano-Furukawa et al., 2014), with calibration 

experiments conducted using time-of-flight (TOF) neutron diffraction measurements on NaCl. 

The six-axis press used for the calibration by Sano-Furukawa, A. et al, ATSUHIME, is installed 

at the high-pressure neutron beamline (PLANET) at BL11 of the spallation neutron source of 

the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator 

Research Complex (J-PARC). The exact calibration points were provided by Dr. Sano-

Furukawa through private communication. While the XRD experiments contained MgO for in 

situ pressure determination, it was decided to use the Sano-Furukawa et al (2014) calibration 

curves even at the synchrotron. This decision was made to ensure consistency and comparability 

with the experiments conducted off the beamline at BGI, which also utilized the Sano-Furukawa 

calibration. 
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Figure 54. Calibration data for the MA6-6 15/10 cubic assembly from Sano-Furukawa, A. et 

al. (Sano-Furukawa et al., 2014). The curves have been fitted with a quadratic equation and 

the goodness of fit is shown below them. The left plot is for the MAVO press at BGI and the 

right plot is for the P61B ASTER-15 press at DESY. 

 

The quadratic equation used to fit both data points is provided in Eq. 108 along with the table 

of fitting parameters used for both curves. In the equation, 𝑃ℎ is the sample hydrostatic pressure 

and 𝑃𝑜 is the ram oil pressure. 

 𝑃ℎ = 𝑎 ∙ 𝑃𝑜
2 + 𝑏 ∙ 𝑃𝑜 + 𝑐 Eq. 108 

 Table 6. Fitting parameters used in Eq. 108 for the MAVO and ASTER-15 press 

Press 𝑎 𝑏 𝑐 

MAVO (BGI) −2.616 × 10−4 9.524 × 10−2 1.062 × 10−1 

P61B (ASTER-15) −1.056 × 10−4 6.049 × 10−2 1.076 × 10−1 
 

 

 

Since the deformation experiments at the P61B beamline at PETRA-III synchrotron did not 

contain a thermocouple in the assembly, the temperature versus power relationship that was 

previously found through calibration runs made using a thermocouple, displayed in Figure 31, 

was used to determine the required power level for heating in watts. Since the power to 

temperature relation varies with the sample hydrostatic pressure, 2nd order surfaces were fit to 

the sample pressure and heating power to allow for calculation of the expected sample and 

piezoelectric crystal temperature. This was done for both the MAVO press at BGI and the 
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ASTER-15 press at P61B. The results of these fits, for all four combinations of two presses and 

two temperature locations, is shown in Figure 55. 

 

Figure 55. The 2nd degree surface fits to the power, temperature, and pressure relations derived 

from calibration experiments at BGI for power/temperature and Sano-Furukawa et al. (Sano-

Furukawa et al., 2014) for ram force to sample pressure. (a) is the sample pressure (MAVO, 

BGI) to sample temperature, (b) is the sample pressure (MAVO, BGI) to piezoelectric crystal 

temperature, (c) is the sample pressure (ASTER-15, P61B) to sample temperature, and (d) is 

the sample pressure (ASTER-15, P61B) to piezoelectric crystal temperature. 
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The 𝑅2 of the fit is shown in each legend for all four fits. The generalized equation to fit the 

surfaces is presented below in Eq. 109. 

 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 Eq. 109 

 

Table 7. The parameters for the 2nd order surface fit to the sample hydrostatic pressure for both 

the MAVO press at BGI and the ASTER-15 press at P61B, and the temperature of the sample 

and piezoelectric crystal (PZE) are listed below. For all cases, 𝑦 = power [W]. 

 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 

𝑥 = P (MAVO) [GPa] 

𝑓(𝑥, 𝑦) = T (sample) [°C] 
−5.413 × 100 5.384 × 10−4 −4.910 × 10−2 5.383 × 101 1.129 × 100 −8.127 × 101 

𝑥 = P (MAVO) [GPa] 

𝑓(𝑥, 𝑦) = T (PZE) [°C] 
−2.268 × 100 −2.671 × 10−6 −1.026 × 10−3 2.390 × 101 1.977 × 10−1 −1.800 × 101 

𝑥 = P (ASTER-15) [GPa] 

𝑓(𝑥, 𝑦) = T (sample) [°C] 
−6.983 × 100 5.300 × 10−4 −6.430 × 10−2 5.180 × 101 1.119 × 100 −4.991 × 101 

𝑥 = P (ASTER-15) [GPa] 

𝑓(𝑥, 𝑦) = T (PZE) [°C] 
−3.941 × 100 −4.510 × 10−6 −1.361 × 10−3 3.039 × 101 1.985 × 10−1 −1.309 × 101 

 

The parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are presented for each of the four plots in Table 7. The first 

row represents the surface in Figure 55 (a), the second row (b), third (c), and fourth row (d). 

All equations solve for the sample or piezoelectric crystal temperature in °C. These equations 

were used at the beamline to target specific pressures and temperatures. Generally, XRD 

patterns were integrated for 30 – 60 seconds dependent on a qualitative evaluation of the pattern. 

Diffraction patterns of the sample to pressure marker, i.e. MgO, ratio was roughly 5:1. In other 

words, generally 5 XRD patterns of the sample were taken for every 1 MgO diffraction pattern 

for hydrostatic pressure derivation. 

 

2.4.4. Strain measurement at the beamline 
At the synchrotron, in situ strain determinations were made possible through x-ray radiography, 

which imaged the entire deformation column, capturing the full anvil-to-anvil length. Vertical 

scans were performed before and after deformation, allowing the column to be imaged in 

sections. These scans were aligned and stitched together based on the vertical positioning of the 

press, controlled by motor stages, enabling precise strain calculations across both the sample 

and the assembly components. 

However, significant absorption-induced heating by the bright x-ray beam at PETRA-III, 

particularly when fully opening the slits for imaging, precluded real-time imaging during 

deformation cycles. This heating caused large and sudden voltage drifts in the signal. Although 

the exact mechanism remains unclear, one plausible explanation is that high-energy photons, 
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such as x-rays, induce electron emission from metal components in the experimental setup. 

When high-energy photons strike the surface of a metal, they can eject electrons in a process 

known as the photoelectric effect (Vartanyants & Zegenhagen, 1999). This occurs when the 

energy of the incoming photon exceeds the work function of the metal—i.e., the energy required 

to release an electron from the metal’s surface. The ejected electrons can then accumulate on 

nearby electrodes or surfaces, generating unintended charge signals that can mimic those 

produced by the piezoelectric crystal during deformation. 

Another contributing factor to the signal drift could be the substantial temperature increase due 

to x-ray heating, which as discussed previously alters the crystal’s electrical resistivity. 

Because of these factors—both the photoelectric effect and temperature-induced signal drift—

strain measurements via x-ray radiography were limited to pre- and post-deformation phases 

Image analysis involved pixel integration perpendicular to the scanning direction, with logistic 

function fitting applied to the integrated pixel plot edges, representing the boundaries of 

different assembly parts within the column as described by Eq. 110. 

 

𝑓(𝑥) =
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
+ 𝑏 Eq. 110 

 

0 = 𝑓(𝑥) − (
𝐿

2
+ 𝑏) Eq. 111 

To delineate assembly part boundaries, Eq. 111, simplified to identify the pixel value 𝑥 at the 

curve's half-maximum adjusted for offset 𝑏, was numerically solved for 𝑥. This process, by 

solving for 𝑥 , precisely and consistently marked boundary pixel values between assembly 

components to eliminate human bias in boundary edge selection. An example of the custom-

built software to identify the assembly boundaries is shown in Figure 56.  

In the top plot the horizontal axis is the pixel value across the deformation column and the 

vertical axis is the intensity as a result of the integration of pixel brightness. The saw-tooth like 

pattern in the integrated pattern is due to a brightness gradient in the X-ray image. For each 

individual image taken as part of the scan, this is visible as a sharp intensity jump. These are 

artifacts of the X-ray camera and not physical density variations within the sample. To convert 

pixel values to physical distance, the pixel size of the x-ray radiography camera present at P61B 

was used, i.e., each pixel is 1.44 μm (Farla et al., 2022). 
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Figure 56. A screenshot of the custom-built software, developed by the author, used to fit the 

boundary edges with logistic functions. The top plot shows, with a blue line, the integrated pixel 

values of the bottom image. The logistic functions are locally fitted to the rising and falling 

edges, shown with differently colored lines. On the bottom image, the 𝑥 position of each logistic 

function’s half-maximum position is shown with dashed lines. These lines define the part 

boundaries. The horizontal axis is pixel number and the vertical axis is integrated pixel values 

on the top plot and vertical pixel count on the bottom image. 

 

For all experiments with pre- and post-deformation x-ray radiography image scans, the strain 

measurements of each assembly part will be reported using the keys labeled in the image in 

Figure 57. 

 

Figure 57. An x-ray radiography image of an assembly column at high pressure, with the keys 

used to label the part strains within the assembly column. Samplem, between Foilb and Foila in 

the image, is 3.7 mm in length. 
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Table 8. Description of the keys used in labeling the strain measurements of each part, as shown 

in Figure 57. 

Key Part Material 

D Bottom plug Porous zirconia 

Sampleb Bottom sample disk Sample 

Foilb Bottom strain marker Gold foil 

Samplem Sample Sample 

Foilt Top strain marker Gold foil 

Samplet Top sample disk Sample 

J Top plug Non-porous zirconia 

Nb Bottom piezoelectric electrode Copper 

O Piezoelectric crystal CTGS 

Nt Top piezoelectric electrode Copper 

P Heat sink disk Diamond 

 

This short-hand labeling is used as a key to represent the specific assembly parts which largely 

will follow the naming convention described previously in Table 3. The full key label 

descriptions are provided in Table 8. All strains calculated are engineering strains according to 

Eq. 112, where 𝐿𝑓 is the final length and 𝐿0 is the initial length. 

 

𝜀 = (
𝐿𝑓 − 𝐿0

𝐿0
) ∙ 100% Eq. 112 

 

2.5. Brillouin spectroscopy of CTGS at high pressure 
A DAC consists of two conical diamonds with the tips flattened to produce two culets, which 

generally range in diameter from 50 to 500 μm. By pressing the two diamond culets together 

by tightening the screws of a retainment frame, the area between the two culets is placed under 

extremely high pressures. As pressure is force over an area, the small area ensures that high 

pressures can be reached with moderate forces. The pressure chamber between the diamonds is 

sealed radially with a thick metal foil called a gasket. As the diamonds are pressed together, 

they extrude the metal gasket and the shear friction between the gasket and the diamonds as 

well as the tensile strength of the gasket itself seals the high-pressure chamber (Jayaraman, 

1983; O’Bannon et al., 2018).  
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Figure 58. Computer renders of the working principle of a DAC on the left and a cross-

sectional close-up view of the sample chamber on the right between the diamond culets. 

 

Using a DAC with below 100 μm culets, static hydrostatic pressures beyond that of the center 

of the Earth are achievable (Dubrovinsky et al., 2012; O’Bannon et al., 2018). For this work, 

however, since the pressures needed are much lower, diamonds with 500 μm culets were used. 

The operating principle of the DAC is illustrated in Figure 58. The diamonds are pressed 

together, culet-to-culet, using screws that tighten two opposing frame segments in which the 

diamonds are fixed. Within the frame holding the diamonds together, an opening is made so 

that the sample chamber can be viewed through the transparent diamonds. This also allows for 

optical measurements, such as Raman and Brillouin spectroscopy, to be made, as well as XRD 

measurements, since diamond has low x-ray absorption (Heismann et al., 2003). The figure also 

shows a close-up cross-sectional view of the sample chamber on the right. The diamonds are 

held a few tens of microns apart by the extruded gasket, usually above ≥30 μm in a 500 μm 

DAC.  

To ensure hydrostatic conditions within the sample chamber and thus eliminate deviatoric stress 

effects on the sound velocity measurements, helium is loaded into the sample chamber before 

closing. He was chosen because it remains a liquid up to 11.6 GPa (Zha et al., 2004). Inside the 

chamber, the two crystal platelets are placed onto the diamond surface and a small crystal of 

ruby is also added. The wavenumber shift of the ruby R1 luminescence line is commonly used 

as a pressure standard (Hawke et al., 1974; L. Lei et al., 2013; Yamaoka et al., 2012). By taking 

fluorescence spectrum of the ruby, the peak can be fitted with a pseudo-Voight peak and the 

peak location used to measure the sample chamber pressure during experiments.  
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Raman spectroscopy is similar to Brillouin spectroscopy but measures the optical branches of 

the dispersion relation curves. Since Eq. 80 has a density term, the density of CTGS is required 

and was measured at every pressure point with XRD. XRD was also used to determine the exact 

platelet orientation with respect to the laboratory frame of reference. The XRD patterns were 

characterized at BGI and the peaks used to calculate the lattice parameters according to Eq. 113 

(Powell, 2010; Patterson & Bailey, 2018). These are then used to calculate the unit cell volume 

using Eq. 114 (Patterson & Bailey, 2018) and thus the density of the crystal using the known 

chemical formula. 

 
1

𝑑ℎ𝑘𝑙
2 =

4

3
(
ℎ2 + ℎ𝑘 + 𝑘2

𝑎2
) +

𝑙2

𝑐2
 Eq. 113 

 

𝑉 =
√3

2
𝑎2𝑐 Eq. 114 

As mentioned previously, since CTGS has 6 independent elastic stiffness coefficients, two 

crystal platelets are required to solve the full tensor (Calderon et al., 2007). A CTGS crystal 

that is typically used in deformation experiments and comes pre-oriented by the manufacturer 

was utilized for this purpose. Two platelets, labeled X1 and X2 were cut and double-polished 

from the main, larger crystal. The orientation of the two platelets relative to the parent crystal 

is shown in Figure 59. X2 was chosen to have a normal parallel to the crystals 𝑥 direction, and 

X1 was cut perpendicular to this. The direction of the X1 normal was unknown beyond that it 

was perpendicular to X2. The platelets were double polished down to 20 μm thickness. It was 

crucial to ensure that the platelets were thinner than the diamond culet gap, to avoid them 

bridging the diamond anvils and developing deviatoric stress or in the worst case getting 

crushed. 
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Figure 59. Orientation of cuts for the two platelets loaded into the DAC. They are labeled X1 

and X2. The 𝑥 direction of the crystal they were cut from is labeled, which is the same direction 

as the 𝑑11 piezoelectric vector and the a lattice parameter. 

 

At this stage, the platelets were too large to load into the gasket chamber of the DAC, which 

was drilled to a 270 μm diameter. Just as the platelets should not bridge the diamonds, they 

should also not come into contact with the gasket material to avoid issues of deviatoric stress. 

The initial irregular 20 μm thick platelets, that were > 200 μm wide in some directions, were 

further milled to 100 μm diameter half-circles using a FEI Scios focused ion beam (FIB) with 

a Ga ion beam, located at BGI. SEM images of the milled platelets for X1 and X2, after milling, 

as well as an optical microscope image of the two platelets loaded into the sample chamber of 

the DAC are presented in Figure 60. The top two images are of the platelets after ion beam 

milling and the bottom image is through a microscope. The optical microscope image is before 

He is loaded, so the DAC is open at 1 bar. After loading and compression, the gasket hole tends 

to shrink. This is expected and room was left around the crystals to allow for this. The image 

in Figure 60 is taken before the ruby crystal was added into the DAC.  

Brillouin spectroscopy data was acquired at BGI using the in-house system at 1 bar, and all 

subsequent higher-pressure spectra were acquired at DESY at the PETRA-III synchrotron in 

the Laser Laboratory, which is part of the PETRA-III P02.2 Extreme Conditions Beamline 

(Liermann et al., 2015). A simplified schematic plan of the Brillouin spectroscopy system at 

DESY is displayed in Figure 61, modified from (Speziale et al., 2014). The advantage of the 

platelet geometry is that the refractive index of the crystal is not required (Kojima, 2022; Polian, 

2003; Speziale et al., 2014). Only the scattering angle must be measured and is labeled 𝜃 in the 

figure.  
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For each pressure point, the process is as follows. Fluorescence spectrum is first measured on 

the ruby crystal to determine the chamber pressure 24 hours after the DAC pressure is increased 

to allow for relaxation of the gasket and diamonds, which can otherwise cause a drift in the 

pressure. Then, the DAC is placed in the goniometer and the system is aligned, as well as the 

photon counter channels calibrated. Brillouin spectra are collected on each crystal, X1 and X2, 

individually at 10° 𝜒 angle increments in the range 0° – 190° 𝜒. The excitation laser used at 

both BGI and DESY is an Nd:YVO4 laser at 532 nm. After Brillouin measurements are 

performed on both crystals, XRD is collected on X1. This is done both for density determination 

but also to ensure the crystal orientations within the DAC chamber have not shifted as the 

crystal lattice orientation must be known when converting velocity curves along 𝜒 to elastic 

coefficients. Then, the pressure is increased again to the next pressure point and the process is 

repeated. Since the hydrostatic pressures in deformation experiments in the LVP do not exceed 

6 GPa, Brillouin spectroscopy measurements were made up to 10 GPa. Including 1 bar 

measurement, a total of 5 pressure points were collected on CTGS. The velocity curves are used 

to solve for the elastic tensor using Eq. 77—Eq. 80 using a custom routine implemented in 

OriginPro 2023 (OriginLab Corporation, Northampton, MA, USA). The routine solves for the 

best fitting elastic tensor using inversion models developed in Buchen (2018) using the 

OriginPro 2023 project provided by Dr. Johannes Buchen. 
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Figure 60. The top two images are of the platelets, X1 and X2, taken with the SEM as part of 

the ion milling process. The larger platelets have been milled into two circular hemispheres 

each. One hemisphere from both crystals is placed into the DAC chamber as shown in the 

bottom image, near each other. This image is taken through an optical microscope and is at 1 

bar before He loading. 
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Figure 61. The Brillouin spectroscopy setup at DESY. Lx are lenses, Mx are mirrors, BSx are 

beam splitters. Also labeled is the scattering angle in the DAC Brillouin setup. 

 

Once the velocity dispersion points along χ are collected, the velocity dispersion curves can be 

numerically fitted by repeatedly solving Eq. 80, in the OriginPro 2023 project functions 

provided by Dr. Johannes Buchen (Buchen, 2018), and varying the elastic stiffness coefficients. 

