Synthese bioaktiver 3-Acyltetronsäuren und 3-Acyltetramsäuren

vorgelegt von

Carsten Jagusch

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Fakultät für Biologie, Chemie und Geowissenschaften

der Universität Bayreuth

Bayreuth, 2005

Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

Die Arbeiten zur vorliegenden Dissertation wurden im Zeitraum von Juli 2002 bis September 2005 am Lehrstuhl für Organische Chemie der Universität Bayreuth unter der Leitung von Prof. Dr. Rainer Schobert durchgeführt.

Dissertation eingereicht am: 22.09.2005

Zulassung durch die Promotionskommission: 26.10.2005

Tag des wissenschaftlichen Kolloquiums: 22.12.2005

Amtierender Dekan: Prof. Dr. C. Beierkuhnlein

Prüfungsausschuss: Erstgutachter: Prof. Dr. R. Schobert Zweitgutachter: Prof. Dr. K. Seifert Vorsitzender: Prof. Dr. H. Alt Prof. Dr. F. X. Schmid

DANKSAGUNG

Mein besonderer Dank gilt Prof. Dr. Rainer Schobert für das sehr interessante Thema, die sehr gute Betreuung und stete Diskussionsbereitschaft.

Dem gesamten Arbeitskreis danke ich für das sehr gute Arbeitsklima, das dafür sorgte, dass ich jeden Morgen gerne das Labor betrat.

Bei Bernhard, Georg, Juan, Ralf und Regina möchte ich mich für das aufmerksame Korrekturlesen und den zahlreichen Tipps und Verbesserungsvorschlägen bei der Anfertigung dieser Arbeit bedanken. Gillian danke ich dafür, dass sie mir bei der Übersetzung der Zusammenfassung mit Rat und Tat zur Seite stand.

Großer Dank gebührt meinen Mitarbeiterpraktikanten Andrea, Andreas, Antje, Bertram, Christa, Christin, Daniel, Katrin, Markus, Miriam, Paul, Ronald, Sebastian, Yvonne für ihren unermüdlichen Einsatz im Labor.

Für zahlreiche NMR- und MS-Messungen bedanke ich mich bei Kerstin und Michael.

Werner bin ich für die Synthese verschiedener Ausgangsmaterialien zu Dank verpflichtet.

Ein großes Danke an Rosi für ihre Süssigkeiten, die schnelle Beschaffung von Verbrauchsmaterial und sämtliche administrativen Angelegenheiten.

Claus danke ich dafür, dass er bei allen Computerproblemen stets zur Stelle war und den Computer wieder zum Laufen gebracht hat.

Vielen Dank an meine Freunde Gillian und Juan für den Austausch von Chemikalien und die zahlreichen fachlichen und nichtfachlichen Diskussionen in- und außerhalb des Labors.

Bedanken möchte ich mich auch bei Dr. Rainer Ebel von Institut für Pharmazie an der Heinrich-Heine Universität Düsseldorf für die Überlassung des Photos des Schwamms *Melophlus sarassinorum*.

Für die Messung des ³¹P-MAS-TOSS-NMR-Spekrum des immobilisierten Ketenylidentriphenylphosphorans bin ich Prof. Dr. Walter Bauer von der Universität Erlangen sehr dankbar.

Großen Dank schulde ich meiner lieben Frau Regina, dass sie mich in den letzten Wochen des Zusammenschreibens unterstützt und meine Launen ertragen hat.

Danke und Entschuldigung an alle, die ich vergessen habe.

Meiner Frau und

meinen Eltern

INHALTSVERZEICHNIS

DANKSAGUNG	
INHALTSVERZEICHNIS	
Abkürzungsverzeichnis	1
A. ALLGEMEINER TEIL	1
1 NATÜRLICHE 3-ACYLTETRONSÄUREN	1
1.1 Allgemeines	1
1.2 Strukturen und Wirkungen	3
1.3 Synthesen von Tetronsäuren	5
1.3.1 Dieckmann-Kondensation	5
1.3.2 Blaise-Reaktion	6
1.3.3 Domino-Reaktionen	7
1.3.4 Andere Tetronsäuresynthesen	
2 NATÜRLICHE 3-ACYLTETRAMSÄUREN	12
2.1 Allgemeines	12
2.2 Strukturen und Wirkungen	13
2.2.1 Alkanoyltetramsäuren	13
2.2.2 Di- und Polyenoyltetramsäuren	14
2.2.3 Macrocyclische Tetramsäuren	17
2.2.4 <i>N</i> -Acyltetramsäuren	
2.3 Synthesen von Tetramsäuren	19
2.3.1 Lacey-Dieckmann-Cyclisierung	19
2.3.2 Umsetzung von Aminosäuren mit Meldrum's Säure	
2.3.3 Dominosynthese	21
2.3.4 Andere Tetramsäuresynthesen	21

B. SPEZIELLER TEIL	23
3 PROBLEMSTELLUNG	23
4 SYNTHESE, STRUKTUR UND EIGENSCHAFTEN VON IMMOBILISIER	RTEM
Ph ₃ P=C=C=O	24
4.1 Struktur und Eigenschaften von Ph ₃ P=C=C=O	24
4.2 Synthese von immobilisiertem Ph ₃ P=C=C=O	27
4.3 Reaktionen mit polymer-gebundenem Ph ₃ P=C=C=O	30
4.3.1 Dreikomponentenreaktion	30
4.3.2 Reaktion mit Grignard-Reagenzien	31
4.3.3 Reaktion mit α-Hydroxyestern	32
4.3.4 Reaktion mit α-Aminoestern	33
5 FESTPHASENSYNTHESE VON TETRONATEN	36
5.1 Anknüpfung durch nukleophile Ringöffnung von Glycidestern	36
5.2 Anknüpfung mittels Mitsunobu-Reaktion	38
6 SYNTHESE VON CARLOSISCHER SÄURE	41
6.1 Struktur und Wirkung	41
6.2 Biosynthese	41
6.3 Synthesen von anderen Arbeitsgruppen	42
6.4 Retrosynthese	44
6.5 Totalsynthese von Carlosischer Säure	45
7 TOTALSYNTHESE VON RK-682 UND AGGLOMERIN A-C	47
7.1 Struktur und Wirkung von RK-682	47
7.2 Synthesen von RK-682 von anderen Arbeitsgruppen	50
7.3 Retrosynthese	52
7.4 Lösungssynthese von RK-682	53
7.5 Festphasensynthese von RK-682	55
7.6 Struktur und Wirkung von Agglomerin A-D	58

7.7 Biosynthese von Agglomerin A	59
7.8 Synthese von anderen Arbeitsgruppen	60
7.9 Totalsynthese von Agglomerin A-C	61
8 SYNTHESE VON TENUAZONSÄURE	
8.1 Struktur und Wirkung	
8.2 Biosynthese	64
8.3 Retrosynthese	65
8.4 Totalsynthese	65
9 TOTALSYNTHESE DER MELOPHLINE A-C und G	67
9.1 Struktur und Wirkung	67
9.2 Retrosynthese	68
9.3 Totalsynthese	69
9.3.1 Synthese der 3-Acylseitenketten	69
9.3.1.1 Synthese der Seitenkette für Melophlin B	69
9.3.1.2 Synthese der Seitenkette für Melophlin C	70
9.3.2 Synthese der Tetramsäureeinheit	71
9.3.3 3-Acylierung der Tetramsäure	72
10 BEITRÄGE ZUR SYNTHESE VON QUINOLACTACIN A und B	78
10.1 Struktur und Wirkung	78
10.2 Synthesen von anderen Arbeitsgruppen	80
10.3 Retrosynthese	82
10.4 Beiträge zur Totalsynthese	83
11 EINE NEUE STAUDINGER-AZA-WITTIG-INTRA-WITTIG-DOMINO-REAK	FION 85
11.1 Grundlagen	85
11.2 Synthese von <i>N</i> -acylierten Tetramaten	87
12 ZUSAMMENFASSUNG	91
12.1 SUMMARY	

C. EXPERIMENTELLER TEIL	
13 SYNTHESEN UND EXPERIMENTELLE DATEN	
13.1 Allgemeines	
13.2 Immobilisiertes Ketenylidentriphenylphosphoran 100	
13.3 Dreikomponentenreaktion mit 100	
13.4 Synthese von <i>E</i> -Enonen mit 100	
13.5 Synthese von Tetronaten mit 100	
13.6 Synthese von Tetramaten mit 100	
13.7 Synthese von Glycidestern und ihre Anknüpfung an Wang-Harz	
13.8 Festphasensynthese von Tetronaten über Äpfelsäuremonoester	
13.9 Synthese von Carlosischer Säure 141	
13.10 Lösungssynthese von RK-682 (166)	
13.11 Festphasensynthese von RK-682 (166)	
13.12 Synthese von Agglomerin A-C 203a-c	
13.13 Synthese von Tenuazonsäure 220	
13.14 Synthese der 3-Acylseitenketten für Melophlin B und C	
13.14.1 Synthese von 4-Methyldodecansäurechlorid 230 ^[143]	
13.14.2 Synthese von 5-Methyldodecansäurechlorid 235	
13.15 Synthese der Tetramsäureeinheiten für Melophlin A-C, G	
13.16 3-Acylierung zur Synthese von Melophlin A-C, G	
13.17 Beiträge zur Synthese von Quinolactacin A2	
13.18 Synthese von <i>N</i> -Acyltetramat 299	
14 Publikationen	
15 LITERATURVERZEICHNIS	

Abkürzungsverzeichnis

Ac	Acetyl		
AcOH	Essigsäure		
arom.	aromatisch		
ATR	attenuated total reflectance		
br	breit		
Bzl	Benzyl		
BzlOH	Benzylalkohol		
Bu	Butyl		
C^q	quartäres C-Atom		
d	Duplett		
DBU	Diazabicyclo[5.4.0]undec-7-en		
DCC	N,N'-Dicyclohexylcarbodiimid		
DCM	Dichlormethan		
DIAD	Diisopropylazodicarboxylat		
DIPEA	Diisopropylethylamin		
DMAP	N,N-Dimethylaminopyridin		
DMF	N,N-Dimethylformamid		
DMSO	Dimethylsulfoxid		
DVB	Divinylbenzol		
ee	enantiomeric excess		
EI	Elektronenionisation		
eq	Equivalent		
Et	Ethyl		
EtOAc	Essigsäureethylester		

Et ₂ O	Diethylether
EtOH	Ethanol
GC	Gaschromatographie
h	Stunde
HMDS	Hexamethyldisilazan
HRMS	Hochauflösende Masse (high resolution mass spectrometry)
Hz	Hertz
IR	Infrarot
Im	Imidazol
J	Kopplungskonstante
LDA	Lithiumdiisopropylamid
LiHMDS	Lithium-bis-(trimethylsilyl) amid
m	Multiplett
Me	Methyl
MeOH	Methanol
min	Minute
mL	Milliliter
mmol	Millimol
MS	Massenspektroskopie
NEt ₃	Triethylamin
Nu	Nukleophil
NMR	nuclear magnetic resonance
Pd/C	Palladium auf Aktivkohle
Ph	Phenyl
ppm	parts per million
Pr	Propyl

Polystyrol		
Quadruplett		
Retentionsfaktor		
Raumtemperatur		
Singulett		
sekundär		
Schmelzpunkt		
Siedepunkt		
Triplett		
tertiär		
Tetrabutylammoniumfluorid		
Triflat		
Trifluoressigsäure		
Trifluoressigsäureanhydrid		
Tetrahydrofuran		
Tetramethylsilan		
Trimethylsilylethyl		
Tumor Necrose Factor		
<i>p</i> -Toluolsulfonsäure		
Trityl		
Mikrowelle		
Wang-Linker		
Benzyloxycarbonyl		
Zentralesnervensystem		

A. ALLGEMEINER TEIL

1 NATÜRLICHE 3-ACYLTETRONSÄUREN

1.1 Allgemeines

Die Chemie von Tetram- und Tetronsäuren erfährt in den letzten Jahren eine Renaissance, da aus dieser Familie immer wieder neue Naturstoffe mit einem hochinteressanten Wirkungsspektrum isoliert werden. Dieses reicht von antibiotischen, antiviralen und antiulcerativen Eigenschaften über Mycotoxizität bis hin zu Cytotoxizität.^{[1], [2], [3], [4]}

Als Tetronsäuren bezeichnet man Heterocyclen, die ein 4-Hydroxyfuran(5*H*)-2-on-System 1 besitzen. L-Ascorbinsäure^[5] 2 ist sicher der bekannteste Vertreter dieser Naturstoffklasse. Vitamin C 2 ist essentiell für das menschliche Leben. Da es der Körper nicht selbst herstellen kann, müssen wir ca. 75 mg pro Tag über die Nahrung aufnehmen.

Schema 1: Struktur von Tetronsäure 1 und Vitamin C 2

Die bedeutsamste physiologische Wirkung von Vitamin C ist schon im 19. Jahrhundert erkannt worden und hat sich in der chemischen Bezeichnung manifestiert. Es schützt vor einer bekannten und vor allem in der Seefahrt gefürchteten Vitaminmangelerkrankung, dem Skorbut. Seine breite physiologische Wirkung basiert maßgeblich auf der Eigenschaft als biologisches Redoxsystem, was auf zwei Endiolgruppierungen zurückzuführen ist. Durch Abgabe von Wasserstoff $(2H^+ + 2e^-)$ wird aus der Ascorbinsäure, induziert durch die kupferhaltige Ascorbat-Oxidase, die Dehydroascorbinsäure gebildet, welche mit Ascorbinsäure im Gleichgewicht steht.^[6]

Eine besondere Bedeutung wird **2** als Radikalfänger zugeschrieben. Das Abfangen der allgegenwärtigen Superoxid- und Hydroxylradikale verhindert radikalinduzierte Schädigungen an Lipidmembransystemen, Proteinen und der DNA.^[7]

Neben dem Aufbau von Kollagen wird auch die Bildung des Neurotransmitters Noradrenalin aus Dopamin erst durch die Anwesenheit der L-Ascorbinsäure ermöglicht. Darüber hinaus ist sie auch an der Biosynthese der Folsäure, der Hydroxylierung des Tryptamins zum Neurohormon Serotonin und dem oxidativen Abbau des Phenylalanins und Tyrosins beteiligt.^[8]

Unter den Tetronsäuren gelten die 3,5-disubstituierten Derivate als potentielle Kandidaten für neue Pharmazeutika. Vor allem 3-Acyltetronsäuren wie **3** besitzen ein sehr breites Wirkungsspektrum und bieten aufgrund ihrer komplexen Strukturen ein interessantes Betätigungsfeld für den organischen Naturstoffchemiker. Es ist bekannt, dass 3-Acyltetronsäuren in Form mehrerer Tautomere existieren.^[9]

Schema 2: Tautomere Formen von 3-Acyltetronsäure

Die beiden internen Tautomerenpaare (**3a/3b**) und (**3c/3d**) stehen jeweils untereinander über den Protonentransfer entlang der intramolekularen Wasserstoffbrückenbindung in einem schnellen Austausch. Der Übergang der externen Tautomeren (**3a/3b** in **3c/3d**) dagegen verläuft langsam, da er auf einer Rotation der 3-Acylseitenkette beruht. In Methanol liegen 3-Acyltetronsäuren überwiegend in den tautomeren Formen **3a/3b** vor. Die Formen **3c/3d** überwiegen dafür in DMSO.^[10]

1.2 Strukturen und Wirkungen

Natürliche Quellen für 3-Acyltetronsäuren sind u.a. Schimmelpilze. So konnten *Clutterbuck et al.* Carolinsäure **4** und Carlinsäure **5** aus *Penicillium charlesii* isolieren.^[11] Untersuchungen zur Biosynthese zeigten, dass beide als Precursoren von Penicillansäure eine wichtige Rolle spielen.^[12]

Schema 3: Strukturen von Carolinsäure 4 und Carlinsäure 5

Schon in den frühen 80er Jahren wurde die antibakterielle Wirkung des Tetronasins 6 erkannt.^{[13],[14]}

Schema 4: Struktur von Tetronasin 6

Aus dem im Roten Meer vorkommenden Schwamm *Smenospongia* konnte das Sesquiterpen Smenotroninsäure 7 isoliert werden.^[15]

Schema 5: Struktur von Smenotroninsäure 7

Zur Familie der 5-Spiro-3-acyltetronsäuren gehört der Cholecystokinin-Rezeptor-Antagonist Tetronothiodin **8**, der aus *Streptomyces sp.* NR0489 isoliert werden konnte.^[16] Kürzlich gelang *Page et al.* die Synthese eines Isomers der oxaspirobicyclischen Tetronsäureeinheit dieses Naturstoffs.^[17]

Schema 6: Tetronothiodin 8

Tetrodecamycin **9**, ein Polyketid-Antibiotikum, wurde aus *Streptomyces nashvillensis* MJ885-mF8 gewonnen und zeigt vielversprechende antibakterielle Aktivität gegen grampositive Bakterien wie *Staphylococcus aureus* (6.2-12.5 μg/ml) und *Bacillus anthracis*.^[18]

Die exo-Methyleneinheit dieser Alkylidentetronsäure ist essentiell für ihre Wirkung, denn bei Dihydrotetrodecamycin, das in 5-Position anstatt der Methylen- eine Methylgruppe trägt, geht jegliche Aktivität verloren. Obwohl der Wirkmechanismus bislang nicht aufgeklärt ist, wird spekuliert, dass die biologische Aktivität von **9** auf die Bildung einer kovalenten Bindung in einer Michael-artigen Reaktion zwischen der Methylengruppe und Cysteineinheiten von funktionellen Proteinen zurückzuführen ist.^[19]

Schema 7: Struktur des Antibiotikums Tetrodecamycin 9

Vor kurzem erschien ein Patent einer Hoffmann-La Roche Gruppe, in dem 3-Acyltetronsäuren als β -Secretase Inhibitoren beschrieben werden. Danach könnten 3-Acyltetronsäuren in der Behandlung und Verhütung von Krankheiten wie Alzheimer schon bald eine wichtige Rolle spielen.^[20]

1.3 Synthesen von Tetronsäuren

Ergänzend zu dem erst kürzlich erschienen Übersichtsartikel, der sich ausführlich mit der Synthese von Tetronsäuren beschäftigt,^[4] sollen im Folgenden lediglich die wichtigsten und einige neuere Methoden zum Aufbau von Tetronsäuren beschrieben werden.

1.3.1 Dieckmann-Kondensation

Eine der wohl wichtigsten Methoden zum Aufbau hochsubstituierter Tetronsäurederivate beruht auf der Dieckmann-Kondensation geeigneter α -CH-aktiver Esterderivate **12**.^[21] Wie in Schema 8 skizziert, werden diese meist aus der Reaktion von Aktivestern **11** mit entsprechenden α -Hydroxyestern **10** generiert.

Ein Nachteil dieses Verfahrens besteht in den basischen Reaktionsbedingungen, die unter Umständen eine Racemisierung an C-5 begünstigen. Häufig kann dies durch den Einsatz von milden Basen weitgehend verhindert werden. Die Dieckmann-Kondensation ist somit eine effiziente Methode zum Aufbau vieler Tetronsäurederivate und wird auch in der Naturstoffsynthese erfolgreich eingesetzt.

Schema 8: Dieckmann-Kondensation zum Aufbau von Tetronsäuren

Der Zugang zu den benötigten α -CH-aciden Estern eröffnet sich über verschiedene Wege, wobei die Anwendung von stereochemisch definierten Naturstoffen als Quelle für die α -Hydroxyester eine einfache Möglichkeit zum Aufbau optisch aktiver Tetronsäuren darstellt. Dabei sind die stark CH-aciden β -Ketoester wichtige Synthesebausteine. Diese werden in einer aktiven Form mit einem geeigneten α -Hydroxyester umgesetzt und generieren nach Cyclisierung 3-Alkanoyltetronsäurederivate (für Details siehe Kapitel 6.3 und 7.2).^{[22],[23]}

1.3.2 Blaise-Reaktion

Ein weiterer Ansatz zum Aufbau stereochemisch definierter Precursoren zur Synthese optisch aktiver Tetronsäuren ist die Blaise-Kondensation von Reformatsky-Systemen mit chiralen Cyanohydrinen **15**. Optisch reine Cyanohydrine **15** können unter enzymatischer Katalyse leicht aus Aldehyden **14** und Blausäure erhalten werden (siehe Schema 9). ^{[24],[25]} Grundlage dieser Reaktion ist das Enzym (R)-Oxynitrilase, das aus Mandeln gewonnen werden kann und in organischen Solventien eine hohe Enantioselektivität aufweist (ee: 85-99 %). Dabei toleriert die Oxynitrilase eine Vielzahl von Aldehyden bei guten bis sehr guten Ausbeuten (83-99 %).

Schema 9: Synthese von chiralen Cyanohydrinen

Bei der Reaktion der Organozinkverbindung 17 mit dem Cyanohydrin 16 ist keine nennenswerte Racemisierung feststellbar, was auf die geringe Basizität von 17 zurückzuführen ist. Es entsteht das Enamin 18, dessen Hydrolyse zum entsprechenden γ -Hydroxy- β -Ketoester 19 führt, der spontan zur Tetronsäure 20 kondensiert.^[25]

Schema 10: Blaise Reaktion zum Aufbau von chiralen Tetronsäuren

Diese Tetronsäuren (für R^1 =H) lassen sich durch nachfolgende Aldolkondensation bzw. Friedel-Crafts-Acylierung an C3 noch weiter funktionalisieren.

1.3.3 Domino-Reaktionen

Eine sehr elegante Methode zur Darstellung 3,5-disubstituierter Tetronsäuren wurde von *Schobert et al.* etabliert und verwendet leicht zugängliche α -Hydroxyester wie **22** als Ausgangsverbindung.^[26] Diese addieren an Ketenylidentriphenylphosphoran **21** zum entsprechenden Esterylid z. B. **23**, welches bei Erwärmung einer intramolekularen Wittig-Reaktion unterliegt. Dabei entstehen 5-substituierte Tetronate und als Nebenprodukt Triphenylphosphinoxid. Wie in Schema 11 skizziert, können Allyltetronate **24** darüber hinaus einer [3.3]-sigmatropen Claisen-Umlagerung unterworfen werden, die schließlich zu 3,5-disubstituierten Tetronsäuren **25** führt. Durch entsprechende Wahl der Reaktionsbedingungen kann diese Dominoreaktionssequenz noch um eine Oxa-En-Reaktion verlängert werden (siehe Schema 12).

Schema 11: Eintopf-Reaktion zur Synthese von Tetronsäuren nach Schobert et al.

Dies führt zunächst zu 3-Spirocyclopropyldihydrofuran-2,4-dionen wie **28**, die anschließend durch *O*- und *N*-Nukleophile angegriffen werden könnnen.^{[27],[28]} Dadurch gewinnt man Tetronsäuren wie **29** mit einem interessanten Substitutionsmuster in 3-Position.

Schema 12: Funktionalisierung von 3-Spirocyclopropyltetronsäuren mittels nukleophiler Ringöffnung

Eine andere Eintopf-Variante geht von Propiolsäuremethylester **30** und einfachen aliphatischen Aldehyden **13** aus. Dabei bildet sich in einer Dominoreaktion aus dem Ester und dem Aldehyd zunächst ein 1,3-Dioxolan **31**.^{[29], [30]}

Schema 13: Eintopfverfahren nach Tejedor et al.

Nach bereits bekannten Methoden lässt sich aus **31**, bei Behandlung mit konzentrierter HCl in Gegenwart von Isopropanol, ein γ -Hydroxy- β -ketoester **33** bilden, der einer Cyclisierung zur Tetronsäure **32** unterliegt.^[31] Mit dieser Methode lassen sich 5-Alkyl-Tetronsäuren darstellen, allerdings ist sie beschränkt auf einfache aliphatische Aldehyde und liefert bislang keine optisch reinen Verbindungen.

Schema 14: Reaktion des Dioxolans 31 zur Tetronsäure 32

Einen anderen Zugang zu 3,5-disubstiutierten Tetronsäuren über eine Domino-Reaktionssequenz liefern *Dong et al.*^[32] Zunächst reagiert α -Oxo-keten-*S*,*S*-acetal **34** in Gegenwart von NaOH mit 4-Pyridinylcarboxaldehyden **35** nach einer Aldolkondensation zu einem Alkenoylketendithioacetal **36**. Letzteres unterliegt bei Zugabe von Säure einer intramolekularen Oxapyridylethylierungsreaktion zur Tetronsäure **38**.

Schema 15: Dominoreaktionssequenz nach Dong et al.

Die Methode ist allerdings beschränkt auf Pyridin- und Chinolincarboxaldehyde, was die Variabilität hinsichtlich der 5-Position stark einschränkt. Die Autoren beschreiben allerdings noch eine weitere Folgereaktion, in der sie durch Zugabe von verschiedenen Aminen zu 3-Bis(alkylamino)methylenfuran-2,4-dionen gelangen.

1.3.4 Andere Tetronsäuresynthesen

Gabriele et al. entwickelten eine Synthese von 4-Dialkylamino-5*H*-furan-2-onen **42** durch Carbonylierung von 2-Alkin-1-olen **39**.^[33] Die Bildung des Furans erfolgt dabei über eine Abfolge von 3 Stufen. Zunächst kommt es zu einer von PdI_2 katalysierten oxidativen Monoaminocarbonylierung an die Dreifachbindung, gefolgt von einer Addition eines sekundären Amins an das Alkinamid **40**. Die Lactonisierung erfolgt dann durch intramolekulare Alkoholyse. Verwendet man als sekundäres Amin Morpholin, kann man durch saure Hydrolyse 5,5-disubstituierte Tetronsäuren **43** erhalten.

Schema 16: Tetronsäuren durch Carbonylierung von 2-Alkin-1-olen 39

Eine neuartige Synthese von Tetronsäuren über eine oxidative Ringerweiterung von 4-Hydroxy-2-cyclobutenonen 44 wird von *De Kimpe et al.* beschrieben.^[34] Der Mechanismus der Reaktion lässt sich durch eine kationische Ringöffnung des intermediär gebildeten Hypochlorits 45 und nachfolgenden Angriff des eliminierten Chlorids an die generierte positive Ladung erklären. Auf diese Weise lassen sich in 5-Position halogenierte Tetronsäurederivate 47 gewinnen.

Schema 17: Tetronsäuresynthese über oxidative Ringerweiterung von Hydroxycyclobutenonen

In nachgeschalteten Reaktionen kann die 5-Position durch aktiviertes Zink dechloriert bzw. durch Umsetzung mit Natriumalkoxiden in 4,5-Dialkoxyfuranone umgewandelt werden.

2 NATÜRLICHE 3-ACYLTETRAMSÄUREN

2.1 Allgemeines

Tetramsäuren sind Derivate, die ein Pyrrolidin-2,4-dion-System besitzen. Das große Interesse an dieser Substanzklasse manifestiert sich u. a. in den kürzlich erschienen Übersichtsartikeln zu diesem Themengebiet,^{[1],[2],[35]} aber auch an der Vielzahl der in den letzten 5 Jahren isolierten Naturstoffe (siehe Kapitel 2.2). Als natürliche Quellen dienen Pilze, verschiedenste Mikroorganismen, Myxomyceten und marine Schwämme. Die meisten Naturstoffe tragen in 3-Position einen Acylrest. Im Gegensatz zu Tetronsäuren liegen Tetramsäuren in Lösung überwiegend in der Diketoform und nicht in der Enolform vor.

Schema 18: Tautomere Formen von 3-Acyltetramsäuren

Durch NMR-spektroskopische Untersuchungen konnten *Wessels et al.* zeigen, dass im Falle von R=*i*-Pr die Tautomere **48a-48d** im Verhältnis 5:15:80:0 vorliegen.^[36] Daneben

spielen allerdings noch andere Substituenten, wie z. B. der Substituent am Stickstoff, eine wichtige Rolle bezüglich des Tautomerenverhältnisses.^[37]

Die Biosynthese von 3-Acyltetramsäuren erfolgt durch Reaktion einer Aminosäure **49** mit einer Acyleinheit, die sich von einer Acetyl-Gruppe **50** oder einem komplexeren Aktivester **52** ableitet. Alternativ kann die zunächst gebildete freie Tetramsäure **51** auch eine Substitution an C3 mit einer zweiten Acyl-Einheit **53** eingehen.^[2]

Schema 19: Biosynthese-Wege zu 3-Acyltetramsäuren 54

2.2 Strukturen und Wirkungen

2.2.1 Alkanoyltetramsäuren

Aus dem Pilz *Epicoccum purpurascens* konnte Epicoccamid **55** als Sekundärmetabolit isoliert werden.^[38] Die Struktur dieser Tetramsäure ist insofern besonders, da sie sich biosynthetisch aus den 3 Untereinheiten Zucker, Fettsäure und Aminosäure zusammensetzt. Der Zucker ist eine D-Mannose und die zugrunde liegende Aminosäure *N*-Methylalanin.

Schema 20: Sturktur von Epicoccamid

Munro et al. gelang es, aus *Paecilomyces farinosous* Paecilosetin **56** zu gewinnen.^[39] Diese Tetramsäure zeigt neben antibiotischer Wirkung gegen gram-positive Bakterien auch antileukämische Eigenschaften gegen P388 Zellen mit einem IC₅₀-Wert von 3.2 μ g/ml. Strukturell gesehen ist **56** ein Nor-Equisetin. Während sich Paecilosetin **56** von *N*-Methyl-threonin ableitet, wird Equisetin **57** aus der Aminosäure *N*-Methylserin aufgebaut.

Schema 21: Struktur von Paecilosetin 56 und Equisetin 57

Erst kürzlich erschienen Arbeiten zu einer verbesserten Totalsynthese und der Biosynthese von Equisetin.^{[40],[41]}

2.2.2 Di- und Polyenoyltetramsäuren

Die Aurantoside G, H und I (**58**) wurden aus dem marinen Schwamm *Theonella swinhoei* extrahiert.^[42] Sie gehören zur Klasse der Monochlorpentaenoyltetramsäuren mit Mono-, Di- oder Tri-*N*-Saccarid-Substituenten.

Schema 22: Sturkturen von Aurantosid G, H und I (58)

Ein strukturell einfacher Vertreter aus der Klasse der Polyenoyltetramsäuren wurde aus *Penicillium sp.* (MINAP9902) isoliert.^[43] Diese wird als Raveninsäure **59** bezeichnet und zeigt antibiotische Aktivität gegen Methicillin-resistente *Staphylococcus aureus* Bakterienstämme.

Schema 23: Raveninsäure 59

Der marine Pilz *Zopfiella latipes* produziert die Anitibiotika Zopfiellamid A und B (**60**).^[44] Die beiden Dienoyltetramsäuren zeigen sowohl antibakterielle Wirkung gegen gram-positive und gram-negative Bakterien als auch antifungizide Aktivität gegen *Nematospora coryli* und *Saccharomyces cerevisiae*.

Schema 24: Struktur von Zopfiellamid A und B (60)

Hamburger et al. fanden in dem Pilz *Paecilomyces militaris* die beiden Trienoyltetramsäuren Militarinon B und C (**61**).^[45] Beide zeichnen sich durch geringe neuritogene Aktivität in PC-12 Zellen aus, was sie zu potentiellen Therapeutika zur Behandlung von Alzheimer macht.

Schema 25: Militarinon B und C (61)

Neuere Arbeiten auf dem Gebiet der Polyenoyltetramsäuren führten zu interessanten Totalsynthesen. So gelang *Ley et al.* die Synthese von Polycephalin C durch eine Reaktionssequenz mit den Schlüsselreaktionen einer doppelten Swern-Oxidation, doppelter Takai-Reaktion und doppelter Stille-Kupplung.^[46] *Miyashita et al.* berichteten kürzlich über die erste Totalsynthese des Antibiotikums Tirandalydigin.^[47]

2.2.3 Macrocyclische Tetramsäuren

Macrocidin A und B (**62**) sind neuartige cyclische Tetramsäurederivate mit herbiziden Eigenschaften, die von pathogenen Mikroben *Phoma macrostoma* produziert werden.^[48] Sie besitzen mehrere Stereocentren, eine Epoxid-Einheit und leiten sich von Tyrosin ab. Der Macrocyclus wird über einen 3-Acylrest und die OH-Gruppe des Tyrosins geschlossen.

Schema 26: Struktur des Macrocyclus Macrocidin 62

Ein weiterer Vertreter dieser Klasse ist das aus dem Schwamm *Halichondria cylindrata* gewonnene Cylindramid **63**, das sich u. a. durch Cytotoxizität gegen B16 Melanom-Zellen auszeichnet.^[49] *Laschat et al.* gelang vor kurzem die erste Totalsynthese dieses Makrocyclus.^[50]

Schema 27: Struktur von Cylindramid 63

2.2.4 N-Acyltetramsäuren

Als Vertreter aus der Klasse der N-Acyltetramsäuren ist Magnesidin **64** zu nennen.^[51] Das Antibiotikum liegt vor als 1:1-Gemisch der Magnesiumsalze von 3-*n*-Hexanoyl- und 3-*n*-Octanoyl-*N*-acetyl-5-ethylidentetramsäure. **64** wirkt gegen gram-positive Bakterien und kann Lebensmittel vor dem Verderb schützen.^[52]

Schema 28: Magnesidin

Ähnliche Eigenschaften zeigt auch das aus dem Milchsäurebakterium *Lactobacillus reuteri* gewonnene Reutericyclin **65**.^[53] Im Gegensatz zu den meisten anderen natürlich vorkommenden Tetramsäuren liegt es überwiegend als Enol-Tautomer vor. Dies ist auf den α,β -ungesättigten Fettsäurerest am Stickstoff zurückzuführen.^[54]

Schema 29: Überwiegendes Tautomer von Reutericyclin 65

Als 4-*O*-Methyletherderivate von *N*-Acyltetramsäuren lässt sich die Familie der Malyngamide auffassen. *Nagai et al.* konnten mit Isomalyngamid A (**66**), isoliert aus dem haiwaiianischen Cyanobacterium *Lyngbya majuscula*, ein weiteres Derivat zu dieser Klasse hinzufügen.^[55]

Schema 30: Isomalyngamid A (66)

2.3 Synthesen von Tetramsäuren

2.3.1 Lacey-Dieckmann-Cyclisierung

Der erste und bekannteste Zugang zu Tetramsäuren ist die Lacey-Dieckmann-Cyclisierung.^[56] *Lacey et al.* setzten einen Aminosäureester **67** zunächst mit Diketen um. Das durch Kondensation erhaltene β -Ketoamid **68** ging mit Natriummethanolat eine Dieckmann-Cyclisierung zur 3-Acyltetramsäure **69** ein.

Schema 31: Lacey-Dieckmann-Cyclisierung

Noch heute wird diese Methode am häufigsten in der Synthese von natürlichen 3-Acyltetramsäuren angewendet.^[35] Allerdings wurde die Methode in Bezug auf die Einführung von modifizierten Acylsubstituenten in 3-Position, die Übertragung auf andere Aminosäuren und mildere Cyclisierungsbedingungen, um eine Racemisierung in 5-Position zu unterbinden, erweitert und modifiziert.^{[40],[57]}

Die Dieckmann-Cyclisierung wird auch erfolgreich zur Festphasensynthese von Tetramsäuren angewendet. *Matthews et al.* gehen von α -Aminosäuren **70** aus, die an Wang-Harz gebunden sind, und unterziehen diese einer reduktiven Aminierung. Die

erhaltenen Zwischenprodukte **71** werden zunächst acyliert und anschließend durch Zugabe von Natriumethanolat cyclisiert.^[58] Der Cyclisierungsschritt, der gleichzeitig auch der Abspaltungsschritt vom Harz ist, liefert 1,3,5-trisubstituierte Tetramsäuren **73** in sehr guten Ausbeuten.

Schema 32: Festphasensynthese von Tetramsäuren mittels Lacey-Dieckmann-Cyclisierung

2.3.2 Umsetzung von Aminosäuren mit Meldrum's Säure

Eine andere Methode zur Festphasensynthese von Tetramsäuren geht von polymergebundener Meldrum's Säure 74 aus.^[59] Diese wird zunächst C-acyliert durch Umsetzung mit *N*-geschützten Aminosäuren 75 in Gegenwart von DCC und DMAP. Anschließend erfolgt Cyclisierung und Abspaltung durch Erhitzen unter Rückfluss in CHCl₃.

Schema 33: Synthese von Tetramsäuren nach Liu et al.

2.3.3 Dominosynthese

Die von *Schobert et al.* entwickelte Addition-intra-Wittig-Olefinierungsreaktionssequenz führt durch Umsetzung von Ketenylidentriphenylphosphoran **21** mit α -Aminosäureestern wie **78** zu Tetramaten.^[60] 4-*O*-Allyltetramate **80** können durch anschließende Claisen-Umlagerung in 3-substituierte Tetramsäuren überführt werden. Diese Umlagerung kann durch Erhitzen mittels Mikrowellen stark beschleunigt werden.^[61] Je nach Lösungsmittel und Wahl der Reaktionsbedingungen erhält man Tetramsäure **81** bzw. Spirotetramsäure **82**.

Schema 34: Dominoreaktionssequenz nach Schobert et al.

2.3.4 Andere Tetramsäuresynthesen

Eine Eintopf-Synthese von optisch aktiven Tetramsäuren wird von *Igglessi-Markopoulou et al.* beschrieben.^[62] Sie beinhaltet eine C-Acylierung zwischen 1-Hydroxybenzotriazolester optisch aktiver Aminosäuren **83** und Malonsäurediethylester **85**. In Gegenwart von NaH kommt es unter Ringschluss zur Bildung von **86**.

Schema 35: Eintopf-Synthese nach Igglessi-Markopoulou et al.

Gabriele et al. fanden durch Pd-katalysierte Aminocarbonylierung von 2-Alkinylaminen **87** und anschließender saurer Hydrolyse kürzlich einen neuen Zugang zu Tetramsäuren **90**.^[63] Der Mechanismus der Reaktion erfolgt in Analogie zu der von den Autoren bereits beschriebenen Tetronsäuresynthese (siehe Schema 16).^[33]

Schema 36: Tetramsäuren mittels Pd-katalysierter Aminocarbonylierung von 2-Alkinylamine

B. SPEZIELLER TEIL

3 PROBLEMSTELLUNG

Ziel dieser Arbeit war zunächst die Synthese von polymer-gebundenem Ketenylidentriphenylphosphoran. Es sollte das Reaktionsverhalten des immobilisierten Ylids im Vergleich zum freien Ylid analysiert werden. Von der Immobilisierung erhoffte man sich einerseits eine bessere Reinigung der durch die Addition-intra-Wittig-Olefinierungsreaktionssequenz erhaltenen Tetronate und Tetramate; andererseits sollte die Synthese reaktiverer Ylide möglich sein, die in Lösung nicht stabil sind und Dimerisierungsreaktionen eingehen.

Die etablierte Kaskade aus Claisen-Umlagerung/Conia-Reaktion/nukleophiler Ringöffnung sollte auf die Festphase übertragen werden und dadurch die Synthese von Substanzbibliotheken von 3,5-disubstituierten Tetronsäuren ermöglichen.

Verschiedene Methoden der 3-Acylierung sowohl von Tetronsäuren als auch von Tetramsäuren sollten getestet und optimiert werden. Die jeweils geeignetsten Methoden sollten dann zur Synthese von Naturstoffen aus der Klasse der 3-Acyltetramsäuren (Tenuazonsäure, Melophline, Quinolactacine) und 3-Acyltetronsäuren (Carlosische Säure, RK-682, Agglomerine) herangezogen werden. Dabei sollte auch überprüft werden inwieweit sich die jeweiligen Reaktionsschritte durch Mikrowellen-Einsatz beschleunigen lassen. Parallel zu den Synthesen in Lösung sollten auch alternativ Festphasensynthesen entwickelt werden.

Ein weiteres Ziel war die Entwicklung einer neuartigen Staudinger-aza-Wittig-Umlagerungs-intra-Wittig-Olefinierungsreaktion. Diese Dominoreaktion würde zu *N*-Acyltetramaten führen, die erstmalig ohne die Verwendung von starken Basen entstehen würden und so den Zugang zu *N*-Acyltetramsäuren wie beispielsweise Reutericyclin **65** eröffnen.

4 SYNTHESE, STRUKTUR UND EIGENSCHAFTEN VON IMMOBILISIERTEM Ph₃P=C=C=O

4.1 Struktur und Eigenschaften von Ph₃P=C=C=O

Phospha(hetero)kumulenylide zeigen einzigartige elektronische und strukturelle Eigenschaften.^{[64],[65]} Ihre Chemie unterscheidet sich stark von der von Yliden, die drei Substituenten am ylidischen α -C-Atom tragen.^[66] Aus Röntgenstrukturanalysen von Einkristallen der Kumulenylide **91** (X=NPh),^[67] **21** (X=O)^[68] und **92** (X=S)^[69] lassen sich auch Rückschlüsse auf die elektronischen Strukturen, den Beitrag der beiden Reasonanzstrukturen **A** und **B** und die Hybridisierung des α -C-Atoms ziehen.

Schema 37: Mesomere Grenzformeln von Phosphakumulenyliden

Innerhalb der Serie dieser kumulierten Ylide steigt der Wert des P-C^{α}-C^{β}-Bindungswinkels und die Bindungslänge C^{α}-C^{β} nimmt von **91** über **21** zu **92** ab.

Ylide	Bindungslänge P=C (Å)	Bindungslänge $C^{\alpha}=C^{\beta}(A)$	Bindungswinkel P-C-C (°)
X=NPh	1.677	1.248	134.0
Х=О	1.648	1.210	145.5
X=S	1.677	1.209	168.0

Tabelle 1: Bindungslängen und Bindungswinkel von Phosphacumulenyliden

spiegelt die Elektronegativität des Substituenten X und die Tendenz Dies Doppelbindungen einzugehen wider. Ein ähnlicher Trend ist auch für die Reaktivität Elektrophilen feststellbar, die 92 verringert. gegenüber sich von 91 zu Phosphakumulenylide besitzen im Gegensatz zu Phospha-vinylidenyliden nur nukleophilen Charakter, d. h. sie addieren Elektrophile und gehen sowohl an der polaren P-C^{α}- als auch an der C^{α}=C^{β}-Bindung Cycloadditionen ein. Allerdings wird die für trivalente Ylide typische Wittig-Reaktion nicht beobachtet bzw. erfolgt nur sehr langsam. Die für dipolare Ketene und Ketenimine typischen Reaktionen wie z. B. Dimerisierungen werden von kumulierten Yliden nicht eingegangen. Daher sind Phosphacumulenylide stabil und können mehrere Monate gelagert und unter normalen Bedingungen ohne Zersetzung gehandhabt werden. Die Stabilität ist auf das zusätzliche freie Elektronenpaar am α -C-Atom zurückzuführen, das ein orthogonales Set von zwei π^4 -Elektronensystemen, das über 3 Atome verteilt ist, zur Folge hat. Diese Verbindungen sind isoelektronisch mit Kohlendioxid, Isocyanaten und Carbodiimiden und zeigen einen Mangel an Elektrophilie im Vergleich zu Ketenen, die ein dipolares $\pi^4 \perp \pi^2$ -System besitzen.

Das stabile $\pi^4 \perp \pi^4$ -Elektronensystem der kumulierten Ylide geht durch Addition eines Elektrophils in das reaktive $\pi^4 \perp \pi^2$ -Elektronensystem normaler Ketene über. Das Elektrophil (E⁺) addiert sich an das ylidische C-Atom unter Bildung eines Phosphoniumsalzes **93** und aktiviert so das Ylid für weitere Reaktionen.

Schema 38: Reaktivität von Ketenylidentriphenylphosphoran
Ist das Ausgangsylid 21 ein stärkeres Nukleophil als Nu⁻ (El-Nu), so kommt es zwischen dem Phosphoniumsalz 93 und dem Ylid unter Vierringbildung 95 zu einer [2+2]-Cycloaddition. Ist dagegen Nu⁻ das bessere Nukleophil, greift es C^{β} unter Bildung von 94 an. Je nach Art von El-Nu kann 94 nun Wittig-Reaktionen eingehen. Die letztere Reaktion ist auch die Basis für die Verwendung von Ketenylidentriphenylphosphoran 21 innerhalb dieser Arbeit und ermöglicht die Synthese komplexer Moleküle. Deshalb soll an dieser Stelle der Mechanismus der Wittig-Reaktion genauer beleuchtet werden. Die Wittig-Reaktion zwischen Alkylidenphosphoranen und Carbonylverbindungen liefert Phosphinoxid und Alkene mit vorhersagbarer Konfiguration der C=C-Doppelbindung.^[70] Die Methode geht zurück auf das Jahr 1953 und ist eine der am häufigsten verwendeten Methoden, um C=C-Doppelbindungen in der Organischen Chemie zu knüpfen.^[71]

Schema 39: Mechanismus der Wittig-Reaktion

Der Mechanismus wird nach wie vor kontrovers diskutiert, und es gibt keinen einfachen Mechanismus, der auf alle Arten von Yliden zutrifft.^[72] Allgemein anerkannt ist jedoch die

irreversible Bildung der Oxaphosphetane als wichtige Zwischenstufen für die Reaktion von unstabilisierten Yliden in Lithiumsalz-freien Medien. Man geht davon aus, dass zunächst Oxaphosphetane mit einer O-apicalen Geometrie über den fünfbindigen Phosphor gebildet werden und Aldehyd und Ylidsubstituenten *cis* zueinander stehen. Diese verringert die Abstoßung zwischen R¹₃P und R³ im frühen, Reaktanten-ähnlichen Übergangszustand.^[73] Dann kommt es zwangsweise zu einer Pseudorotation zum O-äquatorialen Rotamer, bevor es zu einem *syn*-eliminierenden Bindungsbruch und der Bildung des Alkens kommt. Dagegen ist es nach wie vor unsicher, ob *trans*-Oxaphosphetane und ⁺P-O-C-C⁻-Betaine bei der Bildung von *E*-Alkenen aus stabilisierten Yliden eine Rolle spielen.

4.2 Synthese von immobilisiertem Ph₃P=C=C=O

Ketenylidentriphenylphosphoran **21** wurde zuerst von *Birum et al.* 1966 synthetisiert.^[74] Sie gewannen es durch Umsetzung von Hexaphenylcarbodiphosphoran **101** mit Kohlendioxid und anschließender Pyrolyse der erhaltenen Betaine **102**. In analoger Weise lassen sich auch die Thio- **92** und Iminoderivate **91** darstellen.^{[70], [75]}

Schema 40: Synthese von kumulierten Yliden nach Birum et al.

