
R Installation and Administration
Version 2.1.1 (2005-06-20)

R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the R Development Core Team.
Copyright c© 2001–2005 R Development Core Team
ISBN 3-900051-09-7

i

Table of Contents

1 Obtaining R . 1
1.1 Getting and unpacking the sources . 1
1.2 Getting patched and development versions. 1

1.2.1 Using Subversion and rsync . 1

2 Installing R under Unix-alikes. 3
2.1 Simple compilation . 3
2.2 Making the manuals . 4
2.3 Installation . 5
2.4 Uninstallation . 6

3 Installing R under Windows . 7
3.1 Building from source . 7

3.1.1 Getting the tools. 7
3.1.2 Getting the source files . 7
3.1.3 Building the core files . 8
3.1.4 Building the bitmap files . 8
3.1.5 Windows internationalization . 9
3.1.6 Building the recommended packages . 9
3.1.7 Building the manuals . 9
3.1.8 Building the installers . 9
3.1.9 Checking the build . 10
3.1.10 Cross-building on ix86 Linux . 10

4 Installing R under Mac OS X . 11
4.1 Building from source on Mac OS X . 11

5 Add-on packages . 12
5.1 Installing packages . 12

5.1.1 Customising compilation in Windows . 13
5.1.2 Customizing compilation under Unix . 14

5.2 Updating packages . 14
5.3 Removing packages . 14
5.4 Setting up a package repository . 15

6 Internationalization and Localization 16
6.1 Locales . 16

6.1.1 Locales under Linux . 16
6.1.2 Locales under Windows . 17
6.1.3 Locales under Mac OS X . 17

6.2 Localization of messages . 17

Appendix A Essential and useful other programs in Unix . . 18
A.1 Essential programs . 18
A.2 Useful libraries and programs . 18

A.2.1 Tcl/Tk . 19
A.2.2 Linear algebra . 19

ii

Appendix B Configuration on Unix . 21
B.1 Configuration options . 21
B.2 Internationalization support . 21
B.3 Configuration variables . 22

B.3.1 Setting paper size . 22
B.3.2 Setting the browser . 22
B.3.3 Compilation flags . 22
B.3.4 Making manuals . 23

B.4 Using make . 23
B.5 Using FORTRAN . 23

B.5.1 Using gfortran . 23
B.6 Compile and load flags . 24
B.7 Platform notes . 24

B.7.1 Linux. 25
B.7.2 Mac OS X . 25
B.7.3 Solaris on Sparc . 26
B.7.4 HP-UX . 27
B.7.5 IRIX . 28
B.7.6 Alpha/OSF1 . 28
B.7.7 Alpha/FreeBSD . 29
B.7.8 AIX . 29

Appendix C Building the GNOME console 31

Appendix D Enabling search in HTML help 33
D.1 Java Virtual Machines on Linux . 33
D.2 Java Virtual Machines on Unix . 33
D.3 Java Virtual Machines on Windows . 33
D.4 Java Virtual Machines on Mac OS X . 34

Appendix E The Windows toolset . 35
E.1 The command line tools . 35
E.2 Perl . 36
E.3 The MinGW compilers . 36
E.4 The Microsoft HTML Help Workshop . 36
E.5 LATEX . 36
E.6 The Inno Setup installer . 37

Appendix F New platforms . 38

Function and variable index . 39

Concept index. 40

Chapter 1: Obtaining R 1

1 Obtaining R

Sources, binaries and documentation for R can be obtained via CRAN, the
“Comprehensive R Archive Network” whose current members are listed at
http://cran.r-project.org/mirrors.html.

1.1 Getting and unpacking the sources

The simplest way is to download the most recent ‘R-x.y.z.tgz’ file, and unpack it with
tar xvfz R-x.y.z.tgz

on systems that have GNU tar installed. On other systems you need at least to have the gzip
program installed. Then you can use

gzip -dc R-x.y.z.tgz | tar xvf -

The pathname of the directory into which the sources are unpacked should not contain spaces,
as make (specifically GNU make 3.80) does not expect spaces.

If you need to transport the sources on floppy disks, you can download the
‘R-x.y.z.tgz-split.*’ files and paste them together at the destination with (Unix)

cat R-x.y.z-split.* > R-x.y.z.tgz

and proceed as above. If you want the build to be usable by a group of users, set umask before
unpacking so that the files will be readable by the target group (e.g., umask 022 to be usable by
all users).

1.2 Getting patched and development versions

A patched version of the current release, ‘r-patched’ and the current development version,
‘r-devel’, are available as daily tarballs and via access to the R Subversion repository.

The tarballs are available from ftp://ftp.stat.math.ethz.ch/pub/Software/R/. Down-
load either ‘R-patched.tar.gz’ or ‘R-devel.tar.gz’ (or the ‘.tar.bz2’ versions) and unpack
as described in the previous section. They are built in exactly the same way as distributions of
R releases.

1.2.1 Using Subversion and rsync

Sources are also available via https://svn.R-project.org/R/, the R Subversion repository.
If you have a Subversion client (see http://subversion.tigris.org/), you can check out
and update the current r-devel from https://svn.r-project.org/R/trunk/ and the current
r-patched from ‘https://svn.r-project.org/R/branches/R-x-y-patches/’ (where x and y
are the major and minor number of the current released version of R). E.g., use

svn checkout https://svn.r-project.org/R/trunk/ path

to check out r-devel into directory path.
Note that ‘https:’ is required, and that the SSL certificate for the Subversion server of the

R project is
Certificate information:
- Hostname: svn.r-project.org
- Valid: from Jul 16 08:10:01 2004 GMT until Jul 14 08:10:01 2014 GMT
- Issuer: Department of Mathematics, ETH Zurich, Zurich, Switzerland, CH
- Fingerprint: c9:5d:eb:f9:f2:56:d1:04:ba:44:61:f8:64:6b:d9:33:3f:93:6e:ad

(currently, there is no “trusted certificate”). You can accept this certificate permanently and
will not be asked about it anymore.

The Subversion repository does not contain the current sources for the recommended pack-
ages, which can be obtained by rsync or downloaded from CRAN. To use rsync to install the

http://cran.r-project.org/mirrors.html
ftp://ftp.stat.math.ethz.ch/pub/Software/R/
https://svn.R-project.org/R/
http://subversion.tigris.org/
https://svn.r-project.org/R/trunk/

Chapter 1: Obtaining R 2

appropriate sources for the recommended packages, run ./tools/rsync-recommended from the
top-level of the R sources.

If downloading manually from CRAN, do ensure that you have the correct versions of
the recommended packages: if the number in the file ‘VERSION’ is ‘x.y.z ’ you need to
download the contents of ‘http://CRAN.R-project.org/src/contrib/dir ’, where dir is
‘x.y.z/Recommended’ for r-devel or ‘x.y.z-patched/Recommended’ for r-patched, respectively,
to directory ‘src/library/Recommended’ in the sources you have unpacked. After downloading
manually you need to execute tools/link-recommended from the top level of the sources to
make the requisite links in ‘src/library/Recommended’. A suitable incantation from the top
level of the R sources using wget might be

wget -r -l1 --no-parent -A*.gz -nd -P src/library/Recommended \
http://CRAN.R-project.org/src/contrib/dir

./tools/link-recommended

Chapter 2: Installing R under Unix-alikes 3

2 Installing R under Unix-alikes

R will configure and build under a number of common Unix and Unix-alike platforms
includingcpu-*-linux-gnu for the alpha, amd64, arm, hppa, ix86, ia64, m68k, powerpc, and sparc
CPUs (see e.g. http://buildd.debian.org/build.php?&pkg=r-base), powerpc-apple-darwin
and sparc-sun-solaris, as well as probably (it is tested less frequently on these) i386-*-freebsd,
i386-*-netbsd, i386-*-openbsd, i386-sun-solaris, mips-sgi-irix, alpha-dec-osf*, rs6000-ibm-aix and
hppa-hp-hpux.

In addition, binary distributions are available for some common Linux distributions and for
Mac OS X (on PowerPC). See the FAQ for current details. These are installed in platform-specific
ways, so for the rest of this chapter we consider only building from the sources.

2.1 Simple compilation

First review the essential and useful tools and libraries in Appendix A [Essential and useful other
programs in Unix], page 18, and install those you want or need. Ensure that the environment
variable TMPDIR is either unset (and ‘/tmp’ exists and can be written in and executed from) or
points to a valid temporary directory.

Choose a place to install the R tree (R is not just a binary, but has additional data sets, help
files, font metrics etc). Let us call this place R HOME. Untar the source code. This should
create directories ‘src’, ‘doc’, and several more. (At this point North American readers should
consult Section B.3.1 [Setting paper size], page 22.) Issue the following commands:

./configure
make

(See Section B.4 [Using make], page 23 if your make is not called ‘make’.)

Then check the built system works correctly, by

make check

Failures are not necessarily problems as they might be caused by missing functionality, but you
should look carefully at any reported discrepancies. To re-run the tests you would need

make check FORCE=FORCE

More comprehensive testing can be done by

make check-devel

or

make check-all

see ‘tests/README’.

If these commands execute successfully, the R binary will be copied to the ‘R_HOME/bin’
directory. In addition, a shell-script front-end called ‘R’ will be created and copied to the
same directory. You can copy this script to a place where users can invoke it, for example to
‘/usr/local/bin/R’. You could also copy the man page ‘R.1’ to a place where your man reader
finds it, such as ‘/usr/local/man/man1’. If you want to install the complete R tree to, e.g.,
‘/usr/local/lib/R’, see Section 2.3 [Installation], page 5. Note: you do not need to install R:
you can run it from where it was built.

You do not necessarily have to build R in the top-level source directory (say, ‘TOP_SRCDIR ’).
To build in ‘BUILDDIR ’, run

cd BUILDDIR

TOP_SRCDIR/configure
make

http://buildd.debian.org/build.php?&pkg=r-base

Chapter 2: Installing R under Unix-alikes 4

and so on, as described further below. This has the advantage of always keeping your source
tree “clean”. (You may need GNU make to allow this, and the pathname of the build directory
should not contain spaces.)

Make will also build plain text help pages as well as HTML and LATEX versions of the R object
documentation (the three kinds can also be generated separately using make help, make html
and make latex). Note that you need Perl version 5: if this is not available on your system, you
can obtain PDF versions of the documentation files via CRAN.

For those obtaining R via Subversion, one additional step is necessary:

make vignettes

which makes the ‘grid’ vignettes (which are contained in the tarballs): it takes several minutes.

Now rehash if necessary, type R, and read the R manuals and the R FAQ (files ‘FAQ’ or
‘doc/manual/R-FAQ.html’, or http://CRAN.R-project.org/doc/FAQ/R-FAQ.html which al-
ways has the latest version).

2.2 Making the manuals

There is a set of manuals that can be built from the sources,

‘refman’ Printed versions of all the help pages.

‘R-FAQ’ R FAQ

‘R-intro’ “An Introduction to R”.

‘R-data’ “R Data Import/Export”.

‘R-admin’ “R Installation and Administration”, this manual.

‘R-exts’ “Writing R Extensions”.

‘R-lang’ “The R Language Definition”.

To make these, use

make dvi to create DVI versions
make pdf to create PDF versions
make info to create info files (not ‘refman’).

You will not be able to build the info files unless you have makeinfo version 4.7 or later
installed.

The DVI versions can be previewed and printed using standard programs such as xdvi and
dvips. The PDF versions can be viewed using Acrobat Reader or (fairly recent versions of)
ghostscript: they have hyperlinks that can be followed in Acrobat Reader. The info files
are suitable for reading online with Emacs or the standalone GNU Info. The DVI and PDF
versions will be created using the papersize selected at configuration (default ISO a4): this can
be overridden by setting R_PAPERSIZE on the make command line, or setting R_PAPERSIZE in
the environment and using make -e. (If re-making the manuals for a different papersize, you
should first delete the file ‘doc/manual/version.texi’.)

