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Abstract

This cumulative thesis is dedicated to the experimental study of the topological
and drift transport of colloidal particles on top of non-periodic magnetic pat-
terns. A promising approach to avoid disturbing effects of perturbations in a
system, is using a topological protected transport. I will show in such system
with topological protection, the transport is robust against perturbations. Mag-
netic particles can be transported above magnetic patterns using topologically
protected transport. By applying a homogeneous external magnetic field that
changes its direction along a loop, colloidal particles move on top of magnetic
patterns. On top of periodic patterns one can transport all colloidal particles
belonging to the same topological class along the same direction irrespective of
their location on the pattern. I show how to move identical particles in different
directions independently to perform different tasks using non-periodic pat-
terns, in which the direction of the transport depends on the absolute position
of the particles above the patterns. I will show which non-periodic patterns to
use and which loops to apply to fulfill my desired tasks. By applying an external
magnetic field, single colloidal particles self assemble into colloidal bipeds
that are rods of different length formed by several single colloidal particles. I
investigate how to use this control over single particles to synthesize bipeds in
a specific location. In order to determine how much internal control I can have,
I will show how to design a non-periodic pattern and modulation loop such
that they work together in synergy to synthesize bipeds of a desired length. I
will address the question how to use a single loop to give different commands
to single colloidal particles and bipeds to do different tasks, simultaneously.
Finally, I will show what kind of non-topological transport we can observe in
superpositions of two magically twisted periodic patterns, by applying a drift
force and a precessing external magnetic field.
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Kurzdarstellung

Diese kumulative Arbeit widmet sich der experimentellen Untersuchung des to-
pologischen und Drifttransports kolloidaler Partikel auf nichtperiodischen mag-
netischen Mustern. Ein vielversprechender Ansatz zur Vermeidung storender
Effekte beim Transport ist es diesen topologisch zu schiitzen. Ich werde zeigen,
dass topologisch geschiitzter Transport robust gegenuiber Storungen ist. Mag-
netische Partikel konnen mithilfe eines topologisch geschiitzten Transports
uber magnetische Muster transportiert werden. Durch Anlegen eines homo-
genen externen Magnetfelds, das seine Richtung entlang einer Schleife andert,
bewegen sich kolloidale Partikel auf magnetischen Mustern. Auf periodischen
Mustern konnen alle kolloidalen Partikel, die derselben topologischen Klasse
angehoren, entlang derselben Richtung transportiert werden, obwohl sie sich
an verschiedenen Positionen befinden. Ich zeige, wie identische Partikel auf
nichtperiodischen Mustern unabhangig voneinander in verschiedene Richtun-
gen bewegt werden konnen, um dort unterschiedliche Aufgaben auszufiihren.
Die Richtung des Transports hangt dabei von der absoluten Position der Partikel
uber den Mustern ab. Ich werde zeigen, welche nichtperiodischen Muster zu
verwenden sind und welche Schleifen anzuwenden sind, damit die kolloidalen
Teilchen meine gewlinschten Aufgaben erflillen. Durch Anlegen eines ex-
ternen Magnetfelds fligen sich einzelne kolloidale Partikel selbst zu kolloidalen
Zweibeinern zusammen, die aus Staben unterschiedlicher Lange bestehen, die
aus mehreren einzelnen kolloidalen Partikeln bestehen. Ich untersuche, wie
diese Kontrolle iber einzelne Partikel genutzt werden kann, um Zweibeiner
an einem bestimmten Ort zu synthetisieren. Um zu bestimmen, wie viel
interne Kontrolle ich haben kann, werde ich zeigen, wie man ein nichtperi-
odisches Muster und eine Modulationsschleife so gestaltet, dass sie in Synergie
zusammenarbeiten, um Zweibeiner einer gewtinschten Lange zu synthetis-
ieren. Ich werde die Frage behandeln, wie man eine einzelne Schleife ver-
wendet, um einzelnen kolloidalen Partikeln und Zweibeinern verschiedene
Befehle zu erteilen, damit sie gleichzeitig verschiedene Aufgaben ausfiihren.
Abschlief3end werde ich zeigen, welche Art von nichttopologischem Transport
wir in Uberlagerungen zweier magisch verdrehter periodischer Muster be-
obachten kénnen, indem wir eine Driftkraft und ein prazedierendes externes
Magnetfeld anwenden.
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Chapter 1

Introduction

Isn't it normal that if we give a certain command (here in the form of a loop
of an external magnetic field) different magnetic particles would respond to
such a command in a different way? All objects usually respond according to
their material properties and if we continuously change this property from one
particular magnetic object to the other, we would expect the response to be
continuous as well. But it is not!! I can say that I can look at this issue from two
perspectives. As a physicist and as a mother.

From the point of view of the physicist in me, this is a strange issue:

I am deeply accustomed to observing systems that respond continuously to
changes in their governing parameters. The backbone of lots of classical and
modern physics is formed by this continuous relationship. In many physical
phenomena, small and incremental changes in a material property—such as
temperature, force, or electric field—result in smooth and gradual changes
in the system's behaviour. For example, thermal expansion could be a great
example of a continuous response to changes in temperature [1]. As the temper-
ature is increased, the material's dimensions increase smoothly which demon-
strates a direct correlation between temperature and expansion. Or in elastic
materials, the deformation is proportional to the applied force within the elastic
limit, which is given by Hooke's Law [2]. As you continuously increase the force,
the displacement increases continuously, reflecting a smooth, elastic response
of the material.

But to be honest, as a mom, I am totally familiar with these surprises:

During the developmental stages that my daughter, Kiyana, passes through, I
am experiencing different challenges in each stage. The development that I
continuously try hard to improve, doesn't improve continuously with my effort.
A lot of my effort seems in vain. During the stages of raising my daughter, from
birth to one year old, I had challenges related to providing basic needs such as
food, sleep and comfort, which suddenly changed completely after one year old.
When Kiyana learned to walk and talk, she began to explore the world around
her. I also had to increase my care and find a new way to communicate with
my daughter while opening the way for her new experiences. Until she was
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almost two years old, when I was happy that my efforts were paying off and I
learned the right way of parenting. Again, all of a sudden, around the second
year of her life, everything changed, and we entered a new phase of life. At the
second year, Kiyana was finding herself, checking the boundaries and limits,
and the world revolved around her needs. She had to do everything herself and
we always heard the phrase "I do it myself”. The need for social relations and
visibility became stronger and I had to work harder to meet new needs, play
games and make new connections. Unexpectedly, just when I thought there
would be no more difficult challenges than this age, the age of three (which
I call the age of opposing everything) started. So far, I think it was the most
difficult and at the same time the most interesting stage. Kiyana had found
herself; her demands were clear to her and it was not easy to disagree with her.
Again, without warning, at this stage, we faced new obstacles to communicate
with her and consider her new needs. We had to make more effort and adopted
more complex and new methods.

In this project,  was able to combine these two experiences as a physicist and
as a mother. In topology, a homotopy class is a family of continuous paths or
functions that can be continuously transformed into one another [3]. Differ-
ent homotopy classes represent fundamentally different paths that cannot be
deformed smoothly into each other if there are "obstacles” in the space [4]. As
a mother and a physicist, I can compare different homotopy classes with the
different needs of a child at various ages. We can think of homotopy classes
as representing the distinct stages or sets of needs that a child has as they
grow. Each homotopy class corresponds to a family of needs or behaviors that
cannot simply be transformed into another. During infancy, the primary needs
of a child are basic survival needs: nourishment, sleep, and security. These
needs are fundamental and non-negotiable, much like how a homotopy class
that represents loops around a single, simple feature cannot change unless the
underlying space changes drastically. At next stage (from 1 to 2), my daughter
started to gain mobility, and suddenly from one to the next day could walk.
This developmental step represents an expansion of the space the child can
explore, similar to how a new homotopy class would expand to include more
features. The loop that once only focused on basic survival needs now includes
new points of interest, objects to touch, places to go or in another word a desire
to explore and so on. By age three, her homotopy class now includes diverse
"loops” that involve not just exploration, but also structured activities, peer
relationships, and learning to manage emotions in more complicated ways.
In my project, I will show you, like Kiyana's growth, the response of colloids
first does not change in any way with the change of the material properties
and all those particles fall into the same homotopy class, robustly following the
response of one representative of this class. Then suddenly without warning



following a completely different response not continuously evolving from the
response of the first class switching to the response of another second class
of particles that again is followed by all particles continuously evolving from
the particle after the switch. The response of a continuously increasing para-
meter of the particle is a step function with steps occurring between each set of
particle properties. We might also be familiar with such non-trivial behaviour
from measurements of the Hall resistivity of a quantum Hall effect material,
where the transverse resistivity increases with the applied magnetic field in
steps defined by natural constants h/ e? completely independent of any mater-
ial properties [5]. The quantum Hall effect has been explained by topological
Chern classes [6].

Apart from that, I would love to know a unique rule that when I use it, everything
works automatically and I won't have any problem in future raising my daughter
or any of my future children of different ages. Do you think it is possible?

In my thesis I will show that I have found this rule for colloids. I will show
how I use one driving loop to simultaneously and robustly enforce any wanted
transport behaviour to each class individually. To gain this kind of control, I
used inhomogeneous patterns to simultaneously induce the motion of differ-
ent particles or bipeds (Colloidal rods formed from single colloids) in different
locations. I will present variations of magnetic colloidal system letting the
transport properties fall into topological classes. In chapter 2, I will explain
topology and why transport properties are topological. I will explain how the
topological properties of the driving loop directly translate to the topological
properties of the particles transport. In chapter 3, I talk about internal control
and I explain about position control in three different non-periodic patterns. I
will show what is transcription space and how we can use different homotopy
classes to have more control over transport. In the second part, I will show my
publications and prior to those papers I briefly explain the questions behind
them and the results. Finally, I talk about details of my setups in chapter 5 and
in the end I will summarize the major finding.






Chapter 2

Defying Disruption: The Science
of Topologically Protected
Transport

I start this chapter by explaining briefly about topology and topological trans-
port, as I believe to follow the subject it is important to be familiar with the
concept of topological transport without repeating the papers. Although all of
the details about the theory and formulas that we used exist in my publications.
It is followed with the main questions that lead me to write this thesis. I show
how I can have internal control in a colloidal system by controling the position
and properties of the particles. This chapter is completed by a brief summary
of how internal control works in my projects.

2.1 What is topology?

Stretch, Bend, but Never Break! [7] Topology is a mathematical field, describing
properties of geometrical objects in space that are invariant under continuous
deformations, such as stretching, bending or twisting without any breaks or
tears. The number of holes, the genus, in an object is one of these topological
invariants that remain unchanged if one smoothly deforms the object. In to-
pology a coffee cup and a doughnut are topologically equivalent, because one
can be deformed into the other without tearing or cutting (Fig. 2.1). Therefore,
Objects with the same topological invariant are similar and belong to the same
equivalence class [8].

Topology is also the field that connects local properties of differential manifolds
with global properties [9]. Consider for example a smooth surface embedded
into three dimensional Euclidian space. Choose a point on this surface and
attach the tangent plane at this point. If the surface is curved in this point the
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Figure 2.1: Objects with different genus. Surfaces with same colours are topolo-
gically equivalent. a)g = 0,b)g =1,c)g = 2



2.1 What is topology?

infinitesimal surrounding on the surface will bend away from the tangent plane.
We can mathematically describe the deviation of the tangent plane from the
surface by a two-dimensional symmetric curvature tensor with eigenvalues x|
and k9, - the principal values of curvature. This description of a local property
of the surface involves the embedded Euclidian space and therefore it is an
extrinsic measurement of the property of a surface [10]. Gauss has shown
that the product K = kK9, - the Gaussian curvature - is an intrinsic measure
of the property of a surface that does not require an embedding space [11].
Take a flat piece of paper with k1 = ko = 0 and bend it. This will change
one of the principal curvatures, but not the second principal curvature which
remains x9 = 0. The Gaussian curvature thus is invariant under how the paper
is embedded into Euclidian space. An even more striking result occurs if we
integrate the Gaussian curvature over the entire closed surface of the object.

Gauss found that
/ K — 21y 1)
A

where Y is called the Euler characteristic of the surface. The Euler characteristic
is an integer and it is directly related to the genus g = (2 - x)/2 that is also an
integer and describes the number of holes in the surface [12]. We can smoothly
deform the surface and locally change the Gaussian curvature - an intrinsic
local property of the surface -, however when summed up over the surface the
result is the same [13]. The genus of a surface is a robust quantity that defies
disruption.

Figure 2.1 shows nine surfaces falling into three different equivalence classes,
classified by the genus of the surface.

Lets put a one dimensional path on our different surfaces. Like for the surface
we want the path to be closed, i.e. the path should start and end in the same
point on the surface. We call such a path a loop. Lets try what we have learned
about deformations of surfaces with our loop. We want to smoothly deform
the loop in a way such that it stays embedded into the surface. On our surfaces
of genus g = 0 it is always possible to shrink the loop to a point. This is not
always true for loops living on a genus g # 0 surface [14]. We can classify the
loops into homotopy classes. If a loop can be smoothly deformed into a point
on the surface then it is said to be zero-homotopic. If not the loop encloses
at least one of the holes of the surface, but notice that the hole is not part of
the surface but part of the embedded space. In an intrinsic description of a
surface the way to discover the existence of a hole is by looking for non-zero-
homotopic loops [15]. We can shrink a non-zero-homotopic loop to a loop of
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Figure 2.2: Loops on surfaces of different genus. a) A loop on a surface of genus

g = 0 is always zero-homotopic. b) Different loops E(
different winding numbers around the two holes.

w1,w2) with

minimal perimeter. It is blocked from shrinking further by the hole existing
in the embedded space. We characterize non-zero-homotopic loops by the
winding number of the loop around the g different holes. wy..wg. Again the
winding numbers are topological invariants describing different equivalence
classes of loops. A zero-homotopic loop is called topologically trivial and a
non-zero-homotopic loop is called topologically non-trivial [16].

In Figure 2.2 we show two surfaces of genus g = 0 and g = 2 with a zero-

homotopic loop on both surfaces and three non-trivial loops of winding num-
bersw; = 1;wo =0,w; = 0,wp = -1,and w; = 1,wy = -1.
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2.2 Why topology?

2.2 Why topology?

Repeatable and reliable control is necessary in a lot of systems. In many cases
we can see how small deformations in these systems can alter a path. In such
spaces, small changes can cause significant deviations, making the system
sensitive to perturbations. One example could be the problem in quantum
computation. Perturbations in quantum computing introduce lots of challenges,
including decoherence and noise, all of which can affect the accuracy and
reliability of quantum computations [17]. One promising way to face these
challenges is using topological protection [18, 19].

Imagine I am walking with my daughter Kiyana on two different terrains: a flat,
smooth path and a staircase. On the flat path, every step is continuous and
uninterrupted. Small perturbations, like a slight change in direction, speed,
or balance are immediately noticeable. If she slows down even slightly, her
progress is visibly affected, and she may fall behind. My child needs to constantly
adjust and keep up with the flow of movement on a flat path is analogous to
navigating a space where small shifts impact the overall structure.

Now, contrast this with walking on stairs. In this case, the path is made by
discrete and distinct steps. Here, small perturbations, like a brief pause or a
small misstep have less of an effect. Even if she slides or shifts her weight,
as long as she reaches the next step, her progress remains intact. Same as
topologically robust systems that are protected from small changes, the stairs
provide natural intervals that absorb minor variations [20]. In such systems,
small perturbations do not change the fundamental structure, which allows the
overall shape to remain in the same class. Walking on stairs, then, represents a
system where the discrete nature of the steps ensures stability and robustness
to small perturbations, in other words, the transport is topologically protected.

The physical properties that only depend on topological invariants are quite
robust [21, 22]. That is, smooth perturbations do not change the topological
quantity and therefore the physical quantity remains unchanged. The winding
number around a hole of the mathematical manifold is one of the topological
invariants of a curve on a manifold [23]. Hence, using the topological protec-
tion is a promising way to cover several problems in classical and quantum
physics.

1
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2.3 What is topologically protected transport
in colloidal system?

As I mentioned before, the winding number is one of the topological invariants.
The winding number plays a critical role in many real-world situations where
the number of loops or turns an object makes around a point or another object
fundamentally changes the outcome. Here, topological transport of the colloids
on magnetic patterns can also be described by a set of winding numbers around
special points [23, 24]. What are these special points? In my experiments, a
pattern with up and down magnetization [25, 26] is exposed with an external
magnetic field. All possible orientations of this external field is on a sphere
named control space, C. Our control space is not a sphere, but it is a punctured
sphere. Which is from a topological point of view a very different object than
a sphere. The control space has special points, the bifurcation points, that
puncture the control space. The orientation of the external field varies in time,
performing loops and to have topologically non-trivial protected transport,
loops in control space must wind around these bifurcation points [23, 24, 27].

To transport magnetic colloids, a uniform time dependent external magnetic
field of constant magnitude is superimposed to the non-uniform magnetic
field generated by the pattern. The external magnetic field adiabatically (very
slowly) follows a loop in control space. The particles are transported on a 2D
plane parallel to the pattern, called action space 4, following the minima of
the periodic colloidal potential. Different symmetry of the pattern leads to
differently punctured control spaces, and different loops with different winding
numbers can induce transport in different directions. The motion is topologic-
ally protected in the sense that the precise shape of the loop is irrelevant. All
loops falling into the same class cause motion in the same direction, making
the transport robust against internal and external perturbations.
The topologically protected transport displacement Ar(£) in action space
caused by a loop £ in control space can be summarized by the simple for-
mula:

Ar(L) = Z w; (L, pattern, particle type) a; (2.2)

1

where the w; are the winding numbers around the bifurcation points and the
a; are the (local) lattice vectors of the pattern. This result was obtained already
before starting my thesis [23, 24, 27]. However, the winding number is a to-
pological invariant and one therefore expect it to be invariant or change by
an integer upon deformations of either the loop, the pattern, or the colloidal
particle. Previous theses have explored deformations of the loop and deforming

12
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the particle shape. In this thesis a major focus is put onto deformations of the
pattern and its effect on the deformation of the other properties the winding
number discontinuously depends on.

The symmetry of the pattern (e.g. square vs. hexagonal) and the particle prop-
erties (e.g. the length of colloidal bipeds) play important roles in determining
the specific orientations of the external field that control the motion [23, 24, 27,
28]. I will introduce the properties of periodic patterns in section 2.3.1 and talk
about the particle properties in section 2.3.2.

2.3.1 Topological transport of single colloidal particles
on periodic patterns

Let us focus onto the pattern properties. In figure 2.3 T have shown a schematic
overview of the transport of single colloidal particles above three periodic
patterns with different symmetries. With each pattern I also show the control
space with the location of the bifurcation points. Bifurcation points in control
space are connected via fence segments that are also shown in figure 2.3. Fences
separate regions with a different number of minima of the colloidal particles per
unit cell of action space. The fences are also important because they determine
whether the motion of the colloids is reversible or irreversible [24].

13
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Figure 2.3: Schematic overview of control space C and action space .4 above
three periodic patterns with different symmetries. The patterns
are made of regions with up and down magnetization and are
coated with a polymer coating as a spacer for the paramagnetic
colloidal particles. Loops that wind around special orientations in-
duce particle transport. These special orientations are determined
by the position of the bifurcation points that are shown on control
space for a) square pattern, in which the bifurcation points are four
equidistant points on the equator and Hexagonal patterns with b)
Cg and c) Sg symmetries.

14
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2.3.2 Topological transport of colloidal bipeds

Let us now focus on the properties of our colloidal particles. Our colloidal
particles are Dynabeads that are core shell particles of diameter d = 2.8um
and d = 4.5um. The shell consists of polystyrene, and the core is filled with
superparamagnetic nanoparticles made from magnetite and maghemite [29,
30]. Albeit one nanoparticle is superparamagnetic, the assembly of them inside
the core makes the core paramagnetic such that the colloidal particle exhibits
an induced magnetic moment when exposed to an external magnetic field.
In external fields of the order of Hext ~ (1 — 4)kA/m the resulting magnetic
moments are large enough to cause sufficient dipolar interactions between
nearby Dynabeads such that they assemble into dumbbells (Hext ~ (0.1 -
0.8)kA/m) or into colloidal rods (Hext ~ (1 - 4)kA/m) consistingofn = 2 -7
Dynabeads with the rod oriented along the external field [31, 32]. In Figure
2.4a we depict a microscope image of Dynabeads on a periodic square pattern
subject to an external field Heyxt that is tilted at an angle of cos ¥ = n- Hext = 0.7
to the pattern normal vector n. There are rods of different length, with the
elevated Dynabeads being out of focus and the grounding Dynabead being in
focus. In my publications I made those rods walk and I call them bipeds for this
reason. In the scheme Figure 2.4b I show a perspective view of different bipeds
on the square pattern.

15
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a) b)

Figure 2.4: Colloidal single particles and bipeds. a) Microscope image of colloidal
bipeds above a square magnetic pattern and subject to an external
field. Scale bar is 20um. b) Scheme showing a perspective view of
bipeds on a square pattern.

