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1 Introduction

It is nothing new that outcomes in experiments as well as in the real world
do not necessarily fit to predictions of classical game theory, which is based
on material payoffs only. For example, in the prisoner’s dilemma in Ta-
ble 1,2 where both prisoners each have the options of cooperating or defect-
ing, the only Nash equilibrium is that both defect, both in pure and in mixed
strategies.3 Further, this is an equilibrium in strictly dominated strategies.
However, in experiments4 and real world observations it turns out that co-
operation in this game is possible.5 There are several ways how such a
cooperation can be explained, however, this is often based on finitely or in-
finitely repeated prisoner’s dilemmas. Rabin [19] presents a theory how this
outcome resp. these outcomes can be explained via a concept of reciprocity
and fairness.

Table 1: Prisoner’s Dilemma: Material Payoffs (higher values are fa-
vorable for the agents; i.e., the numbers could be interpreted as, e.g.,
“5 years minus jail term.” The values are taken from [21]).

u1(·)|u2(·) a
(1)
2 : cooperate a

(2)
2 : defect

a
(1)
1 : cooperate 3|3 0|5
a
(2)
1 : defect 5|0 1|1

Being cited more than 7,800 times according to Google Scholar (www.sc
holar.google.de; 2024-10-15) indicates the huge impact of Rabin’s work
“Incorporating Fairness into game Theory and Economics” and its many ver-
sions (among them the American Economic Review paper [19] and a book
chapter) on the science and economics community. Rabin fairness [19] was
and still is important. A lot of research has been done on showing whether
and to what extent Rabin fairness can explain outcomes in experiments and

2One could “defect” also call “confess” and “cooperate” “stay silent.”
3See [17] for Nash equilibrium and Section 2.2 for our notations.
4Confer [3], esp. Footnote 2, which refers to [4, 5] of the work at hand.
5Confer esp. the example “Commentary” in [5] on pp. 195f and the corresponding

discussion of this example conducted in [19], which we discuss in Section 2.1 of the work
at hand.
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in the real world. Many ideas have been published to enhance resp. extent
the concept of Rabin fairness, see, e.g., [6, 18]. There, [6] allows for sequential
games. Fairness approaches—including beliefs or (relative) outcome distribu-
tions or both6—are highly discussed, see [1, 2, 8, 9, 10]. In contrast to [19],
Charness and Rabin [2] explain that also without positive feelings people
may be willing to sacrifice themselves in order to help others (see Footnote 1
in [2]). In [1], it is criticized that Rabin’s fairness model ‘applies to two-
person, normal-form games of complete information’ [1] p. 167, and that it
is not clear how to generalize that. That distributions of outcomes (among
the agents) are (also) important and not captured by [19] is discussed in [8]
and that intentions are explicitly modeled (which needs psychological game
theory instead of standard game theory) is criticized in [10], which leads to a
similar critique like in [1]. Further notable is the work that introduces “[. . . ]
Personal Equilibria,” see [11, 14].

In contrast, the work at hand targets neither economical improvements
of Rabin fairness nor critiques that it may not fit to experiments, but the
very basic concept itself. That means, we are going “back to the roots” in
order to fully understand this fairness concept based on beliefs. We are esp.
interested in the mathematics of these concepts. We ask questions where
things are unclear and provide tools to calculate and use this concept. Some
of the comments we mention are far-reaching to the concept of fairness itself,
some are just small remarks or questions. And sometimes we comment when
implications of Rabin Fairness seem in our humble opinion to be obviously
questionable compared to real-world experiences.

In the following, we present, summarize, and explain important parts of
the theory of Rabin [19]. Further, we point out some thoughts that are worth
future discussion. We illustrate open questions as well as show and proof new
results, e.g., propositions showing equivalences between pure- and mixed-
strategy definitions. Additionally, we present how Rabin’s so-called fairness
equilibria can be calculated via set theory. We use these findings to write
a Python/SymPy code [16, 23] for calculating fairness equilibria. Although
these calculations work in pure strategies only, we will see in Section 3 that
this is not any problem since—as we will show as one of the main points
of this work—for fairness equilibria in pure strategies it does not matter
whether we are optimizing over pure or mixed strategies.

6See, e.g., Footnote 1 of [6] and the paragraph it refers to.
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2 Rabin’s Fairness Equilibria

Rabin explains why cooperation is possible using a concept of beliefs and
fairness. Section 2 summarizes and outlines the work of Rabin [19].

2.1 Motivation and Assumptions

The theory of Rabin is constructed in such a way that the following three
so-called stylized facts are fulfilled [19]: i) Agents accept smaller material
payoffs in order to help agents who behave kind. ii) Agents accept smaller
material payoffs in order to hurt agents who do not behave kind. iii) When
material costs for helping or hurting are (relatively) small, agents are more
willing to do so. Rabin builds his concept of fairness equilibria in [19], see
Sections 2.3 and 2.4, upon the work on psychological Nash equilibria by
Geanakoplos, Pearce, and Stacchetti [12].

Rabin [19] cites an example from Dawes and Thaler [5] where farmers sell
vegetables on a table near the road without any seller who controls whether
the buyers really pay. The money box in that example is constructed and
mounted in such a way that the money cannot be stolen easily. The essential
part of the story when Rabin discusses this example is—up to our humble
opinion—that the buyers behave kind (i.e., they pay), the farmers behave
kind (they deliver the vegetables), both believe that the respective other
is kind, and both believe that the respective other believes that he or she
behaves kind. This example is supposed to motivate Rabin’s concept of
fairness equilibria, however, it is neither formalized nor calculated in [5] or
[19]. After having presented the techniques to automatically calculate (some
rational) fairness equilibria in arbitrary games, we show in Section 8.5 that
the modeling resp. formalization of Rabin’s introductory example such that
it fits to the fairness equilibrium concept is not a straightforward one.

Rabin explains that it is important to note that the money box is fixed
on the table since the material payoff of stealing the money would outweigh
the fairness cost for hurting someone who is kind. The relatively small payoff
of stealing vegetables does not outweigh fairness. However, we mention that
there is no unique interpretation. For that, we note that Rabin cites from [5]
that the farmers know that if the box would not be fixed, it would be stolen
by someone. Following the chain of reasoning of Rabin [19], everyone would
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steal the money if the material payoff is high enough.7 One interpretation
is that buyers would not steal the money box as long as there is not enough
money in the box, but buy some vegetables. However, when a buyer comes
and there is enough money in the box, he or she would steal it. This implicitly
assumes that everyone “has a price,” i.e., that everyone would steal the money
if there is enough money in the box (where “enough” depends on his or her
own valuation χ > 0).8 We also formalize, model, and analyze this stealing
vs. not stealing game in detail in Section 8.5.

However, there may be another interpretation, namely that there is a
fixed share of unfair people in the world who steal some vegetables (but not
all vegetables, since they have no usage for them and selling them inhibits the
risk of getting caught) and who would also steal the money if possible. If only
a small part of the people would steal (only a small part of the) vegetables,
this would not ruin the farmers. However, if only one unfair buyer would
steal all the money, the farmers may be ruined. This idea is important for
future work: there may be fixed shares of people that are fair resp. unfair. By
the way: clearly, we neglected in this example and discussion that stealing is
a crime and people should be afraid of getting caught.

Comment 1. In the farmers example Rabin [19] cites from [5], it is men-
tioned that stealing vegetables has such a small material payoff that it does
not outweigh the negative fairness payoff originating from stealing. But if it
would be possible to steal the money, the material payoff would outweigh the
negative fairness payoff. Hence, someone would steal the money. However,
following the theory of Rabin [19], not only someone—cf. [5]—should steal
the money, but all buyers would eventually do so.

2.2 Some Basic Wording

To enhance comprehensibility of some of the following discussions, we reca-
pitulate some basic wording and notations. Rabin denotes with a resp. ai
both the pure strategies, i.e. action, and the mixed strategies of an agent (i),

7For clear, in a two-agent game with one farmer and one buyer, one might ask whether
the scaling parameter that determines when the material payoff of stealing is high enough
to outweigh the fairness payoff should depend on the specific buyer, i.e. on his or her
personality. However, see Comment 13, this does neither change the structure of the game
nor the structure of the equilibria.

8For agents who would never steal, one would need χ = 0 6> 0. However, than two
different parameters would be necessary, see Comment 13.
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with b, bi the belief of the opponent of what agent i chooses, and with c, ci
resp. the belief of the agent of what the opponent believes of what the agent
chooses. For the sake of readability, esp. in the proofs, we differ sometimes
from Rabin’s notations [19] (e.g., he uses j instead of −i and π instead of u).

Comment 2. Note that Rabin explains in Footnote 8 of [19] that he focuses
on pure strategies in his work. The examples “battle of the sexes,” “prisoner’s
dilemma,” or “chicken” fit to that focus on pure strategies since there, only
pure strategies, i.e. actions are considered. However, we note that in Rabin’s
[19] definition of the so-called fairness equilibria, it is optimized over mixed
strategies. In his calculations for “battle of the sexes” ([19], p. 1288) he
maximizes over pure strategies only. In Proposition 2, we will prove that
this does not matter. Please note that the examples “monopoly pricing” and
“labor economics” ([19] Section IV.) do not fit exactly to Rabin’s definitions,
which he himself notes in his work, cf. Comment 3.

Comment 3. Rabin [19] says on p. 1286 that his model is applicable to
all two-person, finite-strategy games. And he defines the (mixed) strategy
sets as derived from finite pure-strategy sets. Rabin notes that the examples
in Section IV. of [19], namely monopoly pricing and labor economics, use
infinite strategy sets or an infinite set (see esp. Footnote 18 of [19] and the
sentence it refers to). A thorough analysis of whether and—if so—when a
bounded infinite strategy set (e.g., an interval) can be interpreted as a mixed
strategy (e.g., with the two poles of the interval as pure strategies) would be
interesting, though.

The pure vs. mixed strategy topic will be discussed in Section 3 in great
detail. Next, we explain our notation:

With ai we denote the action, i.e. the pure strategy, agent i chooses from
a finite set of actions Ai = {a(1)i , . . . , a

(ni)
i }. With −i we name the respective

other agent. An agent’s material payoff depends on both the own and the
other’s actions ui(ai, a−i), u−i(a−i, ai). The variable si denotes the (possibly
mixed) strategy of agent i, that is, as usual, si can be represented via a

vector pi ∈ [0, 1]ni s.t.
∑ni

j=1 p
(j)
i = 1 of probabilities denoting the chances

that agent i uses a
(j)
i . The agents’ expected payoff is then ui(si, s−i) =∑ni

ji=1

∑n−i

j−i=1 p
(ji)
i p

(j−i)
−i ui(a

(ji)
i , a

(j−i)
−i ). The set of strategies of agent i is Si.

We denote with bi agent −i’s belief about what agent i chooses, and with ci
agent i’s (second-order) belief about the belief of agent −i about what agent
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i chooses. Please note that for beliefs b and second-order beliefs c also our
notation does not distinguish between pure and mixed strategies—which is
for our purpose not necessary since the optimizations (see further below) are
conducted over the actions resp. strategies and not over any beliefs.

We call an outcome, i.e. a pair of strategies, (globally) Pareto optimal if
no other outcome is Pareto superior to the optimal one, i.e., if there is no
outcome where one agent gets more while the other does not get less.9 We
call an outcome Pareto optimal in a specific set if there is no outcome in
this set which is Pareto superior to the optimal one. An outcome is a Nash
equilibrium if no agent can get a higher payoff by changing his or her strategy
when the other sticks to the strategy from the respective Nash equilibrium
[17].

Mutual-max outcomes and mutual-min outcomes are defined by Rabin
([19], Def. 4 and 5) as follows:10 A mutual-max outcome is an outcome
(si, s−i) s.t. si ∈ argmaxs∈Si

u−i(s−i, s), i = 1, 2. A mutual-min outcome is
an outcome (si, s−i) s.t. si ∈ argmins∈Si

u−i(s−i, s), i = 1, 2.

Comment 4. In [19], the arguments of the payoff functions are switched in
its Definitions 4 and 5. However, this does not fit to the convention in [19]
that the first argument corresponds to that agent whose payoff is evaluated.

