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Abstract

Since the beginning of the 20th century, quotients of complex tori by groups acting freely, also
known as generalized hyperelliptic manifolds, have been studied extensively (e.g. [BF08], [ES10],
[UY76], [Lan01], [CD20b], [Dem22], [DG22]). In [DG22], the authors observed that actions on
complex tori that are rigid and free are only possible in dimension at least 4. However, by
allowing isolated canonical singularities, rigid quotients in dimension 3 do also occur. A notable
example is Beauville’s construction X3,3 = E3/⟨ζ3 · id⟩, where E = C/Z[ζ3] is Fermat’s elliptic
curve (cf. [Bea83]). Despite some previous work on this topic (cf. [Ogu96c], [OS01], [BG21]), a
complete classification has not yet been established.

This thesis focuses on studying rigid quotients of complex tori with isolated canonical singularities
in dimension 3. More precisely, we provide a classification of all finite groups G that admit a holo-
morphic, faithful, and translation-free action with isolated fixed points on a three-dimensional
complex torus T such that the quotient X = T/G is rigid and has canonical singularities. More-
over, we classify the corresponding quotients up to biholomorphism and homeomorphism, and
we construct crepant terminalizations and resolutions of the singular quotients that preserve the
rigidity, yielding rigid smooth manifolds.

In joint work with Christian Gleissner ([GK22], [GK24]), we show that any admissible group G
is isomorphic to one of the following:

Z3, Z7, Z9, Z14, Z2
3, Z3

3, He(3) = Z2
3 ⋊ Z3, or Z9 ⋊ Z3.

Furthermore, we provide a fine classification of the quotients: They form 21 biholomorphism
classes and 15 homeomorphism classes. For each class, we give an explicit description of the
torus and the action. Using methods from toric geometry, we construct crepant terminalizations
and resolutions of singularities as required above.

For the classification of the groups, we first determine the possible singularities and then apply
the orbifold Riemann-Roch formula and methods from group and representation theory. To
achieve a fine classification of the quotients, we rely extensively on the observation that the
orbifold fundamental group of a torus quotient is a crystallographic group, allowing us to use
Bieberbach’s structure theorems and their geometric consequences. We adapt the classification
framework from [DG22] and [HL21] to the singular case.

During the investigation of possible linear parts of affine linear homeomorphisms between quo-
tients, we encountered a homomorphism from a finite group to the group of semi-projective trans-
formations of a finite-dimensional vector space. Such a map is referred to as a semi-projective
representation. We study them in the last chapter of the thesis and extend Schur’s concept of
a representation group for projective representations to the semi-projective case, assuming the
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field to be algebraically closed. This work was carried out in collaboration with Massimiliano
Alessandro and Christian Gleissner in [AGK23].



Zusammenfassung

Seit Beginn des 20. Jahrhunderts werden Quotienten komplexer Tori nach freien Gruppen-
wirkungen, welche auch als verallgemeinerte hyperelliptische Mannigfaltigkeiten bekannt sind,
ausführlich untersucht (z.B. [BF08], [ES10], [UY76], [Lan01], [CD20b], [Dem22], [DG22]). In
[DG22] bewiesen die Autoren, dass Wirkungen auf komplexen Tori, die starr und frei sind, erst
ab Dimension 4 möglich sind. Erlaubt man jedoch isolierte kanonische Singularitäten, so treten
starre Quotienten bereits in Dimension 3 auf. Ein Beispiel dafür ist Beauvilles Konstruktion
X3,3 = E3/⟨ζ3 · id⟩, wobei E = C/Z[ζ3] Fermats elliptische Kurve bezeichnet (s. [Bea83]). Auch
wenn es einige frühere Arbeiten zu diesem Thema gibt (s. [Ogu96c], [OS01], [BG21]), liegt
bislang keine vollständige Klassifikation vor.

Diese Arbeit konzentriert sich auf die Untersuchung starrer Quotienten von komplexen Tori
mit isolierten kanonischen Singularitäten in Dimension 3. Genauer gesagt klassifizieren wir alle
endlichen Gruppen G, die eine holomorphe, treue und translationsfreie Wirkung mit isolierten
Fixpunkten auf einem dreidimensionalen komplexen Torus T erlauben mit der Eigenschaft, dass
der Quotient X = T/G starr ist und kanonische Singularitäten hat. Darüber hinaus klassifizieren
wir die Quotienten bis auf Biholomorphie und Homöomorphie und konstruieren krepante Ter-
minalisierungen sowie Auflösungen der singulären Quotienten, die die Starrheit erhalten und zu
starren glatten Mannigfaltigkeiten führen.

In Zusammenarbeit mit Christian Gleissner ([GK22], [GK24]) zeigen wir, dass eine solche Gruppe
G isomorph zu einer der folgenden Gruppen ist:

Z3, Z7, Z9, Z14, Z2
3, Z3

3, He(3) = Z2
3 ⋊ Z3 oder Z9 ⋊ Z3.

Außerdem klassifizieren wir die zugehörigen Quotienten vollständig: Sie bilden 21 Biholomorphie-
und 15 Homöomorphieklassen. Für jede Klasse geben wir eine konkrete Beschreibung des Torus
und der Wirkung an. Mithilfe von Methoden der torischen Geometrie konstruieren wir krepante
Terminalisierungen sowie Auflösungen von Singularitäten mit den gewünschten Eigenschaften.

Für die Klassifikation der Gruppen bestimmen wir zunächst die möglichen Singularitäten und
wenden dann die Orbifold-Riemann-Roch-Formel sowie Methoden aus der Gruppen- und Darstel-
lungstheorie an. Um die feine Klassifikation der Quotienten zu erreichen, nutzen wir die Tatsache,
dass die Orbifold-Fundamentalgruppe eine kristallographische Gruppe ist, was uns erlaubt, die
Struktursätze von Bieberbach und deren geometrische Konsequenzen anzuwenden. Dabei adap-
tieren wir das in [DG22] und [HL21] entwickelte Konzept zur Klassifikation auf den singulären
Fall.

Im Zuge der Bestimmung möglicher Linearteile von affin-linearen Homöomorphismen zwischen
Quotienten stießen wir auf einen Homomorphismus von einer endlichen Gruppe in die Gruppe
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semi-projektiver Transformationen eines endlich-dimensionalen Vektorraums. Solche Abbildun-
gen nennt man semi-projektive Darstellungen. Diese werden im letzten Kapitel der Arbeit behan-
delt. Dort erweitern wir Schurs Konzept der Darstellungsgruppe von projektiven Darstellungen
auf den semi-projektiven Fall, unter der Voraussetzung, dass der zugrunde liegende Körper alge-
braisch abgeschlossen ist. Dieser Teil der Arbeit entstand in Zusammenarbeit mit Massimiliano
Alessandro und Christian Gleissner (s. [AGK23]).



1. Introduction

A generalized hyperelliptic manifold is defined as a quotient of a complex torus by a free action
of a non-trivial finite group which does not contain translations. Note that in dimension one, no
hyperelliptic manifolds exist, since finite group actions on elliptic curves always have fixed points.
The study of torus quotients has been a classic subject of research, dating back to the early 20th
century. Bagnera and de Franchis [BF08] as well as Enriques and Severi [ES10] provided a full
classification in the case of surfaces. They identified seven families of quotients and established
that all occurring groups are cyclic. Their work earned them the prestigious Bordin prize.

Later on, in the 1970s, Uchida and Yoshihara expanded previous work by producing a complete
list of all finite groups that give rise to hyperelliptic threefolds [UY76]. This finite list consists
of 16 abelian groups and the non-abelian dihedral group D4 of order 8. The classification of the
resulting quotients for the abelian groups was settled by Lange [Lan01] using results of Fujiki
[Fuj88], while Catanese and Demleitner [CD20b] completed the classification by addressing the
case involving the group D4. It is worth noting that quotients by the dihedral group were also
discussed in [DHS09] and [Joh19] as examples of Ricci-flat Riemannian manifolds with complex
structure. Independently of the work just mentioned, Oguiso and Sakurai [OS01] discovered
hyperelliptic threefolds with groups Z2

2 and D4 in their investigation of Calabi-Yau threefolds
that arise as free torus quotients.

Moving to dimension 4, Demleitner provided a complete list of the groups associated to hy-
perelliptic fourfolds in his PhD-thesis ([Dem20]). This list includes 79 groups, making a full
classification of all possible quotients quite extensive. Rather than attempting such an exhaus-
tive classification, Demleitner and Gleissner focused on classifying those quotients that are rigid
(cf. [DG22]). Under this assumption, it turned out that the group must be either isomorphic
to Z2

3 or to the Heisenberg group He(3) of order 27. They observed furthermore that rigid
hyperelliptic manifolds do not exist in dimensions less than 4 (cf. [DG22, Theorem 1.1]).

However, when allowing the quotient to have isolated canonical singularities, rigid examples do
occur in dimension 3 (cf. [Bea83], [BG21]). It is important to note that in dimension 2, no such
examples exist, as the Kodaira dimension of rigid surfaces is either −∞ or 2 (cf. [BC18]). This
naturally gives rise to three key questions:

(1) Is it possible to provide an entire list of all finite groups allowing a holomorphic, faithful,
and translation-free action on a three-dimensional torus such that the quotient is rigid and
has isolated canonical singularities?

(2) Can one classify the corresponding quotients up to biholomorphism and homeomorphism?

(3) Do there exist resolutions (crepant terminalizations) of the singular quotients that preserve
the rigidity?

1



2 CHAPTER 1. INTRODUCTION

The primary focus of this thesis is to address these questions in full. In fact, the problems posed
in these questions have been solved entirely.

However, before presenting the new results, we review the partial findings that were previously
known. If the group action preserves the volume form of the torus, the singularities of the
quotients are Gorenstein, and the quotients X admit crepant resolutions ψ : X̂ ! X resulting
in smooth rigid Calabi-Yau three-folds. Oguiso studied smooth Calabi-Yau three-folds Z by
analyzing possible contractions f : Z ! W and subdividing the pairs (Z, f) into six classes
based on certain numerical invariants (cf. [Ogu93], [Ogu96a]). Further details are provided in
Section 4.1. The pairs (X̂, ψ) mentioned above are categorized as “fibered Calabi-Yau three-
folds of type III0”. In the simply connected case, Oguiso offered a complete classification in
[Ogu96c]: The group is cyclic of order 3 or 7, and for each group, there exists one and only one
quotient up to biholomorphism. Together with Sakurai, Oguiso also explored the case where
the quotients have non-trivial fundamental group. Here, the authors showed that the group is
isomorphic to either Z2

3 or He(3), and they described the linear part of the actions (cf. [OS01]).
However, different choices for the translation part of the action may result in quotients that are
not biholomorphic or even not homeomorphic, leaving the finer classification an open problem.

The complementary case where the geometric genus of the quotient is zero, was even less well
understood. Bauer and Gleissner investigated specific cases under additional restrictions on the
group actions and the torus, using product-quotient techniques (cf. [BG21]).

Now, let us address the questions raised earlier. The first step is to analyze the relevant groups,
which leads to one of the key results presented in the joint paper with Christian Gleissner [GK24,
Theorem 3.6]. It forms one of the main theorems of the thesis:

Main Theorem 1. Let G be a finite group acting holomorphically, without translations, and
with isolated fixed points on a complex torus T of dimension 3, such that X = T/G is rigid with
canonical singularities. Then G is isomorphic to one of the following groups:

Z3, Z7, Z9, Z14, Z2
3, Z3

3, He(3), or Z9 ⋊ Z3.

Let us briefly outline the strategy to derive this list. First, we determine the possible orders
of automorphisms of three-dimensional complex tori, which we find to be bounded above by
18. We then show that all stabilizer groups are cyclic, calculate their possible orders, and
characterize the types of singularities that can arise. With this information, we apply the orbifold
Riemann-Roch formula to deduce the possible baskets of singularities. By counting fixed points
of elements, analyzing p-Sylow subgroups, and using techniques from representation theory, we
ultimately reach the desired classification. Note that the rigidity-condition imposes very strong
constraints concerning the representation of the group which describes the linear parts of the
action. Some of the proofs are supported by computer-aided calculations using the computer
algebra system MAGMA ([BCP97]), specifically drawing on its database of small groups and
precomputed character tables.

Note that Birkenhake, González, and Lange previously provided a complete list of all possible
finite automorphism groups of three-dimensional complex tori ([BGL99]). In theory, one could
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follow their list and determine which of these groups (and their subgroups) allow rigid actions
with isolated fixed points that lead to canonical singularities. However, due to the length of their
list and the restrictive nature of the rigidity condition, we decided to derive the classification
from scratch.

Knowing the possible groups, we can proceed to answer the second question, which is to classify
the corresponding quotients up to biholomorphism and homeomorphism. The classification is
divided into two cases: first, the quotients with pg = 1, and second, those with pg = 0. In both
cases, the work was carried out in collaboration with Christian Gleissner, and the results are
presented in [GK22, Theorem 1.1] and [GK24, Theorems 1.1 and 1.2], respectively.

Main Theorem 2. Let G be a finite group admitting a rigid, holomorphic, and translation-free
action on a three-dimensional complex torus T with finite fixed locus and such that the quotient
X = T/G has canonical singularities.

(1) If pg(X) = 1, then there are precisely 8 biholomorphism classes of quotients, which are
pairwise topologically distinct.

(2) If pg(X) = 0, then there are precisely 13 biholomorphism classes of quotients, which form
11 homeomorphism classes.

In total, the quotients X = T/G form 21 biholomorphism classes and 15 homeomorphism
classes.1 Moreover, the diffeomorphism and homeomorphism classes coincide.

In Table 4.1 and Table 4.2 of Section 4.3, we give explicit descriptions for the tori and the
actions for one representative of each biholomorphism class. We want to point out that for the
presentation of the classification in this thesis, we decided to distinguish two cases depending on
whether the group is cyclic or not instead of treating the cases of the different geometric genera
of the quotients separately.

Since holomorphic maps between complex tori are affine linear, any action Φ: G ↪! Bihol(T )

can be expressed as
Φ(g)(z) = ρ(g) · z + τ(g),

where ρ(g) ∈ GL(3,C) maps the lattice of T to itself and represents the linear part and τ(g) ∈ T

the translation part of Φ(g). The map ρ : G! GL(3,C) is a group homomorphism, known as the
analytic representation, while the map τ : G! T is not a homomorphism, but a 1-cocycle, hence
defines a class in H1(G,T ), where the G-module structure of T is induced by ρ. Conversely,
any class in H1(G,T ) together with ρ yields a well-defined action on T , up to conjugation by a
translation. Therefore, the general strategy for classification can be outlined as follows:

Strategy for the classification.

(1) For each group G in Theorem 1, determine all possible representations ρ : G ↪! GL(3,C)
fulfilling a “rigidity” and an “integrality” condition, up to equivalence of representations
and automorphisms of G.

(2) For each group G and each representation ρ, do the following:
1Note that it may happen that quotients with different geometric genus are homeomorphic.
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(a) Determine all lattices Λ that have a G-module structure via ρ.

(b) For each T = C3/Λ, determine all cohomology classes in H1(G,T ) that lead to an
action with finite fixed locus and fix a representative τ for each class.

(c) Decide which quotients of T by the actions given by ρ and τ are biholomorphic or
homeomorphic, respectively.

(3) If there are groups G admitting more than one representation ρ, analyze which biholomor-
phism and homeomorphism classes coming from different representations coincide.

We now provide more details on point (2c): How can we determine whether two classes in
H1(G,T ) yield biholomorphic or homeomorphic quotients? To address this, we adapt the clas-
sification framework for free torus quotients, as described in [DG22] and [HL21], to the singular
case. More precisely, we assume that the action of G on T = Cn/Λ is free in codimension 1.
Each class [τ ] ∈ H1(G,T ) ≃ H2(G,Λ) corresponds to an extension

0 −! Λ −! Γ −! G −! 1

of G by the lattice Λ. The group Γ has a geometrical interpretation: It represents the group of all
lifts of all elements in G to Cn, also known as the orbifold fundamental group, and coincides with
the fundamental group of the regular locus of X = T/G. Two quotients X and X ′ corresponding
to classes [τ ] and [τ ′] are homeomorphic if and only if the orbifold fundamental groups Γ and Γ′

are isomorphic. An important observation is that these groups embed into the Euclidean group
E(2n) = R2n⋊O(2n) and that they are discrete and cocompact, hence they are crystallographic
groups. According to Bieberbach’s structure theorems ([Bie11], [Bie12]), isomorphisms between
crystallographic groups are given by conjugation with affine linear transformations. By analyzing
the implications for the tori and the quotients in greater detail, we obtain an action of a certain
group (consisting of the linear parts of potential affine linear homeomorphisms) on H1(G,T ).
Two quotients are homeomorphic if and only if they belong to the same orbit under this action.
For the biholomorphic classification, we restrict to those affine transformations whose linear parts
are C-linear. Once the possible linear parts are determined, the division into the orbits can be
carried out with the help of computer algebra systems (we use MAGMA).

While determining the possible linear parts in the case where G = He(3), we had to determine
a “lift” of a homomorphism

f : Stab(χ) −! PGL(n,C)⋊Aut(C)

to GL(n,C)⋊Aut(C). This problem led to a broader study of such homomorphisms, namely semi-
projective representations, and lifting problems. In collaboration with Massimiliano Alessandro
and Christian Gleissner, we explored these topics in depth and presented the results in the article
[AGK23]. Chapter 6 of this thesis covers the contents of this paper.

Finally, using methods from toric geometry, we can give a positive answer to the last question
(see [GK24, Proposition 6.1]):

Main Theorem 3. All quotients X in Theorem 2 admit a rigid crepant terminalization and a
rigid resolution.
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In addition to this introduction, this thesis comprises five chapters and an appendix. We now
roughly explain the content of the individual parts and indicate which results were achieved in
joint work.

• In Chapter 2, we introduce the theoretical foundations about complex tori, holomorphic
maps between them, and abelian varieties of CM-type, and present the necessary notions
and tools from representation theory and group cohomology. Moreover, we discuss crys-
tallographic groups and Bieberbach’s structure theorems. Finally, we give an overview of
rigid manifolds as well as (canonical) singularities and their properties.

• Chapter 3 covers the classification of all finite groups allowing a rigid, holomorphic, faithful,
and translation-free action on a three-dimensional complex torus with isolated fixed points
such that the quotient has canonical singularities. Here, we give a proof of Main Theorem 1.
The classification was achieved in collaboration with Christian Gleissner (cf. [GK24]).

• In Chapter 4, we deal with the classification of the corresponding quotients up to bi-
holomorphism and homeomorphism. After recalling known results and the connection to
Calabi-Yau three-folds and their classification, we explain the classification strategy, and
finally provide the fine classification, which proves Main Theorem 2. This chapter is again
based on joint work with Christian Gleissner. Section 4.2 and the classification of the
quotients with geometric genus pg(X) = 1 is presented in [GK22], the classification in the
case pg = 0 in [GK24].

• In Chapter 5, we first introduce some tools from toric geometry and then construct crepant
terminalizations and resolutions of singularities that preserve the rigidity. This proves Main
Theorem 3, and is part of the afore mentioned paper [GK24].

• Chapter 6 is about the joint work with Massimiliano Alessandro and Christian Gleissner
[AGK23], where we study semi-projective representations and extend Schur’s concept of a
representation group for projective representations to the semi-projective case in the case
that the underlying field is algebraically closed.

• In Appendix A, we provide our MAGMA-codes, which we use throughout the thesis.

Notation 1.0.1. In this thesis, all varieties are defined over the field of complex numbers C, and
we use standard notation from complex algebraic geometry, see for example [GH78] or [Har77].
The notions concerning complex tori basically follow those in [BL04]. Moreover, we use the
following notation and conventions:

• For a complex torus T , Bihol(T ) denotes the group of biholomorphic self-maps of T , whereas
Aut(T ) stands for the group of linear biholomorphisms of T .

• For an endomorphism α of a finite dimensional vector space, we denote its set of eigenvalues
by Eig(α).

• Let p : X ! Y be a covering; then Deck(p) denotes its group of covering isomorphisms.

• If G acts on a set X, then for x ∈ X, Stab(x) = {g ∈ G | g · x = x} denotes the stabilizer
(isotropy) group of x.

• By Zd, we denote the cyclic group of order d.
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• GL(n,K) and SL(n,K) are the general linear and special linear groups of n × n matrices
over a field K, respectively, where “special” means that determinants of the matrices are
equal to 1.

• O(n) and U(n) denote the groups of orthogonal and unitary n× n matrices, respectively.

• By AGL(n,K), we denote the group of affine linear transformations of Kn, where K is any
field.

• Dn = ⟨s, t | s2 = tn = 1, sts = t−1⟩ is the dihedral group of order 2n.

• Sn and An denote the symmetric and alternating group on the set {1, . . . , n}, respectively.

• He(3) = ⟨g, h, k | g3 = h3 = k3 = [g, k] = [h, k] = 1, [g, h] = k⟩ is the Heisenberg group of
order 27.

• Given a positive integer d, we fix the d-th primitive root of unity ζd := exp(2πid ), and Φd

denotes the d-th cyclotomic polynomial.

The notions of toric geometry used in Chapter 5 are explained in that chapter, and the conven-
tions needed in Chapter 6 are introduced within that part of the thesis.



2. Preliminaries

In this chapter, we establish the theoretical foundations necessary for this thesis. We begin
with introducing the main objects of study, namely complex tori, holomorphic maps between
them, and important properties of finite automorphisms and their fixed points. Special projective
complex tori with many automorphisms, known as “abelian varieties of CM-tpye”, are introduced
in the subsequent section.
Since holomorphic maps between complex tori are affine linear, group actions on them have a
particular shape: They can be described as a combination of a representation and a class in the
first cohomology group H1(T,G). Therefore, it is essential to develop a basic understanding of
representation and character theory of finite groups and group cohomology.
Next, we introduce crystallographic groups and explain Bieberbach’s structure theorems as their
geometrical consequences will be crucial for the classification of torus quotients.
Since the focus of this thesis is on rigid quotients, we will next provide an overview of rigid
manifolds and actions. Finally, we will discuss certain notions and properties of singularities, as
the quotients involved in our classification will be singular.

Most of the results will be presented without proof. The interested reader can find them in the
respective literature.

2.1. Complex tori and biholomorphisms

We start with the introduction and collection of basic notions and properties of complex tori and
holomorphic maps between them. For more details, we refer the reader to the textbook [BL04].

Definition 2.1.1. Let V be a finite dimensional complex vector space.

(1) A lattice in V is a discrete subgroup of maximal rank in V .

(2) A complex torus is a quotient T = V/Λ of V by a lattice Λ that acts by addition on V .

(3) A complex torus T is called an abelian variety if it is a projective variety, meaning that it
admits an embedding into some projective space PN .

Remark 2.1.2.

(1) A complex torus T = V/Λ is a connected compact complex manifold of the same dimension
as V . The addition on V induces a group structure on V so that T is a compact complex
Lie group.

(2) Unless otherwise stated, we will assume that V = Cn. Note furthermore that Λ is isomor-
phic to Z2n as Z-module.

7
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(3) In the following, we will mostly drop the square brackets to denote residue classes modulo
Λ and just write z ∈ T .

Proposition 2.1.3. Let f : T ! T ′ be a holomorphic map that is induced by a linear map from
V to V ′.

(1) The image im(f) is a subtorus of T ′.

(2) The kernel ker(f) is a closed subgroup of T , and the connected component (ker(f))0 con-
taining 0 is a subtorus of T of finite index in ker(f).

Holomorphic maps between complex tori have a particular simple shape: They are all affine
linear.

Proposition 2.1.4. Let T = V/Λ and T ′ = V ′/Λ′ be two complex tori and F : T ! T ′ a
holomorphic map. Then F is induced by an affine linear map

f : V −! V ′, z 7! Cz + d,

where C ∈ HomC(V, V
′) with C(Λ) ⊂ Λ′. The linear map C and the class of d in T ′ are uniquely

determined by F .
We call C the linear part of F and d (viewed as element in T ′) the translation part of F .

Note that the linear maps T ! T ′ are precisely the holomorphic maps that are compatible with
the group structures of the tori. Clearly, F is biholomorphic if and only if C is an isomorphism.

Notation 2.1.5. For a complex torus T , we introduce the following notions:

• Hol(T ) := {f : T ! T | f is holomorphic}

• End(T ) := {f : T ! T | f is holomorphic and linear}

• Bihol(T ) := {f : T ! T | f is biholomorphic}

• Aut(T ) := {f : T ! T | f is biholomorphic and linear}

For each of these Z-algebras, adding the index Q means tensoring the algebra with Q over Z.

By sending a holomorphic map T ! T to its linear part, we obtain two homomorphisms of
Z-algebras

ρ : Hol(T ) −! End(V ) and ρΛ : Hol(T ) −! End(Λ),

which are called the analytic and rational representation, respectively. We can extend them both
to HolQ(T ) = Hol(T )⊗Z Q. They are related as follows:

Proposition 2.1.6. The extended rational representation

ρΛ ⊗ idC : HolQ(T )⊗ C −! EndC(Λ⊗ C) ≃ EndC(V × V )

is equivalent to the direct sum ρ⊕ ρ.
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Corollary 2.1.7. The characteristic polynomial of ρ(f) ⊕ ρ(f) has integer coefficients for all
f ∈ Hol(T ).

In this thesis, we are mainly interested in actions of finite groups on complex tori, so all occurring
biholomorphisms f ∈ Bihol(T ) have finite order. Let d be the order of such a biholomorphism
f . Then all eigenvalues of ρ(f) are d-th roots of unity. Since the characteristic polynomial of
ρ(f) ⊕ ρ(f) has integer coefficients, this implies that it is a product of cyclotomic polynomials.
Analyzing this in more details leads to very strong constraints for the possible orders of the
automorphisms, which will be very helpful for the classification of the possible groups. More
precisely, we will use the following properties of cyclotomic polynomials and roots of unity:

Remark 2.1.8.

(1) The Euler totient function is given by

φ : Z>0 −! Z>0, d 7! #{m | 1 ≤ m ≤ d− 1, gcd(m, d) = 1}

and counts the number of units in Zd. It has the following properties:

(a) It is a multiplicative function in the following sense: If d1, d2 ∈ Z>0 are coprime, then
φ(d1d2) = φ(d1)φ(d2).

(b) For any prime number p and k ∈ Z>0, it holds that φ(pk) = pk−1(p− 1).

(2) The minimal polynomial of a primitive d-th root of unity over Q is given by the d-th
cyclotomic polynomial

Φd :=
∏
ζ∈µ∗d

(X − ζ) ∈ Z[X],

where µ∗d is the set of primitive d-th roots of unity. Its degree equals φ(d).

Lemma 2.1.9 ([Dem22], Lemma 3.1.6). Let α ∈ Aut(T ) be a linear automorphism of order d.
For each positive divisor k of d, we define

νk := max{ν ≥ 0 | Φνk divides the characteristic polynomial of α⊕ α}.

Furthermore, we denote by mult(ζ) the (algebraic) multiplicity of a d-th root of unity ζ as eigen-
value of α. Then the following holds:

(1) The function
multk : µ

∗
k −! Z, ζ 7! mult(ζ) + mult(ζ),

is constant and equal to νk for any positive divisor k of d.

(2) 2 dim(T ) =
∑

k|d φ(k)νk.

Since rigid actions on three-dimensional complex tori are never free (cf. [DG22, Theorem 1.1]),
we have to deal with fixed points. Next, we clarify the terminology and quote a useful lemma
for counting the number of fixed points of automorphisms.
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Notation 2.1.10. Let T be a complex torus and f ∈ Bihol(T ) a biholomorphism. Then we
denote by Fix(f) the set of fixed points of f . If G ⊂ Bihol(T ) is a finite group, then Fix(G)

denotes the set of all points in T with non-trivial stabilizer group and we will refer to it as the
set of fixed points or the fixed locus.

Remark 2.1.11.

(1) A biholomorphism f(z) = ρ(f)z + d of T acts with fixed points if and only if the equation

(ρ(f)− id) · z = −d

has a solution in T . In particular, if f acts freely, then 1 is an eigenvalue of ρ(f).

(2) If f acts with fixed points and 1 is an eigenvalue of ρ(f), then its fixed locus has positive
dimension. In particular, if f has order d and acts non-freely, then the fixed locus of the
group generated by f is finite if and only if all the eigenvalues of ρ(f) are primitive d-th
roots of unity.

Lemma 2.1.12 ([BL04], Corollary 13.2.4, Proposition 13.2.5). Let T be a complex torus of
dimension n and α ∈ Aut(T ) an automorphism of order d whose eigenvalues are all primitive
d-th roots of unity. Then the following holds:

#Fix(α) =

p2n/φ(d), if d = ps for some prime p,

1, else.

Finally, we discuss the concept of isogenies of complex tori. These induce an equivalence relation
on the set of complex tori, which is somewhat coarser than isomorphism, but provides sufficient
information in many cases.

Definition 2.1.13. An isogeny of two complex tori T and T ′ is a surjective linear map T ! T ′

with finite kernel.

Remark 2.1.14. A linear map f : T ! T ′ is an isogeny if and only if it is surjective and the
dimensions of T and T ′ coincides.

Remark 2.1.15. Let K ⊂ T be a finite subgroup. The quotient T/K is a complex torus, and the
quotient map p : T ! T/K is an isogeny. Conversely, up to isomorphism, every isogeny is of this
type.

Proposition 2.1.16.

(1) Isogenies define an equivalence relation on the set of complex tori.

(2) An element in End(T ) is an isogeny if and only if it is a unit in EndQ(T ).

Definition 2.1.17. For m ∈ Z>0, the kernel of the map given by multiplication by m is called
the group of m-torsion points of T and is denoted by T [m].
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Proposition 2.1.18. For any positive integer m ∈ Z>0, the group of m-torsion points fulfills:

T [m] ≃ (Zm)2n,

where n denotes the dimension of T . In particular, the multiplication map is an isogeny.

Example 2.1.19. Let Eτ := C/(Z+ τZ) be an elliptic curve. Then E[m] is spanned by 1
m and τ

m .

2.2. Abelian varieties of CM-type

Given a complex torus T , obviously ± idX are automorphisms of T . It is well-known that there
are no further automorphisms for a general torus, so tori with automorphism groups different
from {± idT } are quite special.
For example, in the one-dimensional case when T = E is an elliptic curve, the only examples
of complex tori that have an automorphism of order at least 3 are Fermat’s elliptic curve E =

C/Z[ζ3], whose lattice is given by the ring of Eisenstein integers Z[ζ3], and the harmonic elliptic
curve E = C/Z[i], where Z[i] denotes the ring of Gaussian integers (cf. [BL04, Corollary 13.3.4]).
Looking closer at these two lattices, we observe that they both are the ring of integers of a number
field, namely Q(ζ3) and Q(i), respectively. This in fact is not a coincidence. Starting with special
number fields, one can construct complex tori (in any dimension) that have automorphisms of
higher order, so-called “abelian varieties of CM-type” (“CM” stands for “complex multiplication”),
which will be important for the classification of the quotients in this thesis.

Definition 2.2.1. Let K be a number field, i.e., a finite extension Q ⊂ K.

(1) An embedding σ : K ↪! C is called real if its image is contained in R, and complex other-
wise.

(2) The complex conjugate of an embedding σ : K ↪! C is defined as

σ : K ↪−! C, a 7! σ(a).

(3) K is called totally real (complex) if every embedding of K into C is real (complex).

(4) K is called a CM-field if it is a totally complex quadratic extension of a totally real number
field over Q.

Example 2.2.2.

(1) Let d < 0 be a square-free integer. Then the imaginary quadratic field Q(
√
d) is a CM-field.

The totally real subfield is just the field of rationals.

(2) Any cyclotomic field Q(ζn) with n ≥ 3 is a CM-field: It is a totally imaginary quadratic
extension of the totally real field Q(ζn + ζ−1

n ).

Since any finite extension of Q is separable, the total number of embeddings of a number field
K into C equals the degree of the extension Q ⊂ K.
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Definition 2.2.3. Let K be a CM-field of degree 2n over Q. A CM-type of K is a set of n
pairwise different and not complex conjugate embeddings K ↪! C.

Definition 2.2.4. Let K be a CM-field and Φ = {σ1, . . . , σn} a CM-type of K. An abelian
variety T = Cn/Λ is said to be of CM-type (K,Φ) if there is an embedding ι : K ↪! EndQ(T )

such that ρ ◦ ι is equivalent to

diag(σ1, . . . , σn) : K ↪−! Mat(n× n,C), a 7! diag(σ1(a), . . . , σn(a)),

over C, where ρ denotes the analytic representation of T .

Remark 2.2.5. Let T be an abelian variety of CM-type (K,Φ). Then the embedding ι : K ↪!

EndQ(T ) induces an embedding of the ring of integers OK of K into the endomorphism algebra
End(T ) of T . Thus, we obtain an embedding

O∗
K ↪−! Aut(T )

of the group of units of OK into the automorphism group of T . In particular, if OK has more
units than ±1, the abelian variety T has many non-trivial automorphisms. Consider for example
the cyclotomic field K = Q(ζn) with n ≥ 3.

Next, we explain that for every CM-field K and CM-type Φ, there is in fact an abelian variety of
CM-type (K,Φ). For this, let [K : Q] = 2n. Then K ⊗Q R is a 2n-dimensional R-vector space,
and the CM-type Φ = {σ1, . . . , σn} induces a complex structure on it via

(σ1, . . . , σn)⊗ idR : K ⊗Q R ∼
−! Cn.

Proposition 2.2.6 ([Neu99], Proposition 5.2). Let Φ = {σ1, . . . , σn} be the CM-type of a CM-
field K. Then the ring of integers OK is a lattice of rank 2n in Cn via the embedding

OK ↪−! Cn, a 7! (σ1(a), . . . , σn(a)).

Definition 2.2.7. Let K be a CM-field with CM-type Φ. Then we define

T (K,Φ) := K ⊗Q R/OK .

If [K : Q] = 2n, then T (K,Φ) is a complex torus of dimension n.

Proposition 2.2.8 ([BL04], Proposition 13.3.1). The complex torus T (K,Φ) is an abelian variety
of CM-type (K,Φ).

Let T be any complex torus and f ∈ Aut(T ) a non-trivial automorphism of order d. Recall that
the set of fixed points of the action of ⟨f⟩ on T is finite if and only if all eigenvalues of f are
primitive d-th roots of unity. In this case, the characteristic polynomial of ρ(f) ⊕ ρ(f) equals
Φmd , where φ(d) ·m = 2n. In particular,
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• φ(d) divides 2n, and

• the set of eigenvalues of ρ(f) contains φ(d)/2 pairwise not complex conjugate primitive
d-th roots of unity.

Theorem 2.2.9 ([BL04], Theorem 13.3.2). Let T be a complex torus of dimension n and f an
automorphism of T of order d ≥ 3 such that the action of the group ⟨f⟩ has finite fixed locus.
Assume that the set of eigenvalues Φf of ρ(f) has precisely φ(d)/2 elements. Then Φf is a CM-
type of Q(ζd), and there are k = 2n/φ(d) abelian varieties T1, . . . , Tk of CM-type (Q(ζd),Φf )

such that
T ≃ T1 × . . .× Tk,

and f decomposes into a product of automorphisms of the Tν of order d.

Corollary 2.2.10. Let T be a complex torus and f ∈ Aut(T ) an automorphism of order d ≥ 3

such that φ(d) = 2 ·dim(T ) and such that all eigenvalues of ρ(f) are primitive d-th roots of unity.
Then the set of eigenvalues Φf of ρ(f) is a CM-type of Q(ζd), and T is an abelian variety of
CM-type (Q(ζd),Φf ).

A natural question is whether the number of isomorphism classes of abelian varieties of a given
CM-type is finite, and if so, how to compute it. In fact, the answer is yes, and the number
of isomorphism classes can be computed by an invariant of the number field K, which we will
introduce next.

Remark 2.2.11. Let K be any number field and OK its ring of integers. A fractional ideal of K
is a finitely generated OK-submodule of K. Together with the multiplication

a · b :=

{∑
finite

aibi | ai ∈ a, bi ∈ b

}
,

the set of fractional ideals defines an abelian group, the ideal group IK of K. Denote by PK the
subgroup of principal fractional ideals of K. Then the quotient

ClK := IK/PK

is called the ideal class group of K. This group is finite (cf. [Has63, III., §29, p. 542]), and its
order is called the class number of K.
Note that the class group measures how “close” the ring OK is to be a unique factorization domain.
More precisely, the ideal class group is trivial if and only if all ideals of OK are principal. Observe
that the ring of integers of a number field is a Dedekind domain, which is a unique factorization
domain if and only if it is a principal ideal domain.

Theorem 2.2.12 ([ST61], p. 60, Proposition 17). Let (K,Φ) be a CM-type. Then the number
of isomorphism classes of abelian varieties of CM-type (K,Φ) equals the number of ideal-classes
of K. In particular, it is finite.

If K is a cyclotomic field Q(ζd) and d is “small”, then the class number equals often 1, so there
is one and only one abelian variety for a given CM-type. More precisely, the following holds:



14 CHAPTER 2. PRELIMINARIES

Theorem 2.2.13 ([Was97], Theorem 11.1). Let d be a positive integer such that d ̸≡ 2 mod 4.
Then Q(ζd) has class number 1 if and only if d is one in the following list:

1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36,

40, 44, 45, 48, 60, 84.

Remark 2.2.14. Note that the numbers d ≡ 2 mod 4 are redundant since Q(ζ2n) = Q(ζn) if n
is odd.

2.3. Group actions on complex tori

Let G be a finite group that acts holomorphically on a complex torus T . Write the action as

Φ(g)(z) = ρ(g) · z + τ(g),

where ρ : G! GL(n,C) is the restriction of the analytic representation of T to G (we will call this
the analytic representation of the group action), and τ : G! T maps g to the translation part of
Φ(g). Since Φ is a group action, the map g 7! ρ(g) is a homomorphism, so a linear representation
of a finite group. In contrast, the translation part τ : G ! T is not a homomorphism but we
have for all g, h ∈ G the relation

τ(gh) = ρ(g)τ(h) + τ(g).

Such maps are so-called 1-cocycles in the theory of group cohomology.

Therefore, we need some basic knowledge about representation theory and group cohomology of
finite groups in order to understand actions of finite groups on complex tori better.

2.3.1. Representations and characters of finite groups

In this subsection, V always denotes a finite dimensional K-vector space, K is either R or C, and
G is a finite group. As a reference, we refer to [Isa76].

Definition 2.3.1. A representation of G on V is a homomorphism

ρ : G −! GL(V ).

The character of ρ is the function

χρ : G −! K, g 7! tr(ρ(g)).

The degree of ρ or χρ is the dimension of V , and we call ρ or χρ faithful if ρ is injective.

Remark 2.3.2. Let ρ : G! GL(V ) be a representation with character χρ. Since G is finite, ρ(g)
is diagonalizable (over C) for all g ∈ G and one can deduce:

g ∈ ker(ρ) ⇐⇒ χρ(g) = χρ(1) = deg(χρ).
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Hence, the faithfulness of ρ can be read off its character.

Remark 2.3.3. Let ρ : G! GL(V ) be a representation. Then the following holds:

(1) The degree of ρ fulfills
deg(ρ) = deg(χρ) = χρ(1).

(2) The character χρ : G! K is not a homomorphism in general, except if deg(χρ) = 1.

(3) The character χρ belongs to the K-vector space of class-functions:

CFK(G) := {f : G −! K | f is constant on the conjugacy classes of G}.

Example 2.3.4.

(1) The trivial representation is given by

ρtriv : G −! C∗, g 7! 1.

We denote its character by χtriv.

(2) Another important representation is the regular representation: Let V be the K-vector
space of maps from G to K. It has the natural basis {eg | g ∈ G}, where eg denotes the
map that sends g to 1 and all other elements of G to 0. The regular representation is
defined as

ρreg : G −! GL(V ), g 7!

[∑
h∈G

λheh 7!
∑
h∈G

λhegh

]
,

and its character, which is called the regular character of G, is given by

χreg(g) =

|G|, if g = 1G,

0, else.

(3) Let ρ1 : G ! GL(V1) and ρ2 : G ! GL(V2) be two representations. The direct sum of ρ1
and ρ2 is defined as

ρ1 ⊕ ρ2 : G −! GL(V1 ⊕ V2), g 7! [v1 ⊕ v2 7! ρ1(g)(v1)⊕ ρ2(g)(v2)],

and its character is χρ1⊕ρ2 = χρ1 + χρ2 .