Now that I have introduced the concept of topological transport, I talk about
the main achievements of my project, internal control.

16



Chapter 3

Internal control

Do you remember that I was looking for a unique rule to use and stay a side
watching how everything works perfectly? In both of my roles: as a mother
and as a physicist. I want Kiyana to learn something. Therefore I send her to
kindergarden. She there learns to sing and If she makes a mistake the teacher
will correct her. Eventually I want Kiyana to correct herself. The corrections
of the teacher are external. The teacher must deviate from what he planned
initially to give Kiyana the correcting feedback. Once Kiyana can correct herself
no deviation from the teacher is necessary anymore. Kiyana has internal control
and can correct her mistakes without external interference.

My thesis is about the topological control of colloids. There exist much simpler
techniques in externally controlling the motion of colloids using for example
optical tweezers. We grab a colloidal particle with the tweezers at position A
and move it toward a position B [33]. However, if something goes wrong and a
colloidal particle for some reason is lost while being transported by the tweezers
one needs to detect the mistake via microscopic observation and correct the
tweezers path to recapture the colloid. The colloid does not internally realize
that it has been lost by the tweezers and does not catch up with the tweezers
by itself [34, 35].

In my thesis I will present a much more complex task that I will accomplish
using topological protection ensuring an internal quality control in achieving
the task. The control loop will be complex, however, I do not need to change it
if something goes wrong during the process of fulfilling the task. The colloids
will do that by themselves.

In this chapter I will talk about different kind of control that I was looking for in
my project. I give a brief overview in section 3.1 about how to achieve position
control by using non-periodic patterns and in section 3.2 I show how to achieve
individual control over the motion of bipeds with different length. Both types
of control provides you with the major ingredients needed to simultaneously

17
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but independently control the motion of bipeds of various length at different
positions on the non-periodic pattern. The exact recipe for achieving each task
can only be given once you know how the bifurcation points and the fences
depend on both the position and the length of the bipeds. This information will
be provided in my three publications.

3.1 Position control with non-periodic
patterns

When I started working with colloids, I was wondering how much control I
can have on colloids. Can I tell them where to go? Well, we had the answer in
equation (2.2), that I showed in section 2.3.

Is it possible to tell similar particles move in different directions? That was a
good question that helped me to reach here and write this thesis. Equation (2.2)
tells me the two things that play an important role in the motion are symmetry
of the pattern and particle properties. In our previous papers we know how to
transport particles on periodic patterns with different symmetries [23, 24, 27,
28]. In each symmetry we have differently punctured control spaces and by
using the proper loop winding around the proper points we will have non-trivial
transport.

What will help me to find a way to move similar colloids in different directions?
whatifI alter the periodicity of the pattern? Using various non-periodic patterns
was one of the solutions. But how?

In sections 3.1.1and 3.1.2 I talk about the properties of two different non-periodic
patterns that I used in publication 1 and 2 in order to topologically control the
position of the colloids. In section 3.1.3 I show how I can control the motion
of the colloids on top of a twisted magnetic pattern, but without the help of

topology.

3.11 Topological defect patterns

Imagine a missing piece in a puzzle or a wrinkle in a piece of fabric, these
types of defects can be fixed without fundamentally changing the system. Now,
imagine trying to remove a knot from a rope. It doesn't matter how much you
stretch or pull the rope, the knot persists unless you cut through it. Conventional
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3.1 Position control with non-periodic patterns

e— ——

Figure 3.1: A magnetic pattern with a topological defect in the centre (shown
in yellow). The symmetry phase is constant along radial directions
and varies in the azimuthal direction. To each radial sector having
one symmetry phase I plot the corresponding control space near. If
we look at it from magenta sphere to yellow the symmetry phase
change from Cg to Sg to Cg. In the gray area of control space there
are two minima of the colloidal potential per unit cell. In the colored
area there is only one minimum of the colloidal potential per unit
cell. Both areas are separated by the fence. The cusps of the fences
are the bifurcation points. Bifurcation points of different colored
control spaces are in different positions. A loop common to all of
the control spaces thus will have different sets of winding numbers
which according to equation (2.2) will lead to different transport
displacements of the colloids.
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defects can be smoothed out with a little 'material engineering’, but topological
defects resist to gentle fixes [36]. In my first publication, I used non-periodic
threefold pattern with a topological defect at the centre shown in figure 31,
which we call spiral pattern. In three-fold patterns N = 3 the symmetry and
one additional parameter, the symmetry phase ¢, determine the magnetic
pattern and therefore the position of the bifurcation points. As you can see in
figure 2.3, in the spiral pattern the symmetry phase and therefore the shape of
the black domains varies with the positions. For each symmetry phase I have
bifurcation points in different position of control space. Therefore, by winding
around a family of bifurcation points simultaneously I could transport each
particle depending on their location in a spiral trajectory to reach the defect
and vice versa [37].

3.1.2 Metamorphic pattern

Quasicrystals obliterate the line between order and disorder. They have highly
ordered structures in small regions, like conventional crystals. But globally,
their structure never repeats periodically [38]. If you only observe a small
section in a locally periodic system, the arrangement of elements looks like
it might repeat. However, the overall structure is aperiodic if you zoomed
out to a larger view, which means it never exactly repeats across the entire
system. What makes quasicrystals fascinating is this balance between local
periodicity and global aperiodicity, offering part of the simplicity of crystalline
order without the restrictions of periodicity. In my second paper, I used a
non-periodic three-fold pattern without topological defect but a metamorphic
pattern. Just as quasicrystals defy conventional expectations by having both
symmetry and aperiodicity, metamorphic magnetic patterns exhibit a similar
behaviour.

In the metamorphic pattern, shown in figure 3.2, if we move along the x-
direction, the lattice morphs from the C¢ locally periodic pattern into an Sg
symmetric pattern and then to alocal Cg-symmetry. Therefore, like in the spiral
pattern, the symmetry phase changes with the location on the metamorphic
pattern. As the symmetry phase changes, the position of the bifurcation points
in control space are also changed for each symmetry phase. Hence, by winding
around different bifurcation points I am able to transport particles in different
locations in different directions simultaneously [39].
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3.1 Position control with non-periodic patterns

Figure 3.2: Metamorphic pattern with corresponding control spaces for each
symmetry phase from Cg to Sg to Cg. The different colored control
spaces are the same as those of Figure 3.1

In both the topological defect pattern in Fig. 3.1 as well as in the metamorphic
pattern of Fig. 3.2 the symmetry phase changes with the location on the pattern,
therefore the position of the fences and bifurcation points in control space
that we should wind around differs. Now if I have similar particles in different
locations of the pattern, by applying one external magnetic loop each particle,
depending on their location, knows where to go. Perfect! That’s what I was
looking for. In this thesis, I will use the concept of local periodicity in non-
periodic patterns to overcome the limitations of the periodic patterns and
control the movements of similar particles in different locations.

3.1.3 Twisted magnetic pattern

The unconventional properties of twisted bilayer graphene are one of the
most exciting recent discoveries in condensed matter physics. Twisted bilayer
graphene is obtained when two layers of graphene, sheets of carbon atoms
arranged in a hexagonal lattice, are stacked on top of each other and twisted
at a specific angle (known as the "magic angle” and it is particularly at around
1.1 degrees). This new structure fundamentally alters how electrons behave in
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1T

Figure 3.3: Twisted magnetic patterns. a) Hexagonal twisted pattern b) Square
twisted pattern. The yellow regions are one twisted Wigner Seitz
cell. Note that the twisted Wigner Seitz cells are rotated with respect
to the Wigner Seitz cell of one of the single patterns. The blue lines
indicate the locations of the non-generic flat channels.

the system [40]. This specific twist creates a moiré pattern, which leads to the
formation of a superlattice, a periodic potential due to the interference of the
two hexagonal lattices [41, 42]. This twisted bilayer graphene exhibit new and
unexpected properties, such as superconductivity [43].

Similar to twisted bilayer graphene, in colloidal system, imagine two identical
magnetic periodic patterns. If they are perfectly aligned, the magnetic potential
is periodic with the period of the individual patterns. If we rotate one of these
magnetic patterns slightly with respect to the other, the generated magnetic
field between them changes, resulting in a magnetic field patterns with a period
much larger than the period of an individual pattern [44]. Imagine two pieces
of graph paper and lay one on top of the other. if they are perfectly aligned,
everything looks neat. However, if you rotate one slightly, you'll see a complex
pattern emerge and you get a new pattern that didn't exist in either grid alone.
This happens because the small, regular spacing in the grids interferes with
each other, producing a new, larger-scale pattern. The square and hexagonal
twisted pattern are shown in Fig 3.3. In Fig 3.3 you will see that the interference
of the two patterns causes a structure that resembles the original pattern in
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3.2 Length control of colloidal bipeds

generic locations. There are however non-generic cells of negative interference
connected along a zig-zag path that we call the flat channel (blue lines in Fig
3.3). A flat channel causes a colloidal potential that is flat along the channel
and this is the reason of its name. The even less generic cells are at the zig-zag
corners of the flat channel [45, 46].

As I wanted to do experiments with colloids in microscopic setup, it was not
possible to use two patterns and rotate them. Therefore, one pattern is made in
a way that shows an overlay of the potential of two twisted square or hexagonal
patterns [47].

By using these patterns I was also able to control the motion of single colloids
and colloidal rods, but without using topology. In my experiments on twisted
moiré patterns I used gravity to drive the high density colloids through the
pattern. I therefore mounted the setup, consisting of the microscope, the coils
and the sample on aninclined plane. In a specific regime of the inclination angle
of the inclined plane and specific regime of magnetic field strengths, I could
confine the motion of the particles to the flat channels while colloids in generic
locations are stuck in their cells. The transport behavior of single colloidal
particles and colloidal dumbbells is the subject of my third publication.

3.2 Length control of colloidal bipeds

As I told you two important things in transporting the particles are symmetry
of the pattern and particle properties. I have shown in section 2.3.2 that if the
dipolar interaction of the single colloids is strong they assemble to make bipeds
with different lengths. Albeit the length of a biped is quantized in multiples of
a single colloidal particle diameter it can be useful to consider the length of
the biped a quantity that (theoretically) could be changed continuously. During
the preparation of my sample I will obtain bipeds with random length in a
random position. In my second paper I showed, now that I can control similar
particles in different locations of the pattern by using a non-periodic pattern, I
can command single colloids to move toward an active line, i.e. a line of specific
local pattern symmetry, and accumulate so many single colloids in this region
such dipolar interaction assembles them into bipeds there. Of course, "It's
easy once you know the answer.” That was a big step for me and therefore the
probability to get biped in that line was much higher than in other places. How
can I command a biped to stop growing, leave the active line into an escape
direction? The answer to this question requires me to know the position of the
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bifurcation points at each position of the non-periodic pattern for all different
biped lengths. To understand this dependence it is useful to introduce a new
space, the transcription space.

3.2.1 Homotopy classes and transcription space

Next important question that helped me to reach here is: Now that I have bipeds
where I want, can I also control the lengths of them? Is it possible to make
a factory for bipeds? For example, if I need a biped with only four particles
can it survive before getting other particles and making longer bipeds? In
this case I needed to know how the special points work for bipeds and what
are homotopy classes in topology. Well, probably now you are familiar with
these concepts. As discussed before, for single colloids the set of all possible
orientations of Hext forms a spherical surface called control space. For different
symmetries, the position of the fences in control space is different and hence
the modulation loop that is needed to transport particles in different positions
is also different.

For bipeds, instead of control space we introduce transcription space. Let by,
denote the vector from the northern foot to the southern foot of a biped of
length by, [28]. The orientation of the (dipolar) biped is locked to that of the
external field. Now we can define transcription spaces given by the surface
of a sphere of radius by,,. Each point on transcription space corresponds to an
orientation of a biped of length by. Great! Each length has different sphere.
Therefore, if we have two bipeds that have different lengths and at least one
length is larger than the lattice constant, they fall into different homotopy
classes. Now you can imagine why I was talking about my daughter’s growth
and compare it with homotopy classes in introduction. Going back to the issue
of length control, now that we are familiar with homotopy classes, I can use
different loops for each length. Hence, for these bipeds we can find loops in C
that is transcipted into two loops and we can transport them independently.

3.3 Conclusions

In this chapter I started with the question of internal control that lead to my
thesis. In my experiments I was looking to have internal position control on
colloids and bipeds and also internal length control for bipeds.
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3.3 Conclusions

In order to have position control in my experiments, I used patterns with three
fold symmetry but non-periodic. In the metamorphic pattern of section 3.1.2
and in the topological defect pattern 3.1.1 the symmetry phase changed as a
function of the position on the pattern. Therefore, the bifurcation points for
each symmetry phase are located in different positions of control space and
by winding around each of the bifurcation points, we can have transport in
different directions at different positions of action space simultaneously.

For example, in publication 1, when I put colloids on top of the topological
defect pattern by applying a single magnetic loop that winds around special
bifurcation points simultaneously, I am able to let the particles follow a spiral
path into the topological defect irrespective of the particles initial position.

Another form of position control is achieved in my publication 3, where I am
able to confine the non-topological transport of single colloidal particles and
bipeds to a non generic region - the flat channels - of a twisted hexagonal or
square pattern.

On the other hand, in order to have length control, I showed how different
homotopy classes work. In publication 2, I have similar colloidal particles in
different locations. After applying a single loop, singlets and bipeds interpret
this loop differently. As bipeds with different lengths can be considered as
different particles, the homotopy class and therefore the bifurcation points
change with the length. Single colloids move toward the active line where they
assemble into bipeds and then when the assembled biped is long enough it
walks away from the active line. In this way single colloidal particles are sent to
the active line and bipeds of a chosen length are emitted from the active line
creating a programmable biped factory for bipeds of a specific length.

If I am the one to talk about the beauty of my project, I would say it the internal
control of the whole system. I applied a single external magnetic loop and that'’s
it! Each translate the loop differently and respond to it depending on their
properties. Thats what I mean by internal control. Everything works perfectly
without any external interference.
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Chapter 4

Overview of the publications

41 Simultaneous and independent topological
control of identical microparticles in
non-periodic energy landscapes

In this work, I showed by using inhomogeneous patterns and simple loops or
simple patterns and complex loops it is possible to control the movement of
identical colloidal particles in different directions at different positions.

As I discussed in section 3.11, one can construct complex patterns by locally
changing the symmetry phase in an originally three-fold symmetric periodic
pattern. In the first part of the paper, [ used patterns with a topological defect
made by changing the symmetry phase. The symmetry phase varies between
¢ = -m/3 and 7/3. Particles in random initial positions can be guided toward
the center of the topological defect by repeating a simple loop. A slight change
of the loop can change the trajectory in a way such that instead of attracting
the particles the topological defect acts as a repeller. I used a more complex
pattern to show that particles can follow a more complicated trajectory. I
used a pattern, in which the symmetry is changed locally, such that randomly
initialized particles on the pattern follow a trajectory to write the letter "B".

In the second part of the paper, I showed this position control is also possible
with simple periodic patterns but more complex loops. I used simple square
patterns which with different orientation relative to the same applied loop.
because the positions of the bifurcation points depend on the rotation angle by
applying the same loop, particle trajectories on four differently oriented square
patterns write the letters "A”, "B”, "C” and "D". Thus, I can choose loops that con-
trol the motion of particles in each pattern independently and simultaneously.
In the last approach, I used complex pattern together with complex loops. I first
used three topological defect patterns to move randomly initialised particles to

their defect center and in a second step the loop transfers the particle from the
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three defect centers to three square patterns with different orientation. In a
third step depending on the orientation of the square patterns, the particles
either draw a square-, or a triangle- or a cross-trajectory on the three pat-
terns.

In this project, I showed how much precise control I can have on single colloids
with three different approaches.

4.2 Topologically controlled synthesis of
active colloidal bipeds

In publication 2 2, I used the metamorphic pattern of section 3.1.2 which is a
quasi-periodic pattern with symmetry phase that continuously changes as one
moves along the pattern. In this work I show the ability of the internal control.
I used a single loop consisting of two parts, an entry- and an exit-loop. Single
colloidal particles and bipeds interpret the external magnetic loop differently.
With a properly designed loop, single colloidal particles located in different
positions are all transported toward one active line. This increases the density
of colloids at the active line and the reaction rate of an addition reaction of two
colloids or bipeds to a larger biped leads to a growth of single colloids toward
longer and longer bipeds. The exit loop terminates the growth at our desired
length and bipeds of the desired length are emitted from the active line. I apply
six differently programmed loops to produce bipeds of the six different desired
lengths by - by.

I therefore designed a programmable and topologically protected lab on a chip
capable to produce bipeds of any length.

4.3 Magnetic colloidal single particles and
dumbbells on a tilted washboard moiré
pattern in a precessing external field

In this work I studied different transport modes of colloidal particles and dumb-
bells on a square- and on a hexagonal magnetic moiré pattern. The pattern
is inclined with respect to gravity and the single particles are driven through
the pattern using gravity. An additional precessing external magnetic field
exerts a magnetic torque onto the dumbbells. In the moiré pattern we can
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4.3 Magnetic colloidal particles on a tilted washboard moiré pattern

distinguish generic from non generic locations. The non generic locations form
a zig-zag shaped flat channel. At sufficient external field strength the motion
of the particles can be confined to these flat channels. We demonstrate one
transport mode that ignores the difference between generic and non generic
locations, two different modes of transport through the flat channels, as well as
two non-transport modes where the single colloidal particles and dumbbells
are localized.
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Simultaneous and independent
topological control of identical
microparticles in nonperiodic energy
landscapes

Nature Communications, 14, 7517 (2023)

Nico C. X. Stuhlmduller??, Farzaneh Farrokhzad?!,
Piotr KuéwikP, Feliks Stobiecki?, Maciej Urbaniak?,
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This paper shows the individual and simultaneous topological transport of
identical colloidal particles at different positions on the pattern.

My Contribution

Nico C. X. Stuhlmuller designed the modulation loops and performed the simu-
lations. I performed the experiments. Nico C. X. Stuhlmuiller, I, Thomas Fischer
and Daniel de las Heras conceptualized the research. Piotr Kuswik, Maciej Urb-
aniak, and Feliks Stobiecki produced the magnetic film. Sapida Akhundzada,
and Arno Ehresmann performed the fabrication of the micromagnetic domain
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patterns within the magnetic thin film. Nico C. X. Stuhlmuller, I, Thomas Fisc-
her and Daniel de las Heras designed the patterns and wrote the manuscript.
All authors including me contributed to the different revision stages of the
manuscript.
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Topological protection ensures stability of information and particle transport

against perturbations. We explore experimentally and computationally the
topologically protected transport of magnetic colloids above spatially inho-
mogeneous magnetic patterns, revealing that transport complexity can be
encoded in both the driving loop and the pattern. Complex patterns support
intricate transport modes when the microparticles are subjected to simple
time-periodic loops of a uniform magnetic field. We design a pattern featuring
a topological defect that functions as an attractor or a repeller of micro-
particles, as well as a pattern that directs microparticles along a prescribed
complex trajectory. Using simple patterns and complex loops, we simulta-
neously and independently control the motion of several identical micro-
particles differing only in their positions above the pattern. Combining
complex patterns and complex loops we transport microparticles from
unknown locations to predefined positions and then force them to follow
arbitrarily complex trajectories concurrently. Our findings pave the way for
new avenues in transport control and dynamic self-assembly in colloidal

science.

The transport of microscopic colloidal particles suspended in fluids is
relevant for a wide range of physical and biological phenomena
including sedimentation’, drug delivery*™, self-assembly*”’, microfluidic
devices®*”, and active systems“, External fields are often used to
control the motion of colloidal particles”™. These include spatially
uniform fields such as gravitational®, electric”, and magnetic*>* fields,
as well as spatially inhomogeneous fields such as the manipulation of
colloidal particles with optical tweezers®. Directed colloidal transport
can be achieved via Brownian motors®* that combine non-equilibrium
fluctuations with spatially inhomogeneous energy landscapes® ..
Usually, the colloidal particles are transported along the same
direction but the simultaneous transport of different particles across

different directions is useful and even a requisite in systems of various
length scales. For example, the transport of cargo on traffic networks
requires organizing various subtasks simultaneously®’. Sorting of
microparticles driven on periodic lattices is possible because the
particles travel along different directions depending on, e.g. their
size***, In biology, the metabolism and structural diversity of the cell
demand the regulation of a vast array of molecular traffic across
intracellular and extracellular membranes.

In previous work, we have shown that robust, multidirectional,
and simultaneous control of colloidal particles that differ in, e.g. their
magnetic properties can be achieved with topological protection® %,
As illustrated in Fig. 1a, paramagnetic particles are placed above a
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periodic magnetic pattern made of regions of positive and negative
magnetizations normal to the pattern. A uniform external magnetic
field of varying orientation drives the motion. The particles are trans-
ported following the minima of the periodic magnetic potential which
results from the interplay between the complex but static field of the
pattern and the simple but time-dependent uniform external field. The
orientation of the magnetic field varies in time-performing loops.
Hence, after one loop the orientation returns to its initial value. Loops
that wind around specific orientations induce the transport of the
colloidal particles by one unit cell of the magnetic pattern. During the
loop, minima of the magnetic potential cross from one unit cell to the
adjacent. Once the loop ends, the particle is in a position equivalent to
the initial one but in a different unit cell. The motion is topologically
protected in the sense that the precise shape of the loop is irrelevant.
Only the set of winding numbers of the modulation loop around
the specific orientations (the topological invariant) determines the
transport direction. The motion is therefore robust against
perturbations.