There are some issues with making the reference manual, and in particular with the PDF
version ‘refman.pdf’. The help files contain both ISO Latin1 characters (e.g. in ‘text.Rd’) and
upright quotes, neither of which are contained in the standard LATEX Computer Modern fonts.
We have provided four alternatives:

times Using standard PostScript fonts. This works well both for on-screen viewing and for
printing, and is the default from R 2.0.0. The one disadvantage is that the Usage
and Examples sections may come out rather wide.

http://CRAN.R-project.org/doc/FAQ/R-FAQ.html

Chapter 2: Installing R under Unix-alikes 5

lm Using the Latin Modern fonts. These are not often in-
stalled as part of a TEX distribution, but can obtained from
http://www.ctan.org/tex-archive/fonts/ps-type1/lm and mirrors.
This uses fonts rather similar to Computer Modern, but is not so good on-screen
as times.

cm-super Using type-1 versions of the Computer Modern fonts by
Vladimir Volovich. This is a large installation, obtainable from
http://www.ctan.org/tex-archive/fonts/ps-type1/cm-super and its
mirrors. These type-1 fonts have poor hinting and so are nowhere near so readable
on-screen as the other three options.

ae A package to use composites of Computer Modern fonts. This works well most of the
time, and its PDF is more readable on-screen than the previous two options. There
are three fonts for which it will need to use bitmapped fonts, ‘tctt0900.600pk’,
‘tctt1000.600pk’ and ‘tcrm1000.600pk’. Unfortunately, if those files are not avail-
able, Acrobat Reader will substitute completely incorrect glyphs so you need to
examine the logs carefully. This was the default in R version 1.x.y.

Both Unix and Windows installations default to times. The choice can be overridden by
setting the environment variable R_RD4PDF. (On Unix, this will be picked up at install time.)
The default value is times,hyper: omit hyper if you do not want hyperlinks, e.g. for printing.

2.3 Installation

To ensure that the installed tree is usable by the right group of users, set umask appropriately
(perhaps to ‘022’) before unpacking the sources and throughout the build process.

After
./configure
make
make check

have been completed successfully, you can install the complete R tree to your system by typing
make install

This will install to the following directories:

‘prefix/bin or bindir ’
the front-end shell script

‘prefix/man/man1 or mandir/man1’
the man page

‘prefix/lib/R or libdir/R’
all the rest (libraries, on-line help system, . . .)

where prefix is determined during configuration (typically ‘/usr/local’) and can be set by
running configure with the option ‘--prefix’, as in

./configure --prefix=/where/you/want/R/to/go

This causes make install to install the R executable to ‘/where/you/want/R/to/go/bin’, and
so on. The prefix of the installation directories can be seen in the status message that is displayed
at the end of configure. You can install into another directory tree by using

make prefix=/path/to/here install

at least with GNU make.
More precise control is available at configure time via options: see configure --help for

details. (However, most of them are currently ignored, but bindir, libdir and mandir are
supported.)

http://www.ctan.org/tex-archive/fonts/ps-type1/lm
http://www.ctan.org/tex-archive/fonts/ps-type1/cm-super

Chapter 2: Installing R under Unix-alikes 6

To install DVI, info and PDF versions of the manuals, use one or more of
make install-dvi
make install-info
make install-pdf

Once again, it is optional to specify prefix. For info, the setting used is that of infodir (default
prefix/info, set by configure option ‘--infodir’).

2.4 Uninstallation

You can uninstall R by
make uninstall

specifying prefix etc in the same way as specified for installation.
This will also uninstall any installed manuals. There are specific targets to uninstall DVI,

info and PDF manuals in ‘doc/manual/Makefile’.

Chapter 3: Installing R under Windows 7

3 Installing R under Windows

The ‘bin/windows’ directory of a CRAN site contains binaries for a base distribution and a large
number of add-on packages from CRAN to run on Windows 95, 98, NT4, 2000, ME and XP (at
least) on Intel x86 and clones (but not on other platforms).

You do need one of those Windows versions: Windows 3.11+win32s will not work.

Your file system must allow long file names (as is likely except perhaps for some network-
mounted systems).

Installation is via the installer ‘rw2011.exe’. Just double-click on the icon and follow the
instructions. You can uninstall R from the Control Panel.

See the R Windows FAQ for more details.

3.1 Building from source

3.1.1 Getting the tools

If you want to build R from the sources, you will first need to collect, install and test an
extensive set of tools. See Appendix E [The Windows toolset], page 35 (and updates in
http://www.murdoch-sutherland.com/Rtools/) for details.

Be sure to set your path in the order given in the appendix.

3.1.2 Getting the source files

You need to collect the following sets of files:

• Get the R source code ‘R-2.1.1.tgz’ from CRAN. Open a commands window (or another
shell) at a directory whose path does not contain spaces. We will call this directory R HOME
below. Run

tar zxvf R-2.1.1.tgz

to create the source tree in R HOME. Beware: do use tar to extract the sources rather
than broken tools such as WinZip that don’t understand about symbolic links.

• Extract the international character support file ‘iconv.dll’ from
http://www.murdoch-sutherland.com/Rtools/iconv.zip and put it in
‘R_HOME/src/gnuwin32/unicode’.

• The TclTk support files are in http://www.murdoch-sutherland.com/Rtools/R_Tcl.zip:
unzip this in R HOME, and it will add directories ‘R_HOME/Tcl’, ‘R_HOME/Tcl/bin’, etc.

• You need libpng and jpeg sources (available, e.g., from http://www.libpng.org,
ftp://ftp.uu.net/graphics/[png,jpeg]. You will need files ‘libpng-1.2.8.tar.gz’ and
‘jpegsrc.v6b.tar.gz’ or later.

• You need to obtain copies of the recommended packages from CRAN. Put the ‘.tar.gz’ files
in ‘R_HOME/src/library/Recommended’. If you have rsync and an Internet connection, you
can do this automatically using

make rsync-recommended

• Optionally, you can install an ATLAS (http://math-atlas.sourceforge.net/) tuned to
your system for fast linear algebra routines. Prebuilt Rblas.dll for various Pentium and
AthlonXP chips are available in the ‘windows/contrib/ATLAS’ area on CRAN.
Another tuned BLAS which is available for some CPUs is by Kazushige Goto.
He does not allow redistribution: his builds are currently available via
http://www.cs.utexas.edu/users/kgoto/signup_first.html. To make use
of this, put the ‘DLL’ somewhere in your path or in ‘R_HOME/bin’, and edit

http://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
http://www.murdoch-sutherland.com/Rtools/
http://www.murdoch-sutherland.com/Rtools/iconv.zip
http://www.murdoch-sutherland.com/Rtools/R_Tcl.zip
http://www.libpng.org
ftp://ftp.uu.net/graphics/
http://math-atlas.sourceforge.net/
http://www.cs.utexas.edu/users/kgoto/signup_first.html

Chapter 3: Installing R under Windows 8

‘R_HOME/src/gnuwin32/MkRules’ to define USE_GOTO=YES and the name of the ‘DLL’
(something like ‘libgoto_p4_512-r0.9.dll’).

Goto’s BLAS takes preference over ATLAS, and seems a little faster. However, as it is
compiled for MSVC, we have been unable to make it work for complex arithmetic and so
it is only used in for real linear algebra.

Dr. Goto supplies DLLs for PIII, P4 and Opteron processors: that for PIIIs runs on
AthlonXP as well.

3.1.3 Building the core files

You may need to compile under a case-honouring file system: we found that a samba-mounted
file system (which maps all file names to lower case) did not work.

Open a commands window at ‘R_HOME/src/gnuwin32’. Edit ‘MkRules’ to set the appropriate
paths as needed and to set the type(s) of help that you want built. Beware: ‘MkRules’ contains
tabs and some editors (e.g. WinEdt) silently remove them. Then run

make

and sit back and wait while the basic compile takes place.

Notes:

• The file ‘bin/Rchtml.dll’ is only built if CHM help is specified in ‘MkRules’. Its source is
the help directory, and you need the HTML Help Workshop files to build it. You can just
copy this from a binary distribution.

• We have had reports that earlier versions of Norton Anti-Virus lock up the machine when
windres is run, so you may need to disable it. (Norton Anti-Virus 2002 causes no problems.)

• By default Doug Lea’s malloc in the file ‘R_HOME/src/gnuwin32/malloc.c’ is used for
R’s internal memory allocations. You can opt out of this by commenting the line LEA_
MALLOC=YES in ‘MkRules’, in which case the malloc in ‘msvcrt.dll’ is used. This does
work but imposes a considerable performance penalty.

• You can run a parallel make by e.g.

make -j2

but this is only likely to be worthwhile on a dual-processor (or perhaps a hyperthreaded
P4) machine with ample (at least 384Mb) of memory. On a dual AthlonXP it reduced the
build time by about 30% whereas on a single P4HT it reduced it by 10%. Note that this
may sometimes stop and have to be restarted.

3.1.4 Building the bitmap files

The file ‘R_HOME/bin/Rbitmap.dll’ is not built automatically. Working in the directory
‘R_HOME/src/gnuwin32/bitmap’, install the libpng and jpeg sources in sub-directories. The
libpng sub-directory must be named ‘libpng’ (as required by the libpng documentation).
The jpeg sub-directory for version 6b is named ‘jpeg-6b’; if you use a different version, edit
‘Makefile’ and change the definition of JPEGDIR.

Example:

> tar xzvf libpng-1.2.8.tar.gz
> mv libpng-1.2.8 libpng
> tar xzvf jpegsrc.v6b.tar.gz

Once everything is set up in directory ‘bitmap’, make in that directory or make bitmapdll
in the parent directory should build ‘Rbitmap.dll’ and install it in ‘R_HOME/bin’.

Chapter 3: Installing R under Windows 9

3.1.5 Windows internationalization

This version of R can be built with support for some multibyte character sets such those used
in Chinese, Japanese and Korean.

Define SUPPORT_MBCS in config.h to enable support in the R engine for multi-byte character
sets. This is only useful if you have an ‘East Asian’ version of Windows, as only those versions
have multi-byte locales. We have only tested this under Windows XP, but it is expected to work
under Windows 95/98/ME as well as NT-based versions of Windows.

This also enables support for multi-byte locales in the RGui console, pager, data and script
editors (this is based loosely on the Japanization patches by Nakama and Okada). The Rterm
command-line editor is not supported in such locales.

Define both SUPPORT_MBCS and SUPPORT_UTF8 in ‘config.h’ to enable support in the R
engine and in the Windows graphics device for UTF-8 character sets. Since there are no UTF-8
locales on Windows, this sets the locale to be UTF-8 and expects input/output in UTF-8 so is
only useful with a customized front-end to ‘R.dll’.

If any of these is defined you need the DLL ‘msvcp60.dll’ to be installed. It is on recent
versions of Windows, and can be obtained by an Internet search.

3.1.6 Building the recommended packages

The recommended packages can be built by
make recommended

and checked by
make check-recommended

3.1.7 Building the manuals

The pdf manuals can be made by
make manuals

If you want to make the info versions (not the Reference Manual), use
cd ../../doc/manual
make -f Makefile.win info

To make DVI versions of the manuals use
cd ../../doc/manual
make -f Makefile.win dvi

(all assuming you have tex and latex installed and in your path).
See the Section 2.2 [Making the manuals], page 4 section in the Unix section for setting

options such as the paper size.

3.1.8 Building the installers

See ‘installer/INSTALL’. You need to have the files for a complete R build, including bitmap
and Tcl/Tk support and the manuals, as well as the recommended packages.

Once everything is set up
make distribution
make check-all

will make all the pieces and the installers and put them in the ‘gnuwin32/cran’ subdirectory,
then check the build. This works by building all the parts in the sequence:

Rpwd.exe (a utility needed in the build)
rbuild-no-mbcs (the non-East Asian version of ‘R.dll’)
rbuild (the executables, the FAQ docs etc.)