(4) Let ρ1 : G1 ! GL(V1) and ρ2 : G2 ! GL(V2) be two representations of two finite groups
G1 and G2. The tensor product of ρ1 and ρ2 is defined as

ρ1 ⊗ ρ2 : G1 ×G2 −! GL(V1 ⊗ V2), (g1, g2) 7! [v1 ⊗ v2 7! ρ1(g1)(v1)⊗ ρ2(g2)(v2)],

and its character is χρ1⊗ρ2 = χρ1 · χρ2 , where (χρ1 · χρ2)(g1, g2) = χρ1(g1) · χρ2(g2).
In particular, by choosing G1 = G2 =: G and identifying G with the diagonal in G×G, it
follows that the product of two characters is again a character.
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(5) Let ρ : G! GL(V ) be a representation. Then we obtain in a natural way representations

Symq(ρ) : G −! GL(Symq(V )) and Λq(ρ) : G −! GL(ΛqV ).

For q = 2, their characters Sym2(χ) and Λ2(χ) fulfill:

Sym2(χ)(g) =
χ(g)2 + χ(g2)

2
and Λ2(χ)(g) =

χ(g)2 − χ(g2)

2
.

In particular, χ2 = Sym2(χ) + Λ2(χ).

(6) The dual representation of a representation ρ : G! GL(V ) is defined as

ρ∗ : G! GL(V ∗), g 7! ρ(g−1)∗,

and has as character χρ∗ = χρ.

Definition 2.3.5. A homomorphism of representations ρ1 : G ! GL(V1) and ρ2 : G ! GL(V2)

is a linear map f : V1 ! V2 such that for all g ∈ G, the diagram

V1 V1

V2 V2

ρ1(g)

f f

ρ2(g)

is commutative. We define HomG(V1, V2) to be the space of all homomorphisms of the represen-
tations ρ1 and ρ2. The representations ρ1 and ρ2 are equivalent if there is an isomorphism of
representations between them.

Clearly, equivalent representations have the same character, and a natural question is to ask
whether the converse holds. To answer this question, we need the following notions.

Definition 2.3.6. Let ρ : G! GL(V ) be a representation.

(1) A linear subspace W ⊂ V is called G-invariant if for all g ∈ G, it holds that ρ(g)(W ) ⊂W .

(2) The representation ρ is called irreducible if {0} and V are the only G-invariant subspaces
of V .

(3) The character χρ is called irreducible if ρ is irreducible. We define

Irr(G) := {irreducible characters of G}.

Remark 2.3.7. Let K = C, G be abelian, and ρ : G ! GL(V ) be a representation. Since G
is abelian, the automorphisms ρ(g) are simultaneously diagonalizable for all g ∈ G, and the
subspaces generated by the eigenvectors are G-invariant. Hence, ρ is irreducible if and only if
deg(ρ) = 1.

Theorem 2.3.8 (Maschke). Let ρ : G ! GL(V ) be a representation. Then any G-invariant
subspace has a G-invariant complement in V . In particular, ρ can be decomposed into a direct
sum of irreducible representations.



CHAPTER 2. PRELIMINARIES 17

Lemma 2.3.9 (Schur). Let ρ1 : G! GL(V1) and ρ2 : G! GL(V2) be two irreducible represen-
tations.

(1) If f ∈ HomG(V1, V2) and f ̸= 0, then f is an isomorphism.

(2) EndG(V ) = HomG(V, V ) is a skew-field.

Moreover, if K = C, then EndG(V ) = C · idV , and HomG(V1, V2) is either trivial or one-
dimensional.

To determine whether two representations are equivalent, we must compute the dimension of
the space HomG(V1, V2) of homomorphisms between them and establish that this dimension is
at least 1. Due to a theorem of Schur, we need to evaluate for this a certain inner product on
the space of class-functions CFK(G) in the characters of the representations. The inner product
is defined as follows:

Definition 2.3.10. The inner product on CFK(G) is defined as

⟨−,−⟩ : CFK(G)× CFK(G) −! K, (f1, f2) 7!
1

|G|
∑
g∈G

f1(g)f2(g).

The inner product on CFK(G) is a Hermitian product if K = C and an Euclidean product if
K = R.

Proposition 2.3.11. Let ρ : G! GL(V ) be a representation with character χρ. Then

dim(V G) = ⟨χρ, χtriv⟩,

where V G = {v ∈ V | ρ(g)(v) = v for all g ∈ G}.

Theorem 2.3.12 (Schur).

(1) Let ρ1 : G! GL(V1) and ρ2 : G! GL(V2) be two representations. Then

⟨χρ1 , χρ2⟩ = dimK(HomG(V1, V2)).

In particular, representations with the same character are equivalent.

(2) Let K = C, and let d be the number of conjugacy classes of G. Then G has precisely d

irreducible characters, which form an orthonormal basis of the vector space CFC(G).
In particular, a character χ is irreducible if and only if ⟨χ, χ⟩ = 1.

Remark 2.3.13.

(1) If K = R, the set Irr(G) of irreducible characters of G is no longer a basis of the vector
space of class functions CFR(G) in general. Nevertheless, it forms an orthogonal system.
In particular, any character χ can be written as

χ =
∑

η∈Irr(G)

⟨χ, η⟩
⟨η, η⟩

· η.
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(2) Consider the regular representation ρreg : G! GL(V ). Then

χreg =
∑

η∈Irr(G)

η(1)

⟨η, η⟩
· η.

In particular, the regular character contains any irreducible character, and

|G| = χreg(1) =
∑

η∈Irr(G)

η(1)2

⟨η, η⟩
.

If we want to determine all irreducible characters of a finite group, the following properties are
useful in addition to the previous remark.

Proposition 2.3.14. If K = C and χ is an irreducible character of G, then deg(χ) = χ(1)

divides the group order.

Lemma 2.3.15. Let K = C, and let G1 and G2 be two finite groups; then

Irr(G1 ×G2) = {χ1 · χ2 | χj ∈ Irr(Gj)}.

Example 2.3.16. Let G be a finite abelian group. We want to compute the irreducible characters
of G in the case K = C. Since any finite abelian group is the product of cyclic groups, it is
enough to consider cyclic groups by Lemma 2.3.15. Let Zn be the cyclic group of order n with
generator g and ζn a primitive n-th root of unity. Then the irreducible characters (which all
have degree 1 by Remark 2.3.7) are given by χj(g) := ζjn.

If K = C, the irreducible characters of a particular group G are usually presented in a character
table: This is a square d× d-matrix, where d is the number of conjugacy classes of G, and whose
rows correspond to the irreducible characters and the columns to the conjugacy classes. The
(i, j)-th entry of the matrix is the value of the i-th character on the j-th conjugacy class.

Example 2.3.17. We want to compute the (complex) character table of the Heisenberg group of
order 27:

He(3) = Z2
3 ⋊ Z3 = ⟨g, h, k | g3 = h3 = k3 = [g, k] = [h, k] = 1, [g, h] = k⟩.

It has eleven conjugacy classes, which are represented by

1, k, k2, g, g2, h, h2, gh, g2h, gh2, and g2h2.

Hence, He(3) admits eleven irreducible complex representations. Nine of them have degree 1 and
are obtained by composing the irreducible representations of Z2

3 with the quotient map

He(3) −! He(3)/⟨k⟩ ≃ Z2
3.

Furthermore, the Heisenberg group has two irreducible representations of degree 3, namely
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ρ : G! GL(3,C) given by

ρ(g) =

0 0 1

1 0 0

0 1 0

 , ρ(h) =

1

ζ23
ζ3

 , ρ(k) = ζ3 · id,

and its complex conjugate ρ. They are not equivalent, since their characters take different values
on k. Since ∑

χ∈Irr(G)

χ(1)2 = |G| = 27 = 9 · 1 + 2 · 32,

He(3) has no further irreducible representations (up to equivalence). The character table of the
Heisenberg group is displayed in Table 2.1.

1 k k2 g g2 h h2 gh g2h gh2 g2h2

χtriv 1 1 1 1 1 1 1 1 1 1 1
χ1 1 1 1 1 1 ζ3 ζ23 ζ3 ζ3 ζ23 ζ23
χ2 1 1 1 1 1 ζ23 ζ3 ζ23 ζ23 ζ3 ζ3
χ3 1 1 1 ζ3 ζ23 1 1 ζ3 ζ23 ζ3 ζ23
χ4 1 1 1 ζ3 ζ23 ζ3 ζ23 ζ23 1 1 ζ3
χ5 1 1 1 ζ3 ζ23 ζ23 ζ3 1 ζ3 ζ23 1
χ6 1 1 1 ζ23 ζ3 1 1 ζ23 ζ3 ζ23 ζ3
χ7 1 1 1 ζ23 ζ3 ζ3 ζ23 1 ζ23 ζ3 1
χ8 1 1 1 ζ23 ζ3 ζ23 ζ3 ζ3 1 1 ζ23
χ9 3 3ζ3 3ζ23 0 0 0 0 0 0 0 0
χ10 3 3ζ23 3ζ3 0 0 0 0 0 0 0 0

Table 2.1.: Character table of He(3).

Above, we gave a criterion for complex characters to be irreducible: A complex character χ is
irreducible if and only if ⟨χ, χ⟩ = 1. For characters of real representations, this is not true in
general, but one can adapt the condition to obtain a criterion for real characters as well.

Definition 2.3.18. Let χ be a (complex or real) character of G. Then

ν(χ) :=
1

|G|
∑
g∈G

χ(g2)

is called the Frobenius-Schur indicator of χ.

The next proposition is well-known but we could not find a suitable reference, so we give a proof
here.

Proposition 2.3.19. Let K = R and ρ : G ! GL(V ) be a representation with character χρ.
Then ρ is irreducible if and only if ⟨χρ, χρ⟩+ ν(χρ) = 2.

Proof. By Example 2.3.4, it holds that

⟨χρ, χρ⟩+ ν(χρ) = 2 · ⟨Sym2(χρ), χtriv⟩ = 2 · dim(Sym2(V ))G.
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Thus, we have to show that ρ is irreducible if and only if dim(Sym2(V ))G = 1, which means
that, up to a scalar, there is one and only one non-zero G-invariant symmetric bilinear form or
equivalently, one non-zero G-invariant quadratic form.
Assume first that ρ is reducible and choose a non-trivial, G-invariant decomposition V = U1⊕U2

and positive definite quadratic forms Qi : Ui ! R. We can assume without loss of generality that
Q1 and Q2 are G-invariant since otherwise, we can replace them by

Q̃i : Ui −! R, u 7!
1

|G|
∑
g∈G

(Qi ◦ ρ(g))(u).

Clearly, the compositions of the Qi with the projection maps pi : V ! Ui define linearly inde-
pendent G-invariant quadratic forms on V .
Conversely, let Q1, Q2 : V ! R be two linearly independent G-invariant quadratic forms, and
assume without loss of generality that Q1 is positive definite. Choose a basis of V such that the
matrix of Q1 is the identity. Let S be the matrix of Q2 with respect to this basis, and let λ
be an eigenvalue of S, which is real since S is symmetric. Then the symmetric bilinear form B

corresponding to λQ1 −Q2 ̸= 0 is G-invariant and degenerated. Hence,

{v ∈ V | B(v, u) = 0 for all u ∈ V }

is a non-trivial G-invariant subspace of V , so ρ is reducible.

Example 2.3.20. Consider the groupG = Z2
3. Let B be the rotation matrix by the angle α = 120◦:

B = −1

2
·

(
1

√
3

−
√
3 1

)
.

We claim that the non-trivial irreducible real representations of Z2
3 (up to equivalence) are given

by
ρ1(a, b) = Ba, ρ2(a, b) = Bb, ρ3(a, b) = Ba+b, ρ4(a, b) = B2a+b.

Since B is not diagonalizable over R, the representations ρ1, . . . , ρ4 are irreducible (alternatively,
one can prove that ⟨χρj , χρj ⟩ + ν(χρj ) = 2). Furthermore, the representations are pairwise not
equivalent because they have different characters. Finally, since

1 +

4∑
j=1

χρj (1)
2

⟨χρj , χρj ⟩
= 1 + 4 · 4

2
= 9 = |G|,

there are no further irreducible representations.

Let ρ : G ! GL(V ) be a real irreducible representation with character χ. By Schur’s Lemma,
the endomorphism algebra of ρ is a skew field, whose dimension as R-vector space equals ⟨χ, χ⟩
and is in particular finite. Thus, by Frobenius’ Theorem [Fro78], the endomorphism algebra
of ρ is either R, C, or the quaternions H, and we call χ of real, complex or quaternionic type,
respectively. Since χ is irreducible, it holds that ν(χ) = 2− dimR(EndG(V )), thus the type can
be directly read off the Frobenius-Schur indicator:
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• ν(χ) = 1: real type

• ν(χ) = 0: complex type

• ν(χ) = −2: quaternionic type.

Given a complex irreducible representation ρ : G ! GL(V ) with character χ, we can consider
the decomplexification ρR : G! GL(VR), whose character χR fulfills

χR ⊗ idC = χ+ χ,

and ask whether χR is irreducible as real character and if so, how the type of χR is related to
properties of χ. The main ingredient for the answer is the following theorem:

Theorem 2.3.21 (Frobenius-Schur, [Isa76], Theorem 4.5). Let χ be a complex irreducible char-
acter. Then ν(χ) ∈ {−1, 0, 1}, and ν(χ) ̸= 0 if and only if χ takes only real values. More
precisely, the following holds:

(1) ν(χ) = 0 if and only if χ is not real.

(2) ν(χ) = 1 if and only if χ can be realized as the character of a real representation.

(3) ν(χ) = −1 if and only if χ takes only real values but cannot be realized as the character of
a real representation.

Corollary 2.3.22. Let ρ : G ! GL(V ) be a complex irreducible representation with character
χ, and denote by ρR its decomplexification with character χR. Then ρR is an irreducible real
representation if and only if χ cannot be realized as the character of a real representation, and
the following holds:

(1) χ is not real if and only if χR is of complex type.

(2) χ takes only real values but is not realizable as the character of a real representation if and
only if χR is of quaternionic type.

2.3.2. Group cohomology and group extensions

In the textbook [Bro82], group cohomology is introduced in an abstract, homological way. We
will use instead a more “ad-hoc” approach like in [Cha86, Section I.5] or [Szc12, Section 2.2.1],
which works for finite groups and gives a very concrete description of the objects and maps so
that computations can be done explicitly.

Definition 2.3.23. Let G be a group. A G-module is an abelian group M together with a
G-action on M such that g · (m+m′) = g ·m+ g ·m′ for any g ∈ G and m,m′ ∈M .

Definition 2.3.24. Let G be a finite group, M a G-module and n ∈ Z. The set

Cn(G,M) :=


{f : Gn !M}, if n ≥ 1,

M, if n = 0,

0, else,
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together with the addition of functions is called the group of n-cochains.
The coboundary-operator

∂n : Cn(G,M) −! Cn+1(G,M)

is defined as follows: if n ≥ 1, then

(∂nf)(g0, . . . , gn) := g0 · f(g1, . . . , gn) +
n∑
j=1

(−1)jf(g0, . . . , gj−2, gj−1gj , gj+1, . . . , gn) +

+ (−1)n+1f(g0, . . . , gn−1),

if n = 0, then
(∂0m)(g0) := g0 ·m−m,

and ∂n := 0 for n < 0.

Remark 2.3.25. The coboundary-operator is a group homomorphism and fulfills ∂n+1 ◦ ∂n = 0.

Definition 2.3.26. The subgroups Zn(G,M) := ker(∂n) and Bn(G,M) := im(∂n−1) are called
the group of n-cocycles and n-coboundaries, respectively. The quotient

Hn(G,M) := Zn(G,M)/Bn(G,M)

is the n-th cohomology group of G with values in M .

Example 2.3.27. Let M be a G-module.

(1) Since B0(G,M) = {0}, it holds that

H0(G,M) = Z0(G,M) = ker(∂0) =MG,

so the 0-th cohomology group coincides with the G-invariant part of M .

(2) Let G act trivially on M ; then B1(G,M) = {0} and hence,

H1(G,M) = Z1(G,M)

= {f : G!M | 0 = (∂1f)(g0, g1) = f(g1)− f(g0g1) + f(g0) for all g0, g1 ∈ G}
= Hom(G,M).

The next proposition shows that the order of each element in Hn(G,M) divides the group order
of G.

Proposition 2.3.28. Let G be a finite group, |G| = k, M a G-module, and n ≥ 1. Then

k ·Hn(G,M) = 0.

In particular, if multiplication by k is an isomorphism of M , then Hn(G,M) = 0.
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If M is a finitely generated G-module, then the higher cohomology groups Hn(G,M) are finitely
generated as well. Since the elements in the cohomology group are all torsion by the previous
proposition, we obtain:

Corollary 2.3.29. Let G be a finite group and M a finitely generated G-module. Then Hn(G,M)

is finite for any n ≥ 1.

A short exact sequence 0!M ! N ! P ! 0 of G-modules yields an induced exact sequence:

0 −!MG −! NG −! PG.

In general, the last map is not surjective, but as usual in cohomology theory, one can construct
a long exact cohomology sequence:

Proposition 2.3.30. Let 0 ! M
i
! N

π
! P ! 0 be an exact sequence of G-modules. Then

the maps i and π induce homomorphisms Hn(i) and Hn(π) between the cohomology groups, and
there exist natural maps σn : Hn(G,P )! Hn+1(G,N) for any n such that the sequence

0 −!MG i
−! NG π

−! PG
σ0

−! H1(G,M)
H1(i)
−! H1(G,N)

H1(π)
−! H1(G,P ) −!

σ1

−! H2(G,M) −! . . .

is exact.

Remark 2.3.31. We do not prove the previous proposition but we sketch the construction of the
connecting homomorphism σ1, since it will be relevant later on.
For this, we view M as submodule of N via i. Let τ : G ! P be a 1-cocycle. For each g ∈ G,
choose a preimage ng ∈ N of τ(g) under π, and set β(g) := ng. This yields a 1-cochain β : G! N

fulfilling π ◦ ∂1N (β) = 0, where ∂1N is the first coboundary operator of the G-module N . Hence,
∂1N (β) takes only values in M , and we can set

σ1([τ ]) := [∂1N (β)] ∈ H2(G,M).

Example 2.3.32. Let T = Cn/Λ be a complex torus and G a finite group together with a repre-
sentation ρ : G! GL(n,C) such that for all g ∈ G, the matrix ρ(g) maps the lattice Λ to itself.
Then

0 −! Λ −! Cn −! T −! 0

is a short exact sequence of G-modules (via ρ). By Proposition 2.3.28, the higher cohomology
groups with values in Cn vanish. Hence, the connecting homomorphisms of the long exact
cohomology sequence define isomorphisms

Hn(G,T )
≃
−! Hn+1(G,Λ), for n ≥ 1.

Since Λ ≃ Z2n is finitely generated, the higher cohomology groups Hn(G,Λ) are finite by Corol-
lary 2.3.29. In particular, the group H1(G,T ) is finite.
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The translation part of an action on T with analytic representation ρ defines a class in H1(G,T ),
and conversely, every cohomology class yields an action on T , which is well-defined up to conju-
gation with a translation. Thus, we can conclude that for a given linear representation ρ, there
are only finitely many corresponding actions on T , up to conjugation with a translation.

Moreover, analyzing the actions of G on T with fixed analytic representation is the same as study-
ing H1(G,T ), which is isomorphic to H2(G,Λ). This second cohomology group parametrizes the
group extensions of G by Λ. The interplay between the second cohomology group and group
extensions will be explained next, as it will be important for the classification of the quotients
in this thesis on the one hand, and for the study of so-called “semi-projective representations” in
Chapter 6 on the other hand.

Definition 2.3.33. Let A and G be two groups where A is abelian. A group extension of G by
A is a short exact sequence of groups

1 −! A
i
−! E

p
−! G −! 1.

Identifying A with its image i(A), we will view A as subgroup of E. Therefore, we will interpret
A as multiplicative group, although it is abelian, and write a “1” at the beginning of the sequence.

Definition 2.3.34. Two extensions 1 ! A ! E ! G ! 1 and 1 ! A ! E′ ! G ! 1 of G
by A are said to be equivalent if there exists a group homomorphism F : E ! E′ such that the
diagram

1 A E G 1

1 A E′ G 1

id F id

is commutative.

Remark 2.3.35. The homomorphism F is in fact an isomorphism, so, equivalent extensions induce
isomorphic groups. Note that the converse is not true in general.

In order to obtain a bijection between group extensions 1 ! A ! E ! G ! 1 and classes in
H2(G,A), we have to introduce a G-module structure on A: Choose any set-theoretic section
with s(1) = 1 and set

g ∗ a := s(g) · a · s(g)−1, for g ∈ G, a ∈ A.

Since A is abelian, this action is independent of the choice of the section. Moreover, equivalent
extensions induce the same action since the corresponding isomorphism between the extensions
is the identity on A.

Theorem 2.3.36 ([Bro82], Chapter IV, Theorem 3.12). Let G be a finite group and A a G-
module. Then there is a bijection between the set of equivalence classes of those group extensions

1 −! A −! E −! G −! 1

of G by A that induce the fixed G-module structure on A and H2(G,A).
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Since we will need it later on, let us explain the construction of the bijection:

(1) Let 1! A! E ! G! 1 be an extension. Let s : G! E be a set-theoretic section with
s(1) = 1. In general, s is not a homomorphism but for g, h ∈ G, there exists β(g, h) ∈ A

such that
β(g, h) · s(gh) = s(g) · s(h).

In this way, we obtain a map β : G×G! A, which is in fact a 2-cocycle since it fulfills

(g ∗ β(h, k)) · β(gh, k)−1 · β(g, hk) · β(g, h)−1 = 1

for all g, h, k ∈ G, and hence defines a class [β] ∈ H2(G,A).

(2) Conversely, let [β] ∈ H2(G,A), and assume without loss of generality that β is normalized,
which means that β(g, 1) = β(1, g) = 1 for all g ∈ G. Then the set A × G together with
the multiplication

(a1, g1) · (a2, g2) := (a1 · (g1 ∗ a2) · β(g1, g2), g1g2)

is a group with neutral element (1, 1). We will denote this by Γ := A ×β G. The obvious
sequence

1 −! A −! Γ −! G −! 1

is exact with corresponding cohomology class [β] ∈ H2(G,A).

2.4. Crystallographic groups and Bieberbach’s structure
theorems

In this section, we collect the tools from crystallographic group theory that we will need to derive
the classification of the quotients in Chapter 4. Crystallographic groups are subgroups of the
Euclidean group E(n) = Rn ⋊ O(n) with special properties. In the course of torus quotients,
they appear as so-called “orbifold-fundamental groups”, which we introduce first. Our references
for the theory of crystallographic groups are the textbooks [Cha86] and [Szc12].

Definition 2.4.1. Let T = Cn/Λ be a complex torus and G a finite group of biholomorphisms
acting on T without translations. Let π : Cn ! T be the universal cover. Then we define the
orbifold fundamental group as

πorb1 (T,G) := {γ : Cn ! Cn | ∃ g ∈ G s.t. π ◦ γ = g ◦ π}.

As a reference for the orbifold fundamental group, we refer to [Cat15, Section 6.1].

Remark 2.4.2.

(1) The orbifold-fundamental group Γ := πorb1 (T,G) fits into the exact sequence

0 −! Λ −! Γ −! G −! 1
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since Λ = π1(T ) = Deck(π). Hence, G ≃ Γ/Λ.

(2) Let p : T ! T/G = X be the quotient map. Then π ◦ p : Cn ! X is Galois with group Γ.
In particular,

X = T/G = Cn/Γ.

(3) If the action of G on T is free, then π ◦ p is the universal cover of X, hence π1(X) = Γ. If
the action is not free, this is no longer true; but if the action is at least free in codimension
1, it holds that

Γ = πorb1 (T,G) = π1(X
◦),

where X◦ := X \Sing(X) is the regular locus of X. The reason behind this is the following:
It holds that Sing(X) = p(F ), where

F := {x ∈ T | ∃ g ∈ G \ {1} s.t. g(x) = x}

is the set of points with non-trivial stabilizer group. By assumption, the analytic set F
has codimension at least two. Since the restriction p : T \ F ! X \ Sing(X) is finite and
unramified, the composition

Cn \ π−1(F )! T \ F ! X \ Sing(X)

is an unramified cover. It is universal because Cn \π−1(F ) is simply connected (cf. [Pri67,
p. 378]). Finally, the Galois group of this cover, which is the fundamental group of the
regular locus X◦ = X \ Sing(X), equals the orbifold fundamental group Γ = πorb1 (T,G).

(4) Since G is finite, the group Γ acts properly discontinuously on Cn, and hence, it is discrete,
meaning that the orbits are discrete. By (2), it is furthermore cocompact because the
quotient space Cn/Γ = T/G is compact. Moreover, since G is finite, we may assume that
the analytic representation ρ is unitary. Via the identification

Cn ! R2n, (z1, . . . , zn) 7! (x1, y1, . . . , xn, yn), where zj = xj +
√
−1yj ,

we can view ρ as a real representation ρR : G ! O(2n) and consider Γ = πorb1 (T,G) as a
subgroup of the Euclidean group E(2n) = R2n ⋊O(2n).

Definition 2.4.3. A discrete cocompact subgroup Γ of the Euclidean group E(n) is called a
crystallographic group. If Γ acts furthermore freely on Rn, then it is called a Bieberbach group.

Such groups are called “crystallographic” since they are symmetry groups of repeating patterns
like in crystals. Note that the above remark guarantees that the orbifold fundamental group
πorb1 (T,G) is crystallographic.

Remark 2.4.4. Let Γ ⊂ E(n) be a crystallographic group. Then the discreteness of the group
ensures that the action of Γ on Rn is properly discontinuous in the following sense: For all
x ∈ Rn, there exists a neighborhood U = U(x) such that the following set is finite:

{γ ∈ Γ | γU ∩ U ̸= ∅}.
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Moreover, the quotient space Rn/Γ is a Hausdorff space.
Note furthermore that the action of Γ is free, that is Γ is a Bieberbach group, if and only if it
does not contain any torsion elements different from the identity.

Example 2.4.5. Clearly, each lattice Λ in Rn defines a Bieberbach group whose quotient Rn/Λ is
a real torus. Another example is given as follows: Let Γ ⊂ E(2) be the subgroup generated by
the elements

γ1(x) :=

(
1 0

0 −1

)
· x+

(
1/2

1/2

)
and γ2(x) := x+

(
0

1/2

)
.

Then Γ is a Bieberbach group, and the quotient R2/Γ is homeomorphic to the Klein bottle.

The fist part of Hilbert’s 18th problem ([Hil02]) asks whether there are only finitely many crys-
tallographic groups in each dimension up to isomorphism. Bieberbach gave a positive answer
to this question in 1911 and furthermore described the structure of crystallographic groups and
isomorphisms between them. In Chapter 4, we will use geometrical consequences of his theo-
rems in order to classify the quotients up to biholomorphism and homeomorphism. Because the
statements are so central for the classification in this thesis, we state them now and give a proof,
at least in outline form. The given proof is based on the argumentation in [Szc12].

Theorem 2.4.6 ([Bie11], [Bie12]).

(1) The translation subgroup Λ := Γ ∩ Rn of a crystallographic group Γ ⊂ E(n) is a lattice of
rank n, and Γ/Λ is finite. All other normal abelian subgroups of Γ are contained in Λ.

(2) Let Γ1,Γ2 ⊂ E(n) be two crystallographic groups and f : Γ1 ! Γ2 be an isomorphism.
Then there exists an affine transformation α ∈ AGL(n,R) = Rn ⋊ GL(n,R) such that
f(g) = α ◦ g ◦ α−1 for all g ∈ Γ1.

(3) In each dimension, there are only finitely many isomorphism classes of crystallographic
groups.

Proof. (1) Let Γ ⊂ E(n) be a crystallographic group. Since in the setup of this thesis, the
translation subgroup Λ of Γ coincides with the lattice of the torus because the action on T is
translation-free, and Γ/Λ = G is finite, we do not give a prove for the first statement. But we
explain why the translation subgroup is the unique maximal normal abelian subgroup of Γ. For
this, let N � Γ be an abelian normal subgroup and γ(x) = Ax + b an element in N . We set
U := ker(A− id) and show that U = Rn.
Let v ∈ Λ ⊂ Rn be an element in the lattice, and identify it with the translation tv(x) = x+v ∈ Γ.
By the normality of N , the element

γ̂(x) := (tv ◦ γ ◦ t−1
v )(x) = Ax−Av + b+ v

belongs to N as well, and since N is abelian, it commutes with γ. This implies that v belongs
to the kernel of (A − id)2, so (A − id)v belongs to U . Now, write v = u + w with u ∈ U and
w ∈ U⊥. Then the equation (A − id)v = (A − id)w is true, and moreover, since A ∈ O(n), it
holds for every u′ ∈ U that

⟨(A− id)w, u′⟩ = ⟨Aw, u′⟩ = ⟨Aw,Au′⟩ = ⟨w, u′⟩ = 0.
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Hence, (A− id)v is an element in U⊥ ∩U = {0}, which implies that Av = v for all v ∈ Λ. Since
Λ spans the whole Rn, the claim follows.

(2) For this part of the proof, we write an element γ(x) = Bx + d ∈ E(n) = O(n) ⋉ Rn as
tuple (B, d) and denote by I the identity matrix. Let f : Γ1 ! Γ2 be an isomorphism between
two crystallographic groups. By (1), the restriction f|Λ1

is given by multiplication with a matrix
A ∈ GL(n,R), and f induces an isomorphism of the quotients

f1 : Γ1/Λ1 −! Γ2/Λ2.

By identifying the quotients with the images of Γi under the projection p1 : E(n) ! O(n), we
can write f as

f(B, d) = (f1(B), f2(B, d)).

First, we show that f1 is given by conjugation with A. Let (I, e) ∈ Λ. Applying f to the equation

(B, d) · (I, e) · (B, d)−1 = (I,Be),

yields
(f1(B), f2(B, d)) · (I, Ae) · (f1(B−1), f2(B

−1,−B−1d)) = (I, ABe),

which implies that f1(B) = ABA−1. Next, we consider the isomorphism

F : Γ1 −! F (Γ1), γ 7! (A, 0) · γ · (A, 0)−1,

and define G := f ◦F−1 : F (Γ1)! Γ2. Since f1(B) = ABA−1, the isomorphism G is of the form

G(B, d) = (B,G2(B, d)).

We claim that G is given by conjugation with a translation (I, b) ∈ E(n). Assume for the moment
that this is proven, then

f(γ) = (G ◦ F )(γ) = (A, b) · γ · (A, b)−1.

The isomorphism G is given by conjugation with (I, b) if and only if G2(B, d) = (I − B)b + d

holds for all (B, d) in F (Γ1). Equivalently, all (B, d) ∈ F (Γ1) satisfy the equation

(I, b) · (B, d−G2(B, d)) · (I,−b) = (B, 0). (2.4.1)

Thus, we have to show the existence of an element b ∈ Rn with this property. By construction,
G is the identity on F (Γ1) ∩ Rn. Consider the subgroup

H := {(B, e) ∈ E(n) | ∃ (B, d) ∈ F (Γ1) : e = d−G2(B, d)}

of E(n), which has the property that p1(H) = p1(F (Γ1)). In particular, p1(H) is finite. Since for
any translation (I, e) ∈ H, there exists an element (I, d) ∈ F (Γ1) such that e = d−G2(I, d) = 0,
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it holds that H ≃ p1(H), so H is finite as well. For

b := − 1

|H|
∑

(B,e)∈H

e,

the equation 2.4.1 is fulfilled for all (B, d) ∈ F (Γ1).

(3) By (1), every crystallographic group Γ ⊂ E(n) fits into an exact sequence

0 −! Λ −! Γ −! G −! 1,

where Λ is the subgroup of translations of Γ, and G ≃ Γ/Λ is finite and can be identified with
p1(Γ). Since G acts effectively on Λ via conjugation, G ⊂ O(n) is isomorphic to a finite subgroup
of GL(n,Z). For such groups, there are only finitely many possibilities (cf. [Aus65]), which can
be shown using a theorem of Jordan (cf. [Jor78]). Fix such a finite group G, and assume without
loss of generality that Λ = Zn. We explain now that it is enough to consider finitely many
G-module structures on Zn: Each G-module structure on Zn corresponds to an embedding of G
into GL(n,Z), and it is enough to consider these embeddings up to conjugation in GL(n,Z) since
conjugate embeddings yield the same set of extensions. By the Jordan-Zassenhaus-Theorem (cf.
[Zas37]), there are only finitely many conjugacy classes of finite subgroups of GL(n,Z). This
finishes the proof because for a fixed G-module structure on Zn, the extensions of Zn by G are
parametrized by the finite group H2(G,Zn) (cf. Theorem 2.3.36).

Since the third part of Bieberbach’s Theorem ensures that in each dimension, there are only
finitely many isomorphism classes of crystallographic and Bieberbach groups, a natural problem
is to ask for a classification of them. Such a classification is known up to dimension 6, but
was associated with considerable effort from dimension four on and could only be realized with
computer support as the number of isomorphism classes very quickly becomes very large (cf.
Table 2.2). The crystallographic groups in dimension 2, also known as wallpaper groups, have
been known for a long time; a rigorous proof has been given by Fedorov in 1890. Several people
were involved in the classification in the three-dimensional case, e.g. Hessel, Bravais, Jordan,
Sohncke, Fedorov, and Schoenflies, and it was completed in 1891. For more details, we refer to
[Bro+78]. There, Brown, Bülow, Neubüser, and Zassenhaus also worked out the classification
in dimension 4. Plesken and Schulz achieved the classification of crystallographic groups in
dimension 5 and 6 in 2000 ([PS00]), and Cid together with Schulz determined the Bieberbach
groups among them one year later ([CS01]).

dimension 1 2 3 4 5 6

# classes of crystallographic groups 1 17 219 4783 222 018 28 927 922

# classes of Bieberbach groups 1 2 10 74 1060 38 746

Table 2.2.: Number of isomorphism classes of crystallographic and Bieberbach groups

Bieberbach groups are also of particular interest in the field of differential geometry: Quotients
of Rn by Bieberbach groups are so-called flat Riemannian manifolds, and each such manifold is
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of this form. In the rest of thesis section, we will give a brief overview. For more details about
Riemannian geometry, we refer the reader to [Car92].

Definition 2.4.7. LetM be a differentiable real manifold. A Riemannian metric g is a collection
of inner products (g(−,−)p)p∈M ) on the tangent spaces TpM varying smoothly in p. The pair
(M, g) is called Riemannian manifold.

Example 2.4.8. Consider M = Rn. The derivations ∂1, . . . , ∂n form a basis of the tangent space
at each point, and a Riemannian metric on Rn is given by g(∂i, ∂j)p := δij . This metric is called
the flat metric.

Definition 2.4.9.

(1) A diffeomorphism f : (N, gN ) ! (M, gM ) between Riemannian manifolds is called an iso-
metry if the differential Jpf : TpN ! Tf(p)M is an isometry in each point p ∈ N , that is,
the equation

gN (v1, v2)p = gM (Jpf(v1), Jpf(v2))f(p)

holds for all v1, v2 ∈ TpN .

(2) A Riemannian manifold is flat if it is locally isometric to Rn equipped with the flat metric.

If Γ ⊂ E(n) is a Bieberbach group, then the flat metric on Rn naturally induces a Riemannian
metric on the manifold M = Rn/Γ, such that the projection map π : Rn ! M becomes a local
isometry. Thus, Rn/Γ is a flat Riemannian manifold. Moreover, even the converse is true: All
compact flat Riemannian manifolds are of this form:

Theorem 2.4.10. [Car92], Proposition 4.3; [Cha86], Corollary 5.1] A compact Riemannian
manifold (M, g) is flat if and only if there exists a Bieberbach group Γ ⊂ E(n) such that M is
isometric to Rn/Γ.

We do not give an entire proof of this theorem but sketch the main ideas: First, by the Hopf-
Rinow theorem ([HR31]), a compact flat manifold is geodesically complete, which means that
every maximal geodesic is defined on (−∞,∞) (a geodesic is roughly speaking locally the shortest
path between points). Let π : M̃ !M be the universal cover, which is locally an isometry. Hence,
M̃ is flat and geodesically complete as well, and of course simply connected. The Clifford-Klein
theorem, which was first proven by Hopf ([Hop26]), states that such Riemannian manifolds are
globally isometric to Rn (equipped with the flat metric). Thus, M is isometric to Rn/Deck(π).
Every covering isomorphism of π is an isometry, and the isometries of Rn in the sense of Defi-
nition 2.4.9 are precisely the elements in E(n), which can be seen as follows: Isometries in the
sense of Definition 2.4.9 map geodesics to geodesics, and the geodesics on Rn are precisely the
lines. Hence, by the fundamental theorem of affine geometry, each covering isomorphism is affine
linear, and since it preserves the inner product on Rn, the matrix is orthogonal. Thus, Deck(π)

is a Bieberbach group.
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2.5. Rigid manifolds

In this thesis, we focus on rigid quotients of complex tori. Therefore, we need some notions from
deformation theory, which we introduce now. Moreover, we will explain, how we can directly see
from the analytic representation of a group G acting on T whether the quotient T/G is rigid.

Definition 2.5.1. Let X be a reduced compact complex space.

(1) A deformation of X consists of the following data:

• a flat and proper holomorphic map π : X! B of connected complex spaces,

• a point b0 ∈ B,

• an isomorphism π−1({b0}) ≃ X.

(2) An infinitesimal deformation of X is a germ π : (X, X)! (B, b0) of a deformation.

(3) We call X (locally) rigid if for every deformation π : X ! B of X, there is an open
neighborhood U ⊂ B of b0 such that X ≃ π−1({t}) for all t ∈ U .

(4) We call X infinitesimally rigid if Ext1(Ω1
X ,OX) = 0.

For compact complex manifolds, Kuranishi [Kur62] showed that they always admit a uniquely de-
termined semi-universal deformation π : (X, X)! (Def(X), 0), which means that every infinite-
simal deformation of X is obtained via-pullback of this particular deformation, which is called the
Kuranishi-familiy. Moreover, by the theory of Kodaira, Kuranishi, and Spencer, the Zariski tan-
gent space of the base Def(X) in the origin is given by H1(X,ΘX), where ΘX = Hom (Ω1

X ,OX)

denotes the holomorphic tangent sheaf (cf. [Cat88, Remark 5.2]).
Grauert [Gra74] generalized Kuranishi’s result to non-smooth reduced compact complex spaces.
In the general situation, the Zariski tangent space of the base Def(X) in the origin is given by
Ext1(Ω1

X ,OX). The space H1(X,ΘX) has still a geometric meaning: It describes the tangent
space of the subspace of Def(X) that contains the equisingular infinitesimal deformations of
X, which are those preserving the singularities (cf. [Cat13, Section 2]). It is connected with
Ext1(Ω1

X ,OX) via the short-term exact sequence of the local-to-global Ext spectral sequence:

0 −! H1(X,ΘX) −! Ext1(Ω1
X ,OX) −! H0(X,Ext 1(Ω1

X ,OX)).

The space H0(X,Ext 1(Ω1
X ,OX)) is trivial if and only if every infinitesimal deformation of X is

equisingular. If this is the case, we say that the singularities of X are infinitesimally rigid and
obtain an isomorphism

H1(X,ΘX) ≃ Ext1(Ω1
X ,OX).

In particular, we obtain:

Corollary 2.5.2. If X has infinitesimally rigid singularities or is smooth, then X is infinitesi-
mally rigid if and only if H1(X,ΘX) = 0.

In this thesis, only isolated quotient singularities in dimension 3 occur. These are always in-
finitesimally rigid by a theorem of Schlessinger (cf. [Sch71]).
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Next, we want to compare the notions “infinitesimal rigid” and “rigid”. For this, let X be any
reduced compact complex space. Since Ext1(Ω1

X ,OX) is the Zariski tangent space of the base of
the semi-universal Kuranishi-family, we deduce:

Lemma 2.5.3. Every infinitesimally rigid variety is rigid.

The question whether the converse is true or not was posed by Morrow and Kodaira in 1971
[MK71]. It turned out that the answer is “No”, even if we restrict to complex manifolds. In this
setup, Bauer and Catanese proved:

Theorem 2.5.4 ([BC18], Theorem 2.3). A compact complex manifold X is rigid if and only if
the Kuranishi space Def(X) (base of the Kuranishi family of deformations) is 0-dimensional.

Even if Def(X) is of dimension 0, it may happen that it consists of a non-reduced point, so
its tangent space H1(X,ΘX) is non-trivial, and hence, X is not infinitesimally rigid. The first
counter example was given by Bauer and Pignatelli in [BP21]. For further examples, see also
[BG20] and [BBP22]. However, in the situation of torus quotients, these two notions coincide.
Before we quote the statement, we introduce the notion of an infinitesimally rigid group action.

