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Abstract

In recent years, the demand for machine learning and artificial intelligence has grown
rapidly. This has manifested itself in a drastic increase in the number of existing appli-
cations as well as in the pervasiveness of these applications. In these, different machine
learning methods have shown enormous empirical success in accurately capturing relations
between input and output variables that are far too complex to model them by hand or
by classic statistical methods. The present work takes a more analytical approach by
mathematically investigating what guarantees can be given for the behavior of one special
type of machine learning methods, namely kernel-based minimizers of a regularized risk
functional. These minimizers are also known as support vector machines (SVMs) in the
literature. In recent years, SVMs have been investigated in much detail, but there still
remain open questions.

The present work examines two properties of SVMs. First, SVMs are proven to exhibit
different types of consistency—namely risk consistency, Lp-consistency and consistency
with respect to the norm in the underlying reproducing kernel Hilbert space—under mild
conditions. Surprising negative results occur when transitioning to so-called shifted loss
functions, which in many cases helps to eliminate certain conditions regarding the under-
lying (and in practice unknown) probability measure. It is shown that this elimination is
in general not possible for some of the results on consistency, but at the same time it is
also shown that alternative and in a certain sense less restrictive conditions regarding the
probability measure do in some cases suffice when using shifted loss functions. Secondly,
total stability of SVMs is investigated, which is related to classic statistical robustness.
Whereas the latter concept however only considers the effect of changes in the probability
measure P (respectively an empirical probability measure Dn in applications) on the re-
sulting SVM, total stability additionally takes into account the regularization parameter λ
and the kernel k of the SVM and gives bounds on how much the resulting SVM can in the
worst case scenario change based on simultaneous variations in the whole triple (P, λ, k)
respectively (Dn, λ, k).

As SVMs can in practice suffer from their super-linear requirements regarding computa-
tion time as well as computer memory, localized SVMs are examined as well. The principal
idea behind localized SVMs is to not learn a single global SVM on the whole input space,
but to instead divide the input space into different regions and learn one local SVM in
each of these regions and then plug them together to obtain a predictor on the whole input
space. This approach reduces the number of data points used for computing each single
of the local SVMs and hence—because of the super-linear computational requirements—
reduces the overall computation time and space. Additionally, it can also yield advantages
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regarding the quality of the resulting predictions. Results on consistency as well as on total
stability are transferred to localized SVMs. Notably, the consistency results also allow for
regions that change as the size of the data set increases, and the total stability results also
consider the effect of changes in the regions.
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Kurzzusammenfassung

In den letzten Jahren ist die Nachfrage nach maschinellem Lernen und künstlicher Intel-
ligenz rasant angestiegen. Dies hat sich in einer drastischen Zunahme der Zahl der be-
stehenden Anwendungen sowie in der Verbreitung dieser Anwendungen niedergeschlagen.
Hierbei haben verschiedene Verfahren des maschinellen Lernens enorme empirische Erfolge
beim akkuraten Erfassen von Beziehungen zwischen Eingabe- und Ausgabevariablen ge-
zeigt, die deutlich zu komplex sind, um sie von Hand oder mittels klassischer statistischer
Methoden zu modellieren. Die vorliegende Arbeit verfolgt einen analytischeren Ansatz, in-
dem sie mathematisch untersucht, welche Garantien für das Verhalten einer speziellen Art
von Verfahren des maschinellen Lernens gegeben werden können, nämlich kernbasierten
Minimierern eines regularisiertes Risikofunktionals. Diese Minimierer sind in der Literatur
auch als Support Vector Machines (SVMs) bekannt. In den letzten Jahren wurden SVMs
detailliert untersucht, aber es gibt weiterhin offene Fragen.

Die vorliegende Arbeit untersucht zwei Eigenschaften von SVMs. Erstens wird bewiesen,
dass SVMs unter schwachen Voraussetzungen verschiedene Arten der Konsistenz aufwei-
sen – nämlich Risiko-Konsistenz, Lp-Konsistenz und Konsistenz bezüglich der Norm im
zugrunde liegenden reproduzierenden Kern-Hilbertraum. Beim Übergang zu sogenannten
geshifteten Verlustfunktionen, welche in vielen Fällen beim Eliminieren gewisser Vorausset-
zungen an das zugrunde liegende (und in der Praxis unbekannte) Wahrscheinlichkeitsmaß
helfen, treten überraschende negative Resultate auf. Es wird gezeigt, dass dieses Eliminie-
ren bei manchen der Konsistenzresultate im Allgemeinen nicht möglich ist, aber gleich-
zeitig wird auch gezeigt, dass in manchen Fällen alternative und in einem gewissen Sinn
weniger restriktive Voraussetzungen bezüglich des Wahrscheinlichkeitsmaßes bei der Ver-
wendung von geshifteten Verlustfunktionen genügen. Zweitens wird totale Stabilität von
SVMs untersucht, welche verwandt mit klassicher statistischer Robustheit ist. Während
letzteres Konzept jedoch nur den Effekt von Änderungen im Wahrscheinlichkeitsmaß P
(beziehungsweise in einem empirischen Wahrscheinlichkeitsmaß Dn in Anwendungen) auf
die resultierende SVM betrachtet, berücksichtigt totale Stabilität zusätzlich auch den Re-
gularisierungsparameter λ und den Kern k der SVM und gibt Abschätzungen dafür, wie
stark die resultierende SVM sich bei gleichzeitiger Änderung des gesamten Tripels (P, λ, k)
beziehungsweise (Dn, λ, k) schlimmstenfalls ändern kann.

Da SVMs in der Praxis unter ihren superlinearen Anforderungen hinsichtlich Rechen-
zeit und Computerspeicher leiden können, werden zusätzlich lokalisierte SVMs untersucht.
Die grundsätzliche Idee hinter lokalisierten SVMs besteht darin, nicht eine einzelne globale
SVM auf dem kompletten Eingaberaum zu lernen, sondern den Eingaberaum stattdessen in
verschiedene Regionen aufzuteilen und in jeder dieser Regionen eine lokale SVM zu lernen
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und diese dann zusammenzufügen, um einen Prädiktor auf dem gesamten Eingaberaum
zu erhalten. Dieser Ansatz verringert die Anzahl der Datenpunkte, die für die Berechnung
jeder einzelnen lokalen SVM verwendet werden und reduziert somit – wegen der superline-
aren Rechenanforderungen – die Gesamtrechenzeit sowie den Platzbedarf. Zusätzlich kann
er auch Vorteile hinsichtlich der Qualität der resultierenden Vorhersagen liefern. Resultate
zur Konsistenz sowie zur totalen Stabilität werden auf lokalisierte SVMs übertragen. Hier-
bei werden bei den Konsistenzresultaten insbesondere auch Regionen zugelassen, welche
sich bei Zunahme der Größe des Datensatzes verändern, und bei den Resultaten zur totalen
Stabilität wird insbesondere auch der Effekt von Änderungen in den Regionen betrachtet.
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Chapter 1

Introduction

We live in “The Age of Big Data” as The New York Times already titled in 2012 (Lohr,
2012). Data has become available in vast amounts, be it data from digital sensors in
manufacturing and research processes as well as in products for private use such as smart-
phones and cars, or data supplied by end-users on the web by uploading content such as
images and by searching for specific products or answers on questions, or numerous further
sources. Naturally, companies as well as public organizations want to make use of this
“data flood” to “guide decisions, trim costs and lift sales” (Lohr, 2012)—or to just gener-
ally improve their performance. The question arises of how to make sense of the oftentimes
overwhelming amount of data and how to identify and extract that part of all the available
information that is relevant for the decision/prediction one tries to make—how to learn
from data?

Because of the vast amount of potential influencing factors and the potentially complex
relations, it quickly becomes impossible even for experts in their respective fields to de-
velop accurate models by hand. This is where statistical machine learning comes into play,
supported by the quickly increasing computational resources available. Informally, a char-
acterizing property of machine learning is “to let the system learn by itself (...) instead of
being programmed explicitly for the task” (Alpaydın, 2020, p. xix). A similar description
is given by calling machine learning a “field of study that gives computers the ability to
learn without being explicitly programmed” which Arthur Samuel is often accredited with
(see for example Zhou, 2021, p. 22). Even though this exact quote can not be found in the
often referenced seminal paper by Samuel (1959), it still captures the gist of that paper,
which played its part in Samuel popularizing the expression machine learning. A slightly
more formal definition is given by Mitchell (1997, p. 2): “A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure
P , if its performance at tasks in T , as measured by P , improves with experience E.”

These learning tasks can be manifold. Samuel (1959) looked at the game of checkers
which—as a game—has the advantage of having very clearly defined rules and states.
Later, the success of machine learning algorithms in the games of chess and Go, beating
some of the world’s leading players in both games after some of these algorithms had been
given no information about the games apart from the rules, also reached a lot of attention
in mainstream media, see for example McFarland (2016), Gibbs (2017). Machine learning
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has however also been successfully applied in numerous problems that are not restricted to
the domains of games. A classic example is the recognition of handwritten letters, which
is a typical task that many university students have to implement themselves in their
machine learning courses. Nowadays, not only the recognition of written but also that of
spoken language is well advanced and is used as an everyday helper in many smartphones
or even whole homes in the form of voice assistants. Smartphones of course also use
machine learning in many more applications, like for example face detection in the camera
app. In medicine, machine learning helps to identify and predict diseases that a patient
has respectively might get in the future based on the patient’s blood levels, the results
of imaging methods such as magnetic resonance imaging, and further characteristics of
the patient. In cars, machine learning methods use the data stream coming from sensors
and cameras for accident prevention systems and even for autonomous driving. This short
list gives a first idea of how varied and omnipresent machine learning applications already
are and that this will only further increase in the near future—not only in tasks which
are as apparent to the end-user but also in such that are hidden in internal processes of
companies.

The tasks can be formalized by introducing an input space X containing all potential
explanatory variables (such as the signals coming from the different digital sensors in an
autonomously driving car) as well as an output space Y containing the possible decisions
that can be made based on the input variables (such as the different angles that the wheels
of the car can get moved into) and an unknown probability measure P on X ×Y describing
combinations of values from X and Y which can occur (such as possible signals from the
sensors and appropriate angles of the wheels that will not cause a crash). If we denote
by (X, Y ) a pair of random variables with distribution P, the task consists of predicting
the value of Y based on that of X, that is finding a good predictor function f : X → Y ,
while inflicting as few prior assumptions upon P as possible. In (supervised) machine
learning, the experience used for this task consists of input-output-pairs (xi, yi) ∈ X × Y ,
i = 1, . . . , n for some n ∈ N, of observations sampled from P, which together form a data
set Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n.1 Finally, as the relation between X and Y is
usually not entirely deterministic but P allows Y to take different values for a given value
x ∈ X of X, it is not always immediately obvious in which way one should aim to predict
Y based on X. The exact goal of prediction gets specified by the performance measure one
chooses and often consists of finding a function which estimates certain characteristics of
the conditional distributions P(· |X = x), x ∈ X , of Y ,2 like for example the function of
conditional means or that of conditional medians.

For approaching such machine learning tasks, a vast array of methods and corresponding
algorithms exists. An overview of various popular approaches to the learning problem is
for example given by the aforementioned books Mitchell (1997), Alpaydın (2020), Zhou
(2021), but also by Devroye et al. (1996), Duda et al. (2001), Györfi et al. (2002), Clarke
et al. (2009), Hastie et al. (2009), Shalev-Shwartz and Ben-David (2014) among others. We

1The data set is denoted as a tuple rather than a set as it is possible for the same input-output-pair to
occur multiple times.

2These conditional distributions are known to uniquely exist whenever we have Y ⊆ R closed (which
will be assumed throughout this thesis), cf. Remark 2.0.3.
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mostly focus on one special type of machine learning algorithms, namely that of computing
support vector machines (SVMs). Whereas SVMs had originally only been proposed for
classification problems using the so-called hinge loss function (cf. eq. (2.4)), for which
reason some authors still use the term SVM to describe only this special type of kernel-
based regularized risk minimizers, we use it in a broader sense allowing for arbitrary loss
functions and thus notably also covering regression problems. SVMs as well as the necessary
building blocks—some of them have already been mentioned here, such as loss functions,
risks, kernels and regularization—are described in Section 2.1, see also Vapnik (1995, 1998),
Cristianini and Shawe-Taylor (2000), Schölkopf and Smola (2002), Cucker and Zhou (2007),
Steinwart and Christmann (2008) for more detailed introductions. Additional references
providing useful properties of SVMs can also be found in Section 2.1.

SVMs are an important and popular tool in machine learning mainly due to two reasons:
First, they are known to possess many desirable theoretical properties such as universal
consistency, statistical robustness and stability, and good learning rates (see for example
the books mentioned in the previous paragraph). Secondly, they are the solutions of finite-
dimensional convex programs (cf. Smola and Schölkopf, 2004) and empirically observe good
performance (cf. Klambauer et al., 2017; Paoletti et al., 2019) if the data set is not too large.
For large data sets, SVMs however suffer from their computational requirements growing at
least quadratically in the size of the data set Dn, with regards to both time and memory, cf.
Platt (1998), Joachims (1998), Thomann et al. (2017). For this reason, we do not only look
at “regular” SVMs but also at so-called localized SVMs, which—instead of computing one
SVM for the whole input space—divide the input space X into different regions,3 compute
a separate SVM in each of these regions, and then plug them together in order to obtain
a global predictor on all of X . By regionalizing the input space, the data set gets split
into several smaller regional data sets—as the size of Dn increases, it is usually reasonable
to also increase the number of regions, such that the regional data sets do only grow
slowly in size—and the computational requirements are therefore greatly reduced for large
data sets, see for example Thomann et al. (2017). Additionally, localizing SVMs can also
yield improvements regarding the resulting predictions because the localization increases
the flexibility of the method and can potentially separate regions in which P(· |X = x)
takes very different shapes. Section 2.2 defines these localized SVMs in more detail and
reviews existing publications on them. That section additionally mentions some alternative
approaches which can also reduce the computational requirements of SVMs, but which for
the most part do not yield the additional improvement of the predictions that localized
SVMs can yield.

This thesis is mainly concerned with two important theoretical properties of SVMs and
localized SVMs. First, Chapter 3 takes a look at their consistency, i.e. at whether (local-
ized) SVMs converge (in a suitable sense) to the “true” function one tries to estimate as
the size n of the data set Dn tends to infinity. As this is a very fundamental property for
any learning method, there already exist results for SVMs (see for example Christmann
and Steinwart, 2007, Theorem 12) as well as for localized SVMs (see for example Hable,
2013, Theorem 1, and Dumpert and Christmann, 2018, Theorem 3.1). These results are in

3These regions are often chosen in such a way that they constitute a partition of the input space.
However, most of the results from this thesis do not actually require the regions to be pairwise disjoint.
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some sense generalized in Chapter 3. Additionally, all these results consider the same type
of consistency, namely risk consistency, cf. Section 3.1. Whereas risk consistency is the
most widely-used type of consistency in machine learning theory and the one that is aimed
at by SVMs and localized SVMs by their definition, other types like Lp-consistency and
consistency with respect to the norm in a Hilbert space (which are both also introduced in
Section 3.1) can also be of interest as they compare the two functions—(localized) SVM
and “true” function—more directly. For this reason, results on these types of consistency
are derived as well. Notably and in addition to some further generalizations, the results
for localized SVMs, contrary to those from Dumpert and Christmann (2018), also allow
the underlying regions to change as the size n of Dn increases and, contrary to those from
Hable (2013), do not assume any specific method for obtaining the regions. Note that this
thesis does not investigate the rates of these types of convergence, but instead focuses on
deriving consistency under mild conditions.

Afterwards, Chapter 4 investigates total stability of SVMs and localized SVMs. The
expression “total stability” is based on the paper Christmann et al. (2018) and bears
resemblance to the notion of statistical robustness, which is concerned with guaranteeing
that small changes in the data (such as a small amount of outliers or slight changes in
a potentially large part of the data set) will only lead to small changes in the resulting
predictor. Such changes in the data may always occur in practice, for example due to
measurement and rounding errors. Rounding inaccuracies can obviously lead to small
changes in a large part of the data set, and it is hence apparent that this type of changes in
the data is of great practical relevance. On the other hand, outliers constitute a common
occurrence as well: “[A]ltogether, 1–10% gross errors in routine data seem to be more the
rule rather than the exception” (Hampel et al., 1986, p. 28). Hence, it is obvious from
the exemplary machine learning tasks given earlier in this introduction that robustness
is a desirable property for machine learning methods such as (localized) SVMs: In an
autonomous car, changes in a few pixels of the output of a camera (for example because of
some dirt on the camera) should not lead to a completely different resulting angle of the
wheels. Similarly, when using blood levels and other patient data for diagnosing diseases,
rounding these values in a slightly different way should not yield a completely different
result. There exists a multitude of publications on statistical robustness of SVMs and also
some on that of localized SVMs (see Section 4.1). Our considerations, however, are more
closely connected to those by Christmann et al. (2018) who additionally took into account
that SVMs also depend on certain hyperparameters (cf. Section 2.1), which in turn are
usually not predefined but instead depend on the data set Dn themselves. As changes in
these hyperparameters can therefore be a consequence of changes in the data, one would
hope that SVMs are stable with respect to them as well. Christmann et al. (2018) proved
that this is indeed the case and used the expression “total stability” for this. Chapter 4 first
considerably generalizes results from that paper, before then transferring them to localized
SVMs. For these, the effect of changes in the underlying regionalization is considered as
well.

Chapter 3 is partially taken from the peer-reviewed papers Köhler (2024a,b) that were
published in Neurocomputing and Journal of Machine Learning Research respectively.
Chapter 4 on the other hand is partially taken from the peer-reviewed paper Köhler and
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Christmann (2022) that was published in Journal of Machine Learning Research. Both
chapters do however also contain previously unpublished results.
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Chapter 2

Support Vector Machines and
Localized Support Vector Machines

This chapter gives a short introduction, first to support vector machines (SVMs) and
then to localized SVMs. Both of these are examined regarding different properties in the
subsequent chapters. Throughout this chapter, the following is assumed to hold true:

Assumption 2.0.1. Let (X ,A) be a measurable space and let Y ⊆ R be closed.

Remark 2.0.2. Throughout this thesis we usually refrain from explicitly stating the σ-
algebra A and instead just speak of the measurable space X to shorten the notation as
long as the exact shape of A is not relevant or A is obvious from context. When speaking
of probability measures on measurable spaces, we usually also omit explicitly stating the
σ-algebra, thus for example speaking of probability measures on X instead of on (X ,A).
On Cartesian products of measurable spaces, we always assume the product σ-algebra if
not specified differently. On measurable subsets X̃ ⊆ X , we always assume the σ-algebra
Ã := {S ⊆ X̃ |S ∈ A} if not specified differently. A metric space (S, dS)—we will often
have S ⊆ Rd for some d ∈ N—is always assumed to be equipped with its Borel σ-algebra BS

if not specified differently. To once more shorten the notation, we usually do not explicitly
state the metric dS and instead just speak of the metric space S.
Remark 2.0.3. Y ⊆ R being closed will be assumed in all main chapters and is known to
imply that Y is a Polish space (Bauer, 2001, p. 157). If P is a probability measure on
X × Y , the (regular) conditional distributions P(· |X = x), x ∈ X , hence uniquely exist
and it is possible to split P into a marginal distribution PX on X and these conditional
distributions (Dudley, 2004, Theorems 10.2.1 and 10.2.2).

With a slight abuse of notation, we sometimes just write P(· |X) when discussing
P(· |X = x), x ∈ X , in the remainder of this thesis.

2.1 Introduction to Support Vector Machines
SVMs have been an important method in machine learning for many years now. After
important groundwork had been laid in the preceding decades (notably see Vapnik and
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Lerner, 1963; Vapnik and Chervonenkis, 1964), SVMs as they are known today have been
proposed in the 1990s by Boser et al. (1992), Cortes and Vapnik (1995) among others.
Whereas the concept of SVMs had only been proposed for binary classification tasks (with
the two classes being denoted as “−1” and “+1”, i.e. with output space Y = {−1,+1})
in these papers, Vapnik (1995), Drucker et al. (1996), Vapnik et al. (1996) among others
generalized it to regression tasks, sometimes calling the resulting method support vector
regression in order to differentiate it from SVMs for classification. We however call both of
these SVMs—as it is the case in many publications nowadays—since the definition given
in this section covers both cases.

In the following, Section 2.1.1 gives a definition of SVMs and Section 2.1.2 formally
defines kernels and reproducing kernel Hilbert spaces, which are needed for SVMs. Sec-
tion 2.1.3 then recalls some properties of the building blocks of SVMs that will be useful in
later chapters. Further detailed introductions to SVMs can for example be found in Vap-
nik (1995, 1998), Cristianini and Shawe-Taylor (2000), Schölkopf and Smola (2002), Cucker
and Zhou (2007), Steinwart and Christmann (2008), with Sections 2.1.1 to 2.1.3 mostly
using the definitions and notation used by Steinwart and Christmann (2008). Lastly, Sec-
tion 2.1.4 recalls the concept of shifted loss functions and the advantages they can bring
to SVMs.

2.1.1 Definition of Support Vector Machines
SVMs tackle the problem of (supervised) statistical machine learning described in the
introduction. That is, the goal is to find some function f : X → R relating an input
random variable X taking values in X to an output random variable Y taking values in
Y ⊆ R and predicting the value of Y based on that of X. To decide for a predictor f , the
quality of predictions f(x) has to be assessed. This can be done using loss functions.

Definition 2.1.1 (Loss Function). A function L : X × Y × R → [0,∞) is called a loss
function (or just loss) if it is measurable.

For a predictor f , the value L(x, y, f(x)) can then be interpreted as the loss or cost
associated with predicting f(x) while the true output belonging to x is y. In order to not
only assess single predictions f(x) but instead the whole predictor f , one has to look at
the average loss this predictor produces, i.e. the expectation of L.

Definition 2.1.2 (Risk). Let L : X ×Y ×R → [0,∞) be a loss function, P be a probability
measure on X × Y , and f : X → R be a measurable function. Then,

RL,P(f) :=
∫

X ×Y
L(x, y, f(x)) dP(x, y) =

∫
X

∫
Y
L(x, y, f(x)) dP(y |x) dPX(x)

is called L-risk (or just risk) of f with respect to P.4

4Splitting P into marginal distribution PX and conditional distribution P(· |X) is possible because of
Remark 2.0.3 and Assumption 2.0.1.
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In practice, the true distribution P is usually unknown and the predictor f is learned
on the basis of a training data set Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n of n ∈ N i.i.d.
observations sampled from P. The associated empirical distribution is given by

Dn := 1
n

n∑
i=1

δ(xi,yi) ,

with δ(x,y) denoting the Dirac distribution in (x, y) ∈ X × Y . This leads to the following
important special case of Definition 2.1.2:
Remark 2.1.3 (Empirical Risk). Let Dn be the empirical distribution associated with the
training data set Dn. Plugging Dn into Definition 2.1.2 yields the empirical L-risk (or just
empirical risk)

RL,Dn(f) =
∫

X ×Y
L(x, y, f(x)) dDn(x, y) = 1

n

n∑
i=1

L(xi, yi, f(xi)) .