Bestmann et al. haben neue Methoden zur Synthese kumulierter Ylide im 1-Mol-Maßstab entwickelt und im Detail die ungewöhnlichen Eigenschaften und Reaktionen dieser Stoffklasse erforscht.^{[64],[65],[66]} Durch Umsetzung von Triphenylphosphin **103** mit Bromessigsäuremethylester **104** gewinnt man unter nukleophiler Substitution zunächst das Phosphoniumsalz **105**. Durch Zugabe von NaOH erhält man hieraus das Esterylid **106**, das in Gegenwart von starken, sterisch-anspruchsvollen Basen wie NaHMDS einer β -Eliminierung unter Bildung von **21** unterliegt.^[76]

Schema 41: Lösungssynthese von Ph₃PCCO 21

Da sich Ketenylidentriphenylphosphoran **21** als wichtiger Synthesebaustein in der organischen Synthese etabliert hat,^[26] war die Synthese einer immobilisierten Variante dieses Ylids interessant. Polymer-gebundene Reagenzien eröffnen zahlreiche verfahrenstechnische und konzeptionelle Vorteile gegenüber ihrer löslichen Analoga, vor allem die Möglichkeit zur Automatisierung und Parallelisierung.^[77]

Zunächst wurde versucht die in Schema 41 beschriebene Lösungssynthese in analoger Weise auf die Festphase zu übertragen. Durch Modifizierung der Bedingungen, vor allem durch Verwendung von THF/DMSO (1:1) als Lösungsmittel, gelang zwar die Synthese von immobilisiertem Ylid teilweise, allerdings ergaben sich Probleme bei der Entfernung des während der Reaktion entstandenen Natiummethanolats.

Die wichtigste Veränderung war die Verwendung eines anderen Esters, dessen Alkoxid durch Toluol bzw. THF auswaschbar sein sollte. Polystyrol-gebundenes Triphenylphosphin **107** konnte durch Umsetzung mit Bromessigsäurebenzylester Dies führte quantitativ alkyliert werden. zur Bildung des immobilisierten Phosphoniumsalzes 108. Die besten Ergebnisse zur Synthese von immobilisiertem Ph₃PCCO 100 erzielt man, wenn man die Deprotonierung zum Esterylid und die nachfolgende β-Eliminierung zum kumulierten Ylid **100** in einem Schritt durchführt.^[78] Dazu versetzte man Phosphoniumsalz **108** mit einem Überschuss an LiHMDS in einer Lösungsmittelmischung aus THF und Benzol und schüttelte die Mischung 24 h lang bei Raumtemperatur. Sowohl die Verwendung von Toluol anstelle von Benzol als auch die Verwendung von NaHMDS führten zu einer drastischen Verlangsamung der Reaktion bzw. dazu, dass die β -Eliminierung überhaupt nicht mehr stattfand. Im Gegensatz zur Synthese in Lösung (siehe Schema 41) war eine Erwärmung während der β -Eliminierung nicht erforderlich.

Schema 42: Synthese von immobilisiertem Ph₃PCCO 100

Abbildung 1: ATR-IR-Spektrum von immobilisiertem Ph₃PCCO 100

Die Nebenprodukte Lithiumbenzoxid, Lithiumbromid und Hexamethyldisilazan konnten durch Filtration und Waschvorgänge mit THF, Benzol, DCM und Toluol vollständig entfernt werden. Das kumulierte Ylid 100 erhielt mal als gelbes, pH-neutrales und luftstabiles Harz. Sowohl ³¹P-MAS-TOSS-NMR als auch ATR-IR belegten das Ergebnis Vollständigkeit der und zeigten die Reaktion an. So konnten weder Ausgangsphosphoniumsalz 108 noch Esterylid detektiert werden. Das Harz war lediglich durch wenig immobilisiertes Ph₃PO (<10 %) verunreinigt. Dieses beeinflusste aber die Reaktionen des kumulierten Ylids 100 nicht. Aus den Spektren, den erzielten Ausbeuten und der Massenzu- und -abnahme während der Synthese ließ sich eine Beladung von >90 % feststellen.

4.3 Reaktionen mit polymer-gebundenem Ph₃P=C=C=O

4.3.1 Dreikomponentenreaktion

Das polymer-gebundene kumulierte Ylid **100** zeigt ein ähnliches Reaktionsverhalten wie Ph₃PCCO **21** bei etwa gleichen Reaktionsbedingungen. So erhält man *E*-konfigurierte α , β -ungesättigte Ester bzw. Amide **112**, wenn man Dreikomponentenmischungen aus Ylid **100**, Alkohol bzw. Amin **109** und Aldehyd **110** für einige Stunden unter Rückfluss erhitzt.^[78]

Die Reaktion erfolgt zunächst durch Addition des Alkohols oder Amins an die $C^{\alpha}=C^{\beta}$ -Bindung des kumulierten Ylids **100** unter Bildung des entsprechenden Esterylids bzw. Esteramids **111**. Letzteres geht dann eine Wittig-Olefinierung mit dem in der Lösung vorliegenden Aldehyd ein.^[79]

Der große Vorteil von **100** gegenüber **21** liegt an der leichteren Aufreinigung der Endprodukte, da das bei allen Wittig-Reaktionen entstehende Nebenprodukt Triphenylphosphinoxid nach der Reaktion am Harz gebunden bleibt und durch einfache Filtration entfernt werden kann.

Schema 43: Dreikomponentenreaktion unter Bildung von *E*-α,β-ungesättigten Estern und Amiden 112

4.3.2 Reaktion mit Grignard-Reagenzien

Ketenylidentriphenylphosphoran eröffnet nicht nur den Zugang zu Esteryliden und Amidyliden, sondern auch zu Acylyliden durch Addition von *C*-Nukleophilen wie Grignardreagenzien.^[80] Aus dem Ylid **100** und der Grignard-Verbindung **113** bildet sich zunächst wahrscheinlich das metallierte Intermediat **114**. Durch Hydrolyse mit wässriger Ammoniumchloridlösung gewinnt man hieraus immobilisierte Acylylide **115**. Diese reagieren mit Aldehyden zu α,β -ungesättigten Ketonen **116**. Die Carbonylierung verläuft dabei *E*-stereoselektiv.

Im Gegensatz zur bisherigen Synthese von E- α , β -ungesättigten Ketonen bringt der Einsatz des immobilisierten Ylids **100** den Vorteil, das Ylid **100** nicht mehr langsam zur Grignard-Lösung **113** zutropfen zu müssen. Vielmehr kann man **113** schnell zum Harz

geben und die Reaktion durch Erwärmen mittels Mikrowellen noch zusätzlich beschleunigen.^[78]

Schema 44: Synthese von *E*-α,β-ungesättigten Ketonen 116

4.3.3 Reaktion mit α-Hydroxyestern

 α -Hydroxyester **117** reagieren mit Ketenylidentriphenylphosphoran **100** unter Rückfluss in THF unter Bildung der entsprechenden Tetronate **119**.^[81] Die Dominoreaktion beginnt mit der Addition der OH-Gruppe an die C=C-Doppelbindung von **100** unter Bildung des Esterylids **118**. Dieses unterliegt beim Erwärmen einer intramolekularen Wittig-Olefinierung zwischen dem Ylid und dem Ester. Beim Versuch diese Reaktion mit dem immobilisierten Ylid **100** unter gleichen Bedingungen durchzuführen erhielt man jedoch keine Umsetzung. Es wurde lediglich das Edukt zurückgewonnen. Erst der Wechsel des Lösungsmittels von THF zu Benzol erbrachte den gewünschten Erfolg. Jedoch erhielt man die gewünschten Produkte in geringerer Ausbeute als mit dem Ylid **21**.

Schema 45: Synthese von Tetronaten 119

4.3.4 Reaktion mit α -Aminoestern

Die gleiche, bereits oben beschriebene Tandemreaktion geht Ketenylidentriphenylphosphoran **21** mit α -Aminosäureestern unter Bildung von Tetramaten ein.^[81] Diese sind wichtige Vorstufen zur Synthese von 3-Acyltetramsäuren. Allerdings gestaltet sich die Aufreinigung der Produkte als sehr schwierig, da das Nebenprodukt Triphenylphosphinoxid in etwa die gleiche Polarität wie die entstehenden Tetramate besitzt und deshalb nur sehr mühsam entfernt werden kann.^[82] Vielfach sind mehrere Chromatographiesäulen bis zur vollständigen Reinigung nötig.

Durch Verwendung von polymer-gebundenem Ketenylidentriphenylphosphoran 100 konnte dieses Problem erfolgreich gelöst werden. So konnte nicht nur Ph₃PO durch einfache Filtration entfernt werden, sondern durch Verwendung der Salze der Aminosäureester 120 war man ferner in der Lage die Synthese stufenweise durchzuführen.^[78] So addierten sich α -Aminoestersalze **120** sowohl unter thermischen als Mikrowellen-Bedingungen auch an Ylid 100. Die entstandenen unter Phosphoniumsalze 121 konnten durch Zugabe von DBU zu den jeweiligen konjugierten Amidyliden 122 umgesetzt werden. Letztere wurden dann thermisch bzw. durch Bestrahlen mit Mikrowellen erwärmt. Dabei ging 122 eine intramolekulare Wittig-Alkenierung unter Bildung der reinen Tetramate 123 ein. Ein weitere Aufreinigung der auf diese Weise gewonnen Tetramate 123 war meist nicht notwendig.

Schema 46: 3-stufige Tetramatsynthese mit 100

Ein großer Vorteil von **100** gegenüber seinem löslichen Analogon **21** war, dass optisch reine, chirale α -Aminosäureestersalze **124** unter Retention enantioselektiv in die entsprechenden Tetramte **123** (>94 % ee) überführt werden konnten. Dies konnte sowohl mittels chiraler HPLC als auch mittels GC an chiraler Säule durch Vergleich mit racemischen Proben belegt werden. Dies war überraschend, da bei Verwendung des nicht-immobilisierten Ylids **21** oft Racemisierung beobachtet wurde. Diese Racemisierung lässt sich auf noch vorhandene Spuren von Alkoxiden zurückführen, die als Nebenprodukte bei der Synthese von **21** aus den Esteryliden anfallen. Durch die gründlichen Waschschritte bei der Synthese von immobilisiertem Ph₃PCCO **100** ist es offensichtlich möglich die anfallenden Alkoxide vollständig zu entfernen und dadurch chirale Produkte zu erhalten.^[78]

Eine weitere Fortentwicklung der Synthese von Tetramaten **123** bestand darin, dass überschüssiges polymer-gebundenes Ph₃PCCO **100** anstatt von DBU als Base eingesetzt werden konnte. Dadurch war man nun in der Lage optisch reine Tetramate **123** in einer Eintopfsynthese zu gewinnen. Allerdings war die Basenwirkung des zweiten Äquivalents **100** zunächst nicht klar. Die Deprotonierung des intermediär gebildeten Phosphoniumsalzes **121** ist langsam und erfordert, dass es in Kontakt mit dem Ylid **100** kommt. Dies ist aber nur bei sehr hoher bzw. ungleichmäßiger Beladung des Harzes und durch Rückfaltungen innerhalb der Harzmatrix möglich. Wurde die Reaktion anstatt in THF im unpolaren Lösungsmittel Benzol durchgeführt, fiel die Ausbeute des Tetramats **123** von über 50 % auf gerade noch 5 %. Dies zeigt, dass noch andere Erklärungen in Betracht gezogen werden müssen, wie beispielsweise die Wanderungsgeschwindigkeit und Übertragung von Protonen durch das polare Lösungsmittel THF.

Schema 47: Enantioselektive Eintopfsynthese von Tetramaten 123

Erstaunlich war, dass *N*-alkylierte Aminosäureester mit Ylid **100** sogar bessere Ausbeuten als primäre Aminosäureester lieferten, da diese mit löslichem Ph₃PCCO **21** nur sehr schlecht oder überhaupt nicht reagierten. Damit eröffnete sich die Möglichkeit zur Synthese von *N*-alkylierten Tetramsäurederivaten, die aufgrund ihrer interessanten biologischen Aktivitäten eine sehr wichtige Naturstoffklasse darstellen (siehe Kapitel 9).^{[1],[2]}

Selbst die relativ acide Hydroxygruppe des Tyrosinallylesters musste nicht geschützt werden und konnte direkt mit immobilisiertem Ph₃PCCO zum entsprechenden Tetramat **123g** umgesetzt werden. Versuchte man die gleiche Reaktion mit Serinallylester, kam es zu einer nachfolgenden Eliminierung unter Bildung des 5-Methylentetramats **123k**. Bei Verwendung eines geschützten Serinesters unterblieb diese Eliminierung und man erhielt das entsprechende Tetramat **123j**, wenn auch nur in geringen Ausbeuten.

5 FESTPHASENSYNTHESE VON TETRONATEN

5.1 Anknüpfung durch nukleophile Ringöffnung von Glycidestern

Ein weiteres Ziel der vorliegenden Arbeit war die Übertragung der bereits in Schema 11 beschriebenen Additions-intra-Wittig-Claisen-Kaskade auf die Festphase zur Synthese von kombinatorischen Substanzbibliotheken von Tetronsäurederivaten. Den Ausgangspunkt für die Synthese stellten immobilisierte α -Hydroxyester **130** dar. Diese wurden an Wang-Harz **129** mittels nukleophiler Ringöffnung von Glycidestern **128** angeknüpft.

Die Darstellung der im Rahmen dieser Arbeit eingesetzten Glycidester **128** erfolgte nach einer Vorschrift von *Petit et al.*^{[83],[84]} Als Ausgangssubstanz wurde Serin **125** gewählt, aus dem man zunächst in zwei Stufen das Kaliumsalz **127** der Glycidsäure aufbaute und dieses anschließend durch Umsetzung mit Allylbromiden veresterte. In einem ersten Schritt wird **125** unter Diazotierung in die entsprechende 2-Bromo-3-hydroxypropionsäure **126** überführt. Die Reaktion verläuft unter Retention der Konfiguration, so dass die Verwendung von enantiomerenreinem Serin den Zugang zu optisch aktiven Glycidaten eröffnen könnte. Chirale Glycidester sollten aber erst nach erfolgreicher Übertragung der Reaktionssequenz auf die Festphase zum Einsatz kommen.

Die erhaltene Propionsäure **126** wurde direkt zur basisch induzierten Glycidatsynthese im Zuge einer intramolekularen $S_N 2$ Reaktion eingesetzt. Eine neutrale Reaktionslösung zeigte hierbei die Vollständigkeit der Reaktion an. Nach Filtration des ausgefallenen Kaliumbromids und Einengen des Filtrats konnte mit Ether das gewünschte Produkt als weißer Feststoff mit hohen Ausbeuten ausgefällt werden.

Die Umsetzung von **127** mit den entsprechenden Allylbromiden erfolgte bei Raumtemperatur in Acetonitril, unter Zusatz von 18-Krone-6, das durch Komplexierung des Kaliums eine ausreichende Nukleophilie des Glycidats gewährleisten sollte. Die Reaktion war nach 4 Stunden beendet.

Schema 48: Synthese von Glycidestern

Die Anbindung der Glycidester **128** an das Wang-Harz **129** erfogte durch sauer katalysierte nukleophile Ringöffnung unter Verwendung oxophiler Lewis-Säuren. Die sterischen und elektronischen Verhältnisse der Oxirancarboxylate begünstigten hierbei eine regioselektive Ringöffnung des Epoxids in β-Position, eine wichtige Vorraussetzung für die Bildung eines immobilisierten α-Hydroxyesters **130**.^[85] Dabei stellte sich LiClO₄ als die am besten geeignete Lewissäure heraus.^{[86],[87],[88]} In einem typischen Experiment wurden Wang-Harz **129**, DMF, der entsprechende Glycidester **128** und LiClO₄ in einem druckresistenten Reaktionsgefäß 30 Minuten lang mittels Mikrowellen auf 85 °C erwärmt.^[89]

Die erfolgreiche Anknüpfung erkannte man an den neu entstandenen IR-Absorptionen bei 3450 cm⁻¹ (OH-Bande) und 1720-1730 cm⁻¹ (C=O) und der Massenzunahme der getrockneten Harze. Die polymer-gebundenen Hydroxyester **130** wurden anschließend mit Ketenylidentriphenylphosphoran **21** und THF versetzt und 20 h unter Rückfluss erwärmt. Dabei kam es durch die bereits beschriebene Additons-intra-Wittig-Olefinierung zur Bildung von immobilisierten Tetronaten **131**. Die Reaktionskontrolle erfolgte hierbei wieder über charakteristische neuentstandene bzw. verschwindende IR-Absorptionsbanden. In diesem Fall verschwand die OH-Bande bei 3450 cm⁻¹ und es entstand eine neue Bande bei 1610-1620 cm⁻¹, die auf eine konjugierte Carbonylverbindung hinweist.

Die nachfolgende Abspaltung mit TFA/DCM (1:1) lieferte ein zähes Gemisch, das nicht zu trennen war. Allerdings gaben ESI-MS-Analysen den Hinweis auf entstandenes Tetronat.

Schema 49: Festphasensynthese von Tetronaten 131 über Glycidester 128

Auch Versuche zur Claisen-Umlagerung und der anschließenden Abspaltung der Tetronsäuren lieferten kein zufriedenstellendes Ergebnis bzw. keine isolierbaren Produkte. Daher musste nach Alternativen zur Synthese eines immobilisierten α -Hydroxyesters gesucht werden.

5.2 Anknüpfung mittels Mitsunobu-Reaktion

Eine andere Methode zur Erzeugung von polymer-gebundenen α -Hydroxyestern lag in der Anknüpfung über die freie Säurefunktion von Äpfelsäuremonoestern **134** ans Wang-Harz **129** mittels Mitsunobu-Reaktion.^[90] Die entsprechenden Äpfelsäuremonoester **134** konnte man durch Umsetzung von Äpfelsäure **132** mit Trifluoressigsäureanhydrid und anschließender nukleophiler Ringöffnung des entstandenen cyclischen Anhydrids **133** mit Alkoholen in guten Ausbeuten gewinnen. Zusätzlich verlief die Reaktion mit hoher Regioselektivität und man gewann unter Retention der Konfiguration chirale Äpfelsäuremonoester **134**.^[91]

Schema 50: Regioselektive Synthese von Äpfelsäuremonoestern

Die Anknüpfung der Äpfelsäuremonoester **134** erfolgte dann durch Mitsunobu-Reaktion. Bei dieser Veresterungsmethode wird nicht die Säure, sondern der Alkohol aktiviert. Dies geschah durch die Verwendung von Diisopropylazodicarboxylat **135** (DIAD), das sich an PPh₃ addierte und so ein Zwitterion **136** bildete, welches durch die β -Säurefunktion von **134** protoniert wurde. Triphenylposphin wurde auf den Alkohol, in unserem Fall das Wang Harz, übertragen und aktivierte die Hydroxygruppe durch Bildung eines Oxophosphoniumcarboxylats **137**. Dieses reagierte in einer S_N2-Reaktion zum Ester **138** und damit zur gewünschten Anknüpfung an die Festphase.^[92] Durch die Immobilisierung war man auch in der Lage, die durch die Mitsunobu-Reaktion anfallenden Nebenprodukte, die sich oftmals nur sehr schwer entfernen lassen,^{[93],[94]} durch wiederholtes Filtrieren und Waschen zu entfernen.^[95]

Schema 51: Synthese von immobilisierten α-Hydroxyestern 138 durch Mitsunobu-Reaktion

Die Reaktionskontrolle erfolgte erneut über die Massenzunahme des Harzes und mittels FT-IR-Spektroskopie. Es wurde eine quantitative Anknüpfung der Äpfelsäuremonoester 134 ans Harz festgestellt. Diese wurden dann unter Standardbedingungen mit Ph₃PCCO 21 cyclisiert.^[95] 139 Tetronaten Verwendete zu den entsprechenden man Äpfelsäureallylesterderivate, wäre noch eine Verlängerung der Reaktionskaskade um eine Claisen-Umlagerung möglich. Versuche zur thermischen Claisen-Umlagerung in Toluol, DMF bzw. CH₃CN schlugen jedoch fehl. Auch die Erwärmung mittels Mikrowellen erbrachte nicht den gewünschten Erfolg. Deshalb sollten verschiedene Lewis-Säuren getestet werden, die die Claisen-Umlagerung am Harz herbeiführen sollten. Sridhar et al. beschreiben Bimut(III)-triflat als neuen und effizienten Katalysator für Claisen und Fries-Umlagerungen.^{[96],[97]} Die Verwendung von Bismut(III)-triflat als Katalysator erbrachte überraschende Ergebnisse. Wurden die immobilisierten Tetronate **139** mit 5-20 mol% $Bi(OTf)_3$ in CH₃CN 30 Minuten mittels Mikrowellen auf 100 °C erwärmt, so fand zwar die gewünschte Claisen-Umlagerung nicht statt; allerdings führten diese Reaktionsbedingungen zu einer Abspaltung der Tetronate vom Harz. Im Vergleich mit der gängigen Abspaltungsmethode durch TFA und Trialkylsilane erhielt man durch die Verwendung von Bi(OTf)₃ als Abspaltungsreagenz sauberere Produkte in höheren Ausbeuten.

Schema 52: Festphasensynthese von Tetronaten 140

Zum Aufbau von Tetronsäure-Substanzbibliotheken müssen weitere Untersuchungen zur Claisen-Umlagerung am Harz erfolgen. Hierbei sollten andere Katalysatoren getestet bzw. andere nicht säure-labile Linker verwendet werden. Denkbar wäre hier die Anknüpfung von Äpfelsäuremonoestern über einen "Safety-Catch-Linker" als *N*-Acylsulfonamid. Dies hätte auch den Vorteil, dass im Abspaltungsschritt zusätzliche Diversität durch Wahl des Nukleophils eingeführt werden kann.

6 SYNTHESE VON CARLOSISCHER SÄURE

6.1 Struktur und Wirkung

Carlosische Säure **141**, (5*S*)-3-Butanoyl-5-carboxymethyl-4-hydroxy-(5*H*)-furan-2-on, wurde 1934 zum ersten Mal aus Kulturen des Schimmelpilzes *Penicillium charlesii* isoliert.^[11] Sie gehört zur Klasse der 3-Acyltetronsäuren und besitzt 5*S* Konfiguration. Allerdings ist keine besondere biologische Aktivität feststellbar.

Schema 53: Stuktur von (5S)-Carlosischer Säure 141

6.2 Biosynthese

141 ist ein Zwischenprodukt bei der Biosynthese von Penicillansäure. Dies und damit auch die Biosynthese von Carlosischer Säure 141 wurde 1962 aufgeklärt.^[12] Die Biosynthese startet mit Äpfelsäure 132, die mit einem C3-Körper, hier MalonylCoA 142, erweitert und zur Tetronsäure 143 cyclisiert wird. Erst zum Schluß erfolgt die Acylierung zur Carlosischen Säure 141. Dabei wird die 3-Acylseitenkette durch Kondensation von Acetyl-CoA 144 und Malonyl-CoA 142 erhalten.

Schema 54: Biosynthese von Carlosischer Säure 141

6.3 Synthesen von anderen Arbeitsgruppen

Die erste Totalsynthese von **141** wurde von *Bloomer und Kappler* 1974 vorgestellt.^[23] Sie beginnt mit einer basisch induzierten Dieckmann-Cyclisierung. Anschließend wird **147** bromiert und katalytisch reduziert. Erneute Acylierung mit TiCl₄ in Nitrobenzol und abschließende Verseifung liefert den Naturstoff.

Schema 55: Synthese von 141 nach Bloomer und Kappler

Von *Boll et al.* stammt der Zugang über Kondensation des β -Ketoesters **149** mit dem α,β -ungesättigten Säurechlorid **148**, gefolgt von Cyclisierung durch Base und anschließender Hydrolyse.^[98]

Schema 56: Synthese von 141 nach Boll et al.

t-Butylacetothioacetat **152** stellt den Ausgangsstoff für die Synthese von **141** nach *Ley et al.* dar.^[99] Dieses lässt sich selektiv zum Dianion deprotonieren, das dann alkyliert werden kann. Der gewonnene *t*-Butylthioester **153** kann durch Umsetzung mit α -Hydroxyestern zu **154** umgeestert und dann durch Lacey-Dieckmann Kondensation cyclisiert werden.

Schema 57: Synthese von 141 nach Ley et al.

C-Nukleophile wie β -Ketoester **149** reagieren mit cyclischen α -substituierten Äpfelsäureanhydriden **155** unter Ringöffnung. Durch anschließende Deacetylierung und Cyclisierung unter basischen hydrolytischen Bedingungen gewannen *Igglessi-Markopoulou et al.* **141** in optisch reiner Form.^[100]

Schema 58: Synthese von 141 nach Igglessi-Markopoulou et al.

6.4 Retrosynthese

Ziel dieser Arbeit war es eine Methode zur Synthese von Carlosischer Säure **141** zu entwickeln. Dabei sollte Ketenylidentriphenylphosphoran **21** für den Aufbau des Tetronsäuregerüsts verwendet werden.

Schema 59: Retrosynthese Carlosische Säure 141

Retrosynthetisch betrachtet sollte Carlosische Säure 141 über eine 3-Acylierung aus der freien Tetronsäure 159 zugänglich sein. Dies hätte den Vorteil, dass man leicht weitere

Derivate mit verschiedenen 3-Acylresten aufbauen könnte. Als problematisch bei einer 3-Acylierung stellt sich dagegen in früheren Arbeiten die sensitive Säuregruppierung in 5-Position heraus.^[101] Daher sollte die Säuregruppe während der 3-Acylierung geschützt bleiben und erst im letzten Schritt entschützt werden. Die Tetronsäure **159** sollte aus einem entsprechend geschützten Tetronat **160** unter milden Bedingungen freigesetzt werden. Das Furangerüst des Tetronats **160** ließe sich durch Umsetzung von gemischten Äpfelsäureestern **161** mit Ph₃PCCO **21** herstellen. Die gemischten Äpfelsäureester **161** sollten nach den bereits erwähnten Methoden zugänglich sein.^[91]

6.5 Totalsynthese von Carlosischer Säure

Als Ausgangsmaterial wurde Äpfelsäurebenzylester **134b** gewählt, den man durch Umsetzung von Äpfelsäure mit Trifluoressigsäureanhydrid und Benzylalkohol regioselektiv erhält.^[91] Die freie β -Säuregruppe wurde als Trimethylsilylethyl(TMSE)ester geschützt.^{[102],[103]} Diese Silylschutzgruppe ist wesentlich stabiler gegen Säure als die gängigen Schutzgruppen wie TBDMS oder TIPS, und sollte daher auch stabil unter den Bedingungen einer 3-Acylierung sein. Mit TBAF erfolgt dagegen selektive Entschützung unter milden Bedingungen.^[104] Den Diester **162** erhielt man über 2 Stufen in 46 % Ausbeute. 162 wurde dann unter Standardbedingungen mit Ph₃PCCO 21 zur Reaktion gebracht. Das Tetronat 163 gewann man nach chromatographischer Reinigung an Kieselgel mit zufriedenstellenden 85 % Ausbeute. Dieses wurde durch 5%-Pd auf Aktivkohle hydrogenolytisch und quantitativ zur Tetronsäure 164 debenzyliert. Als Methode zur 3-Acylierung der freien Tetronsäure wählten wir das Protokoll von Yoshii et al., da es unter milden Bedingungen abläuft, die nicht zu einer Racemisierung an C-5 führen.^{[105],[106]} Hierzu wurde Tetronsäure 164 mit Buttersäure, DCC, DMAP und NEt₃ umgesetzt. Zunächst kommt es dabei zu einer 4-O-Acylierung, die von einer baseninduzierten Fries-Verschiebung zur 3-Acyltetronsäure 165 gefolgt wird. Man erhielt 3-Butanoyltetronsäure 165 in sehr guter Ausbeute (91 %). Schließlich wurde noch die TMSE-Schutzgruppe durch Zugabe von TBAF entfernt und man erhielt optisch reine (5S)-Carlosische Säure 141 in einer Gesamtausbeute von 32 %, bezogen auf eingesetzte Äpfelsäure 132.^[95]

Schema 60: Totalsynthese von Carlosischer Säure 141

Abbildung 2: ¹H-NMR-Spektrum von Carlosischer Säure 141

7 TOTALSYNTHESE VON RK-682 UND AGGLOMERIN A-C

7.1 Struktur und Wirkung von RK-682

RK-682 (3-Hexadecanoyl-5-hydroxymethyl-furan(5*H*)-2-on) **166** wurde von einer RIKEN-Gruppe aus *Streptomyces* sp. 88-682 isoliert.^[107] In Form seiner Salze wurde es auch aus *Actinomycetes* DSM 7357 von einer CIBA-GEIGY-Gruppe^{[108],[109]} und aus *Streptomyces* sp. AL-462 von einer TAKEDA-Gruppe^[110] isoliert. Es gehört zur Klasse der 3-Acyltetronsäuren mit einem lipophilen Palmitoyl-Rest in 3-Position, einer kurzen hydrophilen Hydroxymethylengruppe in 5-Position und es besitzt 5*R*-Konfiguration.

Schema 61: Struktur von RK-682

166 inhibiert die HIV-1-Protease^{[108],[109]} und wirkt ferner als Inhibitor bei Tyrosin-Kinasen und -Phosphatasen, wie z.B. VHR (VH1-related human protein) und Cdc25B.^[107] RK-682 greift bei der Phosphorylierung von Tyrosin ein. Dieser Vorgang ist fundamental für die intrazelluläre Signalübertragung und damit wichtig für Zellwachstum und -differenzierung. Das Gleichgewicht der Tyrosin-Phosphorylierung wird von Protein-Tyrosin-Kinasen (PTKs) und Protein-Tyrosin-Phosphatasen (PTPs) kontrolliert. Strukturelle Störungen bei PTPs werden mit der Entstehung von Krebs, Autoimmunkrankheiten und Diabetes in Verbindung gebracht. Bisherige Inhibitoren wie Phenylarsinoxide und Vanadate können jedoch nicht zwischen den intakten und den deformierten PTPs unterscheiden. Daher wurden sehr hohe Konzentrationen verwendet, was allerdings den Nebeneffekt hatte, dass auch andere wichtige Enzyme, wie ATPasen inhibiert wurden. Andere Peptid- oder peptidähnliche Verbindungen mit Phosphat- oder Carboxylateinheiten wirkten genauso unspezifisch. Eine Untergruppe der PTPs sind die Gruppe der Cdc25 Phosphatasen, die zu den dual-spezifischen Proteinphosphatasen (DSPs) gehören. Cdc25 Phosphatasen dephosphorylieren sowohl Phosphotyrosin als auch Phosphoserin/-threonin und spielen damit eine wichtig Rolle für das Voranschreiten des Zellcyclus. Als Inhibitoren wurden schon manche synthetische Carbonsäurederivate wie z.B. Dysidiolid gefunden.^[111] Alle PTPs/DSPs besitzen einen geschützten p-Loop, der mit dem Phosphatrest des Phosphotyrosins über Wasserstoffbrückenbindungen zwischen den NH-Gruppen des Amidrückgrats im p-Loop und dem Phosphatrest wechselwirkt.^[112]

Vergleicht man nun Phosphotyrosin mit dem RK-682-Anion, ergeben sich strukturelle Gemeinsamkeiten: So erkennt man zum Beispiel jeweils die zweizähnigen chelatisierenden Strukturen mit je zwei Sauerstoffatomen am Ende der "Zange". Weiterhin sind die Kerne (in Schema 62 eingerahmt) strukturell ähnlich, wenn man den Kohlenstoff in 3-Position Phosphor Tetronsäurerings Phosphotyrosin des dem im gleichsetzt. Dieses Kohlenstoffatom ist ebenfalls von vier Sauerstoffatomen umgeben, jedoch mit jeweils einem Kohlenstoffatom dazwischen, was dem größeren Atomradius des Phosphors im Phosphotyrosin Rechnung trägt. Auch ist das 3-acylierte Tetronsäureanion sehr elektronenreich und durch die Mesomerie wie auch die Phenoxyphosphateinheit im Phosphotyrosin elektronisch sehr flexibel.

Schema 62: Struktureller Vergleich von Phosphotyrosin mit 3-Acyltetronsäuren

Wichtig für die Bindung an das Enzym sind die NH-Gruppen der Säureamide und des Arginins. Wie man aus Schema 63 erkennt, gibt es eine ionische Wechselwirkung zwischen dem delokalisierten RK-682-Anion und Arginin. Ist die 4-Position durch einen Alkylrest substituiert, so kann sich kein resonanzstabilisiertes Anion bilden. Aus diesem Grund findet keine Inhibierung mehr statt.

Schema 63: Lage von RK-682 und der 4-alkylierten Derivate im aktiven Zentrum der PTPs

Dafür kann das 4-benzylierte RK-682 selektiv Heparanase hemmen, die vermehrt in hochinvasiven Zellen wie aktivierten Immunzellen, Lymphoma-, Melanoma- und Carcinoma-Zellen, als auch in Kopf- und Halstumoren zu finden ist und vor allem eine große Rolle bei der Metastase einnimmt.

Schema 64: Lage von 4-Benzyl-RK-682 im aktiven Zentrum der Heparanase

Dabei wirkt Glu 225 (siehe Schema 64) als Protonendonator und Glu 343 als katalytisches Nukleophil, was zur Stabilisierung des Komplexes führt. Ist der Alkylrest in 4-Position ein Benzylrest, so findet zusätzlich eine π - π -Stapelung mit den aromatischen Komponenten des His 296 und des Tyr 298 statt. Durch die Benzylierung in 4-Position kann das Molekül keine PTPs/DSPs inhibieren, was das Substrat spezifischer macht.^[113] Erst kürzlich wurden die 4-alkylierten Derivate von RK-682 als potentielle Therapeutika gegen Krebs patentiert.^[114]

7.2 Synthesen von RK-682 von anderen Arbeitsgruppen

Die erste Totalsynthese wurde von *Sodeoka et al.* 1996 veröffentlicht.^[115] Als Ausgangsstoff wurde Glycerinsäurederivat (*R*)-**167** verwendet. Dieses wurde durch Methylierung mit Diazomethan, Entschützung des Dioxolans und selektive Schützung der primären Alkohol-Funktion als Tritylether in den Hydroxyester **168** überführt. Die β -Ketoestergruppe wurde durch Silbersalz-induzierte Kondensation von Hydroxyester **168** mit Thioester **169** eingeführt. Der Thioester **169** wurde durch Umsetzung von Palmitinsäure mit dem Magnesiumsalz des Malonsäurederivats gewonnen. Cyclisierung des β -Ketoesters **170** mit TBAF und anschließende Entschützung lieferten optisch reines **166**.

Schema 65: Totalsynthese von RK-682 nach Sodeoka et al.

Auf diesem Weg erhielten sie eine Gesamtausbeute von 20.3 % über 7 Stufen. Die gleiche Methode wurde in neueren Veröffentlichungen noch optimiert und zur Synthese von einer großen Anzahl von Derivaten eingesetzt.^{[116],[112]} Dabei fanden sie unter anderem, dass sich während der Säulenchromatographie aus **166** das Calcium-Salz bildet, und konnten dadurch Widersprüche bzgl. der unterschiedlichen berichteten Drehwerte von RK-682 klären bzw. beseitigen.^[116]

Von *Ohta et al.* wird ein anderer Zugang zu RK-682 berichtet, der allerdings nur racemisches Produkt liefert.^[117] Die Synthese startet mit Dibenzylmalonat **171**, das zunächst ins Dibenzylallylmalonat **172** überführt wird, um anschließend durch MCPBA epoxidiert zu werden. Hydrogenolyse lieferte die Expoxydicarbonsäure **174**, die dann durch Umsetzung mit TFA und Ac₂O zu **175** cyclisiert wurde. 3-Acylierung wurde durch Kondensation mit $CH_3(CH_2)_{14}COIm$ unter milden Bedingungen erreicht. Phenylselenierung gefolgt von oxidativer Eliminierung in Gegenwart von H₂O₂ führte zur Bildung von **176**. Abschließend wurde die Acetylgruppe mittels saurer Hydrolyse entfernt.

Schema 66: Synthese von RK-682 nach Ohta et al.

7.3 Retrosynthese

Im Rahmen dieser Arbeit sollte eine Methode zur Synthese von RK-682 entwickelt werden. Dabei sollte Ketenylidentriphenylphosphoran **21** für den Aufbau des Tetronsäuregerüsts verwendet werden. Die Syntheseroute sollte auch kompatibel sein mit einer späteren Festphasensynthese zum Aufbau einer Substanzbibliothek von Derivaten.

Retrosynthetisch betrachtet sollte **166** über 3-Acylierung der freien Tetronsäure **177** zu gewinnen sein. Dies hätte den Vorteil, dass man leicht weitere Derivate mit verschiedenen 3-Acylresten aufbauen könnte. Dabei sollte die bereits erwähnte Methode von *Yoshii et al.* zum Einsatz kommen.^[105] Hierin liegt auch ein Vorteil gegenüber der Syntheseroute nach *Sodeoka et al.*,^[115] da man die Carbonsäure direkt einsetzen kann und diese nicht erst als Thioester voraktivieren muss.

Die Tetronsäure **177** sollte aus einem entsprechend geschützten Tetronat **178** unter milden Bedingungen, um eine Racemisierung zu vermeiden, erhalten werden können. Hier wäre erneut eine Benzylschutzgruppe in 4-Position denkbar, da diese bereits erfolgreich bei der Synthese von Carlosischer Säure eingesetzt werden konnte (siehe Kapitel 6.5).^[95]

Schema 67: Retrosynthetische Analyse von RK-682

Die primäre OH-Gruppe sollte als Tritylether geschützt werden. Bei erfolgreicher Synthese würde dies auch die Möglichkeit zur Entwicklung einer Festphasensynthese über die Anknüpfung an einen Trityl-Linker eröffnen. Der entsprechende α -Hydroxyester **179** sollte aus käuflichem Methylglycerat **180a** durch Umesterung, saure Ketalspaltung und selektiver Schützung der primären Alkoholgruppe erhalten werden können.

7.4 Lösungssynthese von RK-682

Unter milden Bedingungen wurde Methylisopropyliden-D-glycerat **180a** nach einer allgemeinen Methode von *Giannis et al.* zum Benzylester **180b** umgeestert.^[118] Hierzu wurden katalytische Mengen Dibutylzinnoxid **181** und Benzylalkohol im Überschuss verwendet. Durch den Einsatz von Mikrowellen wurde die Reaktionszeit von 16 h auf 30 min verkürzt und man erhielt den optisch reinen Ester **180b** in 83 % Ausbeute.^[119] Nach saurer Spaltung des Ketals **180b** wurde die primäre OH-Gruppe des so erhaltenen Produkts **183** selektiv trityliert und man gewann Hydroxyester **184** in 68 % Ausbeute (über beide Stufen). Anschließend wurde dieser durch Umsetzung mit Ph₃PCCO **21** zum Tetronat **186** cyclisiert.

Schema 68: Synthese von optisch reinem Tetronat 186

Hierbei war allerdings eine teilweise Racemisierung in 5-Position zu beobachten. Deshalb wurde Ph_3PCCO **21** dann mit α -Hydroxyester **184** zunächst bei RT zur Reaktion gebracht.

Das entstandene Esterylid **185** wurde zur Entfernung von Alkoxid-Spuren, die bei der Synthese von **21** entstehen, über eine kurze Kieselgelsäule gereinigt^[120] und anschließend durch Bestrahlen mit Mikrowellen cyclisiert. Auf diese Weise gewann man 75 % optisch reines Tetronat **186**.

Debenzylierung von **186** mit Wasserstoffgas und 5% Pd auf Aktivkohle als Katalysator ergab die freie Tetronsäure **187** in quantitativen Ausbeuten. Bei der nachfolgenden 3-Acylierung mit Palmitinsäure unter den Bedingungen von *Yoshii et al.* (DCC, DMAP, NEt_3)^[105] erhielt man 3-Palmitoyltetronsäure **188** in ausgezeichneten 94 %. Abschließend wurde die Tritylschutzgruppe durch Zugabe von 1 N HCl entfernt. Nach chromatographischer Reinigung erhielt man den optisch reinen Naturstoff (5*R*)-(+)-**166** in einer Gesamtausbeute von 40 % bezogen auf Benzylglycerat **180b**. ^[119]

Schema 69: Totalsynthese von RK-682

Abbildung 3: ¹H-NMR-Spektrum von RK-682

Bei den Melophlinen (eine Familie von natürlich vorkommenden 3-Acyltetramsäuren) besitzen Derivate, die eine 4'-Methyldodecanoyl- bzw. eine 5'-Methyldodecanoylgruppe als 3-Acylrest tragen, sehr interessante biologische Aktivitäten (siehe Kapitel 9),^{[121],[122]} daher synthetisierte ich Analoga von RK-682 mit diesen 3-Acylresten. Biologische Tests zu diesen Verbindungen **190** laufen derzeit am National Cancer Institut in den USA.

Schema 70: Synthese von Analoga von RK-682

7.5 Festphasensynthese von RK-682

Nachdem die Synthese von RK-682 in Lösung erfolgreich und enantioselektiv bewerkstelligt werden konnte, wurde eine Festphasensynthese für diesen Naturstoff entwickelt. Als erster Versuch wurde einfach die Synthese in Lösung auf die Festphase übertragen. Hierzu wurde kommerziell erhältliches Tritylchlorid-Polystyrol-Harz 191 verwendet, an das der Benzylester 183 über Etherbildung mit seiner primären OH-Gruppe angeknüpft wurde.^[119] Für die Bildung des immobilisierten Tetronats **193** wurde der Hydroxyester 192 mit Ph₃PCCO 21 in THF bei 60 °C 16 h geschüttelt. Zur Reaktionskontrolle wurde neben IR-Analytik auch eine kleine Menge Harz entnommen abgespalten. Anschließende und mit TFA GC-MS-Analyse der eingeengten Abspaltungslösung zeigte überwiegend Hydroxymethyltetronat **193** an. Problematisch gestaltete sich jedoch die Entfernung der Benzylschutzgruppe. So war es weder unter Verwendung von heterogenen (Pd/C) noch von homogenen (Wilkinson) Katalysatoren möglich, die Benzylschutzgruppe in 4-Position hydrogenolytisch zu entfernen. Andere

Methoden zur Spaltung des Benzylethers konnten nicht verwendet werden, da diese gleichfalls zu einer Spaltung des empfindlichen Trityllinkers geführt hätten.

Schema 71: Versuche zur Festphasensynthese über Benzylester 183

Nachdem diese Entschützung scheiterte, fiel die Wahl erneut auf die TMSE-Schutzgruppe, weil sie sich bereits bei der Synthese von Carlosischer Säure **141** als geeignet herausgestellt hatte (siehe Kapitel 6.5). Sowohl hinsichtlich ihrer Stabilität als auch der selektiven und milden Entschützung mit TBAF schien sie kompatibel mit einer Synthese an der Festphase. Zunächst versuchten wir die Synthese des α -Hydroxytrimethylsilylesters **198**. Dazu wurde das Benzylglycerat **180b** hydrogenolytisch in die Carbonsäure **167** überführt und anschließend mit *O*-Trimethylsilyl-*N*,*N*'-dicyclohexylisoharnstoff **197** verestert.^[103] Dabei erhielt man den TMSE-Ester **180c** in einer Ausbeute von 74 %. Saure Ketalspaltung von **180c** lieferte das gewünschte Diol **198**.

Schema 72: Synthese des Diols 198

Diol 198 konnte dann durch DMAP-katalysierte Veretherung ans Tritylchlorid-Harz 191 unter Bildung des Hydroxyesters 199 angeknüpft werden. Die Reaktionskontrolle erfolgte bei den Festphasensynthesen erneut über die Massenzunahme bzw. -abnahme des Harzes und das Verschwinden oder Erscheinen charakteristischer Banden im IR-ATR-Spektrum. In diesem Fall erhielt man neue Absorptionen bei 3407 cm⁻¹ (OH-Gruppe), 1734 cm⁻¹ (C=O des Esters) und bei 1249 cm⁻¹, 857 cm⁻¹ und 835 cm⁻¹ (alle 3 Absorptionen sind charakteristisch für die TMSE-Gruppe). Um Folgereaktionen mit noch nicht umgesetzten Tritylchloridharz zu vermeiden, wurde dieses nach der Anknüpfung von Diol 198 durch Zugabe von Methanol "gecappt". Der Ringschluss zum Tetronat 200 wurde erneut über eine Domino-Addition-intra-Wittig-Olefinierung bewerkstelligt. Um eine thermische Zersetzung und die damit verbundene Abspaltung des Linkers zu vermeiden bzw. ein besseres Quellen des Harzes zu erzielen, wurde die Reaktion anstatt in Toluol bei 120 °C in THF bei 60 °C durchgeführt. Das Ende der Reaktion erkannte man am Verschwinden der OH-Bande und an der neuen für Tetronate typischen Bande bei 1631 cm⁻¹. Die Banden für die TMSE-Gruppe blieben erhalten und zeigten so die Stabilität dieser Schutzgruppe unter den gewählten Reaktionsbedingungen an.

Schema 73: Festphasensynthese des TMSE-Tetronats 200

Die TMSE-Gruppe des Tetronats **200** konnte durch TBAF selektiv abgespalten werden, ohne den Trityllinker in Mitleidenschaft zu ziehen. Dies erkannte man am Verschwinden der TMSE-Banden (1249 cm⁻¹, 857 cm⁻¹, 835 cm⁻¹) und einer Verschiebung der Esterbande von 1740 cm⁻¹ nach 1721 cm⁻¹. Nach der Methode von *Yoshii et al.*^[105] konnten wir mit Palmitinsäure die immobilisierte 3-Acyltetronsäure **202** erhalten. Die Abspaltung vom Harz gelang unter Standardbedingungen mit TFA/Et₃SiH/DCM (5:5:90) innerhalb von 20 Minuten. Dabei verfärbte sich das Harz bei Zugabe des Abspaltungscocktails zunächst

rot. Diese Färbung verschwand aber nach kurzer Zeit wieder. Bezogen auf die Beladung des Tritylchlorid-Harzes konnte (5*R*)-**166** in einer Gesamtausbeute von 26 % isoliert werden.^[119]

Schema 74: Festphasensynthese von RK-682

Mit dieser Methode gelang erfolgreich die erste Festphasensynthese von Tetronsäuren und 3-Acyltetronsäuren. Die immobilisierte Tetronsäure **201** wäre gleichzeitig der Ausgangspunkt für eine Bibliotheksynthese von RK-682-Analoga mit Diversität in der 3-Acylseitenkette. Dies muss allerdings in nachfolgenden Arbeiten geschehen.

7.6 Struktur und Wirkung von Agglomerin A-D

Die Agglomerine A-D **203** wurden von *Shoji et al.* aus dem Bakterium *Enterobacter agglomerans* PB-6042 (ein stäbchenförmiges, gram-negatives Bakterium) isoliert und ihre Struktur aufgeklärt.^{[123],[124]} Sie gehören zur Klasse der Alkylidentetronsäuren. Gemeinsam ist allen 4 Derivaten die Alkylideneinheit in 5-Position und der Tetronsäurekern, dagegen unterscheiden sie sich in der Art ihrer 3-Acylreste. Agglomerin A **203a** besitzt einen Decanoylrest, Agglomerin B **203b** einen 5-Z-Dodecenoylrest, Agglomerin C **203c** einen Dodecanoylrest und Agglomerin D **203d** einen 6-Z-Tetradecenoylrest in der 3-Acylseitenkette.