Definition 2.5.5. A holomorphic action of a finite group G on a compact complex manifold Y
is called infinitesimally rigid if

H1(Y,ΘY )
G = 0.

If the action of G on Y is free in codimension 1, then H1(Y,ΘY )
G = H1(Y/G,ΘY/G). Thus, if

furthermore the singularities of X are infinitesimally rigid, we obtain that the quotient X = Y/G

is infinitesimally rigid if and only if the action of G on Y is so.

Proposition 2.5.6 ([DG22], Proposition 2.5). Let X = T/G be a torus quotient of dimension
at least 3 by an action with at most isolated fixed points. Then X is rigid if and only if it is
infinitesimally rigid.

Remark 2.5.7. Due to [CD20a], any complex torus quotient has an algebraic approximation. In
particular, rigid torus quotients are projective.

In this thesis, we want to classify the groups admitting rigid actions on complex three-dimensional
tori. Therefore, it will be crucial to have a criterion whether an action is rigid or not that can
easily be checked. Fortunately, the situation for actions on complex tori is quite simple:

Proposition 2.5.8 ([DG22], Corollary 2.6). Let G be a finite group acting holomorphically on a
complex torus T . Then the action is infinitesimally rigid if and only if the analytic representation
ρ and its complex conjugate ρ do not have any common subrepresentations, that is, ⟨χ, χ⟩ = 0,
where χ denotes the character of ρ.

Since the proposition is of particular relevance for this thesis, we give a proof here.
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Proof. By definition, the action is rigid if and only if H1(T,ΘT )
G is trivial. Using Dolbeault’s

interpretation of cohomology, we have

H1(T,ΘT ) ≃ H0,1

∂
(ΘT ) =

〈
dzi ⊗ ∂

∂zj
| 1 ≤ i, j,≤ n

〉
.

Via this isomorphism, G acts on H1(T,ΘT ) with character χ2, and the G-invariant part is trivial
if and only if χ2 does not contain the trivial character (cf. Proposition 2.3.11). Now, the claim
follows since ⟨χ2, χtriv⟩ = ⟨χ, χ⟩.

The criterion in the above proposition is not only useful to decide for a given action whether it
is rigid or not, but also yields theoretical implications like the following:

Corollary 2.5.9 ([DG22], Remark 2.7). Let X = T/G be a rigid torus quotient; then the
irregularities qi(X) = hi(X,OX) vanish for i = 1 and 2.

Proof. Let ψ : X̂ ! X be a resolution of X = T/G. Since quotient singularities are rational1,
the irregularities of X and X̂ coincide. Let χ be the character of the analytic representation ρ.
As H0(X̂,Ωi

X̂
) ≃ H0(T,ΩT )

G, we can compute the irregularities as follows:

qi(X) = qi(X̂) = dimC(H
0(T,ΩiT )

G) = ⟨Λi(χ), χtriv⟩.

Since ρ and ρ have no common subrepresentations by Proposition 2.5.8, it follows that q1 = 0. In
order to show that q2 = 0, we use the formula χ2 = Λ2(χ) + Sym2(χ) given in Example 2.3.4(5)
and obtain:

0 = ⟨χ, χ⟩ = ⟨χ2, χtriv⟩ = ⟨Λ2(χ), χtriv⟩+ ⟨Sym2(χ), χtriv⟩ = q2(X) + ⟨Sym2(χ), χtriv⟩.

As both, q2 and ⟨Sym2(χ), χtriv⟩ are non-negative, the claim follows.

Theorem 2.5.10 ([DG22], Theorem 1.1). Let T be a complex torus of dimension 3, and let
G ⊂ Bihol(T ) a finite group such that the action on T is rigid. Then the action has fixed points
and the quotient X is singular.

Since we are in particular interested in rigid manifolds, we will construct resolutions of our
singular quotients that preserve the rigidity. A sufficient and computable condition on the
resolution to not change the first cohomology group with values in the tangent sheaf can be
derived from the short-term exact sequence of Leray’s spectral sequence and has been used
several times in the literature (e.g. [BG20], [BG21], [BGK]). Let ψ : X̂ ! X be a resolution of
singularities. Then the mentioned sequence reads

0 −! H1(X,ψ∗ΘX̂) −! H1(X̂,ΘX̂) −! H0(X,R1ψ∗ΘX̂).

Thus, we obtain:

1See Section 2.6 for a definition and more information.



34 CHAPTER 2. PRELIMINARIES

Proposition 2.5.11. Let X be a complex variety and ψ : X̂ ! X a (partial) resolution of
singularities with the properties

(1) ψ∗ΘX̂ ≃ ΘX and

(2) R1ψ∗ΘX̂ = 0.

Then it holds that H1(X̂,ΘX̂) ≃ H1(X,ΘX).

Remark 2.5.12. Note that not all resolutions of singularities satisfy the conditions of Proposi-
tion 2.5.11 (cf. [BG20, Remark 5.4]).

2.6. Singularities

As discussed in the previous section, the torus quotients studied in this thesis are not smooth
but exhibit singularities. Therefore, we now collect the relevant notions and properties, focusing
in particular on why we restrict our attention to canonical singularities. Moreover, we give a
criterion how to decide for cyclic quotient singularities whether they are canonical or not.

In the following, we mean by a variety an irreducible reduced complex space.

Definition 2.6.1. Let X be a normal variety. A resolution of singularities is a proper biholo-
morphic map

ψ : X̂ ! X,

where X̂ is smooth, such that ψ induces an isomorphism X̂ \ ψ−1(XSing) ≃ X \ XSing, where
XSing denotes the singular locus of X.

Let us recall the standard notions for singularities, which can be found in [KM98].

Definition 2.6.2. Let X be a normal variety.

(1) X has rational singularities if for all resolutions ψ : X̂ ! X, the higher direct images
vanishes, that is:

Rqψ∗OX̂ = 0 for all q ≥ 1.

(2) X has canonical (terminal) singularities if the canonical divisor KX is Q-Cartier and if
for a resolution ψ : X̂ ! X with exceptional prime divisors Ei, the rational numbers ai
determined by

KX̂ = ψ∗(KX) +
∑

aiEi

fulfill ai ≥ 0 (ai > 0).

(3) X is Gorenstein or has Gorenstein singularities if it is Cohen-Macauly2 and its canonical
Weil divisor is a Cartier divisor.

One important property of varieties with only canonical singularities is that they have the same
plurigenera as any resolution of their singularities. In particular, the following holds:

2For a definition of Cohen-Macauly, we refer for example to [KM98, Section 5.1].
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Proposition 2.6.3. Let X be a normal variety with canonical singularities, and let ψ : X̂ ! X

be a resolution of singularities. Then X̂ and X have the same Kodaira dimension, κ(X̂) = κ(X).

Moreover quasi-étale morphisms, i.e., morphisms with ramification of codimension at least 2,
between varieties with canonical singularities preserve the Kodaira dimension.

Proposition 2.6.4 ([Cat07], Section 3). Let π : Y ! X be a quasi-étale morphism between
normal varieties with canonical singularities. Then X and Y have the same Kodaira dimension,
κ(X) = κ(Y ).

Overall, we conclude from the last two propositions that the quotients and their resolutions in
our setup, where we only allow isolated canonical singularities, all have Kodaira dimension 0.
This is the primary reason for restricting our attention to canonical singularities. In order to
apply Proposition 2.6.4, we could allow actions that are free only in codimension 1, but the
isolatedness of singularities is essential for certain rigidity conditions, as explained in Section 2.5.

In general, the canonical divisor of a variety with canonical singularities changes under resolution.
However, if we do not fully resolve the singularities but allow terminal singularities to remain,
there are always partial resolutions that preserve the canonical divisor, at least in dimension 3.

Theorem 2.6.5 ([Rei87], Theorem 3.2 b). Let X be a three-dimensional variety with canonical
singularities. Then there exists a crepant terminalization ψ : X̂ ! X, that is, X̂ has only terminal
singularities and ψ∗(KX) = KX̂ .

For Gorenstein quotient singularities in dimension 3, even crepant resolutions exists. Before we
will state the result of Roan, we will explain the notion of quotient singularities.

Definition 2.6.6. Let X be a variety. A point p ∈ X is a (finite) quotient singularity if there is
a (finite) subgroup G ⊂ GL(n,C) such that p ∈ X is locally analytically equivalent to 0 ∈ Cn/G.
If G is abelian (cyclic), then p is called abelian (cyclic) quotient singularity.

Remark 2.6.7. Note that a quotient singularity not necessarily need to be a point in the singular
locus of X: Smooth points are always quotient singularities; choose G as the trivial group.
Note moreover that finite quotient singularities are always rational (cf. [KM98, Proposition 5.15]).

Remark 2.6.8. According to [Wat74], a finite quotient singularity Cn/G is Gorenstein if and only
if G ⊂ SL(n,C).

Theorem 2.6.9 ([Roa96]). If X is a three-dimensional variety with only Gorenstein quotient
singularities, then X admits a crepant resolution.

Remark 2.6.10. Let G be a finite group acting holomorphically on a complex torus T with
analytic representation ρ. Consider a point p ∈ T , and denote by x its class in X = T/G. Then
locally near x, the quotient X is given by Cn/H, where H = {ρ(g) | g ∈ Stab(p)}. Thus, the
quotient X = T/G has only quotient singularities.
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Let G = ⟨g⟩ ⊂ GL(n,C) be a cyclic group. Then we can assume without loss of generality
that g is diagonal, g = diag(ζa1d , . . . , ζ

an
d ), where d = ord(g), a1, . . . , an ∈ {0, . . . , d − 1}, and

gcd(a1, . . . , an, d) = 1. We say that the cyclic quotient singularity 0 ∈ U = Cn/G is of type

1
d(a1, . . . , an).

Note that the singularity is isolated if and only if gcd(ai, d) = 1 for all i = 1, . . . , n.

For cyclic quotient singularities3, there is the famous criterion of Reid, Shepherd-Baron and Tai
to decide whether the singularity is canonical (terminal) or not:

Proposition 2.6.11 ([Rei80], Theorem 3.1). Let (U, x0) be a cyclic quotient singularity of type
1
d(a1, . . . , an). The singularity is canonical (or terminal) if and only if for all k = 1, . . . , d− 1, it
holds that

n∑
j=1

[k · aj ] ≥ d,

(respectively > d). Here, [ · ] denotes the residue modulo d.

In Chapter 3, we will show that actions of finite groups on three-dimensional tori with isolated
fixed points – precisely the cases considered in this thesis – lead to quotients with only isolated
cyclic quotient singularities. They have been classified by Morrison:

Theorem 2.6.12 ([MS84], [Mor85]). Every isolated, canonical, cyclic quotient singularity (U, x0)

has precisely one of the following types:

(1) 1
d(1, a, d− a), where gcd(d, a) = 1 (terminal),

(2) 1
d(1, a, d− a− 1), where gcd(d, a) = gcd(d, a+ 1) = 1 (Gorenstein),

(3) 1
9(1, 4, 7) or 1

14(1, 9, 11).

3The criterion even holds true for abelian quotient singularities if one checks every element of G, but we only
need it in the cyclic case.



3. Classification of the groups

This chapter is devoted to the classification of all finite groups G that admit a holomorphic action
with isolated fixed points on a complex torus T of dimension 3 such that X = T/G is rigid and
has canonical singularities. We assume that the action is translation-free, which is equivalent to
requiring that it has a faithful analytic representation

ρ : G ↪−! GL(3,C).

Some proofs will be performed computer-based with the computer algebra system MAGMA. The
code can be found in the Appendix A.1.

During the classification process, we will frequently make use of some basic observations:

Remark 3.0.1. Given an action of a finite group G as above, then the following holds:

(1) The restriction to every subgroup U shares the same properties apart from the rigidity of
the quotient T/U .

(2) An element g ∈ G acts with fixed points if and only if the equation

(ρ(g)− id) · z = −τ(g)

has a solution in T . In particular, if g acts freely, then 1 is an eigenvalue of ρ(g).

(3) If g ∈ G has fixed points and order d, then all the eigenvalues of ρ(g) must be primitive d-th
roots of unity since otherwise, the fixed locus of some power of g has positive dimension.

From now on, we fix a finite group G and assume that it admits an action with the above
properties. First, we determine the possible orders of the elements in such a group.

Lemma 3.0.2. Let g ∈ G be a non-trivial element.

(1) If g acts freely on T , then ord(g) ∈ {2, 3, 4, 5, 6, 8, 10, 12}.

(2) If g acts with fixed points, then ord(g) ∈ {2, 3, 4, 6, 7, 9, 14, 18}.

In particular, ord(g) ∈ {2, . . . , 10, 12, 14, 18}, elements of order 7, 9, 14, 18 always have fixed
points, and elements of order 5, 8, 10, 12 always act freely.

Proof. Let d := ord(g). Assume first that g acts freely. Then ρ(g) has eigenvalue 1. If the
other two eigenvalues have the same order, then φ(d) ≤ 4, where φ denotes the Euler totient
function. Otherwise, the orders d1 and d2 of the other two eigenvalues fulfill φ(d1) + φ(d2) ≤ 4

(cf. Lemma 2.1.9(2)) and d = lcm(d1, d2). It is now easy to determine all possible values for d.
If g acts with fixed point, then all its eigenvalues are primitive d-th roots of unity. In this case,
φ(d) divides 6 by the same lemma. This implies d ∈ {2, 3, 4, 6, 7, 9, 14, 18}.

37
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Lemma 3.0.3. Assume that G contains an abelian subgroup U such that every element in U

acts non-freely. Then U is cyclic.

Proof. Since U is abelian, we can assume that ρ restricted to U is the direct sum of three one-
dimensional representations. Each of them must be faithful because the identity is the only
element that has eigenvalue 1 since every element acts with fixed points. Hence, U is cyclic.

Corollary 3.0.4. If G has a 7-Sylow subgroup S7, then S7 is cyclic of order 7.

Proof. By Sylow’s Theorem, it suffices to exclude that G has a subgroup U of order 72. Since U
does not contain elements of order 49 by Lemma 3.0.2, the subgroup U is not cyclic, and every
element acts with fixed points. Thus, U ≃ Z2

7, which contradicts Lemma 3.0.3.

Now, we are ready to determine the possible non-trivial stabilizer groups and the corresponding
singularities of the quotient. It turns out that all of them are cyclic.

Theorem 3.0.5. Let G be a finite group acting holomorphically and with isolated fixed points on
a three-dimensional complex torus T . Then for all p ∈ T , the stabilizer group Stab(p) is cyclic
of order 1, 2, 3, 4, 6, 7, 9, 14, or 18.
In particular, the quotient X has only isolated cyclic quotient singularities. The possible types of
the canonical ones are 1

d(1, 1, d− 1), where d = 2, 3, 4, 6, and 1
3(1, 1, 1),

1
7(1, 2, 4),

1
9(1, 4, 7), and

1
14(1, 9, 11).

Proof. Let p ∈ T be a point with non-trivial stabilizer H := Stab(p). Moving the origin of T ,
we may assume that H acts linearly. In particular, every element of H has 0 ∈ T as fixed point.
First, we prove that H is cyclic. By Lemma 3.0.3, it is enough to show that H is abelian.
We start with summing some relevant properties of H and its elements:

(1) For every non-trivial element g ∈ H, the matrix ρ(g) has 1 not as eigenvalue, since the
fixed points are assumed to be isolated.

(2) By Lemma 3.0.2, for all g ∈ G, it holds that ord(g) ∈ {1, 2, 3, 4, 6, 7, 9, 14, 18}.
In particular, |H| = 2a · 3b · 7c.

(3) Let g ∈ H be an element of order 2. Then ρ(g) = − id. In particular, H contains at most
one element of order 2 since ρ is faithful.

(4) By Corollary 3.0.4, we have c ∈ {0, 1}.

Next, we analyze the 2- and 3-Sylow subgroups of H. We claim that they are cyclic of order 2

or 4, and 3 or 9, respectively (if existent). By Sylow’s Theorem and Lemma 3.0.3, it is enough
to show that H has no subgroups of order p3 for p = 2, 3. Such a subgroup U cannot be
cyclic by item (2) and hence not abelian by Lemma 3.0.3. If p = 2, then the three-dimensional
representation ρ restricted to this subgroup has a one-dimensional subrepresentation, which has
to be faithful by item (1) – a contradiction. If p = 3, then U is either He(3) or Z9 ⋊Z3. Both of
them contain Z2

3 as a subgroup contradicting Lemma 3.0.3. In particular, a, b ∈ {0, 1, 2}.
Finally, we show that there is no non-abelian group fulfilling all these conditions. Note that if
H is not abelian, the representation ρ needs to be irreducible. In particular, 3 = χρ(1) has to
divide the group order, so b ̸= 0. We now analyze the two possible cases for c separately:
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• c = 0: If a = 0, then H is abelian.
If a = 1, then the 3-Sylow subgroup is normal due to Sylow’s Theorems. By item (3),
H has only one 2-Sylow subgroup Z2, which is normal (its generator acts with − id), too.
Hence, H is abelian.
If a = 2, then the only groups admitting an irreducible representation of dimension 3 are
A4, A4 × Z3 and Z2

2 ⋊ Z9, all of which have more than one element of order 2.

• c = 1: The only groups that have at most one element of order 2 and admit an irreducible
representation of dimension 3 contain Z7⋊Z3 or Z7⋊Z9 as a subgroup. Thus, we only have
to exclude these groups. Up to complex conjugation and equivalence of representations,
the only irreducible three-dimensional representation of

Z7 ⋊ Z3 = ⟨t, s | t7 = s3 = 1, sts−1 = t4⟩

is given by

s 7!

0 1 0

0 0 1

1 0 0

 , t 7!

ζ47 0 0

0 ζ27 0

0 0 ζ7

 .

But then the matrix of s has eigenvalue 1. The group Z7 ⋊Z9 has an element of order 21.

Thus, H is cyclic, and by Lemma 3.0.2, its order d belongs to {2, 3, 4, 6, 7, 9, 14, 18}. By
Morrison’s classification (cf. Theorem 2.6.12), each isolated cyclic canonical quotient singularity
is isomorphic to precisely one of the following:

• 1
d(1, a, d− a), where gcd(d, a) = 1 (terminal)

• 1
d(1, a, d− a− 1), where gcd(d, a) = gcd(d, a+ 1) = 1 (Gorenstein)

• 1
9(1, 4, 7) or 1

14(1, 9, 11).

The condition gcd(d, a) = gcd(d, a+ 1) = 1 in the Gorenstein case implies that d is odd. Recall
that for a linear automorphism α ∈ Aut(T ) of order d with only primitive d-th roots of unity as
eigenvalues, the function

µ∗d −! Z, ζ 7! mult(ζ) + mult(ζ),

is constant, where mult(ζ) denotes the multiplicity of ζ as eigenvalue of α and µ∗d denotes the
set of primitive d-th roots of unity (cf. Lemma 2.1.9(1)).
In the terminal case, each generator of the stabilizer has two eigenvalues that are complex
conjugate to each other. Thus, φ(d) ≤ 2 or equivalently d ∈ {2, 3, 4, 6}.
Analyzing the remaining cases yields the singularities in the theorem. Note that there is no
singularity of order 18, since 18 is even and φ(18) = 6.

The main result of this chapter is the following:

Theorem 3.0.6. Let G be a finite group acting holomorphically, without translations, and with
isolated fixed points on a complex torus T of dimension 3 such that X = T/G is rigid with
canonical singularities.
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(1) If pg(X) = 1, then G ≃ Z7, Z3, Z2
3, or He(3).

(2) If pg(X) = 0, then G ≃ Z9, Z14, Z2
3, Z3

3, or Z9 ⋊ Z3.

Remark 3.0.7. We point out that the classification of the groups and the analytic representa-
tions in the case pg(X) = 1 was already achieved by Oguiso and Sakurai ([OS01, Theorem 3.4]).
Instead of the rigidity, they assumed that the action has non-empty (isolated) fixed locus and
that the quotients have vanishing irregularity q1. From their description of the analytic repre-
sentations (see also Theorem 4.1.5 in the next chapter), the rigidity follows immediately from
Proposition 2.5.8. Conversely, any rigid action on a three-dimensional torus has fixed points by
[DG22, Theorem 1.1]. In the rest of the section, we therefore only need to consider the case
pg(X) = 0.

A first step towards the classification of the groups in the case pg(X) = 0 is to analyze the
possible baskets of singularities. For this purpose, we make use of a relative version of the
orbifold Riemann-Roch formula (cf. [Rei87, Corollary 10.3]), adapted to our setup (cf. [Gle16,
Section 4.3] for a similar situation).

Proposition 3.0.8. If pg(X) = 0, then

1 = 1
16N2 +

1
9N3 +

5
32N4 +

35
144N6 +

1
3N9 +

7
16N14,

where Nd denotes the number of singularities of type 1
d(1, 1, d − 1) for d = 2, 3, 4, 6, and N9

and N14 the number of singularities of type 1
9(1, 4, 7) and 1

14(1, 9, 11), respectively.

Proof. The orbifold Riemann-Roch formula (cf. [Rei87, Corollary 10.3]) reads:

χ(OX) =
1

24

(
−KX · c2(X) +

∑
x terminal

m2
x − 1

mx

)
,

where the sum runs over all terminal singularities 1
mx

(1, ax,mx − ax) of a crepant terminaliza-
tion of X, which we obtain by looking locally at each isolated singular point. The Gorenstein
singularities have a crepant resolution, so they do not contribute. The crepant terminalization of
1
9(1, 4, 7) consists of three copies of 1

3(1, 1, 2), and the one of 1
14(1, 9, 11) consists of seven nodes

1
2(1, 1, 1) (cf. Chapter 5). Since the remaining singularities are all terminal (cf. Theorem 3.0.5),
we do not have to modify them.
By the rigidity of the action, we have q1(X) = q2(X) = 0, which implies that χ(OX) = 1.
Moreover, the intersection product KX · c2(X) is 0 since |G| · KX ∼lin 0. Hence, the claim
follows.

Corollary 3.0.9. The candidates for the values of [N2, N3, N4, N6, N9, N14] are

k [N2, N3, N4, N6, N9, N14]

1 [0, 1, 2, 1, 1, 0]

2 [0, 4, 2, 1, 0, 0]

3 [1, 0, 6, 0, 0, 0]

4 [2, 0, 0, 0, 0, 2]

5 [4, 0, 2, 0, 0, 1]

k [N2, N3, N4, N6, N9, N14]

6 [5, 1, 0, 1, 1, 0]

7 [5, 4, 0, 1, 0, 0]

8 [6, 0, 4, 0, 0, 0]

9 [9, 0, 0, 0, 0, 1]

10 [11, 0, 2, 0, 0, 0]

k [N2, N3, N4, N6, N9, N14]

11 [16, 0, 0, 0, 0, 0]

12 [0, 0, 0, 0, 3, 0]

13 [0, 3, 0, 0, 2, 0]

14 [0, 6, 0, 0, 1, 0]

15 [0, 9, 0, 0, 0, 0]
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Next, we want to derive a formula which allows us to compute the order of the group G in terms
of the Ni. If the image of the analytic representation ρ contains non-trivial scalar matrices, we
can derive such a formula from the Lefschetz fixed-point formula, which has a particularly simple
shape on complex tori (cf. Lemma 2.1.12).

Lemma 3.0.10.

(1) If − id ∈ im(ρ), then

26 = |G| · (12N2 +
1
4N4 +

1
6N6 +

1
14N14).

(2) If ζ3 · id ∈ im(ρ), then
33 = |G| · (13N3,gor +

1
9N9),

where N3,gor denotes the number of singularities of type 1
3(1, 1, 1).

Proof. We only give a proof for the first statement. The reasoning for the second one is similar.
Let g ∈ G be the unique element with ρ(g) = − id. The fixed points of g are precisely the
elements in T with stabilizer of even order. Thus:

Fix(g) =
⊔

j∈{2,4,6,14}

{y ∈ T | Stab(y) ≃ Zj}.

By Lemma 2.1.12, g has 26 fixed points. If x is a singularity of order j, then the fiber of x under
the projection map π : T ! X contains |G|/j elements, all having a stabilizer group isomorphic
to Zj .

Remark 3.0.11. If there exists an even j such that Nj ̸= 0, then G has an element g of order 2

with fixed points. Thus, ρ(g) = − id.
Similarly, if N9 ̸= 0, there is an element h ∈ G of order 9 such that ρ(h) is similar to
diag(ζ9, ζ

4
9 , ζ

7
9 ). Hence, ρ(h3) = ζ3 · id.

In these cases, we can deduce the possible orders of G from the baskets of singularities given in
Corollary 3.0.9 and the above lemma, which results in finitely many possible groups. Not all of
them allow a rigid action on T with the properties of Theorem 3.0.6, which we recall below:

Notation 3.0.12. In the following, we shall say that a group G enjoys the standard conditions,
if and only if, for all g ∈ G, it holds that

ord(g) ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14},

and there is a three-dimensional representation ρ : G! GL(3,C) such that:

• ρ is faithful (the action contains no translations),

• its character χ contains no complex conjugated irreducible characters (the action is rigid),

• for each g ∈ G, the characteristic polynomial of ρ(g) ⊕ ρ(g) has integer coefficients (ρ(g)
maps the lattice of the torus to itself),



42 CHAPTER 3. CLASSIFICATION OF THE GROUPS

• if ord(g) ∈ {5, 8, 10, 12}, then 1 ∈ Eig(ρ(g)) (these elements have to act freely), and

• if ord(g) ∈ {7, 9, 14}, then 1 /∈ Eig(ρ(g)) (the fixed points are isolated).

In the following, we will frequently use the following version of Burnside’s Lemma counting
singularities in two different ways.

Lemma 3.0.13. Let T be a complex torus, G a finite group acting holomorphically on T such
that all stabilizer groups are cyclic. Let m be a divisor of |G|. Assume that the order of each
non-trivial element of G which has fixed points is not a proper multiple of m. Let sm be the
number of elements of G of order m acting with fixed points, and let ℓ be the number of fixed
points of such an element. Then

#{[x] ∈ T/G | Stab(x) ≃ Zm} ·
|G|
m

= ℓ · sm
φ(m)

Proof. The left hand side of the equation counts the number of points in T with stabilizer
isomorphic to Zm. Each stabilizer contains φ(m) elements of order m, all of which have the
same fixed points. Moreover, generators of different stabilizer groups have disjoint sets of fixed
points by the “maximality” of m. Thus, the claim follows.

Proposition 3.0.14. If − id ∈ im(ρ), then k = 9 in Corollary 3.0.9 and G ≃ Z14. In particular,
the cases k = 1, . . . , 8, 10, 11 cannot occur.

Proof. By Remark 3.0.11, − id ∈ im(ρ) holds if and only if k ∈ {1, . . . , 11}. By Lemma 3.0.10,
the number of singularities of even order determine the group order uniquely. They are displayed
in the following table:

k 1 2 3 4 5 6 7 8 9 10 11

|G| 96 96 32 56 224
9 24 24 16 14 32

3 8

Obviously, the cases k = 5 and k = 10 are not possible.

If k = 1 or k = 6, then the group order is not divisible by 9. Hence, the group G doesn’t contain
any element of order 9 – a contradiction to N9 ̸= 0.

If k = 3, 8, 11, then G is a 2-group of order 8, 16 or 32. None of these groups fulfills the standard
conditions and the following constraints: If |G| = 8, then we are in case k = 11 and N4 = 0,
and thus, also the elements of order 4 act freely. In the other two cases, all elements of order 4

whose linear parts do not have eigenvalue 1 have as set of eigenvalues {i,−i} (the fixed points
of elements of order 4 lead to singularities of type 1

4(1, 1, 3)).

If k = 2 or k = 7, then N6 = 1. By Lemma 3.0.13, G has precisely 2 · |G|/6 elements of order 6

whose set of eigenvalues is {ζ6, ζ56}. Note that all other elements of order 6 have the eigenvalue
1. For the case k = 7, we observe furthermore that all elements of order 4 act freely, as N4 = 0

and stabilizer groups of order 4s do not occur for s ≥ 2 (cf. Theorem 3.0.5). No group of order
96 or 24 enjoys both, the standard and these additional conditions.
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If k = 4, then |G| = 56 and N14 = 2. By Lemma 3.0.13, G has 2 · 56 · 6/14 = 48 elements of
order 14. Note that G has at least six elements of order 7 and a 2-Sylow subgroup of order 8,
whose elements have an order that divides 8. Therefore, G can have at most 56 − 6 − 8 = 42

elements of order 14 – a contradiction.

If k = 9, then |G| = 14 and since N14 ̸= 0, the group G has an element of order 14. Thus, G is
cyclic of order 14, and the proposition is proven.

Proposition 3.0.15. If ζ3 · id ∈ im(ρ), then k = 12 and G ≃ Z9 or Z9 ⋊ Z3, or k = 15 and
G ≃ Z2

3 or Z3
3. In particular, the cases k = 13 and 14 cannot occur.

Proof. By Proposition 3.0.14 and Remark 3.0.11, −ζ3 · id belongs to the image of ρ if and only
if k ∈ {12, . . . , 15}. As a consequence of Lemma 3.0.10, N9 cannot be 2. Hence, the case k = 13

can be excluded.

If k = 14, then N9 = 1 and so, N3,gor = 0 and |G| = 35. By Lemma 3.0.13, G has 35/9 ·6/3 = 54

elements of order 9 and no elements of order greater than 9. The only groups of order 35 with
these properties are the ones with MAGMA-ID ⟨243, 53⟩ and ⟨243, 58⟩. Both of these groups do
not fulfill the standard conditions – hence, k = 14 is also not realizable.

If k = 12, we have N9 = 3, and thus, |G| = 3a for some a ∈ {2, 3, 4}. If a = 4, then N3,gor = 0,
and following the same argument as in the case k = 14, we obtain a contradiction. If a = 3,
then G is either isomorphic to Z3 × Z9 or to Z9 ⋊ Z3 (we need an element of order 9), but the
first group does not enjoy the standard conditions. If a = 2, then G ≃ Z9 since G contains an
element of order 9.

If k = 15 then
33 = N3,gor · |G|

3

because N9 = 0. Since N3 ̸= 0, the order of G is strictly greater than 3. Note furthermore that
G doesn’t contain any element of order 9 because N9 = 0, i.e., the group has exponent 3.
Clearly, if |G| = 9, then G ≃ Z2

3 is the only possibility, and if |G| = 27, then G ≃ Z3
3 because the

group He(3) is not possible, since N3 ̸= 0 and the images of the three-dimensional irreducible
representations of He(3) belong to SL(3,C).
The only groups of order 81 with exponent 3 are Z4

3 and Z3 ×He(3). Both groups do not admit
a faithful three-dimensional representation. In case of the first group Z4

3, the representation is
the sum of three one-dimensional characters. Since each of them takes values in ⟨ζ3⟩, the image
of the representation has at most 33 elements. The second 3-group, Z3 × He(3), is not abelian,
hence, the representation is irreducible. By Schur’s Lemma, its center Z2

3 acts by scalar multiples
of the identity matrix of order 3. So, the kernel of the representation is non-trivial.

In the rest of the section, we consider the remaining case, where the image of ρ does not contain
any scalar matrices. Thus we cannot apply Lemma 3.0.13 to control the group order. Instead,
we apply Sylow’s Theorems to bound the orders of the p-subgroups of G. The goal is to prove
the following:

Proposition 3.0.16. If − id, ζ3 · id /∈ im(ρ), then k = 15 and G ≃ Z2
3.
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Remark 3.0.17. By Remark 3.0.11, it is clear that k = 15 is the only case, where − id, ζ3 · id /∈
im(ρ) holds. In this situation, we have the following basket of singularities:

9× 1
3(1, 1, 2), N7 × 1

7(1, 2, 4).

In particular, G has no elements of order 9, since such an element would act with fixed points
but N9 = 0.
Recall furthermore, that |G| = 2a · 3b · 5c · 7d with d ∈ {0, 1}, and b ≥ 1 because N3 ̸= 0.

Lemma 3.0.18. If G has a 5-Sylow subgroup S5, then S5 is cyclic of order 5, thus, c ∈ {0, 1}.

Proof. By Lemma 3.0.2 and Sylow’s Theorem, it suffices to exclude that G contains a copy of
Z2
5. Assuming the existence of such a subgroup, the restriction of ρ to Z2

5 would be of the form

ρ : Z2
5 ↪−! GL(3,C), (a, b) 7! diag(ζa5 , ζ

b
5, ζ

λa+µb
5 ),

up to equivalence of representations and automorphisms of Z2
5. All of the representation matrices

must have 1 as an eigenvalue because the elements of Z2
5 cannot have fixed points (cf. Lemma

3.0.2). This implies λ = µ = 0. Since the characteristic polynomial of ρ(1, 0)⊕ ρ(1, 0) does not
have integer coefficients, we observe that an action with such a linear part cannot exist.

Furthermore, G has no 7-Sylow subgroups:

Lemma 3.0.19. The group G has no elements of order 7; hence, N7 = d = 0.

Proof. Let n7 denote the number of 7-Sylow subgroups of G, and assume that n7 ≥ 1, so d = 1.
First, we show that |G| = 7 · n7. By Lemma 3.0.13 and since N14 = 0, it holds that

N7 ·
|G|
7

= 7 · n7.

Since 72 does not divide the group order, this implies that N7 is divisible by 7. By Sylow’s
Theorems, there exists an integer m such that n7 ·m = |G|/7. Hence, N7 ·m = 7, which implies
N7 = 7 and |G| = 7 · n7.
Note that the group has n7 · 6 elements of order 7 and at least 2/9 · |G| elements of order 3 (cf.
Lemma 3.0.13, recall that N3,gor = N9 = 0). These are in total more elements than G has:

(n7 · 6 + 2
9 · |G|)− |G| = n7 · (6 + 2

9 · 7− 7) = n7 · 5
9 > 0.

Lemma 3.0.20. The 2-Sylow subgroups contain at most 25 elements, and the 3-Sylow subgroups
are all isomorphic to Z2

3. In particular, a ≤ 5 and b = 2.

Proof. Let Sp be a p-Sylow group of G. Then Sp and all its subgroups fulfill the standard
conditions except possibly for the rigidity. By Sylow’s Theorems, Sp has subgroups of order pm

for all m such that pm ≤ |Sp|. So, we determine successively by increasing order all possible
p-groups for p = 2, 3.
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If p = 3, then by assumption, ζ3 · id is not contained in the image of the representation and the
group does not contain elements of order 9. This excludes all groups of order 33, and the entire
list of possible 3-groups contains only Z3 and Z2

3. By Lemma 3.0.13, the number of elements of
order 3 with fixed points equals 2/9 · |G|. In particular, 9 divides the group order, so the only
possibility for a 3-Sylow subgroup is Z2

3.
If p = 2, then for each element h in S2, the matrix ρ(h) has to have eigenvalue 1 since all elements
of even order have to act freely. Together with the described strategy, a MAGMA-computation
shows that the 2-subgroups of G have order at most 25.

Proof of Proposition 3.0.16. First, we assume |G| = 2a · 32 · 5 with a ∈ {0, . . . , 5} . The only
group that has at least 2/9 · |G| elements of order 3 and fulfills that the order of each element
of G belongs to {1, 2, 3, 4, 5, 6, 8, 10, 12} has MAGMA-ID ⟨360, 118⟩. But this group is not
abelian and has no irreducible character of degree 2 or 3 – a contradiction. Hence, 5 does not
divide the group order and |G| = 2a · 32.
If moreover a = 0, then G is isomorphic to Z2

3.
In order to exclude the case a ≥ 1, we check with MAGMA that there is no group G of order
2a · 32 with a ∈ {1, . . . , 5} with the following properties:

• G enjoys the standard conditions,

• for all g ∈ G, it holds that ord(g) ∈ {1, 2, 3, 4, 6, 8, 12},

• G has at least 2/9 · |G| elements of order 3,

• #{g ∈ G | ord(g) = 3, 1 /∈ Eig(ρ(g))} = 2
9 · |G|, and

• if ord(g) = 3 and 1 /∈ Eig(ρ(g)), then Eig(ρ(g)) = {ζ3, ζ23}.

Proof of Theorem 3.0.6. Let G be a finite group as in the theorem. Since T has geometric genus
pg(T ) = 1, the geometric genus of the quotient X = T/G is either 1 or 0 depending whether
the volume form dz1 ∧ dz2 ∧ dz3 is G-invariant or not. The classification of the groups in the
case that pg(X) = 1 was achieved in [OS01] as explained in Remark 3.0.7. If pg(X) = 0, then
Corollary 3.0.9 describes the possible baskets of singularities. In Proposition 3.0.14, it is proven
that if − id ∈ im(ρ), then G is isomorphic to Z14. Proposition 3.0.15 settles the classification if
ζ3 · id belongs to the image of ρ: G is isomorphic to Z9, Z2

3, Z3
3, or Z9 ⋊ Z3. If − id as well as

ζ3 · id are both not contained in im(ρ), then Proposition 3.0.16 ensures that G is isomorphic to
Z2
3.



4. Classification of the quotients

4.1. Known results and Calabi-Yau threefolds

In this section, we collect the results about rigid quotients X = T/G of complex tori in dimension
3 which have already been established. In particular, we explain the connection to Calabi-Yau
threefolds and their contractions.

Let us start with the case pg(X) = 1. Since pg(X) = dim(H0(T,Ω3
T ))

G, this means precisely
that the top form dz1∧dz2∧dz3 of the torus is invariant under the action of G, and thus descends
to a nowhere vanishing top-form on the quotient X = T/G. In particular, the canonical divisor
of X is trivial. Due to the rigidity, the irregularity q1 vanishes. Furthermore, the invariance
of the volume form implies that the image of the analytic representation belongs to the special
linear group SL(3,C), so all singularities of X are Gorenstein and X admits a crepant resolution
f : X̂ ! X, which means KX̂ is again trivial.

Definition 4.1.1 ([OS01]). A Calabi-Yau threefold is a Q-factorial terminal projective three-
dimensional variety X (defined over C) such that OX(KX) ≃ OX and q1(X) = h1(OX) = 0.

Looking at this definition, we see that the resolution X̂ is a Calabi-Yau threefold together with a
contraction f : X̂ ! X, i.e., a surjective holomorphic map with connected fibers onto a normal,
projective variety of positive dimension. A Calabi-Yau threefold X together with a contraction
f : X ! W is called fibered Calabi-Yau threefold. Such threefolds were extensively studied by
Oguiso at the end of the 20th century (cf. [Ogu93], [Ogu96a], [Ogu96b], [Ogu96c]), and together
with Sakurai in [OS01]. Each such contraction f : X ! W is defined by the complete linear
system of a nef divisor D, which has non-negative intersection c2(X) ·D ≥ 0 due to a result of
Miyaoka-Yau [Miy87]. For the analysis, Oguiso divided the fibered Calabi-Yau threefolds into six
classes, according to their values of the Iitaka dimension of D, which is equal to the dimension
of W , and the property whether the intersection number c2(X) · D is 0 or strictly positive. If
the intersection number is 0, then Oguiso and Sakurai call the contraction a c2-contraction. In
our setup, where f is the crepant resolution of a (rigid) torus quotient with pg = 1, f is a c2-
contraction and D is big, so the Iitaka dimension equals 3. This class is labeled by Oguiso as type
III0. In fact, every fibered Calabi-Yau threefold of type III0 arises via this construction: Oguiso
showed that the three-dimensional base W of the contraction f : X ! W has trivial canonical
divisor KW and vanishing second Chern class. A famous result of Shepherd-Barron and Wilson
[SBW94] ensures that W is biholomorphic to a quotient of a projective complex torus T by a
finite translation-free group G which acts with finite and non-empty fixed locus and preserves
the volume form of T . Based on this result, Oguiso and Sakurai proved:

46
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Theorem 4.1.2 ([Ogu96c], [OS01]). Let (X, f) be a fibered Calabi-Yau threefold of type III0.
Then the pair is isomorphic to the crepant resolution f : X ′ ! T/G of a quotient of a projective
complex torus T by a finite translation-free group G which acts with finite and non-empty fixed
locus and preserves the volume form of T .

In particular, the pair (X, f) is uniquely determined by T/G, so classifying fibered Calabi-Yau
threefolds of type III0 is the same as classifying the quotients T/G with the required properties.

Let us point out the following: In our setup, we do not require the torus to be projective and
the action to have fixed points, but this follows from the rigidity of the action (cf. [DG22,
Theorem 1.1]). On the other hand, rigidity is not required in the above theorem. However, it
turns out that the quotients with these properties are all automatically rigid, as we will explain
later on.

