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Abstract

Being able to predict the electronic properties of light-harvesting systems remains a
major challenge for theoretical methods. A widely used method for the description
of electronic structure and dynamics that comes at affordable computational effort is
(time-dependent) density functional theory. Therein, electronic excitations can often
be predicted reliably using range-separated hybrid functionals in the generalized
Kohn-Sham framework. Especially, if the range-separation parameter is determined
by optimal tuning, these functionals are equipped with true predictive power. Using
this methodology, we perform first-principles calculations on the charge-separation
process in the heliobacterial reaction center. This system has unique structural
features and may provide insights into the evolution of photosynthesis. Primary
charge separation is expected to proceed in a two-step mechanism along either of the
two reaction center branches. Our results indicate that in the first charge-separation
step, the electron is localized on the third cofactor and the hole on the second cofactor.
To unravel the mechanisms that lead to efficient charge separation, we analyze the
impact of the surrounding protein environment extensively. Furthermore, we include
the effect of structural changes by diligently conducted Born-Oppenheimer molecular
dynamics simulations. This reveals that a distinct structural mechanism is decisive
for the relative energetic positioning of the electronic excitations: The energies of the
charge-transfer excitations are specifically adjusted by the interaction with a small
group of charged amino acids, lowering them with respect to the non-charge-transfer
bright excitations. These results shed light on the microscopic origin of efficient
charge separation in light-harvesting systems.

Challenging computational studies, such as ours on the heliobacterial reaction center,
can reach the limits of optimal tuning due to the very different length scales and
electronic properties of the constituents involved. Therefore, in this work, we consider
the novel approach of hybrid density functionals with local range separation where the
constant range-separation parameter is turned into a density functional. Formally, this
can be motivated by the concept of coupling-constant integration. The construction
of locally range-separated hybrid functionals can be guided by formal constraints such
as the homogeneous and slowly varying density limits, the correct scaling to exact
exchange in the high-density limit, and freedom from one-electron self-interaction
errors. First, we explore the description of electronic binding properties. We show
that a transparent functional form can lead to very accurate results for test sets
of atomization energies and reaction barrier heights, and can compete with density
functionals that contain multiple empirical parameters. Furthermore, we discuss the
observable dilemma, i. e., the fact that hybrid functionals typically yield either a
good description of binding energies or physically interpretable eigenvalues, in the
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Abstract

context of locally range-separated hybrid functionals. Especially, we explore the
combination of the concepts of local range separation and local hybrids. Finally and
most importantly, we construct a new hybrid functional with local range separation
for spectroscopic purposes. The functional respects important constraints and closely
approximates the piecewise linearity of the energy as a function of the particle number.
As we demonstrate, this endows the eigenvalues with true physical meaning and
the fundamental gap in generalized Kohn-Sham theory can be predicted with high
accuracy for numerous systems, including organic semiconductors with a notoriously
difficult electronic structure. This outcome is promising as well in view of future
investigations of light-harvesting systems.

8



Zusammenfassung

Die Beschreibung der elektronischen Eigenschaften von lichtsammelnden Systemen
ist und bleibt eine bedeutende Herausforderung für theoretische Methoden. Eine
Methode zur Beschreibung der elektronischen Struktur und Dynamik, die mit ver-
gleichsweise geringem numerischem Aufwand einhergeht, ist die (zeitabhängige)
Dichtefunktionaltheorie. Unter Verwendung von reichweiten-separierten Hybridfunk-
tionalen im Rahmen der generalisierten Kohn-Sham Theorie können elektronische
Anregungen in vielen Fällen zuverlässig vorhergesagt werden. Insbesondere wenn
der Parameter zur Reichweitenseparation mittels optimal tuning bestimmt wird,
können diese Funktionale echte Vorhersagekraft entwickeln. Unter Verwendung
dieser Methoden werden im Rahmen dieser Arbeit first-principles Rechnungen zur
Ladungstrennung im Reaktionszentrum von Heliobakterien durchgeführt. Dieses
System hat einzigartige Struktureigenschaften and kann Einsichten in den Evolutions-
prozess der Photosynthese ermöglichen. Es wird erwartet, dass Ladungstrennung
in einem zweistufigem Prozess entlang beider Zweige des Reaktionszentrums statt-
findet. Die in dieser Arbeit erzielten Ergebnisse legen nahe, dass im ersten Schritt
der Ladungstrennung das Elektron auf dem dritten Kofaktor und das Loch auf
dem zweiten Kofaktor lokalisiert ist. Um die Mechanismen besser zu verstehen,
die zu effizienter Ladungstrennung führen, wird der Einfluss der Proteinumgebung
detailliert untersucht. Darüber hinaus wird der Effekt von Strukturveränderun-
gen mittels besonders genauer und sorgfältig durchgeführter Born-Oppenheimer
Molekulardynamik-Simulationen berücksichtigt. Dies zeigt, dass die relative energeti-
sche Positionierung der elektronischen Anregungen in entscheidender Weise durch
einen ganz bestimmten Strukturmechanismus beeinflusst wird: Die Energien der An-
regungen mit Ladungstransfercharakter werden spezifisch durch die Wechselwirkung
mit einer kleinen Gruppe an geladenen Aminosäuren verändert, was dazu führt, dass
deren Energien im Vergleich zu den hellen Anregungen ohne Ladungstransfercharakter
abgesenkt werden. Diese Ergebnisse können Einsichten auf mikroskopischer Ebene in
den Ursprung der effizienten Ladungstrennung in lichtsammelnden Systemen bieten.

Anspruchsvolle numerische Untersuchungen, wie eben jene, die in dieser Arbeit zum
Reaktionszentrum von Heliobakterien durchgeführt werden, können aufgrund der
sehr verschiedenen Größenskalen und elektronischen Eigenschaften der einzelnen Be-
standteile die Grenzen dessen erreichen, was mit optimal tuning möglich ist. Darum
wird im Rahmen dieser Arbeit der neuartige Ansatz der lokalen Reichweitensepa-
ration in Hybridfunktionalen untersucht. Dabei wird der ursprünglich konstante
Parameter zur Reichweitenseparation durch ein Dichtefunktional ersetzt. Mit dem
Konzept der Kopplungskonstantenintegration kann dies auch formal motiviert werden.
Bei der Konstruktion von Hybridfunktionalen mit lokaler Reichweitenseparation
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Zusammenfassung

können exakte Randbedingungen wie die Grenzfälle homogener und langsam verän-
derlicher Dichte, das korrekte Skalierungsverhalten im Hochdichtegrenzfall sowie die
Freiheit von Einelektronen-Selbstwechselwirkungsfehlern wertvolle Anhaltspunkte
bieten. Im ersten Schritt wird die Beschreibung von elektronischen Bindungseigen-
schaften untersucht. Dies zeigt, dass mit einer transparenten Funktionalform sehr
genaue Ergebnisse für Bindungsenergien und Reaktionsbarrieren erreicht werden
können. Die erreichte Genauigkeit ist vergleichbar mit der von Dichtefunktionalen,
die auf zahlreichen empirischen Parametern beruhen. Darüber hinaus wird ein Ob-
servablendilemma, das sich darauf bezieht, dass Hybridfunktionale typischerweise
entweder eine gute Beschreibung von Bindungsenergien oder physikalisch interpretier-
baren Eigenwerten erreichen, im Kontext der Hybridfunktionale mit lokaler Reich-
weitenseparation diskutiert. Dabei wird insbesondere die Kombination von lokaler
Reichweitenseparation mit lokalen Hybridfunktionalen untersucht. Schlussendlich
und als besonders zentrales Ergebnis dieser Arbeit wird ein neues Hybridfunktional
mit lokaler Reichweitenseparation für spektroskopische Anwendungen konstruiert.
Dieses Funktional erfüllt wichtige exakte Randbedingungen und stellt eine gute
Näherung an das abschnittsweise lineare Verhalten der Energie als Funktion der frak-
tionellen Teilchenzahl dar. Die erzielten Ergebnisse belegen, dass die Eigenwerte des
Funktionals physikalisch interpretierbar sind und dass das neuentwickelte Funktional
die fundamental gap in der generalisierten Kohn-Sham Theorie für eine große Zahl an
Systemen, darunter organische Halbleiter mit einer besonders herausfordernden elek-
tronischen Struktur, mit hoher Genauigkeit vorhersagen kann. Diese Ergebnisse sind
insbesondere auch im Hinblick auf zukünftige Untersuchungen von lichtsammelnden
Systemen vielversprechend.
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Overview of publications

This cumulative dissertation is based on Publications [B1], [B2], [B3], [B4], and
[B5], which are listed below in chronological order. Reprints are provided in the
second part of this work from Page 119 onward. An overview of the results of each
publication is given in the first part of this work in the sections specified below.
In the following, we point out how the publications are related. All publications
address the question of how the electronic properties of molecular systems – especially
spectroscopy-related properties such as excitation energies – can be described by
(time-dependent) density functional theory ((TD)DFT) using hybrid functionals with
global or local range separation. Our work includes both methodological developments
and application-oriented aspects of this question.
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1] M. Brütting, J. M. Foerster, and S. Kümmel

Investigating primary charge separation in the reaction center of
Heliobacterium modesticaldum
J. Phys. Chem. B 125, 3468 (2021)

→ Overview of results: Section 4.3.1
→ Reprint: Page 119

Pu
bl

ic
at

io
n

[B
2] M. Brütting, H. Bahmann, and S. Kümmel

Hybrid functionals with local range separation: Accurate atomization
energies and reaction barrier heights
J. Chem. Phys. 156, 104109 (2022)

→ Overview of results: Section 5.5.1
→ Reprint: Page 145

Pu
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[B
3] M. Brütting, J. M. Foerster, and S. Kümmel

Understanding primary charge separation in the heliobacterial reaction
center
J. Phys. Chem. Lett. 14, 3092 (2023)

→ Overview of results: Section 4.3.2
→ Reprint: Page 171
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[B
4] M. Brütting, H. Bahmann, and S. Kümmel

Predicting fundamental gaps accurately from density functional theory
with non-empirical local range separation
J. Chem. Phys. 160, 181101 (2024) Rapid Communication

→ Overview of results: Section 5.5.3
→ Reprint: Page 211
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[B
5] M. Brütting, H. Bahmann, and S. Kümmel

Combining local range separation and local hybrids: A step in the quest
for obtaining good energies and eigenvalues from one functional
J. Phys. Chem. A 128, 5212 (2024)

→ Overview of results: Section 5.5.2
→ Reprint: Page 229

Pubs. [B1] and [B3] contain our findings on the charge-separation process in the
reaction center of heliobacteria. Using TDDFT calculations with an optimally tuned
range-separated hybrid (RSH) functional and ab initio Born-Oppenheimer molecular
dynamics simulations, we reveal the first charge-separation step and unravel distinct
structural features that facilitate efficient charge separation. Pubs. [B2], [B4], and
[B5] comprise the developments on hybrid functionals with local range separation.
In Pub. [B2], we show that a transparent functional form can lead to an accurate
description of electronic binding properties. Furthermore, we explore how well both
electronic binding and properties related to spectroscopy can be described within a
fixed functional form [B5]. Finally, based on these experiences, we construct a new
hybrid functional with local range separation that leads to an accurate description
of electronic excitations [B4].

Several important aspects connect both parts of this work: Some well-known failures of
conventional RSH functionals with optimal tuning begin to appear in our calculations
on the heliobacterial reaction center [B3]. In that respect, the progress made on local
range separation is promising. Our newly developed spectroscopic functional [B4] may
serve as a remedy in such applications, as it does not suffer from the shortcomings of
optimal tuning. In particular, the calculations performed so far indicate that the
level of accuracy achieved by our functional is comparable to (or even better than)
optimal tuning and that our functional can cope with scenarios that are outside
where optimal tuning is usually applied. Thereby, the increase in computational cost
is expected to be moderate in the final, fully optimized implementation. However,
due to limitations of the implementation at its current stage, it is beyond the scope
of the present work to apply the new spectroscopic functional to systems with a size
comparable to light-harvesting systems. Apart from that, the need for a functional
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that is able to describe both electronic binding and spectroscopic properties at the
same level of accuracy – an issue that we take up in our work on local range separation
– manifests itself in the context of light harvesting when the coupling of nuclear and
electronic dynamics is relevant. Overall, taking advantage of the potential of local
range separation in applications on light-harvesting systems appears as a promising
perspective of future work, and the present work constitutes an important step into
this direction.
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1 Introduction

The importance of photosynthesis for life on earth can hardly be overestimated [1, 2].
It is the sole source of energy for most living organisms and – either directly or
indirectly – provides most of the energy consumed by modern societies [3]. The
formation of molecular dioxygen as a side product of oxygenic photosynthesis has
led to the aerobic atmosphere we are living in today and allows for the aerobic
respiration of heterotrophic organisms. Natural light harvesting is initiated by the
absorption of incident solar radiation and the formation of an excited state [4]. Then,
as one key step in the light-harvesting process, a charge-separated state is formed
in the reaction center [5–8], leading to the electron and hole being localized on
opposite sides of the photosynthetic membrane. These processes are accomplished
by the fine-tuned interplay of one or several pigment-protein complexes integrated
into the photosynthetic membrane. The efficiency with which light-harvesting
complexes convert light into a charge-separated state even under adverse conditions
is impressive [9]. Another striking feature of this process is that nature achieves this
using an arrangement of identical or very similar chromophores. On the other hand,
human-made devices for charge separation rely on donor and acceptor compartments
with distinct electronic properties [10]. Thus, understanding the functional principles
of natural light harvesting is a fascinating and worthwhile intellectual challenge,
which can provide inspiration for the construction of human-made supramolecular
structures for energy conversion [6, 11–14].
In principle, theoretical methods provide the tools to examine the underlying energy-
and charge-transfer processes, and this can lead to valuable complementary insights
due to (full) access to the nuclear and electronic dynamics. However, computational
investigations can be a complicated task in practice. Typically, the relevant physical
processes extend over an appreciable number of chromophores. These chromophores
are integrated into a large protein complex, which itself is embedded into a membrane
and surrounded by a solvent. Further effects, e. g., due to temperature, can influence
the physics of the chromophores as well. These elements contribute to a different
degree but, in principle, all of them need to be taken into consideration when building
theoretical models [15–17]. Even if we neglect all the surroundings and just focus
on the chromophores only, describing the electronic properties can be challenging
due to the intricate nature of the excitations involved, e. g., when charge-transfer
processes are relevant [18–20]. Therefore, practical calculations with true predictive
power demand for a method that combines high accuracy with numerical efficiency.
A method for the description of electronic structure and dynamics that comes at
moderate computational effort [21] is density functional theory (DFT) [22, 23] and
its time-dependent variant (TDDFT) [24]. While this approach holds the promise of
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1 Introduction

being formally exact in principle, practical calculations require an approximation for
the exchange-correlation energy. Thereby, the correct description of spectroscopically
relevant features can be particularly challenging because several of the notorious
failures of DFT have to be addressed to reach this goal [25]. This is to a certain
extent a consequence of a fundamental aspect of DFT: In its (original) Kohn-
Sham (KS) formulation, the many-electron problem is mapped onto a system of
non-interacting particles that is inappropriate to mimic the many-body nature of
electronic excitations [26]. These shortcomings can be alleviated by range-separated
hybrid (RSH) functionals within the generalized KS formalism. The concept of
non-empirical optimal tuning [27], which is specifically designed for spectroscopic
purposes, equips these functionals with predictive power and often leads to reliable
results for electronic excitations. In Chaps. 2 and 3 we introduce the central concepts
of DFT, outline the challenges associated with the description of electronic excitations,
and discuss how RSH functionals address these challenges.
Based on these methods, we examine the charge-transfer process in the reaction
center of heliobacteria [28–31]. This system has unique structural properties and
may provide insights into the evolution of photosynthesis [32–34]. Until recently,
structural information has not been available and only little was known on the
detailed mechanism of charge separation in this organism [35–37]. Using TDDFT
calculations with an optimally tuned RSH functional and ab initio Born-Oppenheimer
molecular dynamics [38, 39] simulations, we reveal the first charge-separation step.
Importantly, we identify distinct structural features that are decisive for the energetic
positioning of the charge-transfer excitations. The background and main results of
our work on the heliobacterial reaction center are summarized in Chap. 4 and have
been published in Pubs. [B1, B3].
Despite their achievements, common RSH functionals are far from being a panacea.
Challenging computational studies, such as ours on the heliobacterial reaction center,
can reach the limits of optimal tuning due to the very different length scales and
electronic properties of the constituents involved [40, 41]. One way to overcome
the limitations of optimal tuning is by going from global to local range separation,
where the constant range-separation parameter is turned into an explicit functional
of the density [42–45]. Formally, this can be motivated by the concept of coupling-
constant integration that is central in understanding the physical motivation of
hybrid functionals, which mix exact and semi-local exchange [46–49]. In particular,
if the amount of exact exchange is no longer determined by a constant parameter
but by a density functional, this changes qualitatively how the coupling-constant
dependence is modelled. This might be a way to tackle a longstanding dilemma for
hybrid functionals: Usually observables related to electronic binding, on the one
hand, and electronic excitations, on the other hand, cannot be described at the same
level of accuracy within a fixed functional form [41, 50–53]. This can be a serious
limitation in practical calculations.
We pursue the novel concept of local range separation [45, 54–56] as part of this work.
We show that local range separation can be a promising approach for the description
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of electronic binding or spectroscopic properties, and we explore how well both types
of properties can be described within a fixed functional form. In our approach, we are
guided by a few, relevant constraints that we incorporate into transparent functional
constructions. As a central result, we construct a new functional for spectroscopic
purposes that yields very promising results for excitation gaps of a broad range of
systems. Our work on local range separation is presented in Chap. 5 and has been
published in Pubs. [B2, B4, B5]. Future computational studies of light-harvesting
systems and other technologically relevant materials like organic semiconductors for
efficient solar energy conversion [10], may benefit from advanced hybrid functional
constructions with a flexible admixture of exact exchange as achieved via local range
separation.
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2 Fundamentals of density functional theory

Density functional theory (DFT) is a well-established framework to describe quantum-
mechanical many-electron systems, and has become the workhorse of quantum
chemistry and material science [22, 23, 57–61]. It is a reformulation of wavefunction
quantum mechanics and builds upon the electron density instead of the wavefunction
as the central variable. One major strength of DFT is that this reformulation is
in principle exact. Second, it significantly reduces the computational cost, since it
overcomes the infamous “exponential wall” that one is faced with when trying to
solve the Schrödinger equation directly [21]. Third, its central object – the electron
density – is a descriptive and intelligible variable with a clear physical interpretation.
In the following, we summarize the most salient aspects of DFT.
The central pillar of DFT is the seminal work by Hohenberg and Kohn [62]. In
one line, this theorem guarantees that the many-electron wavefunction Ψ(r1, . . . , rN )
of an N -electron system (and, hence, any observable that can be calculated from it)
is a unique functional of the ground-state electron density n(r). Relevant within this
work are systems that are specified by a Hamiltonian of the form,1

Ĥ = −1
2

N∑

i=1
∇2

i

︸ ︷︷ ︸
= T̂

+ 1
2

N∑

i,j=1
i ̸=j

1
|ri − rj |

︸ ︷︷ ︸
= V̂ee

+
N∑

i=1
vext(ri)

︸ ︷︷ ︸
= V̂ext

, (2.1)

where T̂ corresponds to the kinetic energy, V̂ee to the Coulomb interaction between
the electrons, and V̂ext to the external potential, e. g., due to the interaction of the
electrons with the nuclei. Following the constrained search approach by Levy [63]
the ground-state energy can be expressed as a two-step minimization procedure,

E = min
ñ

(
min

Ψ̃ → ñ
⟨Ψ̃|T̂ + V̂ee|Ψ̃⟩

︸ ︷︷ ︸
= F [ñ]

+
∫

dr vext(r) ñ(r)
)

, (2.2)

where in the first step the minimization is performed in the space of those trial
wavefunctions Ψ̃ that yield a prescribed trial density ñ.2 In the second step, the

1All equations in this work are given in Hartree atomic units (i. e., the reduced Planck constant ℏ,
the elementary charge e, the electron rest mass me, and the permittivity 4πϵ0 are set to unity) if
not specified otherwise.

2Here we denote the trial densities and wavefunctions by ñ and Ψ̃ to indicate the difference to the
respective ground-state quantities, n and Ψ. In the following, we omit this distinction to simplify
the notation when the meaning becomes clear from the context.
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2 Fundamentals of density functional theory

ground-state energy is determined by minimization in the space of trial densities.
The corresponding density is the ground-state density n. Note that the space of
trial densities is restricted to those densities that integrate to the given electron
number N .

Most commonly, DFT is expressed in the Kohn-Sham (KS) formalism [64], where the
real interacting system is mapped to a fictitious non-interacting KS system whose
external potential vs(r) is chosen such that both the interacting and non-interacting
systems have the same density n(r). Since the KS system is non-interacting, its
wavefunction is a single Slater determinant Φ(r1, . . . , rN ) that is composed of N
single-particle orbitals ϕi(r). This is an important conceptual advantage since it
allows obtaining the ground-state energy and density viably. The density is expressed
straightforwardly in terms of the single-particle orbitals as

n(r) =
N∑

i=1
|ϕi(r)|2. (2.3)

The KS system can be described by a non-interacting Schrödinger equation,
(

−1
2∇2 + vs([n], r)

)
ϕi(r) = εiϕi(r), (2.4)

where the KS potential vs([n], r) is itself a functional of the density. In terms of the
exchange-correlation (xc) energy Exc[n] (to be defined below) it can be expressed as

vs([n], r) = vext(r) +
∫

dr′ n(r′)
|r − r′| + δExc[n]

δn(r) (2.5)

where the functional derivative of the xc energy, the xc potential vxc([n], r), is
evaluated at the ground-state density. In summary, Eqs. (2.3) to (2.5) constitute a
closed set of equations that can be solved self-consistently to determine the ground-
state wavefunction of the KS system and the ground-state density,3 provided that an
explicit expression for Exc[n] is given.

Before we further dwell on the xc energy, we make some brief comments on how the
electron spin is taken into account. All relations above can be generalized to their
spin-polarized form [65, 66]. For later reference, we quote some important results.
The density is split into two contributions from different spin channels, n = n↑ + n↓,

nσ(r) =
Nσ∑

i=1
|ϕiσ(r)|2. (2.6)

3For clarity we point out that the KS Slater determinant and the ground-state density are composed
of the N single-particle orbitals with the lowest eigenvalues. Throughout this work, see, e. g.,
Eqs. (2.3) and (2.9), we assume that the orbitals are numbered such that ε1 ≤ ε2 ≤ . . . εN ≤ . . . ,
i. e., i = N corresponds to the highest occupied molecular orbital (HOMO) and i = N + 1 to the
lowest unoccupied molecular orbital (LUMO).
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The total electron number is N = N↑ + N↓. The KS equation reads
(

−1
2∇2 + vext(r) +

∫
dr′ n(r′)

|r − r′| + δExc[n↑, n↓]
δnσ(r)

)
ϕiσ(r) = εiσϕiσ(r). (2.7)

Closed-shell systems, where each orbital is occupied twice, can be described using the
spin-unpolarized form of the equations, cf. Eqs. (2.3) to (2.5); for open-shell systems
the spin-polarized form is used.

The xc energy is implicitly defined by a splitting of the functional F [n], cf. Eq. (2.2),
into three distinct parts,

F [n] = Ts[n] + EH[n] + Exc[n]. (2.8)

Ts[n] is the non-interacting kinetic energy and an explicit expression in terms of the
KS single-particle orbitals is available,

Ts[{ϕi[n]}] =
N∑

i=1

〈
ϕi

∣∣∣∣−
1
2∇2

∣∣∣∣ϕi

〉
. (2.9)

EH[n] is the Hartree energy that represents the classical Coulomb interaction of the
electron distribution n(r) and is given by

EH[n] = 1
2

∫
dr

∫
dr′ n(r) 1

|r − r′| n(r′). (2.10)

The xc energy can be split into exchange and correlation, Exc = Ex + Ec. The
exchange energy is defined as

Ex[n, {ϕi[n]}] = ⟨Φ|V̂ee|Φ⟩ − EH[n] (2.11)

and, thus, the correlation energy follows as

Ec[{ϕi[n]}, Ψ[n]] = ⟨Ψ|T̂ + V̂ee|Ψ⟩ − ⟨Φ|T̂ + V̂ee|Φ⟩. (2.12)

The density dependence in Eq. (2.12) is an implicit one, via the generally unknown
many-electron wavefunction Ψ[n].

Practical applications of DFT crucially rely on useful approximations to the xc energy.
Finding such approximations is a long-standing task and, despite many successful
developments in the recent decades, a matter of ongoing efforts [67–76]. Typical
approximations to the xc energy consist of one approximation for the exchange part
and another (compatible) approximation for the correlation part. Very often, these
are defined in terms of the respective energy densities,

exc([n↑, n↓], r) =
∑

σ=↑,↓
ex([nσ], r) + ec([n↑, n↓], r), (2.13)
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2 Fundamentals of density functional theory

which integrate to the xc energy as

Exc[n↑, n↓] =
∫

dr exc([n↑, n↓], r). (2.14)

Thereby, the exchange energy density ex([nσ], r) is given in its spin-polarized form.
The relation between the spin-unpolarized and spin-polarized forms of the exchange
energy is explained in Sec. 5.2.2 below. One of the simplest xc approximations
is the local density approximation (LDA). It is based on the model system of the
homogeneous electron gas where an analytical and explicitly density-dependent
expression for the exchange energy can be derived from first-order perturbation
theory [22]. For the correlation energy no exact analytical expression is known but
reliable parametrizations [77–79] based on accurate quantum Monte Carlo data [80]
have been devised. In LDA, these expressions for homogeneous densities are used
to approximate the exchange and correlation energy of systems with (in general)
inhomogeneous densities. For example, the approximation to the exchange energy
density is

eLDA
x [nσ] = −3

2

( 3
4π

)1/3
n4/3

σ (r). (2.15)

The LDA functional has certain desirable features [23, 81, 82] but further improve-
ments are usually required. As a step forward, further semi-local ingredients [23]
such as the density gradient |∇nσ(r)| or the kinetic energy density

τσ(r) = 1
2

Nσ∑

i=1
|∇ϕiσ(r)|2, (2.16)

can be used, giving rise to functionals that are referred to as generalized gradient
approximations (GGAs) [83–87] or meta-GGAs [88–92], respectively. Among popular
functionals are the GGA PBE [71] and the meta-GGA SCAN [72]. However, as
we show in Chap. 3, many semi-local functionals still suffer from non-negligible
shortcomings which can have serious consequences especially in the context of
theoretical spectroscopy.4

One additional ingredient to model the xc energy that can help to overcome these
limitations is the exact exchange energy Eex

x ,5

Eex
x [n↑, n↓] = −1

2
∑

σ=↑,↓

Nσ∑

i,j=1

∫
dr
∫

dr′ ϕ∗
iσ(r)ϕ∗

jσ(r′) 1
|r − r′|ϕiσ(r′)ϕjσ(r). (2.17)

4Recently developed meta-GGAs that follow certain construction principles show promising progress
for some of these issues [93–96].

5Eex
x has the same mathematical form as the Fock exchange term in the well-known Hartree-Fock
method [97, 98]. However, the (KS) orbitals entering Eq. (2.17) are not the same as the Hartree-
Fock orbitals. We mention in passing that Hartree-Fock is intrinsically an approximate method,
while DFT is formally exact.
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This exact and explicit expression for the exchange energy follows from evaluating
the expectation value in Eq. (2.11). However, using Eex

x as a part of Exc in Eq. (2.7)
immediately raises several questions: First, it is unclear how the functional derivative
with respect to the spin-density of Eex

x [n↑, n↓] can be evaluated based on Eq. (2.17)
where only the single-particle orbitals appear. One answer to this question is the
optimized effective potential method [49]. Another answer is given in Sec. 3.2 below.
Second, since Eex

x provides the exact value of the exchange energy by definition, one
may ask why approximations for the exchange energy such as those in LDA, GGAs,
or meta-GGAs are required at all. The answer to this question is too complicated
to fit into a single line and needs to be postponed to Sec. 5.2. In fact, it emerges
as a powerful strategy to mix both exact and semi-local exchange. This gives rise
to a class of xc approximations referred to as “hybrid functionals” [46] which play
a central role in this work. Their theoretical footing and practical usefulness are
elaborated in the following chapters.
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3 Electronic excitations in density functional theory

One of the central tasks in theoretical spectroscopy is the computation of electronic
excitations. A typical example are optical excitations, i. e., light is absorbed by a
molecule and, in response, the state of the molecule changes, which is represented
by a change in the time-dependent many-electron wavefunction Ψ(r1, . . . , rN , t) in
standard quantum mechanics. This basic thought already alludes to the many-electron
character of electronic excitations. Incorporating this decisive feature meaningfully
into a theory such as density functional theory (DFT) that does not offer access to
the full many-electron wavefunction can lead to serious challenges [26, 27]. The same
is true for the description of dynamical processes within time-dependent density
functional theory (TDDFT), see Sec. 3.4 below. To understand these challenges,
it is instructive to consider one of the most basic (non-dynamical) spectroscopic
observables – the fundamental gap. It is defined as the difference between the first
ionization potential IP, the energy required to remove an electron from a system
with N0 electrons, and the first electron affinity EA, the energy gain upon insertion
of an electron,

∆g = IP(N0) − EA(N0). (3.1)
The definition of ∆g is visualized in Fig. 3.1. The physical processes underneath
the fundamental gap reveal important characteristics of the many-electron nature of
electronic excitations: As an electron is inserted into a system, all other electrons in
the system respond to the presence of that extra electron. Similarly, if an electron is
removed from a system, i. e., a “hole” is created, the remaining electrons respond
to that hole. An intuitive way to describe these processes is via the concept of
quasi-particles. Thereby, a quasi-electron or -hole contains the response effects of the
correlated many-electron system to the presence of an extra electron or hole. Thus,
this leads to an effective single-particle description where the ionization potential
and electron affinity correspond to the lowest quasi-particle excitation energies. This
concept can be formalized by many-body perturbation theory and, therein, the GW
approach [26, 99] provides a way to calculate these excitation energies. However, this
usually comes at the price of significantly increased computational cost.
Therefore, in this chapter, we discuss whether electronic excitations can be described
at more moderate numerical effort using DFT. Thereby, our focus is on finite-sized
molecular systems (in vacuum). First, in Sec. 3.1 we show why it is challenging
to obtain correct excitation energies within Kohn-Sham (KS) DFT. Subsequently,
in Secs. 3.2 and 3.3 we present an alternative approach based on the concept of
hybrid functionals that can often describe electronic excitations reliably. Finally, we
cover TDDFT and optical excitations in Sec. 3.4. Some of the central aspects of this
chapter are summarized in Fig. 3.1 and will be explained in detail in the following.
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3 Electronic excitations in density functional theory
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Fig. 3.1: Left: Schematic visualization of the fundamental gap ∆g = IP − EA and the
energetic positions of the HOMO and LUMO eigenvalues from an exact KS calculation,
cf. Sec. 3.1.1, a KS calculation with a typical semi-local functional, and a calculation within a
judiciously constructed generalized KS scheme, cf. Sec. 3.2. For the exact KS calculation, the
derivative discontinuity ∆xc is indicated. Right: Schematic visualization of the corresponding
optical gap ∆opt, cf. Sec. 3.4. The optical gap is drawn such that its relation to the size of
∆g and the various HOMO–LUMO gaps is indicated.

3.1 Electronic excitations within the Kohn-Sham formalism

An object in the KS formalism that is similar to the quasi-particle excitation en-
ergies in many-body perturbation theory are the energy eigenvalues in the KS
equation Eq. (2.4). However, this equation is a single-particle equation where the
many-electron effects are incorporated only via the multiplicative KS potential,
i. e., its mathematical structure is different to the form of the equations of motion
in many-body perturbation theory [22, 99, 100]. Furthermore, the KS orbitals are
introduced just as auxiliary quantities to obtain the ground-state density. Therefore,
it is completely unclear a priori whether true physical meaning can be assigned to
the KS orbitals and energies. In particular, it remains to be explored whether the
frontier eigenvalue difference (for an N0-electron system)

∆ε = εLUMO(N0) − εHOMO(N0) (3.2)

can be identified with the fundamental gap ∆g. We point out that KS DFT is an
exact theory by virtue of the Hohenberg-Kohn theorem. This guarantees that the
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3.1 Electronic excitations within the Kohn-Sham formalism

exact result for the fundamental gap can be obtained in principle. For finite-sized
molecular systems, ionization potential and electron affinity can be defined as

IP(N0) = E(N0 − 1) − E(N0) (3.3)

and

EA(N0) = E(N0) − E(N0 + 1). (3.4)

Thus, the fundamental gap can be calculated in a straightforward way from ground-
state energy differences of the neutral N0-electron system and its associated cation
and anion. Nevertheless, equality of ∆g and ∆ε is desirable. First, Eqs. (3.3)
and (3.4) have the practical disadvantage that computation of the cation and anion
is required, which can be numerically challenging. Calculating the gap (3.2) is less
demanding. Second, for periodic systems such as semiconductors, ionization potential
and electron affinity cannot be calculated via Eqs. (3.3) and (3.4). Third, meaningful
(KS) eigenvalues are usually required for a reliable outcome from TDDFT calculations.
The eigenvalues from a preceding DFT calculation enter the linear-response TDDFT
equations, cf. Sec. 3.4 and, thus, the quality of the eigenvalues influences the accuracy
of the results from TDDFT. Fourth and finally, it is also desirable from a fundamental
point of view to restore the quasi-particle picture of electronic excitations in DFT.
This can lead to (frontier) eigenvalues with an intuitive physical meaning.

3.1.1 Piecewise linearity and derivative discontinuity

We now explore whether the (frontier) KS eigenvalues have true physical meaning.
For this purpose, we generalize DFT to fractional electron numbers N = N0 + ν with
an integer N0 and 0 ≤ ν ≤ 1. Following the seminal work by Perdew et al. [101], a
fractional number of electrons can be viewed as the time average of the number of
electrons in a zero-temperature open system that is coupled to an electron bath.1
The state of the open system with N0 + ν electrons can be described as an ensemble
state Γ, i. e., a statistical mixture of the integer-electron states containing N0 and
N0 + 1 electrons.2 The expectation value of an operator Ô then follows as

⟨Ô⟩Γ = (1 − ν) ⟨ΨN0 |Ô|ΨN0⟩ + ν ⟨ΨN0+1|Ô|ΨN0+1⟩ (3.5)

where the values of the coefficients are such that the expectation value of the particle
number operator, ⟨N̂⟩Γ ≡ N , correctly is N0 + ν. From Eq. (3.5) it follows that
the ground-state energy E(N) as a function of the fractional electron number N is

1Later an alternative interpretation of fractional electron numbers was given by Yang et al. [102]
which only involves pure states.

2As detailed in Ref. [101] this follows from applying Levy’s constrained search [63] to statistical
mixtures of pure states that satisfy a certain concavity condition. This condition can be formulated
as 2E(N0) < E(N0 − 1) + E(N0 + 1) which is satisfied in all ordinary electronic systems.
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3 Electronic excitations in density functional theory
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Fig. 3.2: Sketch of the ground-state energy E(N) as a function of the fractional electron
number N . E(N) is a series of linear segments connecting the values at integer electron
numbers. The slope on the left (right) of an integer electron number N0 is equal to the negative
of the respective ionization potential IP(N0) (or electron affinity EA(N0), respectively), as
indicated.

given by a linear combination of the ground-state energies E(N0) and E(N0 + 1) at
neighboring integer electron numbers,

E(N) = (1 − ν) E(N0) + ν E(N0 + 1). (3.6)

This implies that the curve of E(N) is a series of straight-line segments connecting
the values at integer electron numbers. This feature of the ground-state energy is
referred to as piecewise linearity. It is illustrated in Fig. 3.2. As a consequence, the
derivative of E(N) – the chemical potential µ(N) = ∂E/∂N – is constant between
points of integer electron numbers and discontinuously jumps at an integer electron
number N0 from the negative of the respective ionization potential IP(N0) to the
negative of the electron affinity EA(N0),

µ(N) =
{

−IP(N0), for N0 − 1 < N < N0,

−EA(N0), for N0 < N < N0 + 1.
(3.7)

Furthermore, using Janak’s theorem [103] the eigenvalue of the highest occupied
molecular orbital (HOMO) of the KS equation is identical to the chemical poten-
tial [104],

εHOMO(N) = µ(N), (3.8)

since variations of the total electron number translate to changing the occupation
of the HOMO orbital in the KS system. Therefore, the curve of εHOMO(N) is a
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3.1 Electronic excitations within the Kohn-Sham formalism

series of constant segments with steps at integer electron numbers. Real calculations,
where the KS potential is chosen such that it vanishes asymptotically, correspond to
approaching the integer particle number N0 from below. Thus, it follows that the
HOMO eigenvalue of a system with N0 electrons is identical to the negative of its
ionization potential [104–106],

εHOMO(N0) = −IP(N0). (3.9)

This important relation is known as IP theorem. It means that the HOMO eigenvalue
from KS calculations has precisely the same physical meaning as in the quasi-particle
picture invoked above.3

On the other hand, the eigenvalue of the lowest unoccupied molecular orbital (LUMO)
cannot be identified with the negative of the electron affinity. This can be understood
by returning to Eq. (3.7). The size of the discontinuity that µ(N) exhibits at
integer electron numbers is precisely the fundamental gap ∆g [108–110]. It must
arise from discontinuities in the derivative of contributions to the total energy
E[n] = Ts[n] + EH[n] + Exc[n] + Vext[n]. Thereby, the Hartree energy EH[n] and the
term due to the external potential Vext[n] are continuous with respect to the density.
Thus, only the non-interacting kinetic energy and the exchange-correlation (xc)
energy contribute to the discontinuity,

∆g =
(

δTs[n]
δn(r)

∣∣∣∣
N0+η

− δTs[n]
δn(r)

∣∣∣∣
N0−η

)

︸ ︷︷ ︸
= ∆ε

+
(

δExc[n]
δn(r)

∣∣∣∣
N0+η

− δExc[n]
δn(r)

∣∣∣∣
N0−η

)

︸ ︷︷ ︸
= ∆xc

, (3.10)

where η > 0 means an infinitesimal variation of the fractional electron number. The
first term on the right hand side of Eq. (3.10) is precisely the fundamental gap of the
KS system, which is given by the HOMO–LUMO eigenvalue gap (3.2). The second
term is referred to as derivative discontinuity ∆xc and cannot be calculated in a
straightforward way. It corresponds to a discontinuous “jump” that the xc potential
exhibits at integer particle numbers. From Eqs. (3.1), (3.9), and (3.10) it follows that

εLUMO(N0) = −EA(N0) − ∆xc(N0), (3.11)

i. e., the derivative discontinuity separates −εLUMO from the electron affinity. The
relation of the HOMO and LUMO eigenvalues to ionization potential and electron
affinity is visualized in Fig. 3.1. This shows that it is precisely ∆xc that separates
∆ε from ∆g.

These relations have important practical implications: The derivative discontinuity
is usually a sizable and relevant contribution to the fundamental gap such that ∆ε is

3We point out that the other occupied eigenvalues can often be interpreted physically as well.
For example, it has been demonstrated that the occupied KS eigenvalues approximate relaxed
ionization potentials [107]. However, rigorous physical meaning can only be assigned to the
HOMO eigenvalue via Eq. (3.9).
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3 Electronic excitations in density functional theory

a poor approximation to ∆g even in exact KS theory [108–111]. Usual semi-local xc
approximations such as the local density approximation (LDA) or generalized gradient
approximations (GGAs) that depend only on the density and its gradient average
over the derivative discontinuity.4 As a consequence, even their HOMO eigenvalue
is upshifted by ∼ ∆xc/2 with respect to the ionization potential [111, 116, 117].
Thus, the HOMO–LUMO gap is even smaller than that of exact KS theory. This is
depicted schematically in Fig. 3.1. The missing derivative discontinuity of semi-local
functionals manifests in an approximate parabolic behavior of E(N) [118]. Since
Janak’s theorem holds for approximate functionals as well, the corresponding HOMO
eigenvalue varies approximately linearly between integer electron number. The
deviation from piecewise linearity for approximate functionals, which often leads to
a convex E(N) curve, is also referred to as “many-electron self-interaction error” or
“delocalization error” [119–125]. This term alludes to the observation that functionals
with a convex E(N) curve tend to overestimate the delocalization of the electrons.
This erroneous behavior bears resemblance to the one-electron self-interaction error
introduced in the following section, but is not equivalent [25, 126].

3.1.2 One-electron self-interaction and asymptotic exchange-correlation
potential

Apart from the piecewise linearity condition, two further exact constraints are
of particular relevance for theoretical spectroscopy; often the three properties are
mentioned together [25]. First, this is the asymptotic behavior of the xc potential [127–
129]. It can be proven rigorously that the xc potential of a finite neutral system
decays asymptotically as [105, 106]

lim
r→∞ vxc(r) = −1

r
, (3.12)

with r = |r|. The whole KS potential exhibits the same asymptotic behavior.
Intuitively, this can be understood as follows: In the asymptotic region far away
from the nuclei, a single orbital – the highest occupied one – dominates. Hence, at
asymptotically large distances r the KS potential, which is the effective external
potential that this orbital “feels”, takes a particularly simple form. It is the sum of
the Coulomb attraction −Q/r by the nuclei of total charge Q which is screened by
the Coulomb repulsion (Q − 1)/r from all other Q − 1 KS “electrons”. Thus, the
KS potential decays as −1/r. The decay of the xc potential is the same since the
Hartree potential exactly cancels the external potential which contains the Coulomb
attraction by the nuclei.
Typical semi-local functionals such as LDA or GGAs fail to exhibit the correct
asymptotic Coulomb decay of Eq. (3.12). This can be seen easily for the LDA
exchange functional (2.15) whose potential, vLDA

x (r) ∼ n1/3(r), simply follows the
4For completeness we mention that parts of the missing derivative discontinuity of semi-local

functionals can be restored by using alternative forms of ensemble generalization [112–115].
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3.1 Electronic excitations within the Kohn-Sham formalism

exponential decay of the density distribution [130]. Hence, their xc potential is
not binding enough, which can make the description of loosely bound electrons
problematic [131, 132]. For example, this leads to unoccupied eigenvalues of limited
interpretability or anions that are spuriously predicted to be unstable. A functional
which leads to the correct −1/r decay is exact exchange (2.17). This is one motivation
for a certain form of hybrid functionals, on which this work focuses, cf. Sec. 3.3.
Another constraint that is important for theoretical spectroscopy is freedom from one-
electron self-interaction [133, 134]. To understand this constraint, consider Eqs. (2.2)
and (2.8) for a one-electron system. As there is no electron-electron interaction in
one-electron systems, it immediately follows that the total energy is entirely given
by the contributions due to the (non-interacting) kinetic energy and the external
potential. In other words, the Hartree and xc energy contributions to F [n] have to
cancel out. That is, for any one-electron ground-state density n1e(r) we have the
exact condition

EH[n1e] + Exc[n1e, 0] = 0, (3.13)

or, more precisely, it is the exchange energy that must cancel the Hartree energy,

EH[n1e] + Ex[n1e, 0] = 0, (3.14)

since the correlation energy has to vanish in one-electron systems (cf. Eqs. (2.11)
and (2.12)),

Ec[n1e, 0] = 0. (3.15)

These conditions are well-grounded theoretically. However, it is not straightforward
how this formulation can be applied to systems beyond the one-electron case and
how approximate xc functionals can be assessed or constructed to fulfill Eq. (3.13)
for any n1e. Therefore, following the seminal work by Perdew and Zunger [78],
freedom from one-electron self-interaction is typically formulated in a more general
way that goes beyond Eq. (3.13). That is, one demands

EH[|ϕiσ|2] + Exc[|ϕiσ|2, 0] = 0 (3.16)

for all one-spin-orbital densities |ϕiσ(r)|2.5 It can be motivated as follows: If we
express the Hartree energy (2.10) explicitly in terms of spin-orbitals,

EH[n] = 1
2

∫
dr

∫
dr′ ∑

σ,σ′

∑

i,j

|ϕiσ(r)|2 1
|r − r′| |ϕjσ′(r′)|2, (3.17)

it becomes apparent that it contains terms (with i = j and σ = σ′) that involve
the interaction of a spin-orbital with itself. This appears nonphysical and an xc
functional that obeys Eq. (3.16) ensures that this “self-interaction” is canceled on

5Eqs. (3.14) and (3.15) can be generalized to one-spin-orbital densities in an analogous way.
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3 Electronic excitations in density functional theory

a per-orbital basis. However, one should be aware that the generalization from
Eq. (3.13) to (3.16) is by no means straightforward. In particular, it involves the
identification of KS orbital densities with electrons, which is outside the usual KS
framework, and raises further questions which are discussed, e. g., in Ref. [135].

Semi-local functionals typically exhibit significant one-electron self-interaction errors.
These errors have been associated with, e. g., an erroneous description of energy
eigenvalues [78, 136]. There are two common ways to correct for one-electron self-
interaction errors. First, the Perdew-Zunger self-interaction correction [78] subtracts
the self-interaction error of Eq. (3.16) on a per-orbital basis from the approximate
xc functional Eap

xc of interest,

EPZ-SIC
xc [n↑, n↓] = Eap

xc [n↑, n↓] −
∑

σ=↑,↓

Nσ∑

i=1

(
EH[|ϕiσ|2] + Eap

xc [|ϕiσ|2, 0]
)

. (3.18)

However, this method is not invariant under unitary transformations of the orbitals
which requires special care, see, e. g., Refs. [134, 135] and references therein. Second,
one can use exact exchange. The exact exchange expression (2.17) cancels the self-
interaction contained in the Hartree energy (3.17) on a per-orbital basis and, thus,
fulfills both Eqs. (3.14) and (3.16). We further elaborate on how this can be exploited
in actual functional constructions in Sec. 5.2.6 below.

3.2 Generalized Kohn-Sham framework

The KS formalism has several limitations. First, one has to calculate the functional
derivative δExc[n]/δn(r), i. e., with respect to the density, to obtain the xc potential.
This can be non-trivial for functionals such as exact exchange, for which an explicit
expression is known only in terms of the single-particle orbitals [49]. Moreover, the
mapping of the many-electron problem onto a system of non-interacting particles,
which the KS formalism provides, appears inherently inappropriate to mimic the
many-electron nature of electronic excitations (cf. Sec. 3.1.1). Thus, the applicability
of the KS framework to theoretical spectroscopy is intrinsically limited. In this
section we show how a generalization of KS can alleviate these issues. Thereby, one
desirable feature of the KS construction is that the real system is mapped onto an
auxiliary system that can be represented by a single Slater determinant. This ensures
that tractable single-particle equations are obtained [137]. The crucial difference
to standard KS is that the particles of the generalized auxiliary system that we
introduce below may be (partially) interacting. By that, the resulting single-particle
orbitals and energies can incorporate xc effects to some extent, and this may result
in a better representation of the interacting nature of the true many-electron system.

These thoughts motivate the generalized KS framework by Seidl et al. [137]. In
their seminal work, they present the rigorous theoretical foundations of the approach.
In this work, we limit ourselves to pointing at some relevant aspects. As in KS, the
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3.2 Generalized Kohn-Sham framework

mapping from the real to the auxiliary generalized KS system is achieved by a suitable
external potential vS(r) that acts in the auxiliary system and that is constructed
such that both the real system and the generalized KS system have the same density
n(r). At the heart of generalized KS is the energy functional S[{ϕi}] that depends
on the set of single-particle orbitals {ϕi} generating the Slater determinant Φ of
the generalized KS system. Thereby, the form of S[{ϕi}] can be chosen provided
that certain constraints, especially invariance under unitary transformations of the
orbitals, are obeyed. The generalized KS single-particle equation is

(
ÔS [{ϕj}] + vS([n], r)

)
ϕi(r) = εiϕi(r). (3.19)

Thereby, the operator ÔS [{ϕi}] is nonlocal in general. Its form depends on the choice
of S[{ϕi}] and is invariant with respect to unitary transformations of the orbitals as
well. The local multiplicative potential vS([n], r) is a functional of the density and
given by

vS([n], r) = vext(r) + δRS [n]
δn(r) . (3.20)

Therein, RS [n] is the remainder functional which emerges from splitting the functional
F [n] in Eq. (2.2) as

F [n] = F S [n] + RS [n], (3.21)

where the functional F S [n] arises from minimizing S in the space of those trial
unitary orbitals {ϕ̃i} which yield the prescribed density n(r),

F S [n] = min
{ϕ̃i}→n

S[{ϕ̃i}]. (3.22)

RS [n] is an explicit density functional whose form depends upon the functional
S[{ϕi}] as well. Therefore, once a specific form of S[{ϕi}] is chosen, Eqs. (3.19)
and (3.20) together with the relation (2.3) between the single-particle orbitals and
the density form a closed set of equations that can be solved self-consistently to
determine the ground-state density, just as in standard KS theory. A conceptual
difference is that there are infinitely many choices of S[{ϕi}] and, thus, different
generalized KS schemes. As in the KS approach, practical calculations require to
approximate the functional RS [n]. However, the advantage of generalized KS is
that a suitable choice of S[{ϕi}] can lead to a functional RS [n] that is easier to
approximate than the xc functional of KS.
To elucidate the meaning of the generalized KS framework, it is instructive to look
at a concrete choice of S[{ϕi}]. An important and widely used choice is

Shyb[{ϕi}] = ⟨Φ|T̂ + aV̂ee|Φ⟩ = Ts[{ϕi}] + a EH[{ϕi}] + a Eex
x [{ϕi}] (3.23)

with a constant parameter 0 ≤ a ≤ 1. Therein, the form of S[{ϕi}] and, accordingly,
also F S [n] can be related to the non-interacting kinetic energy (2.9), the Hartree
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3 Electronic excitations in density functional theory

energy (2.10), and the exact exchange energy (2.17) familiar from KS theory.6
Importantly, the limiting value a = 0 in Eq. (3.23) leads back to conventional KS,
which is thus incorporated in generalized KS as a special case [137]. The other
limit a = 1 is called Hartree-Fock-Kohn-Sham scheme. If the correlation energy is
neglected, it becomes identical to the well-known Hartree-Fock method. The general
case is commonly referred to as (global) “hybrid functional” [138].7 Thereby, the
remainder functional is typically approximated as

RS,hyb[n] = (1 − a) EH[n] + (1 − a) Esl
x [n] + Esl

c [n], (3.24)

where some approximate semi-local functionals – Esl
x [n] and Esl

c [n] – for exchange
and correlation from KS theory are taken. Although the xc energy is defined as
an object of KS theory [138], hybrid functionals are typically viewed as a density
functional approximation to the xc energy that augments semi-local functionals for
exchange and correlation with some fraction of exact exchange,

Ehyb
xc [n] = a Eex

x [{ϕi[n]}] + (1 − a) Esl
x [n] + Esl

c [n]. (3.25)

As an example, the PBE0 functional [139, 140] uses the exchange and correlation
functionals of PBE and a = 0.25. This fraction of exact exchange admixture can
be motivated by formal considerations [141]. Most of the other common hybrid
functionals have a form that is more complicated than the one-parameter form (3.25)
and rely on parameters that are determined empirically by fitting to reference
data [49, 69, 73, 142]. A popular representative is the B3LYP functional [143].
The single-particle equation of hybrid functionals,
(

−1
2∇2 + vext(r) +

∫
dr′ n(r′)

|r − r′| + (1 − a) vsl
x (r) + vsl

c (r)
)

ϕi(r)

+ a v̂ex
x (r) ϕi(r) = εi ϕi(r),

(3.26)

contains the non-local exact exchange operator,

v̂ex
x (r) ϕi(r) = −

N∑

j=1

∫
dr′ ϕ∗

j (r′) 1
|r − r′|ϕj(r)ϕi(r′). (3.27)

Hence, its mathematical structure is qualitatively different to that of the KS equation.
This has important implications for the resulting energy eigenvalues and electronic
excitations. Seidl et al. [137] argue on the basis of Hartree-Fock-Kohn-Sham that
the frontier eigenvalue gap in generalized KS, ∆GKS

ε , already contains a fraction
of the exchange derivative discontinuity in KS, ∆x. Thus, ∆GKS

ε is increased with
6At this point we emphasize that KS and generalized KS are formally different and relations

between the two frameworks should be made with care. In particular, the generalized KS orbitals
entering Eq. (3.23) differ from the KS orbitals [49].