Die freien Alkylidentetronsäuren sind instabil und polymerisieren leicht. In Form der Natriumsalze sind sie jedoch stabil und lagerungsfähig. Die Natriumsalze lösen sich in DMSO, MeOH, EtOH und EtOAc, jedoch nicht in Et₂O und Wasser. Bei der Reinigung der Agglomerine **203** durch Kieselgel-Säulenchromatographie bildet sich wie bei **166** das Calciumsalz.

Schema 75: Stuktur von Agglomerin A-D 203

Agglomerine **203** wirken als Antibiotika gegen eine Vielzahl von gram-positiven als auch gram-negativen anaeroben Bakterien. Am aktivsten ist hierbei **203c**. Weiterhin ist eine geringe Wirkung gegen gram-positive aerobe Bakterien bei den vier getesteten Organismen (S. *aureus* FDA JC-1, S. *aureus* SR14(R), S. *pyogenes* C-203 und S. *pneumoniae*) zu verzeichnen. Allerdings zeigt nur **203b** bei allen vier Testorganismen eine Wirkung.^[125]

7.7 Biosynthese von Agglomerin A

Durch Verfolgung von isotopenmarkierten Verbindungen (¹³C, ²H) mittels NMR konnte über Fütterungsexperimente von *Enterobacter agglomerans* PB-6042 ein Teil der Biosyntheseroute aufgeklärt werden.^[126] Durch Verfütterung von 1-¹³C-markiertem Acetat konnte bewiesen werden, dass die Seitenkette, die aus dem Decanoat stammt, aus Essigsäurebausteinen aufgebaut ist. Dies trifft jedoch nicht für den Fünfring zu, bei dem der Precursor für C3, C4 und C5 vom Glycerol stammt. Somit ist der C₃-Baustein kein Pyruvat.

Der von *Mashimo et al.* vermutete Mechanismus ist die Kopplung einer 1,3-Bisphosphoglycerinsäure **205** mit einem Acetyl-CoA oder Malonyl-CoA **204** zu einem noch nicht bewiesenen C₅-Lacton **206**, welches dann mit Decanoat unter einer anti-Eliminierung zu **203a** reagieren würde.

Schema 76: Postulierte Biosynthese von Agglomerin A

7.8 Synthese von anderen Arbeitsgruppen

Die erste und bisher einzige Totalsynthese stammt von *Ley et al.* ^[127] Sie synthetisierten allerdings nur Agglomerin A **203a**, jedoch ist die Methode prinzipiell auch zur Synthese der anderen Agglomerine geeignet. *Ley et al.* gingen dabei von der 3-Bromtetronsäure **208** aus, die zunächst mit Dimethylsulfat methyliert wurde. Das erhaltene *O*-Methyl-3-bromtetronat **209** wurde dann ins Stannyltetronat **210** überführt. Deprotonierung mit LDA und Zugabe von Eschenmosers Salz ergab **211**. Dieses wurde durch Methyliodid ins quartäre Ammoniumsalz überführt und anschließend durch Eliminierung mit 1N NaOH in die Alkylidentetronsäure **212** umgewandelt. Durch Umsetzung mit Decansäurechlorid und *trans*-Bzl(Cl)Pd(PPh₃)₂ als Katalysator konnte **212** ins Acyltetronat **213** überführt werden. Demethylierung mit wässriger NaOH Lösung ergab den Naturstoff **203a** in einer Gesamtausbeute von 6 %.

Ein Nachteil der Methode liegt in der Verwendung von giftigen Zinnorganylen. Von Vorteil ist, dass man sowohl 3-Acyltetronsäuren als auch 4-*O*-Alkyl-3-acyltetronsäuren erhält.

Schema 77: Totalsynthese Agglomerin A nach Ley et al.

7.9 Totalsynthese von Agglomerin A-C

Die in Schema 68 und Schema 69 beschriebene allgemeine Methode zur Synthese von RK-682 konnte durch zwei zusätzliche Schritte auch zur Synthese von Agglomerin A-C **203** herangezogen werden.^[119]

Zunächst wurden in Analogie zu RK-682 die entsprechendenen 5-Hydroxymethyl-3acyltetronsäuren **215** synthetisiert, die sich nur in der Art des 3-Acylrests unterscheiden. Von Vorteil war auch, dass ich von billigerem racemischen Glycerat **180a** ausgehen konnte, da die Agglomerine **203** kein Stereozentrum besitzen. Die 5-Hydroxymethyl-3acyltetronsäuren **215** erhielt ich in guten Ausbeuten. Lediglich die Tetronsäure mit dem 5'-*Z*-Dodecenoylrest **215b** fiel mit 34 % Ausbeute über 2 Stufen etwas ab.

Schema 78: Synthese der 5-Hydroxymethyl-3-acyltetronsäuren 215

Durch eine Mesylierung-Eliminerungssequenz konnte ich aus den 5-Hydroxymethyltetronsäuren **215** die 5-Alkylidentetronsäuren **203** gewinnen (siehe Schema 79).^[112] Die Agglomerine A-C **203** fielen in guten Ausbeuten an. Für **203b** und **203c** war dies die erste Totalsynthese.

Schema 79: Totalsynthese von Agglomerin A-C 203

Abbildung 4: ¹H-NMR-Spektrum von Agglomerin B (203b)

8 SYNTHESE VON TENUAZONSÄURE

8.1 Struktur und Wirkung

Tenuazonsäure **220**, 3-Acetyl-5-*s*-butyl-pyrrolidin-2,4-dion, ist der einfachste Vertreter natürlich vorkommender 3-Acyltetramsäuren und wurde zuerst von *Stickings et al.* aus dem Kulturfiltrat von *Alternaria tenuis* isoliert.^[128] Mittlerweile konnte es auch aus anderen Pilzkulturen u. a. *A. alternata*, *A. longipes*, *Pyricularia oryzae* gewonnen werden.^{[129],[130]} *Stickings* bestimmte durch Bildung von L-Isoleucin nach Ozonolyse und anschließender saurer Hydrolyse die absolute Stereochemie von **220** als (5*S*,6*S*).^[131]

Schema 80: Struktur von Tenuazonsäure 220

Tenuazonsäure **220** besitzt ein breites Toxizitätsspektrum.^[132] Zuerst entdeckte man, dass es ein Wachstumsinhibitor von Tumorzellen (humanes denocarcinom) ist. Einen hemmenden Effekt hat es auch auf verschiedene Viren, darunter Poliovirus MEF-1, Parainfluenza-3, Vaccina und Herpes simplex HF. *Vazquez et al.* konnten zeigen, dass Tenuazonsäure **220** die Proteinbiosynthese im Ribosom hemmt, indem es das Substrat daran hindert sich an die Akzeptor-Seite der Peptidyltransferase zu binden.^[133] Diese Eigenschaft führt zu verschiedenen Pflanzenkrankheiten wie Mehltau und braunen Punkten auf den Blättern von Tabak- und Reispflanzen.^{[134],[135]} Als Kupferkomplex zeigt Tenuazonsäure **220** antibakterielle Aktivität gegen *Bacillus subtilis* und *Staphylococcus aureus*.^[136] Kürzlich wurde gezeigt, dass **220** antibiotische Wirkung gegen *Paenibacillus Larvae* hat.^[137] Dieses Bakterium ruft die Bienenkrankheit "American foulbrood" hervor, die nur sehr schwer zu kontrollieren und zu bekämpfen ist, da sowohl die Larven als auch die Puppen der Honigbiene befallen werden.

8.2 Biosynthese

Die Biosynthese von Tenuazonsäure **220** wurde durch Verwendung von [1-¹⁴C]-markierten Acetat untersucht.^{[138],[139]} *Stickings et al.* konnten zeigen, dass **220** aus L-Isoleucin und zwei Molekülen Acetat aufgebaut wird. Die Fütterungsexperimente mit dem radioaktiv markierten Acetat führten zur Isolierung von *N*-Acetoacetyl-L-isoleucin. Dies war der Hinweis darauf, dass es zunächst zur Amidbildung kommt, bevor eine C-C-Verknüpfung unter Ringschluss zur Tetramsäure **220** führt.

8.3 Retrosynthese

Im Rahmen der vorliegenden Arbeit sollte eine enantioselektive Synthese von Tenuazonsäure 220 entwickelt werden. In einer vorangegangenen Arbeit wurde 220 bereits synthetisiert, jedoch nur als racemische Mischung.^[101] Mit Hilfe von immobilisiertem Ketenylidentriphenylphosphoran 100 sollte nun, aus den in Kapitel 4.3.4 erwähnten Gründen, eine enanatioselektive Synthese von Tenuazonsäure 220 möglich sein. Retrosynthetisch betrachtet sollte Tenuazonsäure 220 über eine 3-Acylierung aus der freien Tetramsäure 219 zugänglich sein. 219 sollte durch Hydrogenolyse aus dem Benzyltetramat 218 unter milden Bedingungen freigesetzt werden. 218 ließe sich durch Umsetzung von polymer-gebundenem Ylid 100 mit Aminosäureester 217 gewinnen.

Schema 81: Retrosynthese von Tenuazonsäure 220

8.4 Totalsynthese

Zunächst wurde unter Standardbedingungen das erforderliche Aminosäureesterhydrotosylat **217** synthetisiert.^[140] Wie bereits in 4.3.4 gezeigt wurde, erhält man durch Umsetzung von chiralen Aminosäureestersalzen mit zwei Äquivalenten polymergebundenem Ylid **100** die entsprechenden optisch reinen Tetramate. Dieses Ergebnis ließ sich durch Umsetzung von **100** mit **217** bestätigen und Tetramt **218** konnte enantioselektiv in 60 % Ausbeute gewonnen werden. Aufgrund des entstandenen zweiten Stereozentrums, konnte man die Epimerisierung in 5-Position mittels ¹H-NMR verfolgen. Erhielt man bei der Synthese mit Ylid **21** noch einen doppelten Signalsatz,^[101] so ergab sich nur ein Signalsatz im ¹H-NMR-Spektrum von **218** bei Verwendung des immobilisierten Ylids **100**. Die anschließende Hydrogenolyse in Gegenwart katalytischer Mengen an 5%-Pd auf Aktivkohle ergab quantitativ die chirale Tetramsäure 219. Die 3-Acylierung von 219 erfolgte nach einer Methode von Jones et al.^[141] Hierzu wurde **219** in etherischer BF₃·Et₂O Lösung mit einem Überschuss von Acetylchlorid 8 h lang bei 80 °C erwärmt. Mechanistisch gesehen handelt es sich hierbei um eine 4-O-Acylierung von Tetramsäure 219, gefolgt von einer Lewissäure katalysierten Fries-Verschiebung des Acylrests in die 3-Position. Durch vorsichtige wässrige Aufarbeitung mit gesättigter Ammoniumchloridlösung ließ sich hieraus das BF2-Chelat 221 gewinnen. Dieses hatte den Vorteil, weniger polar zu sein als die freie Tetramsäure 220 und konnte daher durch Säulenchromatographie gereinigt werden. Darüberhinaus war für die Aufarbeitung des Reaktionsgemischs keine Base erforderlich, die unter Umständen zu einer teilweisen Racemisierung hätte führen können. Aus 221 ließ sich durch Erwärmen unter Rückfluss der Naturstoff 220 gewinnen. In einer 4-stufigen Synthesesequenz erhielt ich Tenuazonsäure **220** in einer Gesamtausbeute von 39 %.^[78]

Schema 82: Totalsynthese Tenuazonsäure 220

9 TOTALSYNTHESE DER MELOPHLINE A-C und G

9.1 Struktur und Wirkung

Die Melophline **222** sind eine Familie von *N*-Methyl-3-acyltetramsäuren die kürzlich aus dem Schwamm *Melophlus sarassinorum* (Gattung: Astrophorida; Familie: Ancorinidae) isoliert wurden.^{[121],[122]} Bis heute sind 15 Derivate (Melophlin A-O) bekannt, die sich strukturell in den Substituenten in 5-Position (R=H oder Me), der Kettenlänge (C_{12} - C_{16}) und der Verzweigung der 3-Acylseitenkette unterscheiden.

Abbildung 5: Melophlus Sarassinorum (gesammelt in der Nähe von Makassar, Indonesien)

Unter den Melophlinen 222 zeichnen sich vor allem Melophlin A-C und G (222a-c, g) durch interessante biologische Aktivitäten aus, deshalb werden im folgenden nur diese hinsichtlich ihrer Struktur und Wirkung genauer betrachtet. Melophlin A (222a) ist in 5-Position unsubstituiert und leitet sich von der Aminosäure Sarcosin und der Fettsäure Palmitinsäure ab. Melophlin B (222b) dagegen besitzt in 5-Position einen Methylsubstituenten, ist (5S) konfiguriert und hat einen 4-Methyldodecanoylrest als 3-Acylseitenkette. Melophlin C (222c) trägt ebenfalls eine Methylgruppe als Substituent an C5 und einen 5-Methyldodecanoylrest in 3-Stellung. Allerdings ist 222c eine Mischung aus den vier möglichen Diastereomeren. Wie Melophlin A (222a) ist auch Melophlin G (222g) unsubstituiert an C5, besitzt aber mit einem Myristoylrest einen um 2 C-Atome kürzeren 3-Acylsest.

Schema 83: Struktur von Melophlin A-C und G (222 a-c, g)

Melophlin A und B (**222a,b**) zeigen cytotoxische Aktivität gegen HL60 Zellen bei einer Konzentration von 0.2 und 0.4 μ g/ml. Beide Verbindungen führten zu einer Normalisierung des Phänotyps H-*ras* transformierter NIH3T3 Fibroblasten bei einer Konzentration von 5.0 μ g/ml. Bei einer Konzentration von 1.0 μ g/ml wurden NIH3T3 Zellen in der G1 Phase des Zellzyklus gehemmt. Diese Eigenschaften machen **222a** und **222b** zu potentiellen Anti-Krebs-Therapeutika.

Melophlin C (**222c**) und G (**222g**) zeigen zwar keine cytotoxischen Eigenschaften, dafür aber antibakterielle Aktivität gegen *Bacillus subtilis* und *Staphylococcus aureus* und antiproliferative Aktivität gegen die Salzwasser Garnele *Artemia salina* und die Larve des Schädlings *Spodoptera littoralis*. Darüber hinaus besitzt Melophlin C (**222c**) antifungizide Aktivität gegen *Candida albicans*.

9.2 Retrosynthese

Die erste Totalsynthese von Melophlin A-C und G sollte ausgehend von immobilisiertem Ylid **100** erfolgen. Wie in Kapitel 4.3.4 erläutert ergaben *N*-methylierte Aminosäureester bei der Umsetzung mit **100** sehr hohe Ausbeuten des entsprechenden Tetramats. Durch Umsetzung von **100** mit Sarcosinestern bzw. *N*-Methylalaninestern **225** sollte in der bekannten Additions-intra-Wittig-Olefinierungsreaktionssequenz das Tetramat **224** zugänglich sein. Anschließende Entschützung der 4-Alkoxytetramate **224** sollte die N-Methyltetramsäure **223** in Freiheit setzen. Letztere sollte dann in 3-Position acyliert werden. Dabei sollten verschiedene 3-Acylierungsmethoden miteinander verglichen werden.

Schema 84: Retrosynthese der Melophline A-C und G

Der Aufbau der 3-Acylseitenketten für Melophlin B und C sollte über eine modifizierte Hünig-Synthese erfolgen.

9.3 Totalsynthese

9.3.1 Synthese der 3-Acylseitenketten

9.3.1.1 Synthese der Seitenkette für Melophlin B

4-Methyl- und 5-Methyldodecansäure, die 3-Acylseitenketten von Melophlin B und C, wurden über eine modifizierte Hünig-Synthese in vier bzw. fünf Schritten aufgebaut.^{[142],[143],[144]} 4-Methyldodecansäure **229** wurde ausgehend von 4-Methylcyclohexan **226** erhalten. Dieses wurde durch Erwärmen mit Morpholin am Wasserabscheider in das Enamin überführt, das dann zunächst mit Capronsäurechlorid acyliert wurde. Saure Hydrolyse ergab die Dicarbonylverbindung **227** in einer Ausbeute von 71 %. Durch Umsetzung mit KOH kam es zur Ringöffnung. Die entstandene 4-Methyl-7-oxo-dodecansäure **228** wurde anschließend durch Wolff-Kishner-Reduktion in die gewünschte 4-Methyldodecansäure **229** überführt. Das entsprechende Säurechlorid **230** erhielt man durch Reaktion mit Thionylchlorid in Gegenwart katalytischer Mengen DMF in einer Gesamtausbeute von 32 %.

Schema 85: Synthese von 4-Methyldodecansäurechlorid 230. Reagenzien und Bedingungen: (i) Morpholin, TosOH, Rückfluss, 5 h; (ii) C_5H_{11} COCl, NEt₃, CHCl₃, RT, 12 h; (iii) aq. HCl, 90 °C, 5 h; (iv) aq. KOH, 130 °C, 5 min, dann aq. HCl; (v) N₂H₄, KOH, Triethanolamin, 150 °C, 1 h, dann KOH (5 eq), 205 °C, 4 h, dann H₂O, HCl; (vi) SOCl₂, DMF, RT, 12 h.

9.3.1.2 Synthese der Seitenkette für Melophlin C

Durch zusätzliche Methylierung der Dicarbonylverbindung **232** konnte man in analoger Art und Weise aus Cyclopentanon **231** 5-Methyl-6-oxododecansäure **233** gewinnen. Diese lieferte nach Wolff-Kishner-Reduktion die Carbonsäure **234**, die durch Umsetzung mit SOCl₂ ins Säurechlorid **235** überführt werden konnte.

Schema 86: Synthese von 5-Methyldodecansäurechlorid 235. Reagenzien und Bedingungen: (i) Morpholin, TosOH, Rückfluss, 5 h; (ii) C_6H_{13} COCl, NEt₃, CHCl₃, RT, 12 h; (iii) aq. HCl, 90 °C, 5 h; (iv) BuOH, *t*-BuOK, dann MeI, 12 h, RT (v) aq. KOH, 130 °C, 5 min, dann aq. HCl; (vi) N_2H_4 , KOH, Triethanolamin, 150 °C, 1 h, dann KOH (5 eq), 205 °C, 4 h, dann H₂O, HCl; (vii) SOCl₂, DMF, RT, 12 h.

9.3.2 Synthese der Tetramsäureeinheit

Die für die Tetramsäureeinheit der Melophline A, C und G erforderlichen α -Aminosäureester wurden ausgehend von billigen Edukten synthetisiert. Dazu setzte man 2-Chloressigsäure-*t*-butylester **236** mit KI und 40 %iger wässriger Methylaminlösung **237** um. In einer S_N2-Reaktion erhielt man Sarcosin-*t*-butylester **238** in guten 88 % Ausbeute.^[145]

Schema 87: Synthese von Sarcosin-t-butylester 238

Da der Naturstoff Melophlin C eine Mischung der vier möglichen Diastereomeren ist, wurde eine Methode zur Synthese von racemischen (R,S)-N-Methylalanin-t-butylester **241** entwickelt. Ausgehend von 2-Chlorpropionsäurechlorid **239** erhielt man durch Reaktion mit Kalium-t-butylat in THF den Ester **240**. Dieser wurde wie für **238** beschrieben in den Aminosäureester **241** überführt.

Schema 88: Synthese von (R,S)-N-Me-Ala-OtBu 241

Durch Umsetzung der Ester **238** und **241** mit polymer-gebundenem Ketenylidentriphenylphosphoran **100** wurden die Tetramate **242** und rac-**243** in hervorragenden Ausbeuten und hoher Reinheit erhalten. Durch Erwärmung in der Mikrowelle auf 120 °C war die Reaktion innerhalb von 30 min beendet. Saure Spaltung der 4-*t*-Butoxytetramate **242** und *rac*-**243** mit TFA setzte quantitativ die Tetramsäuren **244** und *rac*-**245** frei.

Schema 89: Synthese der Tetramsäureeinheit für Melophlin A,C,G

Die chirale Tetramsäureeinheit (5S)-245, für den Naturstoff Melophlin B, ließ sich durch Reaktion von 2 eq immobilisiertem Ylid 100 mit dem käuflich zu erwerbenden optisch reinen *S-N*-Me-Ala-O-*t*-Bu·HCl 246 und anschließender Entschützung des Tetramats (5S)-243 mit TFA gewinnen. Die optische Reinheit von (5S)-245 wurde durch GC-Analytik an chiraler Säule im Vergleich mit dem Racemat *rac*-245 überprüft. Dabei ergab sich für (5S)-245 ein ee von 99 %.

Schema 90: Synthese der chiralen Tetramsäure 248

9.3.3 3-Acylierung der Tetramsäure

Zunächst sollte die Tetramsäure **244** mit Palmitinsäure acyliert werden und so Melophlin A synthetisiert werden. Nach *Jones et al.* ist es nicht möglich 5-unsubstituierte Tetramate in etherischem BF₃·Et₂O mit Säurechloriden in 3-Position zu acylieren.^[141] Unter diesen Reaktionsbedingungen fanden die Autoren lediglich Produkte einer Selbstkondensation der

jeweiligen Tetramsäuren, nicht jedoch die 3-Acyltetramsäuren. Daher wurde im Folgenden nach alternativen Verfahren zur 3-Acylierung von Tetramsäuren gesucht. Analog zur Synthese von 3-Acyltetronsäuren^[105] entwickelten *Yoshii et al.* die Synthese von 3-Acyltetramsäuren.^[146] Dieser Methode folgend wurde die Tetramsäure **244** zunächst durch Umsetzung mit Palmitinsäure, DCC und katalytischen Mengen DMAP in 4-Position verestert. Dabei fiel 1-Methyl-4-palmitoylpyrrolin-2-on **249** in 75 % Ausbeute an. Die erhaltene 4-Acyltetramsäure **249** sollte dann, durch eine basenkatalysierte Fries-Verschiebung, in den Naturstoff Melophlin A (**222a**) überführt werden. Die verwendeten Basen führten allerdings nicht zur gewünschten Verschiebung des Acylrests in die 3-Position, sondern zu einer Eliminierung des 4-Acylrests. Melophlin A wurde, wenn überhaupt, nur in ganz geringen Ausbeuten erhalten.

Schema 91: Versuche zur Synthese von Melophlin A (222a)

Jedoch konnte das Protokoll von *Yoshii et al.* erfolgreich zur Synthese von Melophlin C (**222c**) verwendet werden.^[146] Hierzu wurde (5R,5S)-1,5-Dimethylpyrrolidin-2,4-dion **rac-245** mit 5-Methyldodecansäure **234** in Gegenwart von DCC und DMAP verestert. Die gewonnene 4-Acyltetramsäure **250** ging, in einer Lösungsmittelmischung aus NEt₃/DCM 2:1, die erhoffte Fries-Verschiebung zu Melophlin C ein.^[147] Bei Verwendung von äquimolaren Mengen von NEt₃ kam es jedoch nicht zur Acylwanderung.

Da man NEt₃ als Lösungsmittelkomponente verwenden musste, um die baseninduzierte Fries-Verschiebung zu bewerkstelligen, schien die Synthese von an C-5 chiralen 3-Acyltetramsäuren wie Melophlin B schwierig. Darüber hinaus war die Reinigung des auf diese Weise erhaltenen Melophlin C sehr schwierig. Deshalb wurde nach alternativen Methoden zur Synthese von 3-Acyltetramsäuren gesucht.

Schema 92: Synthese von Melophlin C über die 4-Acyltetramsäure 250

Jung et al. führten in ihrer Totalsynthese von Reutericyclin **65** die 3-Acylierung der Tetramsäure mit Acetylchlorid und TiCl₄ in Nitrobenzol durch.^[148] Analog dazu gelang die Synthese von Melophlin G durch Umsetzung von **244** mit Myristoylchlorid und 1.5 eq TiCl₄ in Nitrobenzol.

Schema 93: Synthese von Melophlin G

Jedoch war die Ausbeute mit 25 % vergleichsweise gering, die Aufreinigung von Melophlin G gestaltete sich schwierig und man musste das cancerogene Nitrobenzol verwenden. Diese Umstände führten schließlich dazu, doch das Protokoll von *Jones et al.* anzuwenden.^[141]. Überraschenderweise konnte ich durch Reaktion der Tetramsäure **244** mit Palmitinsäurechlorid in etherischer BF₃·Et₂O und 8 h Erwärmen der

Reaktionsmischung bei 80 °C den BF₂-Chelatkomplex der 5-unsubstituierten 3-Acyltetramsäure 251a isolieren.

Abbildung 6: ¹H-NMR-Spektrum von BF₂-Chelat 251a

Abbildung 7: JMOD-NMR-Spektrum von 251a

Die BF₂-Chelate **251** ließen sich im Gegensatz zu den freien Tetramsäuren sehr gut mittels Säulenchromatographie an Kieselgel reinigen. Aus diesem Chelat **251a** erhielt man Melophlin A, durch zweistündiges Erhitzen in Methanol.^[147] Das so erhaltene Melophlin A war laut GC-MS von einer Reinheit von 99 %, eine weitere Reinigung war nicht mehr erforderlich.

Da die Acylierung der Tetramsäure immerhin 8 h in Anspruch nahm, wurde die Reaktion zur Beschleunigung unter Mikrowellen-Bedingungen durchgeführt. Dadurch liess sich die Reaktionszeit auf 45 min verkürzen, die Ausbeute an isoliertem BF₂-Chelat erhöhen und die eingesetzte Menge des Säurechlorids halbieren. Analog zu dieser Synthese wurden auch die Melophline B, C und G erhalten. Hierbei ergaben sich sehr gute Gesamtausbeuten.

Schema 94: Totalsynthese der Melophline A, B, C und G

Abbildung 8: ¹H-NMR-Spektrum von Melophlin A (222a)

Abbildung 9: JMOD-Spektrum von Melophlin A (222a)

Melophlin	Acylierungsmethode	Gesamtausbeute (%) ^a	Reinheit (%) ^b
A	Jones ^c	39	99
	Jones/Mikrowelle ^d	47	99
	Yoshii ^e	9	20
В	Jones	35	99
	Jones/Mikrowelle	66	99
С	Jones	36	99
	Jones/Mikrowelle	43	99
	Yoshii	14	70
G	Jones/Mikrowelle	52	99
	Yoshii	6	18
	Jung ^f	25	90

Die nachfolgende Tabelle 2 gibt einen Vergleich zwischen den 3-Acylierungsmethoden hinsichtlich der Gesamtausbeute und der Reinheit der isolierten Produkte.

Tabelle 2: Vergleich von 3-Acylierungsmethoden zur Synthese von Melophlinen 222. ^a isolierte Gesamtausbeute für Jones und Jung, GC-% für Yoshii; ^b durch GC-MS bestimmt; ^c (i) BF₃·Et₂O, RCOCl, 80 ^oC, 8 h; (ii) MeOH, Rückfluss, 2h; ^d wie ^c jedoch μw, 100 ^oC, 45 min; ^e (i) RCOOH, DCC, DMAP, DCM, 5 h, RT; (ii) NEt₃, RT, 24 h; ^f RCOCl, TiCl₄, PhNO₂, 50 ^oC, 2 h

Man erkennt, dass die Methode nach *Jones et al.* den anderen Methoden sowohl hinsichtlich der Gesamtausbeute als auch der Reinheit der Produkte deutlich überlegen war. Ferner hatte sie den großen Vorteil, dass man die relativ unpolaren BF₂-Chelate durch Säulenchromatographie an Kieselgel reinigen konnte. Aus diesen erhielt man die Naturstoffe in hoher Reinheit.

10 BEITRÄGE ZUR SYNTHESE VON QUINOLACTACIN A und B

10.1 Struktur und Wirkung

Im Jahre 2000 isolierten *Nakagawa et al.* aus dem Pilz *Penicillium sp.* EPF-6 drei neue Naturstoffe mit einem Chinolon-Gerüst, die sogenannten Quinolactacine A, B und C.^{[149],[150]} Die Struktur der Quinolactacine ist einzigartig, da das Chinolon-Gerüst in Konjugation mit einem γ -Lactamring steht. *Tatsuta et al.* schlugen vor, dass die Biosynthese dieser Naturstoffe aus der jeweiligen Aminosäure, Anthranilsäure und Essigsäure erfolgt.^[151] Wenig später isolierten *Yoo et al.* aus dem Pilz *Penicillium citrinum* die beiden Diastereomere von Quinolactacin A.^[152]

Schema 95: Stuktur der Quinolactacine A1, A2, B und C

Quinolactacin A1 und A2 wirken als Inhibitoren der Acetylcholinesterase. Dieses Enzym hydrolysiert Acetylcholin in den cholinergen Synapsen des ZNS und an den neuromuskulären Nervenenden. Acetylcholin ist Neurotransmitter an den Synapsen des autonomen Nervensystems und an den neuromuskulären Endplatten. Morbus Alzheimer ist eine neurodegenerative Erkrankung. Die Schädigung der Neuronen wird auf die herabgesetzte Synthese und Freisetzung von Acetylcholin zurückgeführt. Man erhofft sich daher Quinolactacin A1 und A2 als Wirkstoffe zur Therapie von Morbus Alzheimer einzusetzen. Sie haben den Vorteil, dass sie nicht die unspezifische Butyrylcholinesterase im Blut und in der Leber inhibieren. Diese Nebenwirkung trat bei Tacrin, einem früher zur Therapie von Morbus Alzheimer eingesetzten Wirkstoff auf und führte zur Hepatotoxizität. Ein anderes Target für Quinolactacine A, B, und C ist die TNF-Produktion muriner Makrophagen. TNF ist ein Cytokin, das vermehrt bei Immunreaktionen gebildet wird und proentzündliche Eigenschaften hat. Multiple Sklerose ist eine Autoimmunerkrankung bei der die Markscheiden (Myelin) der Nervenfasern angegriffen und zerstört werden. Die Markscheiden umhüllen die Nervenfasern und sind sozusagen die Isolation der Nervenleitungen. Die beschädigten Nerven verlieren die Fähigkeit, Nervenimpulse weiterzuleiten. Die Quinolactacine hemmen die durch murine Makrophagen induzierte TNF Produktion. Da dies entzündungshemmend wirkt, wären sie potentielle Wirkstoffe für die Therapie von Multipler Sklerose.

10.2 Synthesen von anderen Arbeitsgruppen

Die erste Totalsynthese von Quinolactacin B stammt von *Tatsuta et al.*^[151] Sie gingen aus von Anthranilsäure **254**, die in 3 Stufen in das N-Methylderivat **255** überführt wurde. Der aktivierte Thioester **256** reagierte mit dem Lithiumenolat von *t*-Butylthioacetat zum β -Ketothioester **257**. Dieser wurde anschließend in Gegenwart von CuI und NEt₃ mit H-Val-OMe·HCl **258** zum entsprechenden β -Ketoamid **259** umgesetzt. Die Z-Schutzgruppe wurde durch Hydrogenolyse entfernt, gefolgt von einer Dieckmann-Cyclisierung zur intermediär gebildeten 3-Acyltetramsäure **260**. Durch Behandlung mit Kieselgel ging **260** eine intramolekulare Enaminsynthese zu Quinolactacin B ein. Man erhielt Quinolactacin B über eine Sequenz von 9 Stufen in einer Gesamtausbeute von 15 %.

Schema 96: Synthese von Quinlactacin B nach *Tatsuta et al.* Reagenzien und Bedingungen: (i) ZCl, Na₂CO₃, THF, H₂O, 98 %; (ii) MeI, NaH 156, DMF, 79 %; (iii) KOH, MeOH, H₂O, 75 %; (iv) 2,2'- Dipyridyldisulfid, PPh₃, THF, 84 %; (v) Ch₃COS*t*-Bu, LiHMDS, THF, 68 %; (vi) Et₃N, CuI, H-Val-OMe HCl 258, THF, 75 %; (vii) H₂, Pd/C, EtOH, 93 %; (viii) NaOMe, MeOH; (ix) Kieselgel, 65 % (2 Stufen)

Über eine alternative Winterfeldt Oxidation gelangten *Sui et al.* zu den Quinolactacinen A1, A2 und B.^[153] Ausgehend von Tryptamin **261** und (*S*)-(+)-2-Methylbutanal **262** synthetisierten sie die Schiffsche Base **263**. Asymmetrische Pictet-Spengler-Reaktion in Gegenwart des chiralen Auxiliars **264** und von Ti(O-*n*-Pr)₄ führte nach Umkristallisation zu **265**. Entfernung des chiralen Auxiliars und schützen des sekundären Amins gefolgt von KO₂-Oxidation ergab das Chinolon **267**. Nach Methylierung erfolgte allylische Oxidation zum Boc-geschützten Naturstoff. Entschützung mit TFA lieferte Quinolactacin A2 in einer Gesamtausbeute von 9 % in 8 Reaktionsschritten.

Schema 97: Totalsynthese Quinolactacin A2 nach Sui et al.

Park et al. gewannen Quinolactacin A2 über eine Friedländer-Typ Annelierung.^[154] Hierzu setzten sie *N*-Methylisatoinanhydrid **268** mit dem β -Ketoester **269** um. Das erhaltene 4-Oxoquinolin **270** wurde unter sauren Bedingungen enschützt und cyclisierte dabei spontan zu Quinolactacin A2.

Schema 98: Totalsynthese Quinolactacin A2 nach Park et al.

10.3 Retrosynthese

Zur Totalsynthese der Quinolactacine richtete sich die Aufmerksamkeit zunächst auf den von *Tatsuta et al.* beschriebenen Weg über die 3-Acyltetramsäure (siehe Schema 96).^[151] Der Aufbau der 3-Acyltetramsäure erforderte bei *Tatsuta et al.* allein 8 Stufen und der eigentlich interessante Naturstoff Quinolactacin A2 wurde nicht synthetisiert bzw. konnte mittels Lacey-Dieckmann-Cyclisierung nicht gewonnen werden.

Im Rahmen dieser Arbeit wurden Methoden zur Darstellung von 3-Acyltetramsäuren entwickelt (siehe Kapitel 8.4 und 9.3). Auf diesem Reaktionsweg erhält man 3-Acyltetramsäuren in 3 bzw. 4 Stufen.^{[147],[78]} Dadurch könnte einerseits die Synthese von *Tatsuta et al.* ökonomischer geführt werden, andererseits sollte auch das aufgrund seiner biologischen Aktivität hochinteressante Quinolactacin A2 zugänglich sein, da die erforderliche Tetramsäure **219** bereits bei der Totalsynthese von Tenuazonsäure in optisch reiner Form erhalten wurde.

Die Tetramsäure **219** sollte mit *N*-Methylanthranilsäurechlorid **272** in 3-Position acyliert werden. Durch Zugabe von Kieselgel sollte die erhaltene 3-Acyltetramsäure **271** eine intramolekulare Enaminsynthese unter Bildung von Quinolactacin A2 eingehen.

Schema 99: Retrosynthese Quinolactacin A2

10.4 Beiträge zur Totalsynthese

Die Synthese der benötigten Tetramsäure **219** erfolgte analog nach Schema 82 und lieferte chirales Produkt in guten Ausbeuten. Für die 3-Acylierung der Tetramsäure **219** benötigte man zunächst *N*-Methylanthranilsäurechlorid **272**. Jedoch gestaltete sich die Synthese des Säurechlorids **272** als äußert schwierig und bisher unmöglich. So erbrachte weder die Reaktion von *N*-Methylanthranilsäure **273** mit SOCl₂ noch mit Oxalylchlorid den gewünschten Erfolg. Auch Versuche in verschiedenen Lösungsmitteln und bei verschiedenen Temperaturen blieben erfolglos. Selbst die Einführung einer Z-Schutzgruppe am Stickstoff der Anthranilsäure führte nicht zum Säurchlorid **272**.

Deshalb konnte die Acylierungsmethode mit Säurechlorid und BF₃·Et₂O, die bei den Melophlinen erfolgreich eingesetzt wurde,^[147] nicht zur Synthese der Quinolactacine verwendet werden.

Schema 100: Versuche zur Synthese von 272 bzw. 275

In der Folge versuchte ich die Tetramsäure **219** zunächst in 4-Position zu acylieren und anschließend eine baseninduzierte Fries-Verschiebung in die 3-Position zu erreichen. Die 4-*O*-Acylierung gelang durch Veresterung von **219** mit *N*-Methyl-anthranilsäure **273** in Gegenwart von DCC und katalytischen Mengen DMAP. Hierbei erhielt ich die 4-Acyltetramsäure **276** in einer Ausbeute von 66 %.

Schema 101: Synthese der 4-Acyltetramsäure 276

Jedoch blieben die Bemühungen bzgl. der Fries-Verschiebung bislang erfolglos. So erbrachten weder eine baseninduzierte noch eine Lewissäure katalysierte Fries-Verschiebung die Umlagerung von 276 nach 271. Bei Verwendung von Basen wie NEt₃, DIPEA und DBU konnte ich nach der Reaktion nur das Edukt zurückgewinnen. Bei drastischeren Reaktionsbedingungen durch Erwärmen in der Mikrowelle kam es zur Zersetzung des Edukts 276. Als Lewissäuren wurden $BF_3 \cdot Et_2O$ und $Bi(OTf)_3$ getestet, doch auch sie führten nicht zur Bildung der gewünschten 3-Acyltetramsäure 271.

Schema 102: Versuche zur Fries-Verschiebung von 276 nach 271

Um die Totalsynthese von Quinolactacin A2 doch noch zum Erfolg zu führen, sollte man in nachfolgenden Arbeiten versuchen die Fries-Verschiebung durch sehr starke und sterisch anspruchsvolle Basen wie LiHMDS oder *t*-BuLi zu bewerkstelligen. Eine andere Möglichkeit liegt in weiteren Versuchen zur Synthese des Säurechlorids **272** etwa unter Verwendung des Ghosez-Reagenz oder von Cyanurchlorid.

11 EINE NEUE STAUDINGER-AZA-WITTIG-INTRA-WITTIG-DOMINO-REAKTION

11.1 Grundlagen

Als Staudinger-Reaktion wird die Reaktion von Aziden **278** mit Triaryl- bzw. Trialkylphosphinen **277** zu Iminophophoranen **279** bezeichnet.^[155] Obwohl diese Reaktion schon vor mehr als 80 Jahren entdeckt wurde, erfreut sie sich gerade wieder großer Beliebtheit. Erst in den letzten vier Jahren wurde die Staudinger-Ligation als wertwolle Methode zur Herstellung von Biokonjugaten erkannt und entwickelt.^[156]

Der Mechanismus der Staudinger-Reaktion beginnt mit der Bildung des Phosphazids **280** aus Trialkyl- bzw. Triarylphosphin **277** und einem Azid **278**. Das Phosphazid **280** zersetzt sich über die Zwischenstufe **281** unter Stickstoffentwicklung zum Iminophosphoran **279**.^[157]

Schema 103: Mechanismus der Staudinger-Reaktion

Iminophosphoran **279**, mit seinem stark nukleophilen Stickstoffatom, kann mit fast jedem Elektrophil eine Reaktion eingehen. Iminophosphorane **279** reagieren mit Carbonylverbindungen in ähnlicher Weise wie Phosphorylide und eröffnen so einen Zugang zu C=N-Doppelbindungen unter milden und neutralen Reaktionsbedingungen. Daher bezeichnet man diese Reaktion auch als aza-Wittig-Reaktion. Große Bedeutung hat vor allem die intramolekulare aza-Wittig-Reaktion zur Synthese von *N*-Heterocyclen in der Naturstoffsynthese erlangt.^{[158],[159]}

Molina et al. beschreiben die Synthese des biologisch aktiven Isochinolinchinons **287** in 6 Stufen.^[160] Durch Umsetzung des α -Azidozimtsäureesters **282** mit Trimethylphosphin **283** erhielten sie das Iminophosphoran **284**. Aza-Wittig-Reaktion von **284** mit (Trimethylsilyl)ethenon **285** ergab das Ketenimin **286**, das anschließend einen elektrocyclischen Ringschluss und C-Si-Bindungsspaltung einging. Hydrolyse und anschließende Decarboxylierung ergab den gewünschten Naturstoff **287**.

Schema 104: Synthese des Alkaloids 287

11.2 Synthese von *N*-acylierten Tetramaten

Bisher ist es unserer Arbeitsgruppe nicht gelungen *N*-acylierte Tetramate direkt durch Umsetzung von *N*-acylierten Aminosäureestern mit Ph₃PCCO **21** zu erhalten. Der Grund dafür ist, dass *N*-acylierte Aminosäureester nicht mehr ausreichend nukleophil am Stickstoff sind und sich daher nicht in gewohnter Weise ans kumulierte Ylid **21** addieren. *N*-Acyltetramte wären aber interessante Vorstufen von Naturstoffen aus der Klasse der *N*-Acyltetramsäuren (siehe Kapitel 2.2.4).

Animiert durch die Arbeiten von *Molina et al.*^[160] (siehe Schema 104) sollte im Rahmen dieser Arbeit untersucht werden wie Iminophosphorane mit Ketenylidentriphenylphosphoran **21** reagieren. Sollte sich hierbei das Ketenimin **290** bilden, könnte man eine von *Bestmann et al.* etablierte Reaktion zur Synthese von *N*-acylierten Phosphoramidyliden **292** anwenden.^[161] Diese könnte bei geeigneter Wahl der Edukte wieder zu einem Wittig-aktiven Ylid führen und den Zugang zu *N*-acylierten Tetramaten **293** eröffnen.

Schema 105: Möglicher Zugang zu N-Acyltetramaten 293

Zunächst wurden nach einer Vorschrift von *Pelletier et al.* α -Azidoester **288** synthetisiert.^[162] Hierzu wurde frisch hergestellte Tiflylazidlösung zu einer Mischung des Aminosäureesters, CuSO₄ und K₂CO₃ in MeOH und H₂O gegeben. Anschließende Aufarbeitung und Reinigung mittels Säulenchromatographie an Kieselgel ergab Azidoester **288** in guten Ausbeuten.

Schema 106: Synthese von a-Azidoestern 288

Die gewonnenen Azidoester **288** wurden in THF mit PMe₃ **283** versetzt. Zum gebildeten Iminophosphoran **295** wurde langsam Ketenylidentriphenylphosphoran **21** gegeben. Jedoch wurde zunächst keine Reaktion beobachtet. Offensichtlich musste das Ylid **21** durch Protonierung aktiviert werden, bevor es Ketencharakter besaß und ausreichend reaktiv war (siehe Kapitel 4.1). Deshalb gab man zu der Mischung aus Iminophosphoran **295** und Ylid **21** langsam eine Lösung von Palmitinsäure in THF. Um eine Dimerisierung von **21** zu vermeiden, wurde die Säure sehr langsam zugetropft. Dabei bildete sich zunächst Ketenimin **296**, das unter den gegebenen Reaktionsbedingungen über das nicht isolierbare *O*-Acylderivat **297** zum *N*-Acylamidylid **298** weiter reagierte. Durch Erwärmen auf 60 °C ging *N*-Acylamidylid **298** eine intramolekulare Wittig-Olefinierung unter Bildung des *N*-Acyltetramats **299** ein, allerdings in bisher noch geringer Ausbeute.

Schema 107: Eintopf-Synthese von N-Acyltetramten

Die vorgestellte neuartige Staudinger-aza-Wittig-Umlagerung-intra-Wittig-Dominoreaktionssequenz wurde als Eintopf-Variante durchgeführt. Der große Vorteil dieser Reaktion liegt in den milden Reaktionsbedingungen. Erstmalig konnten *N*-Acyltetramte ohne Verwendung von starken Basen wie NaHMDS und NaH **156** synthetisiert werden. Daher sollten die Produkte auch enantioselektiv erhalten werden. Bei Verwendung von chiralen α -Azidoestern sollten also optisch reine *N*-Acyltetramate gewonnen werden können, die wichtige Vorstufen von *N*-Acyl-3-acyltetramsäuren wie Reutericyclin **65** und Magnesidin **64** sind. Dieses muss in nachfolgenden Arbeiten ausführlich untersucht werden.

12 ZUSAMMENFASSUNG

Ketenylidentriphenylphosphoran **21** ist ein vielseitig verwendbarer Synthesebaustein in der Organischen Chemie. **21** reagiert mit aciden Verbindungen wie Aminoestern, Hydroxyestern bzw. Thioestern unter einer Protonierungs-Additionsreaktion zu Amid-, Ester- bzw. Thioesteryliden. Letztere unterliegen bei Erwärmung einer intramolekularen Wittig-Olefinierung zu den entsprechenden Tetramaten, Tetronaten und Thiotetronaten. Diese sind Vorstufen zur Synthese biologisch aktiver Tetram- und Tetronsäuren.

In der vorliegenden Arbeit gelang mir die Synthese von polymer-gebundenem Ketenylidentriphenylphosphoran **100.** Durch Umsetzung von Triphenylphosphinpolystyrol mit Bromessigsäurebenzylester erhielt ich das Phosphoniumsalz **108**. Durch Zugabe von LiHMDS unterlag **108** zunächst einer Deprotonierung zum Esterylid und anschließend einer β -Eliminierung zum kumulierten Ylid **100** (siehe Kapitel 4.2).

Das immobilisierte Ylid **100** zeigte in etwa die gleichen Reaktionseigenschaften wie das nicht immobilisierte Ylid **21**. **100** hatte jedoch den großen Vorteil, dass das bei der Wittig-Reaktion als Nebenprodukt entstandene Ph₃PO durch einfache Filtration entfernt werden konnte. Darüber hinaus wurden bei Umsetzung von **100** mit α -Aminoestersalzen optisch reine Tetramate **123** erhalten. Bei Verwendung von 2 Äquivalenten des kumulierten Ylids **100** gewann man chirale Tetramate in einer Eintopf-Variante (siehe Kapitel 4.3.4).

Ein weiteres Ziel dieser Arbeit war die Festphasensynthese von Tetronaten. Durch Mitsunobu-Reaktion konnten Äpfelsäuremonoester an Wang-Harz angeknüpft werden. Umsetzung mit Ph_3PCCO **21** ergab immobilisierte Tetronate, die unter milden Bedingungen durch Bi(OTf)₃ unter Erwärmen in der Mikrowelle vom Harz abgespaltet wurden (siehe Kapitel 5.2).

Das Hauptaugenmerk lag jedoch auf der Synthese bioaktiver Naturstoffe aus der Klasse der 3-Acyltetronsäuren und 3-Acyltetramsäuren. So konnte ich Carlosische Säure in 6 Stufen aus Äpfelsäure in einer Gesamtausbeute von 32 % aufbauen. Der Ringschluss zum Tetronat erfolgte durch eine Addition-Wittig-Dominoreaktion mit Ph₃PCCO **21** (siehe Kapitel 6.5).

Den Enzyminhibitor RK-682 **166** konnte ich in 7 Stufen mit einer Ausbeute von 40 % ausgehend von Methylglycerat **180a** gewinnen. Durch Erwärmen mittels Mikrowellen wurden die Reaktionszeiten für 2 Schritte von 16 h auf unter 1 h verkürzt (siehe Kapitel 7.4).