The specific orientations of the external field that are relevant to
control the motion depend on both the symmetry of the pattern® (e.g.
square vs. hexagonal) and the particle properties. Hence, particles with
different properties, e.g. paramagnetic and diamagnetic particles
above hexagonal magnetic patterns® as well as micro-rods of different
lengths’®, can be transported in different directions independently and
simultaneously using periodic patterns. However, the use of periodic
patterns imposes several limitations on the transport. All particles that
belong to the same topological class (e.g. identical paramagnetic
particles or rods of the same length) are transported along the same
direction, independently of their absolute position above the pattern
as schematically represented in Fig. 1a. In addition, the location of the
particles above the pattern is unknown a priori and it must be deter-
mined externally via, e.g. direct visualization via microscopy.

These limitations are overcome here using inhomogeneous (non-
periodic) patterns. We make either the symmetry, Fig. 1b, or the global
orientation, Fig. 1c, of the magnetic pattern dependent on the absolute
position above the pattern. As a result, the specific orientations of the

periodic pattern

HCXI(t)

control space
(orientation of Hey)

Fig. 1| Periodic vs inhomogeneous patterns. a Periodic square pattern (a unit cell
is highlighted in yellow), b hexagonal pattern in which the symmetry phase ¢ varies
in space, and c a pattern made of two square patterns rotated by an angle of 45°.
The patterns are made of regions with positive (black) and negative (white) mag-
netization normal to the pattern, see vertical arrows in (a). A polymer coating
protects the patterns and acts as a spacer for the paramagnetic colloidal particles
(orange) that are suspended in a solvent and move in a plane parallel to the pattern
(action space). The motion is driven by a uniform external field (green arrow). The
control space C (gray spheres) represents all possible orientations of the external
field. The orientation of the external field varies in time performing a loop (green
curves). Loops that wind around special orientations induce particle transport.
These special orientations are determined by the position of the fences and

external field that control the motion depend also on the space
coordinate. The direction of the transport can then be locally con-
trolled by the modulation loop of the external field and also via the
local symmetry of the inhomogeneous magnetic pattern. We can
imprint the complexity of the transport mainly to the pattern, and then
use simple loops to generate complex transport as illustrated in Fig. 1b.
Following this idea we create non-periodic patterns that transport the
particles to a desired position by just repeating simple modulation
loops. We also create patterns in which the colloidal particles follow
arbitrarily complex trajectories driven by a simple time-periodic
modulation loop. Additionally, we create simple patterns and encode
the complexity of the transport in the modulation loops as sketched in
Fig. 1c. This allows us to simultaneously and independently control the
transport of identical colloidal particles located at different positions
above the pattern. We design for example a complex modulation loop
that controls the transport of 18 identical colloidal particles individu-
ally and simultaneously. Beyond its fundamental interest, our work
opens a new route to control the transport in colloidal systems with
potential applications in reconfigurable self-assembly***,

Results

The plane in which the particles move (action space) splits into allowed
and forbidden regions. In the allowed (forbidden) regions the sta-
tionary points of the magnetic potential are minima (saddle points).
The boundaries between allowed and forbidden regions in action
space are the fences. The position of the fences in control space C (a
sphere that represents all possible orientations of the external field)
depends on the symmetry of the pattern and it determines the loops
that induce colloidal transport (see Fig. 1). An extended summary of
the transport in periodic patterns® is provided in Supplementary
Note 1 and Supplementary Figs. 1 and 2.

Here we focus on transport in inhomogeneous patterns. Sophis-
ticated transport modes can be achieved by adding complexity to
either the patterns, the loops, or to both of them. We see examples of
each type in the following sections. Details about the experiments and
computer simulations are given in the “Methods” section.

inhomogeneous patterns

¢

0=0

bifurcation points in control space which depend on the local symmetry of the
pattern. Shown are the fences of square patterns for one (a) and two (c) different
orientations, as well as those of four hexagonal patterns with different symmetry
phases ¢ (b). We also indicate the bifurcation points (black circles) in (b) which are
those points where two fence segments meet. Next to the fences, we show the
corresponding unit cell of the pattern. In periodic patterns (a) all the particles
move in the same direction (orange arrows), independently of their position above
the pattern. In inhomogeneous patterns, a single modulation loop can induce
transport in different directions depending on the position of the particle above
the pattern. Complex particle trajectories can be generated using complex pat-
terns and simple loops (b) or simple patterns and complex loops (c).
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Fig. 2 | Pattern with a topological defect. a Magnetic pattern with a topological
defect in the symmetry phase ¢. The pattern is dissected into hexagonal cells
(green hexagons). The central cell (yellow) contains the defect. Enlarged
Wigner-Seitz cells of selected periodic hexagonal lattices with symmetry phase ¢
(see color bar) corresponding to their position in the pattern are shown. Next to
each enlarged cell, we plot a stereographic projection of the corresponding control
space and the modulation loop that attracts the particles toward the defect. Shown
are the fences (blue), the equator (violet), and both the active (green) and the
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inactive (red) subloops. The loop winds as indicated by the circular black arrow.
The two apparently open segments of the loop are actually joined at the south pole
of the control space (not visible due to the projection). The transport direction
(orange arrows) changes at the transition lines (black-dashed lines). b Illustrative
configurations of the position of transition lines (black-dashed lines) that give rise
to particle trajectories moving towards the defect (attractor) or away from it
(repeller). The particle trajectories are illustrated in orange.

Complex patterns and simple loops
There is a full family of periodic hexagonal patterns characterized by
the value of the symmetry phase ¢ (see the “Methods” section) and
illustrative examples in Fig. 1b. We render the symmetry phase a con-
tinuous function of the position, which creates an inhomogeneous
symmetry phase modulated pattern such as the example in Fig. 1b. For
slow enough spatial changes of the symmetry phase, the cells of the
modulated pattern deviate only weakly from the Wigner-Seitz cells of
corresponding periodic patterns with fixed values of the symmetry
phase. Hence, knowing how to control the transport in periodic pat-
terns is enough to control the transport in inhomogeneous situations.
We focus first on complex inhomogeneous patterns designed to
achieve locally different transport for a single specific task. Most of the
complexity of the transport is embedded in the pattern and therefore
the modulation loops of the external field are simple.

Topological defect in the symmetry phase

We show in Fig. 2 a symmetry phase modulated hexagonal pattern. The
details to generate the pattern are given in the “Methods” section. Each
time we wind around the center of the pattern we go through the full
family of hexagonal patterns exactly once (including the inverse pat-
terns with opposite magnetization) and return to the initial symmetry
phase. This introduces a topological defect at the center of the pattern
where the symmetry phase is not well defined.

The symmetry phase is constant along radial directions and the
modulation is weak everywhere except near the defect. To illustrate
this, we have dissected the pattern into hexagonal cells in Fig. 2a. We
also show enlarged Wigner Seitz cells of periodic patterns with a
symmetry phase corresponding to that of the radial ray of the inho-
mogeneous pattern. The Wigner Seitz cells of the periodic patterns
resemble closely the cells of the inhomogeneous pattern, even in the
proximity of the central defect. It is therefore expected that the
transport in the inhomogeneous pattern can be understood in terms of
the transport in periodic patterns.

The location of the fences in the control space varies substantially
as we wind around the defect in the action space. (See the stereo-
graphic projections of control space for selected values of the sym-
metry phase in Fig. 2a and Supplementary Fig. 1.) Hence, it is possible
to transport the microparticles into different directions depending on
the sector of the pattern. In particular, we can construct modulation
loops that use the central defect of the pattern as either an attractor or
a repeller of colloidal particles.

A stereographic projection of the modulation loop that attracts
the particles towards the defect is shown in Fig. 2a next to each
enlarged Wigner-Seitz cell. The loop is made of two subloops. Only
one of the subloops is active (green) for each value of the symmetry
phase ¢. The subloop is active in the sense that it induces net
transport for those particles located in sectors of the pattern with
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that value of ¢. The other subloop is inactive (red) in the sense that
after one complete subloop, the particle returns to its position and
hence there is no net transport. Using two subloops we control
simultaneously the transport direction in sectors of the pattern with
opposite magnetization (different values of the symmetry phase).
Note for example how the active subloop in regions with C4 sym-
metry (¢ = 0) becomes the inactive subloop in those regions with an
inverse pattern C (¢ =+ 1/3) and vice versa (see Fig. 2a). To induce
transport a subloop must wind around at least three bifurcation
points of the fences in control space C, as explained in the Supple-
mentary Note 1. Recall that control space is simply the surface of a
sphere in which each point corresponds to one orientation of the
external magnetic field. The bifurcation points are the points in
which two segments of the fences meet in C, see examples in Sup-
plementary Fig. 2.

The complete attractor loop, made of two subloops, induces four
different transport directions (along +a; and along +as) depending on
the value of the symmetry phase (see Fig. 2a). Here, a;, i=1,2,3 are
three lattice vectors of the periodic hexagonal pattern (see Fig. 2 and
the “Methods” section). The transition between the different transport
directions, e.g. from +a; to —a;, occurs at specific values of the sym-
metry phase that can be adjusted with the loop. See the transition lines
(dashed-black lines) in Fig. 2a.

By controlling the location of the transition lines we fix whether
the defect acts as an attractor or a repeller of particles (see Fig. 2b). In
both cases, the particles wind clockwise around the defect. Instead of
changing the position of the transition lines, we could also control
whether the defect attracts or repels microparticles by reversing the
direction of the transport. However, this requires a complete redesign
of the modulation loop. Simply reversing the direction of the mod-
ulation loop does not reverse in general the transport direction in the
whole pattern due to the occurrence of non-time reversal ratchets in
hexagonal patterns®*’,

a symmetry phase
[ (])
-n/3 /6 0 /6 /3

27/3

4m/3

Fig. 3 | Attractor and repeller of particles. a Trajectory of a colloidal particle
(randomly initialized) obtained with Brownian dynamics simulations above a pat-
tern with a central topological defect in the symmetry phase. The blue (orange)
trajectory is generated by the repetition of the attractor (repeller) modulation loop
that moves particles towards (away from) the defect. The pattern is colored
according to the value of the symmetry phase (color bar). The scale bar is 10a.

b Close-up of the region indicated by a yellow square in (a) and the trajectories
around the central defect. The background shows the local magnetization of the
pattern. ¢ Stereographic projection of the repeller loop (green) in C. The equator
(violet circle) and the fences of the C4 and S¢ patterns as well as their inverse
patterns, C, and S, (dashed curves) are also depicted as a reference. The fences
are colored according to the value of the symmetry phase. The two apparently open

(o repeller loop

In Fig. 3a, b we show the trajectories of a colloidal particle located
above the defect pattern according to Brownian dynamics simulations.
The particle is randomly initialized above the pattern and then sub-
jected to several repetitions of the attractor loop shown in Fig. 2. We
also show the trajectory followed by the particle under the repetition
of the repeller loop, depicted in Fig. 3c. The repeller and the attractor
loops have similar shapes since they differ only in the values of ¢ at
which the transport direction changes. The corresponding experi-
mental trajectories are shown in Fig. 3d. In the experiments, there are
several colloidal particles that are initially located above the pattern in
random positions. If the attractor loop is repeated enough times, one
colloidal particle will have reached the defect with almost certainty.
Once a particle reaches the defect it stays there. In the experiments,
further colloidal particles that try to enter the defect are repelled by
the particle already occupying the center via dipolar repulsion. We can
thus use the attractor loop to initialize one microparticle in the defect
center. Whereas the location prior to the action of the attractor loop
was unknown, it is known after the repeated application of the loop.
The topological initialization is robust to thermal fluctuations. Brow-
nian dynamics simulations of colloidal particles at higher temperatures
still initialize the location of the defect. We briefly discuss the effect of
finite temperature in the “Methods” section and Supplementary Fig. 4.

Encoding complex trajectories in the pattern

Patterns with spatial modulation of the symmetry phase can be used to
encode arbitrarily complex particle trajectories. The patterns are
designed to induce the desired trajectory when the particles are sub-
jected to the repetition of a simple modulation loop of the orientation
of the external field. The modulation loop transports particles along all
possible directions in hexagonal patterns, i.e. along +a; with i=1,2, 3,
but in a way that only one direction is active for a given value of the
symmetry phase. For example, particles on top of regions with Cg
symmetry are transported towards-as. The transport direction

d experiments

/3

5m/3

segments of the loop are actually joined at the south pole of the control space (not
visible due to the projection). The loop is made of two subloops winding clockwise,
as indicated by the circular arrows. d Experimental trajectories of several colloidal
particles (labeled with a numbered circle) above the same pattern with a topolo-
gical defect (yellow circle). The trajectories induced by the attractor (repeller) loop
are colored in blue (orange). Blue and orange trajectories correspond to different
experiments and have been superimposed in the figure. Note that under the
microscope regions with negative magnetization appear darker than regions with
positive magnetization, i.e. the opposite of our color choice in e.g. (b). The scale bar
is 10a and the lattice constant of one cell is approx. 14 um. Movies of the simulated
and the experimental motion are provided in Supplementary Movie 1.
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Fig. 4 | Symmetry phase modulated pattern. a Stereographic projection of
control space showing the equator (violet circle), the closed modulation loop
(green-solid curve), and the fences of patterns with C¢, S¢, C4 and S, symmetries
(dashed curves). The two apparently open segments of the loop are actually joined
at the south pole of the control space (not visible due to the projection). The fences
are colored according to the value of the symmetry phase (see the annular color
bar). The transport directions induced by the loop (orange arrows) change at
specific values of the symmetry phase ¢ as indicated by the transition lines (black-
dashed lines). b Symmetry phase modulated pattern (the color indicates the value
of the symmetry phase). A global rotation, ¢ =m/2 in Eq. (6), makes one transport
direction (lattice vector a;) parallel to the vertical axis. Particles above the pattern
and subjected to the repetition of the modulation loop in (a) write the letter "B".

b Y

Cc

experiments

Thin cyan lines show simulated particle trajectories for randomly initialized parti-
cles above the pattern. After several repetitions of the modulation loop, most
particles enter the stable trajectory, highlighted with a thick green-solid line.

¢ Experimental trajectories of colloidal particles above the pattern depicted in (b)
and subjected to the modulation loop shown in (a). The region shown in the
experiments (c) is smaller than that in simulations (b) due to the field of view of the
microscope. The inset in (c) is a close view of the region indicated with a yellow
circle in which we have altered the contrast of the image to better visualize the
magnetization. Under the microscope regions with negative magnetization appear
darker than those with positive magnetization. A colloidal particle (black dot) is
also visible in the inset. A movie of the motion in simulations and experiments is
provided in Supplementary Movie 2.

changes at specific values of the symmetry phase determined by the
modulation loop. In Fig. 4a we show the modulation loop together with
the representative fences and the resulting transport direction for
each value of the symmetry phase.

The detailed procedure to generate the patterns is described in
the “Methods” section and Supplementary Fig. 3. In essence, we first
draw the trajectories that the particles should follow by hand. Then, at
each position along the trajectory, we encode the transport direction
using the value of the symmetry phase. Finally, the value of the sym-
metry phase at each point in the complete pattern is calculated as a
spatially resolved weighted average of the symmetry phase along the
trajectory. As a result, the symmetry phase varies smoothly across the
pattern except for the occurrence of string-like topological defects in
the symmetry phase.

Figure 4b shows a symmetry phase modulated pattern together
with the corresponding simulated particle trajectories. The value of
the symmetry phase is color-coded (see color bar). The pattern is
designed to transport the particles along one stable trajectory that
forms a closed loop resembling the letter “B”. In Fig. 4b we have
highlighted the stable trajectory with a thick green line. Most particles
above the pattern either enter the stable trajectory or leave the pat-
tern. Occasionally one particle gets stuck in specific regions of the
pattern. This can potentially be avoided by the introduction of random
fluctuations in the modulation loop. In the presence of strong Brow-
nian motion, the stable trajectories broaden to a width of a few unit
cells, and additional stable trajectories might occur.

Corresponding experimental trajectories are shown in Fig. 4c.
Even though the agreement is not perfect, the experimental trajec-
tories follow closely the prescribed letter “B”, demonstrating, there-
fore, the potential of the method. Small variations in the position of the
fences due to the imperfections of the pattern are likely the reason
behind the deviations shown in the experiments. Fine-tuning the
modulation loop and the height of the particles above the pattern
would likely improve the results.

Simple patterns and complex loops
We follow now the opposite approach by encoding the complexity in
the modulation loop. We create simple inhomogeneous patterns by

concatenating large patches of periodic square patterns. The patches
differ in the global orientation of the lattice vectors given by a global
phase ¢ (see the “Methods” section). Each (simple) patch allows for a
rich variety of transport tasks. The task in each patch can be controlled
individually and simultaneously using rather complex modulation
loops in control space.

The fences of the C4 square pattern are four equidistant points on
the equator (see Supplementary Note 1). The four fence points in C
correspond to external fields pointing along the positive and negative
directions of the lattice vectors®**, i.e. along +a, and +a,. Therefore,
rotating the lattice vectors also rotates the position of the fences in
control space. Thus, it is possible to construct loops that wind around
different fences in C, and hence induce different transport directions,
depending on the orientation of the pattern ¢. An illustration is shown
in Fig. Sa.

Since the fences are points in C it is in principle possible to
concatenate an arbitrarily large number of patches with different
orientations and control the motion in each of them independently.
In practice, limiting factors might appear due to e.g. imperfections
in the patterns that effectively make the fences in C extended
regions, the angular resolution with which the orientation of the
external field can be controlled, and the presence of Brownian
motion. Due to the limiting factors, two patterns can be resolved
independently if they are rotated by an angle of at least Ag. Hence,
the maximum number of patches that can be controlled indepen-
dently is (17/2)/Ay since after a rotation of /2 a C, pattern repeats
itself (and so do the fences).

With a resolution Ag = 5° it is then possible to control the motion
in up to 18 patches independently. As an example we program a single
loop in C that writes the first eighteen letters of the alphabet simulta-
neously, (see Fig. 5b and Supplementary Movie 3). Note that the letters
are rotated by an angle ¢. For simplicity, we have designed an algo-
rithm to write custom trajectories in a square pattern with global
orientation ¢ = 0. Next, we apply a global rotation to the modulation
loop to control the transport in patterns with a generic orientation ¢.
As a result, the trajectories are also rotated.

The loop that writes the first 18 letters of the alphabet contains
2086 simple commands. Each command is a small closed subloop that
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Fig. 5 | Simple patterns and complex loops. a Five square magnetic patterns (and
their corresponding control spaces) with a different value of the global orientation
¢, as indicated. The fences in C (blue circles) are four points located on the equator
(violet circle). The position of the fences depends on the value of ¢. The modulation
loop consists of four interconnected subloops that wind counterclockwise. A
subloop is active (green) if it winds around a fence point (blue circles) and inactive
(red) otherwise. The orange segments of the modulation loop simply connect the
different subloops. Depending on the value of ¢, the modulation loop induces
different transport directions (green arrows) or no transport at all. b A pattern
made of 18 patches with square symmetry and different global orientation ¢ (color
bar). A modulation loop controls the trajectories of particles above each patch

simultaneously and independently. The particle trajectories (black) write the first 18
letters of the alphabet. The length of the scale bar is 10a. A movie can be found in
Supplementary Movie 3. ¢ Experimental trajectories of colloidal particles above
four square patches rotated with respect to each other. A schematic unit cell
illustrating the global orientation is depicted in each patch. The length of the scale
bar is 5a and in this case, we use patterns with a =7 pm. A unique modulation loop
transports the four colloidal particles simultaneously. The trajectories are colored
according to the time evolution from blue (initial time) to red (final time). A movie
showing the whole time evolution and a one-to-one comparison with computer
simulations is available in Supplementary Movie 4.

either transports a particle in one unit cell along the four possible
directions of the square lattice or leaves the particle in the same
position, similar to the loops in Fig. 5a. Even though an angular reso-
lution of Ay =5° is achievable experimentally, the number of com-
mands required by the complete loop exceeds our current
experimental capabilities. Nevertheless, we show in Fig. 5c, the
experimental trajectories of a simplified loop that writes low-
resolution versions of the first four letters of the alphabet. The loop
is made of 96 simple commands. The agreement with computer
simulations is essentially perfect, as we demonstrate in a one-to-one
comparison in Supplementary Movie 4.

The simultaneous control of the transport in several patches of
rotated square patterns is particularly simple due to the simplicity of
the fences in C. However, the same ideas apply to patterns with other
symmetry classes.