The learning goal can be formalized as finding a function whose risk (i.e. expected
loss/cost) with respect to the true distribution P underlying the data is as small as possible.
Ideally, one would hope to find a measurable function that minimizes RL,P. In practice,
this is usually not possible because of P being unknown, all information about P stemming
from the data set Dn. Still, it is apparent that this minimizer of the risk as well as the
minimal risk itself both play an important role.

Definition 2.1.4 (Bayes Risk). Let L : X × Y ×R → [0,∞) be a loss function and P be
a probability measure on X × Y . Then,

R∗
L,P := inf {RL,P(f) | f : X → R measurable}

is called Bayes L-risk (or just Bayes risk) with respect to P. Any measurable f ∗
L,P : X → R

satisfying RL,P(f ∗
L,P) = R∗

L,P is called a Bayes function.

For some loss functions, the Bayes functions correspond to easily interpretable character-
istics of the conditional distribution P(· |X). That is, the learning goals specified by these
loss functions correspond to learning these characteristics of P(· |X). Prime examples of
this include the least squares loss

LLS : X × Y ×R → [0,∞) , (x, y, t) 7→ (y − t)2 ,

where the associated risk gets minimized by the function x 7→ E [Y |X = x] of conditional
means (cf. Györfi et al., 2002, Section 1.1), and the (τ -)pinball loss

Lτ -pin : X × Y ×R → [0,∞) , (x, y, t) 7→

(1 − τ) · (t− y) , if y < t ,

τ · (y − t) , if y ≥ t ,
(2.1)

for τ ∈ (0, 1), where the associated risk gets minimized by the function of conditional τ -
quantiles (cf. Koenker, 2005, Sections 1.3 and 1.4).5 As quantiles are in general not unique,
the latter is an example for Bayes functions also not always being unique.

5See also page 49 for further details and references on the pinball loss.
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Figure 2.1.1: Example of overfitting for the least squares loss and data generated according
to PX being the uniform distribution on (0, 10) and P(· |X = x) being the normal distri-
bution N (x, 1). The function represented by the solid line exhibits empirical risk 0 on the
training data but does—in contrast to the Bayes function—not yield good predictions for
unseen data coming from the same distribution. Here, the Bayes function is just the linear
function defined by f ∗

L,P(x) = x because of the underlying conditional distributions being
symmetric about that function.

Now, trying to find a function whose risk (with respect to P) is as small as possible, ideally
equal to the Bayes risk, based on the training data set Dn comes with the problem that not
every function observing a small empirical risk on the finite data set Dn also offers good
generalization to unseen data coming from P and will therefore yield good predictions for
such unseen data (even though, by the law of large numbers, RL,Dn(f) of course converges
to RL,P(f) for each single measurable f as n → ∞). By just minimizing the empirical
risk, one often runs into the problem of overfitting the function to the training data, for
example just interpolating the points from Dn and thus obtaining empirical risk 0, but not
accurately capturing the structure underlying the data, see for example Figure 2.1.1.

In order to circumvent overfitting, one can add a regularization term penalizing functions
that are overly complex in a suitable sense, see also von Luxburg and Schölkopf (2011, Sec-
tion 7) for more details on the idea behind regularization. For SVMs, the minimization is
performed not over all measurable functions but only those from some reproducing kernel
Hilbert space (RKHS) H over X and the penalty term is the squared H-norm of the func-

10



tion multiplied by some positive constant λ > 0, the so-called regularization parameter ,
controlling the amount of regularization. RKHSs as well as some of their properties are
described in more detail in Section 2.1.2. For now, it suffices to know that RKHSs over X
can be seen as special Hilbert spaces consisting of functions f : X → R, and that RKHSs
can be associated to a so-called kernel k : X ×X → R on X and possess certain useful prop-
erties. RKHSs can be large enough to approximate every continuous function arbitrarily
well and to contain functions separating arbitrary compact disjoint sets in the binary clas-
sification setting (cf. Steinwart and Christmann, 2008, Definition 4.52, Proposition 4.54,
Corollary 4.58), but can still be handled well in practice because of not being too large
and having a useful structure for representing their elements (see also Lemma 2.1.10(iv)).
This yields the following definition of SVMs:

Definition 2.1.5 (Support Vector Machine). Let L : X ×Y ×R → [0,∞) be a loss function
and P be a probability measure on X × Y . Let k be a kernel on X with RKHS H and let
λ > 0. Then,

fL,P,λ,k := arg inf
f∈H

RL,P(f) + λ ||f ||2H

is called support vector machine (SVM).

Remark 2.1.6 (Empirical Support Vector Machine). In practice, the probability measure
in Definition 2.1.5 is usually the empirical distribution Dn associated with the data set Dn.
Plugging Dn into Definition 2.1.5 yields the empirical SVM

fL,Dn,λ,k = arg inf
f∈H

RL,Dn(f) + λ ||f ||2H = arg inf
f∈H

1
n

n∑
i=1

L(xi, yi, f(xi)) + λ ||f ||2H .

In the considerations regarding consistency in Chapter 3, it is necessary in many results
to think of the empirical SVM not as a fixed function depending on the observed data
Dn = ((x1, y1), . . . , (xn, yn)) but instead as a random function depending on the random
variables (X1, Y1), . . . , (Xn, Yn) i.i.d.∼ P, which the data points are realizations of. Since
it will be clear from the context whether the SVM needs to be thought of as a random
function, we will not introduce separate notation for this and instead also denote it by
fL,Dn,λ,k.

Even though one usually needs empirical SVMs in practice, Definition 2.1.5 defines SVMs
for general probability measures, most notably also for the true distribution underlying Dn,
which is useful for theoretical considerations. To distinguish the latter from an empirical
SVM, it is also called theoretical SVM. Furthermore, when contrasting SVMs with the
localized SVMs introduced in Section 2.2, we sometimes also call them global SVMs or
regular SVMs in order to emphasize the difference.

SVMs are known to possess many desirable theoretical properties under mild assump-
tions. These include existence and uniqueness as well as statistical robustness—making
them the solutions of a well-posed problem in Hadamard’s sense (Hable and Christmann,
2011)—, risk consistency and the existence of representation theorems, see for example the
references given at the beginning of Section 2.1. Further active research is performed on
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learning rates of SVMs, that is, on how quickly the convergence of the risks of empirical
SVMs to the Bayes risk takes place. Because of the no-free-lunch-theorem (Devroye, 1982),
such learning rates cannot be derived without imposing assumptions on the unknown true
distribution P. Learning rates under different conditions on P have for example been de-
rived by Caponnetto and De Vito (2007), Steinwart et al. (2009), Mendelson and Neeman
(2010), Eberts and Steinwart (2013), Hang and Steinwart (2017), Fischer and Steinwart
(2020). Some additional references regarding consistency and robustness (and general sta-
bility) are given in Chapters 3 and 4 respectively, where new results on these properties
are derived.

It is worth mentioning that there also exist several learning methods that are closely re-
lated to SVMs, such as pairwise learning. Pairwise learning uses loss functions depending
on not only a single input-output tuple (x, y) and a prediction f(x) but instead on pairs
((x, y), (x′, y′)) and either a prediction f(x, x′) or a pair of predictions (f(x), f(x′)). This
approach is popular for different tasks. One such task is distance metric learning (Wein-
berger and Saul, 2009; Bellet and Habrard, 2015; Cao et al., 2016), where it is natural to
look at pairs of instances because metrics work on pairs of instances as well, and where
the learned metric can then be used to obtain predictions by learning methods such as
k-nearest neighbors. Another important application of pairwise learning is that of ranking
tasks, in which one aims at learning how different instances are ranked relatively to each
other (Clémençon et al., 2008; Agarwal and Niyogi, 2009; Zhao et al., 2017). In principle,
one could approach such tasks by trying to learn a real-valued function of scores belonging
to the individual instances. As the precise values of such scores would however not contain
any inherent meaning and as only the pairwise comparisons of such scores are of impor-
tance, it is also natural to consider pairwise learning for such tasks. See also Christmann
and Zhou (2016), Ying and Zhou (2016), Huang and Wu (2021), Gensler and Christmann
(2022) among others (with Ying and Zhou, 2016, combining pairwise learning with online
learning) for general considerations on pairwise learning that do not focus on any specific
task such as distance metric learning or ranking.

2.1.2 Kernels and Reproducing Kernel Hilbert Spaces

This section gives a short overview of RKHSs and the associated kernel functions. We
however only state those properties that are necessary for later chapters, thus of course
not giving an extensive introduction. For more detailed descriptions of RKHSs and kernels,
see for example Aronszajn (1950), Berlinet and Thomas-Agnan (2004), Saitoh and Sawano
(2016) as well as Steinwart and Christmann (2008, Chapter 4), from which most definitions
and results from this section are taken. The results can for the most part however also be
found in the other references.

We start by giving a definition of kernels, which are associated to RKHSs and which
are useful for working with the functions contained in the RKHSs and describing them.
As we are only interested in R-valued and not in C-valued kernels, the subsequent defini-
tion actually comprises two equivalent characterizations (Steinwart and Christmann, 2008,
Definition 4.1 and Theorem 4.16), which will both be useful in later chapters.
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Definition 2.1.7 (Kernel). Let X be a non-empty set. Then, a function k : X × X → R

is called a kernel on X if one of the following two equivalent conditions is satisfied:

(i) There exists an R-Hilbert space H, called feature space of k, and a map Φ: X → H,
called feature map of k, such that

k(x, x′) = ⟨Φ(x),Φ(x′)⟩H ∀x, x′ ∈ X .

(ii) k is symmetric, i.e.

k(x, x′) = k(x′, x) ∀x, x′ ∈ X ,

and positive definite, i.e.
m∑

i=1

m∑
j=1

αiαjk(xi, xj) ≥ 0 ∀m ∈ N , α1, . . . , αm ∈ R , x1, . . . , xm ∈ X .

Looking at the first part of this definition, the evaluation of a kernel can be interpreted as
first mapping the inputs into a potentially high-dimensional (or even infinite-dimensional)
Hilbert space H via Φ and then computing the inner product of these H-valued repre-
sentations of the inputs. By choosing a suitable kernel, these computations in H can
be performed without ever explicitly moving to this potentially high-dimensional space,
thus circumventing the drastic increase in computational demands coming from the high
number of dimensions. Notably, this can even be done without knowing Φ, i.e. without
knowing how the transformation to H is done. This is also known as the kernel trick and
is described in detail by Schölkopf et al. (1998) but had already been used in early papers
on SVMs such as Boser et al. (1992), Cortes and Vapnik (1995).

Now, by the Riesz-Fréchet representation theorem (see Dudley, 2004, Theorem 5.5.1)
each element h ∈ H can be one-to-one associated to a linear function g : H → R by
defining g(h′) := ⟨h, h′⟩H for all h′ ∈ H. Hence, it is also possible to associate each h ∈ H
to a function f : X → R by defining f(x) := ⟨h,Φ(x)⟩H for all x ∈ X , which is not
necessarily linear in x because of possible non-linearities coming from Φ. As SVMs are
elements of certain Hilbert spaces (cf. Definition 2.1.5), they can therefore be seen as not
necessarily linear functions on X which can be obtained by only looking at linear functions
on H—without even being required to explicitly perform computations in H because of
the kernel trick. In contrast to the relation between elements from H and linear functions
on H, the relation between elements from H and functions on X is however not one-to-one
in general. On the one hand, not all functions on X can be represented by elements from
H. This can be mitigated by choosing H large enough that most functions can at least
be closely approximated.6 On the other hand, it is also possible that multiple elements
from H all represent the same function on X . This gets circumvented by not choosing
any possible combination of feature space and feature map, but instead the combination of

6In practice, H is not chosen freely but instead as the RKHS (cf. Definition 2.1.8) of a suitable kernel.
However, popular kernels such as the Gaussian RBF kernels have RKHSs that are large enough to, for
example, approximate all continuous functions arbitrarily well, cf. Example 2.1.12.
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reproducing kernel Hilbert space (see Definition 2.1.8) and the so-called canonical feature
map (see Remark 2.1.9). For reproducing kernel Hilbert spaces, we also give two different
definitions in the following, which are equivalent by Steinwart and Christmann (2008,
Lemma 4.19, Theorem 4.20, Theorem 4.21).

Definition 2.1.8 (Reproducing Kernel Hilbert Space). Let X be a non-empty set and let
H be an R-Hilbert space consisting of functions mapping from X into R. H is called a
reproducing kernel Hilbert space (RKHS) over X if one of the following two equivalent
conditions is satisfied:

(i) For all x ∈ X , the Dirac functional

δx : H → R , f 7→ f(x)

is continuous.

(ii) There exists a kernel k on X satisfying k(·, x) ∈ H for all x ∈ X as well as the
reproducing property

f(x) = ⟨f, k(·, x)⟩H

for all f ∈ H and x ∈ X .

Remark 2.1.9 (Canonical Feature Map). In the situation of the second part of Defini-
tion 2.1.8,

Φ: X → H , x 7→ Φ(x) := k(·, x)

is called canonical feature map of k. By Steinwart and Christmann (2008, Lemma 4.19),
the RKHS H and Φ together form a possible combination of feature space and feature map
of k. Whereas in general there exist many possible such combinations, the relation between
kernel and RKHS is one-to-one (Steinwart and Christmann, 2008, Theorems 4.20 and 4.21)
and the RKHS is in some sense the smallest feature space of the kernel (Steinwart and
Christmann, 2008, Theorem 4.21). For these reasons, RKHS and canonical feature map
form a canonical choice of feature space and feature map, which we always use if not
specified differently, and H is also called the RKHS of k and k the (reproducing) kernel of
H.

The subsequent lemma summarizes several interesting properties of kernels and their
RKHSs that are useful for later chapters. For this, we define

||k||∞ := sup
x∈X

√
k(x, x) (2.2)

for kernels k on X and call k bounded if ||k||∞ < ∞. Note that this definition of ||k||∞
coincides with the square root of the general definition of the supremum norm when applied
to kernels, cf. Cucker and Zhou (2007, p. 22).

Lemma 2.1.10. Let k be a kernel on X with RKHS H.
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(i) If k is bounded, then

||f ||∞ ≤ ||f ||H ||k||∞

for all f ∈ H.

(ii) Let Q be a probability measure on X . If k is bounded and measurable, then H ⊆ Lp(Q)
for all p ∈ [1,∞].

(iii) If X is a separable topological space and k is continuous, then H is separable.

(iv) The set

Hpre :=
{

m∑
i=1

αik(·, xi)
∣∣∣∣m ∈ N, α1, . . . , αm ∈ R, x1, . . . , xm ∈ X

}

is dense in H. For f := ∑m
i=1 αik(·, xi) ∈ Hpre, we have

||f ||2H =
m∑

i=1

m∑
j=1

αiαjk(xi, xj) .

Proof.

(i) See Steinwart and Christmann (2008, Lemma 4.23).

(ii) Follows from part (i) and Steinwart and Christmann (2008, Lemma 4.24) because
||f ||Lp(Q) ≤ ||f ||∞ for all measurable functions and all p ∈ [1,∞].

(iii) See Steinwart and Christmann (2008, Lemma 4.33).

(iv) See Steinwart and Christmann (2008, Theorem 4.21).

Also note that empirical SVMs based on convex loss functions (cf. Definition 2.1.13)
always lie in Hpre from Lemma 2.1.10(iv), see Steinwart and Christmann (2008, Theo-
rem 5.5).

The next lemma concerns RKHSs of multiples of kernels. This result and its proof are
taken from the peer-reviewed paper Köhler and Christmann (2022) that was published
in Journal of Machine Learning Research. We suppose that the result might be well-
established, but we still give the proof because we did not explicitly find it in any literature
preceding Köhler and Christmann (2022).

Lemma 2.1.11. Let Ω ̸= ∅. Let k : Ω × Ω → R be a kernel with RKHS H. Let α > 0
and define the kernel k̃ : Ω × Ω → R by k̃ := αk. Then, H̃ := H equipped with the norm
||·||H̃ := 1√

α
||·||H is the RKHS of k̃.

Proof. Let Φ: Ω → H , x 7→ k(·, x) be the canonical feature map of k. By Remark 2.1.9,
we obtain

k̃(x, x′) = αk(x, x′) = α ⟨Φ(x),Φ(x′)⟩H =
〈√

αΦ(x),
√
αΦ(x′)

〉
H

∀x, x′ ∈ Ω ,
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and hence k̃ is indeed a kernel whose feature space and feature map can be chosen as H
and Φ̃ :=

√
αΦ respectively.

Now, let f ∈ H be arbitrary but fixed. Because H is the RKHS of k, the reproducing
property yields that g := α−1/2f ∈ H satisfies

⟨g, Φ̃(x)⟩H =
〈

1√
α
f,

√
αΦ(x)

〉
H

= ⟨f,Φ(x)⟩H = f(x) ∀x ∈ Ω . (2.3)

Hence, Steinwart and Christmann (2008, Theorem 4.21, eq. (4.10)) yields that H̃ := H
equipped with a suitable norm is indeed the RKHS of k̃. To derive the norm, note that g
is actually the only element of H satisfying (2.3) because for each h ∈ H with h ̸= g, there
needs to exist at least one x ∈ Ω such that

f(x) =
√
α · g(x) ̸=

√
α · h(x) =

√
α · ⟨h,Φ(x)⟩H = ⟨h, Φ̃(x)⟩H .

Steinwart and Christmann (2008, Theorem 4.21, eq. (4.11)) therefore yields

||f ||H̃ = inf
{
||h||H

∣∣∣h ∈ H with f = ⟨h, Φ̃(·)⟩H

}
= ||g||H = 1√

α
||f ||H .

Even though there exist many useful kernels, the one that is probably the most popu-
lar choice for SVMs and related machine learning methods is the Gaussian RBF (radial
basis function) kernel, for which reason this kernel will also appear in several examples
throughout this thesis and also in some results in later chapters.

Example 2.1.12 (Gaussian RBF Kernel). Let X ⊆ Rd for some d ∈ N. For γ ∈ (0,∞),
the Gaussian RBF kernel (or just Gaussian kernel) kγ on X with bandwidth γ is defined
by

kγ : X × X → R , (x, x′) 7→ exp
(

−||x− x′||22
γ2

)
.

The RKHS of kγ is large enough to approximate all continuous functions as well as all
functions from Lp(Q)-spaces (where Q is a probability measure on X ) arbitrarily well, cf.
Steinwart and Christmann (2008, Definition 4.52, Corollary 4.58, Theorem 4.63). The con-
tinuity of kγ additionally implies the separability of its RKHS (see Lemma 2.1.10(iii)) and,
if X and Y are both equipped with their respective Borel σ-algebras, also the measurability
of kγ.

Note that one does in practice usually not predetermine the exact kernel before learning
an SVM. Instead, a typical course of action is to predetermine some set of kernels and
then perform cross-validation to choose the kernel yielding the best prediction from this
set. For example, one might decide on using a Gaussian RBF kernel and then choose a
suitable bandwidth γ by performing cross-validation for all bandwidths from some grid
of values. As cross-validation can be time-consuming, there exist approaches to speed it
up by suitable approximations, see for example Liu et al. (2020). In addition, Ying and
Zhou (2007), Xiang and Zhou (2009), Xiang (2013), Hu and Zhou (2021) (with the last
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one additionally considering distributed learning, see Section 2.2.1) among others directly
include the choice of γ in their optimization problems7 respectively choose γ depending
on the size of the training data set and derive theoretical results such as learning rates by
incorporating this flexibility of γ in their analyses. This approach is in parts motivated
by Smale and Zhou (2003) who showed that fixed Gaussian RKHSs can—depending on
f ∗

L,P—exhibit approximation errors that decay only logarithmically with respect to the
regularization parameter λ. Lastly, Lanckriet et al. (2004), Micchelli and Pontil (2005),
Ong et al. (2005), Wu et al. (2007), Ying and Campbell (2009), Cortes et al. (2010),
Liu and Liao (2015), Lv et al. (2021) among others investigate learning the kernel for
more general classes of kernels. The exact investigated framework differs between the
mentioned papers, many however coincide in actually learning a convex combination (or
sometimes a more general linear combination) of a set of base kernels. To achieve this,
Ong et al. (2005) take the conceptually particularly interesting approach of introducing
so-called hyper reproducing kernel Hilbert spaces—RKHSs whose elements are kernels
again—and associated hyperkernels. These different approaches are also known as multi-
kernel learning, and Gönen and Alpaydın (2011) give an extensive review of many of the
approaches that existed at that point in time.

2.1.3 Some Additional Properties of Loss Functions and Risks
This section can be viewed as giving a collection of notation and properties regarding loss
functions and risks that will be useful in later chapters. Most of these are taken from
Steinwart and Christmann (2008).

Definition 2.1.13 (Properties of Loss Functions). Let L : X × Y ×R → [0,∞) be a loss
function.

(i) L is called convex if L(x, y, ·) : R → [0,∞) is convex for all (x, y) ∈ X × Y .

(ii) L is called continuous if L(x, y, ·) : R → [0,∞) is continuous for all (x, y) ∈ X × Y .

(iii) L is called differentiable if L(x, y, ·) : R → [0,∞) is differentiable for all (x, y) ∈ X ×Y .
In this case, L′(x, y, t0) denotes the derivative of L(x, y, ·) : R → [0,∞) at t0 ∈ R for
(x, y) ∈ X × Y .

(iv) L is called Lipschitz continuous if there exists a constant c ≥ 0 such that

sup
(x,y)∈X ×Y

|L(x, y, t1) − L(x, y, t2)| ≤ c · |t1 − t2| ∀ t1, t2 ∈ R .

The smallest such constant is denoted by |L|1 and called Lipschitz constant of L.

In practice, one almost always uses convex—and hence also continuous—loss functions
as this is needed to guarantee uniqueness of the SVM and also makes SVMs the solutions
of convex programs, which makes their calculation computationally feasible because of

7In contrast to cross-validation, γ can not only be chosen from a discrete set of possible values in these
optimization problems.
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one being able to apply known results and methods for such convex programs, see for
example Smola and Schölkopf (2004) (some theoretical results will however also hold true
without the convexity). Lipschitz continuity will be of special importance in the stability
results from Chapter 4, but is not satisfied by the popular least squares loss. On the
other hand, whereas the least squares loss is differentiable, this is not satisfied by other
popular choices such as the pinball loss or the ε-insensitive loss (cf. Figure 2.1.2). In such
non-differentiable but still convex cases, the concept of a subdifferential will be useful. The
following definition slightly simplifies the definitions found in books on convex analysis
such as Rockafellar (1972, Chapter 23) because we only need subdifferentials with respect
to one-dimensional arguments.