Durch die Wahl einer geeigneten Schutzgruppe konnte auch die Festphasensynthese von RK-682 realisiert werden. Hierzu synthetisierte ich ausgehend von Benzylglycerat **180b** zunächst das Diol **198**. Dieses wurde dann durch DMAP katalysierte Veretherung an Polystyrol-Tritylchlorid-Harz angeknüpft. Der Ringschluss zum Tetronat erfolgte durch Zugabe von Ph₃PCCO **21** zum immobilisierten Hydroxyester **199**. Die Entschützung zur Tetronsäure gelang unter milden Bedingungen mit TBAF·3H₂O. Yoshiis Protokoll zur Acylierung von Tetronsäuren lieferte die immobilisierte 3-Acyltetronsäure, die anschließend durch TFA/Et₃SiH/DCM (5:5:90) vom Harz abgespalten werden konnte. Ich erhielt den Naturstoff **166** in einer Ausbeute von 26 % bezogen auf die Beladung des Trityl-Harzes (siehe Kapitel 7.5). Diese Synthese war gleichzeitig die erste Festphasensynthese von Tetronsäuren.

Durch Erweiterung um eine Mesylierungs-Eliminierungsreaktionssequenz konnte die beschriebene Lösungssynthese von RK-682 auch zur Synthese der antibiotischen Agglomerine A-C herangezogen werden. Für Agglomerin B und C war dies die erste Totalsynthese (siehe Kapitel 7.9).

Das Mycotoxin Tenuazonsäure 220 konnte ich in 4 Stufen ausgehend von immobilisiertem Ketenylidentriphenylphosphoran 100 und Isoleucinbenzylesterhydrotosylat 217 synthetisieren. Die Acylierungsmethode nach Jones ermöglichte eine Isolierung von Tenuazonsäure als BF₂-Chelat. Dieses hatte den großen Vorteil, dass es mittels Säulenchromatographie gereinigt werden konnte. Durch Erwärmen unter Rückfluss in MeOH erhielt ich daraus Tenuazonsäure 220 in hoher Reinheit (siehe Kapitel 8.4).

Die erst kürzlich aus dem Schwamm *Melophlus sarassinorum* isolierten Melophline A, B, C und G konnten im Rahmen dieser Arbeit erstmals totalsynthetisch hergestellt werden. Schlüsselschritt war erneut die Bildung des Tetramats aus Ylid **100** und den jeweiligen Aminosäureestern bzw. Aminosäureestersalzen. Durch Bestrahlen der Reaktionsmischung mit Mikrowellen erhielt ich die Tetramate nach nur 30 min in über 90 % Ausbeute. Die Entschützung der Tetramate zu den Tetramsäuren erfolgte quantitativ mit TFA. Anschließende 3-Acylierung unter Mikrowellen-Bedingungen lieferte zunächst die Melophlin BF₂-Chelate, aus denen ich die Melophline durch Erwärmen unter Rückfluss in MeOH erhielt. Die 4 Naturstoffe gewann ich in einer Gesamtausbeute von 43-66 % über 4 Stufen (siehe Kapitel 9.3).

Eine neuartige Staudinger-aza-Wittig-Umlagerungs-intra-Wittig-Dominoreaktion zur Eintopf-Synthese von *N*-Acyltetramaten wurde entwickelt. Auf diese Weise erhielt ich *N*-Acyltetramate ohne Verwendung der sonst für die *N*-Acylierung üblichen starken Basen wie NaHMDS oder NaH **156**. Durch Umsetzung von Azidoestern mit PMe₃ gewann ich Iminophosphorane **295**, die mit Ph₃PCCO zum Ketenimin reagierten. In Gegenwart von Carbonsäuren, kam es zur Bildung von *N*-Acyltetramat unterlag (siehe Kapitel 11.2).

Die mögliche breite Anwendungspalette dieser Reaktion, macht sie zu einem lohnenden zukünftigen Forschungsprojekt.

Im Rahmen dieser Arbeit konnten gezeigt werden, dass Ketenylidentriphenylphosphoran **21** und sein polymer-gebundenes Analogon **100** hoch effiziente Bausteine zur Synthese von Naturstoffen aus der Klasse der 3-Acyltetronsäuren und 3-Acyltetramsäuren sind. Der Einsatz von mikrowellen-assistierten Reaktionen führte bei entscheidenden Reaktionsschritten zu einer erheblichen Verkürzung der Reaktionszeit und mitunter zu höheren Ausbeuten. Die Entwicklung einer Festphasensynthese für 3-Acyltetronsäuren ermöglicht nun die Automatisierung und eröffnet damit den Zugang zu Substanzbibliotheken.

12.1 SUMMARY

Keteneylidenetriphenylphosphorane **21** is a versatile building block in organic synthesis. **21** reacts with acidic compounds such as amino esters, hydroxy esters and thio esters to give amide-, ester- and thioester-ylides, through a protonation addition reaction. On heating, these compounds undergo an intramolecular Wittig olefination giving the corresponding tetramates, tetronates and thiotetronates. These are the precursors to various biologically active tetramic and tetronic acids.

During the course of this work the synthesis of polymer-bound Keteneylidenetriphenylphosphorane **100** was achieved. Through the reaction of triphenylphosphine polystyrene with benzyl bromoacetate, the phosphonium salt **108** was formed. Upon addition of LiHMDS, a deprotonation occurs giving an esterylid, which via a β -elimination forms the cumulated ylide **100**.

The immobilised ylide **100** exhibits reactive properties similar to its soluble analogue. **100** has the benefit that it allows the straightforward removal of the resin bound phosphane oxide which is formed during the Wittig olefination. More importantly, the tetramates formed from α -amino esters are optically pure. By using 2 equivalents of the cumulated ylide **100**, the tetramate can be obtained in a one pot reaction.

Another important part of this work involved the solid-phase synthesis of tetronates. Malic acid monoesters were attached to the Wang resin under Mitsunobu reaction conditions. Reaction with the soluble Ph_3PCCO **21** led to the formation of polymer-bound tetronates **139**, which could be cleaved from the resin under mild conditions using $Bi(OTf)_3$ and microwave irradiation (see chapter 5.2).

The main objective of this work was to synthesize bioactive natural products with the basic structure being 3-acyltetramic acids and 3-acyltetronic acids. In this way it was possible to snythesize Carlosic acid **141** in 6 steps form malic acid, with an overall yield of 32 %. The ring closing reaction forming the tetronate occurred through a domino addition Wittig reaction with Ph₃PCCO **21** (see chapter 6.5).

The enzyme inhibitor RK-682 (**166**) was generated in 7 steps from methyl glycerate **180a** with 40 % overall yield. By using microwaves as the heat source, two of the steps could be shortened from 16 h to under one hour (see chapter 7.4).

With the careful selection of protecting groups, the synthesis of RK-682 on solid-phase was achieved. Starting from benzyl glycerate **180b**, the diol **198** was formed in 3 steps. This was then attached to the polystyrene tritylchloride resin using a DMAP catalyzed etherification. The corresponding tetronate was then formed by adding Ph₃PCCO **21** to the immobilised hydroxy ester **199**. The cleavage of the protecting group was accomplished using TBAF·3H₂O. Yoshiis method for acylation of tetronic acids gave the 3-acyltetronic acid, which was cleaved from the resin using TFA/Et₃SiH/DCM (5:5:90). The natural product **166** was obtained with 26 % yield calculated from the loading of the starting tritylchloride resin (see chapter 7.5). This was the first synthesis of tetronic acids on solid-phase.

The synthesis of the antibiotic Agglomerine A-C derivatives was achieved by an extension of the described solution synthesis of RK-682, adding a mesylation-elimination sequence. This was the first published synthesis of Agglomerin B and C (see chapter 7.9).

The mycotoxin Tenuazonic acid **220** was synthesized in four steps from the immobilized ylide **100** and isoleucine benzyl ester tosylate **217**. Using the Jones acylation method, the BF₂ complex of Tenuazonic acid was isolated, with the added advantage being that the BF₂-complex could be purified through column chormatography. The pure Tenuazonic acid **220** was isolated by heating in refluxing methanol (see chapter 8.4).

The first total syntheses of Melophlins A, B, C and G, recently isolated from the sponge *Melophlus sarassinorum*, were also achieved in this work. The key step was again the formation of a tetramate from the resin bound ylide **100** and the relevant amino acid ester or ester salt. Using microwave irradiation, the tetramates were obtained after only 30 minutes with a yield of more than 90 %. The conversion of the tetramate to the tetramic acid was achieved quantitatively with TFA. Finally, 3-acylation under microwave conditions yielded the Melophlin BF₂-chelates. These were once again converted to the natural products through heating in refluxing methanol. By this way the natural products were obtained in four steps in an overall yield of 43-66 % (see chapter 9.3).

The novel Staudinger-aza-Wittig-rearrangement-intra-Wittig domino reaction towards the one pot synthesis of *N*-acyl tetramates was found. In this way it is possible to get *N*-acyl tetramates avoiding the use of strong bases such as NaHMDS or NaH **156**. Iminophophoranes **295**, where generated through the reaction of azidoesters with PMe₃, and reacted with Ph₃PCCO **21** giving ketenimines. In the presence of carboxylic acids, the formation of *N*-acylamidylide **298** took place. **298** underwent an intramolecular Wittig olefination on heating, giving *N*-acyl tetramates (see chapter 11.2). Further research should be carried out in this area.

Throughout the course of this work, it was shown that keteneylidenetriphenylphosphorane **21**, and its resin bound analogue **100** are highly efficient building blocks towards the synthesis of natural compounds, from the 3-acyltetronic acid and 3-acyltetramic acid groups. The utilization of microwave assisted reactions led to a shortening of the reaction times, as well as to an increase in the yield of some reactions. The development of the solid-phase methodology leaves open the possibility for automatisation, and the generation of compound libraries.

C. EXPERIMENTELLER TEIL

13 SYNTHESEN UND EXPERIMENTELLE DATEN

13.1 Allgemeines

Alle verwendeten Lösungsmittel wurden vor Gebrauch destillativ gereinigt. Absolute Lösungsmittel wurden über Natrium, Magnesium oder P₂O₅ unter Rückfluss getrocknet. Die verwendeten kommerziellen Chemikalien stammten von den Firmen FLUKA, BACHEM, ALDRICH, NOVABIOCHEM und MERCK und wurden ohne weitere erfolgte Reinigung Die Kontrolle Reaktionen verwendet. der mittels Dünnschichtchromatographie mit Kieselgel-Platten der Firma Merck. Zum Anfärben der DC-Flecken wurde eine schwefelsaure CeSO₄/MoO₃·H₃PO₄-Lösung verwendet. Außerdem wurden die Reaktionen mittels IR-Spektroskopie auf Vollständigkeit überprüft. Hierzu wurde ein Spectrum One FT-IR Spektrometer der Firma PERKIN ELMER verwendet, das mit einer ATR-Probeneinheit zur Untersuchung von Festphasenreaktionen ausgestattet ist. Alle Reaktionen im Mikrowellenofen wurden im geschlossenen System in einer Synthesemikrowelle Microchemist[™] System der Firma MLS mit faseroptischer Temperaturkontrolle durchgeführt bzw. in einer CEM Discover™ mit einer IR-Temperaturkontrolle. Angegebene Wattzahlen beziehen sich hierbei auf die maximal eingestrahlte Leistung. Die Aufnahme der Massenspektren erfolgte an einem VARIAN MAT 311A (EI). Die angegebenen NMR-Spektren wurden an einem BRUKER Avance 300 Spektrometer mit 300 MHz (¹H-NMR) oder mit 75.5 MHz (¹³C) gemessen. Chemische Verschiebungen sind angeben in ppm (parts per million) in Bezug auf Tetrametylsilan als internen Standard. Schmelzpunkte wurden an einem GALLENKAMP Gerät bestimmt und sind nicht korrigiert. Optische Drehwerte wurden an einem PERKIN-ELMER Polarimeter 241 bei einer Wellenlänge von 589 nm gemessen. Elementaranalysen erfolgten an einem Perkin-Elmer 2400 CHN-Analysegerät. Analytische HPLC wurde an einem Beckmann-System mit Solventmodul 126 und einem Diode array detector 168 (ausgestattet mit einer Nukleodex CD-β-PM Säule von MACHERY-NAGEL) durchgeführt. Analytische GC wurde an einer Lipodex E-Säule (25 m, 0.25 mm, MACHERY-NAGEL) durchgeführt.

13.2 Immobilisiertes Ketenylidentriphenylphosphoran 100

Immobilisiertes Carbobenzyloxymethyltriphenylphosphoniumbromid 108

20 g Triphenylphosphinpolystyrol (1.29 mmol/g, 25.8 mmol) **107** lässt man in einem Festphasenreaktor mit Fritte etwa 30 min in 100 mL abs. THF quellen. Das Lösungsmittel wird abfiltriert und unter Argon wird eine Lösung aus Bromessigsäurebenzylester (103.2 mmol, 4 eq, 23.6 g, 16.2 mL) in 80 mL THF zugefügt. Das Reaktionsgemisch wird für 16 Stunden kräftig bei RT geschüttelt. Nach Filtration wird das gelbe Phosphoniumsalz **108** sorgfältig mit abs. THF (3 x 60 mL), Diethylether (2 x 60 mL), DCM (3 x 60 mL) und Toluol (2 x 60 mL) gewaschen und anschließend im Hochvakuum getrocknet.

Umsetzung: 99.0 % (bestimmt durch Massenzunahme)

IR (ATR), v_{max} (cm⁻¹): 1721 (s), 1110 (s).

Immobilisiertes Ketenylidentriphenylphosphoran 100

108 wird mit je 50 mL trockenem Benzol und THF unter Luft- und Feuchtigkeitssausschluss gewaschen. Man fügt eine 1.0 M Lithiumbistrimethylsilylamid Lösung (64.5 mmol, 2.5 eq, 64.5 mL) in THF und Benzol (32 mL) hinzu. Kurz danach verfärbt sich das Harz schwarz. Dies ist auf entstehendes immobiliertes Ylid zurückzuführen. Das Reaktionsgemisch wird für 24 Stunden kräftig bei RT geschüttelt und das Harz schließlich mit abs. Toluol (2 x 100 mL), THF (2 x 100 mL), DCM (1 x 100 mL) und Benzol (2 x 100 mL) gewaschen. Nach Trocknung im Hochvakuum erhält man **100** als gelbes Harz (22.5 g, 98 %).

IR (ATR), v_{max} (cm⁻¹): 2092 (s), 1108 (s),

³¹P-NMR (TOSS; 203 MHz; CDCl₃; H₃PO_{4, ext}): δ (ppm) = 4.97.

13.3 Dreikomponentenreaktion mit 100

Allgemeine Arbeitsvorschrift der Dreikomponentenreaktion (AAV1)

Immobilisiertes Ketenylidentriphenylphosphoran **100** (860 mg, 1.0 mmol) wird in THF (6.0 mL) suspendiert und mit je 0.25 mmol eines Aldehyds und eines Amins oder Alkohols versetzt. Die Reaktionsmischung wird bei 60 °C 24 h lang unter Ausschluss von Luft und Feuchtigkeit geschüttelt. Das Harz wird filtriert und zweimal mit THF (10 mL) gewaschen. Die vereinigten Filtrate werden unter reduziertem Druck eingeengt. Der erhaltene Rückstand wird mittels präparativer Dünnschichtchromatographie an Kieselgel gereinigt.

(E)-1-[3',4'-(Methylendioxy)cinnamoyl]piperidin 112a

Weißer Feststoff (43 mg, 64 %) nach AAV1 aus Piperidin (21 mg, 0.25 mmol), Piperonal (38 mg, 0.25 mmol) und **100** (860 mg, 1 mmol).

 $R_{\rm f}$ =0.53 (Essigsäureethylester / *n*-Hexan, 2:1),

Schmp. 84 °C (Lit.,^[163] 84-87 °C),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.59-1.72 (m, 6 H, CH₂), 3.57-3.74 (m, 4 H, CH₂), 5.98 (s, 2 H, OCH₂O), 6.74 (d, J_{trans} = 15.49 Hz, 1 H, CHCO), 6.77-7.03 (m, 3 H, ArH), 7.56 (d, J_{trans} = 15.49 Hz, 1 H, CH=CHCO),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 25.0, 26.1, 27.1, 43.67, 47.3 (CH₂), 101.8 (CH₂, OCH₂O), 106.7, 108.8 (CH, ArC), 116.0 (CH, CCO), 123.9 (CH, ArC), 130.3 (C^q, ArC), 142.3 (CH, C=CCO), 148.5, 149.2 (C^q, ArC), 165.0 (C^q, CO),

MS (EI, 70 eV); *m/z* (%): 259 (27) [M⁺], 206 (27), 175 (73), 145 (46), 138 (6), 117 (37), 89 (100), 84 (32), 63 (58).

Oranges Öl (40 mg, 60 %) nach AAV1 aus Hexanol (26 mg, 0.25 mmol), Piperonal (38 mg, 0.25 mmol) und **100** (860 mg, 1 mmol).

 $R_{\rm f}$ =0.48 (Essigsäureethylester / *n*-Hexan, 1:12),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.87 (t, *J* = 7.0 Hz, 3 H, Me), 1.20-1.34 (m, 8 H, CH₂), 4.11 (t, *J* = 6.6 Hz, 2 H, CO₂CH₂), 5.93 (s, 2 H, OCH₂O), 6.20 (d, *J* = 16.1 Hz, 1 H, CH=CO), 6.81-7.01 (m, 3 H, ArH), 7.52 (d, *J* = 16.1 Hz, 1 H, CH=CHCO),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (Me), 22.6, 25.7, 28.8, 31.5 (CH₂), 77.6 (CH₂, CO₂CH₂), 101.6 (OCH₂O), 106.5, 108.6 (CH, ArC), 116.3 (CH, CCO₂), 124.4 (CH, ArC), 129.0 (C^q, ArC), 144.3 (CH, C=CCO₂), 148.4, 149.6 (C^q, ArC), 167.3 (C^q, CO).

13.4 Synthese von E-Enonen mit 100

Allgemeine Arbeitsvorschrift zur Synthese von (E)-Enonen 116 (AAV2)

Zu einer Suspension von Magnesium (2.0 mmol, 48 mg) in THF (2 mL) tropft man langsam das entsprechende Alkylbromid (2.0 mmol). Man rührt bis sich das Magnesium vollständig gelöst hat. Dann gibt man unter Argon die frisch hergestellte Grignard-Lösung **113** (2 mmol) zu polymer-gebundenem Ph₃PCCO **100** (1 mmol, 860 mg) in abs. THF (2 mL). Anschließend wird die Mischung 16 h lang bei 60 °C geschüttelt oder alternativ durch Mikrowellen erhitzt (30 min, 90 °C). Das Harz wird filtriert und mit THF gewaschen. Anschließend suspendiert man das Harz in THF (4 mL), gibt gesättigte Ammoniumchlorid-Lösung (4 mL) zu und schüttelt für 5 Minuten. Anschließend wird das Harz mit H₂O (2 x 15 mL), Et₂O (2 x 10 mL), THF (2 x 15 mL), Benzol (2 x 10 mL), DCM (2 x 10 mL) und Toluol (2 x 15 mL) gewaschen und danach resuspendiert in abs. THF (3 mL). Man versetzt mit dem entsprechenden Aldehyd (1 mmol) und erhitzt 16 h lang unter Rückfluss. Das Harz wird filtriert, das Filtrat eingeengt und anschließend mittels präparativer Dünnschichtchromatographie auf Kieselgel gereinigt. (E)-1-Phenylhept-1-en-3-on 116a

Farbloses Öl (100 mg, 55 %) nach AAV2 aus Benzaldehyd (105 mg, 1.0 mmol) und 1-Brombutan.

 $R_{\rm f}$ =0.75 (Diethylether / *n*-Hexan, 1:1),

IR (ATR), v_{max} (cm⁻¹): 3062 (w), 3029 (w), 2958 (s), 2931 (m), 2872 (m), 1690 (s), 1608 (vs), 1576 (m), 1495 (m), 1449 (s), 1382 (m), 1368 (w), 1331 (w), 1310 (w), 1259 (w), 1202 (s), 1179 (w), 1130 (m), 1063 (s), 976 (s), 930 (w), 827 (w), 745 (s) 688 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.86 (t, *J* = 7.3 Hz, 3 H, Me), 1.30 (tq, *J* = 7.5, 7.3 Hz, 2 H, CH₂CH₃), 1.58 (tt, *J* = 7.5, 7.3 Hz, 2 H, CH₂Et), 2.58 (t, *J* = 7.3, 2 H, CH₂CO), 6.66 (d, *J* = 16.2 Hz, 1 H, =CHCO), 7.28-7.50 (m, 5 H, ArH), 7.46 (d, *J* = 16.2 Hz, 1 H, HC=CCO), HC=CCO),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 13.8 (Me), 20.9, 22.4, 40.6 (CH₂), 126.2 (CH, CCO), 128.8, 129.6, 130.3 (CH, ArC), 134.5 (C^q, ArC), 142.2 (CH, C=CCO), 203.5 (C^q, CO).

(E)-Undec-6-en-5-on 116b

Oranges Öl (110 mg, 66 %) nach AAV2 aus Valeraldehyd (85 mg, 1.0 mmol) und 1-Brombutan.

 $R_{\rm f} = 0.76 \ (n$ -Hexan / Essigester 4:1),

IR (ATR), v_{max} (cm⁻¹): 2958 (s), 2931 (s), 2873 (m), 1676 (s), 1630 (s), 1492 (m), 1466 (s), 1379 (m), 1343 (w), 1260 (w), 1183 (m), 1126 (w), 1029 (w), 980 (s), 932 (m), 731 (m), 691 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.85 (t, J = 7.3 Hz, 6 H, 2 x CH₃), 1.20-1.60 (m, 8 H, 2 x (CH₂)₂), 2.10-2.22 (m, 2 H, CH₂C=), 2.45 (t, J = 7.0 Hz, 2 H, CH₂CO), 6.00 (dt, J = 15.8, 1.5 Hz, 1 H, =CHCO), 6.75 (dt, J = 15.8, 7.0 Hz, 1 H, CH=CCO),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 13.9 (Me), 14.2 (Me), 22.2, 22.4, 26.4, 30.2, 32.1, 39.8 (CH₂), 130.3 (CH, CCO), 147.2 (CH, C=CCO), 201.0 (C^q, CO).

(E)-4-Methyl-1-phenylpent-1-en-3-on 116c

Gelbliches Öl (111 mg, 64 %) nach AAV2 mit Benzaldehyd (106 mg, 1.0 mmol) und 2-Brompropan.

 $R_{\rm f} = 0.62$ (*n*-Hexan / Essigester 4:1),

IR (ATR), v_{max} (cm⁻¹): 3061 (w), 3028 (w), 2968 (m), 2931 (w), 2872 (w), 1687 (s), 1610 (vs), 1577 (m), 1495 (m), 1449 (s), 1382 (m), 1348 (w), 1327 (w), 1301 (w), 1277 (w), 1201 (s), 1180 (w), 1146 (m), 1052 (vs), 1029 (w), 978 (s), 941 (w), 919 (w), 807 (w), 793 (w), 760 (s), 703 (s), 684 (s),

¹H-NMR (300 MHz, TMS_{int}, CDCl₃): δ (ppm) = 1.16 (d, J = 6.9 Hz, 6 H, 2 x Me), 2.91 (m, 1 H, CHMe₂), 6.80 (d, J = 16.0 Hz, 1 H, =CHCO), 7.30-7.56 (m, 5 H, ArH), 7.59 (d, J = 16.0 Hz, 1 H, CH=CCO),

¹³C-NMR (75.5 MHz, TMS_{int}, CDCl₃): δ (ppm) = 18.44 (Me), 39.23 (CH, CHMe₂), 124.4 (CH, CCO), 128.2, 128.8, 130.0 (CH, ArC), 134.7 (C^q, ArC), 142.3 (CH, C=CCO), 203.7 (C^q, CO),

MS (EI, 70 eV); *m/z* (%): 174 (20) [M⁺], 131 (100), 103 (53), 77 (30).

13.5 Synthese von Tetronaten mit 100

Allgemeine Arbeitsvorschrift zur Synthese von Tetronaten (AAV3)

Immobilisiertes Ketenylidentriphenylphosphoran **100** (1.29 g, 1.5 mmol) wird in abs. Benzol (10 mL) suspendiert. Nach 10 minütigem Quellen fügt man 1 mmol α -Hydroxyester zu. Die Mischung wird 16 h lang unter Rückfluss erhitzt. Nach Filtration und Waschen des Harzes mit THF (2 x 10 mL), DCM (2 x 10 mL) und MeOH (2 x 10 mL), werden die vereinigten Filtrate unter reduziertem Druck eingeengt und mittels Säulenchromatographie an Kieselgel gereinigt.

4-Allyloxy-5-phenyl-(5H)-furan-2-on 119a

Farbloses Öl (87 mg, 40 %) nach AAV3 aus (*rac*)-Mandelsäureallylester (192 mg, 1.0 mmol).

 $R_{\rm f}$ =0.42 (Diethylether / *n*-Pentan, 2:1),

IR (ATR), v_{max} (cm⁻¹): 3134 (w), 3109 (w), 1737 (s), 1623 (s), 1476 (m), 1455 (m), 1405 (m), 1374 (m), 1267 (m), 1165 (m), 1018 (m), 911 (m),

¹H-NMR (300 MHz, TMS_{int}, CDCl₃): δ (ppm) = 4.51 (m, 2 H, OCH₂), 5.14 (s, 1 H, H3), 5.26 (dd, J_{cis} = 10.5 Hz, J_{gem} = 1.5 Hz, 1 H, CH=CHH), 5.28 (dd, J_{trans} = 17.3 Hz, J_{gem} = 1.5 Hz, 1 H, CH=CHH), 5.68 (s, 1 H, H5), 5.79-5.89 (m, 1 H, CH=CH₂), 7.30-7.38 (m, 5 H, ArH),

¹³C-NMR (75.5 MHz, TMS_{int}, CDCl₃): δ (ppm) = 73.3 (CH₂, OCH₂), 80.3 (C-5), 88.8 (C3), 119.8 (CH, CH=CH₂), 126.6, 128.8, 129.3 (CH, ArC), 130.1 (CH, CH=CH₂), 134.6 (C^q, ArC), 172.6 (C^q, C2), 180.2 (C^q, C4).

4-(2'-Methylallyloxy)-5-phenyl-(5H)-furan-2-on 119b

Farbloses Öl (95 mg, 42 %) nach AAV3 aus (*rac*)-Mandelsäure-(2'-methylallyl)ester (206 mg, 1.0 mmol).

 $R_{\rm f}$ = 0.22 (*n*-Hexan / Essigsäureethylester, 4:1),

IR (ATR), v_{max} (cm⁻¹): 3118 (w), 3066 (w), 3034 (w), 2937 (w), 1750 (s), 1624 (s), 1496 (m), 1454 (m), 1376 (w), 1331 (m), 1267 (m), 1151 (m), 1043 (w), 1023 (m), 988 (m), 894 (m), 802 (m), 768 (m), 698 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.56 (s, 3 H, CH₃), 4.36 (m, 2 H, OCH₂), 4.86 (s, 1 H, =CH₂), 4.88 (s, 1 H, =CH₂), 5.11 (s, 1 H, H3), 5.63 (s, 1 H, H5), 7.25-7.33 (m, 5 H, Ph),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 18.8 (CH₃), 76.2 (CH₂, OCH₂), 80.3 (CH, C5), 88.7 (CH, C3), 114.9 (CH₂, =CH₂), 126.4, 128.9, 129.2 (CH, ArC), 134.1 (C^q, ArC), 137.9 (C^q, CMe=CH₂), 172.4 (C^q, C2), 180.2 (C^q, C4).

4-Allyloxy-5-methyl-(5H)-furan-2-on 119c

Farbloses Öl (54 mg, 35 %) nach AAV3 aus (rac)-Milchsäureallylester.

 $R_{\rm f} = 0.4$ (Diethylether / *n*-Pentan, 2:1),

IR (ATR), v_{max} (cm⁻¹): 3118 (w), 2986 (w), 2936 (w), 1753 (s), 1630 (s), 1452 (m), 1350 (m), 1269 (m), 1235 (m), 1163 (m), 1084 (m), 975 (m), 961 (m), 806 (m),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.47 (d, J = 6.7 Hz, 3 H, CH₃), 4.56 (m, 2 H, OCH₂), 4.84 (q, J = 6.7 Hz, 1 H, H5), 5.01 (s, 1 H, H3), 5.38 (dd, $J_{cis} = 10.5$ Hz, $J_{gem} = 1.0$ Hz, 1 H, CH=CH₂), 5.42 (dd, $J_{trans} = 17.4$ Hz, $J_{gem} = 1.0$ Hz, 1 H, CH=CH₂), 5.93-6.01 (m, 1 H, CH=CH₂),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 17.8 (CH₃), 73.1 (CH₂, OCH₂), 75.4 (CH, C5), 88.7 (CH, C3), 120.0 (CH₂, CH=*C*H₂), 130.9 (CH, *C*H=CH₂), 172.5 (C^q, C2), 182.0 (C^q, C4).

13.6 Synthese von Tetramaten mit 100

Allgemeine Arbeitsvorschrift zur dreistufigen Synthese von Tetramaten 123 (AAV4)

In einem geschlossenen Reaktionsgefäß werden Ylid **100** (0.5 mmol), abs. THF (4 mL) und das entsprechende Aminosäureestersalz **120** (0.5 mmol), durch Bestrahlen mit Mikrowellen erhitzt (30 min, 90 °C, CEM Discover). Das immobilisierte Phosphoniumsalz **121** wird gründlich mit THF (3 x 10 mL), Toluol (3 x 10 mL) und DCM (3 x 10 mL) gewaschen und anschließend unter reduziertem Druck getrocknet. Anschließend wird das Harz in DCM (4 mL) resuspendiert und mit 0.5 mmol (0.075 mL) DBU versetzt. Die Mischung wird 60 Minuten bei RT geschüttelt, filtriert und mit DCM (2 x 10 mL), THF (3 x 10 mL) und Toluol (3 x 10 mL) gewaschen. Das so erhaltene Phosphorylid **122** wird unter Ausschluss von Luft und Feuchtigkeit in abs. THF (4 mL) suspendiert und mit tabs. THF (20 mL) gewaschen. Nach dem Einengen der vereinigten Filtrate verbleiben die Tetramate **123** als weiße Feststoffe. Eine weitere Reinigung ist meist nicht erforderlich.

4-Methoxy-5-methyl-1*H*-pyrrol-2(5*H*)-on 123a

Weißer Feststoff (70 mg, 54 %) nach AAV4 mit Alaninmethylesterhydrochlorid (139 mg, 1.0 mmol).

 $R_{\rm f}$ = 0.21 (Essigester),

IR (ATR), v_{max} (cm⁻¹): 3199 (b), 3103 (m), 3065 (w), 3023 (w), 2989 (w), 2947 (w), 2903 (w), 2850 (w), 1658 (s), 1615 (s), 1453 (m), 1374 (w), 1355 (m), 1320 (w), 1231 (s), 1216 (m), 1177 (w), 1124 (m), 1096 (w), 1049 (w), 989 (s), 944 (m), 827 (s), 727 (m), 679 (m),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.29 (d, *J* = 6.7 Hz, 3 H, CH₃), 3.76 (s, 3 H, CH₃), 4.05 (q, *J* = 6.7 Hz, 1 H, H5), 4.96 (s, 1 H, H3), 6.31 (br s, 1 H, NH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 17.9 (CH₃), 53.7 (CH, C5), 58.3 (OCH₃), 92.8 (CH, C3), 174.2 (C^q, C2), 179.3 (C^q, C4),

Anal. Berechnet für C₆H₉NO₂: C, 56.68; H, 7.13; N, 11.02. Gefunden: C, 56.53; H, 7.24; N, 11.15.

4-Allyloxy-5-methyl-1H-pyrrol-2(5H)-on 123b

Weißer Feststoff (85 mg, 56 %) nach AAV4 mit Alaninallyesterhydrotosylat (301 mg, 1.0 mmol).

 $R_{\rm f} = 0.22$ (Essigester),

IR (ATR), v_{max} (cm⁻¹): 3267 (b), 3104 (w), 2980 (w), 2935 (w), 2881 (w), 1663 (s), 1614 (s), 1545 (w), 1455 (w), 1385 (w), 1331 (m), 1324 (s), 1217 (s), 1161 (w), 1123 (w), 1063 (w), 1012 (w), 980 (s), 925(m), 821 (m), 720 (w), 684 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.33 (d, *J* = 6.8 Hz, 3 H, CH₃), 4.09 (q, *J* = 6.8 Hz, 1 H, H5), 4.45 (d, *J* = 5.6 Hz, 2 H, OCH₂), 4.99 (s, 1 H, H3), 5.29 (dd, *J*_{cis}= 10.3 Hz, *J*_{gem}= 1.2 Hz, 1 H, CH=CH₂), 5.34 (dd, *J*_{trans}= 17.1 Hz, *J*_{gem}= 1.2 Hz, 1 H, CH=CH₂), 5.89-6.01 (m, 1 H, CH=CH₂), 6.62 (br s, 1 H, NH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 17.8 (CH₃), 53.1 (CH, C5), 71.8 (OCH₂), 93.5 (CH, C3), 119.1 (CH₂, CH=*C*H₂), 130.18 (CH, *C*H=*C*H₂), 173.0 (C^q, C2), 177.9 (C^q, C4), Anal. Berechnet für C₈H₁₁NO₂: C, 62.73; H, 7.24; N, 9.14. Gefunden: C, 62.64; H, 7.10; N, 9.01.

4-Allyloxy-5-benzyl-1*H*-pyrrol-2(5*H*)-on 123c

Weißer Feststoff (69 mg, 60 %) nach AAV4 aus Phenylalaninallylesterhydrotosylat (377 mg, 1.0 mmol).

 $R_{\rm f} = 0.22$ (Essigester),

IR (ATR), v_{max} (cm⁻¹): 3242 (b), 3086 (w), 3062 (w), 3029 (w), 2928 (w), 2837 (w), 1676 (s), 1613 (s), 1496 (m), 1454 (m), 1381 (w), 1355 (w), 1324 (s), 1212 (s), 1195 (s), 1123 (w), 1095 (w), 1033 (w), 980 (s), 953 (m), 806 (s), 756 (w), 738 (m), 698 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 2.62 (dd, J = 13.6, 9.0 Hz, 1 H, CH₂), 3.17 (dd, J = 13.6, 3.6 Hz, 1 H, CH₂), 4.21 (dd, J = 9.0, 3.6 Hz, 1 H, H5), 4.38-4.50 (m, 2 H, OCH₂), 4.94 (s, 1 H, H3), 5.33 (dd, J_{cis} = 10.5 Hz, J_{gem} = 1.2 Hz, 1 H, CH=CH₂), 5.38 (dd, J_{trans} = 17.4 Hz, J_{gem} = 1.2 Hz, 1 H, CH=CH₂), 5.71-5.79 (b, 1 H, NH), 5.91-6.01 (m, 1 H, CH=CH₂),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 38.6 (CH₂), 58.7 (CH, C5), 71.9 (OCH₂), 94.7 (CH, C3), 119.4 (C=*C*H₂), 126.9, 128.6, 129.1 (CH, ArC), 131.0 (CH, *C*H=CH₂), 136.5 (C^q, ArC), 173.7 (C^q, C2), 175.9 (C^q, C4),

Anal. Berechnet für C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Gefunden: C, 73.13; H, 6.45; N, 6.02.

4-Allyloxy-5-isobutyl-1H-pyrrol-2-(5H)-on 123d

Weißer Feststoff (117 mg, 60 %) nach AAV4 mit Leucinallyesterhydrotosylat (343 mg, 1.0 mmol).

 $R_{\rm f} = 0.21$ (Essigester),

IR (ATR), v_{max} (cm⁻¹): 3189 (b), 3068 (w), 2957 (m), 2932 (m), 2869 (w), 1666 (s), 1610 (s), 1465 (w), 1422 (w), 1382 (m), 1368 (w), 1352 (m), 1330 (s), 1271 (w), 1211 (s), 1169 (w), 1140 (w), 1101 (w), 1035 (w), 981 (s), 953 (m), 926 (s), 856 (w), 808 (s), 743 (w), 725 (m), 665 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.95 (d, J = 6.4 Hz, 6 H, Me), 1.36-1.44 (m, 1 H, CH(CH₃)₂), 1.67-1.75 (m, 2 H, CH₂), 4.12 (dd, J = 9.6 Hz, J = 3.5 Hz, 1 H, H5), 4.48 (d, J = 5.5 Hz, 2 H, OCH₂), 5.05 (s, 1 H, H3), 5.26 (dd, J_{cis} = 10.1 Hz, J_{gem} =1.4 Hz, 1 H, CH=CH₂), 5.32 (dd, J_{trans} = 17.1 Hz, J_{gem} = 1.4 Hz, 1 H, CH=CH₂), 5.88-5.99 (m, 1 H, CH=CH₂), 6.57 (br s, 1 H, NH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 21.9 (CH₃), 22.8 (CH₃), 25.5 (*C*H(CH₃)₂), 42.7 (CH₂), 56.87 (CH, C5), 72.2 (OCH₂), 93.2 (CH, C3), 119.7 (CH=*C*H₂), 130.8 (*C*H=CH₂), 174.6 (C^q, C2), 178.4 (C^q, C4).

Allgemeine Arbeitsvorschrift zur Eintopf-Synthese von Tetramaten 123 (AAV5)

Polymer-gebundenes Ketenylidentriphenylphosphoran **100** (1.7 g, 2.0 mmol) wird in THF (10 mL) suspendiert und nach 10 Minuten Quellen mit dem jeweiligen Aminosäureestersalz **124** (1 mmol) versetzt. Die Reaktionsmischung wird anschließend 14 h lang bei 60 °C geschüttelt. Nach Filtration und Waschen des Harzes mit THF (2 x 10 mL), DCM (2 x 10 mL) und MeOH (2 x 10 mL) werden die vereinten Filtrate bei reduziertem Druck eingeengt und falls notwendig mittels Säulenchromatographie gereinigt.

(5S)-5-Benzyl-4-benzyloxy-1H-pyrrol-2(5H)-on 123e

Weißer Feststoff (140 mg, 50 %) nach AAV5 mit (S)-Phenylalaninbenzylesterhydrotosylat (420 mg, 1 mmol).

 $R_{\rm f} = 0.25$ (Essigester),

 $[\alpha]_{D}^{25} = -13.2^{\circ} (c = 0.7, \text{MeOH})$

IR (ATR), v_{max} (cm⁻¹): 3222 (b), 3063 (w), 3030 (w), 2925 (w), 1681 (s), 1617 (s), 1585 (w), 1496 (w), 1454 (m), 1394 (w), 1331 (s), 1219 (s), 1134 (m), 1076 (s), 955 (m), 914 (w), 873 (w), 804 (s), 736 (s), 696 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 2.60 (dd, *J* = 13.5, 8.9 Hz, 1 H, CH₂), 3.14 (dd, *J* = 13.5, 3.0 Hz, 1 H, CH₂), 4.21 (dd, *J* = 8.9, 3.0 Hz, 1 H, H5), 4.87 (d, *J* = 11.6 Hz, 1 H, OCH₂), 4.92 (d, *J* = 11.6 Hz, 1 H, OCH₂), 4.98 (s, 1 H, H3), 5.84 (br s, 1 H, NH) 7.09-7.38 (m, 10 H, ArH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 38.5 (CH₂), 58.7 (CH, C5), 73.2 (OCH₂), 95.1 (CH, C3), 126.9, 127.8, 128.6, 128.7, 128.8, 129.1 (CH, ArC), 134.6, 136.4 (C^q, ArC), 172.5 (C^q, C2), 176.0 (C^q, C4),

HR-MS: Gefunden 279.12590. Berechnet für C₁₈H₁₇NO₂ 279.12593.

(5S,6S)-5-s-Butyl-4-methoxy-1-methyl-1H-pyrrol-2(5H)-on 123f

Farbloses Öl (99 mg, 60 %) nach AAV5 mit (S,S)-N-Me-Ile-OMe·HCl (196 mg, 1.0 mmol).

 $R_{\rm f}$ = 0.18 (Essigester),

IR (ATR), v_{max} (cm⁻¹): 2964 (m), 2936 (w), 2875 (m), 1683 (s), 1621 (s), 1457 (m), 1423 (m), 1380 (w), 1362 (s), 1336 (m), 1231 (s), 1174 (w), 1136 (w), 1066 (s), 1016 (w), 990 (m), 939 (w), 905 (m), 802 (s), 713 (m), 688 (m),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.67 (d, J = 6.9 Hz, 3 H, CHCH₃), 0.89 (t, J = 7.4 Hz, 3 H, CH₂CH₃), 1.27-1.52 (m, 2 H, CH₂), 1.76-1.85 (m, 1 H, CHCH₃), 2.79 (s, 3 H, NCH₃), 3.67 (s, 3 H, OCH₃), 3.76 (d, J = 2.7 Hz, 1 H, H5), 4.98 (s, 1 H, H3),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 12.3 (CH₂CH₃), 12.9 (CHCH₃), 25.2 (CH₂CH₃), 26.7 (NCH₃), 35.0 (CHCH₃), 57.7 (OCH₃), 65.7 (CH, C5), 94.8 (CH, C3), 171.9 (C^q, C2), 175.3 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 183 (20) [M⁺], 152 (5), 126 (100), 112 (10), 98 (5), 85 (5), 42 (5),

HR-MS: Gefunden 183.12588. Berechnet für $C_{10}H_{17}NO_2$ 183.12593.

4-(Benzyloxy)-1-methyl-pyrrol-2(5H)-on 123g

Weißer Feststoff (337 mg, 83 %) nach AAV5 aus Sarcosinbenzylesterhydrotosylat (630 mg, 2 mmol).

 $R_{\rm f} = 0.23$ (Essigester),

IR (ATR), v_{max} (cm⁻¹): 3032 (w), 2920 (w), 1675 (s), 1616 (s), 1454 (m), 1421 (w), 1392 (w), 1337 (s), 1218 (m), 1206 (m), 1137 (w), 1123 (w), 1015 (m), 968 (m), 937 (w), 906 (w), 799 (m), 734 (m), 696 (s), 679 (m),

¹H-NMR (270 MHz, CDCl₃): δ (ppm) = 2.89 (s, 3 H, N-CH₃), 3.81 (s, 2 H, CH₂), 4.89 (s, 2 H, OCH₂), 5.07 (s, 1 H, H3), 7.37-7.08 (m, 5 H, ArH),

MS (El, 70 eV); *m/z* (%): 203 (18) [M⁺], 91 (100),

HR-MS: Gefunden 203.09469. Berechnet für C₁₂H₁₃NO₂ 203.09463.

Weißer Feststoff (98 mg, 40 %) nach AAV5 mit (S)-Tyrosinallyesterhydrotosylat (410 mg, 1 mmol).

 $R_{\rm f} = 0.18$ (Essigester),

 $[\alpha]_{D}^{23} = +2.4^{\circ} (c = 0.34, \text{MeOH}),$

IR (ATR), v_{max} (cm⁻¹): 3149 (b), 3018 (w), 2949 (w), 2911(w), 2824 (w), 1651 (s), 1610 (s), 1592 (s), 1516 (m), 1455 (w), 1388 (m), 1334 (m), 1274 (m), 1247 (m), 1238 8m), 1217 (m), 1194 (m), 1170 (m), 1102 (m), 1085 (m), 1012 (w), 980 (m), 964 (m), 921 (w), 874 (w), 850 (w), 809 (s), 803 (s), 725 (m), 715 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 2.89 (dd, J = 10.8, 7.8 Hz, 1 H, CH₂), 3.08 (dd, J = 10.8, 2.9 Hz, 1 H, CH₂), 4.22 (m, 1 H, H5), 4.40-4.50 (m, 2 H, OCH₂), 4.94 (s, 1 H, H3), 5.32 (dd, J_{cis} = 12.7 Hz, J_{gem} = 0.9 Hz, 1 H, CH=CH₂), 5.36 (dd, J_{trans} = 18.5 Hz, J_{gem} = 0.9 Hz, 1 H, CH=CH₂), 5.95 (m, 1 H, CH=CH₂), 6.37 (br s, 1 H, NH), 6.65 (d, J = 7.7 Hz, 2 H, ArH), 6.94 (d, J = 7.7 Hz, 2 H, ArH), 7.99 (s, 1 H, OH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 37.2 (CH₂), 59.1 (CH, C5), 72.1 (OCH₂), 93.4 (CH, C3), 115.5 (CH, ArC), 119.5 (=CH₂), 126.5 (C^q, ArC), 130.9 (CH, ArC), 132.7 (CH, CH=CH₂), 156.8 (C^q, ArC), 172.1 (C^q, C2), 176.6 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 245 (18) [M⁺], 139 (45), 107 (100), 98 (22), 41 (19),

HR-MS: Gefunden 245.10522. Berechnet für C₁₄H₁₅NO₃ 245.10519.

(5S)-4-(Benzyloxy)-5-isopropyl-1H-pyrrol-2(5H)-on 123i

Weißer Feststoff (52 mg, 45 %) nach AAV5 mit (S)-Valinbenzylesterhydrotosylat (190 mg, 0.5 mmol).

 $R_{\rm f} = 0.26$ (Essigester),

 $[\alpha]_{\rm D}^{25} = -7.15 \ (c=1, \text{CHCl}_3),$

IR (ATR), v_{max} (cm⁻¹): 3186 (b), 3068 (w), 2963 (w), 2933 (w), 2875 (w), 1666 (s), 1616 (s), 1499 (w), 1464 (w), 1455 (w), 1401 (w), 1385 (m), 1370 (w), 1333 (s), 1306 (m), 1223 (m), 1207 (s), 1135 (w), 1103 (w), 1081 (w), 1039 (w), 1004 (w), 970 (m), 952 (m), 913 (m), 846 (w), 805 (s), 760 (m), 742 (s), 695 (s), 665 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.73 (d, *J* = 6.9 Hz, 3 H, CHC*H*₃), 0.96 (d, *J* = 6.9 Hz, 3 H, CHC*H*₃), 2.04 – 2.09 (m, 1 H, C*H*(CH₃)₂), 3.98 (d, *J* = 3.3 Hz, 1 H, C5), 4.86 (d, *J* = 11.2 Hz, 1 H, OCH₂), 4.91 (d, *J* = 11.2 Hz, 1 H, OCH₂), 5.03 (s, 1 H, H3), 6.67 (br s, 1 H, NH), 7.2 –7.34 (m, 5 H, ArH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 15.2 (CH*C*H₃), 19.5 (CH*C*H₃), 29.4 (*C*H(CH₃)₂), 62.9 (CH, C5), 73.1 (OCH₂), 95.4 (CH, C3), 127.8, 128.2, 128.8 (CH, ArC), 134.9 (C^q, ArC), 171.6 (C^q, C2), 176.3 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 231 (10) [M⁺], 189 (26), 140 (7), 132 (8), 91 (100),

HR-MS: Gefunden 231.12597. Berechnet für C₁₄H₁₇NO₂ 231.12593.