Here, we have initialized the particles in the desired positions within
their respective patches. As we discuss now, it is possible to automatize
this process by combining the patches with complex patterns.

Complex patterns and complex loops

Complete control over the colloidal transport is achieved by combin-
ing complex patterns and complex loops. In Fig. 6 we combine three C,
patches that differ in their global orientation ¢ and three hexagonal
patterns with a topological defect in the symmetry phase. The transi-
tion between both patterns occurs smoothly within a region of length
equivalent to approximately five unit cells of the square patterns.

We first make use of the patterns with a topological defect to
move randomly placed particles toward the defects. We simply repeat
the attractor modulation loop shown in Fig. 2 several times such that
the particles move and stay at the defects, see the blue trajectories of

the particles in Fig. 6. Once this initialization stage is finished we know
the precise position of the particles and can control them indepen-
dently. Using two simple loops we transport the particles downwards
from the defects to the square patches. We use one loop to move the
particles in the defect pattern (orange trajectories) and another loop
to move the particles in the transition region and the square patches
(green trajectories). Then, a relatively complex loop controls the
motion of the three particles independently. Each particle follows a
complex trajectory drawing either a square, a triangle, or a cross
depending on the value of the global orientation ¢ (red trajectories).
Experimentally we tested each part of the loop separately, as shown in
the insets of Fig. 6. Again, the agreement between simulations and
experiments is excellent. The small errors that occur in the experi-
mental trajectories, likely due to imperfections in the pattern, do not
affect the global shape of the trajectories. A movie of the whole pro-
cess is shown in Supplementary Movie 5.

Discussion

We have shown that the combination of a complex static magnetic
field with a simple time-dependent uniform external field of varying
orientation allows us to control the motion of several identical
microparticles independently and simultaneously. The transport
complexity can be broken down to a finite set of special orientations of
the external field. A modulation loop that winds around one of those
orientations induces transport along a known direction in a known
region of the pattern. The motion is topologically protected since only
the winding numbers of the modulation loop around the special
orientations (topological invariant) are important. Hence, it is rela-
tively simple to generate loops and patterns that induce arbitrarily
complex trajectories. Our ideas might be transferable to other systems
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Fig. 6 | Complex patterns and complex loops. Brownian dynamics simulations of
the transport of colloidal particles above a complex pattern made of three patches,
each one with a topological defect in the symmetry phase (top) connected to three
patches with square symmetry (down) rotated with respect to each other. The color
of the patches with topological defects indicates the value of the symmetry phase
¢. The color of the square patches indicates the global rotation ¢, illustrated with a
sketch of the magnetization. A unique complex modulation loop made of four parts
drives the transport in the whole system. In the first part, the repetition of the

attractor loop moves the particles toward the defects (blue trajectories) and lets
them wait there. The second part of the loop moves the particles downwards
through the patterns with defects (orange trajectories). The third part of the loop
moves the particles downwards in the square patterns (green trajectories). The last
part of the loop writes a custom trajectory (square, triangle, and cross) depending
on the global orientation ¢ of the pattern (red trajectories). Insets show the cor-
responding experimental trajectories. The length of the scale bars (yellow) is 15a.

in which the transport is also based on topological protection. These
include, solitons®, nano-machines***’, sound waves***°, photons***,
and quantum mechanical excitations®’.

The complexity of the transport is encoded in the magnetic
potential which varies in space and in time via the magnetic patterns
and the modulation loops, respectively. An alternative approach that
encodes the transport in the particle shape has appeared recently®.
There, Sobolev et al. find the shape of the rigid body that traces the
desired trajectory when rolling down a slope. We have restricted our
study to identical isotropic paramagnetic particles. However, as dis-
cussed in the “Introduction” section, colloidal particles with different
characteristics (e.g. diamagnetic and paramagnetic particles or parti-
cles with different shapes) might belong to different topological clas-
ses. The fences of particles belonging to different topological classes
are located in different regions in C. Above non-periodic patterns, the
control space of particles belonging to different topological classes
will also depend on the space coordinate. A precise control over the
transport depending not only on the position but also on the particle
characteristics is then possible. Therefore, beyond offering the possi-
bility to control the transport of identical microparticles simulta-
neously, our work also opens a new route towards dynamical self-
assembly in colloidal science. As an example, we have created a col-
loidal rod factory®* in which identical isotropic particles are trans-
ported toward a reaction site in which they self-assemble. Only when
they reach the desired aspect ratio, do the rods leave the poly-
merization site following the desired trajectory. The use of patchy
colloids®*® with, e.g. hybridization of complementary DNA strands* '
and other shape-anisotropic particles®*** would offer more versatility
to create complex functional structures.

We have considered transport above patterns made of identical
patches rotated with respect to each other. It is also possible to com-
bine patches of patterns with different symmetries provided that their
respective fences do not overlap in control space. Moreover, a com-
bination of both, i.e. a pattern made of patches with different sym-
metries, e.g. C, and Cg, that in addition are rotated with respect to each
other would substantially increase the number of tasks that can be
done simultaneously since their respective fences in control space do
not overlap.

In the experiments, the Brownian motion of the colloidal par-
ticles is negligible but it might play a role in other systems with
smaller colloids and/or at higher temperatures. Since the transport
is topologically protected, it is robust against perturbations such as
the presence of Brownian motion*. If we make Brownian motion
more prominent (e.g. by increasing the temperature or reducing the
particle size) the particles start to deviate from the expected tra-
jectories but overall the transport is robust. An example of Brow-
nian dynamics simulations at different temperatures is shown in
Supplementary Fig. 4. The topological protection will disappear
due to Brownian motion at sufficiently high temperatures and for
small enough particles. A possible solution would then be to
increase the magnitude of either the pattern field or the external
magnetic field such that the magnetic forces dominate again the
transport.

Our systems are very dilute and therefore direct interparticle
interactions and hydrodynamic interactions do not play any role.
However, it would be interesting to look at the effect of both super-
adiabatic forces®* and long-range hydrodynamic interactions® in
denser systems.
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Methods

System setup and computer simulations

Identical paramagnetic colloidal particles immersed in a solvent are
located above a magnetic pattern and are restricted to move in a plane
parallel to the pattern (xy-plane), which we call action space A (Fig. 1a).
The pattern contains regions of positive, +tm, and negative, -m,
uniform magnetization along the z-direction (normal to the pattern).
The width of the domain walls between oppositely magnetized regions
is negligible. The particles are driven by a time- and space-dependent
external magnetic potential V,,.(r 4,t). The potential is generated by
the static but space-dependent magnetic field of the pattern H,(r )
and a time-dependent but spatially homogeneous external magnetic
field Hex(¢). Here r 4 is the space coordinate in action space and ¢
denotes the time. The magnitude of the external field (constant) is
much larger than that of the pattern field, i.e. Hey > H(t 4) for any
position in A. Hence, the magnetic potential, which is proportional to
the square of the total magnetic field V.5 o¢ —(Hey +Hp) - (Hey + Hp),
is dominated by the coupling between the external and the pattern
fields:

Vmag(rA't) = _UOXIJOHp(rA) : Hext(t)- (1)

Here po is the vacuum permeability, x is the magnetic susceptibility of
the colloidal particle, and vy is the particle volume”. We have omitted
the term proportional to Hey, - Hexc in Vmag since it is just a constant and
therefore it does not affect the motion.

In the overdamped limit, the equation of motion of one particle
reads

yi‘A == VA l/mag +n, (2)

where y is the friction coefficient against the implicit solvent, the
overdot denotes time derivative, V , is the derivative with respect to
r,, and n is a delta-correlated Gaussian random force with zero mean
that models the effect of the collisions between the molecules of the
solvent and the colloidal particle (Brownian motion). We define our
energy scale € as the absolute value of the average external energy that
a particle would have when the external magnetic field points normal
to the pattern. Hence, absolute temperature T is given in reduced units
kgT/¢ where kg is the Boltzmann'’s constant. We use the magnitude of a
lattice vector of the periodic pattern a as the length scale. The
timescale is hence given by t=ya’/c. We use adaptive Brownian
dynamics®® to efficiently integrate the equation of motion. In the
experiments, the magnetic forces strongly dominate over the random
forces. Hence, random forces do not play any role. We use Brownian
dynamics simulations due to the overdamped character of the motion
in the viscous aqueous solvent. The code to simulate the colloidal
motion and to generate the modulation loops is available via Zenodo®”.

As the external magnetic field is homogeneous in space, it can be
solely described by its orientation. The set of all possible orientations
of Heyx forms a spherical surface that we call control space C. A point in
C indicates an orientation of He,.. We drive the colloidal motion by
performing closed loops of the orientation of Hey, in C. Loops that wind
around specific points in C induce colloidal motion. That is, once the
loop returns to its initial position, the colloidal particle has moved to a
different unit cell of the pattern. The transport is topologically pro-
tected since the precise form of the loop is irrelevant. Only the winding
numbers of the loop around the specific points in C (which are the
topological invariants) determine the transport.

Experiments

The magnetic films with the desired patterns imprinted are thin Co/Au
multilayers with perpendicular magnetic anisotropy®® lithographically
patterned via a home-built®” keV-He-ion bombardment’. Further
details about the fabrication process can be found in refs. 37,71-73.

The patterns have lattice vectors of magnitude 14 pm if not stated
otherwise.

To reduce the influence of lateral magnetic field fluctuations due
to the fabrication procedure (which increases near the substrate) we
coat the magnetic pattern with a photo-resist film (thickness 1.6 um).
The coating layer serves other two purposes: it protects the patterns
and it acts as a spacer between the colloidal particles and the pattern
(see Fig. 1), in order to secure the condition |Hex| > |Hp|. We then place
paramagnetic colloids of diameter 2.8 um immersed in deionized
water on top of the pattern. The microparticles sediment and are
suspended roughly the Debye length above the negatively charged
coating layer on the pattern. The motion above the pattern is effec-
tively two-dimensional.

The uniform external magnetic field is generated with three coils
arranged around the pattern and controlled with a computer. The
magnitude of the external field is approximately 4 x 10* A/m. Standard
reflection microscopy techniques are used to visualize both the col-
loids and the pattern.

Square and hexagonal periodic patterns
Consider magnetic periodic N-fold symmetric patterns with either
N=2 (square patterns) or N = 3 (hexagonal patterns). Examples of both
types are shown in Supplementary Fig. 1. In the limit of an infinitely thin
pattern located at z= 0, the magnetization is

M(r)=M(r )b2)e,, ©)

with &(-) the Dirac distribution, e, the unit vector normal to the pat-
tern, r, =(x,y), and

M(r,)=mysign(>_) cos(@;- (k. ~b) = D)+ mo(@), ()

where my, is the saturation magnetization of the domains. The wave
vectors ¢ in the square patterns are

_ —sin(mi/2 — ¢) .
qi_qo( cos(mi/2 — ¢) ) i=12 ©)

with magnitude go = 21/a and a being the magnitude of a lattice vector,
which in square patterns can be defined with the wave vectors being
the reciprocal lattice vectors. That is, a; - q;= 2116;; (see Supplementary
Fig. 1b). The global phase ¢ sets the orientation of the lattice vectors
with respect to a fixed laboratory frame.

In the hexagonal patterns, the wave vectors are

q- O<—sm(2n.t/3—(p))’ =123 ©)
cos(2mi/3 — ¢)

with magnitude g, =4m/(av/3). Here, the three wave vectors can be

related to three (linearly dependent) lattice vectors via q; - a;= 216 for

i=1,2 and a; - q3 =0 (see Supplementary Fig. 1b).

In both square and hexagonal patterns, the wave vectors point
into the N different symmetry directions. The translational vector b in
Eq. (4) plays a relevant role only in inhomogeneous patterns. In peri-
odic patterns, we usually set b=0.

In square patterns, the symmetry phase ¢ in the magnetization
(see Eq. (4)), simply causes a trivial shift of all Wigner-Seitz cells with
respect to the origin of the pattern. Hence, for simplicity, we set it to
zero. In hexagonal patterns however, the symmetry phase ¢ has a non-
trivial effect since it determines the point symmetry of the pattern (see
Supplementary Fig. 1c), and therefore the modulation loops required
to transport the colloidal particles”’. The Wigner-Seitz cell of a hex-
agonal pattern contains in general three symmetry points with Cs
symmetry (rotation through an angle 2mr/3 about the symmetry axis).
For special values of the symmetry phase, one of the three-fold
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symmetric points acquires a higher symmetry; either six-fold hex-
agonal C4 symmetry (for ¢ =0 and ¢ = + 11/3) or S¢ symmetry, i.e. a Cq
followed by a perpendicular reflection (for ¢ = + 11/6).

Finally, the parameter mq in Eq. (4), which is actually a function of
the symmetry phase ¢, alters the area ratio between up-magnetized
and down-magnetized domains. Following Loehr et al.”’, we use here
mg ()= 5cos(3¢)by 5 (therefore in square patterns mg = 0) to ensure
that the average magnetization in hexagonal patterns is very small, i.e.

/M(rl)er =0. (7)

Magnetic field of the pattern

To numerically compute the magnetic field of the pattern, Hy(r), at the
desired position in action space we first discretize the pattern in a
square grid with resolution 0.03a and compute the magnetization at
the grid points via Eq. (4). Next, we compute the magnetic field at the
grid points by convolution of the magnetization with the Green’s-
function of the system:

/ dr| 1]

Here r, =(x,y) is the position coordinate in a plane parallel to the
pattern. We calculate the magnetic field at an elevation above the
pattern z=0.5a, which is comparable to the experimental value. As
usual, we perform the convolution in Fourier space.

To calculate the magnetic field at a generic, off-grid, position we
simply interpolate the magnetic field using bicubic splines.

—r +ze,
—r’ I, — v +ze,®

H,(r=H M(r). ®

p(r,2)=

Pattern with a topological defect
For the pattern with a topological defect shown in Fig. 2, the symmetry
phase varies with the position r; as

1 .
o(r,)= 3 (g — arctan (Q3 e, - (r % %)), 9

and the global orientational phase is set to =0 in Eq. (6). For our
choice of wave vectors (see Eq. (6) and Supplementary Fig. 1b), the
symmetry phase modulation is simply ¢(r )= (/2 — arctan(x,y)) /3.
Here arctan(y,x) returns the four-quadrant inverse tangent of y/x. The
symmetry phase varies therefore between ¢ = -m1/3 and /3 as we wind
once around the origin. The topological charge of the defect located at
the center of the pattern (r, =0) is g= A¢/(2m/p) =1. Here Ag =2m/3 is
the angle that the director rotates if we wind once counter-clockwise
around the defect, and p=3 is the p-atic symmetry of the director
field’*. (The symmetry phase can be described with a 3-atic director
field for which the local orientations are defined modulo 7/3.) Varying
the symmetry phase between -1/3 and /3 also introduces a shift of
the unit cell, cf. the unit cells for ¢ = /3 and —7/3 in Supplementary
Fig. 1c. To rectify this shift and avoid therefore discontinuities in the
magnetization of the pattern, we need to use a local shift vector in Eq.
(4) given by

¢( L)

b(r,)= —(a; +ay) 10)

The shift vector can be understood as a Burgers vector since it corrects
for the spatial distortion of the pattern around the defect.

Symmetry phase modulated patterns

To encode in the pattern the desired particle trajectories, we use the
drawing software Krita’>. We prescribe the stable trajectory on a square
image with a side-length of 1000 pixels. In Krita, we draw the desired

trajectory with a brush (thickness 1 pixel) that encodes the drawing
direction in the hue of the colored pixels. The drawing direction
directly translates into the transport direction that the particles will
follow above the pattern. This procedure results in an image that is
essentially empty except for the trajectory lines. We then map from
hue to the symmetry phase ¢. An example of the pattern at this stage is
shown in Supplementary Fig. 3a. The mapping from hue to ¢ is simply
a linear transformation.

Next, we give a value to the symmetry phase everywhere in the
pattern. To calculate the phase at a generic position r, =(x,y) we
average over all the prescribed phases along the trajectories. Each
phase along the trajectory is weighted with a weight function pro-
portional to 1/r3, with rq the distance between r, and a point on the
trajectory. Special care needs to be taken due to the periodicity of the
symmetry phase’®. We first transform the phases along the trajectories
into unit vectors, next we average the vectors, and then transform back
the averaged vector into a value of the symmetry phase. An illustration
of the pattern after this stage is shown in Supplementary Fig. 3b.
Finally, we use the value of the symmetry phase in the whole pattern to
calculate the magnetization via Eq. (4) (see Supplementary Fig. 3c).

Data availability

The code to simulate the system and to generate the modulation loops
is available at Zenodo®. All other data supporting the findings are
available from the corresponding author upon request.

Code availability

A code to perform the adaptive Brownian Dynamics simulations of the
colloidal particles as well as to generate the modulation loops is
available at Zenodo®.
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SUPPLEMENTARY NOTE 1
SIMPLE PATTERNS AND SIMPLE LOOPS

‘We summarize here the topological transport control of isotropic magnetic colloidal particles above periodic magnetic
patterns. A sketch of the system and the different types of periodic patterns is shown in Supplemental Fig. 1. Detailed
theoretical and experimental studies can be found in Refs. [1-3]. For a given orientation of the external magnetic
field, there is in general at least one minimum of the magnetic potential per Wigner-Seitz cell. During a modulation
loop, the changes in the orientation of Hyy are slow enough such that the colloidal particles can follow a minimum
of the magnetic potential at every time. In this sense the colloidal motion is adiabatic except if the minimum that
transports a particles disappears (e.g. due to the annihilation with a saddle point). In such cases, the colloidal particle
performs a ratchet motion towards a minimum nearby.

To control the colloidal transport we therefore need to understand the stationary points of the magnetic potential.
The position of the minima in action space depends on the orientation of Heyxt and on the symmetry of the pattern.
By analysing the eigenvectors and the eigenvalues of the Hessian matrix of the magnetic potential, it turns out [1-3]
that action space can be split into allowed and forbidden regions for the colloidal particles, see Supplemental Fig. 2.
For each space point in an allowed region it is always possible to find an orientation of Hey such that the magnetic
potential is a minimum. Note also that a minimum of V. can be transformed into a maximum by simply inverting
the external field since V. o Hy, - Heyg. Hence both minima and maxima of V- can be found in the allowed regions.
For each space point in a forbidden region, there is an orientation of Heyy such that the magnetic potential is a saddle
point, but never a minimum.

The boundary between the allowed and the forbidden regions are the fences. The location of the fences in both
action space and control space depend on the symmetry of the pattern. In a square pattern, the fences in C are four
equidistant points on the equator, see Supplemental Fig. 1(a). In hexagonal patterns however the fences are curves,
the shape and the position of which vary with the symmetry phase ¢, Supplemental Fig. 1(c). Crucially, in hexagonal
patterns the fences of a given pattern and its corresponding inverse pattern (opposite magnetization) do not coincide
in control space, cf. the top and the bottom patterns in Supplemental Fig. 1(c). As we discuss now, this means that
the transport in a given pattern and its inverse pattern can be independently controlled with a single modulation
loop.

The position of the fences is relevant to control the colloidal motion, which in action space occurs through the allowed
regions. Two adjacent allowed regions are connected via points that we refer to as the gates, see Supplemental Fig. 2.
To adiabatically transport a particle from one allowed region to an adjacent allowed region, we need to modulate
H..; in C such that a minimum of the potential crosses the gate that connects both regions. To induce transport
between two consecutive Wigner-Seitz cells using closed modulation loops in C, the loop in C needs to be such that
the particle crosses two different gates once the loop returns to its initial position. In square patterns such loops are
those that wind around the fence points [2, 3] in C, see an example in Supplemental Fig. 2(a). In hexagonal patterns,
the fences in C are curves made of twelve segments. Two fence segments in C meet at a bifurcation point. The loops
that induce transport in hexagonal patterns are those that wind around at least three consecutive bifurcation points
of the fences [1, 3] (enclosing therefore at least two consecutive fence segments). The bifurcation points are indicated

* delasheras.daniel@gmail.com; www.danieldelasheras.com
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Supplementary Fig. 1. Setup and magnetic patterns. (a) Sketch of the system: a square magnetic pattern with domains
of positive (black) and negative (white) magnetization parallel to the normal of the pattern. A Wigner-Seitz cell is highlighted
in yellow. Identical colloidal particles are located above the pattern. A spacer restricts the particle motion to action space A,
a plane parallel to the pattern. An external magnetic field Hex spatially uniform (green arrow) drives the motion via closed
loops (green loop) of its orientation in control space C (sphere). The fences in C are represented in blue. (b) Wigner-Seitz
cells in square and hexagonal patterns. The lattice vectors a; and the wave vectors q, are also shown. The magnitude of the
lattice vectors is a. In the experiments a = 14 pm. (¢) Magnetization of Wigner-Seitz cells and corresponding control spaces in
a family of hexagonal patterns with varying symmetry phase ¢, as indicated. The fences are represented in blue. The control
space is represented via a sphere and also using a stereographic projection in which the equator is represented as a violet circle.
The patterns in the bottom row have the inverse magnetization than those in the upper row and the unit cell is also shifted.
The yellow and the blue hexagons indicate the position of points with S¢ and Cg symmetry, respectively.

in Supplemental Fig. 2(b) and Supplemental Fig. 2(c) for patterns with Cg and Sg symmetries, respectively, together
with illustrative examples of loops that induce transport.