Chapter 3: Installing R under Windows 10

rpackage (the base packages)
htmldocs (the HTML documentation)
bitmapdll (the bitmap support files)
recommended (the recommended packages)
vignettes (the vignettes in package grid:

only need if building from svn checkout)
manuals (the PDF manuals)
rinstaller (the install program)
crandir (the CRAN distribution directory)

The parts can be made individually if a full build is not needed, but earlier parts must be
built before later ones. (The ‘Makefile’ doesn’t enforce this dependency—some build targets
force a lot of computation even if all files are up to date.) The first, third, fourth and fifth targets
are the default build if just ‘make’ is run, but the second (which builds the default version of
‘R.dll’) needs to be run first.

If you want to customize the installation by adding extra packages, replace make rinstaller
by something like

make rinstaller EXTRA_PKGS=’pkg1 pkg2 pkg3’

An alternative way to customize the installer starting with a binary distribution is given in
file ‘installer/INSTALL’.

3.1.9 Checking the build

You can test a build by (optionally) building the recommended packages (see below) and running
make check. You may need to set TMPDIR to the absolute path to a suitable temporary directory:
the default is ‘c:/TEMP’. (Use forward slashes and do not use a path including spaces.)

3.1.10 Cross-building on ix86 Linux

You will need i386-mingw32 cross-compilers installed and in your path. There is currently
a complete set of tools at http://www.stats.ox.ac.uk/pub/Rtools/mingw-cross4.tar.bz2
(Just unpack this somewhere and put its ‘bin’ directory in your path.)

You will need Perl, zip and unzip installed and makeinfo version 4.7 or later (part of GNU
texinfo).

You also need the R source (‘R-2.x.y.tgz’).
Then: untar ‘R-2.x.y.tgz’ somewhere, and

cd /somewhere/R-2.x.y/src/gnuwin32

Edit ‘MkRules’ to set BUILD=CROSS and the appropriate paths (including HEADER) as needed.
Edit ‘MkRules’ to set the type(s) of help that you want built. (You will not be able to

cross-build ‘.chm’ files, so WINHELP is automatically set to NO.)
You also need a working copy of this version of R on Linux: uncomment and set R_EXE in

‘MkRules’ to point to it.
Then run make (and parallel make works reliably, unlike on Windows).
Packages can be made in the same way as natively: see Chapter 5 [Add-on packages], page 12.
(It is possible to cross-build the installers using WINE, which we leave as an exercise for the

reader.)
To distribute a cross-build (or just to transfer it to a Windows machine for testing) use

cd installer
make imagedir
zip -r9X rw2010.zip rw2010 # or something similar

Currently we have not found a reliable way to convert base to lazy-loading when cross-
building, so it is left in the old format.

http://www.stats.ox.ac.uk/pub/Rtools/mingw-cross4.tar.bz2

Chapter 4: Installing R under Mac OS X 11

4 Installing R under Mac OS X

The ‘bin/macosx’ directory of a CRAN site contains binaries for MacOS X (at the time of writing
only for PowerPC) for a base distribution and a large number of add-on packages from CRAN
to run on Mac OS X version 10.2.0 or higher.

The simplest way is to use ‘R.dmg.sit’. Just double-click on the icon and the archive will
be expanded as an image di file. Read the ‘ReadMe.txt’ inside the disk image and follow the
instructions.

See the R for Mac OS X FAQ for more details.

4.1 Building from source on Mac OS X

If you want to build this port from the sources, you can read the above mentioned R for Mac
OS X FAQ for full details. You will need to collect and install some tools as explained in the
document. Than you have to expand the R sources and configure R appropriately, for example

tar zxvf R-2.1.1.tgz
cd R-2.1.1
./configure --with-blas=’-framework vecLib’ --with-lapack --with-aqua
make

sit back and wait. The last option ‘--with-aqua’ is needed only if you want a Console GUI.
The first two options are strongly recommended.

R is by default configured and installed as a framework called ‘R.framework’. The default
path for ‘R.framework’ is ‘/Library/Frameworks’ but this can be changed at configure time
specifying the flag ‘--enable-R-framework[=DIR]’ or at install time as

make prefix=/where/you/want/R.framework/to/go install

the ‘R.framework’ has not to be specified in the path.

http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html
http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html
http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html

Chapter 5: Add-on packages 12

5 Add-on packages

It is helpful to use the correct terminology. A package is loaded from a library by the function
library(). Thus a library is a directory containing installed packages; the main library is
‘R_HOME/library’, but others can be used, for example by setting the environment variable
R_LIBS or using the R function .libPaths().

5.1 Installing packages

Packages may be distributed in source form or compiled binary form. Installing source packages
requires that compilers and tools (including Perl 5.004 or later) be installed. Binary packages
are platform specific and generally need no special tools to install, but see the documentation
for your platform for details.

Note that you need to specify implicitly or explicitly the library to which the package is to
be installed. This is only an issue if you have more than one library, of course.

To install packages from source in Unix use

R CMD INSTALL -l /path/to/library pkg1 pkg2 ...

The part ‘-l /path/to/library’ can be omitted, in which case the first library in R_LIBS is
used if set, otherwise the main library ‘R_HOME/library’ is used. (R_LIBS is looked for in the
environment: ‘.Renviron’ is not read by R CMD.) Ensure that the environment variable TMPDIR
is either unset (and ‘/tmp’ exists and can be written in and executed from) or points to a valid
temporary directory.

There are a number of options available: use R CMD INSTALL --help to see the current list.

The same command works in Windows if you have the source-code package files (option
“Source Package Installation Files” in the installer) and toolset (see Appendix E [The Windows
toolset], page 35) installed.

Alternatively, packages can be downloaded and installed from within R. First set the option
CRAN to your nearest CRAN mirror using choooseCRANmirror(). Then download and install
packages pkg1 and pkg2 by

> install.packages(c("pkg1", "pkg2"))

Unless the library is specified (argument lib) the first library in the library search path is used.
If you want to fetch a package and all those it depends on that are not already installed, use e.g.

> install.packages("Rcmdr", dependencies = TRUE)

What install.packages does by default is different on Unix and Windows. On Unix-alikes
(include MacOS X unless running from the ‘AQUA’ console) it consults the list of available
source packages on CRAN (or other repository/ies), downloads the latest version of the package
sources, and installs them (via R CMD INSTALL). On Windows it looks (by default) at the list of
binary versions of packages available for your version of R and downloads the latest versions (if
any), although optionally it will also download and install a source package by setting the type
argument.

install.packages can install a source package from a local ‘.tar.gz’ file by setting argu-
ment repos to NULL.

On Windows install.packages can also install a binary package from a local ‘zip’ file
by setting argument repos to NULL. RGui.exe has a menu Packages with a GUI interface to
install.packages, update.packages and library.

As from R 2.1.0, install.packages can look in several repositories, specified as a character
vector by the argument repos: these can include a CRAN mirror, Bioconductor, Omegahat,
local archives, local files, . . .).

Chapter 5: Add-on packages 13

On Mac OS X install.packages works as it does on other Unix-like systems, but there is
an additional function install.binaries that will download and install binary packages from
CRAN. These Macintosh binary package files have the extension ‘tgz’. The Aqua GUI provides
for installation of either binary or source packages, from CRAN or local files.

5.1.1 Customising compilation in Windows

This section describes ways to customize package compilation using the standard C/C++/Fortran
compilers and tools. For instructions on using non-standard tools, see the ‘README.packages’
file.

The Makefiles can be customized: in particular the name of the DLL can be set (for example
we once needed integrate-DLLNM=adapt), the compile flags can be set (see the examples in
‘MakeDll’) and the types of help (if any) to be generated can be chosen (variables HELP and
WINHELP). The simplest way to customize the compilation steps is to set variables in a file
‘src/Makevars.win’, which will automatically be included by ‘MakeDLL’. For example, for
RODBC ‘src/Makevars.win’ could include the line

DLLLIBS+=-lodbc32

or, equivalently,
RODBC-DLLLIBS=-lodbc32

but in fact contains the single line
PKG_LIBS=-lodbc32

If you have a file ‘src/Makefile.win’, that will be used as the makefile for source compilation
in place of our makefile and ‘MakeDll’ and ‘src/Makevars.win’ will be ignored.

Package-specific compilation flags can be overridden or added to using the personal file
‘$HOME/.R/Makevars.win’, or if that does not exist, ‘$HOME/.R/Makevars’. (See the ‘rw-FAQ’
for the meaning of $HOME.) For the record, the order of precedence is (last wins)
• ‘MakeDll’ and ‘MkRules’
• ‘src/Makefile’
• ‘src/Makevars.win’ if it exists, otherwise ‘src/Makevars’
• ‘$HOME/.R/Makevars.win’ if it exists, otherwise ‘$HOME/.R/Makevars’.
• ‘src/Makefile.win’ if present causes all of the above to be ignored.

Beware: files ‘src/Makefile’ or ‘src/Makevars’ will be used if they exist and the ‘.win’
equivalents do not. Such files included in package sources are usually designed for use under
Unix and are best removed.

Beware: references to variables in ‘R.dll’ are converted to the right form by using the header
files. You must include them.

For additional control, ‘R_HOME/src/gnuwin32/Makefile’ contains additional make targets
corresponding to various options to R CMD INSTALL. These assume that package foo’s source
code has been installed in directory ‘R_HOME/src/library/foo’. Then make pkg-foo is similar
to R CMD INSTALL foo (but the latter would require ‘R_HOME/src/library’ to be the current
directory). Other targets are
• ziponly-foo, to use zip to compress the help files after building the package.
• ziphelp-foo to both compress the help files and to keep the originals.
• zipdata-foo to compress the data files. This is recommended if you have either many

small data files (as in package Devore5) or a few large data files.
• pkgcheck-foo to check the package (like R CMD CHECK foo).

Using this approach allows variables to be set during the build, e.g.

Chapter 5: Add-on packages 14

make PKGDIR=/mysources RLIB=/R/library pkg-foo

Some variables that may be used include:

• DEBUG=T to compile with debugging information for gdb.

• PKG_CFLAGS= to specify options to the C compiler.

• PKG_CPPFLAGS= to specify options to the preprocessor.

• PKG_CXXFLAGS= to specify options to the C++ compiler.

• PKG_FFLAGS= to specify options to the Fortran compiler.

• PKG_LIBS= to specify options to the linking step making the DLL.

• PKGDIR=/path/to/source to specify the path to the package source files.

• RLIB=/path/to/library to specify the path to the library where the package should be
installed.

For a complete list of variables, see the ‘M*’ files in ‘R_HOME/src/gnuwin32’. The PKG_* flags
are those typically included in ‘Makevars’ files.

5.1.2 Customizing compilation under Unix

The R system and package-specific compilation flags can be overridden or added to by setting
the appropriate Make variables in the personal file ‘$HOME/.R/Makevars-$R_PLATFORM’, or if
that does not exist, ‘$HOME/.R/Makevars’, where ‘R_PLATFORM’ is the platform for which R was
built, as available in the platform component of the R variable R.version.

Package developers are encouraged to use this mechanism to enable a reasonable amount
of diagnostic messaging (“warnings”) when compiling, such as e.g. ‘-Wall -pedantic’ for tools
from GCC, the Gnu Compiler Collection.

5.2 Updating packages

The command update.packages() is the simplest way to ensure that all the packages on
your system are up to date. Set the repos argument as in the previous section. The
update.packages() downloads the list of available packages and their current versions, com-
pares it with those installed and offers to fetch and install any that have later versions on the
repositories.

An alternative interface to keeping packages up-to-date is provided by the command
packageStatus(), which returns an object with information on all installed packages and pack-
ages available at multiple repositories. The print and summary methods give an overview of
installed and available packages, the upgrade method offers to fetch and install the latest ver-
sions of outdated packages.

5.3 Removing packages

Packages can be removed in a number of ways. From a command prompt they can be removed
by

R CMD REMOVE -l /path/to/library pkg1 pkg2 ...