5-(t-Butyloxymethylen)-4-methoxy-1H-pyrrol-2(5H)-on 123j

Weißer Feststoff (20 mg, 10 %) nach AAV5 mit H-Ser(OtBu)-OMe·HCl (210 mg, 1 mmol).

 $R_{\rm f} = 0.35$ (Essigester),

IR (ATR), v_{max} (cm⁻¹): 3164 (b), 3110 (w), 3075 (w), 3010 (w), 2977 (w), 2921(w), 2872 (w), 2851 (w), 1692 (s), 1624 (s), 1470 (w), 1455 (m), 1355 (m), 1340 (s), 1292 (w), 1262 (w), 1231 (s), 1292 (m), 1176 (m), 1170 (m), 1105 (m), 1083 (s), 1028 (w), 1004 (m), 983 (w), 954 (m), 900 (w), 862 (m), 827 (s), 754 (w), 713 (m),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.11 (s, 9 H, C(CH₃)₃), 3.11 (dd, J = 9.3, 8.8 Hz, 1 H, CH₂), 3.65 (dd, J = 8.8, 3.4 Hz, 1 H, CH₂), 3.72 (s, 3 H, OMe), 4.08 (dd, J = 9.3, 3.4 Hz, 1 H, H5), 4.97 (s, 1 H, H3), 5.89 (br s, 1 H, NH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 27.3 (CH₃), 58.1 (OMe), 58.3 (CH, C5), 63.3 (CH₂), 73.5 (C^q, CMe₃), 94.4 (CH, C3), 173.8 (C^q, C2), 175.3 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 199 (5) [M⁺], 169 (10), 143 (10), 126 (15), 113 (100), 98 (12), 69 (10), 57 (55), 41 (25),

HR-MS: Gefunden 199.12080. Berechnet für C₁₀H₁₇NO₃ 199.12084.

4-Allyloxy-5-methylen-1*H*-pyrrol-2-on 123k

Weißer Feststoff (48 mg, 32 %) nach AAV5 mit Serinallyesterhydrotosylat (0.32 g, 1 mmol).

 $R_{\rm f} = 0.52$ (Essigester),

IR (ATR), v_{max} (cm⁻¹): 3162 (br), 3094 (m), 3022 (w), 3010 (w), 2930 (w), 2880 (w), 1691 (s), 1649 (s), 1594 (s), 1461 (w), 1434 (w), 1390 (w), 1348 (m), 1312 (m), 1253 (w), 1230 (s), 1196 (s), 998 (w), 984 (m), 943 (s), 849 (m), 820 (s), 742 (w), 697 (w), 672 (m),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 4.49 (dt, *J* = 5.6, 1.5 Hz, 2 H, OCH₂), 4.76-4.80 (m, 1 H, CH₂=C5), 5.00 (d, *J* = 1.6 Hz, 1 H, CH₂=C5), 5.10 (t, *J* = 1.5 Hz, 1 H, H3), 5.32 (dd, *J_{cis}* = 10.5 Hz, *J_{gem}* = 1.6 Hz, 1 H, CH=CH₂), 5.38 (dd, *J_{trans}* = 18.8 Hz, *J_{gem}* = 1.6 Hz, 1 H, CH=CH₂), 5.91-6.04 (m, 1 H, CH=CH₂), 8.24 (b, 1 H, NH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 71.7 (OCH₂), 92.6 (CH₂=C5), 94.3 (CH, C3), 119.5 (=CH₂), 129.9 (CH, *C*H=CH₂), 139.5 (C^q, C5), 164.6 (C^q, C2), 172.0 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 151 (25) [M⁺], 136 (10), 123 (20), 82 (40), 69 (45), 55 (25), 41 (100),

HR-MS: Gefunden 151.06326. Berechnet für C₈H₉NO₂ 151.06333.

13.7 Synthese von Glycidestern und ihre Anknüpfung an Wang-Harz

(D,L)-2-Bromo-3-hydroxypropionsäure 126^[83]

(*R*,*S*)-Serin **125** (10.5 g, 99.9 mmol) und KBr (41.6 g, 349.7 mmol, 3.5 äq.) werden in HBr (2M, 105 mL) gelöst und auf -12°C abgekühlt. Unter einem leichten Stickstoffstrom wird zur Lösung in kleinen Portionen NaNO₂ (7.5 g, 109.9 mmol, 1.1 äq.) gegeben. Dabei ist darauf zu achten, dass die Zugabe von NaNO₂ erst nach Entfärbung der braunen Lösung und dem Ende der Stickstoffentwicklung erfolgt. Die Zugabe des NaNO₂ dauert auf diese Weise etwa 3.5 Stunden. Im Anschluss wird die hellgelbe Lösung für weitere 3 Stunden bei -12 °C gerührt. Über Nacht lässt man die Reaktionsmischung auf RT erwärmen. Die klare grünliche Lösung wird mit Diethylether (6 x 150 mL) extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels im Vakuum und Trocknung im HV wird **126** als hellgelbes Öl (15.5 g, 92 %) erhalten.

¹H NMR (270 MHz, D₂O): δ (ppm) = 3.86 (d, J = 6.0 Hz, 2 H, H3), 4.39 (t, J = 6.0 Hz, 1 H, H2).

Kalium-2-oxirancarboxylat 127^[83]

126 (14.6 g, 86.9 mmol) wird unter Argon in abs. Methanol (118 mL) gelöst und auf -60 °C gekühlt. Zu dieser gelblichen Lösung wird über einen Tropftrichter eine methanolische KOH-Lösung (12.1 KOH, 2.1 eq, 71 mL MeOH) langsam zugetropft. Über Nacht lässt man die Suspension auf 0 °C erwärmen. Die Neutralität der Lösung zeigt das Ende der Reaktion an. Die weiße Suspension wird auf –12 °C gekühlt und kalt filtriert (zur Entfernung des entstandenen KBr), das farblose Filtrat wird im Vakuum bei 25 °C auf ein Viertel eingeengt. Durch Zugabe von 500 mL Diethylether wird ein weißer Feststoff ausgefällt. Die Lösung wird kalt filtriert. Man erhält **127** (10.9 g, 99 %) als weißes Pulver.

¹H NMR (270 MHz, D₂O): δ (ppm) = 2.77 (dd, *J* = 5.6, 1. 4 Hz, 1H, H3), 2.93 (dd, *J* = 5.6, 4.9 Hz, 1H, H3b), 3.35 (dd, *J* = 4.9, 1.4 Hz, 1H, H2).

Allyl-2-oxirancarboxylat 128a

Allylbromid (6.0 mL, 69.7 mmol, 1.1 eq) wird zusammen mit 18-Krone-6 (22.1 g, 83.7 mmol, 1.32 eq) unter Argon in Acetonitril (150 mL) gelöst. Nach Zugabe von **127** (10.4 g, 63.4 mmol) wird die hellgelbe Lösung 4 h bei RT gerührt. Die Lösung wird im Anschluss filtriert und das Filtrat im Vakuum auf ein Viertel seines Volumens eingeengt. Durch Zugabe von Diethylether (400 mL) lässt sich das durch 18-Krone-6 komplexierte KBr ausfällen. Das hellgelbe Filtrat wird wiederum eingeengt und erneut mit Diethylether (300 mL) versetzt. Nach Filtration wird das Lösungsmittel destillativ entfernt und der Rückstand mittels Destillation im Kugelrohr gereingt. Dabei erhält man eine farblose Flüssigkeit (6.1 g, 75 %).

 $R_{\rm f}$ = 0.46 (*n*-Hexan / Essigester, 4:1),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.91 (dd, *J* = 6.5, 4.1 Hz, 1 H, CH₂), 2.95 (dd, *J* = 6.5, 2.5 Hz, 1 H, CH₂), 3.43 (dd, *J* = 4.1, 2.5 Hz, 1 H, CHCO₂), 4.65 (d, *J* = 5.9 Hz, 2 H,

OCH₂), 5.25 (dd, J_{cis} = 10.4 Hz, J_{gem} = 1.3 Hz, 1 H, CH=CH₂), 5.32 (dd, J_{trans} = 17.2 Hz, J_{gem} = 1.3 Hz, 1 H, CH=CH₂), 5.90 (m, 1 H, CH=CH₂),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 46.2 (CH₂), 47.2 (*C*HCO), 66.0 (OCH₂), 119.1 (=CH₂), 131.2 (*C*H=CH₂), 168.8 (C^q, CO).

MS (El, 70 eV); *m/z* (%): 128 (10) [M⁺], 85 (25), 72 (100), 71 (60), 55 (20), 44 (35), 43 (100).

2'-Methylallyl-2-oxirancarboxylat 128b

2-Methylallylbromid (2.5 mL, 25.1 mmol, 1.1 eq) wird zusammen mit 18-Krone-6 (7.9 g, 30.1 mmol, 1.32 eq) unter Argon in Acetonitril (55 mL) gelöst. Nach Zugabe von **127** (3.7g, 22.8 mmol) wird die hellgelbe Lösung 5 Stunden bei RT gerührt. Die Lösung wird im Anschluss filtriert und das Filtrat im Vakuum auf ein Viertel seines Volumens eingeengt. Durch Zugabe von Diethylether (200 mL) lässt sich das durch 18-Krone-6 komplexierte KBr ausfällen. Das hellgelbe Filtrat wird wiederum eingeengt und erneut mit Diethylether (200 mL) versetzt. Nach Filtration wird das Lösungsmittel im Vakuum entfernt und der Rückstand durch Vakuumdestillation im Kugelrohr gereinigt. Man gewinnt **128b** als farblose Flüssigkeit (2.2 g, 68 %).

 $R_{\rm f} = 0.49$ (*n*-Hexan / Essigester, 4:1),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.75 (ddd, *J* = 1.6, 0.9, 0.5 Hz, 3 H, H7), 2.93 (dd, *J* = 6.5, 4.0 Hz, 1 H, H1b), 2.97 (dd, *J* = 6.5, 2.5 Hz, 1 H, H1a), 3.43 (dd, *J* = 4.0, 2.5 Hz, 1 H, H2), 4.58 (m, 2 H, H4), 4.95 (m, 1 H, H6a), 4.98 (m, 1 H, H6b),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 19.4 (CH₃), 46.3 (CH₂), 47.3 (CHCO₂), 68.0 (CH₂, OCH₂), 113.8 (CH₂, =CH₂), 139.1 (C^q, C=CH₂), 168.9 (C^q, CO),

MS (El, 70 eV); *m/z* (%): 142 (15) [M⁺], 99 (10), 72 (90), 71 (70), 55 (100), 43 (75).

Allgemeine Arbeitsvorschrift zur Anknüpfung von Glycidestern 128 ans Harz (AAV6)

Wang-Harz **129** (500 mg, Beladung: 2.9 mmol) wird in einem Mikrowellen-Reaktionsgefäß mit DMF (2.9 mL) versetzt und unter Rühren 15 min lang bei RT gequollen. Nach Zugabe des entsprechenden Glycidesters **128** (2.9 mmol, 2 eq) und von LiClO₄ (484 μ L, 3M in Essigester, 1.45 mmol, 1 eq) wird das Reaktionsgefäß mit einem Septum verschlossen und 30 min lang in der Mikrowelle auf 85 °C erhitzt. Anschließend wird nochmals LiClO₄ (484 μ L, 3M in Essigester, 1.45 mmol, 1 eq) zugegeben und erneut durch Bestrahlen mit Mikrowellen für 30 min lang auf 85 °C erwärmt. Danach wird das Harz jeweils dreimal mit 10 mL DMF, Methanol, THF und DCM gewaschen und anschließend unter Vakuum bei 50 °C getrocknet.

Immobilisierter 2-Hydroxy-2-methylpropansäuremethylester 130a

Synthetisiert nach AAV6 mit Methyl-2-methyl-2-oxirancarboxylat (307 μL, 2.90 mmol). IR (KBr): v(cm⁻¹): 3450 (br), 1733 (s).

Immobilisierter 2-Hydroxypropansäureallylester 130b

Synthetisiert nach AAV6 mit 128a (338 µL, 2.90 mmol).

IR (KBr): v(cm⁻¹): 3452 (br), 1730 (s).

Immoblisierter 2-Hydroxypropansäure-(2'-methyl)allylester 130c

Synthetisiert nach AAV6 mit 128b (393 µL, 2.90 mmol).

IR (KBr): v(cm⁻¹): 3447 (br), 1732 (s).

Allgemeine Arbeitsvorschrift zur Synthese von immoblisierten Tetronaten 131 (AAV7):

Die goldbraun gefärbten, polymer-gebundenen α -Hydroxyester **130** werden in THF (10 mL) für 10 min bei Raumtemperatur gequollen, dann unter Argon mit Ketenylidentriphenylphosphoran **21** (570 mg, 1.9 mmol, 1.3 eq) und einer Spatelspitze Benzoesäure versetzt und 20 h unter Rückfluss erhitzt. Nach Filtration und Waschen des Harzes mit jeweils dreimal 10 mL THF, Diethylether, Methanol und DCM wird das gelbbraune Harz unter Vakuum getrocknet.

Immobilisiertes 5-Hydroxymethyl-4-methyloxy-5-methyl-furan-2(5H)-on 131a

Synthetisiert nach AAV7 aus polymer-gebundenem 2-Hydroxy-2-methylpropansäuremethylester **130a**.

IR (KBr): v(cm⁻¹): 1732 (s), 1625 (s).

Immobilisiertes 5-Hydroxymethyl-4-allyloxy-furan-2(5H)-on 131b

Synthetisiert nach AAV7 aus 130b.

IR (KBr): ν (cm⁻¹): 1722 (s), 1621 (s).

Immobilisiertes 5-Hydroxymethyl-4-(2'methyl)allyloxy-furan-2(5H)-on 131c

Synthetisiert nach AAV7 aus polymer-gebundenem 130c.

IR (KBr): $v(cm^{-1})=1725$ (s), 1617 (s).

13.8 Festphasensynthese von Tetronaten über Äpfelsäuremonoester

Allgemeine Arbeitsvorschrift zur Synthese von Äpfelsäuremonoestern 134 (AAV8)

Zu L-Äpfelsäure **132** (10.6 g, 79.2 mmol) wird bei RT Trifluoressigsäureanhydrid (45 mL) gegeben. Nach 40 Minuten Rühren wird das überschüssige Trifluoressigsäureanhydrid destillativ entfernt (Badtemperatur <30°C). Der weiße kristalline Rückstand **133** wird mit 45 mL abs. Alkohol versetzt und 2 Stunden lang gerührt. Nach dieser Zeit wird eingeengt und das Produkt durch Säulenchromatographie an Kieselgel gereinigt.

(2S)-2-Hydroxybernsteinsäure-1-methylester 134a

Weißer Feststoff (3.3 g, 86 %) synthetisiert nach AAV8 aus Äpfelsäure **132** (3.5 g, 26.3 mmol) und abs. Methanol (15 mL).

$$[\alpha]_D^{25}$$
 = -15.0 (c=1, MeOH) [Lit., ^[164] -15.6 (c=1.33, MeOH)],

Schmp. 70-72 °C (Lit.^[164] 70-71 °C),

IR (ATR), v_{max} (cm⁻¹): 3449 (b), 2948 (b), 1714 (s), 1411 (w), 1270 (w), 1173 (m), 1102 (m), 1036 (w), 997 (w), 943 (w),

¹H-NMR (270 MHz, CDCl₃): δ (ppm) = 2.82 (dd, J = 16.7, 6.1 Hz, 1 H, CH₂), 2.89 (dd, J = 16.7, 4.2 Hz, 1 H, CH₂), 3.80 (s, 3 H, OMe), 4.32 (dd, J = 6.1, 4.2 Hz, 1 H, CH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 35.9 (CH₂), 52.4 (CH), 59.2 (OMe), 168.9 (C^q, C1), 175.3 (C^q, C4).

(2S)-2-Hydroxybernsteinsäure-1-benzylester 134b

Farbloses Öl (16.2 g, 91 %) nach AAV8 mit abs. Benzylalkohol (50 mL).

 $R_{\rm f}$ = 0.25 (Cyclohexan / Essigsäureethylester, 1:2),

 $[\alpha]_D^{25}$ = -15.3 (c=1, CHCl₃) [Lit.^[165] 16.7 (c=1.6, CHCl₃) für (2*R*)-Enantiomer],

IR (ATR), v_{max} (cm⁻¹): 3425 (b), 3067 (w), 3035 (w), 2983 (w), 2623 (w), 1726 (s), 1711 (s), 1498 (w), 1456 (w), 1399 (w), 1240 (m), 1213 (m), 1174 (m), 1102 (m), 1042 (m), 952 (w), 911 (w), 750 (m), 736 (m), 697 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 2.78 (dd, *J* = 16.6, 6.2 Hz, 1 H, CH₂), 2.94 (dd, *J* = 16.6, 4.5 Hz, 1 H, CH₂), 4.52 (dd, *J* = 6.2, 4.5 Hz, 1 H, CH), 5.17 (s, 2 H, O-CH₂), 7.28-7.33 (m, 5 H, ArH),

¹³C-NMR (75.5 MHz, TMS_{int}, CDCl₃): δ (ppm) = 38.2 (CH₂, C3), 67.1 (CH, C2), 67.6 (OCH₂), 128.3, 128.4, 128.5 (CH, ArC), 134.8 (C^q, ArC), 173.0 (C^q, C4), 175.2 (C^q, C1).

(2S)-2-Hydroxybernsteinsäure-1-(3'-phenylallyl)-ester 134c

Weiße Kristalle (4.9 g, 25 %) nach AAV8 allerdings wird Zimtalkohol (10.6 g, 79.2 mmol) gelöst in 50 mL abs. THF zugegeben und anschließend unter Rühren 24 h lang auf 50 °C erhitzt.

 $R_{\rm f}$ = 0.37 (*n*-Hexan / Essigester 1:1),

IR (ATR), v_{max} (cm⁻¹): 3402 (b), 3087 (w), 3062 (w), 3035 (w), 2871 (w), 2649 (w), 1727 (s), 1717 (s), 1695 (s), 1441 (m), 1408 (m), 1205 (s), 1110 (s), 965 (m),

¹H-NMR (270 MHz, CDCl₃): δ (ppm) = 2.83 (dd, *J* = 16.2, 6.0 Hz, 1 H, CH₂), 2.94 (dd, *J* = 16.2, 4.5 Hz, 1 H, CH₂), 4.52 (dd, *J* = 6.0, 4.5 Hz, 1 H, CH), 4.84 (d, *J* = 6.6 Hz, 2 H, OCH₂), 6.20-6.31 (m, 1 H, C*H*=CHPh), 6.66 (d, *J* = 15.9 Hz, 1 H, C*H*Ph), 7.23-7.40 (m, 5 H, ArH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 38.5 (CH₂, C3), 66.8 (OCH₂), 67.2 (CH, C2), 122.0 (CH, *C*=CPh), 126.8, 128.4, 128.7 (CH, ArC), 135.5 (CH, C=*C*Ph), 135.9 (C^q, ArC), 173.0 (C^q, C1), 175.8 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 250 (21) [M⁺], 232 (9), 204 (6), 161 (13), 134 (29), 117 (100), 105 (6), 91 (37), 77 (19), 71 (42), 51 (20), 43 (73).

Allgemeine Arbeitsvorschrift zur Synthese immobilisierter Malate 138 (AAV9)

1.0 g (Substitution:1.2 mmol/g; 100-200 mesh; 1 % DVB) Wang-Harz **129** wird unter Argon in abs. THF (12 mL) suspendiert und für 30 Minuten gequollen. Dann werden der entsprechende Äpfelsäuremonoester **134** (2 eq, 4.8 mmol) und Triphenylphosphin (1.3 g, 4.8 mmol) zugegeben und die Reaktionsmischung auf -10 °C abgekühlt. Ist diese Temperatur erreicht, wird langsam DIAD (1.0 g, 4.8 mmol) in abs. THF (2.4 mL) (entspricht 2.0M Lösung) zugetropft. Über Nacht lässt man die Reaktionsmischung auf Raumtemperatur erwärmen. Nach 14 h wird das Harz filtriert und mit THF (2 x 20 mL), DMF (2x 20 mL), DCM (3 x 20 mL), MeOH (3 x 20 mL) und Diethylether (2 x 20 mL) gewaschen. Anschließend wird das Harz im HV getrocknet.

Immobilisierter 2-Hydroxybernsteinsäure-1-methylester 138a

Gewonnen nach AAV9 aus 134a (360 mg, 2.4 mmol).

IR (ATR), v_{max} (cm⁻¹): 3507 (br), 1736 (s), 1170 (s).

Immobilisierter 2-Hydroxybernsteinsäure-1-benzylester 138b

Gewonnen nach AAV9 aus 134b (540 mg, 2.4 mmol).

IR (ATR), v_{max} (cm⁻¹): 3505 (br), 1737 (s), 1167 (s).

Immobilisierter 2-Hydroxybernsteinsäure-1-(3'-phenylally)ester 138c

Gewonnen nach AAV9 aus 134c (600 mg, 2.4 mmol).

IR (ATR), v_{max} (cm⁻¹): 3504 (br), 1736 (s), 1168 (s).

Allgemeine Arbeitsvorschrift zur Synthese immobilisierter Tetronate 139 (AAV10)

Der polymer-gebundene α -Hydroxyesters **138** (1.2 mmol) werden unter Argon in abs. THF (10 mL) suspendiert und mit Ketenylidentriphenylphosphoran **21** (480 mg, 1.6 mmol) und Benzoesäure (10 mg) versetzt. Die Reaktionsmischung wird unter Argon und Feuchtigkeitsausschluss 22 Stunden lang bei 60 °C geschüttelt. Nach Abkühlen auf Raumtemperatur wird das nun hellbraune Harz mit THF (2 x 20 mL), DMF (2 x 20 mL), DCM (3 x 20 mL), MeOH (3 x 20 mL) und Diethylether (2 x 20 mL) gewaschen.

Polymer-gebundenes 5-(Carboxymethyl)-4-methyloxy-(5H)-furan-2-on 139a

Erhalten nach AAV10 aus immobilisiertem 2-Hydroxybernsteinsäure-1-methylester **138a**. IR (ATR), v_{max} (cm⁻¹): 1760 (s), 1736 (s), 1636 (s).

Polymergebundenes 5-(Carboxymethyl)-4-benzoxy-(5H)-furan-2-on 139b

Erhalten nach AAV10 aus immobilisiertem 2-Hydroxybernsteinsäure-1-benzylester **138b**. IR (ATR), v_{max} (cm⁻¹): 1761 (s), 1738 (s), 1631 (s).

Polymergebundenes 5-(Carboxymethyl)-4-(3'phenylallyloxy)-(5H)-furan-2-on 139c

Erhalten nach AAV10 aus immobilisiertem 2-Hydroxybernsteinsäure-1-(3'-phenylallyl)ester **138c**.

IR (ATR), v_{max} (cm⁻¹): 1754 (s), 1738 (s), 1629 (s).

Allgemeine Arbeitsvorschrift zur Abspaltung von Tetronaten vom Harz (AAV11)

Das ans Harz gebundene Tetronat **139** (1.2 mmol) wird unter Argon in Acetonitril (10 mL) suspendiert. Nach der Zugabe von Bismuthtriflat (196 mg, 0.3 mmol) wird die Reaktionsmischung 1 h lang in der Mikrowelle auf 100 °C erhitzt. Nach Abkühlen auf Raumtemperatur wird das gelbe Harz mit THF (2 x 20 mL), DMF (2x 20 mL), DCM (3 x 20 mL), MeOH (3 x 20 mL), Toluol (2 x 20 mL) und Diethylether (2 x 20 mL) gewaschen. Die erhaltenen Rohprodukte werden mittels Säulenchromatographie gereinigt.

5-Carboxymethyl-4-methoxy-(5H)-furan-2-on 140a

Farbloses Öl (113 mg, 55 %) nach AAV11 aus 139a.

 $R_{\rm f}$ = 0.19 (*n*-Hexan / Essigester 1:1),

 $[\alpha]_{\rm D} = -8.1^{\circ} (c = 1, \text{MeOH}),$

IR (ATR), v_{max} (cm⁻¹): 3328 (br), 3123 (w), 2949 (w), 2631 (w), 2587 (w), 1728 (s), 1626 (s), 1516 (m), 1485 (w), 1438 (w), 1402 (w), 1372 (m), 1318 (m), 1242 (m), 1223 (m), 1158 (m), 1043 (m), 1029 (m), 989 (m), 968 (w), 865 (w), 805 (m), 748 (m), 721 (m), 689 (m),

¹H-NMR (300 MHz, CD₃OD): δ (ppm) = 2.56 (dd, J = 16.6, 8.2 Hz, 1 H, CH₂CO₂), 2.91 (dd, J = 16.6, 3.8 Hz, 1 H, CH₂CO₂), 3.74 (s, 3 H, OMe), 5.22 (ddd, J = 8.2, 3.8, 1.1 Hz, 1 H, H5), 5.27 (dd, J = 1.1 Hz, 1 H, H3),

¹³C-NMR (75.5 MHz, CD₃OD): δ (ppm) = 37.7 (*C*H₂CO₂H), 60.8 (OMe), 77.2 (CH, C5), 89.6 (CH, C3), 172.6 (C^q, CO₂H), 175.2 (C^q, C2), 184.2 (C^q, C4).

(5S)-4-Benzyloxy-5-carboxymethyl-(5H)-furan-2-on 140b

Weißer Feststoff (150 mg, 50 %) nach AAV11 aus 139b.

 $R_{\rm f}$ = 0.41(n-Hexan / Essigester 1:2),

Schmp. 128-130 °C,

 $[\alpha]_{\rm D}$ = -10.8° (*c* = 1, MeOH),

IR (ATR), v_{max} (cm⁻¹): 3112 (br), 3036 (w), 2957 (w), 2631 (w), 1722 (s), 1713 (s), 1620 (s), 1584 (m), 1499 (w), 1454 (w), 1413 (w), 1396 (w), 1362 (m), 1330 (m), 1239 (m), 1179 (m), 1032 (m), 1027 (m), 985 (m), 962 (m), 874 (w), 829 (w), 805 (m), 736 (m), 729 (m), 696 (m), 675 (w), 660 (w),

¹H-NMR (300 MHz, CD₃OD): δ (ppm) = 2.57 (dd, *J* = 16.5, 8.2 Hz, 1 H, CH₂CO₂), 2.89 (dd, *J* = 16.5, 3.8 Hz, 1 H, CH₂CO₂), 5.19 (s, 2 H, OCH₂), 5.19 (dd, *J* = 8.2, 3.8 Hz, 1 H, H5), 5.33 (s, 1 H, H3), 7.35-7.52 (m, 5 H, ArH),

¹³C-NMR (75.5 MHz, CD₃OD): δ (ppm) = 38.1 (*C*H₂CO₂), 76.1 (OCH₂), 77.4 (CH, C5), 90.5 (CH, C3), 129.3, 129.9, 130.0 (CH, ArC), 136.0 (C^q, ArC), 172.7 (C^q, COOH), 175.2 (C^q, C2), 182.8 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 248 (10) [M⁺], 132 (10), 91 (100), 69 (40), 65 (50), 51 (10), 43 (10), 39 (25).

5-Carboxymethyl-4-(3'phenylallyloxy)-(5H)-furan-2-on 140c

Farbloses Öl (63 mg, 40 %) nach AAV11 aus **139c**.

 $R_{\rm f} = 0.32$ (*n*-Hexan / Essigester 1:2),

 $[\alpha]_{\rm D}$ = -12.2° (*c* = 1, MeOH),

¹H-NMR (270 MHz, CDCl₃): δ (ppm) = 2.65 (dd, *J* = 16.5, 8.6 Hz, 1 H, CH₂CO₂), 2.93 (dd, *J* = 16.5, 3.5 Hz, 1 H, CH₂CO₂), 4.56 (d, *J* = 5.6 Hz, 2 H, OCH₂), 5.10 (s, 1 H, H3), 5.19 (dd, *J* = 8.6, 3.5 Hz, 1 H, H5), 5.40 (d, *J* = 16.1 Hz, 1 H, CHPh), 5.87-6.01 (m, 1 H, CH=CPh), 7.46-7.68 (m, 5 H, ArH),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 36.8 (*C*H₂COOH), 73.4 (O*C*H₂C=), 75.0 (CH, C5), 89.7 (CH, C3), 120.4 (CH, =*C*HPh), 128.6 (CH, ArC), 130.0 (CH, *C*H=CPh), 132.1 (CH, ArC), 135.9 (C^q, ArC), 162.1 (C^q, C2), 172.0 (C^q, CO₂H), 179.6 (C^q, C4).

13.9 Synthese von Carlosischer Säure 141

(2S)-1-Benzyl-4-trimethylsilylethylmalat 162

Eine Lösung von Äpfelsäure-1-benzylester **134b** (2.24 g, 10.0 mmol) in CH_2Cl_2 (20 mL) wird mit DMAP (50 mg) und Trimethylsilylethanol (1.57 mL, 11.0 mmol) versetzt und auf 0 °C abgekühlt. Dann fügt man portionsweise *N*,*N*'-Dicyclohexylcarbodiimid (DCC; 2.27 g, 11.0 mmol) zu und rührt bei RT für 16 h. Der ausgefallene *N*,*N*'-Dicyclohexylharnstoff wird über Celite filtriert, das Filtrat eingeengt und der Rückstand mittels Säulenchromatographie gereinigt. Dabei erhält man **162** (1.61 g, 50 %) als farbloses Öl.

 $R_{\rm f} = 0.31$ (*n*-Hexan / Essigester, 4:1),

 $[\alpha]_{\rm D}^{25} = -15.9 \ (c = 1, \text{CHCl}_3),$

IR (ATR), v_{max} (cm⁻¹): 3451 (b), 3067 (w), 3036 (w), 2954 (w), 2897 (w), 1738 (s), 1499 (w), 1456 (w), 1412 (w), 1384 (w), 1355 (w), 1248 (s), 1215 (w), 1164 (m), 1105 (w), 1036 (m), 982 (w), 934 (w), 858 (s), 832 (s), 752 (m), 695 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.0 (s, 9 H, SiMe₃), 0.90-0.96 (m, 2 H, CH₂Si), 2.73 (dd, *J* = 16.3, 5.8 Hz, 1 H, CH₂), 2.83 (dd, *J* = 16.3, 4.7 Hz, 1 H, CH₂), 4.09-4.17 (m, 2 H, CH₂CH₂Si), 4.50 (dd, *J* = 5.8, 4.7 Hz, 1 H, H5), 5.20 (s, 2 H, OCH₂), 7.30-7.37 (m, 5 H, ArH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = -1.6 (SiMe₃), 17.2 (CH₂Si), 38.7 (CH₂, C3), 63.3 (CH₂CH₂Si), 67.3 (CH, C2), 67.6 (OCH₂), 128.3, 128.5, 128.6 (CH, ArC), 135.0 (C^q, ArC), 170.5 (C^q, C4), 173.2 (C^q, C1),

Anal. Berechnet für C₁₆H₂₄O₅Si: C, 59.23; H, 7.46. Gefunden: C, 59.36; H, 7.37.

(5S)-4-Benzyloxy-5-trimethylsilylethylcarboxy-methyl(5H)furan-2-on 163

162 (650 mg, 2.0 mmol), **21** (786 mg, 2.6 mmol), und katalytische Mengen Benzoesäure werden in Benzol (15 mL) gelöst und 16 h lang unter Rückfluss bzw. 1 h lang bei 100 °C in der Mikrowelle erwärmt. Das Lösungsmittel wird destillativ entfernt und das Rohprodukt durch Säulenchromatographie gereinigt. Man erhält **163** (591 mg, 85%) als farbloses Öl.

 $R_{\rm f} = 0.37$ (n-Hexan / Essigester, 2:1),

 $[\alpha]_{D}^{25} = -15.1 \ (c = 1, \text{CHCl}_{3}),$

IR (ATR), v_{max} (cm⁻¹): 3120 (w), 3066 (w), 3035 (w), 2953 (w), 2898 (w), 1760 (s), 1730 (s), 1628 (s), 1586 (w), 1499 (w), 1455(w), 1388 (w), 1362 (w), 1346 (w), 1314 (m), 1248 (s), 1232 (m), 1166 (s), 1152 (s), 1041 (s), 971 (w), 928 (w), 858 (s), 835 (s), 804 (w), 750 (s), 696 (s), 664 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.0 (s, 9 H, SiMe₃), 0.90-0.96 (m, 2 H, CH₂Si), 2.59 (dd, *J* = 16.1, 8.1 Hz, 1 H, CH₂), 2.83 (dd, *J* = 16.1, 4.3, 1 H, CH₂), 4.10-4.17 (m, 2 H, CH₂CSi), 5.04 (s, 2 H, OCH₂), 5.13 (s, 1 H, H3), 5.20 (dd, *J* = 8.1, 4.3 Hz, 1 H, H5), 7.31-7.39 (m, 5 H, ArH),
¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = -1.6 (SiMe₃), 17.2 (CH₂Si), 37.2 (CH₂CO₂), 63.5 (CH₂, CCSi), 74.6 (CH₂Ph), 75.1 (CH, C5), 89.9 (CH, C3), 127.9, 128.8, 129.1 (CH, ArC), 133.6 (C^q, ArC), 168.8 (C^q, CO₂TMSE), 171.7 (C^q, C2), 179.7 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 348 (7) [M⁺], 186 (7), 132 (7), 101 (6), 91 (100), 73 (75), 65 (15), 45 (20),

Anal. Berechnet für C₁₈H₂₄O₅Si: C, 62.04; H, 6.94. Gefunden: C, 62.16; H, 6.90.

(5S)-5-Trimethylsilylethylcarboxymethyldihydrofuran-2,4-dion 164

163 (348 mg, 1.0 mmol) wird in MeOH (20 mL) gelöst und mit 5% Pd auf Aktivkohle (25 mg) versetzt. Dann wird das Reaktionsgefäß mehrfach evakuiert und mit Wasserstoff gefüllt. Bei einem Druck von 1 atm H₂ rührt man bei RT 1 h lang. Die Reaktionsmischung wird über Celite filtriert und mit MeOH (40 mL) gewaschen. Beim Einengen des Filtrats erhält man reine Tetronsäure **164** (250 mg, 99 %) als weißen Feststoff.

 $R_{\rm f} = 0.24$ (*n*-Hexan / Essigester, 1:1),

 $[\alpha]_D^{25} = -19.4 \ (c = 1, \text{MeOH}),$

Schmp. 80-81 °C,

IR (ATR), v_{max} (cm⁻¹): 3126 (br), 3011 (w), 2954 (w), 2900 (w), 2693 (w), 2512 (w), 1762 (s), 1726 (s), 1618 (s), 1454 (w), 1391 (w), 1357 (w), 1334 (w), 1249 (s), 1168 (s), 1097 (w), 1064 (w), 1033 (s), 970 (w), 936 (w), 857 (s), 833 (s), 752 (s), 693 (m), 666 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.0 (s, 9 H, SiMe₃), 0.80-0.92 (m, 2 H, CH₂Si), 3.04 (s, 2 H, H3), 3.12 (d, *J* = 22.1 Hz, 1 H, CH₂), 3.38 (d, *J* = 22.1 Hz, 1 H, CH₂), 4.04-4.13 (m, 2 H, CH₂CSi), 4.77 (s, 1 H, H5),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = -1.6 (SiMe₃) 17.2 (CH₂Si), 36.4 (CH₂CO₂), 37.8 (CH₂, C3), 64.2 (CH₂CSi), 81.1 (CH, C5), 169.4 (C^q, CO₂TMSE), 170.5 (C^q, C2), 205.2 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 258 (5) [M⁺], 243 (15), 215 (25), 173 (15), 145 (20), 129 (50), 117 (10), 101 (100), 73 (90),

Anal. Berechnet für C₁₁H₁₈O₅Si: C, 51.14; H, 7.02. Gefunden: C, 51.28; H, 6.95.

(5S)-3-Butanoyl-5-trimethylsilylethylcarboxymethyldihydrofuran-2,4-dion 165

NEt₃ (0.15 mL, 1.1 mmol) gibt man bei 0 °C zu einer gerührten Suspension der Tetronsäure **164** (258 mg, 1.0 mmol) in abs. CH_2Cl_2 (10 mL). Zu der resultierenden homogen Lösung fügt man DMAP (36 mg, 0.3 mmol), Buttersäure (97 mg, 1.1 mmol) und DCC (2.47 mg, 1.2 mmol) zu. Die Mischung wird 10 min bei 0 °C gerührt, dann wird das Kühlbad entfernt und 15 h lang bei RT gerührt. Der ausgefallen Dicyclohexylharnstoff wird über Celite filtriert und mit Essigester (20 mL) gewaschen. Die vereinigten Filtrate werden mit 5 % HCl gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingeengt. Die Reinigung des Rohprodukts mittels Säulenchromatographie an Kieselgel erbrachte die 3-Acyl-Tetronsäure **165** (300 mg, 91 %) als orangen Feststoff.

Schmp. 86–88 ° C,

 $[\alpha]_{\rm D}^{25}$ = -28.0 (*c*=0.5, MeOH),

IR (ATR), v_{max} (cm⁻¹): 3380 (br), 2956 (m), 2934 (w), 2875 (w), 1726 (s), 1633 (vs), 1570 (m), 1465 (s), 1390 (w), 1359 (w), 1327 (w), 1249 (s), 1167 (s), 1049 (m), 1018 (m), 974 (w), 937 (w), 857 (s), 835 (s), 752 (s), 694 (w), 665 (w),

¹H-NMR (300 MHz, CD₃OD): δ (ppm) = 0.05 (s, 9 H, SiMe₃), 0.94 (t, *J* = 7.55 Hz, 3 H, CCH₃), 0.99 (t, *J* = 8.4 Hz, 2 H, CH₂Si), 1.50-1.59 (m, 2 H, CH₂CH₃), 2.54 (dd, *J* = 16.2, 7.0 Hz, 1 H, CH₂), 2.76 (t, *J* = 7.0 Hz, 2 H, COCH₂), 2.92 (d, *J* = 16.2, 1 H, CH₂), 4.19 (t, *J* = 8.4 Hz, 2 H, OCH₂), 4.70-4.75 (m, 1 H, H5), 9.52 (br, 1 H, OH),

MS (El, 70 eV); *m/z* (%): 328 (5) [M⁺], 313 (15), 285 (50), 257 (20), 239 (30), 167 (20), 151 123 (20), 101 (15), 84 (15), 73 (100),

Anal. Berechnet für C₁₅H₂₄O₆Si: C, 54.85; H, 7.37. Gefunden: C, 54.69; H, 7.30.

(5S)-Carlosische Säure 141

Zu einer Lösung von **165** (157 mg, 0.5 mmol) in THF (4 mL) gibt man TBAF·3H₂O (480 mg, 1.5 mmol). Nachdem die Reaktion 2 h lang bei RT gerührt wurde, fügt man Wasser (5 mL) und Et₂O (5 mL) zu. Die Phasen werden getrennt und mit Et₂O extrahiert, um organische Verunreinigungen zu entfernen. Man säuert mit halbkonzentrierter HCl an und extrahiert Carlosische Säure mit heißem Benzol (3 x 50 mL) aus der wässrigen Phase. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und eingeengt. Man erhält **141** (103 mg, 90%) als gelbliche Kristalle.

Schmp. 175 °C (Lit.^[166] 176–177 °C),

 $[\alpha]_D^{25}$ -125.0 (c = 0.25, H₂O) [Lit.^[98] -125.0 (c = 0.28, H₂O)],

IR (ATR), v_{max} (cm⁻¹): 3133 (br), 2961 (w), 2933 (w), 2875 (w), 2572 (w), 1745 (s), 1707 (s), 1662 (s), 1604 (s), 1578 (m), 1429 (m), 1398 (m), 1330 (w), 1268 (w), 1237 (m), 1215 (m), 1188 (m), 1158 (w), 1127 (w), 1085 (m), 1046 (w), 1016 (s), 980 (w), 885 (m), 768 (w), 723 (w), 679 (w),

¹H-NMR (300 MHz, DMSO-d₆): δ (ppm) = 0.88 (t, *J* = 7.4 Hz, 3 H, CH₃), 1.50-1.57 (m, 2 H, CH₂CH₃), 2.56 (dd, *J* = 16.7, 7.3 Hz, 1 H, CH₂), 2.73 (t, *J* = 7.0 Hz, 2 H, COCH₂), 2.83 (dd, *J* = 16.7, 3.5 Hz, 1 H, CH₂), 4.83 (dd, *J* = 7.3, 3.5 Hz, 1 H, H5), 9.52 (br, 2 H, OH),

¹³C NMR (75.5 MHz, DMSO-d₆): δ (ppm) = 13.7 (Me), 18.3 (*C*H₂Me), 36.2 (*C*H₂CO₂), 38.7 (COCH₂), 75.8 (CH, C5), 98.2 (C^q, C3), 170.5 (C^q, CO₂H), 170.8 (C^q, C2), 192.1 (C^q, COCH₂), 192.3 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 228 (5) [M⁺], 210 (35), 192 (25), 183 (15), 167 (50), 151 (30), 139 (20), 97 (40), 84 (100).

13.10 Lösungssynthese von RK-682 (166)

(4R)-4-Benzoxycarbonyl-2,2-dimethyl-1,3-dioxolan 180b

14 mmol (2.06 mL) Methyl-α,β-isopropyliden-D-glycerat **180a** und Dibutylzinnoxid **181** (1.4 mmol, 348 mg) werden in abs. Benzylalkohol (20 mL) gelöst. Mit einer maximalen Leistung von 600 Watt wird die Mischung innerhalb von 2 min in der Mikrowelle auf 120 °C erwärmt und dann 30 min bei dieser Temperatur gehalten. Nach Abkühlen auf Raumtemperatur wird gesättigter NaHCO₃-Lösung (30 mL) zugefügt. Die Mischung wird dreimal mit 50 mL Essigester extrahiert. Die vereinigten organischen Phasen werden über Celite filtriert, um Dibutylzinnoxid **181** zu entfernen. Das Filtrat wird mit Na₂SO₄ getrocknet und das Lösungsmittel unter reduziertem Druck entfernt. Der überschüssige Benzylalkohol wird per Kugelrohr abdestilliert. Der Rückstand wird durch Säulenchromatographie gereinigt. Dabei erhält man das gewünschte Produkt als farbloses Öl (980 mg, 83 %).

 $R_{\rm f} = 0.38$ (*n*-Hexan / Essigester, 4:1),

 $[\alpha]_D^{25} = 14.3 \ (c=1.0, \text{Dioxan}) \ [\text{Lit.}^{[167]} \ 14.1 \ (c=1.2, \text{Dioxan})],$

IR (ATR), v_{max} (cm⁻¹): 3067 (w), 3034 (w), 2988 (w), 2939 (w), 2886 (w), 1756 (s), 1733 (s), 1498 (w), 1456 (w), 1382 (m), 1372 (m), 1260 (w), 1187 (s), 1150 (m), 1098 (s), 1067 (s), 1028 (w), 913 (w), 837 (s), 751 (s), 696 (s),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.37 (s, 3 H, Me), 1.46 (s, 3 H, Me), 4.08 (dd, J = 8.6, 5.1 Hz, 1 H, H5), 4.20 (dd, J = 8.6, 7.1 Hz, 1 H, H5), 4.60 (dd, J = 7.1, 5.1 Hz, 1 H, H4), 5.16 (d, J = 17.4 Hz, 1 H, CH₂Ph), 5.20 (d, J = 17.4 Hz, 1 H, CH₂Ph), 7.29-7.36 (m, 5 H, ArH),

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 25.5 (Me), 25.9 (Me), 66.9 (CH₂, C5), 67.3 (CH₂Ph), 74.1 (CH, C4), 111.4 (C^q, C2), 128.3, 128.5, 128.6 (CH, ArC), 135.4 (C^q, ArC), 171.0 (C^q, CO).

(2R)-Benzyl-2,3-dihydroxypropanoat 183

Eine Lösung von **180b** (8 mmol, 1.9 g) in 20 mL THF wird mit 4 eq (32 mL) 1N HCl versetzt und über Nacht gerührt. Das THF wird abdestilliert und der Rückstand mit einer gesättigten NaHCO₃ neutralisiert. Die wässrige Phase wird dreimal mit 50 mL Essigester/Isopropanol (9:1, v/v) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCl-Lösung (20 mL) extrahiert, mit Na₂SO₄ getrocknet und bis zur Trockne eingeengt. Das Rohprodukt **183** (1.26 g, 80 %) wird ohne weitere Reinigung für die nächste Reaktion verwendet.

(2R)-Benzyl-2-hydroxy-3-trityloxypropanoat 184

Zu einer eisgekühlten Lösung von **183** (1.57 g, 8.0 mmol) in abs. CH_2Cl_2 (60 mL) werden Triethylamin (3.33 mL, 24.0 mmol), DMAP (100 mg, 0.8 mmol) und Triphenylmethylchlorid **182** (4.46 g, 16.0 mmol) unter Rühren zugefügt. Dann wird die Reaktionsmischung 8 h lang bei RT gerührt. Durch Zugabe von Wasser (50 mL) wird die Reaktion hydrolysiert. Die organische Phase wird abgetrennt und die wässrige Phase mit Diethylether (3 x 30 mL) extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer destillativ entfernt. Der Rückstand wird durch Säulenchromatographie an Kieselgel gereinigt. Hierbei erhält man das Produkt als weißen Feststoff (2.8 g, 80 %).

Schmp. 95–97 °C,

 $R_{\rm f} = 0.28$ (*n*-Hexan / Essigester, 4:1),

 $[\alpha]_{\rm D}^{25} = 9.9 \ (c = 0.5, \text{CHCl}_3),$

IR (ATR), v_{max} (cm⁻¹): 3516 (br), 3087 (w), 3059 (w), 3033 (w), 2929 (w), 2880 (w), 1735 (s), 1596 (w), 1490 (m), 1448 (m), 1372 (w), 1276 (w), 1214 (m), 1117 (s), 1095 (s), 1028 (m), 1001 (w), 951 (w), 899 (w), 846 (w), 772 (w), 759 (m), 745 (s), 705 (s), 692 (s),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.41 (dd, J = 9.5, 3.3 Hz, 1 H, H3), 3.57 (dd, J = 9.5, 2.9 Hz, 1 H, H3), 4.35 (dd, J = 3.3, 2.9 Hz, 1 H, H2), 5.20 (d, J = 12.4 Hz, 1 H, CH₂Ph), 5.33 (d, J = 12.4 Hz, 1 H, CH₂Ph), 7.23-7.47 (m, 20 H, ArH),

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 65.2 (CH₂, C3), 67.3 (CH₂Ph), 70.7 (CH, C2), 86.3 (C^q, Ph₃C), 126.9, 127.7, 128.3, 128.4, 128.5 (CH, ArC), 134.9 (C^q, ArC), 143.5 (C^q, ArC, trityl), 173.0 (C^q, C1),

MS (El, 70 eV); *m/z* (%): 438 (10) [M⁺], 347 (10), 243 (100), 183 (10), 165 (60), 105 (50), 91 (95),

Anal. Berechnet für C₂₉H₂₆O₄: C, 79.43; H, 5.98. Gefunden: C, 79.26; H, 6.06.