7Originally, hybrid functionals have been introduced by Becke [46] based on coupling-constant
integration. We present this approach in Sec. 5.1 below.
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3.3 Range-separated hybrid functionals

respect to the KS gap ∆KS
ε . Generalizing these considerations to hybrid functionals

with only a fraction a of exact exchange leads to the approximate relation

∆GKS
ε ≈ ∆KS

ε + a ∆x. (3.28)

Thus, the frontier eigenvalue gap can come closer to the fundamental gap ∆g.
Furthermore, the identity of ionization potential and −εHOMO is also valid for hybrid
functionals in generalized KS. Therefore, −εLUMO can come close to the electron
affinity. At this point, we stress that typical hybrid functionals do not achieve
this goal. While their HOMO–LUMO gap is indeed increased compared to LDA
or GGAs, it is still much smaller than the fundamental gap. In particular, this is
because they contain a fraction of exact exchange of a ∼ 0.25 which is well-suited for
thermochemistry but too small to reduce the derivative discontinuity of the remainder
RS,hyb[n] effectively. This alludes to a parameter dilemma, which is further discussed
in Chap. 5.
Nevertheless, the simple considerations for the case of hybrid functionals leading to
Eq. (3.28) illustrate transparently the more general observation that a generalized
KS scheme can be constructed judiciously such that the derivative discontinuity of
the remainder becomes small, and the frontier eigenvalues are endowed with true
physical meaning [27]. This is illustrated in Fig. 3.1. It can be achieved in practice by
introducing a more sophisticated hybrid scheme, as we show in the following section.
Overall, the generalized KS approach appears physically sound, since the non-local
character that the single-particle equation (3.19) can have (cf. Eq. (3.26)) seems to
be more appropriate to mimic the quasi-particle nature of electronic excitations.

3.3 Range-separated hybrid functionals

A class of hybrid functionals that is particularly successful for spectroscopic purposes
are range-separated hybrids (RSHs) [144, 145]. The basic idea is to split the electron-
electron interaction into a long-range and a short-range part. In the past, different
forms of this splitting have been proposed [42, 43, 146–150]. Relevant within this
work is the form8

1
|r − r′| = erf (ω|r − r′|)

|r − r′|︸ ︷︷ ︸
long range

+ 1 − erf (ω|r − r′|)
|r − r′|︸ ︷︷ ︸

short range

(3.29)

which contains a single range-separation parameter ω. Further complexity can be
added by generalizing the splitting of the Coulomb interaction which leads to more
parameters [152–154]. A popular example of this approach is the CAM-B3LYP
functional [149]. In solid-state calculations, typically, the short-range part of the

8Using the error function in Eq. (3.29) is advantageous for reasons of computational performance
in quantum chemistry programs that use Gaussian basis sets since it allows for an analytical
evaluation of certain integrals involving exact exchange [98, 151].
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3 Electronic excitations in density functional theory

interaction is modeled by exact exchange with the HSE functional being a prominent
example of this type [155–157]. On the other hand, as we show, RSH functionals
where the long-range part of the Coulomb interaction is described by exact exchange
(sometimes referred to as “long-range correction”) are well-suited for spectroscopic
applications in finite (molecular) systems. This is the form of hybrid functionals we
focus on in this work.
Formally, RSH functionals can be regarded as a realization of the generalized KS
framework. Their long-range corrected form can be obtained by the choice [137, 158]

SRSH[{ϕi}] = ⟨Φ|T̂ + V̂ lr
ee |Φ⟩ = Ts[{ϕi}] + Elr

H[{ϕi}] + Elr,ex
x [{ϕi}], (3.30)

for the constituting energy functional of generalized KS. Therein, V̂ lr
ee is the long-range

Coulomb operator,

V̂ lr
ee = 1

2

N∑

i,j=1
i ̸=j

erf (ω|ri − rj |)
|ri − rj | . (3.31)

Correspondingly, Elr,ex
x [{ϕi}] is the long-range part of the exact exchange energy,

Elr,ex
x [{ϕi}] = −1

2
∑

σ=↑,↓

Nσ∑

i,j=1

∫
dr
∫

dr′ ϕ∗
iσ(r)ϕ∗

jσ(r′)erf (ω|r − r′|)
|r − r′| ϕiσ(r′)ϕjσ(r),

(3.32)

and Elr
H[{ϕi}] the long-range part of the Hartree energy defined in analogy to

Eq. (3.32). The remainder functional RS[n] is typically approximated as

RS,RSH[n] = Esr
H [n] + Esr,sl

x [n] + Esl
c [n]. (3.33)

Thereby, Esr,sl
x [n] is a semi-local approximation for the short-range part of the

exchange energy, see Refs. [145, 147, 148, 155–157, 159–162] for various examples
and Sec. 5.4 for further explanation, and Esl

c [n] a (usual) semi-local correlation
functional. RSH functionals of the form of Eqs. (3.30) and (3.33) are typically viewed
as approximating the xc energy as

Exc[n] = Elr,ex
x [{ϕi[n]}] + Esr,sl

x [n] + Esl
c [n]. (3.34)

This way of mixing exact and semi-local exchange is well suited to capture the
interplay of long- and short-range interactions and appears well motivated by the
physics of electron-electron interaction: wavefunction-based approaches can describe
the long-range part of the interaction efficiently while they struggle to correctly
account for the cusp that the wavefunction exhibits for vanishing interelectronic
distances due to the singularity of the Coulomb interaction [144]. On the other
hand, at short range the compatibility of semi-local exchange and correlation is
maintained and semi-local xc functionals are known to be most accurate for the
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3.3 Range-separated hybrid functionals

short-range part of the interaction [82]. Finally, using exact exchange at long range
has specific advantages for describing electronic excitations: It ensures that the
correct asymptotic form of the xc potential is obtained and eliminates the long-range
part of the one-electron self-interaction error, cf. Sec. 3.1.2.
The value of the range-separation parameter influences the behavior of RSH func-
tionals decisively. Empirically determined parameter values, i. e., by optimization
with respect to reference test sets, have led to some widely and successfully used
functionals [73, 142, 149, 153]. However, empirical fitting strategies can have draw-
backs [163–166]. In particular, in the case of RSH functionals one may question
whether such a fixed range-separation parameter can be appropriate for diverse
systems and different electronic properties [42, 44, 50]. This is one motivation for a
different and very successful approach to determine a value for ω: The optimal-tuning
procedure [27, 44, 167]. This is a non-empirical strategy to adjust the value of ω in a
system-specific fashion, which is designed with spectroscopic applications in mind.
It is inspired by one of the central insights explained in Sec. 3.1.1: A reliable and
robust prediction of excitation gaps requires the HOMO and LUMO eigenvalues to
resemble ionization potential and electron affinity. This can be achieved by enforcing
the IP theorem,

−εω
HOMO(N0) != Eω

0 (N0 − 1) − Eω
0 (N0), (3.35)

where the ionization potential is calculated as a ground-state energy difference. An
analogous relation for the LUMO eigenvalue is not available. But this issue can be
circumvented by using the IP theorem (3.35) for the corresponding anion with N0 + 1
electrons as an additional constraint,

−εω
HOMO(N0 + 1) != Eω

0 (N0) − Eω
0 (N0 + 1). (3.36)

Therein, the right hand side is the same as the electron affinity of the neutral N0
electron system. Eqs. (3.35) and (3.36) can be combined in a cost function. A
common choice is [168]

J2(ω) = (εω
HOMO(N0) + Eω

0 (N0 − 1) − Eω
0 (N0))2

+ (εω
HOMO(N0 + 1) + Eω

0 (N0) − Eω
0 (N0 + 1))2 .

(3.37)

In the optimal-tuning procedure that particular value of ω is taken that minimizes
J2(ω). The calculations done in this work involving optimally tuned RSH functionals
are based upon this tuning strategy, if not stated otherwise. RSHs that have been
applied within the optimal tuning strategy in past work include the BNL [44, 169]
and ωPBE [159] functionals. Practical experience suggests that ωPBE may be more
robust under certain circumstances, see, e. g., Ref. [41], and is therefore taken for the
calculations done in this work.
There is ample numerical evidence that RSH fundamentals with optimal tuning are
a powerful tool for the prediction of excitation gaps, see, e. g., Ref. [27] for a review.
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3 Electronic excitations in density functional theory

Importantly, it has been demonstrated repeatedly, e. g., in Refs. [170–172], that
the optimal tuning approach leads to frontier eigenvalues that describe ionization
potentials, electron affinities, and fundamental gaps very accurately. These studies
also reveal that the optimal value for ω varies significantly among different systems.
This has been investigated thoroughly for conjugated molecules of different lengths,
where ω is found to exhibit clear trends depending on conjugation length [40]. These
results underline that employing a fixed value for ω, independent of the systems under
study, appears inappropriate, which again highlights the need for a system-specific
treatment as achieved via optimal tuning. Finally, it has been demonstrated that
optimally tuned RSH functionals do not only endow the frontier eigenvalues with
true physical meaning but also approximate the piecewise-linear behavior of the total
energy as a function of fractional electron number well [118]. All of these results
show that optimal tuning is a physically sound strategy to obtain spectroscopic
observables.
In Fig. 3.3, we show the fundamental gap of tetraphenylporphyrin. This example
illustrates typical trends of the HOMO–LUMO gaps calculated with different density
functional approximations [27, 170]. We compare these numbers with experimental
results for ionization potential, electron affinity, and the fundamental gap as well as
results from many-body perturbation theory using GW-BSE [26]. First, for PBE, as
typical for GGAs, the HOMO and LUMO eigenvalues are a very poor approximation
to ionization potential and electron affinity, yielding a gap that underestimates the
fundamental gap by more than a factor of 2. These numbers are somewhat improved
by the global hybrid B3LYP. However, the gap is still underestimated significantly.
This discrepancy has been attributed to the fact that not enough of the derivative
discontinuity has been incorporated into the non-local potential on the one hand,
and one-electron self-interaction errors and an incorrect asymptotic potential on the
other hand [27]. All of these shortcomings are mostly eliminated by the optimally
tuned BNL functional. In that case, both the frontier eigenvalues and their gap
nicely agree with the GW-BSE and the experimental results. This demonstrates
once more that RSH functionals with optimal tuning can alleviate the limitations of
simpler semi-local and global hybrid functionals for theoretical spectroscopy.

3.4 Time-dependent density functional theory

So far in this chapter, we have limited ourselves to ground-state DFT. However, in
practical calculations, one is often interested in optical excitations that result from
the response of the quantum system of interest to incident light. Such dynamic
processes are beyond ground-state DFT but require an extension of the theoretical
framework to the time domain, which is provided by TDDFT [24, 173, 174]. This is
the subject of this section. The term TDDFT summarizes different approaches that
comprise a variety of conceptual and computational aspects, see, e. g., Ref. [24] for a
review. In the following, we focus on those aspects that are most relevant within the
scope of this work.
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PBE

−4.76

−2.94

1.82 2.05

B3LYP

−5.25

−2.50

2.75 2.16

OT-BNL

−6.26

−1.44

4.82 2.09

GW-BSE

−6.20

−1.49

4.71 1.88

Exp.

−6.42

−1.69

4.73 2.06

Fundamental gap ∆g/ε
and optical gap ∆opt

εHOMO

εLUMO

∆g/ε ∆opt

Fig. 3.3: Frontier eigenvalues εHOMO and εLUMO, their gap ∆ε, and the optical gap ∆opt,
cf. Sec. 3.4, computed with different density functionals (PBE, B3LYP, and OT-BNL) for a
single tetraphenylporphyrin molecule [170]. For comparison, experimental results (Exp.) for
ionization potential, electron affinity, and the fundamental gap ∆g as well as results from
many-body perturbation theory using GW-BSE are shown. Figure adapted from Ref. [27],
see also references therein for the origin of the data.

3.4.1 Theoretical framework

The formal foundation of TDDFT is the theorem by Runge and Gross [175] which
can be considered – despite conceptual differences, see, e. g., Ref. [24] – as the
analogue of the Hohenberg-Kohn theorem for the time-dependent case. As in the
ground-state case, there is also a time-dependent KS equation,

(
−1

2∇2 + vs(r, t)
)

ϕi(r, t) = i∂ϕi(r, t)
∂t

, (3.38)

where

vs(r, t) = vext(r, t) +
∫

dr′ n(r′, t)
|r − r′| + vxc(r, t) (3.39)

is the time-dependent KS potential. This equation defines the time-dependent xc
potential vxc(r, t). It is a functional of the full time evolution of the density n(r, t)
and the initial state. Many practical implementations of TDDFT, including the one
used in this work, rely on linear-response TDDFT in the frequency domain [176, 177].
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3 Electronic excitations in density functional theory

Following Ref. [24], this addresses essentially the following physical process: Assume
the system of interest is initially, at t = 0, in its ground-state. Then, a weak
perturbation δvext(r, t) of the external potential is switched on (δvext(r, t) = 0, for
t ≤ 0),

vext(r, t) = v
(0)
ext(r) + δvext(r, t). (3.40)

Here and in the following the superscript (0) indicates the respective time-indepen-
dent, ground-state properties. The perturbation can be thought of as being due to
an external laser field, and it is “weak” in comparison to the interactions within the
system. Since it is weak, only the first-order term δn(r, t) of the density response is
relevant,

n(r, t) = n(0)(r) + δn(r, t). (3.41)

The response function χ(r, t, r′, t′) connects δn and δvext,

δn(r, t) =
∫

dt′
∫

dr′ χ(r, t, r′, t′) δvext(r′, t′), (3.42)

and is formally given by the functional derivative

χ(r, t, r′, t′) = δn(r, t)
δvext(r′, t′)

∣∣∣∣
v

(0)
ext

. (3.43)

The strength of TDDFT is that it offers for a computationally feasible way to
obtain this response function via the noninteracting KS system, as explained in the
following [24]. First, the relation (3.42) between the external perturbation and the
density response can also be expressed within the KS system, as

δn(r, t) =
∫

dt′
∫

dr′ χs(r, t, r′, t′) δvs(r′, t′). (3.44)

Thereby, the response function of the KS system can be calculated directly from the
orbitals and eigenvalues of the ground-state KS equation (see, e. g., Eq. (4.55) in
Ref. [24]). Importantly, δvs(r, t) depends again on the density response due to the
self-consistent nature of Eqs. (3.38) and (3.39),

δvs(r, t) = δvext(r, t) +
∫

dt′
∫

dr′ fHxc(r, t, r′, t′) δn(r′, t′) (3.45)

where we have introduced the Hartree-xc kernel,

fHxc(r, t, r′, t′) = δ(t − t′)
|r − r′| + δvxc(r, t)

δn(r′, t′)

∣∣∣∣
n(0)

. (3.46)

Connecting Eqs. (3.42), (3.44), and (3.45) and taking the Fourier transform from
the time to the frequency domain yields an exact equation for the response func-
tion [24, 178],

χ(r, r′, ω) = χs(r, r′, ω) +
∫

dr1

∫
dr2 χs(r, r1, ω)fHxc(r1, r2, ω)χ(r2, r′, ω), (3.47)
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from which the excitation energies and oscillator strengths of optical transitions can
be obtained [179].
Under certain constraints, this problem can be formulated as an eigenvalue equation
that can be written in a transparent way as a matrix equation. In this work, we are
interested in closed-shell singlet systems and spin-singlet excitations. Like virtually
all practical realizations of TDDFT we employ the adiabatic approximation for the
semi-local components of the xc energy, i. e., the dependence of the Hartree-xc kernel
on the time evolution of the density is neglected. Then, the kernel simplifies to

fad
Hxc(r, r′) = 1

|r − r′| + δ2Exc[n]
δn(r)δn(r′)

∣∣∣∣∣
n(0)

. (3.48)

Following Ref. [173], under these constraints the matrix formulation of linear-response
TDDFT can be expressed as

(
A B

−B∗ −A∗

)(
X
Y

)
= ω

(
X
Y

)
. (3.49)

Therein, the elements of the matrix,

Aia,jb = δijδab(εa − εi) + MHxc
ia,jb, (3.50)

Bia,jb = MHxc
ia,bj , (3.51)

with

MHxc
ia,jb =

∫
dr
∫

dr′ ϕ∗
i (r)ϕa(r)fad

Hxc(r, r′)ϕ∗
b(r′)ϕj(r′), (3.52)

are calculated from the occupied (indices i, j) and unoccupied (a, b) eigenvalues and
orbitals of the underlying ground-state KS equation. In Eq. (3.49), the eigenvalues ω
correspond to the excitation energies. The related eigenvector components indicate
the contributions of occupied–unoccupied (elements Xia) and unoccupied–occupied
(Yai) KS orbital pairs to the respective excitation. The quality of the xc density
functional approximation employed in the underlying KS calculation influences the
outcome of a subsequent linear-response TDDFT calculation in two ways: First,
the KS orbitals and eigenvalues enter the matrices A and B. Second, the adiabatic
Hartree-xc kernel is related to the xc energy. The formulation of linear-response
TDDFT given so far, i. e., Eqs. (3.48) to (3.52), applies only to functionals within time-
dependent KS. To handle global hybrid or RSH functionals within time-dependent
generalized KS [168, 180] an additional term is required to account for the non-local
part of the xc functional [173],

Mu
ia,jb = −

∫
dr
∫

dr′ ϕ∗
i (r)ϕj(r)u(|r − r′|)ϕ∗

b(r′)ϕa(r′). (3.53)

It is added to the matrices A and B,

Aia,jb = δijδab(εa − εi) + MHxc
ia,jb + Mu

ia,jb, (3.54)
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Bia,jb = MHxc
ia,bj + Mu

ia,bj , (3.55)

which then enter Eq. (3.49) instead of Eqs. (3.50) and (3.51). As before, the local
part of the xc functional enters via MHxc, cf. Eq. (3.52). In Eq. (3.53), the interaction
u(|r − r′|) can either be a fraction of the full Coulomb interaction,

u(|r − r′|) = a

|r − r′| , (3.56)

in the case of global hybrids or the long-range part of the Coulomb interaction,

u(|r − r′|) = erf (ω|r − r′|)
|r − r′| , (3.57)

in the case of RSH functionals.

3.4.2 Prediction of optical excitations

In the following, we discuss how well optical excitations are predicted by TDDFT
calculations. To keep the description transparent, we focus on the optical gap ∆opt
first [27]. It can be defined as the energy gap between the first excited state and the
ground state. Experimentally, it corresponds to the onset of the absorption spectrum.
Conceptually, it can be related to the fundamental gap by invoking the picture of
quasi-particles again, cf. Sec. 3.1. As explained above, the response effects of the
correlated many-electron system upon inserting (or removing) an electron into (or
from) the system are accounted for by a quasi-electron (or quasi-hole, respectively).
The fundamental gap is the difference between the lowest quasi-hole and quasi-
electron energies. On the other hand, optical excitations, where the electrons respond
to the absorption of light by the formation of an excited state, can be considered as
the simultaneous formation of a quasi-electron and a quasi-hole. Unlike in the case
of the fundamental gap, the interaction between the quasi-electron and quasi-hole
needs to be taken into account. Therefore, the optical gap is reduced compared to
the fundamental gap by the attractive interaction within this quasi-particle pair –
also known as exciton binding energy [27]. This reduction of the gap is illustrated in
Fig. 3.1.
At this point, we recall that TDDFT, in either its KS or generalized KS form, is
an exact theory. Consequently, accurate optical excitations can be obtained from
KS TDDFT in principle.9 Indeed, the form of the linear-response equations of
TDDFT (3.49) may appear suitable to account for the many-electron nature of
optical excitations: Without the matrices M the excitation energies were just given
by the KS eigenvalue differences εa − εi between the respective unoccupied and

9This is a conceptual difference to ground-state DFT: There, the orbitals and eigenvalues are
introduced just as auxiliary objects. Therefore, there is no guarantee that the eigenvalue
differences are physically interpretable and, indeed, this is not the case of the KS HOMO–LUMO
gap, cf. Sec. 3.1.1.
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occupied orbitals, i. e., were described as a single-particle excitation from orbital
i to a. On the other hand, the matrices M interlink different pairs of occupied
and unoccupied orbitals, (i, a) and (j, b). Hence, this can introduce many-electron
effects that lead to reasonable optical gaps. This is illustrated by returning to the
example of tetraphenylporphyrin, see Fig. 3.3. For the semi-local functional PBE,
the global hybrid B3LYP, and the optimally tuned BNL functional the optical gap
computed from linear-response TDDFT is very similar and agrees rather well with
the reference data. However, PBE and B3LYP obtain a correctly predicted optical
gap by the many-electron effects acting in an unphysical way. For PBE, the poor
quality of the KS eigenvalues leads to a HOMO–LUMO eigenvalue gap that is smaller
than even the optical gap. Consequently, the many-body interactions introduced via
linear-response TDDFT actually increase the gap, which is contrary to the physical
picture of gap reduction by electron-hole attraction. Thus, PBE predicts the exciton
binding energy with a wrong, negative sign. The results from B3LYP are somewhat
better, but the binding energy is still too small. Only BNL is able to provide the
correct picture of gap reduction and an exciton binding energy that agrees with the
GW-BSE calculation and the experimental value. In other words, only the optimally
tuned RSH functional describes both fundamental and optical gap consistent with
the quasi-particle nature of electronic excitations.

The unsatisfactory description of energy eigenvalues by semi-local and global hybrid
functionals can have even more severe consequences for optical excitations with
charge-transfer character [18, 19, 181–185]. To see this, it is instructive to focus on a
special case known as Mulliken limit [27] – a donor-acceptor complex in the limit
of large separation between donor and acceptor where the lowest optical excitation
corresponds to a charge-transfer excitation from donor to acceptor. In this case, the
optical gap is given by10

∆opt = IP − EA − 1
R

= ∆g − 1
R

, (3.58)

where R is the donor-acceptor distance. If we assume that the excitation is dominated
by a transition from the HOMO orbital, located on the donor, to the LUMO orbital,
located on the acceptor, the linear-response equations simplify considerably and
can be analyzed analytically. First, in the case of exact KS TDDFT the (exact)
optical gap emerges as the eigenvalue difference ∆ε = εLUMO − εHOMO modified
by contributions from an overlap integral similar to Eq. (3.52) but with the exact
Hartree-xc kernel. This overlap integral must account for both the exciton binding
energy and the derivative discontinuity that separates ∆ε from ∆g. Since the overlap
of the occupied and unoccupied orbitals involved in the excitation almost vanishes,
the xc kernel must be divergent to obtain the correct optical gap [184, 186]. Indeed, it
has been demonstrated numerically that the exact xc kernel can exhibit pronounced
spatial and temporal non-localities [187]. However, if we turn to approximate KS
10In Hartree atomic units, the term −1/R corresponds to the Coulomb interaction (energy) of the

electron and hole located on acceptor and donor, respectively, at distance R.
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TDDFT, cf. Eqs. (3.48) to (3.52), and use a semi-local xc functional, the xc kernel,
which is now limited to the adiabatic approximation, lacks such non-localities. This
can be seen easily for the LDA exchange functional where the corresponding exchange
kernel, fad,LDA

x (r, r′) ∼ n−2/3(r)δ(r − r′), is purely local. Hence, the optical gap
is just given by the eigenvalue gap ∆ε. However, developing xc kernels that go
beyond the adiabatic approximation is highly non-trivial and such kernels are not
common in actual calculations [24, 188, 189]. As a practical remedy, one can opt for
time-dependent generalized KS with orbital-dependent exact exchange and, thus,
incorporate non-locality in this way. In this case, the optical gap emerges from
Eqs. (3.49), (3.54), and (3.55) as [27]

∆u
opt = εLUMO − εHOMO −

∫
dr
∫

dr′ |ϕHOMO(r)|2u(|r − r′|)|ϕLUMO(r′)|2. (3.59)

Thereby, the overlap integral yields a/R for a global hybrid, and 1/R in the case of
RSH functionals, cf. Eqs. (3.56) and (3.57), respectively. Thus, RSH functionals can
provide the correct 1/R exciton binding energy and the optimal-tuning procedure
ensures that the HOMO–LUMO gap correctly yields the fundamental gap.
The trends demonstrated for the two examples above are confirmed by numerous
computational studies, see, e. g., Refs. [25, 27] for reviews. Very often, valence
excitations, where the involved orbitals extend over similar regions of space, are
reasonably well described by semi-local functionals [190]. However, this agreement
does not conform with the physical quasi-particle interpretation of optical excitations,
as explained above, and, indeed, the agreement has been attributed to cancellation
of self-interaction errors [18]. RSH functionals with optimal tuning retain this
favorable performance for valence excitations and, moreover, can provide a realistic
description of excitations with charge-transfer character, which has been demonstrated
in scenarios of practical relevance [167, 169, 191–193]. Furthermore, optimally tuned
RSH functionals can also cover further challenging excitations without explicit
charge-transfer character [168, 194]. In conclusion, RSH functionals with optimal
tuning emerge as a promising route to obtain optical excitation with (and without)
charge-transfer character reliably from TDDFT.
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Photosynthesis is a biological process by which plants, certain bacteria, and algae
are able to capture solar radiation and convert it to a useful form of chemical
energy [1, 2]. Specialized pigment-protein complexes that have chlorophyll (Chl),
bacteriochlorophyll (BChl), and other pigments integrated into their polypeptide
chains play a vital role for the functioning of photosynthetic organisms. The first
step of photosynthesis is the absorption of incident photons by the light-harvesting
antenna and the subsequent transfer of excitation energy toward the reaction center.
These pigment-protein complexes are integrated into the photosynthetic membrane.
As an example, the well-known and frequently studied purple bacteria [4] have two
main types of light-harvesting antenna: The LH2 complex contains two rings of BChl
molecules with absorption maxima at ∼ 800 nm and ∼ 850 nm, respectively. The
LH1 complex absorbs light around ∼ 875 nm. Antenna systems usually rely on an
energetic funneling mechanism: Pigments at the periphery of the complex absorb
at higher energies than those close to the reaction center. Therefore, the excitation
energy can be transferred “downhill” toward the reaction center. In purple bacteria
this is realized by a transfer cascade through the different rings, beginning at the
800 nm ring and ending at the 875 nm ring, before the excitation energy is finally
transferred to the reaction center.
The reaction center is a further pigment-protein complex that is bound to the
photosynthetic membrane. There, the primary charge-separation steps take place,
which are explained in more detail in Sec. 4.1. Eventually, this leads to an electron-
hole pair where electron and hole are located at different ends of the photosynthetic
membrane. Usually, quite a number of antenna complexes are grouped around a
single reaction center. This increases their effective absorption cross section and
ensures efficient operation even under low-light conditions [9]. The electron-hole pair
generated in the reaction center is being processed in secondary electron-transfer
reactions. Eventually, this leads to the formation of chemical energy, which can
power various cellular processes. In the case of purple bacteria charge separation
in the reaction center leads to the reduction of quinones. These quinones leave the
reaction center and contribute to a cyclic electron pathway which establishes a proton
gradient across the photosynthetic membrane. Subsequently, this electrochemical
gradient can be used to fuel the formation of adenosine triphosphate as an energy
source of the bacterial metabolism.
In this chapter, we first give an overview of the principles of primary charge separation
in photosynthetic reaction centers in Sec. 4.1. Subsequently, in Sec. 4.2, we introduce
the reaction center of heliobacteria and summarize insights on the charge separation
process gained from previous experimental studies. Finally, in Sec. 4.3, we present
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our results on primary charge separation in the heliobacterial reaction center from
first-principles computations. This is a summary of Pubs. [B1, B3].

4.1 Primary charge separation in photosynthetic reaction centers

All photosynthetic reaction centers share common structural features [2, 7]. The
main pigments of the charge-separation process are arranged in a two-branched
structure, where one end of the branches is formed by a pair of closely packed Chl
or BChl chromophores, referred to as special pair (SPP). These are followed by two
further chromophores on each branch (Chl, BChl, or similar molecules), which are
called electron transfer cofactor 2 (EC2) and 3 (EC3) in this work.1 Finally, the
branches end with the terminal electron acceptors. Two different types of terminal
electron acceptors have been found in different reaction centers – quinones and
iron-sulfur clusters. Depending on the type of terminal electron acceptor present,
reaction centers are being classified as type I (with iron-sulfur clusters) or type II
(with quinones). In oxygenic photosynthesis systems, both types of reaction centers –
referred to as photosystem I and II – are combined. In anoxygenic photosynthesis,
only one type is present. As an example, purple bacteria employ a type-II reaction
center, whereas heliobacteria and green sulfur bacteria rely on a type-I reaction
center. An overview of the different types of reaction centers is shown in Fig. 4.1.

Although the types of chromophores incorporated in the two different branches
and their spatial arrangement are rather similar, their function is usually highly
asymmetric and the relevant steps of the charge-separation process take place only
on one of the branches, as indicated in Fig. 4.1. It is well established that the
first major step of charge separation upon excitation of the reaction center – by
direct absorption of sunlight or by excitation energy transfer from the antenna
domain – is the formation of an SPP+EC3− charge-separated state, where the hole
is localized on the SPP and the electron on EC3 [5, 8]. However, the details of
primary charge separation, i. e., the intermediate steps that lead to the formation of
the SPP+EC3− state, turn out to be much more difficult to resolve. This question
has been addressed repeatedly in previous years but continues to be a matter of
ongoing research efforts [6, 198–202]. This literature is far too vast to be covered
comprehensively in this work. Generally speaking, two different mechanisms seem
plausible,2

RC∗ → SPP+EC2− → SPP+EC3−, (CT2)
RC∗ → EC2+EC3− → SPP+EC3−, (CT3)

1Different names are common in the literature for EC2 and EC3, in particular for type-II reaction
centers usually a different nomenclature is used. Within this work we use a consistent notation
for all reaction centers to keep the presentation transparent.

2The charge-transfer (“CT”) mechanisms are numbered according to the initial electron acceptor
(EC2 or EC3).
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Fig. 4.1: Schematic overview of the charge-separation process and the different types of
reaction centers present in photosynthetic organisms. Both type-I and type-II reaction centers
contain SPP, EC2, and EC3 pigments (colored yellow) but differ in the terminal electron
acceptors (quinones and iron-sulfur clusters; colored gray). Charge separation is mainly
initiated by excitation-energy transfer from the antenna (colored blue; sketched at the top).
In heterodimeric reaction centers electron transfer proceeds exclusively or primarily along
one branch (indicated by the cyan arrows), in homodimers both branches contribute equally
(indicated red). For comparison, the structure of the pigments in the type I reaction center
of heliobacteria [35], cf. Fig. 4.3 below, is depicted on the right. The role of quinones in this
reaction center is being debated [29–31, 195–197]; the crystal structure of the heliobacterial
reaction center lacks quinones while they are present in photosystem I [35].

where RC∗ denotes the initial excited state of the reaction center. In other words,
the central question is whether EC2 or EC3 serves as the initial electron acceptor.
Details neglected by this slightly simplified picture include the extension of the
initial excited state RC∗, the degree of delocalization of the electron or hole of the
intermediate charge-transfer state, and the potential formation of an additional
partial charge-transfer state following RC∗.

Purple bacteria employ the mechanism (CT2) in vivo [203–205]; evidence for the
presence of the alternative charge-separation pathway (CT3) has been found, but
only in mutant reaction centers [206–208]. The picture has been less clear in
photosystem II where evidence for both mechanisms has been found [6, 209–211].
However, the more recent studies consistently indicate that variant (CT3) is the
central charge-transfer pathway in photosystem II [212–216], although there might
be a minor, slower pathway as well [217]. The mechanism (CT3) is also present in
photosystem I [218–221]. It is interesting to note that, in contrast to purple bacteria
and photosystem II, both branches contribute to the charge-separation process in
photosystem I, albeit one branch is the dominant one. A remarkable exception to
the rule that charge separation occurs exclusively or primarily along one of the two
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(a) (b)

Fig. 4.2: Overview of the Chl and BChl chromophores in the reaction center of Heliobacterium
modesticaldum [35] (a) with and (b) without the polypeptide chains (colored gray), as viewed
from one side of the photosynthetic membrane. The antenna domain is colored blue, the
reaction center domain yellow. The other pigments, the phythyl tails of Chl and BChl, and
the hydrogen atoms are omitted for clarity. The C2 symmetry axis of the reaction center
complex is perpendicular to the plane of projection. Structural data from the Protein Data
Bank under file ID 5V8K [35].

branches constitute the reaction centers of heliobacteria and green sulfur bacteria [7].
These reaction centers are made up of homodimeric core polypeptides and, thus,
the two cofactor branches are equivalent. The structures of both reaction centers
have been resolved just recently by Gisriel et al. [35] (heliobacteria) and Chen
et al. [222] (green sulfur bacteria) and, hence, their charge-separation process is not
understood to the same extent as in purple bacteria or photosystem I and II. The
heliobacterial reaction center is the main focus of this work and is further described
in the following section.

4.2 Overview of the reaction center of heliobacteria

Heliobacteria are anoxygenic phototrophic bacteria with a homodimeric type-I re-
action center [30, 31, 223]. The structure of Heliobacterium modesticaldum [224]
has been resolved recently by Gisriel et al. [35]. The light-harvesting appara-
tus is relatively simple and consists only of a single pigment-protein complex that
comprises both the antenna domain that is responsible for light absorption and
excitation-energy transfer and the actual reaction center domain where charge sepa-
ration takes place. Often the whole complex is collectively referred to as “reaction
center”. In contrast to, e. g., purple bacteria, no peripheral antenna complexes have
been identified so far [35]. The pigment-protein complex is homodimeric, i. e., it is
composed of two identical copies of the same subunit; each subunit consists of two
polypeptide chains. The chromophores are integrated into the polypeptide chains.
In total, the heliobacterial reaction center binds 54 BChl g, four BChl g’, and two
81-hydroxychlorophyll a (OH-Chl a) pigments as well as two carotenoids and one
[4Fe-4S] cluster [28, 29, 35, 225–228]. Fig. 4.2 shows the structure of the Chl and
BChl chromophores, which are arranged in two distinct groups [35]: The antenna
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SPP
(BChl g’)

EC2
(BChl g)

EC3
(OH-Chl a)

[4Fe–4S]

++

−−

Charge
separation

Fig. 4.3: Arrangement of the charge-separation cofactors in the reaction center of Heliobac-
terium modesticaldum [35], as viewed from within the membrane (i. e., the plane of projection
is perpendicular to that in Fig. 4.2). Displayed along with the cofactors are the coordinating
amino acids and water molecules (as described in the text). The carbon atoms of SPP,
EC2, and EC3 are colored yellow, the carbon atoms of the coordinating amino acids gray.
Otherwise, the atoms are colored according to the atom type (blue: nitrogen; red: oxygen;
green: magnesium; yellow: sulfur; ocher: iron). The phythyl tails of Chl and BChl and
the hydrogen atoms are omitted for clarity. On the right, the two major steps of charge
separation are indicated schematically [227]. Structural data from the Protein Data Bank
under file ID 5V8K [35].

domain, which has a roughly toroidal shape, surrounds the chromophores involved in
the charge-separation process. The antenna domain consists of 52 BChl g and two
BChl g’. The majority of them are more than 14 Å away from the reaction center
domain; only three pigments in each monomer are within 13 Å to the reaction center
domain.

The reaction center domain contains two BChl g, two BChl g’, and two OH-Chl a [35].
Their detailed arrangement is depicted in Fig. 4.3. The BChl g’ pigments form the
SPP with a center-to-center distance of only 5.7 Å. On each branch, it is followed
by a BChl g (EC2) and a OH-Chl a (EC3) before both branches terminate in a
single [4Fe-4S] cluster. The center-to-center distance between one BChl g’ from
the SPP and the neighboring EC2 is 12.1 Å and it is 9.1 Å between EC2 and EC3,
respectively. All chromophores are coordinated by amino acid residues or interstitial

51



4 Reaction center of heliobacteria

water molecules that are linked to neighboring amino acid residues by hydrogen
bonds. Specifically, the SPP is coordinated by His 537; EC2 is coordinated by “a
small molecule approximately the size of water” [35] which we treat as water in
this work and which itself is hydrogen-bonded by Gln 548; EC3 is coordinated by
a water molecule hydrogen-bonded by Ser 545; the [4Fe-4S] cluster is coordinated
by Cys 432 and Cys 441. All of these molecules are less than 3 Å away from the
magnesium atoms in the center of the respective chromophores. Along with these
molecules, which are specified in Ref. [35] as “coordinating molecules”, we include
Phe 399, Phe 450, and Phe 542 in our calculations (cf. Sec. 4.3), due to their positions
close to the chlorin ring of OH-Chl a. The spatial arrangement of these coordinating
amino acid residues and water molecules can be seen in Fig. 4.3.

The absorption spectrum of Chl and BChl has well-known characteristics [4, 229–231].
It exhibits two distinct peaks that are referred to as Qy and Qx transitions and have
characteristic transition dipole moments, which are oriented along approximately
orthogonal directions in the plane of the chlorin ring. In the case of BChl g, the
Qy transition has been measured at ∼ 760 . . . 780 nm and the Qx transition at
∼ 560 . . . 570 nm, respectively, depending on the solvent [226]. The absorption
spectrum of the reaction center of heliobacteria is dominated by a peak around 800 nm
which originates from the Qy excitations of the BChl g and BChl g’ chromophores,
see Refs. [28, 29, 227, 228] for absorption spectra of heliobacterial reaction centers.
Several distinct bands between ∼ 780 . . . 810 nm have been identified, which have
been interpreted as indication of clusters of chromophores with slightly different
excitation energies. The excitations of OH-Chl a are higher in energy than those
of BChl g [225]. Thus, the Qy transitions of the OH-Chl a pigments lead to an
additional, smaller absorption peak around 670 nm in the absorption spectrum of
the reaction center.

The excitation-energy transfer and the charge-separation process in the heliobacterial
reaction center have been the subject of multiple previous experimental studies [232–
239]. In particular, there is well-grounded evidence that the SPP+EC3− charge-
separated state is formed within ∼ 25 ps upon light absorption [227]. However,
despite these research efforts it has remained completely unclear until up to a few
years ago whether primary charge separation proceeds along path (CT2) or (CT3).
More recently, some light has been shed onto this question. Here we especially want
to point at two works. In the study by Song et al. [36], the charge-separation process
has been investigated by multispectral two-dimensional electronic spectroscopy. Orf
and Redding [37] have conducted site-directed mutagenesis experiments to perturb
the vicinity of EC3. Both groups interpret their results as indicating that EC3
serves as the primary electron donor. Apart from that, the electronic dynamics upon
light absorption have also been investigated in several theoretical works based on
model Hamiltonians by Kimura and coworkers [240–242]. Thereby, in particular,
the excitation energy transfer within the Chl and BChl network has been examined.
However, these studies do not provide direct insights into the details of the charge-
separation process. In our work, we take a step forward and investigate the process
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of primary charge separation in the heliobacterial reaction center by first-principles
theoretical methods. Thereby, our focus is twofold: We identify the first intermediate
step in the charge-transfer chain and, moreover, unravel how the structure of the
pigment-protein complex, especially the interaction of the chromophores with the
protein environment, influences the charge-separation process. Our methods and
main results are described in the following section.

4.3 Primary charge separation in the reaction center of heliobacteria

Computational studies on an atomistic level can provide valuable insights into the
photophysical dynamics of light-harvesting systems, since they offer direct access to
the (full) electronic and nuclear dynamics. This can make the interactions between
different chromophores and further parts of the biochemical systems, e. g., the amino
acid residues of the surrounding protein, transparent and shed light on the interplay
of the different constituents. Due to the complexity of the biochemical systems and
their sheer size, computations can be challenging and a variety of different methods
is being used [15–17]. Approaches based on model Hamiltonians [243] and multiscale
techniques that combine quantum mechanical and semiclassical methods [244, 245]
can be an efficient way to cover an appreciable number of chromophores and to mimic
the biochemical environment of light-harvesting pigments. These methods can lead
to valuable insights [212–214, 246–252]. However, one should be aware of that they
are by no means a panacea. Approaches that are based on model assumptions can
only cover those effects that have been considered in the design of the underlying
models. Furthermore, the semiclassical methods need to be appropriate for the
specific electronic properties of light-harvesting systems and special care is required
at the interface between the semiclassical and quantum mechanical regions. Finally,
if model parameters are explicitly fit to resemble experimental results, the insights
gained from this theoretical description are not independent of the corresponding
experiments.

In our work, we choose an approach that avoids relying on empirical input. We
calculate the electronic excitations using linear-response time-dependent density
functional theory (TDDFT). To reduce the computational burden, we analyze the
structure carefully to disclose those chromophores and parts of the environment
that are relevant to capture the characteristics of primary charge separation. The
resulting systems can be included entirely in the TDDFT calculations. In choosing our
TDDFT methods, we are guided by the insights described in Chap. 3. Especially, it is
mandatory to use an approach that can describe charge-transfer states correctly [18–
20, 167, 253]. Therefore, in previous works, range-separated hybrid (RSH) functionals
have been applied successfully to light-harvesting systems [254–258]. In particular, it
has been demonstrated that non-empirical optimal tuning can approach the accuracy
of higher-level methods [259–261]. In our work, we rely on a RSH functional with
optimal tuning.
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The dynamics of the nuclei, e. g., driven by temperature effects, can have a relevant
impact on excitation energy transfer and charge separation [6, 262, 263]. This is an
important piece of physics that needs to be considered in theoretical descriptions.
Apart from that, the strong influence that details in the structure of the nuclei have on
the electronic excitations of light-harvesting systems leads to an important technical
issue. For very reliable quantum-chemical results, the resolution of the experimentally
determined crystal structure is usually not high enough to represent structural
details such as the bond length alternation in conjugated systems with the required
accuracy [17, 264, 265]. This limitation can be addressed by combining quantum-
chemical calculations with ground-state Born-Oppenheimer molecular dynamics (MD)
simulations [16, 17, 266, 267]. Thereby, classical force fields may be problematic, e. g.,
due to the so-called “geometry mismatch problem” [15, 267–270]. Hence, we combine
the TDDFT calculations with ab initio Born-Oppenheimer MD simulations [38, 39] on
the basis of DFT [271–273] to avoid such issues and to take into account temperature
effects.

In our work, we focus on the initial steps of charge separation in the reaction center of
heliobacteria. This means, we are interested in the processes leading to the formation
of the SPP+EC3− charge-separated state upon excitation of the reaction center
domain. Therefore, the SPP, EC2, and EC3 pigments are relevant (cf. Fig. 4.3).
Our study is divided into two parts. The first part corresponds to Pub. [B1] and is
summarized in Sec. 4.3.1. Therein, we focus on SPP and EC2, i. e., we initially omit
EC3.3 This leads to a structure of moderate size where the computational effort
is tractable. Thus, this setup is well-suited to test the numerical methods and to
establish a robust computational protocol. Apart from that, excluding EC3 can be
motivated physically as well. In purple bacteria SPP and EC2 are the pigments that
are relevant for the first charge-separated state and, thus, this setup can be used as
a first step to examine whether a similar charge-transfer mechanism is also present
in heliobacteria.4 In the second part of our study, we rely on these experiences
and include EC3 to cover the full charge-separation chain. This part is published
in Pub. [B3] and summarized in Sec. 4.3.2. It contains our central results on the
heliobacterial reaction center.

4.3.1 Special pair and adjacent cofactors

As a basic input for our calculations we rely on the crystal structure of Heliobacterium
modesticaldum by Gisriel et al. [35] which can be obtained from the Protein Data
Bank under file ID 5V8K. From that, we obtain the structures of the chromophores
and the amino acid residues, whereby we remove the phythyl tails from the BChls

3As a guidance for the reader, we mention that some of the cofactors are abbreviated differently in
Pub. [B1]. In particular, EC2 is labelled “Acc” there.

4We conducted the first part of our study before Refs. [36, 37] provided more detailed experimental
insights into the site of the initial charge-separation event.
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and neglect the polypeptide backbone [B1]. As a first step, we perform linear-
response TDDFT calculations using the crystal structure geometry. This provides
a first impression of the coupling of the chromophores and allows assessing the
impact of the surrounding amino acids. We employ the ωPBE RSH functional with
ω = 0.171 a−1

0 determined from optimal tuning for a single BChl. The calculations
are performed using the quantum chemistry program Q-Chem [274]. Details can
be found in Pub. [B1]; our choice of the range-separation parameter is discussed in
more detail in the Supporting Information of Pubs. [B1, B3]. We analyze the charge-
transfer character of the TDDFT excitations using natural transition orbitals [275]
and difference densities, defined as the difference of the electron densities of the
excited state and the ground state [B1]. These methods allow identifying SPP+EC2−

charge-transfer excitations in the spectrum of the reduced subsystem containing only
the SPP and EC2 pigments [B1]. The lowest SPP+EC2− charge-transfer excitation
is separated by an energy gap of ∼ 0.3 eV from the dominant BChl Qy excitations.
This energy gap is strongly influenced by the amino acids and water molecules that
coordinate the SPP and EC2 chromophores (cf. Fig. 4.3), which are therefore included
in all calculations. Further amino acids within 3 Å to the chromophores lead to a
small overall redshift of ≲ 0.05 eV but hardly affect the relative energetic ordering of
the excitations and, thus, are not considered for further analysis.

As a second step, we perform ab initio Born-Oppenheimer MD simulations at
room temperature. The forces on the nuclei are calculated from ground-state DFT
calculations using the PBE functional with D3 dispersion correction [276, 277]. The
MD simulations are performed using the quantum chemistry program Turbomole [278];
details can be found in Pub. [B1]. We evaluate the MD data by taking equally distant
snapshots of the atomic structure along the trajectories. Then, we calculate the
corresponding TDDFT excitation spectra based on these structures and determine
the charge-transfer excitations by an analysis of the natural transition orbitals. To
make the evaluation of numerous excitation spectra feasible in practice, we developed
an automated computational protocol for these steps [B1]. Since we start our MD
trajectories at the crystal structure geometry, the structure is equilibrated at the
beginning of the trajectories and, hence, we exclude the first part of the trajectories
from further evaluation. The analysis of the MD data confirms the observation
that the SPP+EC2− charge-transfer excitations occur at higher energies than the
dominant BChl Qy excitations; the observed energy gap is even increased to ∼ 0.4 eV.

The observed energy gap between the Qy band and the onset of the charge-transfer
excitations has important implications on the interpretation in view of possible charge-
separation mechanisms in the heliobacterial reaction center. A typical mechanism
for efficient charge separation is the following: Light is absorbed by the dominant Qy

excitations of the antenna BChls and transferred to the reaction center, where a Qy

excited state is formed on the cofactors. Then, a charge-separated state at an energy
lower than that of the BChl Qy band is formed. Our calculations strongly suggest
that coupling to a SPP+EC2− state is not possible in that way. Although alternative
charge-transfer mechanisms that may involve the Qx excitations or relaxation effects
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in the Qy excitation cannot be ruled out completely, the most likely interpretation
of our results is that the charge-separation mechanism (CT2) is not the dominant
one in the heliobacterial reaction center [B1]. In other words, the first intermediate
state of primary charge separation may involve the EC3 cofactor, which has not been
considered so far.