If the quotient T/G is simply connected, then a fine classification is already established (cf.
[RY87], [Roa89], [Ogu96c], [Roa03]):

Theorem 4.1.3. Let G be a finite group acting holomorphically, without translations and with
finite and non-empty fixed locus on an abelian variety T of dimension 3 such that the action
preserves the volume form of T . If the quotient X = T/G is simply connected, then G is
isomorphic to Z3 or Z7 and the quotient X is biholomorphic to

Z1 := Jac(Q)/⟨diag(ζ7, ζ27 , ζ47 )⟩ or Z2 := E3/⟨ζ3 · id⟩,

where Jac(Q) = H0(Ω1
Q)

∗/H1(Q) denotes the Jacobian of Klein’s plane quartic curve

Q = {x0x31 + x1x
3
2 + x2x

3
0 = 0} ⊂ P2

C,

and E = C/Z[ζ3] is Fermat’s elliptic curve.

Note that the torus Jac(Q) has many other descriptions: For example, it is biholomorphic to E3
u7 ,

where Eu7 = C/Z[u7] with u7 := ζ7+ ζ
2
7 + ζ

4
7 , or to the torus C3/Λ(ζ7, ζ

2
7 , ζ

4
7 ), where Λ(ζ7, ζ

2
7 , ζ

4
7 )

is the lattice with basis {(ζk7 , ζ2k7 , ζ4k7 ) | k = 0, . . . , 5}. Indeed, by Theorems 2.2.9, 2.2.12 and
2.2.13, any complex torus with automorphism diag(ζ7, ζ

2
7 , ζ

4
7 ) is biholomorphic to Jac(Q).

Remark 4.1.4. Recently, Gachet [Gac22] generalized Theorem 4.1.3 to higher dimensions: Let T
be an abelian variety of dimension n ≥ 3 and G a finite group acting freely in codimension two
on T . If the quotient T/G has a simply connected Calabi-Yau manifold as a crepant resolution,
then T is isogenous to En or Enu7 , and the group G is generated by those elements that act with
fixed points.

In the case that the quotient X = T/G has non-trivial fundamental group, only the isomorphism
classes of the groups and the analytic representations are known. In fact, Oguiso and Sakurai
proved in [OS01, Thoerem 3.4]:

Theorem 4.1.5. Let G be a finite group acting holomorphically, without translations, and with
finite and non-empty fixed locus on an abelian variety T of dimension 3 such that the action
preserves the volume form of T . If the quotient X = T/G is not simply connected, then G is
isomorphic to Z2

3 or He(3). More precisely, the following holds:
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(1) If G = Z2
3 = ⟨h, k⟩, then the analytic representation is, up to automorphisms of G, equiva-

lent to
ρ(h) = diag(1, ζ23 , ζ3), ρ(k) = diag(ζ3, ζ3, ζ3).

(2) If G = He(3) = ⟨g, h, k | g3 = h3 = k3 = [g, k] = [h, k] = 1, [g, h] = k⟩, then the analytic
representation is, up to automorphisms of G, equivalent to

ρ(g) =

0 0 1

1 0 0

0 1 0

 , ρ(h) =

1

ζ23
ζ3

 , ρ(k) =

ζ3 ζ3

ζ3

 .

Remark 4.1.6. From the description of the analytic representation, it follows directly from Propo-
sition 2.5.8 that all the corresponding quotients are rigid.

Nevertheless, different translations parts may lead to different biholomorphism or even homeo-
morphism classes of quotients T/G. The fine classification will be settled in this chapter.

If the quotient X = T/G has geometric genus pg = 0, then much less is known. The classification
of the groups was the content of Chapter 3. In [BG21], the authors obtained some partial
classification results, but they had more restrictive assumptions: They required that the torus
in question is a product of three elliptic curves and the action of the group on the product is
diagonal and faithful on each factor, which allowed them to use product quotient techniques.

Although we will see later on that all our quotients are abstractly isomorphic to a product of
three elliptic curves, namely three copies of either E or Eu7 , conjugating the actions with these
isomorphisms may lead to non-diagonal actions, which do not fit in the setup of [BG21]. Thus,
we need to apply different methods to reach the classification, which we will explain next.

4.2. Classification machinery

In this section, we explain how to use Bieberbach’s structure theorems about crystallographic
groups (cf. Section 2.4) to decide if two torus quotients, which we view as normal complex
spaces in the sense of Cartan (cf. [Car57]), are biholomorphic or homeomorphic. Since this
works in arbitrary dimension, we discuss it in the general setting of a complex torus T = Cn/Λ
of dimension n ≥ 2. This generalizes the classification strategy outlined in [DG22], which is
similar to [HL21] and where the authors only discussed quotients of tori by free actions.

Remark 4.2.1. Let G be a finite group of biholomorphisms acting on a complex torus T = Cn/Λ
without translations, and denote by π : Cn ! T the universal cover. Recall that the orbifold
fundamental group is defined as

πorb1 (T,G) := {γ : Cn ! Cn | ∃ g ∈ G s.t. π ◦ γ = g ◦ π}.

In Section 2.4, we collected several properties of Γ := πorb1 (T,G). In particular, the orbifold
fundamental group is a crystallographic group, that is a discrete and cocompact subgroup of
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E(2n), and fits into the exact sequence

0 −! Λ −! Γ −! G −! 1,

where the lattice Λ of the torus coincides with the subgroup of translations of Γ, and for the
quotient X = T/G, it holds that

X = T/G = Cn/Γ.

Moreover, if the action of G on T is free in codimension 1, then Γ = πorb1 (T,G) is the fundamental
group of the regular locus X◦ of X.

Furthermore, recall the most important properties of crystallographic groups that are summa-
rized in Bieberbach’s structure theorems:

Theorem 4.2.2 ([Bie11], [Bie12]).

(1) The translation subgroup Λ := Γ ∩ Rn of a crystallographic group Γ ⊂ E(n) is a lattice of
rank n, and Γ/Λ is finite. All other normal abelian subgroups of Γ are contained in Λ.

(2) Let Γ1,Γ2 ⊂ E(n) be two crystallographic groups and f : Γ1 ! Γ2 be an isomorphism.
Then there exists an affine transformation α ∈ AGL(n,R) = Rn ⋊ GL(n,R) such that
f(g) = α ◦ g ◦ α−1 for all g ∈ Γ1.

(3) In each dimension, there are only finitely many isomorphism classes of crystallographic
groups.

In the following, we explain the geometric consequences of this theorem and how to apply them to
classify torus quotients. For this, let T = Cn/Λ and T ′ = Cn/Λ′ be two complex tori of dimension
n ≥ 2 and G and G′ finite groups acting without translations and freely in codimension 1 on T
and T ′, respectively. Denote the quotients by X and X ′ and the orbifold-fundamental groups by
Γ and Γ′, respectively.

The next lemma gives a link between homeomorphisms of torus quotients and their orbifold
fundamental groups. This will allow us to apply Bieberbach’s structure theorems to distinguish
between the quotients T/G.

Lemma 4.2.3. Every homeomorphism f : X ! X ′ restricts to a homeomorphism of the smooth
loci of X and X ′. In particular, it induces an isomorphism of the orbifold fundamental groups
Γ ≃ Γ′.

Proof. The homeomorphism f induces an isomorphism of the local fundamental groups πloc1 (X, p)

and πloc1 (X ′, f(p)) for every p ∈ X. Since the actions are free in codimension one, these groups
are trivial if and only if the points p and f(p), respectively, are smooth (cf. [Pri67]). Therefore,
f maps the smooth locus of X homeomorphically to the smooth locus of X ′.

The structure theorems of Bieberbach ensure that even the converse is true:

Corollary 4.2.4. The quotients X and X ′ are homeomorphic if and only if the orbifold funda-
mental groups Γ and Γ′ are isomorphic. In particular, there are only finitely many homeomor-
phism classes of quotients.
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Proposition 4.2.5. Let Φ: G! Bihol(T ) and Φ′ : G′ ! Bihol(T ′) be translation-free holomor-
phic actions of finite groups G and G′ which are free in codimension 1. Assume that the quotients
X = T/G and X ′ = T ′/G′ are homeomorphic. Then the following holds:

(1) The groups G and G′ are isomorphic.

(2) There exists an affine transformation α ∈ AGL(2n,R) inducing diffeomorphisms α̂ and α̃,
such that the following diagram commutes:

T T ′

X X ′.

α̃

α̂

In particular, the quotients X and X ′ are homeomorphic if and only if they are diffeomor-
phic.

Furthermore, any biholomorphism f : X ! X ′ lifts to a biholomorphism of the tori, i.e., it is
induced by an affine transformation α ∈ AGL(n,C).

Proof. Any homeomorphism f : X ! X ′ induces an isomorphism between the orbifold funda-
mental groups f∗ : Γ! Γ′ by Lemma 4.2.3, which is given by conjugation with an affinity α due
to Theorem 4.2.2. Since Λ and Λ′ are the unique maximal normal abelian subgroups of Γ and
Γ′, respectively, the isomorphism f∗, and thus α, maps Λ to Λ′. This proves the first and the
second assertion of the proposition.
Now, let f : X ! X ′ be a biholomorphic map. Clearly, this map restricts to a biholomorphism
between the smooth loci of the quotients, f : X◦ ! (X ′)◦, and lifts to the universal covers:

Cn \ π−1(F ) Cn \ (π′)−1(F ′)

X◦ (X ′)◦.

f̃

f

Since π−1(F ) ⊂ Cn is analytic and of codimension at least two, there exists a unique biholo-
morphic extension F̃ : Cn ! Cn of f̃ by Riemann’s second extension theorem (cf. [FG02, Theo-
rem 6.12]). Because of the commutativity of the diagram, we can find for any γ ∈ Γ an element
γ′ ∈ Γ′ such that F̃ ◦ γ = γ′ ◦ F̃ holds for all z ∈ Cn \ π−1(F ), hence, for all z ∈ Cn by the iden-
tity theorem. Therefore, the biholomorphism F̃ induces a biholomorphic map F : X ! X ′, that
coincides with f . Since conjugation with F̃ gives an isomorphism between the crystallographic
groups Γ and Γ′, the biholomorphism F̃ maps the lattice Λ to Λ′ and induces a well-defined map
between the tori T and T ′. In particular, α := F̃ is affine linear.

Corollary 4.2.6. The quotients X and X ′ are homeomorphic if and only if they are diffeomor-
phic.

As in [DG22, Remarks 4.6 and 4.7], we make use of the following observations and notations.
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Remark 4.2.7. Let f : X ! X ′ be a homeomorphism induced by an affine transformation α(x) =
Cx+d. Then the commutativity of the diagram in Proposition 4.2.5 is equivalent to the existence
of an isomorphism φ : G! G′ such that

(a) CρR(g)C
−1 = ρ′R(φ(g)) and (b) (ρ′R(φ(g))− id)d = Cτ(g)− τ ′(φ(g))

hold for all g ∈ G, where the second item is an equation holding on T ′. Note that φ = φC is
uniquely determined by C due to the faithfulness of the analytic representations.
Item (a) means that ρR and ρ′R ◦ φ are equivalent as real representations (or as complex repre-
sentations if f is holomorphic). If we consider T and T ′ as G and G′-modules, then this item
implies that the matrix C induces a φ-twisted equivariant module isomorphism C : T ! T ′.
Item (b) tells us that the cocycles τ ′ and

C ∗ τ := C · (τ ◦ φ−1
C )

differ by a coboundary.

Notation 4.2.8. We define

NR(Λ,Λ
′) := {C ∈ GL(2n,R) | CΛ = Λ′, C · im(ρR) = im(ρ′R) · C}

and
NC(Λ,Λ

′) := NR(Λ,Λ
′) ∩GL(n,C).

In summary, the following holds:

Proposition 4.2.9.

(1) Two quotients X = T/G and X ′ = T ′/G are homeomorphic (biholomorphic) if and only if
there exists a matrix C ∈ NR(Λ,Λ

′) (C ∈ NC(Λ,Λ
′)) such that C ∗ τ and τ ′ belong to the

same cohomology class in H1(G,T ′).

(2) If X = T/G and X ′ = T ′/G are homeomorphic, then T and T ′ are isomorphic as G-
modules up to an automorphism of G.

In the special case where ρ = ρ′ and T = T ′, the sets NR(Λ,Λ) and NC(Λ,Λ) are the normalizers
of im(ρR) in the group of linear diffeomorphisms or biholomorphisms of T . For simplicity, we
denote them by NR(Λ) and NC(Λ). They act on H1(G,T ) by C ∗τ . The quotients corresponding
to τ and τ ′ are homeomorphic (or biholomorphic) if and only if they belong to the same orbit
under this action.

Using all these results, a classification of the quotients can be achieved performing the following
steps:

Strategy for the classification 4.2.10.

(1) For each groupG in Theorem 3.0.6, determine all possible representations ρ : G ↪! GL(3,C)
fulfilling the rigidity and integrality condition, up to equivalence of representations and
automorphisms of G.
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(2) For each group G and each representation ρ, do the following:

(a) Determine all lattices Λ that have a G-module structure via ρ.

(b) For each T = C3/Λ, determine all cohomology classes in H1(G,T ) that lead to an
action with finite fixed locus and fix a representative τ for each class. We will refer
to such classes as good cohomology classes.

(c) Decide which quotients of T by the actions given by ρ and τ are biholomorphic or
homeomorphic, respectively, using Proposition 4.2.9.

(3) If there are groups G admitting more than one representation ρ, analyze which biholomor-
phism and homeomorphism classes coming from different representations coincide.

Remark 4.2.11. The cocycles C ∗ τ and τ ′ belong to the same cohomology class in H1(G,T ′) if
and only if there there exists an element d ∈ T ′ such that (C ∗ τ − τ ′)(g) = ρ′(g)d − d for all
g ∈ G. Conjugation by the affinity α(x) = Cx+ d induces isomorphisms:

0 Λ πorb1 (T,G) G 1

0 Λ′ πorb1 (T ′, G) G 1

C conjα φC

Conversely, every isomorphism of the orbifold fundamental groups is given by conjugation with
an affinity yielding C and d as above.

Remark 4.2.12. By Example 2.3.32, the short exact sequence

0 −! Λ −! C3 −! T −! 0

of G-modules, where G acts via the analytic representation ρ, induces an isomorphism

σ1 : H1(T,G) −! H2(T,Λ).

Thus, the choice of 1-cocycle representing the translation part of an action Φ of G on T yields a
class [β] ∈ H2(G,Λ), which defines a group extension

0 −! Λ −! Γ = (Λ×β G) −! G −! 1

as explained in Theorem 2.3.36. On the other hand, we have the extension

0 −! Λ −! πorb1 (T,G) −! G −! 1, (4.2.1)

induced by the action of G on T defined by τ . In fact, these two extensions agree (up to
isomorphism): The 2-cocycle β′ induced by the section s(g) := Φ(g) of the extension (4.2.1) is
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the same as β = σ1(τ). To see this, let g, h ∈ G; then

β′(g, h)(z) =
(
s(g)s(h)s(gh)−1

)
(z)

= ρ(g) ·
(
ρ(h)ρ(gh)−1 · z − ρ(h)ρ(gh)−1τ(gh) + τ(h)

)
= z − τ(gh) + ρ(g)τ(h) + τ(g)

= z + σ1(τ)(g, h).

If T ′ is another torus admitting and action of G with linear part ρ and translation part τ ′, then
by Proposition 4.2.9, the corresponding quotients X and X ′ are homeomorphic if and only if
there exists a matrix C ∈ NR(Λ,Λ

′) such that C ∗ τ and τ ′ belong to the same cohomology class
in H1(T ′, G). Analogous to C ∗ τ , we can define C ∗ β via

C ∗ β(g, h) := C · β(φ−1
C (g), φ−1

C (h))

for β ∈ Z2(G,Λ). Since the connecting homomorphism σ1 : H1(G,T )! H2(G,Λ) is compatible
with this action of C, we conclude:
The quotients X and X ′ are homeomorphic if and only if the corresponding short exact sequences

0 −! Λ −! Γ −! G −! 1 and 0 −! Λ′ −! Γ′ −! G −! 1

are isomorphic.
The same is true if we replace “homeomorphic” by “biholomorphic”, but then the matrix C has
to be C-linear and not only R-linear.
In view of this discussion, our strategy for the classification 4.2.10 is similar to the scheme
for classifying Bieberbach groups outlined in [Cha86, Chapter III, Section 2]. The differences
are that in our setup, actions with fixed points are allowed, so we have to replace “Bieberbach
groups” by “crystallographic groups”, and for the biholomorphic classification of the quotients, we
have to refine the equivalence relation for crystallographic groups to conjugation by holomorphic
affinities, i.e., affinities with C-linear matrices.

4.3. Fine Classification

In this section, we finally classify all rigid quotients of three-dimensional complex tori with
isolated canonical singularities. By Theorem 3.0.6, the possible Galois groups are:

Z3, Z7, Z9, Z14, Z2
3, Z3

3, He(3), and Z9 ⋊ Z3.

The goal of the section is to prove the main theorem:

Theorem 4.3.1. Let G be a finite group admitting a rigid, holomorphic, and translation-free
action on a three-dimensional complex torus T with finite fixed locus and such that the quotient
X = T/G has canonical singularities.

(1) If pg(X) = 1, then there are precisely 8 biholomorphism classes of quotients, which are pairwise
topologically distinct. Table 4.1 contains precisely one representative Zi for each class.
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(2) If pg(X) = 0, then there are precisely 13 biholomorphism classes of quotients. Table 4.2
contains precisely one representative Yi of each class. These 13 threefolds form 11 homeo-
morphism classes, Y4 ≃homeo Y4′ and Y10 ≃homeo Y10′. Explicit explicit homeomorphisms are
given by

Y4 −! Y4′ , (z1, z2, z3) 7! (−z1, z3, z2),
Y10 −! Y10′ , (z1, z2, z3) 7! (z1, z2, z3).

In total, the quotients X = T/G form 21 biholomorphism classes and 15 homeomorphism classes

Z1, Z2, Z7, Z8, Y1, Y2, Y7, Y8, Y9, Y11

Z3 ≃homeo Y3, Z4 ≃homeo Y4 ≃homeo Y4′ , Z5 ≃homeo Y5, Z6 ≃homeo Y6, Y10 ≃homeo Y10′ .

Explicit homeomorphisms Zk ! Yk for k = 3, . . . , 6 are given by (z1, z2, z3) 7! (z1, z2, −z3).
Moreover, the diffeomorphism and homeomorphism classes coincide.

i G Λ action singularities π1(Zi)

1 Z7 Λ(ζ7, ζ27 , ζ
4
7 ) Φ(1)(z) = diag(ζ7, ζ27 , ζ

4
7 ) · z 7× 1

7
(1, 2, 4) {1}

2 Z3 Z[ζ3]3 Φ(1)(z) = diag(ζ3, ζ3, ζ3) · z 27× 1
3
(1, 1, 1) {1}

3 Z2
3 Z[ζ3]3

Φ(h)(z) = diag(1, ζ23 , ζ3) · z + (t, t, t)

Φ(k)(z) = diag(ζ3, ζ3, ζ3) · z
9× 1

3
(1, 1, 1) Z3

4 Z2
3 Z[ζ3]3 + Z(t, t, 0)

Φ(h)(z) = diag(1, ζ23 , ζ3) · z +
1
3
(1, 1, 3t)

Φ(k)(z) = diag(ζ3, ζ3, ζ3) · z
9× 1

3
(1, 1, 1) Z3

5 Z2
3 Z[ζ3]3 + Z(t, t, t)

Φ(h)(z) = diag(1, ζ23 , ζ3) · z +
1
3
(1, 1, 1)

Φ(k)(z) = diag(ζ3, ζ3, ζ3) · z
9× 1

3
(1, 1, 1) Z3

6 Z2
3 Z[ζ3]3 + Z(t, t, t) + Z(t,−t, 0)

Φ(h)(z) = diag(1, ζ23 , ζ3) · z +
1
3
(1, 1, 1)

Φ(k)(z) = diag(ζ3, ζ3, ζ3) · z
9× 1

3
(1, 1, 1) Z3

7 He(3) Z[ζ3]3 + Z(t, t, t)
Φ(g)(z) =


0 0 1

1 0 0

0 1 0

 · z + (t, 0, 0)

Φ(h)(z) = diag(1, ζ23 , ζ3) · z +
2
3
(1, 1, 1)

3× 1
3
(1, 1, 1) Z2

3

8 He(3) Z[ζ3]3 + Z(t, t, t) + Z(t,−t, 0)
Φ(g)(z) =


0 0 1

1 0 0

0 1 0

 · z + (t, 0, 0)

Φ(h)(z) = diag(1, ζ23 , ζ3) · z +
2
3
(1, 1, 1)

3× 1
3
(1, 1, 1) Z2

3

Table 4.1.: Calabi-Yau quotients. In the table, t := (1 + 2ζ3)/3 and Λ(ζ7, ζ
2
7 , ζ

4
7 ) has the basis

{(ζk7 , ζ2k7 , ζ4k7 ) | k = 0, . . . , 5}.

We want to point out that the quotients Z1 and Z2 are precisely the ones described in Theo-
rem 4.1.3. Furthermore, the quotients Y3, Y5, Y7, and Y8 are those already found in [BG21]
using product quotient techniques.
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i G Λ action singularities π1(Yi)

1 Z9 Λ(ζ9, ζ49 , ζ
7
9 ) Φ(1)(z) = diag(ζ9, ζ49 , ζ

7
9 ) · z

8× 1
3
(1, 1, 1)

3× 1
9
(1, 4, 7)

{1}

2 Z14 Λ(ζ14, ζ914, ζ
11
14 ) Φ(1)(z) = diag(ζ14, ζ914, ζ

11
14 ) · z

9× 1
2
(1, 1, 1)

3× 1
7
(1, 2, 4)

1× 1
14

(1, 9, 11)

{1}

3 Z2
3 Z[ζ3]3

Φ(h)(z) = diag(1, ζ23 , ζ
2
3 ) · z + (t, t, t)

Φ(k)(z) = diag(ζ3, ζ3, ζ23 ) · z
9× 1

3
(1, 1, 2) Z3

4 Z2
3 Z[ζ3]3 + Z(t, t, 0)

Φ(h)(z) = diag(1, ζ23 , ζ
2
3 ) · z +

1
3
(1, 1, 3t)

Φ(k)(z) = diag(ζ3, ζ3, ζ23 ) · z
9× 1

3
(1, 1, 2) Z3

4’ Z2
3 Z[ζ3]3 + Z(t, 0, t)

Φ(h)(z) = diag(1, ζ23 , ζ
2
3 ) · z +

1
3
(1, 3t, 2ζ23 )

Φ(k)(z) = diag(ζ3, ζ3, ζ23 ) · z
9× 1

3
(1, 1, 2) Z3

5 Z2
3 Z[ζ3]3 + Z(t, t, t)

Φ(h)(z) = diag(1, ζ23 , ζ
2
3 ) · z +

1
3
(1, 1, 2)

Φ(k)(z) = diag(ζ3, ζ3, ζ23 ) · z
9× 1

3
(1, 1, 2) Z3

6 Z2
3 Z[ζ3]3 + Z(t, t, t) + Z(t,−t, 0)

Φ(h)(z) = diag(1, ζ23 , ζ
2
3 ) · z +

1
3
(1, 1, 2)

Φ(k)(z) = diag(ζ3, ζ3, ζ23 ) · z
9× 1

3
(1, 1, 2) Z3

7 Z2
3 Z[ζ3]3

Φ(h)(z) = diag(ζ3, ζ3, 1) · z + (t, t, t)

Φ(k)(z) = diag(ζ3, ζ3, ζ23 ) · z

9× 1
3
(1, 1, 1)

9× 1
3
(1, 1, 2)

{1}

8 Z2
3 Z[ζ3]3 + Z(t, t, t)

Φ(h)(z) = diag(ζ3, ζ3, 1) · z + 1
3
(1, 1, 1)

Φ(k)(z) = diag(ζ3, ζ3, ζ23 ) · z

9× 1
3
(1, 1, 1)

9× 1
3
(1, 1, 2)

{1}

9 Z3
3 Z[ζ3]3

Φ(h)(z) = diag(1, ζ23 , ζ3) · z + (−t,−t, t)

Φ(g)(z) = diag(ζ3, 1, 1) · z + (−t, 0,−t)

Φ(k)(z) = diag(ζ3, ζ3, ζ3) · z

3× 1
3
(1, 1, 1)

9× 1
3
(1, 1, 2)

{1}

10 Z3
3 Z[ζ3]3 + Z(t, t, 0)

Φ(h)(z) = diag(1, ζ23 , ζ3) · z +
1
3
(−ζ23 , 2, 3t)

Φ(g)(z) = diag(ζ3, 1, 1) · z + 1
3
(−ζ23 , 2ζ3, 0)

Φ(k)(z) = diag(ζ3, ζ3, ζ3) · z

3× 1
3
(1, 1, 1)

9× 1
3
(1, 1, 2)

{1}

10’ Z3
3 Z[ζ3]3 + Z(t, t, 0)

Φ(h)(z) = diag(1, ζ23 , ζ3) · z +
1
3
(ζ3, ζ23 , 3t)

Φ(g)(z) = diag(ζ3, 1, 1) · z + 1
3
(ζ23 , ζ

2
3 , 0)

Φ(k)(z) = diag(ζ3, ζ3, ζ3) · z

3× 1
3
(1, 1, 1)

9× 1
3
(1, 1, 2)

{1}

11 Z9 ⋊ Z3 Z[ζ3]3

Φ(h)(z) = diag(1, ζ23 , ζ3) · z + (t, t, t)

Φ(g)(z) =


0 1 0

0 0 1

ζ3 0 0

 · z
2× 1

3
(1, 1, 1)

3× 1
9
(1, 4, 7)

{1}

Table 4.2.: Quotients with pg = 0. In the table, t := (1 + 2ζ3)/3, Λ(ζ9, ζ
4
9 , ζ

7
9 ) has the basis

{(ζk9 , ζ4k9 , ζ7k9 ) | gcd(k, 9) = 1} and Λ(ζ14, ζ
9
14, ζ

11
14 ) has the basis {(ζk14, ζ9k14 , ζ11k14 ) |

gcd(k, 14) = 1}.

4.3.1. Quotients with respect to cyclic groups

We start with the classification of the quotients by cyclic groups. Here, the situation is quite
clear:

Proposition 4.3.2. For each of the groups G = Z3, Z7, Z9, and Z14, there exists up to biholo-
morphism one and only one quotient X = T/G. They are represented by Z1 and Z2 of Table 4.1,
and Y1 and Y2 of Table 4.2, respectively.
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Proof. Moving the origin, we can assume that G acts linearly with generators

diag(ζ3, ζ3, ζ3), diag(ζ7, ζ
2
7 , ζ

4
7 ), diag(ζ9, ζ

4
9 , ζ

7
9 ), or diag(ζ14, ζ

9
14, ζ

11
14 ),

respectively (cf. Theorem 3.0.5). This implies that T is of CM-type in each case (cf. Theo-
rem 2.2.9) and uniquely determined due to Theorems 2.2.12 and 2.2.13.

Note that the classification for the groups Z3 and Z7 was already discussed by several authors,
e.g., [RY87], [Roa89], [Ogu96c].

4.3.2. Quotients with respect to non-cyclic groups

For the non-cyclic groups, the situation is more involved because it is not possible to assume
that the action is linear. Here, we use the “classification machinery” as explained in Section 4.2.
We start with step (1) of the classification strategy 4.2.10 and determine the possible analytic
representations of the groups.

Proposition 4.3.3. The analytic representation ρ : G ↪! GL(3,C) of a rigid, faithful, and
translation-free action on a three-dimensional complex torus by a non-cyclic group is, up to an
automorphism of G, equivalent to the following representations:

(1) If G = Z2
3, then ρ is equivalent to

ρ1(a, b) = diag(ζa3 , ζ
b
3, ζ

2a+2b
3 ), ρ2(a, b) = diag(ζa3 , ζ

b
3, ζ

a+b
3 ), or ρ3(a, b) = diag(ζa3 , ζ

a
3 , ζ

b
3).

(2) If G = Z3
3, then

ρ(a, b, c) = diag(ζa3 , ζ
b
3, ζ

c
3).

(3) If G = He(3) = ⟨g, h, k | g3 = h3 = k3 = [g, k] = [h, k] = 1, [g, h] = k⟩, then

ρ(g) =

0 0 1

1 0 0

0 1 0

 , ρ(h) =

1

ζ23
ζ3

 , and ρ(k) =

ζ3 ζ3

ζ3

 .

(4) If G = Z9 ⋊ Z3 = ⟨g, h | h3 = g9 = 1, hgh−1 = g4⟩, then

ρ(g) =

 0 1 0

0 0 1

ζ3 0 0

 and ρ(h) =

1

ζ23
ζ3

 .

Proof. We start with the group G = Z2
3. Let ρ : Z2

3 ↪! GL(3,C) be a representation with the
properties in the proposition. Write ρ = diag(χ1, χ2, χ3) with characters χj of degree 1, which
is possible since Z2

3 is abelian. Since ρ is faithful and the action is rigid, we can assume that χ1

and χ2 are linearly independent in the group of characters. In other words

ρ(a, b) = diag(ζa3 , ζ
b
3, ζ

λa+µb
3 ) for some λ, µ ∈ {0, 1, 2}.
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Due to the rigidity, it holds that ρ equals either ρ1, ρ2, ρ3, or ρ4(a, b) = diag(ζa3 , ζ
b
3, ζ

a+2b
3 ),

up to a permutation of coordinates. Twisting ρ2 by the automorphism (a, b) 7! (a, 2a+ b) of Z2
3

gives a representation equivalent to ρ4.
If G = Z3

3, then the three characters have to be linearly independent due to the faithfulness of
ρ. Thus, the claim follows.
In the case G = He(3), the geometric genus of the quotient is always equal to 1 and in this
situation, the shape of the analytic representation was already proven in [OS01, Theorem 3.4],
see also Theorem 4.1.5.
Finally, if G = Z9 ⋊ Z3, then the analytic representation has to be irreducible of degree 3 since
the group is not abelian and does not admit irreducible characters of degree 2. Up to equivalence
of representations, the only irreducible representations of Z9 ⋊ Z3 are given by the one in the
proposition and its complex conjugate, which coincide by twisting ρ with the automorphism φ

given by φ(g) = g2 and φ(h) = h.

Notation 4.3.4. From now on we fix the analytic representations given in the above proposition
and will work with the following generators of the abelian groups:

G Z2
3, ρ = ρ1 or ρ2 Z2

3, ρ = ρ3 Z3
3

generators h := (0, 2) h := (1, 0) h := (0, 2, 1)

k := (1, 1) k := (1, 1) k := (1, 1, 1)

g := (1, 0, 0)

Furthermore, in the case G = Z9 ⋊ Z3, we set k := g3, so ρ(k) = ζ3 · id.

We observe the following:

• If G = Z2
3, then ρ1 and ρ2 are the sum of three pairwise different characters, whereas ρ3

contains the same character twice.

• The representations of Z3
3 and He(3) restricted to the subgroup ⟨h, k⟩ coincide with the

representation ρ1 of Z2
3.

• Quotients by actions of the group G = Z2
3 can have either geometric genus 1 or 0, depending

on whether the top form dz1 ∧ dz2 ∧ dz3 of T is G-invariant. The latter is the case if and
only if ρ = ρ1. For the other two representations, the quotients have pg = 0.

The next step (2a) in the classification strategy is to determine for all groups G all lattices Λ

admitting a G-module structure with respect to the analytic representations. For this, the next
lemma is crucial:

Lemma 4.3.5. Let T be a three-dimensional torus admitting an action of G = Z2
3, Z3

3, He(3),

or Z9 ⋊ Z3 with analytic representation as in Proposition 4.3.3. Then:

(1) If G = Z2
3 and ρ = ρ3, then T admits subtori T ′, E3 ⊂ T such that the addition map

µ : T ′ × E3 −! T

defines an equivariant isogeny, E3 ≃ E = C/Z[ζ3], and T ′ is equivariantly isomorphic to
E2.
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(2) In the other situations, T admits subtori E1, E2, E3 ⊂ T , all isomorphic to E, such that
the addition map

µ : E1 × E2 × E3 −! T

defines an equivariant isogeny.

In particular, T is equivariantly isomorphic to E3/K, where K is the finite kernel of the addition
map.

Proof. (1) Consider the subtori T ′ := ker(ρ3(h
2k) − idT )

0 and E3 := ker(ρ3(h) − idT )
0, where

the superscript 0 denotes the connected component of the identity. Then the addition map

µ : T ′ × E3 −! T

defines an equivariant isogeny, where the action of Z2
3 on T ′ × E is the natural one induced by

the action of Z2
3 on T . Since ζ3 acts on E3, this curve is isomorphic to E = C/Z[ζ3]. The action

of ρ restricted to T ′ is given by ζa3 · idT ′ ; hence, T ′ is equivariantly isomorphic to E2 (cf. [BL04,
Corollary 13.3.5]).
(2) Consider the subtori

E1 := ker(ρ(h)− idT )
0, E2 := ker(ρ(hk)− idT )

0, E3 := ker(ρ(hk2)− idT )
0,

which are all isomorphic to E by construction. It can be shown similarly to the first part of the
proof that the addition map µ : E1 × E2 × E3 ! T is an equivariant isogeny.

Remark 4.3.6. We will assume from now on that T is of the form E3/K, where K is finite, thus,
T = C3/ΛK , where

ΛK = Z[ζ3]3 +K.

Since the maps
Ei ↪−! T = (E1 × E2 × E3)/K = E3/K,

for i = 1, 2, 3, and

E3 ↪−! T = (T ′ × E3)/K = E3/K, T ′ ↪−! T = (T ′ × E3)/K = E3/K,

are injective, the kernel K does not contain non-zero multiples of unit vectors ej . In the case
that G = Z2

3 and ρ = ρ3, the kernel K does not even contain non-zero elements of the form
λe1 + µe2. Furthermore, K is fixed by ρ(u) for all u ∈ G.

Lemma 4.3.7. In the second case of Lemma 4.3.5, it holds that E[3] is not contained in pi(K)

for all i = 1, 2, 3, where pi : K ! Ei denotes the projection onto the i-th factor.

Proof. Since the action Φ is a group homomorphism, it has to satisfy Φ(hkn) = idT for n = 0, 1, 2,
which is equivalent to requiring τ(hkn) = 0. This is fulfilled if and only if the coordinates of
τ(h) = (a1, a2, a3) are all 3-torsion points of E. Assume now that E[3] ⊂ pi(K) for some i.
Then we can find an element in K whose i-th coordinate equals ai. Thus, the element h (for
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i = 1), hk (for i = 2), or hk2 (for i = 3) has fixed points, respectively: For example, Φ(h) has
z = (z1, z2, z3) ∈ T as fixed point if and only if

(a1, (ζ
2
3 − 1)z2 + a2, (ζ3 − 1)z3 + a3) ∈ K,

which is equivalent to requiring that K contains an element of the form (a1, ∗, ∗).
But this is a contradiction, since these fixed points are not isolated because the linear parts of
the actions of these elements have the eigenvalue 1.

Lemma 4.3.8. The kernel K is contained in Fixζ3(E)3.

Proof. For u ∈ G, we view ρ(u) as an automorphism of E3 mapping K to itself. Let (t1, t2, t3)

be an element of K.
We first consider the case that G = Z2

3 and ρ = ρ3. Then, for u = h and h2k, we obtain that the
elements

(ρ(h)− idT )(t) = ((ζ3 − 1)t1, (ζ3 − 1)t2, 0) and

(ρ(h2k)− idT )(t) = (0, 0, (ζ3 − 1)t3)

belong to K. This implies that ((ζ3 − 1)t1, (ζ3 − 1)t2) = 0 in T ′ = E2, and (ζ3 − 1)t3 = 0 in
E3 = E. Thus, (t1, t2, t3) ∈ Fixζ3(E)3 by Remark 4.3.6.
In all other cases, we first show that each coordinate ti is a 3-torsion point of Ei = E: This
follows from

(ρ(hk)− idE3) ◦ (ρ(hk2)− idE3)(t1, t2, t3) = 3t1 · (1, 0, 0),
(ρ(h)− idE3) ◦ (ρ(hk2)− idE3)(t1, t2, t3) = 3t2 · (0, 1, 0),
(ρ(h)− idE3) ◦ (ρ(hk)− idE3)(t1, t2, t3) = 3t3 · (0, 0, 1)

since K contains no non-trivial multiples of unit vectors. Assume now that there is an element
in K that has one coordinate ti that is not fixed by multiplication with ζ3. Hence, ti ̸= ζ3ti

are two linearly independent elements in E[3] ≃ Z3 × Z3, and so, they span the whole group of
3-torsion points. This would imply that pi(K) = E[3] – a contradiction to Lemma 4.3.7.

Remark 4.3.9. The fixed locus of multiplication with ζ3 on E is given by

Fixζ3(E) = {0, t,−t} ≃ Z3, where t := 1
3(1 + 2ζ3).

Corollary 4.3.10. If G = He(3) or Z9 ⋊ Z3, then the kernel K is one of the following:

K0 := {0}, K1 := ⟨(t, t, t)⟩, K2 := ⟨(t, t, t), (t, −t, 0)⟩.

Proof. These three subspaces of Fixζ3(E)3 are the only ones that are fixed under the action of
ρ(g) and do not contain non-zero multiples of unit-vectors.
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If G is abelian, then all subspaces of Fixζ3(E)3 are preserved under ρ, so the list of possible
kernels is quite long. We show next that the normalizer N := NAut(E3)(ρ(G)) of ρ(G) in the
automorphism group of E3 acts on the set of kernels and that it is enough to consider one
representative of each orbit.

Proposition 4.3.11. Let G be either Z2
3 or Z3

3, ρ : G ↪! GL(3,C) one of the corresponding
representations, K and K ′ two kernels, Φ and Φ′ two actions with linear part ρ, and X and X ′

the corresponding quotients, respectively. Then any biholomorphism f : X ! X ′ is induced by a
biholomorphic map

f̂ : E3 −! E3, z 7! Cz + d,

such that CK = K ′. This means that C is contained in the normalizer N := NAut(E3)(ρ(G)) of
ρ(G) in the automorphism group of E3.

Proof. By Proposition 4.2.5, the map f is induced by an affine linear map f̂(z) = Cz+ d, where
C ∈ GL(3,C) solves the equation C · ρ · C−1 = ρ ◦ φ for some φ ∈ Aut(G) and C · ΛK = ΛK′ .
Assume for the moment that we are not in the case ρ = ρ3 for G = Z2

3, then ρ is the sum of three
distinct one-dimensional representations. Hence, Schur’s Lemma implies that C is the product
of a permutation matrix PC and a diagonal matrix DC . The condition CΛK = ΛK′ then ensures
that the diagonal entries of DC belong to Z[ζ3]∗ = ⟨−ζ3⟩: The element Cei ∈ ΛK′ is a non-zero
multiple of a unit vector that cannot belong to K ′, hence its non-zero element belongs to Z[ζ3],
so C ∈ Mat(3 × 3,Z[ζ3]). Analogously, C−1 ∈ Mat(3 × 3,Z[ζ3]). Thus, C is well-defined as an
automorphism of E3 and belongs to NAut(E3)(ρ(G)).
If G = Z2

3 and ρ = ρ3, then the first two one-dimensional characters are the same, whereas the
third one differs. Hence, again by Schur’s Lemma, C is of block diagonal form

C =

(
C ′ 0

0 c

)

with C ′ ∈ GL(2,C) and c ∈ C∗. Since the kernels K and K ′ do not even contain non-zero
elements of the form λe1 + µe2, the claim follows as before.

Remark 4.3.12. For G = Z2
3 or Z3

3, the normalizer N := NAut(E3)(ρ(G)) acts on the set of possible
kernels K by Proposition 4.3.11. The proposition tells us that quotients corresponding to kernels
of different orbits cannot be biholomorphic. On the other hand, it suffices to consider one
representative of each orbit since the sets of possible actions on two abelian varieties defined by
kernels in the same orbit are conjugate and therefore lead to the same biholomorphism classes
of quotients. Finally, to determine one representative of each orbit, we have to compute the
normalizer N = NAut(E3)(ρ(G)), which we will do separately for each group and representation
in the following.