The simplest but non-trivial modulation loops that induce net motion are those that transport the particles along
the symmetry directions of the pattern. These are given by lattice vectors +a; with i =1,...., N and N =2 (N = 3)
in square (hexagonal) patterns, see Supplemental Fig. 1. Illustrative examples of such modulation loops are shown in
Supplemental Fig. 2.

The transport in square patterns is always adiabatic, and reversing the modulation loop reverses also the direction
of transport [2]. In contrast, in hexagonal patterns the transport can be either adiabatic or ratchet-like [1, 3]. In the
latter case, reversing the loop does not always reverse the direction of the transport. However, the direction of the
transport is in all cases deterministic and topologically protected.

The set of winding numbers of the modulation loop around the fences (square patterns) and around the bifurcation
points (hexagonal patterns) is the topological invariant that protects the motion. Any two loops with the same set
of winding numbers (topological invariant) will transport a particle in the same direction, even though the detailed
trajectories depend of course on the particular shapes of the loops.
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Supplementary Fig. 2. Simple patterns and simple loops. Action space and control space in square patterns (a) and
hexagonal patterns with Cg¢ (b) and S (¢) symmetries. A unit cell illustrating the allowed (green) and forbidden (red) regions
of action space, as well as the fences (blue lines) and the gates (yellow circles) is represented in each case. The control spaces
(stereographic projections) show the equator (violet circle), the fences (blue), and a modulation loop (orange). The twelve
bifurcation points in C of the fences of Cg and Sg¢ patterns are also indicated with black circles. The modulation loop is the
same in all cases and it is made of two segments of constant azimuthal angle joined at the north and the south poles of control
space. The connection at the south pole (not visible due to the stereographic projection) is illustrated with a dotted orange
segment. The loops wind anticlockwise, as indicated by the circular orange arrows. Magnetization in patterns with square
(d), Cs (e), and S¢ (f) symmetries. Black (white) regions are up (down) magnetized. The global phase is set to ¢ = /4 (d),
¥ =m/3 (e), and ¥ = /6 (f). Black dashed lines are Brownian dynamics simulations of the trajectories of colloidal particles
(orange circles) subjected to two consecutive modulation loops. The transport direction is indicated with black arrows. The
trajectories go along the allowed regions only. A unit cell of each pattern with corresponding lattice vectors a; is highlighted in
yellow. For visualization purposes we have shifted the unit cells of the Cg and the S¢ patterns with respect to those represented
in Supplemental Fig. 1.
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Supplementary Fig. 3. Generation of symmetry phase modulated patterns. (a) Trajectory drawn in Krita and colored
according to the desired symmetry phase (color bar). The actual line is 1 pixel thick. Here we have made the trajectory thicker
for visualization purposes. (b) Symmetry phase in the whole pattern calculated using the value of the symmetry phase along
the trajectory. (c) Final magnetization of the pattern. The magnetization is positive in the black regions and negative in the
white regions. The inset is a close view of a small region of the pattern, as indicated. Approximately the same region of the
experimental pattern is highlighted in Fig. 4(c) of the main text. The length of the scale bars (yellow) is 15a.
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Supplementary Fig. 4. Finite temperature effects. Brownian dynamics simulations of colloidal particles moving above an
inhomogeneous pattern at three different finite temperatures: kgTi/e =~ 3-107%, kpTs/e =~ 11072, and kpTi/c ~ 2- 1072,
The energy scale € is the absolute value of the average external energy that a particle has when the external field points normal
to the pattern. The particle trajectories are represented in blue (the starting point is indicated with an orange circle). The
scale bar is 10a. The pattern is made of two subpatterns: a top subpattern with a topological defect in the symmetry phase
and a bottom subpattern with square symmetry. The insets are closed views of a small region (indicated by a yellow square)
showing the trajectory (blue) and the magnetization of the pattern.
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Description of Additional Supplementary Files

Supplementary movie - Moviel.webm: A particle trap

Trajectories of colloidal particles above a pattern with a topological defect on the
symmetry phase that acts as an attractor of particles.

Supplementary movie - Movie2.webm: Complex patterns and simple loops

Colloidal particles above a symmetry phase modulated pattern follow a predesigned
trajectory with the shape of a B

Supplementary movie - Movie3.webm: The alphabet

Colloidal particles above rotated square patterns and subject to a complex loop follow
trajectories writing the first 18 letters of the alphabet.

Supplementary movie - Movie4.webm: ABCD

A side-by-side comparison between experiments and simulations of colloidal particles
above square patterns that differ in their global orientation.

Supplementary movie - Movie5.webm: Complex patterns and complex loops

Three colloidal particles at unknown positions are initialized using particle traps and
from them force to follow complex trajectories.
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length.
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Topological growth control allows to produce a narrow distribution of out-
grown colloidal rods with defined and adjustable length. We use an external
magnetic field to assemble paramagnetic colloidal spheres into colloidal rods
of a chosen length. The rods reside above a metamorphic hexagonal magnetic
pattern. The periodic repetition of specific loops of the orientation of an
applied external field renders paramagnetic colloidal particles and their
assemblies into active bipeds that walk on the pattern. The metamorphic
patterns allow the robust and controlled polymerization of single colloids to
bipeds of a desired length. The colloids are exposed to this fixed external
control loop that causes multiple simultaneous responses: Small bipeds and
single colloidal particles interpret the external magnetic loop as an order to
walk toward the active zone, where they assemble and polymerize. Outgrown
bipeds interpret the same loop as an order to walk away from the active zone.
The topological transition occurs solely for the growing biped and nothing is
changed in the environment nor in the magnetic control loop. As in many
biological systems the decision of a biped that reached its outgrown length to

walk away from the reaction site is made internally, not externally.

The length of a one-dimensional passive assembly of periodically
repeated units is the most important structural quantity of the
assembly that determines its physical equilibrium and non-equilibrium
properties. Growth control of the assembly in order to achieve the
desired length therefore is a scientific question of immediate techno-
logical relevance in molecular' and supramolecular* polymer chem-
istry, for the growth of nanotubes® and nanowires* as well as in biology
for the control of the length of DNA’, for the growth of flagella® or for
the switching from vegetative plant growth toward reproductive
growth’. The mechanism of length control in these different systems
can be via an external feedback*’, where the environment (an inhi-
bitor, a mask, or the daylight duration via a systemic signal, called
florigen) tells the growing system that the end (of polymerization time,
of the mask, or of vegetative growth) has been reached. An alternative
length control occurs via a balance between the growth and the

decomposition kinetics"*°. A third interesting mechanism is the use of
coprime repetitions of complementary single strands of DNA® that
leads to a stop of the growth of the forming double-stranded DNA once
the single strands have bound to the double-strand product length of
units of the two coprime numbers. These mechanisms for external
length control share the passive role of the assembly in determining
when its length is long enough. An active entity, in contrast, must not
be told externally but should be able to make an internal decision when
its proper length has been reached.

Here, we use a topological and, therefore, robust transition of the
internal interpretation of an external magnetic control loop for the
control of the length of walking magnetic multi-colloidal bipeds. The
bipeds actively walk on a metamorphic magnetic pattern. A meta-
morphic pattern is a quasi-periodic pattern with unit cells that con-
tinuously change as one moves along the pattern. Small bipeds and
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single colloidal particles interpret the external magnetic loop as an
order to walk from a random initial position toward the active zone,
where they assemble and polymerize, while large enough bipeds
interpret the same loop as an order to walk away from the active zone.
The topological transition occurs solely for the growing biped and
nothing is changed in the environment nor in the magnetic control
loop. Hence the decision to walk away from the reaction site is made
internally, not externally.

Results

Experimental setup

Paramagnetic colloidal particles (diameter d=2.8 um) immersed in
water are placed on top of a two-dimensional magnetic pattern. The
pattern is a metamorphic hexagonal lattice of alternating regions with
positive and negative magnetization relative to the direction normal to
the pattern, see Fig. 1a. A uniform time-dependent external field of
constant magnitude is superimposed to the non-uniform time-inde-
pendent magnetic field generated by the pattern. The external field
induces strong dipolar interactions between the colloidal particles
which respond by self-assembling into bipeds of n" particles, provided
sufficient single colloidal particles are available®.

In Fig. 1b we show the orientation of the external field He,. (black)
of fixed magnitude that adiabatically varies along a closed loop in
control space C - a sphere of radius Hex.. Despite the field returning to
its initial direction, single colloidal particles can be topologically
transported by one unit cell after completion of one loop®™. Their

transport is topologically protected but passive in the sense that they
are carried along in the moving local minimum of the potential. There
exist an entire family of periodic hexagonal patterns. Each pattern in
this family is characterized by a specific value of a symmetry phase'>.
The transport in an unmorphed periodic hexagonal pattern occurs
provided that the loop winds around specific orientations of the
external field called bifurcation points that depend on the symmetry
phase of the pattern. In our metamorphic pattern, the symmetry phase
varies with the location on the pattern, and this allows us to use well-
designed loops where single colloids are transported in different
directions in different regions of the metamorphic pattern®. Colloidal
bipeds formed by several particles can also be transported®*. The
biped aligns with the external field since dipolar interactions are
stronger than the buoyancy. Hence, if the external field is not parallel
to the pattern, one end of the biped (a foot) remains on the ground
while the other one is lifted. As a result the bipeds actively walk by
alternatingly grounding one of their feet. In addition, as for the single
colloids, the grounded foot passively slides above the pattern®*>,

To transport the bipeds, the loop also needs to wind around
special orientations of the external field that depend on the length of
the bipeds and on the pattern’s symmetry phase. Bipeds of different
lengths can fall into different topological classes such that their dis-
placement upon completion of one loop can be different in both
magnitude and direction. A sketch of the process is shown in Fig. 1. As
it is the case for single colloids, the biped motion is topologically
protected and hence, robust against perturbations.

Fig. 1| Schematic of the setup. a A metamorphic hexagonal magnetic pattern
consists of domains of positive (white) and negative (black or colored) magneti-
zation parallel to the normal vector of the pattern n. Along the metamorphic p-
direction the pattern morphs from a hexagonal C4 pattern with down magnetized
circular bubble domains via an improper six-fold symmetric Se¢-pattern to a hex-
agonal C, bubble pattern with up magnetized bubbles. Along the isomorphic
t-direction the pattern remains periodic. The vectors n, g and t are not drawn to
scale. Colloidal particles (red) are placed on top of the pattern immersed in water.
Due to the presence of a strong homogeneous external field (black), some colloids
self-assemble into bipeds of juvenile (yellow or blue) and outgrown (magenta)
length. The 2d-space where the colloids move is called the action space .A. b Our
control space C is a sphere that represents all possible directions of the external
field Hex (black). The direction of the external field varies in time, performing a
100p £ =Lepery*Leyie (a closed path) that is a concatenation of a (thicker) entry loop
L enery and a (thinner) exitloop L,,;,. Both loops consist of sub-loops revolving in the
mathematical positive (blue) and negative (red) sense. The sub-loops consist of
segments (open paths) that connect different corners of the sub-loop where the

direction of the loop changes. The time sequence of consecutive segments of the
eastern part of the entry loop is indicated by numbers shown with the loop seg-
ments. The black arrow tip on the loop corresponds to the orientation of the
external field depicted in (a). The loops are eigen loops of the o, mirror operation
and, therefore, suppress any net motion into the isomorphic t-direction. At any
time during the modulation the orientation of the bipeds in (a) is parallel to the
orientation of the external magnetic field Hey.. Bipeds in (a) and the orientation of
Hex: in (b) are shown at the same time. We find entry loops that transport single
colloids and small bipeds toward the active line (cyan) on the S¢ isomorphic line of
the pattern. The bipeds grow in this region via dipolar attraction due to the high
particle density. Once they have reached the outgrown length (see magenta biped)
encoded by our control exit loop, the bipeds topologically change and reinterpret
the same control loop as a command to walk away from the S region into the
metamorphic p-direction. The loop L, is not visible in the figure but is a mirror
image of the loop £ mirrored at the isomorphic t-plane. We show it in Supple-
mentary Video 1, where we record the scheme from different perspectives.
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In this work we show that one can apply external field modula-
tions that act in synergy with the metamorphic pattern to synthesize
bipeds of a chosen length. The choice of metamorphic pattern and
external field modulation must be such that single colloidal particles
and bipeds of different length all fall into the wanted topological
transport class at each of the different locations.

Metamorphic pattern
We choose a pattern with a thin film of magnetization

. (1 2
M=M&(gz)n sign <2 cos(3p) + ; cos(q; - ¥y — (p)) @)

where r 4 is the two-dimensional vector in action space A, which is the
plane parallel to the pattern where the colloids move. The modulus of
the saturation magnetization is denoted by M, nis the vector normal to
the film, the z coordinate runs in the direction of n and ¢ is the
symmetry phase. If we fix the symmetry phase (V ,¢ =0) the pattern is
a periodic hexagonal pattern of period a (in our experiments a =7 um).
The vectors q;= asfn—’jm Rg,m -e., (i=0,1,2), are three coplanar
reciprocal unit vectors, and R,/ is a rotation matrix around the
normal vector n by 271/3. The modulus q of all three in-plane reciprocal
unit vectors is the same.

If we render the symmetry phase ¢(r ,) a function of action space
this breaks the discrete translational symmetry. In our case we use a
linear variation of the symmetry phase

n
9=3+H-T, @)

with a small and fixed morphing reciprocal vector g=-qo/240 of
modulus g <gq. Due to the small value of the morphing reciprocal
vector, the lattice adiabatically morphs from one locally periodic
pattern shape to the next as we move along the metamorphic pu-
direction, see Fig. 1a. At the origin, the local pattern resembles a C¢
symmetric pattern (see magenta region in Fig. 1a, ¢ =4m/12) with
hexagonally arranged downward magnetized domains. When we move
in the metamorphic direction, the local pattern morphs into an S¢-
symmetric pattern at ¢@=2m/12 with triangular upward-magnetized
domains neighbored by oppositely oriented (cyan) down-magnetized
domains. When the symmetry phase decreases to @ =0, the local
pattern resumes a local C4-symmetry with hexagonally arranged
(white) upward magnetized domains in an extended downward
(vellow) surrounding. The bar above the C4-symmetry indicates that
the pattern is inverted with respect to the Cg-case, i.e., ¢ =4m/12. At a
symmetry phase of ¢ =6m/12 (not shown), the symmetry is S, with
inverted triangles compared to the 2m/12-case. Iso-phase lines run
along the isomorphic vector i, the periodic direction of the pattern
with translation symmetry modulo the primitive unit vector a;.

In analogy to the active site of an enzyme, we call the iso-phase
line with locally S¢-symmetric pattern at ¢ = 2m/12 the active line (cyan
in Fig. 1a). The active line serves as a polymerization line for mono-
meric single colloidal particles into polymeric bipeds being rods of
several colloidal spheres. The bond between the monomers of the
polymerized bipeds is a physical dipolar interaction bond and not a
chemical bond. The concentration of colloids outside the active region
must be small enough to prevent polymerization reactions outside the
active zone; polymerization addition reactions shall only occur in the
active zone. There, our modulation loop will ensure that the reaction
proceeds toward the wanted outgrown biped length and not toward
unwanted longer biped lengths. Juvenile bipeds having lengths below
the outgrown length shall not leave the active zone before they are
outgrown.

Modulation loop

In Fig. 1b we show the control space C and the modulation loop con-
trolling the dynamic assembly of single colloidal particles toward an
outgrown biped of length b, =b,=7d, where d is the diameter of a
single colloidal particle. The l00p £ = Lepy,* Loy is @ concatenation of
two loops: a (thick) entry loop L., and a (thin) exit loop L,,;. The
entry loop consists of the north-western subloop £, the south-
western subloop L, the north-eastern subloop £y, and the south-
eastern subloop L. They wind in the mathematically positive (blue)
and the mathematically negative (red) sense. Furthermore, we make
use of (green) detour segments that we move along in both directions.
The sequence of consecutive segments of the eastern part of the entry
loop follows the numbers attached in Fig. 1b to each segment of the
loop. The entry loop is an eigen 100p Lepery =0,(Lenery) = 0,(Lenery) tO
the mirror operations reflecting at the equatorial n- and the iso-
morphic t-plane, and the sequence of segments of the western part of
Lepery can be inferred from the o, mirror symmetry.

The green loop segments of the concatenated eastern loop
Lye*Lge correspond to the convex envelope of the eastern loop. The
entry loop sequence in Fig. 1b is such that the north-eastern loop £y,
and the south-eastern loop are alternately extended each by one or the
other of the (red, blue, green) triangles that, for reasons that will
become clear later we call the ratchet triangles.

The exit loop £,,;; consists of the two (thin) subloops £, and
Lcg- The exit loop L, =0,(Lyi) shares the mirror symmetry at the
t-plane with the entry loop (see the loop in the Supplementary
Video 1). However, in contrast to the entry loop, its reflection at the
n-plane yields the inverse (time-reversed) exit 10op £k, =0,(Leyic)-
We use the exit loop to move bipeds of the outgrown length b, out
of the active zone. In the experiments we use six different exit loops
Leviens» With n°'=2,3,4,5,6,7, depending on the outgrown biped
length b,- that we intend to synthesize. In Fig. 1b we show the exit
loop L., 7 that is designed to produce bipeds of length b;. Like the
exit loop L, ; four of the other exit loops Lo -, With n'=2,3,5, 6,
also circle two t-symmetric centers each. Their centers are, however,
at positions on the equator different from that of £,,; ; and their
azimuthal width is broader, the smaller the desired length b, to be
synthesized.

Synthesis of bs-bipeds

We can design loops to grow bipeds of arbitrary length (for practical
size limits see the discussion section). As an illustration, we have
depicted four reflection microscopy snapshots in Fig. 2a, showing the
colloidal particles on the metamorphic pattern subject to the loop
L= Lepery* Lexir3 Of period T at different times. Six red single colloidal
particles, one of them not yet in the field of view, are transported
consecutively toward the S¢ symmetric region as a result of the loop.
Two of these particles hop back and forth until a polymer addition
reaction assembles them into an orange juvenile b,-biped (time
t=1.2T). The juvenile biped waits in the active zone until a third red
single colloidal particle is brought into the reaction zone. One further
addition reaction leads to a yellow outgrown b, =b; biped at t=2T.
The outgrown biped of length b is transported into the metamorphic
p-direction as soon as it reaches its outgrown length. During the entire
process (from t=0to t = 3.5 T) two further single colloidal particles are
approaching the active zone and will assemble to a second biped
(shown in Supplementary Video 3 but not shown in Fig. 2a). In Fig. 2b
and c we plot the tracked metamorphic and isomorphic coordinate of
the single colloids respectively the metamorphic and isomorphic
coordinate of the northern foot of the bipeds as a function of time.
While the isomorphic coordinates in Fig. 2c are purely periodic with
the period of the loop (indicated by the shading of the background),
the metamorphic coordinates of all single colloids in Fig. 2b are
aperiodic and progressively approach the S¢-active line from either
side. Once in the active zone, the motion of the colloids switches to
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Fig. 2 | bs-synthesis. a Four reflection microscopy images of the colloidal particles
above the pattern subject to the 100p £ =Ly *Leyie 3 Of period T. The hexagonal
unit cell of the pattern (white hexagon) has lattice constant a = 7 pm. The images
show the synthesis and transport of the first (yellow) b3 biped as well as the col-
lection of single bipeds (red) in preparation of the second b; biped. The active zone
is marked in cyan. b Trajectories of single colloidal particles and bipeds (colored
according to their length b,,) as a function of the time ¢ and the metamorphic
coordinate . The background is colored according to the symmetry phase in the

metamorphic direction, and the brightness of the background is periodic with the
period T of the modulation loop. ¢ Trajectories of single colloidal particles and
bipeds as a function of the time ¢ and the isomorphic coordinate t. d Trajectories of
single colloidal particles and bipeds as a function of the metamorphic coordinate
and the isomorphic coordinate. The background shows the magnetization pattern
of the magnetic thin film. Supplementary Video 3 of the synthesis of two bs-bipeds
is provided with the supplementary information.

periodic until the motion is disrupted by a polymerization addition
event. Finally, after the outgrown length b5 is reached, the bs-bipeds
walk away into the positive metamorphic g-direction until they leave
the field of view of the microscope. The trajectories are depicted above
the pattern in Fig. 2d as a function of the isomorphic and metamorphic
coordinates. We can see that the active line of polymerization is indeed
at the Sg-symmetric line of the pattern. Supplementary Video 3 of the
synthesis of two bs-bipeds is provided with the supplementary
information.