2.3 Kindness and Beliefs

The concept of fairness equilibria Rabin uses in [19] is based upon [12]. Rabin
shows that this setting cannot be projected to classical game theory ([19], last
paragraph on p. 1285 ending on p. 1286). He explains this via the example
“battle of the sexes,” where two outcomes (with the same scaling parameter
χ < 1) in the same column are fairness equilibria with strict inequalities in
their respective definition.11

Comment 5. We mention that this example is fully valid, since it is impos-
sible that two outcomes in the same column are both strictly preferable for
the row player (in the classical Nash sense). Rabin [19] shows that it is in
general impossible to map payoff values to new payoff values (i.e., to alter

9See: Pareto, Vilfredo: Manuale d’economia Politica. Societa Editrice Libraria, Milano,
1906. (in Italian) Respectively: Pareto, Vilfredo: Manuel d’économie politique. Giard et
Brière, Paris, 1909. (in French). See [7].

10As always, we write down the cited definitions, theorems, etc. in our notation.
11See Tables 26 and 27 and note the strict inequality “χ < 1.”
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the payoff values; in a game of the same type and size) s.t. these new values
would allow to reformulate fairness equilibria as (classical) Nash equilibria.

We add that it is in general also not easily possible to extent the game
in such a way that all actions and beliefs from the original game are taken
as actions of the new game with the same payoffs—in such a way that the
fairness equilibria of the original game would equal the Nash equilibria of the
new game. This is not easily possible since in the new game one could change
beliefs, but in the definition of fairness equilibria (as we will see further be-
low) only the actions are in the set over which it is maximized; see Table 2
and Section 2.4. However, in [13] it is shown that it is possible to change the
size and the utility structure of the game using two (lexicographically ordered)
utility functions u and v s.t. psychological equilibria can be rewritten as clas-
sical Nash equilibria.12 There may be another way to extent games such that
fairness equilibria can be reformulated as Nash equilibria, which allows for a
more convenient interpretation.13

Table 2: Expansion of a 2 × 2 game with first- and second-order beliefs.
Pure strategies only. With ? the matching-beliefs-and-actions outcomes are
marked. With the arrows the outcomes that have to be compared to the stars
they are pointing at are denoted. This illustrates that fairness equilibria are
not Nash equilibria in a simply transformed game—see Section 2.4.
U1(·)|U2(·) s2 = a

(1)
2 a

(1)
2 a

(1)
2 a

(1)
2 a

(2)
2 a

(2)
2 a

(2)
2 a

(2)
2

b1 = a
(1)
1 a

(1)
1 a

(2)
1 a

(2)
1 a

(1)
1 a

(1)
1 a

(2)
1 a

(2)
1

s1 = b2 = c1 = \c2 = a
(1)
2 a

(2)
2 a

(1)
2 a

(2)
2 a

(1)
2 a

(2)
2 a

(1)
2 a

(2)
2

a
(1)
1 a

(1)
2 a

(1)
1 ? ←

a
(1)
1 a

(1)
2 a

(2)
1 ↓

a
(1)
1 a

(2)
2 a

(1)
1 → ?

a
(1)
1 a

(2)
2 a

(2)
1 ↓

a
(2)
1 a

(1)
2 a

(1)
1 ↑

a
(2)
1 a

(1)
2 a

(2)
1 ? ←

a
(2)
1 a

(2)
2 a

(1)
1 ↑

a
(2)
1 a

(2)
2 a

(2)
1 → ?

Next, in [19], via so-called kindness functions fi and f̃−i, the material

12An interesting topic for future research is to evaluate the connections between [13]
and open questions of the work at hand.

13This is part of the ongoing work.
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payoffs ui are transformed to so-called expected utilities Ui. There, fi is
agent i’s belief of the kindness of him- or herself towards −i, which depends
on what i believes what −i does. Further, f̃−i is agent i’s (second-order)
belief about how kind agent −i is towards him or her, which depends on
what i believes what −i does and on what i believes that −i believes what
i does.

Comment 6. We note that the term expected utilities could be misleading,
since this is not a (stochastic) expected value of some utility that depends
solely on the material payoff.

The kindness functions are:

fi(si, b−i) =

{
u−i(b−i,si)−ue−i(b−i)

uh−i(b−i)−umin
−i (b−i)

if uh−i(b−i)− umin−i (b−i) 6= 0,

0 otherwise,

and

f̃−i(b−i, ci) =

{
ui(ci,b−i)−uei (ci)
uhi (ci)−umin

i (ci)
if uhi (ci)− umini (ci) 6= 0,

0 otherwise.

Note that s, b, c can be mixed strategies/beliefs.

Comment 7. In [19], in the formula for f̃−i(b−i, ci) it is uei (c−i) instead of
uei (ci), which has—in our opinion—to be a typo, since Rabin writes that f
and f̃ are formally equivalent and, furthermore, f̃−i(b−i, ci) does not depend
on c−i.

The kindness functions incorporate the following parts:

• u−i(b−i, si) is the material payoff of agent −i when playing b−i when
agent i plays si

• ue−i(b−i) =
uh−i(b−i)−ul−i(b−i)

2
is the so-called equitable payoff (for an in-

terpretation, see [19] p. 1286)

• uh−i(b−i) is the highest payoff agent −i can receive in u(b−i)

• u(b−i) = {(ui(si, b−i), u−i(b−i, si)) | si ∈ Si} is the set of possible out-
comes when agent −i plays b−i

• umin−i (b−i) is the lowest payoff agent −i can receive in u(b−i)

9
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• ul−i(b−i) is the lowest payoff agent −i can receive within the Pareto
optimal subset of u(b−i)

Comment 8. We do understand Rabin [19] in such a way that the subset
mentioned in the definition of ul−i(b−i) does not have to be globally Pareto
optimal, but in u(b−i) no outcome shall be Pareto superior to ul−i(b−i).

Please note: the set of globally Pareto optimal outcomes that lie in u(b−i)
can be empty.

The definitions for the other agent (uei (ci) etc.) are analogous. Function
fi is a measure for the (believed) kindness of agent i towards agent −i and
f̃−i describes what agent i believes how kind he or she is treated by agent −i.
When agent i calculates f̃−i, i.e., his or her belief how kind −i is to him or
her, he or she does not use si since agent i is sophisticated enough to know
that agent −i does not have to know si, i.e., what agent i is actually doing,
but agent i keeps in mind that he or she has to believe what agent −i believes
what agent i does. It holds uh−i(b−i) ≥ ue−i(b−i) ≥ ul−i(b−i) ≥ umin−i (b−i).

As explained in [19] p. 1287, if the Pareto frontier in u(b−i) is a singleton
(cf. Comment 8 of the work at hand), then uh−i = ul−i = ue−i—which becomes
clear when drawing a set u(b−i) with a Pareto frontier which is a singleton—
and, thus, fi(si, b−i) ≤ 0. In general, the highest possible value fi can have

is 0.5. If u−i(b−i, si) = uh−i(b−i), we get fi(si, b−i) = 0.5 · uh−i(b−i)−ul−i(b−i)

uh−i(b−i)−umin
−i (b−i)

∈
[0, 0.5] because ul−i(b−i) ≥ umin−i (b−i). This equals 0.5 if and only if ul−i(b−i) =
umin−i (b−i) ∧ uh−i(b−i) 6= ul−i(b−i).

Comment 9. In the calculations above, we see an interesting point for dis-
cussions, why Rabin distinguishes l and min and why the kindness of an
agent, when he or she gives h to his or her opponent, depends on whether l
and min are equal or not.

If uh−i(b−i) 6= ul−i(b−i) and u−i(b−i, si) = ul−i(b−i), it holds fi(si, b−i) =

−0.5 · uh−i(b−i)−ul−i(b−i)

uh−i(b−i)−umin
−i (b−i)

∈ [−0.5, 0). It equals −0.5 if and only if ul−i(b−i) =

umin−i (b−i).

Comment 10. It is interesting, too, that the kindness of an agent giving l
takes into account if l equals min, see Comment 9.

To reach the smallest possible value for fi, namely minus one, u−i(b−i, si) =

umin−i (b−i) < ul−i(b−i) = uh−i(b−i) has to hold: fi(si, b−i) = −ue−i(b−i)−umin
−i (b−i)

uh−i(b−i)−umin
−i (b−i)

.

10
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Comment 11. Again, it is worth a discussion, why the kindness of an agent
when giving min depends on whether h equals l or not—see Comment 9.

We note that Rabin [19] does not only use the kindness functions ex-
plained above but—since these functions may be discontinuous, see Sec-
tions 5.4 and 5.5—explicates much more general kindness functions (see
Footnote 11 and Apendix A of [19]). However, since Rabin focuses on these
“standard” kindness functions, we also stick to them.14

If one gives less than u`−i to his or her opponent, the kindness value is
negative, but not necessarily smaller or equal −1

2
. Kindness values below −1

2

are “unreasonably” unkind, but values between −1
2

and 0 do not have to be
“reasonable.”

2.4 Expected Utility and Fairness Equilibria

Rabin defines the expected utility in [19] as

Ui(si, b−i, ci) = ui(si, b−i) + f̃−i(b−i, ci)(1 + fi(si, b−i)).

For details and interpretations see [19], especially Footnote 10, and cf. [12]
(“psychological Nash equilibrium”). Note that ui(si, b−i) is—in contrast to
ui(si, s−i)—not what agent i receives, but what agent i believes what he or
she receives. (We will see that in the definition of fairness equilibrium, beliefs
have to match.)

Using this framework, Rabin defines a fairness equilibrium as (s1, s2) ∈
S1 × S2 with

si ∈ argmaxs′i∈Si
Ui(s

′
i, b−i, ci)

and ci = bi = si for i = 1, 2 (i.e., optimization under matching beliefs and
strategies/actions). We highlight that in the function to be optimized, there
is ci, which equals the equilibrium strategy si, but which does not necessarily
equal the optimization argument s′i. Since f̃−i is agent i’s belief about how
kind agent −i is, when checking whether s′i is in argmax, agent i does not
change his or her belief about how kind agent −i will be to him or her. Just
the material payoff of agent i and the kindness of him or her to agent −i are
affected by the maximization.

14A detailed analysis of other or general kindness functions (Appendix A of [19]) and
the implications for all that work which is done in the work at hand is postponed to future
work. Confer Comment 19.

11
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Comment 12. A discussion of the implications if one would demand ci = s′i
(in the sense that if she or he changes her or his strategy/action, she or he
also changes her or his second order belief) would be interesting.

In the solution concept of [19], if an agent believes that the other is doing
something and believes that the other is doing this to help him or her, the
agent also wants to help the other. If the agent believes that the other is
doing the very same action (or strategy) but if the agent also believes that
the other is doing this to hurt him or her, then the agent also wants to hurt
the other, at least when the material costs for helping or hurting are not too
large. Please note: If there are several fairness equilibria, it is not clear why
agents should choose a nice one, i.e. (cooperation, cooperation) exemplarily
in the prisoner’s dilemma. If agents know each other, this question might be
linked to sympathy. But in a one-shot game with strangers, it is not clear
which fairness equilibrium will likely be played—just as it is the case when
dealing with Nash equilibria.

2.5 Results from Rabin [19]

Here, we shortly summarize some propositions and some other findings of
Rabin [19], whereby the propositions’ proofs can be found in Appendix B of
[19] (cf. also [12]).

• All Nash equilibria that are either mutual-max or mutual-min outcomes
are fair for all χ > 0 ([19], Proposition 1).

• In all fairness equilibria, either both kindness functions f1, f2 are posi-
tive or both are non-positive ([19], Proposition 2).

• Mutual-max outcomes with f1, f2 > 0 and mutual-min outcomes with
f1, f2 < 0 are fair for all χ small enough ([19], Proposition 3). Compare
Comment 14.

• All strict Nash equilibria are fair for all large enough χ ([19], Proposi-
tion 5 Part 1). Again, see Comment 14.

• All outcomes that are not Nash cannot be fair for large enough χ ([19],
Proposition 5 Part 2).

12
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• Proposition 6 of [19] states that ,In every game, there exists a weakly
negative fairness equilibrium.‘ What is meant by that is discussed in
Comment 20. Furthermore, there can be problems with continuity, see
Footnote 24, Appendix A, and the corresponding proof in Appendix B,
all in [19].

• The fairness concept is also applicable to (some) examples with infinite
pure strategy sets (Section IV of [19]). Confer Comment 3.

• The concept of ,trust‘ is challenging for fairness, see p. 1296f of [19].