4.3.2 Full cofactor chain

In the second part of our study, we build upon the work described in the previous
section. The basic idea of our computational approach remains unchanged, but
we considerably extend it in several aspects [B3]. First, we enhance our MD ap-
proach: We generate more and longer trajectories to obtain a better sampling of
the space of nuclear configurations, exclude a longer time interval at the beginning
of the trajectories from the evaluation to ensure better equilibrated structures, and
increase the time interval between subsequent snapshots used for evaluation to avoid
correlations between the snapshots. Furthermore, we adapt the way of how the
MD snapshots are evaluated. Overall, these measures increase the reliability of our
findings. Second, we consider the full charge-separation branches of the heliobacterial
reaction center (from SPP to EC3, cf. Fig. 4.3) which is important to reveal the first
intermediate state of primary charge separation. Moreover, we extend our analysis of
the protein environment: We consider the amino acid residues within ∼ 6 to 10 Å of
the chromophores. In the following, we summarize our main results; further details
on the methods can be found in Ref. [B3].
Our first finding is related to the symmetry of the structure. The crystal structure
exhibits perfect C2 symmetry due to the way the X-ray data is obtained. However,
in a realistic setup one would expect small asymmetries between the two charge-
separation branches, which we observe, e. g., in our MD simulations [B1, B3]. The
electronic excitations are very sensitive to this symmetry breaking. Specifically, this
means that the charge-transfer excitations are always localized on one of the two
branches. Therefore, despite the homodimeric nature of the heliobacterial reaction
center, it turns out that one cofactor branch is sufficient in practice to capture the
charge-separation characteristics correctly [B3]. Our minimal model of the reaction
center thus consists of both SPP chromophores (due to the small separation between
them), one EC2, and one EC3 chromophore. Since we know from Pub. [B1] that the
amino acids and water molecules that coordinate the chromophores (cf. Fig. 4.3) have
a relevant influence on the excited states, we include them as well. This minimal
model is termed the tetramer model. Its excitation spectrum is shown in Fig. 4.4.
We find all charge-transfer excitations that we expect – SPP+EC2−, EC2+EC3−,
and SPP+EC3−– albeit at energies above the band of BChl Qy excitations [B3].
Our second and most important finding is related to the (protein) environment of the
cofactors. Apart from the coordinating amino acids and water molecules, we consider
further parts of the environment. Thereby, we find that most of the amino acids
within ∼ 6 Å of the pigments, the phythyl tails of the pigments (which are neglected
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Fig. 4.4: (a) TDDFT excitation spectrum of the tetramer model (SPP, one EC2, and one
EC3; see text) without and with a cluster of surrounding amino acids (named ENV). As
detailed in Pub. [B3], this cluster (named ENVR+ therein) contains, in particular, charged
amino acids. The gray box indicates the band of the brightest BChl Qy excitations. The
circles indicate the lowest charge-transfer excitations of each type (blue: EC2+EC3−; teal:
SPP+EC3−; yellow: SPP+EC2−). In panels (b), (c), and (d) the corresponding difference
densities of the lowest charge-transfer excitations (spectrum: Tetramer & ENV) are shown;
displayed are the isosurfaces with an isovalue of ±0.0002 a−3

0 . Note that the structure is
tilted with respect to Fig. 4.3, i. e., the SPP appears here at the left and EC3 at the right
hand side. Figure adapted from Pub. [B3].

in all calculations shown), and some interstitial water molecules only have very
little influence on the excitation spectrum: These elements shift the charge-transfer
excitations only by less than 0.1 eV [B3]. On the other hand, there are charged
amino acids in the vicinity of the chromophores that can have a very pronounced
effect. In that respect, it is a remarkable structural feature that several charged
amino acids can be found in proximity (∼ 3 to 4 Å distance) to EC3. This can be
seen in detail in Fig. 3 in Pub. [B3]. This cluster of charged amino acids (together
with some uncharged polar and aromatic amino acids) has a very significant impact
on the charge-transfer excitations, which is considerably stronger than all other
components of the environment that we consider [B3]: As shown in Fig. 4.4, the
lowest EC2+EC3− excitation is shifted from 1.75 to 1.13 eV, the lowest SPP+EC3−
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excitation from 2.28 to 1.28 eV, and the lowest SPP+EC2− excitation from 1.96 to
1.67 eV.
The MD analysis confirms our main findings [B3]. Since the energetic position of
the charge-transfer excitations with respect to the band of dominant Qy excitations
changes slightly, most of the SPP+EC3− excitations appear somewhat above the Qy

band. On the other hand, the EC2+EC3− excitations are (mostly) found at energies
below the Qy band. In conclusion, our results consistently suggest that (CT3) is the
most likely charge-separation mechanism, i. e., EC3 is the primary electron acceptor.
Importantly, very specific charged amino acids substantially stabilize the EC2+EC3−

(and SPP+EC3−) excitations. This can enable downhill energy transfer from the
BChl Qy band to an EC2+EC3− state and, thus, may be a key element in establishing
an efficient charge-separation mechanism.
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5 Hybrid functionals with local range separation

Range-separated hybrid (RSH) functionals, introduced in Chap. 3, are one of the most
popular options available to obtain spectroscopic properties from (time-dependent)
density functional theory ((TD)DFT) calculations. In particular, if the range-
separation parameter ω is determined by optimal tuning, these functionals are
equipped with true predictive power. However, despite their achievements, common
RSH functionals are far from being a panacea. We discuss the limitations of optimally
tuned RSH functionals for spectroscopic applications later in this chapter in Sec. 5.4.
At this point, we highlight an issue that is shared by many functionals that combine
exact and semi-local exchange – the “observable dilemma”, see, e. g., Pub. [B5],
Ref. [51], and references therein. It refers to the quite broad observation that
hybrid functionals usually fail to describe both electronic binding, e. g., probed by
atomization energies, and electronic excitations, e. g., probed by fulfillment of the IP
theorem, at the same level of accuracy within a fixed functional form. For global
hybrid functionals such as PBE0 this becomes manifest in a parameter dilemma:
A fraction of exact exchange of about 0.25 leads to atomization energies with high
accuracy whereas much larger values, around 0.75, are required to obtain physically
interpretable eigenvalues. This raises fundamental conceptual questions of how to
properly construct hybrid functionals.

In this chapter, we approach these shortcomings by reconsidering the concept of
hybrid functionals. In Sec. 5.1 we re-introduce the concept of hybrid functionals
via the coupling-constant integration and show how this motivates a more flexible
way of mixing exact and semi-local exchange. Subsequently, in Sec. 5.2 we discuss
several exact constraints that can guide on how this additional freedom can be
utilized in actual functional constructions. One approach based on these insights
are local hybrid functionals, which are introduced in Sec. 5.3. The approach that we
mostly focus on in our work is local range separation. The fundamental concepts of
local range separation are explained in Sec. 5.4. Finally, in Sec. 5.5, we present our
progress made on local range separation; this is a summary of Pubs. [B2, B4, B5].

5.1 From coupling-constant integration to hybrid functionals

Historically, the first hybrid functional has been proposed by Becke [46] before the
generalized Kohn-Sham (KS) framework, cf. Sec. 3.2 above, has been established.
This was motivated by a different theoretical concept – the coupling-constant inte-
gration [23, 131, 279, 280]. It is based on a series of fictitious auxiliary systems where
the electron-electron interaction is scaled by a continuous parameter λ between 0
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5 Hybrid functionals with local range separation

and 1, i. e., their Hamiltonian reads

Ĥλ = T̂ + λ V̂ee + V λ
ext. (5.1)

The ground-state wavefunction of Ĥλ is denoted by Ψλ and determined via a
minimization procedure analogous to the one in Eq. (2.2). The minimization is
performed under the constraint that Ψλ yields the true density n(r), which is achieved
by adjusting the external potential vλ

ext(r) in the auxiliary systems accordingly. The
limiting case λ = 1 corresponds to the true, fully interacting system, and the opposite
limit λ = 0 to the non-interacting KS system. Under the assumption that there
is a smooth, “adiabatic connection” as λ is varied between the interacting and
non-interacting limits, the exchange-correlation (xc) energy can be expressed as

Exc[n] =
∫ 1

0
dλ

(〈
Ψλ
∣∣∣V̂ee

∣∣∣Ψλ
〉

− EH[n]
)

︸ ︷︷ ︸
= Eλ

xc[n]

. (5.2)

The integrand is referred to as the λ-resolved xc energy Eλ
xc[n]. At λ = 0 it is precisely

the exchange energy, which can be represented by the exact exchange expression
Eex

x (2.17) (compare Eq. (5.2) to Eq. (2.11) above and recall that Ψλ=0 ≡ Φ). The
value at λ = 1 is referred to as the “potential contribution” to the xc energy,

Uxc[n] = ⟨Ψλ=1|V̂ee|Ψλ=1⟩ − EH[n], (5.3)

with Ψλ=1 ≡ Ψ. The dependence of Eλ
xc on λ is sketched in Fig. 5.1.

For later reference, we introduce the xc hole nλ
xc(r, r′). As detailed, e. g., in Ref. [23],

Eq. (5.2) can then be reformulated as

Exc[n] = 1
2

∫
dr
∫

dr′ n(r) 1
|r − r′|

∫ 1

0
dλ nλ

xc(r, r′). (5.4)

Hence, the xc energy can be viewed as the Coulomb interaction of the electron density
distribution n(r) with the corresponding xc hole. The xc hole can be split into the
exchange hole nx(r, r′), which is the λ = 0 value of nλ

xc(r, r′), and the λ-dependent
correlation hole nλ

c (r, r′), with nλ
xc(r, r′) = nx(r, r′) + nλ

c (r, r′). Sometimes, the λ-
averaged xc hole nxc(r, r′) =

∫ 1
0 dλ nλ

xc(r, r′) is used. As for the exchange energy, an
explicit expression for the exchange hole can be given in terms of the single-particle
orbitals,

nex
x (r, r′) = − 1

n(r)
∑

σ=↑,↓

Nσ∑

i,j=1
ϕ∗

iσ(r)ϕ∗
jσ(r′)ϕiσ(r′)ϕjσ(r), (5.5)

which is referred to as “exact exchange hole”.
Hybrid functionals are directly connected to the concept of coupling-constant inte-
gration. As first described in Ref. [46] and further explored in Refs. [47, 81, 281–283],
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λ

Eex
x

Uxc

1

λ = 1
True system

λ = 0
KS system

Eλ
xc

Eλ,sl
xc

Eλ,GH
xc

Fig. 5.1: Sketch of the (exact) λ-resolved xc energy Eλ
xc as the coupling-constant parameter λ

is varied from λ = 0 (corresponding to the non-interacting KS system) to λ = 1 (corresponding
to the true, fully interacting system). Indicated are the end-point values Eλ=0

xc = Eex
x and

Eλ=1
xc = Uxc. The size of the area under the curve of Eλ

xc is precisely the value of the xc
energy Exc. Additionally, the λ-resolved xc energy is shown for approximate semi-local and
global hybrid functionals, Eλ,sl

xc and Eλ,GH
xc , respectively. Note that the shape of the curves

of Eλ,sl
xc and Eλ,GH

xc is the same, but differs from the exact curve Eλ
xc. Eλ,GH

xc is upshifted
with respect to Eλ,sl

xc such that the area under the curve of Eλ,GH
xc approximates Exc.

the coupling-constant integral (5.2) can be represented exactly by a weighted sum
of the integrand at the end points of the integration by virtue of the mean value
theorem. This leads to [47]

Exc[n] = a[n] Eex
x [n] + (1 − a[n]) Uxc[n]. (5.6)

The mixing coefficient a[n] is bound between 0 and 1, and is, in general, a functional
of the density. Since a[n] can be related to different pieces of the correlation energy,
the term (1 − a[n]) Uxc[n] in Eq. (5.6) can formally be expressed as (1 − a[n]) Ex[n] +
Ec[n] [47]. The usual global hybrid functionals approximate Ex[n] and Ec[n] in
this expression by semi-local functionals and neglect the density-dependence of a[n],
leading to the xc approximation

EGH
xc = a Eex

x + (1 − a) Esl
x + Esl

c (5.7)

familiar from Sec. 3.2. Scaling the electron-electron interaction in Eq. (5.1) is related
to uniform scaling of the density, defined in Sec. 5.2.4. In particular, this manifests
in the expression [141, 284, 285]

Eλ
xc[n] = d

dλ

(
λ2Exc[n1/λ]

)
(5.8)
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5 Hybrid functionals with local range separation

which connects the λ-resolved xc energy to the full xc energy via density scaling. The
scaled density n1/λ is defined in Eq. (5.17) below. Therefore, the density dependence
of a[n] implicitly contains a λ-dependence and neglecting it, as in global hybrids,
can change considerably how Eλ

xc is modeled. This is visualized in Fig. 5.1: The
λ-dependence of the global hybrid, Eλ,GH

xc , is determined entirely by that of the
semi-local functional, Eλ,sl

xc . The fraction of exact exchange just leads to a global
shift of Eλ,GH

xc with respect to Eλ,sl
xc , where the magnitude of the shift is controlled

by the fraction a of exact exchange. That is, by a suitable value for a, Eλ,GH
xc can be

shifted such that its integral matches the exact xc energy but its λ-dependent shape
cannot be adjusted. By that, global hybrids can lead to a significant improvement
for properties that are computed directly from total energy differences such as
atomization energies.1 On the other hand, the benefit is much smaller for other
observables. These shortcomings of global hybrids have been associated with the
observable dilemma, see Pub. [B5] and references therein.
Baer and coworkers [42, 43] showed that one can obtain an expression similar to
Eq. (5.6) with an approach based on range separation of the Coulomb interaction.
Based on interpolating between the non-interacting (ω = 0) and the fully interacting
(ω → ∞) limits by a descreened interaction erf (ω|r − r′|) /|r − r′| and using a
generalization of the coupling-constant integration [286], this leads to

Exc[n] = ⟨Φ|V̂ lr
ee |Φ⟩ + ⟨Ψ|V̂ sr

ee |Ψ⟩ − EH[n]. (5.9)

Therein, Φ is again the non-interacting and Ψ the fully interacting wavefunction; V̂ lr
ee

is the long-range Coulomb operator, see Eq. (3.31) above, and V̂ sr
ee the complementary

short-range version (erf (·) is replaced by 1 − erf (·)); V̂ lr
ee and V̂ sr

ee both contain the
range-separation parameter ω. Baer and coworkers argue that Eq. (5.9) is exact
for a particular, system-dependent value of ω. In other words, the value of the
range-separation “parameter” is governed by the density distribution of the system
of interest, i. e., it is a density functional ω[n]. Using the xc hole, Eq. (5.9) can be
rewritten as

Exc[n] = 1
2

∫
dr
∫

dr′ n(r) erf (ω[n]|r − r′|)
|r − r′| nex

x (r, r′)

+ 1
2

∫
dr
∫

dr′ n(r) 1 − erf (ω[n]|r − r′|)
|r − r′| nλ=1

xc (r, r′).
(5.10)

The form of this range-separation scheme is different to the one introduced in Sec. 3.3
since it employs the short-range version of the correlation hole at full coupling
strength instead of the usual coupling-constant averaged correlation hole. However,
in this work we stick to the most commonly used form of RSH functionals where the
range separation is only performed in the exchange part and the correlation energy
remains unaffected.

1As an example, the atomization energy AE of a diatomic molecule AB is computed from the
difference between the ground-state energies of the molecule and the separate atoms A and B:
AE = |E(AB) − (E(A) + E(B))|.
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In conclusion, the concept of coupling-constant integration suggests that the mixing
of exact and semi-local exchange in both global hybrid and RSH functionals should
not be determined by a constant parameter, a or ω, but by a density functional, a[n]
or ω[n], respectively. Realizing this density dependence might be a way to tackle
the observable dilemma by changing the shape of Eλ

xc instead of just shifting it. In
particular, these insights have lead [48, 51, 283] to the two concepts of local hybrid
functionals and hybrid functionals with local range separation (also referred to as
locally RSH functionals). For reasons to be explained below, these approaches go
beyond a space-independent parameter, a[n] or ω[n], and build upon local functions
of the density, a([n], r) or ω([n], r), respectively, to control the mixing of exact and
semi-local exchange. Their functional form is explained in detail in Secs. 5.3 and 5.4.

5.2 Construction principles of hybrid exchange-correlation approximations

One reason for the success of semi-local functionals is that they rely on subtle error
cancellation effects between their exchange and correlation contributions [82, 287, 288].
This statement can be elucidated by taking a closer look at the physical meaning
of exchange and correlation. Exchange reflects the Pauli exclusion principle due to
the antisymmetry requirement of the electronic wavefunction. Correlation is a more
intricate interaction effect. Loosely, two types of correlation can be distinguished:
Dynamical and static correlation [49, 289]. Dynamical correlation refers to the
effect that two electrons mutually try to avoid each other, thereby lowering the
repulsion between them. Due to screening effects, this is inherently a short-range
phenomenon. On the other hand, static correlation can be a long-range effect. This
can be understood by returning to the concept of the xc hole. Consider nxc(r, r′)
for a dimeric molecule with the reference point r close to one of the nuclei. Even at
almost infinite distance, the exchange contribution to the hole is delocalized over the
regions of both nuclei. This delocalization needs to be cancelled by a complementary
delocalization of the correlation contribution. Overall, this yields an xc hole that is
properly localized near the reference point. From a wavefunction perspective, this
effect is significant if the many-electron wavefunction is well-represented by a few
nearly degenerate Slater determinants. In practice, it is relevant not only for the
dissociation of molecules but also at equilibrium bond lengths, e. g., in systems with
triple bonds such as N2. In the case of semi-local functionals, both the exchange
and correlation holes are intrinsically localized. While their sum can still provide a
reasonable approximation to the full xc hole, exchange and correlation alone often
do not match their exact counterparts accurately. Instead, it turns out that semi-
local correlation captures dynamical correlation effects, while exchange and static
correlation are buried into semi-local exchange approximations [69, 81, 290, 291].
These insights have important implications for hybrid functionals: If one puts together
full exact exchange and semi-local correlation, the static correlation, an important
piece of the physics underneath the xc energy, is missing. Instead, the mixing of
exact and semi-local exchange models both exchange and static correlation. This can
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5 Hybrid functionals with local range separation

be emphasized by rewriting the xc energy of hybrid functionals in the “correlation
picture”. In the simplest case of global hybrids this reads

EGH
xc = Eex

x︸︷︷︸
“exchange”

+ (1 − a)
(
Esl

x − Eex
x
)

+ Esl
c

︸ ︷︷ ︸
“correlation”

. (5.11)

This underlines that the fraction of exact-exchange admixture enters that part of
the xc energy that is supposed to describe correlation effects. Therefore, when
constructing approximate hybrid functionals, it is a crucial question how to properly
incorporate the delicate balance between exchange and correlation by a suitable
ratio of exact and semi-local exchange [288]. In the construction of semi-local xc
approximations, known exact constraints to the xc energy provide important guidance
and this can lead to robust functionals that work well even for systems and properties
that have not been considered in their design [71, 72, 134, 165, 166]. However, the
information that exact constraints provide on the interplay of the different exchange
and correlation contributions that is desired in hybrid functionals is limited. This
might be one of the reasons why virtually all hybrid functional constructions available
so far rely on empiricism to a certain degree [288]. Nevertheless, exact constraints
can serve as guide rails in the construction of hybrid functionals [51, 288] and, in
our work, we make use of them with the objective of avoiding empiricism as much
as possible. In particular, this can aid in distinguishing between regions where
semi-local exchange is desirable, e. g., if the density is slowly varying, cf. Sec. 5.2.3,
and regions where exact exchange should dominate, e. g., in high-density, asymptotic,
and one-electron regions, cf. Secs. 5.2.4 to 5.2.6. In the following, we give an overview
of these and other xc constraints that are relevant within this work. An overview of
further constraints can be found, e. g., in Refs. [23, 134].

5.2.1 Size consistency

Size consistency [23, 134, 292] is defined as follows: Consider a system A · · · B that
is composed of two well-separated subsystems A and B. Then, the density in the
combined system should be the sum of the densities in the separate parts,

nA···B(r) = nA(r) + nB(r). (5.12)

Similarly, the total energy should be additive,

E[nA···B] = E[nA] + E[nB]. (5.13)

In typical semi-local functionals size consistency of the xc energy is ensured since their
xc energy density exc(r) depends on the density and related semi-local ingredients only
locally, i. e., at point r. Global hybrid or RSH functionals, with constant parameter
a or ω, respectively, have a similar mathematical structure and are size-consistent as
well. However, if the exact-exchange admixture is governed by a global functional of
the density, a[n] or ω[n], this can lead to a different form that is not size-consistent.
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Size consistency can be restored by using a local, space-dependent function of the
density instead, a([n], r) or ω([n], r), as it is done in local hybrid or local range
separation approaches.

5.2.2 Spin scaling of exchange

The exchange energy emerges from two independent contributions for the different
spin channels, cf. Eq. (2.17). This implies the following relation between the spin-
unpolarized and spin-polarized forms, Ex[n] and Ex[n↑, n↓], respectively, of the
exchange energy [293],

Ex[n↑, n↓] = 1
2 (Ex[2n↑] + Ex[2n↓]) . (5.14)

This expression can be used to generate the spin-polarized version of an approximate
exchange functional from its corresponding spin-unpolarized form.

5.2.3 Homogeneous-electron-gas limit and gradient expansion

One important limiting case for the xc energy is its behavior for a spatially uniform
density [22]. This case is known as homogeneous electron gas and an analytical
expression for the exchange energy and accurate parametrizations for the correlation
energy exist, cf. Chap. 2. The local density approximation (LDA) xc functional
directly builds upon these expressions. More generally, a density functional approxi-
mation is said to respect the homogeneous-electron-gas limit if it reduces to LDA in
the limit of uniform densities. This limit can be characterized by vanishing density
variations, e. g., ∇n(r) → 0, and when the kinetic energy density τ(r) reduces to
its homogeneous-electron-gas limit τHEG(r) = (3/10)

(
3π2)2/3

n5/3(r), given here for
the spin-unpolarized case. For small density variations the exact xc energy can be
expanded systematically around the homogeneous-electron-gas limit. Expressions
are known up to second order in the (full) xc energy and up to fourth order in the
exchange energy [23, 58, 92, 294]. Within this work, only the second-order gradient
expansion of the exchange energy is relevant. In terms of the exchange energy density,
this can be expressed as

eGE
xσ ([nσ], r) = eLDA

xσ ([nσ], r)
(

1 + 10
81 s2

σ(r) + . . .

)
(5.15)

for the spin-polarized case. It depends on the reduced density gradient

sσ(r) = |∇nσ(r)|
2kFσ(r)nσ(r) , (5.16)

where kFσ(r) =
(
6π2nσ(r)

)1/3 is the spin-polarized version of the Fermi wave vector.
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Local hybrid and locally RSH functionals are usually constructed such that the
homogeneous-electron-gas limit is fulfilled or closely approximated by their semi-local
components and the exact-exchange contribution vanishes [B2, 51, 295]. Formally,
the homogeneous-electron-gas limit could also be fulfilled by the combination of full
exact exchange and some appropriate LDA-based semi-local correlation functional.
However, there are at least two reasons why the second approach does not appear
promising: First, exact exchange can be tedious to evaluate numerically for large
systems which do not have a sizable frontier eigenvalue gap. Second, the limit of
slowly varying densities is well-described by typical semi-local functionals. Therefore,
by a vanishing exact-exchange contribution the compatibility of semi-local exchange
and correlation is maintained.

5.2.4 Uniform density scaling

The work by Levy and Perdew [284, 296] offers another complementary viewpoint
on exchange and correlation based on their behavior under scaling of the density. In
this work, we consider uniform scaling of the density defined as

nγ(r) = γ3n(γr), (5.17)

with a positive scaling parameter γ > 0. The scaling of the density is defined such
that the particle number is conserved. For γ > 1 it leads to a more compressed
density distribution with higher maximum value; for γ < 1 the density distribution
is lower and more expanded. In other words, the high-density limit is obtained for
γ → ∞ whereas γ → 0 is the low-density limit. The exchange energy scales linearly
under uniform density scaling,

Ex[nγ ] = γ Ex[n], (5.18)

while the correlation energy has a more complex scaling behavior. It can be char-
acterized by the inequalities Ec[nγ ] > γ Ec[n], for γ > 1, and Ec[nγ ] < γ Ec[n], for
γ < 1, as well as the high-density limit limγ→∞ Ec[nγ ] = const. In other words,
correlation can be important in low-density regions, while the high-density limit is
dominated by exact exchange.

The scaling behavior can be used to separate a given (approximate) xc expression
into its exchange and correlation parts,

Ex[n] = lim
γ→∞

Exc[nγ ]
γ

(5.19)

and

Ec[n] = Exc[n] − lim
γ→∞

Exc[nγ ]
γ

. (5.20)
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One can demand that both the “wavefunction definition”, cf. Eqs. (2.11) and (2.12)
above, and the “scaling definition”, cf. Eqs. (5.19) and (5.20), should be consistent
for hybrid functionals. This condition can be formalized as [288]

lim
γ→∞

Exc[nγ ]
Eex

x [nγ ] = 1, (5.21)

i. e., the functional scales to exact exchange in the high-density limit. A functional
that obeys this condition satisfies all constraints on exchange automatically. Eq. (5.21)
cannot be satisfied by global hybrid functionals (with a ̸= 1). However, it can be satis-
fied by local hybrids and locally RSHs. In this case, it translates to constraints for the
admixture of exact exchange via a([n], r) or ω([n], r), respectively [B2, B5, 51, 54, 288].

5.2.5 Asymptotic exchange-correlation potential

The KS and xc potential of a finite neutral system decay asymptotically as −1/r,
cf. Sec. 3.1.2. Semi-local functionals violate this constraint since their potential
follows the asymptotic decay of the density distribution. One way to introduce the
correct asymptotic behavior is the Perdew-Zunger self-interaction correction [78],
introduced in Eq. (3.18). Another way is the usage of exact exchange. However,
simple global hybrid functionals, which use a fixed fraction a of exact exchange,
decay asymptotically as −a/r, i. e., for typical values of a ∼ 0.25 miss a large
fraction of the correct behavior. On the other hand, RSH functionals can achieve
the correct asymptotic decay of the xc potential by using full exact exchange at long
range. The correct asymptotics is ensured as well for hybrid functionals with local
range separation with a form for ω([n], r) that does not vanish asymptotically. The
asymptotic potential of local hybrid functionals is discussed in Sec. 5.3.

5.2.6 Freedom from self-interaction errors

Two types of shortcomings of approximate xc functionals are referred to as self-
interaction errors – one-electron and many-electron self-interaction [78, 119–126].
The two types of self-interaction errors are different but not unrelated since both
refer to some form of spurious interaction of electrons with themselves. On the one
hand, one-electron self-interaction, introduced in Sec. 3.1.2, refers to the spurious
interaction encountered in one-electron systems. On the other hand, many-electron
self-interaction errors, cf. Sec. 3.1.1, manifest in many-electron systems as a convex
(or concave) behavior of the total energy E(N) as a function of fractional particle
numbers and can be interpreted as underestimating (or overestimating, respectively)
the localization of the electrons. This can even be the case for those approximate
functionals that are free from one-electron self-interaction, e. g., exact exchange or
the functional from Ref. [51]. We aim to reduce or, as far as possible, eliminate both
types of self-interaction errors in our functional constructions.
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The issue of one-electron self-interaction is easier to tackle. In our approach, we follow
the logic common in self-interaction corrections and aim to fulfill the more general
condition (3.16). This is ensured if in regions of space with only one non-vanishing
occupied spin-orbital, first, the exchange energy reduces to exact exchange and,
second, the correlation energy vanishes. One-spin-orbital regions can be detected
with a combination of iso-orbital indicator functions and spin functions [51, 89–
91, 297–302]. In our work, we use, first, the ratio

zσ(r) = τW
σ (r)
τσ(r) (5.22)

of the non-interacting kinetic energy density τσ(r) (2.16) and its single-orbital limit
(the von Weizsäcker kinetic energy density),

τW
σ (r) = |∇nσ(r)|2

8nσ(r) , (5.23)

or its spin-channel independent analog z(r) and, second, the spin polarization,

ζ(r) = n↑(r) − n↓(r)
n(r) . (5.24)

zσ (or z) is bound between its limit for uniform densities, 0, and its single-orbital limit,
1; ζ2 obtains its maximum, 1, for n↑ = 0 or n↓ = 0 and vanishes for spin-unpolarized
systems, where n↑ ≡ n↓. The product of the two, zσζ2 (or zζ2), takes its maximum
value, 1, only in one-spin-orbital regions.
Many-electron self-interaction errors are much more difficult to formulate [78, 104, 122].
As a consequence, it is by no means straightforward how to correct for them [303, 304].
Therefore, the strategy we pursue in our work is the following: We explore different
functional forms and assess how their total energy E(N) behaves as a function of
the fractional particle number as an indication of how effective many-electron self-
interaction errors are reduced. Some guidance on the form of promising functional
candidates is provided by the following observations: First, semi-local functionals
typically lead to a pronounced convex shape of E(N), while the curve for exact
exchange is too concave. This suggests that piecewise linearity can be achieved by
a delicate balance between semi-local and exact exchange. In practical functional
constructions, this balance can be attained, e. g., by optimally tuned RSH functionals,
where the tuning often leads to approximate piecewise linearity [118]. Second, it
is interesting to note that the Perdew-Zunger self-interaction correction (3.18) [78],
although being designed to eliminate one-electron self-interaction errors, can lead
to a significant reduction of many-electron self-interaction errors as well, at least in
special cases [120, 122]. Furthermore, our own experience from numerous exploratory
calculations shows that the way of how exact and semi-local exchange are mixed to
correct for one-electron self-interaction errors has a relevant impact on the shape
of E(N) as well. Therefore, it appears as a reasonable and pragmatic approach to
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construct one-electron self-interaction corrections such that this effectively also leads
to a reduction of many-electron self-interaction errors. We take advantage of this
strategy in constructing a locally RSH functional [B4] as detailed in Sec. 5.5.3.

5.3 Local hybrid functionals

The xc energy of local hybrid functionals [305] can be written in the form

ELH
xc [n↑, n↓] =

∑

σ=↑,↓

∫
dr

(
aσ(r) eex

xσ(r) + (1 − aσ(r))
(
esl

xσ(r) + Gσ(r)
))

+ Esl
c .

(5.25)

Therein, aσ([n↑, n↓], r) is a local, space-dependent function of the density that is
bound between 0 and 1. In its most general form, it can be different for both spin
channels, denoted by the subscript σ, and depend on both spin-densities n↑(r) and
n↓(r). aσ(r) is often called local mixing function. eex

xσ(r) is the exact energy density
(in the “conventional gauge” [306], cf. Eq. (2.17)); esl

x ([nσ], r) and Esl
c [n↑, n↓] are

typical semi-local exchange and correlation functionals. Gσ(r) is called calibration
function. It has been introduced to account for the gauge ambiguity of exchange
energy densities [306–308]: In semi-local or global hybrid functionals the exchange
energy densities, eex

xσ and esl
xσ, can be modified by an additive term Gσ(r) without

changing the resulting (integrated) exchange energy if
∫

dr Gσ(r) = 0. On the other
hand, in local hybrids terms adding the function Gσ(r), e. g., as in Eq. (5.25), leads
to terms of the form

∫
dr aσ(r) Gσ(r) that even change the (integrated) exchange

energy. This so-called “gauge problem” has been associated with spurious positive
static correlation contributions and unphysically repulsive binding energy curves
of noble gas dimers. Adding a suitable function Gσ(r) to the semi-local exchange
functional, cf. Eq. (5.25), can alleviate these issues [309].2

A further issue related to local hybrid functionals is a technical one [311]: In codes
using Gaussian basis sets, the exact exchange energy and the corresponding potential
in the form they appear, e. g., in global hybrids, can be evaluated analytically.
However, in local hybrids, this is no longer possible since, i. a., terms of the form∫

dr aσ(r) eex
xσ(r) appear, where the exact exchange energy density is modified by the

local mixing function before the “outer” integration (“over r”) is performed. This
challenge has been solved with a semi-numerical scheme where one integration of the
exact exchange term (“over r′”), which is independent of the local mixing function,
is computed analytically on each point of a numerical grid, while the second integral
(“over r”) is performed numerically on this grid [312–314]. The implementation
becomes efficient by employing several prescreening techniques [315, 316]. The idea
of this semi-numerical scheme is explained in more detail in App. A.

2As an alternative, it has been shown very recently in Ref. [310] that a judiciously constructed
local mixing function can strongly reduce the spurious positive static correlation contributions
associated with the gauge problem.
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The first explicit form of a local hybrid functional was proposed by Jaramillo
et al. [317] and, since then, local hybrid functionals have been constructed by different
groups [51, 75, 288, 295, 305, 318]. On the one hand, there have been approaches to con-
struct the local mixing function in a non-empirical fashion, see, e. g., Refs. [48, 51, 288],
which may lead to quite complicated mathematical forms. On the other hand, in
practical calculations it turns out that a transparent form is one of the most promising
candidates [295],3

a([n], r) = c · z(r). (5.26)
It depends on the ratio z(r), cf. Eq. (5.22), scaled by an empirical prefactor c (with
typical values of c ≈ 0.5). This choice for the local mixing function exhibits many
desirable features [305]: It takes small values in regions that are relevant for the
formation of molecular bonds, whereas it takes much larger values in regions close
to atomic nuclei and in the asymptotic regions far away from the atoms of a finite
system. Furthermore, the form of this local mixing function can be motivated by
the aim to reduce one-electron self-interaction errors. However, it leads to local
hybrid functionals that satisfy only some exact constraints identified in Sec. 5.2:
Full freedom from one-electron self-interaction errors is only achieved by setting the
prefactor to a value of c = 1 (provided that a correlation functional is used that
vanishes in one-spin-orbital regions). Moreover, Eq. (5.26) does not lead to a local
hybrid that satisfies the scaling condition (5.21). Nevertheless, the impressive results
that have been achieved by functionals based on Eq. (5.26) demonstrate that this
form of a(r) can allow incorporating a lot of the desirable physics into local hybrid
functionals [309].
One might believe that local hybrid functionals can lead to the correct asymptotic xc
potential: Their local mixing function can be constructed such that it approaches 1
in asymptotic regions, e. g., by setting c = 1 in Eq. (5.26) or by the function proposed
in Ref. [319]. Indeed, this leads to the correct −1/(2r) asymptotics of the xc energy
density [305]. However, it has been shown in Ref. [128] that the local hybrid form in
general does not lead to the correct xc potential (except if a(r) = 1 everywhere in
space). Thus, local hybrids suffer from a conceptual shortcoming as compared to RSH
functionals and this is reflected, e. g., in the observation that typical local hybrids offer
only limited accuracy in problems of long-range charge-transfer character [309, 320].
One approach to overcome this limitation is the one of range-separated local hybrids,
where local hybrids are augmented by a fixed fraction of long-range exact exchange,
see Refs. [52, 53] and Sec. 5.5.2. Another approach is the one of local range separation,
which is introduced in the following section.

5.4 Fundamentals of hybrid functionals with local range separation

Replacing the constant range-separation parameter ω of (globally) RSH functionals
by a space-resolved and explicitly density-dependent function ω([n], r) leads to the

3In Eq. (5.26), a([n], r) is the same for both spin channels.
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concept of local range separation. On the one hand, this can be motivated by
formal considerations based on coupling-constant integration, cf. Sec. 5.1. On the
other hand, calculations using globally RSH functionals, both with and without
optimal tuning, point out several concrete limitations of a constant range-separation
parameter. First, the optimal-tuning approach is computationally involved, as it
requires many calculations to determine the optimal value for ω. Second, adjustment
of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) eigenvalues via optimal tuning does not necessarily lead to similar
improvements of the other orbitals [152, 321]. Third, special care has to be taken
if optimal tuning is used in periodic systems or in combination with a dielectric
medium [322, 323]. Fourth, optimal tuning suffers from size-consistency issues that
can prohibit the reliable prediction of atomization energies [41]. Fifth and most
importantly, optimal tuning raises intrinsic questions of consistency. Tuning is
inappropriate for systems that are composed of constituents of largely different
chemical nature, where the optimal values of ω differ significantly for the different
compartments. Moreover, for systems with delocalized electrons, the tuning procedure
spuriously yields ever smaller values of ω with increasing system size [40, 324]. In this
case, a RSH functional becomes dominated by its semi-local components and the well-
known problems of semi-local functionals, e. g., seriously underestimated fundamental
gaps or spuriously low charge-transfer states reappear. Finally, irrespective of how
the value of ω is determined, experience suggests that a universal value for the
range-separation parameter is usually not appropriate for the description of both
ground-state properties, e. g., atomization energies, and electronic excitations [50].
Once more, this is a manifestation of the notorious observable dilemma of hybrid
functionals.
In the context of range separation, reconsidering the concept of optimal tuning
reveals a way to tackle these issues: As realized early on [42–44] the range-separation
“parameter” should not have a fixed value but rather depend on the density. In fact,
this insight has been one motivation for the optimal tuning strategy. However, the fact
that the density dependence is not known explicitly prevents one to develop this idea
further. Likewise, taking this idea seriously would require to consider the additional
contributions to the functional derivative that arise from the density dependence
of the range-separation “parameter” [41]. This cannot be done, though, as the
explicit form of this density-dependence remains unknown within the optimal-tuning
approach. As a step forward, the density-dependence of ω is modelled explicitly in
the approach of local range separation. The structure of the xc energy is familiar
from conventional, globally RSH functionals,

ELRS
xc [n↑, n↓] = Elr,ex

x [n↑, n↓] + Esr,sl
x [n↑, n↓] + Esl

c [n↑, n↓], (5.27)

with the long-range part of the exact exchange energy,

Elr,ex
x = −1

2
∑

σ=↑,↓

Nσ∑

i,j=1

∫
dr
∫

dr′ ϕ∗
iσ(r)ϕ∗

jσ(r′)erf (ωσ(r)|r − r′|)
|r − r′| ϕiσ(r′)ϕjσ(r),

(5.28)
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and semi-local approximations to the short-range part of the exchange energy and
the correlation energy, Esr,sl

x and Esl
c . Importantly, instead of the constant range-

separation parameter ω the function ωσ([n↑, n↓], r), referred to as range separation
function, enters. In the form that we consider [B2] it can be different for both spin
channels, denoted by the subscript σ, and depend on both spin-densities n↑ and n↓
locally, i. e., at each point r. We model this dependence by using the spin-density
nσ(r) itself, its gradient |∇nσ(r)|, and the non-interacting kinetic energy density
τσ(r) of both spin channels (σ = ↑, ↓).

The spin-scaling behavior of locally RSH functionals is influenced by the form of
the range-separation function [B2, 54]. If the spin-unpolarized form ω([n], r) and the
spin-polarized form ωσ([nσ], r) are connected via the relation

ωσ([nσ], r) = ω([2nσ], r), (5.29)

the “exchange” terms in Eq. (5.27), Elr,ex
x and Esr,sl

x , follow the spin-scaling relation
of exchange (5.14) (provided that the semi-local exchange functional does). However,
the latter is not mandatory. This becomes apparent by rewriting the xc energy in
the correlation picture,

ELRS
xc = Eex

x︸︷︷︸
“exchange”

+ Esr,sl
x − Esr,ex

x + Esl
c︸ ︷︷ ︸

“correlation”

. (5.30)

The first term is (full) exact exchange and the remaining terms essentially describe
correlation effects. Therein, the ωσ(r) enters via Esr,sl

x [n↑, n↓] and Esr,ex
x [n↑, n↓]. This

indicates that the range-separation function captures correlation physics and, thus,
it does not seem natural to enforce Eq. (5.29). This idea is particularly appealing
because it allows to use the spin polarization ζ(r) as part of the range-separation
function [B2, 54]. ζ(r) offers a straightforward way to distinguish between one-spin-
orbital and one-orbital regions, which can be beneficial with respect to the behavior
of locally RSH functionals [B2].4

While the correlation energy is independent of the range separation and, thus,
typical semi-local approximations can be used directly, the semi-local short-range
exchange energy Esr,sl

x entering Eq. (5.27) deserves further explanation. Its spin-
unpolarized form can be expressed in terms of the exchange hole of the chosen
semi-local approximation nsl

x (r, r′) as

Esr,sl
x [n] = 1

2

∫
dr
∫

dr′ n(r) 1 − erf (ω(r)|r − r′|)
|r − r′| nsl

x (r, r′). (5.31)

Implementations usually require an explicit closed form of the exchange energy
density, i. e., one has to evaluate the integral over r′ in Eq. (5.31) analytically. The
mathematical form of the LDA exchange hole permits analytical integration, and

4We point out that our view on the spin-scaling behavior of locally RSH functionals stands in
contrast to the work by Maier et al. [56] in several aspects as detailed in Pub. [B2].
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the spin-polarized form can be deduced via the spin-scaling relation (5.14) [B2, 325].
For semi-local functionals beyond LDA, such as generalized gradient approxima-
tions (GGAs), the situation is more complex: First, such functionals are typically
constructed directly on the level of exchange energy densities. Hence, an expression
for the exchange hole may not be available at all. Second, even if such an expression
is known, its more complex mathematical form may prohibit direct analytical evalua-
tion of the required integral in Eq. (5.31). An example is the PBE functional where
an exchange hole is known [326] but cannot be integrated analytically [155]. As a
remedy, the integral can be represented numerically (as done in the construction
of the ωPBE functional) [156, 157, 159] or a short-range version of the exchange
functional is re-engineered [147, 148, 160–162]. A general alternative is to rely on the
scheme by Iikura et al. [145], where approximate short-range exchange expressions
are obtained based on generalizing the short-range LDA expression. In exploratory
calculations, we have tested some existing GGA-based short-range exchange function-
als with limited success. Therefore, we keep the LDA-based short-range exchange
functional in our work.
The idea of local range separation has been pioneered more than 15 years ago [45].
However, since then, only very few further works that take up this concept have
been published [54, 56, 327, 328]. To a certain extent this is related to a technical
issue that we have discussed in Sec. 5.3 in the context of local hybrids: In RSH
functionals with a constant parameter for range separation, the long-range exact
exchange energy can be evaluated analytically in codes which use Gaussian basis sets.
This is no longer possible if ω is space-dependent. Fortunately, this issue has been
solved recently by the work of Klawohn and Bahmann [55] who have adapted the
semi-numerical scheme of local hybrids for local range separation. It is implemented
in the quantum chemistry program Turbomole [278]. The idea of this semi-numerical
scheme is explained in App. A. Thus, fully self-consistent DFT calculations for finite
systems are now possible with locally RSH functionals. This implementation may be
extended, e. g., to TDDFT in future work. In this work we focus on the question
of how to model the range-separation function and the semi-local exchange and
correlation contributions.

5.5 Construction of hybrid functionals with local range separation

In this section, we summarize our progress made on the construction of locally RSH
functionals. We cover Pub. [B2] in Sec. 5.5.1, Pub. [B5] in Sec. 5.5.2, and, finally,
Pub. [B4] in Sec. 5.5.3. This final section contains the central results of our work on
local range separation.

5.5.1 Electronic binding: The ωBT21 functional

In the first step, we explore the self-consistent implementation of local range separa-
tion by Klawohn and Bahmann [55]. To this end, we implement several previously
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proposed [45, 54] and new locally RSH functionals. We assess these functionals with
a focus on their description of electronic binding properties, in particular atomization
energies [B2]. From these calculations the following functional emerges as the most
promising candidate [B2]. First, as a range-separation function we use

ωωBT21
σ (r) = c1

|∇nσ(r)|
nσ(r)

(
1 + ln

(
c2 a0 · c1

|∇nσ(r)|
nσ(r)

)) 1
1 − zσ(r)ζ2(r) . (5.32)

It contains the iso-orbital indicators zσ(r) and ζ(r) defined in Eqs. (5.22) and (5.24)
and two parameters c1 = 0.115 and c2 = 0.202, which are fixed as described below.
Second, we employ the LDA expression of the short-range exchange energy [325] and,
third, the correlation functional [51]

EωBT21
c [n↑, n↓] =

∫
dr

(
1 − z(r)ζ2(r)

)
eLDA

c [n↑(r), n↓(r)], (5.33)

which contains the LDA correlation energy density eLDA
c [n↑(r), n↓(r)] (in the para-

metrization by Perdew and Wang [79]) and the term 1 − zζ2 for self-interaction
correction. This defines all terms in the xc energy of locally RSH functionals,
cf. Eq. (5.27). We refer to this functional as ωBT21 in the following.5

The form of the ωBT21 functional is constructed to satisfy or approximate many
of the conditions identified in Sec. 5.2 [B2]. First, the range-separation function
and the self-interaction correction of the correlation functional vanish in the limit
of a uniform density. Thus, the functional reduces to LDA which describes the
homogeneous-electron-gas limit correctly. Second, the leading term of the gradient
expansion of ωσ(r) is

ωGE
σ (r) = c1

|∇nσ(r)|
nσ(r) . (5.34)

This form can be motivated by imposing the gradient expansion of the exchange
energy in the limit of a slowly varying density (5.15) for Elr,ex

x + Esr,LDA
x . The

exact coefficient of the gradient expansion is obtained if the parameter is set to
c1 =

√
5/18 ≃ 0.124 [B2, 56]; with c1 = 0.115 the coefficient is approximated

closely. Third, the logarithmic term in the range-separation function ensures that
the functional correctly scales to exact exchange in the high-density limit, i. e., it
fulfills condition (5.21) [B2, 54]. Fourth and finally, ωBT21 is free from one-electron
self-interaction errors. This is achieved, first, by the term 1 − zζ2 in Eq. (5.33)
which ensures that the correlation energy correctly vanishes in one-electron systems.
Second, the third term in Eq. (5.32), 1/(1 − zσζ2), leads to a divergence of ωσ(r) in
one-spin-orbital regions. Thus, the functional reduces to exact exchange which is
one-electron self-interaction free [B2, 54].

5In ωBT21, “ω” indicates that the functional is based on a range-separation approach, the acronym
“BT” refers to “Bayreuth”, the university city of the author, and “21” is the year when the
functional was constructed. Note that the functional is originally referred to as SIC-ωLDA in
Pub. [B2]; the new functional name is consistent with our later nomenclature [B4, B5].
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Functional AE6 BH6 Total
Name Type MSD MAD MSD MAD MAD
LDA 74.93 74.93 −17.49 17.49 46.21
PBE GGA 10.40 14.27 −9.22 9.22 11.75
PBE0 Hybrid −1.70 5.22 −4.49 4.49 4.86
ωPBE RSH −2.20 5.34 −1.22 1.42 3.38
B3LYP Hybrid −4.21 4.21 −4.68 4.68 4.45
CAM-B3LYP RSH −1.83 1.95 −3.75 3.75 2.85
MN15 Hybrid −0.04 1.62 −0.47 0.99 1.31
ωBT21 Locally RSH 0.24 1.53 −1.66 1.66 1.60

Tab. 5.1: Comparison of the ωBT21 locally RSH functional to several common functionals
(including global hybrids and globally RSHs) for the AE6 and BH6 test sets. MN15 is
included as an example of an empirically constructed functional with many parameters. For
each functional, the mean signed deviation (MSD) and the mean absolute deviation (MAD)
of calculated and reference values is given for AE6 and BH6, as well as the MAD across both
test sets. All numbers are in kcal/mol. Table adapted from Pub. [B2].

The range-separation function of ωBT21, cf. Eq. (5.32), contains two parameters c1
and c2. Although one of them could be fixed by non-empirical considerations (see
above), we determine both of them empirically to explore the level of accuracy that
can be achieved with this functional form. As described in Pub. [B2], we optimize
the parameters for the AE6 and BH6 test sets [329–331] of atomization energies
and reaction barrier heights, which leads to the values above. In Tab. 5.1, we show
results for these sets [B2]. Overall, the mean absolute deviation (MAD) achieved
with ωBT21 across both AE6 and BH6 is 1.60 kcal/mol. This number is very close
to the “chemical accuracy” of ∼ 1 kcal/mol that is often considered as the accuracy
one aims to achieve ultimately with density functionals. In Tab. 5.1, we show results
with common xc functionals as well. As an example, the well-known ωPBE and
CAM-B3LYP globally RSH functionals have a total MAD of ∼ 3 kcal/mol. These
functionals contain a few empirical parameters. One approach that can bring modern
functionals closer to chemical accuracy is to rely on many empirical parameters
(> 10) that are determined by fitting to large databases of chemical properties. As
an example of this approach, we consider the MN15 functional [332], with a total
MAD of 1.31 kcal/mol. ωBT21 achieves a comparable accuracy but with much fewer
parameter – only two. One many interpret this as indicating that, in the latter case,
the functional form itself has already built in a lot of the proper physics. The trends
shown here for AE6 and BH6 are confirmed by calculations using a larger test set [B5].
The recently developed range-separated local hybrid functional ωLH22t functional
achieves a very favorable performance for different electronic binding properties as
well [B5, 52]. This underlines that mixing exact and semi-local exchange locally can
be a fruitful strategy to describe electronic binding with high accuracy.
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5.5.2 Short-range exact exchange and the observable dilemma

The ωBT21 functional constitutes a step forward in the description of electronic
binding properties by locally RSH functionals, see Sec. 5.5.1 and Pub. [B2]. In
Pub. [B5], we examine whether ωBT21 yields physically interpretable eigenvalues.
As described in Sec. 3.1.1, an important exact condition in the context of the KS
(and generalized KS) eigenvalues is the IP theorem, i. e., the identity of the negative
of the HOMO eigenvalue and the ionization potential calculated as a ground-state
energy difference. Therefore, checking how well the IP theorem is fulfilled constitutes
a hallmark test by which one can assess the quality of the eigenvalues of a given xc
approximation in a non-empirical way. In Pub. [B5], we do this for the molecules in
the AE6 test set, i. e., for a set of systems that is similar to the ones considered in the
analysis of electronic binding. ωBT21 leads to an MAD of 1.11 eV [B5]. This value is
considerably better than for typical semi-local and global hybrid functionals, where
one obtains an MAD between about 2 and 4 eV [B5]. However, it is not the level
of accuracy that can be obtained from functionals such as optimally tuned RSHs
and that is required for reliable spectroscopic applications where an MAD close to
0.1 eV is desirable. On the other hand, this level of accuracy can be obtained from
local range separation. For example, one can keep the functional form of ωBT21 and
reoptimize the parameters of the range-separation function for the IP theorem of the
AE6 molecules [B5]. This leads to a very small MAD of 0.16 eV for the IP theorem
of AE6 and a similar level of accuracy is obtained for a larger set of molecules [B5].
However, the corresponding parameter values (c1 = 0.220 and c2 = 0.225) are very
different to those of ωBT21. Thus, the notorious observable dilemma of hybrid
functionals appears in the context of local range separation as well.

One option to make further progress is the combination of different hybrid functional
concepts. This has been proposed very early [333–335] and recently functionals
have been developed that combine the concepts of local hybrids and range separa-
tion [52, 336, 337]. On general grounds, this appears promising, since the additional
complexity of the new functional form offers further flexibility to adjust the amount
of exact exchange in a way that targets certain regions of space more specifically. In
particular, adding a local hybrid term to RSH functionals may alleviate the observable
dilemma: This extra term allows for exact exchange in the short range which may lead
to an overall more attractive potential and, thus, more strongly bound eigenvalues
without changing the range-separation part. For the ωLH22t range-separated local
hybrid functional [52] high accuracy has been demonstrated for many observables,
including fundamental gaps of organic semiconductor molecules [53]. However, the
accuracy that this functional achieves with respect to fulfillment of the IP theorem
is not yet generally on par with optimally tuned RSH functionals, in particular for
smaller molecules. Therefore, while ωLH22t is among those functionals that presently
do best in reducing the observable dilemma, it does not solve it conclusively.