The previous proposition immediately leads to the following description of the sets NC(ΛK ,ΛK′)

of possible linear parts of biholomorphisms between quotients for the groups G = Z2
3 and Z3

3:

Corollary 4.3.13. If G = Z2
3 or Z3

3, then

NC(ΛK ,ΛK′) = {C ∈ N = NAut(E3)(ρ(G)) | CK = K ′}.
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Notation 4.3.14. After possibly conjugating the action with a translation (which does not
change the linear part), the translation part τ : G! T can be written as follows:

G Z2
3 Z3

3 or He(3) Z9 ⋊ Z3

τ
τ(h) = (a1, a2, a3)

τ(k) = (0, 0, 0)

τ(h) = (a1, a2, a3)

τ(k) = (0, 0, 0)

τ(g) = (b1, b2, b3)

τ(h) = (a1, a2, a3)

τ(g) = (0, 0, 0)

We will refer to such a translation part as a cocycle in standard form.
Furthermore, we call a cocycle good if the corresponding action has only isolated fixed points.

With these conventions, we can determine a finite list of all potential translation parts of biholo-
morphisms for all groups.

Lemma 4.3.15. Let X and X ′ be two quotients of T = E3/K corresponding to good cocycles of
G in standard form. Then the translation part of a biholomorphism f : X ! X ′ is one of the 27

fixed points of ρ(k) on T .

Proof. Let f be induced by z 7! Cz + d. Then, by Remark 4.2.7 evaluated in k ∈ G, it holds
that

(a) Cρ(k)C−1 = ρ(φ(k)) and (b) (ρ(φ(k))− id)d = Cτ(k)− τ ′(φ(k)).

By item (a), the matrices ρ(k) and ρ(φ(k)) are similar, hence φ(k) = k in all cases. Since all
cocycles in standard form vanish in k, the claim follows.

For the implementation in MAGMA, we need a finite list of candidates for the fixed points of
ρ(k). For this, the following is helpful:

Lemma 4.3.16. Let T = E3/K, where K ⊂ Fixζ3(E)3 does not contain non-zero multiples of
unit vectors, and let A be a linear automorphism of T of the form A = P · diag(ζn1

3 , ζn2
3 , ζn3

3 ),
where P is a permutation matrix and ni ∈ {1, 2}. Then every fixed point of A belongs to E[3]3.

Proof. Let z = (z1, z2, z3) ∈ T be a fixed point of A, so (A − idE3)(z) ∈ K. In particular,
(ζ
nj

3 − 1) · zi is fixed by ζ3 for a suitable j ∈ {1, 2, 3} depending on the permutation matrix P .
Thus, the equation

0 = (ζ
nj

3 − 1)2 · zi = −3ζ
nj

3 zi

holds in E. Since multiplication with −ζ3 is an automorphism of E, this implies that zi is a
3-torsion point of E.

In the rest of the section, we will treat the different groups and analytic representations separately
in order to derive a proof of Theorem 4.3.1.
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The case G = Z2
3, ρ = ρ1

We start with the classification of the quotients of T by actions of Z2
3 = ⟨h, k⟩ with the analytic

representation ρ = ρ1 of Proposition 4.3.3, which is given by

ρ(h) = diag(1, ζ23 , ζ3) and diag(ζ3, ζ3, ζ3).

Recall that a cocycle in standard form is of the form

τ(h) = (a1, a2, a3) and τ(k) = (0, 0, 0).

Lemma 4.3.17. Let τ be a cocycle in standard form; then τ(h) ∈ Fixζ3(T ). Conversely, any
(a1, a2, a3) ∈ Fixζ3(T ) yields a well-defined cocycle in standard form.

Proof. The corresponding action Φ has to be a group homomorphism, so it has to preserve the
relations of the generators of Z2

3. Since τ(k3) = 0 holds anyway, this leads to the following
conditions:

• τ(h3) = 0 ⇐⇒ a1 ∈ E[3],

• τ(hk) = τ(kh) ⇐⇒ ρ1(k)τ(h) = τ(h) ⇐⇒ τ(h) ∈ Fixζ3(T ).

Since Fixζ3(T ) is contained in E[3]3 by Lemma 4.3.16, the second condition implies the first
one.

Lemma 4.3.18. A cocylce τ : Z2
3 ! T in standard form is good if and only if the elements ai

are never the i-th coordinate of an element in K for all i = 1, 2, 3.

Proof. The cocycle is good if the corresponding action has only isolated fixed points. This is
precisely the case if all elements whose linear part has eigenvalue 1 act freely, i.e., the elements
h, hk, hk2, h2, h2k, and h2k2 have no fixed points. Since these elements have order 3, they act
freely if and only if their squares act freely, so we have to ensure that the elements h, hk, hk2

have no fixed points. With the argumentation presented in the proof of Lemma 4.3.7, we see
that this the case if and only if the elements ai are never the i-th coordinate of an element in K
for all i = 1, 2, 3.

Lemma 4.3.19. The normalizer group N = NAut(E3)(ρ1(Z2
3)) of ρ1(Z2

3) in Aut(E3) is finite of
order 1296 and generated by the matrices−ζ3

1

1

 ,

0 1 0

0 0 1

1 0 0

 , and

0 1 0

1 0 0

0 0 1

 .

The action of N on the set of possible kernels K has four orbits with representatives

K0 := {0}, K1 := ⟨(t, t, 0)⟩, K2 := ⟨(t, t, t)⟩, K3 := ⟨(t, t, t), (t, −t, 0)⟩.
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Proof. Let C ∈ N . By the proof of Proposition 4.3.11, C is the product of a permutation matrix
PC and a diagonal matrix DC , whose non-zero entries belong to Z[ζ3]∗ = ⟨−ζ3⟩. To determine
the possible permutations, we use that the condition C ·ρ1 ·C−1 = ρ1 ◦φ for some automorphism
φ ∈ Aut(Z2

3) implies that the matrices ρ1(u) and ρ1(φ(u)) are similar for all u in Z2
3. Thus,

φ(k) = k and φ(h) ∈ {h, hk, hk2, h2, h2k, h2k2}, which implies that the group generated by
the possible permutation matrices PC is isomorphic to S3, and the claim follows.

Our MAGMA code determines all possible actions, i.e., all good cocycles, and in particular a
representative for each good cohomology class in H1(Z2

3, E
3/Ki). The number of possible actions

and good classes is displayed in the table below.

i kernel Ki # of actions # of good classes

0 {0} 8 8

1 ⟨(t, t, 0)⟩ 12 4

2 ⟨(t, t, t)⟩ 18 6

3 ⟨(t, t, t), (t, −t, 0)⟩ 6 2

By Remark 4.3.12, quotients of tori with different kernels in the above list cannot be biholomor-
phic. Next, we prove that they cannot even be homeomorphic. For this, we use the structure of
the decomplexification (ρ1)R:

Remark 4.3.20. The decomplexification (ρ1)R of the analytic representation ρ1 of Z2
3 is given by

(ρ1)R : Z2
3 −! GL(6,R), hakb 7!

Bb

B2a+b

Ba+b

 , where B = −1

2

(
1

√
3

−
√
3 1

)
.

The two-dimensional real representations Bb, B2a+b, and Ba+b are irreducible and pairwise not
equivalent. Furthermore, the following holds:

(1) The R-algebra of matrices commuting with B is{(
λ −µ
µ λ

)
| λ, µ ∈ R

}
≃ C.

(2) The R-vector space of matrices H with HB = B2H is{(
λ µ

µ −λ

)
| λ, µ ∈ R

}
≃ R2.

The matrices in (1) define C-linear maps and the matrices in (2) C-antilinear maps. In complex
coordinates z = x+ iy, set w := λ+ iµ, and identify the maps with

mw : C −! C, z 7! wz, and mw : C −! C, z 7! wz.
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Proposition 4.3.21. Let ΛK and ΛK′ be two different lattices in the list in Lemma 4.3.19. Then
the set NR(ΛK ,ΛK′) is empty, hence corresponding quotients are never homeomorphic.

Proof. Assume the converse, let C ∈ NR(ΛK ,ΛK′), and view it as a map C : C3 ! C3. Using
Schur’s Lemma and the above remark, and arguing similarly to the proof of Proposition 4.3.11,
we see that C is, up to a permutation of the coordinates, a sum of C-linear and C-antilinear
maps:

mwj (z) = wjz or mwj (z) = wj z̄, where wj ∈ Z[ζ3]∗.

In particular, C descends to a group isomorphism

C : ΛK/Z[ζ3]3 −! ΛK′/Z[ζ3]3.

By this, the sublattice Z[ζ3]3 has to have the same index in ΛK as in ΛK′ . Therefore, only the
case where ΛK = ΛK1 and ΛK′ = ΛK2 remains. But then, C has to map (t, t, 0) to a generator
of ⟨(t, t, t)⟩, which is impossible.

Proposition 4.3.22. There are precisely 4 biholomorphism classes of rigid quotients of three-
dimensional tori by a rigid action of Z2

3 with analytic representation ρ1 and isolated fixed points.
For each torus T0 = E3/K0, . . . , T3 = E3/K3, there is one class. They are represented by
Z3, Z4, Z5, and Z6 of Theorem 4.3.1 and are all topologically distinct.

Proof. We use MAGMA to verify that

NC(ΛKi) = {C ∈ N = NAut(E3)(ρ1(Z2
3)) | CKi = Ki}

acts transitively on the good cohomology classes in H1(Z2
3, E

3/Ki) for each kernel Ki. Proposi-
tion 4.3.21 completes the proof.

The case G = Z2
3, ρ = ρ2

Next, we classify the quotients of T by actions of Z2
3 = ⟨h, k⟩ with the analytic representation

ρ = ρ2 of Proposition 4.3.3, which is given by

ρ(h) = diag(1, ζ23 , ζ
2
3 ) and diag(ζ3, ζ3, ζ

2
3 ).

Recall that a cocycle in standard form is of the form

τ(h) = (a1, a2, a3) and τ(k) = (0, 0, 0).

Similar to the case ρ = ρ1, the following holds:

Lemma 4.3.23. Let τ be a cocycle in standard form; then τ(h) ∈ T is fixed by ρ2(k). Conversely,
any (a1, a2, a3) ∈ Fixρ2(k)(T ) yields a well-defined cocycle in standard form.
Moreover, a cocycle in standard form is good if and only if the elements ai are never the i-th
coordinate of an element in K for all i = 1, 2, 3.
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Lemma 4.3.24. The normalizer group N = NAut(E3)(ρ2(Z2
3)) of ρ2(Z2

3) in Aut(E3) is finite of
order 432 and generated by the matrices−ζ3

1

1

 ,

1

1

−ζ3

 , and

0 1 0

1 0 0

0 0 1

 .

The action of N on the set of possible kernels K has five orbits with representatives

K0 := {0}, K1 := ⟨(t, t, 0)⟩, K1′ := ⟨(t, 0, t)⟩, K2 := ⟨(t, t, t)⟩,
K3 := ⟨(t, t, t), (t, −t, 0)⟩.

Proof. We follow the proof of Lemma 4.3.19. This time, φ(h) ∈ {h, h2k2}, so the permutation
matrix PC is either the identity or the one permuting the first two coordinates.

Our MAGMA code determines all possible actions, i.e., all good cocycles, and in particular a
representative for each good cohomology class in H1(Z2

3, E
3/Ki). The number of actions and

good classes is displayed in the table below.

i kernel Ki # of actions # of good classes

0 {0} 8 8

1 ⟨(t, t, 0)⟩ 12 4

1′ ⟨(t, 0, t)⟩ 12 4

2 ⟨(t, t, t)⟩ 18 6

3 ⟨(t, t, t), (t, −t, 0)⟩ 6 2

Proposition 4.3.25. There are precisely 5 biholomorphism classes of rigid quotients of three-
dimensional tori by a rigid action of Z2

3 with analytic representation ρ2 and isolated fixed points.
For each torus T0 = E3/K0, . . . , T3 = E3/K4, there is one class, they are represented by
Y3, Y4, Y4′ , Y5, and Y6 of Theorem 4.3.1. The quotients Y4 and Y4′ are homeomorphic, but
all other quotients are pairwise not homeomorphic.

Proof. We use MAGMA to verify that

NC(ΛKi) = {C ∈ N = NAut(E3)(ρ2(Z2
3)) | CKi = Ki}

acts transitively on the good cohomology classes in H1(Z2
3, E

3/Ki) for each kernel Ki. Similarly
to the proof of Proposition 4.3.21, we see that NR(ΛK ,ΛK′) is empty for different kernels K and
K ′ except for {K,K ′} = {K1,K1′}. A homeomorphism Y4 ! Y4′ is induced by the map

C : C3 −! C3, (z1, z2, z3) 7! (−z1, z3, z2).
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The case G = Z2
3, ρ = ρ3

Next, we classify the quotients of T by actions of Z2
3 = ⟨h, k⟩ with the analytic representation

ρ = ρ3 of Proposition 4.3.3, which is given by

ρ(h) = diag(ζ3, ζ3, 1) and diag(ζ3, ζ3, ζ3).

Recall that a cocycle in standard form is of the form

τ(h) = (a1, a2, a3) and τ(k) = (0, 0, 0).

Similar to the previous cases, the following holds:

Lemma 4.3.26. Let τ be a cocycle in standard form; then τ(h) ∈ Fixζ3(T ). Conversely, any
(a1, a2, a3) ∈ Fixζ3(T ) yields a well-defined cocycle in standard form.
Moreover, a cocycle in standard form is good if and only if K contains no elements of the form
(∗, ∗, a3) or (a1, a2, ∗).

Lemma 4.3.27. The normalizer group N = NAut(E3)(ρ3(Z2
3)) of ρ3(Z2

3) in Aut(E3) is given by

N =

{(
C ′ 0

0 c

)∣∣ c ∈ ⟨−ζ3⟩, C ′ ∈ GL(2,Z[ζ3])

}
.

The action of N on the set of possible kernels K has two orbits with representatives

K0 := {0} and K1 := ⟨(t, t, t)⟩.

Proof. The proof of the description of the normalizer is analogous to the other two cases for
G = Z2

3, but one needs to be careful that the representation ρ3 contains the same character
twice. Since the normalizer is now infinite, we cannot compute the orbits of its action on the
set of possible kernels K with MAGMA, so we determine them by hand: Each 2-dimensional
subspace of Fixζ3(E)3 contains a non-trivial element of the form µe1 + τe2 and can therefore
be excluded as a kernel. The only 1-dimensional subspaces without such elements and without
non-zero multiples of e3 are ⟨(t, 0, t)⟩, ⟨(0, t, t)⟩, and ⟨(t, t, t)⟩. The first and the second are
mapped to the third by 1 0

1 1

1

 and

1 1

0 1

1

 ,

respectively. Thus, they all belong to the N -orbit of ⟨(t, t, t)⟩.

Proposition 4.3.28. There are precisely 2 biholomorphism classes of rigid quotients of three-
dimensional tori by rigid actions of Z2

3 with analytic representation ρ3. For each torus T0 = E3/K0

and T1 = E3/K1, there is one class. They are represented by Y7 and Y8 of Theorem 4.3.1 and
are not homeomorphic.
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Proof. Since H0(Z2
3, T0) ≃ Z3

3 and H0(Z2
3, T1) ≃ Z2

3, a quotient of T0 cannot be homeomorphic
to a quotient of T1 by Proposition 4.2.9.
Next, we prove that for both tori, the normalizer NC(ΛKi) acts transitively on the set of good
cocycles. Since all matrices C ∈ NAut(E3)(ρ(Z2

3)) are in block-form C = diag(C ′, c), where
C ′ ∈ GL(2,Z[ζ3]) and c ∈ ⟨−ζ3⟩ by Lemma 4.3.27, they commute with ρ. Hence, it suffices to
show that for any two good cocycles τ and τ ′ in standard form, there exists a matrix C ∈ NC(ΛKi)

such that C · τ = τ ′. Evaluated in k, this equation automatically holds since τ(k) = τ ′(k) = 0.
So, it suffices to check that C · τ(h) = τ ′(h).
We start with T0 = E3. Let τ(h) = (a1, a2, a3). Then by Lemma 4.3.26, the cocycle τ is
good if and only if ai ∈ Fixζ3(E), a3 ̸= 0, and (a1, a2) ̸= (0, 0). Let τ(h) := (t, 0, t), and let
τ ′(h) = (a′1, a

′
2, a

′
3) be an arbitrary cocycle. Choose c ∈ {±1} such that c · t = a′3. Then a

suitable matrix

C ′ ∈

{(
±1 0

±1 1

)
,

(
0 1

±1 0

)
,

(
±1 0

0 1

)}
yields C := diag(C ′, c) ∈ NC(ΛKi) with C · (t, 0, t) = τ ′(h).
Finally, we consider the quotients of T1 = E3/K1. There are six good cohomology classes in
H1(Z2

3, T1), represented by

i 1 2 3 4 5 6

τi(h)
1
3 ·

1

1

1

 1
3 ·

ζ3

1

1

 1
3 ·

 1

ζ3

1

 2
3 ·

1

1

1

 2
3 ·

ζ3

1

1

 2
3 ·

 1

ζ3

1


The following matrices Cij ∈ NC(ΛK1) fulfill 0 = Cij · τi(h)− τj(h) in T1:

Cij :=


diag(ζ3, 1, 1), if (i, j) ∈ {(1, 2), (4, 5)},

diag(1, ζ3, 1), if (i, j) ∈ {(1, 3), (4, 6)},

− id, if (i, j) = (1, 4).

Hence, all classes belong to the same orbit.

The case G = Z3
3

We continue with the classification of the quotients of T by actions of Z3
3 = ⟨h, k, g⟩ with the

analytic representation ρ of Proposition 4.3.3, which is given by

ρ(h) = diag(1, ζ23 , ζ3), ρ(k) = diag(ζ3, ζ3, ζ3), and ρ(g) = diag(ζ3, 1, 1).

Recall that a cocycle in standard form is of the form

τ(h) = (a1, a2, a3), τ(k) = (0, 0, 0), and τ(g) = (b1, b2, b3).

Lemma 4.3.29. Let τ be a cocycle in standard form; then τ(h) and τ(g) belong to Fixζ3(T ) and
the following holds:
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• a1 ∈ E[3],

• (0, 3b2, 3b3) ∈ K,

• v := ((ζ3 − 1)a1, (1− ζ23 )b2, (1− ζ3)b3) ∈ K.

Conversely, two elements (a1, a2, a3), (b1, b2, b3) in Fixζ3(T ) that fulfill these conditions yield a
well-defined cocycle in standard form.

Lemma 4.3.30. A cocycle in standard form is good if and only if the following conditions are
satisfied:

(1) For all i = 1, 2, 3, the element ai is never the i-th coordinate of an element in K.

(2) There are no elements in K of the forms

(∗, b2, b3), (ζ3a1 + b1, ∗, a3 + b3), (2ζ3a1 + b1,−ζ3a2 + b2, ∗).

(3) b1 is never the first coordinate of an element in K.

(4) a2 + b2 is never the second coordinate of an element in K.

(5) −ζ23a3 + b3 is never the third coordinate of an element in K.

Proof. The action has only isolated fixed points if all elements whose linear parts of the action
have 1 as eigenvalue act freely. Since all non-trivial elements in Z3

3 have order 3, the elements u
and u2 have the same fixed points. Thus, the action has isolated fixed points if and only if the
elements h, hk, hk2, g, ghk2, gh2k2, gk2, ghk, gh2k act freely. This translates to the given
conditions.

As in the case where G = Z2
3 and ρ = ρ1, the following holds:

Lemma 4.3.31. The normalizer group N = NAut(E3)(ρ(Z3
3)) of ρ(Z3

3) in Aut(E3) is finite of
order 1296 and generated by the matrices−ζ3

1

1

 ,

0 1 0

0 0 1

1 0 0

 , and

0 1 0

1 0 0

0 0 1

 .

The action of N on the set of possible kernels K has four orbits with representatives

K0 := {0}, K1 := ⟨(t, t, 0)⟩, K2 := ⟨(t, t, t)⟩, K3 := ⟨(t, t, t), (t, −t, 0)⟩.

Our MAGMA code determines all good cocycles and a representative for each good cohomology
class in H1(Z3

3, E
3/Ki). The number of actions and good classes is displayed in the table below.

i kernel Ki # of actions # of good classes

0 {0} 16 16

1 ⟨(t, t, 0)⟩ 48 16

2 ⟨(t, t, t)⟩ 0 0

3 ⟨(t, t, t), (t, −t, 0)⟩ 0 0
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In particular, there are no actions with isolated fixed points on the tori E3/K2 and E3/K3.

Proposition 4.3.32. There are precisely 3 biholomorphism classes of rigid quotients of three-
dimensional tori by rigid actions of Z3

3 with isolated fixed points. More precisely, the following
holds:

• One class is realized as a quotient of T0 = E3/K0 = E3 and corresponds to Y9 of Theo-
rem 4.3.1. The other two are realized as quotients of T1 = E3/K1 and correspond to Y10
and Y10′ .

• The quotients Y10 and Y10′ are diffeomorphic to each other but not diffeomorphic to Y9.

Proof. We use MAGMA to verify that the action of

NC(ΛKi) = {C ∈ N = NAut(E3)(ρ(Z3
3)) | CKi = Ki}

on the good cohomology classes in H1(Z3
3, E

3/Ki) has one orbit if i = 0 and two orbits if i = 1.
Since H0(Z3

3, T1) ≃ Z3
3 and H0(Z3

3, T2) ≃ Z2
3, quotients of T0 cannot be homeomorphic to quo-

tients of T1 by Proposition 4.2.9. The map

C : C3 −! C3, (z1, z2, z3) 7! (z1, z2, z3),

induces a homeomorphism between the named quotients of T1.

The case G = He(3)

We continue with the classification of the quotients of T by actions of

G = He(3) = ⟨g, h, k | g3 = h3 = k3 = [g, k] = [h, k] = 1, [g, h] = k⟩

with the analytic representation ρ of Proposition 4.3.3, which is given by

ρ(h) =

1

ζ23
ζ3

 , ρ(k) =

ζ3 ζ3

ζ3

 , and ρ(g) =

0 0 1

1 0 0

0 1 0

 .

Recall that a cocycle in standard form is of the form

τ(h) = (a1, a2, a3), τ(k) = (0, 0, 0), and τ(g) = (b1, b2, b3),

and the torus is E3/K, where K is one of the following:

K0 := {0}, K1 := ⟨(t, t, t)⟩, K2 := ⟨(t, t, t), (t, −t, 0)⟩.

Lemma 4.3.33. Let τ be a cocycle in standard form; then τ(h) and τ(g) belong to Fixζ3(T ) and
the following holds:
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• v1 := (b1 + b2 + b3, b1 + b2 + b3, b1 + b2 + b3) ∈ K,

• v2 :=
(
ζ3a1 − a3 + (ζ3 − 1)b1, ζ3a2 − a1, ζ3a3 − a2 + (ζ23 − 1)b3

)
∈ K.

Conversely, two elements (a1, a2, a3), (b1, b2, b3) in Fixζ3(T ) that fulfill these conditions yield a
well-defined cocycle in standard form.

Note that each element (t1, t2, t3) ∈ K has the property that t1 + t2 + t3 = 0 in E. This
observation is useful to prove a simple criterion for a cocycle τ : He(3)! T = E3/K to be good.

Lemma 4.3.34. A coycle in standard form is good if and only if the following conditions are
satisfied:

(1) b1 + b2 + b3 ̸= 0 in E.

(2) a1 is never the first coordinate of an element in K.

(3) ζ23 (b1 + b2) + b3 + ζ23 (a1 + a3) + a2 ̸= 0 in E.

(4) ζ3(b1 + b2) + b3 − ζ3(a1 + a2)− a3 ̸= 0 in E.

Proof. The cocycle is good if and only if k and k2 are the only elements acting with fixed
points. Since u and u2 as well as all conjugates of u have the same fixed points, the latter is
equivalent to requiring that g, h, gh, and gh2 act freely. Suppose that Φ(gh) has a fixed point
z = (z1, z2, z3) ∈ T . This means that

(ζ3z3 − z1 + a3 + b1, z1 − z2 + a1 + b2, ζ
2
3z2 − z3 + a2 + b3) ∈ K,

or, equivalently,

(z3 − ζ23z1 + ζ23 (a3 + b1), ζ
2
3z1 − ζ23z2 + ζ23 (a1 + b2), ζ

2
3z2 − z3 + a2 + b3) ∈ K

because the coordinates of elements in K are fixed by ζ3. Hence, the sum of the coordinates

ζ23 (b1 + b2) + b3 + ζ23 (a1 + a3) + a2

is zero in E by the above observation. Conversely, if this term is zero, then

z = (0, a1 + b2, −ζ23 (a3 + b1))

is a fixed point of Φ(gh). The freeness of the action of g, h and gh2 gives the other three conditions
in a similar way.

The trivial kernel K = {0} can be excluded since we cannot find a good cocycle on the corre-
sponding torus:

Lemma 4.3.35. In the case K = {0}, there is no good cohomology class in standard form.

Proof. Let us assume the contrary. Then, as the vector v1 belongs to K by Lemma 4.3.33, this
implies that b1 + b2 + b3 = 0 in E – a contradiction to Lemma 4.3.34.
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Our MAGMA code determines all good cocycles and a representative for each good cohomology
class in H1(He(3), E3/Ki). The number of actions and good classes is displayed in the table
below.

i kernel Ki # of actions # of good classes

1 ⟨(t, t, t)⟩ 54 6

2 ⟨(t, t, t), (t, −t, 0)⟩ 18 6

Lemma 4.3.36. For both lattices ΛK1 and ΛK2, the normalizer groups NC(ΛKi) are finite of
order 1296 and generated by the matrices

C1 :=

ζ3 ζ23
1

 , C2 := −t ·

 1 ζ23 ζ23
ζ23 1 ζ23
ζ23 ζ23 1

 , and C3 := t ·

1 1 1

1 ζ23 ζ3

1 ζ3 ζ23

 .

Proof. Let C ∈ NC(ΛKi). Then

C · ρ · C−1 = ρ ◦ φ (4.3.1)

for some φ ∈ Aut(He(3)), uniquely determined by C, and C · ΛKi = ΛKi . In particular, ρ
and ρ ◦ φ are equivalent irreducible representations, and hence have the same character χ. So,
φ ∈ Stab(χ). As the Heisenberg group has precisely two irreducible representations of degree 3,
which are complex conjugates of each other, the stabilizer group Stab(χ) is a subgroup of index
2 of Aut(He(3)) ≃ AGL(2,F3). Therefore, it has 216 elements.
Conversely, for every φ ∈ Stab(χ), there exists a matrix Cφ ∈ GL(3,C) fulfilling (4.3.1). By
Schur’s Lemma, the matrix Cφ is unique up to a non-zero scalar in C. Thus, we obtain a faithful
projective representation

Ξ: Stab(χ) −! PGL(3,C), φ 7! [Cφ].

Hence,
NC(ΛKi) = {C ∈ GL(3,C) | [C] ∈ im(Ξ), C · ΛKi = ΛKi}.

Let Cφ be a representative of the class of Ξ(φ) fixing the lattice ΛKi =: Λ, and let µ ∈ C∗ such
that µCφ shares the same property. Then, µΛ = µCφΛ = Λ. Since e1 belongs to Λ, we conclude
µ ∈ Z[ζ3]. Furthermore, it holds that µ−1Λ = Λ, so µ is one of the six units of Z[ζ3].
Thus, the normalizer group NC(ΛKi) has at most 6 · 216 = 1296 elements. Since the matrices
C1, C2, and C3 are contained in NC(ΛKi) for both i and generate a group of order 1296, the
claim follows.

Proposition 4.3.37. There are precisely 2 biholomorphism classes of rigid quotients of three-
dimensional tori by a rigid action of He(3) with isolated fixed points. For each torus T1 = E3/K1

and T2 = E3/K2, there is one class. They are represented by Z7 and Z8 of Theorem 4.3.1 and
are not homeomorphic.
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Proof. We use MAGMA to verify that NC(ΛKi) acts transitively on the good cohomology classes
in H1(He(3), E3/Ki) for each kernel Ki.
Since H0(He(3), E3/K1) ≃ Z3, whereas H0(He(3), E3/K2) ≃ Z2

3, quotients of T1 = E3/K1 can
neither be biholomorphic nor homeomorphic to quotients of T2 = E3/K2.

The case G = Z9 ⋊ Z3

Finally, we classify the quotients of T by actions of

G = Z9 ⋊ Z3 = ⟨g, h | h3 = g9 = 1, hgh−1 = g4⟩

with the analytic representation ρ of Proposition 4.3.3, which is given by

ρ(g) =

 0 1 0

0 0 1

ζ3 0 0

 and ρ(h) =

1

ζ23
ζ3

 .

Recall that a cocycle in standard form is of the form

τ(g) = (0, 0, 0) and τ(h) = (a1, a2, a3).

Lemma 4.3.38. Let τ be a cocycle in standard form; then τ(h) ∈ T is fixed by ρ(g). Conversely,
any (a1, a2, a3) ∈ Fixρ(g)(T ) yields a well-defined cocycle in standard form.
Moreover, a cocycle in standard form is good if and only if the elements ai are never the i-th
coordinate of an element in K for all i = 1, 2, 3.

Proposition 4.3.39. There is one and only one biholomorphism class of rigid quotients of three-
dimensional tori by rigid actions of Z9 ⋊Z3 with isolated fixed points, which can be realized as a
quotient of T = E3 and corresponds to Y11 of Theorem 4.3.1.

Proof. First recall that T = E3/K, where K is one of the following:

K0 := {0}, K1 := ⟨(t, t, t)⟩, K2 := ⟨(t, t, t), (t, −t, 0)⟩.

A MAGMA computation shows that there are no actions with isolated fixed points if K = K1

or K = K2 and that the only two possible actions for K = K0, thus T = E3, are given by

τ1(h) = t · (1, 1, 1) and τ2(h) = −t · (1, 1, 1).

Since multiplication by −1 induces a biholomorphism between the corresponding quotients, the
claim follows.

Proof of Theorem 4.3.1. Let G be a finite group admitting a rigid, holomorphic, and translation-
free action on a three-dimensional complex torus T with finite fixed locus and such that the
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quotient X = T/G has canonical singularities. By Theorem 3.0.6, G is isomorphic to one of the
following groups:

Z3, Z7, Z9, Z14, Z2
3, Z3

3, He(3), or Z9 ⋊ Z3.

More precisely, if pg(X) = 1, then G is either Z3, Z7, Z2
3, or He(3), and if pg(X) = 0, then G

is either Z9, Z14, Z2
3, Z3

3, or Z9 ⋊ Z3. The geometric genus of the quotient can be seen directly
by looking at the analytic representation: If its image is contained in SL(3,C), then pg(X) = 1,
otherwise pg(X) = 0.
As stated in Proposition 4.2.5, quotients obtained by different groups cannot be homeomorphic,
so in particular not biholomorphic.

For the cyclic groups, the classification is easy: There is one and only one biholomorphism class
for each group (cf. Proposition 4.3.2). The classes are represented by the quotients Z1 and Z2

(pg = 1) in Table 4.1, and Y1 and Y2 (pg = 0) in Table 4.2.

In the other cases, the situation is more involved. Proposition 4.3.3 shows that there are three
possibilities for the analytic representation of Z2

3, where precisely one, namely ρ1, leads to quo-
tients with geometric genus 1, whereas the representations of Z3

3, He(3) and Z9 ⋊Z3 are unique
up to equivalence of representations and automorphisms of the groups. In any case, we can
deduce the structure of the torus from the description of the linear part of the action: It is the
quotient of three copies of Fermat’s elliptic curve E by a subgroup K of Fixζ3(E)3, which is the
kernel of an isogeny given by addition (cf. Lemma 4.3.5 and Lemma 4.3.8). If G is abelian, then
Remark 4.3.12 explains that the normalizer group NAut(E3)(ρ(G)) acts on the set of possible
kernels and it is enough to consider one kernel for each orbit.

If G = Z2
3, we have three subcases according to the three choices ρ1, ρ2, and ρ3 of the analytic

representation. They lead to distinct biholomorphism classes of quotients because, even twisting
with automorphisms of Z2

3, the three representations are pairwise not equivalent. Moreover, if
we consider ρ1 and ρ3 as real representations, they do not belong to the Aut(Z2

3)-orbit of Z2
3,

so the corresponding quotients are even not homeomorphic, whereas ρ1 and ρ2 are equivalent
as real representations (ρ2 is obtained by complex conjugation of the third coordinate of ρ1),
so here, quotients can be homeomorphic. The classification of the quotients where ρ = ρ1 is
summarized in Proposition 4.3.22: There are four biholomorphism classes of quotients that can
be represented by Z3, Z4, Z5, and Z6 of Table 4.1 and are topologically distinct. If the analytic
representation equals ρ2, then by Proposition 4.3.25, there are five biholomorphism classes, which
can be represented by Y3, Y4, Y4′ , Y5, and Y6 of Table 4.2, but here Y4 and Y4′ are homeomorphic.
The quotients Zi and Yi for i = 3, . . . , 6 are homeomorphic via

Zi −! Yi, (z1, z2, z3) 7! (z1, z2,−z3).

For the last analytic representation ρ3 of Z2
3, two kernels are possible and the fine classification

is explained in Proposition 4.3.28.

If G = Z3
3, then there are four candidates for the kernels but only two of them allow actions with

isolated fixed points. The classification is settled in Proposition 4.3.32.

In the case G = He(3), only three subspaces of Fixζ3(E)3 are preserved under ρ and do not
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contain non-zero multiple of unit-vectors, so there are three candidates for the kernels but only
two of them allow actions with isolated fixed points (cf. Lemma 4.3.35). For each kernel, there
is exactly one biholomorphism class and they are topologically distinct (cf. Proposition 4.3.37).

Finally, if G = Z9⋊Z3, then there is one and only one biholomorphism class. The proof is given
in Proposition 4.3.39.

Next, we explain how to determine the baskets of singularities in each case. In Theorem 3.0.5,
we prove that all stabilizer groups are cyclic and determine the possible types of canonical
singularities. If pg(X) = 1, then it is well-known that the quotient Z1 has seven singularities of
type 1

7(1, 2, 4). The other quotients have only singularities of type 1
3(1, 1, 1) given by the images

of the 27 fixed points of the automorphism ζ3 · id of T under the quotient map. So, the number
of these singularities can be computed with the formula in Lemma 3.0.10.
If pg(X) = 0, then the orbifold Riemann-Roch formula (Proposition 3.0.8) allows us to compute
the possible baskets of all non-Gorenstein singularities. The Propositions 3.0.14, 3.0.15 and
3.0.16 ensure that only the cases k = 9 (G = Z14), k = 12 (G = Z9 or Z9 ⋊ Z3), and k = 15

(G = Z2
3 or Z3

3) of Corollary 3.0.9 can occur. To count the singularities of type 1
3(1, 1, 1), we use

the Lefschetz fixed-point formula (Lemma 2.1.12 and Lemma 3.0.10). In the case G = Z14, we
use the formula

7 = |G| · (17N7 +
1
14N14),

which can be proven similarly to Lemma 3.0.10, to deduce the number N7 of singularities of type
1
7(1, 2, 4).

The last column of the two tables 4.1 and 4.2 contains the fundamental groups of the quotients.
They will be analyzed in the next section.

4.4. Fundamental groups and covering spaces of quotients of
complex tori

Let G be a finite group acting holomorphically on a complex torus T of arbitrary dimension by

Φ(g)(z) = ρ(g) · z + τ(g).

The goal of this section is to study the structure of the fundamental group and the covering
space of the quotient X = T/G = Cn/Γ, where Γ is the orbifold fundamental group

Γ := πorb1 (T,G) = {γ : Cn ! Cn | ∃ g ∈ G : g ◦ p = p ◦ γ}

sitting inside the exact sequence

0 −! Λ −! Γ
π
−! G −! 1

as explained in Section 4.2. Applying the results to the quotients in our classification will allow
us to compute their fundamental groups and covering spaces explicitly.
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Notation 4.4.1. We denote by Gfix and Γfix the subgroups of G and Γ generated by the elements
acting with fixed points on T and Cn, respectively. These subgroups are normal.

By a theorem of Armstrong (cf. [Arm68]), it holds that

Γ/Γfix ≃ π1
(
T/G

)
.

Since the quotient map π : Γ ! G restricts to a surjection π : Γfix ! Gfix with kernel Λ ∩ Γfix,
we obtain the following 9-diagram with exact columns and rows:

0 1 1

0 Λ ∩ Γfix Γfix Gfix 1

0 Λ Γ G 1

0 Λ/(Λ ∩ Γfix)
Γ/Γfix

G/Gfix 1

0 1 1

(4.4.1)

Corollary 4.4.2. The universal cover of T/G is

Cn/Γfix ≃ (Cn/Λ′)/(Γfix/Λ
′) ≃ T ′

/Gfix
,

where Λ′ := Λ ∩ Γfix and T ′ = Cn/Λ′ is a possibly non-compact torus.
In particular, the universal cover of T/G is compact if and only if Γfix is crystallographic, or
equivalently if and only if T ′ is compact.

Corollary 4.4.3. If there is an element g ∈ Gfix such that all lifts of g to Cn belong to Γfix, then
Λ ⊂ Γfix, and, in particular,

π1
(
T/G

)
≃ G/Gfix

,

T ′ = T , and T/Gfix is the universal cover of the quotient X = T/G.

Remark 4.4.4. If G contains an element g such that 1 is not an eigenvalue of ρ(g), then g ∈ Gfix

and all lifts of g have a fixed point. Hence, the condition Λ ⊂ Γfix of Corollary 4.4.3 is satisfied.
In all our examples, there is such an element, which allows us to compute the fundamental group
and the universal cover immediately. In particular, Z2 of Table 4.1 is the universal cover of
Z3, . . . , Z8, and the universal cover of Y3, . . . , Y6 of Table 4.2 is given by

E3/⟨diag(ζ3, ζ3, ζ23 )⟩,

which is not rigid but homeomorphic to the rigid threefold Z2 = E3/⟨ζ3 · id⟩. This finishes the
proof of Theorem 4.3.1.
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Remark 4.4.5. In the general case, where Λ ̸= (Λ ∩ Γfix), we still have a description of the
fundamental group in terms of the G-action as an extension:

π1
(
T/G

)
≃ Λ/(Λ ∩ Γfix)×β

G/Gfix,

where the 2-cocyle β can be derived from the translation part τ of the action on the torus. For
completeness, we sketch the construction:

As discussed in Remark 4.2.12, the connecting homomorphism

σ1 : H1(G,T ) −! H2(G,Λ)

corresponding to the short exact sequence 0 ! Λ ! Cn ! T ! 0 of G-modules is an isomor-
phism, and the image of the class of τ under this isomorphism yields the crystallographic group
Γ as an extension of G by Λ.
We describe how to compute a representative β ∈ Z2(G,Λ) of the image of τ which descends to
a 2-cocyle β of G/Gfix with values in Λ/(Λ ∩ Γfix) that give the extension

π1
(
T/G

)
≃ Λ/(Λ ∩ Γfix)×β

G/Gfix.

Compare also the explanation after Theorem 2.3.36.

(1) Let H := G/Gfix and s : H ! G be a section. Then every g ∈ G can be written uniquely
as g = gfix · s(h).

(2) For gfix, choose a lift τ̂(gfix) ∈ Cn of τ(gfix) ∈ T such that the corresponding affine trans-
formation

γfix(z) := ρ(gfix)z + τ̂(gfix)

belongs to Γfix. For s(h), choose an arbitrary lift τ̂(s(h)) ∈ Cn of τ(s(h)). Then

τ̂ : G −! Cn, gfix · s(h) 7! ρ(gfix)τ̂(s(h)) + τ̂(gfix)

is a lift of τ : G! T .

(3) The image of [τ ] under σ1 is represented by

β(g1, g2) := ρ(g1)τ̂(g2)− τ̂(g1g2) + τ̂(g1) ∈ Λ.

Lemma 4.4.6. The cocycle β descends to a cocycle β ∈ H2(G/Gfix,Λ/(Λ∩Γfix)) describing the
extension

π1
(
T/G

)
≃ Λ/(Λ ∩ Γfix)×β

G/Gfix
.

