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Abstract—Behavior and outcomes that do not fit to classical game
theory are often observed and, hence, reported. Common ex-
planations for that are, e.g., repeated games, reciprocity, costly
punishment, and pure altruism. Via the prisoner’s dilemma and
costly punishment, we show that those explanations, esp. reci-
procity, are not always able to account for outcomes that involve
anti-social punishment, i.e., to punish someone after a success-
ful cooperation. We demonstrate, however, that intrinsic motiva-
tions, including both altruism and spiteful preferences, additional
to material payoffs can explain those outcomes. To capture the
agents’ intrinsic motivation we introduce a uniform notion of al-
truism and sadism, the so-called SEA model. Further, we present
a Python code to find so-called (pure-strategy) SEA Nash equi-
libria. Conclusively, we illustrate the SEA model via simple, well-
known games.
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1 Introduction and Literature Review

There are many situations in the real world as well as experiments that do
not fit to predictions of classical game theory, for example, where the agents
do not end up in a Nash equilibrium [11]. This phenomenon is well studied,
e.g., on the basis of the prisoner’s dilemma, see Table 1.

Table 1: Prisoner’s Dilemma: material payoffs with values from [16]

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 3|3 0|5
a
(2)
1 5|0 1|1

The strategy (or action) a
(1)
i refers to staying silent (or cooperation) and

a
(2)
i to confessing (or defecting). The outcome (a

(2)
1 , a

(2)
2 ) is not only the only

Nash equilibrium (cf. [11]), but also an equilibrium in strictly dominated
strategies. As depicted in [3], in the references therein, prominently in [4,
5], agents in experiments and in the real world do (sometimes) cooperate,
though.

A common explanation for cooperation in the prisoner’s dilemma uses
repeated games,1 i.e. finitely or infinitely many repetitions of the very same
game, which give the possibility to punish non-cooperation and reward co-
operation—cf. the work on “tit for tat.” The various other explanations that
do also apply for one-shot games include pure altruism, a second round with
another game that is designed especially for the possibility of punishment,
and reciprocity. Concepts that use distributions/symmetry of payoffs among

1See, e.g., [16] Sections 3.4 and 3.5.
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the agents do not directly apply in a meaningful (i.e., easy to interpret)
way to the prisoner’s dilemma since these are typically designed for n-player
games (with large n ∈ N).

In contrast to that, we introduce parameters for the agents reflecting
their level of intrinsic altruism resp. intrinsic sadism without changing a
game’s objective (i.e. material) outcomes. Considering, however, the agents’
subjective (i.e. psychological) outcomes influenced by these parameters, we
are able to determine parameter combinations for which certain actions (or
strategies) are Nash equilibria. For doing this, we firstly provide some short
notes and references concerning reciprocity. After that, we introduce the
concept of punishment, which brings us directly to the topic of so-called
anti-social punishment, which is the main motivation for the work at hand.
Thereupon, we are prepared to devise the so-called SEA model. We provide
its definition, how it can be implemented, and give illustrative examples of
its use.

1.1 Rabin’s Fairness Equilibria

Rabin [13] uses the concept of reciprocity and beliefs, which he calls fair-
ness, to explain outcomes that do not directly fit to Nash [11]. Applied on
the prisoner’s dilemma, this can be used to show that and why cooperation
happens [1, 13]. This concept builds upon [8] and is based on three stylized
facts, namely that agents agree to smaller payoff in order to be 1.) friendly
to someone who is believed to be also friendly and 2.) unfriendly in order to
hurt someone who is believed to be unfriendly, too. But, 3.) the larger those
suffered fairness losses, the less do agents agree to those smaller payoffs.

In [1], the concept of Rabin fairness [13] is explained in great detail.
There, a Python code is given, which is also used in the work at hand, to check
whether outcomes are fair according to Rabin. For all details concerning
Rabin fairness, please consult [1, 13].

To apply Rabin’s fairness concept, we have to use a scaling factor χ > 0,
which accounts for the tradeoff between material payoff and fairness payoff,
which is a payoff derived via so-called kindness functions. These kindness
functions aim at measuring an agent’s (un-)friendliness depending on the
materials payoffs and agent’s beliefs about the (un-)friendliness of the re-
spective other.

The basic principle of fairness equilibria is the following: The (first-order
believed) material payoff—which depends on the own action/strategy and the
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first-order belief about what the opponent is going to do—is scaled by some
χ > 0 and there is a summand added, which depends on the (first-order be-
lieved) friendliness of the player towards the opponent—which depends also
on the own action/strategy and the first-order belief about what the oppo-
nent is going to do—and on the (second-order believed) friendliness of the
opponent towards the player—which depends on the first-order belief about
what the opponent is going to do and on the second-order belief about what
the opponent believes what the player is going to do. When these so-called
kindness functions are either both positive or both negative, the fairness pay-
off is positive, when one is positive and one is negative, the fairness payoff
is negative. In the equilibrium, the actions/strategies (and not the beliefs)
have to maximize this so-called expected utility and actions and first- and
second-order beliefs must match.

For the scaled prisoner’s dilemma according to Rabin [13], see Table 2.
One can show that (confess, confess) is for all scalings a fairness equilibrium
while (stay silent, stay silent) is fair if and only if the suffered material losses
for being friendly are not to high, in detail: for χ ≤ 0.25, see [1].