In Pub. [B5], we explore whether the combination of the concepts of local range
separation and local hybrids can reduce the observable dilemma as compared to
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ωBT21. This new form of hybrid functionals can be referred to as locally range-
separated local hybrid functionals. Their xc energy can be written as6

ELRSLH
xc = Elr,ex

x +
∑

σ=↑,↓

∫
dr

(
aσ(r) esr,ex

xσ (r) + (1 − aσ(r)) esr,sl
xσ (r)

)
+ Esl

c . (5.35)

Therein, Elr,ex
x is the long-range part of the exact exchange energy, cf. Eq. (5.28),

esr,ex
xσ the energy density of the complementary short-range part (erf (·) replaced by

1 − erf (·)), esr,sl
xσ the energy density of a semi-local approximation to the short-range

part of exchange, and Esl
c a (typical) semi-local approximation to the correlation

energy. aσ(r) is the local mixing function familiar from local hybrids, cf. Sec. 5.3.
In Eq. (5.35), it controls the admixture of exact exchange at short range. The
range-separation function ωσ(r) enters via the long- and short-range parts of the
exchange energy. For aσ(r) = 0, Eq. (5.35) reduces to the xc energy of local range
separation; for ωσ(r) = 0, it reduces to the xc energy of local hybrids. As part of
this work, locally range-separated local hybrid functionals have been implemented in
Turbomole [B5]. The concepts of the implementation are explained in App. A.
Based on the mathematical structure of Eq. (5.35), we construct a new xc func-
tional [B5]. We model the semi-local functional components in the same way as in
ωBT21, cf. Sec. 5.5.1. On the other hand, we change the range-separation function
to

ωωBT21a
σ (r) = c3

|∇nσ(r)|
nσ(r)

1
1 − zσ(r)ζ2(r) . (5.36)

In addition, we use the local mixing function [51]

aωBT21a(r) = 1 − 1
1 + c4 t2(r) , (5.37)

with7

t2(r) =
(

π

3

)1/3 a0

4
(
(1 + ζ(r))2/3 + (1 − ζ(r))2/3

)2
|∇n(r)|2
n7/3(r)

. (5.38)

We refer to this functional as ωBT21a. It satisfies the same constraints as the ωBT21
functional. Notably, correct scaling to exact exchange in the high-density limit is
obtained differently: In ωBT21 it is obtained via an appropriate form of ωωBT21

σ (r);
in ωBT21a, this constraint is fulfilled via an appropriate scaling behavior of the local
mixing function, limγ→∞ a([nγ ], r) = 1 [51]. The new ωBT21a functional contains
two not yet determined parameters c3 and c4. As in the case of ωBT21, we fix them

6In the most general form, Eq. (5.35) may contain an additional calibration function [52], similar
to Eq. (5.25). This is deliberately not considered in this work.

7On finalizing this manuscript, we realized that the definition of t2(r) in Pub. [B5], between
Eqs. (12) and (13) therein, is misprinted. Eq. (5.38) is the correct form, in agreement with the
definition of t2(r) common in the literature, see, e. g., Ref. [51].
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empirically, either by fitting to the AE6 and BH6 test sets or the IP theorem of the
AE6 molecules [B5]. This yields two functional variants with different parameters.
As detailed in Pub. [B5], the two variants of ωBT21a have very different parameter
values, i. e., the observable dilemma remains. Moreover, the results for electronic
binding or eigenvalues are not improved on a relevant scale as compared to ωBT21.
This finding can be rationalized by a real-space analysis of the exact-exchange
admixture, which reveals that the qualitative behavior of the functionals with and
without short-range exact-exchange admixture is rather similar [B5]. Therefore,
short-range exact exchange – at least in the form that we have explored so far – does
not alleviate the observable dilemma.

5.5.3 Electronic excitations: The ωBT23 functional

In Pub. [B4], we present a locally RSH functional that is specifically designed for
spectroscopic purposes. Describing electronic excitations reliably is a great challenge
for DFT, cf. Chap. 3. One method that addresses some of these challenges are RSH
functionals with optimal tuning. However, optimal tuning suffers from a number of
shortcomings, which is one of the motivations to introduce local range separation.
On the one hand, it is thus an interesting intellectual challenge to examine whether
the same level of accuracy as with optimal tuning can be attained in an actual
functional construction based on local range separation. On the other hand, this is a
worthwhile task also from a practical perspective since such a functional, where the
range separation is governed by an explicit density functional, can serve as a remedy
in scenarios where optimal tuning fails.
In our functional construction, we build on the experiences from our previous
work [B2, B5]. Our strategy is to incorporate those constraints that we identify
as being relevant for theoretical spectroscopy in a transparent and non-empirical
functional form [B4]. The mathematical structure of our xc functional is that of
Eq. (5.27), i. e., we do not include short-range exact exchange. We employ a newly
developed range-separation function,

ωωBT23
σ (r) =

√
5

18
|∇nσ(r)|

nσ(r)
1

1 − 1
2 (zσ(r) + zσ(r)ζ2(r))

. (5.39)

The short-range exchange energy is described by the LDA expression [B2, 325]. The
correlation functional [301]

EωBT23
c [n↑, n↓] =

∫
dr

(
eLDA

c [n↑(r), n↓(r)] −
∑

σ

zσ(r)eLDA
c [nσ(r), 0]

)
(5.40)

is based on LDA with a correction to eliminate one-electron self-interaction. The
objects in Eqs. (5.39) and (5.40) are explained in Eqs. (5.22), (5.24), and (5.33) above.
We refer to this functional as ωBT23. The key idea of our functional construction
is the way self-interaction errors are corrected [B4]. Thereby, we follow the logic
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Fig. 5.2: Fundamental gaps of a diverse set of organic molecules calculated as the HOMO–
LUMO eigenvalue difference with the ωBT23 functional, and plotted against the reference
gaps calculated from CCSD(T) [338]. Three variants of G0W0 using PBE, Hartree-Fock (HF),
and optimally tuned (OT) ωPBE as a starting point are also shown [339]. Figure adapted
from Pub. [B4].

explained in Sec. 5.2.6. First, we ensure that our functional construction removes
one-electron self-interaction errors. Moreover, we do this in a way that leads to
the reduction of many-electron self-interaction as well. This requires to attain a
delicate balance between, on the one hand, the overcorrection characteristic for full
exact exchange or the Perdew-Zunger form of self-interaction correction and, on the
other hand, a functional with a too modest correction that retains too much of its
semi-local character. The form of self-interaction correction chosen in Eqs. (5.39)
and (5.40) ensures that one-electron systems are fully self-interaction corrected,
while other systems – in particular closed-shell systems – are subject to a more
moderate correction. As we show in Pub. [B4], this leads to a functional that
approximates piecewise linearity well. This is a relevant feature in the context of
theoretical spectroscopy and is an important verification of the guiding principles of
our functional construction.

In Pub. [B4], we report results with the new ωBT23 functional for different test
cases. Therein, we also compare to the recently published ωLH22t functional [52, 53].
In the following, we focus on the results from ωBT23 for the fundamental gaps of
practically relevant organic molecules. The fundamental gap is one of the most
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Fig. 5.3: Size dependence of the fundamental gap for the series of oligoacenes (from benzene
to hexacene, i. e., one to six molecular units) calculated as the HOMO–LUMO eigenvalue dif-
ference with the ωBT23 functional and optimally tuned (OT) ωPBE [40], and plotted against
the reference gaps calculated from CCSD(T) [340, 341]. Figure adapted from Pub. [B4].

important spectroscopic observables, cf. Sec. 3.1.1. It is instructive to compare the
HOMO–LUMO gap calculated with the new ωBT23 functional to accurate and
reliable reference data [B4]. From a fundamental point of view, this is relevant as an
indication of whether the eigenvalues of ωBT23 are endowed with proper physical
meaning. Moreover, being able to calculate the fundamental gap from the frontier
eigenvalue difference is of interest in view of practical applications as well.

We first focus on a diverse set of organic molecules, which is typical for the type
of systems that are used in organic electronics [172, 338, 339]. For this set, highly
accurate reference results have been obtained in wavefunction-based calculations [338].
In Fig. 5.2, the results from ωBT23 are plotted against the wavefunction reference [B4].
Except for a few systems, for which the difference is as large as a few 0.1 eV, the results
are close to the diagonal dashed line that indicates perfect agreement. The MAD
across the set is 0.20 eV for ωBT23. For the same set of molecules, results from other
popular methods to predict spectroscopic properties based on DFT and many-body
perturbation theory have been reported. On the one hand, the ωPBE RSH functional
with optimal tuning leads to a MAD of 0.38 eV [172]. On the other hand, Fig. 5.2
shows the gaps that are obtained with G0W0 based on different starting points [339].
Using PBE as a starting points leads to a serious underestimation of the fundamental
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gap, whereas Hartree-Fock as a starting point leads to a slight overestimation. Using
optimally tuned ωPBE as a starting point, which has been reported as one of the
best possible GW approaches for this benchmark set [339], leads to an MAD of
0.26 eV. Thus, gap prediction based on the non-empirical locally RSH functional
ωBT23 can clearly compete with both a RSH based on optimal tuning and G0W0
with a diligently chosen starting point. While the GW approach requires performing
a DFT calculation first and then, in addition, the computationally expensive G0W0
calculation, a single DFT calculation is sufficient to reach the same accuracy with
our locally RSH functional.
One of the paradigm test cases for which optimal tuning fails are conjugated systems
of increasing size. Fig. 5.3 shows the fundamental gaps calculated with ωBT23
and optimally tuned ωPBE [40] for a series of oligoacenes of increasing size [B4].
Comparing to accurate wavefunction-based reference gaps [340, 341], we find that the
accuracy reached with optimal tuning is good for the smaller systems. However, as
visible in the deviation from the diagonal dashed line, the errors increase noticeably
with the size of the conjugated systems – a well-known trend for optimal tuning. On
the other hand, with our locally RSH functional ωBT23 the accuracy is consistently
high (deviations below 0.1 eV) for all system sizes, with an MAD of 0.06 eV. In
conclusion, the successful concept of RSH functionals can become even more powerful
for the prediction of spectroscopic observables when going from global to local range
separation.
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In conclusion, we have shown that (time-dependent) density functional theory
((TD)DFT) based on optimally tuned range-separated hybrid (RSH) functionals in
the generalized Kohn-Sham (KS) framework can become a powerful tool to predict
electronic excitations. Using this methodology, we have performed first-principles
TDDFT calculations on the charge-separation branches of the heliobacterial reaction
center [B1, B3]. We have extensively analyzed the impact of the surrounding protein
environment. Furthermore, we have included the effect of structural changes by
diligently conducted Born-Oppenheimer molecular dynamics simulations. All results
consistently indicate that the first step of charge separation takes place on the second
and third cofactor (i. e., it is a EC2+EC3− state) [B3]. This finding of our study
is consistent with the recent experimental works by Song et al. [36] and Orf and
Redding [37]. Moreover, we have revealed that the interaction with a small group
of charged amino acids specifically adjusts the energies of the charge-transfer excita-
tions, lowering them with respect to the non-charge-transfer bright excitations [B3].
This can enable downhill energy transfer from the dominant Qy excitations to an
EC2+EC3− state and, thus, may facilitate efficient charge separation. For other
light-harvesting systems, the influence that the protein environment in general and
specific amino acids in particular can have on electronic excitations and charge sepa-
ration has been investigated in previous works [213, 220, 342–346]. To the best of our
knowledge, our results are the first such findings for the heliobacterial reaction center.
This may be an important step toward a better understanding of the microscopic
origin of efficient charge separation and shed light on the relation of the heliobacterial
reaction center to other light-harvesting systems [7, 242].

However, the commonly used form of RSH functionals is far from being a panacea.
The implicit way by which the optimal-tuning approach leads to a system-specific
value for ω, comes at the expense of non-negligible drawbacks. In our own work on
the heliobacterial reaction center, we have encountered spuriously low charge-transfer
excitations involving charged amino acids. This observation indicates that our study
reaches the limits of optimal tuning due to the very different length scales and
electronic properties of chromophores and amino acids. Overcoming the limitations
of optimal tuning is one motivation for the approach of local range separation,
where the constant range-separation parameter is turned into a local function of
the density ω([n], r). We pursue this novel form of hybrid functionals in the second
part of our work [B2, B4, B5]. We have shown that a transparent functional, which
is constructed to fulfill important exact constraints and which contains only two
empirical parameters, can describe binding energies and reaction barrier heights very
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accurately [B2]. Thereby, it reaches a similar accuracy as density functionals that
contain multiple empirical parameters.
Subsequently, we have explored describing both electronic binding and electronic
excitations reliably within a fixed functional form [B5]. This observable dilemma is a
longstanding challenge for hybrid functionals. Very generally speaking, the challenge
is that, on average, a larger fraction of exact exchange is required to obtain physically
interpretable eigenvalues than for a reliable description of electronic binding. One
option to address this dilemma might be admixing exact exchange more specifically in
those regions of space that have the strongest influence on the eigenvalues. As one way
to achieve this, we have explored using a fraction of exact exchange at short range but
find that this cannot alleviate the observable dilemma, at least not in the form that
we have been using in our work [B5]. Another option to tackle the observable dilemma
might be developing semi-local functional components that are specifically designed
to be used within hybrid functionals. In that respect, constructing a semi-local corre-
lation functional that is “compatible” with a larger fraction of exact exchange, i. e., it
leads to a reasonable prediction of electronic binding at an amount of exact exchange
that is suitable for meaningful eigenvalues, appears as one promising [52, 89, 309]
but very challenging [49, 96] option. Apart from that, exciting avenues of further
development include extending the implementation to TDDFT [313] or improving
the description of strongly correlated systems [123, 347, 348], inspired by progress
made recently for local hybrid functionals [349–352]. All of these perspectives are
clearly beyond the scope of the present work.
This outlook should not obstruct the view on the very promising results that have
been obtained with local range separation already at the present stage. Most
importantly, we have constructed a functional for spectroscopic purposes [B4]. The
functional is constructed non-empirically and respects relevant constraints, such
as the homogeneous and slowly varying density limits, and eliminates one-electron
self-interaction errors. As a verification of the guiding principles of the construction,
we have shown that our functional approximates piecewise linearity well. We have
demonstrated that our functional predicts the fundamental gap in generalized KS
theory very reliably for a large and diverse set of organic molecules, including organic
semiconductor materials with a notoriously difficult electronic structure, thereby
reaching the accuracy of higher-level wavefunction-based methods [B4]. Due to the
explicit density dependence of ω([n], r), the new functional does not suffer from the
well-known issues of optimal tuning and, moreover, offers the flexibility to adjust
locally to the electronic properties of the system of interest. Thus, our new locally
RSH functional is a very promising perspective as well for future applications to
light-harvesting systems.
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A Implementation of local range separation in Gaussian basis
sets

In this appendix, we explain the implementation of locally range-separated local
hybrid functionals, cf. Sec. 5.5.2, in quantum-chemistry programs using Gaussian
basis sets. Within this work, this implementation has been realized in Turbomole [B5].
It is based on previous implementations of local hybrids [312], locally range-separated
hybrids (RSHs) [55], and range-separated local hybrids [52]. The generalized Kohn-
Sham (KS) single-particle orbitals ϕiσ(r) are expressed as linear combinations of
Gaussian basis functions χµ(r) [98, 151],

ϕiσ(r) =
∑

µ

Cµ,iσχµ(r). (A.1)

We treat the basis functions as being real and independent of the spin. The generalized
KS equation ĥiσ(r)ϕiσ(r) = εiσϕiσ(r) can be rewritten as a matrix equation for the
coefficients Cµ,iσ,

∑

ν

Cν,iσ

(
⟨χµ(r)|ĥiσ|χν(r)⟩ − εiσ⟨χµ(r)|χν(r)⟩

)
= 0. (A.2)

Therein, ĥiσ(r) is an effective single-particle Hamiltonian where the kinetic energy,
the external potential, the Hartree potential, and the exchange-correlation (xc)
potential v̂xc(r) enter (compare, e. g., Eq. (3.26)). The xc potential follows from

v̂xc(r)ϕiσ(r) = δExc
δϕ∗

iσ(r) . (A.3)

We show below how the xc potential of locally range-separated local hybrid functionals
can be evaluated using Gaussian basis functions. In the following, we recapitulate the
relevant ideas for the case of (full) exact exchange, since the fundamental concepts
are the same as for hybrid functionals with a locally space-dependent admixture of
exact exchange but the equations have a more transparent form.
Evaluation of the exact exchange potential

v̂ex
x (r)ϕiσ(r) = −

∑

j

∫
dr′ ϕ∗

jσ(r′) 1
|r − r′|ϕiσ(r′)ϕjσ(r) (A.4)

corresponds to evaluating the exact exchange matrix elements

Kµν,σ = ⟨χµ(r)|v̂ex
x (r)|χν(r)⟩

= −
∑

κ,λ

Dκλ,σ

∫
dr
∫

dr′ χµ(r)χκ(r′) 1
|r − r′|χν(r′)χλ(r), (A.5)
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with the density matrix elements

Dµν,σ =
∑

i

C∗
µ,iσCν,iσ. (A.6)

In a similar way, the exact exchange energy density

eex
xσ(r) = −1

2
∑

i,j

∫
dr′ ϕ∗

iσ(r)ϕ∗
jσ(r′) 1

|r − r′|ϕiσ(r′)ϕjσ(r) (A.7)

can be expressed as

eex
xσ(r) = −1

2
∑

µ,ν,κ,λ

Dµν,σDκλ,σ

∫
dr′ χµ(r)χκ(r′) 1

|r − r′|χν(r′)χλ(r). (A.8)

Eqs. (A.5) and (A.8) can be evaluated analytically. Hybrid functionals with a locally
space-dependent admixture of exact exchange lead to expressions where this is no
longer possible.

Instead, a semi-numerical scheme has been developed [312, 315, 316]. Thereby, the
integral

∫
dr is replaced by numerical integration on a grid. The latter is performed

as a sum ∑
g wg over all grid points g; wg is the numerical weight of grid point g.

The evaluation of Eqs. (A.5) and (A.8) is divided into different steps. This facilitates
an efficient implementation using prescreening techniques. First, the integral

A(g)
µν =

∫
dr′ χµ(r′) 1

|rg − r′|χν(r′) (A.9)

is evaluated analytically on each grid point. Then, the exact exchange matrix
elements,

Kµν,σ = −
∑

g

X(g)
µ G(g)

ν,σ, (A.10)

and the exact exchange energy density,

wg eex
xσ(rg) = −1

2
∑

µ

F (g)
µ,σG(g)

µ,σ, (A.11)

are calculated numerically using the auxiliary quantities

F (g)
µ,σ =

∑

ν

Dµν,σX(g)
ν , (A.12)

G(g)
µ,σ =

∑

ν

F (g)
ν,σ A(g)

µν , (A.13)

where we have introduced the abbreviation X
(g)
µ = √

wgχµ(rg).
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The xc energy of locally range-separated local hybrid functionals, cf. Eq. (5.35), can
be rewritten as

ELRSLH
xc =

∑

σ

∫
dr aσ(r)eex

xσ(r)
︸ ︷︷ ︸

= Eex,a
x

+
∑

σ

∫
dr (1 − aσ(r))elr,ex

xσ (r)
︸ ︷︷ ︸

= Elr,ex,a
x

+
∑

σ

∫
dr (1 − aσ(r))esr,sl

xσ (r) + Esl
c .

(A.14)

This form resembles the way the functionals have been implemented in Turbomole [B5].
Eq. (A.14) contains the long-range exact exchange energy density

elr,ex
xσ (r) = −1

2
∑

i,j

∫
dr′ ϕ∗

iσ(r)ϕ∗
jσ(r′)erf (ωσ(r)|r − r′|)

|r − r′| ϕiσ(r′)ϕjσ(r). (A.15)

In Eq. (A.14), the two terms Eex,a
x and Elr,ex,a

x are exact-exchange contributions;
the remaining terms have the form of (normal) semi-local functionals. The term
Eex,a

x is the same as the exact-exchange term appearing in local hybrid functionals,
cf. Eq. (5.25); the term Elr,ex,a

x is new in locally range-separated local hybrids but
similar to the exact-exchange term appearing in locally RSH functionals, cf. Eq. (5.27).
In the following, we explain how the exact-exchange contributions are handled
numerically. The corresponding exchange potential consists of the terms

δEex,a
x

δϕ∗
iσ(r) = − 1

2
∑

j

∫
dr′ ϕ∗

jσ(r′)aσ(r) + aσ(r′)
|r − r′| ϕiσ(r′)ϕjσ(r)

+
∑

σ′

∫
dr′′ δaσ′(r′′)

δϕ∗
iσ(r) eex

xσ′(r′′),
(A.16)

δElr,ex,a
x

δϕ∗
iσ(r) = − 1

2
∑

j

∫
dr′ (1 − aσ(r))ϕ∗

jσ(r′)erf (ωσ(r)|r − r′|)
|r − r′| ϕiσ(r′)ϕjσ(r)

− 1
2
∑

j

∫
dr′ (1 − aσ(r′))ϕ∗

jσ(r′)erf (ωσ(r′)|r − r′|)
|r − r′| ϕiσ(r′)ϕjσ(r)

−
∑

σ′

∫
dr′′ δaσ′(r′′)

δϕ∗
iσ(r) elr,ex

xσ′ (r′′)

+
∑

σ′

∫
dr′′ (1 − aσ′(r′′))δωσ′(r′′)

δϕ∗
iσ(r) Eexp

σ′ (r′′),

(A.17)

with

Eexp
σ (r) = − 1√

π

∑

i,j

∫
dr′ ϕ∗

iσ(r)ϕ∗
jσ(r′) exp

(
−ω2

σ(r)|r − r′|2
)
ϕiσ(r′)ϕjσ(r). (A.18)

The corresponding exchange matrix elements are

Kµν,σ =
Ka

µν,σ + Ka
νµ,σ

2 + Kδa
µν,σ +

K lr
µν,σ + K lr

νµ,σ

2 + K lr,δa
µν,σ + K lr,δω

µν,σ , (A.19)
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where the terms with the superscript “lr” arise from Eq. (A.17), the terms without
from Eq. (A.16). Two contributions to Eq. (A.19) are non-local,

Ka
µν,σ = −

∑

κ,λ

Dκλ,σ

∫
dr
∫

dr′ aσ(r)χµ(r)χκ(r′) 1
|r − r′|χν(r′)χλ(r), (A.20)

K lr
µν,σ = −

∑

κ,λ

Dκλ,σ

∫
dr
∫

dr′ (1 − aσ(r))·

· χµ(r)χκ(r′)erf (ωσ(r)|r − r′|)
|r − r′| χν(r′)χλ(r).

(A.21)

Kδa
µν,σ, K lr,δa

µν,σ , and K lr,δω
µν,σ are local. The local contributions share the same mathe-

matical form,

K loc
µν,σ(fσ(r), ϵσ(r)) =

∑

σ′

∫
dr χµ(r)χν(r) ∂fσ′(r)

∂nσ(r) ϵσ′(r)

+ 2
∑

σ′

∫
dr (∇(χµ(r)χν(r))) · (∇nσ(r)) ∂fσ′(r)

∂γσσ(r)ϵσ′(r)

+
∑

σ′

∫
dr (∇(χµ(r)χν(r))) · (∇nσ̄(r)) ∂fσ′(r)

∂γσσ̄(r)ϵσ′(r)

+ 1
2
∑

σ′

∫
dr (∇χµ(r)) · (∇χν(r)) ∂fσ′(r)

∂τσ(r) ϵσ′(r),

(A.22)

where fσ(r) and ϵσ(r) are “dummy variables” that are replaced according to

Kδa
µν,σ = K loc

µν,σ(aσ(r), eex
xσ(r)), (A.23)

K lr,δa
µν,σ = K loc

µν,σ(aσ(r), −elr,ex
xσ (r)), (A.24)

K lr,δω
µν,σ = K loc

µν,σ(ωσ(r), (1 − aσ(r))Eexp
σ (r)). (A.25)

In Eq. (A.22), σ̄ ̸= σ means the respective “other” spin channel, i. e., if σ = ↑ then
σ̄ = ↓ and vice versa, and γσσ′(r) = |∇(nσ(r)) · ∇(nσ′(r))|. elr,ex

xσ (r) and Eexp
σ (r) can

be expressed in terms of Gaussian basis functions similar to eex
xσ(r), see Eq. (A.8)

and compare Eqs. (A.7), (A.15), and (A.18).
Eq. (A.19) can be evaluated in a semi-numerical scheme, which is similar to Eqs. (A.9)
to (A.13). A key step is to introduce two further analytical integrals [55],

A(g),erf
µν =

∫
dr′ χµ(r′)erf (ωσ(rg)|rg − r′|)

|rg − r′| χν(r′), (A.26)

A(g),exp
µν =

∫
dr′ χµ(r′) exp

(
−ω2

σ(rg)|rg − r′|2
)

χν(r′), (A.27)

in addition to Eq. (A.9). Eq. (A.26) resembles an integral appearing in (common)
global range separation; Eq. (A.27) can be viewed as a simple overlap integral of
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three Gaussian basis functions. In analogy to Eq. (A.13), the auxiliary quantities

G(g),erf
µ,σ =

∑

ν

F (g)
ν,σ A(g),erf

µν , (A.28)

G(g),exp
µ,σ =

∑

ν

F (g)
ν,σ A(g),exp

µν , (A.29)

are introduced. By that, the non-local contributions to Eq. (A.19) can be calculated
as

Ka
µν,σ = −

∑

g

aσ(rg)X(g)
µ G(g)

ν,σ, (A.30)

K lr
µν,σ = −

∑

g

(1 − aσ(rg))X(g)
µ G(g),erf

ν,σ . (A.31)

The local contributions can be calculated in a similar way as (normal) semi-local
functionals that depend on the spin density nσ(r), its gradient, and the non-interacting
kinetic energy density τσ(r) of both spin channels (σ = ↑, ↓), using the expressions

wg elr,ex
xσ (rg) = −1

2
∑

µ

F (g)
µ,σG(g),erf

µ,σ , (A.32)

wg Eexp
σ (rg) = − 1√

π

∑

µ

F (g)
µ,σG(g),exp

µ,σ , (A.33)

and the exact energy density calculated according to Eq. (A.11). Then, it is straight-
forward to evaluate the integrals in Eq. (A.22) numerically on the grid. From this
scheme for locally range-separated local hybrid functionals [B5], the corresponding
scheme for local hybrids [312] can be obtained by setting ωσ(r) ≡ 0. Similarly, setting
aσ(r) ≡ 0 leads to the scheme for locally RSHs [55].
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ABSTRACT: We compute the primary charge separation step in
the homodimeric reaction center (RC) of Heliobacterium
modesticaldum from first principles. Using time-dependent density
functional theory with the optimally tuned range-separated hybrid
functional ωPBE, we calculate the excitations of a system
comprising the special pair, the adjacent accessory bacteriochlor-
ophylls, and the most relevant parts of the surrounding protein
environment. The structure of the excitation spectrum can be
rationalized from coupling of the individual bacteriochlorophyll
pigments similar to molecular J- and H-aggregates. We find excited
states corresponding to forward-charge transfer along the
individual branches of the RC of H. modesticaldum. In the
spectrum, these are located at an energy between the coupled Qy

and Qx transitions. With ab initio Born−Oppenheimer molecular dynamics simulations, we reveal the influence of thermal vibrations
on the excited states. The results show that the energy gap between the coupled Qy and the forward-charge transfer excitations is
∼0.4 eV, which we consider to conflict with the concept of a direct transfer mechanism. Our calculations, however, reveal a certain
spectral overlap of the forward-charge transfer and the coupled Qx excitations. The reliability and robustness of the results are
demonstrated by several numerical tests.

1. INTRODUCTION

Revealing the basic functional principles of natural light
harvesting constitutes a great intellectual challenge.1−4 The
involved biomolecules are large pigment−protein complexes,
which are optimized to perform specialized tasks. Radiation
energy is captured by the pigments of the light-harvesting
complex and, subsequently, transferred to a photochemical
reaction center (RC), where it is transformed into a charge-
separated state (cf. Figure 1). These primary reactions of
photosynthesis exhibit an internal quantum efficiency close to
one.4 The cofactors along which charge separation in the RC
proceeds are arranged in a dimer of two branches. If the C2

symmetry is broken, for example, by the interaction with the
surrounding protein matrix, the complex is referred to as a
heterodimer and only one branch is involved in the charge
separation process. The well-studied purple bacteria belong to
this group.5−7 By contrast, in homodimeric RCs, which can be
found, e.g., in heliobacteria,8−11 both branches contribute to
charge separation.
Structural information for a homodimeric type-I RC has

become available only recently, when Gisriel et al.12 have
resolved the crystal structure of the RC of Heliobacterium
modesticaldum (HbRC) by X-ray analysis. The HbRC
possesses two homodimeric core polypeptides (PshA), which
enclose the cofactors of charge separation (cf. Figure 1). The
first cofactor is a pair of close lying bacteriochlorophyll g′ (Bcl

g′) pigments commonly known as the special pair (SPP). It is
followed, one in each branch, by a Bcl g, referred to as
accessory bacteriochlorophyll (Acc), and a 81-hydroxy
chlorophyll a (OH-Chl a). Both branches terminate in a single
[4Fe−4S] cluster, which serves as the terminal electron
acceptor. All cofactors are coordinated by amino acid residues
from the polypeptide chains of PshA, as described in detail in
ref 12. Furthermore, multiple antenna pigments (52 Bcl g and
2 Bcl g′), which are responsible for the light-harvesting
process, are integrated into the protein matrix of the HbRC.
Model Hamiltonians3 can make a numerical treatment of all

these pigments computationally feasible. In fact, the excitonic
coupling among the pigments of the HbRC has been
investigated in a few recent studies.13,14 Computationally
efficient multiscale models can account for the influence of
environmental effects in an approximate way via empirical
force fields or by treating them as a dielectric medium.3,15,16

Recent numerical studies on the RC of Rhodobacter sphaeroides
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suggest that the charge transfer (CT) properties of the SPP
might be influenced by dielectric screening.17,18 Our aim in
this study, however, is to gain insights into the primary charge
separation step in a fully first-principles approach.
Density functional theory (DFT)19,20 and its time-depend-

ent version (TDDFT)21 allow us to treat both ground and
excited state properties of quantum mechanical systems ab
initio and, hence, there is no need to rely on the empirical
input. However, the applicability of the corresponding
numerical methods is limited to smaller systems, i.e., a few
Bcl pigments, due to their computational expense. On the
other hand, the underlying conceptual framework is formally
exact. Hence, if a suitable approximation for the exchange−
correlation functional is chosen, the numerical outcome can be
of high accuracy.22−24

The key challenge for TDDFT calculations of light-
harvesting systems in general and RCs in particular is a
qualitatively correct description of the excited states,25 and
especially those with CT character.26 Range-separated hybrid
functionals27−30 are able to fulfill this task by splitting the
Coulomb interaction into a long-range and a short-range
contribution.31−34 Then, the long-range contribution to the
exchange energy is treated exactly via the Fock integral,
whereas the short-range piece is approximated by a semilocal
exchange functional. Hence, the correct asymptotic exchange−
correlation potential is obtained and, at the same time, the
compatibility between semilocal exchange and correlation is
maintained at short range. The length scale of the transition
from short-range to long-range is controlled by the so-called
range separation parameter ω, which can be determined
without the empirical input for a particular system by the
optimal tuning procedure.31,34,35

To our knowledge, no ab initio study of the homodimeric
HbRC has been published yet. In this work, we take a first step
to retrace possible charge-separation mechanisms in the HbRC
by full TDDFT calculations, which employ the optimally tuned
range-separated hybrid functional ωPBE.38 Thereby, we start
from the SPP−Acc system, which is depicted in Figure 2 and
which was prepared according to the protocol described in
Section 2.1. It consists of the SPP, the adjacent Accs, and the
amino acid residues His 537 and Gln 458 as well as two water
molecules.36,37 Each water molecule is H bonded by one Gln
and coordinates an Acc; the His residues coordinate the SPP.12

To simplify the notation, we abbreviate the combination of
SPP and both His as SPP−His, the combination of water and
Gln as H2O−Gln, and the combination of Accs and both
H2O−Gln as Acc−Gln in the following.

The main findings of our study are the following. The
excitation spectrum of the SPP−Acc system in the crystal
structure geometry exhibits a transparent structure, which
results from coupling of the individual pigments similar to
molecular J- and H-aggregates.39,40 Additionally, we find
forward-CT excitations, which correspond to electron transfer
from the SPP to one of the Acc. The energy of these
excitations is noticeably larger, 0.3 eV or more, than the energy
of the bright coupled Qy excitations. Taking larger parts of the
protein environment into account hardly changes this picture.
Nuclear vibrations, which we obtain in an ab initio Born−
Oppenheimer molecular dynamics (BOMD) simulation,41

change the character of the coupled bright excitations. This
is visible in the excitation spectra that we calculate for multiple
molecular geometry snapshots along the BOMD trajectory.
However, in these spectra, the forward-CT excitations are yet
higher in energy, ≳0.4 eV, than the coupled Qy excitations.
Some of the coupled Qx excitations on the other hand occur at
similar energies as the forward-CT states. Our findings may
help to elucidate possible energy transfer pathways from
(bright) localized to CT excitations. Throughout the study, we
carefully check and report the numerical reliability of our
results. In the following sections, we describe our findings in
detail.

2. COMPUTATIONAL METHODS

2.1. Structure Preparation. The crystal structure of the
HbRC, which can be obtained from the Protein Data Bank
under file ID 5V8K,12 constitutes the basic input for the
quantum chemical calculations. Beforehand, several common23

modifications of the original experimental data are required,
which we describe in the Supporting Information.

Figure 1. Schematic overview of the light-harvesting steps in the HbRC.12 (a) Light absorption by the antenna Bcl and subsequent excitation
energy transfer toward the cofactors of charge separation. (b) Charge separation along the cofactors SPP, Acc, OH-Chl a, and a [4Fe−4S] cluster;
eventually leading to the SPP+ [4Fe−4S]− charge-separated state.10,11

Figure 2. Arrangement of the SPP−Acc system.12 The SPP (2 Bcl g′,
colored red) is coordinated by His 537 from PshA; the Accs (2 Bcl g,
colored yellow) by water, which is H-bonded by Gln 458.36,37 The
coordinating residues are colored gray. The atoms are colored
according to their atom type. Phythyl tails are cropped (cf. Section
2.1). H atoms are omitted for clarity.
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To account for the impact of the protein environment,
further amino acid residues are added to the SPP−Acc system.
The positions of the H atoms, which replace the linkage to the
polypeptide chain, are optimized using the universal force
field42 and the steepest descent method as implemented in
Avogadro, version 1.2.43 The other atoms remain at their
crystal structure positions. Deciding on an appropriate amino
acid selection is a delicate task as the Fock integral causes the
numerical cost to scale roughly quadratic with the number of
atoms. On the other hand, it is desired to capture the effect of
the protein environment on the excitations of the SPP−Acc
system as exhaustive as possible. On general grounds, we may
expect that the influence of the amino acid residues decreases
with their distance to the pigments. A distance of ∼3 Å to the
pigments is a reasonable guideline (S. Kroll, S. Kümmel, and L.
Leppert; unpublished). As a further guidance, we focus on
polar amino acids and those molecules that are located at the
interface of SPP and Accs, which is in the front line of CT (cf.
Section 3.1). The amino acid residues resulting from this trade-
off are listed in Table 1, their arrangement around the SPP−
Acc system is illustrated in Figure 3.

2.2. TDDFT Calculations. The TDDFT calculations of the
electronic excitations rely on the Casida approach44 and are
performed using the quantum chemistry program Q-CHEM,
version 5.2.2.45 For the exchange−correlation functional, we
use the range-separated hybrid functional ωPBE.38 The range
separation parameter ω is determined by optimal tuning.30,31,35

Hereby, ω is varied to minimize the difference between the
eigenvalue of the highest occupied molecular orbital and the
ionization potential for both the neutral and the anionic system

(J2-tuning procedure).46 For a single Bcl g′ taken from the
SPP, this procedure yields ωg = 0.160a0

−1. However, for the
results presented here, we use the value ωa = 0.171a0

−1, which
stems from previous work by Schelter et al.23 where optimal
tuning has been performed for a single Bcl a. This choice eases
comparison with other work, and the small difference in the
range separation parameter does not influence the outcome of
our calculations on a relevant scale. We verify this explicitly
and discuss our choice of the parameter ω and earlier literature
on this topic47,48 in the Supporting Information.
Finally, we mention one technical aspect that is important:

the excitation energies and oscillator strengths of optical
excitations that we report in this article are calculated without
the Tamm-Dancoff approximation. The latter leads to large,
implausible deviations from the full solution for our system.

2.3. Born−Oppenheimer Molecular Dynamics. We
perform an ab initio BOMD simulation41 of the SPP−Acc
system at room temperature (300 K). For incorporating the
mechanical constraints induced by the protein environment,
we fix the terminal Cβ of His and Gln, which are bound to the
polypeptide chains in the full protein complex. Furthermore,
we also fix the terminal O of the phythyl tails of the Bcls, as the
phythyl side chains are sterically hindered within the protein
due to their length. This procedure has already been employed
in previous BOMD studies of a bacterial RC.49,50 It inhibits an
overall drift of the system and ensures that the relative
positions of its individual parts are sustained.
For the BOMD simulation, we use the PBE functional51

with the Grimme DFT−D3 dispersion correction and rely on
the program TURBOMOLE, version 7.4.0.52 The technical
setup is reported in the Supporting Information.
To investigate the impact of the BOMD dynamics on the

excited states, we take snapshots of the molecular structure
every 9.7 fs along the BOMD trajectoryafter an initial
equilibration phaseand calculate the corresponding excita-
tion spectra according to the protocol described in Section 2.2.
Here, we use the 6-31G basis set for all calculations. From
these excitation spectra, we calculate an “ensemble-averaged”
histogram to represent the influence of thermal vibrations on
the excitation spectrum. In fact, this is a histogram of the
excitations (with energy ε), which are weighted by their
oscillator strengths f(ε) and accumulated in bins B(ε, Δε) ≡ [ε
− Δε/2, ε + Δε/2]

f
N

f( )
1

( )
B( , )

∑ ε̅ ϵ =
ε∈ ϵ Δϵ (1)

where N denotes the number of underlying excitation spectra.
This yields the mean oscillator strength f(̅ε). The whole
procedure is insensitive to the character of the excitations, i.e.,
localized as well as CT excitations enter. However, as obvious
from eq 1, the ensemble-averaged spectrum will be dominated
by the bright excitations.
Within the scope of this work, we are particularly interested

in comparing the ensemble-averaged spectrum to the spectral
positions of the forward-CT excitations. These are best
represented by a common histogram of only this type of
excitation. Here, the oscillator strength is not taken into
account as, being close to zero, it is not a helpful characteristic
of this type of excitation. As we illustrate in Section 3.1, the CT
character of an excitation can be determined by a natural
transition orbital (NTO) analysis.53 For our purposes here,
this tool is particularly well suited as forward-CT excitations

Table 1. Overview of the Amino Acid Residues that are
Added to the SPP−Acc System to Account for the Impact of
the Protein Environmenta

name sequence number36

Ala 541

Cys 601

Ile 514 515

Leu 533 534 605

Phe 454 465 475 511 538 542 594

Thr 345 348 518 598

Trp 540

Tyr 341 510
aTheir spatial layout is illustrated in Figure 3.

Figure 3. Spatial distribution of the amino acid residues from Table 1
(colored blue) around the SPP−Acc system (cf. Figure 2 for labels
and an explanation of the color scheme). The polypeptide backbone
and the phythyl tails are cropped. H atoms are omitted for clarity.
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are the only type of excitation that are clearly dominated by a
single electron−hole pair. Empirically, it turns out that for our
system, a threshold of 0.984 for the normalized amplitude of
the respective first NTO pair is well suited to discriminate
forward-CT (above) from other (localized or CT) excitations
(below).54 This criterion enables the automated evaluation of
the excitation spectra.

3. RESULTS AND DISCUSSION

3.1. Excited States of the SPP−Acc System. We begin
the discussion with the excited states of the SPP−Acc system
based on the crystal structure geometry. The spectrum is
depicted in Figure 4. As a preview, its excitations can be
divided into four groups: six bright excitations between ∼1.4
and 1.8 eV (“coupled Qy”), two pairs of dark excitations at
1.88...1.90 eV and 2.24...2.26 eV, four bright excitations at ∼2.0
eV (“coupled Qx”), and a broader band of bright and dark
transitions beginning at ∼2.45 eV, which is the Soret band of
the coupled Bcls.
As foretold by the labels, the smaller groups of bright

excitations arise from the coupling of the Qy and Qx transition
dipole moments of the Bcls, respectively. The mechanism
behind the coupling is best retraced by comparing the
spectrum of the SPP−Acc system to the spectra of the two
subsystems SPP−His and Acc−Gln, which are also shown in
Figure 4. Apparently, in the case of the coupled Qy

55

excitations, each excitation of the SPP−Acc system almost
coincides with an excitation of either the SPP−His or Acc−
Gln subsystem. Analyzing the underlying transition densities

indeed reveals that the character of the excitations remains
widely unchanged upon combining SPP−His and Acc−Gln to
SPP−Acc. The same conclusion can be drawn for the coupled
Qx

55 excitations, although this is less obvious to see when just
comparing the spectra.
We discuss the excitation spectra of the individual

subsystems SPP−His and Acc−Gln in detail in the Supporting
Information. The analysis there reveals that each of the
coupled Qx excitations is localized mostly on one of the Bcl
pigments. In the case of the Qy excitations, we find that the
coupling of the Acc dimer is of J-type,39,40 which leads to the
two coupled excitations visible in Figure 4. In the case of the
SPP dimer, four coupled Qy excitations emerge in two pairs,
which exhibit the characteristics of either a J-aggregate or a H-
aggregate. The fact that both types of coupling exist can be
attributed to the strong coupling in the SPP dimer.
By contrast, the two pairs of dark excitations are novel in the

spectrum of SPP−Acc, i.e., do not have an equivalent in the
spectra of SPP−His or Acc−Gln. As common for dark
excitations, the transition density is less instructive. Instead, an
NTO analysis53 can unravel their character. The outcome is
that all four excitations are dominated by one electron−hole
pair with a normalized amplitude of more than 0.99. The
spatial distribution of the corresponding NTO densities is
depicted in Figure 5 for one of the excitations. They reveal that
the NTO hole and electron are astonishingly well localized on
the SPP and on one of the Acc pigments, respectively. This
very clearly indicates a forward-CT state, i.e., an electron is
being transferred from the SPP toward the Acc.

Figure 4. Excitation spectrum of the SPP−Acc system and its two constituent subsystems SPP−His (SPP and coordinating His) and Acc−Gln
(Accs and coordinating H2O−Gln), calculated with the 6-31G(d,p) basis set. The character of the states is indicated (see the text).

Figure 5. First NTO pair of the forward-CT state at 1.88 eV of the SPP−Acc system: (a) hole density and (b) electron density. Displayed is the
isosurface with an isovalue of 4 × 10−6 a0

−3. A comparison of the first NTO pairs of all forward-CT states is provided in the Supporting
Information.
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The first NTO pairs of all forward-CT excitations are shown
in the Supporting Information. Comparing them reveals that
each pair consists of two excitations, which correspond to CT
along the two different branches of the HbRC. They are
separated by only a small energy gap of ∼0.02 eV. Our
experience tells us that a systematic relative energy difference
of this size and reproducibility is not a numerical error.
Therefore, we seek for a structural cause of this apparent
asymmetry in the spectrum.56 As the structure of the SPP−Acc
system is prepared according to the protocol described in
Section 2.1 from the crystal structure of the HbRC, the
backbone of the structure with its C, O, N, and Mg atoms
inherits the perfect C2 symmetry that the X-ray data suggest.
Only the force field optimized positions of the H atoms are
asymmetric. We were able to verify the assumption that this
asymmetry leads to the ∼0.02 eV energy splitting by explicitly
symmetrizing the structure of SPP−Acc. As discussed in
greater detail in the Supporting Information, the pairs of
forward-CT states emerge at equal energies when the complete
structure including the H-atom positions is symmetrized. In
this case, the NTOs also do no longer display a preference for
a particular branch. Instead, the electron orbital is delocalized
over both Accs. By contrast, the localized excitations basically
remain unchanged upon symmetrization. We, therefore,
conclude that the forward-CT states are sensitive to small
deviations from the perfect C2 symmetry.
In the Supporting Information, we compare our results to

the experimental data from ref 57, and argue that also in view
of previous work,58−60 reasonable accuracy can be expected
from TDDFT for Bcls. We further present several tests to
validate our numerical setup and demonstrate the reliability of
our results. The main conclusions from these tests are that,
first, the size of the basis setswe used 6-31G, 6-31G(d,p),
and 6-311G(d,p)− is not a limiting factor for our conclusions.
Second, our choice of ω = 0.171a0

−1 for the range-separation
parameter is reasonable. Third and finally, the coordinating His
and H2O−Gln have a noticeable influence on the excitation
spectrum and thus need to be taken into account in all cases.
3.2. Protein Environment. In the following, we study the

influence of the protein environment on the excited states of
the SPP−Acc system. As discussed in Section 2.1, only a small
fraction of the surrounding amino acid residues can be
included in the full TDDFT calculation. However, one may
expect on general grounds that the influence of the amino acids
in the direct vicinity is the largest. We confirmed this
expectation explicitly in our calculations by including several
residues of the same type at different distances to the pigments.
The amino acid residues whose influence we further discuss

now are listed in Table 1. The spectrum of the SPP−Acc
system within this environment is compared to the bare SPP−
Acc system in Figure 6. We observed a small, overall redshift ≲
0.05 eV of the excitation spectrum, but its familiar pattern, i.e.,
coupled Qy and Qx excitations as well as forward-CT states, is
retained. The splitting of the forward-CT pairs is somewhat
increased. We again attribute this to the asymmetric
distribution of the H atoms.
Additionally, we investigated the influence of individual

amino acid residues, as also detailed in the Supporting
Information. This reveals that particular polar or aromatic
amino acids, Thr, Trp, and Tyr, when taken into account
separately, can have a significant influence on the forward-CT
states and shift them up to 0.14 eV. However, when these
residues are taken into account together, the effects cancel out

mutually. The other amino acids in the vicinity shift the
forward-CT states by only ≲0.02 eV.

3.3. Born−Oppenheimer Molecular Dynamics. The
previous results based on the (static) crystal structure of the
HbRC do not suggest that a coupling of the bright Qy and the
forward-CT excitations is possible. However, it is well known
that molecular vibrations can have an influence on CT
pathways. To include the effects of the nuclear motion into our
calculations, we have performed a BOMD simulation of the
SPP−Acc system.
At the heart of the following discussion is a BOMD

trajectory, which consists of 8790 steps corresponding to
1063.1 fs. As a coarse-grained measure of the dynamics, we
monitor the root mean square deviation (RMSD) of the atoms
from their original positions as a function of time. After an
initial equilibration phase, in which the RMSD increases within
105.2 fs to 0.49 Å, it increases slowly during the following
957.9 fs to 1.26 Å at the end of the BOMD run. If alternatively
the temporal dynamics of the RMSD of the Mg−Mg distances
(as a measure of the interpigment separation) is monitored, we
find that its average oscillates around 0.3 Å shortly after the
beginning of the BOMD run. Unlike the Bcls and the amino
acid tails, the interstitial H2O molecules are not subject to any
(external) constraint. However, during the simulation,
intermolecular interactions prevent the H2O molecules from
exiting their binding pockets between Acc and Gln, consistent
with the observations described in other BOMD studies of a
bacterial RC.49,50

As described in Section 2.3, we calculated the excitation
spectra of N = 100 snapshots of the BOMD trajectory after the
above-mentioned initial equilibration phase. They reveal that
the transparent structuring of the spectrum obtained for the
case of the crystal structure, cf. Section 3.1, is not retained. It is
still possible to identify coupled Qy and Qx excitations.
However, an analysis of the underlying transition densities
reveals that the picture of J- and H-type coupling within the
SPP−His or Acc−Gln compartments is no longer applicable.
Instead, the transition density may extend over a single, several,
or all pigments, i.e., the nature of the coupling changes with
time. These changes are rapid, i.e., no trends can be deduced
from comparing the subsequent snapshots. Apart from these
(bright) localized excitations, the spectra still contain well-
emphasized forward-CT states.
To put the comparison of localized and CT excitations on a

firm footing, we accumulated all excitation spectra in a
weighted histogram (“ensemble-averaged” spectrum), cf.

Figure 6. Excitation spectrum of the SPP−Acc system with and
without the environment amino acids (cf. Table 1, abbreviated as
“env.”), calculated with the 6-31G basis set.
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Section 2.3, which we compare to a common histogram of the
forward-CT excitations. An overlay of both histograms is
depicted in Figure 7. The ensemble-averaged spectrum exhibits
two distinct peaks at ∼1.7 and 2.1 eV, which correspond to the
Qy and Qx lines, respectively, of the Bcl pigments (labeled in
Figure 7). As compared to the spectrum originating from the
crystal structure of SPP−Acc, these bright excitations are blue-
shifted by 0.1...0.2 eV. By contrast, the blueshift is considerably
larger for the forward-CT excitations; the onset of the
corresponding histogram is at ∼2.1 eV. Clearly, there is no
overlap of the forward-CT states with the coupled Qy

excitations in the spectrum. Instead, we find a (small) overlap
of the forward-CT states with the Qx transitions.
As an alternative to the histogram-based approach of

evaluating the BOMD data, we show and discuss in the
Supporting Information the time evolution of several energy
levels, which represent the main features of the BOMD-based
excitation spectra. This analysis confirms the conclusions
drawn from Figure 7, i.e., a spectral gap of ≳0.4 eV between
the Qy peak and the onset of the forward-CT excitations on
one hand, and a small spectral overlap of the forward-CT states
with the Qx excitations on the other hand.