Proof. The proof follows the reasoning in [Cha86, Chapter V, Section 3], adapted to our specific
situation. First, we notice that the conjugation action of G on Λ fixes Λ ∩ Γfix since Γfix is
normal in Γ. Moreover, the induced action of Gfix on the quotient Λ/(Λ ∩ Γfix) is trivial. Thus,
the action of G on Λ induces an action of G/Gfix on Λ/(Λ ∩ Γfix) which coincides with the
conjugation action. Next, we observe that the lift τ̂ of τ defines a section sΓ of the extension
0! Λ! Γ! G! 1 via sΓ(g)(z) = ρ(g)z + τ̂(g). The section sΓ has the following properties:
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• For all gfix ∈ Gfix and h ∈ G/Gfix, it holds that sΓ(gfix · s(h)) = sΓ(gfix) · sΓ(s(h)),

• For all gfix ∈ Gfix, it holds that sΓ(gfix) ∈ Γfix, and

• For all g ∈ G, gfix ∈ Gfix, it holds that sΓ(gfix · g) · Γfix = sΓ(g) · Γfix,

where the first property results directly from the construction and implies the other two proper-
ties. Hence, sΓ descends to a section sΓ of the bottom extension of Diagram (4.4.1). Thus, the
2-cocycle β̃ defined by sΓ, which describes the middle extension, descends to a cocycle

β ∈ H2(G/Gfix,Λ/(Λ ∩ Γfix))

describing the bottom row. Now, the 2-cocycle β̃ coincides with the cocycle β:

β̃(g1, g2)(z) = sΓ(g1)sΓ(g2)sΓ(g1g2)
−1(z) =

= (ρ(g1)z + τ̂(g1)) ◦ (ρ(g2)z + τ̂(g2)) ◦ (ρ(g1g2)−1z − ρ(g1g2)
−1τ̂(g1g2))(z) =

= z − τ̂(g1, g2) + ρ(g1)τ̂(g2) + τ̂(g1) = β(g1, g2)(z).

Thus, the claim follows.

Above, we described the universal covers of torus quotients. They are again torus quotients,
although it may happen that the torus is not compact. Conversely, we show that any complex
variety uniformized by a compact torus quotient is again a torus quotient. In the proof, the main
ingredient is the lifting property that follows from Bieberbach’s theorems.

Proposition 4.4.7. Let X = T/G be a simply connected n-dimensional compact torus quotient,
n ≥ 2, where G is a finite group acting holomorphically, without translations, and freely in
codimension 1 on T , and let X ′ be any complex variety uniformized by X. Then X ′ is a compact
torus quotient. More precisely, there is a torus T ′ and a finite group G′ acting holomorphically,
without translations, and freely in codimension 1 such that

X ′ ≃ T ′/G′.

Furthermore, if X is rigid, then X ′ is rigid as well.

Remark 4.4.8. In particular, the previous proposition shows that any complex variety uniformized
by one of the quotients in our lists 4.1 and 4.2, is contained in the list as well.

Proof of Proposition 4.4.7. Let p : X = T/G! X ′ be the universal cover, which is finite by the
compactness of X, and Galois, and let pr: T ! X = T/G be the quotient map, which is finite
and Galois as well, but possibly ramified. Consider the possibly ramified cover

h := p ◦ pr: T −! T/G −! X ′.

Since any f ∈ Deck(p) can be lifted to T by Proposition 4.2.5, h is Galois. Let H ⊴ Deck(h) be
the subgroup of translations, G′ := Deck(h)/H, and T ′ := T/H. Then G′ acts translation-free
on the compact complex torus T ′ and X ′ ≃ T ′/G′. Since the universal cover p is unramified
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and the ramification locus of the quotient map pr has codimension at least 2 by assumption, the
action of G′ on T ′ is free in codimension 1.
Assume now that X is rigid. Since the action of G′ is free in codimension 1, it follows:

H1(T ′,ΘT ′)G
′
= H1(X ′,ΘX′) = H1(X,ΘX)

Deck(p) = 0.

Thus, X ′ is rigid, too.



5. Terminalizations and resolutions of
singularities

In this chapter, we will construct crepant terminalizations and resolutions of our singular quo-
tients with the property that the obtained manifolds are still (infinitesimally) rigid. The occurring
singularities, isolated cyclic quotient singularities, can be described as germs of so-called toric
varieties. Hence, we can and will use tools from toric geometry to construct the maps and verify
the required properties of the resolutions and terminalizations.

5.1. Toric geometry and singularities

In this section, we introduce affine and abstract toric varieties as well as important properties
and constructions. For further information and proofs, we refer to the textbooks [Ful93] and
[CLS11].

Definition 5.1.1.

(1) An algebraic torus is an affine algebraic group T that is isomorphic to (C∗)n as algebraic
group.

(2) A toric variety is an irreducible algebraic variety X that contains an algebraic torus T
as Zariski dense subset such that the action of T on itself extends to an algebraic action
T×X ! X.

The basic idea of toric geometry is the following: Given combinatorial data like lattices, cones,
and fans, associate toric varieties to them, and then, derive geometrical properties from combi-
natorial ones that can be computed in an easier way.

For the following, fix a lattice N ≃ Zn and the corresponding R-vector space NR := N ⊗Z R.

Definition 5.1.2. A subset σ ⊂ NR is called a convex polyhedral cone if there are vectors
v1, . . . , vr ∈ N such that

σ = cone(v1, . . . , vr) :=
{∑

λivi | λi ∈ R≥0

}
.

The dual lattice is defined as M := N∨ = Hom(N,Z), and

σ∨ := {u ∈M ⊗Z R | ⟨u, v⟩ ≥ 0 for all v ∈ σ}

is called the dual cone, where ⟨−,−⟩ denotes the dual pairing.

79
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By Gordan’s Lemma (cf. [CLS11, Proposition 1.2.17]), the semigroup σ∨∩M is finitely generated
and hence, the same holds for the associated C-algebra C[σ∨ ∩M ]. Therefore, we can define the
affine toric variety Uσ as

Uσ := Spec(C[σ∨ ∩M ]).

Note that Uσ is irreducible and furthermore normal. If σ is moreover strongly convex, that is
σ ∩ (−σ) = {0}, then dim(Uσ) = n, and Uσ contains the algebraic torus

T = Spec(C[M ]) ≃ (C∗)n

as Zariski-dense subset. The C-algebra homomorphism

C[σ∨ ∩M ] −! C[M ]⊗ C[σ∨ ∩M ], χa 7! χa ⊗ χa,

induces an algebraic action of T on Uσ, which extends the action of T on itself. Hence, Uσ is in
fact a toric variety in the sense of Definition 5.1.1.

From now on, we will always assume that all cones are strongly convex polyhedral cones.

Proposition 5.1.3 ([CLS11], Theorem 1.3.12). The affine toric variety Uσ is smooth if and only
if σ is generated by a part of a Z-basis of the lattice N , in which case

Uσ ≃ Ck × (C∗)n−k,

where k := dim(Span(σ)).

Example 5.1.4. Isolated cyclic quotient singularities are toric1.

Proof. Let (U, p) be an isolated cyclic quotient singularity of type

1
d(a1, . . . , an).

Recall that (U, p) ≃ (Cn/G, 0), where G := ⟨diag(ζa1d , . . . , ζ
an
d )⟩. Here, ζd is a primitive d-th root

of unity and gcd(ai, d) = 1 for all i = 1, . . . , n. Consider the lattice

N := Zn + Z · 1
d(a1, . . . , an)

and the cone σ := cone(e1, . . . , en). We claim that U ≃ Uσ. To see this, we first observe that
σ∨ = σ and

M = {(m1, . . . ,mn) ∈ Zn | a1m1 + . . .+ anmn ≡ 0 mod d}.

Hence, C[σ∨ ∩M ] is precisely the ring of invariants C[x1, . . . , xn]G, which is the coordinate ring
of Cn/G. Thus,

U = Spec(C[x1, . . . , xn]G) = Spec(C[σ∨ ∩M ]) = Uσ.

In order to obtain toric varieties that are generally not affine, we glue suitable collections of affine
toric varieties.

1In fact, all abelian quotient singularities are toric.
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Definition 5.1.5.

(1) A fan in NR is a finite collection Σ of strongly convex polyhedral cones in NR such that

• each face of a cone in Σ is a cone in Σ, and

• the intersection of two cones in Σ is a face of each of them.

(2) By Σ(k) we denote the subset of all cones in Σ of dimension k.

(3) The support of a fan Σ is defined as

|Σ| :=
⋃
σ∈Σ

σ ⊂ NR.

(4) The toric variety XΣ associated to the fan Σ is the variety obtained by gluing the affine
varieties {Uσ | σ ∈ Σ} along the open sets Uσ∩σ′ of Uσ and Uσ′ for all cones σ and σ′ of Σ.

(5) A ray ρ of Σ is a one-dimensional cone. Its primitive element uρ is the unique generator
of N ∩ ρ.

Since smoothness is a local property, the variety XΣ is smooth if and only if every cone σ ∈ Σ is
smooth.

Example 5.1.6. We want to realize the complex projective plane as toric variety. For this, let
N = Z2, and let Σ ⊂ NR = R2 be the fan with maximal cones

σ0 = cone(e1, e2), σ1 = cone(e2,−e1 − e2), cone(e1,−e1 − e2),

as shown on the left hand side of Figure 5.1. Since the three maximal cones are smooth, the
corresponding affine toric varieties Uσi are all isomorphic to C2, and one can verify that the toric
variety associated to Σ is in fact P2.

σ0

σ1

σ2 σ1

σ2

σ3

σ4

Figure 5.1.: The fans of P2 and H2.

Example 5.1.7. The Hirzebruch surface H2 = P(OP1 ⊕OP1(2)) has the following toric description
(see Figure 5.1 on the right): The lattice N is just Z2, and the maximal cones of the fan Σ are
given by

σ1 = cone(e1, e2), σ2 = cone(e1,−e2), σ3 = cone(−e2,−e1 + 2e2),

σ4 = cone(e2,−e1 + 2e2).
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Remark 5.1.8. Let N ′ and N be two lattices, and let Σ′ ⊂ N ′
R and Σ ⊂ NR be two fans. Let

φ : N ′ ! N be a Z-linear map such that for all σ′ ∈ Σ′, there is a cone σ ∈ Σ such that the
R-linear extension of φ maps σ′ to σ; we say that φ is compatible with the fans. Then φ induces
in a natural way a toric morphism ϕ : XΣ′ ! XΣ, i.e., a morphism of algebraic varieties mapping
the torus of XΣ′ to the torus of XΣ such that ϕ|TN′ is a homomorphism of groups (cf. [CLS11,
Theorem 3.3.4]).

Definition 5.1.9. Let Σ ⊂ NR be a fan.

(1) A fan Σ′ ⊂ NR is called a refinement of Σ if for all σ′ ∈ Σ′, there is a cone σ ∈ Σ such that
σ′ ⊂ σ, or equivalently, if the identity id : N ! N is compatible with the fans Σ′ and Σ.

(2) Let 0 ̸= v ∈ |Σ| ∩ N . The star subdivision of Σ along v is the fan Σ∗(v) that consists of
the following cones:

(a) all cones σ ∈ Σ with v /∈ σ,

(b) all cones cone(τ, v), where v /∈ τ ∈ Σ such that {v} ∪ τ is contained in a cone in Σ.

In vivid terms, we obtain the star subdivision Σ∗(v) of Σ along v by subdividing all cones of Σ
that contain v along the ray generated by v. Clearly, it is in particular a refinement of Σ.

Theorem 5.1.10 ([CLS11], Theorem 11.1.9).

(1) Let Σ′ be a refinement of a fan Σ ⊂ NR. Then the induced toric morphism

ϕ : XΣ′ −! XΣ

is proper and birational.

(2) Iterating finitely many star subdivisions along appropriate elements in N ∩ |Σ| leads to a
resolution of singularities of XΣ.

Remark 5.1.11. Let Uσ be an isolated cyclic quotient singularity as in Example 5.1.4, and assume
that Σ is obtained from σ = cone(e1, . . . , en) by finitely many star subdivisions along v1, . . . , vs.
Then the partial resolution ϕ : XΣ ! Uσ is crepant if and only if all the elements v1, . . . , vs
belong to the hyperplane

{(x1, . . . , xn) ∈ Rn | x1 + . . .+ xn = 1}.

This follows from [CLS11, Lemma 11.4.10].

Remark 5.1.12. Let Σ ⊂ NR be a fan and ρ = R≥0uρ a ray in Σ with primitive generator uρ.
We can associate to ρ a prime divisor Dρ as follows: Define the quotient lattice

N(ρ) := N/N ∩ Ruρ.

Then
Star(ρ) := {σ ⊂ N(ρ)R | σ ∈ Σ that have ρ as facet}
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is a fan, and its associated toric variety Dρ := XStar(ρ) is an irreducible divisor in XΣ.
Note that these divisors are invariant under the action of the torus and their classes generate
the class group Cl(XΣ) (cf. [CLS11, Theorem 4.1.3]).

Remark 5.1.13 ([CLS11], Proposition 11.1.10). The exceptional divisor of a partial toric resolu-
tion ϕ : XΣ′ ! XΣ that is given by finitely many star subdivisions is the union of the divisors
associated to the added rays.

Definition 5.1.14. Let D =
∑

ρ∈Σ(1) aρDρ be a divisor of the toric variety XΣ. The polyhedron
associated to D is defined as

PD := {m ∈MR | ⟨m,uρ⟩ ≥ −aρ for all ρ ∈ Σ(1)}.

Proposition 5.1.15 ([BG20], Proposition 5.8). Let ρ : XΣ ! Uσ be a toric partial resolution
of an abelian quotient singularity Uσ = Cn/G. Let Di ⊂ XΣ and D′

i ⊂ Uσ be the divisors
corresponding to the rays R≥0ei. Then the inclusion ρ∗ΘXΣ

⊂ ΘUσ is an isomorphism if and
only if the polyhedra PDi and PD′

i
contain the same integral points, that is, for all 1 ≤ i ≤ n, it

holds that
PDi ∩M = PD′

i
∩M.

Proposition 5.1.16. Let D =
∑

ρ∈Σ(1) aρDρ be a Cartier divisor on a toric variety XΣ. Then
for each σ ∈ Σ, there exists an element mσ ∈M such that for all rays ρ ∈ σ(1), it holds that

⟨mσ, uρ⟩ = −aρ.

The collection {mσ}σ∈Σ is called the Cartier data of D.

Knowing the Cartier-data of a divisor, it is easy to decide whether the divisor has base points or
not:

Proposition 5.1.17. Let Σ ⊂ NR ≃ Rn be an n-dimensional fan and D =
∑

ρ∈Σ(1) aρDρ a
Cartier divisor on XΣ with Cartier data {mσ}σ∈Σ. Then the following are equivalent:

(1) The divisor D is basepoint free.

(2) For all maximal cones σ ∈ Σ(n), the element mσ belongs to PD.

If a divisor is basepoint free, then it is also nef. Under mild additional conditions, the higher
cohomology groups of nef divisors on toric varieties vanish:

Theorem 5.1.18 (Demazure-Vanishig, [CLS11], Theorem 9.2.3). Let D be a Q-Cartier divisor
on XΣ. If |Σ| is convex and D is nef, then

Hp(XΣ,OXΣ
(D)) = 0 for all p > 0.

If a divisor is not nef, we cannot use Demazure-vanishing. However, the following criterion
helps to compute at least the first cohomology since it coincides with the number of connected
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components of some subspace of NR. Before we state the theorem, note that the cohomology
groups Hp(XΣ,OXΣ

) carry a natural grading

Hp(XΣ,OXΣ
) =

⊕
m∈M

Hp(XΣ,OXΣ
)m.

Theorem 5.1.19 ([CLS11], Theorem 9.1.3). Let D =
∑

ρ aρDρ be a Weil divisor on XΣ. Fix
m ∈M and p ≥ 0. Then

Hp(XΣ,OXΣ
(D))m ≃ H̃p−1(VD,m,C),

where VD,m := ∪σ∈ΣConv(uρ | ρ ∈ σ(1), ⟨m,uρ⟩ > −aρ), and H̃p(VD,m,C) denotes the reduced
cohomology of VD,m with coefficients in C. In particular,

H1(XΣ,OXΣ
(D))m = 0 ⇐⇒ VD,m is path connected.

5.2. Construction of the terminalizations and resolutions

In this section, we construct crepant terminalizations and resolutions of our quotients and com-
pare their deformation theory with the one of the singular quotients. More precisely, we show:

Theorem 5.2.1. All quotients X in Theorem 4.3.1 admit a crepant terminalization Xter and a
resolution X̂ that fit in the diagram

Xter X

X̂

ψ

η

such that Xter and X̂ are infinitesimally rigid.

Note that for the quotients X with pg(X) = 1, which are precisely the quotients Zi in Theo-
rem 4.3.1, the crepant terminalizations are in fact resolutions, and furthermore they are unique
(cf. [Ogu96c, Lemma 4]).

To prove the proposition, we proceed as follows: First, we construct a crepant terminalization ψ
with the properties

ψ∗(ΘXter) ≃ ΘX and R1ψ∗(ΘXter) = 0. (5.2.1)

Leray’s spectral sequence then yields an isomorphism H1(Xter,ΘXter) ≃ H1(X,ΘX) (cf. Propo-
sition 2.5.11). Thus, the rigidity of Xter follows from the rigidity of X. It will turn out that the
terminalizations have only cyclic quotient singularities of type 1

d(1, 1, d − 1), where d = 2, 3, 4,
or 6. For varieties with such singularities, a resolution X̂ with the properties 5.2.1 exists (cf.
[BGK, Proposition 6.2]), which implies that the first cohomology with values in ΘX̂ is trivial as
well.
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Since the quotients X have only isolated singularities and the terminalizations are proper, the
construction of a suitable terminalization is a local problem due to the relative version of the
GAGA-theorems (cf. [Oda88, Section 2.2]). By Theorem 3.0.5, the non-terminal singularities of
X are all cyclic and of the following types:

1
3(1, 1, 1),

1
7(1, 2, 4),

1
9(1, 4, 7), or 1

14(1, 9, 11).

As explained in Example 5.1.4, cyclic quotient singularities are toric. In [BG20], the authors
give a crepant toric resolution of the singularities of type 1

3(1, 1, 1) having the properties 5.2.1.
A toric crepant resolution of the Gorenstein-singularity of type 1

7(1, 2, 4) is constructed in [RY87],
and toric crepant terminalizations of the last two singularities can be found in [Gle16]. Note that
the last two singularities do not admit a crepant resolution. In the following, we prove that the
terminalizations of these three singularities satisfy the conditions 5.2.1.

Denote the singularity of type 1
7(1, 2, 4) by U1, the one of type 1

9(1, 4, 7) by U2, and the one of
type 1

14(1, 9, 11) by U3.
As affine toric varieties, they are represented by the cone σ := cone(e1, e2, e3) and the lattices

N1 := Z3 + Z · 1
7(1, 2, 4),

N2 := Z3 + Z · 1
9(1, 4, 7),

N3 := Z3 + Z · 1
14(1, 9, 11)

in R3, respectively (cf. Example 5.1.4).
Subdividing the cone σ along the rays generated by

• v1 :=
1
7(1, 2, 4), v2 :=

1
7(4, 1, 2), v3 :=

1
7(2, 4, 1) ∈ N1, N3,

• v := 1
3(1, 1, 1) ∈ N2, respectively,

yields the fans Σ1 = Σ3 and Σ2 visualized in Figure 5.2. Note that the subdivisions, and hence
the resulting fans Σ1 and Σ3, in the cases 1 and 3 coincide, but the lattices differ, so we get
different associated toric varieties.

e1 e2

e3

v1

v3
v2

(a) The fan Σ1 = Σ3

e1 e2

e3

v

(b) The fan Σ2

Figure 5.2.: Resolution of the singularity of type 1
7(1, 2, 4) and terminalizations of the singularities

of type 1
9(1, 4, 7) and 1

14(1, 9, 11).
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The affine toric variety associated to the fan Σ1 and lattice N1 is smooth. Thus, we obtain a
toric resolution

ψ1 : XΣ1 −! U1.

The affine toric varieties that correspond to the maximal cones of the fan Σ2 are cyclic quotient
singularities of type 1

3(1, 1, 2), and the ones that correspond to the maximal cones of Σ3 are of type
1
2(1, 1, 1), hence the corresponding toric varieties XΣ2 and XΣ3 have only terminal singularities
(cf. [Gle16, Section 4.2]). Thus, we obtain toric terminalizations

ψj : XΣj ! Uj , j = 2, 3.

Since the vectors v, v1, v2, and v3 belong to the plane

{(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 1},

the maps ψj , j = 1, 2, 3, are crepant by Remark 5.1.11.

It finally remains to verify that ψj : XΣj ! Uj actually satisfies the conditions 5.2.1 for all
j = 1, 2, 3.

Notation 5.2.2. Denote by D′
i ⊂ Uj and Di ⊂ XΣj , respectively, the divisors corresponding

to the rays generated by ei, i = 1, 2, 3, by Ek the exceptional divisors of the resolution ψ1 and
the terminalization ψ3 corresponding to the added rays generated by vk, k = 1, 2, 3, respectively,
and by E ⊂ XΣ2 the exceptional divisor of ψ2 corresponding to v.

Lemma 5.2.3. The maps ψj fulfill (ψj)∗(ΘXΣj
) ≃ ΘUj for all j = 1, 2, 3.

Proof. By Proposition 5.1.15, we have to verify for all i that PDi ∩Mj = PD′
i
∩Mj .

Let j = 1 or 3. By symmetry, it is enough to consider the case i = 1. The polyhedrons of the
divisors are given by

PD′
1
= {x ∈ R3 | x1 ≥ −1, x2, x3 ≥ 0},

PD1 = PD′
1
∩ {x ∈ R3 | ⟨x, vk⟩ ≥ 0, k = 1, 2, 3}.

Thus, the inclusion PD1 ∩Mj ⊂ PD′
1
∩Mj is obvious. For the converse, let x ∈ PD′

1
∩Mj ⊂ Z3.

Then, since v1 ∈ Nj , it holds that

−1 ≤ x1 + 2x2 + 4x3 ≡ 0 mod 7.

This implies that the sum x1+2x2+4x3 = 7·⟨x, v1⟩ is non-negative. With a similar computation,
we see that ⟨x, vk⟩ ≥ 0 for k = 2, 3. Hence, x belongs to PD1 .
The case j = 2 is analogous.

Lemma 5.2.4. Let ψ : XΣ ! X ′
Σ be a proper birational map of toric varieties. Assume that Σ

is simplicial, i.e., for each cone of Σ, the ray generators are linearly independent in NR, and that
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{uρ | ρ ∈ Σ(1)} spans NR. Then

R1ψ∗ΘXΣ
≃
⊕
ρ∈Σ(1)

R1ψ∗OXΣ
(Dρ).

Proof. The dual of the toric Euler sequence (cf. [CLS11, Theorem 8.1.6]) on XΣ reads

0 −! O⊕r
XΣ
−!

⊕
ρ∈Σ(1)

OXΣ
(Dρ) −! ΘXΣ

−! 0, (5.2.2)

where r is the rank of Cl(XΣ). Applying ψ∗ to this sequence yields the claimed isomorphism since
toric varieties have rational singularities (cf. [CLS11, Theorem 11.4.2]), thusRqψ∗(O⊕r

XΣ
) = 0.

It remains to prove that the first higher direct image of the tangent sheaf vanishes in each case.
Since the proof for j = 1 differs from the ones for j = 2 and 3, we split the proof into two parts.

Lemma 5.2.5. The resolution ψ1 of the singularity of type 1
7(1, 2, 4) fulfills R1(ψ1)∗(ΘXΣ1

) = 0.

Proof. Let ψ := ψ1 and Σ := Σ1. By Lemma 5.2.4, we have to prove that

R1ψ∗OXΣ
(Di) = 0 and R1ψ∗OXΣ

(Ek) = 0 for all j, k = 1, 2, 3.

Note that the exact sequence

0 −! OXΣ
−! OXΣ

(Ek) −! OEk
(Ek) −! 0

induces isomorphisms
R1ψ∗OXΣ

(Ek) ≃ R1ψ∗OEk
(Ek).

Thus, since U1 is affine, it is enough to prove:

(1) H1(XΣ,OXΣ
(Di)) = 0 for i = 1, 2, 3, and

(2) H1(Ek,OEk
(Ek)) = 0 for k = 1, 2, 3.

By symmetry, it is enough to consider the cases i = 1 and k = 1. The Cartier data for the
divisor D1 are given by the elements mτ2 = (−1, 4, 0) and mτ3 = mτ23 = (−1, 0, 2), where
τ2 = cone(e1, e3, v2), τ3 = cone(e1, e2, v3) and τ23 = cone(e1, v2, v3), and mτ = 0 for all other
maximal cones τ of Σ. Since all these elements belong to the polyhedron

PD1 = {x ∈ R3 | x1 ≥ −1, x2, x3 ≥ 0, ⟨x, vk⟩ ≥ 0, k = 1, 2, 3},

the divisor D1 is basepoint free (cf. Proposition 5.1.17), hence nef. Thus H1(XΣ,OXΣ
(D1)) = 0

by the theorem of Demazure (cf. Theorem 5.1.18).
Using the toric description of the divisor E1 as explained in Remark 5.1.12, one can see that E1

is isomorphic to the Hirzebruch surface H2: The lattice isomorphism

N(v1) = N/Z · v1 −! Z2, [e2] 7! u1, [e3] 7! −u2,
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where u1 and u2 denote the standard basis vectors in Z2, maps the fan of E1 to the fan of
H2 = P(OP1 ⊕OP1(2)) (cf. Example 5.1.7). Using Serre duality, the adjunction formula, and the
fact that the canonical divisor of XΣ is trivial, we finally conclude the following:

H1(E1,OE1(E1)) ≃ H1(E1, ωE1 ⊗OE1(−E1))
∨ ≃ H1(E1,OE1)

∨ ≃ H1(P1,OP1)∨ = 0.

Lemma 5.2.6. For j = 2, 3, the terminalizations ψj fulfill R1(ψj)∗(ΘXΣj
) = 0.

Proof. We only verify the assertion in the case j = 3, the other one is similar. For simplicity, we
drop the index j in the following. By Lemma 5.2.4 and since U is affine, it is enough to prove:

(1) H1(XΣ,OXΣ
(Di)) = 0 for i = 1, 2, 3, and

(2) H1(XΣ,OXΣ
(Ek)) = 0 for k = 1, 2, 3.

By symmetry, it is enough to consider the cases i = 1 and k = 1. Since XΣ has only singularities
of type 1

2(1, 1, 1), the divisor D1 is Q-Cartier with index 2. Computing the Cartier data for 2D1

one can show as before that 2D1 is nef and the vanishing of the cohomology group of the divisor
D1 follows again from the theorem of Demazure (cf. Theorem 5.1.18).

For E1 =
∑

ρ∈Σ(1) aρDρ, where aρ = 1 if ρ = cone(v1) and aρ = 0, else, the situation is different:
Since E1 is not nef, we cannot apply Demazure-vanishing, and since E1 is not smooth, we cannot
use similar techniques as in the case of ψ1. Instead, we show that the sets

VE1,m =
⋃

τ∈Σmax

Conv(uρ | ρ ∈ τ(1), ⟨m,uρ⟩ < −aρ)

are connected for all m ∈ N∨, where the sum runs over all maximal cones of the fan Σ. This
implies that H1(XΣ,OXΣ

(E1)) = 0 (cf. Theorem 5.1.19).

Looking at the illustration of the fan Σ = Σ3 in Figure 5.2, we see that VE,m is disconnected if
and only if there exists an i such that ei, vi ∈ VE1,m, but ej , vj /∈ VE1,m for all j ̸= i. We only
treat the case i = 1 as the other cases are analogous. The conditions v1 ∈ VE1,m and v2 /∈ VE1,m

are equivalent to ⟨m, v1⟩ < −1 and ⟨m, v2⟩ ≥ 0, written out:

m1 + 2m2 + 4m3 < −7 and − 4m1 −m2 − 2m3 ≤ 0.

By adding the first inequality to two times the second inequality, we obtain −7m1 < −7, so
m1 > 1. This is a contradiction because the condition e1 ∈ VE1,m means that

m1 = ⟨m, e1⟩ < 0.

Now that we know that all our quotients have (rigid) resolutions, the following question naturally
arises: Given two quotients that are not biholomorphic (homeomorphic), do their resolutions
belong to different biholomorphism (homeomorphism) classes as well?
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At least if the geometric genus of the quotients equals 1 (here, the crepant resolution is unique
since the quotients have only singularities of type 1

3(1, 1, 1) or 1
7(1, 2, 4), cf. [Ogu96c, Lemma 4]),

we can answer this question in the biholomorphic case:

Proposition 5.2.7. Let Z and Z ′ be two quotients in the list in Table 4.1, i.e., their geometric
genera are equal to 1, that are not biholomorphic. Then their unique crepant resolutions Ẑ and
Ẑ ′ belong to different biholomorphism classes as well.

Proof. As explained in Section 4.1, the resolutions ψ : Ẑ ! Z and ψ′ : Ẑ ′ ! Z ′, respectively, are
c2-contractions, that is, they are given by the complete linear system of divisors D and D′ where
the intersection product with c2 is zero. In [OS01, Lemma-Definition 4.1], the authors show that
each Calabi-Yau threefold admits a maximal c2-contraction, which is unique up to isomorphism.
In the proof of Theorem 0.4, Case B (see p. 73), they explain that the c2-contractions given by
the crepant resolutions are the maximal ones.
Now, assume that there is a biholomorphism f : Ẑ ! Ẑ ′. Then first of all, Z and Z ′ are
quotients by the same group since otherwise the Picard numbers of Ẑ and Ẑ ′ would differ (cf.
[OS01, Theorem 3.4]). Hence, ψ and ψ′ ◦ f would be two maximal contractions of Ẑ, and by the
uniqueness, this would imply that Z and Z ′ are biholomorphic – a contradiction.



6. Semi-projective representations

In Section 4.2, we discussed how to classify quotients of complex tori by actions that are free in
codimension one up to biholomorphism and homeomorphism. Let T = Cn/Λ be such a torus
and ρ : G ↪! GL(n,C) a faithful representation such that ρ(g) · Λ = Λ for all g ∈ G, and let
τ, τ ′ ∈ Z1(G,T ) be two cocycles defining actions that are free in codimension one. We saw that
the corresponding quotients X and X ′ are homeomorphic if and only if there exists a matrix
C ∈ GL(2n,R) with C · Λ = Λ and an automorphism ψ of the group G such that

(1) C · ρR · C−1 = ρR ◦ ψ,

(2) C ∗ τ = C · (τ ◦ ψ−1) and τ ′ belong to the same cohomology class in H1(G,T ).

Here, the representation ρR : G ! GL(2n,R) is the decomplexification of ρ. The quotients X
and X ′ are biholomorphic if and only if C can be chosen as a C-linear matrix.

Note that condition (1) says that the representations ρR and ρR ◦ψ are equivalent. In particular,

ψ ∈ Stab(χR) := {ψ ∈ Aut(G) | χR = χR ◦ ψ},

where χR is the character of ρR.

Concretely, if the torus T and the two cocycles τ and τ ′ are explicitly given, one can easily check
the second condition, for example by a computer, provided that the full list of candidates for C
is known, as we did several times in Chapter 4.

The problem to determine the solutions C of the conjugation equation in condition (1) relates
to so-called “semi-projective representations”:
Assume that ρ is irreducible and of complex type1, i.e., the Schur index fulfills ν(χ) = 1, where
χ is the character of ρ. Then, by Theorem 2.3.12, for each ψ ∈ Stab(χR), there exists a matrix
Cψ ∈ GL(2n,R) fulfilling condition (1), which is unique up to an element in the endomorphism
algebra EndG(ρR) ≃ C. Since χR = χ + χ, the automorphism ψ either stabilizes χ or maps χ
to χ. In the first case, the matrix Cψ is C-linear, whereas in the second case C-antilinear. This
yields a homomorphism

f : Stab(χR) −! PGL(n,C)⋊Aut(C)

into the group of semi-projectivities PΓL(n,C) = PGL(n,C) ⋊ Aut(C). Such homomorphisms
are called semi-projective representations. The candidates for the linear part C of potential
homeomorphisms are the elements in the group

N := {C ∈ GL(n,C)⋊Aut(C) | [C] ∈ im(f), C · Λ = Λ}.
1If the action of G on T is rigid, then ρ does not contain self-conjugate subrepresentations by Proposition 2.5.8.

Thus, it is always of complex type if it is irreducible.

90
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Hence, one has to determine something like a “lift” of f to GL(n,C)⋊Gal(C/R). Note that the
image of f is obviously contained in the subgroup PGL(n,C)⋊Gal(C/R) of PGL(n,C)⋊Aut(C).

This observation motivated us to study semi-projective representations and lifting-problems in
more detail. The results are presented in this chapter.

Throughout it, K, V andG will denote a field, a non-trivial finite dimensionalK-vector space and
a finite group, respectively. In [Sch04], Schur developed the theory of projective representations,
which are homomorphisms from a group G to the group of projective transformations PGL(V ).
We consider semi-projective representations of G; these are homomorphisms from G to the group
of semi-projective transformations PΓL(V ). Here, PΓL(V ) is defined as the quotient of the group
of semi-linearities

ΓL(V ) ≃ GL(V )⋊Aut(K)

modulo the action of the multiplicative group K∗. A semi-projective representation involves
an action φ of G on K by automorphisms. In this way, K∗ becomes a G-module and one can
consider the second cohomology group H2

φ(G,K
∗) with respect to the action. In analogy to the

projective case, this group plays an important role, as it is the obstruction space of the lifting
problem of semi-projective representations to semi-linear representations, i.e., homomorphisms
from G to ΓL(V ).

As our main result, we show that if K is algebraically closed, then for any given action φ

of G, there exists a finite φ-twisted representation group Γ, which has the property that any
semi-projective representation inducing the action φ admits a semi-linear lift to Γ. Despite
the fact that Γ is not unique in general, it has minimal order among all groups enjoying the
lifting property. This allows us to study semi-projective representations of G via semi-linear
representations of Γ. We also give a cohomological characterization of a group Γ to be a φ-
twisted representation group, which reduces to the classical description of a representation group
in the case that the action φ is trivial. In general, it seems to be difficult to determine a φ-
twisted representation group explicitly, even when φ is trivial. We approach this problem in the
semi-projective case via an algorithm for the case K = C under the assumption that φ takes
values in Gal(C/R); this produces all φ-twisted representation groups of a given group G.

Note that besides the classification problem of complex tori, there is another situation where
semi-projective representations arise naturally: Isaacs [Isa81] developed the concept of crossed-
projective representations, which is analogous to our notion of semi-projective representations,
in order to study the problem of extending G-invariant irreducible K-representations of a normal
subgroup of G to G for arbitrary fields K .

6.1. Semi-projective representations and the lifting problem

In this section, we introduce semi-linear and semi-projective representations, discuss some of
their basic properties, and formulate and analyze the “lifting problem”.

Definition 6.1.1. A bijective map f : V ! V is called a semi-linear transformation if there
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exists an automorphism φf ∈ Aut(K) such that

f(v + w) = f(v) + f(w) and f(λv) = φf (λ)f(v)

for all v, w ∈ V and all λ ∈ K. The set of all semi-linear transformations of V forms a group
ΓL(V ).

The group ΓL(V ) contains GL(V ) as a normal subgroup and sits inside the following short exact
sequence

1 −! GL(V ) −! ΓL(V ) −! Aut(K) −! 1.

This sequence splits so that ΓL(V ) ≃ GL(V )⋊Aut(K).
Let v1, . . . , vn be a basis of V . Then we can associate to every f ∈ ΓL(V ) an invertible matrix
Af := (aij) by

f(vj) =
n∑
i=1

aijvi.

This procedure establishes an isomorphism between ΓL(V ) and GL(n,K)⋊Aut(K), where the
group operation of the semidirect product is given by

(A,φ) · (B,ψ) := (Aφ(B), φ ◦ ψ).

Here, φ(B) is the matrix obtained by applying the automorphism φ to the entries of B.

In analogy to the group of projective transformations PGL(V ), the group of semi-projective
transformations PΓL(V ) is defined as the quotient of ΓL(V ) modulo the equivalence relation

f ∼ g if and only if there exists λ ∈ K∗, such that f = λg.

By construction, the sequence

1 −! K∗ −! ΓL(V ) −! PΓL(V ) −! 1

is exact. The structure of PΓL(V ) is similar to the one of ΓL(V ): The group PGL(V ) is a normal
subgroup of PΓL(V ), and there is a split exact sequence

1 −! PGL(V ) −! PΓL(V ) −! Aut(K) −! 1.

Note that the map PΓL(V ) ! Aut(K) is well-defined because the automorphism attached to
an element in PΓL(V ) is independent of the representative. After choosing a projective frame,
PΓL(V ) can be identified with the semidirect product

PGL(n,K)⋊Aut(K).

We now introduce our main objects of study:

Definition 6.1.2. A semi-linear representation is a homomorphism F : G! ΓL(V ) and a semi-
projective representation is a homomorphism f : G! PΓL(V ).
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Isaacs [Isa81] used the term crossed-projective representation for a semi-projective representation
under the identification of PGL(n,K)⋊Aut(K) with PΓL(V ).

The lifting problem: Every semi-linear representation F : G ! ΓL(V ) induces a semi-projective
representation f : G! PΓL(V ) by composition with the quotient map:

ΓL(V ) PΓL(V )

G

F
f

However, it is not true that every semi-projective representation can be obtained in this way.
The obstruction to the existence of a lift to ΓL(V ), or, more generally, the interplay between
semi-linear and semi-projective representations, can be described using group cohomology in
analogy to the classical theory of projective representations.
Given a semi-linear or semi-projective representation of G, we obtain an action

φ : G! Aut(K), g 7! φg,

by composition with the projection from ΓL(V ) or PΓL(V ) to Aut(K), respectively. Via this
action, the abelian group K∗ obtains a G-module structure; in particular, we can consider the
cohomology groups

H i
φ(G,K

∗) = Ziφ(G,K
∗)/Bi

φ(G,K
∗),

where the subscript φ is used to emphasize that the G-module structure of K∗ is not trivial in
general, and might be dropped in the trivial case. The basic observation is that we can associate
to every semi-projective representation a well-defined class in the second cohomology group:

Proposition 6.1.3. Let f : G! PΓL(V ) be a semi-projective representation, and let fg ∈ ΓL(V )

be a representative of the class f(g) for each g ∈ G. Then there exists a map α : G × G ! K∗

such that fgh = α(g, h)(fg ◦ fh) for all g, h ∈ G. The map α is a 2-cocycle and its cohomology
class [α] ∈ H2

φ(G,K
∗) is independent of the chosen representatives fg.

Proof. Since f is a homomorphism, [fgh] = [fg] ◦ [fh], which implies that fgh = α(g, h)(fg ◦ fh)
for some α(g, h) ∈ K∗. To show that α is a cocycle, we use the associativity of the multiplication
in G to compute fghk in two different ways. On the one hand, we have

fg(hk) = α(g, hk)(fg ◦ fhk) = α(g, hk)(fg ◦ α(h, k)(fh ◦ fk))
= α(g, hk)φg(α(h, k))(fg ◦ fh ◦ fk).

On the other hand,

f(gh)k = α(gh, k)(fgh ◦ fk) = α(gh, k)α(g, h)(fg ◦ fh ◦ fk).

Comparing the two expressions yields

α(g, hk)φg(α(h, k)) = α(gh, k)α(g, h).
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If f ′g is another representative for f(g), then there exists τ(g) ∈ K∗ such that fg = τ(g)f ′g. Let
α′ be defined by f ′gh = α′(g, h)(f ′g ◦ f ′h) for all g, h ∈ G. A computation like the one above shows
that

α′(g, h) = φg(τ(h))τ(gh)
−1τ(g)α(g, h),

where ∂τ(g, h) = φg(τ(h))τ(gh)
−1τ(g) is a 2-coboundary.

Let f : G ! PΓL(V ) be a semi-projective representation. Choosing idV as a representative for
f(1), the 2-cocycle α is normalized. If f is induced by a semi-linear representation F , then the
attached cohomology class is trivial. Conversely, assume that α is a coboundary, so α = ∂(τ) for
some function τ : G! K∗. Then the map

F : G! ΓL(V ), g 7! Fg := τ(g)fg

is a semi-linear representation inducing f , as the following computation shows:

Fg ◦ Fh = (τ(g)fg) ◦ (τ(h)fh) = τ(g)φg(τ(h))(fg ◦ fh)
= τ(gh)α(g, h)(fg ◦ fh) = τ(gh)fgh

= Fgh.

Corollary 6.1.4. A semi-projective representation f : G! PΓL(V ) is induced by a semi-linear
representation if and only if its attached cohomology class in H2

φ(G,K
∗) is trivial.

We have assigned to every semi-projective representation an element in H2
φ(G,K

∗). In fact, all
cohomology classes arise in this way:

Let φ : G ! Aut(K) be an action of G on K and α ∈ Z2
φ(G,K

∗). In analogy to the regular
representation, consider the vector space V with basis {eh | h ∈ G} and define for every g ∈ G

an element Rg ∈ GL(V ) via Rg(eh) := α(g, h)−1egh. Then the map

f : G! PGL(V )⋊Aut(K), g 7! ([Rg], φg),

is a semi-projective representation with assigned cohomology class [α] ∈ H2
φ(G,K

∗).