3 Fairness Equilibria in Pure Strategies

As expressed in Comment 2, the usage of pure and mixed strategies in [19]
is worth further discussion. In the definitions of fairness equilibria, mutual
max outcomes, etc., Rabin [19] uses S, i.e. mixed strategies—and so do we.
However, in [19], in most of the examples, the calculations and discussions
are done for pure strategies only. In the following, we give an argument,
why this is meaningful in these examples. Proposition 1 provides a technical
result:

Proposition 1. When agent i plays si, which is playing a
(1)
i , . . . , a

(ni)
i each

with probability p
(1)
i , . . . , p

(ni)
i , it holds:

Ui(si, b−i, ci) =
∑
j

p
(j)
i Ui(a

(j)
i , b−i, ci)

when b−i, ci are fixed.15

Proof.

Ui(si, b−i, ci) = ui(si, b−i) + f̃−i(b−i, ci)(1 + fi(si, b−i))

= ui(si, b−i) + f̃−i(b−i, ci)(
1 +

u−i(b−i, si)− ue−i(b−i)
uh−i(b−i)− umin−i (b−i)

Iuh−i(b−i)−umin
−i (b−i)6=0

)
= ui(si, b−i) + f̃−i(b−i, ci)

15Please note that we use the indicator function in that way that this is evaluated first
s.t. divisions by zero cannot happen.
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+
u−i(b−i, si)

uh−i(b−i)− umin−i (b−i)
f̃−i(b−i, ci)Iuh−i(b−i)−umin

−i (b−i)6=0

−
ue−i(b−i)

uh−i(b−i)− umin−i (b−i)
f̃−i(b−i, ci)Iuh−i(b−i)−umin

−i (b−i)6=0

=
∑
j

p
(j)
i (ui(a

(j)
i , b−i) + f̃−i(b−i, ci))

+
∑
j

p
(j)
i ·

u−i(b−i, a
(j)
i )

uh−i(b−i)− umin−i (b−i)
f̃−i(b−i, ci)Iuh−i(b−i)−umin

−i (b−i) 6=0

−
∑
j

p
(j)
i ·

ue−i(b−i)

uh−i(b−i)− umin−i (b−i)
f̃−i(b−i, ci)Iuh−i(b−i)−umin

−i (b−i)6=0

= . . .

=
∑
j

p
(j)
i (ui(a

(j)
i , b−i) + f̃−i(b−i, ci)(1 + fi(a

(j)
i , b−i)))

=
∑
j

p
(j)
i Ui(a

(j)
i , b−i, ci)

Proposition 2. It holds with fixed b−i, ci:

Ai ∩ argmaxs′i∈Si
Ui(s

′
i, b−i, ci) = argmaxa′i∈Ai

Ui(a
′
i, b−i, ci)

Proof. “⊂”: Let ai ∈ Ai s.t. Ui(ai, b−i, ci) = maxs′i∈Si
Ui(s

′
i, b−i, ci). Since

Ai ⊂ Si (in the sense that one can represent every element of Ai by a vector
p = (0, . . . , 0, 1, 0, . . . , 0), it holds: Ui(ai, b−i, ci) ≥ maxa′i∈Ai

Ui(a
′
i, b−i, ci),

i.e., Ui(ai, b−i, ci) ≥ Ui(a
′
i, b−i, ci) ∀a′i ∈ Ai, which shows the first inclusion.

“⊃”: Now, let ai ∈ Ai s.t. Ui(ai, b−i, ci) = maxa′i∈Ai
Ui(a

′
i, b−i, ci). Assume

that it exists an si ∈ Si \Ai with Ui(ai, b−i, ci) ≤ Ui(si, b−i, ci). We compute
under usage of Propostion 1:

Ui(si, b−i, ci) =
∑
j

p
(j)
i Ui(a

(j)
i , b−i, ci)

≤
∑
j

p
(j)
i Ui(ai, b−i, ci)

14
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= Ui(ai, b−i, ci)

≤ Ui(si, b−i, ci),

which shows by the Sandwich lemma that it does not exist an si ∈ Si \ Ai
with Ui(ai, b−i, ci) < Ui(si, b−i, ci).

We emphasize that this proof builds essentially on the affine-linear struc-
ture of the expected utility arising from the use of the standard kindness
functions of [19].16 When using other kindness functions (see Appendix A of
[19]), we do not know whether Propositions 1, 2, and also 4 hold true.

But please note that this does not mean that argmaxs′i∈Si
Ui(s

′
i, b−i, ci) =

argmaxa′i∈Ai
Ui(a

′
i, b−i, ci) has to hold, but

argmaxs′i∈Si
Ui(s

′
i, b−i, ci) ⊃ argmaxa′i∈Ai

Ui(a
′
i, b−i, ci).

From this, it directly follows:

maxs′i∈Si
Ui(s

′
i, b−i, ci) = maxa′i∈Ai

Ui(a
′
i, b−i, ci)

This latter equality could also be derived from a generalization of the finding
that an arithmetic average becomes larger/smaller when adding/deleting a
data point above the average or deleting/adding a data point below this
average in an analogous way to Footnote 17 of [19] (where this is done for
the case of Nash equilibria).

Proposition 3. If 1 < m ∈ N, p1, . . . , pm > 0,
∑

k pk = 1, x1, . . . , xm ∈ R,
x̄ :=

∑m
k=1 pkxk, and xj < x̄ for some j ∈ {1, . . . ,m}, it holds:

1

1− pj

∑
k∈{1,...,m}\{j}

pkxk > x̄

and ∑
k∈{1,...,m}\{j}

1

1− pj
pk = 1

16Confer Footnote 14 and Comment 19 of the work at hand and Definition A3 of Ap-
pendix A of [19].
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Proof. We start with the probability transformation.

1

1− pj
=

1∑
`∈{1,...,m} p` − pj

=

∑
`∈{1,...,m} p`∑

`∈{1,...,m}\{j} p`

=

∑
`∈{1,...,m}\{j} p` + pj∑

`∈{1,...,m}\{j} p`

=
pj∑

`∈{1,...,m}\{j} p`
+ 1

That means, via 1
1−pj the probability pj is proportionally distributed to the

remaining probabilities. Now, the second line (i.e. the first equation) holds,
since: ∑

k∈{1,...,m}\{j}

(
pj∑

`∈{1,...,m}\{j} p`
+ 1

)
pk

=
pj∑

`∈{1,...,m}\{j} p`

∑
k∈{1,...,m}\{j}

pk +
∑

k∈{1,...,m}\{j}

pk

=
∑

k∈{1,...,m}

pk = 1

Next, we start with x̄ > xj. Here we note that, because of m > 1,
∑
p = 1,

pk > 0 it follows that 1 − pj ∈ (0, 1). Furthermore, we need pj > 0 for the
inequality.

x̄ =
∑

k∈{1,...,m}

pkxk

= pjxj +
∑

k∈{1,...,m}\{j}

pkxk

< pjx̄+
∑

k∈{1,...,m}\{j}

pkxk

x̄(1− pj) <
∑

k∈{1,...,m}\{j}

pkxk

16
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We note that the proposition and its proof do not hold if one replaced
the probabilities by general weights wk that do not sum up to one.17

From Proposition 2 it directly follows:

Proposition 4. For fairness equilibria in pure strategies, i.e. actions, it does
not matter whether to optimize over S or over A.

It is widely known that Nash equilibria cannot only be computed via
the definition—i.e., that no agent can improve his or her payoff if the oth-
ers do not change their strategy—via checking for all outcomes if some can
improve his or her payoff, but also by calculating best responses and search-
ing for outcomes where these best-response functions intersect, which cor-
responds to a definition with argmax functions. Keeping this and the def-
inition of mutual max and mutual min in mind, Proposition 4 also applies
in an analogous way to Nash equilibria, mutual max outcomes, and mutual
min outcomes, since (with fixed strategies of the resp. opponent) it holds

ui(si, s−i) =
∑

j p
j
iui(a

(j)
i , s−i) and u−i(s−i, si) =

∑
j p

j
iu−i(s−i, a

(j)
i ). Analo-

gous versions of Proposition 2 can be proven similarly,18 where for the mutual
min the inequality signs are the other way around.

From the discussion after the proof of Propostion 2—which refers to Foot-
note 17 of [19], where this is explained for Nash—it follows that strict fairness
equilibria, i.e. fairness equilibria with strict inequalities in the argmax of the
definition, can only appear in pure strategies. That strict equilibria cannot
be in proper mixed strategies does not only hold for Nash and Rabin fairness,
but—as a consequence of the above calculations—also for mutual min and
mutual max.

4 Fairness Equilibria in the Prisoner’s Dilem-

ma

The prisoner’s dilemma in [19] is slightly different to ours in Table 1 (from
[21]) in so far Rabin uses a scaled version of Table 3. The structure—of

17For example: w = (9, 5, 9), x = (4, 1, 4). Then: x1 = 4 < x̄ = 36 + 5 + 36 = 77 >(
w1

w2+w3
+ 1
)

(w2x2 + w3x3) =
(

9
14 + 1

)
(5 + 36) ≈ 67.4 (This example was found using

MS Excel)
18. . . which may be written down in the near future.
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Table 3: Prisoner’s Dilemma: material payoffs (with values from [19] with
scaling parameter equal to one)

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 4|4 0|6
a
(2)
1 6|0 1|1

course—is the same. This scaling factor serves for weighting between material
payoffs and emotions.

For the scaled prisoner’s dilemma in [19] it is shown that the Nash equi-
librium (defect, defect) is always, i.e. for all χ > 0, a fairness equilibrium.
However there is also the fairness equilibrium (cooperate, cooperate) for a
small enough scaling factor. Next, we calculate the fairness equilibria for our
prisoner’s dilemma in Table 1 in a scaled version, where we scale all material
payoffs with the same scaling factor χ > 0, see Table 4.

Table 4: Scaled Prisoner’s Dilemma: material payoffs (higher values are
favorable for the agents. The values are taken from [21] scaled by χ > 0, cf.
[19])

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 3χ|3χ 0|5χ
a
(2)
1 5χ|0 χ|χ

We calculate the fairness equilibria in our scaled prisoner’s dilemma, cf.
[19, 21], by use of Proposition 4, that is, we optimize over A. We start with

the question whether (a
(2)
1 , a

(2)
2 ) is a fairness equilibrium. For that, we have

to check under the conditions c1 = b1 = a1 and c2 = b2 = a2 whether

U1(a
(2)
1 , a

(2)
2 , a

(2)
1 )

?

≥ U1(a
(1)
1 , a

(2)
2 , a

(2)
1 )

(since our game is symmetric and our investigated strategy pair is on the
diagonal, we can omit the condition for agent 2). We calculate:

u1(a
(2)
1 , a

(2)
2 ) = χ,

18
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as well as
u2(a

(2)
2 , a

(2)
1 ) = χ,

uh2(a
(2)
2 ) = 5χ,

ul2(a
(2)
2 ) = umin2 (a

(2)
2 ) = χ,

ue2(a
(2)
2 ) = 3χ,

f1(a
(2)
1 , a

(2)
2 ) =

1− 3

5− 1
= −0.5,

and
uh1(a

(2)
1 ) = 5χ,

ul1(a
(2)
1 ) = umin1 (a

(2)
1 ) = χ,

ue1(a
(2)
1 ) = 3χ,

f̃2(a
(2)
2 , a

(2)
1 ) =

1− 3

5− 1
= −0.5,

and, thus,

U1(a
(2)
1 , a

(2)
2 , a

(2)
1 ) = χ− 0.5(1− 0.5) = χ− 0.25.

Next, we compute
u1(a

(1)
1 , a

(2)
2 ) = 0,

as well as
u2(a

(2)
2 , a

(1)
1 ) = 5χ,

f1(a
(1)
1 , a

(2)
2 ) =

5− 3

5− 1
= 0.5,

and, thus,

U1(a
(1)
1 , a

(2)
2 , a

(2)
1 ) = (0− 0.5(1 + 0.5)) = −0.75 < U1(a

(2)
1 , a

(2)
2 , a

(2)
1 ).

Due to the symmetry, (defect,defect) is a fairness equilibrium for all χ > 0.
Next, we analyze (defect,cooperate), that is, we check whether and if so, for

which χ > 0, (a
(2)
1 , a

(1)
2 ) is a fairness equilibrium. Caused by the symmetry,

(cooperate,defect) does not have to be analyzed separately. We check under
the conditions c1 = b1 = a1 and c2 = b2 = a2 whether

U1(a
(2)
1 , a

(1)
2 , a

(2)
1 )

?