4. CONCLUSIONS

We investigated the charge separation properties of the SPP
and its adjacent cofactors (Accs) from the homodimeric HbRC
using TDDFT with the range-separated hybrid functional
ωPBE. Analysis of the excited states of the (symmetric) crystal
structure revealed that its Qy and Qx excitations emerge from
coupling of the individual pigments similar to molecular J- and
H-aggregates. In the case of the SPP, we encountered a
considerable redshift of the J-aggregated Qy lines (by 0.15 eV),
which is absent for the Accs. We attribute this observation to
the small interpigment separation in the SPP. This conforms
with the conclusion from exciton models where the coupling of
the SPP is found to be dominated by short-range
mechanisms.14,61 Notably, several distinct forward-CT states
emerged that can be interpreted as an electron moving from
the SPP to one of the Acc pigments. We demonstrated that
this (small) preference for CT along a particular branch arises
from small deviations from perfect C2 symmetry, which are

induced by the H atoms. We investigated the influence of the
protein environment and performed several numerical tests to
verify that our setup is appropriate to capture the relevant
physical effects. We consistently obtained an energy gap of
∼0.3 eV between the major Qy and the lowest forward-CT
excitations.
To further investigate the influence of structural changes, we

performed an ab initio BOMD simulation of the SPP−Acc
system and calculated the excitation spectra of multiple
snapshots along the resulting trajectory. This mimics the
influence of molecular vibrations on the excited states. It
turned out that a clear designation of J- and H-type-coupled
excitations is no longer feasible for the distorted geometries.
An important finding regarding potential charge separation
pathways is that the energy gap between the Qy peak and the
onset of the forward-CT excitations increased to ≳0.4 eV
during this simulation. On the other hand, however, we find a
(small) spectral overlap with the coupled Qx excitations.
Several conclusions regarding potential charge separation

mechanisms in the HbRC can be drawn from our study. Due
to the redshift of its J-type-coupled Qy excitations,

14 the SPP is
typically considered to serve as a sink for the excitation energy
transferred from the antenna pigments to the cofactors. Our
results based on the crystal structure of SPP−Acc seem to
confirm this concept. However, this conclusion is put into
question by the spectra based on the BOMD simulation, which
takes into account (thermally driven) structural distortions.
Then, the lowest Qy excitations may as well be localized on the
Accs. Most strikingly, the BOMD results suggest that direct
energy transfer from the lowest and brightest excitations of the
SPP and Accs (coupled Qy) to the lowest SPP−Acc CT state is
not possible. Instead, higher excited states with smaller
oscillator strengths (coupled Qx) might be involved.62

This work paves the way for continuative TDDFT studies of
the HbRC. By including further cofactors, the full CT chain
can be taken into account, as done in ref 22 for the PS II of
plants. This may help to clarify whether the charge separation
chain is initiated at the SPP or the Accs.12 A full understanding
of the light-harvesting complex requires also considering the
antenna pigments. On the level of full TDDFT calculations,
this can become computationally feasible by limiting oneself to

Figure 7. Weighted histogram of the BOMD-based excitation spectra (solid blue bars, left axis). It is calculated according to eq 1 from the
excitation spectra of 100 equally separated snapshots of the BOMD between 105.2 and 1063.1 fs. The labels of the peaks in the spectrum are
explained in the text. Additionally, a common histogram of the number of forward-CT excitations occurring in these spectra is shown (light red
bars, right axis). The bin width of both histograms is 0.02 eV.
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a reduced system of the antenna pigments in the vicinity of the
CT cofactors. The analysis of BOMD may be extended to
investigate the interplay of nuclear dynamics and CT. Work
along this line on the RC of R. sphaeroides can be found in refs
49 and 50. A nonadiabatic MD simulation technique such as
Ehrenfest MD3,41 can account for the coupled dynamics of the
nuclear and electronic degrees of freedom and may be the
ultimate goal for future work.
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(48) de Queiroz, T. B.; Kümmel, S. Charge-transfer excitations in
low-gap systems under the influence of solvation and conformational
disorder: Exploring range-separation tuning. J. Chem. Phys. 2014, 141,
084303.
(49) Eisenmayer, T. J.; de Groot, H. J. M.; van de Wetering, E.;
Neugebauer, J.; Buda, F. Mechanism and Reaction Coordinate of
Directional Charge Separation in Bacterial Reaction Centers. J. Phys.
Chem. Lett. 2012, 3, 694−697.
(50) Eisenmayer, T. J.; Lasave, J. A.; Monti, A.; de Groot, H. J. M.;
Buda, F. Proton Displacements Coupled to Primary Electron Transfer
in the Rhodobacter sphaeroides Reaction Center. J. Phys. Chem. B 2013,
117, 11162−11168.
(51) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(52) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C.
Electronic Structure Calculations on Workstation Computers: The
Program System TURBOMOLE. Chem. Phys. Lett. 1989, 162, 165−
169.
(53) Martin, R. L. Natural transition orbitals. J. Chem. Phys. 2003,
118, 4775.
(54) By manually evaluating the spatial distribution of the
corresponding NTOs, we have explicitly checked for a test set of ∼
20 excitations that the character of less than 2 % of all CT excitations
has been detected erroneously. Moreover, all forward-CT excitations
below 2.2 eV have been verified as such explicitly.
(55) We use the term “coupled” Qy or Qx, respectively, excitation to
point out that the excitation appears in an oligomer of several coupled
Bcl pigments. If this coupling is weak, the excitation may be localized
on one or a few pigments.
(56) Ref 18 discusses the relation between symmetry breaking and
the role of the special pair as a charge rectifier.
(57) Chauvet, A.; Sarrou, J.; Lin, S.; Romberger, S. P.; Golbeck, J.
H.; Savikhin, S.; Redding, K. E. Temporal and spectral character-
ization of the photosynthetic reaction center from Heliobacterium
modesticaldum. Photosynth. Res. 2013, 116, 1−9.
(58) Sundholm, D. A density-functional-theory study of bacterio-
chlorophyll b. Phys. Chem. Chem. Phys. 2003, 5, 4265.
(59) Linnanto, J.; Korppi-Tommola, J. Quantum chemical
simulation of excited states of chlorophylls, bacteriochlorophylls and
their complexes. Phys. Chem. Chem. Phys. 2006, 8, 663−687.
(60) Cai, Z.-L.; Crossley, M. J.; Reimers, J. R.; Kobayashi, R.; Amos,
R. D. Density Functional Theory for Charge Transfer: The Nature of
the N-Bands of Porphyrins and Chlorophylls Revealed through CAM-
B3LYP, CASPT2, and SAC-CI Calculations. J. Phys. Chem. B 2006,
110, 15624−15632.
(61) Madjet, M. E.-A.; Müh, F.; Renger, T. Deciphering the
Influence of Short-Range Electronic Couplings on Optical Properties
of Molecular Dimers: Application to “Special Pairs” in Photosynthesis.
J. Phys. Chem. B 2009, 113, 12603−12614.
(62) We note that our results allow for the alternative interpretation
that the next cofactor OH-Chl a is involved in the first CT step.12

Checking this is beyond our present work as OH-Chl a is not
included in our model.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.0c10283
J. Phys. Chem. B 2021, 125, 3468−3475

3475

Publication
[B

1]
Publication

[B
1]



Supporting Information for

Investigating Primary Charge Separation in the
Reaction Center of Heliobacterium modesticaldum

Journal of Physical Chemistry B
Moritz Brütting, Johannes M. Foerster, and Stephan Kümmel

Theoretical Physics IV • University of Bayreuth

Contents
Computational Methods S1

Structure Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1
Born-Oppenheimer Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . S2

Results and Discussion S2
Coupling of the Bacteriochlorophyll-Pigments . . . . . . . . . . . . . . . . . . S2
Excited States of the SPP–Acc System . . . . . . . . . . . . . . . . . . . . . . S7
Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S7
Protein Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9
Born-Oppenheimer Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . S10
Experimental Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S13

Tables of the Excitation Spectra S13

References S13

Computational Methods

Structure Preparation

As a complement to the main text, we describe the preparation of the structure of
the SPP–Acc system in the following. To reduce the computational effort the phythyl
tails of the Bcl pigments, which just serve to keep the pigments in position, are not
included in our calculations. Therefore, these hydrocarbon chains are cropped from their
ester linkages to the side chains of the bacteriochlorin rings and replaced by an H atom.
Furthermore, the bonds of the amino acid residues to the polypeptide chains are cut
between Cα and Cβ and replaced by further H atoms. This procedure keeps the terminal
Cβ saturated. The positions of the H atoms, which cannot be resolved by the X-ray
analysis, are energetically optimized using the CHARMM force field as described in [1].
Thereby, the positions of the other atoms (C, N, O, Mg) are kept fixed.
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Born-Oppenheimer Molecular Dynamics

For the BOMD simulations we use the Ahlrichs def2–SV(P) Gaussian basis set, the
m3 grid, and the resolution-of-the-identity approximation. The size of the BOMD time
steps is 0.12 fs, which is small enough to resolve the fast vibrations of the H atoms. A
Nosé-Hoover thermostat is used to keep the pseudo-temperature around 300 K. The
thermostat relaxation time is 0.73 fs.

As fixing atomic coordinates is not supported by the standard BOMD implementa-
tion of TURBOMOLE, we use a modified version of a TURBOMOLE in-house tool originally
developed by Arnim Hellweg (TURBOMOLE GmbH, Karlsruhe) to perform the MD cycles.
In order to make our calculations transparent, we describe its functionality in the fol-
lowing. In each BOMD time step three separate computational tasks are performed
by different (standard) TURBOMOLE routines: determining the electronic ground state
corresponding to the current positions of the nuclei from a DFT self consistent iteration
(ridft), calculating the (classical) forces on the nuclei resulting from this particular
electronic configuration (rdgrad), and, finally, updating the positions and velocities of the
nuclei (frog). The routines exchange the information on positions and velocities of the
nuclei via specific files. Hence, by zeroing the velocities and forces corresponding to the
fixed atoms in these files between the second and third computational step, the mechanical
constraints can be ensured in a straightforward way. This particular functionality is not
integrated into the standard BOMD implementation of TURBOMOLE.

Results and Discussion

Coupling of the Bacteriochlorophyll-Pigments

As a complement to the discussion of the excitation spectrum of the SPP–Acc system in
the main text we analyze the spectra of its constituent subsystems, SPP–His and Acc–Gln,
in this section. SPP–His consists of two Bcl g’ pigments which are each coordinated by
His 537 (“Bcl g’–His”). Similarly, Acc–Gln is composed of two Bcl g pigments which are
each coordinated by a water molecule H-bonded by Gln 458 (“Bcl g–Gln”). In Figure S1 (a)
the spectra of SPP–His and Bcl g’–His, and in (b) the spectra of Acc–Gln and Bcl g–Gln
are compared.

We begin the discussion with case (b) as it is somewhat more transparent. Strikingly,
the Qy and Qx transitions in the spectrum of the individual Bcl g–Gln correspond to two
excitations with virtually the same energies in the spectrum of the Acc–Gln aggregate.
To rationalize this result it is instructive to think of the coupled excitations of Acc–Gln
as resulting from combined excitations of the individual Bcl g–Gln subsystems. This
approximation is appropriate if the subsystems can be treated as well separated entities.
For estimating whether this is the case one can compare the intermolecular distance of
the Accs pigments (19.5 Å center-to-center) to the “diameter” of one bacteriochlorin ring
(∼ 7 Å). The character of the coupling among the subunits is revealed by analyzing the
transition densities for the excitations of Acc–Gln. They are depicted in Figure S2. For the
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Figure S1: (a) Excitation spectra of SPP–His and a single Bcl g’–His, calculated with the
6–31G(d,p) basis set. (b) Excitation spectra for Acc–Gln and a single Bcl g–Gln. The Qy
and Qx transitions of Bcl g’–His and Bcl g–Gln, respectively, are indicated.

Qx excitations ((c) and (d)) the transition density in each case is predominantly localized
on one of the Bcl g–Gln and the other chromophore carries much less transition density.
In these cases, exciting Acc–Gln in fact corresponds to exciting predominantly just one
of its Bcl g–Gln subunits. By contrast, the Qy transition densities (cf. Figure S2 (a)
and (b)) are fully delocalized over both rings. It turns out that the transition dipoles that
one can associate with the individual Bcl g–Gln subunits are ordered roughly parallel
for the transition with lower energy and higher oscillator strength, and antiparallel for
the transition with higher energy and lower oscillator strength. This corresponds to
the well-known concept of a J-aggregate [2, 3]: The delocalized excited state with lower
(higher) energy results from the symmetric (antisymmetric) coupling of the excitations of
the individual subunits.

Similar coupling mechanisms are also observed for the spectrum of SPP–His, cf. Fig-
ure S1 (a). However, here the situation is more complex due to the significantly lower
inter-pigment distance – the SPP pigments have a center-to-center distance of only 5.9 Å

S3

Pu
bl

ic
at

io
n

[B
1]

Pu
bl

ic
at

io
n

[B
1]



(a) (b)

(c) (d)

Figure S2: Transition densities of the coupled Qy ((a) and (b)) and Qx ((c) and (d))
transitions of Acc–Gln (in order of increasing excitation energy). Isosurfaces with isovalues of
±0.0002 a−3

0 are displayed. The isosurface corresponding to the positive (negative) isovalue
is colored red (blue). The inset schematically shows the molecules without transition densities
to clarify the chosen point of view.

(a) (c) (e)

(b) (d) (f)

J-aggregate H-aggregate

Figure S3: Transition densities of the coupled Qy ((a) – (d)) and Qx ((e) and (f)) transitions
of SPP–His (in order of increasing excitation energy). The isosurface representation is the
same as in Figure S2. The inset schematically shows the molecules without transition densities
to clarify the chosen point of view.
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– and, hence, stronger coupling of the individual Bcl g’–His subunits. Upon coupling, the
Qy excitation splits into four coupled excitations, which group into two pairs consisting
of one excitation with higher and one with lower oscillator strength each. The excitation
energies of these pairs are red-shifted (blue-shifted) by 0.15 eV (0.17 eV) compared to
the Qy transition of the isolated Bcl g’–His subunit. The Qx transition splits, as before,
into two coupled excitations of similar energy. The corresponding transition densities
are depicted in Figure S3. Once again, the Qx transition densities of the aggregate are
predominantly localized on single Bcl g’–His entities, i. e., are rather uncoupled. The
coupling of the Qy excitations can be rationalized by the theory of molecular aggregates
again. Here, the coupling of the Qy pair with lower energy is approximately of J-type,
whereas that of the pair with higher energy is of H-type. In the latter case the delocalized
excited state with lower (higher) energy results from antisymmetric (symmetric) coupling.
We attribute the fact that both J-type and H-type couplings emerge to the strong coupling
of the SPP.

(a) (b)

(c) (d)

Figure S4: Hole (blue) and electron (red) densities of the first NTO pairs of the four
forward-CT states identified in the spectrum of SPP–Acc. The arrangement of the subfigures
is in the order of increasing excitation energy: (a) 1.882 eV, (b) 1.894 eV, (c) 2.240 eV, and
(d) 2.260 eV. In all cases the isosurfaces represent an isovalue of 4 · 10−6 a−3

0 .
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Figure S5: Comparison of the excitation spectra emerging from the original structure of SPP–
Acc and its two symmetrized variants (“Symmetrized I” and “Symmetrized II”), calculated
with the 6–31G basis set. The character of the states is indicated as described in the main
text. Note that for the symmetrized structures the forward-CT states emerge in pairs of
virtually identical excitation energies (as indicated).

(a) (b)

Figure S6: (a) Hole and (b) electron density of the first NTO pair of the lowest forward-CT
state (at 1.846 eV) in the spectrum of one symmetrized structure of SPP–Acc (“Sym-
metrized I”). The corresponding NTOs of the other forward-CT states (of both symmetrized
structures) look virtually identical. The isosurface representation is the same as in Figure S4.
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Excited States of the SPP–Acc System

The forward-CT excitations in the SPP–Acc system emerge in pairs of two states,
cf. Figure 4 (main text). Figure S4 provides additional information on the NTOs of these
forward-CT states. This illustrates that CT is directed along different branches of the
HbRC for the two states of such a pair. Otherwise the shape of the NTOs barely changes.

We argue in the main text, that the small energy gap of ∼ 0.02 eV between the individual
excitations of each forward-CT state pair arises from small structural asymmetries between
the different branches of the HbRC. We are able to verify this assumption by explicitly
symmetrizing the structure of SPP–Acc. We generate the symmetrized structures by
splitting the original unsymmetric structure into two halves, each consisting of one half of
the SPP–His and Acc–Gln. We then rotate each of these two parts by 180◦ around the C2
symmetry axis to generate two symmetric versions of the SPP–Acc system (“symmetrized
I” and “symmetrized II”). These symmetrized versions differ from the crystal structure
and among each other merely in the position of the H atoms. The corresponding excitation
spectra (“Symmetrized I” and “Symmetrized II”) are compared in Figure S5 to the one
emerging from the original structure that exhibits the slight asymmetry. The coupled
Qy and Qx excitations are barely influenced by the symmetrization process. In contrast,
the forward-CT states exhibit qualitative differences. The small energetic difference
within each pair of excitations disappears, and the forward-CT excitation energies for the
symmetrized structures are red-shifted (Symmetrized I) or blue-shifted (Symmetrized II),
respectively, by ∼ 0.04 eV on average, compared to the original spectrum. An NTO
analysis reveals that also the character of the forward-CT excitations changes. An
example is depicted in Figure S6; the corresponding NTOs of all other forward-CT
states look virtually identical. The electron density is delocalized equally over both Acc
pigments for the symmetrized structures.

Numerical Tests

Q-Chem represents functions by Gaussian basis sets and we used the 6–31G, 6–31G(d,p),
and 6–311G(d,p) Pople basis sets in our work. In Figure S7 we demonstrate the influence
that the basis set has on the excitations of the SPP–Acc system. It turns out that the
variation of the basis set leaves the order of the excitations and their relative spectral
separation unchanged and merely induces a global red-shift of the excitation energies.
Its magnitude decreases with increasing basis set size, from 0.05 eV between 6–31G and
6–31G(d,p) to 0.02 eV between 6–31G(d,p) and 6–311G(d,p). Therefore, we conclude
that already the 6–31G basis set is sufficient to identify and observe the relative spectral
positions of the forward-CT states within the spectrum.

We note that in order to ensure proper convergence of the self-consistent iterations
that provide the orbitals and eigenvalues that are used in the Casida equations, the
corresponding convergence threshold needs to be set to cis_convergence 7.

As another numerical test, we explored the influence of adding or removing the
coordinating His or H2O–Gln, respectively, in the calculations, cf. Figure S8. We find
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Figure S7: Excitation energies of the SPP–Acc system calculated with different basis sets:
6–31G, 6–31G(d,p), and 6–311G(d,p). The character of the excitations is indicated as in the
main text. The lines connect corresponding excitations. Upon change of the basis set, the
average shift of the excitation energies is −0.05 (top) and −0.02 eV (bottom).

that the coupled Qy and Qx excitations are barely influenced by these amino acid residues,
as they are shifted by only . 0.02 and 0.06 eV, respectively. The forward-CT states
exhibit more significant energy variations. Upon addition of His they are red-shifted
by 0.50 eV. The effect of H2O–Gln is smaller, yet still significant with a blue-shift by
0.16 eV. Hence, the influence of His and H2O–Gln is important regarding the position of
the CT states in the spectrum.

For all calculations presented in this work the range separation parameter ω of ωPBE
has been set to ωa = 0.171 a−1

0 . This value stems from applying the optimal tuning
procedure to a single Bcl a [1]. The central building block of our particular system is
Bcl g’ , though. Given the similarity between these molecules it is reasonable to assume
that optimal tuning for Bcl g’ leads to a comparable range-separation parameter. We
have verified this and find ωg = 0.160 a−1

0 when we optimally tune for Bcl g’ . We also
compared the spectrum of SPP–Acc calculated with ωa to the one calculated with ωg to
clarify the influence that the range-separation parameter has on the excitation energies.
This comparison is shown in Figure S9. It turns out that decreasing the range separation
parameter induces a small red-shift, up to 0.07 eV for the forward-CT states. Otherwise,
the spectra hardly change. We therefore conclude that the relevant physical effects that
we focus on in our study are described correctly with either choice of range-separation
parameter.

We would like to stress that we deliberately do not tune the range-separation parameter
anew for each (sub-)system, but, e. g., calculate SPP–Acc, SPP–His, and Acc–Gln with
the same value of ω. If the parameter would be tuned anew for each system, the
calculations would effectively use different exchange-correlation approximations and could
not be compared on the same footing. Furthermore, previous studies [4, 5] showed that
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Figure S8: Influence of the coordinating molecules on the excitation energies of the SPP–Acc
system, calculated with the 6–31G basis set. The configurations considered are: without
any coordinating molecules (“vacuum”), with His, with H2O–Gln, and with both His and
H2O–Gln (bold label, shown twice for ease of comparison). The latter corresponds to the
spectrum shown in the main text. The order of the excitations changes, as indicated by the
connecting lines.

tuning for conjugated systems of increasing size can reveal artifacts due to the semi-local
functional pieces in the range-separated hybrid, leading to unrealistically low values of
the range-separation parameter. Effectively, the range-separated hybrid then turns into
an almost semi-local functional, with the corresponding shortcomings, e. g., regarding
the description of CT excitations.

Protein Environment

In the main text, we discuss the influence of the protein environment by comparing
the excitation spectrum of the SPP–Acc system embedded into a particular selection of
amino acid residues, defined in Table 1 (main text), to that of the bare SPP–Acc system.
We further mention that certain polar or aromatic amino acids from this selection, i. e.,
Trp, Thr, and Tyr, have the largest influence on the excitation spectrum. Figure S10
provides additional information on this point by comparing the excitation energies of the
SPP–Acc system within three different amino acid selections – Trp; Trp, Thr, and Tyr;
the full amino acid selection – to those of the SPP–Acc system alone. This graphical
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Figure S9: Excitation spectrum of SPP–Acc for different range separation parameters:
ω = 0.171 a−1

0 (from [1], used throughout this work) and ω = 0.160 a−1
0 (from OT of a

single Bcl g’), both calculated with the 6–31G(d,p) basis set. The character of the states is
indicated as in the main text.

representation supports our conclusions from the main text, i. e., adding Trp alone red-
shifts the forward-CT states by ∼ 0.14 eV. Adding both Thr and Tyr induces a blue-shift
of similar size.

We also checked which influence the phythyl tails of the Bcl g’ from the SPP, which
coordinate the Accs, have on the excitation spectrum, cf. Figure S10. We find that
they have little impact on the excitation spectrum as they only induce an overall shift
. 0.04 eV.

Born-Oppenheimer Molecular Dynamics

In the main text, we discuss the influence of the nuclear motion on the excitation spectrum
of SPP–Acc by comparing a histogram of the forward-CT states to an ensemble-averaged
excitation spectrum. The latter constitutes a transparent way of representing the huge
number of excitation spectra for the different geometries from the BOMD simulation
in an efficient manner. However, it does not provide insights into the nature of the
underlying excitations, i. e., whether their character is similar to Qy or Qx transitions,
and their time dynamics. A pragmatic way to shed light on this matter is to plot the time
evolution of certain energy levels which represent the main features of the BOMD-based
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Figure S10: Influence of the environment on the excitation energies of SPP–Acc, calculated
with the 6–31G basis set. Displayed are the energies of SPP–Acc alone (bold label) as well as
combined with the phythyl tails of the SPP Bcl g’s (above) and certain amino acid selections:
Trp; Trp, Thr, and Tyr; the full environment amino acid selection (cf. text). The order of the
excitations changes, as indicated by the connecting lines.

excitation spectra. To that end we define three energy levels – named main Qy, mean
Qx, and lowest forward-CT – whose time evolution is depicted in Figure S11.

The main Qy energy level is defined as the energy of the excitation with the highest
oscillator strength. This will be one of the coupled Qy excitations. We choose this
excitation for representing the typical Qy energy, because in our experience the coupled
Qy excitations are typically dominated by a single excitation. In the case of the coupled
Qx excitations the picture is different. Normally, there is no single dominant excitation. In
our experience, however, the average of the two Qx excitations with the highest oscillator
strengths represents this type of excitation well. We refer to this average energy as the
mean Qx energy level. On the technical side, we determine these two excitation energies
by first excluding the six excitations with lowest energy (which will be the coupled Qy’s),
and then searching among the remaining excitations for the two ones with the oscillator
strengths. Obtaining the lowest forward-CT energy is straightforward as we can just
extract it from the histogram data that is discussed in the main text: We select from the
already-known forward-CT excitations the one with lowest energy.

From Figure S11 we can draw several conclusions which support our line of argument
in the main text. The main Qy energy level fluctuates between 1.6 and 1.8 eV, the mean
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Figure S11: Time evolution of the lowest forward-CT excitation energy and energy levels
representing the coupled Qy and Qx excitations (see text for their definitions). The dashed
line (at 105.2 fs) marks the end of the equilibration phase and the beginning of the sampling
for the histogram Figure 7 (main text).

Qx between 2.0 and 2.2 eV. The lowest forward-CT excitation is somewhat higher in
energy; it lies mostly between 2.1 and 2.5 eV. Notably, there are a few snapshots where
the lowest forward-CT energy is close to or even below the mean Qx. By contrast, the
main Qy and lowest forward-CT energies are separated by & 0.4 eV during the whole
BOMD run.

In the previous discussion we have excluded the data from the first ∼ 100 fs (until
the dashed line in Figure S11). During this time span, which we refer to as the “initial
equilibration phase” in the main text, the pigment structures – initially in the X-ray
geometry – equilibrate to the canonical ensemble mimicked by the MD simulation. The
first few points in Figure S11 show this process. In the beginning, the energy levels are
still close to the ones of the crystal structure, and, hence, do not represent the influence
of the thermally driven nuclear motion.
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Experimental Spectra

A direct comparison of our calculated spectra to the available experimental absorption
spectrum of the HbRC from [6] is difficult. Our study focuses on the electronic effects in
the vicinity of the special pair and our simulations neither includes the complete protein
environment nor the solvent. The latter can be expected to induce a global shift of
the excitation energies. Moreover, our SPP–Acc system is limited to 4 out of 58 Bcl
pigments in total. Especially the OH-Chl a pigments, whose spectral properties differ
significantly from those of Bcl g [7, 8] and which give rise to another absorption band peak
at ∼ 1.85 eV in the experimental spectrum, are absent in our current simulations. However,
our calculations obtain qualitative agreement with the experimental peak positions of
the Qy and Qx bands, ∼ 1.6 eV and ∼ 2.2 eV, respectively. This is in line with earlier
findings showing that TDDFT with non-local exchange-correlation approximations can
describe the excitations of different Bcls with reasonable accuracy [9–11].

Tables of the Excitation Spectra

For the sake of completeness and transparency the following Tables S1 to S5 list the
excitation energies and oscillator strengths of the relevant excitations of all spectra
depicted in the main text and the Supporting Information of this article. We chose to
present the excitations in the order in which they appear in the SPP–Acc system, i. e.,
first the (coupled) Qy excitations, then the forward-CT pair with lower energy, then the
(coupled) Qx excitations, and finally the second forward-CT pair (for subsystems: as far
as the excitations occur).
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SPP–Acc SPP Acc Bcl g’ & His Bcl g & Gln

Qy

1.389 (0.423) 1.398 (0.350)

1.567 (0.265) 1.543 (0.322)

1.433 (0.090) 1.446 (0.023)
1.510 (0.708) 1.534 (0.613)
1.535 (0.079) 1.554 (0.066)
1.707 (0.016) 1.709 (0.016)
1.776 (0.068) 1.774 (0.077)

CT 1.818 (0.000)
1.847 (0.001)

Qx

1.980 (0.006) 1.992 (0.016)

2.001 (0.032) 2.019 (0.059)1.985 (0.026) 1.995 (0.023)
1.991 (0.059) 2.018 (0.049)
2.002 (0.061) 2.020 (0.066)

CT 2.187 (0.000)
2.216 (0.000)

Table S1: Excitation energies (in eV) and oscillator strengths (in parentheses) corresponding
to Figure 4 (main text) and Figure S1. The excitations of the SPP and Accs, respectively,
are arranged to indicate the correspondence to the excitations of the SPP–Acc system.

Original structure Symmetrized I Symmetrized II

Qy

1.454 (0.449) 1.446 (0.433) 1.460 (0.460)
1.499 (0.090) 1.496 (0.085) 1.502 (0.094)
1.575 (0.729) 1.579 (0.735) 1.572 (0.726)
1.600 (0.080) 1.603 (0.078) 1.598 (0.076)
1.766 (0.016) 1.770 (0.017) 1.765 (0.016)
1.831 (0.061) 1.834 (0.063) 1.830 (0.060)

CT 1.882 (0.000) 1.846 (0.001) 1.925 (0.000)
1.894 (0.001) 1.847 (0.001) 1.927 (0.001)

Qx

2.012 (0.015) 2.010 (0.009) 2.013 (0.049)
2.016 (0.034) 2.012 (0.049) 2.013 (0.059)
2.017 (0.082) 2.035 (0.050) 2.018 (0.062)
2.033 (0.078) 2.035 (0.107) 2.018 (0.034)

CT 2.240 (0.000) 2.214 (0.000) 2.283 (0.000)
2.260 (0.000) 2.215 (0.000) 2.284 (0.000)

Table S2: Excitation energies (in eV) and oscillator strengths (in parentheses) corresponding
to Figure S5.
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ω = 0.171 a−1
0 ω = 0.160 a−1

0
6–31G 6–31G(d,p) 6–311G(d,p) 6–31G(d,p)

Qy

1.454 (0.449) 1.389 (0.423) 1.369 (0.431) 1.384 (0.381)
1.499 (0.090) 1.433 (0.090) 1.410 (0.094) 1.435 (0.077)
1.575 (0.729) 1.510 (0.708) 1.483 (0.706) 1.521 (0.727)
1.600 (0.080) 1.535 (0.079) 1.509 (0.076) 1.544 (0.090)
1.766 (0.016) 1.707 (0.016) 1.692 (0.015) 1.677 (0.016)
1.831 (0.061) 1.776 (0.068) 1.758 (0.063) 1.751 (0.076)

CT 1.882 (0.000) 1.818 (0.000) 1.796 (0.001) 1.757 (0.008)
1.894 (0.001) 1.847 (0.001) 1.823 (0.001) 1.786 (0.001)

Qx

2.012 (0.015) 1.980 (0.006) 1.959 (0.003) 1.969 (0.006)
2.016 (0.034) 1.985 (0.026) 1.965 (0.025) 1.974 (0.026)
2.017 (0.082) 1.991 (0.059) 1.971 (0.055) 1.981 (0.058)
2.033 (0.078) 2.002 (0.061) 1.982 (0.057) 1.993 (0.060)

CT 2.240 (0.000) 2.187 (0.000) 2.166 (0.000) 2.116 (0.000)
2.260 (0.000) 2.216 (0.000) 2.194 (0.000) 2.146 (0.000)

Table S3: Excitation energies (in eV) and oscillator strengths (in parentheses) corresponding
to Figure S7 and Figure S9.

His & H2O–Gln His H2O–Gln Vacuum

Qy

1.454 (0.449) 1.455 (0.447) 1.452 (0.454) 1.454 (0.452)
1.499 (0.090) 1.497 (0.088) 1.513 (0.102) 1.512 (0.101)
1.575 (0.729) 1.575 (0.713) 1.586 (0.707) 1.584 (0.699)
1.600 (0.080) 1.599 (0.079) 1.611 (0.071) 1.609 (0.070)
1.766 (0.016) 1.768 (0.017) 1.752 (0.016) 1.754 (0.017)
1.831 (0.061) 1.831 (0.062) 1.832 (0.074) 1.831 (0.075)

CT 1.882 (0.000) 1.724 (0.001) 2.386 (0.001) 2.223 (0.001)
1.894 (0.001) 1.734 (0.001) 2.399 (0.001) 2.233 (0.001)

Qx

2.012 (0.015) 2.014 (0.024) 2.023 (0.071) 2.076 (0.022)
2.016 (0.034) 2.017 (0.032) 2.040 (0.070) 2.079 (0.046)
2.017 (0.082) 2.073 (0.066) 2.076 (0.009) 2.081 (0.033)
2.033 (0.078) 2.088 (0.053) 2.079 (0.033) 2.091 (0.062)

CT 2.240 (0.000) 2.078 (0.015) 2.732 (0.001) 2.570 (0.000)
2.260 (0.000) 2.097 (0.001) 2.755 (0.003) 2.587 (0.000)

Table S4: Excitation energies (in eV) and oscillator strengths (in parentheses) corresponding
to Figure S8.
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No env. Phythyl Trp Trp–Thr–Tyr Full env.

Qy

1.454 (0.449) 1.457 (0.468) 1.453 (0.431) 1.451 (0.440) 1.408 (0.418)
1.499 (0.090) 1.496 (0.091) 1.496 (0.095) 1.495 (0.105) 1.467 (0.083)
1.575 (0.729) 1.561 (0.661) 1.572 (0.780) 1.555 (0.788) 1.550 (0.765)
1.600 (0.080) 1.586 (0.071) 1.599 (0.076) 1.582 (0.063) 1.573 (0.056)
1.766 (0.016) 1.774 (0.019) 1.716 (0.001) 1.764 (0.022) 1.727 (0.020)
1.831 (0.061) 1.832 (0.064) 1.788 (0.001) 1.828 (0.048) 1.795 (0.042)

CT 1.882 (0.000) 1.838 (0.002) 1.763 (0.020) 1.837 (0.001) 1.837 (0.001)
1.894 (0.001) 1.902 (0.001) 1.825 (0.054) 1.933 (0.001) 1.932 (0.001)

Qx

2.012 (0.015) 2.013 (0.004) 2.006 (0.012) 2.002 (0.012) 1.978 (0.016)
2.016 (0.034) 2.015 (0.054) 2.010 (0.041) 2.008 (0.072) 1.982 (0.051)
2.017 (0.082) 2.022 (0.050) 2.016 (0.076) 2.010 (0.050) 2.006 (0.080)
2.033 (0.078) 2.023 (0.106) 2.031 (0.073) 2.028 (0.074) 2.027 (0.076)

CT 2.240 (0.000) 2.203 (0.000) 2.066 (0.002) 2.204 (0.000) 2.193 (0.000)
2.260 (0.000) 2.260 (0.000) 2.148 (0.000) 2.287 (0.000) 2.275 (0.000)

Table S5: Excitation energies (in eV) and oscillator strengths (in parentheses) corresponding
to Figure 6 (main text) and Figure S10.
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Supplementary Material for

Hybrid Functionals with Local Range Separation:
Accurate Atomization Energies and Reaction Barrier Heights

Journal of Chemical Physics

Moritz Brütting,1 Hilke Bahmann,2 and Stephan Kümmel1

1 Theoretical Physics IV, University of Bayreuth
2 Physical and Theoretical Chemistry, Saarland University

In this supplementary material, we give more detailed insights into the properties of our local range-
separated hybrid (RSH) functionals, and illustrate how we assess their performance and optimize the
functional parameters. Furthermore, we explain how we calculate the equilibrium bond lengths and
harmonic vibrational frequencies of diatomic molecules, and comment on the computational effort
required for the local RSH calculations.

We use four different test sets. First, we use an in-house set [1] of 11 atomization energies of
diatomic molecules (H2, LiH, Li2, LiF, CO, N2, NO, OH, O2, HF, and F2) at experimental bond
lengths from Ref. [2] (see also Table S6). The experimental reference values for the atomization
energies (with zero point vibration removed) have been taken from Ref. [3]. Furthermore, we use
a test set of 17 atomic ground-state energies (from H to Cl) with the reference values taken from
the Minnesota database 2.0 [4–6]. Additionally, we use the AE6 and BH6 test sets of atomization
energies and reaction barrier heights [7, 8]. Here, we also use the updated reference values (without
vector-relativistic effects) and molecule geometries from the Minnesota database 2.0 [4, 9, 10]. Finally,
we calculate the equilibrium bond lengths and harmonic vibrational frequencies (as detailed below)
for the molecules in the AE11D test set. The corresponding experimental reference data is taken from
Ref. [2].

For all these properties, we quantify the deviation of calculated and reference values by:

∆V ≡ Vcalc − Vref, (S1)

where Vcalc and Vref refer to the calculated and reference values, respectively, for a certain system
(molecule, chemical reaction, or atom). By averaging the (absolute) values of ∆V over all systems
in a certain test set, we determine the mean signed error (MSE) or mean absolute error (MAE),
respectively. Below we provide explicit listings of the reference values Vref and the deviations ∆V
for individual systems: For the AE11D test set, the atomization energies are given in Table S3. The
atomization energies and barrier heights for the AE6 and BH6 test sets are provided in Tables S1, S2,
and S4. Table S5 lists the atomic ground-state energies. The equilibrium bond lengths of the molecules
in the AE11D test set are given in Table S6, the harmonic vibrational frequencies in Table S7. In
these tables, we use the functional names introduced in the main text, cf. especially Table I therein.

Parameter Optimization

The values of the parameters in our functionals are optimized for atomization energies, reaction barrier
heights, and atomic ground-state energies. Thereby, we determine the parameter tuples that minimize
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the MAE for each functional and test set. For the atomic test set we consider ∆V and the MAE per
electron. The parameters were varied in discrete steps within certain intervals of values. For clarity we
give a specific example: For determining the optimal values for the SIC-ωLDA functional mentioned
in Table VIII of the main text we varied η from 0.113 to 0.118 in steps of 0.001, and γ from 0.180 a0
to 0.220 a0 in steps of 0.001 a0, and checked which combination of the two parameters minimized
the sum of the MAEs of the AE6 and the BH6 test sets. Before, coarser grids have been used to
determine the approximate position of the optimum and to ensure that this parameter combination
yields the global, and not only a local minimum of the combined MAEs.

Equilibrium Bond Lengths and Harmonic Vibrational Frequencies

Typically, equilibrium bond lengths and harmonic vibrational frequencies are calculated via molecular
gradients, i. e., derivatives of the total energy with respect to nuclear displacements. However, as
our self-consistent implementation of local RSH functionals is a very recent development, such an
algorithm is not yet available. Nevertheless, for diatomic molecules bond lengths and harmonic
vibrational frequencies can readily be obtained by calculating the ground-state energy E(l) at different
bond lengths l. In principle, the equilibrium bond length of a molecule is then directly given as that
bond length l0 which minimizes E(l).

The harmonic vibrational frequency can be calculated from the (numerical) second derivative of
E(l):

ω =
√

1
µ

∂2E(l)
∂l2

∣∣∣∣
l=l0

, (S2)

where µ = m1m2/(m1 + m2) is the reduced mass of the molecule with atomic masses m1 and m2. In
practice, it is advantageous not to determine the equilibrium bond length and the harmonic vibrational
frequency directly from the numerical data but to approximate E(l) by a model function,

E(l) = E0 + k

2 (l − l0)2 + a

6(l − l0)3 + b

24(l − l0)4, (S3)

in an interval around the minimum of E(l). The form of E(l) can be motivated by a Taylor series
expansion. The parameters E0, l0, k, a, and b in Eq. (S3) are determined by fitting E(l) to E(l).
Then, the equilibrium bond length is given by the optimal value for l0, and the harmonic vibrational
frequency follows by inserting k into Eq. (S2).

In our work, we sample E(l) in steps of ∆l = 0.001 Å for each molecule and functional. Then, the
model E(l) is fitted to E(l) in an interval of ±0.02 Å around the approximate position of the minimum
(estimated from the minimum of the raw numerical data for E(l)) using a standard non-linear least
squares algorithm as implemented in the optimize.curve_fit function of Python’s SciPy package
(Python version 2.7, SciPy version 1.2.2). Due to the excellent agreement of model and data, the
uncertainty of l0 and k that results from the fitting procedure is negligible. The atomic masses that
enter into Eq. (S2) are taken from Ref. [11].

Computational Effort

Our semi-numerical implementation of local RSHs in TURBOMOLE [12] is – at its present stage – not yet
optimized for computational efficiency. Therefore, directly comparing the computational effort to that
of other density functional implementations, e. g., standard (analytical) global RSH implementations,
is currently not reasonable. However, comparing different RSH functionals with constant and
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space-dependent range-separation functions (RSFs), respectively, within our semi-numerical RSH
implementation, can provide a first impression of the additional computational effort required for
the evaluation of the hybrid functionals with local range separation. Doing this comparison we find
that the computation time required for SIC-ωLDA is a few 10 % higher than that for ωLDA (for the
molecules in the AE6 test set, and with the same functional parameters as in Table S4) while the
scaling with system size is similar for both functionals. The latter is to be expected also from formal
considerations.

Table S1: Details on the assessment of the atomization energies of the AE6 test set, corresponding to
Table III of the main text. For each molecule (cf. column 1) we list the reference value (column 2),
and the deviation ∆V of calculated and reference values for the different functionals (column 3 to 7).
Additionally, the resulting MAEs and MSEs are given for the different functionals. All values are in
kcal/mol.

Functional Ref. LDA ωLDA K-ωLDA SIC-ωLDA (γ ≡ 0) SIC-ωLDA

Parameter(s) — — ω0 = 0.601 /a0 η = 0.131 η = 0.132 η = 0.114,
γ = 0.218 a0

SiH4 324.95 22.00 14.84 6.57 5.16 0.24
SiO 193.06 30.28 −6.70 −10.10 −4.67 −3.65
S2 104.25 30.99 −16.76 −0.08 2.14 4.89

C3H4 705.06 95.34 3.56 0.15 3.31 0.01
C2H2O2 633.99 118.06 −0.07 −6.30 −0.40 0.03

C4H8 1149.37 152.91 16.25 5.71 6.22 −0.25

MAE — 74.93 9.70 4.82 3.65 1.51
MSE 74.93 1.85 −0.68 1.96 0.21

Table S2: Details on the assessment of the reaction barrier heights of the BH6 test set, corresponding
to Table V of the main text. For each reaction (cf. column 1) we list the reference value (column 2),
and the deviation ∆V of calculated and reference values for the different functionals (column 3 to 6).
Additionally, the resulting MAEs and MSEs are given for the different functionals. All values are in
kcal/mol. The forward reactions are denoted by F, the reverse reactions by R.

Functional Ref. LDA ωLDA K-ωLDA SIC-ωLDA (γ ≡ 0)
Parameter — — ω0 = 0.486 /a0 η = 0.144 η = 0.128

OH + CH4 → F 6.50 −22.70 0.00 −0.04 −2.27
CH3 + H2O R 19.60 −18.48 1.51 −2.21 −3.18

H + OH → F 10.50 −12.70 −2.16 −7.06 −2.44
O + H2 R 12.87 −24.49 −2.81 0.32 0.07

H + H2S → F 3.50 −9.87 −0.94 −4.07 −0.29
H2 + HS R 16.76 −16.69 3.13 1.99 0.94

MAE — 17.49 1.76 2.62 1.53
MSE 17.49 −0.21 −1.85 −1.19
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Table S3: Details on the assessment of the atomization energies of the AE11D test set, corresponding
to Table II of the main text. For each molecule (cf. column 1) we list the reference value (column 2),
and the deviation ∆V of calculated and reference values for the different functionals (column 3 to 13).
Additionally, the resulting MAEs and MSEs are given for the different functionals. All values are in
kcal/mol.

Functional Ref. LDA ωLDA K-ωLDA — —

· · ·RSF ωσ

— —
ω0 = const. η|∇nσ|/nσ η|∇nσ|2/n

7/3
σ η|∇nσ|3/n

11/3
σ

Correlation LDA LDA
Parameter ω0 = 0.548 /a0 η = 0.124 η = 9.67 · 10−3 η = 4.23 · 10−5

H2 109.5 3.3 4.2 5.4 6.1 2.9

· · ·

LiH 58.0 2.0 5.6 1.0 0.0 7.0
Li2 24.7 −1.4 −3.5 −6.6 −7.5 −3.6
LiF 138.3 14.3 7.6 −7.5 −9.2 14.4
CO 259.5 39.5 −0.2 −2.6 −4.2 −4.3
N2 228.3 39.0 −4.8 −5.7 −11.2 0.0
NO 152.5 46.3 0.9 0.9 0.0 2.4
OH 107.1 15.1 3.4 0.9 −0.1 −0.5
O2 120.5 54.6 4.2 7.4 11.1 4.3
HF 141.1 18.4 4.7 0.8 1.6 −0.4
F2 38.4 39.4 −2.6 −0.3 6.4 2.7

MAE — 24.8 3.8 3.6 5.2 3.9 · · ·MSE 24.6 1.8 −0.6 −0.4 2.3

· · ·
— — SIC-ωLDA (γ ≡ 0) — — —

ΩK
σ Θ(zσ) ΩK

σ Θ(zσζ2) ΩK Θ(zζ2)
LDA-SPZ LDA-Z LDA-SPZ LDA-Z LDA-SPZ LDA-Z
η = 0.176 η = 0.317 η = 0.128 η = 0.101 η = 0.159 η = 0.117

· · ·

33.5 4.7 1.9 −33.3 8.6 −29.3
23.2 0.5 1.1 −25.7 6.9 −21.4
9.4 −2.9 −2.8 −17.3 2.1 −12.6

−6.2 −9.3 −5.6 −7.7 −5.2 −6.3
−24.7 −34.9 0.8 −0.2 −1.0 −0.1
−5.5 −51.9 −1.6 −26.2 0.8 −23.3

−21.9 −46.4 2.3 −3.6 1.4 −2.6
12.5 −0.8 −0.6 −13.5 2.0 −11.8

−40.5 −40.8 5.1 19.5 0.4 18.7
−0.1 −4.3 −1.0 −8.1 0.3 −7.0

−28.6 −28.8 −0.3 12.7 −6.0 10.5

· · · 18.7 20.5 2.1 15.3 3.2 13.1
−4.4 −19.5 −0.1 −9.4 0.9 −7.7
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Table S4: Details on the comparison of various density functionals for the AE6 and BH6 test sets,
corresponding to Table VIII of the main text. For each molecule or reaction, respectively, (cf. column 1)
we list the reference value (column 2), and the deviation ∆V of calculated and reference values for
different functionals (column 3 to 16). Additionally, the resulting MAEs (for AE6, BH6, and across
both test sets) and MSEs (individually for AE6, and BH6) are given. All values are in kcal/mol. The
forward reactions of BH6 are denoted by F, the reverse reactions by R. Details on the functionals and
their parameters can be found in Table VIII of the main text.

Functional Ref. LDA PBE PBE0 ωPBE BLYP B3LYP
· · ·Parameter(s) — — — — ω = 0.4 /a0 — —

SiH4 324.95 22.00 −11.60 −9.77 −7.17 −7.26 −1.37

· · ·
SiO 193.06 30.28 2.43 −11.01 −8.60 1.48 −6.04
S2 104.25 30.99 10.76 2.38 −5.92 2.89 −1.24

C3H4 705.06 95.34 15.09 1.85 −0.91 −4.56 −3.52
C2H2O2 633.99 118.06 28.64 0.53 2.92 6.03 −4.09

C4H8 1149.37 152.91 17.08 5.81 6.50 −19.68 −9.02

MAE (AE6) — 74.93 14.27 5.22 5.34 6.98 4.21 · · ·MSE (AE6) 74.93 10.40 −1.70 −2.20 −3.52 −4.21

OH + CH4 → F 6.50 −22.70 −11.34 −4.05 −0.80 −8.52 −3.83

· · ·
CH3 + H2O R 19.60 −18.48 −11.92 −6.68 −2.10 −10.39 −6.85

H + OH → F 10.50 −12.70 −7.40 −3.96 −0.50 −9.66 −7.07
O + H2 R 12.87 −24.49 −13.32 −6.19 −4.07 −10.58 −5.87

H + H2S → F 3.50 −9.87 −4.43 −2.13 0.60 −5.54 −3.87
H2 + HS R 16.76 −16.69 −6.88 −3.97 −0.45 −2.12 −0.59

MAE (BH6) — 17.49 9.22 4.49 1.42 7.80 4.68 · · ·MSE (BH6) −17.49 −9.22 −4.49 −1.22 −7.80 −4.68

MAE (AE6BH6) — 46.21 11.75 4.86 3.38 7.39 4.45 · · ·

· · ·
CAM-B3LYP M11-L MN15-L M11 MN15 ωLDA K-ωLDA SIC-ωLDA

— — — — — ω0 = 0.600 /a0 η = 0.131 η = 0.115,
γ = 0.202 a0

· · ·

0.35 2.15 6.17 −1.77 1.18 14.82 6.57 0.50
−5.21 −9.20 −5.51 −6.05 1.02 −6.64 −10.10 −3.75
−4.04 11.79 2.05 −0.61 0.39 −16.72 −0.08 4.72
−1.07 −5.55 −4.50 −3.21 −1.89 3.64 0.15 0.11
−0.57 −5.58 −0.21 −2.87 2.17 0.08 −6.30 −0.11
−0.46 −10.90 −5.56 −4.30 −3.10 16.34 5.71 0.00

· · · 1.95 7.53 4.00 3.14 1.62 9.71 4.82 1.53
−1.83 −2.88 −1.26 −3.14 −0.04 1.92 −0.68 0.24

· · ·

−2.82 2.49 1.36 −1.07 −0.28 4.36 −2.15 −2.91
−5.42 −1.94 −1.53 −2.50 −2.12 4.85 −3.62 −4.22
−5.42 −1.15 −3.31 −2.18 −0.84 −0.13 −7.60 −2.47
−5.53 −0.14 0.46 −1.83 −1.14 1.70 −2.05 −0.32
−2.69 1.50 0.57 −0.84 1.16 0.18 −4.63 0.01
−0.63 0.36 1.50 0.03 0.41 5.97 0.24 −0.06

· · · 3.75 1.26 1.45 1.41 0.99 2.87 3.38 1.66
−3.75 0.19 −0.16 −1.40 −0.47 2.82 −3.30 −1.66

· · · 2.85 4.40 2.73 2.28 1.31 6.29 4.10 1.60
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Table S5: Details on the assessment of the ground-state energies of the atomic test set, corresponding
to Table IV of the main text. For each atom (cf. column 1) we list the reference value (column 2),
and the deviation ∆V per electron of calculated and reference values for the different functionals
(column 3 to 8). Additionally, the resulting MAEs and MSEs per electron are given for the different
functionals. All values are in Hartree atomic units.

Functional Ref. LDA ωLDA K-ωLDA K-ωLDA (+γ) · · ·Parameter(s) — — ω0 = 3.00 /a0 η = 0.263 η = 0.113, γ = 3.11 a0

H −0.500 0.022 −0.022 −0.014 −0.004

· · ·

He −2.904 0.036 −0.035 −0.021 −0.011
Li −7.478 0.045 −0.034 −0.019 −0.012
Be −14.667 0.056 −0.028 −0.013 −0.008
B −24.654 0.060 −0.024 −0.011 −0.007
C −37.845 0.063 −0.018 −0.009 −0.006
N −54.589 0.066 −0.013 −0.007 −0.005
O −75.067 0.068 −0.008 −0.005 −0.004
F −99.734 0.070 −0.004 −0.003 −0.002
Ne −128.938 0.072 −0.001 −0.001 0.000
Na −162.255 0.075 0.001 0.000 0.000
Mg −200.053 0.078 0.003 0.002 0.001
Al −242.346 0.080 0.004 0.003 0.002
Si −289.359 0.083 0.007 0.005 0.002
P −341.259 0.085 0.009 0.006 0.003
S −398.110 0.087 0.011 0.007 0.003
Cl −460.148 0.088 0.012 0.008 0.004

MAE — 0.067 0.014 0.008 0.004 · · ·MSE 0.067 −0.008 −0.004 −0.003

· · · SIC-ωLDA (γ ≡ 0) SIC-ωLDA
η = 0.266 η = 0.117, γ = 2.72 a0

· · ·

0.000 0.000
−0.021 −0.012
−0.016 −0.011
−0.013 −0.008
−0.010 −0.007
−0.008 −0.006
−0.006 −0.004
−0.005 −0.004
−0.004 −0.002
−0.002 0.000

0.000 0.000
0.001 0.001
0.003 0.002
0.005 0.002
0.007 0.003
0.007 0.003
0.008 0.004

· · · 0.007 0.004
−0.003 −0.002
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Table S6: Details on the assessment of the equilibrium bond lengths of the molecules in the AE11D
test set, corresponding to Table VI of the main text. For each molecule (cf. column 1) we list the
reference value (column 2), and the deviation ∆V of calculated and reference values for the different
functionals (column 3 to 6). Additionally, the resulting MAEs and MSEs are given for the different
functionals. All values are in Å.