Synthesis of b,-bipeds

In Fig. 3a and b, we show the two reflection microscopy snapshots of
the colloidal particles on the metamorphic pattern subject to the loop
L=Lepery*Lexie,7 at times £=0 and t=7T. In Fig. 3¢ and d we plot the
tracked metamorphic and isomorphic coordinates of the single col-
loids respectively the metamorphic and isomorphic coordinates of the
northern foot of the bipeds as a function of time. Figure 3e shows the
trajectories above the pattern for the two in-plane directions. The
motion is similar to that in Fig. 2. The only difference is that juvenile
bipeds b, < b; now remain in the active zone until they have reached
their newly set outgrown length of b,- = b, before they leave this region
and walk away into the metamorphic g-direction. Figure 3 shows one
unsuccessful and two successful synthesis attempts. In the unsuc-
cessful attempt, a b¢-biped (blue) is synthesized in the active zone. The
lonely bg-biped, however, is unsuccessful in attracting a final colloidal
particle to reach the outgrown (magenta) b, = b, length that would
allow it to exit the active zone. In contrast to its successfully outgrown
bs-bipeds in the neighborhood, the b¢-biped continues its lonely back-
and-forth walk inside the active zone without ever being allowed to
leave. The topological constraint robustly keeps the bg-biped inside
the active zone. Supplementary Video 7 of the synthesis of one bg-
biped and two b;bipeds is provided with the supplementary
information.

Synthesis of by, b,, bs, and bg-bipeds
We have also used four further exit loops L, , to synthesize out-
grown bipeds of length b, for n'=2,4,56. Four videoclips:

Supplementary Video 2, Supplementary Video 4, Supplementary
Video 5, and Supplementary Video 6 are provided with the supple-
mentary information. Details of the loops L,,; - are provided in the
methods section. For n"=2 one outgrown b,-biped already occupies
the active zone, a second is synthesized there, both are transported
away, and five single colloidal particles remain in the active zone; for
n =4 two outgrown by-bipeds are synthesized in the active zone,
transported away, and two single colloidal particles remain in the
active zone; for n’ = 5 three outgrown bs-bipeds are synthesized in the
active zone, transported away, and one juvenile bs-biped remains in
the active zone; and for n’ = 6 one outgrown bg-biped is synthesized
in the active zone, transported away, and three single colloidal par-
ticles remain in the active zone. For any biped lengths, there are, in
principle exit loops leaving juvenile bipeds in the active zone and
transporting outgrown bipeds out of the active zone. The robustness
of such loops, however, decreases with the biped length and when-
ever the biped length becomes commensurate with the lattice. Also,
the period T leading to adiabatic behavior increases with the desired
outgrown biped length.

Theoretical results

We have experimentally shown that the application of the loop £ in
control space to a collection of single colloidal particles on the meta-
morphic pattern successfully and without external interference col-
lects single colloidal particles at the active line, adds them to juvenile
bipeds and finally transports them into the metamorphic direction
once they have reached their outgrown length b,,.

The rest of this work theoretically proves the topological nature of
the programmed outgrown synthesis and explains the topology
behind the design of the loops as well as the topological response of
the colloidal assemblies to those loops in the different regions of
action space.

Single colloidal particle response

In Fig. 4 we replot the magnetic pattern in action space A together with
copies of the control spaces of single colloidal particles for the locally
periodic regions for seven symmetry phases. The single colloidal
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Fig. 3 | b;-synthesis. Two reflection microscopy images at the beginning =0 (a)
and after 7 loops ¢ = 7T (b) of the colloidal particles (colored according to the biped
length) above the pattern subject to the [00p £ =Ly *Leyie 7- The hexagonal unit
cell of the pattern (white hexagon) has lattice constant a =7 pm. The active zone is
marked in cyan. ¢ Trajectories of single colloidal particles and bipeds (colored
according to their length b,,) as a function of the time ¢ and the metamorphic
coordinate. The background is colored according to the symmetry phase in the

metamorphic direction, and the brightness of the background is periodic with the
period T of the modulation loop. d Trajectories of single colloidal particles and
bipeds as a function of the time ¢ and the isomorphic coordinate. e Trajectories of
single colloidal particles and bipeds as a function of the metamorphic coordinate
and the isomorphic coordinate. The background shows the magnetization pattern
of the magnetic thin film. Supplementary Video 7 of the synthesis of one b4-biped
and two b,-bipeds is provided with the supplementary information.

particle control spaces are colored according to the location in action
space and they are placed right above the corresponding region in
action space. A larger gray copy of the control space simultaneously
explaining the topologically protected transport anywhere in the
pattern is attached as well.

For each symmetry phase, the white and black segmented fence
in the control space C separates colored regions on the concave side
of the fence from gray excess regions on the convex side of the fence.
External magnetic fields pointing into the colored regions of C cause
a colloidal potential with one minimum per unit cell in 4, while fields
pointing into the gray excess regions of C cause a colloidal potential
with two minima per unit cell in .A. The cusps of the fences where
black and white segments meet are B_-bifurcation points. The cusps
of the fences where the same colored segments meet are B,-bifur-
cation points. The fence line in C depends on the symmetry phase ¢.
For a Ce-like pattern (¢ = 60m/180, magenta) there is one polar gray
excess region fenced by twelve (white and black) segments of the
fence that connect twelve bifurcation points. When decreasing the
symmetry phase to ¢ = 40m/180 (bright blue), three further diamond-
shaped excess regions disjoin from this polar excess region and

move toward the equator of control space when the symmetry phase
reaches the cyan Sg-symmetry. During the same decrease of the
symmetry phase the polar excess region shrinks to a point and
reappears at the opposite pole beyond the S¢-symmetric phase,
recollects the diamond-shaped excess regions (¢ =20m/180, bright
green) now in the opposite hemisphere to form a polar twelve seg-
mented three-fold symmetric fence (¢ =10m/180, bright olive) that
adopts the full six-fold symmetric polar shape (¢ =0, yellow) for the
C,-like region in action space.

Consider an external field pointing toward a point in the colored
one minimum region of control space and a colloidal particle occu-
pying this one minimum in a unit cell of action space. When we redirect
the external field in control space such that it crosses into the gray
excess region, a new non-occupied (less deep) excess minimum and an
excess saddle point form in the unit cell of action space. Let us call the
two minima a white and a black minimum. If we enter the excess region
of control space through a black (white) fence segment, the colloidal
particle will occupy the black (white) minimum in action space while
the excess minimum of the opposite color remains unoccupied. If one
exits the gray excess region to the colored single minimum region of
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Fig. 4 | Topology of the transport for single colloidal particles. The magnetic
pattern (action space .A) is colored according to the symmetry phase ¢. On top of
seven equally spaced regions, we place seven control spaces corresponding to the
local symmetry phases in these regions. A larger gray copy of the control space
summarizes what we learn from the single symmetry control spaces. It shows the
(thicker) entry loop L., and the (thinner) exit I0op L,y ; used for the synthesis of
bs-bipeds. Both loops consist of sub-loops revolving in the mathematically positive
(blue in the large copy of control space) and negative (red in the large copy of
control space) sense. In the colored control spaces we show the positions of the
corresponding fences F (white and black segments) for single colloidal particles of
the corresponding symmetry phase. The fences are the external field orientations
for which there are marginally stable potential minima in action space. The fences
circulate around the gray excess regions where there are two minima per unit cell of
the potential in action space. Cusps of the fences are bifurcation points. We dis-
tinguish B_-bifurcation points where black and white segments of the fence meet
from By-bifurcation points where similarly colored fence segments meet. Loops are
colored gray in the small control spaces if they do not wind around B_-bifurcation

points of the particular symmetry phase. These loops are topologically trivial in this
region of action space. The transport direction of active topologically non-trivial
loops is depicted by arrows in action space A using the same color as the loop. In
the larger gray copy of the control space B_-bifurcation points join to (thick
magenta-cyan-yellow) bifurcation lines when plotted as a function of the symmetry
phase ¢. The winding of a loop around a set of B_-bifurcation points determines
the induced transport direction for the particular symmetry phase. As one moves
through action space in the metamorphic direction g one eventually passes
through the active (iso-phase) line. At the same time bifurcation points in control
space pass from the northern part of the loop revolving in the mathematical
positive (negative) sense to the southern part of the loop revolving in the opposite
sense. The loops are eigen loops of the o, mirror operation and, therefore, suppress
any net motion into the isomorphic ¢-direction. The entry loop, therefore trans-
ports single colloids and small bipeds toward the active zone on the S¢ isomorphic
line of the pattern. The exit loop L,,; ; does not revolve around any of the
B_-bifurcation points and, therefore does not transport single colloids. Supple-
mentary Video 8 shows this figure from various perspectives.

control space via a similarly colored fence segment, the process is
adiabatic, and the colloidal particle in action space remains in the same
(or an equivalent) minimum as it resided upon entry of the excess
region. If we exit the excess region of control space via a fence segment
of opposite color, the occupied minimum disappears upon exit, and
our colloidal particle performs an irreversible ratchet jump in action
space toward the remaining minimum of opposite color in the same or
a neighboring unit cell. There are, therefore adiabatic modulation
loops that enter and exit the excess region of control space via simi-
larly colored fence segments and irreversible ratchet loops that enter
and exit via oppositely colored fence segments'’. Black and white
fence segments join in the control space at the B_-bifurcation points.
An adiabatic (ratchet) loop must encircle an even (odd) number of
B_-bifurcation points. Adiabatic loops that encircle a non-zero number
of B_-bifurcation points are topologically non-trivial. Such non-trivial
loops connect the one minimum in one unit cell to the one minimum of
a neighboring unit cell. In order to predict the motion of a single
colloidal particle it suffices to know the winding numbers of modula-
tion loops in control space around the B_-bifurcation points. We,
therefore, omit the fences in the larger gray copy of the control space

and just plot the family of the B_(g)-bifurcation points, colored
according to the symmetry phase of the pattern.

We use one (blue) loop on the northern hemisphere £ circling
around two B_(¢)-bifurcation points for a subset of symmetry phases
¢ >30m/180 (blue-magenta). The loop Ly, is topologically non-trivial
for this subset. After completion, the loop transports single colloids
from the Cq-like region toward the Sg-symmetric region, provided
that we choose the proper sense of circulation. The proper sense of
circulation is found by using the rolling wheel rule: Consider a virtual
wheel rolling on the pattern. The axis of the wheel is given by the
averaged direction of the two B_ bifurcation points which the loop
winds around. The direction of motion of a single colloidal particle is
perpendicular to this axis and is provided by the direction that the
virtual wheel rolling on the pattern below it would take if spinning
around the axis with the same winding number as the loop. In action
space A of Fig. 4 we depict the direction of transport of this loop for
@ >30m/180 by arrows with the same color as the loop. The loop L is
topologically trivial for colloids lying on the other side of the Ss-sym-
metry line in action space A, (¢ <30m/180, yellow-green). The loop,
therefore, causes no transport of colloids on this part of the action
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space. We therefore color L, in the single symmetry phase control
spaces of this region in gray.

In order to transport single colloidal particles from the other side
of the active S¢-symmetry line, we use a second (red) south-eastern,
loop Lg=0,(Lyr) being a mirror image of the north-eastern loop
mirrored at the equatorial plane. L lies on the southern hemisphere
and circulates in the opposite sense around the B_(¢)-bifurcation
points beyond the Sg-symmetry (@ <30m/180, yellow-green). In the
region ¢ >30m/180 (blue-magenta) Ly is topologically trivial (and
therefore colored gray in the corresponding control spaces). The
southeastern loop therefore, transports single colloids in A on the
other side of the S symmetric active line in the opposite direction. As a
result, the double loop transports all single colloids toward the S¢
symmetric line and therefore, increases the density of colloids at this
line. Two further western loops Ly, =0,(Lyp) and Lgy =0,(Lge) are
mirrored at the isomorphic i-plane (see Fig. 1). Together with the
eastern loops they suppress any net motion into the isomorphic
t-direction. Similarly to the other loops in the fixed symmetry phase
control spaces, we color the eastern loop with their sense of winding in
the regions where they are topologically non-trivial and gray other-
wise. We call the concatenation of the four loops the entry
100p Leniry = Lye*Lse™ Cnw ™ Low-

The green loop segments of the concatenated eastern loop
Lye*Lse expand the loop with a ratchet triangle. Instead of using the
original loops, we deform one of the diagonals of £;*Lg, to take the
detour via the green segments and the other diagonal. This extended
loop is topologically equivalent to the undeformed loop for sym-
metry phases far away from the S¢ symmetry but alters the winding
numbers around the B_ bifurcation points for symmetry phases
close to the S¢ symmetry. In the experiments we alternately deform
one and the other diagonal of the loops in this way such that winding
numbers around the B_ bifurcation points in the (cyan) active zone
at the S¢ symmetry line are odd. This ensures that single particles do
not come to rest in the Sq region of the active line in action space A
but hop back and forth in a ratchet motion. We depict this back-and-
forth hopping in action space with green double-sided arrows in
Fig. 4. We also show figure 4 from various perspectives in our Sup-
plementary Video 8.

For sufficient colloidal density, the probability of dipolar inter-
actions between the colloids polymerizing several colloids to a biped
b,, consisting of n single colloids becomes significant. The S¢-sym-
metry line serves as a polymerization initiation site. Bipeds grow via
single colloid addition polymerization but also via the addition of
two bipeds. We use a central equatorial exit 100p Ly =Lcr* Loy
consisting of two mirror symmetric loops Lgg, and Ly =0,(Lcr)
circling around two mirror symmetric points on the equator of
control space C commanding outgrown bipeds of the desired length
to walk away from the Sg-symmetry line. The loop is chosen to be
trivial for juvenile bipeds and single colloids at any location on the
pattern. The walking direction for the outgrown bipeds for each of
the loops L and Ly, is perpendicular to the external field vector
pointing to the encircled point of each of the loops and the length
selection can be made via the proper placement of those points. In
Fig. 4, we show the exit loop L., 3 in control space and it can be seen
that it does not wind around any of the B_(¢)-bifurcation points of
single colloidal particles. The exit loop is thus trivial with respect to
single colloids and does not affect the net motion of single colloidal
particles. For understanding the behavior of bipeds b, consisting of
more than one colloidal particle, it is useful to introduce the poly-
directional transcription space 7, that is the vector space of the
biped end to end vectors®.

Juvenile and outgrown bipeds response
The orientation of the (dipolar) biped is locked to that of the external
field with the northern foot being a magnetic north pole and the

Fig. 5 | Determining the direction of motion by using the rotating wheel rule.
Shown in the figure is one cyan fence pocket in transcription space separating
biped vectors outside the fence supporting one minimum position of a biped per
unit cell from vectors inside the fence supporting two minima. Three pairs of
orange B_ bifurcation lines define the axes of three virtual wheels rolling on virtual
support. One of the wheels, -- the red wheel -- is activated by a red loop circulating
one pair of bifurcation lines in the mathematical negative sense. The biped will be
transported in the same direction as the activated wheel would roll. The activated
wheel shares its winding number (w = -1) with the activating loop £. Any loop £
having the same winding number will result in the same transport. The path of the
loop is on a sphere of radius of the length b,, of the corresponding biped. The exact
path of the loop does not matter. The loop’s topological invariant, the winding
number, does matter.

southern foot being a south pole. Let b,, denote the vector from the
northern foot to the southern foot of a biped of length b,,. Because of
the locking of the direction of b, to the external field He,, We can,
instead of depicting the fence in control space C, print the same fence
on a sphere of radius b,,. If we continuously vary the biped length, the
fence lines of different length bipeds join on neighboring concentric
spheres to form a fence surface F in 7 .

In Fig. 5, we outline the rotating wheel rule for bipeds that when
applied to the other figures of this section, will tell us the direction
of motion of the bipeds of different lengths in one particular region
of action space A. The figure shows the transcription space of
possible end to end vectors b, in which we compute the cyan
locations of marginable stable end to end vectors, called the fence
F, that consists of concave areas separated by orange bifurcation
lines B_. Two bifurcation lines B_ define an axis @ on which we can
imagine a virtual wheel. In Fig. 5 three virtual wheels sit on three
pairs of B_ bifurcation lines. A loop circulating around one of the
three axes will activate the wheel sharing the same winding number
with the activating loop. The direction the wheel would roll on a
virtual support below the wheel gives us the direction @ xn of
motion of the biped. Note that if the biped is not a single colloidal
particle, the loop must not wind around the fence in a symmetric
way. Sharing the winding number, - a topological invariant - with
the wheel is sufficient to drive the virtual wheel forward. The
rotating wheel rule is sufficient to allow the reader to predict the
direction of motion. The location of the fences and bifurcation lines
are computed numerically.

In previous work® we have shown that for fixed symmetry phase
¢ this fence surface is periodic and repeats in transcription space 7,
with the primitive unit vectors of the magnetization pattern in action
space A. In Fig. 6 we plot the fence surface inside the Wigner Seitz
cell with the origin b, = 0 in the center. The fence consists of surface
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¢=30m/180

©=297/180

¢=307/180

Fig. 6 | Topological character of the loops in transcription space. a Effect of the
entry and exitloops L ; for small bipeds including single colloidal particles in the
central Wigner Seitz cell of transcription space for different symmetry phases. The
southern sub-loops L, and L are topologically non-trivial for small symmetry
phases and wind around two of B_ bifurcation lines (orange) of the fences. For
larger symmetry phase the loops poke through the fence lobes of trigonal bipyr-
amid fences and wind around none of B_ bifurcation lines. If one extends the
southeastern loop with one ratchet triangle, the extended loop winds around one
B_ bifurcation line and causes non-trivial ratchet jumps of the single colloids in the
active zone back and forth into the metamorphic + p-direction. The fences for

@ >30m/180 (not shown) are mirror reflections at the b,=0-plane and cause the
northern sub entry loops having opposite sense of revolution to transport single

©=257/180

@=257/180
single particle ——_—

(@:2%/ 180

©=207/180

colloids into the opposite direction as the fences for ¢ <30m/180. Both exit sub-
loops L and Ly, are topologically trivial for the single colloids and do not wind
around any of the fences. b Periodic continuation of the fences in an extended zone
scheme together with exit loops for bipeds of length by, b, and bs. Exit loops for
n <3 are trivial, while the exit loops for b are topologically non-trivial and wind
around (shaded) lobes of the fences for large symmetry phases. For smaller sym-
metry phases, the exit loops still wind around the same 5_ bifurcation lines
(orange), and the loop pokes through equivalent fence facets with the minimum
upon entry of the excess volume remaining stable when the loop re-exits into the
one minimum volume. The non-trivial exit loop for b; causes the bs-bipeds to walk
into the metamorphic direction irrespective of their position on the metamorphic
pattern in action space A.

segments of positive Gaussian curvature that join at bifurcation lines
of infinite negative Gaussian curvature. We show the fences for the
symmetry phase ¢ =30m/180,291/180, 251/180,20m/180, and Omn/
180. The fences for o,(¢p) = 60m/180 — ¢ (not shown) are obtained by
taking the mirror image Fqoy/180-4 = n(F,) Of the fence F, at the
b,=0 plane. The fence in transcription space 7, separates regions
with one minimum per unit cell in A of the biped colloidal particle
potential on the concave side of the fence in 7, from excess regions
with two minima per unit cell in A of the pattern on the convex side
of the fence in 7 ,. The fence in 7, for the S¢ symmetric situation
(¢ =30m/180) consists of a trigonal bipyramid pocket located at one
of the edges of the Wigner Seitz cell harboring two minima of the
potential and a line through the origin in b,-direction having zero
volume just failing to contain two minima (or maxima) since its
volume is zero. Three faces of the bipyramid join at the apex located
at b, ~> - and three faces join at the antapex located at b, > — = of the
bipyramid. When we slightly reduce the symmetry phase to e.g.,
@ =29m/180 the apex of the bipyramid retreats to a finite value of b..
Both the zero volume line and the trigonal bipyramid open at their
antapexes and connect to form a surface separating a region below
with two minima from the region above with one minimum. The
region of one minimum for 307/180 > ¢ >20m/180, therefore, is not
simply connected but there are connections through the holes
between the base of the trigonal bipyramid and the lower part of the
surfaces. A second topological transition at ¢ =20m/180 closes these
holes to separate the now simply connected region of one minimum
from a simply connected region with two minima. For ¢ =0, the
three-fold symmetry of the fence around the origin augments to a
six-fold symmetry.

A biped control loop £, = %c C T, is the transcription of the
loop £ c C from control space C to a spherical surface in transcription
space of radius b, = nd. In the upper part of Fig. 6, we show the tran-
scripted entry and exit l0op L, and L,y 5 for a single colloid n=1
together with the fence surface. The cut of the sphere of radius b; with
the fences repeats what has been shown in Fig. 4. The entry loop
circulates the fences for the low symmetry phase but pokes through
the fences when the symmetry phase comes close to ¢ =30m/180. The
exit loop does not wind around any fence surface and is topologically
trivial for n=1. When we periodically continue the fences into neigh-
boring Wigner Seitz cells, we can infer the effect of the exit loops of
bipeds b, =nd withn=1,2,and n=3.