(5R)-4-Benzyloxy-5-(trityloxy)methyl-(5H)furan-2-on 186

Eine Lösung von **184** (438 mg, 1 mmol), **21** (1.29 g, 4.2 mmol) und Benzoesäure (15 mg) werden unter Ausschluss von Luft und Feuchtigkeit in abs. THF (15 mL) gelöst und 2 h lang bei RT gerührt. Die Lösung wird konzentriert und das gebildete Esterylid **185** über eine 6 cm hohe Kieselgelschicht gereinigt (THF / *n*-Hexan, 1:1). Das Eluat wird eingeengt und anschließend wieder in Toluol (15 mL) gelöst. Mit einer maximalen Leistung von 600 Watt wird die Mischung innerhalb von 4 min in der Mikrowelle auf 120 °C erwärmt und dann 1 h bei dieser Temperatur gehalten. Das Lösungsmittel wird destillativ entfernt. Nach Reinigung mittels Säulenchromatographie an Kieselgel gewinnt man **186** (347 mg, 75 %) als weißen Feststoff.

Schmp. 154–156 °C,

 $R_{\rm f} = 0.27$ (*n*-Hexan / Essigester, 2:1),

 $[\alpha]_{\rm D}^{25} = -31.0 \ (c = 0.55, \rm CHCl_3),$

IR (ATR), v_{max} (cm⁻¹): 3087 (w), 3059 (w), 3033 (w), 2928 (w), 2875 (w), 1753 (s), 1629 (s), 1586 (w), 1490 (m), 1448 (m), 1394 (w), 1376 (w), 1351 (m), 1317 (w), 1290 (m), 1226 (m), 1152 (m), 1113 (m), 1075 (m), 1042 (w), 1031 (w), 1001 (w), 952 (m), 899 (w), 842 (w), 804 (w), 791 (w), 770 (w), 745 (s), 704 (s), 692 (s),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.27 (dd, *J* = 10.4, 3.4 Hz, 1 H, 5-CH₂), 3.61 (dd, *J* = 10.4, 2.7 Hz, 1 H, 5-CH₂), 4.84 (m, 1 H, H5), 4.99 (d, *J* = 11.7 Hz, 1 H, CH₂Ph), 5.06 (d, *J* = 11.7 Hz, 1 H, CH₂Ph), 5.27 (s, 1 H, H3), 7.18-7.40 (m, 20 H, ArH),

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 61.4 (5-CH₂), 74.4 (*C*H₂Ph), 78.5 (CH, C5), 86.5 (C^q, Ph₃C), 90.7 (CH, C3), 127.1, 127.8, 127.9, 128.6, 128.8, 128.9 (CH, ArC), 133.8 (C^q, ArC), 143.4 (C^q, ArC, trityl), 172.6 (C^q, C2), 178.7 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 462 (10) [M⁺], 385 (10), 243 (100), 183 (10), 165 (35), 105 (20), 91 (95),

Anal. Berechnet für C₃₁H₂₆O₄: C, 80.50; H, 5.67. Gefunden: C, 80.38; H, 5.66.

(5R)-4-Hydroxy-5-(trityloxy)methyl-(5H)furan-2-on 187

186 (463 mg, 1.0 mmol) wird in abs. THF (40 mL) gelöst und mit 5%-Pd auf Aktivkohle (15 mg) versetzt. Der Reaktionskolben wird mehrmals evakuiert und wieder mit Wasserstoff gefüllt. Die Lösung wird 3 h lang bei RT gerührt, danach über Celite filtriert und mit THF gewaschen. Nach Einengen des Filtrats gewinnt man Tetronsäure **187** (185 mg, 99 %) als weißen Feststoff.

Schmp. 54–56 °C,

 $R_{\rm f} = 0.19$ (*n*-Hexan / Essigester, 1:1),

 $[\alpha]_{D}^{25} = 36.2 \ (c = 0.54, \text{CHCl}_3),$

IR (ATR), v_{max} (cm⁻¹): 3087 (w), 3060 (w), 3024 (w), 2930 (w), 2873 (w), 2698 (w), 2600 (w), 1704 (s), 1684 (s), 1580 (s), 1489 (m), 1449 (m), 1410 (w), 1373 (w), 1330 (w), 1308 (w), 1275 (w), 1243 (w), 1212 (w), 1182 (w), 1156 (w), 1114 (m), 1063 (m), 1033 (w), 1002 (w), 964 (w), 929 (w), 908 (w), 809 (w), 787 (w), 771 (w), 757 (m), 749 (m), 703 (s), 694 (s),

¹H NMR (300 MHz, Aceton-d₆): δ (ppm) = 3.30 (dd, J = 10.4, 3.8 Hz, 1 H, CH₂), 3.57 (dd, J = 10.4, 2.7 Hz, 1 H, CH₂), 4.98 (m, 1 H, H5), 5.11 (s, 1 H, H3), 7.15-7.50 (m, 15 H, ArH),

¹³C NMR (75 MHz, Aceton-d₆): δ (ppm) = 62.9 (CH₂), 79.0 (CH, C5), 87.2 (C^q, Ph₃C), 91.1 (CH, C3), 128.1, 128.8, 129.5 (CH, ArC), 144.7 (C^q, ArC, trityl), 173.6 (C^q, C2), 179.2 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 372 (30) [M⁺], 295 (30), 243 (100), 183 (30), 165 (55), 105 (70), Anal. Berechnet für C₂₄H₂₀O₄: C, 77.40; H, 5.41. Gefunden: C, 77.35; H, 5.46.

Allgemeine Arbeitsvorschrift zur Synthese von 3-Acyltetronsäuren (AAV12)^[105]

Triethylamin (1.1 eq) wird unter Rühren bei 0°C zu einer Suspension der Tetronsäure **187** (1 eq) in CH₂Cl₂ (15 mL) gegeben. Zu dieser homogenen Lösung wird in dieser Reihenfolge DMAP (20 mg), RCOOH (1.1 eq) und DCC (1.2 eq) gegeben. Die Lösung wird 10 min bei 0° C gerührt und nach Entfernung des Eisbades 15 h lang bei RT gerührt. Der ausgefallene *N,N'*-Dicyclohexylharnstoff wird über etwas Celite filtriert und mit Essigester (50 mL) gewaschen. Die vereinigten Filtrate werden mit 0.5 N HCl und gesättigter NaCl-Lösung extrahiert und mit Na₂SO₄ getrocknet. Nach Entfernen des Lösungsmittels i. Vak. wird das Rohprodukt über Säulenchromatographie an Kieselgel gereinigt. Die konzentrierten Fraktionen werden in Essigsäureethylester (50 mL) gelöst und die Lösung mit 0.5 N HCl und Wasser gewaschen und mit Na₂SO₄ getrocknet. Nach dem Einengen der organischen Phase erhält man die salzfreien 3-Acyltetronsäuren.

(5R)-3-Palmitoyl-5-(trityloxy)methyl-(5H)furan-2,4-dion 188

Gelbes Öl (259 mg, 94%) nach AAV12 mit NEt₃ (0.07 mL, 0.5 mmol), **187** (160 mg, 0.45 mmol), DMAP (20 mg), Palmitinsäure (128 mg, 0.5 mmol) und DCC (113 mg, 0.55 mmol).

 $R_{\rm f} = 0.42$ (CHCl₃/MeOH 19:1),

 $[\alpha]_D^{25} = 47.1 \ (c = 0.5, \text{CHCl}_3) \ [\text{Lit.}^{[112]} \ 48.27 \ (c = 1.02, \text{CHCl}_3)],$

IR (ATR), v_{max} (cm⁻¹): 3326 (br), 3059 (w), 3023 (w), 2923 (s), 2851 (s), 1770 (s), 1695 (s), 1605 (s), 1490 (m), 1449 (m), 1409 (w), 1376 (w), 1311 (w), 1222 (w), 1198 (w), 1155 (w), 1105 (w), 1086 (w), 1045 (m), 996 (w), 948 (w), 892 (w), 805 (w), 745 (s), 704 (s), 696 (s), 667 (w), 653 (w),

¹H NMR (300 MHz, DMSO-d₆): δ (ppm) = 0.83 (t, *J* = 6.7 Hz, 3 H, Me), 1.10-1.35 (m, 24 H, CH₂), 1.41–1.58 (m, 2 H, CH₂CO), 2.73–2.89 (m, 2 H, CH₂CO), 3.25 (dd, *J* = 10.3, 3.7 Hz, 1 H, 5-CH₂), 3.37 (dd, *J* = 10.3, 2.4 Hz, 1 H, 5-CH₂), 4.72-4.89 (m, 1 H, H5), 7.15-7.35 (m, 15 H, ArH), 8.30 (br, 1 H, OH),

MS (El, 70 eV); *m/z* (%):610 (10) [M⁺], 533 (10), 259 (20), 243 (100), 185 (15), 165 (55), 77 (35), 43 (80).

3-(4'-Methyldodecanoyl)-5-(trityloxy)methyl-(5H)furan-2,4-dion 189a

Gelbes Öl (164 mg, 79 %) nach AAV12 mit NEt₃ (62 μ L, 0.44 mmol), **187** (148 mg, 0.4 mmol), DMAP (18 mg), 4-Methyldodecansäure (95 mg, 0.44 mmol) und DCC (100 mg, 0.48 mmol).

 $R_{\rm f} = 0.42$ (CHCl₃/MeOH 19:1),

IR (ATR), v_{max} (cm⁻¹): 3326 (br), 3060 (w), 3033 (w), 2924 (s), 2854 (m), 1770 (s), 1695 (s), 1601 (s), 1490 (m), 1448 (m), 1411 (w), 1378 (w), 1322 (w), 1200 (w), 1154 (w), 1105 (w), 1082 (w), 1046 (m), 998 (w), 946 (w), 898 (w), 805 (w), 759 (m), 745 (s), 704 (s), 696 (s), 653 (w),

¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 14.6 (CH₂CH₃), 20.1 (CHCH₃), 23.8 (CH₂CH₃), 26.2, 26.9, 28.1, 30.6, 31.2, 33.2 (CH₂), 33.7 (CH, CHCH₃), 34.8 (CH₂CH₂COH), 37.9 (CH₂COH), 63.1 (5-CH₂), 79.0 (CH, C5), 88.0 (C^q, Ph₃C), 100.9 (C^q, C3), 128.1, 128.9, 129.8 (CH, ArC), 144.8 (C^q, ArC), 173.9 (C^q, C2), 178.0 (C^q, C-1'), 196.4 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 568 (7) [M⁺], 491 (10), 309 (5), 259 (25), 243 (100), 185 (30), 165 (55), 77 (10), 43 (90),

Anal. Berechnet für C₃₇H₄₄O₅: C, 78.14; H, 7.80. Gefunden: C, 78.28; H, 7.86.

3-(5'-Methyldodecanoyl)-5-(trityloxy)methyl-(5H)furan-2,4-dion 189b

Gelbes Öl (251 mg, 90%) nach AAV12 mit NEt₃ (76 μ L, 0.55 mmol), **187** (185 mg, 0.5 mmol), DMAP (25 mg), 5-Methyldodecansäure (119 mg, 0.55 mmol) und DCC (125 mg, 0.6 mmol).

IR (ATR), v_{max} (cm⁻¹): 3322 (br), 3059 (w), 3034 (w), 2924 (s), 2854 (m), 1770 (s), 1695 (s), 1600 (s), 1490 (m), 1448 (m), 1410 (w), 1377 (w), 1322 (w), 1220 (w), 1198 (w), 1154 (w), 1104 (w), 1073 (w), 1046 (m), 994 (w), 946 (w), 898 (w), 804 (w), 759 (m), 745 (s), 705 (s), 696 (s), 653 (w),

¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 14.6 (CH₂CH₃), 20.1 (CHCH₃), 23.8 (CH₂CH₃), 24.8, 28.2, 30.6, 31.2, 33.2 (CH₂), 33.8 (CHCH₃), 35.3 (CH₂), 37.7 (CH₂CH₂COH), 38.0 (CH₂COH), 63.2 (5-CH₂), 82.7 (CH, C5), 88.0 (C^q, Ph₃C), 101.4 (C^q, C3), 128.4, 129.0, 129.8 (CH, ArC), 144.8 (C^q, ArC), 174.1 (C^q, C2), 195.0 (C^q, C-1'), 196.4 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 568 (5) [M⁺], 491 (10), 309 (5), 259 (20), 243 (85), 165 (65), 43 (100),

HR-MS: Gefunden 568.31890. Berechnet für C₃₇H₄₄O₅ 568.31887.

Allgemeine Arbeitsvorschrit zur Entfernung der Tritylschutzgruppe (AAV13)

Zu einer Lösung der tritylgeschützten 3-Acyltetronsäure (0.25 mmol) in Methanol (15 mL) werden 1.1 eq 1N wässrige HCl gegeben und die Mischung 48 h lang bei RT gerührt. Nach Entfernung des Lösungsmittels unter reduziertem Druck wird der verbleibende Rückstand durch eine Kieselgel-Säulenchromatographie (CHCl₃/MeOH 1:0, CHCl₃/MeOH 20:1, CHCl₃/MeOH 10:1) gereinigt. Die vereinigten und eingeengten Fraktionen werden wieder in Essigester gelöst und mit jeweils 20 ml 0.5 N HCl und Wasser gewaschen. Die org. Phase wird über Na₂SO₄ getrocknet und bis zur Trockne eingeengt. Dabei erhält man die salzfreien 3-Acyltetronsäuren.

(5R)-RK-682 (166)

Nach AAV13 erhält man aus **188** (162 mg, 0.26 mmol) RK-682 (74 mg, 79 %) als weißen Feststoff.

Schmp. 105–107 °C (Lit.^[112] 105–108 °C),

 $[\alpha]_D^{25} = 57.2 \ (c = 0.51, \text{CHCl}_3) \ [\text{Lit.}^{[112]} 58.06 \ (c = 0.47, \text{CHCl}_3)],$

IR (ATR), υ_{max} (cm⁻¹): 3329 (br), 2916 (s), 2847 (s), 1750 (s), 1663 (s), 1604 (s), 1469 (m), 1393 (w), 1377 (w), 1316 (w), 1298 (w), 1259 (w), 1214 (w), 1164 (w), 1087 (w), 1071 (m), 1047 (s), 1029 (m), 906 (w), 881 (w), 799 (w), 770 (m), 719 (m),

¹H NMR (300 MHz, DMSO-d₆): δ (ppm) = 0.85 (t, *J* = 6.8 Hz, 3 H, Me), 1.10-1.35 (m, 24 H, CH₂), 1.40-1.58 (m, 2 H, CH₂CH₂CO), 2.73 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.65 (dd, *J* =

12.3, 3.6 Hz, 1 H, 5-CH₂), 3.75 (dd, *J* = 12.3, 2.6 Hz, 1 H, 5-CH₂), 4.60-4.68 (m, 1 H, H5), 6.08 (br, 2 H, OH),

MS (El, 70 eV); *m/z* (%): 368 (7) [M⁺], 350 (5), 337 (5), 319 (5), 185 (15), 172 (45), 154 (10), 43 (100),

HR-MS: Gefunden 368.25630. Berechnet für C₂₁H₃₆O₅ 368.25627.

5-Hydroxymethyl-3-(4'-methyldodecanoyl)-(5H)furan-2,4-dion 190a

Nach AAV13 erhält man aus **189a** (162 mg, 0.26 mmol) die 3-Acyltetronsäure **190a** (70 mg, 86 %) als gelbes Öl.

IR (ATR), v_{max} (cm⁻¹): 3396 (br), 2923 (s), 2854 (s), 1764 (s), 1692 (s), 1595 (s), 1456 (m), 1378 (w), 1329 (w), 1260 (w), 1201 (w), 1091 (w), 1030 (s), 937 (w), 875 (w), 802 (w), 771 (w), 721 (w),

¹H NMR (300 MHz, CD₃OD): δ (ppm) = 0.72-0.85 (m, 6 H, Me), 1.10-1.30 (m, 14 H, CH₂), 1.30-1.42 (m, 2 H, CH₂CH₂CO), 1.51-1.58 (m, 1 H, CHCH₃), 2.75 (t, *J* = 7.2 Hz, 2 H, CH₂CO), 3.76 (dd, *J* =12.2, 4.2 Hz, 1 H, OCH₂), 3.83 (dd, *J* = 12.2, 2.7 Hz, 1 H, OCH₂), 4.50-4.58 (m, 1 H, H5),

MS (El, 70 eV); *m/z* (%): 326 (5) [M⁺], 308 (3), 213 (5), 195 (5), 185 (17), 172 (55), 43 (100),

HR-MS: Gefunden 326.20930. Berechnet für C₁₈H₃₀O₅ 326.20932.

5-Hydroxymethyl-3-(5'-methyldodecanoyl)-(5H)furan-2,4-dion 190b

145

Nach AAV13 erhält man aus **189b** (144 mg, 0.25 mmol) das gewünschte Produkt **190b** (70 mg, 86 %) als gelbes Öl.

IR (ATR), v_{max} (cm⁻¹): 3396 (br), 2923 (s), 2854 (s), 1764 (s), 1692 (s), 1595 (s), 1456 (m), 1378 (w), 1329 (w), 1260 (w), 1201 (w), 1091 (w), 1030 (s), 937 (w), 875 (w), 802 (w), 771 (w), 721 (w),

¹H NMR (300 MHz, CD₃OD): δ (ppm) = 0.80-0.99 (m, 6 H, Me), 1.10-1.30 (m, 15 H, CH₂, CHMe), 1.61–1.72 (m, 2 H, CH₂CH₂CO), 2.86 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.88 (dd, *J* = 12.2, 4.3 Hz, 1 H, OCH₂), 3.96 (dd, *J* = 12.2, 2.8 Hz, 1 H, OCH₂), 4.70-4.78 (m, 1 H, H5),

¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 14.6 (CH₂CH₃), 20.1 (CHCH₃), 23.8 (CH₂CH₃), 24.1, 28.2, 30.6, 31.2, 33.2 (CH₂), 33.9 (CHCH₃), 35.3 (CH₂), 37.8 (CH₂CH₂COH), 38.2 (CH₂COH), 61.3 (CH₂O), 82.8 (CH, C5), 101.4 (C^q, C3), 173.5 (C^q, C2), 195.9 (C^q, C-1'), 196.3 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 326 (7) [M⁺], 308 (7), 290 (7), 277 (5), 209 (5), 199 (10), 185 (20), 172 (100),

HR-MS: Gefunden 326.20930. Berechnet für C₁₈H₃₀O₅ 326.20932.

13.11 Festphasensynthese von RK-682 (166)

(4R)-2,2-Dimethyl-1,3-dioxolan-4-carbonsäure 167

180b (4 mmol, 0.95 mL) wird in abs. Methanol (20 mL) gelöst und mit 5%-Pd auf Aktivkohle (50 mg) versetzt. Der Reaktionskolben wird mehrmals evakuiert und mit Wasserstoff gefüllt. Die Lösung wird unter einem Wasserstoffdruck von 1 atm 1 h lang bei RT gerührt. Die resultierende Reaktionsmischung wird über wenig Celite filtriert und mit Methanol (40 mL) gewaschen. Das Filtrat wird im Vakkuum eingeengt. Man erhält **167** als farbloses Öl (0.58 g, 99 %). Das Rohprodukt wird ohne weitere Reinigung direkt für die nächste Reaktion verwendet.

(4R)-4-(2'-Trimethylsilylethoxycarbonyl)-2,2-dimethyl-1,3-dioxolan 180c

167 (0.58 g, 4 mmol) wird in abs. THF (20 mL) unter Argonatmosphäre gelöst. Daraufhin wird *O*-Trimethylsilylethyl-*N*,*N*'-dicyclohexylisoharnstoff **196** (1.6 g, 5.0 mmol) zugegeben und die Reaktionsmischung über Nacht auf 60 °C erwärmt. Der ausgefallene Dicyclohexylharnstoff wird über Celite filtriert und das grüne Filtrat bis zur Trockne eingeengt. Nach Reinigung des Rohprodukts durch Säulenchromatographie an Kieselgel verbleibt das gewünschte Produkt **180c** als farbloses Öl (0.74 g, 74 %).

 $R_{\rm f} = 0.43$ (*n*-Hexan / Essigester, 6:1),

 $[\alpha]_{\rm D}^{25} = 7.6 \ (c = 0.98, {\rm Dioxan}),$

IR (ATR), v_{max} (cm⁻¹): 2988(w), 2955 (w), 2899 (w), 1756 (s), 1729 (s), 1456 (w), 1381 (m), 1372 (m), 1249 (s), 1216 (m), 1179 (m), 1152 (w), 1102 (s), 1067 (s), 1043 (w), 930 (w), 856 (s), 835 (s), 761 (w), 694 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = -0.02 (s, 9 H, SiMe₃), 0.89-1.01 (m, 2 H, CH₂Si), 1.33 (s, 3 H, Me), 1.42 (s, 3 H, Me), 4.08 (dd, J = 8.6, 5.5 Hz, 1 H, H5), 4.20 (dd, J = 8.6, 5.1 Hz, 1 H, H5), 4.2-4.4 (m, 2 H, CH₂CSi), 4.60 (dd, J = 5.5, 5.1 Hz, 1 H, H4),

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = -1.6 (SiMe₃), 17.3 (CH₂Si), 25.5 (Me), 25.8 (Me), 63.6 (CH₂CSi), 67.2 (CH₂, C5), 74.1 (CH, C4), 111.1 (C^q, C2), 171.2 (C^q, CO),

Anal. Berechnet für C₁₁H₂₂O₄Si: C, 53.62; H, 9.00. Gefunden: C, 53.58; H, 8.89.

(2R)-2,3-Dihydroxypropansäuretrimethylsilylethylester 198

Zu einer Lösung von **180c** (0.5 g, 2 mmol) in MeOH (4 mL) wird 1.25 eq (2.5 mL) 1N HCl gegeben und über Nacht bei RT gerührt. Das Lösungsmittel wird abdestilliert und der verbleibende Rückstand mit gesättigter NaHCO₃-Lösung neutralisiert. Die wässrige Phase

wird dreimal mit 50 mL Essigester/Isopropanol (9:1) extrahiert. Die vereinigten organischen Phasen werden gegen gesättigte NaCl-Lösung (20 mL) extrahiert, mit Na₂SO₄ getrocknet und bis zu Trockne eingeengt. Das Rohprodukt **198** (250 mg, 60 %) wird ohne weitere Reinigung für die nächste Reaktion verwendet.

Immobilisierter (2R)-2-Hydroxy-3-propansäure-β-trimethylsilylethylester 199

0.5 g (0.85 mmol) Tritylchlorid-Polystyrol **191** (Novabiochem, 100-200 mesh, 1% DVB, Subst: 1.7 mmol/g) werden unter Argon in abs. CH_2Cl_2 (10 mL) suspendiert. Man lässt das Harz für 10 min quellen und filtriert dieses anschließend. Das Harz wird daraufhin in abs. CH_2Cl_2 (7 mL) resuspendiert und mit 1.5 eq **198** (230 mg, 1.25 mmol) und 1.5 eq NEt₃ (0.18 mL, 1.25 mmol) versetzt und 6 Stunden lang bei RT geschüttelt. Danach wird das Harz filtriert und mit je 2 x 10 mL trockenem CH_2Cl_2 , DMF, CH_3CN , THF, MeOH, Toluol und THF gewaschen. Danach wird das Harz im HV getrocknet.

IR (ATR), v_{max} (cm⁻¹): 3407 (br), 1734 (s), 1249 (s), 857 (s), 835 (s).

(5R)-4-Trimethylsilyloxyethyl-5-(trityloxy)methyl-(5H)furan-2-on 200

0.85 mmol polymer-gebundener Hydroxyester **199**, **21** (367 mg, 1.25 mmol) und katalytische Mengen Benzoesäure werden in abs. THF (8 mL) unter Ausschluss von Luft und Feuchtigkeit suspendiert und 12 h lang bei 60 °C geschüttelt. Danach wird das Harz filtriert und mit je 2 x 10 mL trockenem CH_2Cl_2 , DMF, CH_3CN , THF, MeOH, Toluol und THF gewaschen und unter reduziertem Druck an der Ölpumpe getrocknet. Die Vollständigkeit der Reaktion wird durch die Massenzunahme und das Verschwinden der OH-Bande im IR-Spektrum kontrolliert.

IR (ATR), v_{max} (cm⁻¹): 1740 (s), 1631 (s), 1249 (s), 857 (s), 835 (s).

Immobilisiertes (5R)-5-(Trityloxy)methyl-(5H)furan-2,4-dion 201

0.85 mmol polymer-gebundenes Tetronat **200** wird in abs. THF (7 mL) suspendiert und mit 3 eq TBAF·3H₂O (0.80 g, 2.5 mmol) versetzt und für 3 Stunden bei RT geschüttelt. Dann wird H₂O (2 mL) zugefügt und weitere 20 Minuten geschüttelt. Das Harz wird filtriert und je zweimal mit 20 mL CH₂Cl₂, DMF, MeCN, THF, MeOH, Toluol und THF gewaschen und im Vakuum getrocknet.

IR (ATR), v_{max} (cm⁻¹): 1727 (m), 1599 (s).

Immobilisiertes (5R)-3-Palmitoyl-5-(trityloxy)methyl-(5H)furan-2,4-dion 202

Immobilisierte Tetronsäure **201** (0.85 mmol) wird in CH_2Cl_2 (7 mL) suspendiert. Daraufhin werden Triethylamin (0.14 mL, 1 mmol), DMAP (20 mg), Palmitinsäure (256 mg, 1 mmol) und DCC (226 mg, 1.1 mmol) zugegeben. Die Mischung wird 16 h lang bei RT geschüttelt. Das Harz wird abfiltriert und je zweimal mit 20 mL CH_2Cl_2 , DMF, MeCN, THF, MeOH, Toluol und THF gewaschen.

IR (ATR), v_{max} (cm⁻¹): 1725 (m), 1641 (s).

(5R)-RK-682 (166)

0.85 mmol polymer-gebundene 3-Acyltetronsäure **202** wird in CH_2Cl_2 (10 mL) suspendiert. Nach 10-minütigem Quellen wird das Harz filtriert und mit 8 mL der Abspaltungslösung (DCM/TFA/Et₃SiH, 90:5:5, v/v/v) versetzt. Das gelbe Harz verfärbt sich bei der Zugabe rot. Die Suspension wird für 20 Minuten bei RT geschüttelt und das Harz abfiltriert. Anschließend wird mit je 10 mL CH_2Cl_2 , THF, MeOH und Toluol gewaschen. Die vereinigten Filtrate werden bis zur Trockne eingeengt. Man erhält optisch reines RK-682 (80 mg, 26 % bezogen auf die Beladung des eingesetzten Tritylchloridharzes).

Experimentelle Daten analog zu 13.10.

13.12 Synthese von Agglomerin A-C 203a-c

3-Decanoyl-5-(trityloxy)methyl-(5H)furan-2,4-dion 214a

Gelbes Öl (230 mg, 88 %) nach AAV12 mit NEt₃ (76 µL, 0.55 mmol), *rac*-**187** (185 mg, 0.5 mmol), DMAP (20 mg), Decansäure (95 mg, 0.55 mmol) und DCC (125 mg, 0.60 mmol).

IR (ATR), v_{max} (cm⁻¹): 3326 (br), 3059 (w), 3034 (w), 2925 (s), 2854 (s), 1770 (s), 1695 (s), 1598 (s), 1490 (m), 1448 (m), 1409 (w), 1373 (w), 1322 (w), 1220 (w), 1197 (w), 1154 (w), 1104 (w), 1070 (w), 1045 (m), 995 (w), 946 (w), 898 (w), 845 (w), 759 (m), 745 (s), 704 (s), 696 (s), 674 (w), 653 (w),

¹H NMR (300 MHz, DMSO-d₆): δ (ppm) = 0.86 (t, *J* = 6.8 Hz, 3 H, Me), 1.10-1.35 (m, 12 H, CH₂), 1.52-1.68 (m, 2 H, CH₂CCO), 2.82-2.93 (m, 2 H, CH₂CO), 3.33-3.42 (m, 1 H, 5-CH₂), 3.47-3.55 (m, 1 H, 5-CH₂), 4.65-4.84 (m, 1 H, H5), 7.11-7.36 (m, 15 H, ArH),

¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 14.6 (CH₃), 23.8 (CH₂Me), 26.1, 27.2, 30.3, 30.5, 30.7 (CH₂), 33.1 (CH₂CH₂CO), 35.0 (CH₂CO), 63.0 (5-CH₂), 82.6 (CH, C5), 87.9 (C^q, Ph₃C), 101.1 (C^q, C3), 128.4, 129.0, 129.8 (CH, ArC), 144.7 (C^q, ArC), 173.7 (C^q, C2), 194.8 (C^q, C-1'), 196.5 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 526 (10) [M⁺], 449 (20), 267 (5), 259 (50), 243 (100), 183 (15), 165 (60), 105 (15), 43 (10),

Anal. Berechnet für C₃₄H₃₈O₅: C, 77.54; H, 7.27. Gefunden: C, 77.58; H, 7.36.

3-[(5'Z)-Dodecenoyl]-5-(trityloxy)methyl-(5H)furan-2,4-dion 214b

Gelbes Öl (135 mg, 56 %) nach AAV12 mit NEt₃ (69 μ L, 0.5 mmol), *rac*-**187** (160 mg, 0.43 mmol), DMAP (20 mg), (5Z)-Dodecensäure (109 μ L, 0.5 mmol) und DCC (125 mg, 0.6 mmol).

IR (ATR), v_{max} (cm⁻¹): 3324 (br), 3059 (w), 3006 (w), 2926 (s), 2852 (s), 1770 (s), 1695 (s), 1602 (s), 1490 (m), 1448 (m), 1405 (w), 1377 (w), 1321 (w), 1310 (w), 1270 (w), 1241 (w), 1221 (w), 1198 (w), 1185 (w), 1154 (w), 1105 (m), 1082 (w), 1045 (m), 995 (m), 891 (m), 843 (w), 760 (m), 745 (m), 704 (s), 696 (s),

¹H NMR (300 MHz, DMSO-d₆): δ (ppm) = 0.88 (t, *J* = 6.8 Hz, 3 H, Me), 1.20-1.35 (m, 10 H, CH₂), 1.52-1.62 (m, 2 H, CH₂CCO), 1.87-2.15 (m, 4 H, H₂CC=C), 2.85-2.96 (m, 2 H, CH₂CO), 3.42-3.46 (m, 1 H, 5-CH₂), 3.48–3.62 (m, 1 H, 5-CH₂), 4.71-4.84 (m, 1 H, H5), 5.25-5.43 (m, 2 H, HC=CH), 7.11-7.36 (m, 15 H, ArH),

MS (El, 70 eV); *m/z* (%): 552 (5) [M⁺], 475 (5), 243 (100), 165 (75), 55 (45), 41 (70),

HR-MS: Gefunden 552.28746. Berechnet für C₃₆H₄₀O₅ 552.28755.

3-Dodecanoyl-5-(trityloxy)methyl-(5H)furan-2,4-dion 214c

Gelbes Öl (250 mg, 91 %) nach AAV12 mit NEt₃ (76 µL, 0.55 mmol), *rac*-**187** (185 mg, 0.5 mmol), DMAP (20 mg), Dodecansäure (111 mg, 0.55 mmol) und DCC (125 mg, 0.60 mmol).

IR (ATR), v_{max} (cm⁻¹): 3328 (br), 3060 (w), 3033 (w), 2923 (s), 2853 (s), 1769 (s), 1693 (s), 1602 (s), 1490 (m), 1448 (m), 1408 (w), 1377 (w), 1323 (w), 1220 (w), 1198 (w), 1155 (w), 1104 (w), 1073 (w), 1047 (m), 996 (w), 947 (w), 898 (w), 843 (w), 760 (m), 745 (s), 704 (s), 696 (s), 672 (w), 653 (w),

¹H NMR (300 MHz, DMSO-d₆): δ (ppm) = 0.87 (t, *J* = 6.8 Hz, 3 H, Me), 1.10-1.35 (m, 16 H, CH₂), 1.52-1.68 (m, 2 H, CH₂CCO), 2.78-2.93 (m, 2 H, CH₂CO), 3.31-3.42 (m, 1 H, 5-CH₂), 3.44-3.58 (m, 1 H, 5-CH₂), 4.65-4.89 (m, 1 H, H5), 7.15-7.35 (m, 15 H, ArH),

Anal. Berechnet für C₃₆H₄₂O₅: C, 77.95; H, 7.63. Gefunden: C, 78.08; H, 7.76.

3-Decanoyl-5-hydroxymethyl-(5H)furan-2,4-dion 215a

Nach AAV 13 erhält man aus **214a** (230 mg, 0.44 mmol) das gewünschte Produkt (70 mg, 56 %) als gelbliches Öl.

IR (ATR), v_{max} (cm⁻¹): 3323 (br), 3228 (br), 2915 (s), 2847 (s), 1745 (s), 1662 (s), 1603 (s), 1578 (m), 1467 (m), 1449 (m), 1395 (w), 1377 (w), 1330 (w), 1304 (w), 1285 (w), 1260 (w), 1239 (w), 1223 (w), 1202 (w), 1160 (m), 1086 (w), 1071 (m), 1045 (s), 1025 (m), 905 (w), 881 (m), 799 (w), 771 (w), 720 (m), 666 (w),

¹H NMR (300 MHz, CD₃OD): δ (ppm) = 0.88 (t, *J* = 7.0 Hz, 3 H, Me), 1.21-1.35 (m, 12 H, CH₂), 1.59-1.73 (m, 2 H, CH₂CH₂CO), 2.88 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.88 (dd, *J* = 12.6, 2.9 Hz, 1 H, CH₂O), 3.95 (dd, *J* = 12.6, 2.6 Hz, 1 H, CH₂O), 4.66-4.76 (m, 1 H, H5),

¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 14.6 (CH₃), 23.8 (CH₂CH₃), 26.5, 30.4, 30.5, 30.6, 30.7 (CH₂), 30.7 (CH₂CH₂CO), 33.1 (CH₂CO), 61.4 (5-CH₂), 82.5 (CH, C5), 101.2 (C^q, C3), 173.9 (C^q, C2), 195.9 (C^q, C-1'), 196.2 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 284 (5) [M⁺], 266 (5), 253 (10), 235 (10), 185 (30), 172 (100), 155 (25), 142 (20), 97 (20), 84 (35), 69 (30), 55 (30), 57 (40), 41 (50).

HR-MS: Gefunden 284.16240. Berechnet für C₁₅H₂₄O₅ 284.16237.

3-[(5'Z)-Dodecenoyl]-5-hydroxymethyl-(5H)furan-2,4-dion 215b

Nach AAV 13 erhält man aus **214b** (135 mg, 0.24 mmol) das gewünschte Produkt (47 mg, 62 %) als farbloses und viskoses Öl.

IR (ATR), v_{max} (cm⁻¹): 3346 (br), 3255 (br), 3007 (w), 2956 (m), 2922 (m), 2852 (m), 1743 (s), 1660 (s), 1605 (s), 1445 (m), 1393 (w), 1378 (w), 1342 (w), 1291 (w), 1260 (m), 1212 (w), 1158 (w), 1082 (m), 1070 (m), 1045 (s), 1016 (s), 904 (w), 863 (w), 799 (m), 768 (w), 716 (w), 664 (w),

¹H NMR (300 MHz, CD₃OD): δ (ppm) = 0.90 (t, *J* = 6.8 Hz, 3 H, Me), 1.25-1.39 (m, 8 H, CH₂), 1.65-1.79 (m, 2 H, CH₂CH₂CO), 1.98-2.20 (m, 4 H, H₂CC=C), 2.89 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.88 (dd, *J* = 12.6, 2.3 Hz, 1 H, CH₂O), 3.96 (dd, *J* = 12.6, 1.9 Hz, 1 H, CH₂O), 4.65-4.82 (m, 1 H, H5) 5.31-5.48 (m, 2 H, HC=CH),

¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 14.6 (CH₃), 23.8 (CH₂CH₃), 26.4, 27.9, 28.3, 30.1, 30.2 (CH₂), 30.9 (CH₂CH₂CO), 33.1 (CH₂CO), 61.2 (5-CH₂), 85.2 (CH, C5), 101.6 (C^q, C3), 130.0, 132.2 (CH=CH), 173.4 (C^q, C2), 195.6 (C^q, C1'), 195.8 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 310 (5) [M⁺], 292 (10), 274 (5), 185 (10), 172 (65), 154 (25), 142 (15), 67 (30), 55 (35), 41 (100),

HR-MS: Gefunden 310.17800. Berechnet für C₁₇H₂₆O₅ 310.17802.

3-Dodecanoyl-5-hydroxymethyl-(5H)furan-2,4-dion 215c

Nach AAV 13 erhält man aus **214c** (250 mg, 0.45 mmol) das gewünschte Produkt (95 mg, 75 %) als gelbliches Öl.

IR (ATR), v_{max} (cm⁻¹): 3327 (br), 3231 (br), 2914 (s), 2847 (s), 1748 (s), 1661 (s), 1602 (s), 1468 (m), 1390 (w), 1378 (w), 1331 (w), 1310 (w), 1289 (w), 1261 (w), 1223 (w), 1164 (m), 1087 (w), 1071 (m), 1043 (s), 1025 (m), 905 (w), 881 (m), 799 (w), 769 (w), 727 (w), 718 (m), 665 (w),

¹H NMR (300 MHz, CD₃OD): δ (ppm) = 0.88 (t, *J* = 6.9 Hz, 3 H, Me), 1.21-1.35 (m, 16 H, CH₂), 1.60-1.71 (m, 2 H, CH₂CH₂CO), 2.88 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.89 (dd, *J* = 12.7, 1.8 Hz, 1 H, CH₂O), 3.97 (dd, *J* = 12.7, 2.1 Hz, 1 H, CH₂O), 4.68-4.79 (m, 1 H, H5),

MS (El, 70 eV); *m/z* (%): 312 (10) [M⁺], 281 (5), 264 (5), 247 (5), 185 (25), 173 (35), 43 (95), 41 (100),

HR-MS: Gefunden 312.19370. Berechnet für C₁₇H₂₈O₅ 312.19367.

Allgemeine Arbeitsvorschrift zur Synthese der Agglomerine 203 (AAV14)

Zu einer Lösung von 5-Hydroxymethyl-3-acyl-tetronsäure **215** (0.2 mmol) in abs. THF (1 mL) gibt man DMAP (10 mg), Methansulfonylchlorid (2 eq), NEt₃ (4 eq) und rührt bei RT 5 h lang. Anschließend wird die Reaktionsmischung in Eiswasser gegossen und mit Essigester (3 x 20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCl-Lösung extrahiert, mit Na₂SO₄ getrocknet und eingeengt. Das resultierende hellgelbe Rohprodukt wird wieder in THF (12 mL) gelöst und mit 0.1 M wässriger NaOH (3 eq, 6 mL) versetzt. Die Reaktionsmischung wird 3 d lang bei RT

gerührt und anschließend mit 1N HCl auf pH=1 angesäuert. Dann wird mit Essigester extrahiert und die vereinigten organischen Phasen mit gesättiger NaCl-Lösung gewaschen, mit Na₂SO₄ getrocknet, eingeengt und durch Säulenchromatographie an Kieselgel gereinigt.

Agglomerin A 203a

Weißer Feststoff (46 mg, 60 %) nach AAV14 mit **215a** (90 mg, 0.3 mmol), DMAP (15 mg), Methansulfonylchlorid (48 μ L, 0.6 mmol) und NEt₃ (0.16 mL, 1.2 mmol).

Schmp. 112–114 °C (Lit.^[125] 113–115 °C),

 $R_{\rm f} = 0.32$ (CHCl₃/MeOH 10:1),

IR (ATR), v_{max} (cm⁻¹): Wellenzahl (cm⁻¹) =3381 (br), 2961 (w), 2923 (s), 2854 (m), 1724 (s), 1680 (m), 1619 (s), 1558 (w), 1471(s), 1377 (w), 1299 (w), 1259 (m), 1089 (w), 1012 (s), 957 (w), 877 (w), 794 (s), 722 (w),

¹H NMR (300 MHz, CDCl₃/CD₃OD 10:1): δ (ppm) = 0.81 (t, *J* = 6.3 Hz, 3 H, Me), 1.11-1.32 (m, 12 H, CH₂), 1.40-1.61 (m, 2 H, CH₂CCO), 2.75 (m, 2 H, CH₂CO), 4.85 (s, 1 H, =CH₂), 5.14 (s, 1 H, =CH₂),

MS (El, 70 eV); *m/z* (%): 266 (10) [M⁺], 167 (20), 154 (65), 139 (15), 98 (15), 84 (15), 69 (20), 55 (25), 41 (100),

HR-MS: Gefunden 266.15180. Berechnet für C₁₅H₂₂O₄ 266.15181.

Agglomerin B 203b

Weißer Feststoff (30 mg, 69 %) nach AAV14 mit **215b** (47 mg, 0.16 mmol), DMAP (10 mg), Methansulfonylchlorid (26 μ L, 0.32 mmol) und NEt₃ (0.09 mL, 0.64 mmol).

Schmp. 86-88°C (Lit.^[125] 85-88 °C),

 $R_{\rm f} = 0.32$ (CHCl₃/MeOH 10:1),

IR (ATR), v_{max} (cm⁻¹): 3363 (br), 3006 (w), 2961 (w), 2924 (s), 2855 (m), 1733 (s), 1680 (m), 1620 (s), 1558 (w), 1468 (s), 1378 (w), 1299 (w), 1259 (w), 1213 (w), 991 (s), 957 (w), 881 (w), 802 (m), 772 (w), 721 (w),

¹H NMR (300 MHz, CDCl₃/CD₃OD 10:1): δ (ppm) = 0.81 (t, *J* = 6.3 Hz, 3 H, Me), 1.11-1.32 (m, 14 H, CH₂), 1.47-1.62 (m, 2 H, CH₂CCO), 1.85-2.07 (m, 4 H, CH₂C=CCH₂), 2.68-2.82 (m, 2 H, CH₂CO), 4.83 (s, 1 H, =CH₂), 5.14 (s, 1 H, =CH₂), 5.20-5.39 (m, 2H, CH=CH).

Agglomerin C 203c

Weißer Feststoff (45 mg, 76 %) nach AAV14 mit **215c** (62 mg, 0.2 mmol), DMAP (10 mg), Methansulfonylchlorid (31 μ L, 0.4 mmol) und NEt₃ (0.11 mL, 0.8 mmol).

Schmp. 125–127 °C (Lit.^[125] 125–128 °C),

 $R_{\rm f} = 0.34$ (CHCl₃/MeOH 10:1),

IR (ATR), v_{max} (cm⁻¹): 3355 (br), 2959 (w), 2922 (s), 2853 (m), 1723 (s), 1680 (m), 1620 (s), 1467 (s), 1377 (w), 1298 (w), 1261 (w), 1093 (w), 1014 (m), 925 (w), 881 (w), 800 (m), 750 (w), 721 (w),

¹H NMR (300 MHz, CDCl₃/CD₃OD 15:1): δ (ppm) = 0.88 (t, *J* = 6.9 Hz, 3 H, Me), 1.21-1.42 (m, 16 H, CH₂), 1.50-1.63 (m, 2 H, CH₂CCO), 2.78 (t, *J* = 6.9 Hz, 2 H, CH₂CO), 4.83 (s, 1 H, =CH₂), 5.13 (s, 1 H, =CH₂),

MS (El, 70 eV); *m/z* (%): 294 (10) [M⁺], 277 (5), 167 (10), 154 (25), 139 (10), 98 (10), 84 (10), 71 (20), 55 (35), 41 (100),

HR-MS: Gefunden 294.18310. Berechnet für C₁₇H₂₆O₄ 294.18311.

13.13 Synthese von Tenuazonsäure 220

Isoleucinbenzylesterhydrotosylat 217

S-Isoleucin (10 mmol, 1.31 g), Benzylalkohol (50 mmol, 5.17 mL), *p*-Toluolsulfonsäure-Monohydrat (12 mmol, 2.2 g) und Toluol werden am Wasserabscheider unter Rühren 12 h lang unter Rückfluss erhitzt. Nach Entfernen des überschüssigen Benzylalkohols im Hochvakuum fällt man das entstandene Aminosäureestersalz **217** (3.54 g, 90 %) mit kaltem Diethylether als weißen Feststoff aus.

(5S,6S)-4-Benzyloxy-5-s-butyl-1H-pyrrol-2(5H)-on 218

Weißer Feststoff (0.29 g, 1.2 mmol, 60 %) nach AAV5 mit (*S*)-Isoleucinbenzylesterhydrotosylat **217** (784 mg, 2.0 mmol).

 $R_{\rm f}$ = 0.32 (Essignster),

 $[\alpha]_{\rm D}^{23}$ = -5.8° (c = 0.4, MeOH),

IR (ATR), v_{max} (cm⁻¹): 3206 (b), 3066 (w), 2962 (m), 2933(w), 2876 (w), 1682 (s), 1615 (s), 1499 (w), 1455 (w), 1425 (w), 1381 (w), 1340 (m), 1330 (m), 1200 (m), 1074 (s), 972 (m), 913 (w), 805 (s), 742 (m), 696 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.81 (t, *J* = 7.3 Hz, 3 H, CH₃CH₂), 0.95 (d, *J* = 7.1 Hz, 3 H, CH₃CH), 1.11-1.28 (m, 2 H, MeCH₂), 1.79-1.83 (m, 1 H, MeCH), 4.08 (d, *J* = 3.2 Hz, 1 H, H5), 4.92 (d, *J* = 14.9 Hz, 1 H, OCHH), 4.97 (d, *J* = 14.9 Hz, 1 H, OCHH), 5.07 (s, 1 H, H3), 6.60 (br, 1 H, NH), 7.26-7.33 (m, 5 H, ArH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 11.9 (CH₃CH₂), 15.7 (CH₃CH), 23.1 (MeCH₂), 36.4 (MeCH), 62.8 (CH, C5), 73.1 (OCH₂), 95.3 (CH, C3), 127.7, 128.65, 128.7 (CH, ArC), 134.8 (C^q, C-*ipso*), 174.9 (C^q, C2), 176.5 (C^q, C4).

(5S,6S)-5-s-Butyl-pyrrolidine-2,4-dion 219

Unter Luft- und Feuchtigkeitsausschluss löst man **218** (1 mmol, 245 mg) in abs. MeOH (20 mL) und fügt 5 %-Pd auf Aktivkohle (25 mg) hinzu. Das Reaktionsgefäß wird mehrfach evakuiert und mit Wasserstoff befüllt. Nach 2 h Rühren bei RT unter 1 atm H_2 wird die Reaktionsmischung über Celite filtriert und das Filtrat i. Vak. eingeengt. Dabei erhält man die reine Tetramsäure **219** (155 mg, 99 %) als farblosen Feststoff.