≥ U1(a
(1)
1 , a

(1)
2 , a

(2)
1 )

19
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∧
U2(a

(1)
2 , a

(2)
1 , a

(1)
2 )

?

≥ U2(a
(2)
2 , a

(2)
1 , a

(1)
2 ).

It is
u1(a

(2)
1 , a

(1)
2 ) = 5χ,

as well as
u2(a

(1)
2 , a

(2)
1 ) = 0,

uh2(a
(1)
2 ) = 3χ,

ul2(a
(1)
2 ) = umin2 (a

(1)
2 ) = 0,

ue2(a
(1)
2 ) = 1.5χ,

f1(a
(2)
1 , a

(1)
2 ) =

0− 1.5

3− 0
= −0.5,

and
f̃2(a

(1)
2 , a

(2)
1 ) = 0.5,

and, thus,

U1(a
(2)
1 , a

(1)
2 , a

(2)
1 ) = 5χ+ 0.5(1− 0.5) = 5χ+ 0.25.

(Please consult Footnote 10 in [19] for a comment why this value is higher
than 5χ.)

u1(a
(1)
1 , a

(1)
2 ) = 3χ,

as well as
u2(a

(1)
2 , a

(1)
1 ) = 3χ,

f1(a
(1)
1 , a

(1)
2 ) =

3− 1.5

3− 0
= 0.5,

and, thus,

U1(a
(1)
1 , a

(1)
2 , a

(2)
1 ) = 3χ+ 0.5(1 + 0.5) = 3χ+ 0.75.

Since,
3χ+ 0.75 ≤ 5χ+ 0.25⇔ χ ≥ 0.25

For all χ ≥ 0.25, the argmax condition for agent 1 is fulfilled. In this
case, agent 1 is defecting, i.e., he or she is mean to agent 2. When agent 1
was not defecting, the fairness payoff would be higher (0.75 > 0.25), how-
ever, if the material payoff is large enough, it is profitable for agent 1 to
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defect nonetheless. For agent 2 it turns out that the argmax condition is not
fulfilled:

uh1(a
(1)
1 ) = 3χ,

ul1(a
(1)
1 ) = umin1 (a

(1)
1 ) = 0,

ue1(a
(1)
1 ) = 1.5χ,

f̃2(a
(2)
2 , a

(1)
1 ) =

0− 1.5

3− 0
= −0.5,

and, thus,
U1(a

(1)
1 , a

(2)
2 , a

(1)
1 ) = (0− 0.5(1 + 0.5)) = −0.75

U2(a
(2)
2 , a

(2)
1 , a

(1)
2 ) = χ− 0.5(1− 0.5) = χ− 0.25 > U1(a

(1)
1 , a

(2)
2 , a

(1)
1 ).

Thus, the last possibility for a fairness equilibrium is (cooperate,cooperate),
hence, we check—again under the conditions c1 = b1 = a1 and c2 = b2 = a2—
whether

U1(a
(1)
1 , a

(1)
2 , a

(1)
1 )

?

≥ U1(a
(2)
1 , a

(1)
2 , a

(1)
1 )

(again: since our game is symmetric and our investigated strategy pair is on
the diagonal, we omit the condition for agent 2). It holds:

U1(a
(1)
1 , a

(1)
2 , a

(1)
1 ) = 3χ+ 0.5(1 + 0.5) = 3χ+ 0.75

and
U1(a

(2)
1 , a

(1)
2 , a

(1)
1 ) = 5χ+ 0.5(1− 0.5) = 5χ+ 0.25

which leads to the statement that for χ ≤ 0.25, staying mutually silent is a
fairness equilibrium (just as in [19]), but keep Comment 14 in mind. Thus, if
being kind is relatively important compared to material payoffs, cooperation
is a fairness equilibrium.19

Comment 13. Rabin [19] scales every material payoff in a game with the
same parameter χ > 0. Introducing two parameters for the two agents would
complicate the analysis of the game, but maybe allow for better interpreta-
tions. Nonetheless, in [19] it is somehow implicitly assumed that both value
the scaled material payoff in the same way.

19For explanations concerning the calculations the interested reader may also consult
[15, 20].
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It turns out that (defect,defect) is always a fairness equilibrium and (co-
operate,cooperate) is one if and only if χ ≤ 0.25, i.e., if the material costs
for being kind are relatively small. There are no other fairness equilibria in
pure strategies.

Comment 14. We mention that Rabin [19] writes that (cooperate, cooper-
ate) is a fairness equilibrium if the scaling parameter is less than 0.25. In our
calculations (see the example in Section 4 and the computations in Sections 7
and 8 via Python using SymPy) it is χ ≤ 0.25. Thus, when Rabin says that if
the scaling parameter is less than 0.25, the strategy pair is a fairness equilib-
rium, this is correct in all cases. However, maybe there is more to it: maybe
the argmax in his definition of fairness is meant to be unique resp. strict?
(. . . if this is meaningful and possible at all.) The same < vs. ≤ problem
occurs in the battle of the sexes with the value one for (opera, boxing) right
under Definition 3 [19], in Propositions 3 and 5 [19] and possibly at other
locations, too. Thus, a discussion of this < vs. ≤ topic would be very fruitful.

Contrary to this comment that the definition of argmax is meant to be
strict is that Rabin [19] accents in the last paragraph on p. 1285 ending on
p. 1286, where the “battle of the sexes” is used as an example, that there are
two fairness equilibria with each strict inequalities.

Comment 15. Note that in the explaining sentence right before the ‘X < 1’
in the battle of the sexes [19]—up to our opinion—the U has to be replaced
by the word opera.

Table 5: Prisoner’s Dilemma (with values from [19] or [21]): Nash Equilibria

Nash a
(1)
2 a

(2)
2

a
(1)
1 no no

a
(2)
1 no yes

5 Examples, Existence, and Continuity

In this section we start with two examples where no pure-strategy fairness
equilibrium exists, leading to the question of existence. Further, we discuss
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Table 6: Prisoner’s Dilemma (with values from [19] or [21]): Pure-Strategy
Fairness Equilibria (i.e. all values of χ > 0 s.t. the resp. outcome is a fairness
equilibrium)

Rabin a
(1)
2 a

(2)
2

a
(1)
1 (0, 0.25] ∅
a
(2)
1 ∅ (0,∞)

whether such a non-existence is related to the mixed-vs.-pure strategy topic
and/or to discontinuities of kindness functions.

5.1 Rock-Scissors-Paper

A classical game in game theory (and also played often in real life, e.g.,
by pupils) is Rock-Scissors-Paper, which can be formalized like in Table 7
as done by Sieg [21]. It is well known (or, if not, easy to see) that there
is no Nash equilibrium in pure strategies, see Table 8. It is not that easy
to conclude that there is also no fairness equilibrium in pure strategies, cf.
Table 9.

Proposition 5. There is no fairness equilibrium in pure strategies in Rock-
Scissors-Paper.

Proof. In this proof, we do not consider mixed strategies. Note that here
are two different outcomes: a tie, e.g., (rock, rock) or a loss-win situation,
e.g., (scissors, rock). Irrespective of both the acting agent and the analyzed
strategy, it holds: uh = χ, ul = umin = −χ, ue = 0. In the tie case all
f̃ = 0 and (scaled with χ > 0), e.g., U1(paper, rock, rock) = χ > 0 =
U1(rock, rock, rock), i.e., a tie is never fair.

We consider now (scissors, rock). With a1 = b1 = c1 = scissors and a2 =
b2 = c2 = rock we get f̃2(rock, scissors) = −0.5, f1(scissors, rock) = 0.5,
f1(paper, rock) = −0.5. Thus, U1(scissors, rock, scissors) = −χ − 0.75 <
χ − 0.25 = U1(paper, rock, scissors) ∀χ > 0. Also a win-loss outcome is
never fair.
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5.2 The Question of Existence

Here, an interesting fact shall be noted, namely, in [19] Proposition 6 states
that—under specific assumptions on the continuity of the kindness functions—
every game has at least one fairness equilibrium (in detail: a so-called weakly
negative one, i.e. one where f1, f2 ≤ 0 holds). We highlight (again) that Ra-
bin [19] does use mixed strategies in the definition of fairness equilibrium.
However, since in Footnote 8 in [19] he states that he emphasizes pure strate-
gies and in most of the examples (battle of the sexes, chicken, prisoner’s
dilemma, . . . ) and the corresponding explanations only pure strategies are
considered, the reader might guess that Proposition 6 of [19] talks about pure
strategies, too. However, this is not true: as can be seen in Proposition 5
or Table 9, Rock-Scissors-Paper does not have a fairness equilibrium in pure
strategies.

There are two possible answers to this problem: First, there is simply no
fairness equilibrium in pure strategies but (at least) one in mixed ones, or
second, there is neither one in pure nor in mixed strategies.

Concerning the second point, we may refer the reader to Proposition 6
and especially to Footnote 24 and the corresponding Appendix A and the
proof of Proposition 6 in Appendix B of [19]. There, it is explained that the
proof of the existence of a (weakly negative) fairness equilibrium is based
on the existence theorem in [12] that assumes continuous kindness functions
(see Footnote 24 in [19]). In Appendix A of [19], it is explained that the
existence of fairness equilibria may not hold if the kindness function is not
continuous. The continuity topic will be discussed later on (in Section 5.3)
using a simpler game. Before that, we discuss the first point in more detail.

Proposition 6. There is a fairness equilibrium in Rock-Scissors-Paper,
namely the mixed outcome ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3))

Proof. When one agent plays (1/3, 1/3, 1/3), irrespective of what the other
does, the expected material payoff is 0, thus, uh = ul = umin = ue =
f̃ = 0 for all agents. Hence, the expected utility is the expected material
payoff and ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)) is a fairness equilibrium. (See
Comment 14.)

Comment 16. Please note that formally [19] uses mixed strategies since the
argmax in the definition of fairness equilibria are taken over S (which is the
convex hull of A when representing A as a set of vectors with the canonical
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Table 7: Rock-Scissors-Paper: material payoffs (with values from [21])

u1(·)|u2(·) a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 0|0 1| − 1 −1|1
a
(2)
1 −1|1 0|0 1| − 1

a
(1)
1 1| − 1 −1|1 0|0

Table 8: Rock-Scissors-Paper: Nash equilibria (with values from [21])

Nash a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 no no no

a
(2)
1 no no no

a
(3)
1 no no no

unit vectors). Although the reader might guess that Footnote 8 in [19] suggests
that in [19] only pure strategies are considered, this is not true.

That [19] does not use pure strategies only becomes clear when looking at
the seeming contradiction that Rock-Scissors-Paper does not hove a fairness
equilibrium in pure strategies but in mixed ones or when noting that both the
work [12] (e.g., p. 64) and the proof of Proposition 6 in Appendix B of [19]
use mixed strategies. Thus, the existence proposition (Proposition 6) (and its
proof) in [19] show the existence of a fairness equilibrium in mixed strategies
and not necessarily in pure ones; which is analogous to Nash equilibria [17].

Comment 17. That [19] Proposition 6 makes a statement about mixed
strategies becomes also obvious when thinking about what “continuous func-
tions” in a room of discrete strategies shall be? We do not take into account
degenerate things like the trivial metric to define continuity on discrete spaces.

5.3 Matching-Pennies

Absolutely the same reasoning as for Rock-Scissors-Paper holds for the game
Matching-Pennies, see Tables 10, 11, 12.
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Table 9: Rock-Scissors-Paper: fairness equilibria (with values from [21])

Rabin a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 ∅ ∅ ∅
a
(2)
1 ∅ ∅ ∅
a
(3)
1 ∅ ∅ ∅

Proposition 7. In Matching-Pennies, no outcome in pure strategies is fair.

Proof. In this proof, we do not consider mixed strategies. There is basi-
cally only one type of outcome. Let us have a look at (head, tail). For
all agents and all strategies it holds uh = χ, ul = umin = −χ, ue = 0.
Thus, f̃2(tail, head) = −0.5, f1(head, tail) = 0.5, f1(tail, tail) = −0.5, and
U1(head, tail, head) = −χ − 0.75 < χ − 0.25 = U1(tail, tail, head). Hence,
this is not fair.

Proposition 8. In Matching-Pennies, ((1/2, 1/2)|(1/2, 1/2)) is fair. In that
equilibrium all kindness functions are zero.