From a running R process they can be removed by

> remove.packages(c("pkg1", "pkg2"),
lib = file.path("path", "to", "library"))

Finally, in most installations one can just remove the package directory from the library.

Note: only remove.packages can remove package bundles.

Chapter 5: Add-on packages 15

5.4 Setting up a package repository

Utilities such as install.packages can be pointed at any CRAN-style repository, and
R users may want to set up their own. The ‘base’ of a repository is a URL such as
http://www.omegahat.org/R: this must be an URL scheme that download.packages supports
(which also includes ftp:// and file://). Under that base URL there should be directory trees
for one or more of the following types of package distributions:
• "source": located at src/contrib and containing ‘.tar.gz’ files.
• "win.binary": located at bin/windows/contrib/x.y for R versions x.y.z and containing

‘.zip’ files.
• "mac.binary": located at bin/macosx/x.y for R versions x.y.z and containing ‘.tgz’

files.

Each terminal directory must also contain a ‘PACKAGES’ file. This can be a concatenation of
the ‘DESCRIPTION’ files of the packages separated by blank lines (provided there are no bundles),
but only a few of the fields are needed. The simplest way to set up such a file is to use function
write_PACKAGES in the tools package, and its help explains which fields are needed.

To add your repository to the list offered by setRepositories(), see the help file for that
function.

http://www.omegahat.org/R

Chapter 6: Internationalization and Localization 16

6 Internationalization and Localization

Internationalization refers to the process of enabling support for non-English languages, and
localization to adapting to a specific country and language.

R has long worked in the ISO Latin-1 8-bit character set and so covered English and most
Western European languages (if not necessarily their currency symbols). What characters are
valid in names was taken from the current locale. In general other locales with single-byte
encodings worked, but e.g. postscript() and pdf() need to be told about the encoding in use.

Full internationalization can be enabled when R is built under Unix-alikes by the (default)
configure option ‘--enable-mbcs’: see Appendix B [Configuration on Unix], page 21. Un-
der Windows, it is enabled by default in source builds, but support for ‘East Asian’ (Chi-
nese/Japanese/Korean) languages is only enabled in the binary install if it is selected in the
installer.

All versions of R support all single-byte character sets that the underlying OS can handle.
These are interpreted according to the current locale, a sufficiently complicated topic to merit
a separate section. Fully internationalized versions can also handle most multi-byte locales,
in which a single character is represented by one, two or more consecutive bytes: examples of
such locales are those using UTF-8 (becoming standard under Linux) and those for Chinese,
Japanese and Korean. Note that only some of the graphics devices can handle multi-byte or
even non-Latin1 character sets: in particular postscript and PDF are in practice restricted to
ISO Latin-1, -2 and -9.

The other aspect of the internationalization is support of the translation of messages. This
is enabled in almost all builds of R as from version 2.1.0.

6.1 Locales

A locale is a description of the local environment of the user, including the preferred language,
the encoding of characters, the currency used and its conventions, and so on. Aspects of the
locale are accessed by the R functions Sys.getlocale and Sys.localeconv.

The system of naming locales is OS-specific. There is quite wide agreement on schemes, but
not on the details of their implementation. A locale needs to specify
• A human language. These are generally specified by a lower-case two-character abbreviation

following ISO 639.
• A ‘territory’, used mainly to specify the currency. These are generally specified by an

upper-case two-character abbreviation following ISO 3166. Sometimes the combination of
language and territory is used to specify the encoding, for example to distinguish between
traditional and simplified Chinese.

• A charset encoding, which determines both how a byte stream should be divided into
characters, and which characters the subsequences of bytes represent.

• Optionally, a modifier, for example to indicate that Austria is to be considered pre- or
post-Euro.

R is principally concerned with the first (for translations) and third. Note that the charset
may be deducible from the language, as some OSes offer only one charset per language, and
most OSes have only one charset each for many languages. Note too the remark above about
Chinese.

6.1.1 Locales under Linux

Modern Linux uses the XPG locale specifications which have the form en_GB, en_GB.utf8, aa_
ER.utf8@saaho, de_AT.iso885915@euro, the components being in the order listed above. (See
man locale and locale -a for more details.) Similar schemes (but often in different cases) are
used by most Unix-alikes.

Chapter 6: Internationalization and Localization 17

6.1.2 Locales under Windows

Windows also uses locales, but specified in a rather less concise way. Most users will
encounter locales only via drop-down menus, but more information and lists can be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/html/_
crt_language_and_country_strings.asp.

6.1.3 Locales under Mac OS X

Mac OS X supports locales in its own particular way, but the R GUI tries to make this easier
for users. See

http://developer.apple.com/documentation/MacOSX/Conceptual/BPInternational/

for how users can set their locales. As with Windows, end users will generally only see lists of
languages/territories.

Internally Mac OS X uses a form similar to Linux but without specifying the encoding (which
is .UTF-8).

6.2 Localization of messages

The preferred language for messages is by default taken from the locale. This can be overridden
first by the setting of the environment variable LANGUAGE and then by the environment variables
LC_ALL, LC_MESSAGES and LANG. (The last three are normally used to set the locale and so
should not be needed, but the first is only used to select the language for messages.) The code
tries hard to map locale names to languages, even on Windows.

Note that you should not expect to be able to change the language once R is running, and
so LC_MESSAGES is not supported by Sys.setlocale.

Messages are divided into domains, and translations may be available for some or all messages
in a domain. R makes use of the following domains.
• Domain R for basic C-level error messages.
• Domain R-pkg for the R stop, warning and message messages in each package, including

R-base for the base package.
• Domain pkg for the C-level messages in each package.
• Domain RGui for the menus etc of the R for Windows GUI front-end.

Dividing up the messages in this way allows R to be extensible: as packages are loaded, their
message translation catalogues can be loaded too.

Translations are looked for by domain according to the currently specified language, as specif-
ically as possible, so for example an Austrian (de_AT) translation catalogue will be used in pref-
erence to a generic German one (de) for an Austrian user. However, if a specific translation
catalogue exists but does not contain a translation, the less specific catalogues are consulted.
For example, R has catalogues for en_GB that translate the Americanisms (e.g., gray) in the
standard messages into English.

Translations in the right language but the wrong charset can generally be made use of by
on-the-fly re-encoding. The LANGUAGE variable (only) can be a colon-separated list, for example
se:de, giving a set of languages in decreasing order of preference. One special value is en@quot,
which can be used in a UTF-8 locale to have English/American error messages with pairs of
quotes translated to Unicode directional quotes.

If no suitable translation catalogue is found or a particular message is not translated in any
suitable catalogue, English is used.

See http://developer.r-project.org/Translations.html for how to prepare and install
translation catalogues.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/html/_crt_language_and_country_strings.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/html/_crt_language_and_country_strings.asp
http://developer.apple.com/documentation/MacOSX/Conceptual/BPInternational/
http://developer.r-project.org/Translations.html

Appendix A: Essential and useful other programs in Unix 18

Appendix A Essential and useful other programs in
Unix

This appendix gives details of programs you will need to build R on Unix-like platforms, or
which will be used by R if found by configure.

Remember that some package management systems (such as RPM and deb) make a distinction
between the user version of a package and the development version. The latter usually has the
same name but with the extension ‘-devel’ or ‘-dev’: you need both versions installed.

A.1 Essential programs

You need a means of compiling C and FORTRAN 77 (see Section B.5 [Using FORTRAN],
page 23). Some add-on packages also need a C++ compiler.

Unless you do not want to view graphs on-screen you need ‘X11’ installed, including its
headers and client libraries. (On Fedora Core Linux this means the ‘xorg-x11-devel’ and
‘xorg-x11-libs’ RPMs, for example. Older Linuxen used ‘XFree86-’.) If you really do not
want these you will need to explicitly configure R without X11, using ‘--with-x=no’.

The command-line editing depends on the readline library available from any GNU mir-
ror: you will need a fairly recent version. Otherwise you will need to configure with
‘--with-readline=no’ (or equivalent).

You will need Perl version 5.004 or later, available via http://www.perl.com/CPAN/, to build
any of the on-line documentation.

You will not be able to build the info files unless you have makeinfo version 4.7 or later
installed, and if not some of the HTML manuals will be linked to CRAN. (makeinfo version 4.7
is fairly recent, but version 4.6 is known to create incorrect HTML files.)

The typeset documentation and building vignettes needs tex and latex, or pdftex and
pdflatex.

If you want to build from the R Subversion repository you need Perl, makeinfo and pdflatex.

A.2 Useful libraries and programs

The use of encodings and the R iconv function depend on having the system iconv func-
tion: this is part of recent versions of glibc and many Unixes. You can also install GNU
libiconv (which is not the same as that in glibc), possibly as a plug-in replacement: see
http://www.gnu.org/software/libiconv/. Note that the R usage requires iconv to be able
to translate between "latin1" and "UTF-8" and to recognize "" as the current encoding – this
is not true of most commercial Unixes.

The ability to use translated messages makes use of gettext and most likely needs GNU
gettext: you do need this to work with new translations, but otherwise that contained in the
R sources will be used if no suitable external gettext is found.

The bitmapped graphics devices jpeg() and png() need the appropriate headers and libraries
installed: jpeg (version 6b or later) or libpng (version 1.2.3 or later) and zlib (version 1.1.3
or later) respectively.

The bitmap and dev2bitmap devices use ghostscript (http://www.cs.wisc.edu/~ghost).

If you have them installed (including the appropriate headers and of recent enough ver-
sions), zlib, libbz2 and PCRE will be used if specified by ‘--with-zlib’, ‘--with-bzlib’ or
‘--with-pcre’: otherwise versions in the R sources will be compiled in. As the latter suffice
and are tested with R you should not need to change this. In particular, the version of zlib
1.2.2 in the R sources has enhancements to work with large file systems on 32-bit platforms.

http://www.perl.com/CPAN/
http://www.gnu.org/software/libiconv/
http://www.cs.wisc.edu/~ghost

Appendix A: Essential and useful other programs in Unix 19

A.2.1 Tcl/Tk

The tcltk package needs Tcl/Tk installed: the sources are available at http://www.tcl.tk/.
To specify the locations of the Tcl/Tk files you may need the configuration options

‘--with-tcltk’
use Tcl/Tk, or specify its library directory

‘--with-tcl-config=TCL_CONFIG ’
specify location of ‘tclConfig.sh’

‘--with-tk-config=TK_CONFIG ’
specify location of ‘tkConfig.sh’

or use the configure variables TCLTK_LIBS and TCLTK_CPPFLAGS to specify the flags needed
for linking against the Tcl and Tk libraries and for finding the ‘tcl.h’ and ‘tk.h’ headers,
respectively.

Versions of Tcl/Tk from 8.3 to 8.4.9 have been used successfully: 8.0 is no longer supported.

A.2.2 Linear algebra

The linear algebra routines in R can make use of enhanced BLAS (Basic Linear Algebra
Subprograms, http://www.netlib.org/blas/faq.html) routines. Some are compiler-system-
specific (libsunperf on Sun Sparc1, libessl on IBM, vecLib on Mac OS X) but ATLAS
(http://math-atlas.sourceforge.net/) is a “tuned” BLAS that runs on a wide range of
Unix-alike platforms. If no more specific library is found, a libblas library in the library path
will be used. You can specify a particular BLAS library via a value for the configuration option
‘--with-blas’ and not to use an external BLAS library by ‘--without-blas’. (Alternatively,
the environment variable BLAS_LIBS can be set, for example in ‘config.site’.)