Schmp. 113 °C (Lit.^[168] 115 °C),

 $[\alpha]_D^{20} = -38 \ (c = 1.0, \text{ MeOH}) \ [\text{Lit.}^{[168]} -40 \ (c = 1.0, \text{ MeOH})],$

IR (ATR), v_{max} (cm⁻¹): 3243 (b), 2964 (m), 2935(w), 2878 (m), 1766 (m), 1684 (s), 1655 (s), 1614 (s), 1462 (w), 1381 (m), 1303 (m), 1282 (w), 1247 (m), 1124 (w), 1025 (s), 967 (w), 928 (w), 885 (w), 812 (w), 755 (m), 703 (w), 684 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.92 (t, *J* = 7.4 Hz, 3 H, CH₃CH₂), 1.03 (d, *J* = 7.0 Hz, 3 H, CH₃CH), 1.20-1.45 (m, 2 H, MeCH₂), 1.83-2.00 (m, 1 H, CHMe), 3.00 (s, 2 H, H3), 3.93 (d, *J* = 3.9 Hz, 1 H, H5), 7.12 (br s, 1 H, NH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 11.6 (CH₃CH₂), 15.2 (CH₃CH), 24.3 (MeCH₂), 37.8 (MeCH), 41.6 (CH₂, C3), 68.9 (CH, C5), 171.8 (C^q, C2), 207.3 (C^q, C4),

MS (El, 70 eV); *m/z* (%): 155 (15)[M⁺], 139 (12), 112 (10), 99 (100), 57 (25), 43 (5).

Tenuazonsäure-BF₂-Chelat 221

(5S,6S)-5-*sec*-Butylpyrrolidin-2,4-dion **219** (1 mmol, 155 mg) und Acetylchlorid (4.0 mmol, 314 mg) werden unter Argon in 5 ml etherischer Bortrifluorid-Diethyletherat gelöst und 8 h bei 80 °C erwärmt. Die auf RT abgekühlte Reaktionsmischung wird mit gesättigter Ammoniumchloridlösung (10 mL) hydrolysiert und die wässrige Phase unmittelbar danach dreimal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und i. Vak. bis zur Trockene eingeengt. Nach Reinigung des Rohprodukts erhält man das gewünschte Produkt **221** (178 mg, 73 %) als bräunlichen Feststoff.

 $R_{\rm f} = 0.61$ (*n*-Hexan / Essigsäureethylester, 1:1),

IR (ATR), v_{max} (cm⁻¹): 3354 (m), 3225 (m), 2967 (m), 1705 (m), 1645 (s), 1565 (s), 1518 (m), 1463 (m), 1417 (m), 1219 (m), 1183 (m), 1074 (m), 1025 (s), 848 (m), 817 (m), 770 (m)

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.95 (t, *J* = 7.4 Hz, 3 H, CH₃CH₂), 1.02 (d, *J* = 7.0 Hz, 3 H, CH₃CH), 1.20-1.55 (m, 2 H, CH₃CH₂), 1.95-2.15 (m, 1 H, CH₃CH), 2.51 (s, 3 H, CH₃CO), 4.09 (d, *J* = 3.5 Hz, 1 H, H5), 7.60 (br s, 1 H, NH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (*C*H₃CH₂), 15.3 (*C*H₃CH), 21.1 (*C*H₃COBF₂), 26.4 (CH₃CH₂), 36.6 (CH₃CH), 69.3 (CH, C5), 100.4 (C^q, C3), 173.7 (C^q, C2), 186.7 (C^q, C1'), 192.0 (C^q, C4)

MS (El, 70 eV); *m/z* (%): 245 (6) [M]⁺, 189 (80), 169 (8), 57 (18), 43 (100).

Tenuazonsäure 220

Tenuazonsäure-BF₂-Chelat **221** (0.33 mmol, 80 mg) wird in MeOH (10 mL) gelöst und 2 h lang unter Rückfluss erhitzt. Das abgekühlte Reaktionsgemisch wird mit Essigester (20 mL) verdünnt und bis zur Trockene eingeengt. Der Rückstand wird in Essigester (25 mL) aufgenommen und mit H₂O (2 x 10 mL) gewaschen. Die organische Phase wird über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Man erhält Tenuazonsäure **220** (58 mg, 90 %) als beiges, zähes Öl.

 $[\alpha]_D^{20} = -128 \ (c = 1.0, \text{ MeOH}) \ \{\text{Lit.}^{[128]} \ [\alpha]_D^{20} - 132 \ (c = 0.5, \text{CHCl}_3)\},\$

IR (ATR), v_{max} (cm⁻¹): 3228 (br, m), 2963 (m), 2933 (m), 2877 (m), 1696 (m), 1652 (s), 1628 (s), 1452 (m), 1377 (m), 1321 (m), 1290 (m), 1261 (m), 1217 (m),

¹H NMR (300 MHz, CD₃OD): δ (ppm) = 0.90 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂), 1.00 (d, *J* = 7.0 Hz, 3 H, CH₃CH), 1.20-1.45 (m, 2 H, MeCH₂), 1.86 (m, 1 H, MeCH), 2.43 (s, 3 H, CH₃C=), 3.84 (d, *J* = 3.0 Hz, 1 H, H5),

¹³C NMR (75.5 MHz, CD₃OD): δ (ppm) = 12.2 (*C*H₃CH₂), 15.9 (*C*H₃CH), 20.3 (*C*H₃C=), 24.8 (CH₃CH₂), 38.2 (CH₃CH), 67.2 (CH, C5), 103.9 (C^q, C3), 175.2 (C^q, C2), 187.5 (C^q, C1'), 199.2 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 197 (5) [M⁺], 182 (3), 168 (5), 141 (100), 123 (15).

13.14 Synthese der 3-Acylseitenketten für Melophlin B und C

13.14.1 Synthese von 4-Methyldodecansäurechlorid 230^[143]

2-Hexanoyl-4-methylcyclohexanon 227

4-Methylcyclohexanon **226** (25 mL, 0.2 mol), Morpholin (26.1 g, 0.3 mol), *p*-Toluolsulfonsäure (100 mg) und Toluol (100 mL) werden am Wasserabscheider unter Rückfluss 4 h lang erwärmt. Das Lösungsmittel wird i. Vak. destillativ entfernt und der Rückstand am Kugelrohr destilliert (Sdp. 125-126 °C/11 Torr). Dabei erhält man 4-Methyl-1morpholinocyclohex-1-en (34.4 g, 95 %) als farblose Flüssigkeit. Dieses wird in Chloroform (200 mL) gelöst und mit Triethylamin (19.2 g, 190 mmol) versetzt. Bei 40 °C Badtemperatur tropft man eine Lösung von Capronsäurechlorid (23.5 g, 175 mmol) in CHCl₃ (150 mL) zu. Die erhaltene Lösung wird über Nacht bei RT gerührt, und dann mit konz. wässriger HCl (50 mL) und Wasser (25 mL) versetzt. Die Reaktionsmischung wird anschließend 5 h lang unter Rückfluss erwärmt und die organische Phase solange mit Wasser (5 × 30 mL) gewaschen bis sie neutral ist. Die vereinigten wässrigen Phasen werden mit NaOH neutralisiert und mit Chloroform extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und i. Vak. eingeengt. Durch Destillation am Kugelrohr erhält man 2-Hexanoyl-4-methylcyclohexanon **227** (26.7 g, 71 %).

Sdp. 80-85 °C / 1 Torr.

4-Methyl-7-oxo-dodecansäure 228

Unter Rühren gibt man bei 100 °C zu 2-Hexanoyl-4-methylcyclohexanon **227** (21.3 g, 0.1 mol), KOH (16.8 g, 0.3 mol) in H₂O (11 mL), wobei die Temperatur nicht höher als 130 °C ansteigen darf. Nach 5 Minuten verdünnt man mit Wasser (200 mL) und 10 % wässriger HCl. Dabei soll die Lösung schwach alkalisch bleiben. Nach Extraktion mit CHCl₃ (2 × 30 mL) wird auf pH=1 angesäuert und die ausgefallene Ketosäure mit CHCl₃ (3 × 50 mL) extrahiert. Die vereinigten org. Phasen werden über Na₂SO₄ getrocknet und i. Vak. eingeengt. Nach Destillation erhält man das gewünschte Produkt **228** (17 g, 75 %).

Sdp. 115 °C / 1 Torr,

IR (ATR), v_{max} (cm⁻¹): 3100 (br), 2956 (m), 2930 (s), 2872 (m), 2668 (w), 1733 (s), 1706 (s), 1458 (m), 1412 (m), 1379 (w), 1281 (m), 1245 (m), 1215 (w), 1177 (w), 1105 (w), 1068 (w), 938 (w), 848 (w), 804 (w), 731 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.79-0.86 (m, 6 H, CH₃), 1.19-1.53 (m, 11 H, CH, CH₂), 2.29-2.38 (m, 6 H, CH₂), 11.10 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 13.8 (CH₃), 18.9 (CH*C*H₃), 22.3, 23.4, 30.1, 31.1, 31.3, 31.5 (CH₂), 31.8 (CH, C4), 40.1, 42.7 (CH₂), 179.9 (C^q, C1), 211.5 (C^q, C7), MS (EI, 70 eV); *m/z* (%): 228 (10) [M⁺], 182 (12), 172 (80), 157 (65), 115 (20), 43 (100), Anal. Berechnet für C₁₃H₂₄O₃: C, 68.4; H, 10.6. Gefunden: C, 68.1; H, 10.2.

4-Methyldodecansäure 229

4-Methyl-7-oxo-dodecansäure **228** (6.85 g, 30 mmol), Hydrazinhydrat (100 %, 10 mL), KOH (1.68 g, 30 mmol) und Triethanolamin (30 mL) werden 1 h lang bei 150 °C erhitzt. Dann lässt man die Reaktionsmischung auf RT abkühlen, fügt KOH (8.4 g, 150 mmol) und Triethanolamin (30 mL) zu, und erwärmt am Wasserabscheider 4 h lang bei 205 °C. Die abgekühlte Reaktionsmischung verdünnt man mit Eiswasser (200 mL), säuert mit konz. HCl auf pH=1 an und extrahiert mit CHCl₃ (3 × 50 mL). Die vereinigten org. Phasen werden über Na₂SO₄ getrocknet und i. Vak. eingeengt. Nach Destillation des Rohprodukts erhält man 4-Methyldodecansäure **229** (7.4 g, 75 %) als farblose Flüssigkeit.

Sdp. 174 °C / 14 Torr (Lit.^[169] 130-134 °C / 1.5 Torr),

IR (ATR), v_{max} (cm⁻¹): 3091 (br) 2956 (m), 2923 (s), 2854 (m), 2669 (w), 1704 (s), 1457 (m), 1412 (m), 1379 (w), 1284 (m), 1215 (w), 1115 (w), 1035 (m), 934 (m), 721 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.81-0.88 (m, 6 H, CH₃), 1.14-1.44 (m, 16 H, CH₂), 1.58-1.67 (m, 1 H, CHCH₃), 2.28-2.38 (m, 2 H, H2), 11.3 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (CH₃), 19.2 (CH*C*H₃), 22.7, 26.9, 29.3, 29.6, 29.9, 31.6, 31.9 (CH₂), 32.3 (CH, C4), 34.1, 36.6 (CH₂), 180.9 (C^q, C1),

MS (EI, 70 eV); *m/z* (%): 214 (10) [M⁺], 157 (30), 113 (5), 101 (15), 85 (40), 73 (100).

4-Methyldodecansäurechlorid 230

4-Methyldodecansäure **229** (2.14 g, 10 mmol) wird unter Argon mit frisch destilliertem SOCl₂ (1.3 g, 11 mmol) und zwei Tropfen DMF versetzt und über Nacht bei RT gerührt. Das Rohprodukt wird am Kugelrohr destilliert. Hierbei erhält man das Säurechorid **230** (1.89 g, 81%) als farblose Flüssigkeit.

Sdp. 110 °C/0.9 Torr,

IR (ATR), v_{max} (cm⁻¹): 2957 (m), 2924 (s), 2872 (w), 2854 (m), 1795 (s), 1465 (s), 1405 (w), 1379 (w), 1261 (w), 1204 (w), 1129 (w), 1093 (w), 1003 (w), 955 (s), 873 (w), 760 (w), 710 (s), 688 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.84-0.88 (m, 6 H, CH₃), 1.24-1.31 (m, 14 H, CH₂), 1.44-1.56 (m, 2 H, CH₂), 1.69-1.75 (m, 1 H, H4), 2.83-2.89 (m, 2 H, H2),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (CH₃), 19.2 (CH*C*H₃), 22.7, 26.8, 29.3, 29.6, 29.8, 31.8 (CH₂), 31.9 (CH, C4), 36.5, 45.1 (CH₂), 174.1 (C^q, C1),

Anal. Berechnet für C₁₃H₂₅ClO: C, 67.1; H, 10.8. Gefunden: C, 67.4; H, 11.0.

13.14.2 Synthese von 5-Methyldodecansäurechlorid 235

2-Heptanoyl-2-methylcyclopentanon 232

Analog zu 2-Hexanoyl-4-methylcyclohexanon (siehe 13.14.1), erhält man 2 Heptanoylcyclopentanon (10.1 g, 48%) aus dem entsprechenden Enamin aus Cyclopentanon (8.4 g, 0.1 mol), Morpholin (13.1 mL, 150 mmol), *p*-TosOH (20 mg), NEt₃ (12.5 mL, 90 mmol) und Heptanoylchlorid (13.9 mL, 90 mmol). Dieses wird zu einer Lösung von *t*-BuOK (5.6 g, 50 mmol) in *t*-BuOH (100 mL) gegeben und mit MeI (3.7 mL,

60 mmol) bei RT versetzt. Nachdem man 12 h bei RT gerührt hat, wird die Reaktionsmischung filtriert und das Filtrat am Rotationsverdampfer eingeengt. Nach Destillation gewinnt man das Produkt **232** (10.1 g, 48 mmol) als farbloses Öl.

Sdp. 105 °C / 1 Torr.

5-Methyl-6-oxo-dodecansäure 233

Analog zu 4-Methyl-7-oxodecansäure (siehe 13.14.1); 5-Methyl-6-oxo-dodecansäure (7.11 g, 65%) erhält man als farbloses Öl durch basische Spaltung von **232** (10.1 g, 48 mmol).

Sdp. 115 °C / 1 Torr,

IR (ATR), v_{max} (cm⁻¹): 3100 (br), 2956 (m), 2929 (s), 2859 (m), 2663 (w), 1738 (m), 1704 (s), 1459 (m), 1410 (m), 1377 (w), 1281 (m), 1242 (m), 1213 (w), 1169 (w), 1118 (w), 1068 (w), 992 (w), 927 (w), 755 (s),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.81 (t, 3 H, *J* = 5.8 Hz, CH₃), 1.02 (d, 3 H, *J* = 7.0 Hz, CHC*H*₃), 1.21-1.28 (m, 6 H, CH₂), 1.48-1.60 (m, 6 H, CH₂), 2.26-2.48 (m, 5 H, CH, CH₂), 11.31 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 13.8 (CH₃), 16.3 (CH*C*H₃), 22.3, 22.4, 23.7, 28.8, 31.7, 32.0, 33.8, 40.9 (CH₂), 45.8 (CH, C5), 180.0 (C^q, C1), 214.5 (C^q, C6),

MS (EI, 70 eV); *m/z* (%): 228 (10) [M⁺], 158 (10), 113 (60), 98 (15), 85 (25), 43 (100),

Anal. Berechnet für C₁₃H₂₄O₃ benötigt C, 68.4; H, 10.6. Gefunden: C, 68.2; H, 10.3.

5-Methyldodecansäure 234

Man erhält 5-Methyldodecansäure (7.4 g, 75%), wie für 4-Methyldodecansäure beschrieben (siehe 13.14.1), aus 5-Methyl-6-oxo-dodecansäure **233** (6.84 g, 30 mmol) als farbloses Öl.

Sdp. 174 °C / 14 Torr,

IR (ATR), v_{max} (cm⁻¹): 3100 (br), 2956 (m), 2923 (s), 2854 (m), 2669 (w), 1704 (s), 1461 (m), 1412 (m), 1378 (w), 1285 (m), 1242 (m), 1210 (w), 1115 (w), 1035 (m), 933 (m), 722 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.82-0.88 (m, 6 H, CH₃), 1.14-1.35 (m, 16 H, CH₂), 1.58-1.63 (m, 1 H, H5), 2.27-2.33 (m, 2 H, H2), 11.7 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (CH₃), 19.5 (5-CH₃), 22.3, 22.7, 27.0, 29.3, 29.9, 31.9 (CH₂), 32.5 (CH, C5), 34.4, 36.4, 36.8 (CH₂), 180.6 (C^q, C1),

MS (EI, 70 eV); *m/z* (%): 214 (10) [M⁺], 171 (25), 152 (10), 115 (50), 97 (25), 88 (20), 69 (50), 57 (50), 43 (80), 41 (100),

Anal. Berechnet für C₁₃H₂₆O₂: C, 72.8; H, 14.9. Gefunden: C, 72.5; H, 14.7.

5-Methyldodecanäurechlorid 235

5-Methyldodecansäure **234** (2.14 g, 10 mmol) wird unter Argon mit frisch destilliertem $SOCl_2$ (1.3 g, 11 mmol) und zwei Tropfen DMF versetzt und über Nacht bei RT gerührt. Das Rohprodukt wird am Kugelrohr destilliert. Hierbei erhält man das Säurechorid **235** (1.84 g, 80 %) als farblose Flüssigkeit.

Sdp. 110 °C/0.9 Torr,

IR (ATR), v_{max} (cm⁻¹): 2956 (m), 2924 (s), 2872 (w), 2854 (m), 1795 (s), 1466 (s), 1403 (w), 1379 (w), 1261 (w), 1206 (w), 1132 (w), 1053 (w), 1003 (w), 954 (s), 873 (w), 760 (w), 710 (s), 688 (m)

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.83-0.88 (m, 6 H, CH₃), 1.10-1.19 (m, 15 H, 7 × CH₂, H5), 1.24-1.35 (m, 2 H, CH₂), 2.82-2.88 (m, 2 H, H2),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (Me), 19.4 (CHCH₃), 22.65, 22.7, 27.0, 29.3, 29.9, 31.9 (CH₂), 32.4 (CH, C5), 35.7, 36.7, 47.4 (CH₂), 173.8 (C^q, C1), Anal. Berechnet für C₁₃H₂₅ClO: C, 67.1; H, 10.8. Gefunden: C, 67.3; H, 11.1.

13.15 Synthese der Tetramsäureeinheiten für Melophlin A-C, G

Sarcosin-t-butylester 238

KI (1.66 g, 10 mmol) wird in 30 mL wässriger MeNH₂-Lösung gelöst und langsam 2-Chloressigsäure-*t*-butylester **236** (1.59 mL, 10 mmol) zugetropft. Nachdem die Reaktionsmischung über Nacht bei Raumtemperatur gerührt wurde, filtriert man die Mischung über Celite. Anschließend extrahiert man das Filtrat mit CHCl₃ (3 x 100 mL). Die vereinigten org. Phasen werden über Na₂SO₄ getrocknet und i. Vak. eingeengt. Das erhaltene Rohprodukt **238** (1.28 g, 88 %) wird ohne weitere Reinigung verwendet.

2-Chlorpropionsäure-t-butylester 240

Unter Feuchtigkeitsausschluß werden 2-Chlorpropionsäurechlorid **239** (25.4 mL, 0.25 mol) in THF (100 mL) gelöst. Die Lösung wird auf 0 °C abgekühlt und Kalium-*t*-butylat (28 g, 0.25 mol) in abs. THF (200 ml) zugetropft. Nach 3 h entfernt man das Eisbad und rührt weitere 6 h bei RT. Dann filtriert man den Niederschlag ab und engt das Filtrat unter reduziertem Druck ein. Der Rückstand wird destillativ gereinigt. Dabei erhält man das Produkt **240** (30.0 g, 73 %) als farbloses Öl.

IR (ATR), v_{max} (cm⁻¹): 2982 (w), 2936 (w), 1737 (s), 1480 (w), 1449 (w), 1369 (m), 1344 (w), 1293 (w), 1250 (m), 1203 (w), 1148 (s), 1074 (m), 1062 (m), 991 (m), 899 (w), 845 (m), 768 (w), 754 (w), 693 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.43 (s, 9 H, C(CH₃)₃), 1.60 (d, *J* = 6.8 Hz, 3 H, CHCH₃), 4.23 (q, *J* = 6.8 Hz, 1 H, CHCH₃),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 21.5 (CHCH₃), 27.8 (C(CH₃)₃), 53.7 (CHCH₃), 82.4 (C^q, C(CH₃)₃), 169.2 (C^q, CO).

(R,S)-N-Methylalanin-t-butylester 241

KI (1.66 g, 10 mmol) wird in 30 mL wässriger MeNH₂-Lösung gelöst und langsam 2-Chlorpropionsäure-*t*-butylester **240** (1.64 mL, 10 mmol) zugetropft. Nachdem die Reaktionsmischung über Nacht bei Raumtemperatur gerührt wurde, filtriert man die Mischung über Celite. Anschließend extrahiert man das Filtrat mit CHCl₃ (3 x 100 mL). Die vereinigten org. Phasen werden über Na₂SO₄ getrocknet und i. Vak. eingeengt. Das Rohprodukt wird destillativ gereinigt. **241** (1.3 g, 84 %) verbleibt als farbloses Öl.

IR (ATR), v_{max} (cm⁻¹): 3335 (w), 2977 (m), 2935 (w), 2798 (w), 1726 (s), 1480 (w), 1455 (w), 1392 (w), 1367 (s), 1335 (w), 1300 (w), 1254 (m), 1206 (m), 1147 (s), 1073 (m), 1057 (m), 1014 (w), 909 (w), 873 (w), 848 (m), 757 (m), 675 (w),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 1.09 (d, *J* = 7.0 Hz, 3 H, CHC*H*₃), 1.32 (s, 9 H, C(CH₃)₃), 1.55 (br s, 1 H, NH), 2.22 (s, 3 H, NCH₃), 2.96 (q, *J* = 7.0 Hz, 1 H, CHCH₃),

¹³C-NMR (75,5 MHz, CDCl₃): δ (ppm) = 18.5 (CHCH₃), 27.8 (C(CH₃)₃), 34.1 (NCH₃), 58.7 (CHCH₃), 80.5 (C^q, C(CH₃)₃), 174.7 (C^q, CO).

4-t-Butoxy-1-methylpyrrolin-2(5H)-on 242

Polymer-gebundenes Ketenylidentriphenylphosphoran 100 (3.32 g, 4.0 mmol) suspendiert

man unter Luft- und Feuchtigkeitsausschluss in Toluol (20 mL) und versetzt mit Sarcosin*t*-butylester **238** (435 mg, 3.0 mmol). Das Reaktionsgemisch wird in einem druckresistenten Reaktionsgefäß in der Mikrowelle unter Schütteln innerhalb von drei Minuten auf 120 °C erhitzt und weitere 30 Minuten bei dieser Temperatur bestrahlt. Das Harz wird filtriert und je zweimal mit 15 mL THF, Toluol, Benzol und DCM gewaschen. Die vereinigten Filtrate werden i. Vak. eingeengt und das Rohprodukt mittels Säulenchromatographie gereinigt. Man erhält das gewünschte Produkt **242** als farbloses Öl (458 mg, 92 %).

 $R_{\rm f}$ =0.26 (Essigester),

IR (ATR), v_{max} (cm⁻¹): 2979 (w), 2936 (w), 1680 (s), 1604 (s), 1457 (m), 1421 (w), 1395 (m), 1371 (m), 1344 (s), 1257 (m), 1212 (m), 1168 (s), 1137 (m), 1019 (m), 936 (m), 860 (s), 803 (s), 750 (m), 686 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.37 (s, 9 H, CMe₃), 2.86 (s, 3 H, NMe), 3.67 (s, 2 H, CH₂), 4.98 (s, 1 H, H3),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 27.2 [C(*C*H₃)₃], 28.1 (NMe), 54.0 (CH, C5), 81.4 (C^q, *C*Me₃), 96.4 (CH, C3), 167.5 (C^q, C2), 172.9 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 169 (10) [M⁺], 154 (10), 113 (100),

Berechnet für C₉H₁₅NO₂: C, 63.9; H, 8.9; N, 8.3%. Gefunden: C, 64.1; H, 8.8; N, 8.5.

(5S,5R)-4-t-Butoxy-1,5-dimethylpyrrolin-2(5H)-on rac-243

Polymer-gebundenes Ketenylidentriphenylphosphoran **100** (3.32 g, 4.0 mmol) suspendiert man unter Luft- und Feuchtigkeitsausschluss in Toluol (20 mL) und versetzt mit (R,S)-N-Methylalanin-t-butylester **241** (477 mg, 3.0 mmol). Das Reaktionsgemisch wird in einem druckresistenten Reaktionsgefäß in der Mikrowelle unter Schütteln innerhalb von drei Minuten auf 120 °C erhitzt und weitere 30 Minuten bei dieser Temperatur bestrahlt. Das Harz wird filtriert und je zweimal mit 15 mL THF, Toluol, Benzol und DCM gewaschen.

Die vereinigten Filtrate werden i. Vak. eingeengt und das Rohprodukt mittels Säulenchromatographie gereinigt. Man erhält das gewünschte Produkt *rac*-243 als farbloses Öl (505 mg, 92 %).

Experimentelle Daten siehe (5S)-243.

(-)-(5*S*)-4-*t*-Butoxy-1,5-dimethylpyrrolin-2(5*H*)-on (5*S*)-243

Polymer-gebundenes Ketenylidentriphenylphosphoran **100** (1.66 g, 2.0 mmol) suspendiert man unter Luft- und Feuchtigkeitsausschluss in THF (10 mL) und versetzt mit (*S*)-*N*-Methylalanin-*t*-butylesterhydrochlorid **246** (196 mg, 1.0 mmol). Das Reaktionsgemisch wird in einem druckresistenten Reaktionsgefäß in der Mirkowelle unter Schütteln innerhalb von drei Minuten auf 90°C erhitzt und weitere 30 Minuten bei dieser Temperatur bestrahlt. Das Harz wird filtriert und mit jeweils 2 x 10 mL THF, Toluol, Benzol und DCM gewaschen. Die vereinigten Filtrate werden am Rotationsverdampfer eingeengt. Nach Reinigung mittels präparativer Dünnschichtchromatographie erhält man ein farbloses Öl (177 mg, 96 %).

 $R_{\rm f} = 0.31$ (Essigester),

 $[\alpha]_D^{25} = -1.0 \ (c=0.5, \text{CHCl}_3),$

IR (ATR), v_{max} (cm⁻¹): 3348 (w), 2978 (w), 2934 (w), 2875 (w), 1656 (s), 1606 (s), 1474 (m), 1435 (m), 1396 (m), 1371 (s), 1340 (s), 1258 (m), 1213 (m), 1168 (s), 1072 (m), 884 (m), 838 (m), 806 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.24 (d, J = 6.8 Hz, 3 H, CHCH₃), 1.40 (s, 9 H, CMe₃), 2.85 (s, 3 H, NMe), 3.71 (q, J = 6.8 Hz, 1 H, H5), 5.00 (s, 1 H, H3),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 15.7 (CHCH₃), 25.8 (NCH₃), 27.1 [C(CH₃)₃], 60.0 (CH, C5), 81.0 (C^q, CMe₃), 94.9 (CH, C3), 171.5 (C^q, C4), 171.8 (C^q, C2),

MS (EI, 70 eV); *m/z* (%): 183 (15) [M⁺], 168 (5), 127 (90), 112 (80), 57 (100),
Anal. Berechnet für C₁₀H₁₇NO₂: C, 65.5; H, 9.4; N, 7.6%. Gefunden: C, 65.4; H, 9.4; N, 7.8.

Allgemeine Arbeitsvorschrit zur Synthese von Tetramsäuren aus t-Butyltetramaten (AAV15)

4-*t*-Butoxytetramate (2.0 mmol) werden in 10 ml trockener TFA gelöst und 3 h bei RT gerührt. Man gibt etwa 250 ml *n*-Hexan zur Lösung und engt am Rotationsverdampfer ein. Der Rückstand wird an einer Ölpumpe getrocknet und ohne weitere Reinigung verwendet.

1-Methylpyrrolidin-2,4-dion 244

Gewonnen als gelber Feststoff (226 mg, 99%) nach AAV15 aus 4-*t*-Butoxy-1methylpyrrolin-2-on **242** (340 mg, 2 mmol).

 $R_{\rm f}$ =0.20 (Essigester),

Schmp. 49-51 °C (Lit.^[170] 49-50 °C; Lit.^[171] 48-51 °C),

IR (ATR), v_{max} (cm⁻¹): 2927 (w), 2710 (w), 2553 (w), 1779 (s), 1636 (s), 1615 (s), 1491 (w), 1449 (m), 1404 (m), 1372 (w), 1323 (w), 1268 (s), 1145 (s), 1000 (m), 810 (m), 799 (m), 781 (m), 701 (s), 670 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.07 (s, 3 H, NMe), 3.19 (s, 2 H, H3), 3.97 (s, 2 H, H5),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 29.8 (NMe), 41.2 (CH₂, C3), 59.7 (CH, C5), 171.8 (C^q, C2), 201.7 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 113 (70) [M⁺], 85 (95), 42 (100).

(5S,5R)-1,5-Dimethylpyrrolidin-2,4-on rac-245

Gewonnen als organges Öl (251 mg, 99 %) nach AAV15 aus (5*S*,5*R*)-4-*t*-Butoxy-1,5dimethylpyrrolin-2-on *rac*-243 (366 mg, 2 mmol).

Experimentelle Daten siehe (5S)-245.

(-)-(5*S*)-1,5-Dimethylpyrrolidin-2,4-on (5*S*)-245

Gewonnen als organges Öl (251 mg, 99 %) nach AAV15 aus (-)-(5*S*)-4-*t*-Butoxy-1,5dimethylpyrrolin-2-on (5*S*)-**243** (366 mg, 2 mmol).

 $R_{\rm f}$ =0.71 (Essigester / Ethanol, 1:1),

 $[\alpha]_D^{25} = -8.2 \ (c=0.5, \text{CHCl}_3),$

IR (ATR), v_{max} (cm⁻¹): 2987 (w), 2940 (w), 2707 (w), 2543 (w), 1776 (s), 1632 (s), 1615 (s), 1490 (w), 1446 (m), 1407 (m), 1374 (m), 1270 (m), 1205 (s), 1156 (s), 1003 (m), 809 (m), 702 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.37 (d, *J* = 7.0 Hz, 3 H, CH₃), 2.99 (s, 3 H, NCH₃), 3.11 (s, 2 H, CH₂), 3.93 (q, *J* = 7.0 Hz, 1 H, H5),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.9 (CH₃), 27.5 (NCH₃), 40.2 (CH₂, C3), 64.7 (CH, C5), 170.1 (C^q, C2), 205.4 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 127 (10) [M⁺], 112 (10), 99 (10), 56 (30), 42 (100),

Anal. Berechnet für C₆H₉NO₂: C, 56.7; H, 7.1; N, 11.0. Gefunden: C, 56.4; H, 7.0; N, 11.2.

13.16 3-Acylierung zur Synthese von Melophlin A-C, G

Allgemeine Arbeitsvorschrift zur 4-O-Acylierung von Tetramsäuren (AAV16)^[146]

Zu einer gerührten Lösung der jeweiligen Tetramsäure (1.0 mmol) in trockenem CH_2Cl_2 (6 mL) gibt man bei 0 °C DMAP (24 mg, 0.2 mmol), die entsprechende Carbonsäure (1.1 mmol) und DCC (250 mg, 1.2 mmol). Nach 10 min bei 0 °C entfernt man das Eisbad und rührt 5 h lang bei RT. Danach wird die Reaktionsmischung, zur Entfernung des ausgefallen Dicyclohexylharnstoffs, über Celite filtriert und das Filtrat i. Vak. eingeengt. Der Rückstand wird mittels Säulenchromatographie an Kieselgel gereinigt.

1-Methyl-4-palmitoyl-pyrrolin-2-on 249

Synthetisiert nach AAV 16 mit Palmitinsäure (0.28 g, 1.1 mmol) und 1-Methylpyrrolidin-2,4-dion **244** (0.11 g, 1 mmol). Man erhält das gewünschte Produkt **249** (260 mg, 75 %) als weißen Feststoff.

 $R_{\rm f} = 0.20$ (Hexan/Essigester, 1:1),

Schmp. 77-78 °C,

IR (ATR), v_{max} (cm⁻¹): 2917 (s), 2850 (s), 1772 (m), 1678 (s), 1623 (s), 1486 (w), 1465(m), 1409 (w), 1352 (s), 1307 (w), 1178 (s), 1111 (s), 1093 (s), 895 (s), 838 (s), 723 (m), 673 (s),

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 0.86 (t, *J* = 6.8 Hz, 3 H, CH₃), 1.15-1.38 (m, 24 H, CH₂), 1.61-1.70 (m, 2 H, COCH₂CH₂), 2.47 (t, *J* = 7.3 Hz, 2 H, COCH₂), 2.98 (s, 3 H, NCH₃), 4.06 (s, 2 H, H5), 5.93 (s, 1 H, H3),

¹³C-NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (CH₃), 22.7 (CH₂CH₃), 24.4 (CH₂), 28.5 (NCH₃), 28.9, 29.1, 29.2, 29.3, 29.35, 29.4, 29.5, 29.55, 29.6, 29.65, 31.9 (CH₂), 34.2

(CH₂CO), 52.9 (CH₂, C5), 107.8 (CH, C3), 161.4 (C^q, C4), 169.4 (C^q, C1'), 170.8 (C^q, C2),

MS (El, 70 eV); *m/z* (%): 351 (7) [M⁺], 239 (13), 113 (45), 85 (95), 56 (100), 43 (60)

1,5-Dimethyl-4-(5'-methyldodecanoyl)pyrrolin-2-on 250

Weißer Feststoff (194 mg, 60 %) nach AAV16 aus 5-Methyldodecansäure **234** (234 mg, 1.1 mmol) und 1,5-Dimethylpyrrolidin-2,4-dion *rac*-**245** (127 mg, 1 mmol).

 $R_{\rm f} = 0.25$ (Essigester/ *n*-Hexan, 1:1),

Schmp. 56 °C,

IR (ATR), v_{max} (cm⁻¹): 2954 (s), 2925 (s), 2852 (m), 1779 (m), 1689 (s), 1623 (s), 1574 (w), 1459 (w), 1424(w), 1393 (w), 1376 (w), 1337 (m), 1167 (s), 1126 (w), 1096 (s), 1086 (s), 958 (w), 892 (w), 842 (m), 723 (w), 672 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.81-0.88 (m, 6 H, CH₃), 1.07-1.32 (m, 15 H, CH₂, H5'), 1.33 (d, *J* = 6.8 Hz, 3 H, CHC*H*₃), 1.55-1.69 (m, 2 H, H3'), 2.47 (t, *J* = 7.3 Hz, 2 H, H2'), 2.91 (s, 3 H, NMe), 4.00 (q, *J* = 6.8 Hz, 1 H, H5), 6.01 (s, 1 H, H3),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1, 15.5, 19.6 (CH₃), 22.2, 22.7, 27.1 (CH₂), 28.5 (NCH₃), 29.4, 30.0, 32.0 (CH₂), 32.6 (CH, C5'), 34.7, 36.3, 36.9 (CH₂), 58.2 (CH, C5), 107.1 (CH, C3), 165.2 (C^q, C4), 169.4 (C^q, C1'), 170.3 (C^q, C2),

Anal. Berechnet für C₁₉H₃₃NO₃: C, 70.55; H, 10.3; N, 4.3. Gefunden: C, 70.8; H, 10.4; N, 4.5.

Allgemeine Arbeitsvorschrift zur Synthese von Melophlinen aus 4-O-Acyltetramaten (AAV17)

4-*O*-Acyltetramate (1.0 mmol) werden in CH_2Cl_2 (5 mL) und NEt₃ (10 mL) gelöst und für 24 h bei RT gerührt. Das Lösungsmittel wird unter reduziertem Druck entfernt. Der Rückstand wird in CHCl₃ (40 mL) aufgenommen und mit zweimal 15 mL 10% wässriger HCl und gesättigter NaCl-Lösung extrahiert. Die organische Phase wird über Na₂SO₄ getrocknet und i. Vak. eingeengt. Nach Reinigung über Säulenchromatographie an Kieselgel erhält man gelbe Öle.

Allgemeine Arbeitsvorschrift zur Synthese von Melophlin-BF₂-Komplexen 251 (AAV18)

Methode $A^{[141]}$: Zu einer gerührten Lösung der Tetramsäure (1.0 mmol) in etherischem Bortrifluorid-Diethyletherat (5 mL) gibt man das entsprechende Carbonsäurechlorid (2.0 mmol) und erwärmt 4 h lang bei 80 °C. Nach dieser Zeit wird nochmals die gleiche Menge Carbonsäurechlorid zugegeben und für weitere 4 Stunden bei 80°C gerührt. Die auf RT abgekühlte Reaktionsmischung wird mit gesättigter Ammoniumchloridlösung (22 mL) versetzt und die wässrige Phase sofort mit Essigsäureethylester (3 × 20 ml) extrahiert. Die vereinigten Extrakte werden über Na₂SO₄ getrocknet und i. Vak. bis zur Trockene eingeengt. Das Rohprodukt wird säulenchromatographisch an Kieselgel gereinigt.

Methode B: Zu einer geschüttelten Lösung der Tetramsäure (1.0 mmol) in etherischem Bortrifluorid-Diethyletherat (5 mL) gibt man das entsprechende Carbonsäurechlorid (2.0 mmol) und erwärmt mittels Mikrowellen innerhalb von 2 Min auf 100 °C und hält diese Temperatur weitere 45 min. Die weitere Aufarbeitung erfolgt wie in Methode A beschrieben. Die folgenden Ausbeuten beziehen sich stets auf Methode B.

3-[1'-(Difluoroboryloxy)-palmitoyliden]-1-methyl-pyrrolidin-2,4-dion 251a

Weißer Feststoff (208 mg, 52 %) nach AAV18 aus 1-Methylpyrrolidin-2,4-dion **244** (115 mg, 1 mmol) und Palmitinsäure (0.52 g, 2 mmol).

 $R_{\rm f} = 0.36 \, ({\rm CHCl}_3),$

Schmp. 120-122 °C,

IR (ATR), v_{max} (cm⁻¹): 2954 (w), 2917 (m), 2872 (s), 2850 (m), 1733(m), 1655 (s), 1570 (s), 1538 (s), 1468 (w), 1456 (w), 1418 (w), 1372 (w), 1156 (m), 1114 (w), 1073 (w), 1018 (s), 871 (w), 833 (w), 720 (w), 664 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.84 (t, *J* = 6.7 Hz, 3 H, CH₃), 1.15-1.40 (m, 24 H, CH₂), 1.57-1.65 (m, 2 H, CH₂CH₂CO), 2.81 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 3.19 (s, 3 H, NCH₃), 3.93 (s, 2 H, H5),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.0 (CH₃), 22.6, 25.6, 29.0, 29.1 29.2, 29.3, 29.4, 29.5, 29.6 (CH₂), 30.2 (NCH₃), 31.8, 33.8 (CH₂), 59.1 (CH₂, C5), 99.8 (C^q, C3), 171.8 (C^q, C2), 186.9 (C^q, C1'), 189.0 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 399 (16) [M⁺], 379 (21), 216 (44), 203 (100), 188 (17), 43 (16),

Anal. Berechnet für C₂₁H₃₆BF₂NO₃: C, 63.2; H, 9.1; N, 3.5. Gefunden: C, 62.9; H, 8.8; N, 3.6.

(5*S*)-3-[1'-(Difluoroboryloxy)-4'-methyldodecyliden]-1,5-dimethyl-pyrrolidin-2,4-dion 251b

Oranges Öl (267 mg, 72 %) nach AAV18 aus (5*S*)-1,5-Dimethylpyrrolidin-2,4-dion (5*S*)-245 (127 mg) und 4-Methyldodecansäurechlorid 230 (467 mg, 2.0 mmol).

$$R_{\rm f} = 0.27 \; ({\rm CHCl}_3),$$

IR (ATR), v_{max} (cm⁻¹): 2955 (m), 2924 (m), 2856 (m), 1721 (m), 1643 (s), 1569 (s), 1533 (s), 1178 (m), 1058 (m), 1025 (s), 933 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.83 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂), 0.86 (d, *J* = 6.3 Hz, 3 H, 4'-CH₃), 1.10-1.40 (m, 14 H, CH₂), 1.47 (d, *J* = 7.1 Hz, 3 H, CHCH₃) 1.41-

1.49 (m, 2 H, CH₂), 1.57-1.68 (m, 1 H, H4'), 2.81 (t, *J* = 7.6 Hz, 2 H, H2'), 3.12 (s, 3 H, NCH₃), 3.88 (q, *J* = 7.1 Hz, 1 H, H5),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 13.9 (CH₂*C*H₃), 14.1 (CH*C*H₃), 19.2 (4'-CH₃), 22.6, 26.8 (CH₂), 27.9 (NCH₃), 29.2, 29.5, 29.8, 31.7, 31.8, 32.5 (CH₂), 32.6 (CH, C4'), 36.4 (CH₂), 64.9 (CH, C5), 98.4 (C^q, C3), 170.8 (C^q, C2), 189.7 (C^q, C1'), 190.4 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 371 (16) [M⁺], 351 (3) [M-HF⁺], 230 (48), 217 (100), 202 (19), 106 (12), 55 (16), 43 (29),

Anal. Berechnet für C₁₉H₃₂BF₂NO₃: C, 61.5; H, 8.7; N, 3.8. Gefunden: C, 61.3; H, 8.5; N, 3.9.

3-[1'-(Difluoroboryloxy)-5'-methyldodecyliden]-1,5-dimethyl-pyrrolidin-2,4-dion 251c

Diastereomer α : Oranges Öl (156 mg, 42 %) nach AAV18 aus (5*R*,5*S*)-1,5-Dimethylpyrrolidin-2,4-dion *rac*-245 (127 mg) und 5-Methyldodecansäurechlorid 235 (467 mg, 2.0 mmol).

$$R_{\rm f} = 0.31 \; (\rm CHCl_3),$$

IR (ATR), v_{max} (cm⁻¹): 2954 (m), 2924 (m), 2854 (m), 1721 (m), 1643 (s), 1569 (s), 1532 (s), 1457 (m), 1377 (m), 1235 (m), 1179 (m), 1058 (m), 1025 (s), 934 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.78-0.86 (m, 6 H, 5'-CH₃, CH₂CH₃), 1.10-1.40 (m, 15 H, H5', CH₂), 1.41 (d, *J* = 7.1 Hz, 3 H, CHCH₃), 1.57-1.65 (m, 2 H, H3'), 2.78 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 3.12 (s, 3 H, NCH₃), 3.88 (q, *J* = 7.1 Hz, 1 H, H5),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 13.9 (CH₂*C*H₃), 14.0 (CH*C*H₃), 19.3 (5'-CH₃), 22.6 (C11'), 23.2 (C3'), 26.8 (C7'), 27.8 (NCH₃), 29.2 (C8'), 29.8 (C10'), 31.8 (C9'), 32.4 (CH, C5'), 34.0 (C2'), 36.3 (C4'), 36.7 (C6'), 64.9 (CH, C5), 98.5 (C^q, C3), 170.8 (C^q, C2), 189.2 (C^q, C1'), 190.5 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 371 (17) [M⁺], 351 (17) [M-HF⁺], 244 (7), 230 (28), 217 (100), 202 (18),

Anal. Berechnet für C₁₉H₃₂BF₂NO₃: C, 61.5; H, 8.7; N, 3.8. Gefunden: C, 61.2; H, 8.6; N, 4.1.

Diastereomer β : Oranges Öl (17 mg, 5 %)

 $R_{\rm f} = 0.26 \, (\rm CHCl_3),$

IR (ATR), v_{max} (cm⁻¹): 2954 (m), 2924 (m), 2854 (m), 1721 (m), 1643 (s), 1569 (s), 1532 (s), 1457 (m), 1377 (m), 1235 (m), 1179 (m), 1058 (m), 1025 (s), 934 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.81-0.89 (m, 6 H, 5'-CH₃, CH₂CH₃), 1.10-1.40 (m, 15 H, H5', CH₂), 1.44 (d, *J* = 7.1 Hz, 3 H, CHCH₃), 1.60-1.71 (m, 2 H, H3'), 2.85 (t, *J* = 7.6 Hz, 2 H, H2'), 3.14 (s, 3 H, NCH₃), 3.88 (q, *J* = 7.1 Hz, 1 H, H5).

3-[1'-(Difluoroboryloxy)-myristoyliden]-1-methyl-pyrrolidin-2,4-dion 251g

Gelber Feststoff (207 mg, 56 %) nach AAV18 aus 1-Methylpyrrolidin-2,4-dion **244** (115 mg, 1 mmol) und Myristinsäurechorid (0.49 g, 2 mmol).

 $R_{\rm f} = 0.35$ (*n*-Hexan/Essigester, 1:1),

Schmp. 114-116 °C,

IR (ATR), v_{max} (cm⁻¹): 2954 (w), 2919 (m), 2850 (m), 1733 (m), 1656 (s), 1569 (s), 1538 (s), 1156 (m), 1018 (s),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.82 (t, J = 6.9 Hz, 3 H, CH₃), 1.15-1.33 (m, 20

H, CH₂), 1.57-1.65 (m, 2 H, H3'), 2.79 (t, *J* = 7.6 Hz, 2 H, H2'), 3.16 (s, 3 H, NCH₃), 3.91 (s, 2 H, H5),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.0 (CH₃), 22.5, 25.5, 28.9, 29.0, 29.1 29.2, 29.3, 29.4, 29.5, 29.6 (CH₂), 30.1 (NCH₃), 31.8, 33.8 (CH₂), 58.9 (CH₂, C5), 99.8 (C^q, C3), 171.7 (C^q, C2), 186.9 (C^q, C1'), 189.0 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 371 (29) [M⁺], 351 (20) [M-HF⁺], 216 (50), 203 (100), 188 (15),

Anal. Berechnet für C₁₉H₃₂BF₂NO₃ C, 61.5; H, 8.7; N, 3.8. Gefunden: C, 61.3; H, 8.7; N, 4.0.

Allgemeine Arbeitsvorschrift zur Synthese von Melophlinen 222 aus BF₂-Komplexen 251 (AAV19)^[141]

Eine gerührte Lösung des BF₂-Komplex **251** (0.5 mmol) in MeOH (10 mL) wird für 2 h lang unter Rückfluss erhitzt. Das abgekühlte Reaktionsgemisch wird mit Essigester (10 mL) verdünnt und bis zur Trockene eingedampft. Der Rückstand wird in Essigester (25 mL) aufgenommen, mit Wasser (2 x 10 mL) gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Eine weitere Reinigung war nicht erforderlich.