Proof. If one agent plays (1/2, 1/2), it does not matter what the other does,
the material output will be zero, thus f̃2 = 0. The material output equals
the fairness output and all of them are zero for all strategies of the first
agent. Thus all strategies are in the argmax and, hence, also (1/2, 1/2), cf.
Comment 14.

5.4 Continuity

Matching-Pennies, although it was not the first example we found for the
question of existence, has the advantage (other than Rock-Scissors-Paper)
that continuity can be analyzed more easily. In [19], Appendix A, the possible
discontinuity of f1(a1, b2) in b2 at points where uh2(b2) = umin2 (b2) or of ue2(b2)
also in b2 could cause problems, which could lead to the non-existence of a
fairness equilibrium, is discussed (cf. Comment 19).

Before analyzing the continuity issues, we recall that we know that in
Matching-Pennies there exists one fairness equilibrium in mixed strategies.
Additionally, we recall that both in [12] and in the proof of Proposition 6 in
[19] mixed strategies are used.
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Table 10: Matching-Pennies: material payoffs (with values from [21],
“Matching-Euros”, and scaled by χ > 0, see [19])

u1(·)|u2(·) head tail

head χ| − χ −χ|χ
tail −χ|χ χ| − χ

Table 11: Matching-Pennies: Nash equilibria (with values from [21],
“Matching-Euros”). (Only pure strategies are considered here)

Nash head tail

head no no
tail no no

So, let—because of the symmetry—1
2
≤ σ2 ∈ [0, 1] and Agent 2 play

“head” with probability σ2 and “tail” with probability 1−σ2, resp. let Agent 1
believe that Agent 2 does this. Then it holds: uh2(b2) = χ(2σ2 − 1), ul2(b2) =
umin2 (b2) = −χ(2σ2 − 1), ue2(b2) = 0 ∀σ2. Thus, ue2(b2) is continuous in
b2. Now, let us consider f1. For that, Agent 1 plays head with probability
σ1 ∈ [0, 1] and tail with probability 1− σ1.

f1(s1, b2) =

{
−2σ1+1

2
, σ2 >

1
2
,

0, σ2 = 1
2
.

Proposition 9. Thus, in Matching-Pennies, f1 is for all σ1 6= 1/2 discon-
tinuous in b2; but ue(b2) is continuous in b2 in Matching-Pennies.

Taken together, f1 is discontinuous, but there exists a fairness equilibrium
in mixed strategies. If mixed strategies would not be considered, we would
not know how to apply continuity.20

Proposition 10. In Matching-Pennies ((1/2, 1/2), (1/2, 1/2)) is indeed the
only fairness equilibrium.

20However, the question whether a game with continuous f and ue functions (in mixed
strategies—where the concept of continuity is applicable) does always have a pure-strategy
fairness equilibrium remains.
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Table 12: Matching-Pennies: fairness equilibria (with values from [21],
“Matching-Euros”), i.e. all values for χ > 0 for which this outcome is a
fairness equilibrium. (Only pure strategies are considered here)

Rabin head tail

head ∅ ∅
tail ∅ ∅

Proof. Due to the symmetry, there are only two cases we have to check.
First, consider ((1/2, 1/2), (σ2, 1 − σ2)) with σ2 ∈ [0, 1] \ {0.5}. Thus, since
c1 = (1/2, 1/2), it follows uh1(c1) = ul1(c1) = umin1 (c1) = ue1(c1) = 0 =
f̃2((σ2, 1−σ2), c1) ∀σ2. Thus, the expected material payoffs are the expected
utilities. That means, playing head is better for Agent 1 if the probability
for Agent 2 to play head is larger than 1/2 and the analogous strategy is true
for tail.

Now, consider ((σ1, 1− σ1), (σ2, 1− σ2)). For the reason of symmetry we
only look at σ1, σ2 > 1/2. The other cases are analogous. In this case, Agent 1
is mean to Agent 2, but Agent 2 is nice to Agent 1. Hence, Agent 2 could in-
crease his or her fairness payoff and at the same time his or her material payoff
(in expectation) by reducing σ2. As a consequence, ((1/2, 1/2), (1/2, 1/2)) is
the only fairness equilibrium.

Comment 18. We have not proven that ((1/3, 1/3, 1/3)|(1/3, 1/3, 1/3)) is
the only fairness equilibrium in Rock-Scissors-Paper.

5.5 Discontinuity of the Equitable Payoff

At first, since the Matching-Pennies example does not lead to any disconti-
nuity of ue2(b2) we give another example in Table 13.

Proposition 11. The equitable payoff ue2(b2) in the example in Table 13 is
discontinuous.

Proof. In Table 13, u((σ2, 1 − σ2)) = conv({(4χσ2, 2χ), (χ + 2χσ2, 0)}). If
σ2 < 1/2, no point in u((σ2, 1 − σ2)) is Pareto inferior to another point
in u((σ2, 1 − σ2)). But if σ2 ≥ 1/2, the only Pareto superior point left is
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Table 13: Discontinuity Example: material payoffs (scaled by χ > 0, see
[19]). This example was found with MS Excel.

u1(·)|u2(·) mean nice

nice but risky 0|2χ 4χ|2χ
mean but safe χ|0 3χ|0

(4χσ2, 2χ). Thus, ul2((σ2, 1 − σ2)) = 0 if σ2 < 1/2, and . . . = 2χ otherwise.
This shows the discontinuity of ul and in turn ue (when mixed strategies are
considered). (Confer also Comment 8.)

However, uh and umin are continuous, since, if Agent i plays the mixed
strategy si = (σ

(1)
i , σ

(2)
i , . . . , σ

(ni)
i ), it holds:

u2(b2, s1) =
∑

j2=1,...,n2

∑
j1=1,...,n1

σ
(j2)
2 σ

(j1)
1 u2(b

(j2)
2 , a

(j1)
1 )

This is a composition of continuous functions and, thus, a continuous function
in all σ

(1)
1 , . . . , σ

(n2)
2 . The set of all possible outcomes in mixed strategies is

the convex hull of the outcomes in pure strategies. Taking max or min leads
to continuous functions again.21

Comment 19. Rabin [19] states in Footnote 11 (in the first part of this
footnote) that up to the time he wrote that paper, all games he analyzed had
at least one fairness equilibrium although the “standard kindness” is not con-
tinuous. For that reason of discontinuity, he used more general (continuous)
kindness functions in Appendix A of [19]. We are neither aware of an ex-
ample where really no fairness equilibrium in mixed strategies exists due to
the discontinuity of the standard kindness function nor of a proof that irre-
spective of such a discontinuity of the standard kindness functions always a
fairness equilibrium exists.

21Please note that taking max or min, if the respective set is not convex, does in general
not lead to continuous functions.
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6 Further Comments and Results on Rabin

Fairness

Before going on to computational issues, we discuss a basic question on the
definition of fairness equilibrium. Further, we prove a minor result on mutual
min resp. mutual max outcomes, which are also important in [19].

6.1 Two Types of Fairness Equilibria

Proposition 6 in [19] states (which becomes clear when checking its proof)
that there is for all χ > 0 an outcome that is a weakly negative fairness
equilibrium (later on, we will call that Type II equilibrium). In the case of the
Prisoner’s Dilemma (see [19]) for χ large enough the only fairness equilibrium
is the (strictly) negative one in pure strategies (even when allowing for mixed
strategies), since both players increase their material payoff and their fairness
payoff when both are mean by being as mean as possible. This negative
fairness equilibrium is for all χ > 0 a fairness equilibrium (Type I) and it is
strictly negative for all χ > 0. From our Matching-Pennies example we learn
that there are games where for every χ > 0 neither a strictly negative nor a
strictly positive fairness equilibrium exists.

Comment 20. At this point, we discuss an important question, namely:
what is a fairness equilibrium? Is it meant to be in the sense that an outcome
(in pure or in mixed strategies) is a fairness equilibrium if this definition is
fulfilled for all χ > 0—we call that Type I—or if there exists a χ > 0 s.t.
the definition of [19] is fulfilled (Type II)? Proposition 6 and its proof in [19]
show—as far as we can see—that there is always a (weakly negative) Type II
fairness equilibrium.

Here, the chicken game is interesting. As can be seen in Tables 22 and
23, in pure strategies, there is no Type I fairness equilibrium. Whether there
is one in mixed strategies is not yet answered. However, using the extension
of our Python code from the very end of Section 7 (with N = 8) suggests
that the chicken game does not have any Type I equilibrium. Is it possible
to prove this for all mixed strategies? Or, if not, is it possible to show that
every game—given continuity—has a Type I fairness equilibrium?

There are games where all Type I equilibria are strictly negative (i.e.
f1, f2 < 0), e.g., the prisoner’s dilemma. There are games where all Type I
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and Type II equilibria have zero kindness, namely Matching-Pennies, Rock-
Scissors-Paper, trivial games.

Unclear is the following topic: Are there games where all Type II equilibria
are strictly negative? Or: is there always a Type II equilibrium that has zero
kindness?

In [19], it is shown that there are games without a (strictly) positive
fairness equilibrium. This is interesting since in games where both agents are
kind, the fairness payoff should increase the agents’ payoffs, but this seems
not always to be enough to be kind compared to an increase in material
payoffs.

6.2 Mixed-Strategy Mutual-Max and Mutual-Min

Before explaining how fairness equilibria can be calculated, we give some
insights on mutual-max and mutual-min outcomes, since Proposition 1 in
[19] states that all Nash equilibria that are either mutual-max or mutual-
min outcomes are fair for all χ > 0.

Proposition 12. Not every game has a mutual-max or a mutual-min out-
come in pure strategies, however, every game has a mutual-max as well as a
mutual-min outcome in mixed strategies.

Proof. For part one of the proposition we consider Matching-Pennies: none
of the pure outcomes is mutual-min or mutual-max since one of the agents
could make the material payoff of the other higher by deviating and the
other one could make the material payoff of the resp. other one smaller by
deviating.

That every game has a mutual-max outcome follows by Nash [17] when
switching the material payoffs (u1, u2) 7→ (u2, u1) in every cell of the table
representing a game. For mutual-min we have to multiply additionally by
minus one: (u1, u2) 7→ (−u2,−u1)

However, note that these mutual-max or mutual-min outcomes do not
have to be Nash equilibria.

6.3 Computation of Fairness Equilibria

Since in all kindness functions the scaling parameter cancels out, the expected
utilities are affine-linear functions in χ. Two affine-linear functions in R+ can
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either have no intersection point (when they are parallel or when they would
intersect in R−0 ) or they intersect exactly once or they are equal.

Proposition 13. The sets for χ to make a pure-strategy outcome a fairness
equilibrium is always a closed subset of (0,∞).

We note that, e.g., (0, 1] is of course not a closed subset of R, but it is a
closed subset of R+ since every accumulation point of (0, 1] that is an element
of R+ lies in (0, 1].

Proof. Let χ((a1, a2)) : A1×A2 → P((0,∞)) be the function that assigns to
a given outcome (a1, a2) all values for the scaling variable χ s.t. this outcome
is fair. Then it holds:

χ((a1, a2)) =(0,∞) \
( ⋃
a′1∈A1

{χ > 0 | U1(a
′
1, a2, a1) > U1(a1, a2, a1)}

∪
⋃

a′2∈A2

{χ > 0 | U2(a
′
2, a1, a2) > U2(a2, a1, a2)}

)
Since U1, U2 are affine-linear functions in χ, the sets {χ > 0 | . . . } are

of the form (0,∞), ∅, (0, β), or (α,∞). Every union of such sets results in
a set of the form (0,∞), ∅, (0, β), (α,∞), or (0, β) ∪ (α,∞). Again, unions
of such sets have the same structure. Then, (0,∞) \ . . . has the structure
∅, (0,∞), [β,∞), (0, α], or [β, α]. Here, it is assumed that 0 < β ≤ α and
[β, β] := {β}.

As stated above, a fairness equilibrium is strict if the argmax functions in
its definition lead to a unique strategy, each. Those strict fairness equilibria
can only be in pure strategies and they do not have to exist, e.g., in Rock-
Scissors-Paper. In the following we repeat Proposition 13 for strict fairness
equilibria.

Proposition 14. The sets for χ to make an outcome a strict fairness equi-
librium is always an open subset of (0,∞).