For systems with multiple processors it is possible to use a multi-threaded version of ATLAS.
An issue is that R profiling, which uses the SIGPROF signal, may cause problems, and you
may want to disable profiling if you use a multi-threaded version of ATLAS. You can use a
multi-threaded ATLAS by specifying

--with-blas="-lptf77blas -lpthread -latlas"

Another tuned BLAS which is available for some processors under Linux is by Kazushige
Goto, currently available at http://www.cs.utexas.edu/users/flame/goto/. Once this is is
installed, it can be used by one of

--with-blas=goto
--with-blas=-lgoto

Multi-threaded versions of Goto’s BLAS are available (and indeed, version 0.99-3 seems only
to be available in a multithreaded version), so please note the caveat in the previous paragraph.
These are likely to require

--with-blas="-lgoto -lpthread"

For Intel processors under Linux, Intel’s Math Kernel Library
http://www.intel.com/software/products/mkl/ can be used by

--with-blas="-lmkl -lguide -lpthread"

with the same caveat on multi-threading. (Thanks to Andy Liaw for the information.)
Note that the BLAS library will be used for several add-on packages as well as for R itself.

This means that it is better to use a shared BLAS library, as most of a static library will be
compiled into the R executable and each BLAS-using package. In any case, the BLAS library
must be usable with dynamically-loadable code: this can be a problem with ATLAS on some
platforms as it is not by default built with position-independent code.

1 Using the SunPro aka Forte aka Sun ONE cc and f95 compilers

http://www.tcl.tk/
http://www.netlib.org/blas/faq.html
http://math-atlas.sourceforge.net/
http://www.cs.utexas.edu/users/flame/goto/
http://www.intel.com/software/products/mkl/

Appendix A: Essential and useful other programs in Unix 20

You will need double-precision and double-complex versions of the BLAS, but not single-
precision nor complex routines.

Provision is made for using an external LAPACK library, principally to cope with BLAS
libraries which contain a copy of LAPACK (such as libsunperf on Solaris and vecLib on Mac
OS X). However, the likely performance gains are thought to be small (and may be negative), and
the default is not to search for a suitable LAPACK library, this is definitely not recommended.
You can specify a specific LAPACK library or a search for a generic library by the configuration
option ‘--with-lapack’. The default for ‘--with-lapack’ is to check the BLAS library and
then look for an external library -llapack. Sites searching for the fastest possible linear algebra
may want to build a LAPACK library using the ATLAS-optimized subset of LAPACK. To do
so specify something like

--with-lapack="-L/path/to/libs -llapack -lcblas"

since the ATLAS subset of LAPACK depends on libcblas. A value for ‘--with-lapack’ can
be set via the environment variable LAPACK_LIBS, but this will only be used if ‘--with-lapack’
is specified (as the default value is no) and the BLAS library does not contain LAPACK.

If you do use ‘--with-lapack’, be aware of potential problems with bugs in the LAPACK
3.0 sources (or in the posted corrections to those sources). In particular, bugs in DGEEV and
DGESDD have resulted in error messages such as

DGEBRD gave error code -10

(from the Debian -llapack which was current in late 2002). Other potential problems are
incomplete versions of the libraries: for example libsunperf from Sun Forte 6.x was missing the
entry point for DLANGE and vecLib has omitted the BLAS routine LSAME. For problems compiling
LAPACK using recent versions of ‘gcc’ on ‘ix86’ Linux, see Appendix F [New platforms],
page 38.

As with all libraries, you need to ensure that they and R were compiled with compatible
compilers and flags. For example, this means that on Sun Sparc using the native compilers the
flag ‘-dalign’ is needed so libsunperf can be used.

An ATLAS ‘tuned’ BLAS can also be used on Windows: see see Section 3.1.2 [Getting the
source files], page 7 when building from source, and R Windows FAQ for adding pre-compiled
support to binary versions. Goto’s BLAS can also be used when building from source.

Note that under Unix (but not under Windows) if R is compiled against a non-default BLAS,
then all BLAS-using packages must also be. So if R is re-built after ATLAS is installed, then
packages such as quantreg will need to be re-installed.

http://CRAN.R-project.org/bin/windows/rw-FAQ.html

Appendix B: Configuration on Unix 21

Appendix B Configuration on Unix

B.1 Configuration options

configure has many options: running
./configure --help

will give a list. Probably the most important ones not covered elsewhere are (defaults in brackets)

‘--with-x’
use the X Window System [yes]

‘--x-includes=DIR ’
X include files are in DIR

‘--x-libraries=DIR ’
X library files are in DIR

‘--with-readline’
use readline library (if available) [yes]

‘--enable-R-profiling’
attempt to compile support for Rprof() [yes]

‘--enable-R-shlib’
build R as a shared library [no]

You can use ‘--without-foo’ or ‘--disable-foo’ for the negatives.
You will want to use ‘--disable-R-profiling’ if you are building a profiled executable of

R (e.g. with ‘-pg)’.
Flag ‘--enable-R-shlib’ causes the make process to build R as a dynamic (shared) library,

typically called ‘libR.so’, and link the main R executable ‘R.bin’ against that library. This can
only be done if all the code (including system libraries) can be compiled into a dynamic library,
and there may be a performance1 penalty. So you probably only want this if you will be using
an application which embeds R. Note that C code in packages installed on a R system linked
with ‘--enable-R-shlib’ are linked against the dynamic library and so such packages cannot
be used from a R system built in the default way.

B.2 Internationalization support

As from version 2.1.0, R has some support for multi-byte character sets (MBCS), in particular
for UTF-8 locales (which are usually identified by suffix .utf8, something like en_GB.utf82.
UTF-8 is an encoding of Unicode and in principle covers all human languages simultaneously:
however, a given system may not have fonts capable of displaying more than a few of these
languages.

To enable UTF-8 support, configure with default ‘--enable-mbcs’. This will check for a
large number of features, notably support for the C99/UNIX98 wide character functions and for
UTF-8 or MBCS support in X11. If enough of these are found, MBCS will be listed as one of the
“Additional capabilities”. Then if R is started in a UTF-8 locale it assumes that the terminal
will supply and display UTF-8-encoded characters3. If run in a single-byte locale, R behaves
almost exactly as if it was configured with ‘--disable-mbcs’.

1 We have measured 15–20% on i686 Linux and around 10% on x86 64 Linux.
2 AIX has to be different: it has EN_US.UTF-8!
3 You may have to set this with luit, but it should be the default in a window manager session started in

UTF-8.

Appendix B: Configuration on Unix 22

A version of R with MBCS support can also be run in other multi-byte locales, for example
those using the EUC-JP, EUC-KR and EUC-TW encodings. A very few parts of R currently
assume that ASCII characters never occur as part of multi-byte character sequences, which is
true of UTF-8 and the EUC-* locales but not some Chinese and Korean locales.

Translation of messages is supported via GNU gettext unless disabled by the configure
option ‘--disable-nls’ or the underlying OS has insufficiently standard C functions to support
it. The configure report will show NLS as one of the ‘Additional capabilities’ if support has
been compiled in, and running in an English locale (but not the C locale) will include

Natural language support but running in an English locale

in the greeting on starting R.

B.3 Configuration variables

If you need or want to set certain configure variables to something other than their default,
you can do that by either editing the file ‘config.site’ (which documents all the variables you
might want to set) or on the command line as

./configure VAR=value

If you are building in a directory different from the sources, there can be copies of ‘config.site’
in the source and the build directories, and both will be read (in that order). To force a single
file to be read, set the environment variable CONFIG_SITE to the location of the file.

These variables are precious, implying that they do not have to be exported to the en-
vironment, are kept in the cache even if not specified on the command line and checked for
consistency between two configure runs (provided that caching is used), and are kept during
automatic reconfiguration as if having been passed as command line arguments, even if no cache
is used.

See the variable output section of configure --help for a list of all these variables.

If you find you need to alter configure variables, it is worth noting that some settings may
be cached in the file ‘config.cache’, and it is a good idea to remove that file (if it exists)
before re-configuring. Note that caching is turned off by default: use the command line option
‘--config-cache’ (or ‘-C’) to enable caching.

B.3.1 Setting paper size

One common variable to change is R_PAPERSIZE, which defaults to ‘a4’, not ‘letter’. (Valid
values are ‘a4’, ‘letter’, ‘legal’ and ‘executive’.)

B.3.2 Setting the browser

Another precious variable is R_BROWSER, the default browser, which should take a value of an
executable in the user’s path or specify a full path.

B.3.3 Compilation flags

If you have libraries and header files, e.g., for GNU readline, in non-system directories, use
the variables LDFLAGS (for libraries, using ‘-L’ flags to be passed to the linker) and CPPFLAGS
(for header files, using ‘-I’ flags to be passed to the C/C++ preprocessors), respectively,
to specify these locations. These default to LDFLAGS=-L/usr/local/lib and CPPFLAGS=-
I/usr/local/include to catch the most common cases (but beware that LDFLAGS may need
altering for 64-bit OSes). If libraries are still not found, then maybe your compiler/linker does
not support re-ordering of ‘-L’ and ‘-l’ flags (this has been reported to be a problem on HP-UX
with the native cc). In this case, use a different compiler (or a front end shell script which does
the re-ordering).

Appendix B: Configuration on Unix 23

B.3.4 Making manuals

The default settings for making the manuals are controlled by R_RD4PDF, R_RD4DVI and R_
PAPERSIZE.

B.4 Using make

To compile R, you will most likely find it easiest to use GNU make. On Solaris 2.6/7/8 in
particular, you need a version of GNU make different from 3.77; 3.79.1 works fine, as does the
Sun make. The native make is reported to fail on SGI Irix 6.5 and Alpha/OSF1 (aka Tru64).

To build in a separate directory you need a make that uses the VPATH variable, for example
GNU make, or Sun make on Solaris 2.7/8/9 (but not earlier).

If you want to use a make by another name, for example if your GNU make is called ‘gmake’,
you need to set the variable MAKE at configure time, for example

./configure MAKE=gmake

B.5 Using FORTRAN

To compile R, you need a FORTRAN compiler or f2c, the FORTRAN-to-C converter
(http://www.netlib.org/f2c). The default is to search for g77, f77, xlf, frt, pgf77, fort77,
fl32, af77,f90, xlf90, pgf90, epcf90, f95, fort, xlf95, ifc, efc, pgf95 lf95, and gfortran
(in that order)4, and then for f2c, and use whichever is found first; if none is found, R cannot
be compiled. The search mechanism can be changed using the configure variables F77 and F2C
which specify the commands that run the FORTRAN 77 compiler and FORTRAN-to-C con-
verter, respectively. If F77 is given, it is used to compile FORTRAN; otherwise, if F2C is given,
f2c is used even if a FORTRAN compiler would be be available. If your FORTRAN compiler
is in a non-standard location, you should set the environment variable PATH accordingly before
running configure, or use the configure variable F77 to specify its full path.

If your FORTRAN libraries are in slightly peculiar places, you should also look at LD_
LIBRARY_PATH or your system’s equivalent to make sure that all libraries are on this path.

You must set whatever compilation flags (if any) are needed to ensure that FORTRAN
integer is equivalent to a C int pointer and FORTRAN double precision is equivalent to a
C double pointer. This is checked during the configuration process. Because of this, f2c will
not be accepted on a 64-bit platform as it produces 64-bit integers, incompatible with C’s int
on such platforms.

Some of the FORTRAN code makes use of COMPLEX*16 variables, which is a FORTRAN 90
extension. This is checked for at configure time5, but you may need to avoid compiler flags6

asserting FORTRAN 77 compliance.

For performance reasons7 you may want to choose a FORTRAN 90/95 compiler.

If you use f2c you may need to ensure that the FORTRAN type integer is translated to
the C type int. Normally ‘f2c.h’ contains ‘typedef long int integer;’, which will work on
a 32-bit platform but not on a 64-bit platform.

B.5.1 Using gfortran

gfortran is the F95 compiler that is part of gcc 4.0.0. At least on ix86 and x86_64 Linux and
MacOS X there is a problem with using the dynamic version of the Fortran runtime libgfortran:

4 On HP-UX fort77 is the POSIX compliant FORTRAN compiler, and comes second in the search list.
5 as well as its equivalence to the Rcomplex structure defined in ‘R_ext/Complex.h’.
6 In particular, avoid g77’s ‘-pedantic’, which gives confusing error messages.
7 e.g., to use an optimized BLAS on Sun/Sparc

http://www.netlib.org/f2c

Appendix B: Configuration on Unix 24

if this is loaded redirection of C ‘stdin’ (which R uses in many of its scripts) becomes non-
functional. A workaround is to set the environment variable GFORTRAN_STDIN_UNIT to -1, but
versions before 10 April 2005 had a bug causing the setting to be ignored. This problem has
been fixed for gcc 4.0.1 and the workaround will become unnecessary. The version of gfortran
shipping with Fedora Core 4 seems to have the workaround in place.