Functional Ref. LDA ωLDA K-ωLDA SIC-ωLDA (γ ≡ 0)
Parameter — — ω0 = 0.548 /a0 η = 0.124 η = 0.128

H2 0.7414 0.0254 0.0066 0.0105 0.0098
LiH 1.5949 0.0109 −0.0115 0.0120 0.0118
Li2 2.6730 0.0517 0.0397 0.0901 0.0914
LiF 1.5639 −0.0100 −0.0006 0.0063 0.0069
CO 1.1282 −0.0003 −0.0178 −0.0041 −0.0042
N2 1.0977 −0.0020 −0.0227 −0.0073 −0.0075
NO 1.1508 −0.0041 −0.0270 −0.0102 −0.0113
OH 0.9697 0.0179 0.0004 0.0072 0.0059
O2 1.2075 −0.0034 −0.0358 −0.0141 −0.0161
HF 0.9168 0.0165 0.0034 0.0058 0.0053
F2 1.4119 −0.0276 −0.0639 −0.0433 −0.0441

MAE — 0.0154 0.0209 0.0192 0.0195
MSE 0.0068 −0.0117 0.0048 0.0043

Table S7: Details on the assessment of the harmonic vibrational frequencies of the molecules in the
AE11D test set, corresponding to Table VI of the main text. For each molecule (cf. column 1) we
list the reference value (column 2), and the deviation ∆V of calculated and reference values for the
different functionals (column 3 to 6). Additionally, the resulting MAEs and MSEs are given for the
different functionals. All values are in 1/cm.

Functional Ref. LDA ωLDA K-ωLDA SIC-ωLDA (γ ≡ 0)
Parameter — — ω0 = 0.548 /a0 η = 0.124 η = 0.128

H2 4401.2 −213.0 73.9 −50.8 −42.4
LiH 1405.5 −24.4 72.0 −6.5 −4.8
Li2 351.4 −20.4 9.0 −18.7 −18.5
LiF 910.6 46.4 54.4 40.3 40.2
CO 2169.8 10.1 182.8 62.2 64.6
N2 2358.6 44.0 268.9 112.3 115.5
NO 1904.1 49.0 266.4 122.4 130.1
OH 3737.8 −153.6 106.5 −30.1 −14.3
O2 1580.2 39.9 284.5 135.2 145.4
HF 4138.4 −156.5 70.5 −8.6 −1.1
F2 916.9 147.4 271.2 211.0 214.2

MAE — 82.3 150.9 72.5 71.9
MSE −21.0 150.9 51.7 57.2
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Acronyms

DFT density functional theory
GGA generalized gradient approximation
HOMO highest occupied molecular orbital
IP ionization potential
LDA local density approximation
MAE mean absolute error
MSE mean signed error
RSF range-separation function
RSH range-separated hybrid
SIC self-interaction correction
xc exchange-correlation
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ABSTRACT: The homodimeric reaction center of heliobacteria retains features of the
ancestral reaction center and can thus provide insights into the evolution of photosynthesis.
Primary charge separation is expected to proceed in a two-step mechanism along either of the
two reaction center branches. We reveal the first charge-separation step from first-principles
calculations based on time-dependent density functional theory with an optimally tuned range-
separated hybrid and ab initio Born−Oppenheimer molecular dynamics: the electron is most
likely localized on the electron transfer cofactor 3 (EC3, OH-chlorophyll a), and the hole on
the adjacent EC2. Including substantial parts of the surrounding protein environment into the
calculations shows that a distinct structural mechanism is decisive for the relative energetic
positioning of the electronic excitations: specific charged amino acids in the vicinity of EC3
lower the energy of charge-transfer excitations and thus facilitate e,cient charge separation.
These results are discussed considering recent experimental insights.

P hotosynthesis is a fascinating biological process by which
plants, certain bacteria, and algae are able to exploit the

energy provided by the sun in an impressively e,cient
manner.1−3 In the initial steps of light harvesting, incident solar
radiation is absorbed and the resulting excitation energy is used
to create a charge-separated state. This is achieved by the fine-
tuned interplay of one or several pigment−protein complexes
with mainly chlorophyll (Chl) and bacteriochlorophyll (BChl)
pigments integrated into the polypeptide chains. One refers to
the domain where charge separation takes place as the reaction
center (RC), and the other parts are denominated as the
antenna domain. While the structure of the antenna domain
di/ers strongly among the di/erent species, all RCs share
common structural features.4−8 Primary charge separation
takes place on a cluster of six pigments which are arranged in
two branches. Although both branches are composed of
virtually the same pigments, charge separation typically
proceeds along only one of them. An important exception is
the RC of heliobacteria where the charge separation branches
are enclosed by two identical, homodimeric core polypep-
tides.9−12 Due to this homodimeric nature it is believed that
the heliobacterial RC most closely resembles the ancestral RC
and, thus, may provide insights into the evolution of
photosynthesis.13−15

Until recently, a detailed understanding of the mechanisms
underlying the light-harvesting process in heliobacteria16−25

has been hindered by the fact that no structural information
was available. This has changed with the work of Gisriel et al.26

who have resolved the crystal structure of the RC complex of
Heliobacterium modesticaldum by X-ray analysis. This pigment−
protein complex is the only one present in the light-harvesting
apparatus of heliobacteria and contains both the antenna

domain and the actual RC domain. The charge separation
branches consist of two close-lying BChl g′ forming the special
pair (SPP), followed by two BChl g which we refer to as
electron transfer cofactor 2 (EC2), and two 81-hydroxychlor-
ophyll a pigments (referred to as EC3). The arrangement of
the BChl and Chl chromophores is depicted in Figure 1a,b.
From various experimental studies, the SPP+EC3− charge
transfer (CT) state is known to be an intermediate state in
charge separation,11,27−31 before the electron is further
transferred toward the terminal iron−sulfur cluster (not
displayed in Figure 1). However, the details of how the
SPP+EC3− state is formed are a matter of ongoing research;
recent experimental insights have been gained especially by Orf
and Redding32 and Song et al.33

Here, we present a theoretical study that allows us to obtain
detailed atomistic insights into the electronic dynamics that are
at the core of charge separation. Since its structure has been
published, the heliobacterial RC has already been the subject
of theoretical studies. Kimura and co-workers34−36 have
investigated the excitonic coupling of the chromophores in
the RC complex via model Hamiltonian approaches. In our
previous work37 we have calculated the CT states of a reduced
system of SPP and EC2. In this work, we take a further step
forward and consider the full charge separation branches of the
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heliobacterial RC in a study based on time-dependent density
functional theory (TDDFT) and Born−Oppenheimer molec-
ular dynamics (BOMD). In our calculations, EC2+EC3− is the
most likely intermediate state in primary charge separation.
Furthermore, we reveal that the CT states are decisively
influenced by a cluster of charged amino acids in the vicinity of
EC3. This might be a clue toward an understanding of the
microscopic origin of e,cient charge separation.
It is an established computational protocol38−42 to assess

light-harvesting complexes in general and charge separation in
RCs in particular by coupling quantum-chemical calculations
with TDDFT43 and a description of the nuclear motion via
BOMD44,45 simulations. Modern TDDFT implementations
can o/er the numerical e,ciency to handle up to several
hundreds of atoms and, hence, allow directly including all
relevant chromophores and a substantial part of the
surrounding protein environment into the description. At the
same time, TDDFT can o/er the accuracy to reliably predict
di/erent types of electronic excitations. In practice, the
performance of TDDFT depends sensitively on the ex-
change−correlation functional employed. While semilocal
and global hybrid functionals su/er from an inadequate
description of excited states with CT character,46−48 range-
separated hybrid functionals, based on a mixing of semilocal
and nonlocal, Fock-like exchange that is controlled by a range-
separation parameter, can overcome this limitation.49−52 In
many functionals, empirically determined values are employed
for the range-separation parameter, e.g., in the popular
functionals CAM-B3LYP49 and the ωB97 family of func-
tionals.51,53 Such functionals have been used successfully for

studying light-harvesting systems.54−58 On the other hand, the
optimal tuning procedure provides for a nonempirical way of
determining the parameter by enforcing formal constraints
related to the IP theorem of DFT.52,59,60 In this way, the
frontier eigenvalues of the generalized Kohn−Sham system61

are endowed with physical meaning,62 and consequently, the
description of the excited states and especially those with CT
character reaches an appreciable reliability without empiricial
input. In addition, this procedure has already been used
successfully in some previous studies of light-harvesting
systems.63−66

Typically, the basic input structure for the TDDFT study of
a light-harvesting complex is its experimentally determined
crystal structure. Calculations based on this structure can
provide a first, qualitative description which su/ers from
several shortcomings, though. First, the experimental reso-
lution is not high enough to display structural details such as,
e.g., bond length alternation in conjugated systems with the
accuracy desirable for reliable quantum-chemical calcula-
tions.38,67,68 Moreover, static structures miss fluctuations due
to temperature e/ects; the crystal structure can be viewed only
as a superposition of multiple possible conformations of the
system.45 These limitations can be overcome by ground-state
BOMD simulations. Snapshots from the resulting trajectories
can be used as an input to subsequent TDDFT calculations. In
this context, classical force fields may be problematic, e.g., due
to the so-called “geometry mismatch problem”.42,69−72 One
way to avoid such issues is to perform the BOMD simulations
on the basis of DFT.73−75 There is, however, a computational
price to pay for this gain in accuracy.

Figure 1. Overview of the structure and function of the most relevant parts of the heliobacterial RC complex. Panel a shows the location of the RC
branches within the antenna domain. In panel b, the arrangement of the cofactors of charge separation (yellow) and the cluster of charge amino
acids in the vicinity of EC3 (named ENVR+, colored according to atom types) is depicted. In addition, the most relevant uncharged (polar or
aromatic) amino acids that coordinate the chromophores or are in close contact to ENVR+, are displayed (gray) (see Figure 3 for a more detailed
view of ENVR+). The H atoms of the relevant functional groups are shown to indicate the charge of the amino acids. Otherwise H atoms as well as
phythyl tails are omitted for clarity.
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There are various ways of adapting these methods to larger
systems by introducing further levels of approxima-
tion.41,69,72,76−79 Quantum-chemical calculations based on
model Hamiltonians e,ciently cover the electronic interaction
of multiple chromophores. In multiscale approaches the
quantum mechanical treatment of a small subsystem (typically
a few chromophores) is coupled to the semiclassical, molecular
mechanics description of the remaining protein complex,
where the interaction with the environment atoms is
approximated by empirical force fields. By introducing a
dielectric medium one can account for (additional) screening
e/ects. MD calculations can be performed using force fields
specifically reparametrized for photosynthetic pigments.38,45

These methods can lead to further valuable in-
sights.42,56,65,66,68,80−87

For our study of the heliobacterial RC we choose an
approach that does not require relying on empirical input. We
perform linear-response88 TDDFT calculations using the
optimally tuned range-separated hybrid ωPBE89 and ab initio
BOMD simulations using the PBE0 functional90,91 with D3
dispersion correction.92,93 In our calculations, we consider the
six BChl and Chl pigments in the RC branches and the amino
acids within a distance of ∼6 to 10 Å from these pigments.94

In the first step, we perform TDDFT calculations based on
the crystal structure of the heliobacterial RC. This allows us to
e,ciently assess the influence and importance of di/erent
components of the structure. Our minimal model of the RC
consists of both SPP chromophores, one EC2, and one EC3
chromophore (all without the phythyl tails), i.e., one full
charge separation branch. We have checked that this is
su,cient to reproduce the relevant excited-state properties (in
terms of primary charge separation) of the whole two
branches. In all calculations we additionally include a few
amino acids (histidine, glutamine, serine, and phenylalanine)
and waters that coordinate the BChls and Chls and are known
to have a relevant influence on the excited states.37 These
molecules are displayed along with the chromophores in
Figure 1a (upper part). For a detailed description of all
structural units as well as additional TDDFT excitation spectra
that complement our discussion, we refer to the Supporting
Information.

We label the minimal model of four pigments the tetramer
model. The excitation spectrum of this subsystem is depicted
in Figure 2a. It is dominated by a band of bright excitations
between ∼1.4 and 1.6 eV that arise from the coupling of the
BChl Qy transitions. Furthermore, the spectrum contains
several states that correspond to CT along the RC branches:

Figure 2. TDDFT excitation spectrum of the tetramer model without and with the most relevant charged amino acids (named ENVR+, see Figure 1
and text). In panel a, the gray box indicates the band of the brightest BChl g Qy excitations. The circles indicate the lowest CT excitations of each
type (blue: EC2+EC3−; teal: SPP+EC3−; yellow: SPP+EC2−; cf. Table 1 for a listing of the energy values). In panels b−d, the di/erence densities of
the lowest CT excitations with ENVR+ are shown (isosurfaces with an isovalue of ±0.0002a0

−3).
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the lowest EC2+EC3− state is obtained at 1.75 eV, the
SPP+EC2− state at 1.96 eV, and the SPP+EC3− state at 2.28
eV, respectively. Thereby, the CT character of the excitations is
determined from the di/erence of the respective excited-state
and ground-state electron densities (referred to as dif ference
density). The relation between the Qy band and these CT states
is of particular relevance in terms of possible charge separation
pathways: most likely, the electronic processes on the RC will
be initiated by the formation of an excited state originating
from the Qy transitions, either by excitation energy transfer
from the antenna domain or by direct light absorption. Then,
this valence excited state will couple to a CT state. An
important prerequisite for this coupling to take place is that a
CT state with a similar or a lower excitation energy than the Qy

band is available. In the tetramer spectrum, a clear candidate
for such a CT state is not found. The lowest CT state,
EC2+EC3−, is already ∼0.2 eV above the Qy band; the
di/erences from the SPP+EC2− and SPP+EC3− states are even
larger (∼0.4 and 0.7 eV, respectively).
This picture, however, changes if certain amino acids in the

vicinity of the pigments�especially arginine (ARG), aspartate
(ASP), glutamate (GLU), and lysine (LYS)�are included.
Depending on their protonation state (determined by a
standard titration analysis, cf. Computational Methods), these
types of amino acids may be charged, and thus, their influence
on electronic excitations can become particularly strong. In this
respect, it is a remarkable structural feature that ARG 406 and
ARG 554 are spaced only 3 to 4 Å apart from EC3.95 While
ARG 554 is predicted to be neutral, for ARG 406 both the
neutral and the positively charged state appear to be likely.
Close to ARG 406 and ARG 554 there are four more charged
amino acids on each branch (ARG 551, ASP 555, GLU 556,
and LYS 425). We refer to this “cluster” of amino acids with
ARG 406 positive as ENVR+. The arrangement of ENVR+ is
depicted in Figure 3a,b. Apart from LYS 425, all constituents of
ENVR+ are less than 8 Å from EC3. Remarkably, no charged
amino acids are present in a comparable distance of SPP or
EC2.
The influence of the charged amino acids in the vicinity of

EC3 is striking. Figure 2a shows how the excitation spectrum

of the tetramer model changes when the corresponding branch
of ENVR+ (together with some polar and aromatic amino acids,
cf. Figure 1) is included in the TDDFT calculation. We see
that the impact on the bright excitations, e.g., the dominant Qy

band, is small. However, the shifts in the CT excitations can be
very significant; while the lowest SPP+EC2− state is shifted
only from 1.96 to 1.67 eV, the lowest EC2+EC3− state changes
from 1.75 to 1.13 eV and the lowest SPP+EC3− state even from
2.28 to 1.28 eV. The analysis of the corresponding di/erence
densities (cf. Figure 2b−d) reveals that their CT character is
very pronounced; one can evaluate the integral over the
di/erence density in the subspace associated with one type of
pigment, i.e., SPP, EC2, or EC3. This yields absolute values
>0.95 for the pigments active in a certain excitation (e.g., EC2
and EC3 for EC2+EC3−) and absolute values <0.01 for the
“inactive” pigment (e.g., SPP for EC2+EC3−). This means that
electron and hole are well localized on specific pigments. In
summary, these results show that the EC2+EC3− and
SPP+EC3− states of the system including ENVR+ are
substantially shifted toward energies below those of the
dominant Qy excitations, and hence, downhill energy transfer
from the brightest excitations to a state corresponding to CT
along one of the RC branches becomes possible. If ARG 406 is
assumed to be neutral, the energetic shifts of the CT
excitations are strongly reduced, which shows the importance
that this particular amino acid has for the RC function.

The e/ect that ENVR+ has on the CT states is considerably
larger than that of all other components of the environment
that we have examined (cf. Table 1 for an overview). Taking
into account all other (uncharged) amino acids, i.e., except for
ARG, ASP, GLU, and LYS, within a distance of 6 Å of the RC
pigments shifts the CT excitations only by ≲0.1 eV.
Considering the charged amino acids within a distance of 8
to 10 Å of the pigments (in addition to ENVR+) can induce
shifts of ∼0.1 to 0.5 eV, i.e., with somewhat larger magnitudes,
yet still below those induced by ENVR+ (cf. the Supporting
Information). However, screening e/ects, e.g., by interjacent
parts of the protein, likely further diminish these shifts. In the
case of ENVR+, we do not expect significant screening due to
the close contact of, e.g., ARG 406 to EC3 (distance 3.3 Å).

Figure 3. Enlarged view of the charged amino acids contained in ENVR+. In panels a and b, di/erent parts of ENVR+ are shown (cf. Figure 1 for an
overview). The indicated lengths are the respective end-to-end distances between non-H atoms. The H atoms of the relevant functional groups are
shown to indicate the charge of the amino acids. Otherwise H atoms as well as phythyl tails are omitted for clarity.
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This expectation is supported by further calculations in which
we assess the impact of the most relevant uncharged amino
acids within 4 Å of the pigments, the phythyl tails of the
pigments, and some interstitial water molecules that may be
located near ENVR+.96 In all cases, the CT states in the
spectrum of ENVR+ are shifted by less than 0.1 eV. These
results indicate that the influence of ENVR+ on the CT states in
the excitation spectrum of the RC branches is robust and the
dominating e/ect.
Thus, we further explore the electronic dynamics of the

subsystem containing the tetramer of two SPP pigments, one
EC2, and one EC3 pigment as well as the ENVR+ environment
and consider the influence of changes in the nuclear structure.
Therefore, for this subsystem we perform ab initio BOMD
simulations and generate five BOMD trajectories with lengths
of ∼1.8 to 2.4 ps. To assess the impact of the BOMD dynamics
on the excitation properties, we take snapshots of the structure
every ∼0.1 ps along the BOMD trajectories after an initial
equilibration phase of ∼0.5 ps. This yields a total number of 95
snapshots for which we calculate the respective TDDFT
excitation spectra as above. To make the evaluation of this
considerable number of spectra feasible, we employ an
automated protocol which is described in full detail in the
Supporting Information. In a nutshell, in each spectrum we
treat the three lowest excitations with significant oscillator
strength as the (temporary) Qy band. We calculate its center as
the average of the involved excitation energies weighted with
the respective oscillator strengths. The CT excitations are
again determined based on the di/erence densities. In the
following, we summarize the most relevant findings from the
TDDFT analysis. More details and additional data are
provided in the Supporting Information.
The overall influence of the nuclear motion on the TDDFT

excitation spectra is visualized in an ensemble-averaged
spectrum that can directly be computed from the energies
and oscillator strengths of the excitations.37 We display the
(total) ensemble-averaged spectrum as well as the contribution
from only the Qy band (as defined above) in Figure 4a. The
total spectrum exhibits two peaks: the first one at 1.7 to 1.8 eV
arises predominantly from the Qy excitations of the BChl g

pigments; the second one at 2.1 to 2.2 eV comes from the Qy

excitations of EC3 and the Qx excitations of the BChl g
pigments. Compared to the excitation spectrum of the crystal
structure, the ensemble-averaged spectrum is blue-shifted by
∼0.2 eV.37 Although the main focus of this work is to describe
the CT properties of the heliobacterial RC appropriately rather
than to reproduce all details of the experimental absorption
spectrum,21,27,30 one might want to compare the calculated
results to the experimental data. Thereby, one must take into
account that our BOMD simulation is for only a part of the
reaction center complex and that choices made in the
theoretical description may influence the absolute excitation
energies more strongly than their relative ordering. We discuss
this in greater detail in the Supporting Information.

In terms of possible charge separation pathways, the
temporary energy gap between the CT excitations and the
Qy band is of particular interest. Therefore, for each spectrum
we determine the lowest excitation of each type, i.e.,
EC2+EC3−, SPP+EC3−, and SPP+EC2−, and compute their
respective energetic separation (energy gap) to the center of
the Qy band. The resulting histogram is depicted in Figure 4b.
Very strikingly, most of the EC2+EC3− counts are around or
slightly below the center of the Qy band whereas the
SPP+EC3− and SPP+EC2− excitations are found mostly
above this band. Especially, there is a gap of ≳0.3 eV between
the center of the Qy band and the SPP+EC2− excitations, in
agreement with our previous work.37 This outcome clearly
suggests that the SPP+EC2− states presumably do not
participate in primary charge separation, while EC2+EC3− is
a likely candidate for the first charge-separated state.

This is underlined by findings from further analyzing the
BOMD data: EC2+EC3− is (almost) always the CT excitation
in the spectrum with the lowest energy (in 97% of the spectra),
with an energetic separation of typically ∼0.1 to 0.5 eV to the
lowest SPP+EC3− and ∼0.2 to 0.7 eV to the lowest SPP+EC2−
state. In 75% of the spectra the CT state closest to the Qy band
is an EC2+EC3− excitation, whereas in 24% of the cases it is an
SPP+EC3− state, and only in 1% it is an SPP+EC2− excitation.

The data also provide more detailed information on the
characteristics of the “relevant” CT excitations (we here
consider the excitations with an energy below 2 eV, i.e., in the
same range as the Qy band):bu while virtually all of them
(except for 2%) are dark (oscillator strength below 0.01) for
SPP+EC3− and SPP+EC2−, multiple EC2+EC3− states have
significant oscillator strength, with 10% of them even above
0.1. One can also examine whether the “inactive” pigments (cf.
the discussion of Figure 2b−d for an explanation) contribute
to the CT excitations and finds that this is not a relevant e/ect.
Especially, only in 1% of the EC2+EC3− and SPP+EC3−
excitations does the integral over the di/erence (electron)
density in the subspace associated with the “inactive” pigment
yield a value smaller than −0.03. That is, the hole is (almost)
always well localized on the “active” pigment.

In view of the geometric relations apparent from the crystal
structure and the earlier experimental studies,11,23,27−29,31

Gisriel et al.26 proposed a two-step mechanism for the
formation of the SPP+EC3− state, either with SPP+EC2− or
EC2+EC3− as the intermediate step. Both variants are present
in di/erent types of photosynthetic RCs.83−87,97−102 Our
results from TDDFT and BOMD calculations on the
heliobacterial RC strongly favor the second mechanism with
EC2+EC3− as an intermediate step. In all our calculations�
with di/erent parts of the protein environment and for

Table 1. Overview of the Influence of the Most Relevant

Parts of the Structure on the CT States
a

lowest CT excitation energies (in eV)

structure EC2+EC3− SPP+EC3− SPP+EC2−

two branches 1.72 2.19 1.91

tetramer 1.75 2.28 1.96

tetramer & 6A-ENVb 1.65 �

c 1.97

tetramer & ENVR0 1.60 2.08 1.93

tetramer & ENV
R+

1.13 1.28 1.67

tetramer & ENVR+ & 4A-ENVd 1.18 1.30 1.63

tetramer & ENVR+ & HOH-ENVe 1.19 1.34 1.67

tetramer & ENVR+ & PHYf 1.19 1.34 1.67
aConsidered are the amino acids that are within ∼6−8 Å from the
chromophores. Details on the structural units and the full excitation
spectra are provided in the Supporting Information. bUncharged
amino acids within 6 Å from the chromophores. cNo SPP+EC3− CT
state is found within the computed excited states (up to 1.98 eV).
dPolar and aromatic amino acids within 4 Å from the chromophores.
eInterstitial water molecules in the vicinity of ENVR+. fRelevant parts
of the phythyl tails of the chromophores.
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di/erent BOMD geometries�we consistently obtain an
energy gap of several tenths of an eV between the
EC2+EC3− and SPP+EC2− excitations. Especially, downhill
energy transfer from the Qy band of the BChl pigments to
EC2+EC3−, but not SPP+EC2−, appears possible. The detailed
mechanism of primary charge separation has also been the
subject of recent experimental studies by Song et al.33 and Orf
and Redding.32 Independently and based on di/erent methods,
both groups argue that EC3 is involved in the first CT step and
serves as the primary electron acceptor. In this respect, our
findings are consistent with their results. Moreover, our results
indicate that distinct structural features, especially a cluster of
charged amino acids in the vicinity of EC3, are decisive for the
energetic positioning of the CT excitations. In particular, this
structural unit facilitates downhill energy transfer from the Qy

band to EC2+EC3−. We note that quite generally, the protein

environment can have a substantial influence on electronic
excitations,103 and specifically, the importance that certain
environment amino acids may have for charge separation is
also being discussed for other photosynthetic RCs.83,84,86,87,104

Concerning the detailed nature of the CT intermediate,
Song et al. propose that the hole in the first CT step is
delocalized over both SPP and EC2. Orf and Redding also
discuss this option motivated by the excitonic coupling of SPP
and EC2 observed in an earlier theoretical study.34 Indeed,
depending on the exact (BOMD) geometry such a coupling
can be observed in our TDDFT calculations.37 However, we
have examined our data thoroughly in view of the hypothesis
that the hole is initially delocalized over both SPP and EC2 but
do not find any evidence for this; neither in our calculations
including di/erent parts of the protein environment nor in an
appreciable number of snapshots from the BOMD do we

Figure 4. Overview of the results from the BOMD analysis (structure: tetramer model with ENVR+). In panel a, the ensemble-averaged total
spectrum and the contribution from the Qy band are shown; panel b shows the temporary energy gap between the lowest CT excitation of each
type and the center of the Qy band. The arrows indicate the positions of the CT excitations in the corresponding crystal structure-based spectrum
(cf. Figure 2a) for comparison.
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obtain a delocalization of the hole in the EC2+EC3− or
SPP+EC3− states in the energetically relevant region. There-
fore, the mechanism of primary charge separation that appears
to agree best with our results is

RC EC2 EC3 SPP EC3* + +

In our BOMD analysis, we find several EC2+EC3− states with
significant oscillator strength. This may facilitate the direct
coupling to an antenna excited state without prior excitation-
energy transfer to the RC. This is in line with the study by
Song et al., who propose both variants of coupling to the first
CT state, i.e., either from an excited state of the RC or the
antenna domain.
In conclusion, we have presented first-principles TDDFT

and BOMD calculations on the full charge-separation branches
of the heliobacterial RC. We have included a considerable part
of the surrounding protein environment and have extensively
investigated the e/ect of structural changes by considering
multiple BOMD snapshots in our TDDFT analysis. All results
consistently indicate that the EC2+EC3− state is the first step
of charge separation. Furthermore, we have revealed that the
energies of the CT states are specifically adjusted by the
interaction with a small group of charged amino acids. The
electrostatic interaction with this charged environment has a
pronounced e/ect on the CT excitation energies, lowering
them with respect to the non-CT bright excitations. This can
enable downhill energy transfer from the Qy band of the BChl
pigments to an EC2+EC3− state. The physical principle that a
charged environment can alter the position of CT states
relative to non-CT states is quite general. It may therefore be a
worthwhile task for future work to check whether it is realized
also in other light-harvesting structures.

■ COMPUTATIONAL METHODS

The crystal structure of the RC complex of Heliobacterium
modesticaldum is obtained from the Protein Data Bank under
file ID 5V8K.26 Before this structure can be used for the
TDDFT and BOMD calculations, several modifications are
required which have been described in detail previously.37,64

Very briefly, the positions of the H atoms, which cannot be
resolved from the X-ray data, are energetically optimized using
the CHARMM105 force field. The phythyl tails of the
chromophores are cropped from their ester linkages to the
side chains of the bacteriochlorin rings and replaced by a H
atom. Furthermore, the bonds of the amino acid residues to
the polypeptide chains are cut between Cα and Cβ and
saturated by further H atoms. The protonation states of the
titratable amino acids were determined on the basis of the
CHARMM-optimized structure using in-house versions of the
MEAD106 and GMCT107 programs. The ion concentration is
set to 150 mM, and the dielectric constant is set to 4 for the
protein and 80 for water. For further analysis, only the
protonation states with the highest probability were chosen.
The TDDFT calculations of the electronic excitations

employ the (full linear-response) Casida approach and are
performed using Q-Chem, version 5.2.2.108 We use the range-
separated hybrid functional ωPBE with the range-separation
parameter ω = 0.171a0

−1. The basic idea behind choosing this
particular value of ω is the one of optimal tuning.52,60,109−120

We explain the reasoning behind our specific choice of the
range-separation parameter in detail in the Supporting
Information. We use the 6-31G basis set which was
demonstrated to be su,cient for obtaining reliable results in

terms of the relative energetic positioning of the excitations.37

We calculate up to 25 excited states for each spectrum.
The ab initio BOMD calculations are performed using

Turbomole, version 7.6.121 For the DFT calculations, we use
the PBE0 functional with D3 dispersion correction. We use the
def2-SV(P) basis set and the resolution-of-the-identity in
combination with the multipole-accelerated-resolution-of-the-
identity approximation to speed up the calculations. For the
MD, a Nose−Hoover thermostat with a relaxation time of 30
au is used to keep the pseudotemperature around 300 K. The
step size of the propagation is 5 au. We incorporate the
mechanical constraints that the remaining protein environment
exerts on the motion of the chromophores and the amino acids
as described in detail previously:37 We fix the terminal Cβ of
the amino acids, as this is the linkage of the tails to the
polypeptide chains, and the terminal O of the phythyl tails of
the BChl and Chl, as the phythyl side chains are sterically
hindered within the protein matrix due to their length. This
strategy has already been employed in previous BOMD studies
of bacterial RCs.74,75 It is su,cient to sustain the relative
arrangement within the structure and to inhibit an overall drift.
With this setup, we generate 5 BOMD trajectories: two with
100 500 au, two with 92 500 au, and one with 76 500 au
length. For the TDDFT analysis, we take snapshots every 4000
au beginning at 20 000 au.
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Charge Separation in the Reaction Center of Heliobacterium
modesticaldum. J. Phys. Chem. B 2021, 125, 3468−3475.
(38) Cignoni, E.; Slama, V.; Cupellini, L.; Mennucci, B. The
atomistic modeling of light-harvesting complexes from the physical
models to the computational protocol. J. Chem. Phys. 2022, 156,
120901.
(39) Cupellini, L.; Jurinovich, S.; Campetella, M.; Caprasecca, S.;
Guido, C. A.; Kelly, S. M.; Gardiner, A. T.; Cogdell, R.; Mennucci, B.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.3c00377
J. Phys. Chem. Lett. 2023, 14, 3092−3102

3099

Publication
[B

3]
Publication

[B
3]



An Ab Initio Description of the Excitonic Properties of LH2 and
Their Temperature Dependence. J. Phys. Chem. B 2016, 120, 11348−
11359.
(40) Cupellini, L.; Calvani, D.; Jacquemin, D.; Mennucci, B. Charge
transfer from the carotenoid can quench chlorophyll excitation in
antenna complexes of plants. Nat. Commun. 2020, 11, 662.
(41) Curutchet, C.; Mennucci, B. Quantum Chemical Studies of
Light Harvesting. Chem. Rev. 2017, 117, 294−343.
(42) Maity, S.; Bold, B. M.; Prajapati, J. D.; Sokolov, M.; Kubar,̌ T.;
Elstner, M.; Kleinekathöfer, U. DFTB/MM Molecular Dynamics
Simulations of the FMO Light-Harvesting Complex. J. Phys. Chem.
Lett. 2020, 11, 8660−8667.
(43) Marques, M., Ullrich, C., Nogueira, F., Rubio, A., Burke, K.,
Gross, E., Eds.; Time-dependent Density Functional Theory; Springer:
Berlin, 2006.
(44) Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory
and Advances Methods; Cambridge University Press, 2009.
(45) Liguori, N.; Croce, R.; Marrink, S. J.; Thallmair, S. Molecular
dynamics simulations in photosynthesis. Photosynth. Res. 2020, 144,
273−295.
(46) Dreuw, A.; Head-Gordon, M. Failure of Time-Dependent
Density Functional Theory for Long-Range Charge-Transfer Excited
States: The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlor-
ophyll-Spheroidene Complexes. J. Am. Chem. Soc. 2004, 126, 4007−
4016.
(47) Kehrer, J.; Richter, R.; Foerster, J. M.; Schelter, I.; Kümmel, S.
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S1 Structural Information

In the following, we give additional information on the different structural units that we
discuss in the main text. We provide listings of the constituents (amino acids and water
molecules) of the different structural units. To facilitate the orientation of the reader
in the rather detailed data, all different structural units and the related details tables
are summarized in Table S1. The details listings are provided in Table S2 to S4 and
S6 to S9. Except for Table S8 where we provide the cartesian coordinates explicitly, we
give the residue names, sequence numbers, and chain IDs of the amino acids and water
molecules. Thereby, we follow the nomenclature from the original PDB file which is
publicly available from the Protein Data Bank under file ID 5V8K.1 Thus, it is transparent
to the reader how the relevant information on the coordinates of the residues considered
can be obtained from PDB file 5V8K. Note that each residue appears twice in the full
reaction center (RC) complex – once in each half of the homodimer. In the case of ARG,

Table S1: Overview over the different structural units and which tables provide the corresponding
details listings (amino acid residues and water molecules) or TDDFT excitation data (cf. Section S2
below).

Structural unit Description Details listing TDDFT data
Two branches Both SPP, EC2, and EC3 chromophores;

corresponding coordinating amino acids.
S2 S11

Tetramer Both SPP, one EC2, and one EC3
chromophore; corresponding coordinating
amino acids.

S2 S12

PHY Relevant parts of the phythyl tails of the
chromophores included (up to C10 for SPP,
up to C5 for EC2 and EC3).

S18

ENVR+ Cluster of charged amino acids near EC3
(with ARG 406 positive); polar and aro-
matic amino acids within 4 Å.

S6 S15

ENVR0 Same as ENVR+, but with ARG 406 neu-
tral.

S6 S14

ENVK+ Charged amino acids within 10 Å to the
chromophores (except for those included in
ENVR+, with LYS 562 positive); polar and
aromatic amino acids within 4 Å.

S7 S19

ENVK0 Same as ENVK+, but with LYS 562 neutral. S7 S20

6A-ENV Uncharged amino acids within 6 Å to the
chromophores.

S3, S4 S5, S13

4A-ENV Polar and aromatic amino acids within 4 Å
to the chromophores.

S3 S16

HOH-ENV Interstitial water molecules and close-lying
amino acids in the vicinity of ENVR+.

S8, S9 S17
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Table S2: Amino acids and water molecules (HOH) that coordinate the chromophores.
Residue name Chain ID Residue sequence number
PHE A 399
PHE A 450
GLN A 458
HIS A 537
PHE A 542
SER A 545
HOH A 1193
HOH A 1276

Table S3: Amino acids that are contained in 4A-ENV.
Residue name Chain ID Residue sequence number
TYR A 341
PHE A 454
PHE A 475
TYR A 510
PHE A 511
THR A 518
PHE A 538
TRP A 540
PHE A 544
PHE A 548
TYR A 550
SER A 553
PHE A 591
THR A 598

ASP, GLU, and LYS, the charges according to the protonation states that emerge from
the titration analysis are included in the listings. The other types of amino acids are all
uncharged.
In our time-dependent density functional theory (TDDFT) calculations we consider the
full two charge transfer (CT) branches of the heliobacterial RC and a reduced tetramer
model where only one branch, i. e., both special pair (SPP), one electron transfer cofactor
2 (EC2), and one EC3 pigments are considered. In both cases we include the amino
acids and water molecules that coordinate the chromophores (cf. Table S2). In most
calculations, we do not consider the phythyl tails but crop them before the C1 atom from
the main part of the bacteriochlorophyll (BChl) and chlorophyll (Chl) chromophores.
To assess the impact of the phythyl tails on the TDDFT results, we perform some
calculations where the phythyl tails are included up to C10 for SPP and up to C5 for EC2
and EC3. In the case of SPP, we consider a larger part of the phythyl tail as this one
coordinates the neighboring EC2 pigment. We refer to structures where these relevant
parts of the phythyl tails are included by the acronym PHY.
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Table S4: Amino acids that are contained in 6A-ENV in addition to the ones from Table S3.
Residue name Chain ID Residue sequence number
MET A 330
ALA A 333
PHE A 334
ILE A 337
THR A 345
THR A 348
VAL A 402
GLN A 448
LEU A 451
LEU A 457
ALA A 461
PHE A 465
TYR A 510
ILE A 514
ILE A 515
GLN A 517
MET A 521
LEU A 533
LEU A 534
ALA A 541
PHE A 544
ALA A 558
LEU A 561
TYR A 577
ALA A 580
MET A 597
CYS A 601
MET A 602
ALA A 604
LEU A 605

We take into account the influence of the protein environment that surrounds the
chromophores by explicitly including the closest amino acids and water molecules in
several structural units. We consider the charged amino acids – ARG, ASP, GLU,
and LYS – within a distance of 10 Å to the chromophores and the uncharged amino
acids within 6 Å to the chromophores. The latter is referred to as 6A-ENV and its
constituents are listed in Table S3 and S4.2 As a subunit of the 6A-ENV, we take the
polar and aromatic amino acids – ASN, CYS, GLN, PHE, SER, THR, TRP, and TYR –
within 4 Å (referred to as 4A-ENV, cf. Table S3). Our choice to focus on these types of
amino acids can be rationalized by analyzing the influence that the individual types of
uncharged amino acids have on the CT states. We show this influence for two different
reduced systems consisting of four chromophores each (SPP and EC2 or EC2 and EC3,
respectively) in Table S5. This shows that only PHE, SER, THR, TRP, and TYR can
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Table S5: Shifts in the CT states induced by the different types of uncharged amino acids. We
consider two different reduced systems consisting of four chromophores: SPP and EC2 or EC2
and EC3, respectively, with the coordinating amino acids and water molecules (“coordination”,
cf. Table S2) and compare them to systems that additionally contain all (uncharged) amino acids
of one type that are within 6 Å of the chromophores (cf. Table S3 and S4). As an example, in the
line denoted by “+ CYS” we consider the respective chromophores, their coordination, and the
CYS residues within 6 Å of the chromophores. For each system, we provide the excitation energies
for the lowest two CT states (CT1 and CT2: SPP+EC2−; CT3 and CT4: EC2+EC3−) and the
average shift with respect to the system containing only the chromophores with coordination
(first data line). All values are in eV. Boldface denotes shifts larger than 0.05 eV.

SPP–EC2 EC2–EC3
Environment CT1 CT2 Shift CT3 CT4 Shift
Coordination 1.9221 1.9284 1.7222 1.7374
+ ALA 1.9184 1.9244 −0.0039 1.7327 1.7478 0.0105
+ CYS 1.9247 1.9307 0.0025
+ GLN 1.9246 1.9309 0.0025 1.7170 1.7321 −0.0053
+ ILE 1.9295 1.9358 0.0074 1.7209 1.7360 −0.0014
+ LEU 1.9391 1.9453 0.0170 1.7261 1.7395 0.0030
+ MET 1.9539 1.9611 0.0323 1.7192 1.7343 −0.0061
+ PHE 1.9289 1.9361 0.0073 1.7856 1.8021 0.0641
+ SER 1.6295 1.6707 −0.0797
+ THR 1.9810 1.9839 0.0572 1.7059 1.7193 −0.0172
+ TRP 1.7774 1.7823 −0.1454 1.7325 1.7469 0.0099
+ TYR 1.9957 2.0078 0.0765 1.6866 1.7549 −0.0091
+ VAL 1.7233 1.7383 0.0010

Table S6: Amino acids that are contained in ENVR+ (with ARG 406 positive) and ENVR0 (with
ARG 406 neutral). The horizontal bar separates ARG, ASP, GLU, and LYS from the polar and
aromatic amino acids within 4 Å to them.

Residue name Chain ID Residue sequence number Charge
ARG A 406 Positive / neutral
LYS A 425 Positive
ARG A 551 Positive
ARG A 554 Neutral
ASP A 555 Negative
GLU A 556 Negative
SER A 414
TRP A 416
THR A 417
PHE A 430
GLN A 448
SER A 553
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Table S7: Amino acids that are contained in ENVK+ (with LYS 562 positive) and ENVK0 (with
LYS 562 neutral). The horizontal bar separates ARG, ASP, GLU, and LYS from the polar and
aromatic amino acids within 4 Å to them.

Residue name Chain ID Residue sequence number Charge
LYS A 269 Positive
ASP A 447 Negative
ASP A 468 Negative
LYS A 562 Positive / neutral
ARG A 579 Positive
GLU A 585 Negative
LYS A 587 Positive
ASN A 263
SER A 442
SER A 444
TYR A 450
TRP A 464
SER A 503
TYR A 513
GLN A 517
GLN A 549
GLN A 566
ASN A 578
SER A 582

Table S8: Cartesian coordinates (in Å) of the interstitial water molecules (separated by horizontal
bars) contained in HOH-ENV.

Atom x y z
O 138.371 66.772 −0.551
H 138.038 67.565 −0.039
H 138.958 66.379 0.147
O 141.035 68.282 −0.439
H 141.818 68.090 0.096
H 140.757 69.145 −0.104
O 136.245 68.702 −14.364
H 135.508 68.057 −14.339
H 135.796 69.495 −14.669
O 140.136 68.346 −14.377
H 140.768 68.253 −15.093
H 140.713 68.299 −13.592
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Table S9: Amino acids that are contained in HOH-ENV in addition to the water molecules listed
in Table S8.

Residue name Chain ID Residue sequence number
MET A 330
VAL A 402
LEU A 451
MET A 546
GLN A 549
LEU A 581

have an appreciable influence (shifts larger than 0.05 eV) on the CT states (SPP+EC2−

or EC2+EC3−, respectively). The shifts induced by CYS and GLN are much smaller and
the influence of ASN is not assessed as it is not present in the vicinity of the pigments.
Nevertheless, these three types of amino acids are generally considered as being “polar”
(like SER or THR) and are, therefore, considered in the 4A-ENV as well.
The charged amino acids are divided into two structural units: In the first unit, referred
to as ENVR+ or ENVR0, respectively, depending on the protonation state of ARG 406,
we include the charged amino acids within 8 Å of the chromophores. In addition, we
further include LYS 425 as it is in close interaction with GLU 556 (cf. Figure 3 in the main
text). Along with these charged amino acids, we also consider the polar and aromatic
amino acids that are within 4 Å to them. All amino acids of this structural unit are
summarized in Table S6. In the second unit of charged amino acids, referred to as ENVK+

or ENVK0, respectively, depending on the protonation state of LYS 562, we include the
charged amino acids within 10 Å to the chromophores that are not included in ENVR+.
In addition, we further include LYS 269 and GLU 585 as these are in close interaction
with ASP 468 and ARG 579, respectively. Along with these charged amino acids, we also
consider the polar and aromatic amino acids that are within 4 Å of them. All amino
acids of this structural unit are summarized in Table S7. The amino acids in Table S2
and S6 are included in Figure 1 and 3 in the main text.
Despite the dense arrangement of the protein matrix, there are some small cavities in
the crystal structure that might be filled with additional interstitial water molecules in
vivo. We here consider four water molecules that might be located in the vicinity of
ENVR+. Their coordinates are provided in Table S8. Along with these water molecules,
we consider a few amino acids that are forming the cavities (together with the amino
acids already included in ENVR+). These are listed in Table S9. The water molecules
are determined with the program McVol.3 Therefore, a probe sphere with a radius of
1.3 Å is used to discover possible cavities for water placement. Surface collisions for the
placement are rejected. Only reasonable water positions are chosen for further analysis.
These water molecules are then again minimized with CHARMM and the CHARMM
force field while the whole protein backbone is kept fixed. Hydrogen atoms in the vicinity
of the placed water molecules are kept flexible to allow possible hydrogen bond formation.
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S2 Details on the TDDFT Excitation Spectra

In the following, we provide additional information on the TDDFT spectra that are
shown in Figure 2 and summarized in Table 1 in the main text. We begin by discussing a
technical aspect visible in the spectrum of the tetramer model with ENVR+ (cf. Figure 2).
In this spectrum, we obtain a few excited states that correspond to CT between one
of the chromophores and the charged amino acids. These states are referred to as
“spurious” states (cf. below) and are listed in Table S10. The other excited states in
this spectrum are listed in Table S15 below. The “spurious” states are very sensitive to
the computational setup. For example, they are not emerging in the spectra based on
the Born-Oppenheimer molecular dynamics (BOMD) trajectories (at least not in the
energy range up to ∼ 2.5 . . . 3 eV which is covered by our calculations). Moreover, they
are sensitive to the structural units chosen. Especially, including the polar and aromatic
amino acids in the vicinity of the charged amino acids (that are included in ENVR+ and
ENVK+) reduces the number of these states substantially. Therefore, we consider them
as being “spurious”, i. e., not being related to the real physics of the system, and do not
further include them in our analysis.
To make the results of our TDDFT calculations transparent to the reader, we show the
numerical data of all excitation spectra which are referred to in Figure 2 and Table 1 in
the main text in Table S12 to S20. All these spectra are based on the crystal structure
geometry and correspond to the structural units introduced in Section S1. To facilitate
the orientation of the reader, the correspondence between the structural units and the
TDDFT data tables is indicated in Table S1. For the sake of clarity, we limit the tables
to the physical states, i. e., exclude the “spurious” CT states.
Whenever computationally feasible we calculated the spectra with 25 excited states. For
larger systems this was not always possible as the associated computational effort can be
prohibitive. However, we calculated at least 10 excited states (in the case of the tetramer
with the 6A-ENV, cf. Table S13). For each excited state, we display the excitation energy
and the oscillator strength which are directly output by the linear-response TDDFT
calculations. Additionally, we provide the integrals over the difference density (difference
of the electron densities of the respective excited and ground states, cf. below) in the
subspace associated with one type of pigment (SPP, EC2, and EC3) if their absolute
values are at least 0.01. It should be noted that in the tables some excitations show an
electron or hole transfer character of very “low magnitude” (integral values below 0.1).
This can arise from the coupling with an energetically close CT state and therefore does
not indicate that these excitations really exhibit CT character. Hence, these excitations
are not considered in Table 1 in the main text.

Table S10: “Spurious” CT states in the excitation spectrum of the tetramer with ENVR+.
Energy 1.4881 2.0850 2.2014 2.3416 2.3770
Oscillator strength 0.0000 0.0000 0.0004 0.0000 0.0000
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Table S11: Excited states of the full two branches. For each state, the excitation energy (in eV),
the oscillator strength, and the integrals over the difference (electron) density in the subspaces
associated with the different types of pigments are given. For clarity, the difference density
integrals are omitted if their absolute value is smaller than 0.01. As in this table both branches
are considered, we distinguish herein for EC2 and EC3 between the different branches (1 and 2)
by the labels EC2-1, EC2-2, EC3-1, and EC3-2.