We have thus shown that if H2
φ(G,K

∗) is non-trivial, then there are semi-projective represen-
tations without a semi-linear lift. In the projective case, this problem was first noticed and
investigated by Schur. In order to study projective representations by means of ordinary li-
near representations, he and subsequent authors constructed, under certain conditions on K, a
representation group Γ of G: in modern terminology, a stem extension

1 −! A −! Γ −! G −! 1, with A ≃ H2(G,K∗).

Stem means that A is central and contained in the commutator subgroup [Γ,Γ]. Such an exten-
sion has the property that for every projective representation f : G ! PGL(V ), there exists an
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ordinary linear representation F : Γ! GL(V ) fitting into the following commutative diagram

1 A Γ G 1

1 K∗ GL(V ) PGL(V ) 1

F f

(see [Kar85, Chapter 3.3] for details). In this scenario, we say that F induces f or that f can be
lifted to F , and we use similar terminology in the semi-projective case below.

Recall, that if
1 −! A −! Γ −! G −! 1

is an extension of G by a finite abelian group A and s : G! Γ a set-theoretic section, then there
is an action of G on A defined by g ∗ a := s(g)as(g)−1. The equation β(g, h)s(gh) = s(g)s(h) for
some β(g, h) ∈ A defines a 2-cocylcle β : G×G! A, so a cohomology class in H2

φ(G,A), which
is uniquely determined by the extension.
Suppose now that an action φ : G ! Aut(K) on the field K is given. Then, by composition
with the projection Γ ! G, we also obtain an action of Γ on K with kernel containing A. In
this situation, the inflation-restriction exact sequence of Hochschild and Serre [HS53, Theorem 2]
reads:

1 H1
φ(G,K

∗) H1
φ(Γ,K

∗) HomG(A,K
∗) H2

φ(G,K
∗) H2

φ(Γ,K
∗).inf res tra inf

Here, inf and res are induced by inflation and restriction of cocycles and the transgression map
tra is defined as

tra : HomG(A,K
∗)! H2

φ(G,K
∗), λ 7! [λ ◦ β].

Clearly, this map depends only on the cohomology class of β. Using this terminology, we obtain:

Theorem 6.1.5. Let 1! A! Γ
π
! G! 1 be an extension of G by a finite abelian group A with

associated cohomology class [β] ∈ H2
φ(G,A). A semi-projective representation f : G ! PΓL(V )

with class [α] ∈ H2
φ(G,K

∗) is induced by a semi-linear representation

F : Γ −! ΓL(V ), γ 7! Fγ ,

if and only if [α] belongs to the image of the transgression map.

Proof. Assume that f is induced by a semi-linear representation F . By assumption, there exists
a function λ : Γ ! K∗ such that Fγ = λ(γ)fπ(γ) for all γ ∈ Γ. Since we may assume that
f1 = id, it follows that Fa = λ(a)fπ(a) = λ(a) id for all a ∈ A. As a result, the restriction λA is
a homomorphism. We claim that λ ∈ HomG(A,K

∗), that is λ(g ∗ a) = φg(λ(a)) for all g ∈ G

and a ∈ A, and say that λ is G-equivariant. This is true since

φg(λ(a)) id = Fs(g) ◦ (λ(a) id) ◦ Fs(g)−1 = Fs(g) ◦ Fa ◦ Fs(g)−1 = Fs(g)as(g)−1 = λ(g ∗ a) id .
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By using the definition of β, we compute

Fs(gh) = Fβ(g,h)s(g)s(h) = Fβ(g,h) ◦ Fs(g) ◦ Fs(h)
= λ(β(g, h))(λ(s(g))fg) ◦ (λ(s(h))fh)
= λ(β(g, h))λ(s(g))φg(λ(s(h))(fg ◦ fh).

On the other hand,

Fs(gh) = λ(s(gh))fgh = λ(s(gh))α(g, h)(fg ◦ fh).

Comparing the results, we obtain α(g, h) = λ(β(g, h))∂(λ ◦ s)(g, h), hence

[λ ◦ β] = [α] ∈ H2
φ(G,K

∗).

Conversely, assume there is a function τ : G! K∗ and λ ∈ HomG(A,K
∗) such that

α(g, h) = λ(β(g, h))φg(τ(h))τ(gh)
−1τ(g).

Define
F : Γ! ΓL(V ), as(g) 7! λ(a)τ(g)fg;

then one can verify by similar computations as above that F is a homomorphism inducing f .

A natural question arises: Is it possible to find for every finite group G, together with a given
action φ : G! Aut(K), an extension

1 −! A −! Γ −! G −! 1 with A finite and abelian

such that every semi-projective representation f : G ! PΓL(V ) with action φ is induced by a
semi-linear representation F : Γ! ΓL(V )?

By Theorem 6.1.5, answering this question amounts to constructing an extension with surjective
transgression map

tra : HomG(A,K
∗) −! H2

φ(G,K
∗), λ 7! [λ ◦ β].

Clearly, this is possible only if H2
φ(G,K

∗) is finite. In case such an extension Γ exists, its order
is bounded from below:

|G||H2
φ(G,K

∗)| ≤ |G||Hom(A,K∗)| ≤ |G||A| = |Γ|.

Unfortunately, H2
φ(G,K

∗) is generally not finite. As an example, consider K = Q(i) and G =

Gal(K/Q) acting naturally on K. Then the cohomology group

H2(G,K∗) ≃ Q∗
/NK/Q(K

∗)

is infinite. Indeed, an application of the sum of two squares theorem shows that all primes p with
p ≡ 3 mod 4 yield non-trivial distinct elements.
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Nevertheless, in many important situations H2
φ(G,K

∗) is finite: for example, if K is algebraically
closed and φ : G! Aut(K) is an arbitrary action, see [Isa76, Theorem 11.15] and note that the
proof carries over to non-trivial actions and all cohomology groups H i

φ(G,K
∗), where i ≥ 1.

6.2. Twisted representation groups: the algebraically closed case

Throughout this section, we will assume that K is algebraically closed and that there is a fixed
action φ : G! Aut(K). Under these assumptions, we will mainly be dealing with a case similar
to K = C, where φ acts just by the identity and complex conjugation. Indeed, H := φ(G) is a
finite group and F := KH ⊂ K is a Galois extension with Galois group H. The Artin-Schreier
Theorem [AS27] implies that if H is non-trivial, then it is isomorphic to Z2, K = F (i) with
i2 = −1 and char(K) = 0. In particular, if char(K) ̸= 0, then the action is necessarily trivial
and we are in the projective setting.

The main result of this section is the following.

Theorem 6.2.1. There exists an extension

1 −! A −! Γ −! G −! 1

of G with A finite and abelian such that the transgression map tra : HomG(A,K
∗)! H2

φ(G,K
∗)

is an isomorphism.

Proof. By [Isa76, Lemma 11.14], we may letM ′ be a finite complement ofB2
φ(G,K

∗) in Z2
φ(G,K

∗).
For each m′ ∈M ′, define m := (∂τm′)m′, where τm′(g) = φg(m

′(1, 1)−1). Then the set of these m
forms a complement M of normalized 2-cocycles. Define an action of G on A := Hom(M,K∗) via
φ by (g ∗a)(m) := φg(a(m)) for all m ∈M . Now define β : G×G! A by β(g, h)(m) := m(g, h)

for all m ∈ M . A straightforward computation confirms that β ∈ Z2(G,A) under the action of
G on A, and clearly, β is normalized. So, β defines an extension

1 −! A −! Γ −! G −! 1,

where Γ := A×βG with binary operation (a, g)·(b, h) := (a(g∗b)β(g, h), gh) (cf. Theorem 2.3.36).
Note that the conjugation action of G on A is given by g∗a. Now, we claim that the transgression
map

tra : HomG(A,K
∗)! H2

φ(G,K
∗), λ 7! [λ ◦ β],

is surjective. Any class in H2
φ(G,K

∗) is represented by a (unique) element m0 ∈M ⊂ Z2
φ(G,K

∗).
Consider the evaluation homomorphism at m0, that is

λ : A! K∗, a 7! a(m0).

Note that λ is G-equivariant, in fact,

λ(g ∗ a) = (g ∗ a)(m0) = φg(a(m0)) = φg(λ(a)) for all g ∈ G.
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Furthermore,
(λ ◦ β)(g, h) = λ(β(g, h)) = β(g, h)(m0) = m0(g, h)

and thus, tra is surjective. Finally, tra is injective because

|M | = |H2
φ(G,K

∗)| ≤ |HomG(A,K
∗)| ≤ |Hom(A,K∗)| ≤ |A| ≤ |M |.

From the above chain of inequalities, it follows that

(1) all characters of A are G-equivariant, namely HomG(A,K
∗) = Hom(A,K∗),

(2) A ≃ Hom(A,K∗),

(3) A ≃ H2
φ(G,K

∗),

(4) the group Γ has minimal order |Γ| = |G||H2
φ(G,K

∗)|,

(5) H1
φ(G,K

∗) ≃ H1
φ(Γ,K

∗) using the inflation-restriction sequence

0 −! H1
φ(G,K

∗) −! H1
φ(Γ,K

∗) −! HomG(A,K
∗)

∼
−! H2

φ(G,K
∗).

Note that (5) is equivalent to tra being injective. If char(K) ̸= 0, the action φ is trivial.
Moreover, property (2) is equivalent to char(K) ∤ |A|, which from (3) confirms the known result
that char(K) ∤ |H2(G,K∗)| (see [Kar85, Theorem 2.3.2]).

The above observations motivate the following definition:

Definition 6.2.2. Let φ : G ! Aut(K) be an action of a finite group G on an algebraically
closed field K. A group Γ is called a φ-twisted representation group of G if there exists an
extension

1 −! A −! Γ −! G −! 1 with A finite and abelian

such that the following conditions hold:

(1) char(K) ∤ |A|,

(2) HomG(A,K
∗) = Hom(A,K∗),

(3) the transgression map
tra : HomG(A,K

∗)! H2
φ(G,K

∗)

is an isomorphism.

Next a numerical criterion is given to decide whether an extension is a φ-twisted representation
group.

Proposition 6.2.3. Let
1 −! A −! Γ −! G −! 1

be an extension by a finite abelian group A. Then Γ is a φ-twisted representation group of G if
and only if the following conditions are satisfied:

(1) |A| = |H2
φ(G,K

∗)|,



CHAPTER 6. SEMI-PROJECTIVE REPRESENTATIONS 99

(2) |HomG(A,K
∗)| = |Hom(A,K∗)|, and

(3) |H1
φ(G,K

∗)| = |H1
φ(Γ,K

∗)|.

Proof. Clearly, every φ-twisted representation group fulfills the three conditions. Conversely, if
they hold, then the inflation-restriction sequence together with (3) implies that

H1
φ(G,K

∗) ≃ H1
φ(Γ,K

∗)

and hence, the transgression map is injective. Condition (1) implies char(K) ∤ |A|. Therefore,
by using condition (2), we have

HomG(A,K
∗) = Hom(A,K∗) ≃ A.

Thus, the transgression map is also surjective.

Proposition 6.2.4. If φ : G ! Aut(K) is the trivial action, then an extension as in Defini-
tion 6.2.2 is a stem extension.

Proof. Since φ is trivial, the inflation-restriction sequence is

1 −! Hom(G,K∗) −! Hom(Γ,K∗) −! Hom(A,K∗) −! H2(G,K∗).

As the transgression map is an isomorphism, restriction Hom(Γ,K∗) ! Hom(A,K∗) is trivial.
Let HΓ := Hom(Γab,K∗) and HA := Hom(A,K∗). Then⋂

λ̄∈HΓ

ker(λ̄) ⊂ Γab

is the Sylow p-subgroup of Γab for p := char(K) > 0 (cf. [Isa76, Exercise 9.17]), and is trivial for
p = 0 (cf. [Isa76, Lemma 2.21]). Now, λA is trivial for each lift of λ̄ to Γ and hence, A ⊂ [Γ,Γ]

since p does not divide the order of A. Similarly, for a ∈ A, it holds that λ(s(g)as(g)−1) = λ(a)

for all λ ∈ HA and all g ∈ G. Thus

s(g)as(g)−1a−1 ∈
⋂

λ∈HA

ker(λ),

which is trivial. Hence, A is a subgroup of Z(Γ).

The next proposition shows that Definition 6.2.2 is an extension of the definition of a represen-
tation group for trivial φ.

Proposition 6.2.5. If the G-action on K is trivial, Definition 6.2.2 is equivalent to the classical
definition of a representation group (see [Isa76, Corollary 11.20]):

1. The extension 1 −! A −! Γ −! G −! 1 is stem,

2. |A| = |H2(G,K∗)|.
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Proof. Suppose the extension satisfies the conditions of Definition 6.2.2, then Proposition 6.2.4
implies that it is stem and (2) is obviously true. Conversely, assume we have a stem extension

1 −! A −! Γ −! G −! 1

such that |A| = |H2(G,K∗)|. Then char(K) does not divide |H2(G,K∗)|, as previously noted.
Moreover, every homomorphism A ! K∗ is G-equivariant since A ⊂ Z(Γ). Furthermore, the
inflation-restriction sequence yields that the transgression map is injective since A is contained in
the commutator subgroup [Γ,Γ], and hence Hom(G,K∗) ≃ Hom(Γ,K∗). Finally, Hom(A,K∗)

is isomorphic to A since char(K) does not divide the order of A, and so, the transgression map
is also surjective by (2).

Note that the order of a φ-twisted representation group Γ is unique, whereas the group itself
generally is not (see examples in Section 6.3), even in the projective case.

6.3. Examples

6.3.1. Basic examples of semi-projective representations and twisted
representation groups

Example 6.3.1. Consider K = C as a G = Z2-module, where 1 ∈ Z2 acts via complex conjugation
φ(1)(z) = conj(z) = z. In this example, a twisted representation group Γ is of order 4 because

H2
φ(Z2,C∗) ≃ (C∗)Z2/NC/R(C∗) ≃ R∗/R+ ≃ Z2.

The transgression map is required to be an isomorphism, so the extension

0 −! Z2 −! Γ −! Z2 −! 0

has to be non-split, which implies Γ ≃ Z4. Consider the semi-projective representation

f : Z2 ! PGL(2,C)⋊ Z2, 1 7!

([(
0 −1

1 0

)]
, conj

)
.

Its cohomology class in H2
φ(Z2,C∗) is represented by the normalized 2-cocycle α, whose only

non-trivial value is α(1, 1) = −1. It has no lift to a semi-linear representation of Z2 but a
semi-linear lift to Γ is given by

F : Z4 ! GL(2,C)⋊ Z2, 1 7!

((
0 −1

1 0

)
, conj

)
.

In the following, we explain how to use a computer algebra system, such as MAGMA [BCP97],
to produce all twisted representation groups of a given finite group G in the case K = C. We
assume that φ : G! Aut(C) takes values in Gal(C/R) ≃ {id, conj}.
The conditions in Proposition 6.2.3 need to be satisfied. Since we want to use a computer, it is
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necessary to replace the module C∗ by a discrete module. Identifying complex conjugation with
multiplication by −1, the homomorphism φ induces an action of G on Z that is also denoted by
φ. In this way, we can consider φ as a complex character of G of degree 1 with values in {±1}.
Furthermore, the exponential sequence

0 −! Z ·2πi
−! C exp

−! C∗ −! 1

becomes a sequence of G-modules. Since the cohomology groups Hn
φ(G,C) vanish for n ≥ 1, see

[Bro82, III, Corollary 10.2], the corresponding long exact sequence induces isomorphisms

Hn
φ(G,C∗) ≃ Hn+1

φ (G,Z) for all n ≥ 1.

Similarly, these isomorphisms hold for the cohomology groups of Γ.

These considerations lead to Algorithm 1. It takes as inputs a finite group G and an action φ,
which is given as a character with values in {±1}, and it returns all φ-twisted representation
groups of G.

Algorithm 1 φ-twisted representation groups
function TwistedRepresentationGroups(G,φ)
input: Finite group G, φ ∈ Irr(G) of degree one with values in {±1}
output: List of all φ-twisted representation groups of G

A H3(G,Z)
(Γ1, . . . ,Γk) extensions of G by A
L empty list
for j = 1, . . . , k do

test  true
for χ ∈ Irr(A) do

if χ is not G-invariant then
test  false

end if
end for
if test = true and #H2(G,Z) = #H2(Γj ,Z) then

L append(L,Γj) ▷ add Γj to the list L
end if

end for
return L

A MAGMA-implementation can be found in the Appendix A.3.

Example 6.3.2. Running our code, we compute the φ-twisted representation groups of the dihe-
dral group

D4 = ⟨s, t | s2 = t4 = 1, sts−1 = t3⟩

for all possible actions φ : D4 ! Aut(C):
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φ(s) φ(t) A = H2
φ(D4,C∗) φ-twisted representation groups

1 1 Z2 ⟨16, 7⟩, ⟨16, 8⟩, ⟨16, 9⟩

-1 -1 Z2 × Z2 ⟨32, 14⟩, ⟨32, 13⟩

1 -1 Z2 × Z2 ⟨32, 9⟩, ⟨32, 10⟩, ⟨32, 14⟩, ⟨32, 13⟩

-1 1 Z2 × Z2 ⟨32, 2⟩, ⟨32, 10⟩, ⟨32, 13⟩

Here, the symbol ⟨n, d⟩ denotes the d-th group of order n in MAGMA’s Database of Small
Groups.

6.3.2. Application of semi-projective representations: homeomorphisms and
biholomorphisms of torus quotients

Let us finally come back to the situation explained at the very beginning of this chapter: Let
T = Cn/Λ be a complex torus and ρ : G ↪! GL(n,C) a faithful irreducible representation of a
finite group G of complex type fixing the lattice Λ, and denote by ρR its decomplexification.
Solving the equation

C · ρR · C−1 = ρR ◦ ψ

for some ψ ∈ Stab(χR) yields a semi-projective representation

f : Stab(χR) −! PGL(n,C)⋊ Z2.

Since ρ is faithful, the representation f is also faithful. Given two actions of G on T with
analytic representation ρ, the candidates for the linear part C of potential homeomorphisms are
the elements in the group

N := {C ∈ GL(n,C)⋊ Z2 | [C] ∈ im(f), C · Λ = Λ}.

By construction, the group N sits inside the short exact sequence

1 −! A −! N −! S −! 1,

where A := {µ ∈ C∗ | µΛ = Λ} and S ⊂ Stab(χR) is the subgroup of automorphisms ψ such
that f(ψ) has a representative Cψ with Cψ · Λ = Λ.

Proposition 6.3.3. The group A is a finite cyclic group. In particular, N is finite.

Proof. We claim that |µ| = 1 for all µ ∈ A. Suppose there exists an element µ ∈ A with modulus
different from 1; note that we can always assume |µ| < 1, otherwise we replace µ by its inverse.
Let v ∈ Λ be a non-zero element of minimal norm. Then w := µv ∈ Λ has norm strictly less than
v, which contradicts the minimality of v. Thus, |µ| = 1 and the map defined by multiplication
with µ restricts to closed balls Br of any radius r. If r is chosen large enough, so that Br contains
a non-zero element of Λ, then the multiplication-homomorphism

A! Sym
(
Br ∩ Λ

)
, µ 7! (v 7! µv)
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is injective. Since Λ is discrete, the intersection Br ∩ Λ is finite and it follows that A is a finite
cyclic group.

Remark 6.3.4. The inclusion i : N ! GL(n,C) ⋊ Z2 is by construction a semi-linear lift of the
semi-projective representation f|S : S ! PGL(n,C)⋊ Z2.

Example 6.3.5. We discuss the example of the Heisenberg group

He(3) := ⟨g, h, k | g3 = h3 = k3 = [g, k] = [h, k] = 1, [g, h] = k⟩

acting on the torus T = C3/Λ, where the lattice is one of the following

Λ1 := Z[ζ3]3 + ⟨(t, t, t)⟩ or Λ2 := Λ1 + ⟨(t, −t, 0)⟩,

where t := 1
3(1 + 2ζ3) (cf. Section 4.3.2).

The group He(3) has two irreducible complex three-dimensional representations: The first one
is given by

ρ(g) :=

0 0 1

1 0 0

0 1 0

 , ρ(h) :=

1

ζ23
ζ3

 , ρ(k) =

ζ3 ζ3

ζ3

 ,

and the second one is its complex conjugate ρ. Note that they both have Schur index one. Fur-
thermore, the decomplexification ρR of ρ is the unique irreducible 6-dimensional representation
of He(3). Hence, Stab(χR) is the full automorphism group Aut(He(3)) ≃ AGL(2, 3).

In this example, A = ⟨−ζ3⟩ ≃ Z6 and, for both lattices Λ1 and Λ2, the group N contains the
C-linear maps

C1 :=

ζ3 ζ23
1

 , C2 := −u ·

 1 ζ23 ζ23
ζ23 1 ζ23
ζ23 ζ23 1

 , C3 := u ·

1 1 1

1 ζ23 ζ3

1 ζ3 ζ23


and the C-antilinear map C4(z1, z2, z3) = (z̄1, z̄2, z̄3). A MAGMA computation shows that the
elements C1, . . . , C4 generate a subgroup of N of order 2592 = |A| · |Stab(χR)|. Hence, this
subgroup is actually equal to N and every class in the image of

f : Stab(χR)! PGL(n,C)⋊ Z2

is represented by an element in N . However, even if the semi-projective representation f lifts
to N , this group is not a φ-twisted representation group for the action φ : Stab(χR)! Aut(C)
induced by f . Indeed, a MAGMA computation (cf. Appendix A.3) yieldsH1(Stab(χR),C∗) ≃ Z3

and H1(N ,C∗) ≃ Z6, which violates the third condition of Proposition 6.2.3.



Appendix A.

MAGMA-Codes

The MAGMA-codes used for the classifications are provided below. They can also be found on
the enclosed USB stick.

A.1. Classification of the groups

We start with the functions for the proofs in Chapter 3. First, we introduce some “general”
functions that will be needed in the main code.

1 /* The function "DimChar" collects all irreducible characters of a finite group "G" of degree "i".
2 As input, it additionally takes the character table "CT" of "G". */
3

4 function DimChar(G,CT,i)
5 Set:=[];
6 for x in CT do
7 if Degree(x) eq i then Set:=Append(~Set,x); end if;
8 end for;
9 return Set;

10 end function;
11

12 /* The function "CharPol" determines the characterisitc polynomial of rho(g), where rho is a 3-dimensional
13 representation with character "x". */
14

15 function CharPol(x,g)
16 L:=[x(g^i): i in[1..3]];
17 return Polynomial(PowerSumToCoefficients(L));
18 end function;
19

20 /* The function "ElsOfOrder" determines all elements of order "m" of a group "G". */
21

22 function ElsOfOrder(G,m)
23 list:=[];
24 for g in G do
25 if Order(g) eq m then Append(~list,g); end if;
26 end for;
27 return list;
28 end function;
29

30 /* The function "CandidatesChar" determines all characters of degree 3 of a group "G" with character
31 table "CT". */
32

33 function CandidatesChar(G,CT)
34 listChar:=[];
35 if IsAbelian (G) then

104
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36 for n1 in [1..#CT] do for n2 in [n1..#CT] do for n3 in [n2..#CT] do
37 Append(~listChar,CT[n1]+CT[n2]+CT[n3]);
38 end for; end for; end for;
39 else
40 listChar:=listChar cat DimChar(G,CT,3);
41 for x1 in DimChar(G,CT,1) do for x2 in DimChar(G,CT,2) do
42 Append(~listChar,x1+x2);
43 end for; end for;
44 end if;
45 return listChar;
46 end function;
47

48 /* The function "Eigen1" checks, for a given character "x" of a group "G", whether all elements of order "i"
49 have eigenvalue 1. */
50

51 function Eigen1(x,G,i)
52 for g in ElsOfOrder(G,i) do
53 pol:=CharPol(x,g);
54 if Evaluate(pol,1) ne 0 then return false; end if;
55 end for;
56 return true;
57 end function;
58

59 /* The function "TestOrder4" checks, for a character "x" of "G", whether for all elements of order 4, either
60 1 is an eigenvalue or the set of eigenvalues is {i,-i}. */
61

62 function TestOrder4(x,G)
63 F<z>:=CyclotomicField(8);
64 i:=z^2;
65 for g in ElsOfOrder(G,4) do
66 pol:=CharPol(x,g);
67 if Evaluate(pol,1) ne 0 then
68 if Evaluate(pol,-1) eq 0 then return false; end if;
69 if {Evaluate(pol,i),Evaluate(pol,-i)} ne {0} then return false; end if;
70 end if;
71 end for;
72 return true;
73 end function;

The next block of functions is for checking whether a finite group fulfills the standard conditions
(cf. Notation 3.0.12). For the convenience of the reader, we recall them: A finite group G enjoys
the standard conditions if there exists a three-dimensional representation ρ : G! GL(3,C) with
character χ, such that

(1) ⟨ρ, ρ⟩ = 0,

(2) ρ is faithful,

(3) for all g ∈ G, the characteristic polynomial of ρ(g)⊕ ρ(g) has integer coefficients,

(4) for all g ∈ G, it holds that ord(g) ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14},

(5) if ord(g) ∈ {5, 8, 10, 12}, then 1 is an eigenvalue of ρ(g),

(6) if ord(g) ∈ {7, 9, 14}, then 1 is not an eigenvalue of ρ(g).

1 function CheckOrders(G)
2 L:={1,2,3,4,5,6,7,8,9,10,12,14};
3 for g in G do
4 if not Order(g) in L then return false; end if;
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5 end for;
6 return true;
7 end function;
8

9 /* The function "CondCharpol" checks the conditions (3), (5), (6) for a 3-dimensional character "x" of
10 a group "G". */
11

12 function CondCharpol(x,G)
13 F<ze>:=CyclotomicField(#G);
14 P<y>:=PolynomialRing(F);
15 for d in {5,8,10,12} do
16 if not Eigen1(x,G,d) then return false; end if;
17 end for;
18 for d in {7,9,14} do
19 for g in ElsOfOrder(G,d) do
20 if Evaluate(CharPol(x,g),1) eq 0 then return false; end if;
21 end for;
22 end for;
23 for g in G do
24 f:=CharPol(x,g)*CharPol(ComplexConjugate(x),g);
25 for a in Coefficients(f) do
26 if a notin IntegerRing() then return false; end if;
27 end for;
28 end for;
29 return true;
30 end function;
31

32 function StandardProperties(G)
33 if not CheckOrders(G) then return false; end if;
34 CT:=CharacterTable(G);
35 for x in CandidatesChar(G,CT) do
36 if #Kernel(x) eq 1 and InnerProduct(x,ComplexConjugate(x)) eq 0 and CondCharpol(x,G) then
37 return true;
38 end if;
39 end for;
40 return false;
41 end function;

The function “LinearGroups” finishes the proof of Theorem 3.0.5, where the possible stabilizer
groups are characterized.

1 function LinearGroups()
2 ListCandidatesC0:=[]; ListCandidatesC1:=[];
3 testC1:=true;
4 for b in [1..2] do
5 n:=2^2*3^b;
6 for G in SmallGroups(n) do
7 CT:=CharacterTable(G);
8 if #DimChar(G,CT,3) ge 1 then Append(~ListCandidatesC0, IdentifyGroup(G)); end if;
9 end for;

10 end for;
11 H1:=Group("C7:C3"); H2:=Group("C7:C9");
12 for b in [1..2] do for a in [0..2] do
13 for G in SmallGroups(2^a*3^b*7) do
14 if #ElsOfOrder(G,2) le 1 then
15 CT:=CharacterTable(G);
16 if #DimChar(G,CT,3) ge 1 then
17 Append(~ListCandidatesC1, IdentifyGroup(G));
18 testG:=false;
19 for H in AllSubgroups(G) do



APPENDIX A. MAGMA-CODES 107

20 if IsIsomorphic(H,H1) or IsIsomorphic(H,H2) then testG:=true; end if;
21 end for;
22 if not testG then testC1:=false; end if;
23 end if;
24 end if;
25 end for;
26 end for; end for;
27 return ListCandidatesC0, ListCandidatesC1, testC1;
28 end function;

The following functions rule out some cases in the proof of Proposition 3.0.14, where we discussed
the groups admitting an analytic representation containing − id in its image.

1 function Cases3and8and11()
2 list:=[];
3 for a in [3..5] do
4 for G in SmallGroups(2^a) do
5 if not CheckOrders(G) then return false; end if;
6 CT:=CharacterTable(G);
7 for x in CandidatesChar(G,CT) do
8 if #Kernel(x) eq 1 and InnerProduct(x,ComplexConjugate(x)) eq 0 and CondCharpol(x,G) then
9 if a eq 4 then

10 // if ord(g)=4 then rho(g) has to have eigenvalue 1, this is checked by "Eigen1"
11 if Eigen1(x,G,4) then Append(~list, IdentifyGroup(G)); break x; end if;
12 else
13 if TestOrder4(x,G) then Append(~list, IdentifyGroup(G)); break x; end if;
14 end if;
15 end if;
16 end for;
17 end for;
18 end for;
19 return list;
20 end function;
21

22 /* The function "TestOrder6" checks the conditions about the eigenvalues of elements of order 6 as explained
23 in the proof of Proposition 3.0.14, cases 2 and 7. Note that for the elements of order 6 without eigenvalue
24 1, we only check whether all eigenvalues are of order 6, which already leads to a contradiction.*/
25

26 function TestOrder6(x,G)
27 F<ze>:=CyclotomicField(24);
28 z6:=ze^4;
29 m6:=0;
30 for g in ElsOfOrder(G,6) do
31 pol:=CharPol(x,g);
32 if Evaluate(pol,1) ne 0 then
33 if Evaluate(pol,z6^2) eq 0 or Evaluate(pol,z6^3) eq 0 or Evaluate(pol,z6^4) eq 0 then
34 return false;
35 end if;
36 m6:=m6+1;
37 end if;
38 end for;
39 if m6 ne 2*#G/6 then return false; end if;
40 return true;
41 end function;
42

43 function Cases2and7()
44 list:=[];
45 for n in {24,96} do
46 for G in SmallGroups(n) do
47 CT:=CharacterTable(G);
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48 if not (CheckOrders(G) and #ElsOfOrder(G,6) ge 2*n/6) then return false; end if;
49 for x in CandidatesChar(G,CT) do
50 if #Kernel(x) eq 1 and InnerProduct(x,ComplexConjugate(x)) eq 0 and CondCharpol(x,G)
51 and TestOrder6(x,G) then
52 if n eq 24 and Eigen1(x,G,4) then
53 Append(~list,IdentifyGroup(G));
54 else
55 Append(~list,IdentifyGroup(G));
56 end if;
57 end if;
58 end for;
59 end for;
60 end for;
61 return list;
62 end function;

The functions “Case14” and “Case12” are used to finish the proof of Proposition 3.0.15, where
we discussed the case that ζ3 · id is contained in the image of the analytic representation.

1 function Case14()
2 list:=[]; checklist:=[];
3 for G in SmallGroups(3^5) do
4 if #ElsOfOrder(G,9) eq 54 and CheckOrders(G) then
5 Append(~list, IdentifyGroup(G)); Append(~checklist, StandardProperties(G));
6 end if;
7 end for;
8 return list, checklist;
9 end function;

10

11 function Case12()
12 list:=[]; checklist:=[];
13 for G in SmallGroups(3^4) do
14 if #ElsOfOrder(G,9) eq 54 and CheckOrders(G) then
15 Append(~list, IdentifyGroup(G)); Append(~checklist, StandardProperties(G));
16 end if;
17 end for;
18 return list, checklist;
19 end function;

The following code determines the possible 2-subgroups of a group G in the situation where the
quotient X = T/G has only singularities of type 1

3(1, 1, 2). In particular, all non-trivial elements
in such a 2-subgroup act freely. The output is part of (the proof) of Lemma 3.0.20.

1 function CondCharpolFree(x,G)
2 for g in G do
3 pol:=CharPol(x,g);
4 if Evaluate(pol,1) ne 0 then return false; end if;
5 f:=CharPol(x,g)*CharPol(ComplexConjugate(x),g);
6 for a in Coefficients(f) do
7 if a notin IntegerRing() then return false; end if;
8 end for;
9 end for;

10 return true;
11 end function;
12

13 function CheckGroupFree(G)
14 if not CheckOrders(G) then return false; end if;
15 CT:=CharacterTable(G);
16 for x in CandidatesChar(G,CT) do
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17 if #Kernel(x) eq 1 and CondCharpolFree(x,G) then return true; end if; end for;
18 return false;
19 end function;
20

21 function AllTwoSylow(k,SetGroups)
22 n:=2^k;
23 for G in SmallGroups(n: Warning := false) do
24 N:=Subgroups(G);
25 subs:={IdentifyGroup(N[i]‘subgroup) : i in [1..#N]| N[i]‘order lt n};
26 if subs subset SetGroups then
27 if CheckGroupFree(G) then SetGroups:=Include(SetGroups,IdentifyGroup(G)); end if;
28 end if;
29 end for;
30 return SetGroups;
31 end function;
32

33 function ListTwoSylows()
34 SetGroups:={<1,1>};
35 k:=1;
36 test:=true;
37 while test do
38 if k ge 10 then print "Warning: Group order becomes to big"; return false; end if;
39 k;
40 SetGroupsRef:=SetGroups;
41 SetGroups:=AllTwoSylow(k,SetGroups);
42 if SetGroups eq SetGroupsRef then test:=false; end if;
43 k:=k+1;
44 end while;
45 return SetGroups;
46 end function;

Finally, the remaining functions finish the proof of Proposition 3.0.16, which handles the case
where no central element is contained in the image of the analytic representation.

1 /* The function "TestOrder3" checks the conditions for the elements of order 3 for a character "x" of a
2 group "G", as explained in the proof of Proposition 3.0.16. */
3

4 function TestOrder3(x,G)
5 F<ze>:=CyclotomicField(24);
6 z3:=ze^8;
7 m3:=0;
8 for g in ElsOfOrder(G,3) do
9 pol:=CharPol(x,g);

10 if Evaluate(pol,1) ne 0 then
11 if {Evaluate(pol,ze), Evaluate(pol,ze^2)} ne {0} then return false; end if;
12 m3:=m3+1;
13 end if;
14 end for;
15 if m3 ne 2*#G/9 then return false; end if;
16 return true;
17 end function;
18

19 /* Since in the situation of Proposition 3.0.16, no elements of order 9 are allowed, we write a new
20 function to check the orders of the elemnts of group "G". */
21

22 function CheckOrdersCase15(G)
23 L:={1,2,3,4,5,6,8,10,12};
24 for g in G do
25 if not Order(g) in L then return false; end if;
26 end for;
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27 return true;
28 end function;
29

30 /* The function "WithOrd5" shows that if a group fitting in the setup of Proposition 3.0.16 has an element
31 of order 5, then it is the group with MAGMA ID <360, 118>. */
32

33 function WithOrd5()
34 list:=[];
35 for a in [0..5] do
36 for G in SmallGroups(2^a*3^2*5: Warning:=false) do
37 if CheckOrdersCase15(G) and #ElsOfOrder(G,3) ge 2^a*2*5 then
38 Append(~list,IdentifyGroup(G));
39 end if;
40 end for;
41 end for;
42 return list;
43 end function;
44

45 /* The function "NoOrd5" excludes all groups in Proposition 3.0.16 of order 2^a*3^2 with a=1,...,5. */
46

47 function NoOrd5()
48 list:=[];
49 for a in [1..5] do
50 for G in SmallGroups(2^a*3^2: Warning:=false) do
51 if not (CheckOrders(G) and #ElsOfOrder(G,3) ge 2*#G/9) then return false; end if;
52 CT:=CharacterTable(G);
53 for x in CandidatesChar(G,CT) do
54 if #Kernel(x) eq 1 and InnerProduct(x,ComplexConjugate(x)) eq 0 and TestOrder3(x,G)
55 and CondCharpol(x,G) then
56 Append(~list, IdentifyGroup(G));
57 break x;
58 end if;
59 end for;
60 end for;
61 end for;
62 return list;
63 end function;

A.2. Classification of the quotients

In this section, we collect all functions that we need for the classification of the quotients (cf.
Section 4.3. The code mainly consists of two parts:

• Part I: general functions that we need for several groups

• Part II: specific classification functions for each group:

(a) G = Z2
3, ρ = ρ1 (proof of Proposition 4.3.22)

(b) G = Z2
3, ρ = ρ2 (proof of Proposition 4.3.25)

(c) G = Z2
3, ρ = ρ3 (proof of Proposition 4.3.28)

(d) G = Z3
3 (proof of Proposition 4.3.32)

(e) G = He(3) (proof of Proposition 4.3.37)

(f) G = Z9 ⋊ Z3 (proof of Proposition 4.3.39)
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1 /************************ PART I: general functions ****************************/
2

3 // We work with the 3rd cyclotomic field, ze is a 3rd primitive root of unity
4 F<ze>:=CyclotomicField(3);
5

6 // E3 denotes the group of 3-torsion points of the Fermat elliptic curve E,
7 // t is a generator of the fixed locus of ze in E.
8 E3:={1/3*(a+b*ze): a, b in {0,1,2}};
9 t:=1/3+2/3*ze;

10

11 I3:=DiagonalMatrix([1,1,1]);
12

13 /* The function "IntegralTest" checks if the entries of a 3-vector v (given as 3x1-matrix) are
14 Eisenstein integers, i.e., integral over Z. */
15

16 function IntegralTest(v)
17 return IsIntegral(v[1][1]) and IsIntegral(v[2][1]) and IsIntegral(v[3][1]);
18 end function;
19

20 /* The function "InLatt" takes as input a vector "v" and a kernel "K", and decides whether "v"
21 belongs to the lattice "Lambda_K=Z[ze]^3+K". */
22

23 function InLatt(v,K)
24 for l in K do
25 if IntegralTest(v-l) then return true; end if;
26 end for;
27 return false;
28 end function;
29

30 /* The function "TestKernelEndo" decides whether the vector "d" belongs to the kernel of the ndomorphism "A"
31 of the torus "T=E^3/K". */
32

33 function TestKernelEndo(A,d,K)
34 if InLatt(A*d,K) then return true; end if;
35 return false;
36 end function;
37

38 /* The function "Fix" determines the fixed points of an automorphism "A" of T=E^3/K;
39 "candidates": list of all candidates for the fixed points. */
40

41 function FixPoints(A,K,candidates)
42 list:=[];
43 for d in candidates do
44 if TestKernelEndo((A-I3),d,K) then Append(~list,d); end if;
45 end for;
46 Fix:=[];
47 while not IsEmpty(list) do
48 Reflist:=list;
49 d:=Rep(list); Append(~Fix,d);
50 for e in Reflist do
51 if InLatt(d-e,K) then Exclude(~list,e); end if;
52 end for;
53 end while;
54 return Fix;
55 end function;
56

57 /* With the function "TestCohom", we test if two given cocycles give the same cohomology class in
58 H^1(Z_3^2,E^3/K).
59 Input: "v1", "v2": two lists of translation vectors; "listGen": corresponding elements of the groups,
60 "K": kernel; "coboundaries": list of candidates for the coboundaries */
61



112 APPENDIX A. MAGMA-CODES

62 function TestCohom(v1,v2,listGen,K,coboundaries)
63 for d in coboundaries do
64 test:=true;
65 for i in [1..#listGen] do
66 if not InLatt(v1[i]-v2[i]-(listGen[i]*d-d),K) then test:=false; end if;
67 end for;
68 if test then return true; end if;
69 end for;
70 return false;
71 end function;
72

73 /* The function "Normal" determines the normalizers "N_C(Lambda_K)" in the cases G=Z3^2 and G=Z3^3.
74 Here, "N_C(Lambda_K)" is just the subgroup of "N"=normalizer of G in Aut(E^3) fixing K. */
75

76 function Normal(K,N)
77 List:={};
78 for C in N do
79 test:= true;
80 for l in K do
81 if not InLatt(C*l,K) or not InLatt(C^-1*l,K) then test:=false; break l; end if;
82 end for;
83 if test then List:=Include(List,C); end if;
84 end for;
85 return List;
86 end function;
87

88 /* Given an affinity "f(z)=Cz + d" as a 4x4 matrix "B",
89 B=[C d]
90 [0 1],
91 the function "PartsAff" returns the 3x3 matrix "C" and the translation vector "d". */
92

93 function TransVec(B)
94 return Submatrix(B,[1,2,3],[4]);
95 end function;
96

97 /* Given an affinity "f(z)=Cz+d", the function "MatAff" returns the affinity as a 4x4-matrix. */
98

99 function MatAff(C,d)
100 Z:=ZeroMatrix(F,4,4);
101 return InsertBlock(InsertBlock(InsertBlock(Z,C,1,1),d,1,4),Matrix(F,1,1,[1]),4,4);
102 end function;
103

104 /* Given a matrix C in "N_C(Lambda_K)" and a list of generators "listGen=[g_1,...,g_k]" of the group "G",
105 the function "IdAuto" determines the automorphism "phi" of "G" fullfilling equation (a) of Remark 4.2.10.
106 More precisely, it returns tuples of exponents such that the i-th tuple [n_1,...,n_k] of the output fulfills
107 phi(g_i)=g_1^(n_1)*...*g_k^(n_k). */
108

109 function IdAuto(C,listGen)
110 seq:=[{0..Order(u)-1}: u in listGen]; loop:=CartesianProduct(seq);
111 phi:=[];
112 for i in [1..#listGen] do
113 for exp in loop do
114 if C*listGen[i]*C^-1 eq &*[listGen[i]^exp[i]: i in [1..#listGen]] then
115 Append(~phi,exp);
116 end if;
117 end for;
118 end for;
119 return phi;
120 end function;
121

122 /* The function "TestIso" checks if two given actions "v1" and "v2" (given as lists of translations parts)
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123 lead to biholomorphic quotients. As input it takes the actions "v1" and "v2", the kernel "K", the norma-
124 lizer "Nor=N_C(Lambda_K)", and the list of possible translation vectors "coboundaries" of the affinities. */
125

126 function TestIso(v1,v2,K,Nor,coboundaries,listGen)
127 W1:=[MatAff(listGen[i],v1[i]): i in [1..#listGen]]; W2:=[MatAff(listGen[i],v2[i]): i in [1..#listGen]];
128 for C in Nor do
129 phi:=IdAuto(C,listGen); phiW2:=W2;
130 for i in [1..#listGen] do phiW2[i]:=&*[W2[i]^phi[i][j]: j in [1..#listGen]]; end for;
131 for d in coboundaries do
132 aff:=MatAff(C,d);
133 test:=true;
134 for i in [1..#listGen] do
135 if not InLatt(TransVec(aff*W1[i]-phiW2[i]*aff),K) then test:=false; end if;
136 end for;
137 if test then return true; end if;
138 end for;
139 end for;
140 return false;
141 end function;

Next, we collect the specific functions for the classification corresponding to each group individ-
ually (PART II). For this, we recall the analytic representation and our choice for a cocycle in
standard form for every case before quoting the code.