Table 2: Scaled Prisoner’s Dilemma: material payoffs with values from [16]
and scaled by χ > 0 according to [13]

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 3χ|3χ 0|5χ
a
(2)
1 5χ|0 χ|χ

1.2 Costly Punishment

Another explanation for cooperation, which sounds quite meaningful in real
world problems, is that there is a second round in an extended game called
punishment. Often, this line of research does not directly use prisoner’s
dilemmas but so-called public goods games, which are quite similar to pris-
oner’s dilemmas but allow for more agents. For example, in [12], a public
goods game is utilized in which four agents can spend ai (money units) from
zero up to 20 to the public and receive ui = (20 − ai) + 0.4

∑
j aj. Thus, if

everyone gives 20, everyone gets 32. However, cheating (free riding) is strictly
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dominant. The punishment round in [12] works as follows (if we understood
it correctly): every agent was informed how much every other agent con-
tributed and then could choose between zero and ten to punish one selected
opponent with costs of factor one for the punisher and factor three for the
punished.

Usually, stories to enhance plausibility of cooperation through costly pun-
ishment go as follows: Imagine a neighborhood where people should care
about the common playground. Everyone profits when at least one cares
about the playground, however, working there is hard and work is divided
among volunteers, so, everyone wants to free ride and in the end no one works,
which is not Pareto optimal. When there are barbecues in this neighborhood,
but only volunteers are allowed to participate, there is some kind of costly
punishment to free riders. Not being invited to the barbecue is very harmful
for an individual. And also the volunteers profit if no one is excluded, since
the fun is according to the-more-the-merrier. With this punishment (exclu-
sion from the barbecue), everyone volunteers because he or she is afraid of
not being invited. Note that the exclusion from the barbecue is something
like an empty threat, since it is costly. Volunteering and punishing only the
free riders is a Nash equilibrium (when formalized correctly). However, it is,
due to the empty threat, not subgame perfect (see [16]). The punishment
has to be costly since punishment-for-fun should be avoided (forcing egoistic
agents not to punish, see Table 3).2 That such an avoidance of punishment-
for-fun does not work in all cases is exactly the topic of the main part of the
work at hand.

There is a vast body of literature analyzing whether and to which extent
costly punishment enhances cooperation (often, but not always, costly pun-
ishment enhances cooperation in the literature), see [14, 18, 19]. We explain
the idea of costly punishment formally with the scaled prisoner’s dilemma
in Table 2 and the costly punishment of Table 3, again with a scaling factor
$ > 0. Here, a

(3)
i means no punishment of the other agent and a

(4)
i means

punishment of the other.
Clearly, if both agents play a

(2)
i (confess) in the prisoner’s dilemma and

always no punishment in the second round (a
(3)
i ; a

(3)
i ; a

(3)
i ; a

(3)
i ), this is a Nash

equilibrium, since (a
(2)
1 , a

(2)
2 ) is an equilibrium in strictly dominated strategies

in game 1 and (a
(3)
1 , a

(3)
2 ) is an equilibrium in strictly dominated strategies in

game 2. This equilibrium is subgame perfect. However, also if both agents

2Scaling is in the work at hand always done as in [13].
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stay silent in the first game and punish the other one if and only if the
other confessed in the first game, they play a Nash equilibrium (which is
not subgame perfect since punishing is connected to a material loss of the
punisher) if $ (the punishment) is large enough compared to χ (the material
payoff of game 1. If, e.g., χ = $ = 1 no agent has an incentive to deviate:
deviation in game 2 when the other cooperated would cause unnecessary
costs, deviation in game 2 when the other confessed does not change the
payoff since this is not played in the equilibrium by the other agent, and
confessing would lead to a punishment that is higher than the payoff gained
from cheating.

To make this two-round game easier to analyze, we could rewrite it into
a one-shot game, cf. [10] Ch. 2.2 (and 2.6). This leads to a table where each
agent got 25 = 32 pure strategies, thus, in Table 4 we depicted only the
structure. Here, we use the following notation (ordering):

• strategy in game 1;(

• strategy in game 2 if (a
(1)
1 , a

(1)
2 ) was played in game 1;

• strategy in game 2 if (a
(2)
1 , a

(1)
2 ) was played in game 1;

• strategy in game 2 if (a
(1)
1 , a

(2)
2 ) was played in game 1;

• strategy in game 2 if (a
(2)
1 , a

(2)
2 ) was played in game 1)

That is, we denote the actions for round 2 according to the outcomes of round
1 column-wise.

First, we calculate whether and when the strategy pair explained above,
namely cooperation with the (empty) threat of punishing non-cooperative
others (when used by both), is a fairness equilibrium or a Nash equilib-
rium (we already know that it is not a subgame perfect strategy). This is

Table 3: Scaled Costly Punishment: material payoffs scaled by $ > 0

u1(·)|u2(·) a
(3)
2 a

(4)
2

a
(3)
1 0|0 −10$| −$
a
(4)
1 −$| − 10$ −11$| − 11$
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Table 4: Scaled Prisoner’s Dilemma with Scaled Costly Punishment: mate-
rial payoffs with values from Tables 2 resp. [16] and 3 scaled by χ,$ > 0
truncated

u1(·)|u2(·) a
(1)
2 ; (a

(3)
2 ; a

(3)
2 ; a

(3)
2 ; a

(3)
2 ) . . . a

(2)
2 ; (a

(4)
2 ; a

(4)
2 ; a

(4)
2 ; a

(4)
2 )

a
(1)
1 ; (a

(3)
1 ; a

(3)
1 ; a

(3)
1 ; a

(3)
1 ) 3χ|3χ . . . −10$|5χ−$

a
(1)
1 ; (a

(3)
1 ; a

(3)
1 ; a

(3)
1 ; a

(4)
1 ) 3χ|3χ . . . −10$|5χ−$

a
(1)
1 ; (a

(3)
1 ; a

(3)
1 ; a

(4)
1 ; a

(3)
1 ) 3χ|3χ . . . −11$|5χ− 11$

...
...