Melophlin A (222a)

Gelbes Öl (158 mg, 90%) nach AAV19 aus 3-[1'-(Difluoroboryloxy)-palmitoyliden]-1methyl-pyrrolidin-2,4-dion **251a** (200 mg).

 $R_{\rm f} = 0.35 \, (\rm CH_2 Cl_2 / MeOH, \, 19:1),$

IR (ATR), v_{max} (cm⁻¹): 2915 (s), 2850 (s), 1717 (m), 1617 (s), 1470 (m), 1412 (w), 1398 (w), 1250 (m), 1170 (w), 1111 (w), 1093 (s), 992 (w), 948 (m), 893 (w), 769 (w), 745 (w), 720 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.84 (t, *J* = 6.7 Hz, 3 H, CH₃), 1.18-1.39 (m, 24 H, CH₂), 1.54-1.66 (m, 2 H, H3'), 2.77 (t, *J* = 7.4 Hz, 2 H, H2'), 2.98 (s, 3 H, NCH₃), 3.68 (s, 2 H, H5), 11.94 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.1 (CH₃), 22.6 (C15'), 25.9 (C3'), 28.3 (NCH₃), 29.1, 29.2, 29.3, 29.4, 29.5, 29.6 (CH₂), 32.6 (CH₂CO), 57.6 (CH₂, C5), 101.6 (C^q, C3), 173.5 (C^q, C2), 187.5 (C^q, C1'), 191.2 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 351 (10) [M⁺], 182 (5), 168 (30), 155 (100), 140 (40),

HR-MS: 351.2773 berechnet für C₂₁H₃₇NO₃. Gefunden: 351.2770.

Melophlin B (222b)

Gelbes Öl (147 mg, 91%) nach AAV19 aus (5S)-3-[1'-(Difluoroboryloxy)-4'- methyldodecyliden]-1,5-dimethyl-pyrrolidin-2,4-dion **251b** (185 mg).

 $R_{\rm f} = 0.37 \, (\rm CH_2 Cl_2 / MeOH, \, 19:1),$

IR (ATR), v_{max} (cm⁻¹): 2955 (m), 2924 (m), 2854 (m), 1712 (m), 1646 (s), 1613 (s), 1448 (m), 1369 (m), 1237 (m), 926 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.83 (t, *J* = 6.9 Hz, 3 H, CH₂C*H*₃), 0.86 (d, *J* = 6.3 Hz, 3 H, 4'-CH₃), 1.18-1.41 (m, 16 H, CH₂), 1.34 (d, *J* =6.9 Hz, 3 H, CHC*H*₃), 1.51-1.59 (m, 1 H, H4'), 2.70-2.80 (m, 2 H, H2'), 2.93 (s, 3 H, NCH₃), 3.64 (q, *J* = 6.9 Hz, 1 H, H5), 12.16 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.0 (CH₂*C*H₃), 14.7 (CH*C*H₃), 19.2 (4'-CH₃), 22.6 (*C*H₂CH₃), 26.2 (NCH₃), 26.9 (C3'), 29.3, 29.6, 29.8, 30.4 31.8 (C6' bis C10'), 32.6 (C4'), 32.9 (C2'), 36.6 (C5'), 62.7 (CH, C5), 100.3 (C^q, C3), 172.8 (C^q, C2), 188.2 (C^q, C1'), 194.6 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 323 (10) [M⁺], 305 (10), 182 (35), 169 (100), 154 (50), 127 (20), HR-MS: 323.2460 berechnet für C₁₉H₃₃NO₃. Gefunden: 323.2461.

Melophlin C (222c)

Diastereomer α : Gelbes Öl (160 mg, 91 %) nach AAV19 aus 3-[1'-(Difluoroboryloxy)-5'- methyldodecyliden]-1,5-dimethyl-pyrrolidin-2,4-dion^{α} **251c** (185 mg),

 $R_{\rm f} = 0.29 \, (\rm CH_2 Cl_2 / MeOH, \, 19:1),$

IR (ATR), v_{max} (cm⁻¹): 2954 (m), 2925 (s), 2854 (s), 1712 (m), 1618 (s), 1487 (w), 1452 (m), 1412 (w), 1395 (w), 1371 (m), 1310 (w), 1239 (m), 1168 (w), 1069 (w), 926 (s), 891 (w), 792 (w), 734 (w), 724 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.79 (d, *J* = 6.9 Hz, 3 H, 5'-CH₃), 0.82 (t, *J* = 6.9 Hz, 3 H, CH₂CH₃), 1.18-1.41 (m, 15 H, CH₂), 1.34 (d, *J* = 6.9 Hz, 3 H, CHCH₃), 1.51-1.65 (m, 2 H, H3'), 2.70-2.76 (m, 2 H, H2'), 2.93 (s, 3 H, NCH₃), 3.64 (q, *J* = 6.9 Hz, 1 H, H5), 11.60 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.0 (CH₂*C*H₃), 14.8 (CH*C*H₃), 19.4 (5'-CH₃), 22.6 (C11'), 23.5 (C3'), 26.2 (NCH₃), 26.9 (C7'), 29.3 (C8'), 29.9 (C10'), 31.8 (C9'), 32.4 (CH, C5'), 32.7 (C2'), 36.4 (C4'), 36.8 (C6'), 62.7 (CH, C5), 100.4 (C^q, C3), 172.7 (C^q, C2), 187.8 (C^q, C1'), 194.6 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 323 (10)[M⁺], 182 (30), 169 (100), 154 (60), 127 (10),

HR-MS: 323.2460 berechnet für $C_{19}H_{33}NO_3$. Gefunden: 323.2460.

Diastereomer β : Gelbes Öl (12 mg, 91 %) nach AAV19 aus 3-[1'-(Difluoroboryloxy)-5'- methyldodecyliden]-1,5-dimethyl-pyrrolidin-2,4-dion^{β} (17 mg),

 $R_{\rm f} = 0.24 \; (CH_2Cl_2/MeOH, 19:1).$

Melophlin G (222g)

Gelbes Öl (80 mg, 92 %) nach AAV19 aus 3-[1'-(Difluoroboryloxy)-myristoyliden]-1methyl-pyrrolidin-2,4-dion **251g** (100 mg).

 $R_{\rm f} = 0.20 \, (\rm CH_2 Cl_2 / MeOH, \, 19:1),$

IR (ATR), v_{max} (cm⁻¹): 2922 (s), 2852 (s), 1714 (m), 1656 (m), 1602 (s), 1496 (w), 1466 (m), 1412 (w), 1398 (w), 1244 (m), 1171 (w), 1111 (w), 1093 (s), 992 (w), 893 (w), 769 (w), 745 (w), 720 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.80 (t, *J* = 6.8 Hz, 3 H, CH₃), 1.18-1.37 (m, 20 H, CH₂), 1.51-1.65 (m, 2 H, CH₂), 2.74 (t, *J* = 7.5 Hz, 2 H, H2'), 2.94 (s, 3 H, NCH₃), 3.65 (s, 2 H, H5), 10.71 (br, 1 H, OH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 14.0 (CH₃), 22.6, 25.9 (CH₂), 28.4 (NCH₃), 24.7, 25.9, 29.3, 29.4, 29.6, 31.9 (CH₂), 32.7 (C2'), 57.6 (CH₂, C5), 101.6 (C^q, C3), 173.5 (C^q, C2), 187.7 (C^q, C1'), 191.3 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 323 (10) [M⁺], 168 (30), 155 (100), 140 (35), 113 (10),

HR-MS: 323.2460 berechnet für C₁₉H₃₃NO₃. Gefunden: 323.2457.

13.17 Beiträge zur Synthese von Quinolactacin A2

5-s-Butyl-4-(2'-Methylaminobenzoyl)-pyrrolin-2-on 276

Gelbes Öl (190 mg, 66 %) synthetisiert nach AAV16 aus *N*-Methylaminobenzoesäure **273** (166 mg, 1.1 mmol) und 5-*s*-Butylpyrrolidin-2,4-dion **219** (155 mg, 1.0 mmol).

 $R_{\rm f} = 0.47$ (*n*-Hexan/Essigester, 1:1),

IR (ATR), v_{max} (cm⁻¹): 3395 (br), 3204 (br), 3079 (w), 2963 (w), 2933 (w), 2875 (w), 1709 (s), 1683 (s), 1610 (m), 1575 (m), 1519 (m), 1463 (w), 1428 (w), 1368 (w), 1328 (w), 1256 (m), 1214 (s), 1158 (s), 1113 (m), 1069 (m), 1044 (w), 1020 (m), 998 (m), 943 (w), 897 (w), 841 (m), 743 (s), 696 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.85 (t, J = 7.4 Hz, 3 H, CH₂CH₃), 1.05 (d, J = 7.0 Hz, 3 H, CHCH₃), 1.18-1.25 (m, 2 H, CH₂CH₃), 1.89-1.94 (m, 1 H, CHCH₃), 2.93 (s, 3 H, NCH₃), 4.30 (d, J = 2.9 Hz, 1 H, H5), 6.14 (s, 1H, H3), 6.61 (d, J = 8.1, 1.6 Hz, 1 H, ArH), 6.69 (dd, J = 8.6, 1.6 Hz, 1 H, ArH), 7.00 (br, 1 H, NH), 7.42 (dt, J = 8.6, 1.6 Hz, 1 H, ArH), 7.54 (br, 1 H, NH), 7.85 (dd, J = 8.1, 1.6 Hz, 1 H, ArH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 12.0 (CH₂CH₃), 16.6 (CHCH₃), 23.1 (CH₂CH₃), 29.6 (NCH₃), 36.4 (CHCH₃), 63.1 (CH, C5), 107.2 (C^q, CCO₂), 111.2 (CH, C3), 114.7, 128.1, 131.4, 136.2 (CH, ArC), 153.1 (C^q, CNMe), 163.9 (C^q, C2), 165.6 (C^q, C1'), 174.1 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 288 (10) [M⁺], 134 (100), 116 (5), 77 (15), 57 (5).

4-(2'-Methylaminobenzoyl)-5-i-propylpyrrolin-2-on 277

Gelber Feststoff (208 mg, 75 %) synthetisiert nach AAV16 aus *N*-Methylaminobenzoesäure **273** (166 mg, 1.1 mmol) und 5-*i*-Propylpyrrolidin-2,4-dion (141 mg, 1.0 mmol).

 $R_{\rm f} = 0.26$ (*n*-Hexan/Essigester, 1:1),

IR (ATR), v_{max} (cm⁻¹): 3403 (br), 3188 (br), 3074 (w), 2962 (w), 2932 (w), 2872 (w), 1711 (s), 1675 (s), 1609 (m), 1575 (s), 1520 (m), 1462 (m), 1428 (w), 1373 (w), 1364 (w), 1256 (m), 1213 (s), 1164 (s), 1142 (s), 1110 (m), 1064 (w), 1044 (w), 1020 (m), 990 (m), 944 (w), 937 (w), 903 (w), 854 (w), 838 (w), 779 (w), 741 (s), 694 (m),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.85 (d, *J* = 6.8 Hz, 3 H, CHC*H*₃), 1.13 (d, *J* = 6.8 Hz, 3 H, CHC*H*₃), 1.51-1.65 (m, 1 H, C*H*(CH₃)₂), 2.93 (s, 3 H, NCH₃), 4.28 (m, 1 H, H5), 6.16 (s, 1H, H3), 6.59 (t, *J* = 7.0 Hz, 1 H, ArH), 6.69 (d, *J* = 8.6 Hz, 1 H, ArH), 7.44 (dd, *J* = 8.6, 7.0 Hz, 1 H, ArH), 7.53-7.58 (br, 1 H, NH), 7.88 (dd, *J* = 8.6, 7.0 Hz, 1 H, ArH), 7.90-7.96 (br, 1 H, NH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 15.1, 19.7 [CH(CH₃)₂], 29.3 [CH(CH₃)₂], 29.6 (NCH₃), 63.5 (CH, C5), 107.3 (C^q, CCO₂), 111.2 (CH, C3), 114.7, 128.2, 131.5, 136.2 (CH, ArC), 153.1 (C^q, CNMe), 163.9 (C^q, C2), 165.8 (C^q, C1'), 174.5 (C^q, C4),

MS (EI, 70 eV); *m/z* (%): 274 (10) [M⁺], 151 (100), 133 (25), 105 (40).

13.18 Synthese von N-Acyltetramat 299

Allgemeine Arbeitsvorschrift zur Synthese von Azidoestern (AAV20)^[162]

NaN₃ (7.1 g, 109.8 mmol) wird in H₂O (18 mL) und DCM (30 mL) gelöst. Mit einem Eisbad kühlt man die Reaktionsmischung auf 0 °C und fügt innerhalb von 10 Minuten Triflylanhydrid (3.7 mL, 22.2 mmol) hinzu. Man rührt bei 0 °C noch weitere 2 h lang. Dann trennt man in einem Scheidetrichter die organische Phase ab und extrahiert die wässrige Phase mit DCM (2 x 15 mL). Die vereinigten organischen Phasen, die das Triflylazid enthalten, werden mit Na₂CO₃-Lösung gewaschen und ohne weitere Reinigung weiter verwendet. In der Zwischenzeit löst man das entsprechende Aminosäureestersalz (11.2 mmol), K₂CO₃ (2.3 g, 16.8 mmol) und CuSO₄·5H₂O in H₂O (36 mL) und MeOH (72 mL). Zu dieser Mischung gibt man das frisch hergestellte Triflylazid in DCM (60 mL) und rührt bei RT über Nacht. Das Lösungsmittel wird im Vakuum destillativ entfernt und die wässrige Phase mit H₂O (200 mL) versetzt. Mit konzentrierter HCl säuert man auf pH=6 an und fügt 200 mL 0.25 M Phosphatpuffer (pH=6.2) zu. Dann extrahiert man mit AcOEt (4 x 25 mL). Die organische Phase wird über Na₂SO₄ getrocknet und i. Vak. eingeengt. Das Rohprodukt wird mittels Säulenchromatographie an Kieselgel gereinigt.

Essigsäuremethylesterazid 288a

Farbloses Öl (1.1 g, 90 %) nach AAV 20 aus Glycinmethylesterhydrochlorid (1.4 g, 11.1 mmol).

IR (ATR), v_{max} (cm⁻¹): 2959 (w), 2851 (w), 2097 (s), 1743 (s), 1438 (m), 1426 (m), 1357 (w), 1284 (m), 1202 (s), 1180 (s), 999 (m), 918 (w), 842 (w), 727 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 3.80 (s, 2 H, CH₂), 3.70 (s, 3 H, Me),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 50.1 (CH₂), 52.4 (OMe), 168.8 (C^q, CO).

Isoleucinbenzylesterazid 288b

Farbloses Öl (2.25 g, 83 %) nach AAV 20 aus Isoleucinbenzylesterhydrotosylat (4.4 g, 11.1 mmol).

IR (ATR), v_{max} (cm⁻¹): 3067 (w), 3035 (w), 2966 (m), 2936 (w), 2878 (w), 2103 (s), 1738 (s), 1498 (w), 1456 (m), 1381 (w), 1331 (w), 1260 (m), 1212 (m), 1174 (s), 1127 (w), 979 (m), 907 (w), 844 (w), 748 (m), 735 (m), 692 (s),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.87 (t, *J* = 7.4 Hz, 3 H, CH₃CH₂), 0.95 (d, *J* = 6.8 Hz, 3 H, CH₃CH), 1.11-1.48 (m, 2 H, MeCH₂), 1.91-2.03 (m, 1 H, MeCH), 3.74 (d, *J* = 6.4 Hz, 1 H, CHN₃), 5.17 (d, *J* = 12.1 Hz, 1 H, OCHH), 5.24 (d, *J* = 12.1 Hz, 1 H, OCHH), 7.26-7.35 (m, 5 H, ArH),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = 11.0 (CH₃CH₂), 15.7 (CH₃CH), 24.1 (MeCH₂), 37.1 (MeCH), 67.0 (CHN₃), 67.2 (OCH₂), 127.6, 128.4, 128.6 (CH, ArC), 135.0 (C^q, C-*ipso*), 170.0 (C^q, CO).

Serinmethylesterazid 288c

Farbloses Öl snythetisiert nach AAV 20 aus Serinmethylesterhydrochlorid (1.7 g, 11.1 mmol). Das erhaltene Rohprodukt wird ohne weitere Reinigung weiterverwendet.

N₃-Ser(OTBDMS)-OMe 290

In DCM (14 mL) werden Serinmethylesterazid **288c** (0.7 g, 4.8 mmol) und Imidazol (0.82 g, 12 mmol) vorgelegt. Bei 0 °C gibt man unter Rühren *t*-Butyldimethylsilylchlorid (0.87 g, 5.8 mmol) zu und rührt über Nacht bei RT. Das Lösungsmittel wird i. Vak. entfernt und der weiße Feststoff in CHCl₃ (20 mL) aufgenommen und mit H₂O (20 mL) extrahiert. Die wässrige Phase wird mit CHCl₃ (20 mL) gewaschen und die vereinigten organischen Phasen gegen gesättigte NaCl-Lösung extrahiert. Nach Trocknen über Na₂SO₄ wird das Lösungsmittel i. Vak. entfernt und das Rohprodukt mittels Säulenchromatographie an Kieselgel gereinigt. Das Produkt verbleibt als farbloses Öl (1.7 g, 60 % über 2 Stufen).

IR (ATR), v_{max} (cm⁻¹): 2954 (w), 2931 (w), 2885 (w), 2858 (w), 2104 (s), 1751 (s), 1472 (w), 1464 (m), 1437 (w), 1362 (w), 1298 (w), 1252 (s), 1201 (m), 1178 (m), 1113 (s), 1066 (m), 995 (m), 928 (w), 835 (s), 810 (m), 776 (s), 730 (m), 664 (w),

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.02 (s, 3 H, CH₃), 0.03 (s, 3 H, CH₃), 0.83 (s, 9 H, C(CH₃)₃), 3.74 (s, 3 H, OMe), 3.71-3.75 (m, 1 H, CHN₃), 3.97 (dd, *J* = 10.6, 3.4 Hz, 1 H, CH₂), 3.99 (dd, *J* = 10.6, 4.8 Hz, 1 H, CH₂),

¹³C NMR (75.5 MHz, CDCl₃): δ (ppm) = -5.8 (CH₃), -5.6 (CH₃), 18.1 (C^q, *C*(CH₃)₃), 25.7 (C(*C*H₃)₃), 52.4 (OMe), 63.2 (CHN₃), 64.5 (OCH₂), 169.1 (C^q, CO).

Allgemeine Arbeitsvorschrift zur Eintopf-Synthese von N-Acyltetramaten (AAV21)

Zu einer Lösung von Aminosäureesterazid (2.0 mmol) in abs. THF (20 mL) gibt man unter Argon tropfenweise Trimethylphosphin (2 mmol, 205 µL) und rührt die Mischung bei RT für 45 min. Das Ende der Reaktion lässt sich am Verschwinden der Azid-Bande (2100) im IR und auch an der Geruchsneutralität der Lösung erkennen. Dann fügt man Ketenylidentriphenylphosphoran **21** (2 mmol, 604 mg) zu und anschließend bei -10 °C tropfenweise die gewünschte Carbonsäure (2 mmol). Über Nacht lässt man die Reaktionsmischung bei RT rühren. Dann erwärmt man die Reaktionsmischung 16 h lang bei 60 °C. Das Lösungsmittel wird destillativ entfernt und der Rückstand mittels präparativer Dünnschichtchromatographie gereinigt.

4-Methoxy-1-palmitoyl-pyrrol-2-on 299

Weißer Feststoff (21 mg, 3 %) synthetisiert nach AAV21 aus Glycinmethylesterazid **288a** (2 mmol, 193 μ L) und Palmitinsäure (2 mmol, 512 mg).

 $R_{\rm f} = 0.55$ (*n*-Hexan/Essigester, 1:1)

IR (ATR), v_{max} (cm⁻¹): 3055 (w), 3024 (w), 2916 (s), 2849 (s), 1723 (s), 1685 (s), 1631 (s), 1491 (w), 1471 (w), 1442 (w), 1394 (m), 1349 (w), 1328 (w), 1271 (w), 1090 (m), 1011 (w), 984 (w), 971 (w), 915 (m), 832 (w), 814 (w), 749 (w), 719 (m), 694 (s), 675 (w),

¹H-NMR(300 MHz, CDCl₃): δ (ppm) = 0.86 (t, *J* = 6.6 Hz, 3 H, CH₂CH₃), 1.08-1.21 (m, 24 H, CH₂), 1.52-1.69 (m, 2 H, CH₂CH₂CO), 2.90 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 3.84 (s, 3 H, OMe), 4.22 (s, 2 H, H5), 5.09 (s, 1 H, H3),

MS (EI, 70 eV); m/z (%): 351 (5) [M⁺], 336 (5), 238 (5), 224 (5), 182 (5), 168 (45), 155 (100), 140 (5), 127 (10), 113 (75), 98 (10), 55 (10), 43 (10).

14 Publikationen

- Solution-phase and solid-phase syntheses of enzyme inhibitor RK-682 and antibiotic agglomerins; Schobert, R.; Jagusch, C. J. Org. Chem. 2005, 70, 6129-6132.
- An efficient synthesis of carlosic acid and other 5-carboxymethyltetronates from malates; Schobert, R.; Jagusch, C. Synthesis **2005**, 2421-2425.
- An expedient synthesis of 3-acyltetramic acids of the melophlin family from α-aminoesters and polymer-bound Ph₃PCCO; Schobert, R.; Jagusch, C. Tetrahedron 2005, 61, 2301–2307.
- Synthesis and reactions of polymer-bound Ph₃PCCO: a quick route to tenuazonic acid and other optically pure tetramates; Schobert, R.; Jagusch, C.; Melanophy, C.; Mullen, G. J. Org. Biomol. Chem. 2004, 2, 3524-3529.
- Solid-phase domino syntheses of tetronates with Ph₃PCCO; Schobert, R.; Jagusch, C., Tetrahedron Lett. 2003, 43, 6449-6451.

15 LITERATURVERZEICHNIS

[1] Gossauer, A. In *Progress in the chemistry of Organic Natural Products*, Springer, 2003, vol. 86.

- [2] Ghisalberti, E.L. In *Studies in Natural Products Chemistry*, Elsevier, 2003, vol. 28, 109-163.
- [3] Pattenden, G. Fortschr. Chem. Org. Naturst. 1978, 35, 133-198.
- [4] Tejedor, D.; Garcia-Tellado, F. Org. Prep. Proc. Int. 2004, 36, 35-59.
- [5] Smirnoff, N. Ann. Bot. 1996, 78, 661-669.
- [6] Friederich, W. In *Handbuch der Vitamine*, Verlag Urban Schwarzenberger, München 1987.
- [7] Gramlich, G.; Zhang, J.; Nau, W.M. J. Am. Chem. Soc. 2002, 124, 11252-11253.
- [8] Bielsalski, H.-K. Vitamine, Georg Thieme Verlag, Stuttgart, 1996.
- [9] Saito, K.; Yamaguchi, T.; Tsujimoto, T.; Yuki, H. J. Heterocyclic. Chem. 1976, 13, 533-537.
- [10] Saito, K.; Yamaguchi, T. Bull. Chem. Soc. Jpn. 1978, 51, 651-652.
- [11] Clutterbuck, P.W.; Haworth, W.N.; Raistrick, H.; Smith, G.; Stacey, M. *Biochem. J.* **1934**, 28, 94-99.
- [12] Bentley, R.; Bhate, D.S.; Keil, J.G. J. Biol. Chem. 1962, 237, 859-866.
- [13] Hori, K.; Kazuno, H.; Nomura, K.; Yoshii, E. Tetrahedron Lett. 1993, 34, 2183-2186.
- [14] Boons, G.-J.; Lennon, I.C.; Ley, S.V.; Owen, E.S.E.; Staunton, J.; Wadsworth, D.J. *Tetrahedron Lett.* **1994**, *35*, 323-326.
- [15] Bourguet-Kondracki, M.-L.; Guyot, M. Tetrahedron Lett. 1999, 40, 3149-3150.
- [16] Ohtsuka, T.; Kudoh, T.; Shimma, N.; Kotaki, H.; Nakayama, N.; Itezono, Y.; Fujisaki, N.; Watanabe, J.; Yokose, K.; Seto, H. J. Antibiot. 1992, 45, 140-143.

[17] Page, P.C.B.; Vahedi, H.; Batchelor, K.J.; Hindley, S.J.; Edgar, M.; Beswick, P. *Synlett* **2003**, *7*, 1022-1024.

[18] Tsuchida, T.; Iinuma, H.; Nishida, C.; Kinoshita, N.; Sawa, T.; Hamada, M.; Takeuchi, T. J. Antibiot. **1995**, 48, 1104-1114.

[19] Paintner, F.F.; Allmendinger, L.; Bauschke, G.; Berns, C.; Heisig, P. *Bioorg. Med. Chem.* **2003**, *11*, 2823-2833.

[20] Godel, T.; Hilpert, H.; Humm, R.; Rogers-Evans, M.; Rombach, D.; Stahl, C.M.; Weiss, P.; Wostl, W. US 0119329 A1, 2005.

[21] Lacey, R.N. J. Chem. Soc. 1954, 832-839.

[22] Sodeoka, M.; Sampe, R.; Kojima, S.; Baba, Y.; Usui, T.; Ueda, K.; Osada, H. *J. Med. Chem.* **2001**, *44*, 3216-3222.

[23] Bloomer, J.L.; Kappler, F.E. J. Org. Chem. 1974, 39, 113.

[24] Duffield, J.J.; Regan, A.C. Tetrahedron Asym. 1996, 7, 663-666.

[25] Effenberger, F.; Syed, J. Tetrahedron Asym. 1998, 9, 817-825.

[26] Schobert, R.; Gordon, G.J. Curr. Org. Chem. 2002, 6, 1181-1196.

[27] Schobert, R.; Gordon, G.J.; Bieser, A. Eur. J. Org. Chem. 2003, 3637-3642.

[28] Gordon, G.J. Dissertation, Universität Bayreuth, 2004.

[29] Tejedor, D.; Lopez, G.V.; Garcia-Tellado, F.; Marrero-Tellado, J.J.; de Armas, P.; Terrero, D. J. Org. Chem. 2003, 68, 3363-3365.

[30] Tejedor, D.; Gonzalez-Cruz, D.; Santos-Exposito, A.; Marrero-Tellado, J.J.; de Armas, P.; Garcia-Tellado, F. *Chem. Eur. J.* **2005**, 3502-3510.

[31] Ramage, R.; Griffiths, G.J.; Shutt, F.E.; Sweeney, J.N.A. J. Chem. Soc., Perkin Trans *1* **1984**, 1539.

[32] Bi, X.; Liu, Q.; Sun, S.; Liu, J.; Pan, W.; Zhao, L.; Dong, D. Synlett 2005, 49-54.

[33] Gabriele, B.; Salerno, G.; Plastina, P.; Costa, M.; Crespini, A. Adv. Synth. Catal. **2004**, *346*, 351-358.

[34] Verniest, G.; De Kimpe, N. Synlett 2005, 947-950.

[35] Royles, B.J.L. Chem. Rev. 1995, 95, 1981-2001.

[36] Steyn, P.S.; Wessels, P.L. Tetrahedron Lett. 1978, 4707-4710.

[37] Barkley, J.V.; Markopoulos, J.; Igglessi-Markopoulou, O. J. Chem. Soc., Perkin Trans. 2 1994, 1057-1065.

[38] Wright, A.D.; Osterhage, C.; König, G.M. J. Org. Biomol. Chem. 2003, 1, 507-510.

[39] Lang, G.; Blunt, J.W.; Cummings, N.J.; Cole, A.L.J.; Munro, M.G.H. J. Nat. Prod. **2005**, *68*, 810-811.

[40] Burke, L.T.; Dixon, D.J.; Ley, S.V.; Rodriguez, F. J. Org. Biomol. Chem. 2005, 3, 274-280.

[41] Sims, J.W.; Fillmore, J.P.; Warner, D.D.; Schmidt, E.W. *Chem. Commun.* **2005**, 186-188.

[42] Ratnayake, A.S.; Davis, R.A.; Harper, M.K.; Veltri, C.A.; Andjelic, C.D.; Barrows, L.R.; Ireland, C.M. J. Nat. Prod. 2005, 68, 104-107.

[43] Michael, A.P.; Grace, E.J.; Kotiw, M.; Barrow, R.A. J. Nat. Prod. 2002, 62, 1360-1362.

[44] Daferner, M.; Timm, A.; Sterner, O. Tetrahedron 2002, 58, 7781-7784.

[45] Schmidt, K.; Riese, U.; Li, Z.; Hamburger, M. J. Nat. Prod. 2003, 66, 378-383.

[46] Longbottom, D.A.; Morrison, A.J.; Dixon, D.J.; Ley, S.V. *Tetrahedron* **2003**, *59*, 6955-6966.

[47] Iwata, Y.; Maekawara, N.; Tanino, K.; Miyashita, M. Angew. Chem. Int. Ed. Engl.2005, 44, 1532-1536.

[48] Graupner, P.R.; Carr, A.; Clancy, E.; Gilbert, J.; Bailey, K.L.; Derby, J.-A.; Gerwick,B.C. *J. Nat. Prod.* 2003, *66*, 1558-1561.

[49] Kanazawa, S.; Fusetani, N.; Matsunaga, S. Tetrahedron Lett. 1993, 34, 1065-1068.

[50] Cramer, N.; Laschat, S.; Baro, A.; Schwalbe, H.; Richter, C. Angew. Chem. Int. Ed. Engl. 2005, 44, 820-822.

[51] Ghandi, N.M.; Nazareth, J.; Divekar, P.V.; Kohl, H.; de Souza, N.J. J. Antibiot. 1973, 26, 797-798.

[52] Kohl, H.; Bhat, S.V.; Patell, J.R.; Ghandhi, N.M.; Nazareth, J.; Divekar, P.V.; de Souza, N.J.; Berscheid, H.G.; Fehlhaber, H.W. *Tetrahedron Lett.* **1974**, 983-986.

[53] Höltzel, A.; Gänzle, M.G.; Nicholson, G.J.; Hammes, W.P.; Jung, G. Angew. Chem.2000, 112, 2886-2888.

[54] Gänzle, M.G. Appl. Microbiol. Biotchnol. 2004, 64, 326-332.

[55] Kan, Y.; Sakamoto, B.; Fujita, T.; Nagai, H. J. Nat. Prod. 2000, 63, 1599-1602.

[56] Lacey, R.N. J. Chem. Soc. 1954, 850-854.

[57] Andrews, M.D.; Brewster, A.G.; Crapnell, K.M.; Ibbett, A.J.; Jones, T.; Moloney, M.G.; Prout, K.; Watkin, D. J. Chem. Soc., Perkin Trans. 1, 1998, 223-235.

[58] Matthews, J.; Rivero, R.A. J. Org. Chem. 1998, 63, 4808-4810.

[59] Liu, Z.; Ruan, X.; Haung, X. Bioorg. Med. Chem. Lett. 2003, 13, 2505-2507.

[60] Löffler, J.; Schobert, R. Recent Res. Devel. in Org. & Bioorg. Chem. 1998, 2, 17-28.

[61] Schobert, R.; Gordon, G.J.; Mullen, G.; Stehle, R. *Tetrahedron Lett.* **2004**, *45*, 1121-1124.

[62] Athanasellis, G.; Gavrielatos, E.; Igglessi-Markopoulou, O. Synlett 2001, 1653-1655.

[63] Gabriele, B.; Plastina, P.; Salerno, G.; Costa, M. Synlett 2005, 935-938.

[64] Schobert, R.; Gordon, G.J. Science of Synthesis, Thieme, 2004, vol. 27, 973-1070.

[65] Bestmann, H.J. Angew. Chem. 1977, 89, 361-376; Angew. Chem. Int. Ed. Engl. 1977, 16, 349-354.

[66] Kolodiazhnyi, O.J. *Phosphorus Ylides. Chemistry and Application in Organic Synthesis*, Wiley-VCH, Weinheim-New York, 1999, Chapter 3.

[67] Burzlaff, H.; Wilhelm, E.; Bestmann, H.J. Chem. Ber. 1977, 110, 3168-3176.

[68] Daly, J.J.; Wheatley, P.J. J. Chem. Soc. A. 1966, 1703-1706.

[69] Daly, J.J. J. Chem. Soc. A. 1967, 1913-1917.

[70] Lawrence, N.J. In *Preparation of Alkenes: A Practical Approach*, Williams, J.M.J.,Ed.; Oxford University Press: London, 1996; 19.

[71] Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953, 580, 44-57.

- [72] Johnson, A.W. In Ylides and Imines of Phosphorus, Wiley, New York, 1993.
- [73] Vedejs, E.; Marth, C.F. J. Am. Chem. Soc. 1988, 110, 3948-3950.

[74] Matthews, C.N.; Birum, G.H. Tetrahedron Lett. 1966, 5707-5710.

[75] Matthews, C.N.; Birum G.H. Chem. Ind. (London) 1966, 653.

[76] Bestmann, H.J.; Rostock, K.; Dornauer, H. Angew. Chem. **1966**, 78, 335; Angew. Chem. Int. Ed. Engl. **1966**, 5, 308.

[77] Storer, I.R.; Takemoto, T.; Jackson, P.S.; Brown, D.S.; Baxendale, I.R.; Ley, S.V. *Chem. Eur. J.* **2004**, *10*, 2529-2547.

[78] Schobert, R.; Jagusch, C.; Melanophy, C.; Mullen, G. J. Org. Biomol. Chem. 2004, 2, 3524-3529.

[79] Schobert, R.; Siegfried, S.; Gordon, G.J. J. Chem. Soc., Perkin Trans. 1, 2001, 2393-2397.

[80] Bestmann, H.J.; Schmidt, M.; Schobert, R. Angew. Chem. 1985, 97, 418-419; Angew.
 Chem. Int. Ed. 1985, 24, 405-406.

[81] Löffler, J.; Schobert, R. J. Chem. Soc., Perkin Trans. 1, 1996, 2799-2802.

- [82] Mullen, G. Dissertation, Universität Bayreuth, in Vorbereitung.
- [83] Larcheveque, M.; Petit, Y. Bull. Soc. Chim. France 1989, 1, 130-139.
- [84] Larcheveque, M.; Petit, Y. Tetrahedron Lett. 1987, 28, 1993-1996.
- [85] Yamamoto, H. In Lewis acids in organic synthesis/1, Wiley-VCH, Weinheim, 2000.
- [86] Chini, M.; Crotti, P.; Macchia, F.*Tetrahedron Lett.* **1990**, *32*, 4661-4664.
- [87] Chini, M.; Crotti, P.; Macchia, F. J. Org. Chem. 1991, 56, 5939-5942.
- [88] Chini, M.; Crotti, P.; Macchia, F. J. Org. Chem. 1991, 56, 7043-7048.
- [89] Schobert, R.; Jagusch, C. Tetrahedron Lett. 2003, 44, 6449-6451.

[90] Zaragoza-Dörwald, F. In Organic Synthesis on Solid Phase: Supports, Linkers, Reactions, Wiley-VCH, 2002.

[91] Danielmeier, K.; Steckhan, E. Tetrahedron Asym. 1995, 6, 1181-1190.

- [92] Beyer, H.; Walter, W. In *Lehrbuch der Organischen Chemie*, S. Hirzel Verlag, Stuttgart, Leipzig, 1998, 23.
- [93] Dandapani, S.; Curran, D.P. Chem. Eur. J. 2004, 10, 3130-3138.
- [94] Dembinski, R. Eur. J. Org. Chem. 2004, 2763-2772.
- [95] Schobert, R.; Jagusch, C. Synthesis 2005, 2421-2426.
- [96] Gaspard-Iloughmane, H.; Le Roux, C. Eur. J. Org. Chem. 2004, 2517-2523.
- [97] Sreedhar, B.; Swapna, V.; Sridnar, C. Synth. Commun. 2004, 34, 1433-1440.
- [98] Svendsen, A.; Boll, P.M. J. Org. Chem. 1975, 40, 1927-1932.
- [99] Booth, P.M.; Fox, C.M.J.; Ley, S.V. J. Chem. Soc., Perkin Trans. 1, 1987, 121-129.
- [100] Mitsos, C.A.; Zografos, A.L.; Igglessi-Markopoulou, O. J. Org. Chem. 2000, 65, 5852-5853.
- [101] Melanophy, C. Dissertation, Universität Bayreuth, 2004.
- [102] Bourne, G.T.; Herwell, D.C.; Pritchard, M. C. Tetrahedron 1991, 47, 4763-4774.
- [103] Sieber, P. Helv. Chim. Acta 1977, 60, 2711-2716.
- [104] Kocienski, P.J. In *Protecting Groups*, Thieme, Stuttgart, 2005.
- [105] Nomura, K.; Hori, K.; Arai, M.; Yoshii, E. Chem. Pharm. Bull. 1986, 34, 5188-5190.
- [106] Pashkovskii, F.S.; Katok, Y.M.; Khlebnikova, T.S.; Koroleva, E.V.; Lakhvich, F.A. *Russ. J. Org. Chem.* **2003**, *7*, 998-1009.
- [107] Hamaguchi, T.; Sudo, T.; Osada, H. FEBS Lett. 1995, 372, 55-58.
- [108] Roggo, B.E.; Petersen, F.; Delmendo, R.; Jenny, H.-B.; Peter H.H.; Roesel, J. J. Antibiot. **1994**, 47, 136-142.
- [109] Roggo, B.E.; Hug, P.; Moss, S.; Raschdorf, F.; Peter, H.H. J. Antibiot. 1994, 47, 143-147.
- [110] Shinagawa, S.; Muroi M.; Itoh, T. Jpn. Kokai Tokkyo Koho, JP 05-43568, 1993.
- [111] Gunasekera, S.P.; McCarthy, P.J.; Kelly-Borges, M.; Lobkovsky, E.; Clardy, J. J. Am. Chem. Soc. **1996**, *118*, 8759-8760.

[112] Sodeoka, M.; Sampe, R.; Koijma, S.; Baba, Y.; Usui, T.; Ueda K.; Osada, H. J. Med.*Chem.* 2001, 44, 3216-3222.

[113] Ishida, K.; Hirai, G.; Murakami, K.; Teruya, T.; Simizu, S.; Sodeoka, M.; Osada, H. *Mol. Cancer Ther.* **2004**, *3*(*9*), 1069-1077.

[114] Osada, H.; Shimizu, S.; Sodeoka, M.; Hirai, T.; Ishida, K. Jpn. Kokai Tokkyo Koho, JP 2005023048, 2005.

[115] Sodeoka, M.; Sampe, R.; Kagamizono, T.; Osada, H. *Tetrahedron Lett.* **1996**, *37*, 8775-8778.

[116] Sodeoka, M.; Sampe, R.; Kojima, S.; Baba, Y.; Morisaki, N.; Hashimoto, Y. *Chem. Pharm. Bull.* **2001**, *49*, 206-212.

[117] Mittra, A.; Yamashita, M.; Kawasaki, I.; Murai, H.; Yoshioka, T.; Ohta, S. *Synlett* **1997**, 909-910.

[118] Baumhof, P.; Mazitschek, R.; Giannis, A. Angew. Chem. Int. Ed. 2001, 40, 3672-3674.

[119] Schobert, R.; Jagusch, C. J. Org. Chem. 2005, 70, 6129-6132.

[120] Persönliche Mitteilung, Ralf Stehle, Universität Bayreuth.

[121] Aoki, S.; Higuchi, K.; Ye, Y.; Satari, R.; Kobayashi, M. *Tetrahedron* **2000**, *56*, 1833-1836.

[122] Wang, C.-Y.; Wang, B.-G.; Wiryowidago, S.; Wray, V.; van Soest, R.; Streube,K.G.; Guan, H.-S.; Proksch, P.; Ebel, R. J. Nat. Prod. 2003, 66, 51-56.

[123] Shoji, J.; Sakazaki, R.; Hattori, T.; Matsumoto, K.; Uotani, N.; Yoshida, T. J. Antibiot. 1989, 42, 1729-1733.

[124] Terui, Y.; Sakazaki, R.; Shoji, J. J. Antibiot. 1990, 43, 1245-1253.

[125] Yoshida, T.; Hattori, T.; Matsumoto, K.; Terui, Y.; Shoji, J. EP 0 365 329 A2, JP 266575, 1988.

[126] Mashimo, Y.; Sekiyama, Y.; Araya H.; Fujimoto, Y. *Biorg. Med. Chem. Lett.* **2004**, *14*, 649-651.

[127] Ley, S.V.; Trudell M.L.; Wadsworth, D.J. Tetrahedron 1991, 47(38), 8285-8296.

[128] Rosett, T.; Sankhala, R.H.; Stickings, C.E.; Taylor, M.E.U. *Biochem. J.* **1957**, 67, 390-400.

- [129] Botallico, A.; Logireco, A. In Mycotoxins in Agriculture and Food Safety, Sinha,
- K.K.; Bhatnagar, D.; Eds.; Marcel Dekker, New York, 1998, chap. 3, 65-108.
- [130] Nukina, M.; Saito, T. Biosci. Biotech. Biochem. 1992, 56, 1314-1315.
- [131] Stickings, C.E. Biochem. J. 1959, 72, 332-340.
- [132] Giterman, C.O. J. Med. Chem. 1965, 8, 483-486.
- [133] Barbacid, M.; Vazquez, D. Eur. J. Biochem. 1974, 44, 437-444.
- [134] Umetsu, N.; Kaji, J.; Tmari, K. Agric. Biol. Chem. 1973, 37, 451-455
- [135] Mikami, Y.; Jishijima, Y.; Iimura, H.; Suzuki, A.; Tamura, S. *Agric. Biol. Chem* **1971**, *35*, 611-614.
- [136] Matsuo, K.; Kitaguchi, I.; Takata, Y.; Tanaka, K. Chem. Pharm. Bull. **1980**, 28, 2494-2502.
- [137] Gallardo, G.L.; Pena, N.I.; Chacana, P.; Terzolo, H.R.; Cabrera, G.M. W. J. *Microbiol. Biotech.* **2004**, *20*, 609-612.
- [138] Stickings, C.E.; Townsend, R.J. Biochem. J. 1961, 78, 412-418.
- [139] Gatenbeck, S.; Sierankiewicz, J. Acta Chem. Scand. 1973, 27, 1825-1827.
- [140] Waldmann, H.; Kunz, H. Liebigs Ann. Chem. 1983, 1712-1725.
- [141] Jones, R.C.F.; Begley, M.J.; Peterson, G.E.; Sumaria, S. J. Chem. Soc., Perkin Trans. 1, **1990**, 1959-1968.
- [142] Hünig, S.; Salzwedel, M. Chem. Ber. 1962, 95, 2493-2510.
- [143] Hünig, S.; Salzwedel, M. Chem. Ber. 1966, 99, 823-842.
- [144] Hünig, S.; Lendle, W. Chem. Ber. 1960, 93, 909-920.
- [145] Vilaivan, T.; Suparpprom, C.; Duanglaor, P.; Haryuttanakorn, P.; Lowe, G. *Tetrahedron Lett.* **2003**, *44*, 1663-1666.
- [146] Hori, K.; Arai, M.; Nomura, K.; Yoshii, E. Chem. Pharm. Bull. 1987, 35, 4368-4371.
- [147] Schobert, R.; Jagusch, C. Tetrahedron 2005, 61, 2301-2307.

[148] Jung, G.; Stracke, F.; Wiesmüller, K. EP 1116715A1, 2000.

[149] Kakinuma, N.; Iwai, H.; Takahashi, S.; Hamano, K.; Yanagisawa, T.; Nagai, K.;
Tanaka, K.; Suzuki, K.; Kirikae, F.; Kirikae, T.; Nakagawa, A. J. Antibiot. 2000, 53, 1247-1251.

- [150] Takahashi, S.; Kakinuma, N.; Iwai, H.; Yanagisawa, T.; Nagai, K.; Suzuki, K.; Nakagawa, A. J. Antibiot. 2000, 53, 1252-1256.
- [151] Tatsuta, K.; Misawa, H.; Chikauchi, K. J. Antibiot. 2001, 54, 109-112.
- [152] Kim, W.-G.; Song, N.-K.; Yoo, I.-D. J. Antibiot. 2001, 54, 831-835.
- [153] Zhang, X.; Jiang, W.; Sui, Z. J. Org. Chem. 2003, 68, 4523-4526.
- [154] Park, S.-J.; Cho, K.-N.; Kim, W.-G.; Lee, K.-I. *Tetrahedron Lett.* **2004**, *45*, 8793-8795.
- [155] Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635-646.
- [156] Köhn, M.; Breinbauer, R. Angew. Chem. Int. Ed. 2004, 43, 3106-3116.
- [157] Golobov, Y.G.; Kasukhin, L.F Tetrahedron. 1992, 48, 1353-1406.
- [158] Fresnada, P.M.; Molina, P. Synlett 2004, 1-17.
- [159] Eguchi, S. Arkivoc 2005, 98-119.
- [160] Molina, P.; Vidal, A.; Tovar, F. Synthesis 1997, 963-966.
- [161] Bestmann, H.J.; Schade, G.; Schmid, G.; Mönius, T. Chem. Ber. 1985, 118, 2635-2639.
- [162] Lundquist, J.T.; Pelletier, J.C. Org. Lett. 2001, 3, 781-783.
- [163] Shen, Y.; Zhou, Y. Synth. Commun. 1992, 22, 567-568.
- [164] Hayashi, Y.; Yamaguchi, J.; Shoji, M. Tetrahedron 2002, 58, 9839-9842.
- [165] Sutton, A.E.; Clardy, J. J. Am. Chem. Soc. 2001, 123, 9935-9939.
- [166] Sato, M.; Sakaki, J.-I.; Takayama, K.; Kobayashi, S.; Suzuki, M.; Kaneko, C. *Chem. Pharm. Bull.* **1990**, *38*, 94-97.
- [167] Wulff, G.; Sarhan, A.; Gimpel, J.; Lohmar, E. Chem. Ber. 1974, 107, 3364-3376.

[168] Poncet, J.; Jouin, P.; Castro, B.; Nicolas, L.; Boutar, M.; Gaudemer, A. J. Chem. Soc., Perkin Trans. 1 1990, 611-615.

[169] Kikukawa, T.; Imaida, M. Chem. Lett. 1982, 1799-1802.

[170] Lee, V.J.; Branfman, A.R.; Herrin, T.R.; Rinehart, K.L.; J. Am. Chem. Soc. 1978, 100, 4225-4236.

[171] Mulholland, T.P.C.; Foster, R.; Haydock, D.B. J. Chem. Soc., Perkin Trans. 1 1972, 2121-2128.

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Ferner erkläre ich, dass ich nicht diese oder eine gleichartige Doktorprüfung an einer anderen Hochschule endgültig nicht bestanden habe.

Bayreuth, den 21.09.2005

(Carsten Jagusch)