The transcriptions of the exit loop L., ; for n=1and n=2 do not
wind around any fence surfaces, while for n=3 it winds around two of
the (shaded) base handles of the trigonal bipyramids located in unit
cells away from the origin and therefore non-trivially transports bs-
bipeds perpendicular to the two fence handles or the surfaces devel-
oping from the handle for symmetry phases ¢ <30m/180. The
symmetry of the two sub-loops of the exit loop is such as to cancel the
transport into the isomorphic t-direction, and only the transport along
the metamorphic g-direction remains. The exit loop remains invariant
under reflection at the b,=0-plane followed by a time reversal
operation and therefore, has the same effect in regions of action space
A where 60m/180 > ¢ >30m/180. Bipeds of length b; are therefore,
globally transported the same way on the entire metamorphic pattern.

Changing the outgrown length
In Fig. 7 we show how repositioning the exit 100p Loy 3 = Lexir 7
changes the length of the outgrown biped from b; to b,. The
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Fig. 7 | Effect of repositioning the exit loop. For an exit loop L,,; ; repositioned
with respect to the exit loop L 3 of Fig. 6 and a symmetry phase of ¢ =30m/180,
the loop is trivial for by, b, bs, bs and bs. The motion of both sub-loops is non-trivial
for by, but the motion is canceled by the o-symmetry of both sub-loops. The first

length to be transported into the metamorphic g-direction is a biped b, with the
exit loop winding around the shaded lobes of the outermost handles of the peri-
odically extended fence trigonal bipyramids. The effect is topologically robust
when the b,-biped walks into regions of lower symmetry phase ¢.

transcribed exit loops X Leyir7 In transcription space 7, for synthe-
sizing a b, biped in Fig. 7 do not wind around any fences forn 1,2,3,5,
and 6. For ¢ =30m/180 the b, transcribed exit loop winds around two
handles of two different trigonal bipyramids, both oriented perpen-
dicular to the isomorphic t-direction. Each winding of the two sub-
loops individually transports b4-bipeds into the isomorphic t-direction
but the two sub-loops cancel out any motion with the winding around
the second handle undoing the motion caused by the winding around
the first (see also the green experimental b,-trajectories in Fig. 3d). The
first bipeds to experience a non-trivial topological transport are b,
bipeds. The transcribed exit loop for b; winds around the two outer-
most handles of two different trigonal bipyramids, depicted and sha-
ded in Fig. 7. The orientations of both handles are such that the normal
in-plane vectors to both handles have a metamorphic component. The
two sub-loops - like for the by-case - cancel any motion into the iso-
morphic t-direction but they add up to cause motion into the meta-
morphic p-direction. The topology of the winding remains robust as
the symmetry phase ¢ changes to lower values as the b,-biped walks
away from the active line.

Discussion

The synthesis or assembly of a product can occur via thermodynamic
driving forces, in which case we talk about self assembly®®, The
directed assembly"?' via an externally controlled addition of compo-
nents via joining micro fluidic channels on a lab on a chip is an exter-
nally enforced alternative to the creation of products that are not
necessarily in thermodynamic equilibrium. Our topological synthesis
is an example of the latter strategy but using motion*>* of the educts
that actively self assemble to the final product. In contrast to con-
ventional lab on the chip devices?, our approach offers the flexibility
of using the same pattern imprinted on the device for the production
of alternative products. The flexibility arises via the ability to deter-
mine the outgrown product length via a smart choice of the applied
external modulation. The choice to be an outgrown product, however,
is an active and robust choice of the colloidal biped itself allowing the
synthesis to be made without external control of its success. The
topological nature of the internal decision made by the products of
our device is an ingredient shared with many bio-synthetic processes
in vivo.

In fact, our device functions like an enzyme in biology. Due to
the low concentration of colloids, no polymer addition reactions are
supposed to occur outside the active zone. Polymer addition reac-
tions are wanted at the active line, not elsewhere. By topologically
transporting single colloids into the active zone, the colloidal con-
centration is increased there as to increase the reaction rate. The
choice of concentration, therefore, is critical for the proper func-
tioning of the device. Since single colloids are kept at the same dis-
tance of at least one unit cell, while transporting them to the active
zone, polymer addition reactions of single colloids never happened
outside the active zone in our experiments. However, once an out-
grown biped leaves the active zone, it counter propagates to the
single colloids, and unwanted addition reactions can elongate the
length of bipeds beyond the outgrown length. It is possible to design
more complex metamorphic patterns where outgrown bipeds may
avoid further collisions upon exit and use more sophisticated driving
loops. The current work just shows the potential of the method. It
produces outgrown bipeds without polydispersivity. The kinetics is
of a Michaelis-Menten type saturating at a concentration when all
active zones are busy. This is the case once one section of the length
b, of the active line yields roughly one outgrown biped per n’ peri-
ods of the loop. Due to the requirement of adiabatic transport, our
yield is low, however, our precision is high.

Theoretically, there is no size limit to the production of bipeds of
any length. In practice, in the experiments, there is a size limit. The
robustness of the process relies on loops encircling the fences by
keeping a distance to the bifurcation locations. The number of bifur-
cation locations in transcription space increases with the number of
bipeds (all transcription loops to bipeds with n<n" have to fulfill the
distance requirement, compare Fig. 6 and 7) which becomes increas-
ingly challenging. The adiabatic period T n*? becomes longer and
longer, and at some point, we would need to reduce the modulus of
the morphing reciprocal vectors g to avoid a biped having one foot in
the S¢ the other in the Cg region. Moreover, the total cross section of a
biped grows proportional to its size, such the concentration of single
colloids must be reduced to avoid unwanted collisions of the biped
after its exit of the active zone.

Topological length control is a useful strategy for active self-
assembly out of equilibrium. Adiabatic external modulation loops can
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be adapted in a versatile way to let colloidal particles decide their final
length by themselves. Here, we have shown the internal active self-
assembly of magnetic colloids to a biped for six different outgrown
lengths. Of course, the externally applied control loop guides the
active motion toward the desired length. Once the external loop is
applied, however, no further external quality control, whether the
components assemble to the desired structures, is needed.

Methods

Pattern

The pattern is a thin Co/Au layered system with perpendicular mag-
netic anisotropy lithographically patterned via ion bombardment®*?,
The metamorphic pattern lattice constant is a=7 pm, and the mod-
ulation period is 2m/u =280 um, see the sketch in Fig. 1a. The magnetic
pattern is spin-coated with a 1.6 um polymer film that serves as a
spacer between the magnetic film and the colloidal particles.

External field

The uniform external magnetic field has a magnitude of Hey, = 4 kAm™
(significantly smaller than the coercive field of the magnetic pattern),
and it is generated by one vertical and four horizontal computer-
controlled coils arranged around the sample at ninety degrees.

Modulation loops
The loops consist of connections between points P;=(6;, ¢;) given as
spherical coordinates in C, with N=P; ;and § = P ; the north and south
pole. For the entry loop, we use the angles of Table 1, as well as the
mirror tilt angles 6_;=0,(6;) = m - 0;, mirrored at the equatorial plane,
and the azimuthal angles ¢_; = 0,(¢;) = — ¢;, mirrored at the ¢-plane. The
exit loop angles are tabulated in Table 2 according to the value n" of the
outgrown biped to be synthesized.

The sequence of points of the concatenations of all but the loops
with n'=2 or n' =4 loops are:

PosP_33,P33.P25N.P Z:S'P 2:4"0 ’f4,4,P ',’~4,6,P Zte'P Z‘,s'
NPy 2Py 1P 1P, 2P 3 3P 5 3.P 5 4
P3,,1,P0,,2,P,3,,3,P2’,3,Pz,,z,N,Pﬁt,S,PZ:,A,,P'f‘A,,,A‘,
P 'f4,7erP f{:,é,P Z:,S,N,P 22P21:P31,P02P_33.P 23,
P_31P31.P02P3 3P _23,P 52,5 P ’54,5'P 'f4,4'P 2:4:
PZT(:'P’j4,6'Pr£4,S'S'P—2,—2'P—Z,—er—Zv,—l'P—O,—Zr
P33Py _3.Py 1P 3_1,Po,2.P3 3P 5 3P 5 5,
S.p ’1~4,75,P 54,74") Z;MD Z:,b,P 54,76#0 '1‘4,75'5"’ 2,2
P 1P _31P02P33P23.P21,P_31,Po

Table 1| Entry loop angles

6o 6, 0, 63 M b2 ¢s
m/2 (0] /18 7m/18 /9 /3 5m/9

Table 2 | Exit loop angles

n A o ' o7

2 70m/180 140m/180 170m/180 170m/180
85m/180 25m/180 351/180 45m/180

3&4 70m/180 100m/180 100m/180 140m/180
751/180 51/180 20rm/180 351/180
75m1/180 125m/180 135m/180 135m/180

7 751/180 6511/180 75m/180 75m/180

For n'=2 the effect of L., on bybipeds is topologically
equivalent to that on single colloidal particles. Therefore the entry
loop transports b,-bipeds toward the active zone. To overcome this
transport, we duplicate the winding numbers of the exit loops
according to L2 — Loy, that makes the exit loop dominant over
the entry loop for the b,-bipeds. For the point sequence one should
replace all exit segments according to the scheme N, P, P34, P2, .
P2—4,6'Pi,6'P‘21,5'N - N'Pi,S'PiA'P2—4,4'P2—4,6'P‘21,6'Ptzt,S'Pi,4'P2—4,4'

P? 4, Pi6 Pis N and so forth.

For n'=4 there are no simple robust exit loops not affecting
bipeds b,, with n < 4. We, therefore, apply two exit loops and replace a
non-robust exit loop (that exists) by a robust one according to
Lexics = ,Cex,-t,3&4*£gx1,-t,3, where the first robustloop L., 354 transports
both, b5 and by, into the metamorphic direction followed by the sec-
ond loop Le‘xl,-tlz, transporting b; against the metamorphic direction. For
the point sequence one should replace all exit segments according to
the scheme N'PZTS'P{WP’—"4,4'Pr£4,6'P2:6'P2:5'N - N,Pi%“,Piﬁ“,Piﬁa,
P4 P34 P3N, P, PL P 46, PPy sr Piss Pos, N and so forth.

The point sequences for all outgrown bipeds include transfer
segments between the eastern and western parts of the entry loop
and between the exit and entry loop that we have not shown in the
main part of the work. Such transfer segments are topologically tri-
vial and irrelevant to understanding the topological invariants gov-
erning the transport. In principle the transfer between loops can be
made anywhere, however, the equatorial region should not be used
due to increased friction of a biped with the solid support. Our
connectors between loops are all via the north N=P; or south
pole S=P_y;.

The adiabatic nature is ensured by keeping the Mason number
of all bipeds below one M «1. The Mason number of an outgrown
biped is M =2mnn"? /uoXegHeH,Tr (With i the shear viscosity of
the fluid and x.sr the effective magnetic susceptibility of a colloidal
particle, and Trthe period of a fundamental loop.). The effect of non-
adiabatic driving has been discussed in ref. 15. In our experiments
with n" =7 we used a modulation period of Tr= 25 s for a fundamental
loop. Our modulation loop consists of twelve fundamental loops
such that the largest period used was T=5 min for our largest
outgrown biped.

Visualization

The colloids and the pattern are visualized using reflection micro-
scopy. The pattern is visible because the ion bombardment changes
the reflectivity of illuminated regions as compared to that of the
masked regions. A camera records video clips of the single colloidal
particles and the bipeds.

Fence equations

A biped is subject to a total potential proportional to - fbiped d’r
Hex: - Hp, which is the integral over the biped volume of the coupling
between the external Hex and the pattern H,=-V ¢ fields™" This
coupling leads to an effective biped potential V proportional to the
difference in magnetostatic potential at the two feet. That is,

V(r,+zn,b,@) o P(r, +b/2,0) — P(r, —b/2, ) 3)

with the biped centered at r , and with g(r,¢) xe~% Z,-Zzo cos(q; - ¥ — @)
the magnetostatic potential. Note that V depends explicitly on Hey, via
the one-to-one correspondence between b/b and Hey/Hey.. Transport of
a biped b, after completion of one modulation loop £ c C occurs
provided that £, = %L C 7, winds around bifurcation lines, which are
the cusps of the fences. The fences are those orientations b € 7, for
which the potential is marginally stable”, i.e., the set of biped
orientations for which V V=0 and det(V,V ,V)=0. For the present
metamorphic pattern and for a slowly varying symmetry phase |V ,¢|<q
both conditions have been numerically determined to be fulfilled along
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the fence surfaces in b € 7, depicted in Fig 6. For a constant symmetry
phase the biped potential is periodic and invariant under the
simultaneous transformation b-b+a; and r, — r,+a;/2 with
a;,i=1{0,1,2}, a lattice vector, cf. Eq. (3). The same periodicity in b
T, applies, therefore, to the fences.

Data availability

All the data supporting the findings are available from the corre-
sponding author. All trajectories of particles are extracted from Sup-
plementary Videos 2-7. We append the tracked particle files and a
maple code in a supplementary dataset called figurerawdata.zip that
converts this data into figures 2 and 3. Source data are provided with
this paper.
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MOVIE FILES

Supplementary Video 1 Videoclip showing a flyby along action space and control space allowing to see all
subloops in control space, including Lcow which is not visible in figure 1.

Supplementary Video 2 Videoclip showing the response of colloidal particles to the application of the loop
Lentry * Egm,r The clip shows one biped and four single colloids in the active zone right from the start, the transport
of two single colloidal particles toward the active zone (colored in cyan), the growth of one further biped to the
outgrown bs length and the transport of both outgrown bipeds out of the active zone.

Supplementary Video 3 Videoclip showing the response of colloidal particles to the application of the loop
Lentry * Legit 3. The clip shows the transport of six single colloidal particles toward the active zone (colored in cyan),
the growth of two bipeds to the outgrown b3 length and the transport of outgrown bipeds out of the active zone.

Supplementary Video 4 Videoclip showing the response of colloidal particles to the application of the loop
Lentry * Legit, 384 * £C_m1it 5. The clip shows the transport of ten single colloidal particles toward the active zone (colored
in cyan), the growth of ‘two bipeds to the outgrown b4 length, the transport of outgrown bipeds out of the active zone
and two single colloids remaining in the active zone.

Supplementary Video 5 Videoclip showing the response of colloidal particles to the application of the loop
Lentry * Legit 5. The clip shows the transport of eighteen single colloidal particles toward the active zone (colored in
cyan), the growth of three bipeds to the outgrown b5 length, the growth of one biped to a juvenile b3-biped, and the
transport of the three outgrown bipeds out of the active zone.

Supplementary Video 6 Videoclip showing the response of colloidal particles to the application of the loop
Lentry * Legit,s. The clip shows the transport of several single colloidal particles toward the active zone (colored in
cyan), the growth of one biped to the outgrown bg length, the transport of the outgrown biped out of the active zone,
and the remaining of three single colloids in the active zone.

Supplementary Video 7 Videoclip showing the response of colloidal particles to the application of the loop
Lentry * Legit,7. The clip shows the transport of twenty single colloidal particles toward the active zone (colored in
cyan), the growth of two bipeds to the outgrown b7 length, the growth of one biped to a juvenile bg-biped, and the
transport of the two outgrown bipeds out of the active zone.

Supplementary Video 8 Videoclip showing a flyby along the action space and control space of figure 4, allowing
to see all subloops and all northern excess regions in control space.
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We measure the dynamical behavior of colloidal singlets and dumbbells on an inclined magnetic moiré
pattern, subject to a precessing external homogeneous magnetic field. At low external field strength single
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1. Introduction

Current research focuses on the electric conductivity and trans-
port behavior in twisted hexagonal structures such as twisted
bilayer graphene,'” and twisted bilayers of the transition metal
dichalcogenide family® because of their non-conventional
superconductive’™® and ferromagnetic’®'” phase behavior.
Information on the physics of these systems can be gained by
investigating other twisted systems: The transport of waves in
twisted photonic'® > or acoustic>* > crystals as well as in vortex
lattices®® is based on similar topological transport behaviour.

We have focussed on the transport properties of classical
macroscopic magnetic particle systems®>*° as well as on transport
properties of soft matter magnetic colloidal particle systems®'™*°
and specifically subject to twisted magnetic patterns.*'** The
magnetic potential of twisted patterns subject to an external drift
force is a special form of a tilted washboard potential.***° Tilted
washboard potentials show interesting transitions®® in their trans-
port properties as a function of their tilt.

Here, we study the motion of single colloidal particles and of
colloidal dumbbells above inclined flat channels*" created by a
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on the external field strength and the precession angle of the external homogeneous magnetic field.

magnetic moiré pattern being an overlay of two magically twisted
hexagonal (or square) generator patterns of alternating magneti-
zation (see Fig. 1). The resulting magnetic moiré pattern creates a
magnetic field H, that is periodic with a hexagonal (square)
shaped moiré Wigner Seitz cell. Superposition of an external
magnetic field that is much stronger than the pattern field leads
to a colloidal potential that consists of mostly localized potential
minima and maxima. There are however extended regions of
negative interference within the superposition where the potential
is almost flat, called the flat channel. A flat colloidal potential
channel follows a zig-zag path through the moiré Wigner Seitz
cell. The corrugation of the potential above the flat channel is
significantly weaker than the modulation of the potential between
the localized maxima and minima. We immerse paramagnetic
colloidal particles in water above the pattern and let them
sediment to an equilibrium position a few nanometers above
the pattern. There, they either rest on the pattern as single
colloidal particles or self assemble to colloidal dumbbells of two
particles held together via dipolar interactions.**® When the
external magnetic field is not normal to the pattern the flat
channel direction and the external magnetic field compete to
orient the colloidal dumbbells.

We apply a time dependent homogeneous external magnetic
field precessing around the pattern normal at a fixed preces-
sion angle. When we sufficiently incline the moiré pattern
gravity can drive the colloidal particles and colloidal dumbbells
through the flat channels, while colloids in the localized
minima always remain immobile. Due to the competition of
anisotropic interactions, we distinguish two forms of motion
along the flat channels. We find dumbbells slithering along the

This journal is © The Royal Society of Chemistry 2024
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Fig. 1 Scheme of the setup: a magnetic moiré pattern with (black) up and (white) down magnetized dithered domains mathematically computed from
two superposed magically twisted periodic magnetic generator patterns and then imprinted. The moiré pattern is a pattern of three different length
scales. The moiré pattern is periodic with a hexagonal moiré Wigner Seitz cell. We can dissect the moiré Wigner Seitz cell into smaller hexagonal 2-tiles
(see the green 2-tile in the magnified disk-shaped subregion; the unit vectors of the 2-tile are orthogonal to the unit vectors of the moiré Wigner Seitz
cell). The generic 2-tile contains a localized minimum and maximum of the colloidal potential. The smallest length scale of the pattern is introduced by
the dithering procedure (In the diskshaped subregion one white and one black dither pixel are recolored in yellow and blue). There are non generic
2-tiles that connect to form a flat channel (cyan) following a zig-zag path through the moiré Wigner Seitz cell. Due to the dithering, the particle-
surface potential above the flat channel is corrugated and rough on the scale of the dithers. The moiré pattern is inclined with respect to the direction of
gravity §-n = —cos f§ and subject to a precessing homogeneous (angular frequency w) external field with precession angle Heyn = cos 9. Paramagnetic
colloidal particles sediment onto the pattern and form colloidal dumbbells via dipolar interaction. While colloidal dumbbells in generic 2-tiles cannot
move, colloidal assemblies (some singlets, mainly dumbbells) that reside within the non-generic flat channels may or may not slide down along them
exhibiting different forms of orientational dynamics.

flat channel with the head of the colloidal dumbbell always film of thickness ¢ = 5 nm reads*’
pointing in direction of the channel and we find precessing
colloidal dumbbells sliding along the flat channel and at the
same time precessing with the external field. We present a
dynamic phase diagram of the various transport modes in both

hexagonal twisted and square twisted patterns.