. . .
...

a
(2)
1 ; (a

(4)
1 ; a

(4)
1 ; a

(4)
1 ; a

(4)
1 ) 5χ−$| − 10$ . . . χ− 11$|χ− 11$

the strategy pair which we call social punishment: (a
(1)
1 ; (a

(3)
1 ; a

(3)
1 ; a

(4)
1 ; a

(4)
1 ),

a
(1)
2 ; (a

(3)
2 ; a

(4)
2 ; a

(3)
2 ; a

(4)
2 ))

To enhance simplicity, we set $ = χ > 0. Then we can use the Python
[17] code (using SymPy [9]) from [1], which works for univariately scaled
games only. It would be very interesting to analyze this two-rounds game
with two (different) scaling variables (by calculations from hand or even via
an adequate code), however, this lies beyond the scope of the work at hand
and is postponed to future work. To analyze the prisoner’s dilemma with
punishment we insert in our code from [1] the new game.3

1 def prisoners_dilemma_punishment():

2 # prisoner's dilemma (Sieg)

3 v1 = [[3,0],[5,1]]

3Please consult Footnote 24 from [1], which we cite here for completeness:
“For the inequality solver solve poly inequality see https://docs.sympy.org/

latest/modules/solvers/inequalities.html (2024-03-21). For intervals, set op-
erations, and oo (∞), see https://docs.sympy.org/latest/modules/sets.html

(2024-03-21). For the reduce function functools.reduce (fun,seq) see https:

//www.geeksforgeeks.org/reduce-in-python/ (2024-03-21). For the topics copy,
deepcopy, and mutable objects, see https://stackoverflow.com/questions/8743072/

when-adding-to-list-why-does-python-copy-values-instead-of-pointers

(2024-03-25), https://stackoverflow.com/questions/19210971/

python-prevent-copying-object-as-reference (2024-03-26), and https:

//docs.python.org/3/library/copy.html (2024-03-26). And, finally, for time,
see https://www.python-lernen.de/python-modul-time.htm (in German; 2024-
03-26).” See also https://www.geeksforgeeks.org/divmod-python-application/

(2025-05-27) for divmod.
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4 v2 = copy.deepcopy(v1)

5 # costly punishment (Baumann and Baumann)

6 w1 = [[0,-10],[-1,-11]]

7 w2 = copy.deepcopy(w1)

8 u1 = []

9 u2t = []

10

11 S1 = range(2**5)

12 S2 = range(2**5)

13 for i in S1:

14 u1.append([])

15 u2t.append([])

16 for j in S2:

17

18 a10,r = divmod(i,2**4)

19 a11,r = divmod(r,2**3)

20 a12,r = divmod(r,2**2)

21 a13,r = divmod(r,2)

22 a14 = r

23 a20,r = divmod(j,2**4)

24 a21,r = divmod(r,2**3)

25 a22,r = divmod(r,2**2)

26 a23,r = divmod(r,2)

27 a24 = r

28

29 # if ax0 is 0, agent x plays cooperate,

30 # if it's 1 he or she plays defect

31 # ax1 is the strategy in round 2 of agent x, when a10=0 and a20=0

32 # ax2 is the strategy in round 2 of agent x, when a10=1 and a20=0

33 # ax3 is the strategy in round 2 of agent x, when a10=0 and a20=1

34 # ax4 is the strategy in round 2 of agent x, when a10=1 and a20=1

35

36 u1[i].append(v1[a10][a20])

37 if a10 == 0 and a20 == 0: u1[i][j] = u1[i][j] + w1[a11][a21]

38 if a10 == 1 and a20 == 0: u1[i][j] = u1[i][j] + w1[a12][a22]

39 if a10 == 0 and a20 == 1: u1[i][j] = u1[i][j] + w1[a13][a23]

40 if a10 == 1 and a20 == 1: u1[i][j] = u1[i][j] + w1[a14][a24]

41
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42 # be careful! u2 is transposed at the moment

43 u2t[i].append(v2[a20][a10])

44 if a10 == 0 and a20 == 0: u2t[i][j] = u2t[i][j] + w2[a21][a11]

45 if a10 == 1 and a20 == 0: u2t[i][j] = u2t[i][j] + w2[a22][a12]

46 if a10 == 0 and a20 == 1: u2t[i][j] = u2t[i][j] + w2[a23][a13]

47 if a10 == 1 and a20 == 1: u2t[i][j] = u2t[i][j] + w2[a24][a14]

48

49 # transposing u2

50 u2 = copy.deepcopy(u2t)

51 for i in S2:

52 for j in S1:

53 u2[i][j] = u2t[j][i]

54

55 return u1, u2

56 # end def prisoners_dilemma_punishment

It turns out that social punishment is a Nash equilibrium and that it is a
fairness equilibrium for all χ > 0. Playing Nash in all stages (a

(2)
1 ; (a

(3)
1 ; a

(3)
1 ;

a
(3)
1 ; a

(3)
1 ), a

(2)
2 ; (a

(3)
2 ; a

(3)
2 ; a

(3)
2 ; a

(3)
2 )) is a Nash equilibrium and a fairness equi-

librium for all χ ≥ 5
49

. Thus, one could claim that social punishment is fairer
than always playing Nash.

1.3 Anti-Social Punishment

Unintuitively, but nevertheless interestingly, when playing public goods games
with costly punishment (which is nearly the same as the prisoner’s dilemma
with costly punishment) in experiments, so-called anti-social punishment oc-
curs [12]. The authors of [12] analyze which factors correlate to the occur-
rence of anti-social punishment. That is, some agents are also punishing
cooperative opponents.