B.6 Compile and load flags

A wide range of flags can be set in the file ‘config.site’ or as configure variables on the
command line. We have already mentioned

CPPFLAGS header file search directory (‘-I’) and any other miscellaneous options for the C and
C++ preprocessors and compilers

LDFLAGS path (‘-L’), stripping (‘-s’) and any other miscellaneous options for the linker

and others include

CFLAGS debugging and optimization flags, C

MAIN_CFLAGS
ditto, for compiling the main program

SHLIB_CFLAGS
for shared libraries

FFLAGS debugging and optimization flags, FORTRAN

MAIN_FFLAGS
ditto, for compiling the main program

SHLIB_FFLAGS
for shared libraries

MAIN_LDFLAGS
additional flags for the main link

SHLIB_LDFLAGS
additional flags for linking the shared libraries

Library paths specified as ‘-L/lib/path’ in LDFLAGS are collected together and prepended to
LD_LIBRARY_PATH (or your system’s equivalent), so there should be no need for ‘-R’ or ‘-rpath’
flags.

To compile a profiling version of R, one might for example want to use ‘MAIN_CFLAGS=-pg’,
‘MAIN_FFLAGS=-pg’, ‘MAIN_LDFLAGS=-pg’ on platforms where ‘-pg’ cannot be used with position-
independent code.

Beware: it may be necessary to set CFLAGS and FFLAGS in ways compatible with the libraries
to be used: one possible issue is the alignment of doubles, another is the way structures are
passed.

B.7 Platform notes

This section provides some notes on building R on different Unix-like platforms. These notes
are based on tests run on one or two systems in each case with particular sets of compilers and
support libraries. Success in building R depends on the proper installation and functioning of
support software; your results may differ if you have other versions of compilers and support
libraries.

Many 32-bit systems have a means of using files > 2Gb, and most are based on that
in the Single Unix specification: see http://ftp.sas.com/standards/large.file/x_
open.20Mar96.html. However, this is only covered under Linux and Solaris.

http://ftp.sas.com/standards/large.file/x_open.20Mar96.html
http://ftp.sas.com/standards/large.file/x_open.20Mar96.html

Appendix B: Configuration on Unix 25

B.7.1 Linux

Linux is the main development platform for R, so compilation from the sources is normally
straightforward.

Remember that some package management systems (such as RPM and deb) make a distinction
between the user version of a package and the developer version. The latter usually has the same
name but with the extension ‘-devel’ or ‘-dev’: you need both versions installed. So please check
the configure output to see if the expected features are detected: if for example ‘readline’ is
missing add the package containing its headers.

When R has been installed from a binary distribution there are sometimes problems with
missing components such as the Fortran compiler. Searching the ‘R-help’ archives will normally
reveal what is needed.

It seems that the ‘gcc’ compilers normally produce PIC code on ‘ix86’ Linux but do not
necessarily do so on 64-bit versions such as that for AMD Opteron. So care can be needed with
BLAS libraries and when building R as a shared library to ensure that position-independent
code is used in any static libraries (such as the Tcl/Tk libraries, libpng, libjpeg and zlib)
which might be linked against. Fortunately these are normally built as shared libraries with the
exception of the ATLAS BLAS libraries.

For versions with both 64- and 32-bit support, it is likely that

LDFLAGS="-L/usr/local/lib64 -L/usr/local/lib"

is appropriate since most (but not all) software installs its 64-bit libraries in
‘/usr/local/lib64’.

64-bit versions of Linux are built with support for files > 2Gb, but 32-bit versions usu-
ally are not. This can be enabled for Linux kernels 2.4.x or later by the configure option
‘--enable-linux-lfs’: it tests for Linux, a suitable kernel and a 32-bit ‘long’ type. A discussion
of which Linux systems support large files can be found at http://www.suse.de/~aj/linux_
lfs.html: it has been available since about 2001.

R used to include the compiler flag ‘-mieee-fp’, but it seems this was really an alias for the
linker flag ‘-lieee’. Neither are needed for a modern Linux (e.g. using glibc 2.2 or 2.3) but
could conceivably be needed on an older version.

Several Linux distributions have shipped unreleased versions of gcc 4.0.0 and its Fortran
compiler gfortran (see the separate comments). Some versions of gcc4 (such as that in Fedora
Core 3) produce incorrect code. In our experiments gcc 3.4.x always produced faster and more
reliable code.

For some comments on building on an Itanium (ia64) Linux system with gcc and Intel
compilers see http://www.nakama.ne.jp/memo/ia64_linux/.

B.7.2 Mac OS X

You can build R as a Unix application on Mac OS X using the Apple Developer Tools and f2c or
g77 or gfortran. You will also need to install an X sub-system or configure with ‘--without-x’.
The X window manager is part of the standard Mac OS X distribution since Mac OS X version
10.3 (Panther).

For more information on how to find these tools please read the R for Mac OS X FAQ.

If you use the X window manager and prefer Terminal.app to xterm, you should be aware
that R, like many Unix tools, uses the existence of a DISPLAY environment variable to determine
whether an X system is running. This affects the default graphics device for the commmand
line version of R and the behaviour of the png() and jpeg devices.

The vecLib library of Mac OS X >= 10.2.2 can be used via the configuration options

http://www.suse.de/~aj/linux_lfs.html
http://www.suse.de/~aj/linux_lfs.html
http://www.nakama.ne.jp/memo/ia64_linux/
http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html

Appendix B: Configuration on Unix 26

--with-blas="-framework vecLib" --with-lapack

to provide higher-performance versions of the BLAS and LAPACK routines. With gcc 3.1 that
appears to be the only way to build R, as the Fortran support routines in libg2c cannot be
linked into a dynamic library. (We have had reports of success and of failure with gcc 3.3.)

B.7.3 Solaris on Sparc

R has been built successfully on Solaris 8 aka Solaris 2.8 aka SunOS 5.8 using gcc/g77 and
the SunPro WorkShop 6 (aka Forte 6) compilers and the ‘Sun ONE Studio 7 Compiler Suite’
(aka Forte 7), and less regularly on Solaris 9 and 10. GNU make was needed prior to Solaris
2.7 for building other than in the source tree, and is sometimes needed to establish the correct
dependencies when rebuilding.

The Solaris versions of several of the tools needed to build R (e.g. make, ar and ld) are in
‘/usr/ccs/bin’, so if using those tools ensure this is in your path.

gcc 3.2.1 and 3.2.2 generate incorrect code on 32-bit Solaris builds with optimization, but
versions 3.1, 3.2, 3.2.3 and later work correctly. (make check fails at the first attempt to plot.)

If using gcc, do ensure that the compiler was compiled for the version of Solaris in use.
(This can be ascertained from gcc -v.) gcc makes modified versions of some header files, and
so (for example) gcc compiled under Solaris 2.6 will not compile R under Solaris 2.7. Also,
do ensure that it was compiled for the assembler/loader in use: if you download gcc from
http://www.sunfreeware.com then you need to download binutils too. To avoid all these
pitfalls we strongly recommended you compile gcc from the sources yourself.

It was reported by Mike Pacey that Sun Forte 9 requires -xopenmp=stubs added to LDFLAGS.
When using the SunPro compilers do not specify ‘-fast’, as this disables IEEE arithmetic

and make check will fail. The maximal set of optimization options known to work is
-xlibmil -xO5 -dalign

We have found little performance difference between gcc and cc but considerable benefit
from using a SunPro Fortran compiler: the gcc/f77 combination works well. For many C++
applications (e.g. package Matrix) Forte 7 requires -lCstd, which the configure script will add
to SHLIB_CXXLDFLAGS if it identifies the compiler correctly.

A 32-bit version of R is built without large file support and so can only handle files up to
2Gb (unlike 64-bit versions). According to ‘man lfcompile’ this restriction can be removed if
‘-D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1’ is added to ‘CFLAGS’.

To compile for a 64-bit target on Solaris (which needs an UltraSparc chip and for support to
be enabled in the OS) with the Forte 6 and 7 compilers we used

CC="cc -xarch=v9"
CFLAGS="-xO5 -xlibmil -dalign"
F77="f95 -xarch=v9"
FFLAGS="-xO5 -xlibmil -dalign"
CXX="CC -xarch=v9"
CXXFLAGS="-xO5 -xlibmil -dalign"

in ‘config.site’.
For 64-bit compilation with gcc 3.2.x and later we used

CC="gcc -m64"
F77="g77 -m64"
CXX="g++ -m64"
LDFLAGS="-L/usr/local/lib/sparcv9 -L/usr/local/lib"

Note that ‘/usr/local/lib/sparcv9’ will need to be in the ‘LD_LIBRARY_PATH’ during con-
figuration.

http://www.sunfreeware.com

Appendix B: Configuration on Unix 27

Note that using f95 allows the Sun performance library libsunperf to be selected: it will
not work with f77, nor with g77. libsunperf contains both BLAS and LAPACK code, and
‘--with-lapack’ is recommended for 32-bit builds using f95, but not for 64-bit builds where on
our test system it failed in both Forte 6U1 and 7, albeit in different ways. Our experience has
been that ATLAS’s BLAS is faster than libsunperf, especially for complex numbers.

Some care is needed to ensure that libraries found by configure are compatible with the R
executable and modules, as the testing process will not detect many of the possible problems.
For 32-bit builds under cc the flag ‘-dalign’ is needed for some of the Sun libraries: fortunately
the equivalent flag for gcc, ‘-mno-unaligned-doubles’, is the default. In theory, libraries such
as libpng, libjpeg, zlib and the ATLAS libraries need to be built with a pic or PIC flag,
which could be a problem if static libraries are used. In practice this seems to give little problem
for 32-bit builds.

For a 64-bit build, 64-bit libraries must be used. As the configuration process by default
sets LDFLAGS to ‘-L/usr/local/lib’, you may need to set it to avoid finding 32-bit addons
(as in the gcc -m64 example above). It is possible to build Tcl/Tk as 64-bit libraries with the
configure option --enable-64bit, but only with the Forte compiler (and not with gcc) as of
Tcl/Tk 8.4.5.

B.7.4 HP-UX

The reports on HP-UX here predate R 2.0.0.
R has been built successfully on HP-UX 10.2 and HP-UX 11.0 using both native compilers

and gcc. However, 10.2 has not been tested since R 1.4.0. By default, R is configured to use
gcc and g77 on HP-UX (if available). Some installations of g77 only install a static version of
the g2c library that cannot be linked into a shared library since its files have not been compiled
with the appropriate flag for producing position independent code (PIC). This will result in make
failing with a linker error similar to

ld: CODE_ONE_SYM fixup to non-code subspace in file foo.o -
shared library must be position independent. Use +z or +Z to recompile.

(‘+z’ and ‘+Z’ are the PIC flags for the native compiler cc.) If this is the case you either need to
modify your g77 installation or configure with

F77=fort77

to specify use of the native POSIX-compliant FORTRAN 77 compiler.
You may find that configure detects other libraries that R needs to use as shared libraries

but are only available as static libraries. If you cannot install shared versions you will need to
tell configure not to use these libraries, or make sure they are not in the library path. The
symptom will be the linker error shown in the last paragraph. Static libraries that might be
found and would cause problems are

BLAS use ‘--without-blas’
Tcl/Tk use ‘--without-tcltk’
libpng use ‘--without-libpng’
jpeg use ‘--without-jpeglib’
zlib use ‘--without-zlib’

and bzip2 and pcre are problematic when building ‘libR.so’, only. These can be avoided by
‘--without-bzlib’ and ‘--without-pcre’ respectively, but these are the defaults.