2n
M =M Z Z [cos(k - s,(r)) + ln}) (1)

=+ i=1

with M, ~ 1420 kA m ™' the saturation magnetization of Co.
The normal component of the pattern magnetic field satisfies

2. Results

We use a magnetic Co/Au multilayer, which has been patterned
by keV He'-ion bombardment through a lithographical
mask®** in a home-built bombardment stage.>® Instead of
creating a magnetic moiré pattern by twisting two thin film
patterns, we lithographically produce the moiré pattern by
calculating the magnetization due to superposition of the two
generator patterns and imprinting the corresponding magne-
tization directly into one magnetic thin film. The quasi two
dimensional magnetization of our moiré pattern in this single

This journal is © The Royal Society of Chemistry 2024

the thin film boundary condition HY = ktM right at the film
surface. & denotes a dithering procedure that converts a
continuous gray scale image into a dithered image having only
the digitized values +1 and with pixel size of 1 pm for the
square (n = 2) and 2 pm for the hexagonal (n = 3) pattern. The
first sum runs over p = + and p = —. Each term creates one of two
generator patterns with a generator Wigner Seitz cell of hex-
agonal (n = 3) or square (n = 2) symmetry and generator lattice
constant a = 14 um. The k' = R,k in the first term of eqn (1)
are the 2n (i = 1,...,2n) primitive reciprocal unit vectors of
magnitude k = 2n/a sin(n/n) of the non rotated hexagonal (n = 3)

Soft Matter, 2024, 20, 9312-9318 | 9313
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or square (n = 2) generator patterns. The matrices Ry, are
rotation matrices by the angles n/n generating a pattern of the

appropriate rotation symmetry. The shift vectors s (r) = R 5

moda1 i)

(F — Peenter,+) 5:(0) + R;; -1 of both patterns are the
vectors from the nearest generator Wigner Seitz cell centers
in each of the rotated generator patterns toward the lateral 2D-
position of interest r, but rotated back into the unrotated
generator pattern orientation. Non generic transport behavior
is predicted for magic twist angles in smooth twisted colloidal
systems.”” This non generic behavior disappears in magically
twisted system including disorder.*®> The R.,, are rotation
matrices by +o/2 which is half of a magic twist angle of =
2arctan[sin(m/n)/(nk + 1 + cos(n/n))]. We use o3 = 4.40846° for the
hexagonal and «3; = 4.24219° for the square pattern. The choice
of magic twist angle ensures a minimal size of the final moiré
Wigner Seitz cell (with magically twisted moiré unit vectors
a/” =[sin(n/n)/nsin(a/2){a; + a;,}). We use shift vectors s,(0) =
0 and s_(0) = a,/2 that centers the resulting flat channel of the
colloidal potential to the origin of the moiré Wigner Seitz cell.
The abbreviation (mod ay,a,) above the equal sign indicates
that the left and right side of the equation are equal up to
differences of integer multiples of the primitive generator

Paper

lattice vectors of one of the unrotated generator patterns. The
parameter ¢, in (1) is chosen such that the average magnetization
of the moiré pattern vanishes. An example of the dithered twisted
hexagonal moiré pattern is shown in Fig. 1 with black up- and
white down- magnetized domains. We can dissect the moiré
Wigner Seitz cell into 2-tiles (with primitive tile vectors a;)** that
are a little bit larger (a7 = a2 cos(«/2)) than one quarter of the
generator unit cells (with primitive generator unit vectors a;). The
generic hexagonal Z-tile harbors one minimum (one black
domain) and two maxima (two white extended domain vertices)
of the colloidal potential. The generic square #-tile harbors one
minimum (one black domain) and one maximum (one white
domain) of the colloidal potential. In both hexagonal and
square twisted patterns, non-generic #-tiles connect to form a
flat channel the corrugation of which is much smaller than the
modulation within a generic #-tile. Like other zig-zag paths in
colloidal science® or in dissipative physics® our connected flat
channel is chiral. Corners along the zig zag path are generically
different from each other for non magic angles, but become
equivalent for magic angles.*' This is the reason why in smooth
twisted potentials the transport behavior is very different
at magic angles as compared to the generic non-magic twist
angles.”

. not rgtating
— L)
f vé‘n not
. Sliging
R4

Fig. 2 Transport modes (a) dynamical phase diagrams (polar plot) of the inclined dithered twisted square (top) and hexagonal (bottom) pattern as a
function of the precession angle & and the strength of the external magnetic field Hex. Symbols are experimentally measured data points. The color
indicates the observed transport mode of the colloidal singlets and dumbbells. The color coded areas in the diagram are a guide to the eye. (b) Overlay of
microscope images of the sliding motion in generic and non generic 2-tiles of the inclined dithered twisted square (top) and hexagonal (bottom) pattern.
The in-plane direction of gravity (1 — nn) - g in all panels (a)—(f) is from the top to the bottom of the moiré Wigner Seitz cell. The colloidal particles and
dumbbells move everywhere. The directions of motion is at an angle +n/2n with respect to the inclination (1 — nn) - g direction or along the inclination
direction. The flat channel is marked as dark green dotted lines. (c) Overlay of microscope images of the non-moving single colloidal particles inside
generic 2-tiles and of moving colloidal dumbbells inside the flat channel within one twisted square (top) and hexagonal (bottom) moiré Wigner Seitz cell.
The colloidal dumbbells move through the flat channel (trajectory bright green line, flat channel dashed dark green line) with their long axes locked to the
flat channel direction. (d) Microscope image of single colloidal particles inside generic 2-tiles and of colloidal dumbbells inside the flat channel. The
dumbbells move through the flat channel of the square (top) and hexagonal (bottom) moiré Wigner Seitz cell while precessing with their long axes locked
to the external field. The trajectory of one colloidal dumbbell is colored according to the period of the precessing external field (see magnified inset). The
flat channel is located exactly at the marked trajectory. (e) Overlay of microscope images of the rotating but not sliding motion above the inclined
dithered twisted square pattern. The flat channel is marked as dark green dotted lines. (f) Overlay of microscope images of the non rotating and not
sliding motion above the inclined dithered twisted hexagonal pattern. The flat channel is marked as dark green dotted lines. The color of the frames in
(b)—(f) correspond to the colors of the transport mode in panel (a). Videos of the different transport modes are provided with the Videos S1-S10 (ESIT).

9314 | Soft Matter, 2024, 20, 9312-9318 This journal is © The Royal Society of Chemistry 2024
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We cover the moiré pattern with photoresist of thickness ¢ =
1 um, that separates colloids from the magnetic thin film such
that only long wave length Fourier modes (wave length of the
order of the 2-tile lattice constant or more) of the pattern
magnetic field is relevant at the location of our colloids. The
moiré pattern is surrounded by five computer-controlled coils,
four of which create an external in plane field and the other
produces an external magnetic field normal to the pattern. The
moiré pattern with the coils is mounted to a microscope
operating in reflection mode. The microscope itself is mounted
to a support with the optical axis along the pattern normal. The
patter normal is inclined g-n = —cos(ff) with respect to gravity
with an inclination angle of f = n/9. Paramagnetic colloidal
particles of diameter 4.51 pm (Dynabeads M-450) are immersed
in a drop of water placed on the pattern.

We apply a time dependent external field

Hey(t) = R(t)-Hex(0) (2)

that rotates with angular frequency = wn. Here w = 1.5 s,

and R(wt) is a rotation matrix about the pattern normal n and
the external field H., is tilted with an angle 9 to the pattern
normal (Hey'n = cos ). The motion of the external field is thus
a precession with angle 9 around the moiré pattern normal.

Fig. 2 shows two dynamical phase diagrams of the motion
above the inclined dithered twisted square and hexagonal pat-
terns together with overlay of tracked video microscopy images
of each mode of motion. We find five different transport modes.

The simplest mode occurs for low external magnetic field
(Hexe < 0.2 kA m ™) oriented close to the equatorial plane (§ >
50°, blue triangles in Fig. 2a, microscopy images in Fig. 2b and
Video S1 and S6, ESIt). The external field in this case precesses
across the marginably stable points of the potential that will
flatten the potential to valleys not only above the usual flat
channels but also above the generic #-tiles of the pattern.
All colloidal particles, no matter where they are located, start
to slide down the slope of the inclined plane under these
circumstances. Based on the observation of multiple movies
we see that in general the sliding direction of the colloidal
particles in the flat channels follows an orientation of +mn/2n
with respect to the inclination (1 —nn)-g direction of the
pattern if the particles are far away from the corners of the flat
channels, but follow the inclination direction (I —nn)-g in
the surroundings of the flat channel corners and in the
generic #-tiles. Colloidal dumbbells exhibit the same behavior.
Additionally their long axis seems to correlate with the travel
direction far away from the corners and seem to be less
correlated while traveling in the corner surroundings.

In all other transport modes the external field will immobilize
colloidal particles and dumbbells above the generic #-tiles and
the only remaining regions of mobility can be found above the
flat channels or in the surroundings of the flat channel corners.
At low external field, Hee < 0.2 kA m™ ', and for precession
angles 3 < 50° dumbbells consisting of two colloidal particles
slide through the flat channels with their long axis d oriented
along the channel (bright green triangles in Fig. 2a and micro-
scopy images in Fig. 2¢ as well as in Videos S2 and S7, ESIf).

This journal is © The Royal Society of Chemistry 2024
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The trajectories follow the flat channel in the flat channel seg-
ments far from the corners, but they follow the in-plane gravity
direction (1 —mn)-g in the surroundings of the flat channel
corners. The orientation of the dumbbell becomes random in
the corner surroundings and switches to the new direction of the
flat channels once the dumbbell reaches the next flat channel
segment (see also Fig. 3a and b). We call this phase the slither
sliding phase. Since the external field is weak under these circum-
stances, the anisotropic moiré pattern potential torque dominates
over putative torques due to the external magnetic field.

The long axis of the dumbbells lock to the external field if we
use stronger external magnetic fields (He > 0.2 kA m™"). For
precession angles above 3 > 10°, the long axis of the dumbbell
precesses synchronously with the external field (Fig. 3c and d).
The potential generated by the pattern for large precession
angles remains weak enough such that gravity drives the
precessing dumbbells through the flat channels (dark green
circles in Fig. 2a and microscopy images in Fig. 2d as well as in
Videos S3 and S8, ESIf). We call this phase the rotating and
sliding phase.

The sliding stops for precession angles below 3 < 50° as
shown in the phase diagrams in Fig. 2a as orange circles. A
microscopy image is depicted for half a moiré Wigner Seitz cell
of the square pattern in Fig. 2e. Videos S4 and S9 (ESIT) record
this mode for both patterns.

For even smaller precession angles § < 10° (red triangles in
Fig. 2a) the dumbbells also stop precessing. A microscope
image Fig. 2f of part of a hexagonal moiré Wigner Seitz cell
shows the static behavior. Videos S5 and S10 (ESIt) show a
short movie of the static mode for both patterns. Presumably
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a  square b hexagon
360F" . 360 {p+ o
™ . !‘ *n "'*'
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Fig. 3 Angle correlations (a) correlation between the velocity and director
orientation in the slither sliding phase of the twisted square pattern.
(b) Correlation between the velocity and director orientation in the slither
sliding phase of the twisted hexagonal pattern. (c) Correlation between the
director and external field orientation in the rotating and sliding phase of
the twisted square pattern. (d) Correlation between the director and
external field orientation in the rotating and sliding phase of the twisted
hexagonal pattern.
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the anisotropy in the colloidal potential dominates the beha-
vior and suppresses any motion.

3. Discussion

In previous work*' we have shown that magic non-generic
transport behavior of colloids driven through a smooth twisted
magnetic pattern occurs for magic angles due to the periodic
nature of the corners of the flat channels. Under non-generic
conditions each corner along a flat channel is different and in
smooth magically twisted pattern one can avoid the occurrence
of blockades at the corners. The transport on non-magically
twisted patterns is predicted to stop at corners that block the
transport. Smooth magically twisted systems therefore show
pronounced non-generic transport behavior at the magic angles.

This is different for perturbed twisted systems: In intention-
ally heterostrained twisted bilayer graphene®® the heterostrain
can change the electronic flat bands. In experiments on a
macroscopic scale we have shown®® that disorder destroys the
non-generic magic behavior such that the character of the
transport is no longer decided at the corners but in the flat
channel segments connecting the corners.

This is also true in the system studied here because the
dithering, a specific form of disorder, of the twisted potential
renders the flat channels rough. The roughness introduces
obstacles that are harder to overcome and more frequent than
those added under non-magical conditions at the corners.
Therefore whether the potential is under non-generic twist
angles or under magic conditions the transport behavior is
decided inside the channels.

Single colloidal particles may travers potential barriers
caused by the roughness of the potential inside the flat chan-
nels only for conditions that also mobilizes the single colloidal
particles inside non-generic #-tiles. Colloidal dumbbells carry
double the weight and are long enough to pass over the
roughness introduced by the dithering. This explains the
slithering sliding of the dumbbells at small external field.
Precession of the dumbbells under stronger external field
introduces energetic fluctuations of the colloidal dumbbells
that are strong enough to let the dumbbells pass over dithering
obstacles. Hence the dumbbells perform a rotating sliding
motion through the flat channels.

A smooth twisted colloidal potential could be produced by
using two square or hexagonal patterns instead of the dithered
single pattern. Colloidal particles would be placed between
both patterns. However, it is difficult to visualize the colloids
between both patterns.

4. Conclusions

In summary, twisted potentials are vulnerable to perturbations
that usually destroys the non-generic magic behavior of the
transport. However, other equally interesting transport modes
that presumably persist whether the twist angle is magic or
non-magic can be observed. Two distinct such modes: the
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slithering sliding and the rotating sliding have been character-
ized in this work.
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Appendix

To achieve the observed phenomena we have to set the correct
ratio of the relevant interactions. This is done the following
way: The dipolar interaction between single colloidal particles
scales with HZ,. We tried to work with external fields that
produces singlets and dumbbells but not colloidal triplets, or
quadruplets. Therefore we first chose an external field Hey <
1 kA m . The interaction potential of the particles with the
pattern is proportional to H,”> for small external field and
proportional to H..Hj, for large external fields. The inclination
angle f sets the driving force. There is a critical angle f.(Hex =
1 kA m ")~30°. For B > f. the driving force is larger than the
largest magnetic potential gradient such that the particles
will start to slide in the generic positions of the moiré Wigner
Seitz cell. We see that at large H,,. increasing f is similar to
decreasing H.y. If we do not consider the dithering roughness
the phenomenon should only depend on the ratio He/sin(f),
however the dithering roughness makes things more compli-
cated. We chose f = 2/3 8. to obtain sliding in flat channels only.
The frequency of rotation is such that the dumbbell can follow
the external field when it is large but cannot follow when the
external field is small. There is a non universal pattern
potential that holds dumbbells oriented along a flat channel
at vanishing or small external field. Reducing the precession
frequency has no significant effect. There is a large cut off
frequency where the response of the dumbbells is no longer
synchronous to the field even without the magnetic pattern. We
used frequencies well below this cutoff frequency.
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Chapter 5

Materials and methods

My passion was always to see the theories on paper, in the real world and
experiments. It is wonderful to watch your efforts pay off (Hopefully in every
aspect of your life!). I used two different setups for my two different projects.
One can be tilted, and one is stable. In this chapter I will show which setups
I built and used for the experiments, and I will explain the main structure of
these setups.

51 Setup

[ use a polarization microscope from Leica with a camera attached on top of
the microscope. To visualize the experiments with the colloidal particles, it is
connected to the commercial software StreamPix that can record the experi-
ment. To generate the external magnetic fields five coils are placed on top of
the slide table. Two of these generate the x—, two of them the y- and one of
them the z- component of Hext(t). The coils are connected to three bi-polar
amplifiers , which are fed by a programmable wave generator each.

By designing a desired loop in a Matlab program and transferring its x-, y— and
z- components to the three wave generators, loops with arbitrary waveforms
can be generated. To have homogeneous magnetic fields, the magnetic pat-
terns were placed directly on top of the z-coil, exactly in centre of the axes of
the coils.

For the experiment I used a drop of colloidal suspension on top of lithographic
magnetic patterns. [ use a magnetic Co/Au multilayer, which has been patterned
by keV He—+- ion bombardment through a lithographical mask in a home-built
bombardment stage. To have a universal pattern field, I coated our pattern by
the spin coating method with a photo resist layer of the thickness 1m. I was
using spin coating at a speed of 3000 rpm for 150 s. After the spin coating, the
resist was baked for 1 min at 115°C on a heat-plate. For more persistence of
the photo resistant layer, I put it in the oven for about 2 hours under 170°C, it
can be called a soft baking process.
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Chapter 5: Materials and methods

511 Setup 1: fixed setup

In Fig 511 show the heart of the setup 1. As you can see the coils are fixed
to a plate and the microscope is also fixed to the table. I used this setup for
the experiments in my first and second publications, for experiments where
neither the pattern nor the coils need to be rotated and where there was no
inclination of the pattern with respect to gravity. In this setup, the polarization
microscope DM2500P from Leica, streampix 5.0 with a resolution of 1392x1040
at 20 frames per second, amplifiers (Kepco BOP 20 - 50GL), wave generator
(Aim-TTi TGA 1244) are used.
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Figure 5.1: Picture of the fixed setup.
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5.1.2 Setup 2: rotating stage setup

Setup 2 is shown in Fig. 5.2b. In publication 1, for my experiments for writing
letters, I needed to be able to rotate the pattern relative to the coils by specific
angles. Therefore, I designed a sample holder shown in Fig. 5.2a consisting of
two separate plates that both can be rotated. On one plate I mount the coils
the second plate supports the pattern. In this way I can rotate the coils and
the pattern independently. As presented in Fig. 5.2a, it is possible to arrest
each of these plates. In publication 3, for my project with the twisted patterns,
I needed to apply some driving force to particles. The best way to do that in
my experiments was by using gravity force. Therefore, I designed the setup
(shown in Fig. 5.2¢) such that the entire setup can be inclined by rotating a crank
handle. In this way, the pattern will be also inclined and the particles can feel a
driving force. In this setup, the polarization microscope DM2500MH from Leica,
streampix 9.0 with a resolution of 2048x1538 at 30 frames per second, amplifiers
(Kepco BOP 20 - 50GL), wave generator (Aim-TTi TGA 1244) are used.
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Figure 5.2: Picture of the Rotating stage setup. a) The sample holder with the two
rotating stages one holding the coils and one holding the magnetic
pattern. The red arrows show the places where each of the plates
can be arrested. b) The non-inclined microscope with the sample
holder c) The inclined micrsocope with the sample holder.
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Summary and outlook

In this cumulative thesis I studied the topological and drift transport of col-
loidal particles on top of non-periodic patterns. The colloids are placed above
a non-periodic magnetic pattern of alternating domains with up and down
magnetization. I can apply a homogeneous external magnetic field following a
time sequence (a loop) of arbitrary field orientations. The sphere of all possible
external field directions is called control space. The control space has special
points named bifurcation points, where one stationary point on the pattern
bifurcates into three or more stationary points on the pattern. The positions of
these points depend on the symmetry of the pattern and the geometric prop-
erties of the particles. The control space is punctured in these points and by
applying magnetic loops that wind around these points I will have topologically
non-trivial protected transport.

In my first publication 1 I used a non-periodic topological locally three fold
symmetric defect pattern having a symmetry phase that varies with the location
on the pattern. Therefore, the position of bifurcation points in control space
for each different symmetry phase of the pattern is different. In this case by
designing a loop that winds around different bifurcation points simultaneously,
I am able to control the motion of identical single colloidal particles at different
locations on the pattern independently. By applying an external magnetic field
single paramagnetic colloidal particles can be self assembled due to dipolar
interactions and make bipeds with different length. The direction of the biped is
locked to the direction of the external magnetic field. Here I introduce another
space, transcription space, for bipeds. It is the vector space of the biped end to
end vectors which can be decomposed into concentric spheres of the radius
of the biped length. For each biped length the control loop in control space
is transcribed into a loop onto the appropriate sphere in transcription space.
The transcribed bifurcation points then collapse onto bifurcation lines that
cuts the spheres of different biped radius in different locations. The winding
numbers in transcription space around the bifurcation lines depend on the
biped length. Therefore bipeds with different length fall into different homotopy
classes and by designing a proper loop I can transport bipeds with different
length independently.

In my second publication 2, I used a metamorphic pattern to control the motion
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of colloidal particles locally. I applied a single magnetic loop to the system and
each single colloidal particle or bipeds interpret the loop differently if either
their positions on the pattern or their biped length differs. I designed the loop
in control space to let single colloidal particles move toward an active line from
two sides of the active line to assemble to bipeds in the active zone and when
they reach the preprogrammed length of my control loop, they walk away from
the active zone. The synthesis is a self healing process and by applying an
external loop any mistakes occurring during the synthesis is fixed by the bipeds
without the need of external interference.

Finally, I studied the drift transport of the colloidal particles on top of twisted
periodic square and hexagonal patterns. In my third publication 3 I investigated
how the singlets and dumbbells are transported on top of a dithered moiré
pattern. Singlets and dumbbells experience a drift force and are subject to a
precessing external magnetic field. I vary the precession angle of the external
field and the strength of the magnetic field. Due to the dithering of the moiré
patterns the colloidal potential is rough inside flat channels and I found dif-
ferent dynamic phase behaviour of the particles depending on the strength of
the field and the precession angle of the external magnetic field. I discovered
two different modes in the flat channels: the slithering sliding and the rotating
sliding. I call slithering sliding transport when dumbbells slither along the flat
channels with its head always pointing in direction of the channel direction.
The slithering sliding phase happens at small external field because the chan-
nel torque exceeds the torque from the magnetic field and dumbbells carry
double the weight of a single colloidal particle and they can pass over the dither
roughness of the flat channels. In the rotating sliding, dumbbells synchronously
rotate with the external field and they slide simultaneously through the flat
channels. The rotation can introduce energetic fluctuations and therefore the
dumbbells will be able to overcome the dither roughness fluctuations. Hence
they perform a rotating sliding motion through the flat channels.

I believe there are still some useful phenomena in this field to be discovered.
One would use the method that I showed in my second paper to sort different
length of bipeds in a desired locations. In addition, here I used only paramag-
netic particles to have bipeds. By using a mixture of para- and diamagnetic
particles, we would have more complicated shapes and the variety of the topo-
logical transport can be increased.
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