Definition 2.1.14 (Subdifferential).

(i) Let f : R → R be convex. Then, the subdifferential of f at r0 ∈ R is defined by

∂f(r0) :=
{
s ∈ R

∣∣∣∣ f(r) ≥ f(r0) + s · (r − r0) for all r ∈ R
}
.

(ii) Let L : X × Y ×R → [0,∞) be a convex loss function. Then, ∂L(x, y, t0) denotes the
subdifferential of L(x, y, ·) : R → [0,∞) at t0 ∈ R for (x, y) ∈ X × Y .

(iii) Let L : X × Y × R → [0,∞) be a convex loss function, and let g : X × Y → R and
f : X → R be functions. We say that g is from the subdifferential of L with respect
to f if g(x, y) ∈ ∂L(x, y, f(x)) for all (x, y) ∈ X × Y .

The loss function controls the exact goal of prediction by specifying how different devi-
ations between true output y and prediction f(x) are penalized. The two loss functions
already introduced in Section 2.1.1 (least squares loss and pinball loss) coincide in the
structure of how this deviation is measured, namely by taking the difference between true
output and prediction. Such loss functions are also called distance-based, are typically used
in regression tasks and will be of special importance in Chapter 3.

Definition 2.1.15 (Distance-Based Loss Function). A loss function L : X ×Y×R → [0,∞)
is called distance-based if there exists a representing function ψ : R → [0,∞) satisfying
ψ(0) = 0 and L(x, y, t) = ψ(y − t) for all (x, y, t) ∈ X × Y × R. If ψ(r) = ψ(−r) for all
r ∈ R, then L is called symmetric.
Let p ∈ (0,∞). A distance-based loss L : X × Y ×R → [0,∞) with representing function
ψ is of

(i) upper growth type p if there is a constant c > 0 such that ψ(r) ≤ c (|r|p + 1) for all
r ∈ R.

(ii) lower growth type p if there is a constant c > 0 such that ψ(r) ≥ c |r|p − 1 for all
r ∈ R.

(iii) growth type p if L is of both upper and lower growth type p.
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Figure 2.1.2: Representing function ψ for some popular distance-based loss functions.

Since the first argument does not matter in distance-based loss functions, we often ignore
it and write L : Y ×R → [0,∞) and L(y, t) instead.

Even though distance-based losses are typical for regression tasks, some of them, like the
least squares loss, are also popular choices for classification tasks, see for example Györfi
et al. (2002, Section 1.4). As an example of a distance-based loss, the least squares loss is
of growth type 2 whereas many other common loss functions for regression tasks, like the
pinball loss, logistic loss, ε-insensitive loss or Huber loss, are of growth type 1. For some of
them, the associated representing functions are plotted exemplarily in Figure 2.1.2. The
properties examined in later chapters show that the higher growth type sometimes leads
to slightly more restrictive conditions regarding P (cf. Chapter 3 and also Remark 2.1.22)
and sometimes even to results not being applicable at all (cf. Chapter 4) when using for
example the least squares loss.

As many results from later chapters will specifically investigate such distance-based
loss functions, some additional properties of them and their associated risks are needed.
As a start, the subsequent lemma links properties of such loss functions to those of the
respective representing functions. This lemma for the most part coincides with Steinwart
and Christmann (2008, Lemma 2.33).

Lemma 2.1.16. Let L : Y ×R → [0,∞) be a distance-based loss function with representing
function ψ : R → [0,∞).
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(i) L is convex if and only if ψ is convex.

(ii) L is continuous if and only if ψ is continuous.

(iii) L is Lipschitz continuous if and only if ψ is Lipschitz continuous. In that case, we
have |L|1 = |ψ|1.

Proof. See Steinwart and Christmann (2008, Lemma 2.33). The equality of the two Lip-
schitz constants in (iii) easily follows because

sup
y∈Y

|L(y, t1) − L(y, t2)| = sup
y∈Y

|ψ(y − t1) − ψ(y − t2)|

≤ sup
y∈Y

|ψ|1 · |(y − t1) − (y − t2)| = |ψ|1 · |t1 − t2| ∀ t1, t2 ∈ R

and

|ψ(r1) − ψ(r2)| = |L(0,−r1) − L(0,−r2)| ≤ |L|1 · |r1 − r2| ∀ r1, r2 ∈ R .

Additionally, the growth type of a distance-based loss function can be linked to its
Lipschitz continuity:

Lemma 2.1.17. Let L : Y ×R → [0,∞) be a distance-based loss function with representing
function ψ : R → [0,∞).

(i) If L is Lipschitz continuous, then it is of upper growth type 1.

(ii) If L is convex and of upper growth type 1, then it is Lipschitz continuous.

(iii) If L is convex and there exist r− < 0 and r+ > 0 such that ψ(r−), ψ(r+) > 0, then L
is of lower growth type 1.

(iv) If L is of lower growth type 1, then there exist r− < 0 and r+ > 0 such that
ψ(r−), ψ(r+) > 0.

Proof.

(i)+(ii) See Steinwart and Christmann (2008, Lemma 2.36).

(iii) See Steinwart and Christmann (2008, Lemma 2.36) and additionally observe that
lim|r|→∞ ψ(r) = ∞ gets implied by the existence of r− < 0 and r+ > 0 such that
ψ(r−), ψ(r+) > 0 because ψ is convex (which follows from L being convex, cf.
Lemma 2.1.16) and ψ(0) = 0 by definition of distance-based losses.

(iv) Let r− := −2
c

and r+ := +2
c

with c being the constant from the definition of lower
growth type 1. Then,

ψ(r−) ≥ c ·
∣∣∣∣−2
c

∣∣∣∣− 1 = 1 > 0 ,

and analogously ψ(r+) ≥ 1 > 0.
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Remark 2.1.18. In practice and in most theoretical results, one almost always uses convex
loss functions, see also the discussion subsequent to Definition 2.1.13. By parts (i) and (ii)
of Lemma 2.1.17, Lipschitz continuity and upper growth type 1 are two properties that
can then be used interchangeably if the loss is distance-based. Additionally, it is obvious
that, for useful distance-based losses, there should exist r− < 0 and r+ > 0 such that
ψ(r−), ψ(r+) > 0. By also considering parts (iii) and (iv), Lipschitz continuity can hence
even be seen as equivalent to growth type 1 for the relevant distance-based loss functions.

Finally, the growth type can also be used to bound different useful quantities by each
other. For this, we need two additional definitions.
Definition 2.1.19 (Nemitski Loss Function). A loss function L : X × Y ×R → [0,∞) is
called Nemitski loss function if there exists a measurable function b : X × Y → [0,∞) and
an increasing function h : [0,∞) → [0,∞) such that

L(x, y, t) ≤ b(x, y) + h(|t|) ∀ (x, y, t) ∈ X × Y ×R .

If there exists p ∈ (0,∞) and a constant c > 0 such that h(|t|) = c|t|p for all t ∈ R, then
L is called Nemitski loss function of order p.
If P is a probability measure on X × Y such that

∫
X ×Y b(x, y) dP(x, y) < ∞, then L is

called P-integrable Nemitski loss function.
P-integrable Nemitski loss functions can for example be useful for guaranteeing the

finiteness of RL,P(f) for all bounded functions f , like for example those from the RKHS of
a bounded kernel, cf. Lemma 2.1.10(i). We furthermore need the following definition which
can be thought of as describing the heaviness of the tails of the conditional distribution
P(· |X), averaged over the distribution PX of X:
Definition 2.1.20 (Average p-th Moment). Let P be a probability measure on X × Y and
let p ∈ (0,∞). The average p-th moment of P is defined by

|P|p :=
(∫

X ×Y
|y|p dP(x, y)

)1/p

=
(∫

X

∫
Y

|y|p dP(y |x) dPX(x)
)1/p

.

Lemma 2.1.21. Let L : Y × R → [0,∞) be a distance-based loss function, let P be a
probability measure on X × Y and let p ∈ (0,∞).

(i) If L is of upper growth type p and |P|p < ∞, then L is a P-integrable Nemitski loss
of order p.

(ii) If L is of upper growth type p, there exists a constant cL,p > 0 independent of P such
that, for all measurable f : X → R,

RL,P(f) ≤ cL,p ·
(
|P|pp + ||f ||p

Lp(PX) + 1
)
.

(iii) If L is convex and of upper growth type p with p ≥ 1, then for all q ∈ [p− 1,∞] with
q > 0 there exists a constant cL,p,q > 0 independent of P such that, for all measurable
f : X → R and g : X → R,

|RL,P(f) − RL,P(g)|
≤ cL,p,q ·

(
|P|p−1

q + ||f ||p−1
Lq(PX) + ||g||p−1

Lq(PX) + 1
)

· ||f − g||L q
q−p+1

(PX) .
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(iv) If L is of lower growth type p, there exists a constant cL,p > 0 independent of P such
that, for all measurable f : X → R,

|P|pp ≤ cL,p ·
(
RL,P(f) + ||f ||p

Lp(PX) + 1
)

and

||f ||p
Lp(PX) ≤ cL,p ·

(
RL,P(f) + |P|pp + 1

)
.

Proof. See Steinwart and Christmann (2008, Lemma 2.38).

Remark 2.1.22 (Moment Condition). Looking at the definition of SVMs, it is important
that the RKHS H contains at least one function with finite risk. Lemma 2.1.21 is the
reason why many results for distance-based loss functions of growth type p ∈ (0,∞) will
impose the easier to interpret moment condition |P|p < ∞ upon P instead:

(i) If |P|p < ∞ and L is of upper growth type p, then part (ii) of Lemma 2.1.21 yields
RL,P(0) < ∞ and hence any RKHS H contains a function with finite risk. If on the
other hand |P|p = ∞ and L is of lower growth type p, then part (iv) of Lemma 2.1.21
yields RL,P(0) = ∞.
Therefore, |P|p < ∞ is equivalent to RL,P(0) < ∞ if L is of growth type p.

(ii) If p ≥ 1 and H is the RKHS of a bounded and measurable kernel (for example
the Gaussian RBF kernel, cf. Example 2.1.12), then Lemma 2.1.10(ii) implies that
H ⊆ Lp(PX) and the preceding can be strengthened to the following:
If |P|p < ∞ and L is of upper growth type p, then part (ii) of Lemma 2.1.21 even
yields RL,P(f) < ∞ for all f ∈ H. If on the other hand |P|p = ∞ and L is of lower
growth type p, then part (iv) of the lemma even yields RL,P(f) = ∞ for all f ∈ H.
Therefore, |P|p < ∞ is equivalent to the existence of an f ∈ H with finite risk and
also to all f ∈ H having finite risk if L is of growth type p.

As a counterpart to distance-based loss functions, which are based on the difference
between true output and prediction and are typically used in regression tasks, so-called
margin-based loss functions constitute a second important type of loss functions, which
are instead based on the product of true output and prediction and are typically used in
(binary) classification tasks.

Definition 2.1.23 (Margin-Based Loss Function). A loss function L : X ×Y ×R → [0,∞)
is called margin-based if there exists a representing function φ : R → [0,∞) such that
L(x, y, t) = φ(yt) for all (x, y, t) ∈ X × Y ×R.

Similarly to distance-based losses, the first argument can also be ignored in margin-based
loss functions. Even though margin-based losses will, in contrast to distance-based ones,
not play a special role in this thesis (i.e. there are no results only applicable to margin-based
losses), we still include their definition because of the general importance of this subtype of
loss functions for binary classification. As mentioned at the beginning of Section 2.1, SVMs
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had originally been developed only for such binary classification tasks with Y = {−1,+1}.
In these early publications, the hinge loss

Lhinge : X × Y ×R → [0,∞) , (x, y, t) 7→ max{0, 1 − yt} (2.4)

had been used, which is still among the most popular choices for such tasks. Further note
that the least squares loss is also often used for binary classification tasks and can actually
also be interpreted as being margin-based because LLS(y, t) = (y − t)2 = (1 − yt)2 holds
true for all (x, y, t) ∈ X × Y ×R for Y = {−1,+1}.

Finally, we give some useful additional definitions and lemmas that are not only appli-
cable to distance-based or margin-based loss functions. As an auxiliary tool for analyzing
risks, it is sometimes useful to only look at the inner integral from Definition 2.1.2 and
define a specific notation for this.

Definition 2.1.24 (Inner Risk). Let L : X × Y × R → [0,∞) be a loss function, P be a
probability measure on X × Y , x ∈ X and t ∈ R. Then,

CL,P(· | x),x(t) :=
∫

Y
L(x, y, t) dP(y |x)

is called inner L-risk (or just inner risk) of t at x with respect to P.

Definition 2.1.25 (Inner Bayes Risk). Let L : X × Y ×R → [0,∞) be a loss function, P
be a probability measure on X × Y and x ∈ X . Then,

C∗
L,P(· | x),x := inf

t∈R
CL,P(· | x),x(t)

is called inner Bayes L-risk (or just inner Bayes risk) at x with respect to P.

The following lemma shows that using the expression “inner Bayes risk” is justified
because integrating over C∗

L,P(· | x),x indeed yields the Bayes risk, which will be useful in
some proofs.

Lemma 2.1.26. Let X be a complete measurable space, L : X × Y ×R → [0,∞) be a loss
function, and P be a probability measure on X × Y. Then, x 7→ C∗

L,P(· | x),x is measurable
and we have

R∗
L,P =

∫
X

C∗
L,P(· | x),x dPX(x) .

Proof. See Steinwart and Christmann (2008, Lemma 3.4).

Furthermore, the property of convexity gets transferred from loss functions to risks as
well as inner risks. For this, denote by L0(X ) the set of all measurable functions f : X → R.

Lemma 2.1.27. Let L : X ×Y×R → [0,∞) be a convex loss function and P be a probability
measure on X × Y. Then, RL,P : L0(X ) → [0,∞] is convex and CL,P(· | x),x : R → [0,∞] is
convex for all x ∈ X .
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Proof. See Steinwart and Christmann (2008, Lemma 2.13) for the convexity of RL,P. For
x ∈ X , the convexity of CL,P(· | x),x holds true because for all t1, t2 ∈ R and θ ∈ [0, 1], we
have

CL,P(· | x),x
(
θt1 + (1 − θ)t2

)
=
∫

Y
L
(
x, y, θt1 + (1 − θ)t2

)
dP(y |x)

≤ θ
∫

Y
L(x, y, t1) dP(y |x) + (1 − θ)

∫
Y
L(x, y, t2) dP(y |x)

= θ · CL,P(· | x),x(t1) + (1 − θ) · CL,P(· | x),x(t2)

due to the convexity of L.

2.1.4 Shifted Loss Functions
Looking at the definition of SVMs as minimizers of the regularized risk, it is apparent that
the existence and uniqueness of SVMs can only be guaranteed if the RKHS H contains at
least one function with finite risk (see also Steinwart and Christmann, 2008, Lemma 5.1
and Theorem 5.2) and that this assumption will also be required for more advanced results
on SVMs. There are different ways to ensure such an element of H exists. For example,
for distance-based loss functions of upper growth type p ∈ (0,∞), the moment condition
|P|p < ∞ can be used, which does not only guarantee the existence of such an f ∈ H but is
even equivalent to it under slight additional assumptions, see Remark 2.1.22. However, this
moment condition imposes an assumption on the probability measure P which excludes
heavy-tailed distributions such as the Cauchy distribution and which can in general not
even be verified because of P being unknown. To try to circumvent this problem, we use
shifted loss functions, which have been applied in robust statistics for a long time, see for
example Huber (1967) or Huber (1981, Chapter 3).

Definition 2.1.28 (Shifted Loss Function). Let L : X ×Y ×R → [0,∞) be a loss function.
Then,

L⋆ : X × Y ×R → R , (x, y, t) 7→ L(x, y, t) − L(x, y, 0)

is called the shifted loss function associated to L.

The corresponding risks, inner risks and SVMs as well as properties of shifted loss func-
tions such as convexity or Lipschitz continuity can be defined analogously to how this was
done for regular loss functions, for which reason we do not repeat these definitions here.

Even though this shift of the loss function does not seem to really change anything at first
glance, Christmann et al. (2009) showed that it can indeed be used to eliminate the moment
condition from many results on SVMs in the case of L being Lipschitz continuous (which is
basically equivalent to L being of growth type 1 if it is distance-based, cf. Remark 2.1.18).
They observed that

RL,P(f) ≤ |L|1 · ||f ||L1(PX) + |L|1 · |P|1 ∀ f ∈ L0(X ) ,

24



from which the finiteness of the risk can only be guaranteed under the moment condition
|P|1 < ∞ when using L, while at the same time

|RL⋆,P(f)| ≤ |L|1 · ||f ||L1(PX) ∀ f ∈ L0(X ) , (2.5)

which means that the moment condition is not needed when using L⋆, since RL⋆,P(f) is
finite for all f ∈ L1(PX) even if |P|1 = ∞. Also note that L⋆ and RL⋆,P can—in contrast
to L and RL,P—also take on negative values and it is therefore not only necessary to have
RL⋆,P(f) < ∞ for at least one f ∈ H but also RL⋆,P(f) > −∞ for all f ∈ H in order
to guarantee existence and uniqueness of the SVM fL⋆,P,λ,k (see also Christmann et al.,
2009, Theorems 5 and 6). As (2.5) however bounds the absolute value of RL⋆,P(f), one can
conclude that using shifted loss functions looks promising when combining a Lipschitz con-
tinuous loss with a bounded and measurable kernel because the latter by Lemma 2.1.10(ii)
guarantees that H ⊆ L1(PX) and hence that the right hand side of (2.5) is finite for all
f ∈ H.

Indeed, Christmann et al. (2009) showed that many of the results on the desirable prop-
erties that regular SVMs possess can be transferred to SVMs using shifted loss functions
without needing the moment condition that was required in the non-shifted case. In addi-
tion to the already mentioned existence and uniqueness, these results include a representer
theorem as well as results on risk consistency and robustness. Moreover, the use of shifted
loss functions is justified in that the loss gets shifted by a fixed amount (independently of
the prediction that is plugged in), for which reason this shift does not change the learning
goal, which gets reaffirmed by the following:

Lemma 2.1.29. Let L : X × Y × R → [0,∞) be a loss function and let L⋆ be its shifted
version. Let P be a probability measure on X ×Y, let H be an RKHS over X and let λ > 0.
If RL,P(0) < ∞, then

fL⋆,P,λ,k = fL,P,λ,k .

Proof. See Christmann et al. (2009, p. 314).

Finally, the following lemma tells us that certain properties of loss functions and the
respective properties of the associated shifted loss functions can be used interchangeably,
for which reason it will for example not matter which of L and L⋆ we require to be convex
or Lipschitz continuous in the results from later chapters.

Lemma 2.1.30. Let L : X × Y × R → [0,∞) be a loss function and let L⋆ be its shifted
version.

(i) L is convex if and only if L⋆ is convex.

(ii) L is Lipschitz continuous if and only if L⋆ is Lipschitz continuous. Furthermore, we
have |L|1 = |L⋆|1.

Proof. See Christmann et al. (2009, Proposition 2) for the one direction. The other direc-
tion follows analogously.
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Because of the sketched advantages, Chapter 4 will only investigate SVMs using shifted
loss functions. Because of Lemma 2.1.29, the results from that chapter are however also
valid for SVMs using regular loss functions whenever the risk of the zero function is finite.
Chapter 3 takes a slightly different approach in that it investigates SVMs using regular loss
functions and those using shifted ones separately, which is due to the surprising observation
that the main advantage of shifted loss functions—eliminating the moment condition when
working with Lipschitz continuous losses—does actually not come into effect completely
for some of the results from that chapter.

2.2 Introduction to Localized Support Vector
Machines

Whereas SVMs possess many desirable theoretical properties, as reviewed in Section 2.1.1,
they suffer from their computational requirements growing at least quadratically in the size
of the training data set, see for example Platt (1998), Joachims (1998), Thomann et al.
(2017). One of the possible approaches to reduce this computational complexity is local-
ization, which can additionally offer some advantages regarding the quality of prediction
as well. Section 2.2.1 starts by giving a quick overview of some other existing approaches
and then gives an informal introduction to the idea behind localization as well as stating
the mentioned additional advantages. Afterwards, Section 2.2.2 formalizes the approach
by mathematically defining localized SVMs and introducing some notation that is needed
in later chapters.

Parts of Section 2.2.1 coincide with the introduction already given in the peer-reviewed
paper Köhler (2024a, Section 3.1) that was published in Neurocomputing.

2.2.1 Localized Learning and Other Approaches to Deal with a
Large Amount of Data

There exist different approaches to reduce the computational complexity of SVMs. A pop-
ular such approach is online learning by stochastic gradient descent, which tackles the high
computational demands by only looking at a single training point respectively only a small
batch of training points at a time and updating the learned predictor iteratively (Smale
and Yao, 2006; Ying and Zhou, 2006; Dieuleveut and Bach, 2016; Lin and Rosasco, 2017;
Ying and Zhou, 2017). Note that some of the referenced publications deviate further from
the SVM approach by omitting the explicit regularization via λ ||f ||2H , which gets justified
by noting that the step size used by the gradient descent algorithm serves as a form of
implicit regularization. Another approach is to find a suitable low-rank approximation to
the kernel matrix by smaller matrices (and hence effectively reducing the size of the prob-
lem) by performing column subsampling (Williams and Seeger, 2000; Bach, 2013; El Alaoui
and Mahoney, 2015; Rudi et al., 2015), for example using the Nyström method. Instead of
approximating the kernel matrix, one can also approximate the whole kernel function by
random features and obtain a low-dimensional feature representation, through which it is
possible to efficiently find a good predictor (Rahimi and Recht, 2007; Sriperumbudur and
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Szabó, 2015; Rudi and Rosasco, 2017; Liu et al., 2022; Mei et al., 2022). A popular type of
random feature approximation is using random Fourier features, which can be applied to
a large class of kernels (including the Gaussian RBF kernels). This type of random feature
approximation makes use of Bochner’s theorem, stating that each kernel on Rd that is
shift-invariant (i.e. k(x, y) = k(x+ t, y + t) for all x, y, t ∈ Rd) and continuous can be seen
as the Fourier transform of a finite measure on Rd (Wendland, 2005, Theorem 6.6) respec-
tively even of a probability measure if one scales the kernels properly, and approximates the
Fourier transform—and hence also the kernel—by sampling from said probability measure
and plugging this sampled data into the integrand of the Fourier transform. Further, Yang
et al. (2012) compare the column subsampling approach (more specifically, the Nyström
method) with the random features approach (more specifically, random Fourier features),
and Rudi et al. (2017), Meanti et al. (2020) combine multiple of the mentioned approaches.