Some versions of gcc may contain what appears to be a bug at the ‘-O2’ optimization level
that causes

> 2 %/% 2
[1] 1
> 1:2 %/% 2

Appendix B: Configuration on Unix 28

[1] 0 0 # wrong!!

which will cause make check to fail. If this is the case, you should use CFLAGS to specify ‘-O’ as
the optimization level to use.

Some systems running HP-UX 11.0 may have a gcc that was installed under HP-UX 10.2.
Between versions 10.2 and 11.0 HP-UX changed its support functions for IEEE arithmetic from
the recommended functions of the IEEE standard to the ones specified in the C9x draft standard.
In particular, this means that finite has been replaced by isfinite. A gcc configured for
HP-UX 10.2 run on 11.0 will not find isfinite, and as a result configure does not recognize
the machine as fully supporting IEEE arithmetic and so will not complete. The best solution is
to install a properly configured gcc. An alternative work-around is to add ‘-DIEEE_754’ to the
CFLAGS variable.

You can configure R to use both the native cc and fort77 with
./configure CC=cc F77=fort77

f90 insists on linking against a static ‘libF90.a’ which typically resides in a non-standard
directory (e.g., ‘/opt/fortran90/lib’). Hence, to use f90 one needs to add this directory
to the linker path via the configure variable LDFLAGS (e.g., ./configure F77=f90
LDFLAGS=/opt/fortran90/lib).

B.7.5 IRIX

R 2.1.0 has been successfully built on IRIX64 6.5 using both gcc and the native (MipsPro 7.4)
compiler. However, neither version has passed make check due to a problem with time zones
(see below). A 64-bit executable has not been successfully built.

To build R with gcc use the following configuration flags
CPPFLAGS="-I/usr/freeware/include"
LDFLAGS="-L/usr/freeware/lib32"

To build the Tcl/Tk package you need to add
--with-tclconfig=/usr/freeware/lib/tclConfig.sh
--with-tkconfig=/usr/freeware/lib/tkConfig.sh

since these configuration scripts are not on your path.
To build R with the native compilers, use the following configuration flags

CC=cc F77=f77 CXX=CC
CPPFLAGS="-I/usr/freeware/include" LDFLAGS="-L/usr/freeware/lib32"
CFLAGS="-O2" FFLAGS="-O2" CXXFLAGS="-O2"
--with-bzlib=yes

The MipsPro compiler will not build the bzlib library, so you must use the external one
provided by SGI as a freeware package.

After configuration, it is necessary to use gmake instead of the native make to build R.
There is a problem with the time zones on IRIX (originally reported by George

N. White III for 1.9.0) which will cause the strptime tests to fail unless Arthur
Olson’s timezone data ftp://elsie.nci.nih.gov/pub/ has been installed (see also
http://cspry.co.uk/computing/Indy_admin/TIMEZONE.html) and -ltz is added to the list
of libraries (for example, in environment variable LIBS).

B.7.6 Alpha/OSF1

R has been built successfully on an Alpha running OSF1 V4.0 / V5.1 using gcc/g77 and cc/f77.
Mixing cc and g77 fails to configure. The configure option ‘--without-blas’ was used since
the native blas seems not to have been built with the flags needed to suppress SIGFPE’s. Cur-
rently R does not set a signal handler for SIGFPE on platforms that support IEEE arithmetic,
so these are fatal.

ftp://elsie.nci.nih.gov/pub/
http://cspry.co.uk/computing/Indy_admin/TIMEZONE.html

Appendix B: Configuration on Unix 29

At some point in the past using cc required ‘-std1’ to be set so ‘__STDC__’ was de-
fined. As far as we know this is no longer needed, and configure no longer sets it, but it
does set ‘-ieee_with_inexact’ for the C compiler and ‘-fpe3’ for the Fortran compiler (and
‘-mieee-with-inexact’ and ‘-mieee’ for gcc/g77).

B.7.7 Alpha/FreeBSD

Attempts to build R on an Alpha with FreeBSD 4.3 have been only partly successful. Configuring
with ‘-mieee’ added to both CFLAGS and FFLAGS builds successfully, but tests fail with SIGFPE’s.
It would appear that ‘-mieee’ only defers these rather than suppressing them entirely. Advice
on how to complete this port would be greatly appreciated.

B.7.8 AIX

On AIX 4.3.3 and AIX 5.1, it was found that the use of “run time linking” (as opposed to normal
AIX style linking) was required. For this, the R main program must be linked to the runtime
linker with the ‘-brtl’ linker option, and shareable objects must be enabled for runtime linking
with the ‘-G’ linker option. Without these options, the AIX linker would not automatically link
to any shared object with a ‘.so’ extension. Also, the R main program would be unable to
dynamically load modules (such as X11) with the dlopen call.

When setting MAIN_LDFLAGS and SHLIB_LDFLAGS accordingly, note that linker flags must
be escaped using ‘-Wl,’ if gcc is used for linking: use ‘MAIN_LDFLAGS="-Wl,brtl"’ and
‘SHLIB_LDFLAGS="-Wl,-G"’ in this case.

Harald Servat Gelabert <harald at cepba dot upc dot es> reported success building R 1.7.0
under AIX 5.1 with

CC=xlc
F77=xlf
CXX=xlC
CFLAGS=’-O3 -qstrict -qmaxmem=8192’
FFLAGS=’-O3 -qstrict -qmaxmem=8192’
CXXFLAGS=’-O2 -qmaxmem=8192’
MAIN_LDFLAGS=’-Wl,-brtl’
SHLIB_LDFLAGS=’-Wl,-G’

but was unable to use the X libraries or the native BLAS (ESSL) and so used ‘--without-x
--without-blas’.

Tim Hoar <thoar at cgd dot ucar dot edu> reported success building R 1.9.0 under AIX 5.1
in 64-bit mode with

OBJECT_MODE=64
CC=/usr/bin/xlc_r
F77=/usr/bin/xlf_r
CXX=/usr/bin/xlC_r
LDFLAGS=’-brtl’
CFLAGS=’-O -qstrict’
FFLAGS=’-O -qstrict’
CXXFLAGS=’-O -qstrict’

and the X11() device worked. [His system required the ‘Makeconf’ file to be edited to replace
‘/lib/crt0.o’ by ‘/lib/crt0_64.o’ in R_XTRA_LIBS, but configure now tries to detect this.]

Paul Boutros reported success building R 2.0.1 under AIX 5.2 with gcc 3.3.2 using

OBJECT_MODE=64
MAIN_LDFLAGS=-Wl,-brtl
SHLIB_LDFLAGS=-Wl,-G

Appendix B: Configuration on Unix 30

(note it is Wl (W ell) not W1 (W one)).
We understand that ‘--enable-R-shlib’ does not work under AIX.

Appendix C: Building the GNOME console 31

Appendix C Building the GNOME console

This interface is experimental and incomplete. The console offers a basic command line editing
and history mechanism, along with tool and button bars that give a point-and-click console to
some R commands. Many of the features of the console are currently stubs.

Two graphics devices have been available but are currently unbundled. The gtk() graphics
device is a port of the x11() device to GDK (the GIMP Drawing Kit), and is available from
CRAN as package gtkDevice: this cooperates rather better with the console than the x11()
device. The gnome() device used the GNOME canvas, and is not currently available.

The sources for the GNOME console for R are now available as package gnomeGUI on CRAN
and via Subversion by

svn co https://svn.r-project.org/R-packages/trunk/gnomeGUI

You need to have built R first with the ‘--enable-R-shlib’ option, and installed R to where
you are going to use it from.

Please check you have all the requirements. You need at least the following packages (or
later) installed

audiofile-0.2.1
esound-0.2.23
glib-1.2.10
gtk+-1.2.10
imlib-1.9.10
ORBit-0.5.12
gnome-libs-1.4.1.2
libxml-1.8.16
libglade-0.17

It is preferable to have a complete installation of the GNOME desktop environment. If you use
Linux, then this should be provided with your distribution.

Remember that some package management systems (such as RPM and deb) make a distinction
between the user version of a package and the developer version. The latter usually has the same
name but with the extension ‘-devel’. If you use a pre-packaged version of GNOME then you
must have the developer versions of the above packages in order to compile the R-GNOME
console.

It is possible to install the front-end in the same way as an R package, via R CMD INSTALL or
install.packages.

For greater control, it can be configured and built independently of R. Create a build direc-
tory, and from there run

/path/to/gnomeGUI/configure R_HOME=/path/to/R/installation
make
make install

This installs the two files ‘bin/exec/Rgnome’ and ‘share/glade/gnome-interface.glade’ in
‘R_HOME ’.

The full list of options to this configure is

‘R_HOME’ the directory (containing ‘bin/R’) of the R installation

‘--with-gnome’
specify the prefix for the GNOME dirs

‘--with-gnome-includes=DIR ’
specify location of GNOME headers

Appendix C: Building the GNOME console 32

‘--with-gnome-libs=DIR ’
specify location of GNOME libs

‘--with-libglade-config=LIBGLADE_CONFIG ’
specify location of libglade-config

Appendix D: Enabling search in HTML help 33

Appendix D Enabling search in HTML help

There is a search engine available from the front page of the HTML help system, the page that
is displayed by help.start(). The search engine is written in Java and invoked by Javascript
code, so the first thing to do is to ensure that both are enabled in your favourite browser. Then
try it and see: with most browsers you should see

Applet SearchEngine started

displayed in the status bar. (Internet Explorer shows Applet started.) Then click on one of
the keywords and after a short delay (several seconds) you should see a page of search results.

If this fails you should double-check that Java is enabled in your browser by visiting a
page such as http://www.java.com/en/download/help/testvm.jsp (although that will fail
for earlier versions of Java such as the Microsoft JVM which do work with R). Java 1.1 is
sufficent.

On Mozilla-based browsers the links on the results page will become inactive if you return to
it: to work around this you can open a link in a new tab or window.

Many thanks to Marc Schwartz in tracking down many of these issues with enabling the Java
search engine.

D.1 Java Virtual Machines on Linux

We are aware of problems with certain Java installations. In particular, Sun’s Java Run-time
Environment j2re 1.4.2_02 to _05 do not work under Linux. Version jre 1.5.0 is strongly
recommended for Mozilla-based browsers.

This and j2re 1.4.2_01 do work: the latter can be found in Sun’s archive at
http://java.sun.com/products/archive/.

Other Java installations, for example those from Blackdown and IBM, have been used.

Other useful links are for Mozilla, http://plugindoc.mozdev.org/faqs/java.html
and http://www.mozilla.org/releases/mozilla1.6/installation-extras.html,
for Konqueror http://www.konqueror.org/javahowto/, for Opera
http://www.opera.com/support/search/supsearch.dml?index=459 and for Debian
GNU/Linux http://www.debian.org/doc/manuals/debian-java-faq/.

D.2 Java Virtual Machines on Unix

We have much less experience, but we do know that Sun’s Run-time Environment j2re
1.4.2_03 does not work under Solaris, whereas jre 1.5.0 and j2re 1.4.2_01 (available from
http://java.sun.com/products/archive/) do.

D.3 Java Virtual Machines on Windows

We have not seen any problems on Windows provided a Java Virtual Machine has
been installed and is operational: Sun’s current j2re 1.5.0 works in Internet Explorer,
Netscape 7.1, Mozilla 1.6/7 and Mozilla FireFox on Windows XP. Note that a recent
Windows system may not have Java installed at all. For Netscape/Mozilla/FireFox visit
http://java.sun.com/getjava/manual.html to install a Sun JVM. Which (if any) JVM is
enabled can be set in ‘Set Program Access and Defaults’ in Windows XP (SP1 or later), and
which JVM is used by browser plugins may also be controlled by the Sun Java applet in the
Control Panel.