Using our Python code [1] (with SymPy, cf. [9, 17]) we confirm that the

corresponding strategies (a
(1)
1 ; (a

(4)
1 ; a

(4)
1 ; a

(4)
1 ; a

(4)
1 ), a

(1)
2 ; (a

(3)
2 ; a

(4)
2 ; a

(3)
2 ; a

(4)
2 )) (if

only one agent is anti-social punishing, i.e. punishing in all cases) and (a
(1)
1 ;

(a
(4)
1 ; a

(4)
1 ; a

(4)
1 ; a

(4)
1 ), a

(1)
2 ; (a

(4)
2 ; a

(4)
2 ; a

(4)
2 ; a

(4)
2 )) are neither Nash equilibria (which

is clear) nor fairness equilibria (for all χ), which is interesting since this shows
that even a concept of reciprocity [13] resp. beliefs (that the other is not kind)
cannot explain anti-social punishments.

9



D
isc

us
sio

n
Pap

er

1.4 Altruism

The last possibility to be discussed here for explaining non-Nash outcomes
shall be altruism. That means, agents who have an intrinsic motivation to
help others. For this concept please consult the review [7] and the references
therein. This can be modeled in various ways, e.g., one could set

Ui(ai, a−i) := u−i(a−i, ai),

which means that agents would care only about the other, or

Ui(ai, a−i) := ui(ai, a−i) + u−i(a−i, ai)

(or, equivalently multiplied by 0.5), which would mean that agents care
equally for themselves and the other. We will use a generalization, which
is inspired by [27],4 but has the advantage that it is linear and, thus, easier
to handle, which allows for continuously variable sizes of altruism, namely

Ui(λi, ai, a−i) := (1− λi)ui(ai, a−i) + λiu−i(a−i, ai).

However, in the next section we are going to also incorporate the opposite of
altruism, namely sadism (i.e. spiteful preferences). We do not analyze here
whether pure altruism can explain anti-social punishment, since we will do
a more general analysis in the next chapter.

2 Incorporating Intrinsic Altruism and Intrin-

sic Sadism

A possibility to explain one-sided anti-social punishment is by introducing
intrinsic motivations other than material payoffs, namely intrinsic altruism
and intrinsic sadism (i.e. personality traits). Altruism means that someone
cares about the other, sadism means that someone wants to hurt the other.

4In [27], it is by means of the “battle of the sexes” (see also [13]) explained how
non (standard) Nash outcomes can be explained, in order to adapt to real-world situa-
tions. For that, so-called Rawlsian functions are used: Ui(γi, ai, a−i) := min{ui(ai, a−i) ·
γ−1i , u−i(a−i, ai) · (1− γi)−1}, cf. [15], which have the disadvantage to complicate calcula-
tions. This is why we propose linearly mixing in the altruism case.

10
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2.1 The SEA Model

We construct a model that respecifies the outcomes according to the types of
the agents, which are described with uniform parameters λi ∈ [−1, 1] where
λi = −1 is a pure sadist, λi ∈ (−1, 0) is a sadist that also cares about him-
or herself, λi = 0 is an egoist, λi ∈ (0, 1) is an altruist that also cares about
him- or herself, and λi = 1 is a pure altruist. These types are intrinsic in
such a sense that agents are not kind to those who are kind to them, but
they are always kind or not. The parameter λi ∈ [−1, 1] allows for gradually
shifting the type between the poles. We stick to common knowledge and to
rationality. Also the types of the agents are common knowledge (which is in
contrast to the experiments in [12], where the (types of the) opponents were
not known, i.e., the agents had incomplete information). In the work at hand,
we introduce this common knowledge model with complete information. In
future works, this restriction may be loosened allowing for unknown agent
types. Also, not least for the reason of avoiding circular reasoning, agents
are one-step empathic, i.e., they care (positively or negatively) about the
material payoff of the other, but not about his or her respecified payoff. Our
respecified payoffs are continuous in the types and well-defined.

Definition 1. We respecify the material payoffs ui(ai, a−i) into psychological
payoffs with (λ1, λ2) ∈ [−1, 1]2 via

Ui(λi, ai, a−i) = (1− |λi|)ui(ai, a−i) + λiu−i(a−i, ai)

for i = 1, 2. The game, when material payoffs are transformed via this for-
mulae, is called the Sadism-Egoism-Altruism-model (SEA model).

We highlight that we can gradually and continuously shift the types.
Agents with λi ∈ [−1, 0) can be called anti-social (although it is discussable
whether a pure egoist is anti-social or not) and agents with λi ∈ (0, 1] social.
The larger |λi| is, the more important is the material payoff of the opponent.
The larger λi is, the more altruistic is agent i, the smaller λi gets, the more
he or she is sadisdic, and if it is zero, he or she is an egoist. If both λ1 and
λ2 are zero, the game is the original game.

We define an outcome (i.e. a pair of strategies) as

• SEA Nash equilibrium for E ⊂ [−1, 1]2 if the outcome is a Nash equi-
librium [11] in the SEA model for all (λ1, λ2) ∈ E and not a Nash
equilibrium in the SEA model for all (λ1, λ2) ∈ [−1, 1]2 \ E,

11
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• SEA plausible, if there exists a (λ1, λ2) ∈ [−1, 1]2 such that the outcome
is a Nash equilibrium in the SEA model with λ1, λ2,

• SEA plausible under social types, if there exists a (λ1, λ2) ∈ ([0, 1] ×
(0, 1]) ∪ ((0, 1] × [0, 1]) = [0, 1]2 \ {(0, 0)} such that the outcome is a
Nash equilibrium in the SEA model with λ1, λ2,

• SEA plausible under anti-social types, if there exists a (λ1, λ2) ∈ ([−1, 0]
×[−1, 0))∪([−1, 0)×[−1, 0]) = [−1, 0]2\{(0, 0)} such that the outcome
is a Nash equilibrium in the SEA model with λ1, λ2,

• SEA plausible under mixed types, if there exists a (λ1, λ2) ∈ ([−1, 0)×
(0, 1]) ∪ ((0, 1] × [−1, 0)) such that the outcome is a Nash equilibrium
in the SEA model with λ1, λ2.