The bulk modulus, 𝐾, can be calculated using the coefficients according to Eq. 115, which is 

defined for point group 32 for the Voigt bound condition (Calderon et al., 2007; Sin’ko, 2008; 

Sotnikov et al., 2013; J. Wang et al., 2015).  

 

 
𝐾 =

𝐶33(𝐶11 + 𝐶12) − 2𝐶13
2

𝐶11 + 𝐶12 + 2𝐶33 − 4𝐶13
 Eq. 115 

Since the hydrostatic pressure within the DAC pressure chamber is known through ruby 

fluorescence measurements, the data points can be fit with a straight line to provide a first order 

approximation of the pressure trend.  In this way, the pressure dependence of the elastic 

coefficients as well as the bulk modulus and density are calculated. Finite-strain equations are 

ultimately used to fit the data, as explained later. 

2.6. Sample synthesis 
The 15/10 MA6-6 cubic assembly used has a sample chamber that is 4 mm high and 4 mm in 

diameter. To be able to measure the sample strain in the x-ray diffraction experiments using x-
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ray radiography, a sharp density contrast is necessary within the sample. To achieve this, the 

sample consisted of three pieces separated by 2 μm thick gold foil, 4 mm in diameter. The 

bottom and top sample pieces were 0.5 mm tall, 4 mm in diameter. They were precisely cut to 

achieve high parallelism between the faces. The middle sample was 3 mm high. The total length 

thus was 4 mm. The smaller 0.5 mm tall samples were placed to allow for a better contrast ratio 

since the ZrO2 ceramic rods in contact with the sample are denser and thus darker in X-ray 

radiography images, approaching the absorption of gold when imaged. If the sample becomes 

tilted during deformation it can result in large strain errors and thus the strain markers are made 

thin so tilting is visible when viewed edge-on. 

 

2.6.1. MgO 
The MgO samples were synthesized from 99.99% purity MgO powder (CAS-Nr: 1309-48-4) 

supplied by Feinchemikalien und Forschungsbedarf GmbH (ChemPur). To sinter the powder, 

it was loaded into a simple 15/10 cubic assembly and pumped up to 3 GPa of pressure. After 

dwelling for 15 minutes it was pumped back to ambient pressure. No heating was used as the 

MgO powder sintered adequately. SEM analysis of the sintered product confirmed an average 

grain size, claimed by the manufacturer, of 1.5 μm. For the calculation of stress in the MgO 

sample during deformation, the elastic stiffness coefficients listed in Table 9 were used in the 

formulation from Singh et al. (Singh et al., 1998). 

Table 9. Elastic stiffness coefficients used to calculate the stress of MgO deformation 

experiments as well as the pressure derivative and second derivative (Yoneda, 1990). 

 𝑀 (𝜕𝑀/𝜕𝑃)𝑇 (𝜕2𝑀/𝜕2𝑃)𝑇 

 GPa  GPa-1 

𝐶11 297.8 8.76 -0.03 

𝐶12 95.1 1.81 0.02 

𝐶44 155.8 1.31 -0.09 

 

2.6.2. Mg-Al Spinel 
Mg-Al spinel (MgAl2O4) was synthesized by mixing approximately equimolar amounts of 

99.99% purity MgO (CAS-Nr: 1309-48-4) and α-Al2O3 (CAS-Nr: 1344-28-1) oxide powders 

(Feinchemikalien und Forschungsbedarf GmbH; ChemPur). For synchrotron experiments, 

small grain sizes are preferred as more crystallites can be diffracted along the beam path, 

resulting in sharper peaks. To ensure that the sintering process limited grain growth, a non-

stoichiometric MgO:𝑥Al2O3 molar ratio of 𝑥 = 0.95 was employed. The slight MgO excess has 
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been shown previously to densify quickly with minimal grain growth during the high-

temperature sintering process (Ting & Lu, 1999).  

The mixture was ground with acetone in a mortar and pestle for a minimum of 1 hour. After the 

acetone was fully evaporated, it was cold pressed in a hydraulic press at 15 MPa for 2 minutes. 

Then, the fragile pellets were placed in an open-air furnace inside a Pt crucible at 1600 °C for 

15 minutes. This sintered them into a hard ceramic. To ensure full reaction, the pellets were 

crushed down to powder and ground, cold pressed, and sintered at 1600 °C again for a total of 

three cycles. Afterwards, a small piece was ground to powder again, and powder x-ray 

diffraction measurements were made, which confirmed it to be Mg-Al spinel with a small 

amount of excess MgO, consistent with the composition. SEM BSE imaging showed the grain 

size of the resultant ceramic to be between 1 – 3 μm. The sintered blocks were then cored and 

prepared into three pieces for the experimental assembly, as described previously. 

Table 10. Elastic stiffness coefficients used to calculate the stress of MgAl2O4 deformation 

experiments as the pressure derivative and second derivative (Yoneda, 1990). 

 𝑀 (𝜕𝑀/𝜕𝑃)𝑇 (𝜕2𝑀/𝜕2𝑃)𝑇 

 GPa  GPa-1 

𝐶11 282.9 5.59 -0.65 

𝐶12 155.4 5.69 -0.64 

𝐶44 154.8 1.44 -0.19 

 

2.6.3. San Carlos olivine 
The sample of San Carlos olivine were privately collected from San Carlos, Arizona. The 

collected crystals were subsequently carefully selected and separated under a microscope for 

visual purity and color to ensure minimal pyroxene content. The crystals were then ground into 

a powder in a mortar and pestle for a minimum of 1 hour and subsequently placed into a ball 

mill for 30 minutes at 30 Hz using a tungsten carbide crucible and spheres. The olivine powder 

was loaded into a 5 mm diameter platinum capsule which was then welded shut. The capsule 

was placed into a ¾” NaCl piston cylinder assembly and pumped up to 700 MPa of pressure in 

the piston cylinder apparatus located at BGI. Once at pressure, it was heated to 1200 °C for 3 

hours with a graphite furnace, before quenching rapidly. The piston cylinder was then pumped 

down to ambient pressure over a period of 12 hours, to avoid cracking of the sample. 

Nonetheless, about 1/3rd of the recovered samples had too many cracks to be usable. The 

platinum capsule was removed from the NaCl assembly and carefully cut open, after which the 

sintered San Carlos olivine was cut into three pieces for the assembly, as described before.  
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The Singh et al. formulation for calculating deviatoric stress from XRD peak positions as 

described previously by Eq. 4–Eq. 6 employs Reuss and Voigt shear moduli terms, 𝐺𝑟(ℎ𝑘𝑙) 

and 𝐺𝑣(ℎ𝑘𝑙), that are calculated using equations that are specific for each crystal system. The 

cubic crystal system equations for both were provided previously in Eq. 7–Eq. 9. Since olivine 

is orthorhombic, for this system, the Reuss condition shear modulus is defined in Eq. 116. The 

Voigt condition shear modulus was not employed as iso-stress conditions were assumed within 

the assembly deformation column. 

 

[2𝐺𝑟(ℎ𝑘𝑙)]
−1 =

1

2
{−(𝑆12 + 𝑆13 + 𝑆23) + 𝑙1

2(𝑆23 − 𝑆11) + 𝑙2
2(𝑆13 − 𝑆22)

+ 𝑙3
2(𝑆12 − 𝑆33)

+ 3[𝑙1
4𝑆11 + 𝑙2

4𝑆22 + 𝑙3
4𝑆33 + 𝑙1

2𝑙2
2(2𝑆12 + 𝑆66)

+ 𝑙2
2𝑙3
2(2𝑆23 + 𝑆44) + 𝑙3

2𝑙1
2(2𝑆13 + 𝑆55)]} 

Eq. 116 

 
𝑙1 =

ℎ𝑑(ℎ𝑘𝑙)

𝑎
, 𝑙2 =

𝑘𝑑(ℎ𝑘𝑙)

𝑏
, 𝑙3 =

𝑙𝑑(ℎ𝑘𝑙)

𝑐
 

 

 

In the equation, 𝑎, 𝑏, and 𝑐 are the lattice parameters, which for orthorhombic crystal systems 

are calculated with Eq. 117. Since there are three unknowns (𝑎, 𝑏, 𝑐) in the equation, a minimum 

of three peaks must be fitted for them to be determined. 

 

(
1

𝑑(ℎ𝑘𝑙)
)
2

=
ℎ2

𝑎2
+
𝑘2

𝑏2
+
𝑙2

𝑐2
 Eq. 117 

The elastic constants reported by Mao et al. (Mao et al., 2015) were used, as listed in Table 11. 

The elastic stiffness coefficient was calculated at the particular pressure and temperature of 

interest, to produce an orthorhombic elastic matrix, which was then inverted to find the elastic 

compliance coefficients. These are used for each data point to calculate the stress, as detailed 

in Eq. 116. 

Table 11. Elastic coefficients (M), as well as the first and second pressure derivatives and the 

first temperature derivative of the elastic coefficients (Mao et al., 2015) of San Carlos olivine. 

 𝑀 (𝜕𝑀/𝜕𝑃)𝑇 (𝜕2𝑀/𝜕2𝑃)𝑇 (𝜕𝑀/𝜕𝑇)𝑃 

 GPa  GPa-1 GPa/K 

𝐶11 320.2(19) 7.5(2) -0.240(8) -0.033(3) 

𝐶22 196.5(10) 5.5(1) -0.089(4) -0.028(3) 

𝐶33 232.3(8) 5.4(1) -0.080(5) -0.032(4) 

𝐶44 63.2(4) 2.0(1) -0.099(4) -0.010(2) 

𝐶55 76.6(5) 2.0(1) -0.140(5) -0.010(2) 

𝐶66 79.7(7) 2.4(1) -0.122(6) -0.019(3) 

𝐶12 71(2) 3.8(1) 0.077(4) -0.015(2) 
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𝐶13 71(1) 3.8(2) 0.010(2) -0.009(2) 

𝐶23 76(1) 3.5(2) -0.059(5) -0.013(2) 

 

2.6.4. Single crystal MgO and Fo 
The samples consisted of lab-synthesized single crystals of MgO and forsterite (Mg2SiO4), pre-

oriented by the manufacturer, Sigma-Aldrich. Cores from these samples were made, 4 mm in 

diameter and 4 mm high. The top and bottom were polished and checked for parallelism to 

within ±1°. The orientations provided by the manufacturer were used to orient both types of 

crystal such that the deformation axis was in the crystal <100> direction. 

3. Results 

3.1. San Carlos olivine, MgO, and spinel deformation at synchrotron 
Two beamtimes were completed at the large volume press P61B beamline, of the PETRA-III 

synchrotron, DESY. In each run the assembly was deformed multiple times under a series of 

different conditions. The run was stopped once the piezoelectric crystal degraded, or the 

resistance dropped outside of what could be compensated with the dial on the front of the charge 

integrator. At very large voltage drifts, even when the voltage fitting and correction routine is 

employed afterwards, the signal is lost to capacitor discharge noise.  

For all runs, the assembly was deformed using the vertically oriented rams, 1 and 2. Each 

deformation cycle consisted of pre-heating to relax the deviatoric stresses at 800 °C for a 

minimum of 20 minutes in the case of the San Carlos olivine and MgO, and 1000 °C in the case 

of the Mg-Al spinel. This was followed by a triaxial or simple shear compression deformation 

at a specific anvil advancement rate for a specified number of minutes. Once the compression 

deformation was completed, a triaxial tension deformation at the same temperature was applied 

to the sample that consisted of rams 1 and 2 retreating backwards to equal positions, as 

measured by the position encoders on the back of the rams. This was followed by static heating 

to anneal again for a minimum of 20 minutes to prepare for the next deformation cycle. 
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Figure 62. An example XRD pattern collected on stressed San Carlos olivine. The patterns 

from both detectors are shown overlain. The (hkl) peaks fitted to D1 to measure the XRD stress 

are shown below the patterns only, with the (hkl) Miller indices labeled for each. The same 

fitting was done for D2 as well, not shown in this figure. Shifts in a selected subset of peaks 

between D2 and D1 are labeled with 1, 2, 3, and 4. 

 

In Figure 62 an example XRD pattern collected on San Carlos olivine is plotted. Both detectors, 

with their azimuthal angles labeled, recorded patterns that are offset, due to a stress of 

approximately 630 MPa in this instance. The black lines below the patterns mark the locations 

of the fitted San Carlos olivine peaks, aligned with the D1 pattern. A subset, for illustrative 

purposes, of 4 shifted peaks are labeled in the figure. Peak shift 1 is for lattice plane (130), 2 

for (122), 3 for (222), and 4 for (004). Not all peaks labeled below the patterns with the vertical 

bars in Figure 62 were able to be fitted for all patterns. However, from the complete list of 

peaks, each pattern had no more than three peaks that could not be fitted. As is visible, the two 

patterns have peak positions offset compared to each other. This is due to the stress in the 

sample and this offset is used to calculate the microstrain, and thus the stress in the San Carlos 

olivine. 
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3.2. San Carlos olivine deformations with XRD 

3.2.1. Linear compression deformation on San Carlos olivine 
It has been reported that forsterite stress development during deformation has a strong 

correlation with temperature, especially starting above 1000 °C with a rapid drop in strength at 

1200 °C (Darot & Gueguen, 1981; Thieme et al., 2018). To explore this weakening and confirm 

the ability to measure it with the piezoelectric method, deformation experiments were 

undertaken at high-pressure and -temperature. A series of three deformations, ranging between 

780 – 1180 °C in a triaxial compression direction were chosen. 

Table 12. Run table of three linear compression deformations on San Carlos olivine at varying 

sample temperatures. The temperature errors are estimated to be ±50 °C. 

Cycle Oil pressure 

[bar] 

Sample 

pressure 

[GPa] 

Heating 

power 

[W] 

Sample 

temperature 

[°C] 

Piezoelectric 

temperature 

[°C] 

Anvil 

rate 

[μm/min] 

Deform time 

[min] 

C1 40 2.4 580 780 150 -4.3 100 

C2 40 2.4 710 990 170 -4.3 100 

C3 40 2.4 820 1180 190 -4.3 100 

 

San Carlos olivine samples were deformed at a constant anvil advancement rate at different 

temperatures. As described, anvil 1 and 2, the vertical anvils, are set to advance inwards at a 

constant rate. To keep the sample chamber volume as close to constant as possible during 

deformation, the hydrostatic oil pressure was reduced by 10% for all rams over the deformation 

period. For example, if deformation begins at 40 bar of oil pressure, the PLC is programmed to 

reduce it to 36 bar at the end of the deformation period. In this way, the non-advancing rams 3, 

4, 5 and 6 are allowed to relax outwards. 
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Figure 63. Anvil movements of deformation C1. The other deformations, C2 and C3, are similar 

to this. The top plot shows the anvil positions over time and the bottom the anvil velocity. The 

velocity of anvil 1 is plotted. The red vertical dashed lines mark the beginning and end of the 

deformation cycle. The elapsed time has not been normalized to the start of deformation. 

 

The anvil displacements of the three deformation cycles reported in Table 12 are all similar to 

those shown for C1 in Figure 63. The top plot shows the anvil displacement, with the beginning 

and end of deformation marked with vertical red dashed lines. Due to the geometry of the 

position encoder on the rams, a decrease in anvil position value represents a movement inwards 

into the sample chamber. As can be seen, while anvils 3, 4, 5, and 6 are allowed to relax 

outwards, the movement is not sufficient to sustain a constant sample chamber volume during 

deformation. Anvil 1 and 2, with their lines overlain on top of each other, shows how they are 

moving inwards in position at a constant velocity. This velocity is shown in the bottom half of 

Figure 63. This velocity will be shown on all plots and represents the anvil velocity of anvil 1. 

During a compression deformation, the inwards anvil displacement velocity is negative and 

during deformation in tension, or outwards retreat of the anvil, it is positive. The velocity has 

been smoothed with a Savitzky-Golay filter with a window length of 403 and polynomial order 

3. This was applied because the velocity measurements are inherently noisy due to the stepped 

movements of the anvils. 
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Figure 64. The measured strains of C1, C2, and C3. Each deformation strain plotted on the left 

side is the engineering strain and on the right side the length difference in microns. Both are 

calculated based on the x-ray radiography images of before and after deformation of the 
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assembly parts. The engineering strain bar plots also list the calculated strain rates for each 

part at the end of each bar. The units are s-1. 

 

Strain was measured within the full deformation column using radiometry images made before 

and after deformation for these three experiments, as shown in Figure 64. For each deformation, 

the engineering strain and micron length difference has been plotted on the left and right sides 

of the figure respectively.  
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Figure 65. Averaged lattice microstrains as measured by the D1 and D2 detectors, for C1, C2, 

and C3, showing the clear splitting in the average lattice plane microstrain caused by 

deviatoric stress. 

 

In Figure 65, the lattice microstrains measured with each XRD pattern during the deformation 

of all three experiments are plotted by detector. The microstrain from each fitted peak was 

averaged. As can be seen for all three compression deformation experiments, a clear splitting 

is visible in the microstrain behavior, confirming that the sample was under stress and the stress 

did increase with the sample macrosopic strain. 
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Figure 66. Stress, as measured by the XRD method and the piezoelectric method, are shown 

for all three compression experiments. The partially transparent non-black markers are the 

deviatoric stresses as measured by each fitted peak in the San Carlos olivine patterns. The black 

triangle is the average of these peak stresses. The legend also lists the (hkl) of each peak. The 

black line is the stress as measured by the piezoelectric crystal method. 

 

23 lattice plane reflections from the San Carlos olivine were fitted for each XRD pattern, which 

were taken at roughly 2-minute intervals. Using the Singh et al. (Singh et al., 1998) formulation 

and the previously shown microstrains, the resultant deviatoric stress from each compression 
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experiment is shown with the piezoelectric method derived deviatoric stress plotted together in 

Figure 66. 

 

Figure 67. The averaged XRD measured stress with the piezoelectric stress. Additionally, the 

hydrostatic pressure during the experiment is shown, as measured using the MgO sleeve around 

the sample. 

 

Finally, by averaging the stresses calculated from each (hkl) peak, it’s possible to compare the 

piezoelectric and XRD stresses more precisely with the added hydrostatic pressure as measured 

by the MgO sleeve that was placed around the sample. These are shown in Figure 67.  
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To account for potential deviatoric stress effects on the MgO, the hydrostatic pressure was 

calculated using the d-spacings derived at the azimuthal ‘magic angle’ which is theoretically 

the d-spacing from hydrostatic pressure effect only. The temperature used in the hydrostatic 

pressure calculations was assumed to be the same as the sample temperature since the MgO 

sleeve is inside of the graphite furnace. The results are relatively close between the piezoelectric 

and XRD stress measurement techniques apart from a clear difference in C1.  