Closer to the localized approach are, however, methods that decompose the available
data set into m ∈ N subsets and train m “small” SVMs on these subsets instead of a single
“large” one on all of Dn, which can substantially reduce the training time as well as required
storage space because of the aforementioned super-linear computational requirements of
SVMs. This can for example be done by means of distributed learning, which randomly
splits Dn into subsets, trains an SVM on each such subset, and then averages the resulting
m SVMs in order to obtain the final predictor (Christmann et al., 2007; Zhang et al., 2015;
Guo et al., 2017; Lin et al., 2017; Mücke and Blanchard, 2018; Sun and Wu, 2021; Liu and
Shi, 2024).

In the localized approach, one also trains SVMs on subsets of Dn, but the split of Dn

is now obtained in a spatial way—based on some regionalization of the input space X —
instead of randomly. Following early theoretical investigations of such localized approaches
(Bottou and Vapnik, 1992; Vapnik and Bottou, 1993), different methods for obtaining the
required regions have been examined. One such method is the use of decision trees, see for
example Bennett and Blue (1998), Wu et al. (1999), Tibshirani and Hastie (2007), Chang
et al. (2010). Among these, Chang et al. (2010) generate the tree by splitting the data in
an axis-parallel way, whereas the other three articles all propose using an SVM for each
decision in the tree. This difference is due to Bennett and Blue (1998), Wu et al. (1999),
Tibshirani and Hastie (2007) mainly aiming at improving the accuracy of the predictor,
whereas Chang et al. (2010) also want to reduce the training time. Cheng et al. (2010), Gu
and Han (2013) on the other hand split the training data into clusters based on variants of k-
means and then train an SVM on each resulting cluster, and other articles propose k-nearest
neighbors (kNN) methods for obtaining the regionalization. Here, we have to differ between
those approaches that measure distances for selecting the k nearest neighbors in the input
space X (Zhang et al., 2006; Hable, 2013) and those that measure them in the feature
space H (Blanzieri and Bryl, 2007; Blanzieri and Melgani, 2008; Segata and Blanzieri,
2010). One drawback of such kNN methods is their usually slow and computationally
intensive prediction phase, which is due to them having to compute a new SVM in the
k-neighborhood of each test point during the prediction phase. Even though each of these
SVMs is only based on k data points instead of the whole training data set, this still
considerably slows down the prediction phase if a large amount of predictions has to be
made. Segata and Blanzieri (2010) mitigate this problem by slightly adapting the kNN
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approach to instead train an SVM on the k-neighborhood of each training point during
the training phase and then use the SVM belonging to the single closest training point for
predicting the output to a test point.

In comparison to distributed learning, all these localized approaches have the disadvan-
tage that, no matter which method of regionalization is chosen, the process of regionalizing
the input space clearly also takes some time for large data sets—albeit considerably less
time than just training an SVM on the whole data set—, thus making the computational
gain of such a localized approach in the training phase smaller than that of distributed
learning. However, localization usually also results in a significantly faster prediction phase,
that is a significantly faster evaluation of the resulting predictor for test samples—in com-
parison to not only regular SVMs but also to the distributed approach. Whereas one has
to evaluate each of the m different SVMs (and then average the results) in distributed
learning, it suffices to evaluate the one SVM belonging to the region of the test sample
in localized learning (if the regions do not overlap). Comparing the localized approach to
regular SVMs on the other hand, one obtains from the empirical representer theorem (see
Steinwart and Christmann, 2008, Theorem 5.5) for SVMs that

fL,Dn,λ,k =
n∑

i=1
αik(·, xi)

for α1, . . . , αn ∈ R. Depending on L, different lower and upper bounds on the number of
αi ̸= 0 can be derived, see for example Steinwart (2003). For simplicity of the argument,
consider a loss function for which αi ̸= 0 for all i ∈ {1, . . . , n} holds true almost surely, such
as the logistic loss for classification, see Steinwart and Christmann (2008, Proposition 8.30).
In this case, one has to evaluate n kernel functions in order to evaluate the SVM fL,Dn,λ,k.
For the localized approach on the other hand—if we assume for simplicity that each of the
m subsets that Dn is split into has approximately the same size, that is size n/m—one only
has to evaluate those approximately n/m kernel functions belonging to training samples
from the region of the test sample (if the regions do not overlap).

Several of the referenced publications on localized SVMs also include experimental anal-
yses of how much the respective methods of localization reduce the computation time in
comparison to regular SVMs. For example, Chang et al. (2010) compared their decision
tree based localized SVMs DTSVM (among some other approaches) to regular SVMs on
different medium-size data sets (ca. 10,000 to 500,000 samples, using about two thirds of
them for training) and observed drastic reductions in training time, especially for the larger
ones among these data sets. Depending on how the training of SVMs was implemented, the
training time for the largest data set was reduced by a factor of almost 3,700 or even 5,800
(Chang et al., 2010, Figures 5 and 10). At the same time, DTSVM exhibited comparable
or even increased test accuracy over regular SVMs (Chang et al., 2010, Figures 6 and 11)
and also drastically reduced testing time (Chang et al., 2010, Table 4). Additionally, they
also took a look at some large-size data sets (ca. 600,000 to 5,000,000 samples), for which
they could not perform a comparison with regular SVMs because of them requiring an
excessive amount of training time and memory, but showed that DTSVM is able to still
perform well on such large-size data sets. Similarly, Segata and Blanzieri (2010) compared
different variants of their kNN based localized SVMs with regular SVMs on different data
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sets containing ca. 50,000 to 1,000,000 data samples and also observed decreased training
and testing times (by factors ranging up to ca. 100 for the variant FaLK-SVM, which
was the one observing the highest test accuracy) as well as comparable or even increased
test accuracy (Segata and Blanzieri, 2010, Tables 5–7). Gu and Han (2013) performed
similar comparisons for their k-means based localized SVMs CSVM (as well as for some
other approaches), however only for data sets containing only ca. 3,000 to 60,000 training
samples—which were however high-dimensional, consisting of up to 784 features. Even for
these comparatively small data sets, CSVM exhibits training times that are considerably
lower than those of regular SVMs (called “kernel SVM” in their tables), by factors of up
to almost 130, while at the same time yielding comparable test accuracy (Gu and Han,
2013, Tables 2 and 3). In all of these three publications, the library LIBSVM (Chang and
Lin, 2011) was used for computing SVMs. Thomann et al. (2017) on the other hand used
their own library liquidSVM (Steinwart and Thomann, 2017) and looked at large training
data sets of up to almost 10,000,000 samples. They showed that localized SVMs based on
the Voronoi partition approach that is built into liquidSVM can be computed in few hours
and yield good test accuracy (as with the large-size data sets used by Chang et al. (2010),
it was of course not feasible to also compute regular SVMs for such large data sets in order
to compare them). Additionally, by using not only a single but instead multiple machines,
they succeeded in obtaining good results in just a little over one day of combined training
and testing time even for an enormous training data set consisting of 32,000,000 samples
in 631 dimensions—whereas among the other data sets used in the four papers mentioned
in this paragraph, there was none that had more than 54 dimensions and at the same time
more than 240,000 samples.

Even though the exact training and testing time depends on the method chosen for
localization as well as on the exact implementation and therefore differs between these
publications, they all observed a drastic reduction compared to the computation time of
regular SVMs. In addition to this computational gain, localizing the SVM approach can
also yield advantages regarding the quality of prediction—compared to distributed learning
as well as regular SVMs: Whereas the underlying true function, which one aims to estimate,
can of course exhibit discontinuities, SVMs based on a continuous and bounded kernel such
as the commonly used Gaussian RBF kernel from Example 2.1.12 are always continuous
(and bounded) themselves (Steinwart and Christmann, 2008, Lemma 4.28). This can lead
to SVMs not accurately modeling the true function near such discontinuities, but instead
greatly oscillating and overshooting—an effect that is also known from Fourier series, where
it is called the Gibbs phenomenon, cf. Hewitt and Hewitt (1979). Additionally, in global
learning approaches like SVMs, the complexity of the predictor is usually controlled globally
by a very small amount of hyperparameters—in the case of SVMs by the regularization
parameter λ and potentially by hyperparameters of the kernel, for example the bandwidth
γ of the Gaussian RBF kernel. Hence, an accurate prediction can be difficult for such global
approaches if the complexity and variability of the true function, or that of the conditional
distributions P(Y |X = x), greatly differ between different areas of the input space X ,
even if the true function does not exhibit any discontinuities. Both of these problems
can be overcome by the use of localized methods, as a good regionalization can split the
input space into separate regions at (or at least close to) discontinuities and such that the
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Figure 2.2.1: A global SVM (left plot) and a localized SVM (right plot; splits between the
regions at x = 3 and x = 6) fitted to the same data which was generated according to
the plotted true function and some normally distributed error. The global SVM (slightly)
overshoots at the discontinuity at x = 3 and oscillates too much for x ≤ 6 because the
underlying hyperparameters have to be chosen in a way that also allows for a reasonably
good fit for x > 6, where the true function oscillates very quickly. The localized SVM does
not exhibit these problems and yields a considerably better fit overall. [This is a minimally
modified version of a figure that was first published in Köhler, 2024a.]

complexity and variability do not change too much throughout the individual regions.
To exemplify the increased quality of prediction that can be the result of localizing, we

take a look at the following toy example:

Example 2.2.1. Let X = R and PX = U(0, 10) be the uniform distribution on (0, 10).
Let Y = R and let the output y ∈ Y be obtained by adding an N (0, σ2)-distributed error
to

f(x) =


0 , if x ≤ 3
2 , if 3 < x ≤ 6
2 + sin(15(x− 6)) · x4

5000 , else .

We computed a global SVM as well as a localized SVM—with fixed regions capturing the
pattern in the data by splitting the regions at x = 3 and x = 6—for different values of σ
and of the training set size n. The SVMs were all based on the 0.5-pinball loss function
L0.5-pin, for which reason the Bayes function is the function of conditional medians, which
coincides with the underlying function f because of the symmetry of the additive error
terms. Figure 2.2.1 exemplarily depicts the resulting predictors for σ = 0.5 and n = 3,000
and shows that the localized SVM does indeed yield a considerably better fit to the Bayes
function f than the global SVM does.

We further computed such global and localized SVMs for all σ ∈ {0.01, 0.1, 0.5, 1} for
n = 2,000 as well as for n = 8,000 and estimated the associated risks based on 10,000
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σ
n 2,000 8,000

glob. loc. glob. loc.
0.01 1.95 0.36 1.37 0.34
0.1 3.82 0.49 1.96 0.13
0.5 15.32 5.02 7.18 1.63
1 42.26 18.52 14.10 5.96

(a) Medians

σ
n 2,000 8,000

glob. loc. glob. loc.
0.01 0.15 0.02 0.04 0.02
0.1 0.34 0.08 0.08 0.02
0.5 1.50 1.04 0.53 0.37
1 5.30 3.95 1.63 1.35

(b) Median absolute deviations

Table 2.2.1: (a) Medians and (b) median absolute deviations of the excess risks of global
and localized SVMs in the situation of Example 2.2.1 for different combinations of σ and
n, based on 1,000 iterations of training a global respectively a localized SVM for each
combination. To improve the readability and ease comparisons between the different com-
binations, all excess risks were multiplied by the factor 1,000.

test data points. We repeated this 1,000 times for each combination of σ and n in order
to minimize the effect of chance and to also get an estimate of the variation in the risks.
The computations were performed in R Statistical Software (R Core Team, 2022, v4.2.2)
using the library liquidSVM (Steinwart and Thomann, 2017) for computing the SVMs. We
computed the excess risks

RL0.5-pin,P(g) − R∗
L0.5-pin,P = RL0.5-pin,P(g) − RL0.5-pin,P(f)

for g being the respective global SVM as well as for g being the respective localized SVM
and collected the results in Table 2.2.1 (medians and median absolute deviations) and
Figure 2.2.2 (box plots).8 Whereas the exact values of the excess risks of course differ
between the different combinations of σ and n—increasing as σ increases and decreasing as
n increases (note that the scaling of the box plots differs between the different combinations
of σ and n as the box plots for small σ and large n would be barely identifiable otherwise)—,
the overall shape of the localized SVMs possessing lower excess risks than the global SVMs
is always very similar, for which reason the results affirm the observations from Figure 2.2.1.
Note that the box plots even show that for five of the eight examined combinations of σ
and n (those with σ ∈ {0.01, 0.1} and the combination of σ = 0.5 and n = 8,000), the
worst excess risk of a localized SVM was still better than the best excess risk of a global
SVM in these 1,000 repetitions.

The intuition of localized SVMs also being able to improve regular SVMs with regard to
the quality of prediction gets affirmed mathematically by Blaschzyk and Steinwart (2022),
who, in the case of using the hinge loss for classification, derive learning rates exceeding
those known for regular SVMs. Whereas most of the papers on localized SVMs mentioned
in the preceding paragraphs focus on the experimental analysis of a specific method of
localization, Blaschzyk and Steinwart (2022) constitutes an example of a paper deriving
theoretical results and additionally not requiring any special method of localization (instead

8In both displays, we multiplied all observed excess risks by the factor 1,000 in order to move to a scale
that makes quick comparisons between the different values easier.
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Figure 2.2.2: Box plots of the excess risks of global and localized SVMs in the situation
of Example 2.2.1 for different combinations of σ and n. Each box plot is based on 1,000
iterations of training a global respectively a localized SVM. To improve the readability and
ease comparisons between the different box plots, all excess risks were multiplied by the
factor 1,000.
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only requiring the resulting regionalization to satisfy certain conditions). There are several
papers taking a similar approach and also deriving learning rates for such localized SVMs,
with Thomann et al. (2017) also using the hinge loss, Meister and Steinwart (2016), Mücke
(2019) investigating least squares regression, and Hamm and Steinwart (2022) considering
both for a specific method of localization. Carratino et al. (2021) also examined least
squares regression, but regionalized the feature space instead of the input space and com-
bined localization with other techniques like column subsampling. Additionally, Dumpert
and Christmann (2018), Dumpert (2020) proved that localized SVMs are risk consistent
(which in some aspects gets considerably generalized in Section 3.4.3) as well as statistically
robust.

2.2.2 Definition of Localized Support Vector Machines
To formally define localized SVMs, one first needs to split the input space X into different
regions. The set of regions is called a regionalization:

Definition 2.2.2 (Regionalization). A regionalization of X of size A ∈ N is a set X :=
{X1, . . . ,XA}, where X1, . . . ,XA ⊆ X are non-empty and measurable and satisfy ⋃A

a=1 Xa =
X . The sets Xa, a = 1, . . . , A, are called regions. X is called a partitioning regionalization
if X1, . . . ,XA are pairwise disjoint.

Remark 2.2.3. Throughout this thesis, it is assumed that a regionalization is on hand and
properties of the resulting localized SVMs are examined. How to obtain such a regional-
ization in a sensible way is of course important as well, but not the topic of this thesis,
and we refer to the references given in Section 2.2.1 for more information on finding a good
regionalization.

We impose different additional assumptions on the regionalizations in the sections deriv-
ing results for localized SVMs (Sections 3.4 and 4.4), all of them however being rather mild.
Note that a regionalization does in general not need to be partitioning, but the regions can
instead also overlap. The applied regionalizations being partitioning is required only in
Section 4.4.2. For comparing two localized SVMs that are based on different localizations,
the combined regionalization can be useful:

Definition 2.2.4 (Combined Regionalization). The combined regionalization X ∗
1,2 of two

regionalizations X 1 := {X1,1, . . . ,X1,A1} and X 2 := {X2,1, . . . ,X2,A2} of X is defined as

X ∗
1,2 := {X ∗

1 , . . . ,X ∗
B}

:= {X1,a1 ∩ X2,a2 | X1,a1 ∈ X 1, X2,a2 ∈ X 2 } \ {∅} .

In order to define SVMs on the different regions, one first needs to find suitable measures
on these regions: Given some region X̃ ⊆ X and some probability measure P on X × Y , it
suggests itself to define a local measure on X̃ × Y by

PX̃ :=


1
P(X̃ ×Y) · P X̃ ×Y , if P(X̃ × Y) > 0 ,
0 , else .

(2.6)
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Note that this obviously is a probability measure only if P(X̃ × Y) > 0. For an empirical
measure Dn associated to a data set Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n, this definition
of (Dn)X̃ yields exactly the same measure as first choosing the subset (Dn)X̃ := Dn∩(X̃ ×Y)
and then constructing the associated empirical measure. Given a regionalization X :=
{X1, . . . ,XA}, further denote by PX := (PX1 , . . . ,PXA

) the vector of corresponding local
measures. These local measures can be used to define local SVMs.
Definition 2.2.5 (Local Support Vector Machine). Let L : X × Y ×R → [0,∞) and P be
a probability measure on X × Y . Let X̃ ⊆ X be non-empty and measurable. Let k be a
kernel on X̃ with RKHS H and let λ > 0 Then,

fL,PX̃ ,λ,k :=
arg inff∈H RL,PX̃

(f) + λ ||f ||2H , if P(X̃ × Y) > 0 ,
0 , else.

is called local SVM on X̃ .
Note that a local SVM is just a regular SVM on the region X̃ if P(X̃ × Y) > 0 holds

true. In some situations, it is required that all local SVMs are indeed SVMs, which leads
to the following definition:
Definition 2.2.6 (Positive Probability Measure on Regionalization). For a regionalization
X := {X1, . . . ,XA} of X , a probability measure P on X × Y is called positive on X if
P(Xa × Y) > 0 for all a ∈ {1, . . . , A}.

Now, all that remains to do, is to plug the local SVMs on the different regions together
in a suitable way in order to obtain a global predictor. For this, they first need to be
extended such that they are defined on all of X . For X̃ ⊆ X and a function g : X̃ → R,
denote its zero-extension to X by

ĝ : X → R , x 7→

g(x) , if x ∈ X̃ ,

0 , else .

Similarly, zero-extensions of kernels and probability measures will also be needed in
later chapters and are denoted by the (̂·)-notation as well: If k : X̃ × X̃ → R is a kernel on
X̃ ⊆ X , denote

k̂ : X × X → R , (x, x′) 7→

k(x, x′) , if x, x′ ∈ X̃ ,

0 , else .

By Meister and Steinwart (2016, Lemma 2) this indeed defines a kernel on X . If X × Y is
equipped with the σ-algebra F and Q is a probability measure on X̃ × Y for a measurable
X̃ ⊆ X , denote

Q̂ : F → [0, 1] , S 7→ Q
(
S ∩

(
X̃ × Y

))
.

Lastly, as the regions of a regionalization X = {X1, . . . ,XA} are not necessarily pairwise
disjoint, the influence of the different local SVMs on the resulting global predictor needs
to be controlled pointwisely by means of weight functions wa, a = 1, . . . , A, associated
with the regionalization. Throughout this thesis, we impose the following three standard
assumptions on such a set of weight functions:
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(W1) wa : X → [0, 1] measurable for all a ∈ {1, . . . , A}.

(W2) ∑A
a=1 wa(x) = 1 for all x ∈ X .

(W3) wa(x) = 0 for all a ∈ {1, . . . , A} and x /∈ Xa.

Definition 2.2.7 (Localized Support Vector Machine). Let X = {X1, . . . ,XA} be a re-
gionalization of X and w1,. . . ,wA be weight functions satisfying (W1), (W2) and (W3).
Let L : X × Y ×R → [0,∞) be a loss function and P be a probability measure on X × Y .
For a = 1, . . . , A, let ka be a kernel on Xa with RKHS Ha and let λa > 0. Denote
λ := (λ1, . . . , λA) and k := (k1, . . . , kA). Then,

fL,P,λ,k,X : X → R , x 7→
A∑

a=1
wa(x) · f̂L,PXa ,λa,ka(x)

is called localized support vector machine (localized SVM). The vector k is also called a
vector of kernels on X .

This definition explicitly allows that the regularization parameters and kernels in the
different regions differ from each other. This is integral for the increased capability of
localized SVMs (compared to non-localized ones) to accurately learn a function whose
complexity and variability differ between different areas of the input space, because the
choice of regularization parameter and kernel (respectively of the hyperparameter(s) of the
kernel) constitutes a principal mechanism for controlling the complexity of an SVM. As
explained in Section 2.2.1, this increased capability is one of the main motivations behind
the localized approach.
Remark 2.2.8. Note that (W2) and (W3) imply that wa ≡ 1Xa if X is a partitioning
regionalization. This leads to the following simplified definition of a localized SVM that is
based on a partitioning regionalization X :

fL,P,λ,k,X : X → R , x 7→
A∑

a=1
f̂L,PXa ,λa,ka(x) .

As it was the case for global SVMs, the definitions regarding localized SVMs can of
course also be transferred to shifted loss functions completely analogously.
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Chapter 3

Consistency

One of the most fundamental properties that learning methods should have is consistency:
As the size of the underlying data set tends to infinity, the function resulting from the
learning method should converge to the “true” function which one wishes to estimate, that
is, the Bayes function from Definition 2.1.4. There exist different types of consistency that
can be of interest and that are described in Section 3.1. Afterwards, Section 3.2 contains
results on the relationship between these different types of consistency, that is, under
what circumstances one type implies the other. Notably, these results are not only valid
for (sequences of) SVMs respectively localized SVMs but instead for arbitrary sequences
of functions, for which reason they can also be applied to other learning methods. In
Sections 3.3 and 3.4, results on the different types of consistency are explicitly derived
for SVMs and localized SVMs. The main focus of this chapter are distance-based loss
functions (cf. Definition 2.1.15), but some results are also applicable to other types of loss
functions. Also note: Whereas distance-based loss losses are typically used in regression
tasks, some (like the least squares loss) are also applied in classification tasks, cf. Györfi
et al. (2002, Section 1.4), which makes the results from this section applicable to an even
wider array of learning tasks.

Throughout this chapter, the following standard assumptions are assumed to hold true:

Assumption 3.0.1. Let X be a complete separable metric space and let Y ⊆ R be closed.
Let X and Y be equipped with their respective Borel σ-algebras BX and BY . Let P be a
probability measure on X ×Y . For all n ∈ N, let the data setDn := ((x1, y1), . . . , (xn, yn)) ∈
(X × Y)n consist of i.i.d. observations sampled from P, and let Dn := 1

n

∑n
i=1 δ(xi,yi) be the

associated empirical distribution.

3.1 Types of Consistency
So far, the expression “learning method” has been used in a rather informal way. In order
to describe different types of consistency, measurable learning methods have to be defined
more formally.

Definition 3.1.1 (Measurable Learning Method). A measurable learning method L on
X × Y maps every data set Dn ∈ (X × Y)n to a function fDn : X → R and additionally
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satisfies that the map

(X × Y)n × X → R , (Dn, x) 7→ fDn(x)

is measurable, for all n ∈ N.