We note that this model generalizes in some sense the idea of reciprocity:
Being kind to those who are (supposed to be) kind to you corresponds to the
concept of SEA plausibility under social types. Wanting someone hurt who
wants you hurt (or is supposed to do so) corresponds to SEA plausibility
under anti-social types. Further, the SEA model allows for the asymmetric
cases, however, according to the signs of the λi, we can distinguish these
cases (also the two different reciprocal cases). We note that at first, we stick
to pure strategies and outcomes only, however, the generalization to mixed
strategies is straightforward. That every Nash equilibrium is SEA plausible
follows by setting λ1 = λ2 = 0:

Proposition 1. Every Nash equilibrium (of the material game) is SEA plau-
sible.

For interpretations it is important to remark that agents know whether
and to what degree the opponent is sadistic or altruistic and they behave
nevertheless according to their type. Some help their enemies because they
want to or it is their nature to do so and some bite the hand who feeds them
because it is their nature resp. because they want to do so. Thus, results do
not fit to the experiment setting of [12], however, they may explain why and
when anti-social punishment happens.

We emphasize that in general not every outcome is SEA plausible and if
so, this does not have to hold for all parameter combinations.
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2.2 The Shape of the SEA Nash Sets

Since we aim at providing a Python code to automatically compute the SEA
Nash equilibria, we first provide a proposition on the shape of the sets E.
This information is very helpful when implementing the code.

Proposition 2. The sets E ⊂ [−1, 1]2 in the definition of SEA Nash equi-
libria are always rectangles with sides parallel to the axes.

Proof. Let the outcome (a?1) be SEA Nash for E 3 (λ1, λ2), (λ
′
1, λ
′
2). We will

show firstly that (λ1, λ
′
2) ∈ E.

For that, (λ1, λ2) ∈ E means that

U1(λ1, a
?
1, a

?
2) ≥ U1(λ1, a1, a

?
2) ∀a1 ∈ A1

and U2(λ2, . . ., cf. [11]. Further, (λ′1, λ
′
2) ∈ E means that

U2(λ
′
2, a

?
2, a

?
1) ≥ U2(λ

′
2, a2, a

?
1) ∀a2 ∈ A2

and U1(λ
′
1, . . ..

These two inequalities show that (a?1, a
?
2) is SEA Nash for (λ1, λ

′
2). Anal-

ogously holds (λ′1, λ2) ∈ E, which completes the proof.

2.3 Python/SymPy Code

In this section we provide some Python code [9, 17], which can be inserted
in the code provided in [1]. Additionally to the Rabin fairness equilibria,
Nash equilibria, and Mutual Min resp. Mutual Max outcomes we can then
also calculate the SEA Nash equilibria.

57 def sea_nash_equilibria(game):

58

59 ### The SEA-Model (Sadism-Egoism-Altruism)

60

61 # Intrinsic Altruism and Intrinsic Sadism

62

63 # Ordering of list elements according to lambda_1=y, lambda_2=z:

64 # [y,z >= 0; y >= 0 and z < 0; y < 0 and z >= 0; y,z < 0]

65
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66 t = time.time()

67

68 # material payoffs

69 u1, u2 = set_game(game)

70

71 # Altruism and Sadism Parameters for agent 1 (y) and agent 2 (z)

72 y = sympy.symbols('y')

73 z = sympy.symbols('z')

74

75 # actions

76 S1 = range(len(u1))

77 S2 = range(len(u1[0]))

78

79 # psychological payoffs according to Definition 1

80 e1 = []

81 e2 = []

82 for l in range(4):

83 e1.append(copy.deepcopy(u1))

84 e2.append(copy.deepcopy(u2))

85

86 for i in S1:

87 for j in S2:

88 e1[0][i][j] = (1-y)*u1[i][j]+y*u2[j][i]

89 e1[1][i][j] = (1-y)*u1[i][j]+y*u2[j][i]

90 e1[2][i][j] = (1+y)*u1[i][j]+y*u2[j][i]

91 e1[3][i][j] = (1+y)*u1[i][j]+y*u2[j][i]

92 e2[0][j][i] = (1-z)*u2[j][i]+z*u1[i][j]

93 e2[1][j][i] = (1+z)*u2[j][i]+z*u1[i][j]

94 e2[2][j][i] = (1-z)*u2[j][i]+z*u1[i][j]

95 e2[3][j][i] = (1+z)*u2[j][i]+z*u1[i][j]

96

97

98 # Nash equilibria

99 # SEA best responses

100 SeaBR1 = [[],[],[],[]]

101 SeaBR2 = [[],[],[],[]]

102 SeaNash = [[],[],[],[]]

103 for l in range(4):
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104 # best response functions

105

106 # initial values

107

108 for i in S1:

109 SeaBR1[l].append([])

110 SeaBR2[l].append([])

111 SeaNash[l].append([])

112 for j in S2:

113 if l == 0 or l == 1:

114 SeaBR1[l][i].append(Interval(0,1))

115 else:

116 SeaBR1[l][i].append(Interval.Ropen(-1,0))

117 if l == 0 or l == 2:

118 SeaBR2[l][i].append(Interval(0,1))

119 else:

120 SeaBR2[l][i].append(Interval.Ropen(-1,0))

121 SeaNash[l][i].append(sympy.EmptySet)

122

123 # is i in S1 a best response if agent 2 plays j in S2?