The assumption is that, while CTGS has not yet been shown to undergo ferrobielastic switching, 

theoretically, since it has the same space group as α-quartz, there should be a stress condition 

that causes a ferrobielastic switch. The results of C1 follow the expected trend of a ferrobielastic 

switch in CTGS. The trend reverses smoothly and does not reverse again through the whole 

experiment. If the stress measured by the piezoelectric method in C1 is mirrored across the line 

where the switch happens, at roughly 1000 seconds in the experiment, the final measured stress 

is, on a relative scale, similar to the XRD stress. This is expected of a ferrobielastic switch. The 

switch only reverses the sign of 𝑑11 but does not alter the absolute value of it. Therefore, the 

stress measured should be equal but reversed in sign, as the figure shows. 

3.2.2. Linear tension deformation on San Carlos Olivine 
After each compression deformation, i.e., where anvils 1 and 2 advance into the sample, tensile 

deformation was performed where the anvils were retracted back to assume equal positions 

with anvils 3, 4, 5, and 6. As these resulted in an interesting test regime where stresses dropped 

over the deformation cycle, piezoelectric as well as XRD stress measurements were also 

recorded for most cycles. Table 13 shows the conditions of tensile deformation cycles. 

Table 13. Run table of five linear tension deformations on San Carlos olivine at varying sample 

temperatures and two hydrostatic pressures. The temperature errors are estimated to be ±50 °C. 

Cycl

e 

Oil pressure 

[bar] 

Sample 

pressure [GPa] 

Heating 

power 

[W] 

Sample 

temperature 

[°C] 

Piezoelectric 

temperature 

[°C] 

Anvil 

rate 

[μm/min] 

Deform time 

[min] 

T1 36 2.1 580 780 150 +4.3 12.75 

T2 36 2.1 710 990 170 +4.3 100 

T3 36 2.1 820 1190 190 +4.3 100 

T4 56.4 3.2 710 960 180 +10.0 33 

T5 36 2.1 460 590 120 +10.0 28 

 

T1 was planned to be a 100 minute tension experiment like T2 and T3, however the PETRA-

III beam dropped after 12.75 minutes and the experiment had to be stopped as no more XRD 

could be collected. As with compression experiments, the PLC is programmed to increase the 

oil pressure during the tension deformation. For example, at 36 bar, over the tension 
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deformation period, the oil pressure was programmed to increase to 40 bar. Once again, this 

was done to keep the sample chamber volume more constant.  

As an example, the anvil positions of T2 are plotted in Figure 68. Compared to Figure 63, it 

can be seen that anvil positions of ram 1 and 2 are now increasing over the deformation cycle 

time. Also, the other anvils do move in, albeit less than anvils 1 and 2, over the same period. 

Even though they do not reach the same anvil position at the end of deformation, according to 

the PLC they are back in their starting position. It is not entirely clear why the PLC does not do 

so. According to the manufacturer, the PLC attempts to equalize the anvil positions, not the oil 

pressure, so it would be expected that the anvil positions match in distance. The anvil velocity 

has the same smoothing algorithm applied as in the previous deformations. 

 

Figure 68. Anvil movements of tension deformation T2. The top plot shows the anvil position 

over time and the bottom the anvil velocity. The velocity of anvil 1 is plotted. The red vertical 

dashed lines mark the beginning and end of the deformation cycle. The elapsed time has not 

been normalized to the start of deformation. 

 

Pre- and post-deformation x-ray radiography images were taken for T1, T2, T3, and T5. None 

were taken for T4. The strains, strain rates, and micron differences are shown in Figure 69. As 

before, the left side plots are of the engineering strain with the calculated strain rate and the 

right side of the actual difference in microns.  
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Figure 69. The measured strains of T1, T2, T3, and T5. Each tension deformation strain plotted 

on the left side is the engineering strain and on the right side the length difference in microns. 

Both are calculated based on the x-ray radiography images of before and after deformation of 

the assembly parts. The engineering strain bar plots also list the calculated strain rates for 

each part next to the end of each bar. The units are s-1. 

 

Just as with the compression deformation experiments, the lattice microstrains are plotted in 

Figure 70. The high temperature experiments start with a smaller lattice microstrain as expected. 

After a compression deformation, the sample is kept at high-temperature and a short period of 

5 – 10 minutes is required to prepare for the following tension experiment. Stresses have time 

to relax in this period if the temperature is high enough for dislocations to be mobile enough to 

relax the crystal lattice. T2, for example, has a 300 MPa overshoot at the end of the deformation 

implying that 300 MPa of stress was relaxed after the compression deformation experiment. In 

the case of T3, the compression stress in the sample at the beginning, at roughly 100 MPa, is 

reversed past the zero point within the first 1000 seconds and then goes into a creep flow in 

tension for the rest of the deformation. Apart from that, as expected, at higher temperatures the 

olivine is weaker and thus the compression deformation before the tension deformation resulted 

in smaller stresses overall being imparted on the sample.  
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Figure 70. Averaged lattice microstrains during tensile cycles as measured by the D1 and D2 

detectors, for T1, T2, T3, T4, and T5. The lattice strains from the two detectors approach zero 

together, showing a clear decrease in the deviatoric stress in the sample. 

 

Tensile experiment cycles are shown with both the XRD and piezoelectric determined 

deviatoric stress in Figure 71. Additionally, the averaged XRD stress, acquired by averaging 

all the stresses from the reflections from the lattice planes, is shown alongside the piezoelectric 

method stress measurement and the MgO pressure marker hydrostatic pressure. Some of the 

experiments, being shorter, did not allow as many MgO measurements. The same process as 

the compression experiments was applied to the MgO to ensure the lattice microstrain induced 

by deviatoric stress was not considered in the hydrostatic pressure calculations.  

The experiment T3, as seen in Figure 71, recorded an oscillation in the CTGS piezoelectric 

stress with a wavelength of about 3000 – 4000 seconds. Of note is that this was also the highest 

temperature experiment in this series, with the sample heated to 1190 °C. Consequently, the 

piezoelectric crystal was higher in temperature at 190 °C. In general, from previous experience, 

these higher temperature experiments sometimes record oscillatory stress. This could be 

because of ferrobielastic switching, but it could also be from unknown effects due to the high 

amount of current passing through the furnace. The piezoelectric crystal, since it outputs current 

on the order of a few microamps, is highly sensitive to current noise. Even with a DC heater, 

as was used in all these experiments, the graphite furnace requires an exceptionally high 

amperage to heat. Any kind of noise or instability in the heating current could induce current 

noise. Unfortunately, it is not straightforward to determine the source of the oscillation in the 

signal. However, it is trivial to detect this noise but not trivial to treat the data later to correct 

for it and remove it so the experiment would have to be abandoned. 
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Figure 71. Deviatoric stress, as measured with both XRD and the piezoelectric method, is 

shown for five tension deformation experiments. See Figure 66 for explanation of symbols. 
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Figure 72. The averaged XRD measured stress with the piezoelectric method stress. 

Additionally, the hydrostatic pressure during the experiment is added, as measured by the MgO 

sleeve around the sample. 
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3.2.3. Stepped deformation of San Carlos olivine 
To verify that the piezoelectric crystal is sensitive to strain rate changes, especially after the 

sample reaches steady-state creep, three deformation experiments in compression were 

undertaken where the strain rate was increased in stages. The experiments began with a slower 

strain rate which was increased to a higher strain rate, in either two or three steps. The change 

in strain rate is abrupt and the piezoelectric crystal should, therefore, detect a relatively sudden 

increase in stress. As before, these experiments were heated at several different temperatures. 

Table 14. Run table of three stepped compression deformation cycles on San Carlos olivine at 

varying sample temperatures and two pressures. The temperature errors are estimated to be 

±50 °C. The cycles are listed in the order in which they were run. 

Cycle Oil 

pressure 

[bar] 

Sample 

pressure 

[GPa] 

Heating 

power 

[W] 

Sample 

temperature 

[°C] 

Piezoelectric 

temperature 

[°C] 

Anvil rate 

[μm/min] 

Deform time 

[min] 

SR1 60 3.4 710 950 180 -1.9, -6.3 53, 16.8 

SR2 40 2.4 460 590 130 -1.6, -2.8, -6.1 20, 20, 20 

SR3 40 2.4 710 990 170 -1.6, -2.8, -6.1 20, 20, 20 

 

The run cycles with this anvil movement are listed in Table 14. The difference between these 

and the previous compression and tension experiments is that in the stepped deformation there 

are multiple anvil advancement rates, with the total deformation time for each anvil 

advancement rate provided. The change in anvil rates were programmed into the LVP PLC and 

thus there is no pause in time between each stage. 

 

Figure 73. Anvil movements of a stepped deformation, SR2, illustrating the change in strain 

rate. The plot is similar to the previous plots of anvil advancement but in this case the strain 
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rate changes have been marked with a dashed blue line. This one, as is described in Table 14, 

consisted of three strain rate stages, each of 20 minutes in length. 

 

The stepped deformation strain rates are shown in Figure 73. Once again, rams 1 and 2 are 

advanced inwards, into the sample chamber, for compression experiments. In this case, the 

change in slope at each vertical blue dashed line indicates the strain rate change, and the anvil 

velocity is shown at the bottom of the plot. For these deformation cycles, no pre- and -post 

deformation x-ray radiography images were taken of the sample column, so no strain was 

measured on the sample. Because radiography images cannot be taken during a deformation 

and the strain rate varies with these experiments, a pre- and post- deformation radiography 

image would not allow for calculation of strain rate or even strain for each phase, only the total, 

and to save time it was decided to skip the radiography imaging. 
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Figure 74. The average lattice micro strains from each fitted (hkl) lattice plane are plotted for 

each stepped deformation experiment. Detector D1 and D2 are plotted separately. 

 

Figure 74 displays the average microstrain as derived from the fitted (hkl) peaks. As before, 

most experiments did not start with only hydrostatic stress. All show some initial deviatoric 

stress. This would not be captured in the piezoelectric stress measurements, however with high 

enough temperature and long enough heating, it can of course be assumed to be at zero and thus 

set a starting point. As long as the temperature is kept constant, the integrated voltage can keep 

track of the current absolute stress from the crystal. 
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Figure 75. The stress, as measured by all fitted XRD peaks as well as the piezoelectric method. 

See previous captions for explanation. 

 

The plots in Figure 75 compare the stresses measured with the XRD and piezoelectric methods. 

Once again, the large spread in stresses measured by individual lattice plane peaks from the 

XRD pattern entirely contains the piezoelectric stress curves. As expected, each increase in 

anvil advancement rate causes an increase in the stress in both the piezoelectric stress curve and 

the XRD stress. 
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Figure 76. The averaged XRD measured stress with the piezoelectric stress overlain. 

Additionally, the hydrostatic pressure as measured with MgO is added. 

 

The stepped deformation experiments show the rapid response of the piezoelectric crystal to 

the strain rate. When the anvil advancement rate is increased, the crystal measures an almost 

instant increase in stress. Since the crystal is closer to the anvil than the sample and is coupled 

to it through a diamond disk, it logically follows that it would react quickly to a change in stress 

from the anvils.  

It is essential to delineate the transition between the elastic and creep regimes. Initially, the 

material exhibits a linear, elastic response to applied stress, characterized by a proportional 

increase in strain. This behavior adheres to Hooke’s Law, where the stress 𝜎  is directly 
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proportional to the strain 𝜀, expressed as 𝜎 = 𝐸 ∙ 𝜀, with 𝐸 being the Young’s modulus of the 

material (Dixon & Durham, 2018; Wallis et al., 2020). During this phase, the olivine’s internal 

structure resists deformation, and the energy is stored elastically. As the strain continues to 

increase, the material reaches a yield point, beyond which it enters the creep regime. In this 

regime, the stress no longer increases with strain; instead, the material begins to flow plastically.  

The creep behavior can be described by the Norton-Bailey law, which relates the creep strain 

rate 𝜀̇  to the applied stress, given by 𝜀̇ = 𝐴 ∙ 𝜎𝑛 ∙ 𝑡𝑚  where 𝐴 , 𝑛 , and 𝑚  are temperature 

dependent material constants that are generally independent of stress, and 𝑡 is time (Liang et 

al., 2020; May et al., 2013). The transition to the creep regime signifies that microstructural 

mechanisms, such as dislocation glide or grain boundary sliding, have become dominant, 

allowing the olivine to deform plastically under constant stress.  

Upon stepping up the deformation rate, the material momentarily reverts to an elastic state, 

exhibiting a linear increase in stress with strain. This is indicative of the piezoelectric crystal’s 

rapid response to the altered strain rate, as it immediately registers the increased stress imposed 

by the advancing anvils. However, this elastic behavior is transient, and as the strain 

accumulates, the material once again settles into a creep regime. The stress plateaus, reflecting  

olivine’s capacity to accommodate the additional strain through plastic flow without a 

corresponding rise in stress (Wallis et al., 2020). 

3.2.4. Oscillation deformation of San Carlos olivine 
Since piezoelectric crystals tend to have a hysteresis loop of voltage output versus lattice 

microstrain, especially at higher temperatures and with repeated strains (Bertagnolli et al., 1979; 

Damjanovic & Demartin, 1996), deformation experiments were undertaken at a variety of 

temperatures to test the repeatability of stress measurements. The objective was to determine 

whether there is a degradation or an increase in drift from the piezoelectric crystal signal during 

repeated compression and tension deformation oscillations. XRD patterns were taken during 

the deformation. To increase the XRD stress measurement temporal resolution, no MgO XRD 

patterns were taken for hydrostatic pressure measurements.  

The typical deformation oscillation consisted of a constant anvil rate for a specified number of 

minutes, followed by a reversal of the anvils at the same rate and for the same amount of time. 

Then, another oscillation is started immediately with compression and followed again by 

tension. This is repeated for either two or four total oscillations. The run table for these 

experiments is provided in Table 15. 
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Table 15. Run table of five oscillation deformations on San Carlos olivine at varying sample 

temperatures. The temperature errors are estimated to be ±50 °C. The number of oscillation 

cycles is in the Osc. cycles column. The anvil direction reverses for each oscillation, so the 

anvil rate is positive and negative. The last column is the deformation time per cycle, which 

includes a compression and tension deformation pair. 

Cycle Oil 

pressure 

[bar] 

Sample 

pressure 

[GPa] 

Heating 

power 

[W] 

Sample 

temperature 

[°C] 

Piezoelectric 

temperature 

[°C] 

Osc. 

cycles 

Anvil rate 

[μm/min] 

Deform 

time per 

cycle 

[min] 

OS1 36 2.1 580 780 150 4 ±5.0 8 

OS2 36 2.1 580 780 150 4 ±20.0 8 

OS3 36 2.1 820 1190 190 4 ±20.0 8 

OS4 36 2.1 820 1190 190 2 ±30.0 16 

OS5 36 2.1 0 23 23 2 ±20.0 8 

 

The anvil rate for compression, i.e. anvil advancement, is positive and negative for tension, i.e. 

retraction. Five cycles of deformation were accomplished. The anvil deformation rates were 

varied as well to test if the total strain imposed on the crystal potentially has any effect on the 

hysteresis. Note that the oscillations were pre-programmed into the PLC so that the press 

immediately reversed advancement rates for each cycle so as not to allow a recovery period in 

the crystal. 
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Figure 77. Anvil movements of two cyclical deformation experiments. Experiment OS2 and OS4 

are illustrated in the top and bottom plot respectively. OS2 consists of an experiment with four 

deformation cycles and OS4 of two deformation cycles. The anvil velocities are also shown 

below. The velocities seem sinusoidal and overly smooth because of the Savitzky-Golay filter 

applied to remove the noise. In actuality, the velocities match with the cycles accurately. Blue 

vertical dashed lines mark the full cycles. 

 

Two cycles, OS2 and OS4, are illustrated in Figure 77. The top plot, OS2, shows the anvil 

movements during a four-oscillation deformation. Each cycle is defined by a return to the initial 

anvil positions, so each consists of a compression and a tension strain rate. These points are 

marked with blue vertical dashed lines. The anvil velocity may at first glance seem offset from 

the actual anvil movements, but this is only a result of the Savitzky-Golay filter applied to 
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remove the high-frequency noise from the anvil velocity data. The window size of 401 seconds 

used in the filter coupled with the shorter deformation cycles obscures the point at which 

velocities were reversed. Apart from the minima and maxima of the anvil positions due to the 

varying strain rates and deformation duration, the other cyclical deformation experiments are 

similar in appearance.  

For these experiments, no x-ray radiography images were taken of the deformation column 

before and after the experiments. Thus, no strain measurements are possible. The averaged 

microstrains from each fitted San Carlos olivine peak are shown in Figure 78. Apart from OS4 

and OS5, all the cyclical deformation experiments begin at a positive deviatoric stress. This can 

be seen by the splitting of the D1 (azimuth 0°) and D2 (azimuth 90°) microstrains already at 

the start of deformation. Even so, the cyclical anvil movements are clearly recorded in the lattice 

microstrains and in OS4 there is enough strain rate in a full cycle to bring the deviatoric stress 

to roughly zero. 
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Figure 78. Averaged lattice microstrains as measured by the D1 and D2 detectors for the 

cyclical deformation experiments. Blue vertical dashed lines mark cycles. 

 

Figure 79 overlays the calculated XRD stress and measured piezoelectric method stress once 

again. The large spread of each peak’s fitted stress, in particular (140) and (151) in OS1, OS2, 

and OS3, shows the issue with the wide range of stresses measured by each peak in XRD. 

Although, with the large number of peaks fitted the averaged XRD stress, plotted with black 

triangle markers, still forms a clear cyclical signal. In comparison, the piezoelectric-determined 

stress, also displays this cyclical nature. However, the piezoelectric stress is much sharper and 

shows an immediate response in the signal to direction reversals in anvil movement.  