Measurable learning methods guarantee that the maps fDn are measurable for all fixed
Dn ∈ (X × Y)n. They furthermore guarantee that the convergence in probability in the
subsequent three definitions is well-defined.9 This follows directly from Steinwart and
Christmann (2008, p. 205) for Definition 3.1.2 and in a similar way for Definitions 3.1.3
and 3.1.4. Note that SVMs constitute a measurable learning method under mild assump-
tions, cf. Steinwart and Christmann (2008, Lemma 6.23).

The most widely-used type of consistency in machine learning theory in general and for
SVMs in particular—because this is what their definition aims at, cf. Definition 2.1.5—
certainly is risk consistency.

Definition 3.1.2 (Risk Consistency). Let L : X × Y × R → [0,∞) be a loss function.
Then, a measurable learning method L on X × Y is called L-risk consistent (or just risk
consistent) if

lim
n→∞

RL,P(fDn) = R∗
L,P in probability P∞.

As this is a very natural type of consistency to consider and the classic one aimed at
in statistical learning theory (cf. Vapnik, 1995), results on risk consistency exist for many
learning methods, see for example Steinwart (2005) (SVMs for classification), Zhang and
Yu (2005) (boosting), Christmann and Steinwart (2007) (SVMs for regression; see also
Section 3.3), Biau et al. (2008) (averaging classifiers such as random forests), Lin et al.
(2022) (deep convolutional neural networks).

In addition to risk consistency, Lp-consistency can also be of interest as it compares the
functions (the estimator fDn and the Bayes function f ∗

L,P) directly, weighted only based on
the marginal distribution PX , instead of additionally depending on the loss function and
the conditional distribution of Y .

Definition 3.1.3 (Lp-Consistency). Let p ∈ [1,∞] and L : X × Y × R → [0,∞) be a
loss function. Assume that f ∗

L,P exists and is PX-a.s. unique. Then, a measurable learning
method L on X × Y is called Lp(PX)-consistent (or just Lp-consistent) if

lim
n→∞

∣∣∣∣∣∣fDn − f ∗
L,P

∣∣∣∣∣∣
Lp(PX)

= 0 in probability P∞.

At first glance, Lp-consistency looks like the slightly stronger one among these two
types of consistency: Because one almost always uses continuous loss functions in practice
(see also Section 2.1.3), |fDn(x) − f ∗

L,P(x)| being small for x ∈ X immediately implies
|L(x, y, fDn(x))−L(x, y, f ∗

L,P(x))| being small as well for all y ∈ Y ; the other direction does
9Similarly as it was the case for empirical SVMs (see considerations subsequent to Remark 2.1.6), one

formally needs to denote fDn
as a random function depending on the random variables underlying Dn

(instead of on Dn itself) for these convergences. We refrain from doing so in order to simplify the notation.
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not seem as straightforward. However, Section 3.2 shows that Lp- and risk consistency are
actually equivalent under mild conditions.

Whereas risk consistency and Lp-consistency are the two main types of consistency inves-
tigated in the subsequent sections, a few results also consider H-consistency for an RKHS
H.

Definition 3.1.4 (H-Consistency). Let H be an RKHS and L : X × Y ×R → [0,∞) be a
loss function. Assume that f ∗

L,P ∈ H and that f ∗
L,P is PX-a.s. unique. Then, a measurable

learning method L on X × Y is called H-consistent if

lim
n→∞

∣∣∣∣∣∣fDn − f ∗
L,P

∣∣∣∣∣∣
H

= 0 in probability P∞.

Note that Lp- and H-consistency are defined in exactly the same way and the two
definitions could hence be merged into a single one considering Banach spaces or even
more general normed spaces. These two special cases are however important and yield
different results in later sections, which is why they are defined separately.
Remark 3.1.5. For shifted loss functions, these three types of consistency can be defined
analogously.
Remark 3.1.6. In general, f ∗

L,P is neither guaranteed to exist nor to be unique, cf. Defini-
tion 2.1.4. As the predictors resulting from the learning method are compared directly to
f ∗

L,P in the definitions of Lp- and H-consistency, f ∗
L,P is however assumed to exist and be

PX-a.s. unique in these definitions and all results dealing with these two types of consis-
tency.

3.2 Connection between Different Types of Consis-
tency

In this section, the connection between the three types of consistency described in Sec-
tion 3.1 is examined. This is done in two parts, first for regular loss functions in Sec-
tion 3.2.1 and then for shifted loss functions in Section 3.2.2. Whereas close connections
are derived in both of these sections, the latter one also yields the interesting negative result
that one of the relationships derived for regular losses—namely, Lp-consistency following
from risk consistency—can surprisingly not be transferred to shifted loss functions in the
generality one might expect based on the results from Section 3.2.1.

For the most part, this section already appeared in the peer-reviewed paper Köhler
(2024b, Section 3) that was published in Journal of Machine Learning Research. It however
also contains previously unpublished results, namely those connecting H-consistency to the
other two types of consistency.

3.2.1 Connection for Regular Loss Functions
So far, there are no general results on Lp-consistency following from risk consistency, but
only results regarding special loss functions: For the least squares loss, it has been known
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for many years that the excess risk of a function, i.e. the difference between its risk and
the Bayes risk, corresponds to the squared L2(PX)-norm of its deviation from the Bayes
function, and risk consistency therefore implies L2-consistency, cf. Cucker and Smale (2001,
Proposition 1) or Cherkassky and Mulier (2007, pp. 26–28). Recently, this L2-difference
between a function and the Bayes function has also been bounded by the excess risk—by
means of so-called comparison or self-calibration inequalities—in case of the asymmetric
least squares loss by Farooq and Steinwart (2019) and in case of more general strongly
convex loss functions under additional assumptions by Sheng et al. (2020). Additionally,
Hable and Christmann (2014) showed that L1-consistency follows from risk consistency in
case of the pinball loss, and Steinwart and Christmann (2011), Xiang et al. (2012) derived
self-calibration inequalities for this loss under additional assumptions. Tong and Ng (2019)
did so for the ε-insensitive loss.

The subsequent theorem generalizes the aforementioned special cases to general convex,
distance-based loss functions, with parts of the proof being closely inspired by the proof of
Hable and Christmann (2014, Lemma A.1).
Theorem 3.2.1. Let L : Y ×R → [0,∞) be a convex, distance-based loss function of lower
growth type p ∈ [1,∞). Assume that f ∗

L,P exists and is PX-a.s. unique, f ∗
L,P ∈ Lp(PX) and

R∗
L,P < ∞. Then, for every sequence (fn)n∈N ⊆ Lp(PX), we have

lim
n→∞

RL,P(fn) = R∗
L,P ⇒ lim

n→∞
||fn − f ∗

L,P||Lp(PX) = 0 .

Proof. Let gn : X × Y → [0,∞), (x, y) 7→ L(y, fn(x)) for n ∈ N, and g∗ : X × Y →
[0,∞), (x, y) 7→ L(y, f ∗

L,P(x)). Because of the convexity of L, we can apply Steinwart
and Christmann (2008, Corollary 3.62)—where it is easy to see that we do not need the
assumption of the sets ML,P(· | x),x being singletons since we already know that f ∗

L,P PX-a.s.
uniquely exists—, which yields that fn

PX

−−→ f ∗
L,P. Thus, because of the continuous mapping

theorem and the continuity of L, we also have gn
P−−→ g∗. Since

lim
n→∞

∫
|gn| dP = lim

n→∞

∫
gn dP = lim

n→∞
RL,P(fn)

= RL,P(f ∗
L,P) =

∫
g∗ dP =

∫
|g∗| dP , (3.1)

the sequence (|gn|)n∈N is thus equi-integrable according to Bauer (2001, Theorem 21.7).
That theorem can be applied because RL,P(f ∗

L,P) < ∞, and hence RL,P(fn) < ∞ for n
sufficiently large because of (3.1), and therefore g∗ ∈ L1(PX) and gn ∈ L1(PX) for n
sufficiently large.

Because of L being of lower growth type p, there now exists a constant c > 0 such that

|fn(x) − f ∗
L,P(x)|p ≤ max

{
(2|y − fn(x)|)p , (2|y − f ∗

L,P(x)|)p
}

≤ 2p · max
{
c−1

(
L(y, fn(x)) + 1

)
, c−1

(
L(y, f ∗

L,P(x)) + 1
)}

= 2p

c
·
(

max {gn(x, y), g∗(x, y)} + 1
)

≤ 2p

c
·
(
gn(x, y) + g∗(x, y) + 1

)
∀ (x, y, n) ∈ X × Y ×N , (3.2)
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since gn, n ∈ N, and g∗ are non-negative.
As (|gn|)n∈N is equi-integrable, and g∗ ∈ L1(PX) and hence also equi-integrable (cf.

Bauer, 2001, part 2 of the example on p. 122), every summand occurring on the right
hand side of (3.2) is equi-integrable (as a sequence in n). By employing the example on
p. 121 of Bauer (2001) as well as Corollary 21.3 from the same book, we hence obtain
equi-integrability of the whole right hand side (as a sequence in n).

Thus, the sequence (|fn − f ∗
L,P|p)n∈N is equi-integrable as well and Lp-convergence of fn

to f ∗
L,P, follows from Bauer (2001, Theorem 21.7).

Remark 3.2.2. If L is of growth type p instead of only being of lower growth type p, the
conditions f ∗

L,P ∈ Lp(PX) and R∗
L,P < ∞ in Theorem 3.2.1 can also be replaced by the

perhaps more intuitive and in this case equivalent moment condition |P|p < ∞. This
equivalence can be obtained by combining Remark 2.1.22(i) with the observation that
R∗

L,P ≤ RL,P(0) and with Lemma 2.1.21(iv).
Notably, Theorem 3.2.1 strengthens Steinwart and Christmann (2008, Corollary 3.62),

which stated that risk consistency implies weak consistency.
As suspected in Section 3.1, the opposite direction—risk consistency following from Lp-

consistency—is generally the easier one. We formally state this implication in the subse-
quent Theorem 3.2.3. Hence, this theorem can be seen as the counterpart of Theorem 3.2.1,
even though the conditions of the two theorems differ in some details. Notably, the function
f ∗, which the sequence is converging to, does not even necessarily need to be the Bayes
function f ∗

L,P here:
Theorem 3.2.3. Let L : Y ×R → [0,∞) be a continuous, distance-based loss function of
upper growth type p ∈ [1,∞). Assume that |P|p < ∞. Then, for every sequence (fn)n∈N ⊆
Lp(PX) and every function f ∗ ∈ Lp(PX), we have

lim
n→∞

||fn − f ∗||Lp(PX) = 0 ⇒ lim
n→∞

RL,P(fn) = RL,P(f ∗) .

Proof. Since ||fn − f ∗||Lp(PX) → 0, we also have fn
PX

−−→ f ∗, and Bauer (2001, Theorem
21.7) yields equi-integrability of the sequence (|fn|p)n∈N. Let gn : X ×Y → [0,∞), (x, y) 7→
L(y, fn(x)) for n ∈ N, and g∗ : X × Y → [0,∞), (x, y) 7→ L(y, f ∗(x)). Because of L being
of upper growth type p, there then exists a c > 0 such that

|gn(x, y)| = gn(x, y) = L(y, fn(x)) ≤ c · (|y − fn(x)|p + 1)
≤ c · (2p · (|y|p + |fn(x)|p) + 1) (3.3)

for all (x, y, n) ∈ X × Y ×N.
Since every summand on the right hand side of (3.3) is equi-integrable (because |P|p <

∞), the whole right hand side is equi-integrable as well (as a sequence in n) by the example
on p. 121 of Bauer (2001) and Corollary 21.3 from the same book. Hence, the sequence
(|gn|)n∈N is equi-integrable as well.

Additionally, gn
P−−→ g∗ because of fn

PX

−−→ f ∗ and the continuous mapping theorem in
combination with the continuity of L, and thus, Bauer (2001, Theorem 21.7) yields

lim
n→∞

RL,P(fn) = lim
n→∞

∫
gn dP = lim

n→∞

∫
|gn| dP =

∫
|g∗| dP =

∫
g∗ dP = RL,P(f ∗) .

41



Together, Theorem 3.2.1 and Theorem 3.2.3 prove that Lp- and risk consistency are in-
deed equivalent under mild assumptions. Lastly, the subsequent corollary of Theorem 3.2.3
and Lemma 2.1.10 shows that H-consistency implies both of them.

Corollary 3.2.4. Let H be the RKHS of a bounded and measurable kernel k on X . Then,
for every sequence (fn)n∈N ⊆ H and every function f ∗ ∈ H, the following hold true:

(i) For all p ∈ [1,∞], we have

lim
n→∞

||fn − f ∗||H = 0 ⇒ lim
n→∞

||fn − f ∗||Lp(PX) = 0 .

(ii) Let L : Y ×R → [0,∞) be a continuous, distance-based loss function of upper growth
type p ∈ [1,∞). Assume that |P|p < ∞. Then, we have

lim
n→∞

||fn − f ∗||H = 0 ⇒ lim
n→∞

RL,P(fn) = RL,P(f ∗) .

Proof.

(i) H ⊆ Lp(PX) by Lemma 2.1.10(ii). Hence,

||fn − f ∗||Lp(PX) ≤ ||fn − f ∗||∞ ≤ ||fn − f ∗||H ||k||∞

for all n ∈ N and p ∈ [1,∞] by Lemma 2.1.10(i), which yields the assertion because
||k||∞ < ∞ by assumption.

(ii) Follows directly from part (i), H ⊆ Lp(PX), and Theorem 3.2.3.

Remark 3.2.5. As can be seen from the preceding proof, H-consistency does actually not
only imply Lp-consistency but even consistency with respect to the strong and nicely inter-
pretable supremum norm ||·||∞. As the subsequent sections are however mainly concerned
with Lp- and risk consistency, these are the types of consistency considered in the statement
of Corollary 3.2.4.

3.2.2 Connection for Shifted Loss Functions
When looking at Theorem 3.2.1, it is obvious that the assumptions f ∗

L,P ∈ Lp(PX) and
R∗

L,P < ∞ are indeed necessary for the conclusion of the theorem and that one cannot
hope to derive Lp- from risk consistency without them. Because these assumptions are
equivalent to the moment condition |P|p < ∞ if L is of growth type p (cf. Remark 3.2.2),
this however excludes heavy-tailed distributions such as the Cauchy distribution—even for
p = 1. Analogously, Theorem 3.2.3 and part (ii) of Corollary 3.2.4 also require |P|p < ∞
and can therefore not be applied to such heavy-tailed distributions.

Based on the considerations from Section 2.1.4, it suggests itself to try to transfer the
results from Section 3.2.1 to shifted loss functions in order to circumvent this problem and
eliminate the moment condition and thus extend the applicability of these results in the
case of using a Lipschitz continuous loss. As this Lipschitz continuity for distance-based
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losses all but coincides with the loss being of upper growth type 1 (cf. Remark 2.1.18), one
might hope that the elimination of the moment condition is possible in the case p = 1.

When looking at the proof of Theorem 3.2.1, it is however easy to see that (3.1) does
not hold true for shifted loss functions and the proof can thus not be transferred to the
situation of this section. The following negative result shows that this is indeed not a
failing of the specific proof we used, but that L1-consistency does, somewhat surprisingly,
actually not follow from L⋆-risk consistency in the generality one would have hoped for:

Proposition 3.2.6. Let Y = R. Let L : Y × R → [0,∞) be a convex, distance-based and
symmetric loss function of growth type 1, and let L⋆ be its shifted version. Then, even if
f ∗

L⋆,P is PX-a.s. unique with f ∗
L⋆,P ∈ L1(PX), a sequence (fn)n∈N ⊆ L1(PX) of functions

satisfying

lim
n→∞

RL⋆,P(fn) = R∗
L⋆,P

does in general not imply

lim
n→∞

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

= 0

without any additional assumptions besides Assumption 3.0.1 being imposed.

For proving Proposition 3.2.6, we need the following auxiliary lemma:

Lemma 3.2.7. Let L : X × Y × R → [0,∞) be a convex and Lipschitz continuous loss
function, and let L⋆ be its shifted version. If there exists a measurable function f : X → R

satisfying RL⋆,P(f) = −∞, there also exists a measurable function g : X → R satisfying
PX(g ̸= 0) > 0 and RL⋆,P(g) ∈ (−∞, 0].

Proof. With the inner risk CL⋆,P(· | x),x, we have

RL⋆,P(f) =
∫
L⋆(x, y, f(x)) dP(x, y) =

∫
CL⋆,P(· | x),x(f(x)) dPX(x)

=
∫

C+
L⋆,P(· | x),x(f(x)) dPX(x) −

∫
C−

L⋆,P(· | x),x(f(x)) dPX(x) = −∞ ,

with C+
L⋆,P(· | x),x := max{CL⋆,P(· | x),x , 0} and C−

L⋆,P(· | x),x := max{−CL⋆,P(· | x),x , 0} denoting
the positive and the negative part of CL⋆,P(· | x),x respectively. From the definition of the
integral, we hence obtain∫

C−
L⋆,P(· | x),x(f(x)) dPX(x) = ∞ (3.4)

and therefore the existence of c ∈ (0,∞) and S ⊆ X measurable such that PX(S) > 0 and
C−

L⋆,P(· | x),x(f(x)) ≥ c for all x ∈ S.
We further know that |L|1 > 0 because it is clear from the definition of Lipschitz continu-

ous loss functions that |L|1 = 0 would imply L(x, y, f(x)) = L(x, y, 0) for all (x, y) ∈ X ×Y
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and hence RL⋆,P(f) = 0, which contradicts our assumptions. Therefore, (3.4) directly im-
plies that |f(x)| ≥ c

|L|1 > 0 for all x ∈ S because otherwise

C−
L⋆,P(· | x),x(f(x)) =

(∫
L⋆(x, y, f(x)) dPX(x)

)−
≤
∫ ∣∣∣L⋆(x, y, f(x))

∣∣∣ dPX(x)

=
∫ ∣∣∣L(x, y, f(x)) − L(x, y, 0)

∣∣∣ dPX(x) ≤ |L|1 · |f(x)| < c ,

which would form a contradiction to x coming from S.
Define

g(x) :=
0 , if x /∈ S ,

c
|L|1 · sign(f(x)) , if x ∈ S .

Then, PX(g ̸= 0) > 0 and

RL⋆,P(g) =
∫

S
CL⋆,P(· | x),x(g(x)) dPX(x) +

∫
X \S

CL⋆,P(· | x),x(g(x)) dPX(x)︸ ︷︷ ︸
=0

. (3.5)

All that remains to investigate is the first integral on the right hand side. For all x ∈ S,
we know that∣∣∣CL⋆,P(· | x),x(g(x))

∣∣∣ ≤
∫

|L(x, y, g(x)) − L(x, y, 0)| dP(y |x) ≤ |L|1 · |g(x)| = c

and

CL⋆,P(· | x),x(g(x)) ≤ max
{
CL⋆,P(· | x),x(0), CL⋆,P(· | x),x(f(x))

}
= CL⋆,P(· | x),x(0) = 0

because g(x) lies between 0 and f(x), CL⋆,P(· | x),x is convex (cf. Lemma 2.1.27, which is
applicable because of L⋆ being convex), and additionally CL⋆,P(· | x),x(f(x)) < 0 by definition
of S.

Plugging this into the right hand side of (3.5) yields RL⋆,P(g) ∈ [−c, 0] and hence the
assertion.

Proof of Proposition 3.2.6. We prove the statement by providing a counterexample.
Because of L being of lower growth type 1,

c0 := sup{r ∈ [0,∞) |ψ(r) = 0}

is finite, where ψ denotes the representing function belonging to L, as introduced in Defi-
nition 2.1.15. Because of L being convex, distance-based, and symmetric, we have

L(y, t) = ψ(y − t) = 0 ⇔ y − t ∈ [−c0, c0] . (3.6)

Assume without loss of generality that c0 ≤ 1
2 (else just scale the subsequent example

accordingly).
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Choose X := (0, 1), PX := U(0, 1) and

P(· |X = x) := x · U(−1, 1) + 1 − x

2 ·
(
δ−ax + δax

)
∀x ∈ X , (3.7)

where U(a, b) denotes the uniform distribution on (a, b), δz denotes the Dirac distribution
in z ∈ R and ax > 1 is a constant depending on x (and on L) that we will specify right
after (3.15).10 Further define

fn : X → R , x 7→

n , if x ∈
(
0, 1

n

)
,

0 , else ,
(3.8)

for n ∈ N. As fn is bounded and measurable for all n ∈ N, we have (fn)n∈N ⊆ L1(PX).
We now show that this example also possesses the remaining properties mentioned in the
proposition, which consists of three main steps:

First, we show that f ∗
L⋆,P is PX-a.s. unique, more specifically f ∗

L⋆,P ≡ 0 PX-a.s., and
f ∗

L⋆,P ∈ L1(PX):
Choose f ∗ ≡ 0. We show that RL⋆,P(f ∗) < RL⋆,P(f) for all measurable f : X → R satisfy-
ing PX(f ̸= 0) > 0. As RL⋆,P(f ∗) = 0, the case RL⋆,P(f) = ∞ is trivial. Furthermore, if
there was an f satisfying RL⋆,P(f) = −∞ and thus contradicting our claim, there would
by Lemma 3.2.7 (which is applicable by Lemma 2.1.17) also exist a measurable g with
PX(g ̸= 0) > 0 and −∞ < RL⋆,P(g) ≤ 0 = RL⋆,P(f ∗), which would also contradict our
claim. Hence, we can without loss of generality assume that RL⋆,P(f) ∈ R.
Since f ∗ ≡ 0, we have, for each x ∈ X and y ≥ 0,

L⋆ (−y, f ∗(x)) + L⋆ (y, f ∗(x)) = 2 · L⋆(y, 0)

= 2 · L⋆
(
y,

1
2 · (−f(x)) + 1

2 · f(x)
)

≤ L⋆ (y,−f(x)) + L⋆ (y, f(x))
= L⋆ (−y, f(x)) + L⋆ (y, f(x)) (3.9)

because of L being distance-based, symmetric and convex.
Furthermore, by the definition of f , there exists ε := (ε1, ε2) with ε1, ε2 > 0 such that
PX(Xε) > 0, where Xε := {x ∈ X : |f(x)| ≥ ε1 and x ≥ ε2}. Now, specifically look at
x ∈ Xε and y ∈ [c0, c0 + min{1

2 ,
|f(x)|

4 }] ⊆ [0, 1]. First, only consider such x that satisfy
f(x) > 0. We then obtain that

|−y − f(x)| = y + f(x) ≥ c0 + f(x) and |±y − f ∗(x)| = y ≤ c0 + f(x)
4 , (3.10)

and hence

L(−y, f(x)) ≥ 4 · L(−y, f ∗(x)) = 2 ·
(
L (y, f ∗(x)) + L (−y, f ∗(x))

)
10For the sake of strictly adhering to the completeness assumption from Assumption 3.0.1, we can also

choose X as [0, 1] or R, and P(· |X = x) as an arbitrary probability measure for x /∈ (0, 1) without changing
anything else.