124

125 for k in S1:

126

127 SeaBR1[l][i][j] = functools.reduce(

128 lambda a, b: a.union(b), (

129 sympy.solve_poly_inequality(

130 Poly(e1[l][k][j]-e1[l][i][j],y,domain='RR'), ">")

131 )

132 ).complement(Interval(-1,1)

133 ).intersection(SeaBR1[l][i][j])

134

135 for k in S2:

136

137 SeaBR2[l][i][j] = functools.reduce(

138 lambda a, b: a.union(b), (

139 sympy.solve_poly_inequality(

140 Poly(e2[l][k][i]-e2[l][j][i],z,domain='RR'), ">")

141 )
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142 ).complement(Interval(-1,1)

143 ).intersection(SeaBR2[l][i][j])

144

145 SeaNash[l][i][j]=[SeaBR1[l][i][j],SeaBR2[l][i][j]]

146

147 # for interpretation, consult what is written in Baumann and Baumann

148 # 2025 Some Thoughts on Rabin Fairness:

149 # "BR1 = [[0, 0, 1], [1, 0, 0], [0, 1, 0]] means that i's first

150 # strategy is the best response to -i's third one, i's second one is

151 # the best response to -i's first one, and finally i's third one is

152 # the best answer to -i's second strategy

153 #

154 # only pure and no mixed strategies and Nash equilibria are

155 # considered

156 #

157 # BR2 = [[0, 1, 0], [0, 0, 1], [1, 0, 0]] means that the best -i

158 # can do if i does its 1st, is its 2nd, the best -i can do if i

159 # plays its 2nd, is its 3rd, ..."

160

161 # union over all four cases

162

163 SeaNashUnion = copy.deepcopy(u1)

164 for i in S1:

165 for j in S2:

166 SeaNashUnion[i][j] = [SeaNash[0][i][j][0].union(SeaNash[1][i][j][0]

167 ).union(SeaNash[2][i][j][0]

168 ).union(SeaNash[3][i][j][0]),

169 SeaNash[0][i][j][1].union(SeaNash[1][i][j][1]

170 ).union(SeaNash[2][i][j][1]

171 ).union(SeaNash[3][i][j][1])

172 ]

173

174 runtime = time.time()-t

175

176 return SeaNashUnion, runtime

177 # end def sea_nash_equilibria

This code can be applied to finite two-agent games in normal form to
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calculate pure-strategy SEA Nash equilibria. However, please note that we
can neither prove the correctness of the code nor guarantee for it. First, we
will apply it to the prisoner’s dilemma with costly punishment.5

3 SEA Nash Equilibria for the Prisoner’s Di-

lemma with Costly Punishment

For our prisoner’s dilemma with costly punishment (unscaled, i.e., χ = $ =
1) it turns out that playing Nash in all stages is SEA Nash for

[
− 1

11
, 1
5

]
×[

− 1
11
, 1
5

]
. Social punishment is SEA Nash for

[
− 1

11
, 1
]
×
[
− 1

11
, 1
]
. Anti-

social punishment (when agent 1 is punishing all the time and agent two
only in the defect cases) is SEA Nash for

[
−2

3
,− 1

11

]
×
[
2
5
, 1
]

and that both
agents are punishing all the time (but cooperate in round 1) is not SEA
plausible. These computations were done using the Python code from [1]
and its extension depicted in Section 2.3 (cf. [9, 17]). The most important
results are formulated in the next proposition again.

Proposition 3. In the prisoner’s dilemma with punishment as specified in
Tables 2 and 3 with χ = $ = 1 a one-sided anti-social punishment as defined
above is neither Nash nor fair (in the sense of Rabin; for no χ > 0 it is fair).
However, it is SEA plausible, specifically it is SEA Nash for

[
−2

3
,− 1

11

]
×[

2
5
, 1
]
.

One-sided anti-social punishment is SEA plausible under mixed types,
esp. the anti-social punisher has to be sadistic (but not too strong—in Round 1
we need cooperation) and the social punisher has to be altruistic (so he or
she is not cheating in Round 1). We highlight that this one-sided anti-social
punishment is SEA plausible only under mixed types. That means, one agent
has to be sadistic and one has to be altruistic (each to some degree). This
is interesting because altruism in games is widely discussed and analyzed in
the literature [7] both as reciprocal altruism and as intrinsic altruism (in the
literature also called pure altruism) while the body of literature dealing with
sadism or spiteful preferences in games (resp. in game theory) is relatively

5Please mind the distinction between hurting and punishing: Hurting means to be
unkind/unfriendly/mean to someone who is (believed to be) unkind/unfriendly/mean to
you in this game; punishing means to act in a second game or future round of the same
game in such a way that the opponent has some losses if he or she does not behave kind
now. Punishment is usually used as an (possibly empty) threat.
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small and often empirical [12]. Next, the code for displaying the discussed
outcomes is provided.