Deformation OS1 has a drift in the piezoelectric-determined stress that the fitting method used 

in all experiments did not remove. Each tension portion seems to have not reversed the signal 

completely, leading to an almost linear upwards drift in stress. The other experiments do not 

display the same issue. The piezoelectric method, having much higher temporal resolution, 

records sharp stress changes when the anvils stop and reverse while the XRD measured stress 

does not, following a smoother transition, especially visible in OS4. Apart from the fact that 

each XRD measures in fact an average stress over the period of the XRD exposure time, another 

reason could be that the piezoelectric crystal is coupled to the deformation anvil through a 1 

mm thick diamond disk. Therefore, any application of force from the anvil is immediately 

recorded in the current signal while the sample lags behind due to frictional losses and strain 

accommodated by the other assembly parts. 
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Figure 79. Stresses as measured with both the XRD and piezoelectric method. The XRD stresses 

from every fitted peak are shown (triangles). The average XRD-determined stresses are shown 

as black triangles. The black line is the stress as measured by the piezoelectric method.  

 

3.3. Linear compression and tension deformations on MgAl2O4 spinel 

at room temperature with XRD 
Table 16. The isentropic bulk modulus (𝐾𝑆0) in GPa of the samples deformed. (Mao et al., 

2015)a, (Yoneda, 1990)b. 

 𝐾𝑠0 [𝐺𝑃𝑎] 

San Carlos olivine 129.8(9)a 

MgAl2O4 spinel 197.9(2)b 

MgO 162.7(2)b 

 

MgAl2O4 spinel was chosen as a test material because it has a higher bulk modulus and yield 

strength than olivine (Hansen et al., 2019; Palmour et al., 1963; Rufner et al., 2014; Sokol et 

al., 2017). Initially, heating issues caused sudden and drastic drops in resistance across the 

piezoelectric crystal, prompting a shift to room temperature experiments although heating could 

still be used to relax the sample stresses before and between measurements.   

Despite the predominantly brittle nature of deformation at room temperature, the deformation 

of a higher bulk modulus material provides a useful test because it results in higher stresses 

being supported within the sample before failure. The bulk moduli of all three materials tested 

in this thesis are listed in Table 16. Because the piezoelectric crystal generates a charge 

separation proportional to the elastic compression of the crystal, there is a maximum limit to 

how much stress it can measure before the deformation induces inelastic strain, which is not 

measured by the crystal.  

In other words, there is a plateau to the maximum measurable stress. This behavior is akin to 

how stresses are measured with XRD, as it can only do so through the elastic microstrain of the 

lattice. If the sample has a higher yield strength than the piezoelectric crystal, the stress 

measured by the crystal would plateau once the crystal’s yield strength is reached. The charge 

trend under these conditions would appear identical to the charge trend for the sample creeping, 

where stress does not increase proportionally with strain. 

To better characterize if this limit is of concern in a typical deformation experiment, MgAl₂O₄ 

spinel was deformed at room temperature and high pressure above 2 GPa to generate high 

stresses within the sample. These experiments were done at the P61B beamline at the PETRA-
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III synchrotron in DESY, Hamburg. Different deformation rates and times were used to 

determine if plastic creep could be achieved in the sample and if the piezoelectric crystal records 

the yield strength of the sample at this point. 

Table 17. Run table of three linear compression and two linear tension deformations on 

MgAl2O4 spinel at room temperature. 

Cycle Type of 

deformation 

Oil 

pressure 

[bar] 

Sample 

pressure 

[GPa] 

Anvil 

rate 

[μm/min] 

Deform 

time 

[min] 

C4 Compression 45.0 2.6 6.7 44.4 

C5 Compression 45.0 2.6 4.4 66.7 

C6 Compression 45.0 2.6 2.9 100.0 

T6 Tension 40.5 2.4 6.7 44.4 

T7 Tension 40.5 2.4 4.4 66.7 

 

Table 17 lists the experiments on MgAl2O4 spinel.  A pair of compression and tension phases 

forms a ‘cycle’. Between cycles, the sample was heated to 1000 °C for up to one hour to relax 

the sample and reduce stresses to zero. The last tension deformation failed as the platinum wire 

on the crystal, passing through the assembly, ‘pinched’ off.  

Figure 80 has all the lattice microstrains of the deformation experiments plotted, averaged for 

all the fitted peaks. As is clear, the compression experiments successfully started with close to 

zero stress in the sample. Additionally, immediately retracting the anvils after a compression 

deformation, to induce a tension deformation, successfully brought the lattice microstrains back 

close to zero. The stress hysteresis in MgAl2O4 spinel is minimal at room temperature.  

As with the San Carlos olivine experiments, the full deformation column was imaged using x-

ray radiography before and after every deformation. The measured engineering strain and 

length difference in microns has been calculated and shown in Figure 81. While once again the 

anvil rate and deformation time programmed into the PLC is not a completely accurate measure 

of the actual sample shortening or lengthening measured, the strain rate is at least proportionally 

increasing with increased anvil rate.  

The anvil rate and deformation time were both adjusted in each deformation cycle to result in a 

total shortening or lengthening of the sample of 300 μm. As can be seen by the right-handed 

plots in Figure 81 , the total strain of the sample was less than this this. The total engineering 

strain of the deformation column does match closest to the strain of the sample, labeled Samplem 

in the left side plots.  
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Once again, some of the foils (Foilb, Foilt, Nb, Nt) and shorter sample disks (Sampleb, Samplet) 

show unreasonable amounts of strain. This most likely results from a tilting or misorientation 

of the materials and is not due to actual strain. Since these parts are thin and 4 mm in diameter, 

even a small angle of misorientation, when imaged edge-on, would result in the material 

appearing to be much thicker. The total strain measured is closest to the Samplem strain, which 

is the 3 mm length sample that is under investigation. This at least suggests that with both San 

Carlos olivine and MgAl2O4 spinel, the strain measured by the position encoders on the anvils 

could be used as a reasonable measurement of the sample strain, after correction for the anvil 

strain itself. 
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Figure 80. Averaged lattice microstrains as measured by the D1 and D2 detectors, for C4, C5, 

C6, T6, and T7. In this case, the lattice strains begin and end close to zero with each experiment. 
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This exemplifies adequate stress recovery from the sample, with little to none being relaxed 

between the deformations. 
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Figure 81. The measured strains of C4, C5, and C6. On the left side are the engineering strain 

measurements and on the right side the length difference in images. The engineering strain bar 
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plots also list the calculated strain rates for each part at the end of the bars. The units for these 

are s-1. 

 

 

Figure 82. The measured strains of T6 and T7. Each tension deformation engineering strain is 

on the left side and the length difference of each part on the right side. The engineering strain 

bar plots also list the calculated strain rates for each part at the end of the bars. The units for 

these are s-1. 

 

The calculated stresses using both XRD and piezoelectric method are plotted in Figure 83. As 

expected, the deviatoric stresses increase to substantially higher levels as compared to the high-

temperature olivine experiments. The average XRD measured stress in the spinel reaches above 

4 GPa, higher even than the confining pressure. For these experiments, no XRD was taken of 
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the MgO sleeve around the sample to calculate the hydrostatic pressure. However, using the 

equation of state of MgAl2O4 spinel (Yoneda, 1990) and the d-spacing at the azimuthal angle 

of 54.74°, the hydrostatic pressure did not exceed 3 GPa at any point during deformation.  

Even at very high deviatoric stresses, the CTGS piezoelectric crystal continues to register 

increasing stress. However, during deformation runs C4, C5, and C6, a discrepancy arises in 

the latter half of each experiment, where the XRD measurements and the stress recorded by the 

CTGS sensor begin to diverge. One plausible reason for this could be that the CTGS crystal 

itself is approaching its elastic limit. Since the piezoelectric crystal can only generate a signal 

when it is elastically deforming, reaching this limit could lead to the observed reduction in stress 

accumulation rates, indicating the onset of inelastic, permanent deformation in the CTGS 

crystal. 

This decrease in the rate of stress accumulation is consistently observed at around 2 GPa of 

deviatoric stress in each experiment. To confirm whether this threshold corresponds to the 

elastic limit of the CTGS crystal or whether it may be due to inaccuracies in the XRD stress 

measurements, further experimental investigation is necessary. 

Despite these discrepancies, the XRD measurements of spinel continue to show a linear increase 

in stress throughout the deformation, suggesting that spinel remains within its elastic regime 

and has not undergone significant inelastic deformation. The piezoelectric signals recorded in 

these room-temperature experiments also display greater stability and fewer issues with signal 

oscillation or ferrobielastic switching compared to the high-temperature experiments conducted 

on San Carlos olivine. While the high-temperature experiments confirm that piezoelectric stress 

measurements can be effectively performed at elevated temperatures, the room-temperature 

experiments on spinel demonstrate that the technique provides more accurate and precise 

measurements under these conditions. 

The 2 GPa stress limit observed could indicate that the CTGS crystal is reaching its elastic limit, 

or it may reflect inaccuracies in the XRD technique. Nevertheless, at higher temperatures, 

where materials tend to soften, this stress limit is unlikely to present a significant issue under 

real-world geological conditions. 
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Figure 83. Deviatoric stresses as measured with both the XRD and piezoelectric method on 

MgAl2O4. The three (C4, C5, C6) compression experiments and the three tension experiments 

are shown. The bottom plot shows the anvil velocity. 

 

3.4. Linear compression and tension deformations on MgO at room 

temperature with XRD 
After MgAl2O4 spinel, polycrystalline MgO was deformed. Identical sample pressures, anvil 

rate, and deformation times were applied as in the spinel experiments. 

Table 18. Run table of three linear compression and three linear tension deformations on MgO 

at room temperature. 

Cycle Type of 

deformation 

Oil pressure 

[bar] 

Sample 

pressure 

[GPa] 

Anvil rate 

[μm/min] 

Deform time 

[min] 

C7 Compression 45.0 2.6 6.7 44.4 

C8 Compression 45.0 2.6 4.4 66.7 

C9 Compression 45.0 2.6 2.9 100.0 

T8 Tension 40.5 2.4 6.7 44.4 

T9 Tension 40.5 2.4 4.4 66.7 

T10 Tension 40.5 2.4 2.9 100.0 

 

Once again, all the deformation cycles of MgO listed in Table 18 were at room temperature. In 

this case, unlike the MgAl2O4 spinel deformation, the last tension experiment was successful 

(T10). After each pair of compression and tension deformation cycles, the sample was heated 

to 1000 °C for 30 minutes to relax stresses. Unfortunately, this was not adequate to completely 

relax the stresses as can be seen in Figure 86.  

The lattice microstrains indicate that each compression deformation cycle started with residual 

tensional stress. This tensional stress, visible in the microstrain plot, gradually decreased, 

passing through a point of zero stress, and then transitioned into positive compressional stress. 

Additionally, although as in the previous deformation of spinel, no heating was used before the 

tension deformation, substantial stress hysteresis is present in MgO. The lattice microstrains 

always crossed during the deformation and reversed.  

The plots of the measured strain also exemplifies the weaker nature of MgO as compared to the 

spinel. Both the engineering strain and the absolute micron difference in the sample length, 

Samplem, are larger with the MgO sample compared to the spinel sample. The slowest 

compression deformation, C9, shows an anomalous decrease in length of the ZrO2 plug at the 
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bottom of the assembly (D). It is unclear why the zirconia plug shortened more than usual 

during this deformation experiment. 
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Figure 84. Compression strains for C7, C8, and C9 on MgO. Displayed are the engineering 

strain (left) and length change in microns (right), derived from x-ray radiography pre- and 

post- deformation. Strain rates are indicated adjacent to each bar, with units in s-1. 
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Figure 85. Tension strains for T8, T9, and T10. Engineering strain (left) and micron-scale 

length change (right) are presented, based on x-ray radiography before and after tensioning. 

Strain rates are denoted beside each corresponding bar, in s-1. 
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Figure 86. Averaged lattice microstrains for C7, C8, C9, T8, T9, and T10, as detected by D1 

and D2. Notably, microstrains ‘overshoot’ and switch positions, indicating a significant 
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relaxation of stress between experiments on MgO, contrary to the convergence towards 0 

observed in previous deformations on MgAl2O4. 

 

The MgO sample strain, Samplem, increased consistently with an increasing rate of anvil 

movement. This is not entirely expected as the anvil rates and deformation time were 

specifically chosen to result in the same total strain for all cycles. The fact that the strain on the 

sample is larger even though the total deformation column strain is roughly equal between each 

experiment can be explained by the plots in Figure 87.  

The higher anvil movement rate experiment, C7, reaches a higher final stress state in the MgO 

as compared to the slower C8 or slowest C9. In all cases, the stress, measured both from XRD 

and the piezoelectric method, is close to linear to about 2.5 GPa. Beyond this point, plastic flow 

begins and the stress increases at a slower pace with increasing strain. Both C7 and C8, beyond 

2.5 GPa of deviatoric stress, show this flattening of the strain-stress curve. The piezoelectric 

method also follows the same pattern.  

The piezoelectric signal in C7 has two kinks in it because in this experiment the voltage drift 

was larger than usual. The two kinks are when the voltage drifted past the integrating capacitor 

limit of 10 V. At this voltage, referring to Figure 38, the integrator closes switch S2 which 

discharges the capacitor back to 0 V and begins integrating the charge again. At this point, the 

voltage has been reset to 0 V.  

In most deformation experiments, the voltage drift is low enough that the reset point at either -

10 V or +10 V is never reached. Previous experience with the charge integrator has shown that 

at the ‘reset’ point of 0 V, the capacitor charging rate is not linear. It tends to flatten at the high 

end of the voltage range and is steeper at the lower end of the voltage range. This is why in C7 

the piezoelectric stress before the kink, where it is approaching either +10 V or -10V, has a 

smaller slope and once it resets to 0 V, the slope is briefly steeper, forming a humped shape. As 

most experiments did not have drift enough to reach the limits, no further work was done to 

find the source of this nonlinear voltage increase. 
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Figure 87. Deviatoric stresses measured via XRD and piezoelectric methods for MgO. 

Showcased are the compression (C7, C8, C9) and tension (T8, T9, T10) experiments. The lower 

graph illustrates the anvil velocity for each run. 
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As with MgAl2O4 spinel experiments, tension i.e. deformation through anvil retraction, was 

also conducted. The three runs, T8, T9, and T10 all behaved well and the piezoelectric stress 

closely matches the XRD measured stress. Even at the higher stresses of over 2 GPa, no plateau 

in stress was seen. The results seem reasonable. None reached the flow strain regime and thus 

the stresses are largely linear through the whole deformation cycle. In general, it was found that 

the piezoelectric stress measurement method was consistently more stable, precise, and easier 

to work with during tensile deformation. 

3.5. Single crystal MgO and Fo deformation in the creep regime 
Single crystal deformation experiments at high pressures and temperatures, as opposed to 

polycrystalline samples allow specific slip planes to be targeted. In previous high pressure 

experiments on single crystals, stresses were measured by including powdered materials within 

the same deformation column and using XRD microstrain determinations (Girard et al., 2012). 

This is necessary because high pressure deformation devices do not allow the single crystal 

samples themselves to be rotated as in single crystal X-ray diffractometry. The piezoelectric 

method, however, allows such measurements to be performed away from a beamline. Several 

previous studies have been performed on MgO and forsterite single crystals to measure the 

stress and strain relations at various hydrostatic pressures and temperatures and at different 

orientations of the single crystals to the direction of deviatoric stress. (Darot & Gueguen, 1981; 

Demouchy et al., 2009; Girard et al., 2012; Mei et al., 2008; Raterron et al., 2007).  

Single crystal studies, that have generally been performed with the Patterson or Griggs 

apparatus, can be used to evaluate the piezoelectric method as the effects of grain size and grain 

boundary effects are eliminated. To compare with previous studies, MgO and forsterite single 

crystals were deformed with the piezoelectric crystal as the stress sensor at high pressure and 

temperature. The deformation experiments are shown in Table 19. These experiments were 

undertaken with the MAVO LPQ7-2400-100 press present at BGI using the MA6-6 15/10 cubic 

piezoelectric assembly described previously in section 2.2.1. 

Table 19. Results of deformation experiments on single crystals, forsterite and MgO, with 𝜎1 

along [100]. The experiments indicated in bold reached the creep regime, i.e., flow stress. 

Otherwise, the maximum 𝜎 provided is right at the end of deformation as opposed to sometime 
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before the end of deformation for the bolded rows. All experiments are at a strain rate of 

5 × 10−5 𝑠−1 (7.2 μm/min anvil advancement rate) for 55.55 minutes. 

Forsterite single crystal [100] 

Oil pressure Sample pressure Temperature Maximum 𝜎 

[bar] [GPa] [°C] [MPa] 

15.3 1.5 800 1779 

15.3 1.5 1000 1554 

15.3 1.5 1200 1280 

15.3 1.5 1300 1156 

24.1 2.3 600 1960 

24.1 2.3 800 1704 

24.1 2.3 1000 1531 

24.1 2.3 1200 1368 

24.1 2.3 1300 1175 

33.4 3.0 600 1375 

33.4 3.0 800 1545 

33.4 3.0 1000 1590 

33.4 3.0 1200 1552 

33.4 3.0 1300 1343 

MgO single crystal [100] 

Oil pressure Sample pressure Temperature Maximum 𝜎 

[bar] [GPa] [°C] [MPa] 

15.3 1.5 800 750 

15.3 1.5 1000 481 

15.3 1.5 1200 217 

15.3 1.5 1300 99 

24.1 2.3 600 1377 

24.1 2.3 800 1060 

24.1 2.3 1200 578 

24.1 2.3 1300 364 

33.4 3.0 600 1666 

33.4 3.0 800 1449 

33.4 3.0 1000 1417 

33.4 3.0 1300 409 

 

Since X-ray radiography could not be used to measure the actual strain rate on the sample, the 

strain rate was calculated from the anvil position encoders on the press. As was seen from the 

XRD experiments, the sample strain is generally less than that recorded by the encoders. 

Analyzing the sample height after deformation is not necessarily feasible as during 

decompression the samples often crack, leaving large joints throughout, and sometimes the 

samples even crumble. This makes the sample length determination after some experiments 

inaccurate.  

Thus, an approximation for strain rate was made assuming that all anvil movement is applied 

to sample shortening. The strain rate discrepancy between that assumed and the true strain rate 
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on the sample is likely to be inaccurate only by a factor of 2 or 3. The estimate comes from 

experiments conducted at the synchrotron with the same assembly showing that the calculated 

strain rate on the whole assembly only varies by factors of 2 – 3 from the strain rate on the 

sample.  