45



because of (3.6) and the convexity, symmetry and distance-basedness of L. Thus,(
L⋆ (−y, f(x)) + L⋆ (y, f(x))

)
−
(
L⋆ (−y, f ∗(x)) + L⋆ (y, f ∗(x))

)
=
(
L (−y, f(x)) + L (y, f(x))

)
−
(
L (−y, f ∗(x)) + L (y, f ∗(x))

)
≥ 1

2 · L (−y, f(x)) = 1
2 · ψ(| − y − f(x)|) ≥ 1

2 · ψ(c0 + f(x)) ,

where, in the last step, we again applied the convexity and symmetry of L, as well as
(3.10).
By interchanging the roles of y and −y in the preceding paragraph, we obtain an analogous
inequality for the case that f(x) < 0. Combining these two cases yields that(

L⋆ (−y, f(x)) + L⋆ (y, f(x))
)

−
(
L⋆ (−y, f ∗(x)) + L⋆ (y, f ∗(x))

)
≥ 1

2 · ψ(c0 + |f(x)|) (3.11)

for all x ∈ Xε and y ∈ [c0, c0 + min{1
2 ,

|f(x)|
4 }] ⊆ [0, 1].

Because RL⋆,P(f ∗) = 0 ∈ R by the definition of f ∗ and RL⋆,P(f) ∈ R by assumption, our
considerations yield

RL⋆,P(f) − RL⋆,P(f ∗)

=
∫

X

∫
Y
L⋆ (y, f(x)) − L⋆ (y, f ∗(x)) dP(y |x) dPX(x)

=
∫

X

∫
[0,∞)

(
L⋆ (−y, f(x)) + L⋆ (y, f(x))

)
−
(
L⋆ (−y, f ∗(x)) + L⋆ (y, f ∗(x))

)
dP(y |x) dPX(x)

(3.9),(3.11)
≥

∫
Xε

∫
[c0,c0+min{ 1

2 ,
|f(x)|

4 }]

1
2 · ψ(c0 + |f(x)|) dP(y |x) dPX(x)

=
∫

Xε

x

2 · min
{

1
2 ,

|f(x)|
4

}
· 1

2 · ψ(c0 + |f(x)|) dPX(x)

≥ PX(Xε) · ε2

2 · min
{1

2 ,
ε1

4

}
· 1

2 · ψ(c0 + ε1)
(3.6)
> 0 .

In the second step, we multiplied the integrand by 2 for y = 0, which does not change
the value of the integral since P(Y = 0 |X = x) = 0 for all x ∈ X . In the final steps, we
additionally applied that P(· |X = x) has Lebesgue density x

2 on [c0, c0 + min{1
2 ,

|f(x)|
4 }] ⊆

[0, 1], respectively the definition of Xε.
Hence, f ∗

L⋆,P ≡ 0 PX-a.s. and thus also f ∗
L⋆,P ∈ L1(PX).

Next, we show that limn→∞ RL⋆,P(fn) = R∗
L⋆,P:

Recall the definition of fn, n ∈ N, from (3.8). For all n ∈ N, we have f ∗
L⋆,P, fn ∈ L1(PX)
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and therefore R∗
L⋆,P = RL⋆,P(f ∗

L⋆,P) ∈ R and RL⋆,P(fn) ∈ R by (2.5). Hence, we can write

RL⋆,P(fn) − R∗
L⋆,P

=
∫

X

∫
Y
L⋆ (y, fn(x)) − L⋆

(
y, f ∗

L⋆,P(x)
)

dP(y |x) dPX(x)

=
∫

X

∫
Y
L (y, fn(x)) − L

(
y, f ∗

L⋆,P(x)
)

dP(y |x) dPX(x)

=
∫ 1/n

0

∫ 1

−1

x

2 ·
(
L (y, n) − L (y, 0)

)
dy dx

+
∫ 1/n

0

1 − x

2 ·
((
L (−ax, n) + L (ax, n)

)
−
(
L (−ax, 0) + L (ax, 0)

))
dx , (3.12)

where we applied the definition of fn, f ∗
L⋆,P, and P in the last step. We will now analyze

the two integrals on the right hand side separately and show that they both converge to 0
as n → ∞, starting with the first one:∣∣∣∣∣

∫ 1/n

0

∫ 1

−1

x

2 ·
(
L (y, n) − L (y, 0)

)
dy dx

∣∣∣∣∣
≤
∫ 1/n

0

∫ 1

−1

x

2 · |L|1 · |n− 0| dy dx = |L|1
2n

n→∞−−−→ 0

with L being Lipschitz continuous by Lemma 2.1.17.
As for the second integral on the right hand side of (3.12):
We take a look at the subdifferential ∂ψ of the representing function ψ (cf. Definition 2.1.15)
of L. Because of the symmetry of L, we will without loss of generality only investigate
∂ψ(r) for r ∈ [0,∞). Define

z(r) := sup ∂ψ(r) ∈ [0,∞) ∀ r ∈ [0,∞) ,

where z(r) < ∞ will follow from (3.13) and z(r) ≥ 0 follows from ψ being monotonically
increasing on [0,∞) because of L being distance-based and convex. Furthermore, let cL be
the constant from the definition of the upper growth type 1 of L, that is

ψ(r) ≤ cL · (|r| + 1) ∀ r ∈ R .

Assume there was an r0 ∈ [0,∞) such that z(r0) > cL. Then, by the definition of the
subdifferential, we would obtain

cL · (r + 1) ≥ ψ(r) ≥ ψ(r0) + z(r0) · (r − r0) ∀ r ∈ [0,∞)

and hence

r ≤ ψ(r0) − z(r0)r0 − cL

cL − z(r0)
∀ r ∈ [0,∞) ,

which is a contradiction because the right hand side is a constant in R that is independent
of r. Hence, z is bounded by cL. Because of ψ being monotonically increasing on [0,∞)
and convex, we additionally obtain that z is monotonically increasing on [0,∞) and

c̃L := lim
r→∞

z(r) = sup
r∈[0,∞)

z(r) ≤ cL (3.13)
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exists.
We can therefore, for each x ∈ (0, 1), choose rx ∈ [0,∞) such that

0 ≤ c̃L − z(rx) ≤ x (3.14)

and

ψ(rx) + z(rx) · (r − rx) ≤ ψ(r) ≤ ψ(rx) + c̃L · (r − rx) ∀ r ∈ [rx,∞) . (3.15)

Now choose ax in the definition of P(· |X = x) in (3.7) as ax := rx + 1
x

for all x ∈ (0, 1).
Please note that ax > 1 for all x ∈ (0, 1). We obtain

L(−ax, n) + L(ax, n)
= ψ (| − ax − n|) + ψ (|ax − n|)

= ψ
(
rx + 1

x
+ n

)
+ ψ

(
rx + 1

x
− n

)
∈
[
2 · ψ(rx) + z(rx) ·

(1
x

+ n+ 1
x

− n
)
, 2 · ψ(rx) + c̃L ·

(1
x

+ n+ 1
x

− n
)]

=
[
2 ·
(
ψ(rx) + z(rx)

x

)
, 2 ·

(
ψ(rx) + c̃L

x

)]
∀n ∈ N , x ∈

(
0, 1
n

)
,

where we applied the symmetry of L as well as (3.15) combined with the fact that 1
x

+n ≥ 0
and 1

x
− n ≥ 0. Analogously, we obtain

L(−ax, 0) + L(ax, 0)

= 2 · ψ
(
rx + 1

x

)
∈
[
2 ·
(
ψ(rx) + z(rx)

x

)
, 2 ·

(
ψ(rx) + c̃L

x

)]
∀x ∈

(
0, 1
n

)
.

Plugging these results into the second integral on the right hand side of (3.12) finally yields∣∣∣∣∣
∫ 1/n

0

1 − x

2 ·
((
L (−ax, n) + L (ax, n)

)
−
(
L (−ax, 0) + L (ax, 0)

))
dx
∣∣∣∣∣

≤
∫ 1/n

0

1 − x

2 ·
(

2 ·
(
ψ(rx) + c̃L

x

)
− 2 ·

(
ψ(rx) + z(rx)

x

))
dx

=
∫ 1/n

0

1 − x

2 · 2
x

· (c̃L − z(rx)) dx
(3.14)
≤

∫ 1/n

0
(1 − x) dx = 1

n
− 1

2n2
n→∞−−−→ 0 ,

and thus limn→∞ RL⋆,P(fn) = R∗
L⋆,P.

Finally and as a last step, we have to show that limn→∞

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

̸= 0:

lim
n→∞

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

= lim
n→∞

∫ 1/n

0
|n− 0| dx = lim

n→∞
1 ̸= 0 .
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Note that in the situation of Proposition 3.2.6, risk consistency does also not imply
Lp-consistency for any p > 1 since Lp-consistency for p > 1 would imply L1-consistency.

We now take a special look at the τ -pinball loss for τ ∈ (0, 1), cf. (2.1), which is convex
and distance-based with growth type 1, but not symmetric for τ ̸= 0.5. The pinball loss
can be used for quantile regression, i.e. for estimating the conditional quantiles

F ∗
τ,P : X → 2R ,

x 7→ {t∗ | P((−∞, t∗]|x) ≥ τ and P([t∗,∞)|x) ≥ 1 − τ } ,

see also Koenker and Bassett (1978), Koenker (2005), Takeuchi et al. (2006), Steinwart
and Christmann (2011) for more details on quantile regression.

If one assumes these conditional quantiles F ∗
τ,P(x) to PX-a.s. be singletons, it is possible to

denote them by the PX-a.s. unique quantile function f ∗
τ,P : X → R defined by {f ∗

τ,P(x)} =
F ∗

τ,P(x) for all x ∈ X . Recall that this f ∗
τ,P is the up to PX-zero sets only measurable

function satisfying

RLτ-pin,P(f ∗
τ,P) = R∗

Lτ-pin,P (3.16)

if R∗
Lτ-pin,P is finite (see also Steinwart and Christmann, 2008, Proposition 3.9 and Lemma

3.12), and similarly, that f ∗
τ,P satisfies

RL⋆
τ-pin,P(f ∗

τ,P) = R∗
L⋆

τ-pin,P (3.17)

and is the up to PX-zero sets only measurable function doing so if R∗
L⋆

τ-pin,P is finite. This
ties our assumption of the conditional quantiles PX-a.s. being singletons to Remark 3.1.6
about the required PX-a.s. uniqueness of the Bayes function and yields f ∗

L⋆
τ-pin,P ≡ f ∗

τ,P

PX-a.s.
As non-symmetric loss functions are not covered by Proposition 3.2.6 and as the pinball

loss is the probably most popular among these, we specifically investigate the behavior of
this loss function and obtain the following analogous result to Proposition 3.2.6:

Proposition 3.2.8. Let Y = R. Let τ ∈ (0, 1) and let L⋆
τ -pin be the shifted version of

the τ -pinball loss.11 Then, even if f ∗
τ,P is PX-a.s. unique with f ∗

τ,P ∈ L1(PX), a sequence
(fn)n∈N ⊆ L1(PX) of functions satisfying

lim
n→∞

RL⋆
τ-pin,P(fn) = R∗

L⋆
τ-pin,P

11It can easily be seen that this shifted pinball loss function is, for τ ∈ (0, 1),

L⋆
τ -pin : Y ×R → R

(y, t) 7→ Lτ -pin(y, t) − Lτ -pin(y, 0) =


(1 − τ) · t , if y < min{0, t} ,
(1 − τ) · t− y , if 0 ≤ y < t ,

y − τ · t , if t ≤ y < 0 ,
−τ · t , if y ≥ max{0, t} .
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does in general not imply

lim
n→∞

∣∣∣∣∣∣fn − f ∗
τ,P

∣∣∣∣∣∣
L1(PX)

= 0

without any additional assumptions besides Assumption 3.0.1 being imposed.

Proof. Similarly to Proposition 3.2.6, we prove the statement by providing a counterexam-
ple:

Choose X := (0, 1), Y := R, PX := U(0, 1), and

P(· |X = x) = x ·
(
τ · U((−1, 0)) + (1 − τ) · U((0, 1))

)
+ (1 − x) ·

(
τ · δ−1/x + (1 − τ) · δ1/x

)
∀x ∈ X ,

where U(a, b) denotes the uniform distribution on (a, b) and δz denotes the Dirac distribu-
tion in z ∈ R.12 From this definition, we immediately obtain that f ∗

τ,P ≡ 0 ∈ L1(PX).
Further define

fn : X → R , x 7→

n , if x ∈
(
0, 1

n

)
,

0 , else ,

for all n ∈ N. As fn is bounded and measurable for all n ∈ N, we have (fn)n∈N ⊆ L1(PX).
Because of the occurring risks both being finite, cf. (2.5), and R∗

L⋆
τ-pin,P = RL⋆

τ-pin,P(f ∗
τ,P),

cf. (3.16), we can for all n ∈ N write

RL⋆
τ-pin,P(fn) − R∗

L⋆
τ-pin,P

=
∫

(0,1)

∫
R
L⋆

τ -pin(y, fn(x)) − L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y |x) dPX(x) . (3.18)

For PX-almost all x ∈ X , we can now further analyze the inner integral, applying that
fn(x) ≥ f ∗

τ,P(x), by∫
R
L⋆

τ -pin(y, fn(x)) − L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y |x)

=
∫
R
Lτ -pin(y, fn(x)) − Lτ -pin(y, f ∗

τ,P(x)) dP(y |x)

=
∫
(−∞,f∗

τ,P(x))
(1 − τ) ·

(
fn(x) − f ∗

τ,P(x)
)

dP(y |x)

+
∫
[f∗

τ,P(x),fn(x))
(−τ) ·

(
fn(x) − f ∗

τ,P(x)
)

+ (fn(x) − y) dP(y |x)

+
∫

[fn(x),∞)
(−τ) ·

(
fn(x) − f ∗

τ,P(x)
)

dP(y |x)

=
∫
[f∗

τ,P(x),fn(x))
(fn(x) − y) dP(y |x) . (3.19)

12For the sake of strictly adhering to the completeness assumption from Assumption 3.0.1, we can also
choose X as [0, 1] or R, and P(· |X = x) as an arbitrary probability measure for x /∈ (0, 1) without changing
anything else.
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In the last step, we employed that, for PX-almost all x ∈ X , we know from the definition of
P that P({f ∗

τ,P(x)} |x) = 0 and therefore P((−∞, f ∗
τ,P(x)) |x) = τ and P([f ∗

τ,P(x),∞) |x) =
1 − τ by the definition of f ∗

τ,P.
Plugging (3.19) and the definition of fn and f ∗

τ,P into (3.18), we obtain

RL⋆
τ-pin,P(fn) − R∗

L⋆
τ-pin,P =

∫
(0, 1

n)

∫
[0,n)

(n− y) dP(y |x) dPX(x)

=
∫ 1

n

0

∫ 1

0
(n− y) · x · (1 − τ) dy dx

= (1 − τ) · 2n− 1
4n2 → 0 , n → ∞ .

On the other hand,
∣∣∣∣∣∣fn − f ∗

τ,P

∣∣∣∣∣∣
L1(PX)

=
∫ 1

n

0
|n− 0| dx = 1 ̸→ 0 , n → ∞ ,

which completes the proof.

As the preceding results allow for arbitrary sequences of functions in L1(PX), we might
still hope to deduce L1-consistency following from L⋆-risk consistency by restricting our-
selves to smaller function spaces with more structure like Sobolev spaces. However, the sub-
sequent corollary shows that Proposition 3.2.6 and Proposition 3.2.8 can even be strength-
ened to sequences of functions from Sobolev spaces. Here, we assume that X = Rd for
some d ∈ N, and we denote by Wm,q(X ) the Sobolev space consisting of all functions from
Lq(X ) whose weak derivatives (cf. Adams and Fournier, 2003, Paragraph 1.62) up to order
m are also in Lq(X ), cf. Adams and Fournier (2003, Definition 3.2). Here, as usual, Lq(X )
denotes the Lq-space with respect to the Lebesgue measure on X .

Corollary 3.2.9. Let d ∈ N, X = Rd, and Y = R. Let L : Y × R → [0,∞) be a convex,
distance-based and symmetric loss function of growth type 1, or the τ -pinball loss for some
τ ∈ (0, 1). Let L⋆ be its shifted version. Let m ∈ N and 1 ≤ q ≤ ∞. Then, even if f ∗

L⋆,P is
PX-a.s. unique with f ∗

L⋆,P ∈ L1(PX), a sequence (fn)n∈N ⊆ Wm,q(X )∩L1(PX) of functions
satisfying

lim
n→∞

RL⋆,P(fn) = R∗
L⋆,P

does in general not imply

lim
n→∞

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

= 0

without any additional assumptions besides Assumption 3.0.1 being imposed.

Proof. The assertion follows directly from the proof of Proposition 3.2.6 respectively Propo-
sition 3.2.8 by changing the functions fn, n ∈ N, to

fn : X → R , x 7→

n · (1 − nx)m , if x ∈
(
0, 1

n

)
,

0 , else .
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Since, for all n ∈ N, fn is bounded, measurable and m times weakly differentiable, we
obtain (fn)n∈N ⊆ Wm,∞(X ) ∩ L1(PX) ⊆ Wm,q(X ) ∩ L1(PX).13

If we denote the functions from the mentioned proofs by gn, n ∈ N, we have f ∗
L⋆,P(x) ≤

fn(x) ≤ gn(x) for PX-almost all x ∈ X because f ∗
L⋆,P = 0 PX-a.s. (with f ∗

L⋆,P = f ∗
τ,P PX-a.s.

in the situation of L⋆ = L⋆
τ -pin by the considerations prior to Proposition 3.2.8). It is easy

to see that the convexity of L and the definition of f ∗
L⋆,P as a minimizer of RL⋆,P therefore

implies RL⋆,P(fn) − R∗
L⋆,P ≤ RL⋆,P(gn) − R∗

L⋆,P, which then yields limn→∞ RL⋆,P(fn) =
R∗

L⋆,P.
At the same time, we obtain

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

=
∫ 1/n

0
|n · (1 − nx)m − 0| dx = 1

m+ 1 ̸→ 0 , n → ∞ ,

which completes the proof.

The preceding results show that it is not possible to get rid of the moment condition from
Theorem 3.2.1 (cf. Remark 3.2.2) just by transferring it to shifted loss functions. It might,
however, still be possible to circumvent this moment condition by instead imposing some
different and less restrictive conditions. For the pinball loss, i.e. for performing quantile
regression, we are indeed able to derive such an alternative and in many cases less restrictive
condition regarding P. To be more specific, the conditional distribution P(· |X) is, in some
sense, not allowed to be too heteroscedastic and it has to be continuous in the conditional
quantiles f ∗

τ,P(x), x ∈ X , which gets formalized by (3.20) and (3.21) in the subsequent
theorem. Condition (3.20) gets visualized in Figure 3.2.1.

Theorem 3.2.10. Let τ ∈ (0, 1) and L⋆
τ -pin be the shifted version of the τ -pinball loss.

Assume that f ∗
τ,P exists and is PX-a.s. unique, f ∗

τ,P ∈ L1(PX), and P additionally satisfies
at least one of the following conditions:

(i) |P|1 < ∞.

(ii) There exist c1, c2 > 0 such that

P
(

(f ∗
τ,P(X)−c1, f

∗
τ,P(X))

∣∣∣X) ≥ c2 and P
(

(f ∗
τ,P(X), f ∗

τ,P(X)+c1)
∣∣∣X) ≥ c2 (3.20)

PX-a.s., as well as

P(f ∗
τ,P(X) |X) = 0 (3.21)

PX-a.s.

Then, for every sequence (fn)n∈N ⊆ L1(PX), we have

lim
n→∞

RL⋆
τ-pin,P(fn) = R∗

L⋆
τ-pin,P ⇒ lim

n→∞
||fn − f ∗

τ,P||L1(PX) = 0 .
13If X is not chosen as (0, 1) but instead as R in the proofs of Proposition 3.2.6 and Proposition 3.2.8

in order to strictly adhere to the assumptions, it is obviously possible to extend the functions fn, n ∈ N,
in such a way that they are still in Wm,∞(X ) ∩ L1(PX).
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Proof. By (2.5), both RL⋆
τ-pin,P(fn), n ∈ N, and RL⋆

τ-pin,P(f ∗
τ,P) are finite.

If condition (i) is satisfied, we further obtain as in Remark 3.2.2 that RLτ-pin,P(0) and
RLτ-pin,P(fn), for n ∈ N, are finite, and therefore also R∗

Lτ-pin,P. As R∗
Lτ-pin,P = RLτ-pin,P(f ∗

τ,P)
and R∗

L⋆
τ-pin,P = RL⋆

τ-pin,P(f ∗
τ,P) by (3.16) and (3.17), we hence obtain

RLτ-pin,P(fn) = RL⋆
τ-pin,P(fn) + RLτ-pin,P(0) ∀n ∈ N

and

R∗
Lτ-pin,P = RLτ-pin,P(f ∗

τ,P) = RL⋆
τ-pin,P(f ∗

τ,P) + RLτ-pin,P(0) = R∗
L⋆

τ-pin,P + RLτ-pin,P(0) .

Theorem 3.2.1 and Remark 3.2.2 then yield the assertion because of Lτ -pin being of growth
type 1. Thus, it is only left to show that condition (ii) yields the assertion as well:

Because of the finiteness of RL⋆
τ-pin,P(fn), n ∈ N, and RL⋆

τ-pin,P(f ∗
τ,P), the assumed risk

consistency implies that the P-integral of L⋆
τ -pin(y, fn(x)) −L⋆

τ -pin(y, f ∗
τ,P(x)) converges to 0

as n → ∞. We will now begin by fixing an x ∈ X and further analyzing the inner integral
with respect to P(· |x):

First, we look at the case that fn(x) ≥ f ∗
τ,P(x). In this case, repeating the considerations

from (3.19), where we can apply (3.21) in the last step, yields for PX-almost all such x
that ∫

Y
L⋆

τ -pin(y, fn(x)) − L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y|x)

=
∫
[f∗

τ,P(x),fn(x))
(fn(x) − y) dP(y|x)

≥
∫[

f∗
τ,P(x),

fn(x)+f∗
τ,P(x)

2

)(fn(x) − y) dP(y|x)

≥
(
fn(x) −

fn(x) + f ∗
τ,P(x)

2

)
· P

((
f ∗

τ,P(x),
fn(x) + f ∗

τ,P(x)
2

)∣∣∣∣∣x
)

=
fn(x) − f ∗

τ,P(x)
2 · P

((
f ∗

τ,P(x),
fn(x) + f ∗

τ,P(x)
2

)∣∣∣∣∣x
)
.

If on the other hand fn(x) < f ∗
τ,P(x), we analogously obtain for PX-almost all such x:∫

Y
L⋆

τ -pin(y, fn(x)) − L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y|x)

≥
f ∗

τ,P(x) − fn(x)
2 · P

((
fn(x) + f ∗

τ,P(x)
2 , f ∗

τ,P(x)
)∣∣∣∣∣x

)
.