178 def print_specific_results(nash, fair, sea_nash):

179 print("Playing Nash in all stages")

180 i = 1*16+0*8+0*4+0*2+0

181 j = 1*16+0*8+0*4+0*2+0

182 print(nash[i][j])

183 print(fair[i][j])

184 print(sea_nash[i][j])

185

186 print("Social punishment")

187 i = 0*16+0*8+0*4+1*2+1

188 j = 0*16+0*8+1*4+0*2+1

189 print(nash[i][j])

190 print(fair[i][j])

191 print(sea_nash[i][j])

192

193 print("One Social and One Anti-Social Punishment")

194 i = 0*16+1*8+1*4+1*2+1

195 j = 0*16+0*8+1*4+0*2+1

196 print(nash[i][j])

197 print(fair[i][j])

198 print(sea_nash[i][j])

199

200 print("One Social and One Anti-Social Punishment (check)")

201 i = 0*16+0*8+0*4+1*2+1

202 j = 0*16+1*8+1*4+1*2+1

203 print(nash[i][j])

204 print(fair[i][j])

205 print(sea_nash[i][j])

206

207 print("Two Anti-Social Punishments")

208 i = 0*16+1*8+1*4+1*2+1

209 j = 0*16+1*8+1*4+1*2+1

210 print(nash[i][j])

211 print(fair[i][j])

212 print(sea_nash[i][j])
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213

214 # end def print_specific_results

We highlight that the outcomes that two sadists cooperate in the prisoners
dilemma, i.e. cooperation in Round 1 and always punish in Round 2, is not
SEA plausible. Likely, this is due to the fact that our game is modeled
with complete information, while the experiment in [12] is conducted with
incomplete information. In an experiment it cannot be excluded that two
sadists play with each other not knowing that the respective opponent is
sadistic, too.

4 Simulation-based Comparison of Nash, Ra-

bin, and the SEA Model in Other Games

So far, we have seen that the SEA model is powerful enough to explain (one-
sided) anti-social punishment. In order to illustrate the SEA model further,
we provide a couple of more or less classical and simple games hereafter and
calculate (using our code) the Nash equilibria [11] in pure strategies, the
fairness equilibria [13], and the SEA Nash equilibria under pure strategies.
We stick to the standard form of games: higher values are favorable for the
agents, there are two agents and each one has a finite set of actions leading to
bounded outcomes. For the analyzed games we provide the payoff bi-matrix,
a matrix with zeros and ones indicating which outcomes are Nash equilibria,
a matrix with components that are subsets of (0,∞), indicating for which
χ > 0 the respective outcome is a fairness equilibrium [1, 13], and a matrix
with components that are subsets of [−1, 1]2, indicating for which (λ1, λ2)
the outcome is SEA Nash.

4.1 Prisoner’s Dilemma (Sieg)

We start with our prisoner’s dilemma from Table 1 with values from [16].
In Tables 5, 6, and 7 the results are depicted. Only (defect,defect) is Nash,
which is also fair for all scaling factors. For small enough scaling factors,
(cooperation,cooperation) is also fair. One-sided cooperation is never fair. If
both agents are altruistic enough (λ1, λ2 ≥ 0.4) (cooperation,cooperation) is
SEA Nash, if both are sadistic or at least not too altruistic (λ1, λ2 ≤ 0.2)
(defect,defect) is SEA Nash. Interestingly, also one-sided cooperation is SEA
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Nash—and this is not only the case when the cooperator is altruistic and the
defector is sadistic, but also when the cooperator is less altruistic than the
defector, e.g., (λ1, λ2) = (0.2, 0.4).

Table 5: Prisoner’s Dilemma with values from [16] or [13]: Nash equilibrium

Nash a
(1)
2 a

(2)
2

a
(1)
1 0 0

a
(2)
1 0 1

Table 6: Prisoner’s Dilemma with values from [16] or [13]: Fairness equilibria

Rabin a
(1)
2 a

(2)
2

a
(1)
1 (0, 0.25] ∅
a
(2)
1 ∅ (0,∞)

Table 7: Prisoner’s Dilemma with values from [16]: SEA Nash equilibria

SEA a
(1)
2 a

(2)
2

a
(1)
1 [0.4, 1]2 [0.2, 1]× [−1, 0.4]

a
(2)
1 [−1, 0.4]× [0.2, 1] [−1, 0.2]2

4.2 Prisoner’s Dilemma (Rabin)

As mentioned in [1], the exact values in the prisoner’s dilemmas of Sieg [16]
and Rabin [13] are slightly different while the structure—of course—is the
same. Rabin uses a scaled version of Table 8. We observe that both the
Nash equilibria and the fairness equilibria (Rabin) do not change. In Table 9
we see that the exact boundaries of the intervals when using the SEA model
change, however, the structure does not.
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Table 8: Prisoner’s Dilemma: material payoffs with values from [13] with
scaling parameter equal to one)

u1(·);u2(·) a
(1)
2 a

(2)
2

a
(1)
1 4; 4 0; 6

a
(2)
1 6; 0 1; 1

Table 9: Prisoner’s Dilemma(with values from [13]): SEA Nash equilibria

SEA a
(1)
2 a

(2)
2

a
(1)
1 [0.3̄, 1]2 [0.16̄, 1]× [−1, 0.3̄]

a
(2)
1 [−1, 0.3̄]× [0.16̄, 1] [−1, 0.16̄]2

4.3 Rock-Scissors-Paper (Sieg)

An important classical game in game theory is rock-scissors-paper, which is
formalized by Sieg [16] as in Table 10. There is neither a Nash nor a fairness
equilibrium in pure strategies, cf. [1], see Tables 11 and 12.

Table 10: Rock-Scissors-Paper with values from [16]: material payoffs

u1(·);u2(·) a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 0; 0 1;−1 −1; 1

a
(2)
1 −1; 1 0; 0 1;−1

a
(1)
1 1;−1 −1; 1 0; 0

Because all outcomes are SEA plausible, the insights are not deep, see
Table 13. Despite the fact that rock-scissors-paper indicated that λi = 0.5 is
an important threshold in the SEA model, we observe that agents agree in
letting one win and one loose if one agent is at least one half altruistic and
the other one is not more than one half altruistic or even (to any degree)
sadistic.
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Table 11: Rock-Scissors-Paper with values from [16]: Nash equilibria

Nash a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 0 0 0

a
(2)
1 0 0 0

a
(3)
1 0 0 0

Table 12: Rock-Scissors-Paper with values from [16]: fairness equilibria

Rabin a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 ∅ ∅ ∅
a
(2)
1 ∅ ∅ ∅
a
(3)
1 ∅ ∅ ∅

4.4 Chicken (Rabin)

Last, we are going to analyze the chicken game, please consult [1, 13]. It can
be formalized as done in [13], see Table 14.