To determine whether the stress became constant, i.e., the sample is in a creep regime, the 

maximum stress was found and if this occurred before the end of deformation, as opposed to 

directly at the end of deformation, the sample was assumed be in a creep regime. These specific 

deformation experiments, where a creep state was reached, are indicated in the run table (Table 

19) in bold. As expected, the highest temperature deformation experiments as well as those at 

lower pressures are more likely to reach a creep state within the deformation time. The only 

exception is the forsterite sample, where the lowest pressure run at 1.5 GPa never reached an 

expected creep state. 
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Figure 88. Stress, as measured with the piezoelectric method using CTGS as the piezoelectric 

crystal, of synthetic single crystal forsterite. Each separate plot is at a different hydrostatic 

pressure and each curve corresponds to a different temperature. The red, vertical dashed lines 
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represent the start and end of deformation, respectively. In the legend, the star indicates 

deformations that reached creep. 

 

The results of stress measurements on the single crystal forsterite deformation are presented in 

Figure 88. The experiments that passed the yield strength and reached a creep flow state are 

indicated with a star in the legend. Consistent behavior is found where the yield stress becomes 

larger with decreasing temperature and increasing pressure which is expected to happen, as 

predicted by the power law creep equation. Since the activation volume is not expected to be 

negative in materials, the flow stress would increase with increasing pressure. Additionally, 

since the temperature is in the denominator of the exponential, a decreasing temperature would 

increase stress. 
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Figure 89. Stress, as measured using CTGS piezoelectric crystals, of synthetic single crystals 

of forsterite. Each separate plot is at a different hydrostatic pressure and each curve 

corresponds to a different temperature. The red, vertical dashed lines shows the start and end 

of deformation, respectively. 

 

The MgO results are provided in Figure 89. In this case, MgO shows much more dramatic 

softening with temperature compared to forsterite, in addition to lower strength at all 

temperatures. As expected, a creep regime is entered more consistently at a lower temperature 

than for forsterite. Once again, the deformation experiments that were judged to have entered a 

creep regime are indicated with a star in the legend. For the run at 1.5 GPa and 1300 °C, the 

actual creep is taken not at the maximum stress, but before it at roughly 2000 seconds. This is 

because this region shows a marked flattening before a slow increase and then another flattening. 

This earlier region is taken as the first creep regime before some strength hardening takes place 

with increasing strain and there is another increase in stress. 

3.6. Raman spectroscopy of CTGS 
A search of literature did not reveal any studies on the Raman spectrum of CTGS crystals. The 

unit cell of CTGS contains only one formula unit (Z=1) and thus 23 atoms. Since each atom 

has 3 degrees of freedom, the total degrees of freedom are 3 × 23 = 69, and subtracting the 3 

translational modes as well as the three rotational modes, the total number of vibrational or 

phonon modes for CTGS is 63. The positions and coordinates of the CTGS crystal, based on 

the point group 32 and space group P321, are provided in Table 20 based on atomic positions 

(Ai et al., 2024; Kitaura et al., 2022; Lan et al., 2005). 

Table 20. Positions and coordinates of atoms in the unit cell of CTGS crystal (Kitaura et al., 

2022). 

atom Wyckoff 

position 

symmetry coordinates 

1Ta 1a 32 (0,0,0) 

2Si & 

2O 

2d 3 
(1/3, 2/3, 𝑧), (2/3, 1/3, −𝑧) 

3Ca 3e 2 (𝑥, 0, 0), (0, 𝑥, 0), (−𝑥, −𝑥, 0) 

3Ga 3f 2 (𝑥, 0,1/2), (0, 𝑥, 1/2), (−𝑥, −𝑥, 1/2) 

12O 6g 1 (𝑥, 𝑦, 𝑧), (−𝑦, 𝑥 − 𝑦, 𝑧), (−𝑥 + 𝑦,−𝑥, 𝑧), 
(𝑦, 𝑥, −𝑧), (𝑥 − 𝑦,−𝑦,− 𝑧), (−𝑥, −𝑥 +  𝑦, − 𝑧)    

 

In point group 32, the character table of the irreducible representation can be reduced using 

factor group theory to: 
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6𝑔: 3𝐴1 + 3𝐴2 + 6𝐸 

3𝑓: 1𝐴1 + 2𝐴2 + 3𝐸 

3𝑒: 1𝐴1 + 2𝐴2 + 3𝐸 

2𝑑: 1𝐴1 + 1𝐴2 + 2𝐸 

1𝑎: 0𝐴1 + 1𝐴2 + 1𝐸 

The irreducible representation of the lattice vibrational modes of CTGS crystal is obtained as 

10𝐴1 + 13𝐴2 + 23𝐸 

So, for the above result there are a total of 69 normal vibrational modes, consistent with the 

actual number of atoms. Removing the three acoustical modes 1𝐴2 + 𝐸 there are 66 principal 

vibrational modes (Lan et al., 2005).  

Now, according to the character table of point group 32, the Raman (R) active and infrared (IR) 

active optical phonon modes at the first Brillouin zone center can be assigned as 

Γ𝑣𝑖𝑏 = 10𝐴1(𝑅) + 12𝐴2(𝐼𝑅) + 22𝐸(𝑅, 𝐼𝑅) 

The irreducible 𝐴1  and 𝐴2  denote the one-dimensional symmetry species which end up 

corresponding to 10 Raman and 12 IR active optical phonon modes respectively. As for E, the 

irreducible representation denotes that two-dimensional symmetry species correspond to 44 

vibrational modes. Thus, there are no more than 54 theoretically observable Raman peaks and 

34 IR reflection bands. This is the same as CNGS (Ca3NbGa3Si2O14) and LGS crystals (Lan et 

al., 2005; Lu et al., 2004).  

Further calculation of specific Raman active optical phonon modes would require density-

functional theory (DFT) calculations, which are beyond the scope of this work. However, to 

further understand the piezoelectric material and aid with identification of CTGS crystals after 

experiments to determine if they were damaged or amorphized, a Raman spectrum was 

collected on CTGS using a 532 nm excitation laser. A total of 37 minutes of exposure time with 

a laser power of 500 mW was employed with measurements on 5 different spots on the same 

CTGS crystal. The counts were then summed into a single Raman spectrum after manual 

verification to ensure that, at least visually, the spectra did not contain errant peaks not present 

in the others. Even at the high power of 500 mW, no damage was visible after a careful 

microscopic analysis of the heating spots.  
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After collection and summation, the software Fityk (Wojdyr, 2010) was used to fit the peaks in 

the data. An initial background subtraction using a spline was conducted by visually placing fit 

points between the peaks. Afterwards, Voigt peaks were used to fit the data through manual 

peak placement and then running the fit routine in Fityk. A minimal number of peaks were first 

placed and then fitted, and any large asymmetry in the fitted peaks identified through the 

residuals were used to place additional, smaller peaks to account for peak asymmetry. All 

efforts were made to keep the number of peaks to a minimum. 

 

Figure 90. The original measured data, after background subtraction, in black with the Voigt 

peaks that were fit in red and the summed peaks in yellow, overlaid over the original data. The 

residual is plotted below in the blue line. 

 

Figure 90 plots the original data as measured in black, with the summed Voigt peaks overlaid 

in a thin, yellow line. The individual Voigt peaks are plotted in red with the residuals shown 

below the plot. As can be seen, the relatively heavier atoms in CTGS, specifically Ta, increase 

the low Raman shift complexity. In Raman spectroscopy, the intensity and position of peaks 

are influenced by the mass of the atoms involved (Patterson & Bailey, 2018; Scarponi et al., 

2017). Heavier atoms, such as tantalum (Ta) and gallium (Ga) in CTGS, have lower vibrational 
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frequencies due to their greater inertia. This results in Raman shifts that occur at lower 

frequencies as compared to, for example, α-quartz, as well as most typical and common Earth 

minerals since they tend to largely contain lower mass atoms. 

 

Figure 91. The directly measured data, with background subtraction, and the peaks fit with 

Voigt functions. Both the Raman counts and peak heights were normalized to 100. 

 

The measured data with the peak locations derived from the Voigt profile fits, both normalized 

to an intensity of 100, are displayed in Figure 91. As can be seen, the number of peaks in the 

low Raman shift range are higher than most abundant natural minerals owing to the high atomic 

mass ions in CTGS, as expected. The lowest Raman shift that could be measured was 85 cm-1. 

The expectation is that more peaks are present below this range, but the Raman system was not 

capable of measuring closer to the Rayleigh scattering peak.  

All the peaks are listed in Table 21. While most of the peaks listed are likely present, some of 

the low intensity but large FWHM peaks are possibly over-fitted or a result of noise. The table 

can be used to accurately recreate the measured Raman spectrum. A total of 46 peaks were fit, 

less than the maximum possible 54 peaks predicted theoretically. 

 



3. Results 

184 

 

Table 21. All Raman peaks of CTGS derived from Voigt profile fits. The center position, relative 

intensity (normalized to 100), and full-width half-maximum (FWHM) of each peak for both the 

Gaussian and Lorentzian profiles are listed in ascending order of center position. 

Center 

[cm-1] 

Relative 

intensity 

Gaussian 

FWHM 

[cm-1] 

Lorentzian 

FWHM [cm-1] 

Center 

[cm-1] 

Relative 

intensity 

Gaussian 

FWHM 

[cm-1] 

Lorentzian 

FWHM [cm-1] 

87.53 2.18 2.687 3.099e-07 320.56 2.18 9.463 0.437 

89.95 2.15 3.103 1.111e-04 339.77 0.31 5.046 -3.054e-02 

92.44 0.81 2.889 8.063e-08 361.73 3.58 9.791 2.071e-06 

96.17 1.58 4.261 1.754e-04 367.58 21.00 7.182 -1.476e-10 

104.16 10.28 6.072 -2.602e-08 371.62 4.91 12.774 3.236e-08 

112.11 5.88 7.504 1.093e-04 458.12 1.90 34.041 2.037e-07 

119.64 1.58 3.518 -4.403e-05 464.26 7.78 8.696 2.443 

126.34 0.61 3.152 4.676e-07 492.48 0.90 11.669 -9.632e-08 

136.25 1.50 4.671 1.780e-06 581.89 13.01 26.080 -5.250e-06 

145.91 6.63 7.592 2.824e-06 582.35 51.28 8.030 3.392 

153.62 7.64 8.218 -3.283e-06 590.64 1.00 4.505 -1.093e-04 

159.46 4.63 5.775 4.883e-06 621.10 100.00 4.359 9.064 

166.58 10.42 12.520 -3.780e-06 646.25 0.60 15.727 7.859e-05 

178.32 0.63 7.601 -6.325e-06 680.39 11.55 0.345 13.961 

199.91 0.56 5.658 2.093e-05 700.68 2.86 14.642 -5.146e-06 

204.98 0.98 12.006 -3.407e-06 789.15 0.30 5.773 -3.039e-02 

230.13 12.89 5.688 3.253 799.38 10.02 10.197 -1.954e-05 

236.76 4.39 1.233 8.074 802.30 4.74 24.598 7.359e-08 

265.05 15.03 16.177 2.532 876.45 2.07 19.283 1.564e-06 

267.10 6.17 8.241 1.153 883.73 6.21 11.578 1.179e-07 

280.96 5.16 1.739 10.822 896.65 1.65 15.070 9.906e-06 

299.91 2.43 11.231 -0.429 959.65 0.69 9.590 -1.684e-05 

310.76 19.49 11.058 0.018 986.42 12.68 5.708 8.269 

 

Previous work has been done on CNGS crystals to determine Raman peaks. First, Raman 

spectrum was collected and then ab-initio molecular orbital calculations where done. CNGS is 

identical structurally to CTGS except the Ta is replaced with Nb. Although not directly 

comparable since the atomic masses are different, the assignment for the other atoms within the 

structure that are identical can be compared more closely, listed in Table 22. 

 

 



3. Results 

185 

 

Table 22. Raman peaks calculated with ab-initio orbital calculations and assignment to specific 

vibrational modes (Lan et al., 2005) compared to the closest peak fit on CTGS in this study. 

Peaks not clearly seen in CTGS are omitted. 

Frequency Assignment 

Calculated 

for CNGS 

[cm-1] 

Observed 

in CTGS 

[cm-1] 

 

147 146 GaO3–Ca–SiO3 bending 

161 168 GaO3–Ca–SiO3 stretching 

178 - GaO3–Ca–SiO3 bending 

227 230 GaO3–O–GaO3 bending 

241 237 GaO3–O–SiO3 stretching 

242 237 GaO3–O–SiO3 stretching 

270 265 GaO3–O–GaO3 stretching 

282 281 GaO3–O–SiO3 stretching 

313 311 SiO4–Ca–SiO4 stretching 

333 - Ga–O stretching 

377 368 O–Ca–O stretching 

442 - GaO3–Ca–SiO3 stretching 

458 464 O–Ga–O bending 

581 582 O–Si–O bending 

618 621 O–Ga–O stretching 

656 - O–Ga–O stretching 

673 680 Ga–O stretching 

688 701 Si–O stretching 

727 - Si–O stretching 

768 799 Si–O stretching 

866 876 O–Si–O stretching 

974 986 Si–O stretching 

 

3.7. Brillouin spectroscopy results 
The Brillouin spectra were fit using Brillouin Win1024 (Sinogeikin et al., 2006). A systematic 

fit using Gaussian or Voigt profiles is generally not possible since the Brillouin signal counts 

are low for most spectra. This low signal count is inherent to Brillouin spectroscopy due to 

several factors. Firstly, Brillouin scattering is a relatively weak phenomenon as it involves the 

interaction of light with acoustic phonons, which are low-energy excitations within the material. 

Consequently, the intensity of the scattered light is significantly lower compared to other 

scattering processes such as Raman scattering.  

Furthermore, the experimental setup for Brillouin spectroscopy often involves narrow-

bandwidth lasers and high-resolution interferometers, which, while necessary for resolving the 

small frequency shifts associated with acoustic phonons, also contribute to the low signal counts. 



3. Results 

186 

 

The efficiency of the detection system and the intrinsic properties of the sample, such as its 

transparency and acoustic properties, can further limit the intensity of the Brillouin signal. Due 

to these intrinsic limitations, fitting a Gaussian or Voigt profile to the spectra is generally not 

feasible.  

The low signal-to-noise ratio (SNR) means that the peaks corresponding to the Brillouin shifts 

are often weak and broad, making it challenging to distinguish them from the background noise. 

This difficulty is compounded when working with materials that inherently produce weaker 

Brillouin signals or when operating under conditions that further reduce signal strength, such 

as high-pressure environments. The low counts observed in Brillouin spectroscopy data 

typically follow a Poisson distribution, which describes the probability of a given number of 

scattered photons being detected in a fixed interval (Dil & Brody, 1976). This distribution is 

characterized by the variance being equal to the mean, highlighting the random nature of the 

low-count events.  

Error was estimated as the ratio between the amplitude variation of the noise to the peak height. 

To convert this ratio to an error, a series of 20 Brillouin spectra collected continuously on the 

same crystal were fit manually. The SNR of each fit along with the error in the velocities 

between them were used to define an error function that relates the SNR to a velocity error. 

This was used on each velocity fit on CTGS to calibrate the researcher’s manual fitting error.  

To ensure the quality of the fit, a Voigt profile was first fit to the central, elastic peak. Following 

this, the Stokes and Anti-Stokes peaks for each velocity were fit. The average channel positions 

of these fits were then compared to the channel position of the central elastic peak. If the average 

channel position differed by more than one channel from the central peak's position, the fitting 

process was refined for greater precision. An example spectrum of one data point is shown in 

Figure 92. 
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Figure 92. Example of a Brillouin spectra on CTGS. This was collected at 6.5 GPa on X1 at 

𝜒=140°. The velocity peaks of the sample as well as the diamond and He are labeled. The 

central peak is the Rayleigh scattering, or elastic peak. 

 

The final fits to the velocity dispersion curves are detailed in Figure 93. Also included in the 

plots are the velocities of the liquid He 𝑉𝑆1 and 𝑉𝑆2. These peaks do not shift with 𝜒 as liquids 

are isotropic. Since the He peaks were prominent, no CTGS velocity peaks could be fit if they 

shifted too close to them. Fortunately, the He peaks did not dramatically hinder fitting for any 

pressure point. The liquid He velocities were acquired from literature reported data (Hanayama 

& Kimura, 1995) up to 3 GPa and fit with a simple power law equation and extrapolated to 9.8 

GPa. The He peaks indeed appeared in the expected position according to the equation. 
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Figure 93. Velocity dispersion curves with 𝜒  angles are plotted for each pressure point 

measured on CTGS. The directly fitted points are plotted with the curves fitted to each in the 

same color. 𝑉𝑝 = P, 𝑉𝑆2 = S2, 𝑉𝑆1 = S1. The 𝜒 angle range in the 1 bar plot is different because 

it was measured at BGI. The rest were measured at DESY. Also added are the liquid He 𝑉𝑆2 

and 𝑉𝑆1  peak locations for each pressure point. 

 

After fitting the velocity dispersion curves by numerically solving Eq. 80, solutions for the 6 

independent elastic stiffness coefficients (𝐶11, 𝐶33, 𝐶44, 𝐶12, 𝐶13, 𝐶14) were derived. The elastic 

coefficient 𝐶66 is not independent and is instead calculated, according to the tensor in Eq. 81, 

with the formula 
1

2
(𝐶11 − 𝐶12). 
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Table 23. Material properties derived 

from Brillouin spectroscopy of CTGS at 

different pressures. All measurements are 

at room temperature. Pressure was 

calculated from fluorescence 

spectroscopy of the ruby crystal placed 

inside the DAC pressure chamber. The 

unit cell volume, density, elastic stiffness 

coefficients, and calculated bulk modulus 

are reported. 
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All the pressures points are listed in Table 23. For each pressure point, the unit cell volume, 

crystal density, elastic stiffness coefficients, and bulk modulus are provided. The change in 

pressure for each parameter is also provided in the table. These were calculated by fitting a 

straight line to each parameter against the hydrostatic pressure and the slope of this line is then 

taken as the derivative of the parameter with pressure of each. 