In summary,∫
Y
L⋆

τ -pin(y, fn(x))−L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y|X) ≥
|fn(X) − f ∗

τ,P(X)|
2 ·P (JX,n|X) (3.22)

PX-a.s., where

Jx,n :=
(

min
{
f ∗

τ,P(x),
fn(x) + f ∗

τ,P(x)
2

}
,max

{
f ∗

τ,P(x),
fn(x) + f ∗

τ,P(x)
2

})
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for all x ∈ X .
Additionally, Christmann et al. (2009, Corollary 31) yields fn

PX

−−→ f ∗
τ,P, i.e.

lim
n→∞

PX(|fn(X) − f ∗
τ,P(X)| > ε) = 0 ∀ε > 0 . (3.23)

Now, let ε > 0 be an arbitrary positive number (without loss of generality ε < 2c1). X can
be partitioned as X = ⋃· 3

i=1 Xi,ε, where

X1,ε :=
{
x ∈ X : |fn(x) − f ∗

τ,P(x)| ≤ ε
}
,

X2,ε :=
{
x ∈ X : ε < |fn(x) − f ∗

τ,P(x)| ≤ 2 · c1
}
,

X3,ε := X3 :=
{
x ∈ X : |fn(x) − f ∗

τ,P(x)| > 2 · c1
}
,

such that

||fn − f ∗
τ,P||L1(PX) =

3∑
i=1

∫
Xi,ε

|fn(x) − f ∗
τ,P(x)| dPX(x) . (3.24)

The three summands can now be analyzed separately:∫
X1,ε

|fn(x) − f ∗
τ,P(x)| dPX(x) ≤ ε,∫

X2,ε

|fn(x) − f ∗
τ,P(x)| dPX(x) ≤ 2 · c1 · PX(X2,ε)

(3.23)−−−→ 0 , n → ∞ ,

and ∫
X3,ε

|fn(x) − f ∗
τ,P(x)| dPX(x)

=
∫

X3

(
|fn(x) − f ∗

τ,P(x)|
2 · P(Jx,n|x)

)
· 2

P(Jx,n|x) dPX(x)

(3.20),(3.22)
≤ 2

c2
·
∫

X3

∫
Y
L⋆

τ -pin(y, fn(x)) − L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y|x) dPX(x)

→ 0 , n → ∞ ,

with the last convergence holding true because∫
X

∫
Y
L⋆

τ -pin(y, fn(x)) − L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y|x) dPX(x) → 0 , n → ∞ ,

by assumption and∫
Y
L⋆

τ -pin(y, fn(x)) − L⋆
τ -pin(y, f ∗

τ,P(x)) dP(y|X) ≥ 0

PX-a.s. by (3.22).
Plugging these results into (3.24) yields the assertion.
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Figure 3.2.1: Visualization of (3.20). Each vertical slice between f ∗
τ,P − c1 and f ∗

τ,P as well
as between f ∗

τ,P and f ∗
τ,P +c1 needs to have a conditional probability (given x) of at least c2.

The solid vertical lines depict some examples of such slices whose conditional probability
needs to be at least c2. [This is a minimally modified version of a figure that was first
published in Köhler, 2024b.]

Even though it was not possible to get rid of the moment condition (i) without imposing
the new conditions (ii), this still substantially expands the applicability of the theorem
since there are many cases in which (ii) (whose first part is visualized in Figure 3.2.1) is
satisfied even though (i) is not:

Example 3.2.11. Assume that τ ∈ (0, 1) and that we have an underlying homoscedastic
regression model like

Y = f(X) + ε ,

where f : X → Y is an arbitrary measurable function and ε is a continuous random variable
whose distribution does not depend on the value of X. Whenever ε has a unique τ -
quantile qτ ∈ R, (ii) from Theorem 3.2.10 holds true with f ∗

τ,P = f + qτ . For example,
ε can follow a Cauchy distribution with location and scale parameters which are fixed
independently of the value of X. In this case, the moment condition (i) does not hold true,
but Theorem 3.2.10 does still yield L1-consistency following from risk consistency.

Example 3.2.12. The independence of ε from X in Example 3.2.11 is not even strictly
necessary. Assume the more general heteroscedastic model

Y = f(X) + εX ,
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where the distribution of εX is now allowed to depend on the value x of X. If, for example,
there exist C > 0 and c1 > 0 such that εx has a unique τ -quantile qx,τ ∈ R and Lebesgue
density greater than C on (qx,τ − c1, qx,τ + c1) for PX-almost all x ∈ X , condition (ii) from
Theorem 3.2.10 is still satisfied.

For example, this situation is on hand if X = Rd for some d ∈ N, Y = R, and εx follows
a Cauchy distribution with location parameter cos(||x||2) and scale parameter 2+sin(||x||2)
for all x ∈ X . More generally, the same also holds true for different choices of location and
scale parameters, as long as they are bounded from above and from below (in the case of
the scale parameter we mean bounded away from zero by bounded from below).

We saw that L1-consistency can not be obtained from risk consistency without imposing
some different, albeit in some sense weaker, condition regarding P in exchange for omitting
the moment condition. It is, however, indeed possible to just omit the moment condition
in the reverse statement (Theorem 3.2.3) when transferring this to shifted loss functions
in the case of having a convex loss function of upper growth type 1, which again hints at
this direction being the easier one as it was suspected in Section 3.1.

Theorem 3.2.13. Let L : Y → R be a convex, distance-based loss function of upper growth
type 1, and let L⋆ be its shifted version. Then, for every sequence (fn)n∈N ⊆ L1(PX) and
every function f ∗ ∈ L1(PX), we have

lim
n→∞

||fn − f ∗||L1(PX) = 0 ⇒ lim
n→∞

RL⋆,P(fn) = RL⋆,P(f ∗) .

Proof. We know from (2.5) that all risks appearing in this result are finite. L additionally
being Lipschitz continuous (cf. Lemma 2.1.17) yields

|RL⋆,P(fn) − RL⋆,P(f ∗)| ≤
∫

|L⋆(y, fn(x)) − L⋆(y, f ∗(x))| dP(x, y)

=
∫

|L(y, fn(x)) − L(y, f ∗(x))| dP(x, y)

≤ |L|1 ·
∫

|fn(x) − f ∗(x)| dP(x, y)

= |L|1 · ||fn − f ∗||L1(PX) → 0 n → ∞ .

Lastly, it is obvious that the first part of Corollary 3.2.4—H-consistency implying Lp-
consistency (for any p ∈ [1,∞], not only for p = 1)—also holds true in the situation of the
present section as the loss function did not come into play in that statement. The second
part of Corollary 3.2.4—H-consistency implying risk consistency—does depend on the loss
function but can be transferred to shifted loss functions seamlessly:

Corollary 3.2.14. Let L : Y → R be a convex, distance-based loss function of upper growth
type 1, and let L⋆ be its shifted version. Let H be the RKHS of a bounded and measurable
kernel k on X . Then, for every sequence (fn)n∈N ⊆ H and every function f ∗ ∈ H, we have

lim
n→∞

||fn − f ∗||H = 0 ⇒ lim
n→∞

RL⋆,P(fn) = RL⋆,P(f ∗) .

Proof. The assertion follows directly from Corollary 3.2.4(i) and Theorem 3.2.13, which
can be applied because H ⊆ L1(PX) by Lemma 2.1.10(ii).
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3.3 Consistency of Support Vector Machines
In this section, the results from Section 3.2 are used as an aid for deriving new results
on different types of consistency of SVMs. First, SVMs using regular loss functions are
considered. For them, Section 3.3.1 examines Lp-consistency. The results from that section
are then employed in Section 3.3.2 to in some sense (which gets specified in Sections 3.3.1
and 3.3.2) improve existing results on risk consistency of such SVMs, and results on their
H-consistency are derived in Section 3.3.3. Finally, SVMs based on shifted loss functions
are investigated in Section 3.3.4 (Lp-consistency) and Section 3.3.5 (H-consistency). Risk
consistency of SVMs based on shifted loss functions is not investigated in a separate sec-
tion since the results from the preceding Section 3.2 would not yield any improvement
over existing results in this case. This is explained in slightly more detail at the end of
Section 3.3.4.

Sections 3.3.1, 3.3.2 and 3.3.4 are mostly taken from the peer-reviewed paper Köhler
(2024b, Section 4) that was published in Journal of Machine Learning Research. Sec-
tions 3.3.3 and 3.3.5 consist of previously unpublished results.

3.3.1 Lp-Consistency Using Regular Loss Functions
Whereas SVMs based on distance-based losses are known to be risk consistent under mild
assumptions (cf. Christmann and Steinwart, 2007, Theorem 12), there are no general results
on their Lp-consistency so far, but instead only corollaries for special loss functions based
on the results mentioned at the beginning of Section 3.2.1.

Since the conditions required by Christmann and Steinwart (2007, Theorem 12) also
imply the validity of Theorem 3.2.1, Lp-consistency of such SVMs would now directly
follow under these conditions. However, by some more thorough investigations, we are even
able to slightly relax the conditions on the sequence (λn)n∈N of regularization parameters,
namely only requiring it to satisfy λp∗

n n → ∞ (as n → ∞) for p∗ = max{p+ 1, p(p+ 1)/2}
instead of for p∗ = max{2p, p2}, which is required by Christmann and Steinwart (2007,
Theorem 12). This relaxation gets apparent in the following example:

Example 3.3.1. The popular least squares loss function is of growth type p = 2. Hence
in this case max{p + 1, p(p + 1)/2} = 3 < 4 = max{2p, p2}. Thus, the subsequent Theo-
rem 3.3.2 yields Lp-consistency (and Corollary 3.3.5 will yield risk consistency) of SVMs
using the least squares loss under the condition that λ3

nn → ∞ as n → ∞, which is for
example satisfied if λn ∝ n−1/4. On the other hand, Christmann and Steinwart (2007,
Theorem 12) guarantees risk consistency of such SVMs only if λ4

nn → ∞ as n → ∞, which
is not satisfied for λn ∝ n−1/4. Thus, our new results allow for slightly faster convergence
of the regularization parameter to 0 and one therefore becomes more flexible in choosing
the regularization parameters while still being guaranteed consistency.

It should be noted that such a relaxation takes place whenever p > 1 holds true. The
case p = 1 is the only one, in which max{p+ 1, p(p+ 1)/2} = max{2p, p2}.

Theorem 3.3.2. Let L : Y × R → [0,∞) be a convex, distance-based loss function of
growth type p ∈ [1,∞). Let H ⊆ Lp(PX) dense and separable be the RKHS of a bounded
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and measurable kernel k on X . Assume that f ∗
L,P exists and is PX-a.s. unique and |P|p < ∞.

Define p∗ := max{p+ 1, p(p+ 1)/2}. If the sequence (λn)n∈N satisfies λn > 0 for all n ∈ N
as well as λn → 0 and λp∗

n n → ∞ for n → ∞, then

lim
n→∞

||fL,Dn,λn,k − f ∗
L,P||Lp(PX) = 0 in probability P∞.

We outsource the following statement, which is needed in the proof, into a separate
lemma as this will be needed again in the proofs of Propositions 3.3.6 and 3.3.7.

Lemma 3.3.3. Let L : Y ×R → [0,∞) be a convex, distance-based loss function of upper
growth type p ∈ [1,∞). Let k be a bounded and measurable kernel on X with separable
RKHS H. Assume that |P|p < ∞. Define p∗ := max{p + 1, p(p + 1)/2}. If the sequence
(λn)n∈N is bounded and satisfies λn > 0 for all n ∈ N as well as λp∗

n n → ∞ for n → ∞,
then

lim
n→∞

||fL,Dn,λn,k − fL,P,λn,k||H = 0 in probability P∞.

Proof. Start by noting that applying Lemma 2.1.10(i), Steinwart and Christmann (2008,
eq. (5.4)), and Lemma 2.1.21(ii) yields

||fL,P,λn,k||∞ ≤ ||k||∞ · ||fL,P,λn,k||H ≤ ||k||∞ · RL,P(0)1/2 · λ−1/2
n ≤ cp,L,P,k · λ−1/2

n (3.25)

for all n ∈ N, with cp,L,P,k ∈ (0,∞) denoting a constant depending only on p, L, P and k,
but not on λn.

We know from Steinwart and Christmann (2008, Corollary 5.11) that there exist func-
tions hn : X × Y → R, n ∈ N, such that

||fL,Dn,λn,k − fL,P,λn,k||H ≤ 1
λn

· ||EDn [hnΦ] − EP [hnΦ]||H ∀n ∈ N , (3.26)

and, for s := p/(p− 1),

||hn||Ls(P) ≤ 8p · cL ·
(
1 + |P|p−1

p + ||fL,P,λn,k||p−1
∞

)
≤ 8p · cL ·

(
1 + |P|p−1

p + cp−1
p,L,P,k · λ−(p−1)/2

n

)
≤ c̃p,L,P,k · λ−(p−1)/2

n ∀n ∈ N , (3.27)

where we employed (3.25) in the second and the boundedness of (λn)n∈N in the third
step, and where cL ∈ (0,∞) and c̃p,L,P,k ∈ (0,∞) denote constants depending only on L
respectively p, L, P and k.

Now, we can apply Steinwart and Christmann (2008, Lemma 9.2) with q := p/(p − 1)
if p > 1 and q := 2 if p = 1, which leads to q∗ := min{1/2, 1 − 1/q} = min{1/2, 1/p} =
(p+ 1)/(2p∗), to the functions hnΦ, n ∈ N: First of all, with the help of (3.27) we obtain

||hnΦ||q := (EP [||hnΦ||qH ])1/q ≤ ||k||∞ · ||hn||Lq(P) ≤ ||k||∞ · c̃p,L,P,k · λ−(p−1)/2
n < ∞

for all n ∈ N. We employed that, for all (x, y) ∈ X × Y ,

||hn(x, y)Φ(x)||qH = |hn(x, y)|q · ||Φ(x)||qH = |hn(x, y)|q · k(x, x)q/2 ≤ |hn(x, y)|q · ||k||q∞

58



by the reproducing property. Hence, we obtain for all ε > 0, by combining this Lemma 9.2
with (3.26),

Pn
(
Dn ∈ (X × Y)n : ||fL,Dn,λn,k − fL,P,λn,k||H ≥ ε

)
≤ Pn (Dn ∈ (X × Y)n : ||EDn [hnΦ] − EP [hnΦ]||H ≥ λn · ε)

≤ cq ·
( ||hnΦ||q
λnεnq∗

)q

≤ ĉp,L,P,k ·
(

1
λ

(p+1)/2
n εnq∗

)q

→ 0 , n → ∞ ,

with cq ∈ (0,∞) and ĉp,L,P,k ∈ (0,∞) denoting constants depending only on q (that is,
only on p) respectively p, L, P and k, and with the convergence in the last step holding
true because

λ(p+1)/2
n nq∗ =

(
λ(p+1)/(2q∗)

n n
)q∗

=
(
λp∗

n n
)q∗

→ ∞ , n → ∞ ,

by the assumptions on (λn)n∈N. This completes the proof.

Proof of Theorem 3.3.2. We can split up the difference, which we have to investigate, as∣∣∣∣∣∣fL,Dn,λn,k − f ∗
L,P

∣∣∣∣∣∣
Lp(PX)

≤ ||fL,Dn,λn,k − fL,P,λn,k||Lp(PX) +
∣∣∣∣∣∣fL,P,λn,k − f ∗

L,P

∣∣∣∣∣∣
Lp(PX)

≤ ||k||∞ ||fL,Dn,λn,k − fL,P,λn,k||H +
∣∣∣∣∣∣fL,P,λn,k − f ∗

L,P

∣∣∣∣∣∣
Lp(PX)

(3.28)
by Lemma 2.1.10(i). The first summand on the right hand side converges to 0 in probability
as n → ∞ by Lemma 3.3.3.

As for the second summand: First of all, Lemma 2.1.21(i) yields that L is a P-integrable
Nemitski loss of order p. Hence, we know from Steinwart and Christmann (2008, Theorem
5.31) that

R∗
L,P,H := inf

f∈H
RL,P(f) = R∗

L,P ,

and Steinwart and Christmann (2008, Lemma 5.15) (with R∗
L,P,H = R∗

L,P < ∞ by Re-
mark 3.2.2) then yields

lim
n→∞

λn ||fL,P,λn,k||2H + RL,P(fL,P,λn,k) − R∗
L,P = 0

because λn → 0 as n → ∞. Since λn ||fL,P,λn,k||2H is non-negative and RL,P(fL,P,λn,k) ≥
R∗

L,P by the definition of R∗
L,P, we obtain

lim
n→∞

RL,P(fL,P,λn,k) = R∗
L,P .

Hence, Theorem 3.2.1, whose conditions are satisfied because of the considerations from
Remark 3.2.2, yields convergence to 0 (as n → ∞) of the second summand on the right
hand side of (3.28), which completes the proof.

Remark 3.3.4. The conditions on H in Theorem 3.3.2 can be difficult to check directly.
Because of X being separable by Assumption 3.0.1, the separability of H however immedi-
ately follows whenever k is continuous (cf. Lemma 2.1.10(iii)) and it suffices to verify this
continuity instead. For example, the commonly used Gaussian RBF kernel (among many
other kernels) satisfies this continuity and its RKHS additionally is dense in Lp(PX) (cf.
Example 2.1.12), for which reason this RKHS satisfies both conditions from Theorem 3.3.2.
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3.3.2 Risk Consistency Using Regular Loss Functions
As we successfully slightly reduced the conditions regarding (λn)n∈N compared to the refer-
enced result on risk consistency in Section 3.3.1, we can now transfer this slight relaxation
back from Lp-consistency to risk consistency by using Theorem 3.2.3:

Corollary 3.3.5. Let L : Y × R → [0,∞) be a convex, distance-based loss function of
growth type p ∈ [1,∞). Let H ⊆ Lp(PX) dense and separable be the RKHS of a bounded
and measurable kernel k on X . Assume that f ∗

L,P exists and is PX-a.s. unique and |P|p < ∞.
Define p∗ := max{p+ 1, p(p+ 1)/2}. If the sequence (λn)n∈N satisfies λn > 0 for all n ∈ N
as well as λn → 0 and λp∗

n n → ∞ for n → ∞, then

lim
n→∞

RL,P(fL,Dn,λn,k) = R∗
L,P in probability P∞.

Proof. The assertion follows directly from Theorem 3.3.2 and Theorem 3.2.3.

Alas, the slight relaxation of the mentioned condition regarding the regularization pa-
rameters also comes along with an additional condition compared to Christmann and
Steinwart (2007, Theorem 12): Corollary 3.3.5 requires f ∗

L,P to PX-a.s. uniquely exist.
Thus, Corollary 3.3.5 pays for the slight relaxation in one condition by introducing this
new additional condition and should therefore not be seen as a replacement of Theorem
12 from Christmann and Steinwart (2007) but as an addition instead.

3.3.3 H-Consistency Using Regular Loss Functions
If the Bayes function f ∗

L,P is contained in H, it is even possible to strengthen the Lp- and
risk consistency results from the preceding two sections to the stronger (cf. Corollary 3.2.4)
H-consistency. Alas—in contrast to the condition f ∗

L,P ∈ Lp(PX) that is needed for Lp-
consistency but that could be replaced by the moment condition |P|p < ∞ in Theorem 3.3.2
based on Remark 3.2.2—the generally also not verifiable condition f ∗

L,P ∈ H can not easily
be replaced by a more intuitive alternative condition here.

Proposition 3.3.6. Let L : Y × R → [0,∞) be a convex, distance-based loss function of
upper growth type p ∈ [1,∞). Let H be the separable RKHS of a bounded and measurable
kernel k on X . Assume that f ∗

L,P exists and is PX-a.s. unique, f ∗
L,P ∈ H and |P|p < ∞.

Define p∗ := max{p+ 1, p(p+ 1)/2}. If the sequence (λn)n∈N satisfies λn > 0 for all n ∈ N
as well as λn → 0 and λp∗

n n → ∞ for n → ∞, then

lim
n→∞

∣∣∣∣∣∣fL,Dn,λn,k − f ∗
L,P

∣∣∣∣∣∣
H

= 0 in probability P∞.

Proof. By applying the triangle inequality, we obtain∣∣∣∣∣∣fL,Dn,λn,k − f ∗
L,P

∣∣∣∣∣∣
H

≤ ||fL,Dn,λn,k − fL,P,λn,k||H +
∣∣∣∣∣∣fL,P,λn,k − f ∗

L,P

∣∣∣∣∣∣
H
. (3.29)

Lemma 3.3.3 then yields that the first summand on the right hand side converges to 0 in
probability as n → ∞.
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Thus, only the second summand remains to be examined. By Lemma 2.1.21(i), L is
a P-integrable Nemitski loss. Hence, Steinwart and Christmann (2008, Corollary 5.19) is
applicable and yields (since f ∗

L,P ∈ H) that λ 7→ fL,P,λ,k defines a continuous mapping from
[0,∞] to H (by extending the definition of an SVM to the cases λ = 0 and λ = ∞). By
noting that f ∗

L,P ∈ H results in f ∗
L,P = fL,P,0, this continuity yields, for all ε > 0,∣∣∣∣∣∣fL,P,λn,k − f ∗

L,P

∣∣∣∣∣∣
H

= ||fL,P,λn,k − fL,P,0||H ≤ ε

for n sufficiently large, which then yields the assertion.

Notably and by Corollary 3.2.4, this result strengthens Theorem 3.3.2 to Lq-consistency
for any q ∈ [1,∞]—also for q exceeding the growth type p of the loss—if the additional
assumption f ∗

L,P ∈ H is satisfied. Furthermore, Proposition 3.3.6 offers the additional ad-
vantage of being transferable to Lipschitz continuous but not necessarily distance-based
losses rather easily (cf. Proposition 3.3.7), thus being applicable to an even larger class of
loss functions than the results on Lp- and risk consistency from Sections 3.3.1 and 3.3.2.
This way, the subsequent Proposition 3.3.7 can also be applied for margin-based loss func-
tions (cf. Definition 2.1.23) which are usually used in classification tasks. Most of the
commonly used margin-based losses, like the hinge loss or the logistic loss, are Lipschitz
continuous and satisfy RL,P(0) < ∞ (when actually being used in classification tasks),
which is required by the proposition.

Proposition 3.3.7. Let L : X × Y × R → [0,∞) be a convex, Lipschitz continuous loss
function. Let H be the separable RKHS of a bounded and measurable kernel k on X .
Assume that f ∗

L,P exists and is PX-a.s. unique, f ∗
L,P ∈ H and RL,P(0) < ∞. If the sequence

(λn)n∈N satisfies λn > 0 for all n ∈ N as well as λn → 0 and λ2
nn → ∞ for n → ∞, then

lim
n→∞

∣∣∣∣∣∣fL,Dn,λn,k − f ∗
L,P

∣∣∣∣∣∣
H

= 0 in probability P∞.