Proof. Let χs((a1, a2)) : A1×A2 → P((0,∞)) be the function that assigns to
a given outcome (a1, a2) all values for the scaling variable χ s.t. this outcome
is strictly fair. Then it holds:
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χs((a1, a2)) =(0,∞) \
( ⋃
a1 6=a′1∈A1

{χ > 0 | U1(a
′
1, a2, a1) ≥ U1(a1, a2, a1)}

∪
⋃

a2 6=a′2∈A2

{χ > 0 | U2(a
′
2, a1, a2) ≥ U2(a2, a1, a2)}

)
Since U1, U2 are affine-linear functions in χ, the sets {χ > 0 | . . . } are of

the form (0,∞), ∅, (0, β], or [α,∞). Every union of such sets results in a set
of the form (0,∞), ∅, (0, β], [α,∞), or (0, β]∪ [α,∞). Again, unions of such
sets have the same structure. Then, (0,∞) \ . . . has the structure ∅, (0,∞),
(β,∞), (0, α), or (β, α). Here, it is assumed that 0 < β ≤ α.

From the proofs of Propositions 13 and 14 the next proposition follows.

Proposition 15. It holds for all (a1, a2) ∈ A1 × A2 that

χs((a1, a2)) = interior(χ((a1, a2))).
22

6.4 Mixed-Strategy Fairness

Proposition 16. The prisoner’s dilemma (with the values of [19]), when
allowing for mixed strategies, not only (defect, defect) for all χ > 0 and
(cooperate, cooperate) for χ < 1/4 (or for χ ≤ 1/4, see again Comment 14),
are fairness equilibria, but there are more.

When calling the probability of Agent i for playing cooperate σi, then,
e.g., ((σ1, 1−σ1), (σ2, 1−σ2)) = ((3/4, 1/4), (3/4, 1/4)) is fair for some χ > 0.

Proof. Since the game and the outcome are symmetric, it holds uh = 9/2 ·χ,
ul = umin = χ/4, because when fixing one mixed strategy all outcomes
in this fixed set are Pareto optimal for all fixed strategies (other than in
Table 13), cf. Comment 8, and ue = 19/8 · χ. Then, f̃ = 1/4 and f1((σ1, 1−
σ1), b2) = σ1 − 1/2, and U1((σ1, 1 − σ1), (3/4, 1/4), (3/4, 1/4)) = (−7/4χ +
1/4)σ1 + (19/4χ+ 1/8). Hence, for χ = 1/7 ((3/4, 1/4), (3/4, 1/4)) is fair, cf.
Comment 14.

22Note that in general for a set A it does not have to hold interior(Ā) = interior(A),
but only interior(Ā) ⊃ interior(A).
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Comment 21. Allowing for mixed strategies increases the set of fairness
equilibria, which is worth noting when considering Footnote 8 of [19].23

Up to now, it is unclear how all fairness equilibria in mixed strategies and
their respective sets for χ can be calculated if this is possible at all. However,
the next proposition gives us a tool for checking whether an outcome is fair
(and for which χ). However, please note that this cannot be used to find all
fairness equilibria since 1.) one could only search on a grid (due to runtime
issues up to some minimal grid size) and 2.) irrational fairness equilibria, i.e.,
those were (s1, s2) ∈ R2 \Q2, cannot be found when searching numerically.

Proposition 17. Consider a given outcome (s1, s2) ∈ S1×S2 represented by

(p
(1)
1 , . . . , p

(n1)
1 ) and (p

(1)
2 , . . . , p

(n2)
2 ). Under the matching actions and beliefs

assumption, the expected utility of the strategies in the given outcome has
only to be compared to expected utilities of pure strategies, i.e. actions, when
checking whether the given outcome is in the argmax.

Proof. If there would be a proper mixed strategy leading to a higher expected
utility than the given one, all pure strategies that come with non-zero prob-
ability would lead to the same expected utility or an even higher one. Thus,
the comparison with actions is sufficient.

7 Python/SymPy Code

Building upon the proof of Proposition 13, we can implement a code in
Python [23] using SymPy [16] that searches for all fairness equilibria in pure
strategies.24 With Proposition 4 it follows that these are the pure-strategy

23An in-depth analysis of the general structure of all Type II fairness equilibria of games
would be very interesting.

24For the inequality solver solve poly inequality see https://docs.sympy.org/lat

est/modules/solvers/inequalities.html (2024-03-21). For intervals, set operations,
and oo (∞), see https://docs.sympy.org/latest/modules/sets.html (2024-03-21).
For the reduce function functools.reduce (fun,seq) see https://www.geeksforgeek

s.org/reduce-in-python/ (2024-03-21). For the topics copy, deepcopy, and mutable
objects, see https://stackoverflow.com/questions/8743072/when-adding-to-list-
why-does-python-copy-values-instead-of-pointers (2024-03-25), https://stacko
verflow.com/questions/19210971/python-prevent-copying-object-as-reference

(2024-03-26), and https://docs.python.org/3/library/copy.html (2024-03-26).
And, finally, for time, see https://www.python-lernen.de/python-modul-time.htm

(in German; 2024-03-26).
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fairness equilibria even when using mixed strategies in the definition. In
detail, we calculate for each pure-strategy outcome the subset (see Proposi-
tion 13) of (0,∞) 3 χ for which this outcome, if the game is scaled by χ, is
a fairness equilibrium.25

We start with the header.

1 """

2 Computation of Rabin's fairness equilibria,

3 Nash equilibria, etc.

4

5 Michael Hch. Baumann and Michaela Baumann

6

7 2024-03-20 -- 2025-01-23

8 """

9

10 # Possible games:

11 # "pd_sieg": prisoner's dilemma (Sieg)

12 # "pd_rabin": prisoner's dilemma (Rabin)

13 # "rsp_sieg": rock-scissors-paper (Sieg)

14 # "chicken_rabin": chicken game (Rabin)

15 # "grabbing_rabin": grabbing game (Rabin)

16 # "bs_rabin": battle of the sexes (Rabin)

17 # "pnd_rabin": prisoner's non-dilemma (Rabin)

18 # "leaving_rabin": leaving a partnership (Rabin)

19 # "dictator"

20 # "ultimatum"

21 # "coordination"

22 # "assurance"

23 # "stag-hunt"

24 # "matching-euros_sieg": # matching euros resp. pennies (Sieg)

25

26 import time

27 import sympy

28 from sympy import Poly

29 from sympy import Interval

25Please note that due to the affine-linear structure of the “standard kindness” functions
we could reduce the reduce function to “(...)[0]” because the list exhibits only one
element.

35



Di
sc
us
si
on

Pa
pe
r

30 from sympy import oo

31 import functools

32 import copy

33 from pprint import pprint

Next, the game has to be chosen that shall be analyzed automatically and
all the games, which can be chosen, have to be defined. When after a game’s
name (Sieg) is written, the values are from [21], when (Rabin) is written,
the values are from [19], for the ultimatum game and the dictator game confer
https://en.wikipedia.org/wiki/Ultimatum game (2024-10-30) resp.
https://en.wikipedia.org/wiki/Dictator game (2024-10-30), and for
the coordination games (coordination, assurance, stag hunt, and also battle
of the sexes cf. https://en.wikipedia.org/wiki/Coordination game

(2024-04-05).

34 # choose game:

35 game = "pd_rabin"

36

37 def set_game(game):

38 # u1: material payoff matrix player 1

39 # u2: material payoff matrix player 2

40 elif game=="pd_sieg": # prisoner's dilemma (Sieg)

41 u1 = [[3,0],[5,1]]

42 u2 = copy.deepcopy(u1)

43 elif game=="pd_rabin": # prisoner's dilemma (Rabin)

44 u1 = [[4,0],[6,1]]

45 u2 = copy.deepcopy(u1)

46 elif game=="rsp_sieg": # rock-scissors-paper (Sieg)

47 u1 = [[0,1,-1],[-1,0,1],[1,-1,0]]

48 u2 = copy.deepcopy(u1)

49 elif game=="chicken_rabin": # chicken game (Rabin)

50 u1 = [[-2,2],[0,1]]

51 u2 = copy.deepcopy(u1)

52 elif game=="grabbing_rabin": # grabbing game (Rabin)

53 u1 = [[1,2],[0,1]]

54 u2 = copy.deepcopy(u1)

55 elif game=="bs_rabin": # battle of the sexes (Rabin)

56 u1 = [[2,0],[0,1]]
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57 u2 = [[1,0],[0,2]]

58 elif game=="pnd_rabin": # prisoner's non-dilemma (Rabin)

59 u1 = [[4],[6]]

60 u2 = [[4,0]]

61 elif game=="leaving_rabin": # leaving a partnership (Rabin)

62 u1 = [[6,0],[5,5]]

63 u2 = [[6,5],[12,5]]

64 elif game=="dictator": # dictator

65 u1 = [[10],[9],[8],[7],[6],[5],[4],[3],[2],[1],[0]]

66 u2 = [[0,1,2,3,4,5,6,7,8,9,10]]

67 elif game=="ultimatum": # ultimatum

68 u1 = [[10,0],[9,0],[8,0],[7,0],[6,0],[5,0],[4,0],[3,0],

69 [2,0],[1,0],[0,0]]

70 u2 = [[0,1,2,3,4,5,6,7,8,9,10],[0,0,0,0,0,0,0,0,0,0,0]]

71 elif game=="coordination": # coordination

72 u1 = [[1,0],[0,1]]

73 u2 = copy.deepcopy(u1)

74 elif game=="assurance": # assurance

75 u1 = [[2,0],[0,1]]

76 u2 = copy.deepcopy(u1)

77 elif game=="stag-hunt": # stag hunt

78 u1 = [[10,0],[6,4]]

79 u2 = copy.deepcopy(u1)

80 elif game=="matching-euros_sieg": # matching pennies (Sieg)

81 u1 = [[1,-1],[-1,1]]

82 u2 = [[-1,1],[1,-1]]

83 else:

84 print("no predefined game")

85

86 print(u1)

87 print(u2)

88

89 if u1 and u2:

90 for i in range(len(u1)-1):

91 if len(u1[i])!=len(u1[i+1]):

92 print("Payoff 1 not specified correctly!")

93

94 for i in range(len(u2)-1):
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95 if len(u2[i])!=len(u2[i+1]):

96 print("Payoff 2 not specified correctly!")

97

98 if len(u1)!=len(u2[0]) or len(u1[0])!=len(u2):

99 print("Dimensions do not fit!")

100

101 return u1, u2

Everything here is done in pure strategies only. Next, we calculate (strict)
Nash equilibria, (strict) mutual-min outcomes, and (strict) mutual-max out-
comes. The (strict) Nash equilibria are calculated via best responses (BR,
SBR).

102 def nash_equilibria(game):

103

104 t = time.time()

105 u1, u2 = set_game(game)

106

107 # strategies of the players

108 S1 = range(len(u1))

109 S2 = range(len(u1[0]))

110

111 # (strict) Nash equilibria

112 # (strictly) best response functions

113 # is i in S1 a/the best response if agent 2 plays j in S2?

114 BR1 = []

115 BR2 = []

116 Nash = []

117 SBR1 = []

118 SBR2 = []

119 SNash = []

120 for i in S1:

121 BR1.append([])

122 BR2.append([])

123 Nash.append([])

124 SBR1.append([])

125 SBR2.append([])

126 SNash.append([])
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127 for j in S2:

128 BR1[i].append(1)

129 BR2[i].append(1)

130 Nash[i].append(0)

131 SBR1[i].append(1)

132 SBR2[i].append(1)

133 SNash[i].append(0)

134 for k in S1:

135 if u1[k][j] > u1[i][j]:

136 BR1[i][j] = 0

137 if (k != i and u1[k][j] >= u1[i][j]):

138 SBR1[i][j] = 0

139 for k in S2:

140 if u2[k][i] > u2[j][i]:

141 BR2[i][j] = 0

142 if (k != j and u2[k][i] >= u2[j][i]):

143 SBR2[i][j] = 0

144 Nash[i][j]=BR1[i][j]*BR2[i][j]

145 SNash[i][j]=SBR1[i][j]*SBR2[i][j]

146 # BR1 = [[0, 0, 1], [1, 0, 0], [0, 1, 0]] means that i's

147 # first strategy is the best response to -i's third one,

148 # i's second one is the best response to -i's first one,

149 # and finally i's third one is the best answer to -i's

150 # second strategy only pure and no mixed strategies and

151 # Nash equilibria are considered. Is j in S2 a best response

152 # if agent a plays i in S1? BR2 = [[0, 1, 0], [0, 0, 1],

153 # [1, 0, 0]] means that the best -i can do if i does its

154 # 1st, is its 2nd, the best -i can do if i plays its 2nd,

155 # is its 3rd, ... Note that it might be more easy to compute

156 # Nash equilibria in such a way that no one-sided

157 # improvement can happen.