4. Discussion 

4.1. San Carlos olivine deformation with XRD 
As olivine is the predominant mineral in the Earth's upper mantle, it plays a crucial role in 

determining seismic anisotropy and mantle convection through its deformation behavior. Of 

particular interest is the asthenosphere, where there is a notable reduction in strength compared 

to the overlying lithosphere. This strength reduction is essential for plate tectonics, as it allows 

the rigid lithospheric plates to mechanically decouple from the underlying mantle, creating a 

'lubricating' layer that facilitates plate movements (Hirth & Kohlstedt, 2003). Figure 94 

illustrates the strength envelopes for both oceanic and continental lithospheres at a constant 

strain rate of 10-15 s-1. The strength envelopes for quartzite in the continental lithosphere are 

plotted according to flow laws from (Gleason & Tullis, 1995; Kronenberg & Tullis, 1984; Luan 

& Paterson, 1992). 

 

 

Figure 94. Schematic illustration of the strength envelopes for oceanic lithosphere (left) and 

continental lithosphere (right) at a constant strain rate of 10-15 s-1. The quartzite strength 
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envelopes in the continental lithosphere are based on flow laws from K & T (Kronenberg & 

Tullis, 1984), L & P (Luan & Paterson, 1992), and G & T (Gleason & Tullis, 1995). Figure 

modified from (Kohlstedt et al., 1995). 

 

Several factors have been proposed to explain the drop in olivine strength at the asthenospheric 

depths. Partial melting is a significant factor, but it alone cannot account for the dramatic 

increase in weakness without an unrealistically high melt percentages (Demouchy et al., 2013; 

S. Karato, 2010; Kohlstedt et al., 1995). The complexity deepens with findings that olivine 

strength is significantly influenced by grain size, oxygen fugacity, and water content (Boioli et 

al., 2015; Demouchy et al., 2013; Hansen et al., 2019; Jain et al., 2018; Wallis et al., 2020). 

Furthermore, the region is not composed solely of olivine but includes pyroxenes as well. The 

sudden decrease in strength in the asthenosphere is likely due to a combination of these factors.  

To accurately determine the precise conditions and mechanisms behind this low strength, 

extensive deformation experiments are required. These experiments should be conducted under 

high pressure and temperature conditions and involve multiphase mixtures to simulate the 

mantle environment accurately. Currently, above approximately 0.5 GPa, XRD is required for 

accurate stress state estimates during deformation at high temperature. However, limited 

beamline availability has constrained the exploration of variable space for olivine. Establishing 

the relationship between olivine strength and various conditions would benefit from a method 

to measure stress at higher pressures without relying on XRD. The piezoelectric method 

presents a promising alternative.  

An extensive exploration of this variable space for olivine strength is beyond the scope of this 

thesis. However, some stress data from San Carlos olivine, deformed during piezoelectric 

method testing, can be compared to literature results. The grain size of the San Carlos olivine 

starting material was estimated to range between 5-15 μm, based on scanning electron 

microscopy (SEM) secondary electron imaging. While the water content was not measured, the 

olivine was hot-pressed under nominally anhydrous conditions. No specific attempts were made 

to control oxygen fugacity in these experiments.  

Two San Carlos olivine deformation experiments, labeled SR1 and SR2 and detailed in Table 

14, appeared to reach a creep state. During these deformation experiments, the piezoelectric 

crystal voltage exhibited a plateau, indicating a region where voltage did not increase with 

further strain. These regions are highlighted with red boxes in Figure 95. Within each boxed 
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region, piezoelectric voltage measurements were averaged to calculate the average stress. 

Hydrostatic pressure was derived from the closest MgO pattern. As no X-ray radiography 

images were taken before and after these deformations, direct strain rate measurements were 

not available. Consequently, sample strain rates were extrapolated from previous deformations 

(C1, C2, and C3) using known anvil rates and temperatures. This data, provided in Table 12 

and Figure 28, allowed for reasonable strain rate calculations for the subregions of SR1 and 

SR2. 

 

Figure 95. Stress and hydrostatic pressure data for the SR1 and SR2 deformation experiments 

on San Carlos olivine. The red boxes indicate regions (R1 to R4) where the piezoelectric voltage 

plateaued, suggesting entry into a creep regime. Stress is plotted against time, with hydrostatic 

pressure data shown alongside. Anvil velocity data is presented at the bottom to provide context 

for the deformation process. 

 

The values obtained from SR1 and SR2 are listed in Table 24. Initially, the intent was to 

compare the data with the classical power law creep equation (Eq. 123). However, at the lower 

temperatures used in SR1 and SR2, the power law creep equation does not hold, and the 

parameters reported in the literature for these temperatures yield unreasonably high stresses, as 

displayed in Figure 96. The two vertical lines, placed at 863 K and 1223 K, predict stresses 

well above 10 GPa with most reported literature parameters. 
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Table 24. Experimental parameters from regions R1 – R4 in SR1 and SR2 from Figure 95. 

 𝜎  Temperature Pressure Strain rate 

 [MPa] [K] [GPa] [×10-4 s-1] 

R1 1.446(8)×103 1223 5.8 2.9 

R2 1.577(7)×103 1223 6.0 9.5 

R3 2.214(7)×103 863 2.9 1.6 

R4 2.249(7)×103 863 3.4 3.4 

 

 

Figure 96. Curves calculated using the power law creep equation (Eq. 123) from parameters 

as reported in literature. The strain rate and hydrostatic pressure are kept constant at 10-5 s-1 

and 5 GPa respectively. Also shown with the two black vertical lines are the temperatures at 

which the R1 – R4 subregions were deformed and with horizontal lines each point. (Dixon & 

Durham, 2018; Durham et al., 2009; Hilairet et al., 2012; Hirth & Kohlstedt, 2003; S. Karato 

& Rubie, 1997; S.-I. Karato & Jung, 2003; Kawazoe et al., 2009; L. Li et al., 2004) 

 

Instead of power law creep, a different deformation mechanism, obstacle/Peierls’ stress-limited 

dislocation creep, is active at these lower temperatures (Katayama & Karato, 2008; Raterron et 

al., 2004). Therefore, this creep regime is best described by Eq. 118 (Raterron et al., 2004). 

 

𝜀̇ = 𝜀0̇exp (−
𝐹0 [1 − (

𝜎
𝜏)

𝑝

]
𝑞

𝑅𝑇
) Eq. 118 
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In this equation, 𝜀0̇ represents a pre-exponential constant. The stress dependence, 𝜎, is captured 

in the exponential term, which depends on 𝐹0 , the free energy needed for dislocations to 

overcome barriers, also known as the activation energy, and 𝜏, the maximum glide resistance, 

representing the Peierls’ stress. The parameters 𝑝 and 𝑞 are fitting constants, typically within 

the ranges 0 ≤ 𝑝 ≤ 1  and 1 ≤ 𝑞 ≤ 2  (Frost & Ashby, 1982; Poirier, 1985). Notably, this 

equation does not include an activation volume. Instead, the influence of pressure on olivine 

rheology is indirectly accounted for through 𝜏, since higher pressure is expected to increase the 

Peierls’ stress (Raterron et al., 2004). The results of this study measure a higher stress than 

predicted by Raterron et al. (2004). One potential explanation is provided in Figure 99 and the 

text that discusses it below. 

 

Figure 97. Curves and error bands from Raterron et al. (2004) compared to the regions R1 – 

R4 from this study, shown as a square and circle. Red is calculated at 863 K, blue at 1223 K. 

 

More recently, efforts have been made to unify the description of olivine rheology under 

varying temperature and stress conditions. Gouriet et al. (2019) proposed a unified creep law 

that effectively models the transition between power law and exponential flow behaviors in 

olivine. This law is particularly useful for describing deformation over a wide range of mantle 

conditions. Their work introduced a new exponential equation that accounts for both low and 

high stress regimes, which can be expressed as shown in Eq. 119 (Gouriet et al., 2019) 

 
𝜀̇ = 𝐴 (

𝜎

𝜇
)
𝑛

exp (−
𝑄(𝜎)

𝑅𝑇
) Eq. 119 
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In this equation, the newly introduced symbol, 𝜇, is the shear modulus. 𝑄(𝜎) is the stress-

dependent activation enthalpy, which is further defined by Eq. 120. 

 
𝑄(𝜎) = 𝑄0 (1 − (

𝜎

�̃�
)
𝑝

)
𝑞

 Eq. 120 

𝑄0 is the zero-stress activation enthalpy, �̃� is the mechanical resistance parameter, and 𝑝 and 𝑞 

are once again fitting parameters. They derived specific values for these parameters through a 

detailed analysis of experimental data and numerical simulations. The best for olivine rheology 

was obtained with the following parameters: 𝑄0 = 460 × 103 J/mol, 𝑝 = 1.52, and 𝑞 = 2.00, 

with the stress exponent 𝑛 = 2.95. The shear modulus 𝜇 was taken as 80 GPa, as suggested by 

their simulations. The final unified exponential law for olivine creep is expressed as: 

 

𝜀̇ = 1.7 × 1016 (
𝜎

8.0 × 104 MPa
)
2.95

× exp(
−460 × 103

𝑅𝑇
(1 − (

𝜎

�̃�
)
1.52

)

2

) Eq. 121 

Eq. 121 covers a wide temperature range of 200 K to 1700 K. The only parameter left to 

determine is �̃� which is sensitive to the hydrostatic confining pressure. However, due to the 

limited number of data points available (only four from the current study), a single value for �̃� 

is determined numerically for all data points collectively, rather than solving for different 

pressures separately. The result is �̃� = 5486 MPa. The strain rate is calculated and compared 

to the measured strain rate in Figure 98. As might be expected, the result is quite good and 

close to the 1:1 line.  
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Figure 98. The result of fitting the experimental data R1 – R4 with Eq. 121. The calculated 

strain rate on the vertical axis is compared to the measured strain rate on the horizontal axis. 

The 1:1 red dashed line reflects an ideal fit. �̃� = 5486 𝑀𝑃𝑎. 

 

Finally, inputting �̃� = 5486 MPa  into Eq. 121, a curve can be derived to describe the 

temperature effect on the flow stress. This is shown with the black curve in Figure 99. Along 

with the study data and fit, a selection of previous literature data has also been plotted. These 

have not been fit to or corrected with any kind of equation. They are the direct data reported by 

the studies. While a large part of the scattering is due to different pressures and strain rates, 

there is good agreement in general with the measurements from this study. Of particular interest 

is the sudden drop in stress in the Raterron et al. (2004) data at around 750 K. This data was 

compared directly with R1 – R4 in Figure 97 which showed a consistently higher stress. As the 

study temperatures compared at (863 K, 1223 K) are above the sudden stress drop in Raterron 

et al. (2004), it could be that if the lower temperature data was projected to the higher 

temperature, the results would fit quite well. 
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Figure 99. A selection of equivalent stresses versus temperature of mechanical data of olivine 

(Fo90). Modified from (Gouriet et al., 2019). The raw reported data only is plotted, not the 

creep laws normalized to pressure or strain rate. Also, in black crosses, are the four R1 – R4 

data points from this study and the derived equation (Eq. 121) with �̃� = 5486 𝑀𝑃𝑎. Rat2004 

= (Raterron et al., 2004); EG1979 = (Evans & Goetze, 1979). Long2011 = (Long et al., 2011); 

Boioli2015 = (Boioli et al., 2015); Druiv2011 = (Druiventak et al., 2011); Kranjc2015 = 

(Skemer et al., 2015); Mei2010 = (Mei et al., 2010); Phakey1972 = (Phakey et al., 1972); 

Dem2014 = (Demouchy et al., 2014); Dem2013 = (Demouchy et al., 2013); Dem2009 = 

(Demouchy et al., 2009); Tielke2017 = (Tielke et al., 2016). 

 

The piezoelectric method thus accurately measures stresses not only when compared to direct 

XRD measurements but also when compared to previously reported results on olivine. 

4.2 Anvil position discrepancy 
During the deformation experiments at the PETRA-III synchrotron at the P61B beamline, a 

systematic discrepancy between the anvil movement distance as recorded with the position 

encoder compared to the radiography images was observed. The experiments that had pre- and 

post- deformation radiography images are C1, C2, C3, T2, T3, and T5. T1 is omitted because 

the beam went down during that experiment and the deformation had to be paused which 

allowed some relaxation time. 

If the programmed anvil advancement rate, in μm/min, is multiplied by the deformation elapsed 

time, the total anvil movement distance is found in μm. The results for the compression and 

tension deformation experiments that do have measurable strain are listed in Table 25. Also 

provided is the assumed anvil temperature which is actually the piezoelectric crystal calibrated 
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temperature. However, because the crystal is in contact with the anvil through a 1 mm thick 

diamond disk and diamond has very high thermal conductivity, the anvil can be assumed to be 

at least close to the same temperature. 

Table 25. Strain measurements from the press encoder and the radiography images for three 

compression and three tension deformation experiments. The ratio encoder/radiography is 

also given. Also provided is the piezoelectric crystal temperature for each deformation. 

Cycle Encoder measured Radiography measured Ratio Anvil temperature 

 [μm] [μm]  [°C] 

C1 860 489 1.759 150 

C2 860 286 3.007 170 

C3 860 253 3.399 190 

T2 860 183 4.699 170 

T3 860 181 4.751 190 

T5 560 140 4.000 120 

 

 As the table shows, the discrepancy is consistently 2 – 4 times larger than the measured length 

difference from the x-ray radiography images for both the compression and tension experiments. 

The reason for this discrepancy is currently unknown. A trend does appear when considering 

the experiment temperature. By plotting the piezoelectric crystal temperature against the ratio, 

Figure 100, a clear trend emerges. 

 

Figure 100. The piezoelectric crystal temperature, used as an analogue for the anvil 

temperature, plotted against the error ratio of the anvil movements between the encoder and 
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radiography measured assembly strain. C cycles are compression deformation experiments, 

and T are tension. 

 

There is a positive correlation between the temperature and the error ratio. Also, the 

compression deformation experiments have a consistently higher error ratio than the tension 

experiments. It seems that higher temperatures increase the error for both. 

The frame bending calibration should correct for outwards buckling of the steel supports that 

hold the rams in place as they increasingly apply larger force to the assembly, essentially 

attempting to push outwards against the middle. As previously detailed in section 2.1.2, the 

frame bending calibration involves measuring the anvil-to-anvil face distance at various oil 

pressures using a copper polyhedron placed between the anvils. This allows for the 

determination of specific corrections for each ram based on their individual oil pressures. 

During deformation experiments, each ram adjusts its reported position using these calibrated 

distances, rather than relying solely on direct distance measurements from the encoder. 

Consequently, the actual position used for calculations is based on the calibrated position, 

which corrects for potential errors caused by frame bending. Therefore, any discrepancies 

observed in the measurements are not due to frame bending but are likely the result of other 

factors. Even if frame bending errors do contribute, when looking at Figure 23, even at 70 bar 

oil pressure, the correction amount is no more than 20 μm which is far too small to account for 

the missing strain. 

The frame bending calibration ensures that the anvil-to-anvil face distance is accurately 

measured, thus eliminating frame bending as a source of error. However, an important aspect 

is missing when doing frame bending calibrations: the temperature. The calibrations are done 

at room temperature. It is possible that at high temperatures the frame bending calibration would 

change. The only press components that appreciably heat up above 100 °C during heating are 

the first stage and second stage anvils. However, after a heating experiment of more than one 

hour, all six rams feel noticeably warm to the touch. It could be that heating plays a major role 

in the discrepancy either because the oil is warmer or the tool steel of the ram itself is warmer 

which would decrease the Young’s modulus and allow for more elastic strain. Of course, the 

thermal expansion would unintuitively actually increase the size of the steel, but the trend from 

Figure 100 seems clear. 
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The position encoder is attached to the ram itself on the back-face and extends through the 

cylinder to the back. The distance measurement it records is based on the back of the 1st stage 

anvil. Apart from a small WC insert on the front of the anvil, the majority of the anvil body is 

hardened tool steel. The exact steel alloy is unknown, but taking a typical value of 200 GPa for 

the Young’s elastic modulus (Wang et al., 2013) of hardened tool steel at the typical anvil 

temperature during heating of roughly 150 °C, the elastic shortening in the anvil can be 

calculated according to Eq. 122, where ∆𝐿 is the shortening, 𝐹 the force, 𝐿 the initial length, 𝐴 

the cross-sectional area, and 𝐸 Young’s modulus. 

 

∆𝐿 =
𝐹 ∙ 𝐿

𝐴 ∙ 𝐸
 Eq. 122 

The diameter of the tool steel part of the 1st stage anvil is 50 mm, length 120 mm. Taking a 

starting oil pressure on stage 1 and 2, before deformation, of 40 bar, to advance the anvils they 

typically rise to 70 bar at the end of most of the deformation experiments. Converting this to a 

difference in force on the anvil between the start and end of deformation, the additional force 

is 250 kN per ram for ASTER-15. With these parameters in Eq. 122, a total calculated elastic 

shortening of the tool steel is 76 μm, per anvil. Thus, with both anvil 1 and 2 shortening by this 

amount, it can be expected that roughly 152 μm of total deformation shortening is 

accommodated by the elasticity of the tool steel.  

At 4.3 μm/min advancement rate for 100 minutes, typical of the deformations in these 

experiments, 430 μm of total advancement is expected. Since this is per anvil, with two anvils 

advancing this distance into the central space, a total shortening of 860 μm is expected to be 

measured with radiography before and after deformation. Taking the highest temperature 

experiment in the compression deformation experiment C3, the total shortening of the full 

sample column measured with radiography imaging is ~250 μm. Thus, by subtracting both from 

the total anvil advancement, 860 μm – 152 μm – 250 μm = 458 μm, over half of the shortening 

is still ‘missing’ from the strain measurements.  

A small amount would further be taken up by elastic deformation of the tungsten carbide anvils, 

but this would be negligible compared to the other sources. Although this isn’t enough to 

compensate for the missing strain, it does seem clear that higher temperatures do increase the 

missing strain. 

4.3. Single crystal deformation without XRD 
An important first order analysis of a deformation experiment comes from an examination of 

the shape of the stress-strain curve. Few studies report the direct stress-strain curve, but some 
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data does exist for single crystal olivine, or Fo. In Figure 101 the shape of the stress-strain 

curves obtained in this study for single crystal Fo at 1.5 GPa, can be compared to similar data 

obtained for single crystal olivine at 300 MPa. The literature data continues past 10% strain but 

was cut off at this point since the study data was only deformed to 10% strain. 

 

Figure 101. Stress versus strain data for the Fo 1.5 GPa single crystal deformation shown 

again but with the curves from literature plotted on the same scale. The literature data is from 

(Demouchy et al., 2013) at 300 MPa of confining pressure in a Patterson-type apparatus with 

a gas-medium. Stress was measured in situ. Temperature, strain rate, and run number are 

provided in the legend. 