Difference density integral
Energy Oscillator strength SPP EC2-1 EC2-2 EC3-1 EC3-2

1.4582 0.4855
1.4954 0.1430
1.5494 0.6192
1.5778 0.1148
1.7217 0.0020 −0.97 0.97
1.7386 0.0017 −0.97 0.97
1.7739 0.0206
1.8337 0.0634
1.9123 0.0003 −0.99 0.57 0.41
1.9137 0.0015 −0.98 0.41 0.57
1.9900 0.1966
1.9956 0.3698
2.0138 0.0079
2.0161 0.0402
2.0289 0.0359
2.0307 0.0502
2.1890 0.0000 −1.00 0.99
2.2036 0.0000 −1.00 0.99
2.2579 0.0339
2.2610 0.0267
2.2700 0.0000 −0.99 0.99
2.2765 0.0000 −0.99 0.99
2.4650 0.0019
2.4818 0.0044
2.5204 0.0015 −0.17 −0.80 0.97

Furthermore, we comment on the differences in the excitation spectra of the full two
branches and the tetramer model (cf. Table S11 and S12): Both structural units contain
a different number of chromophores (6 vs. 4). This is reflected by the structure of
the associated excitation spectra: Regarding the CT excitations we obtain each type
of excitation (i. e., EC2+EC3−, SPP+EC3−, and SPP+EC2−) twice in the calculation
based on the full two branches – once for each RC branch. These excitations always
emerge as pairs, with an energetic separation of . 0.01 eV. For the tetramer model
we inherently obtain only one excitation of each pair. However this has only a small
effect on the respective excitation energies (shifts by less than 0.1 eV) and, thus, the
tetramer model covers the relevant information on the CT states. Also the number
of bright (Qy and Qx) excitations is reduced for the tetramer model as compared to
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Table S12: Excited states of the tetramer model. The structure of the table is the same as in
Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.4426 0.2720
1.5040 0.3276
1.5693 0.2483
1.7390 0.0657
1.7531 0.0017 −0.97 0.97
1.8700 0.0354
1.9555 0.0024 −0.98 0.98
1.9895 0.2813
2.0212 0.0135
2.0263 0.0470
2.0295 0.0434
2.2573 0.0289
2.2783 0.0000 −1.00 0.99
2.3668 0.0000 −0.99 0.99
2.3836 0.0004
2.5314 0.0276
2.5470 0.0018 −0.95 0.95
2.5538 0.0290
2.6088 0.0437
2.6412 0.0035 −0.84 −0.14 0.99
2.6424 0.0212 −0.01
2.6465 0.0249 −0.15 −0.83 0.98
2.6662 0.3350
2.6834 0.0280
2.7261 0.0001

Table S13: Excited states of the tetramer model with the 6A-ENV. The structure of the table is
the same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.4048 0.3832
1.4672 0.2227
1.5362 0.2838
1.6548 0.0023 −0.97 0.97
1.7134 0.0372
1.8099 0.0354
1.9506 0.3229
1.9716 0.0205 −0.43 0.43
1.9751 0.0175 −0.55 0.55
1.9834 0.0444

S10

Publication
[B

3]
Publication

[B
3]



Table S14: Excited states of the tetramer model with ENVR0. The structure of the table is the
same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.4460 0.2831
1.5031 0.3265
1.5672 0.2326 −0.07 0.07
1.6018 0.0217 −0.90 0.90
1.7431 0.0604
1.8687 0.0374
1.9329 0.0041 −0.98 0.98
1.9469 0.3107
2.0220 0.0090
2.0263 0.0566
2.0294 0.0553
2.0791 0.0000 −1.00 0.99

Table S15: Excited states of the tetramer model with ENVR+. The structure of the table is the
same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.1264 0.0010 −0.98 0.98
1.2770 0.0000 −0.99 0.99
1.4460 0.2787
1.5013 0.2848 −0.03 0.03
1.5801 0.2905
1.6343 0.0000 −1.00 1.00
1.6681 0.0031 −0.96 0.96
1.7445 0.0599
1.8620 0.0528 −0.01
1.8814 0.2189 −0.36 0.36
1.9277 0.0911 −0.61 0.61
2.0240 0.0027
2.0251 0.0619 −0.03 0.03
2.0288 0.0540 0.01
2.0688 0.0020 −0.95 0.95
2.0884 0.0281 −0.94 0.94
2.1234 0.0000 −0.99 0.99
2.1615 0.0444 −0.04 0.04
2.2457 0.0000 −1.00 1.00
2.2985 0.0000 −1.00 0.99
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Table S16: Excited states of the tetramer model with ENVR+ and the 4A-ENV. The structure
of the table is the same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.1775 0.0009 −0.98 0.98
1.2998 0.0000 −0.99 0.99
1.4455 0.3158
1.4869 0.2139 −0.04 0.04
1.5549 0.2691
1.6282 0.0055 −0.95 0.94
1.6394 0.0000 −1.00 1.00
1.7522 0.0305
1.8245 0.0497 −0.02 0.02
1.8855 0.3264 −0.07 0.07
1.9739 0.0129 −0.89 0.89
1.9930 0.0033 −0.87 0.87
2.0154 0.0101 −0.02 0.02
2.0179 0.0388 −0.07 0.07
2.0214 0.0806 −0.01 0.01
2.1553 0.0002 −0.99 0.99
2.1609 0.0443 −0.69 0.70
2.1836 0.0315 −0.30 0.30

Table S17: Excited states of the tetramer model with ENVR+ and HOH-ENV. The structure of
the table is the same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.1855 0.0013 −0.98 0.98
1.3434 0.0000 −0.99 0.99
1.4453 0.2744
1.5017 0.2907 −0.03 0.03
1.5802 0.2889
1.6676 0.0031 −0.96 0.96
1.7013 0.0000 −0.99 0.99
1.7435 0.0600
1.8639 0.0448 −0.01 0.01
1.9041 0.2870 −0.12 0.12
1.9767 0.0245 −0.85 0.85
2.0243 0.0033
2.0256 0.0625 −0.03 0.03
2.0292 0.0545
2.0694 0.0020 −0.95 0.94
2.1265 0.0233 −0.95 0.95
2.1894 0.0000 −0.99 0.99
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Table S18: Excited states of the tetramer model with PHY and ENVR+. The structure of the
table is the same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.1907 0.0010 −0.97 0.98
1.3444 0.0000 −0.99 0.99
1.4481 0.2939
1.4975 0.3038 −0.03 0.03
1.5650 0.2555
1.6693 0.0024 −0.96 0.95
1.7008 0.0000 −1.00 1.00
1.7496 0.0575
1.8583 0.0552 −0.01 0.01
1.8865 0.2958 −0.10 0.10
1.9606 0.0174 −0.01 −0.86 0.87
2.0136 0.0569 −0.01
2.0243 0.0437 −0.02 0.02
2.0252 0.0269 −0.01 0.01
2.0677 0.0017 −0.95 0.94
2.1395 0.0449 −0.63 0.64
2.1635 0.0259 −0.35 0.35
2.1904 0.0000 −1.00 0.99

Table S19: Excited states of the tetramer model with ENVR+ and ENVK+. The structure of
the table is the same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

0.7957 0.0000 −0.98 0.99
0.8662 0.0008 −0.97 0.98
1.1520 0.0000 −1.00 0.99
1.4493 0.2673 −0.51 0.50
1.4633 0.1338 −0.30 0.30
1.5253 0.2016 −0.18 0.18
1.5961 0.2652 −0.03 0.03
1.6428 0.0215 −0.20 −0.76 0.96
1.6483 0.0051 −0.79 −0.19 0.98
1.7600 0.0000 −0.99 0.99
1.7638 0.0596
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Table S20: Excited states of the tetramer model with ENVR+ and ENVK0. The structure of the
table is the same as in Table S11.

Difference density integral
Energy Oscillator strength SPP EC2 EC3

1.0352 0.0008 −0.01 −0.97 0.98
1.1157 0.0000 −0.99 0.99
1.4458 0.2899
1.4746 0.0000 −1.00 1.00
1.5014 0.2992 −0.07 0.07
1.5821 0.2700
1.6113 0.0183 −0.92 0.91
1.7458 0.0659
1.8127 0.0303 −0.94 0.94
1.8688 0.0462 −0.02 0.02
1.9319 0.2837 −0.04 0.04
1.9597 0.0001 −1.00 0.99
1.9907 0.0150 −0.96 0.96

the full two branches. Due to the absence of one EC2 and one EC3 pigment in the
tetramer model, both the number of Qy and Qx excitations is reduced by 2. However this
does not change the energetic position of the Qy and Qx excitations on a relevant scale.
Especially, the energetic range of the dominant band of BChl Qy excitations between
∼ 1.4 . . . 1.6 eV remains largely unchanged (although the number of states is reduced
from 4 to 3). Therefore, we conclude that the tetramer of four pigments is sufficient to
reproduce the relevant excited state properties in terms of CT pathways of the whole
two branches.
We have also analyzed the character of the excitations in the energy range of the Qy
band in both the tetramer model and the two-branch model with respect to the question
of whether the SPP is involved. The transition densities reveal that excitations 1, 4,
and 6 (counted from the top in Table S12) of the tetramer model are of Qy character
involving only the SPP, excitations 2 and 3 are of Qy character involving SPP and EC2,
and excitation 8 is of Qy character involving only EC3. Performing the same analysis for
the full two-branch model shows that excitations 1, 3, 7, and 8 (counted from the top in
Table S11) involve only the SPP, excitations 2 and 4 involve both SPP and EC2, and
excitations 11 and 12 involve only EC3. The different ordering and structure in the two
models is due to the effects that have been discussed in detail above.
Finally, when comparing the calculated excitation spectra to experimental ones,4–6 a
number of factors have to be taken into account. For example, the simulations on which
Figure 4 of the main paper is based are for the tetramer model with ENVR+. This
model captures the relative ordering of the excitations reliably, but the absolute values
of the excitation energies are expected to differ to some extent from the ones that one
would obtain for the full reaction center. This trend is visible, e. g., when one compares
the excitation energies in Table S12 to the ones that one obtains with an extended
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environment, cf. Table S13: With the extended environment, the excitation energies are
slightly lower, e. g., by 0.04 eV for the first excitation. Further factors that influence the
absolute position of the excitation energies are the exchange-correlation functional and the
size of the basis set, with a larger basis set typically leading to lower excitation energies
(see, e.g., Figure S7 of Ref. 7). Finally, one should keep in mind that in our study only
the parts of the RC complex are considered that are relevant for the CT process, i. e., the
SPP, EC2, and EC3 pigments as well as parts of the protein environment. By contrast,
the experimental absorption spectra arise from the full RC complex, i. e., especially also
the contributions from the chromophores in the antenna domain are included.
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S3 Details on the BOMD Analysis

We here provide additional histograms that complement the discussion of the results from
the BOMD analysis in the main text. Figure S1 shows the difference between the energy
of the lowest SPP+EC3− excitation (SPP+EC2−, respectively) and the energy of the
lowest EC2+EC3− CT state for different snapshots of the BOMD runs. This reveals that
only in 3 out of 95 spectra, there are CT states (always of the type SPP+EC3−) that
are energetically below the lowest EC2+EC3− state. In these few cases, the SPP+EC3−

excitations are at similar energies as the Qy band, i. e., direct coupling may be possible in
principle. However, typically the lowest SPP+EC3− state is found ∼ 0.1 . . . 0.5 eV above
the lowest EC2+EC3− state; the lowest SPP+EC2− state is found ∼ 0.2 . . . 0.7 eV above
the lowest EC2+EC3− state. In Figure S2, the temporary energetic difference to the
center of the Qy band is shown for those CT excitations that are closest in energy to the
center of the Qy band (for different snapshots of the BOMD runs). We see that in 71 out
of 95 spectra, it is a CT state of type EC2+EC3−, in 23 spectra it is a SPP+EC3− state,
and only in 1 spectrum it is a SPP+EC2− state.
As mentioned in the main text, we have also further analyzed the characteristics of
the “relevant” CT excitations (where we consider the excitations with an energy below
2 eV, which is in the same range as the Qy band, as “relevant”). Figure S3 shows the
distribution of the oscillator strengths for EC2+EC3− and SPP+EC3−. In the case

Figure S1: Histogram of the difference between the energy of the lowest SPP+EC3− excitation
(teal bars; yellow bars: SPP+EC2−, respectively) and the energy of the lowest EC2+EC3−

excitation for different snapshots of the BOMD runs. CT states on the left (right) hand side of
the gray bar are energetically below (above) the respective EC2+EC3− states.
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Figure S2: Histogram of the CT states closest in energy to the temporary center of the Qy band.
The energy axis denotes the energetic difference between the CT excitations and the center of the
Qy band. The latter is denoted by the gray bar as a guide for the eye).

Figure S3: Histogram of the oscillator strengths of the EC2+EC3− and SPP+EC3− excitations
with an excitation energy below 2 eV.
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Figure S4: Histogram of the integral over the difference (electron) density in the subspace
associated with SPP for the EC2+EC3− excitations with an energy below 2 eV. For the CT states
on the left (right) hand side of the gray bar, the hole (electron) is delocalized over SPP.

Figure S5: Histogram of the integral over the difference (electron) density in the subspace
associated with EC2 for the SPP+EC3− excitations with an energy below 2 eV. For the CT states
on the left (right) hand side of the gray bar, the hole (electron) is delocalized over EC2.
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of SPP+EC2− (not displayed), all excitations in this energy range have an oscillator
strength below 0.01. While in the case of SPP+EC3− only 2 of 61 excitations exhibit an
oscillator strength above 0.01, the picture is much more diverse in the case of EC2+EC3−.
For 10 of 97 excitations we even find an oscillator strength above 0.1, a value which is
comparable to the brightest excitations of Qy character.
We also address the issue of whether the hole in the intermediate CT step is delocalized
over both SPP and EC2. This questions has been raised by Song et al.8 To this end, we
examine for the EC2+EC3− and SPP+EC3− states (with an energy below 2 eV) whether
the “inactive” pigment, i. e., SPP or EC2, respectively, contribute to the CT (EC2+EC3−

or SPP+EC3−) excitations by calculating the integral over the difference density in the
subspace associated with the respective “inactive” pigment. The resulting histograms are
shown in Figure S4 and S5. In both figures, we find the majority of the counts very close
to zero, indicating that the “inactive” pigment typically does not contribute to the CT.
In the case of SPP+EC3−, we find a few states where the electron is partially delocalized
over both EC2 and EC3. However, regarding the delocalization of the hole over SPP and
EC2, we find only 2 of 158 states (combining Figure S4 and S5) where this is a relevant
effect. (These are the two counts for integral values smaller than −0.03.)
Finally, we comment on one aspect in which the outcome of our work differs from similar
theoretical studies on other RCs:9,10 Further downhill energy transfer from EC2+EC3−

to the next CT step, SPP+EC3−, is not apparent from our data. There are two possible
explanations for this observation: Including further parts of the protein environment may
invert the relatively small energy gap between EC2+EC3− and SPP+EC3−. Alternatively,
the transition to the first CT step, EC2+EC3−, may induce a rearrangement of the
structure such that the energy of SPP+EC3− is lowered compared to EC2+EC3−. In our
BOMD analysis, we also obtain SPP+EC3− as the lowest CT state for some geometries
(see above). This issue can be further addressed in a future study.
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S4 Automated Protocol for the Analysis of Excitation Spectra

To make the evaluation of a large number of TDDFT excitation spectra – as required for
the evaluation of the BOMD – feasible, we employ an automated protocol. Thereby, we
analyze each spectrum in two steps.
First, we determine the SPP+EC2−, EC2+EC3−, and SPP+EC3− CT states. To this
end, we calculate the electron density for each excited state (within Q-Chem11) and
subtract the respective ground-state density. This yields the so-called difference density
discretized on a cubic grid. Then, we divide the volume which contains the difference
density into subspaces associated with one type of RC pigment, i. e., SPP, EC2, or EC3.
Therefore, we assign each point of the difference-density grid to the RC pigment which
contains the atom (considering all atoms, including hydrogen) that is closest to the given
grid point. Afterwards, we calculate the integrals over the difference density in these
(three) subspaces. This yields values between 0 (no CT) and ±1 (maximum CT, transfer
of a “full” electron) for each subspace. Excitations where more than a fraction of 0.4 of
an electron is transferred from one pigment (subspace) to another are considered as CT
excitations. Their character is determined from the two pigments (subspaces) where the
largest fraction of electron transfer is detected. From our experience, the threshold 0.4
is well-suited to capture also excitations with partial CT character that emerge when
a CT excitation and a valence excitation, e. g., from the Qy band, are close in energy
and couple. However, we note that typical CT excitations exhibit a very pronounced CT
character with a fraction of ≥ 0.9. On the other hand, typical excitations without CT
character have only very small fractions of electron transfer (far below 0.4).
In the second step, we characterize the bright excitations. The most relevant feature
for us is the Qy band which arises from the Qy excitations of the BChl chromophores.
In the tetramer model, we have three BChl chromophores and, therefore, also (mostly)
three low-energy, bright Qy excitations (around ∼ 1.5 eV in the crystal structure-based
spectrum). From our experience, the following procedure is a pragmatic but quite
reliable way to determine this Qy band in an automated manner: From the non-CT
excitations, we select those excitations with an oscillator strength above 0.02. Thereof,
the three excitations with the lowest excitation energy are referred to as the Qy band.
The (additional) filtering with regard to the oscillator strength is required as a few dark
excitations emerge in the spectra that do not have CT character. From our experience,
the value 0.02 of the threshold is appropriate to distinguish Qy (and Qx) excitations
(above) from CT and other dark excitations (below).
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S5 Choice of the Range-Separation Parameter

For the purposes of computing spectroscopic observables of a single molecule or one
well-defined molecular donor-acceptor system with TDDFT, range-separated hybrid
functionals with a range-separation parameter chosen by optimal tuning typically yield
very reliable results, especially for charge-transfer excitations.12,13 The typical tuning
procedure14 is to adjust the range-separation parameter such that the highest-occupied
molecular orbital eigenvalue becomes as close as possible to the first ionization potential,
and the lowest unoccupied molecular eigenvalue effectively becomes as close as possible
to the electron affinity, where the reference values for ionization potential and electron
affinity are calculated self-consistently from total energy differences. This procedure
adjusts the range-separation parameter to a value that is system specific. While the tuning
procedure endows the frontier orbital energies with physical meaning,15 it also leads to
a serious drawback because it violates size-consistency.16,17 The intrinsic limitation of
optimal tuning also has to be kept in mind when one wants to compare spectroscopic
observables for different systems to one another. In particular it has been demonstrated
that a serious problem arises when one uses the optimal tuning procedure for (conjugated)
molecular systems of increasing size:18,19 With increasing system size, the optimally
tuned range-separation parameter falls to artificially low values. Consequently, the tuned
functional is dominated by semilocal exchange, and thus the reliability of the prediction
of charge-transfer excitations deteriorates dramatically.
These problems require one to carefully consider the choice of the range-separation
parameter in a study such as ours, in which a reliable comparison of systems of different
size is mandatory. For the reasons explained in the preceding paragraph, re-tuning the
functional for each of the different (sub-)systems is not suggested. Instead, the range-
separation parameter should be optimally tuned such that the physics of the dominating
chromophore is properly described. In our system, this is BChl. In earlier work, optimal
tuning has been done for BChl a, leading to a range-separation parameter of 0.171 a0−1,20

and for BChl g’, leading to a range-separation parameter of 0.160 a0−1.7 It has further
been shown that the differences one obtains in the photoabsorption spectrum of SPP and
EC2 with these two values are small.7 This confirms that some value of ω within the above
mentioned range leads to reasonable results, and we chose 0.171 a0−1 for consistency with
earlier publications.
One may also wonder about including dielectric screening into the tuning procedure.
The question of when and how to combine optimal tuning with screening models has
found a lot of interest, see, e. g., Refs. 19, 21–27. The decisive idea of our work is to
include the most relevant parts of the protein environment explicitly into the calculation.
Therefore, the direct screening effects that result from the closer protein environment
are accounted for. What our study does not capture is the indirect effect that might
result when the protein would be included in the optimal tuning procedure, and thus
may influence the range-separation parameter. However, for the reasons discussed in the
preceding paragraph, re-tuning for different system sizes, i. e., amino acid selections in this
case, is not advisable, and we therefore work with a fixed value of the range-separation

S21

Pu
bl

ic
at

io
n

[B
3]

Pu
bl

ic
at

io
n

[B
3]



parameter. Future work may address this problem on a more advanced level by using a
functional with local range separation, i. e., with a range-separation parameter that is
itself a functional of the density.28,29 First results with a recently developed functional of
this type are promising.30
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S1 Computational details

All calculations with the ωBT23 and ωLH22t functionals have been done using a develop-
ment version of Turbomole [1] (module ridft). Our implementation of ωBT23 relies on
the developments of Klawohn and Bahmann [2], for ωLH22t we use the implementation
by Kaupp and coworkers [3]. Unless noted otherwise, we have used the cc-pVTZ basis set,
grid size 3, a convergence threshold of 10−7, and the resolution-of-the-identity approxi-
mation. These are standard settings that are well-established for ground-state density
functional theory (DFT) calculations of eigenvalue gaps of organic molecules. The struc-
tures of the molecules were determined with a DFT-based structure optimization that
we have performed using the commercial version of Turbomole 7.6. Following the choice
made for the geometry optimizations underlying the benchmark CCSD(T) calculations
we have employed the B3LYP [4–6] functional, D4 dispersion correction [7], cc-pVTZ
basis set, resolution-of-the-identity approximation, and standard settings otherwise.

S2 Detailed data about molecular gaps

In the first part of this section we report the numbers for the fundamental gaps for the
set of organic acceptor molecules compiled by Körzdörfer and coworkers [8] and the series
of oligoacenes (benzene to hexacene) underlying Fig. 2 and 3 in the main text. The data
for the organic acceptor molecules is shown in Tab. S1, the data for the oligoacenes in
Tab. S2. In both cases, the ωBT23 and ωLH22t results for the HOMO–LUMO eigenvalue
gap, ∆ε = εLUMO − εHOMO, have been obtained using Turbomole as described in section
S1; the other DFT and GW results stem from the literature [8, 9, 11]. We compare these
results to the respective reference values from CCSD(T) calculations [10, 12, 13]. For
each method and molecule, we provide the predicted value for the gap (∆ε) as well as
the error with respect to the CCSD(T) data, and for each method the mean absolute and
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Table S1: Fundamental gaps (from frontier eigenvalues) for the set of organic acceptor
molecules compiled by Körzdörfer and coworkers [8] (corresponding to Fig. 2 in the main
text). The results from our ωBT23 functional, several GW methods [8, 9], and ωLH22t
are compared to CCSD(T) calculations [10]. The molecule names follow Fig. 1 of Ref. [8].
All values are in eV.
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Table S2: Fundamental gaps (from frontier eigenvalues) for the series of oligoacenes
(corresponding to Fig. 3 in the main text). The results from our ωBT23 functional,
OT-ωPBE [11], and ωLH22t are compared to CCSD(T) calculations [12, 13]. All values
are in eV.

CCSD(T) ωBT23 OT-ωPBE ωLH22t
Reference ∆ε Error ∆ε Error ∆ε Error

Benzene 10.97 10.90 −0.07 11.01 0.04 11.07 0.10
Naphthalene 8.72 8.64 −0.08 8.63 −0.09 8.82 0.10
Anthracene 7.19 7.16 −0.03 6.94 −0.25 7.33 0.14
Tetracene 6.13 6.16 0.03 5.81 −0.32 6.31 0.18
Pentacene 5.37 5.45 0.08 5.01 −0.36 5.58 0.21
Hexacene 4.96 4.92 −0.04 4.43 −0.53 5.03 0.07
MAE 0.06 0.26 0.13
MSE −0.02 −0.25 0.13

mean signed errors (MAE and MSE). We note that the results from the literature have
been obtained with numerical settings that are comparable to ours, especially using the
same basis set. In our calculations we have used molecular geometries that we optimized
ourselves (according to the protocol above). This ensures that all the results obtained
with ωBT23 for the different sets of molecules are consistent. From our experience, the
results obtained from these geometries are comparable to the literature results. This
can be seen, e. g., by comparing the results obtained with standard functionals with
those reported in the literature. For completeness, we further note that OT-ωPBE refers
to the ωPBE functional with values of ω from optimal tuning. Thereby, as a tuning
condition the error in the IP theorem, δIP = |εHOMO + E0(N − 1) − E0(N)|, has been
used [8, 11]. Comparing ωBT23 and ωLH22t, the performance is rather similar for these
sets of molecules: for the organic acceptor molecules a MAE of 0.20 eV is obtained with
both functionals, for the oligoacenes MAEs of 0.06 eV (ωBT23) and 0.13 eV (ωLH22t) are
obtained. The values for ωLH22t are slightly different from the ones reported in Ref. [14]
due to the slightly different molecular geometries. The other findings of Tab. S1 and S2
are discussed in the main text.
In addition to the data that is discussed in the main text, we list in Tab. S3 a comparison
of the fundamental gaps obtained with ωBT23 and ωLH22t for a set of diatomic molecules.
It comprises different types of atoms as well as single, double, and triple bonds. We
are not aware of high-quality reference data for all of these molecules, therefore we
base the comparison on the IP theorem. For each molecule and functional we report
the fundamental gap from a ∆SCF calculation (∆g = E(N0) − E(N0 − 1) − (E(N0 +
1) − E(N0))), the frontier eigenvalue gap from the generalized Kohn-Sham calculation
(∆ε), and the difference between the two numbers. As discussed in the main text this
comparison is relevant as in a judiciously constructed generalized Kohn-Sham scheme
∆g and ∆ε can become identical. In this respect the performance of both functionals is
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Table S3: Fundamental gaps of diatomic molecules. Displayed are the gap from a ∆SCF
calculation (∆g), the frontier eigenvalue gap (∆ε), and their difference. All values are
in eV. The calculations have been performed using an aug-cc-pVTZ basis set and a
convergence threshold of 10−8. The molecular geometries were taken from the NIST
database [15] (Li2 and LiH) and the Minnesota database 2.0 [16] (otherwise).

ωBT23 ωLH22t
∆g ∆ε Difference ∆g ∆ε Difference

Cl2 10.68 9.60 −1.08 10.76 9.79 −0.97
CO 14.99 14.79 −0.19 15.53 14.78 −0.75
F2 15.80 14.74 −1.07 15.73 13.05 −2.68
H2 17.04 16.61 −0.43 17.26 17.20 −0.06
HF 16.17 15.91 −0.26 16.68 15.47 −1.22
Li2 4.43 4.42 −0.01 4.89 5.10 0.21
LiH 7.23 7.46 0.23 7.60 7.88 0.28
N2 18.06 16.85 −1.20 18.10 16.52 −1.58
NO 10.39 9.36 −1.03 10.38 8.38 −1.99
O2 13.52 12.54 −0.98 13.01 10.78 −2.24
OH 11.29 12.07 0.78 11.45 9.64 −1.80
PH 9.63 9.13 −0.50 9.11 8.27 −0.84
S2 8.41 7.59 −0.82 8.18 7.47 −0.71
SH 8.06 7.90 −0.16 8.13 7.12 −1.01
SiO 11.19 10.76 −0.44 11.48 10.93 −0.56
MAE 0.61 1.13
MSE −0.48 −1.06

somewhat mixed. ωLH22t yields a MAE of 1.13 eV. This is a great improvement over
many existing functionals where one would obtain a MAE of a few eV (e. g., 2.88 eV for
CAM-B3LYP). ωBT23 can further improve upon ωLH22t, yielding a MAE of 0.61 eV.
The data shows that this improvement arises in part from an improved description of
some of the systems containing hydrogen (HF, PH, SH), which might suggest a relation to
the correction of one-electron self-interaction. On the other hand, none of the functionals
is very accurate for some of the systems involving double or triple bonds (N2, NO, O2).
This might suggest a relation to the description of static correlation. In conclusion, this
data indicates that ωBT23 tends to be more reliable for the spectroscopic properties, but
further steps of development are required for both functionals to improve the description
of smaller systems.

S3 Atomization energies and barrier heights

We here report the results that one finds with ωBT23 for the AE6 and BH6 test sets.
The atomization energies are displayed in the upper part of Table S4, the barrier heights
in the lower part. Additionally, we show the resulting MAE and MSE for both test
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Table S4: Atomization energies of the AE6 test set (upper part) and reaction barrier
heights of the BH6 test set (lower part) [17] calculated with our ωBT23 functional. The
calculated values are compared to the reference values from the Minnesota database
2.0 [16]. All values are in kcal/mol.

ωBT23
Reference Value Error

SiH4 324.95 288.64 −36.31
SiO 193.06 148.72 −44.34
S2 104.25 87.43 −16.82
C3H4 705.06 620.33 −84.73
C2H2O2 633.99 533.70 −100.29
C4H8 1149.37 1027.26 −122.11
MAE (AE6) 67.43
MSE (AE6) −67.43
OH + CH4 → F 6.50 12.01 5.51

CH3 + H2O R 19.60 22.60 3.00
H + OH → F 10.50 7.52 −2.98

O + H2 R 12.87 21.24 8.37
H + H2S → F 3.50 3.08 −0.42

H2 + HS R 16.76 19.98 3.22
MAE (BH6) 3.92
MSE (BH6) 2.78
MAE (AE6BH6) 35.68

sets as well as an equally weighted average of the MAEs of AE6 and BH6. While the
barrier heights turn out to be fairly acceptable, the results for atomization energies are
not at all impressive. This shows that ωBT23, which was designed for spectroscopic
purposes, is not very reliable for binding properties. Such a “conflict” between reliable
atomization energies on the one hand, and reliable eigenvalues on the other hand, is found
for many functional classes as discussed in Ref. [18], e. g., optimally tuned range-separated
hybrids [19]. Resolving this conflict is the task of ongoing research.
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ABSTRACT: Some of the most successful exchange−correlation
approximations in density functional theory are “hybrids”, i.e., they
rely on combining semilocal density functionals with exact
nonlocal Fock exchange. In recent years, two classes of hybrid
functionals have emerged as particularly promising: range-
separated hybrids on the one hand, and local hybrids on the
other hand. These functionals o"er the hope to overcome a long-
standing “observable dilemma”, i.e., the fact that density func-
tionals typically yield either a good description of binding energies,
as obtained, e.g., in global and local hybrids, or physically
interpretable eigenvalues, as obtained, e.g., in optimally tuned
range-separated hybrids. Obtaining both of these characteristics
from one and the same functional with the same set of parameters
has been a long-standing challenge. We here discuss combining the concepts of local range separation and local hybrids as part of a
constraint-guided quest for functionals that overcome the observable dilemma.

1. INTRODUCTION: HYBRID FUNCTIONALS AND THE
OBSERVABLE DILEMMA

Since the idea of hybrid functionals was first proposed,1

combining semilocal density functional approximations with
nonlocal exact Fock exchange has become an extremely
successful concept in density functional theory (DFT). Hybrid
functionals can be motivated and understood1,2 in terms of the
coupling constant integration,3,4 which writes the exchange
correlation (xc) energy Exc as an integral over the coupling
constant λ

=E E dxc
0

1

xc, (1)

where

= | |E V Exc, ee H (2)

with |ψλ⟩ being the ground state that minimizes the expectation
value of the Hamiltonian Hλ = T + Vλ + λVee. Here,

= | |
=

V e r r(1/2) /

i j

N

i jee

, 1

2

i j

denotes the Coulomb interaction

in the N-electron system, EH is the Hartree energy, and for
every value 0 ≤ λ ≤ 1 the potential Vλ is chosen such that the
ground-state density nλ that corresponds to |ψλ⟩ is equal to the
ground-state density of the Hamiltonian at full coupling

strength λ = 1. The coupling constant integration leads from
the noninteracting Kohn−Sham system (λ = 0) to the true
fully interacting system (λ = 1) under the assumption that
there is an adiabatic connection between the two.

Global hybrids use a constant fraction 0 < a < 1 of exact
exchange in combination with a fraction 1 − a of semilocal
exchange, and full semilocal correlation. As exchange is related
to the λ = 0 end of the coupling constant integration range,1

the exchange mixing with a constant a shifts the curve of Exc,λ
(as a function of λ) by a global constant. Thus, the integral of
eq 1 can be brought closer to the exact value of Exc. Apart from
the global shift, however, the shape of the Exc,λ-curve that
appears in the coupling-constant integrand stays as determined
by the semilocal functional components.5 Thus, while global
hybrid functionals lead to a considerably more accurate
description of electronic binding than generalized gradient
approximations, as measured by, e.g., atomization energies,
other observables are much less improved.
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Particular attention is often paid to the eigenvalues that an
xc approximation yields. Here, a careful distinction has to be
made. The coupling-constant integration is usually discussed in
the context of Kohn−Sham theory. On the other hand,
practical calculations with hybrid functionals usually invoke
generalized Kohn−Sham theory.6 While for a given orbital-
dependent xc approximation total energies and occupied
eigenvalues are typically very similar in Kohn−Sham and
generalized Kohn−Sham for systematic reasons,7,8 the
unoccupied eigenvalues in most cases di"er substantially: in
generalized Kohn−Sham theory, they are usually upshifted in
energy with respect to their Kohn−Sham counterparts. The
magnitude of this upshift is related to Δxc, the derivative
discontinuity of Kohn−Sham theory.9

The highest occupied eigenvalue εH has a rigorous meaning
in terms of the IP theorem: it corresponds exactly to the
negative of the first ionization potential (IP) in both Kohn−
Sham10 and generalized Kohn−Sham theory11 (for the exact xc
functional). Therefore, a hallmark test by which one can check
in a nonempirical way whether a given xc approximation yields
eigenvalues that one can call “reliable” is the IP theorem, i.e.,
the fact that the exact functional fulfills the relation

= E E
N NH 1 (3)

where EN denotes the ground-state energy of the N-electron
system. Equation 3 therefore, plays a prominent role in the
present work.

However, one should furthermore note that also the other
eigenvalues are endowed with physical meaning, though only
approximately. This has repeatedly been pointed out in the
literature. For example, the occupied eigenvalues reflect relaxed
IPs,12 and it has been argued that Kohn−Sham unoccupied−
occupied eigenvalue di"erences can approximate electronic
excitation energies.13,14 In the generalized Kohn−Sham
framework, one can choose the noninteracting reference
system such that the lowest unoccupied eigenvalue ϵL is a
good approximation to the electron aBnity,15 and the
optimally tuned range-separated hybrids that are discussed
below take advantage of this property. For the same reason,
generalized Kohn−Sham theory is also attractive in the context
of condensed matter physics. For crystalline solids, the
eigenvalues form the band structure, and in generalized
Kohn−Sham theory, the eigenvalue gap can directly reflect
the fundamental gap. This can allow for the eBcient prediction
of fundamental gaps,16 which is attractive for computational
material design. Finally, the eigenvalues enter the Casida
linear-response equations of time-dependent DFT.17,18 When
an xc approximation yields eigenvalues that approximate (the
negative of) the IP and the electron aBnity, a reliable
description of even diBcult excitations, e.g., ones of charge-
transfer character, can readily be obtained.19−21 Furthermore,
the combination of accurate bond energies and, at the same
time, a reliable description of energy levels is needed in
simulations in which both electron bonds and charge-transfer
processes must be represented accurately. Such situations
typically occur, e.g., in energy converting materials, such as
light-harvesting complexes or photocatalysts, and are therefore
of significant practical interest.

For all of these reasons, it is desirable to have xc
approximations that yield accurate binding energies and
physically interpretable eigenvalues at the same time. Some
progress can be made with correction schemes such as DFT +
U,22 Koopmans-compliant functionals,23 and the localized

orbital scaling correction.24 Our focus here, however, is on
exploring in how far the goal of obtaining reliable atomization
energies and reliable eigenvalues can be reached within one
usual xc functional, i.e., one that does not rely on additional
correction steps. This has been considered a “consistency
condition”25,26 in DFT, and we here focus on whether it can be
reached with functionals of the hybrid type.

Global hybrid functionals can hardly reach this aim, as one
can see from analyzing their potential. In Kohn−Sham theory,
the exact xc potential of a finite system is dominated by x and
decays like −e2/r for large distances from the system’s center.
In a global hybrid, the constant mixing fraction a directly
transfers to the potential and leads to a decay of −ae2/r. For
hybrid functionals that are designed to yield good atomization
energies, such as B3LYP27 and PBE0,28

a takes values of about
0.2 to 0.25.29 Consequently, the mid- and long-range potential
is not binding strongly enough, and εH is therefore not negative
enough to yield a reasonable approximation to the first IP. The
same problem a"ects all other eigenvalues. While this
argument is based on the local Kohn−Sham potential, a
similar argument can be made in the context of generalized
Kohn−Sham theory.

On the other hand, it has been shown that eigenvalues that
are physically interpretable, e.g., as reflecting the fundamental
gap, can be achieved from a global hybrid with much larger
values of a ≈ 0.75.30,31 At such large fractions of exact
exchange, however, the usual global hybrid functionals yield a
poor description of binding energies. Thus, on the level of
global hybrid functionals the observable dilemma leads to a
parameter dilemma.32

It has been noted early5,33,34 that the coupling constant
integration suggests that the mixing of exact exchange and
semilocal exchange should not be determined by a constant a,
but by a density functional a[n]. Realizing this density
dependence might be a way of how to get out of the
observable dilemma because by making the mixing coeBcient a
density functional a[n], one can go beyond just shifting the
Exc,λ curve by a constant and instead modify the shape of the
curve itself.32,35 This led to the concept of local hybrid
functionals, which can be written in the form

[ ] = [ [ ] +
[ ] ]

+ [ ]

E n a n

a n r

E n

r r

r r

( ) ( )

(1 ( )) ( ) d

xc
lh

x
ex

x
sl 3

c
sl

(4)

where we omitted spin indices for clarity of notation. Here, ϵx
ex

and ϵx
sl define the exact and the semilocal exchange energy

density, respectively. The crucial aspect of the local hybrid
form is that a(r) is a density functional.

An explicit form for a local hybrid functional was pioneered
by Scuseria and co-workers,36 and local hybrids were further
explored by di"erent groups.32,35,37−41 A local hybrid can fulfill
constraints that the global hybrid cannot match, such as taking
into account full exact exchange and being one-electron self-
interaction free, approximating the high-density limit well and
reducing to semilocal exchange in the electron gas limit.
Curing many-electron self-interaction is challenging also within
the local hybrid form,42 but many observables can be very well
described with local hybrids.43 The nonuniqueness of the
exchange-energy density is a conceptual challenge in the local
hybrid form, but calibration functions have been developed to

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c02787
J. Phys. Chem. A 2024, 128, 5212−5223

5213

Publication
[B

5]
Publication

[B
5]



reduce this problem.44 Another challenge lies in the computa-
tional realization, which is less straightforward for local than for
global hybrids. The seminumerical integration techniques that
have been developed in refs 45−47 are a decisive step forward,
though, and can bring calculations with local hybrid functionals
to a similar level of eBciency as with global hybrids. However,
while a lot of progress has thus been made based on the local
hybrid form, eq 4 does not ensure that the proper −e2/r
asymptotics of the potential is achieved.48 Therefore, also the
local hybrid form does not resolve the observable dilemma
conclusively, which is reflected, e.g., in the fact that typical
local hybrids o"er only limited improvement in problems of
long-range charge transfer.42,43,49

A di"erent way of combining exact and semilocal exchange
components is realized in range-separated hybrids. They rely
on splitting the Coulomb interaction into long- and short-
range components, often in the form

| | = | |
| | + | |

| |r r

r r

r r

r r

r r

1 erf( ) 1 erf( )

(5)

Range separation has been pioneered by Savin and co-
workers50,51 and di"erent xc approximations have been derived
from this idea. Heyd, Scuseria, and Ernzerhof52,53 used exact
exchange in the short-range and semilocal exchange in the
long-range to derive an xc approximation that is very
successfully used in particular in solid-state physics for band
gap prediction. Many other functionals chose to use exact
exchange in the long-range and semilocal exchange in the
short-range, or combinations thereof.54−59 When 100% of
exact exchange are used in the long-range, the correct long-
range asymptotic potential for finite systems is guaranteed.

A particularly successful way of choosing the range-
separation parameter ω nonempirically is optimal tuning.20

Its central idea is to endow the eigenvalues as good as possible
with physical meaning by enforcing the IP theorem, i.e., by
choosing ω such that εH becomes as close as possible to the IP
calculated from total energy di"erences (see the reviews15,60,61

for details). As a consequence, optimally tuned functionals
allow one to predict fundamental gaps from their eigenvalues
and have been demonstrated to reliably predict charge-transfer
excitations. Optimal tuning is the paradigm example for xc
functional development that focuses on spectroscopic purposes
instead of ground-state energetics.

Unfortunately, there is also a parameter dilemma in range-
separated hybrids20 because for almost all systems, the values
of ω that yield physically interpretable eigenvalues do not yield
good atomization energies and vice versa. This is exemplified
by the functional of ref 56, where good energetics require
much larger values of ω (e.g., ω ≈ 0.5a0

−162) than the ones that
one typically finds by optimal tuning (e.g., ω ≲ 0.2a0

−163).
Here, a0 denotes the atomic unit of length (bohr). A further
example for the manifestation of the parameter dilemma in
range-separated hybrids is seen in the computation of the
linear and nonlinear polarizabilities of conjugated oligomers:
the values of the range-separation parameter that result from
optimal tuning do not necessarily lead to a reliable prediction
of the polarizabilities.64−66 Furthermore, it has been found that
in complex systems, results can depend decisively on the
chosen tuning strategy.67

Very early, it has been suggested to combine the di"erent
hybrid functional concepts,68 and recently, functionals have
been developed that combine the concepts of local hybrids and
range separation.69,70 This is promising because such func-

tionals benefit from the functional flexibility of local exchange
mixing via a[n](r), cf. eq 4, while guaranteeing the correct
potential asymptotics via ω and eq 5. For the ωLH22t
functional of ref 70, which belongs to this functional class, very
good accuracy has been demonstrated for many observables,
including atomization energies. At the same time, it has been
shown that it is accurate for the fundamental gaps of organic
semiconductor molecules.71 However, as discussed in Section
3 below, the consistency between the IPs calculated from total
energy di"erences (“ΔSCF”) and −εH, and also how closely
−εH matches the experimental vertical IP, does not yet
generally reach the accuracy that optimally tuned functionals
achieve. So, while ωLH22t is, to the best of our knowledge, the
functional that presently does best in reducing the observable
dilemma, it does not fully eliminate it.

Another approach for combining exact and semilocal
exchange components with a spatial dependence governed by
a density functional is local range separation, which was
pioneered by Krukau, Scuseria, Perdew, and Savin.72 Recently,
this type of xc approximation has found renewed interest73−76

for at least two reasons. On the one hand, it has become
possible to evaluate such functionals self-consistently.74 On the
other hand, it has been demonstrated that locally range-
separated hybrids can fulfill important constraints and reach
remarkable accuracy for atomization energies and barrier
heights.76 The constraint-guided approach has led to the
nonempirical locally range-separated hybrid ωBT23 that
avoids any parameter adjustment and is very accurate in
predicting the fundamental gap of molecular systems and
remedies shortcomings of optimal tuning.77 However, also
local range separation so far did not resolve the observable
dilemma: the functional ωBT23 is not accurate for atomization
energies, and the functional of ref 76 is accurate for
atomization energies and it yields values for −εH that are
much closer to vertical IPs than the eigenvalues of semilocal
functionals�however, the latter do not reach the accuracy of
optimal tuning or of ωBT23.

In this paper, we therefore explore whether the combination
of the concepts of the local hybrid and local range separation
can further reduce the observable dilemma. In Section 2 we
compare two functional forms: the previously developed
locally range-separated hybrid from refs 73 and 76, and a
new locally range-separated local hybrid that fulfills the same
constraints, yet via di"erent functional ingredients. For each of
the functionals, we determine the underlying parameters in two
di"erent ways: once by an empirical fit to atomization energies
and barrier heights, and once in a nonempirical way by
minimizing the deviation from the IP theorem, cf. eq 3. In
Section 3 we discuss the resulting observables and also
compare to other xc approximations, with a particular focus on
the observable dilemma. We analyze our results in terms of the
local fraction of exchange in Section 4, and we close with
conclusions and a summary in Section 5.

2. METHODS: COMBINING LOCAL RANGE
SEPARATION AND LOCAL HYBRID EXCHANGE

The functionals that we study make use of exact (ex) and
semilocal (sl) exchange by combining the concepts of the local
hybrid and the locally range-separated hybrid. They can be
written in the general form
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= +
[ + ]

+
=

E E

a a r

E

r r( ) (1 ( )) d

xc x
lr,ex

,

x,
sr,ex

x,
sr,sl 3

c
sl

(6)

The long-range (lr) and short-range (sr) superscripts refer to
the usual range-separation splitting of eq 5. For Ec

sl, we
combine the LDA correlation energy density ϵc

LDA[n↑,n↓] in the
parametrization of ref 78 with an iso-orbital indicator-based
one-electron self-interaction correction32,77,79

=E z r(1 ) dc
sl 2

c
LDA 3

(7)

Here

= = | |
z

m

n

n8

W 2 2

(8)

ζ = (n↑ − n↓)/n and τ denotes the (generalized) Kohn−Sham
kinetic energy density. For ϵx,σ

sr,LDA, we use the short-range LDA
energy density as parametrized in ref 80. The long-range exact

exchange is given by = =E rdx
lr,ex

, x,
x,lr 3 with

= * *

| |
| |

=

e

r

r r r r

r r r

r r

2
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erf( ( ) )
d

i j

N

i i j jx,
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2

, 1
, , , ,

3

(9)

and ϵx,σ
sr,ex is its 1 − erf counterpart.

Within this general form, one of the functionals that we
study is the one from refs 73 and 76 (called SICω-LDA in ref
76, but in the following denoted ωBT21 for brevity), which is
defined by

=a r( ) 0 (10)

and

= | | + | |
c

n

n

c a c

n

n

z

r( ) 1 ln
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1

G HDL 0 G
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jjjjj

i

k

jjjjj
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(11)

where = | |
z

m

n

n8

2 2

denotes the equivalent of eq 8 within the

spin channel σ.
A second, new functional form that we study (denoted

ωBT21a in the following) is defined by

= +a

c t

r( ) 1
1

1 a

HDL
2

(12)

where = [ + + ]
| |

t ( /3)
a n

n

2 1/3

4((1 ) (1 ) )

0

2/3 2/3 2

2

7/3 and

= | |
c

n

n z

r( )
1

1

a

G 2
(13)

The functional a(r) implicitly carries a spin dependence via
the spin-dependence of the reduced gradient t.

Both of these functionals fulfill important exact constraints.
First, they reduce to LDA in the homogeneous electron gas

limit, as both ωσ(r) and a(r) go to zero in this limit. Second, in
the limit zσ = 1 and ζ = 1, ωσ(r) tends to infinity. For ωσ(r) →
∞, full exact exchange is used in spin channel σ. Thus, for one
electron systems that are characterized by full spin polarization
and just one orbital, this condition together with eq 7
guarantees being one-electron self-interaction free.

Another formal constraint is the second-order gradient
expansion for exchange. The choice ωσ ∝ |∇nσ|/nσ corresponds
to the functional form that is suggested by the gradient
expansion.75,76 Here, we treat the prefactor (cG or cG

a ,
respectively) as a free parameter. We note, however, that the
optimizations that we describe below yield values that are of
s im i l a r magn i t ude a s the nonemp i r i c a l v a l u e

a5 /18 0.124 ... 0
1 that the gradient expansion suggests.

Finally, both functionals contain elements that have been
devised in view of the high-density limit as defined via uniform
coordinate scaling, n(r) → nλ(r) = λ3

n(λr) with λ → ∞.
Krukau, Scuseria, Perdew, and Savin pointed out72 that locally
range-separated hybrids can fulfill the condition

[ ] [ ] =E n E nlim / 1xc x

x

(14)

whereas a constant range-separation parameter does not. They
further discussed that the (in their case spin-independent)
choice ω(r) = |∇n|/n scales like λω(λr). Fulfilling eq 14 fully
would require that ω(r) scales up faster than λω(λr). Thus, the
ω(r) of Krukau is close to the proper behavior. In eq 11, these
considerations have been taken one step further. By adding the
ln(···)-term, the range-separation parameter has been made to
scale up faster while else changing very little. Adding this term
adds another parameter cHDL that is left undetermined by the
constraints and, therefore, has to be fixed in other ways, as
discussed below. In line with the reasoning that motivated the
ln-term, its influence on binding energies is relatively small.76

Therefore, the construction of ωBT21a takes a di"erent
approach at the high-density limit. The local hybrid term of eq
12 exploits that t2 scales like λ. Thus, in the high-density limit
a(r) → 1 and the functional goes to full exact exchange
independent of the specific value of ω that is used in the range
separation.

So in summary, ωBT21 is a pure locally range separated
hybrid, while ωBT21a is a locally range-separated local hybrid.
These functionals on the one hand di"er in how they approach
the high density limit. On the other hand, the second,
potentially yet more important, di"erence is that while ωBT21
uses exact exchange only in the long-range, ωBT21a allows
exact exchange in both long- and short-range. It is in particular
this latter di"erence, which we are interested in the context of
the observable dilemma.

For each of the two functionals, we determined two sets of
values for the free parameters cHDL, cG, and cHDL

a , cG
a ,

respectively. On the one hand, we chose them empirically
such that the combined errors for a small test set of six
atomization energies (AE6) and six reaction barrier heights
(BH6)81 were minimized. We consider these the “energy
optimal” versions of the functionals and in the following refer
to these versions by ωBT21 and ωBT21a, respectively.

On the other hand, in a second, alternative approach, we
chose the parameters nonempirically such that the di"erence
between the IP as calculated from a ΔSCF procedure and −εH

is minimized. This way of choosing the parameters guarantees
that the functionals fulfill the internal consistency condition of
the IP theorem, cf. eq 3. This choice should also guarantee that
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the total energy as a function of the electron number will
approximate a straight line.82 We consider these second
functionals the “IP optimal” versions and denote them by
ωBT21-IP and ωBT21a-IP, respectively. For simplicity, we
here do the minimization for the molecules in the AE6 test set,
but as discussed in the Supporting Information, the test on the
IP theorem consistency can easily be extended to other
systems. The details of how the optimizations were done
numerically are given in the Supporting Information, Section
S1. Table 1 lists the parameters for the di"erent versions of the
functionals. The parameters listed for ωBT21 are identical to
the ones determined in ref 76.

3. RESULTS

Before looking at detailed results, some trends can already be
discussed by just looking at Table 1, i.e., at the parameters that
result from the di"erent optimizations. We start by looking at
ωBT21, i.e., the upper half of the table, because having only
the local range separation and no local hybrid component
simplifies the analysis. Comparing ωBT21 to ωBT21-IP shows
that having the functional to obey (on average across the test
set) the IP theorem requires a more than 90% increase in cG.
There is a plausible explanation for this observation: a larger
value of cG leads to a value of ω that is larger on average. As a
consequence, when starting to go outward from a finite
system’s center, the amount of exact exchange increases earlier.
This will make the potential more attractive in the region of
space in which εH is mostly determined and that apparently is
required to lower εH enough to make it agree with the IP.
Similarly, cHDL increases by 11%. The change in cHDL thus also
goes into the direction of increasing ω. However, as cHDL

mostly (only) a"ects the high-density regions, which are close
to the atomic cores, whereas εH is determined by much more
distant regions, the value of cHDL changes rather little when the
optimization is shifted from the energies to the IP theorem.
Comparing the parameters that are obtained for ωBT21 and
ωBT21-IP thus clearly shows the cause of the observable
dilemma: having the eigenvalue reflect the IP requires on
average larger amounts of (long-range) exact exchange than
needed for a good description of atomization energies and
barrier heights. Qualitatively, the situation seems to be similar
to the one discussed for the global hybrids in Section 1.

This finding suggests that the more general ansatz of also
allowing for exact exchange in the short-range in the form of
the local hybrid term may alleviate the parameter dilemma
because the presence of short-range exchange may lead to an
overall more attractive potential and thus more strongly bound
eigenvalues without requiring larger (on average) values of ω.
In other words, having both long- and short-range exact
exchange in the functional may be beneficial for solving the
parameter dilemma because the burden of having to fulfill the

IP theorem is not only on the range-separation parameter ω
alone.

Comparing the parameter values that Table 1 shows for
ωBT21a to the ones of ωBT21 reveals that in terms of
atomization energies and barrier heights, the local hybrid term
does not seem to add much to the functional: the range-
separation prefactor is similar in both functionals, and the high-
density limit parameter that is obtained for ωBT21a in the
empirical energy-driven optimization is quite small. According
to eq 12, this indicates that also a(r) is overall small. This
shows that the local range separation alone already captures
the decisive physics of the AE6 and BH6 optimization, and
little is to be gained here from adding the local hybrid term.
Comparing the nonempirical variants that are optimized for
the IP theorem, i.e., the values in the second column of Table 1
for ωBT21-IP and ωBT21a-IP, shows larger di"erences: the
range-separation factor cG

a = 0.190 of ωBT21a-IP is smaller
than the 0.220 one of ωBT21-IP, which is the right direction
for having better energetics. Furthermore, by going from
ωBT21a to ωBT21a-IP, the value of cG

a increases by only about
50%, which is less than the 90% increase that was seen without
the local hybrid component.