158

159 # Additionally, we provide (strict) mutual-min/-max

160

161 sMuMi = copy.deepcopy(u1)

162 MuMi = copy.deepcopy(u1)

163 sMuMa = copy.deepcopy(u1)

164 MuMa = copy.deepcopy(u1)
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165

166 for i in S1:

167 for j in S2:

168 sMuMi[i][j] = 1

169 MuMi[i][j] = 1

170 sMuMa[i][j] = 1

171 MuMa[i][j] = 1

172 for k in S1:

173 if i != k and u2[j][k] <= u2[j][i]:

174 sMuMi[i][j] = 0

175 if u2[j][k] < u2[j][i]:

176 MuMi[i][j] = 0

177 if i != k and u2[j][k] >= u2[j][i]:

178 sMuMa[i][j] = 0

179 if u2[j][k] > u2[j][i]:

180 MuMa[i][j] = 0

181 for l in S2:

182 if j != l and u1[i][l] <= u1[i][j]:

183 sMuMi[i][j] = 0

184 if u1[i][l] < u1[i][j]:

185 MuMi[i][j] = 0

186 if j != l and u1[i][l] >= u1[i][j]:

187 sMuMa[i][j] = 0

188 if u1[i][l] > u1[i][j]:

189 MuMa[i][j] = 0

190

191 runtime = time.time()-t

192 return Nash, SNash, sMuMi, MuMi, sMuMa, MuMa, MaMa, runtime

And finally, we compute (pure-strategy) fairness equilibria.

193 def fairness_equilibria_with_scaling(game):

194

195 t = time.time()

196

197 u1, u2 = set_game(game)

198

199 # scaling factor
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200 x = sympy.symbols('x')

201 # strategies of the players

202 S1 = range(len(u1))

203 S2 = range(len(u1[0]))

204

205 # initialize uis for the fis

206 u1_h = []

207 u1_l = []

208 u1_e = []

209 u1_min = []

210 u2_h = []

211 u2_l = []

212 u2_e = []

213 u2_min = []

214

215 # note that we ignore the x in u1_h, ..., u2_e since

216 # the x is cancelling out in the fs

217

218 # computing u1_h for all b1

219 for i in S1:

220 u1_h.append(u1[i][0])

221 for j in range(1,S2[-1]+1):

222 if u1[i][j]>u1_h[i]:

223 u1_h[i] = u1[i][j]

224

225 # computing u1_min for all b1

226 for i in S1:

227 u1_min.append(u1[i][0])

228 for j in range(1,S2[-1]+1):

229 if u1[i][j]<u1_min[i]:

230 u1_min[i] = u1[i][j]

231

232

233 # eliminating non-Pareto outcomes IN THE ROW

234 P1 = copy.deepcopy(u1)

235 # NOTE that in SymPy there are objects that are mutable,

236 # i.e., when using P1 = u1 and altering P1, u1 would be altered, too

237 for i in S1:
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238 for j in S2:

239 for k in S2:

240 if ((u1[i][k] > u1[i][j] and u2[k][i] >= u2[j][i])

241 or (u1[i][k] >= u1[i][j] and u2[k][i] > u2[j][i])):

242 P1[i][j] = oo

243

244 # computing u1_l and u1_e for all b1

245 for i in S1:

246 u1_l.append(P1[i][0])

247 for j in range(1,S2[-1]+1):

248 if P1[i][j]<u1_l[i]:

249 u1_l[i] = P1[i][j]

250 u1_e.append((u1_l[i]+u1_h[i])/2)

251

252 # computing f2 (we don't need f1_tilde since a1, b1, c1

253 # are all from S1 and the functions f1 and f1_tilde are

254 # formally identical, see Rabin'93)

255 f2 = []

256 for i in S2:

257 f2.append([])

258 for j in S1:

259 if u1_h[j]-u1_min[j]==0:

260 f2[i].append(0)

261 else:

262 f2[i].append((u1[j][i]-u1_e[j])/(u1_h[j]-u1_min[j]))

263

264 # computing u2_h for all b2

265 for i in S2:

266 u2_h.append(u2[i][0])

267 for j in range(1,S1[-1]+1):

268 if u2[i][j]>u2_h[i]:

269 u2_h[i] = u2[i][j]

270

271 # computing u2_min for all b2

272 for i in S2:

273 u2_min.append(u2[i][0])

274 for j in range(1,S1[-1]+1):

275 if u2[i][j]<u2_min[i]:
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276 u2_min[i] = u2[i][j]

277

278

279 # eliminating non-Pareto outcomes IN THE ROW

280 P2 = copy.deepcopy(u2)

281 for i in S2:

282 for j in S1:

283 for k in S1:

284 if ((u2[i][k] > u2[i][j] and u1[k][i] >= u1[j][i])

285 or (u2[i][k] >= u2[i][j] and u1[k][i] > u1[j][i])):

286 P2[i][j] = oo

287

288 # computing u2_l and u2_e for all b2

289 for i in S2:

290 u2_l.append(P2[i][0])

291 for j in range(1,S1[-1]+1):

292 if P2[i][j]<u2_l[i]:

293 u2_l[i] = P2[i][j]

294 u2_e.append((u2_l[i]+u2_h[i])/2)

295

296 # computing f1

297 f1 = []

298 for i in S1:

299 f1.append([])

300 for j in S2:

301 if u2_h[j]-u2_min[j] == 0:

302 f1[i].append(0)

303 else:

304 f1[i].append((u2[j][i]-u2_e[j])/(u2_h[j]-u2_min[j]))

305

306

307 for i in S1:

308 for j in S2:

309 u1[i][j] = u1[i][j]*x

310 u2[j][i] = u2[j][i]*x

311

312 # Us

313 U1 = []
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314 for i in S1:

315 U1.append([])

316 for j in S2:

317 U1[i].append([])

318 for k in S1:

319 U1[i][j].append(u1[i][j]+f2[j][k]*(1+f1[i][j]))

320 U2 = []

321 for i in S2:

322 U2.append([])

323 for j in S1:

324 U2[i].append([])

325 for k in S2:

326 U2[i][j].append(u2[i][j]+f1[j][k]*(1+f2[i][j]))

327

328 # checking for which x (i,j) with i in S1 and j in S2 is

329 # a fairness equilibrium.

330 X = []

331 for i in S1:

332 X.append([])

333 for j in S2:

334 X[i].append(sympy.EmptySet)

335 for k in S1:

336 X[i][j] = functools.reduce(lambda a, b: a.union(b), (

337 sympy.solve_poly_inequality(

338 Poly(U1[k][j][i]-U1[i][j][i],x,domain='RR'), ">")

339 )

340 ).union(X[i][j])

341 for k in S2:

342 X[i][j] = functools.reduce(lambda a, b: a.union(b), (

343 sympy.solve_poly_inequality(

344 Poly(U2[k][i][j]-U2[j][i][j],x,domain='RR'), ">")

345 )

346 ).union(X[i][j])

347 X[i][j] = X[i][j].complement(Interval.open(0,oo))

348

349 runtime = time.time()-t

350 return X, runtime

351 #end def fairness_equilibria_with_scaling
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352 # Compute Nash equilibria in pure strategies

353 nash, snash, smumi, mumi, smuma, muma, runtime_nash = nash_equilibria(game)

354 pprint(nash)

355 pprint(snash)

356

357 # Compute fairness equilibria according to Rabin with scaling

358 # of the original game

359 fair, runtime_fair = fairness_equilibria_with_scaling(game)

360 pprint(fair)

361

362 print("Runtime:")

363 print(runtime_nash+runtime_fair)

Note that we can neither prove nor guarantee that our code calculates
always the right equilibria etc. since we do not have references in general.
Further, there may be numerical issues. The code is conducted with various
games, see Section 8. Before going on to these games, we discuss an extension
of the program.

The code can (easily) be adapted to search for (some rational) mixed-
strategy fairness equilibria—see Proposition 17. For games where both agents
have two actions, each, this can be done, e.g., via inserting the following code
between lines 87 and 89.

364 if True and len(u1)==2 and len(u1[0])==2:

365 N = 2

366 v1 = []

367 v2 = []

368 for i in range(N+1):

369 v1.append([(N-i)*u1[0][0]/N+i*u1[1][0]/N])

370 v2.append([(N-i)*u2[0][0]/N+i*u2[1][0]/N])

371 for j in range(1,N+1):

372 v1[i].append((N-i)*(N-j)*u1[0][0]/N**2

373 +i*(N-j)*u1[1][0]/N**2+(N-i)*j*u1[0][1]/N**2

374 +i*j*u1[1][1]/N**2)

375 v2[i].append((N-i)*(N-j)*u2[0][0]/N**2

376 +i*(N-j)*u2[1][0]/N**2+(N-i)*j*u2[0][1]/N**2

377 +i*j*u2[1][1]/N**2)

378 u1 = v1
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379 u2 = v2

380 print(u1)

381 print(u2)

We note that this code is very inefficient since, due to Proposition 17, a
comparison to pure strategies would be enough. However, that way, we can
reuse all the basic Python code and just add some lines.

With this procedure with N = 32, for the prisoner’s dilemma with the
values of [19], we find that with σi being Agent i’s probability of playing
cooperate: ((σ1, 1− σ1)|(σ2, 1− σ2)) =

• ((1, 0)|(1, 0)) for χ ∈ (0, 1/4]

• ((31/32, 1/32)|(31/32, 1/32)) for χ = 5/21

• ((30/32, 2/32)|(30/32, 2/32)) for χ = 7/31

• ((29/32, 3/32)|(29/32, 3/32)) for χ = 13/61

• ((28/32, 4/32)|(28/32, 4/32)) for χ = 1/5

• ((27/32, 5/32)|(27/32, 5/32)) for χ = 11/59

• ((26/32, 6/32)|(26/32, 6/32)) for χ = 5/29

• ((25/32, 7/32)|(25/32, 7/32)) for χ = 3/19

• ((24/32, 8/32)|(24/32, 8/32)) for χ = 1/7

• ((23/32, 9/32)|(23/32, 9/32)) for χ = 7/55

• ((22/32, 10/32)|(22/32, 10/32)) for χ = 1/9

• ((21/32, 11/32)|(21/32, 11/32)) for χ = 5/53

• ((20/32, 12/32)|(20/32, 12/32)) for χ = 1/13

• ((19/32, 13/32)|(19/32, 13/32)) for χ = 1/17

• ((18/32, 14/32)|(18/32, 14/32)) for χ = 1/25

• ((17/32, 15/32)|(17/32, 15/32)) for χ = 1/49

• ((0, 1)|(0, 1)) for χ > 0
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are fairness equilibria for the noted sets of χ. However, we assume that
there are much more. Note that the item ((24/32, 8/32)|(24/32, 8/32)) fits
to Propostion 16 and its proof.

Interestingly enough, there is no fairness equilibrium for σ1 = 1/2, . . . , 1−
31/32, but for all σ1 = 1/32, . . . , 1/2 − 1/32 there is one for exactly one χ.
Maybe, it is possible to describe the structure of (all) mixed-strategy fairness
equilibria in a closed way—for this or for all 2× 2 games . . .

When running this code with N = 2 for Matching-Pennies with Sieg’s
values [21], it turns out that ((1/2, 1/2), (1/2, 1/2)) is a fairness equilibrium
for all χ > 0. This result fits to our calculations in Section 5.3.

8 Further Examples

In this section, we briefly show the material payoff tables (unscaled) for
some classical games, namely those you can also find in lines 40-82 in our
code. For symmetric games, we state only the material payoff of Agent 1.
Further, for all these games, we show the results of our code. There ‘N’ means
Nash equilibrium, ‘sN’ strict N, ‘MuMa’ mutual max outcome, ‘sMuMa’
strict MuMa, ‘MuMi’ mutual min outcome, ‘sMuMi’ strict MuMi. Further,
a subset of (0,∞) is given, for which this outcome is a fairness equilibrium.
The strict fairness equilibria can easily be found by applying Proposition 15.
Values and results can be found in Tables 14, . . . , 41. In general, we do not
discuss these games or results, only if such a discussion is important. For the
material payoff values consider the text written between lines 33 and 34 of
our code. All the computations here are done for pure strategies only—by
use of our code, see Section 7.