 

Clearly, the stresses are lower overall as compared to this study data. However, this is expected. 

The confining pressure in this study is 5 times higher (1.5 GPa) compared to the literature data 

at 0.3 GPa (Demouchy et al., 2013). Overall, a similar pattern of a linear initial increase 

followed by a steepening and then a slow flattening and plateauing towards the end is visible in 

both sets of curves.  

While more studies have been conducted on the creep of single crystals at ambient conditions 

(Amodeo et al., 2018), high pressure studies are sparser. Nevertheless, forsterite and MgO were 

chosen as some studies do exist on these minerals. Since the creep stress is dependent on 

pressure, temperature, and strain rate, a direct comparison between data points collected in this 

and previous studies is not possible. Because of this, the equation for power law creep is used 

to interpolate between the exact experimental conditions (Poirier, 1985). 
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𝜀̇(𝜎, 𝑇, 𝑃) = 𝐴𝜎𝑛exp (−
𝐸∗ + 𝑃𝑉∗

𝑅𝑇
) Eq. 123 

Where 𝜀̇  is the strain rate, 𝜎  the creep stress, 𝐴  the pre-exponential term, 𝑇  the absolute 

temperature, 𝑃 the hydrostatic pressure, 𝐸∗ the activation energy, 𝑉∗ the activation volume, 𝑅 

the gas constant, and 𝑛 the stress exponent. By measuring the pressure, temperature, creep 

stress, and strain rate during the deformation experiment, the values for 𝐴, 𝑄, 𝐸∗ and 𝑉∗ can be 

obtained for the material. 𝑛 depends on the type of creep. At low stresses, creep is partially 

controlled by transport of matter by diffusion, and 𝑛 = 1 or 2. At increased stresses, recovery-

creep processes controlled by Weertman creep is dominant with 𝑛 ≈ 3 to 5 (Poirier, 1985).  

At typical laboratory-obtainable stress and strain rates, the power law equation describes creep 

quite well and thus this was chosen to model the single crystal forsterite and MgO data. Due to 

the single strain rate that all data was measured at as well as the relatively lower precision and 

accuracy in the strain rate measurements, all four parameters are not well constrained. To 

simplify the fitting process, 𝑛 = 3 was assumed for each fit and not allowed to vary. This is a 

reasonable value for high-temperature dislocation glide or climb-controlled dislocation creep 

of both MgO and forsterite (Amodeo et al., 2018; Mei et al., 2008; Wilshire, 1995).  

Only the deformation experiments that passed the yield point and entered the creep regime were 

fit to the power law equation. In this regime, the crystal is deforming at approximately constant 

stress, at least until strain hardening begins to increase the stress. This creep regime is defined 

as the flow stress of the sample at a given set of environmental conditions and strain rate 

(Hansen et al., 2019). 

Table 26. The result of power law creep fitting of data from this study, compared to literature 

data on both single crystal forsterite and single crystal MgO. The crystallographic compression 

direction is listed as well. The superscript 𝑓 indicates a parameter that is fixed and not allowed 

to vary. The forsterite fit range for this study fit is 2.3 – 3.0 GPa and 1473 – 1573 K while for 

Raterron et al. (2007) it is 3.0 – 7.5 GPa and 1377 – 1677 K. In the MgO case, the fit range in 

this study is wider at 1.5 – 3.0 GPa and 1073 – 1573 K and for Mei et al. (2008) it is 1.5 – 10.0 

GPa and 1350 – 1573 K. 

Single crystal forsterite 

Source 𝜎1 direction 𝐴 𝑛 𝐸∗ 𝑉∗ 
 <hkl> [s−1 ∙ Pa−𝑛]  [kJ/mol] [cm3/mol] 

This study <100> 
1.9 × 10−29

± 2.0 × 10−30 
3𝑓 67 ± 24 6.5 ± 4.5 
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Raterron et al. (2007) <110> 1.5 × 10−24 2.6 ± 0.3 
112
± 40 

3.0 ± 0.5 

Raterron et al. (2007) <011> 4.0 × 10−26 2.7 ± 0.3 
104
± 40 

1.0 ± 0.5 

Single crystal MgO 

Source 𝜎1 direction 𝐴 𝑛 𝐸∗ 𝑉∗ 
 <hkl> [s−1 ∙ Pa−𝑛]  [kJ/mol] [cm3/mol] 

This study <100> 
1.2 × 10−25

± 4.5 × 10−26 
3𝑓 77 ± 31 9.9 ± 3.7 

Mei et al. (2008) <100> 7.9 × 10−27 3𝑓 72 ± 50 2.4 ± 0.9 
 

Table 26 compares this study data with the literature data for deformation of single crystals at 

high pressure and temperature (Mei et al., 2008; Raterron et al., 2007). The piezoelectric 

method stress errors can be estimated based on some assumptions. The integrating capacitor 

has a manufacturer reported 1% precision, or 9.964×10-9±9.964×10-11 F. From the limited 

number of estimations done on the high-pressure trend of the piezoelectric coefficients through 

ab-initio calculations, one example shown in Figure 104, the coefficient at 3 GPa of GaPO4 

increases by ~18%. Assuming the same increase for CTGS is reasonable in which case this 

would be the percent error of the value of 𝑑11 of CTGS at 3 GPa, or 4.0×10-12±7.2×10-13 C/N. 

The measurement of the 4 mm diameter piezoelectric crystal is estimated at 2% error (80 μm) 

through measurements of multiple crystals, or an area error of 1.26×10-5±5.03×10-7 m2. So, 

propagating the error in Eq. 95 and Eq. 96, a simple error approximation is 18.5% of calculated 

stress. The largest contributor to the error is 𝑑11. Being able to measure this value at high 

pressure or at least correct it using ab-initio calculations would do the best at reducing the error. 

The error bars reported by other studies are surprisingly large. This type of fitting is highly 

sensitive and can easily be numerically unstable because of the exponential term and large value 

ranges.  

Additionally, XRD errors are quite large, as noted by Mei et al. 2008 where a thin disk of 

polycrystalline MgO was placed between the two single crystals and was used to calculate the 

stress with XRD. As they report, only two MgO peaks were fit from the XRD patterns, (111) 

and (200). The (111) peaks showed consistently higher, roughly double, stress compared to the 

(200) peaks and thus those were used for solving the power law creep equation. This highlights 

the inherent uncertainty present in XRD stress measurements. 
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Figure 102. The quality of fit with the power law creep equation to the single crystal forsterite 

and MgO deformation from this study. The experimentally measured stress is on the horizontal 

axis and the calculated stress using the fitted values is on the vertical axis. The diagonal red 

dashed line is the 1:1 agreement. 

 

Using the fitted values, the power law creep equation (Eq. 123) can be used to calculate the 

expected creep stress for given sets of conditions. These calculated stresses, using the 

deformation experimental conditions from Table 19, are displayed in Figure 102. The forsterite 

fits are excellent, with the points falling almost exactly on the 1:1 line. For MgO, the fit is more 

scattered but is still quite good given the numerical range of possible fits for the power law 

creep equation. The values for the power law creep equation can be used to compare the creep 

stress directly with literature data. These are plotted in Figure 103 by solving the power law 

equation for the creep stress for a constant strain rate and constant pressure. The large errors in 

the literature data result in a wide margin of error for creep stress, shown with the shaded color 

regions. The study creep stress error is also shown. 
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Figure 103. The trend of creep stress with temperature and pressure at a constant strain rate 

of 5×10-5. The top plots are of forsterite, and the bottom of MgO. The left are at constant 

hydrostatic pressure of 3 GPa and the right at constant temperature of 1300 K. This study data 

and literature data from Raterron et al. (2007) and Mei et al. (2008) are shown for comparison. 

The shaded colored area are the respective error ranges of each set of values. 

 

The creep stress trend for single crystal forsterite demonstrates an overall better fit, particularly 

with an excellent temperature trend. However, the larger activation volume results in greater 

material strengthening under pressure. A similar trend is observed in MgO, where an activation 

volume of 9.9 cm3/mol leads to increased strengthening at higher pressures. Notably, the data 

from Mei et al (2008) spans pressures from 1.5 to 10 GPa, whereas this study only reached up 

to 3 GPa. This discrepancy might explain why the extrapolation to higher pressures indicates a 

stiffer MgO. Additional high-pressure data would be necessary to determine if MgO strength 

increases less dramatically with pressure. It is also possible that the sequential nature of the 

experiments on the same MgO sample contributed to strain strengthening. As pressure 

increased incrementally during the experiments, the MgO may have become stronger due to 

prior deformations at lower pressures. However, it's important to note that Mei et al (2008) 

measured stress from a single MgO peak, (200), which may not provide a comprehensive stress 

estimation. The (111) peak exhibited about half the measured stress. Therefore, fitting more 



4. Discussion 

206 

 

peaks could yield a more accurate stress estimation in the sample. It is plausible that other peaks 

experienced much higher stress. 

Determining the strain rate error using the piezoelectric method is challenging. Without X-ray 

radiography, only the anvil advancement rate can be used as a first-order approximation. For 

more accurate measurements, new methods to assess sample strain need to be developed. Using 

the current method, which assumes the strain rate from the anvil movement as indicated by the 

position encoder, the error is likely not more than a factor of 4, and usually less in most cases. 

However, the stress measurement is likely more precise, as demonstrated by XRD experiments. 

An optimal approach would combine X-ray radiography for strain measurement with a 

piezoelectric crystal for stress measurement. Additional errors arise from the uncertainty in the 

high-pressure trend of the piezoelectric coefficient. Previous research on measuring the 

piezoelectric coefficient at high pressures is sparse. Only recently have DFT ab-initio 

calculations been used to predict high-pressure trends (Alathlawi et al., 2024; Almaghbash & 

Arbouche, 2021; Daoud & Bouarissa, 2019; Demartin & Damjanovic, 1996; Gao et al., 2011). 

While elastic stiffness coefficients generally increase with pressure, piezoelectric coefficients 

do not follow a uniform trend. Some coefficients may increase, some decrease, and some may 

even reverse trends, as shown in the DFT ab-initio calculations for GaPO4 illustrated in Figure 

104. GaPO4 shares the same space group and point group as α-quartz and CTGS. 
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Figure 104. Ab-initio calculation of the piezoelectric coefficient dij of GaPO4. GaPO4 has the 

same point group as α-quartz and CTGS. Calculations provided through personal 

communication from Razvan Caracas. 

 

The piezoelectric method to measure stress of deformation in LVPs relies on a high degree of 

accuracy in the piezoelectric coefficient as it directly affects the measured stress. Until more 

work is done to determine the dependence with hydrostatic pressure on the piezoelectric 

coefficient of CTGS, the errors cannot be further constrained. Future work to improve the 

method would concentrate on characterizing the high-pressure piezoelectric trends in CTGS as 

well as new methods to measure the strain of a sample at high pressure without using XRD. 

4.4. Brillouin spectroscopy on CTGS 

4.4.1 Linear modeling of elastic stiffness coefficients 
The results from Brillouin spectroscopy on CTGS are displayed in Figure 105 with elastic 

stiffness coefficients and the bulk modulus, 𝐾, plotted. The top plot is the data with the linear 

fits and the bottom are the residuals of the fits. 
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Figure 105. Elastic stiffness coefficients and bulk modulus fits to the velocity dispersion curves 

for each pressure point are plotted in the top graph. The goodness of fit, as an 𝑅2 value, is 

displayed in the legend. The bottom plot illustrates the residuals of the fits. The bulk modulus, 

𝐾, calculated from the elastic coefficients for each pressure point is also shown, with the 

derivative of the bulk modulus, 𝐾′, also displayed. 

 

As expected, the elastic coefficients increase with pressure. The derivative of the bulk modulus 

is unexpectedly high at 5.7. Most crystals are expected to be close to 𝐾′ = 4  (Pandit & 

Bongiorno, 2023). A 𝐾0 of 88.4±1.6 GPa is reasonable compared to reported literature range in 

Table 28 of 75.4 – 110.4 GPa. This value of 𝐾0 is reported as the bulk modulus calculated with 

Eq. 115 using the elastic coefficients measured at 1 bar. Since XRD was taken at each pressure 

point, density can also be plotted against the hydrostatic pressure as displayed in Figure 106. 
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Figure 106. Plot of density in g/cm3 against pressure along with the linear fit and residuals. 

 

4.4.2. Elastic compliance coefficient S14 of CTGS 
Through the collection of Brillouin data on CTGS, the elastic stiffness coefficients were derived. 

To evaluate the magnitude of the critically important S14 stiffness coefficients and understand 

its trend with pressure, it is compared with literature data on the elasticity of α-quartz. This 

comparison is essential because the S14 stiffness coefficient controls the Dauphiné twinning 

process in P321 space group crystals. A smaller value of S14 indicates that more deviatoric 

stress is required to induce twinning, similar to what is observed in α-quartz where twinning 

occurs. The elastic stiffness matrix was inverted, as per Eq. 83, to acquire the elastic compliance 

matrix. Two datasets on α-quartz at high pressure, measured with Brillouin spectroscopy to 

keep consistent with this study’s method, are used for comparison (Gregoryanz et al., 2000; J. 

Wang et al., 2015).  

The final values are displayed in Figure 107. The two α-quartz trends are similar and both 

display that at ambient pressure and up to 6.5 GPa, 𝑆14 of α-quartz is substantially higher than 

that of CTGS. This study’s data shows that 𝑆14 of CTGS is an average of 5.5×10-5 GPa-1 for 

most of the deformation experiment pressure range, 0 – 8 GPa, only rising above that of α-

quartz, an average of 2.1×10-3 GPa-1 across the same pressure range, beginning above 8 GPa. 

This is likely the reason why, as per Eq. 99, CTGS has not undergone ferrobielastic switching 

in the majority of the high-pressure deformation experiments whereas α-quartz frequently 



4. Discussion 

210 

 

switched. For experiments below 8 GPa, CTGS is the better choice over α-quartz for these 

experiments, not only due to the order of magnitude higher electrical resistivity, but also the 

larger coercive stress required to undergo switching. The term in Eq. 99 that is relevant is the 

second term, repeated below in Eq. 124. 

 
2𝑆14(𝜎1𝜎4 − 𝜎2𝜎4 + 2𝜎6𝜎6) Eq. 124 

Since a ferrobielastic switch flips the direction of the piezoelectric vector as well as 𝑆14, a 

Dauphiné twin has necessarily an elastic coefficient 𝑆14 with opposite sign (Tichý et al, 2010; 

Shiau et al., 1984). This is what drives the mechanical component of the ferrobielastic switch 

due to deviatoric stress alone. When the stresses reach a threshold sufficiently high enough to 

reverse the sign of the full 𝑆14 term in Eq. 124 the crystal begins to twin (Bertagnolli et al., 

1979; Markgraaff & Roering, 1995; Shiau et al., 1984). This is through a Gibbs free energy 

sign switch driven by the term in Eq. 115. With CTGS having a smaller 𝑆14 which acts as a 

multiplier to the stresses, a much larger stress is required to overcome the metastability of the 

crystal (Yamni, 2001) and induce twinning. This is why a piezoelectric crystal with a low S14 

is ideal for stress determination in these types of deformation experiments. 

The Brillouin spectroscopy measurements on CTGS display that at least up to 7 – 8 GPa, it is 

preferable to α-quartz. Beyond this point it is unclear which is preferred as the trend of 𝑆14 is 

unclear. α-quartz may continue the trend downwards and become further negative while CTGS 
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could continue increasing upwards. The sign of 𝑆14 is irrelevant, as shown by Eq. 23, only the 

absolute value matters. 

 

Figure 107. The trend of 𝑆14 with pressure. The blue points are from this study on CTGS, and 

the others are from the cited studies on α-quartz. All data was measured with Brillouin 

spectroscopy utilizing a DAC for the high-pressure data points. 

 

Another strategy would be to choose a piezoelectric crystal with a high 𝑆14 coefficient. In this 

case, the twinning would occur right at the start of the deformation, with the smallest applied 

stress, and then be stable up to an arbitrarily high stress. In this case, the goal would be to twin 

the crystal as soon as possible to eliminate the twinning error at increasing deviatoric stresses. 

However, care would have to be taken as the twinning process can be confined only to small 

domains within the whole crystal body (Bertagnolli et al., 1979; Markgraaff & Roering, 1995; 

Shiau et al., 1984; L. A. Thomas et al., 1951). Unless the whole crystal twins rapidly, twinned 

domains can remain or grow slowly, causing the voltage generated by the deviatoric stress to 

be lowered. Consider a possible partially twinned state of a crystal in Figure 108. 
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Figure 108. Schematic diagram of a piezoelectric crystal that has subdomains within it that 

have undergone ferrobielastic switching. 𝑎 is the original untwinned crystal and 𝑏 are the 

twinned domains. 𝐴𝑎 is the area of twin 𝑎 and 𝐴𝑏1 + 𝐴𝑏2 is the total area of twin 𝑏. 

 

In the twinned area of 𝑏, voltage of the opposite sign is generated. If the total physical area of 

the crystal is 𝐴0 , and the area of the initial twin state 𝑎 is 𝐴𝑎 , the area of twin 𝑏 is 𝐴𝑏 =

(𝐴𝑏1 + 𝐴𝑏2) = 𝐴0 − 𝐴𝑎, then the true stress that is calculated from the integrated charge during 

the deformation experiment is described by Eq. 125. 

 

𝜎11 =
∆𝑉 (

𝐴𝑎
𝐴0
−
𝐴𝑏
𝐴0
)𝐶𝐹

𝐴0 ∙ 𝑑11
 

Eq. 125 

The other terms are described previously by Eq. 95 and Eq. 96. Since 𝐴𝑎 and 𝐴𝑏 are unknown 

during a deformation experiment, any increase in 𝐴𝑏 is an error in the measured stress, working 

to reduce the actual stress measured. As can be seen, if 𝐴𝑏 = 0, there is no error, and as 𝐴𝑏 

increases the measured stress reduces until 𝐴𝑎 = 𝐴𝑏 at which point the stress measured is zero 

as long as the relation holds. After fully twinning, 𝐴𝑎 = 0 and now the generated voltage is 

reversed and thus the stress accumulation is reversed. The speed of the increase in 𝐴𝑏  is 

dependent on temperature and how much the deviatoric stress ‘overshoots’ the critical stress of 

ferrobielastic switching 𝜎𝑐 (Shiau et al., 1984; Westbrook, 1958). In deformation experiments 

at high-pressure with α-quartz as the piezoelectric crystal, ferrobielastic twinning was always, 

even in room temperature experiments, gradual and over a period of at least 10 minutes forming 

a smooth curve, as seen in Figure 40. This is unlike previous studies on ferrobielastic switching 

at room temperature in which the crystal twins on a very short time scale of a few seconds to 

even under one second, forming a sharp sawtooth pattern (Bertagnolli et al., 1979; Mansfel’d 

et al., 1997; Shiau et al., 1984; Yamni, 2001). There is a possibility that hydrostatic pressure 
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has a yet unknown effect acting to slow down the domain growth of the Dauphiné twin. 