(a) G = Z2
3, ρ = ρ1:

The analytic representation ρ = ρ1 of G = Z2
3 = ⟨h, k⟩ is given by

ρ(h) = diag(1, ζ23 , ζ3), ρ(k) = diag(ζ3, ζ3, ζ3),

and a cocycle in standard form is given by

τ(h) = a = (a1, a2, a3), τ(k) = 0.

1 /* The function "GoodCondZ3xZ3_1" checks whether a cocycle in standard form is good, here "a=tau(h)". */
2

3 function GoodCondZ3xZ3_1(a,K)
4 for t1 in [0,t,-t] do for t2 in [0,t,-t] do
5 w1:=Matrix(F,3,1,[a[1][1],t1,t2]);
6 w2:=Matrix(F,3,1,[t1,a[2][1],t2]);
7 w3:=Matrix(F,3,1,[t1,t2,a[3][1]]);
8 if InLatt(w1,K) or InLatt(w2,K) or InLatt(w3,K) then return false; end if;
9 end for; end for;

10 return true;
11 end function;
12

13 /* The function "ActionsZ3xZ3_1" determines all good cocycles in standard form on E^3/K for each kernel K.
14 The second output is a list consisting of one representative for each good cohomology class.
15 The actions are given as tuples of translation parts of the generators h,k.
16 input: kernel "K", linear parts "listGen" of the actions of the generators, list "Fix" of fixed points of
17 "rho(k)" (coboundaries and the candidates for "a=tau(h)"). */
18

19 function ActionsZ3xZ3_1(K,Fix,listGen)
20 ListTransVec:={}; ListOfActions:={};
21 for a in Fix do
22 if GoodCondZ3xZ3_1(a,K) then
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23 ListTransVec:=Include(ListTransVec, [a,Matrix(F,3,1,[0,0,0])]);
24 end if;
25 end for;
26 ListOfActions:=ListTransVec; GoodClasses:={}; RefList:=ListTransVec;
27 while not IsEmpty(ListTransVec) do
28 RefList:=ListTransVec;
29 v1:=Rep(ListTransVec); Include(~GoodClasses,v1);
30 for v2 in ListTransVec do
31 if TestCohom(v1,v2,listGen,K,Fix) then Exclude(~ListTransVec,v2); end if;
32 end for;
33 end while;
34 return ListOfActions, GoodClasses;
35 end function;
36

37 /* The function "ClassZ3xZ3_1" is the main classification function for G=Z3^2 and rho=rho_1.
38 The output file "Z3xZ3_rho1.txt" contains for each kernel
39 1) the number of actions,
40 2) the number of good cohomology classes,
41 3) the size of the normalizer N_C(Lambda_K),
42 4) the number of biholomorphism classes and
43 5) for each biholomorphism class a corresponding action on E^3/K.
44 */
45

46 function ClassZ3xZ3_1(K,listGen,N,j)
47 File:="Z3xZ3_rho1.txt";
48 fprintf File, "Kernel %o)\n \n", j;
49 IsoClasses:=[];
50 Fix:=FixPoints(DiagonalMatrix([ze,ze,ze]),K,{Matrix(F,3,1,[d1,d2,d3]): d1,d2,d3 in E3});
51 LA,GoodClasses:=ActionsZ3xZ3_1(K,Fix,listGen);
52 fprintf File, "Number of actions with isolated fixed points: %o \n \n", #LA;
53 fprintf File, "Number of good cohomology classes: %o\n\n", #GoodClasses;
54 RefListAct:=GoodClasses;
55 Nor:=Normal(K,N);
56 fprintf File, "Size of the normalizer: %o \n \n", #Nor;
57 while not IsEmpty(GoodClasses) do
58 RefListAct:=GoodClasses;
59 v1:=Rep(GoodClasses); Append(~IsoClasses,v1);
60 for v2 in RefListAct do
61 if TestIso(v1,v2,K,Nor,Fix,listGen) then Exclude(~GoodClasses,v2); end if;
62 end for;
63 end while;
64 fprintf File, "Number of biholomorphism classes: %o \n \n", #IsoClasses;
65 fprintf File, "Actions [tau(h),tau(k)]: \n %o \n \n \n \n", IsoClasses;
66 return "Classification for kernel", j, "is completed!";
67 end function;
68

69 /* With the procedure "MainZ3xZ3_1", we run the classification for the group "G=Z3^2", where rho=rho_1. */
70

71 procedure MainZ3xZ3_1()
72 h:=DiagonalMatrix([1,ze^2,ze]); k:=DiagonalMatrix([ze,ze,ze]);
73 listGen:=[h,k];
74 K1:={Matrix(F,3,1,[0,0,0])};
75 K2:={a*Matrix(F,3,1,[t,t,0]): a in {0,1,-1}};
76 K3:={a*Matrix(F,3,1,[t,t,t]): a in {0,1,-1}};
77 K4:={a*Matrix(F,3,1,[t,t,t])+b*Matrix(F,3,1,[t,-t,0]): a,b in {0,1,-1}};
78 Kernels:=[K1,K2,K3,K4];
79 N:=MatrixGroup<3,F| DiagonalMatrix([-ze,1,1]), Matrix(F,3,3,[0,1,0,0,0,1,1,0,0]),
80 Matrix(F,3,3,[0,1,0,1,0,0,0,0,1])>;
81 for j in [1..#Kernels] do ClassZ3xZ3_1(Kernels[j],listGen,N,j); end for;
82 end procedure;
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(b) G = Z2
3, ρ = ρ2:

The analytic representation ρ = ρ2 of G = Z2
3 = ⟨h, k⟩ is given by

ρ(h) = diag(1, ζ23 , ζ
2
3 ), ρ(k) = diag(ζ3, ζ3, ζ

2
3 ),

and a cocycle in standard form is given by

τ(h) = a = (a1, a2, a3), τ(k) = 0.

1 /* The function "GoodCondZ3xZ3_2" checks whether a cocycle in standard form is good. a=tau(h). */
2

3 function GoodCondZ3xZ3_2(a,K)
4 for t1 in [0,t,-t] do for t2 in [0,t,-t] do
5 w1:=Matrix(F,3,1,[a[1][1],t1,t2]);
6 w2:=Matrix(F,3,1,[t1,a[2][1],t2]);
7 w3:=Matrix(F,3,1,[t1,t2,a[3][1]]);
8 if InLatt(w1,K) or InLatt(w2,K) or InLatt(w3,K) then return false; end if;
9 end for; end for;

10 return true;
11 end function;
12

13 /* The function "ActionsZ3xZ3_2" determines all good cocycles in standard form on E^3/K for each kernel K
14 and a list consisting of one representative for each good cohomology class. The actions are given as
15 tuples of translation parts of the generators h,k.
16 Input: kernel "K", linear parts "listGen" of the actions of the generators, list "Fix" of fixed points of
17 "rho(k)" (coboundaries and candidates for "a=tau(h)"). */
18

19 function ActionsZ3xZ3_2(K,Fix,listGen)
20 ListTransVec:={}; ListOfActions:={};
21 for a in Fix do
22 if GoodCondZ3xZ3_2(a,K) then Include(~ListTransVec, [a,Matrix(F,3,1,[0,0,0])]); end if;
23 end for;
24 ListOfActions:=ListTransVec; GoodClasses:={}; RefList:=ListTransVec;
25 while not IsEmpty(ListTransVec) do
26 RefList:=ListTransVec;
27 v1:=Rep(ListTransVec); Include(~GoodClasses,v1);
28 for v2 in ListTransVec do
29 if TestCohom(v1,v2,listGen,K,Fix) then Exclude(~ListTransVec,v2); end if;
30 end for;
31 end while;
32 return ListOfActions, GoodClasses;
33 end function;
34

35 /* The function "ClassZ3xZ3_2" is the main classification function for G=Z3^2 and rho=rho_2.
36 The output file "Z3xZ3_rho2.txt" contains for each kernel
37 1) the number of actions,
38 2) the number of good cohomology classes,
39 3) the size of the normalizer N_C(Lambda_K),
40 4) the number of biholomorphism classes and
41 5) for each biholomorphism class a corresponding action on E^3/K.
42 */
43

44 function ClassZ3xZ3_2(K,listGen,N,j)
45 File:="Z3xZ3_rho2.txt";
46 fprintf File, "Kernel %o)\n \n", j;
47 IsoClasses:=[];
48 Fix:=FixPoints(DiagonalMatrix([ze,ze,ze^2]),K,{Matrix(F,3,1,[d1,d2,d3]): d1,d2,d3 in E3});
49 LA,GoodClasses:=ActionsZ3xZ3_2(K,Fix,listGen);
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50 fprintf File, "Number of actions with isolated fixed points: %o \n \n", #LA;
51 fprintf File, "Number of good cohomology classes: %o\n\n", #GoodClasses;
52 RefListAct:=GoodClasses;
53 Nor:=Normal(K,N);
54 fprintf File, "Size of the normalizer: %o \n \n", #Nor;
55 while not IsEmpty(GoodClasses) do
56 RefListAct:=GoodClasses;
57 v1:=Rep(GoodClasses); Append(~IsoClasses,v1);
58 for v2 in RefListAct do
59 if TestIso(v1,v2,K,Nor,Fix,listGen) then Exclude(~GoodClasses,v2); end if;
60 end for;
61 end while;
62 fprintf File, "Number of biholomorphism classes: %o \n \n", #IsoClasses;
63 fprintf File, "Actions [tau(h),tau(k)]: \n %o \n \n \n \n", IsoClasses;
64 return "Classification for kernel", j, "is completed!";
65 end function;
66

67 /* With the procedure "MainZ3xZ3_2", we run the classification for the group "G=Z3^2", where "rho=rho_2". */
68

69 procedure MainZ3xZ3_2()
70 h:=DiagonalMatrix([1,ze^2,ze^2]); k:=DiagonalMatrix([ze,ze,ze^2]);
71 listGen:=[h,k];
72 K1:={Matrix(F,3,1,[0,0,0])};
73 K2:={a*Matrix(F,3,1,[t,t,0]): a in {0,1,-1}};
74 K3:={a*Matrix(F,3,1,[t,0,t]): a in {0,1,-1}};
75 K4:={a*Matrix(F,3,1,[t,t,t]): a in {0,1,-1}};
76 K5:={a*Matrix(F,3,1,[t,t,t])+b*Matrix(F,3,1,[t,-t,0]): a,b in {0,1,-1}};
77 Kernels:=[K1,K2,K3,K4,K5];
78 N:=MatrixGroup<3,F|DiagonalMatrix([-ze,1,1]), DiagonalMatrix([1,1,-ze]), Matrix([0,1,0,1,0,0,0,0,1])>;
79 for j in [1..#Kernels] do ClassZ3xZ3_2(Kernels[j],listGen,N,j); end for;
80 end procedure;

(c) G = Z2
3, ρ = ρ3:

The analytic representation ρ = ρ3 of G = Z2
3 = ⟨h, k⟩ is given by

ρ(h) = diag(ζ3, ζ3, 1), ρ(k) = diag(ζ3, ζ3, ζ3),

and a cocycle in standard form is given by

τ(h) = a = (a1, a2, a3), τ(k) = 0.

We only have to consider the torus T = E3/K, where K = ⟨(t, t, t)⟩, because the classification
for the other torus T = E3 is done without MAGMA.

1 /* The function "GoodCondZ3xZ3_3" checks whether a cocycle in standard form is good. a=tau(h). */
2

3 function GoodCondZ3xZ3_3(a,K)
4 for t1 in [0,t,-t] do
5 if InLatt(Matrix(F,3,1,[a[1][1],a[2][1],t1]),K) then return false; end if;
6 for t2 in [0,t,-t] do
7 if InLatt(Matrix(F,3,1,[t1,t2,a[3][1]]),K) then return false; end if;
8 end for;
9 end for;

10 return true;
11 end function;
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12

13 /* The function "ActionsZ3xZ3_3" determines all good cocycles in standard form on T=E^3/K and a list
14 consisting of one representative for each good cohomology class. The actions are given as tuples of
15 translation parts of the generators h,k.
16 Input: kernel "K", linear parts "listGen" of the actions of the generators, list "Fix" of fixed points of
17 "rho(k)" (coboundaries and candidates for "a=tau(h)").
18 */
19

20 function ActionsZ3xZ3_3(K,Fix,listGen)
21 ListTransVec:={}; ListOfActions:={};
22 for a in Fix do
23 if GoodCondZ3xZ3_3(a,K) then Include(~ListTransVec, [a,Matrix(F,3,1,[0,0,0])]); end if;
24 end for;
25 ListOfActions:=ListTransVec; GoodClasses:={}; RefList:=ListTransVec;
26 while not IsEmpty(ListTransVec) do
27 RefList:=ListTransVec;
28 v1:=Rep(ListTransVec); Include(~GoodClasses,v1);
29 for v2 in ListTransVec do
30 if TestCohom(v1,v2,listGen,K,Fix) then Exclude(~ListTransVec,v2); end if;
31 end for;
32 end while;
33 return ListOfActions, GoodClasses;
34 end function;
35

36 /*
37 The procedure "MainZ3xZ3_3" displays one representative of each good cohomology class in H^1(Z3^2, E^3/K).
38 Note that these representatives may differ from the ones given in the proof of Proposition 4.3.28, but they
39 are cohomologous; use the function "TestCohom" with "coboundaries=fixed points of rho(k)" to see this.*/
40

41 procedure MainZ3xZ3_3()
42 h:=DiagonalMatrix([ze,ze,1]); k:=DiagonalMatrix([ze,ze,ze^2]);
43 listGen:=[h,k];
44 K:={a*Matrix(F,3,1,[t,t,t]): a in {0,1,-1}};
45 Fix:=FixPoints(k,K,{Matrix(F,3,1,[d1,d2,d3]): d1,d2,d3 in E3});
46 LA, GC:=ActionsZ3xZ3_3(K,Fix,listGen);
47 GC;
48 end procedure;

(d) G = Z3
3:

The analytic representation of G = Z3
3 = ⟨h, g, k⟩ is given by

ρ(h) = diag(1, ζ23 , ζ3), ρ(g) = diag(ζ3, 1, 1), ρ(k) = diag(ζ3, ζ3, ζ3),

and a cocycle in standard form is given by

τ(h) = a = (a1, a2, a3), τ(g) = b = (b1, b2, b3), τ(k) = 0.

1 /* Given "a" and "b" in Fix_ze3(E^3/K), the function "WellDefinedZ3xZ3xZ3" checks whether these two vectors
2 define a well-defined action on T=E^3/K. */
3

4 function WellDefinedZ3xZ3xZ3(a,b,K)
5 if not IsIntegral(3*a[1][1]) then return false; end if;
6 if not InLatt(Matrix(F,3,1,[0,3*b[2][1],3*b[3][1]]),K) then return false; end if;
7 if not TestKernelEndo(DiagonalMatrix([ze-1,1-ze^2,1-ze]),Matrix(F,3,1,[a[1][1],b[2][1],b[3][1]]),K)
8 then return false;
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9 end if;
10 return true;
11 end function;
12

13 /* The function "GoodCondZ3xZ3xZ3" checks whether a cocycle in standard form is good. a=tau(h), b=tau(g).*/
14

15 function GoodCondZ3xZ3xZ3(a,b,K)
16 for t1 in [0,t,-t] do
17 w1:=Matrix(F,3,1,[t1,b[2][1],b[3][1]]);
18 w2:=Matrix(F,3,1,[ze*a[1][1]+b[1][1],t1,a[3][1]+b[3][1]]);
19 w3:=Matrix(F,3,1,[2*ze*a[1][1]+b[1][1],-ze*a[2][1]+b[2][1],t1]);
20 if InLatt(w1,K) or InLatt(w2,K) or InLatt(w3,K) then return false; end if;
21 for t2 in [0,t,-t] do
22 w4:=Matrix(F,3,1,[a[1][1],t1,t2]);
23 w5:=Matrix(F,3,1,[t1,a[2][1],t2]);
24 w6:=Matrix(F,3,1,[t1,t2,a[3][1]]);
25 w7:=Matrix(F,3,1,[b[1][1],t1,t2]);
26 w8:=Matrix(F,3,1,[t1,a[2][1]+b[2][1],t2]);
27 w9:=Matrix(F,3,1,[t1,t2,-ze^2*a[3][1]+b[3][1]]);
28 if InLatt(w4,K) or InLatt(w5,K) or InLatt(w6,K) or InLatt(w7,K) or
29 InLatt(w8,K) or InLatt(w9,K) then
30 return false;
31 end if;
32 end for;
33 end for;
34 return true;
35 end function;
36

37 /* The function "ActionsZ3xZ3xZ3" determines all good cocycles in standard form on E^3/K for each kernel K
38 and a list consisting of one representative for each good cohomology class. The actions are given as
39 tuples of translation parts of the generators h,g,k.
40 Input: kernel "K", linear parts "listGen" of the actions of the generators, list "Fix" of fixed points of
41 rho(k) giving the coboundaries. */
42

43 function ActionsZ3xZ3xZ3(K,Fix,listGen)
44 ListTransVec:={}; ListOfActions:={};
45 for a in Fix do for b in Fix do
46 if WellDefinedZ3xZ3xZ3(a,b,K) and GoodCondZ3xZ3xZ3(a,b,K) then
47 ListTransVec:=Include(ListTransVec, [a,b,Matrix(F,3,1,[0,0,0])]);
48 end if;
49 end for; end for;
50 ListOfActions:=ListTransVec; GoodClasses:={}; RefList:=ListTransVec;
51 while not IsEmpty(ListTransVec) do
52 RefList:=ListTransVec;
53 v1:=Rep(ListTransVec); Include(~GoodClasses,v1);
54 for v2 in ListTransVec do
55 if TestCohom(v1,v2,listGen,K,Fix) then Exclude(~ListTransVec,v2); end if;
56 end for;
57 end while;
58 return ListOfActions, GoodClasses;
59 end function;
60

61 /* The function "ClassZ3xZ3xZ3" is the main classification function for G=Z3^3.
62 The output file "Z3xZ3xZ3.txt" contains for each kernel
63 1) the number of actions,
64 2) the number of good cohomology classes,
65 3) the size of the normalizer N_C(Lambda_K),
66 4) the number of biholomorphism classes and
67 5) for each biholomorphism class a corresponding action on E^3/K.
68 */
69
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70 function ClassZ3xZ3xZ3(K,listGen,N,j)
71 File:="Z3xZ3xZ3.txt";
72 fprintf File, "Kernel %o)\n \n", j;
73 IsoClasses:=[];
74 Fix:=FixPoints(DiagonalMatrix([ze,ze,ze]),K,{Matrix(F,3,1,[d1,d2,d3]): d1,d2,d3 in E3});
75 LA,GoodClasses:=ActionsZ3xZ3xZ3(K,Fix,listGen);
76 fprintf File, "Number of actions with isolated fixed points: %o \n \n", #LA;
77 fprintf File, "Number of good cohomology classes: %o\n\n", #GoodClasses;
78 RefListAct:=GoodClasses;
79 Nor:=Normal(K,N);
80 fprintf File, "Size of the normalizer: %o \n \n", #Nor;
81 while not IsEmpty(GoodClasses) do
82 RefListAct:=GoodClasses;
83 v1:=Rep(GoodClasses); Append(~IsoClasses,v1);
84 for v2 in RefListAct do
85 if TestIso(v1,v2,K,Nor,Fix,listGen) then Exclude(~GoodClasses,v2); end if;
86 end for;
87 end while;
88 fprintf File, "Number of biholomorphism classes: %o \n \n", #IsoClasses;
89 fprintf File, "Actions [tau(h),tau(g),tau(k)]: \n %o \n \n \n \n", IsoClasses;
90 return "Classification for kernel", j, "is completed!";
91 end function;
92

93 /* With the procedure "MainZ3xZ3xZ3", we run the classification for the group "G=Z3^3". */
94

95 procedure MainZ3xZ3xZ3()
96 g:=DiagonalMatrix([ze,1,1]); h:=DiagonalMatrix([1,ze^2,ze]); k:=DiagonalMatrix([ze,ze,ze]);
97 listGen:=[h,g,k];
98 K1:={Matrix(F,3,1,[0,0,0])};
99 K2:={a*Matrix(F,3,1,[t,t,0]): a in {0,1,-1}};

100 K3:={a*Matrix(F,3,1,[t,t,t]): a in {0,1,-1}};
101 K4:={a*Matrix(F,3,1,[t,t,t])+b*Matrix(F,3,1,[t,-t,0]): a,b in {0,1,-1}};
102 Kernels:=[K1,K2,K3,K4];
103 N:=MatrixGroup<3,F| DiagonalMatrix([-ze,1,1]), Matrix([[0,1,0],[1,0,0],[0,0,1]]),
104 Matrix([[0,1,0],[0,0,1],[1,0,0]])>;
105 for j in [1..#Kernels] do ClassZ3xZ3xZ3(Kernels[j],listGen,N,j); end for;
106 end procedure;

(e) G = He(3):

The analytic representation of He(3) = ⟨g, h, k | g3 = h3 = k3 = [g, k] = [h, k] = 1, [g, h] = k⟩ is
given by

ρ(g) =

0 0 1

1 0 0

0 1 0

 , ρ(h) = diag(1, ζ23 , ζ3), ρ(k) = diag(ζ3, ζ3, ζ3),

and a cocycle in standardform is given by

τ(g) = b = (b1, b2, b3), τ(h) = a = (a1, a2, a3), τ(k) = 0.

1 /* Given "a" and "b" in Fix_ze3(E^3/K), the function "WellDefinedHe3" checks whether these two vectors
2 define a well-defined action on T=E^3/K. */
3

4 function WellDefinedHe3(a,b,K)
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5 v1:=Matrix(F,3,1,[b[1][1]+b[2][1]+b[3][1],b[1][1]+b[2][1]+b[3][1],b[1][1]+b[2][1]+b[3][1]]);
6 v2:=Matrix(F,3,1,[ze*a[1][1]-a[3][1]+(ze-1)*b[1][1],ze*a[2][1]-a[1][1],
7 ze*a[3][1]-a[2][1]+(ze^2-1)*b[3][1]]);
8 if InLatt(v1,K) and InLatt(v2,K) then return true; end if;
9 return false;

10 end function;
11

12 /* The function "GoodCondHe3" checks whether a cocycle in standard form is good. a=tau(h), b=tau(g). */
13

14 function GoodCondHe3(a,b,K)
15 v1:=b[1][1]+b[2][1]+b[3][1];
16 v2:=ze^2*(b[1][1]+b[2][1])+b[3][1]+ze^2*(a[1][1]+a[3][1])+a[2][1];
17 v3:=ze*(b[1][1]+b[2][1])+b[3][1]-ze*(a[1][1]+a[2][1])-a[3][1];
18 if IsIntegral(v1) or IsIntegral(v2) or IsIntegral(v3) then return false; end if;
19 for t1 in [0,t,-t] do for t2 in [0,t,-t] do
20 if InLatt(Matrix(F,3,1,[a[1][1],t1,t2]),K) then return false; end if;
21 end for; end for;
22 return true;
23 end function;
24

25 /* The function "ActionsHe3" determines all good cocycles in standard form on E^3/K for each kernel K
26 and a list consisting of one representative for each good cohomology class. The actions are given as
27 tuples of translation parts of the generators h,g,k.
28 Input: kernel "K", linear parts "listGen" of the actions of the generators, list "Fix" of fixed points of
29 rho(k) giving the coboundaries. */
30

31 function ActionsHe3(K,Fix,listGen)
32 ListTransVec:={}; ListOfActions:={};
33 for a in Fix do for b in Fix do
34 if WellDefinedHe3(a,b,K) and GoodCondHe3(a,b,K) then
35 ListTransVec:=Include(ListTransVec, [a,b,Matrix(F,3,1,[0,0,0])]);
36 end if;
37 end for; end for;
38 ListOfActions:=ListTransVec; GoodClasses:={}; RefList:=ListTransVec;
39 while not IsEmpty(ListTransVec) do
40 RefList:=ListTransVec;
41 v1:=Rep(ListTransVec); Include(~GoodClasses,v1);
42 for v2 in ListTransVec do
43 if TestCohom(v1,v2,listGen,K,Fix) then Exclude(~ListTransVec,v2); end if;
44 end for;
45 end while;
46 return ListOfActions, GoodClasses;
47 end function;
48

49 /* The function "ClassHe3" is the main classification function for G=He(3).
50 The output file "He3.txt" contains for each kernel
51 1) the number of actions,
52 2) the number of good cohomology classes,
53 3) the number of biholomorphism classes and
54 4) for each biholomorphism class a corresponding action on E^3/K.
55 */
56

57 function ClassHe3(K,listGen,N,j)
58 File:="He3.txt";
59 fprintf File, "Kernel %o)\n \n", j;
60 IsoClasses:=[];
61 Fix:=FixPoints(DiagonalMatrix([ze,ze,ze]),K,{Matrix(F,3,1,[d1,d2,d3]): d1,d2,d3 in E3});
62 LA,GoodClasses:=ActionsHe3(K,Fix,listGen);
63 fprintf File, "Number of actions with isolated fixed points: %o \n \n", #LA;
64 fprintf File, "Number of good cohomology classes: %o\n\n", #GoodClasses;
65 RefListAct:=GoodClasses;
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66 while not IsEmpty(GoodClasses) do
67 RefListAct:=GoodClasses;
68 v1:=Rep(GoodClasses); Append(~IsoClasses,v1);
69 for v2 in RefListAct do
70 if TestIso(v1,v2,K,N,Fix,listGen) then Exclude(~GoodClasses,v2); end if;
71 end for;
72 end while;
73 fprintf File, "Number of biholomorphism classes: %o \n \n", #IsoClasses;
74 fprintf File, "Actions [tau(h),tau(g),tau(k)]: \n %o \n \n \n \n", IsoClasses;
75 return "Classification for kernel", j, "is completed!";
76 end function;
77

78 /* With the procedure "MainHe3", we run the classification for the group "G=He3". */
79

80 procedure MainHe3()
81 g:=Matrix(F,3,3,[0,0,1,1,0,0,0,1,0]); h:=DiagonalMatrix([1,ze^2,ze]); k:=DiagonalMatrix([ze,ze,ze]);
82 listGen:=[h,g,k];
83 K1:={a*Matrix(F,3,1,[t,t,t]): a in {0,1,-1}};
84 K2:={a*Matrix(F,3,1,[t,t,t])+b*Matrix(F,3,1,[t,-t,0]): a,b in {0,1,-1}};
85 Kernels:=[K1,K2];
86 N:=MatrixGroup<3,F| DiagonalMatrix([ze,ze^2,1]),-t*Matrix([[1,ze^2,ze^2,ze^2,1,ze^2,ze^2,ze^2,1]),
87 t*Matrix([[1,1,1,1,ze^2,ze,1,ze,ze^2]>;
88 for j in [1..#Kernels] do ClassHe3(Kernels[j],listGen,N,j); end for;
89 end procedure;

(f) G = Z9 ⋊ Z3:

The analytic representation of G = Z9 ⋊ Z3 = ⟨g, h | h3 = g9 = 1, hgh−1 = g4⟩ is given by

ρ(h) = diag(1, ζ23 , ζ3), ρ(g) =

 0 1 0

0 0 1

ζ3 0 0

 ,

and a cocycle in standard form is given by

τ(h) = a = (a1, a2, a3), τ(g) = 0.

1 /* Given "a" in E3^3, the function "WellDefinedZ9Z3" checks whether this vector defines a well-defined
2 action on T=E^3/K. */
3

4 function WellDefinedZ9Z3(a,K)
5 if TestKernelEndo(Matrix(F,3,3,[0,1,0,0,0,1,ze,0,0])-I3,a,K) then return true; end if;
6 return false;
7 end function;
8

9 /* The function "GoodCondZ9Z3" checks whether a cocycle in standard form is good. a=tau(h). */
10

11 function GoodCondZ9Z3(a,K)
12 for t1 in [0,t,-t] do for t2 in [0,t,-t] do
13 w1:=Matrix(F,3,1,[a[1][1],t1,t2]);
14 w2:=Matrix(F,3,1,[t1,a[2][1],t2]);
15 w3:=Matrix(F,3,1,[t1,t2,a[3][1]]);
16 if InLatt(w1,K) or InLatt(w2,K) or InLatt(w3,K) then return false; end if;
17 end for; end for;
18 return true;
19 end function;
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20

21 /* The function "Actions" determines all actions with only isolated fixed points with translation part in
22 standard form on E^3/K, for each kernel K.
23 */
24

25 function Actions(K)
26 list:=[];
27 for a1 in E3 do for a2 in E3 do for a3 in E3 do
28 a:=Matrix(F,3,1,[a1,a2,a3]);
29 if WellDefinedZ9Z3(a,K) and GoodCondZ9Z3(a,K) then Append(~list,a); end if;
30 end for; end for; end for;
31 transpart:=[];
32 while not IsEmpty(list) do
33 a:=Rep(list); Append(~transpart,a);
34 for b in list do
35 if InLatt(a-b,K) then Exclude(~list,b); end if;
36 end for;
37 end while;
38 return transpart;
39 end function;
40

41 /*
42 With the procedure "MainZ9Z3", we generate all actions for the group "G=Z9Z3".
43 */
44

45 procedure MainZ9Z3()
46 K1:={Matrix(F,3,1,[0,0,0])};
47 K2:={a*Matrix(F,3,1,[t,t,t]): a in {0,1,-1}};
48 K3:={a*Matrix(F,3,1,[t,t,t])+b*Matrix(F,3,1,[t,-t,0]): a,b in {0,1,-1}};
49 Kernels:=[K1,K2,K3];
50 for j in [1..#Kernels] do Actions(Kernels[j]); end for;
51 end procedure;

A.3. Twisted representation groups

The following code is an implementation of Algorithm 1 of Section 6.3.1 in MAGMA.
For a given finite group G and action φ : G! Aut(C) taking values in {id, conj}, we want to de-
termine all φ-twisted representation groups Γ of G, i.e., we have to determine by Proposition 6.2.3
all extensions

1 −! A −! Γ −! G −! 1,

where A = H2(G,C∗), such that

(1) |H1(G,C∗)| = |H1(Γ,C∗)| and

(2) HomG(A,C∗) = Hom(A,C∗).

For this, we identify Hj(G,C∗) = Hj+1(G,Z), for j = 1, 2, where G acts on Z via φ and sending
conj to −1, which gives a character χ of G with values in {1,−1} (cf. Section 6.3.1)

The main function therefore has as input the group G and the character χ.

1 /*
2 The function "Phi" has as input "x=X(g)", for an element g in G, and an element "v" in C, and determines
3 the value phi(g)(v), which is v, if x=[1], and ComplexConjugate(v), if x=[-1].
4 */
5
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6 function Phi(x,v)
7 Id1:=DiagonalMatrix([1]);
8 if x eq Id1 then return v;
9 else return ComplexConjugate(v); end if;

10 end function;
11

12 /*
13 The function "TestInvariance" has as input the group "A" with "a" generators and the group "Ga" with "m"
14 generators. The group A is embedded in Ga such that the generators of A equal the last a generators of Ga.
15 The action of Ga on Z is encoded in "actGa", which is a list where the i-th entry is the action
16 (as 1x1-matrix) of the i-th generator of Ga on Z.
17 The function checks condition (2).
18 We use that the first m-a generators of Ga define preimages of the generators of G under pi: Ga -> G.
19 */
20

21 function TestInvariance(A,Ga,actGa,m,a)
22 CT:=CharacterTable(A);
23 for x in CT do
24 for i in [1..m-a] do for j in [m-a+1..m] do
25 if not x(Ga.i*Ga.j*Ga.i^-1) eq Phi(actGa[i],x(Ga.j)) then return false; end if;
26 end for; end for;
27 end for;
28 return true;
29 end function;
30

31 /*
32 The function "KernelCokernelExtension" has as input an extension "Ga" (of G by A), its image "GaRef" under
33 the Cayley-embedding "f", the number "m" of generators of G and "a"=#A.
34 It returns the kernel "APer" as a subgroup of GaRef, the quotient "Quot"=Ga/APer, and the quotient map
35 "pi":Ga -> Quot.
36 Note that the kernel A is generated by the last generators of GaRef; the problem is that we don’t know how
37 many generators we have to take (the number can differ from #Generators(A)). Therefore, the last output "i"
38 gives this number of generators of APer.
39 */
40

41 function KernelCokernelExtension(Ga,GaRef,f,m,a)
42 for i in [1..m] do
43 APer:=sub<Ga | [f(GaRef.j): j in [(m-i+1)..m]]>;
44 if #APer eq a then
45 Quot, pi:= quo<Ga|APer>;
46 return APer, Quot, pi, i;
47 end if;
48 end for;
49 end function;
50

51 /************************ MAIN FUNCTION ************************/
52

53 /*
54 INPUT: finite, solvable Group G of type GrpPerm, character X of G of degree 1 with values in {1,-1}
55 representing an action phi of G on C
56 OUPUT: A=H^2(G,C^*)(in terms of invariants) and a list of all phi-twisted representation groups of G
57

58 (Explanation: the invariants [n_1,...n_k] correspond to the abelian group Z_{n_1} x ... x Z_{n_k})
59 */
60

61 function RepGroups(G,X)
62 g:=#Generators(G);
63 Id1:=DiagonalMatrix([1]);
64 act:=[X(G.i)*Id1: i in [1..g]];
65 // The i-th element of act gives the action of the i-th generator of G on Z as a 1x1-matrix.
66 CMG:= CohomologyModule(G,[0],act);
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67 TwistedSchurG:=CohomologyGroup(CMG,3); // TwistedSchurG=H^3(G,Z)=H^2(G,C^*)
68 invarA:=Moduli(TwistedSchurG); // #invariants of the abelian Group A = #generators of A
69 if invarA eq [] then // in this case, the twisted Schur multiplier is trivial.
70 return invarA, G;
71 end if;
72 A:=AbelianGroup(GrpPerm,invarA); // A = H^2(G,C^*), of type GrpPerm
73 a:=#A;
74 E:=ExtensionsOfSolubleGroup(A,G); //all candidates for the phi-twisted representation groups;
75 //each group in the list is given as GrpFP;
76 //the last generators correspond to A
77 ListRepGroups:=[];
78 h1G:=#CohomologyGroup(CMG,2);
79 for k in [1..#E] do
80 GaRef:=E[k];
81 f,Ga:= CosetAction(GaRef,sub<GaRef|>); //transforms the extension GaRef into GrpPerm using
82 //the Cayley-embedding f
83 m:=#Generators(GaRef);
84 APer, Quot, pi, genA:=KernelCokernelExtension(Ga,GaRef,f,m,a);
85 test, psi:=IsIsomorphic(Quot,G); //psi: Quot -> G defines an isomorphism
86 actGa:=[X(psi(pi(Ga.i)))*Id1 : i in [1..m]];
87 CMGa:=CohomologyModule(Ga,[0],actGa);
88 if h1G eq #CohomologyGroup(CMGa,2) and TestInvariance(APer,Ga,actGa,m,genA) then
89 Append(~ListRepGroups,Ga);
90 end if;
91 end for;
92 return invarA, ListRepGroups;
93 end function;

With the MAGMA code below, we show that the group N in Example 6.3.5 is not a covering
group for the given action.

1 F:=CyclotomicField(12);
2 ze:=F.1^4;
3 i:=F.1^3;
4 t:=(1+2*ze)/3;
5

6 //The function RI returns the real and imaginary parts of a complex number "c".
7

8 function RI(c)
9 return [(c+ComplexConjugate(c))/2, -i*(c-re)];

10 end function;
11

12 //The function "RealMat" turns a complex 3x3 matrix "D" into a real 6x6 matrix under the canonical embedding
13

14 function RealMat(D)
15 return Matrix(F, 6, 6,
16 [RI(D[1][1])[1],-RI(D[1][1])[2],RI(D[1][2])[1],-RI(D[1][2])[2],RI(D[1][3])[1],-RI(D[1][3])[2],
17 RI(D[1][1])[2],RI(D[1][1])[1],RI(D[1][2])[2],RI(D[1][2])[1],RI(D[1][3])[2],RI(D[1][3])[1],
18 RI(D[2][1])[1],-RI(D[2][1])[2],RI(D[2][2])[1],-RI(D[2][2])[2],RI(D[2][3])[1],-RI(D[2][3])[2],
19 RI(D[2][1])[2],RI(D[2][1])[1],RI(D[2][2])[2],RI(D[2][2])[1],RI(D[2][3])[2],RI(D[2][3])[1],
20 RI(D[3][1])[1],-RI(D[3][1])[2],RI(D[3][2])[1],-RI(D[3][2])[2],RI(D[3][3])[1],-RI(D[3][3])[2],
21 RI(D[3][1])[2],RI(D[3][1])[1],RI(D[3][2])[2],RI(D[3][2])[1],RI(D[3][3])[2],RI(D[3][3])[1]]);
22 end function;
23

24 //These are the three C-linear matrices C1,C3,C3 which generate N, and C4 represents complex
25 //conjugation in each coordinate.
26

27 C1:=DiagonalMatrix([ze,ze^2,1]);
28 C2:=-t*Matrix([[1,ze^2,ze^2],[ze^2,1,ze^2],[ze^2,ze^2,1]]);
29 C3:=t*Matrix([[1,1,1],[1,ze^2,ze],[1,ze,ze^2]]);



APPENDIX A. MAGMA-CODES 125

30 C4:=Matrix(F, 6, 6,[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1]);
31

32 // The group of semilinearities SR=<D1,...,D4> as a subgroup of GL(6,F).
33

34 N:=sub<GL(6,F)|RealMat(C1),RealMat(C2),RealMat(C3),C4>;
35 a:=DiagonalMatrix([-ze,-ze,-ze]);
36 A:=sub<N | RealMat(a)>;
37

38 S, pi:=N/A;
39 I1:=DiagonalMatrix([1]);
40 CM_N := CohomologyModule(N,[0],[I1,I1,I1,-I1]);
41 CM_S := CohomologyModule(S,[0],[I1,I1,I1,-I1]);
42

43 // These are the cohomology groups H^1(S,C^*) and H^1(N,C^*). They have different orders.
44 CohomologyGroup(CM_S,2);
45 CohomologyGroup(CM_N,2);
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