8.1 Examples from above

For completeness, we also show the games that are already shown in Sec-
tions 4, 5.1, and 5.3. That way, it can be verified that our results by hand
fit to those by code. See Tables 14-21.

8.2 Some Games from Rabin [19]

In this section, we demonstrate the functioning of our code by applying it to
the finite-strategy-set games of Rabin [19], i.e., we do not apply it to those
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Table 14: Prisoner’s dilemma with values of [21]

u1(·) a
(1)
2 a

(2)
2

a
(1)
1 3 0

a
(2)
1 5 1

Table 15: Prisoner’s dilemma with values of [21]—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sMuMa, (0, 1/4] ∅
a
(2)
1 ∅ sN, sMuMi, (0,∞)

of [19], Section IV. See Tables 16, 17, 22, . . . , 31.
The game “Leaving a Partnership” (Tables 30 and 31) is particularly

interesting for the reason of ‘trust.’ For this topic, see [19], Section IV.
The chicken game (Tables 22 and 23; please check Footnote 16 in [19])

is just like the prisoner’s dilemma (Tables 14,. . . , 17) also very prominent
in analyzing political, social, and business (administration, management)
topics. In evolutionary game theory it is known as or similar to the hawk-dove
game, when social interactions are modeled one reads the name snowdrift
game, and in political analysis the so-called brink(s)manship game is related.

Please note that “Battle of the Sexes” (Table 26) is not a symmetric
game. Hence, it is no wonder that also the sets for χ in Table 27 are unequal
in the non-coordination cases. This game is used in [19] to explain why not
only the opponent’s action but his or her intention is important for fairness.

8.3 Dictator and Ultimatum Game

The dictator and the ultimatum game are highly interesting (esp. in experi-
ments). Please consider again what we have written between lines 33 and 34
of our Python code. See Tables 32, . . . , 35. And also see [19], Section I, and
[22].

Please note that the games “Prisoner’s Non-Dilemma” (Tables 28 and 29)
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Table 16: Prisoner’s dilemma with values of [19]

u1(·) a
(1)
2 a

(2)
2

a
(1)
1 4 0

a
(2)
1 6 1

Table 17: Prisoner’s dilemma with values of [19]—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sMuMa, (0, 1/4] ∅
a
(2)
1 ∅ sN, sMuMi, (0,∞)

and “Dictator” (Tables 32 and 33) are interesting for another reason: only
one of the agents has a choice at all. This leads to the fact that the other
agent cannot be kind or hostile. Thus, the first agent does not have any
fairness reason to be kind or hostile, either.

8.4 Coordination Games

In social analysis, coordination games are important. Those can be found in
Tables 26, 27, 36, . . . , 41.

For stag hunt see also https://en.wikipedia.org/wiki/Stag hun

t (2024-11-19) and the seminal works of Jean-Jacques Rousseau “Discours
sur l’origine et les fondements de l’inégalité parmi les hommes” (in French;
1754/55)26 and David Hume “Book 3, Of Morals” (1740)27.

8.5 Discussion of Dawes and Thaler’s Example

On Page 4 we presented an example, which is given in [5] and which is used in
[19] to motivate the concept of fairness equilibria. In the following, we try to

26https://en.wikipedia.org/wiki/Discourse on Inequality (2024-11-19)
27https://davidhume.org/texts/t/3/2/2 (2024-11-19) and https://davidhume.or

g/texts/t/3/2/7 (2024-11-19)
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Table 18: Rock-Scissors-Paper with values of [21]

u1(·) a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 0 1 −1

a
(2)
1 −1 0 1

a
(3)
1 1 −1 0

Table 19: Rock-Scissors-Paper with values of [21]—Results

Results a
(1)
2 a

(2)
2 a

(3)
2

a
(1)
1 ∅ ∅ ∅
a
(2)
1 ∅ ∅ ∅
a
(3)
1 ∅ ∅ ∅

formalize this example s.t. it serves as a motivation for Rabin’s [19] fairness
equilibria. However, we also discuss which relatively hard assumptions we
have to make in order to actually reach that goal. We leave it up to the
reader to judge those assumptions as unrealistic or not. Finally, we also
discuss how the extension of this example, where the money may be stolen,
might be formalized.

In Table 42, we provide one possibility to formalize this example. We
assume that the farmer has production costs of 10, offers the vegetable for
sale for 20, and has additional costs of 1 for building the stall. The farmer
may alternatively sell the vegetables also for 20 on the market. The car driver
wants the vegetables and values them at 20. His or her alternative costs 15.
In this example, where the farmer has additional material costs for building
the stall, as can be seen in Table 43, (stall, pay) is a fairness equilibrium for
a small enough valuation of the material payoff, i.e. small χ, but not Nash.

If the farmer would not have additional costs for building the stall, he
or she could not be kind towards the buyer, thus, stall is not fair anymore
according to [19]. Note that (10|5) is Pareto inferior to (10|10) and, thus,
not considered in u`, but (10|5) is not Pareto inferior to (9|10). In Rabin’s
fairness concept, one has to sacrifice him-/herself in order to be friendly [19].
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Table 20: Matching Euros resp. Pennies with values of [21]

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 1| − 1 −1|1
a
(2)
1 −1|1 1| − 1

Table 21: Matching Euros resp. Pennies with values of [21]—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 ∅ ∅
a
(2)
1 ∅ ∅

An agent, who can give his resp. her opponent more without refraining from
something, this is not considered friendliness (kindness). This is an impor-
tant insight to (Rabin) fairness. Note that this may not align to someone’s
personal view of friendliness/kindness. See Tables 44 and 45. Note that we
need to add costs for the stall in order to fit the farmers’ example into Rabin’s
fairness framework—however, usually one might think that selling without
intermediate dealer might be cheaper for the farmer.

Next, we alter the example in Table 42 in such a way that the money
box, which is worth 100, could easily be stolen and neglect the possibility
that someone wants to steal vegetables, but no money. The “buyer” does
not want the vegetables if he or she wants to steal the money box. Values
and results can be found in Tables 46 and 47. Two points are particularly
interesting: 1.) Stealing the money box is never fair (in pure strategies). This
is because if there is no stall, “wanting the vegetables” instead of “going for
the money” would increase the material payoff and the fairness payoff of the
“buyer;” if the “buyer” wants to steal, “no stall” increases both payoffs of the
farmer. 2.) (stall, pay) is still fair for tiny χ > 0. The scaling parameter just
becomes smaller since the money box has a higher value than the vegetables.

All in all, we see that the formalization of the farmers example s.t. it fits
to Rabin’s [19] fairness concept is quite challenging. Last, we give the code
to be inserted in the Python program:
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Table 22: Chicken with values of [19]

u1(·) a
(1)
2 a

(2)
2

a
(1)
1 −2 2

a
(2)
1 0 1

Table 23: Chicken with values of [19]—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sMuMi, (0, 1/2] sN, [1/4,∞)

a
(2)
1 sN, [1/4,∞) sMuMa, (0, 1/2]

382 elif game=="Farmer1":

383 u1=[[9,-11],[10,10]]

384 u2=[[10,5],[20,5]]

385 elif game=="Farmer2":

386 u1=[[10,-10],[10,10]]

387 u2=[[10,5],[20,5]]

388 elif game=="Farmer3":

389 u1=[[9,-100],[10,10]]

390 u2=[[10,5],[100,0]]

9 Conclusion

In this work, we had a close look on Rabin fairness, which uses beliefs to
analyze how human agents act and not only technically transformed payoffs.
Although Rabin’s concept of fairness and reciprocity [19] is more than 30
years old and although it is challenged mainly for experimental, economical,
and resp. or psychological reasons, it is still highly interesting, since it uses
beliefs and not only actions (because it uses [12]) and since there are many
mathematical questions to be answered.

In the work at hand, we asked some of these question in the hope that they
will be answered in the future. Some questions we already answered, e.g., on
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Table 24: Grabbing with values of [19]

u1(·) a
(1)
2 a

(2)
2

a
(1)
1 1 2

a
(2)
1 0 1

Table 25: Grabbing with values of [19]—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sN, sMuMi, (0,∞) ∅
a
(2)
1 ∅ sMuMa, (0, 1/2]

the relationship between pure and mixed strategy fairness equilibria and on
the structure of the sets of the scaling parameters for which a pure-strategy
outcome is fair. The latter one can be used to automatically compute all
pure-strategy and some mixed-strategy fairness equilibria. This is done with
Python/SymPy in this work, too.
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Table 26: Battle of the Sexes with values of [19]

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 2|1 0|0
a
(2)
1 0|0 1|2

Table 27: Battle of the Sexes with values of [19]—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sN, sMuMa, (0,∞) sMuMi, (0, 1]

a
(2)
1 sMuMi, (0, 1/2] sN, sMuMa, (0,∞)
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Table 34: Ultimatum

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 10|0 0|0
a
(2)
1 9|1 0|0
a
(3)
1 8|2 0|0
a
(4)
1 7|3 0|0
a
(5)
1 6|4 0|0
a
(6)
1 5|5 0|0
a
(7)
1 4|6 0|0
a
(8)
1 3|7 0|0
a
(9)
1 2|8 0|0

a
(10)
1 1|9 0|0
a
(11)
1 0|10 0|0

Table 35: Ultimatum—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 N, ∅ N, MuMi, (0,∞)

a
(2)
1 ∅ MuMi, ∅
a
(3)
1 ∅ MuMi, ∅
a
(4)
1 ∅ MuMi, ∅
a
(5)
1 ∅ MuMi, ∅
a
(6)
1 ∅ MuMi, ∅
a
(7)
1 ∅ MuMi, ∅
a
(8)
1 ∅ MuMi, ∅
a
(9)
1 ∅ MuMi, ∅

a
(10)
1 ∅ MuMi, ∅
a
(11)
1 MuMa, ∅ MuMa, MuMi, ∅
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Table 36: (Pure) Coordination

u1(·) a
(1)
2 a

(2)
2

a
(1)
1 1 0

a
(2)
1 0 1

Table 37: (Pure) Coordination—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sN, sMuMa, (0,∞) sMuMi, (0, 1]

a
(2)
1 sMuMi, (0, 1] sN, sMuMa, (0,∞)

Table 38: Assurance

u1(·) a
(1)
2 a

(2)
2

a
(1)
1 2 0

a
(2)
1 0 1

Table 39: Assurance—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sN, sMuMa, (0,∞) sMuMi, (0, 1/2]

a
(2)
1 sMuMi, (0, 1/2] sN, sMuMa, (0,∞)

Table 40: Stag Hunt

u1(·) a
(1)
2 a

(2)
2

a
(1)
1 10 0

a
(2)
1 6 4
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Table 41: Stag Hunt—Results

Results a
(1)
2 a

(2)
2

a
(1)
1 sN, sMuMa, (0,∞) ∅
a
(2)
1 ∅ sN, sMuMi, (0,∞)

Table 42: Farmer 1

u1(·)|u2(·) a
(1)
2 “pay” a

(2)
2 “steal”

a
(1)
1 “stall” 9|10 −11|20

a
(2)
1 “no stall” 10|5 10|5

Table 43: Farmer 1—Results

Results a
(1)
2 “pay” a

(2)
2 “steal”

a
(1)
1 “stall” sMuMa, (0, 1/20) ∅

a
(2)
1 “no stall” N, MuMi, (0,∞) N, MuMi, (0,∞)

Table 44: Farmer 2

u1(·)|u2(·) a
(1)
2 “pay” a

(2)
2 “steal”

a
(1)
1 “stall” 10|10 −10|20

a
(2)
1 “no stall” 10|5 10|5

Table 45: Farmer 2—Results

Results a
(1)
2 “pay” a

(2)
2 “steal”

a
(1)
1 “stall” sMuMa, ∅ ∅

a
(2)
1 “no stall” N, MuMi, (0,∞) N, MuMi, (0,∞)
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Table 46: Farmer 3

u1(·)|u2(·) a
(1)
2 “pay” a

(2)
2 “steal money box”

a
(1)
1 “stall” 9|10 −100|100

a
(2)
1 “no stall” 10|5 10|0

Table 47: Farmer 3—Results

Results a
(1)
2 “pay” a

(2)
2 “steal money box”

a
(1)
1 “stall” sMuMa, (0, 1/180) ∅

a
(2)
1 “no stall” sN, MuMi, (0,∞) MuMi, ∅
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