We, therefore, now look at the first set of detailed results, as
presented in Table 2. It shows the atomization energies of the
AE6 set and the barrier heights obtained for the BH6 set,
computed with nine di"erent xc approximations. The upper
half of the table from left to right shows the atomization
energies as obtained with Hartree−Fock (HF) theory, the
PBE-GGA,83 and the combination of the two in the PBE0-
hybrid.28 We show these numbers as a reminder of what
accuracy is reached on the pure exchange and purely semilocal
scale, respectively, and which accuracy can be expected from a
nonfitted global hybrid that combines these components. The
next column shows the results obtained with the MN15 global
hybrid functional84,85 as an example for which accuracy can be
reached with a global hybrid in a very empirical multiparameter
fit. The rightmost column finally shows the numbers for
ωLH22t70 as an example for one of the most recent advanced
functionals that combines global range separation with the
local hybrid concept. The lower half of the table presents the
results for our functionals: from left to right it shows the results
that we found for ωBT21 and ωBT21a with the energy
optimal parameters, and then the results for the respective IP
theorem-optimized versions of these two functionals.

A somewhat mixed picture emerges from these results. On
the very positive side, it shows that the energy-optimized
functionals with local range separation reach an accuracy that is
comparable to the one that is reached by MN15 and ωLH22t,
despite the fact that only two free parameters have been
adjusted, i.e., with noticeably fewer parameters than in the
other functionals. Table 3 (detailed data in the Supporting
Information) confirms this general picture for a larger
database. One can interpret this as a sign that the functional
form contains elements that are in itself appropriate and
therefore do not require many parameters.

On the other hand, it is somewhat surprising to see that
ωBT21 is more accurate than ωBT21a. One might argue that
in terms of conceptual “hybrid complexity”, the two variants of
ωBT21a are the most advanced functionals in the table
because both their (long-range) range-separation ω and their
(short-range) multiplicative hybrid factor a have a spatial
dependence. However, adding the local hybrid component, at
least in the form that we used here, does not seem to add new

Table 1. Functional Parameters as Obtained from the

Minimizations Described in the Main Text

parameter ωBT21 ωBT21-IP

cG 0.115 0.220

cHDL 0.202 0.225

parameter ωBT21a ωBT21a-IP

cG
a 0.120 0.190

cHDL
a 0.068 1.379
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flexibility that would increase the accuracy for the tested
energetics.

Therefore, we next turn to Table 4, which shows how well
the IP theorem is fulfilled for the same set of functionals. Plain
HF, which was by far worst in the AE6 and BH6 test, fares

much better for the IP theorem than PBE, PBE0, and MN15.
This is the paradigm example of the observable dilemma. Only
the functionals with range separation fulfill the IP theorem
better than HF. This underlines the importance of range
separation. The functional ωBT21-IP fulfills the IP theorem
very consistently with a very small error. It is noteworthy that
although its parameters have only been optimized for the
average of the test set, ωBT21-IP reaches an accuracy that can
compete with optimally tuned range-separated hybrids, where
the parameters need to be adjusted anew for each system
individually. Table 5 confirms these trends for a larger database
of molecules. This finding is in line with the findings of ref 77,
which showed that local range separation even in a completely
nonempirical form can reach higher accuracy than optimal
tuning.

However, we again note that somewhat surprisingly,
addition of the local hybrid term does not increase the
accuracy over the level that already has been reached with local
range separation alone: also for the IP theorem, ωBT21-IP is
somewhat more accurate than ωBT21-IPa, and the only
improvement that we obtain from adding the local hybrid

Table 2. Atomization Energies of the AE6 Test Set and Reaction Barrier Heights of the BH6 Test Seta

ref. HF PBE PBE0 MN15 ωLH22t

SiH4 324.95 −70.73 −12.68 −11.06 1.25 −2.71

SiO 193.06 −86.01 0.63 −13.14 −1.27 −5.68

S2 104.25 −55.27 8.43 0.18 −1.85 −0.33

C3H4 705.06 −181.48 15.99 2.45 −1.92 −0.34

C2H2O2 633.99 −213.33 29.39 0.84 1.23 0.66

C4H8 1149.37 −279.84 18.79 7.23 −2.28 4.48

MAE (AE6) 147.78 14.32 5.82 1.63 2.37

MSE (AE6) −147.78 10.09 −2.25 −0.81 −0.65

OH + CH4 → CH3 + H2O F 6.50 20.00 −11.70 −4.41 −0.60 −1.81

R 19.60 8.21 −12.21 −6.85 −2.17 −4.41

H + OH → O + H2 F 10.50 6.49 −7.50 −3.98 −0.98 −1.43

R 12.87 20.21 −13.44 −6.32 −1.19 −0.68

H + H2S → H2 + HS F 3.50 8.22 −4.78 −2.49 0.54 0.16

R 16.76 10.78 −6.83 −3.90 0.05 1.35

MAE (BH6) 12.32 9.41 4.66 0.92 1.64

MSE (BH6) 12.32 −9.41 −4.66 −0.72 −1.14

MAE (AE6BH6) 80.05 11.86 5.24 1.28 2.00

local range separation

ref. ωBT21 ωBT21a ωBT21-IP ωBT21a-IP

SiH4 324.95 −0.82 3.28 37.48 51.04

SiO 193.06 −5.85 −5.80 −31.80 −23.70

S2 104.25 2.66 1.81 −18.05 −15.52

C3H4 705.06 0.20 1.37 −11.35 16.63

C2H2O2 633.99 −0.08 0.15 −58.39 −33.83

C4H8 1149.37 1.00 4.30 6.30 49.87

MAE (AE6) 1.77 2.78 27.23 31.76

MSE (AE6) −0.48 0.85 −12.64 7.42

OH + CH4 → CH3 + H2O F 6.50 −3.31 −2.12 10.88 11.84

R 19.60 −4.54 −4.02 3.48 3.70

H + OH → O + H2 F 10.50 −2.67 −2.50 −7.00 −5.26

R 12.87 −0.58 0.52 15.44 15.82

H + H2S → H2 + HS F 3.50 −0.35 −0.43 −2.47 −2.13

R 16.76 −0.03 1.76 15.36 17.11

MAE (BH6) 1.91 1.89 9.11 9.31

MSE (BH6) −1.91 −1.13 5.95 6.85

MAE (AE6BH6) 1.84 2.34 18.17 20.54
aThe numbers (in kcal/mol) correspond to the di"erence of the calculated values to the reference values from the Minnesota database 2.0. MAE
and MSE refer to the mean absolute error and the mean signed error. See the main text for discussion and further details.

Table 3. Errors in the Atomization Energies of the
MGAE109 Test Seta

functional MAE MSE

HF 146.70 −146.70

PBE 14.53 12.64

PBE0 5.01 −0.64

MN15 2.90 −0.01

ωLH22t 2.57 0.03

ωBT21 2.74 −0.46

ωBT21a 4.06 0.47

ωBT21-IP 28.96 −18.01

ωBT21a-IP 31.15 1.41
aAll numbers are in kcal/mol. The detailed data are given in Table S1
in the Supporting Information.
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component is that ωBT21a does slightly better for the IP
theorem than ωBT21. Furthermore, we see and have to accept
the unpleasant result that the combination of local range
separation and local hybrid in the form that we presently
explored does not help to reduce the parameter dilemma
beyond the level that is reached with local range separation
alone: local range separation allows one to build functionals
that are very accurate for energetics, and it allows one to build
functionals that fulfill the IP theorem very closely, but we do
not reach very high accuracy for both with the same set of
parameters. However, one should also note that the concept of
combining exact exchange with (semi)local functional
components in a spatially dependent way, either via local
range separation (ωBT21) or via global range separation

combined with a local hybrid (ωLH22t) does considerably
reduce the observable dilemma when one compares to global
hybrids: Tables 4 and 5 show that compared to the global
hybrids, the deviation from the IP theorem can be reduced by
a factor of ca. two to three.86 However, the additional flexibility
that our local hybrid term in principle adds to the locally
range-separated functional does not translate to a higher
accuracy in practice. This finding calls for an explanation.

4. DISCUSSION: ANALYZING THE LOCAL FRACTION
OF EXCHANGE

In order to understand why adding the local hybrid term does
not lead to qualitatively di"erent results despite the resulting
greater flexibility in the spatially resolved combination of exact
exchange and semilocal functional components, we investigate
the local fraction of exact exchange. In the locally range-
separated local hybrid form, the Coulomb interaction is
separated according to

| | = | |
| | +

| |
| | +

[ ] | |
| |

a

a

r r

r r r

r r

r

r r r

r r

r

r r r

r r

1 erf( ( ) )

( )
1 erf( ( ) )

1 ( )
1 erf( ( ) )

(15)

The last term on the right-hand side is taken into account via
the (semi)local functional components, whereas the first two

Table 4. Deviation from the IP Theorem for the Molecules in the AE6 Test Seta

HF PBE PBE0

SiH4 11.97 13.24 1.27 12.15 8.53 −3.62 12.45 9.88 −2.57

SiO 10.40 11.90 1.51 11.30 7.47 −3.83 11.41 8.83 −2.58

S2 9.53 10.39 0.86 9.48 5.83 −3.64 9.72 7.13 −2.58

C3H4 8.97 10.47 1.50 10.24 6.52 −3.72 10.24 7.74 −2.50

C2H2O2 10.63 12.01 1.37 9.96 6.32 −3.63 10.41 7.91 −2.49

C4H8 10.37 11.83 1.46 10.55 7.22 −3.32 11.03 8.56 −2.46

MAE 1.33 3.63 2.53

MSE 1.33 −3.63 −2.53

local range separation

MN15 ωLH22t ωBT21

SiH4 12.68 10.61 −2.07 12.78 12.52 −0.26 12.55 11.24 −1.31

SiO 11.52 9.53 −2.00 11.57 11.09 −0.47 11.66 10.45 −1.21

S2 9.70 7.68 −2.02 9.73 9.22 −0.51 9.57 8.36 −1.20

C3H4 10.33 8.46 −1.87 10.37 9.95 −0.41 10.36 9.29 −1.07

C2H2O2 10.71 8.82 −1.89 10.73 10.30 −0.43 10.59 9.73 −0.86

C4H8 10.87 9.28 −1.59 10.82 10.64 −0.19 10.78 9.76 −1.01

MAE 1.91 0.38 1.11

MSE −1.91 −0.38 −1.11

local range separation

ωBT21a ωBT21-IP ωBT21a-IP

SiH4 12.61 11.34 −1.27 13.19 12.82 −0.37 13.41 13.08 −0.34

SiO 11.67 10.50 −1.17 11.79 11.70 −0.08 11.92 11.92 0.00

S2 9.56 8.41 −1.16 9.91 9.65 −0.26 10.03 9.80 −0.23

C3H4 10.37 9.34 −1.03 10.36 10.49 0.14 10.50 10.65 0.15

C2H2O2 10.61 9.78 −0.83 11.18 11.28 0.10 11.50 11.65 0.15

C4H8 10.79 9.81 −0.98 11.05 11.05 0.00 12.12 11.24 −0.88

MAE 1.07 0.16 0.29

MSE −1.07 −0.08 −0.19
aFor each functional and molecule, the first column shows the IP as calculated from a total energy di"erence (EN−1 − EN, i.e., “ΔSCF calculation”),
the second column the negative of the HOMO eigenvalue, and the third column their di"erence. All values are in eV.

Table 5. Deviation from the IP Theorem Evaluated as in
Table 4 for a Larger Set of Moleculesa

functional MAE MSE

HF 1.72 1.38

PBE 4.47 −4.47

PBE0 3.04 −3.04

MN15 2.37 −2.37

ωLH22t 0.74 −0.74

ωBT21 1.38 −1.38

ωBT21a 1.33 −1.33

ωBT21-IP 0.36 −0.03

ωBT21a-IP 0.43 0.04
aAll numbers are in eV. The detailed data are given in Table S2 in the
Supporting Information.
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terms are represented using exact exchange. Therefore, it is
natural to define

| | | | +
[ | | ]

f

a

r r r r r r

r r r r

( , ) erf( ( ) )

( ) 1 erf( ( ) )

EXX

(16)

as the spatially resolved local fraction of exact exchange for our
functionals. Figure 1 shows this fraction for the CO molecule
for all four variants of our functionals: the upper two panels
depict the fraction of exact exchange for ωBT21 and ωBT21-
IP, i.e., without the local hybrid component, and the lower two
panels depict it for the functionals ωBT21a and ωBT21a-IP,
i.e., with the local hybrid component. There is no di"erence
between the two spin channels for CO; therefore, it is suBcient
to look at just one of them.

The distance r from the center of the coordinate system
along the bond axis serves as the x-axis, and the relative
distance |r − r′| as the y-axis. First comparing panels (a), i.e.,
the locally range-separated hybrid without short-range exact
exchange evaluated with the energy-optimized parameters, to
panel (b), i.e., the same functional form but evaluated with the
IP-optimized parameters, visually demonstrates that the main
di"erence is that the IP-optimized functional goes more rapidly

toward full exact exchange (full red color) with increasing
values of |r − r′|. Within the core regions, which are visible as
the red vertical lines around the nuclear positions at r = 0 and r
= 2.132 a0, both functional variants are dominated by exact
exchange except for very small values of |r − r′|. Comparing
panels (a) and (c) shows that adding the local hybrid
component changes the spatial distribution of exact exchange
noticeably: with the local hybrid [panel (c)], full exact
exchange is reached for values of r larger than ca. 6 a0

independent of the value of |r − r′|. The IP theorem-optimized
version of the locally range-separated local hybrid [panel (d)]
uses exact exchange in most regions, with semilocal
contributions only in those regions of space that are relatively
close to the nuclei yet outside of the nuclear cores.

The figure thus shows that adding the local hybrid term does
change the spatial distribution of the exact exchange
noticeably, as one might expect, and its minor influence on
the results therefore appears yet more as a puzzle. The
explanation for its little influence emerges from Figure 2. It
shows the density weighted fraction of exact exchange, i.e., n(r)
fσ
EXX(r,|r − r′|) in the same ordering and fashion as used in
Figure 1. Comparing panels (a) and (c) shows that density
weighted, there is hardly any di"erence between the

Figure 1. Plots of the fraction of exact exchange, cf. eq 16, for (a) ωBT21, (b) ωBT21-IP, (c) ωBT21a, and (d) ωBT21a-IP, for the CO molecule,
color-coded as a function of the distance from the center of the coordinate system r along the bonding axis (C atom at 0.000, O atom at 2.132), and
the relative distance |r − r′| (in a0). See the main text for discussion. There is no di"erence between the two spin channels for the CO molecule.
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distributions. For ωBT21a, we observe larger fractions of exact
exchange close to the nuclei for both the energy optimized-
[panel (c)] and the IP-optimized (panel (d)) variant. This
di"erence, however, will hardly a"ect the observables that we
looked at such as atomization energies and the IP. The
di"erences that are seen between the energy-optimized
functionals and their IP-optimized counterparts, e.g., by
comparing panels (a) and (b) of Figure 2, are also less
pronounced than the di"erences seen in Figure 1a,b, but yet
clearly visible, with a broader region of exact exchange seen in
the IP-optimized functionals.

5. SUMMARY AND CONCLUSIONS

We discussed di"erent types of hybrid functionals from the
perspective of two di"erent properties that are often required
from xc approximations in DFT: on the one hand, one would
like reliable energetics as measured, e.g., by atomization
energies, and on the other hand, one would like the highest
occupied eigenvalue to reflect the IP. The large majority of
conventional explicit xc approximations can yield one of these
properties but not the other. Hybrid functionals that make use
of range separation in the Coulomb interaction can reduce this
dilemma.

We here studied the combination of local, density-depend-
ent range separation with locally resolved short-range exchange
in the local hybrid form. Our functional design was guided by
the aim to fulfill important exact constraints. For both a locally
range-separated hybrid ansatz and for a locally range-separated
local hybrid ansatz, we determined the two free parameters
that we could not fix via constraints in two di"erent ways: in a
first, conventional empirical approach, we fitted them to
atomization energies and barrier heights. In a second, less
conventional and nonempirical approach that does not require
external reference data, we determined the parameters such
that the deviation from the IP theorem is minimized, i.e., we
ensured an internal consistency condition.

Our functionals allow one to reach high accuracy for
atomization energies and barrier heights, and they also allow
one to eliminate the deviation from the IP theorem to a very
high degree�but di"erent parameters are needed for the
di"erent tasks. Somewhat surprisingly, we found that adding
the local hybrid component to the local range separation did
not have a profound influence on the observables that we
studied. Analyzing the spatially resolved local fraction of exact
exchange shed light on these observations: in our functional
construction, the local hybrid component as expected has a

Figure 2. Plots of the density-weighted fraction of exact exchange for (a) ωBT21, (b) ωBT21-IP, (c) ωBT21a, and (d) ωBT21a-IP, for the CO
molecule, color-coded as a function of the distance from the center of the coordinate system r along the bonding axis (C atom at 0.000, O atom at
2.132), and the relative distance |r − r′| (in a0). See main text for discussion. We note that n(r)fσ

EXX(r,|r − r′|) takes values larger than 1 in the core
regions. Since we are interested not in the core regions, but in those regions that are relevant for electron bonds and the IP, the plot displays all
values larger than 1 in the same color.
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noticeable influence on the spatial distribution of the mixing of
exact exchange and semilocal components. However, the
di"erences between the locally range-separated hybrid and the
locally range-separated local hybrid are large only in regions of
space where the density is low, or close to the nuclei. None of
these regions are very important for the observables that we
studied here.

The good results that we found on the one hand for our own
locally range-separated functional ωBT21, but on the other
hand, also for the local hybrid with global range separation
functional ωLH22t, indicate that di"erent forms of “locally
resolved” hybrids can be successful. In comparison to simpler
functional forms, such as GGAs or global hybrids, both allow
us to considerably reduce the observable dilemma. A
conclusion that we draw for our own functional forms is that
invoking the high-density limit as the guiding constraint for the
local hybrid component is not ideal, and it seems advisible to
have the local hybrid component guided by other constraints.
Improving the accuracy for energetics further may also require
to go beyond the local density approximation for the short-
range components, and combining the concepts of range-
separation with recently developed new approaches that
improve band gaps and electrical response properties79,87

appears as an attractive option. Such steps then may
necessitate to also involve a calibration function. Future work
will follow these lines and might also profit from the insights
that we recently gained with the ωBT23 functional77 about
approximating the straight line condition nonempirically.
Furthermore, it will be interesting to check whether these
approaches improve the description of hallmark tests, such as
the prediction of the polarizabilities of conjugated systems,64,65

and other tests, such as the ones reported in the Supporting
Information.88−91 The present results in any case underline the
promise that local exchange mixing holds for building
improved functionals that aim to overcome the observable
dilemma.

■ ASSOCIATED CONTENT

*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.4c02787.88−91

Description of the numerical optimization of the
functional parameters; information about numerical
settings used; tables with the detailed data that underlies
the summarizing tables in the main article; and author
contribution statement (PDF)

■ AUTHOR INFORMATION

Corresponding Author
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Kühn, O.; González, L.; Bokareva, O. S. Can range-separated
functionals be optimally tuned to predict spectra and excited state
dynamics in photoactive iron complexes? Chem. Sci. 2023, 14, 1491−
1502.
(68) Henderson, T. M.; Janesko, B. G.; Scuseria, G. E. Range

separation and local hybridization in density functional theory. J. Phys.
Chem. A 2008, 112, 12530−12542.
(69) Kirkpatrick, J.; McMorrow, B.; Turban, D. H. P.; Gaunt, A. L.;

Spencer, J. S.; Matthews, A. G. D. G.; Obika, A.; Thiry, L.; Fortunato,
M.; Pfau, D.; et al. Pushing the frontiers of density functionals by
solving the fractional electron problem. Science 2021, 374, 1385−
1389.
(70) Fürst, S.; Haasler, M.; Grotjahn, R.; Kaupp, M. Full

implementation, optimization, and evaluation of a range-separated
local hybrid functional with wide accuracy for ground and excited
states. J. Chem. Theory Comput. 2023, 19, 488−502.
(71) Fürst, S.; Kaupp, M. Accurate ionization potentials, electron

affinities, and band gaps from the ωLH22t range-separated local
hybrid functional: no tuning required. J. Chem. Theory Comput. 2023,
19, 3146−3158.
(72) Krukau, A. V.; Scuseria, G. E.; Perdew, J. P.; Savin, A. Hybrid

functionals with local range separation. J. Chem. Phys. 2008, 129,
124103.
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S1 Computational details

All calculations have been done using a development version of Turbomole.1 For the
functionals with local range separation we rely on the implementation of Klawohn and
Bahmann2 which we have extended to allow for the space-dependent admixture of
exact exchange at short range. Into this framework we have implemented the ωBT21a
functional. The ωBT21 functional has been implemented and optimized for AE6BH6 in a
previous work.3 The optimal parameters of the other functional variants are determined
similar to the protocol described in that work: In the case of ωBT21a, the parameters
are also chosen such that they minimize the equally weighted mean absolute error (MAE)
of the AE6 and BH6 test sets. The parameters of ωBT21-IP and ωBT21a-IP are fixed
by a condition related to the IP theorem: we minimize the mean absolute deviation
between the ionization potential from a ∆ SCF calculation and the negative of the HOMO
eigenvalue for the molecules in the AE6 test set. On a technical level, we proceed similar
as in our previous work: We vary the parameters in steps of 0.001 within a suitable
interval around the approximate position of the optimum which has been determined
before by using coarser grids. In passing we note that, as in previous works,3,4 we
observe for all functional variants that there is a band of parameter tuples that provide a
performance close to the respective optimum.
As in Ref. 3, a def2-TZVP basis set and a convergence threshold of 10−6 have been
used to perform the Turbomole calculations for the minimization procedure. For the
calculations of AE6BH6 and MGAE109 displayed in this manuscript a cc-pVTZ basis set
and a convergence threshold of 10−7 have been used. The numbers displayed for the IP
theorem have been obtained with an aug-cc-pVTZ basis set and a convergence threshold
of 10−8. Grid size 3 and the resolution-of-the-identity approximation have been used in
all calculations.
The molecular geometries and reference values of the AE6, BH6, and MGAE109 test sets
have been taken from the Minnesota database 2.0.5–7 The geometries of the molecules
for which we assess the IP theorem have been taken from the Minnesota database 2.0 as
well, where available. Only the geometries of Li2, LiH, and LiF have been take from the
NIST database.3,8

S2 Additional data

In the following, we provide the detailed data underlying Table 3 and 5 in the main text.
In Table S1 we provide details on the evaluation of the MGAE109 test set and in Table S2
we provide details on the assessment of the IP theorem for a larger set of molecules. Note
that both tables extend over several pages and that the tables are divided in several
parts where the values for different functionals are displayed.
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Table S1: Atomization energies of the MGAE109 test set. The numbers (in kcal/mol)
correspond to the difference of the calculated values to the reference values from the
Minnesota database 2.0.

Ref. HF PBE PBE0 MN15
CH 84.23 −27.73 0.05 −1.64 −2.83
CH2 (1A1) 181.46 −55.18 −3.17 −5.68 −3.79
CH3 307.88 −65.27 2.01 0.35 −2.25
CH4 420.43 −92.44 −0.05 −2.55 −2.86
NH 83.10 −32.42 4.49 1.36 −2.40
NH2 182.59 −66.00 4.46 −0.81 −1.63
NH3 298.02 −98.47 1.99 −4.64 −2.04
OH 107.22 −39.57 1.13 −2.75 −1.12
H2O 232.98 −78.62 −1.55 −8.20 −3.41
HF 141.63 −45.74 −1.90 −6.56 −2.09
SiH2 (3B1) 131.48 −32.29 4.54 4.10 11.38
SiH2 (1A1) 152.22 −42.74 −4.95 −5.66 1.34
SiH3 228.01 −49.35 −6.43 −5.47 2.47
SiH4 324.95 −70.73 −12.68 −11.06 1.25
PH2 153.20 −45.73 0.37 −1.12 1.32
PH3 242.27 −71.54 −4.34 −6.21 −0.37
H2S 183.91 −55.71 −3.02 −5.19 −0.19
HCl 107.50 −31.15 −1.80 −3.22 −0.74
C2H2 405.53 −112.71 9.21 −1.51 −2.12
C2H4 563.69 −135.94 8.02 −0.02 −2.83
C2H6 712.98 −162.00 4.36 −0.72 −4.16
CN 181.36 −91.80 15.98 −3.00 −6.11
HCN 313.43 −115.10 12.72 −2.73 −1.98
CO 259.74 −86.00 9.35 −4.46 −0.78
HCO 279.43 −97.73 15.60 0.66 −1.21
H2CO 374.67 −118.02 11.12 −2.71 −1.07
CH3OH 513.54 −145.12 5.40 −4.73 −1.75
N2 228.48 −114.12 14.68 −3.74 −2.63
NH2NH2 438.60 −172.39 12.20 −2.44 1.03
NO 152.75 −99.98 19.43 0.26 0.41
O2 120.83 −87.75 23.12 3.58 0.27
H2O2 269.03 −134.63 11.93 −6.61 0.60
F2 39.03 −3.35 15.11 −3.20 0.83
CO2 390.16 −144.00 26.67 1.47 2.42
Si2 76.38 −47.85 3.13 −3.29 −2.74
P2 117.59 −81.62 2.16 −8.00 −4.68
S2 104.25 −55.27 8.43 0.18 −1.85
Cl2 59.75 −42.36 4.24 −1.82 −0.84
SiO 193.06 −86.01 0.63 −13.14 −1.27
SC 171.76 −76.50 6.12 −5.45 −1.65
SO 126.48 −74.78 10.72 −3.23 −3.05
ClO 65.45 −61.53 13.14 −0.73 −1.07

Continued on next page.
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Continued from previous page.
ClF 62.79 −56.54 7.73 −3.57 0.64
Si2H6 535.89 −121.97 −17.67 −15.37 2.23
CH3Cl 396.44 −100.57 3.00 −1.63 −2.19
CH3SH 474.49 −125.14 2.72 −2.48 −0.75
HOCl 166.24 −88.99 7.28 −4.99 −0.37
SO2 260.63 −163.05 7.45 −19.21 −12.41
AlCl3 312.64 −71.85 −9.46 −10.69 5.02
AlF3 430.95 −118.45 −9.68 −25.13 −2.41
BCl3 325.45 −82.64 8.53 2.07 7.68
BF3 470.96 −108.57 13.42 −2.87 11.40
C2Cl4 469.82 −183.86 27.36 6.79 6.09
C2F4 591.06 −215.37 42.52 7.16 16.58
C3H4 (pro) 705.06 −181.48 15.99 2.45 −1.92
C4H4O 994.33 −284.93 37.75 11.33 5.36
C4H4S 963.65 −270.23 31.22 10.28 1.33
C4H5N 1071.93 −307.27 38.93 14.12 4.43
C4H6 (tra) 1012.37 −251.28 22.53 5.48 −3.38
C4H6 (yne) 1004.13 −250.99 21.95 5.63 −2.40
C5H5N 1238.14 −347.33 47.33 17.25 2.72
CCH 265.31 −80.47 11.58 1.01 −0.96
CCl4 316.19 −140.01 13.92 −0.82 0.45
CF3CN 641.17 −239.62 42.73 4.99 10.22
CF4 477.93 −162.77 28.94 3.29 13.60
CH2OH 410.08 −121.29 10.71 −0.14 0.34
CH3CN 616.02 −182.92 19.53 1.47 −1.59
CH3NH2 582.31 −166.74 7.50 −2.09 −1.85
CH3NO2 601.82 −261.18 39.94 3.20 1.18
CHCl3 345.79 −124.40 10.97 −0.08 −0.10
CHF3 458.73 −145.58 21.93 1.32 9.16
ClF3 127.31 −99.93 30.60 −4.53 −3.58
H2 109.49 −25.74 −4.71 −5.00 −1.23
CH2CH 446.09 −108.68 11.75 3.40 −2.00
HCOOCH3 785.90 −239.18 25.95 0.46 3.38
HCOOH 501.53 −170.76 20.88 −1.37 2.21
NF3 205.67 −167.32 39.96 4.35 9.86
PF3 365.01 −135.89 3.85 −15.74 1.17
SH 87.00 −26.72 0.32 −0.92 1.22
SiCl4 388.73 −109.78 −8.25 −11.71 4.21
SiF4 576.30 −155.92 −12.80 −29.95 0.18
C2H5 603.93 −135.79 8.20 3.29 −2.59
C4H6 (bic) 987.56 −259.58 24.52 10.29 1.53
C4H6 (cyc) 1001.97 −256.31 22.58 7.52 −2.13
HCOCOH 633.99 −213.33 29.39 0.84 1.23
CH3CHO 677.44 −187.49 17.21 0.45 −1.39
C2H4O 651.11 −191.67 18.71 2.68 2.44
C2H5O 699.05 −181.60 14.50 1.75 −2.04
CH3OCH3 798.46 −213.06 11.73 −1.87 0.02

Continued on next page.
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Continued from previous page.
CH3CH2OH 810.77 −215.04 10.10 −2.73 −2.59
C3H4 (all) 703.47 −181.57 20.58 5.65 0.02
C3H4 (cyc) 683.01 −186.40 18.76 5.50 0.06
CH3COOH 803.68 −240.57 24.65 0.21 1.06
CH3COCH3 978.46 −257.49 22.02 2.73 −1.76
C3H6 853.68 −208.68 15.06 5.84 −0.34
CH3CHCH2 860.88 −206.37 13.14 2.30 −3.66
C3H8 1007.14 −232.29 8.60 0.93 −5.09
C2H5OCH3 1095.62 −283.01 16.30 0.07 −0.89
C4H10 (iso) 1303.40 −304.44 11.42 1.21 −6.68
C4H10 (anti) 1301.68 −303.02 12.40 2.17 −6.41
C4H8 (cyc) 1149.37 −279.84 18.79 7.23 −2.28
C4H8 (iso) 1158.97 −277.92 17.06 3.57 −4.94
C5H8 1284.73 −326.32 31.45 14.77 2.60
C6H6 1368.10 −344.14 42.04 17.40 −0.63
CH3CO 581.99 −166.65 21.64 3.78 −1.25
CH3CHCH3 901.02 −206.71 13.77 5.76 −3.10
C4H9 1199.70 −279.16 17.55 6.58 −4.89
CH2CO 532.73 −162.44 25.77 5.17 3.17
MAE 146.70 14.53 5.01 2.90
MSE −146.70 12.64 −0.64 −0.01

Local range separation
ωLH22t ωBT21 ωBT21a ωBT21-IP ωBT21a-IP

CH −2.04 −0.52 1.40 8.15 14.11
CH2 (1A1) −3.91 −1.75 1.41 12.85 24.04
CH3 −0.77 0.97 3.19 19.96 32.16
CH4 −0.43 0.75 4.24 25.09 42.28
NH −0.21 −1.17 1.32 6.53 13.63
NH2 −1.10 −2.29 1.81 9.52 22.74
NH3 −1.45 −2.62 2.22 11.29 29.21
OH −1.64 −1.78 −0.17 −0.98 5.21
H2O −4.02 −3.33 −1.14 −3.37 7.08
HF −3.09 −2.58 −2.19 −6.95 −2.55
SiH2 (3B1) 9.09 13.21 15.69 32.97 41.09
SiH2 (1A1) −1.16 3.43 5.91 22.68 30.64
SiH3 −2.10 2.31 4.91 29.78 38.22
SiH4 −2.71 −0.82 3.28 37.48 51.04
PH2 0.80 6.98 9.29 23.88 31.74
PH3 −1.68 5.52 8.77 28.55 40.35
H2S −2.99 2.38 3.96 11.00 18.11
HCl −2.10 0.40 0.91 2.18 5.41
C2H2 −1.65 −1.40 −0.85 −13.32 3.20
C2H4 −0.10 0.43 2.87 7.15 29.73
C2H6 −0.12 0.41 4.63 25.96 54.43
CN −7.90 −7.48 −6.03 −37.36 −26.71

Continued on next page.
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Continued from previous page.
HCN −2.01 −3.06 −0.47 −22.93 −6.37
CO −2.12 −0.92 −0.31 −30.80 −21.85
HCO −0.32 0.46 0.81 −25.61 −15.38
H2CO −1.02 −0.26 1.31 −17.28 −2.15
CH3OH −1.11 −1.39 1.62 0.05 21.47
N2 −2.29 −4.47 0.33 −30.51 −14.30
NH2NH2 0.76 −2.60 4.31 1.68 30.35
NO 0.44 0.46 2.87 −32.23 −23.20
O2 2.33 4.44 4.20 −34.55 −33.16
H2O2 −1.68 −0.35 1.66 −25.27 −13.67
F2 −1.28 0.72 −0.60 −35.45 −38.35
CO2 0.49 1.06 0.34 −59.85 −45.69
Si2 −6.24 −0.71 −1.00 −10.26 −7.40
P2 −3.74 8.60 9.33 −4.63 3.14
S2 −0.33 2.66 1.81 −18.05 −15.52
Cl2 −0.98 1.21 0.11 −16.34 −15.98
SiO −5.68 −5.85 −5.80 −31.80 −23.70
SC −5.41 0.93 0.98 −21.58 −16.13
SO −2.33 −2.88 −3.58 −33.87 −30.66
ClO −1.17 −0.69 −1.12 −28.59 −26.02
ClF −0.99 −0.75 −2.18 −27.39 −27.06
Si2H6 −4.10 −1.38 4.15 50.81 72.02
CH3Cl −0.25 0.26 1.88 5.01 19.56
CH3SH −0.41 3.08 5.66 14.05 32.56
HOCl −1.77 −0.81 −0.44 −22.59 −16.27
SO2 −14.80 −13.96 −14.80 −75.66 −66.43
AlCl3 −2.78 −8.82 −10.78 −30.09 −23.51
AlF3 −7.66 −21.18 −23.95 −62.44 −47.50
BCl3 1.01 −0.53 −4.47 −39.63 −33.55
BF3 4.18 −3.98 −8.93 −61.34 −47.47
C2Cl4 2.09 1.42 −4.98 −80.61 −70.05
C2F4 7.70 2.27 −5.56 −108.50 −93.46
C3H4 (pro) −0.34 0.20 1.37 −11.35 16.63
C4H4O 6.36 3.56 1.81 −59.23 −23.48
C4H4S 3.51 4.00 2.20 −47.46 −13.70
C4H5N 7.12 3.00 3.52 −46.91 −3.14
C4H6 (tra) 0.35 −0.04 1.79 −12.12 27.47
C4H6 (yne) 0.31 1.02 2.82 −10.12 29.31
C5H5N 6.24 2.36 2.48 −62.90 −12.45
CCH −3.73 −1.63 −2.69 −21.91 −11.14
CCl4 −1.44 −2.42 −7.27 −63.71 −58.91
CF3CN 5.17 −1.76 −5.76 −106.77 −83.85
CF4 7.38 1.42 −4.86 −87.28 −76.17
CH2OH 0.40 0.53 2.11 −6.13 10.38
CH3CN −0.26 −1.35 1.89 −20.51 7.74
CH3NH2 0.00 −1.77 3.80 13.38 42.30
CH3NO2 1.65 2.17 4.63 −58.82 −31.66

Continued on next page.
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Continued from previous page.
CHCl3 −0.42 −0.74 −3.34 −39.29 −30.88
CHF3 5.68 0.61 −3.07 −59.39 −46.56
ClF3 −2.92 −5.39 −10.51 −85.56 −85.60
H2 −0.79 0.40 2.95 21.56 26.39
CH2CH −0.78 0.94 2.00 0.26 17.68
HCOOCH3 3.40 0.29 1.52 −42.20 −11.00
HCOOH 1.24 0.31 0.93 −42.73 −22.75
NF3 6.67 4.91 3.32 −71.54 −65.67
PF3 −1.43 −9.30 −12.70 −66.02 −52.81
SH −0.33 2.98 3.88 7.94 11.65
SiCl4 −3.29 −10.39 −13.79 −48.96 −41.53
SiF4 −9.29 −25.91 −30.65 −88.24 −68.84
C2H5 0.01 1.37 4.30 20.68 44.38
C4H6 (bic) 6.89 2.18 3.23 −15.25 21.66
C4H6 (cyc) 2.76 0.70 2.16 −13.90 23.42
HCOCOH 0.66 −0.08 0.15 −58.39 −33.83
CH3CHO 0.30 0.52 2.62 −16.36 10.35
C2H4O 4.21 1.38 3.23 −17.86 7.12
C2H5O 0.86 −1.82 1.17 −1.76 27.42
CH3OCH3 1.54 −0.54 3.05 1.17 33.67
CH3CH2OH −0.35 −1.89 1.68 −0.14 32.78
C3H4 (all) 1.45 3.24 4.33 −10.04 17.67
C3H4 (cyc) 2.74 1.80 2.63 −13.26 13.03
CH3COOH 1.52 −0.41 0.73 −43.00 −11.38
CH3COCH3 1.41 0.39 2.98 −16.42 21.87
C3H6 4.81 2.36 5.01 7.22 40.32
CH3CHCH2 0.34 0.44 3.43 7.26 41.17
C3H8 0.39 −0.38 4.42 25.67 65.49
C2H5OCH3 2.21 −1.01 3.13 1.01 44.98
C4H10 (iso) −0.01 −2.84 2.41 22.99 74.21
C4H10 (anti) 0.48 −1.58 3.80 24.89 76.06
C4H8 (cyc) 4.48 1.00 4.30 6.30 49.87
C4H8 (iso) 0.22 −0.87 2.60 5.71 51.01
C5H8 10.11 4.95 6.61 −10.94 37.89
C6H6 4.46 2.85 1.36 −52.54 −2.02
CH3CO 1.22 1.42 2.48 −23.54 −1.47
CH3CHCH3 0.60 1.37 4.88 20.49 55.69
C4H9 −0.03 −0.37 3.63 18.16 64.84
CH2CO 2.42 4.05 4.11 −33.86 −13.25
MAE 2.57 2.74 4.06 28.96 31.15
MSE 0.03 −0.46 0.47 −18.01 1.41
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Table S2: Assessment of the IP theorem for a set of molecules. For each functional
and molecule, the first column shows the ionization potential from a ∆SCF calculation,
the second column the negative of the HOMO eigenvalue, and the third column their
difference. All values are in eV.

HF PBE PBE0
C2H2O2 10.63 12.01 1.37 9.96 6.32 −3.63 10.41 7.91 −2.49
C2H2 9.78 11.18 1.40 11.41 7.19 −4.21 11.27 8.43 −2.84
C2H4 12.89 10.27 −2.62 10.66 6.77 −3.89 10.48 7.89 −2.60
C2H6 11.92 13.24 1.32 11.88 8.14 −3.74 12.21 9.60 −2.61
C3H4 8.97 10.47 1.50 10.24 6.52 −3.72 10.24 7.74 −2.50
C4H8 10.37 11.83 1.46 10.55 7.22 −3.32 11.03 8.56 −2.46
CH2OH 7.80 9.25 1.45 8.09 3.87 −4.22 8.25 5.35 −2.90
CH3CH2OH 9.48 12.04 2.56 10.20 6.21 −3.99 10.47 7.87 −2.60
CH3CN 11.62 12.59 0.97 12.13 8.12 −4.01 12.18 9.48 −2.70
CH3NH2 8.36 10.64 2.28 9.52 5.41 −4.12 9.55 6.89 −2.66
CH3OCH3 8.85 11.56 2.70 9.76 5.88 −3.88 9.90 7.47 −2.43
CH4 13.32 14.83 1.52 14.12 9.45 −4.67 14.17 10.99 −3.18
Cl2 11.15 12.15 1.00 11.23 7.36 −3.87 11.50 8.78 −2.72
CO2 18.41 14.83 −3.58 13.67 9.08 −4.59 13.75 10.72 −3.03
CO 13.08 15.10 2.03 13.86 9.05 −4.82 14.01 10.75 −3.26
F2 16.05 18.07 2.02 15.30 9.39 −5.91 15.79 11.76 −4.03
H2O 10.99 13.89 2.90 12.80 7.25 −5.55 12.61 9.09 −3.53
H2 15.33 16.17 0.84 16.22 10.37 −5.85 16.24 11.99 −4.25
HCN 12.39 13.52 1.13 13.95 9.03 −4.91 13.92 10.41 −3.52
HCOOH 10.00 12.93 2.93 11.31 6.95 −4.36 11.35 8.62 −2.73
HF 14.35 17.71 3.36 16.33 9.66 −6.68 16.11 11.85 −4.26
Li2 4.35 4.95 0.60 5.26 3.23 −2.03 5.20 3.80 −1.41
LiF 10.00 12.96 2.95 12.29 6.13 −6.15 11.96 7.95 −4.01
LiH 7.00 8.21 1.21 8.05 4.36 −3.69 8.00 5.44 −2.56
N2 15.65 16.73 1.08 15.40 10.27 −5.12 15.75 12.21 −3.54
NH2 11.80 12.62 0.83 12.91 7.23 −5.69 12.85 8.78 −4.07
NH3 9.37 11.67 2.30 10.94 6.16 −4.78 10.81 7.72 −3.09
NO 10.20 11.67 1.47 9.91 4.53 −5.38 10.21 6.45 −3.76
O2 13.32 15.15 1.83 12.51 6.77 −5.74 12.93 8.98 −3.96
OH 11.38 13.98 2.59 13.30 7.38 −5.91 13.10 9.24 −3.86
PH2 9.33 10.26 0.93 9.98 6.05 −3.92 10.01 7.26 −2.76
PH3 9.39 10.53 1.13 10.44 6.67 −3.77 10.44 7.83 −2.61
PH 9.66 10.51 0.86 10.25 6.19 −4.06 10.29 7.42 −2.87
S2 9.53 10.39 0.86 9.48 5.83 −3.64 9.72 7.13 −2.58
SH 9.18 10.37 1.19 10.40 6.23 −4.17 10.37 7.49 −2.88
SiH4 11.97 13.24 1.27 12.15 8.53 −3.62 12.45 9.88 −2.57
SiO 10.40 11.90 1.51 11.30 7.47 −3.83 11.41 8.83 −2.58
MAE 1.72 4.47 3.04
MSE 1.38 −4.47 −3.04

Continued on next page.
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Continued from previous page.

Local range separation
MN15 ωLH22t ωBT21

C2H2O2 10.71 8.82 −1.89 10.73 10.30 −0.43 10.59 9.73 −0.86
C2H2 11.33 9.17 −2.16 11.34 10.67 −0.67 11.39 10.04 −1.35
C2H4 10.55 8.61 −1.94 10.54 10.06 −0.48 10.60 9.51 −1.10
C2H6 12.38 10.34 −2.04 12.45 12.10 −0.35 12.26 11.04 −1.22
C3H4 10.33 8.46 −1.87 10.37 9.95 −0.41 10.36 9.29 −1.07
C4H8 10.87 9.28 −1.59 10.82 10.64 −0.19 10.78 9.76 −1.01
CH2OH 8.13 5.89 −2.24 8.11 7.47 −0.64 8.15 7.09 −1.06
CH3CH2OH 10.69 8.79 −1.89 10.68 10.34 −0.34 10.60 9.75 −0.85
CH3CN 12.26 10.24 −2.02 12.35 11.78 −0.57 12.32 11.18 −1.14
CH3NH2 9.73 7.77 −1.97 9.68 9.28 −0.40 9.73 8.63 −1.10
CH3OCH3 10.09 8.36 −1.73 10.07 9.86 −0.21 10.02 9.34 −0.69
CH4 14.37 11.75 −2.62 14.28 13.55 −0.72 14.36 12.44 −1.91
Cl2 11.74 9.63 −2.11 11.67 11.08 −0.60 11.63 10.36 −1.27
CO2 13.88 11.57 −2.31 13.93 13.09 −0.84 13.93 12.75 −1.19
CO 14.11 11.64 −2.47 14.29 13.47 −0.82 14.13 12.49 −1.64
F2 16.09 12.89 −3.21 16.08 14.55 −1.53 15.92 14.35 −1.57
H2O 12.78 10.11 −2.68 12.74 11.64 −1.10 12.78 11.23 −1.55
H2 16.66 12.82 −3.85 16.32 15.36 −0.95 16.46 13.80 −2.66
HCN 13.88 11.18 −2.70 14.07 12.73 −1.35 14.11 12.19 −1.92
HCOOH 11.54 9.57 −1.97 11.52 11.06 −0.46 11.52 10.60 −0.92
HF 16.29 12.91 −3.37 16.28 14.55 −1.73 16.25 14.35 −1.90
Li2 5.50 3.95 −1.55 5.15 5.24 0.09 5.12 4.41 −0.71
LiF 12.04 8.92 −3.12 12.10 10.56 −1.55 12.04 10.27 −1.77
LiH 8.13 6.07 −2.06 8.02 7.98 −0.04 8.11 6.80 −1.31
N2 15.97 13.17 −2.80 16.08 14.90 −1.18 16.00 14.08 −1.92
NH2 12.58 9.66 −2.93 12.63 11.30 −1.33 12.72 10.80 −1.91
NH3 10.95 8.63 −2.33 10.91 10.17 −0.74 10.95 9.55 −1.40
NO 10.09 7.17 −2.92 10.22 8.91 −1.31 10.06 8.41 −1.65
O2 12.86 9.77 −3.09 13.00 11.50 −1.51 12.78 11.12 −1.67
OH 13.32 10.32 −3.00 13.19 11.89 −1.30 13.11 11.60 −1.51
PH2 9.95 7.60 −2.34 9.85 9.24 −0.61 9.88 8.55 −1.34
PH3 10.53 8.51 −2.02 10.51 10.06 −0.45 10.56 9.23 −1.33
PH 10.23 7.80 −2.43 10.14 9.44 −0.70 10.16 8.80 −1.36
S2 9.70 7.68 −2.02 9.73 9.22 −0.51 9.57 8.36 −1.20
SH 10.48 8.25 −2.23 10.45 9.75 −0.70 10.55 9.15 −1.41
SiH4 12.68 10.61 −2.07 12.78 12.52 −0.26 12.55 11.24 −1.31
SiO 11.52 9.53 −2.00 11.57 11.09 −0.47 11.66 10.45 −1.21
MAE 2.37 0.74 1.38
MSE −2.37 −0.74 −1.38

Local range separation
ωBT21a ωBT21-IP ωBT21a-IP

C2H2O2 10.61 9.78 −0.83 11.18 11.28 0.10 11.50 11.65 0.15
C2H2 11.39 10.09 −1.30 11.25 11.24 −0.01 11.39 11.39 0.00

Continued on next page.
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Continued from previous page.
C2H4 10.60 9.55 −1.05 10.42 10.60 0.17 10.55 10.71 0.16
C2H6 12.31 11.13 −1.18 12.86 12.63 −0.23 13.11 12.91 −0.20
C3H4 10.37 9.34 −1.03 10.36 10.49 0.14 10.50 10.65 0.15
C4H8 10.79 9.81 −0.98 11.05 11.05 0.00 12.12 11.24 −0.88
CH2OH 8.11 7.10 −1.00 8.38 8.57 0.19 8.47 8.73 0.26
CH3CH2OH 10.64 9.83 −0.81 10.91 11.45 0.54 11.11 11.80 0.69
CH3CN 12.32 11.23 −1.09 12.31 12.49 0.18 12.46 12.71 0.24
CH3NH2 9.76 8.71 −1.05 9.85 10.22 0.37 10.03 10.50 0.47
CH3OCH3 10.05 9.41 −0.64 10.26 10.99 0.73 10.45 11.34 0.89
CH4 14.40 12.54 −1.85 14.64 14.11 −0.53 14.85 14.40 −0.45
Cl2 11.64 10.42 −1.22 12.01 11.76 −0.25 12.22 12.00 −0.22
CO2 13.94 12.79 −1.14 13.98 14.29 0.31 14.23 14.70 0.47
CO 14.21 12.60 −1.62 14.65 14.39 −0.26 14.99 14.79 −0.20
F2 15.95 14.43 −1.52 16.61 16.78 0.18 17.11 17.50 0.39
H2O 12.80 11.31 −1.49 12.62 13.15 0.53 12.83 13.56 0.73
H2 16.57 13.96 −2.61 17.38 15.82 −1.56 17.59 16.16 −1.42
HCN 14.17 12.23 −1.94 14.30 13.50 −0.80 14.54 13.69 −0.84
HCOOH 11.52 10.65 −0.87 11.48 12.25 0.77 11.69 12.64 0.95
HF 16.26 14.44 −1.82 16.01 16.64 0.63 16.28 17.23 0.95
Li2 5.15 4.44 −0.71 5.47 5.03 −0.44 5.53 5.05 −0.49
LiF 12.02 10.33 −1.69 11.58 12.12 0.54 11.84 12.64 0.80
LiH 8.17 6.88 −1.29 8.71 8.14 −0.57 8.88 8.34 −0.54
N2 16.04 14.16 −1.88 16.58 16.05 −0.52 16.89 16.49 −0.40
NH2 12.64 10.92 −1.72 12.68 12.51 −0.16 12.69 12.85 0.16
NH3 10.98 9.63 −1.35 10.94 11.22 0.27 11.14 11.52 0.38
NO 10.02 8.43 −1.59 10.45 10.38 −0.07 10.74 10.77 0.03
O2 12.74 11.14 −1.60 13.35 13.41 0.06 13.69 13.89 0.19
OH 13.18 11.70 −1.48 13.08 13.59 0.51 13.43 14.06 0.63
PH2 9.86 8.59 −1.27 9.96 9.68 −0.28 9.95 9.74 −0.21
PH3 10.59 9.30 −1.29 10.70 10.45 −0.24 10.88 10.62 −0.26
PH 10.14 8.84 −1.30 10.22 9.88 −0.35 10.21 9.94 −0.26
S2 9.56 8.41 −1.16 9.91 9.65 −0.26 10.03 9.80 −0.23
SH 10.58 9.21 −1.37 10.69 10.45 −0.23 10.88 10.61 −0.27
SiH4 12.61 11.34 −1.27 13.19 12.82 −0.37 13.41 13.08 −0.34
SiO 11.67 10.50 −1.17 11.79 11.70 −0.08 11.92 11.92 0.00
MAE 1.33 0.36 0.43
MSE −1.33 −0.03 0.04
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