Recent versions of Internet Explorer may block the use of Java applets and need the block
removed via the information bar.

http://www.java.com/en/download/help/testvm.jsp
http://java.sun.com/products/archive/
http://plugindoc.mozdev.org/faqs/java.html
http://www.mozilla.org/releases/mozilla1.6/installation-extras.html
http://www.konqueror.org/javahowto/
http://www.opera.com/support/search/supsearch.dml?index=459
http://www.debian.org/doc/manuals/debian-java-faq/
http://java.sun.com/products/archive/
http://java.sun.com/getjava/manual.html

Appendix D: Enabling search in HTML help 34

D.4 Java Virtual Machines on Mac OS X

The HTML search engine does not work with Safari under Mac OS X, but j2re
1.4.x may work with Mozilla, Firefox and Camino if the Java Embedding Plugin
http://javaplugin.sourceforge.net/ is used.

The Aqua GUI provides an interface to help.search that may substitute for the Java search.

http://javaplugin.sourceforge.net/

Appendix E: The Windows toolset 35

Appendix E The Windows toolset

If you want to build R from the sources in Windows, you will need to collect, install and test
an extensive set of tools. See http://www.murdoch-sutherland.com/Rtools/ for the current
locations and other updates to these instructions.

Some of these tools are also necessary for building add-on packages from source. (Most
Windows users will not need to do that; see Chapter 5 [Add-on packages], page 12 for details.)
We have found that the build process for R is quite sensitive to the choice of tools: please follow
our instructions exactly, even to the choice of particular versions of the tools. The build process
for add-on packages is somewhat more forgiving, but we recommend using the exact toolset at
first, and only substituting other tools once you are familiar with the process.

This section contains a lot of prescriptive comments. They are here as a result of bitter
experience. Please do not report problems to R-help unless you have followed all the prescriptions.

You will certainly need the following items to produce a working copy of R. See the subsections
below for detailed descriptions.
• The command line tools
• Perl
• The MinGW compilers

For building simple packages containing data or R source but no compiled code, only the
first two of these are needed.

A complete build of R including compiled HTML help files and PDF manuals, and producing
the standalone installer ‘rw2011.exe’ will also need the following:
• The Microsoft HTML Help Workshop
• LATEX
• The Inno Setup installer

Your path should include ‘.’ first, then the ‘bin’ directories of the tools, perl, minGW, and
LATEX, as well as the Help Workshop directory. Do not use filepaths containing spaces: you can
always use the short forms (found by dir /x at the Windows command line). It is essential
that the directory containing the command line tools comes first or second in the path: there
are typically like-named tools in other directories, and they will not work. The ordering of the
other directories is less important, but if in doubt, use the order above.

Edit ‘R_HOME/src/gnuwin32/MkRules’ to set the appropriate paths as needed and to set the
type(s) of help that you want built. Beware: ‘MkRules’ contains tabs and some editors (e.g.
WinEdt) silently remove them.

Set the appropriate environment variables.
Our toolset contains copies of Cygwin dlls that may conflict with other ones on your system

if both are in the path at once. The normal recommendation is to delete the older ones; however,
at one time we found our tools did not work with a newer version of the Cygwin dlls, so it is
safest not to have any other version of the Cygwin dlls in your path.

E.1 The command line tools

You will need suitable versions of at least basename, cat, comm, cp, cut, diff, echo,
egrep, expr, find, gawk, grep, gzip, ls, make, makeinfo, mkdir, mv, rm, sed, sh, sort,
texindex and touch; we use those from the Cygwin distribution (http://www.cygwin.com)
or compiled from the sources. You will also need zip and unzip from the Info-ZIP
project (http://www.info-zip.org). We have packaged a set of all of these tools at
http://www.murdoch-sutherland.com/Rtools/tools.zip.

http://www.murdoch-sutherland.com/Rtools/
http://www.cygwin.com
http://www.info-zip.org
http://www.murdoch-sutherland.com/Rtools/tools.zip

Appendix E: The Windows toolset 36

Beware: ‘Native’ ports of make are not suitable (including that at the mingw site). There
were also problems with several earlier versions of the cygwin tools and dll. To avoid frustration,
please use our tool set, and make sure it is at the front of your path (including before the Windows
system directories). If you are using a Windows shell, type PATH at the prompt to find out.

E.2 Perl

You will need the Windows port of perl5. A package containing this is available from
http://www.activestate.com/Products/ActivePerl/.

Beware: you do need the Windows port and not the Cygwin one.

E.3 The MinGW compilers

You need a recent version of the MinGW port of gcc from http://sourceforge.net/projects/mingw/.
See the notes on http://www.murdoch-sutherland.com/Rtools for updates.

The most recent installer is called ‘MinGW-4.1.0.exe’, which downloads components for
SourgeForge. We suggest you select the core packages and the candidate compilers (gcc-3.4.4),
and then at the next screen select just gcc-core, gcc-g++ and gcc-g77 (and no compilers in
the code list). The screen showing confirmation of the selections will then look like:

Selected components:
The minimal set of packages required to build C/C++

Install a Current version of CORE files
The full set of compilers packages

Install a Candidate version of Compilers files

Additional tasks:
Current

Install Current Version Files
Current/runtime
Current/w32api
Current/binutils

Candidate
Candidate/gcc-core
Candidate/gcc-g++
Candidate/gcc-g77

E.4 The Microsoft HTML Help Workshop

To make compiled html (‘.chm’) files you will need the Microsoft HTML Help Workshop, currently
available for download at http://msdn.microsoft.com/library/en-us/htmlhelp/html/hwmicrosofthtmlhelpdownloads.asp
and http://www.microsoft.com/office/ork/xp/appndx/appa06.htm.

You may need this on the same drive as the other tools. (Although we have successfully used
it elsewhere, others have reported problems).

To skip building compiled html help, set WINHELP=NO in ‘MkRules’. In this case the Help
Workshop will not be needed.

E.5 LATEX

The fptex distribution of LATEX (via http://www.fptex.org) includes a suitable port of
pdftex. We have also used miktex (http://www.miktex.org), which needs some customiza-
tion: see http://www.murdoch-sutherland.com/Rtools/miktex.html.

http://www.activestate.com/Products/ActivePerl/
http://sourceforge.net/projects/mingw/
http://www.murdoch-sutherland.com/Rtools
http://msdn.microsoft.com/library/en-us/htmlhelp/html/hwmicrosofthtmlhelpdownloads.asp
http://www.microsoft.com/office/ork/xp/appndx/appa06.htm
http://www.fptex.org
http://www.miktex.org
http://www.murdoch-sutherland.com/Rtools/miktex.html

Appendix E: The Windows toolset 37

Please read Section 2.2 [Making the manuals], page 4 about how to make ‘refman.pdf’ and
set the environment variables R_RD4DVI and R_RD4PDF suitably; ensure you have the required
fonts installed.

E.6 The Inno Setup installer

To make the install package (‘rw2011.exe’) in the current Windows style we require Inno Setup
5.1.2 or later from http://jrsoftware.org.

http://jrsoftware.org

Appendix F: New platforms 38

Appendix F New platforms

There are a number of sources of problems when installing R on a new hardware/OS platform.
These include

Floating Point Arithmetic: R supports the POSIX, SVID and IEEE models for floating point
arithmetic. The POSIX and SVID models provide no problems. The IEEE model however
can be a pain. The problem is that there is no agreement on how to set the signalling be-
haviour; Sun/Sparc, SGI/IRIX and ix86 Linux require no special action, FreeBSD requires
a call to (the macro) fpsetmask(0) and OSF1 requires that computation be done with a
‘-ieee_with_inexact’ flag etc. On a new platform you must find out the magic recipe and
add some code to make it work. This can often be done via the file ‘config.site’ which resides
in the top level directory.

Beware of using high levels of optimization, at least initially. On many compilers these reduce
the degree of compliance to the IEEE model. For example, using ‘-fast’ on the Solaris SunPro
compilers causes R’s NaN to be set incorrectly.

Shared Libraries: There seems to be very little agreement across platforms on what needs
to be done to build shared libraries. there are many different combinations of flags for the
compilers and loaders. GNU libtool cannot be used (yet), as it currently does not fully support
FORTRAN (and will most likely never support f2c: one would need a shell wrapper for this).
The technique we use is to first interrogate the X window system about what it does (using
xmkmf), and then override this in situations where we know better (for tools from the GNU
Compiler Collection and/or platforms we know about). This typically works, but you may have
to manually override the results. Scanning the manual entries for cc and ld usually reveals the
correct incantation. Once you know the recipe you can modify the file ‘config.site’ (following
the instructions therein) so that the build will use these options.

It seems that ‘gcc 3.4.x’ and later on ‘ix86’ Linux defeat attempts by the LA-
PACK code to avoid computations entirely in extended-precision registers, so file
‘src/modules/lapack/dlamc.f’ may need to be compiled without optimization. If configure
detects GNU Fortran it adds flag ‘-ffloat-store’ which suffices, but it is possible that
‘src/modules/lapack/Makefile’ will need to be edited to remove optimization on other
platforms.

If you do manage to get R running on a new platform please let us know about it so we can
modify the configuration procedures to include that platform.

If you are having trouble getting R to work on your platform please feel free to get in touch
to ask questions. We have had a fair amount of practice at porting R to new platforms . . .

Function and variable index 39

Function and variable index

C
configure . 3, 5, 22, 23

H
HELP . 13

I
install.binaries . 12
install.packages . 12

M
make . 23

MakeDll . 13
Makevars.win . 13

R
R_HOME . 3
remove.packages . 14

U
update.packages . 14

W
WINHELP . 13

Concept index 40

Concept index

A
AIX . 29

B
BLAS library . 19, 23, 25, 26

F
FORTRAN . 23

H
Help pages . 4
HP-UX . 27

I
Installation . 5
Installing under Unix-alikes . 3
Installing under Windows . 7
Internationalization . 16
IRIX . 28

L
LAPACK library . 20, 25, 26
Linux . 3, 25
Locale . 16
Localization . 16

M
Mac OS X . 3, 11, 25
Manuals . 4
Manuals, installing . 5

O
Obtaining R . 1

P
Packages . 12
Packages, installing . 12
Packages, removing . 14
Packages, updating . 14

R
Rbitmap.dll. 8
Repositories . 15

S
Solaris . 26
Sources for R . 1

V
Vignettes . 4, 18

	Obtaining R
	Getting and unpacking the sources
	Getting patched and development versions
	Using Subversion and rsync

	Installing R under Unix-alikes
	Simple compilation
	Making the manuals
	Installation
	Uninstallation

	Installing R under Windows
	Building from source
	Getting the tools
	Getting the source files
	Building the core files
	Building the bitmap files
	Windows internationalization
	Building the recommended packages
	Building the manuals
	Building the installers
	Checking the build
	Cross-building on ix86 Linux

	Installing R under Mac OS X
	Building from source on Mac OS X

	Add-on packages
	Installing packages
	Customising compilation in Windows
	Customizing compilation under Unix

	Updating packages
	Removing packages
	Setting up a package repository

	Internationalization and Localization
	Locales
	Locales under Linux
	Locales under Windows
	Locales under Mac OS X

	Localization of messages

	Essential and useful other programs in Unix
	Essential programs
	Useful libraries and programs
	Tcl/Tk
	Linear algebra

	Configuration on Unix
	Configuration options
	Internationalization support
	Configuration variables
	Setting paper size
	Setting the browser
	Compilation flags
	Making manuals

	Using make
	Using FORTRAN
	Using gfortran

	Compile and load flags
	Platform notes
	Linux
	Mac OS X
	Solaris on Sparc
	HP-UX
	IRIX
	Alpha/OSF1
	Alpha/FreeBSD
	AIX

	Building the GNOME console
	Enabling search in help
	Java Virtual Machines on Linux
	Java Virtual Machines on Unix
	Java Virtual Machines on Windows
	Java Virtual Machines on Mac OS X

	The Windows toolset
	The command line tools
	Perl
	The MinGW compilers
	The Microsoft Help Workshop
	LaTeX{}
	The Inno Setup installer

	New platforms
	Function and variable index
	Concept index