The chicken game is particularly interesting for several reasons. 1.) Such
as in [1, 13], we observe that there is no pure-strategy fairness equilibrium
that is one for all χ > 0, see Table 16. 2.) In [13], there is a distinction
between strictly positive fairness equilibria (where both agents behave kindly)
and weakly negative ones (where both agents do not behave kindly).6 By,

e.g., using the code from [1] it turns out that for (a
(1)
1 , a

(1)
2 ), i.e. (dare, dare)

both kindness values are −1, which means that both agents are as mean as
possible. For (a

(2)
1 , a

(2)
2 ), i.e. (chickenout, chickenout) both kindness values

are 0.5, i.e. that both agents are as kind as possible. And for the outcomes
where one agent “chickens out” and one “dares,” that one who dares is
“rationally mean” (i.e. 0.5; cf. [1]) and the “chicken” agent is neither kind nor
mean (0). Those lastly mentioned two outcomes are Nash, see Table 15, the
other two are not. 3.) When having a look at Table 17 we can gain much more
insight. Really, (dare, dare) is only SEA plausible when both are unkind

6See [13], esp. Definitions 1, 2, and 6 as well as Proposition 2.
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Table 13: Rock-Scissors-Paper with values from [16]: SEA Nash equilibria

SEA a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 {0.5}2 [−1, 0.5]× [0.5, 1] [0.5, 1]× [−1, 0.5]

a
(2)
1 [0.5, 1]× [−1, 0.5] {0.5}2 [−1, 0.5]× [0.5, 1]

a
(3)
1 [−1, 0.5]× [0.5, 1] [0.5, 1]× [−1, 0.5] {0.5}2

Table 14: Chicken with values from [13]: material payoffs

u1(·);u2(·) a
(1)
2 a

(2)
2

a
(1)
1 −2;−2 2; 0

a
(2)
1 0; 2 1; 1

(sadisdic), and (chickenout, chickenout) only when both are kind (altruistic).
However, the (dare, chickenout) and (chickenout, dare) outcomes are SEA
plausible for all combinations of (not too) sadistic, egoistic, and (not too)
altruistic agents.

5 Conclusion and Future Work

We showed that anti-social punishment can neither be explained by the con-
cept of Nash [11] nor by that of Rabin (fairness [13]). However, incorporating
intrinsic sadism and intrinsic altruism into the game can explain (one-sided)
anti-social punishment. For this we introduced the SEA (Sadism-Egoism-
Altruism) model, which allows to alter agent types gradually and continu-
ously from pure sadists via egoists to pure altruists in a one-step empathic
sense. This concept comes without beliefs. We give a Python code to com-
pute those SEA Nash equilibria. Via simple and classical games, the SEA
model is illustrated.

We emphasize that the SEA model generalizes in some sense the concept
of reciprocity, where mutually “being kind” mirrors SEA plausibility under
social types and mutually “being mean” mirrors SEA plausibility under anti-
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Table 15: Chicken with values from [13]: Nash equilibria

Nash a
(1)
2 a

(2)
2

a
(1)
1 0 1

a
(2)
1 1 0

Table 16: Chickenwith values from [13]: fairness equilibria

Rabin a
(1)
2 a

(2)
2

a
(1)
1 (0, 0.5] [0.25,∞)

a
(2)
1 [0.25,∞) (0, 0.5]

social types. By means of the chicken game this is illustrated and it is shown
that the SEA types can give more insights than the kindness values of [13].
Further, in the SEA model, plausibility under mixed types is possible.

Additional to the fairness concept of Rabin [13], there are also common
and popular fairness concepts from Bolton and Ockenfels [2] and Fehr and
Schmidt [6]. It is important for future work to check whether the strategies
of interest (Nash in all stages, social punishment, one-sided anti-social pun-
ishment, mutual anti-social punishment) are fair in the senses of Bolton and
Ockenfels as well as Fehr and Schmidt. Connections to the Minmax-theory
of von Neumann (and Morgenstern) [20, 22, 21] and the concepts used by
Wald [23, 24, 25, 26] and the mutual-min resp. mutual-max definitions of
Rabin [13] are interesting, too.

The SEA model should be investigated thoroughly in theory and appli-
cation. Impacts on economic questions and policy recommendations have
to be analyzed as well. Maybe, the SEA model can be merged with Rabin
fairness to explain social behavior even better. Additionally, the possibility
of “agents doing failures” and the connected risk may be incorporated. And
evolutionary aspects concerning sadism and altruism can be analyzed for or
by means of the SEA model.

Compared to Rabin Fairness [13], the SEA model got the advantage that
it is much more easy to compute, both by hand and also via our codes (see
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Table 17: Chicken with values from [13]: SEA Nash equilibria

SEA a
(1)
2 a

(2)
2

a
(1)
1 [−1,−0.3̄]2 [−1, 0.5]× [−0.3̄, 1]

a
(2)
1 [−0.3̄, 1]× [−1, 0.5] [0.5, 1]2

above and [1]). Rabin’s concept has the advantage that the thinking in
beliefs might better describe how real humans come to their decision, see [1].
However, opposite to the last topic, for analyzing behavior the SEA model
can be favorable for scientists resp. researches.
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