Additionally, larger crystals tend to twin through slower growing domains as opposed to smaller 

crystals in which the twinning process can be rapidly completed.  

4.4.3. Third order finite strain modeling of elastic stiffness coefficients 
When considering the trend in 𝑆14 with pressure, the linear fitting of the 𝐶𝑖𝑗  coefficients in 

Figure 105 is adequate for the lower pressure regions. However, to extrapolate to higher 

pressures a more precise and accurate fit is obtained through a third-order finite-strain equation 

using (Birch, 1978). These equations, similar to the third-order Birch-Murnaghan EOS, more 

precisely capture the trend with pressure. 

 𝐶𝑖𝑗𝑘𝑙(𝑓) = (1 + 2𝑓)
7/2(𝐶𝑖𝑗𝑘𝑙

0 + 𝑏1𝑓) − 𝑃Δ𝑖𝑗𝑘𝑙 Eq. 126 

 
𝑏1 = 3𝐾0(𝐶𝑖𝑗𝑘𝑙

′ + Δ𝑖𝑗𝑘𝑙) − 7𝐶𝑖𝑗𝑘𝑙
0  Eq. 127 

 
Δ𝑖𝑗𝑘𝑙 = −𝛿𝑖𝑗𝛿𝑘𝑙 − 𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑙𝛿𝑗𝑘 Eq. 128 

 

𝑓 =
1

2
[(𝑉0/𝑉)

2/3 − 1] Eq. 129 

The above equations, modified from (Wang et al., 2015), were fit for 𝐶𝑖𝑗𝑘𝑙
′  and 𝐶𝑖𝑗𝑘𝑙

0  to each 

coefficient. 𝑃 is pressure in GPa, 𝐾0 is the bulk modulus at ambient pressure, 𝑉0 is the unit cell 

volume at ambient pressure, 𝑉 is the high-pressure unit cell volume, and 𝛿𝑖𝑗 is the Kronecker 

delta. The notation used for these calculations is the tensor, 4-subscript notation. The conversion 

between the matrix 2-subscript and the tensor notation was previously described in Table 1. 𝑉 

is solved for each pressure numerically utilizing the third-order Birch-Murnaghan EOS with 

the previously calculated bulk modulus and derivative of the bulk modulus. Through numerical 

solutions of Eq. 126 – Eq. 129, a more theoretically precise value of 𝐶𝑖𝑗
0  and 𝐶𝑖𝑗

′  with pressure 

can be found. The data points along with the curves fit to the points are displayed in Figure 109. 

The longitudinal coefficients have adequate fits along with the 𝐶13  and 𝐶12  off-diagonal 

coefficients. However, the independent shear coefficient 𝐶44 and dependent 𝐶66 do not fit well 

in addition to the off diagonal 𝐶14 . This is likely due to errors in peak positions from the 

Brillouin spectra resulting in errors in the calculated dispersion curve for CTGS. The fitting has 

been extrapolated to 20 GPa. Further work would extend the pressure range to better constrain 

the finite third-order curves. At these lower pressures, the change in the elastic coefficients is 

close to linear. Higher pressure measurements would better constrain the curvature. Issues can 

arise above 11.7 GPa as He solidifies above this hydrostatic pressure (Vos et al., 1990) but 



4. Discussion 

214 

 

generally He can remain soft enough to ensure near-hydrostatic stress within the DAC. He 

strength remains <0.1 GPa up to 20 GPa, reaching 1 GPa at 50 GPa of pressure (Singh, 2012). 

Table 27. Ambient pressure 𝐶𝑖𝑗 and derivative with pressure fits of CTGS using third order 

finite strain equations. 

 𝐶11 𝐶33 𝐶44 𝐶12 𝐶13 𝐶14 𝐶66 

𝐶𝑖𝑗
0  [GPa] 149.0 222.2 49.2 43.2 95.6 0.96 52.8 

𝐶𝑖𝑗
′  6.46 8.19 0.64 4.92 6.61 -0.51 0.80 

 

 

Figure 109. Elastic stiffness coefficients with the hydrostatic pressure trend. The data is fit with 

third-order finite strain equation. The fit has been extrapolated to 20 GPa. 

 

By taking the 1 bar of hydrostatic pressure elastic coefficients from the third-order finite strain 

fits, ambient condition 𝐶𝑖𝑗 can be compared, including the calculated bulk modulus, 𝐾0, with 

literature data that utilized different methods to derive the elastic constants. These are listed and 

compared in Table 28. As can be seen, the elastic constants as compared with other studies are 

widely distributed. In particular, 𝐶12
0  varies more widely between the different studies. 
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Table 28. Third-order finite strain equations fits to the high-pressure CTGS data and used to 

derive the 1 bar elastic stiffness coefficients and the calculated bulk modulus using Eq. 115 

labeled (FS). The direct 1 bar measurements are also provided, labeled (1 bar). Data from 

(Biryukov et al., 2014; Ma et al., 2017; Shi et al., 2007; Sotnikov et al., 2013; Suhak et al., 

2018; Zu et al., 2016). The average and population standard deviation of all literature data, 

including this study data, is listed on the last two rows. 

Source Method 𝐶11
0  𝐶33

0  𝐶44
0  𝐶12

0  𝐶13
0  𝐶14

0  𝐶66
0  𝐾0 

  [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] 

This study (FS) Brillouin spec. 149.0 222.2 49.2 43.2 95.6 0.96 52.8 96.08 

This study (1 bar) Brillouin spec. 140.6 219.5 47.49 36.6 93.7 -0.30 52.0 88.4 

Ma et al, 2017 Pulse-echo 157.4 225.3 41.8 74.4 80.6 0.77 41.5 109.1 

Ma et al, 2017 Pulse-echo 156.3 227.5 41.5 75.2 85.5 0.51 40.6 110.44 

Ma et al, 2017 Impedance 131.2 195.3 40.9 43.4 56.7 0.42 43.9 87.11 

Shi et al., 2007 Resonant 123.1 178.1 40.9 32.9 44.7 0.44 45.1 71.35 

Sotnikov et al., 

2013 
Pulse-echo 157.3 210.6 41.8 75.75 64.15 0.54 40.8 102.73 

Suhak et al., 2018 Resonant 148.8 219.3 47.4 57.9 80.6 0.093 44.9 100.14 

Suhak et al., 2018 Pulse-echo 155.6 211.6 42.0 73.6 70.1 0.84 41.1 103.95 

Biryukov et al., 

2014 
SAW 154.8 211.3 42.0 73.0 70.5 0.63 40.9 103.67 

Zu et al., 2016 Impedance 142.6 203.3 48.53 51.91 62.52 -0.41 45.35 90.38 

 Mean 147.62 210.45 43.61 60.12 71.09 0.47 43.70 96.95 

 
Standard 

deviation 
11.32 14.34 3.18 15.50 14.20 0.38 3.55 11.81 

 

4.4.4. Born stability criteria of CTGS 
Previous work has shown that when a single crystal of α-quartz is compressed at room 

temperature, a pressure is reached where it undergoes amorphization (Badro et al., 1998; 

Binggeli et al., 1994; Wentzcovitch et al., 1998). This is a limit on how high pressure the 

piezoelectric crystal could be used in the assembly to measure stress. Beyond this point, the 

amorphization would completely eliminate any possible measurement of stress. Theoretical 

studies have suggested that this could be triggered by elastic instability when the Born stability 

criteria are violated (Born, 1940; Born & Huang, 2002; Coulson, 1958). These provide the 

necessary conditions for a crystal to be mechanically stable. The Born stability criteria 

conditions for trigonal crystals, applicable equally to α-quartz and CTGS, which are necessary 

and sufficient, are described below (Mouhat & Coudert, 2014). If the elastic stiffness 
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coefficients at a given pressure violate any of these conditions, the phase is predicted to become 

mechanically unstable and is likely to either amorphize or transition to a new phase. 

 

{
 
 

 
 

𝐶11 > |𝐶12|
𝐶44 > 0

𝐶13
2 <

1

2
𝐶33(𝐶11 + 𝐶12)

𝐶14
2 <

1

2
𝐶44(𝐶11 − 𝐶12)

 Eq. 130 

With the third-order finite strain equations numerically solved, the bulk moduli and derivative 

of bulk moduli with pressure can be used to predict at what hydrostatic pressure a Born stability 

criterion is first violated. By taking the difference across the inequalities, an equation can be 

derived for each criterion. Numerically solving for the elastic coefficients to arbitrarily high 

hydrostatic pressures and using the conditions, a criterion is violated when the resultant 

equation fi ≤ 0. The plots in Figure 110 are the result of this process using the CTGS elastic 

coefficients measured with the Brillouin spectroscopy method. The plotted curves are the result 

of repeatedly numerically solving Eq. 126 – Eq. 129, in steps of 0.001 GPa and using the 𝐶𝑖𝑗 at 

each pressure to check for any violation of the criteria in Eq. 130. In this case, the 𝐾0 was fixed 

to 96.08 GPa and corrected to higher pressures using a 𝐾0
′  of 4.77, which was previously 

calculated using the finite 3rd order strain equations. The volume at each pressure was derived 

using the third-order Birch-Murnaghan equation (Eq. 107).  
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Figure 110. The Born criterion conditions of CTGS plotted with the functions listed in the 

legends. The point at which each criterion reaches 0, or in other words is violated, is marked 

and the hydrostatic pressure provided for each criterion. 

 

As is displayed in the figures, criterion or condition 3 is violated at the lowest hydrostatic 

pressure of 103.9 GPa, 𝑓3 = 0 . Since all four criteria are necessary, only one violation is 

required to render the crystal mechanically unstable. Thus, according to the Brillouin 

spectroscopy data acquired, CTGS becomes mechanically unstable at 103.9 GPa through the 

violation of condition 3. It is important to keep in mind that even minor errors in the third-order 

finite strain fitting would shift this pressure dramatically because of the high sensitivity to the 

derivative of the elastic coefficient. Constraining this pressure would require more Brillouin 

spectroscopy measurements and at higher pressures as well.  

The same process has been accomplished for α-quartz in literature. The pressure at which α-

quartz violates a Born criterion has been reported at 26 GPa (Wang et al., 2015), 30 GPa 

(Choudhury & Chaplot, 2006; Kimizuka et al., 2007), and even up to 49 GPa (Gregoryanz et 

al., 2000). Experimentally, α-quartz remains mechanically stable at room temperature up to 

approximately 18 GPa. While discrepancies exist as to when amorphization begins, in general 

the range reported experimentally is 18 – 35 GPa (Dong et al., 2015; Haines et al., 2001). 
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Generally, it seems to not be a sharp transition and instead there is a gradual increase of 

amorphization producing heterogeneous samples of coexisting crystalline and amorphous 

phases (Calderon et al., 2007). It’s clear that the amorphization of α-quartz is well predicted by 

the Born criteria. There is no reason to believe CTGS, belonging to the same space group as α-

quartz, would undergo amorphization in a different way except at significantly higher pressure 

as suggested by the Brillouin spectroscopy results. Based on the Born criteria, CTGS should be 

stable up to very high pressure as long as the temperature remains low. Of course, this is 

hypothetical and would require experimental verification. 

5. Conclusion 
The development and implementation of the piezoelectric method for measuring stress at high 

pressures represents a significant advancement in assessing material strength under extreme 

conditions. This novel technique has proven not only feasible but also highly effective, 

complementing the conventional X-ray diffraction (XRD) methods traditionally used for stress 

measurements in similar environments. 

The piezoelectric method offers several advantages over XRD, particularly its ability to provide 

continuous, real-time measurements of stress changes within a sample during deformation 

experiments. This capability is crucial for understanding the dynamic processes occurring at 

high pressures, especially when strain rates are high or in the brittle zone of the Earth’s upper 

mantle and crust. Unlike XRD, which requires an exposure time that averages stress 

measurements over the collection period, the piezoelectric method captures near-instantaneous 

stress changes. 

One significant limitation of XRD is the variability in stress measurements depending on the 

crystallographic plane, or (hkl) peak, being analyzed. In this study, stress values obtained from 

different (hkl) peaks in San Carlos olivine showed considerable spread, ranging from -2 GPa to 

4 GPa at the worst. This variability introduces potential bias and complicates data interpretation, 

as different planes respond differently to stress. The piezoelectric method showed excellent fit 

partly because a large number of peaks (up to 23) of San Carlos olivine were analyzed, whereas 

most studies typically fit only up to 6 or 7 peaks (Burnley, 2015; Burnley & Kaboli, 2019; 

Dixon & Durham, 2018; Hansen et al., 2019). 

The ability of the piezoelectric method to measure stress off the beamline also offers significant 

practical advantages. It reduces dependence on synchrotron facilities, which are not always 

accessible for extended periods. This flexibility enables a larger number of experiments to be 
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conducted. Since the strength of minerals depends on multiple parameters, the variable space 

is complex, and many deformation experiments are inherently required, including those 

involving mixed rheology as present in the Earth. 

Comparative studies between the piezoelectric method and XRD have demonstrated strong 

correlations between the two techniques, validating the reliability of the piezoelectric 

measurements. Experiments conducted on polycrystalline samples of San Carlos olivine, Mg-

Al spinel, and MgO at various pressures and temperatures have shown that stress values 

obtained using the piezoelectric method are consistent with those derived from XRD. The 

piezoelectric method has also proven to be more precise, capable of measuring small stress 

changes down to an estimated 10 MPa with an uncertainty of 18.5%. The XRD technique is 

generally limited to 100 MPa with an uncertainty of 100 MPa. 

The results of the deformation experiments conducted with the piezoelectric method have 

provided new insights into the mechanical behavior of minerals under high-pressure conditions. 

For instance, the stress-strain relationships obtained from these experiments have allowed for a 

more precise determination of the elastic and plastic deformation regimes in minerals like San 

Carlos olivine and Mg-Al spinel. These findings have implications for understanding the 

rheological properties of the Earth's mantle, where these minerals are abundant. 

Moreover, comparative deformation experiments on single crystals like MgO and forsterite at 

high pressures further highlighted the method's effectiveness. These experiments, which 

evaluated specific slip planes, confirmed that the piezoelectric method provides stable and 

precise stress measurements during both compressive and tensile deformations. The weakening 

in strength due to high pressures has been clearly recorded using the piezoelectric method, and 

although the data is relatively sparse in this work, the power creep equation fits are largely 

consistent with those from literature and with smaller uncertainty ranges as well. 

Despite the promising results, there are areas where further refinement and research are needed. 

For example, understanding the long-term stability and durability of piezoelectric crystals under 

prolonged high-pressure conditions is essential for their practical application. Additionally, 

integrating the piezoelectric method with other analytical techniques could provide a more 

comprehensive understanding of stress and deformation mechanisms in various materials. A 

key advancement would be a method to measure strain in situ. Currently, a beamline at the 

synchrotron is still required for this. However, it has been shown that the strain on the sample 
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is within a factor of 2 to 3 of that measured by the position encoder on the anvils. As a first-

order approximation, this can be used to get a reasonable estimate of the strain and strain rate. 

One notable issue encountered was voltage drift in the piezoelectric measurements, particularly 

under high deviatoric stresses. This drift can lead to inaccuracies in the stress data, especially 

in long-duration experiments. Addressing this problem will require improvements in the design 

and calibration of the piezoelectric sensors to ensure stable and reliable measurements over 

extended periods. Solutions could include measuring the electrical resistance across the crystal 

during deformations, optimizing the material around the piezoelectric crystal to reduce 

conduction, and thermally insulating the piezoelectric crystal better to reduce temperature-

induced drift. The Arrhenius equation describing the electrical conductivity of dielectric 

crystals indicates that temperature changes significantly affect voltage drift, becoming more 

severe at higher temperatures. 

Additionally, the piezoelectric method's dependence on initial calibration and the assumption 

that the stress state starts at zero can introduce errors if the sample is not properly annealed or 

if residual stresses are present. This can be mitigated by pre-heating the sample at high 

temperatures for a sufficient duration, although this may lead to grain growth, making the actual 

grain size uncertain. Therefore, the temperature and annealing time must be carefully chosen. 

In addition to comparing with XRD, the study also explored using Brillouin spectroscopy to 

investigate the elastic properties of Ca3TaGa3Si2O14 (CTGS). The Brillouin spectroscopy 

results were significant in determining the elastic stiffness coefficients and the mechanical 

stability of CTGS under high pressures. This aspect of the study is crucial to understanding how 

prone CTGS is to ferrobielastic switching compared to α-quartz. The results of the Brillouin 

spectroscopy measurements showed that CTGS has an S14 value close to zero, a factor of 30-

40 times smaller than α-quartz. This confirms that CTGS is a better choice for the piezoelectric 

assembly because ferrobielastic switching is driven by S14. Experiments verified this with only 

a single obvious ferrobielastic switch occurring in CTGS during a deformation experiment at 

the synchrotron (San Carlos olivine, run C1) compared to the frequent switches observed in α-

quartz. 

As far as is currently known, this is the only method developed to measure in situ stress without 

XRD in a large volume press (LVP). Other in situ methods in the Paterson apparatus that use a 

fluid medium or Grigg’s apparatus with a solid medium are highly limited to low hydrostatic 

pressures below 500 MPa at high temperature, or up to 2 GPa at low temperatures. 
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In conclusion, the piezoelectric method for measuring stress at high pressures represents a 

transformative approach in studying material behavior under extreme conditions. Its advantages 

over traditional XRD methods, including continuous real-time monitoring and off-beamline 

capabilities, position it as a valuable tool for both scientific research and potential industrial 

applications. The integration of Brillouin spectroscopy further enhances the capability of this 

novel method, providing comprehensive insights into the mechanical properties of piezoelectric 

materials like CTGS under high-pressure conditions. 
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