Proof. The proof works in exactly the same way as that of Proposition 3.3.6, with only
small changes. Again, the triangle inequality yields∣∣∣∣∣∣fL,Dn,λn,k − f ∗

L,P

∣∣∣∣∣∣
H

≤ ||fL,Dn,λn,k − fL,P,λn,k||H +
∣∣∣∣∣∣fL,P,λn,k − f ∗

L,P

∣∣∣∣∣∣
H
. (3.30)

The first summand on the right hand side converging to 0 in probability can be shown
similarly to Lemma 3.3.3. By Steinwart and Christmann (2008, Corollary 5.10), there exist
functions hn : X × Y → R, n ∈ N, such that

||fL,Dn,λn,k − fL,P,λn,k||H ≤ 1
λn

· ||EDn [hnΦ] − EP [hnΦ]||H ∀n ∈ N

and

||hn||∞ ≤ |L|1 ∀n ∈ N .

Now, the convergence can be proven analogously to Lemma 3.3.3 by applying Steinwart
and Christmann (2008, Lemma 9.2), where only the case q := 2 (and hence q∗ = 1/2) needs
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to be considered this time. This yields, for all ε > 0,

Pn(Dn ∈ (X × Y)n : ||fL,Dn,λn,k − fL,P,λn,k||H ≥ ε) ≤ c2 ·
(

||k||∞ |L|1
λnεn1/2

)2

→ 0 , n → ∞ ,

with c2 ∈ (0,∞) denoting the constant from the applied Lemma 9.2, and with the conver-
gence holding true by the assumptions on (λn)n∈N.

Hence, only the second summand on the right hand side of (3.30) remains to be in-
vestigated. Here, L being a P-integrable Nemitski loss can now be seen from the fact
that

L(x, y, t) ≤ L(x, y, 0) + |L|1 · |t| ∀ (x, y, t) ∈ X × Y ×R

by definition, and L(·, ·, 0) ∈ L1(P) (since RL,P(0) < ∞ and L ≥ 0). The rest follows the
same way as in the proof of Proposition 3.3.6.

3.3.4 Lp-Consistency Using Shifted Loss Functions
If one uses a Lipschitz continuous loss function (i.e. one of growth type 1 if it is distance-
based, cf. Remark 2.1.18), it was explained in Section 2.1.4 that switching to the corre-
sponding shifted loss function eliminates the moment condition |P|1 < ∞ in many results
on SVMs.

The natural hope that Theorem 3.3.2 can be transferred to the shifted case similarly,
thus also ridding it of the moment condition, might have already decreased because of
the negative results from Section 3.2.2. As SVMs are always contained in some RKHS
H, one might however still hope that counterexamples like the ones from the proofs of
these results can not occur in such RKHSs because of the additional structure they possess
compared to L1(PX).14 Alas, Sobolev spaces like the ones considered in Corollary 3.2.9
are also RKHSs if one chooses an appropriate kernel like for example the ones found in
Wendland (2005), which are classic examples of kernels with compact support. Hence, we
obtain the following:

Corollary 3.3.8. Let d ∈ N, X = Rd, and Y = R. Let L : Y × R → [0,∞) be a convex,
distance-based and symmetric loss function of growth type 1, or the τ -pinball loss for some
τ ∈ (0, 1). Let L⋆ be its shifted version. Then, even if H is the RKHS of a bounded and
measurable kernel k on X and f ∗

L⋆,P is PX-a.s. unique with f ∗
L⋆,P ∈ L1(PX), a sequence

(fn)n∈N ⊆ H of functions satisfying

lim
n→∞

RL⋆,P(fn) = R∗
L⋆,P

does in general not imply

lim
n→∞

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

= 0

without any additional assumptions besides Assumption 3.0.1 being imposed.
14By Lemma 2.1.21(ii), the associated kernel k being bounded and measurable implies that H ⊆ L1(PX).
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Proof. There exist different kernels whose RKHS is W 2,2(X ). Examples of such kernels
can be found in Berlinet and Thomas-Agnan (2004, Chapter 7), Saitoh and Sawano (2016,
Theorem 1.11) among others. For this proof, we will however use the kernel k1,1 defined
by k1,1(x, x′) := ϕ1,1(||x − x′||2) with ϕ1,1 as in Wendland (2005, Definition 9.11), that
is, ϕ1,1(r) ∝ (1 − r)3

+(3r + 1) (cf. Wendland, 2005, Table 9.1). By Wendland (2005,
Theorem 10.35), the RKHS of k1,1 is indeed W 2,2(X ). Additionally, k1,1 is bounded by
ϕ1,1(0) < ∞ and because of its continuity also measurable. Applying Corollary 3.2.9 yields
the assertion.

As the (probably) most commonly used RKHSs for computing SVMs are those of the
Gaussian RBF kernels, cf. Example 2.1.12, we also want to take a special look at these.
After proving in Corollary 3.3.8 that RKHSs, in which L1-consistency does not follow
from risk consistency, do in fact exist, we see in the subsequent Corollary 3.3.9 that this
phenomenon can not only occur for kernels whose RKHS is a Sobolev space but also for
the Gaussian RBF kernel.

Corollary 3.3.9. Let d ∈ N, X = Rd, and Y = R. Let L : Y × R → [0,∞) be a convex,
distance-based and symmetric loss function of growth type 1, or the τ -pinball loss for some
τ ∈ (0, 1). Let L⋆ be its shifted version. Let γ ∈ (0,∞) and Hγ be the RKHS of the
Gaussian RBF kernel kγ on X . Then, even if f ∗

L⋆,P is PX-a.s. unique with f ∗
L⋆,P ∈ L1(PX),

a sequence (fn)n∈N ⊆ Hγ of functions satisfying

lim
n→∞

RL⋆,P(fn) = R∗
L⋆,P

does in general not imply

lim
n→∞

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

= 0

without any additional assumptions besides Assumption 3.0.1 being imposed.

Proof. Denote, for some m ∈ N, the functions from the proof of Corollary 3.2.9 by gn,
n ∈ N, that is,

gn : X → R , x 7→

n · (1 − nx)m , if x ∈
(
0, 1

n

)
,

0 , else .

Because (gn)n∈N ⊆ L1(PX), there exists by Steinwart and Christmann (2008, Theo-
rem 4.63) a sequence (fn)n∈N ⊆ Hγ such that

||fn − gn||∞ ≤ 1
n

for all n ∈ N.
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Since both fn and gn are bounded, we obtain from (2.5) that, for all n ∈ N, RL⋆,P(fn) ∈ R
and RL⋆,P(gn) ∈ R. Hence,

|RL⋆,P(fn) − RL⋆,P(gn)| ≤
∫

X ×Y
|L⋆(y, fn(x)) − L⋆(y, gn(x))| dP(x, y)

=
∫

X ×Y
|L(y, fn(x)) − L(y, gn(x))| dP(x, y) ≤ |L|1 ·

∫
X ×Y

|fn(x) − gn(x)| dP(x, y)

≤ |L|1 · 1
n

→ 0 , n → ∞ .

with L being Lipschitz continuous by Lemma 2.1.17(ii). The risk consistency of (gn)n∈N
shown in the proof of Corollary 3.2.9 then yields risk consistency of (fn)n∈N.

On the other hand,

lim
n→∞

||fn − gn||L1(PX) = lim
n→∞

∫
X

|fn(x) − gn(x)| dPX(x) ≤ lim
n→∞

1
n

= 0

combined with

lim
n→∞

∣∣∣∣∣∣gn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

= 1
m+ 1 ,

which is known from the proof of Corollary 3.2.9, yields

lim
n→∞

∣∣∣∣∣∣fn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

≥ lim
n→∞

(∣∣∣∣∣∣gn − f ∗
L⋆,P

∣∣∣∣∣∣
L1(PX)

− ||fn − gn||L1(PX)

)
= 1
m+ 1

and thus (fn)n∈N not being L1-consistent.

The previous results show that L1-consistency of SVMs using shifted loss functions does
in general not follow from their risk consistency, with the latter being known from Christ-
mann et al. (2009, Theorem 8). Note that it might still be possible for such SVMs to be
L1-consistent for different reasons though.

At least in the special case of the shifted pinball loss, we found some alternative con-
ditions to replace—and in many situations weaken—the moment condition from Theo-
rem 3.3.2 in Theorem 3.2.10. With this, we can now at least deduce L1-consistency of
SVMs using this shifted pinball loss without needing to impose the moment condition:

Corollary 3.3.10. Let τ ∈ (0, 1) and L⋆
τ -pin be the shifted τ -pinball loss. Let H ⊆ L1(PX)

dense and separable be the RKHS of a bounded and measurable kernel k on X . Assume
that f ∗

τ,P exists and is PX-a.s. unique, f ∗
τ,P ∈ L1(PX) and P additionally satisfies at least

one of the additional conditions (i) and (ii) from Theorem 3.2.10. If the sequence (λn)n∈N
satisfies λn > 0 for all n ∈ N as well as λn → 0 and λ2

nn → ∞ for n → ∞, then

lim
n→∞

||fL⋆
τ-pin,Dn,λn − f ∗

τ,P||L1(PX) = 0 in probability P∞.

Proof. Christmann et al. (2009, Theorem 8) yields

lim
n→∞

RL⋆,P(fL⋆
τ-pin,Dn,λn) = RL⋆,P(f ∗

τ,P)

in probability P∞. The assertion follows directly from Theorem 3.2.10.
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It would now be possible to use Corollary 3.3.10 to derive a result on risk consistency
of SVMs which are based on the shifted pinball loss, similarly to what we did in the
non-shifted case in Section 3.3.2, where we used Theorem 3.3.2 on Lp-consistency to derive
Corollary 3.3.5 on risk consistency. In the latter result, we however only achieved an actual
improvement (over already existing results) regarding the conditions on the regularization
parameters if the loss function is of growth type p > 1. Similarly, a result on risk consistency
which is based on Corollary 3.3.10 would offer no benefit over Theorem 8 from Christmann
et al. (2009) because of the pinball loss being of growth type 1.

3.3.5 H-Consistency Using Shifted Loss Functions
In contrast to the results on Lp-consistency, it is indeed possible to transfer Proposi-
tion 3.3.7 on H-consistency of SVMs based on Lipschitz continuous losses to the shifted
case and eliminate the condition RL,P(0) < ∞ (which corresponds to the moment condi-
tion |P|1 < ∞ if the loss is additionally distance-based, cf. Remarks 2.1.18 and 2.1.22(i))
without needing to add a different condition regarding P instead.

Proposition 3.3.11. Let L : X × Y × R → [0,∞) be a Lipschitz continuous and convex
loss function, and let L⋆ be its shifted version. Let H be the separable RKHS of a bounded
and measurable kernel k on X . Assume that f ∗

L⋆,P is PX-a.s. unique. If f ∗
L⋆,P ∈ H and

the sequence (λn)n∈N satisfies λn > 0 for all n ∈ N as well as λn → 0 and λ2
nn → ∞ for

n → ∞, then

lim
n→∞

∣∣∣∣∣∣fL⋆,Dn,λn,k − f ∗
L⋆,P

∣∣∣∣∣∣
H

= 0 in probability P∞.

The proof needs the subsequent auxiliary result, which transfers Steinwart and Christ-
mann (2008, Corollary 5.19) to shifted loss functions. In this, the definition of SVMs from
Definition 2.1.5 is extended analogously to the cases λ = 0 and λ = ∞.

Lemma 3.3.12. Let L : X × Y × R → [0,∞) be a convex and Lipschitz continuous loss
function, and let L⋆ be its shifted version. Let H be the RKHS of a bounded and measurable
kernel on X . Define R∗

L⋆,P,H := inff∈H RL,P(f). Then, the following statements hold true:

(i) If R∗
L⋆,P,H > −∞, λ 7→ fL⋆,P,λ,k is a continuous mapping from (0,∞] to H.

(ii) If R∗
L⋆,P,H > −∞, λ 7→ RL⋆,P(fL⋆,P,λ,k) is a continuous mapping from (0,∞] to

[0,∞).

(iii) If there exists an f ∗ ∈ H minimizing RL⋆,P in H, then R∗
L⋆,P,H > −∞ and the

mappings from (i) and (ii) are also defined and continuous at 0.

Proof. We omit stating the proof in full detail, as the result just transfers Steinwart and
Christmann (2008, Corollary 5.19) from regular to shifted loss functions, which does not
change the proof apart from some minor details. The main change is that the condition that
L has to be a P-integrable Nemitski loss is dropped. This is possible because this condition
was only necessary for the risk functional to be continuous and we are only examining
Lipschitz continuous losses, for which the continuity of the risk functional follows from
Christmann et al. (2009, Lemma 29).
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Proof of Proposition 3.3.11. By applying the triangle inequality, we obtain∣∣∣∣∣∣fL⋆,Dn,λn,k − f ∗
L⋆,P

∣∣∣∣∣∣
H

≤ ||fL⋆,Dn,λn,k − fL⋆,P,λn,k||H +
∣∣∣∣∣∣fL⋆,P,λn,k − f ∗

L⋆,P

∣∣∣∣∣∣
H
. (3.31)

The first summand on the right hand side converging to 0 in probability can be shown
exactly the same way as in the proof of Proposition 3.3.7 by just replacing Steinwart and
Christmann (2008, Corollary 5.10) with Christmann et al. (2009, Theorem 7).

As for the second summand, we obtain from Lemma 3.3.12 (since f ∗
L⋆,P ∈ H) that

λ 7→ fL⋆,P,λ,k defines a continuous mapping from [0,∞] to H. By noting that f ∗
L,P ∈ H

results in f ∗
L⋆,P = fL⋆,P,0, this continuity yields, for all ε > 0,∣∣∣∣∣∣fL⋆,P,λn,k − f ∗

L⋆,P

∣∣∣∣∣∣
H

= ||fL⋆,P,λn,k − fL⋆,P,0||H ≤ ε

for n sufficiently large, which then yields the assertion.

Recall that H-consistency implies Lp-consistency for all p ∈ [1,∞] by Corollary 3.2.4.
Hence, the preceding result—similarly to Corollary 3.3.10, but for arbitrary distance-based
losses of growth type 1 instead of only the pinball loss—yields an alternative (albeit not
verifiable) condition to replace the moment condition |P|1 < ∞ in Theorem 3.3.2 and still
obtain Lp-consistency, namely f ∗

L⋆,P ∈ H.
Since 0 ∈ H for any RKHS H and the Sobolev space W 2,2(X ) is separable (cf. Adams and

Fournier, 2003, Theorem 3.6), Proposition 3.3.11 is actually applicable to the situation of
the counterexample used to prove Corollary 3.3.8 (see also proof of Corollary 3.2.9). Thus,
this is an example for which L1-consistency does not directly follow from risk consistency,
but SVMs are L1-consistent nonetheless.

3.4 Consistency of Localized Support Vector Machines
In this section, consistency results from Section 3.3 are transferred to localized SVMs,
showing that they are Lp- and risk consistent under analogous assumptions. This is done
for Lp-consistency in Section 3.4.2 and for risk consistency in Section 3.4.3. Notably, the
regionalizations underlying the different localized SVMs are allowed to change with n in all
results. Before stating the results, some additional definitions and assumptions are stated
in Section 3.4.1.
Remark 3.4.1. Some of the cases that were investigated for global SVMs are not explicitly
examined for localized SVMs, which is due to different reasons:

• In contrast to global SVMs, there is generally not an obvious associated RKHS which
contains a specific localized SVM and which therefore suggests itself to be used for
H-consistency.

• For shifted loss functions, proving Lp-consistency without the moment condition
would yield similar problems as in the non-localized case. Risk consistency on the
other hand has already been derived by Dumpert and Christmann (2018), even if
only for regionalizations that do not change as the size of the data set Dn increases.

This section is for the most part taken from the peer-reviewed paper Köhler (2024a,
Sections 3.2 and 4) that was published in Neurocomputing.
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3.4.1 Prerequisites
As consistency of localized SVMs is investigated in this section and as the regionalization
is allowed to change with n, localized SVMs fL,Dn,λn,kn,X n , n ∈ N, are required. For
n ∈ N, the regionalization X n := {Xn,1, . . . ,Xn,An} is assumed to be of size An ∈ N. For
n ∈ N and a ∈ {1, . . . , An}, denote by Pn,a := PXn,a and Dn,a := (Dn)Xn,a (as the empirical
measure associated to Dn,a := (Dn)Xn,a) local measures on Xn,a as defined in eq. (2.6), and
dn,a := |Dn,a|. Additionally, denote

IX n,P := {a ∈ {1, . . . , An} | P(Xn,a × Y) > 0}

and Ãn := |IX n,P| for all n ∈ N.
Further denoting X n(x) := {X̃ ∈ X n |x ∈ X̃ } for all x ∈ X and n ∈ N, the regionaliza-

tions are assumed to satisfy the following three conditions:

(R1) Xn,a complete (as a metric space) for all n ∈ N and a ∈ {1, . . . , An}.

(R2) ∃ smax ∈ N such that |X n(x)| ≤ smax for all x ∈ X and n ∈ N.

(R3) The sequence (X n)n∈N is stochastically independent of the sequence (Dn)n∈N of
training data sets.

Condition (R3) might seem restrictive at first glance because it seemingly constitutes
a restriction to only using regionalizations whose construction does not take the observed
data into account. However, one can easily circumvent this restriction by randomly parti-
tioning the whole data set into not only the usual three parts—namely a training data set
Dn, a validation data set and a test data set—but four parts instead, where the fourth part
is a regionalization data set. This way, the regionalizations can be chosen data-dependently
without violating (R3). By putting only a relatively small part of the available data into
the regionalization data set—which can be sufficient because one reason for regionalizing
is to just reduce the subsequent training time of the SVMs, for which no “perfect” region-
alization is necessary—, this procedure does not substantially reduce the amount of data
available for training, validating and testing.

Further note that, for every n ∈ N, the regions need not necessarily be pairwise disjoint
but can instead also overlap—as long as (R2) is satisfied, that is, as long as the number
of regions overlapping does not exceed some global constant smax in any point x ∈ X . If
the regionalization does not change with n, then (R2) is trivially satisfied for smax = A1.
Remark 3.4.2. By Dunford and Schwartz (1957, Lemma I.6.4 and Theorem I.6.12), any
subset of a separable metric space is a separable metric space again if it is equipped with
the metric of the original space. Hence, Assumption 3.0.1 being satisfied for X implies it
also being satisfied for the regions Xn,a, n ∈ N and a ∈ {1, . . . , An}.

In the consistency results, we further need the concept of families of kernels of type β,
which is introduced in the following definition.

Definition 3.4.3 (Family of Kernels of Type β). Let I be an index set such that 0 ∈ I.
For kernels k(r) and constants β(r) ∈ (0,∞), r ∈ I, we say that k := (k(r))r∈I is a family of
kernels of type β := (β(r))r∈I if, for all r ∈ I,
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(i) H(r) ⊇ H(0), where H(r) and H(0) are the RKHSs associated with k(r) and k(0)

respectively, and

(ii) ||f ||H(r) ≤ β(r) · ||f ||H(0) for all f ∈ H(0).

Remark 3.4.4. By Saitoh and Sawano (2016, Theorem 2.17) (see also Aronszajn, 1950,
Part I.7, and Berlinet and Thomas-Agnan, 2004, Section 4.5, for related considerations),
condition (i) from Definition 3.4.3 already implies that there exists some β(r) ∈ (0,∞)
such that (ii) is satisfied as well. Hence, every family of kernels satisfying (i) will also be a
family of kernels of type β for suitable β. Furthermore, the same theorem also yields that
the two conditions from Definition 3.4.3 are equivalent to

(iii) (β(r))2 · k(r) − k(0) is a kernel,

for which reason families of kernels of type β are equivalently characterized by (iii) holding
true for all r ∈ I.

Example 3.4.5. Let d ∈ N, X ⊆ Rd non-empty and I be an index set such that 0 ∈ I.
For r ∈ I, define k(r) as the Gaussian RBF kernel on X with bandwidth γ(r) ∈ (0,∞), cf.
Example 2.1.12. By Steinwart and Christmann (2008, Proposition 4.46), the conditions
from Definition 3.4.3 are satisfied with β(r) := (γ(0)/γ(r))d/2 if γ(0) ≥ supr∈I\{0} γ

(r).
Hence, every family (k(r))r∈J , 0 /∈ J , of Gaussian RBF kernels with bounded bandwidth

can be turned into a family of kernels of type β = ((γ(0)/γ(r))d/2)r∈I , I := J ∪ {0}, by
choosing k(0) as the Gaussian RBF kernel with bandwidth γ(0) = supr∈J γ

(r).

We introduced these families of kernels of type β since all kernels kn,a, n ∈ N, a ∈
{1, . . . , An}, used in the local SVMs will be required to come from the union of ℓ ∈ N such
families k(1), . . . ,k(ℓ). To be more specific, k(j), j = 1, . . . , ℓ, will consist of kernels on X
and each kn,a will be the restriction of such a kernel to Xn,a × Xn,a. That is, we will have
kn,a = k(j0,r0)

Xn,a×Xn,a for some j0 ∈ {1, . . . , ℓ} and r0 ∈ I(j0), where I(j0) denotes the index
set of the j0-th family. Based on this, we introduce the additional notation βn,a := β(j0,r0)

and k(0)
n,a := k(j0,0)

Xn,a×Xn,a (in case of ambiguity regarding j0 and r0, any of the options
may be chosen), which will be needed later on.

Note that the concept of families of kernels of type β also allows for infinite index sets
(see also Example 3.4.5). This will lead to the kernels kn,a, n ∈ N, a ∈ {1, . . . , An}, being
allowed to be chosen from a possibly infinite set of kernels.

Using this, the following assumptions are needed in the main results from the subsequent
sections, for which reason they are stated here in order to be able to shorten the formulation
of the results themselves:

Assumption 3.4.6.

• Let L : Y × R → [0,∞) be a convex, distance-based loss function of growth type
p ∈ [1,∞).

• Let, for n ∈ N, X n := {Xn,1, . . . ,Xn,An} be a regionalization of X of size An ∈ N

such that the regionalizations satisfy (R1), (R2), (R3), and let the weight functions
wn,a, n ∈ N and a ∈ {1, . . . , An}, satisfy (W1), (W2), (W3).
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• Let P be a probability measure on X ×Y that satisfies |P|p < ∞ as well as supn∈N,a∈IX n,P
|Pn,a|p <

∞.

• For n ∈ N, let λn := (λn,1, . . . , λn,An) ∈ (0,∞)An .

• Let ℓ ∈ N and let, for j = 1, . . . , ℓ, k(j) := (k(j,r))r∈I(j) be a family of uniformly
bounded and measurable kernels of type β(j) := (β(j,r))r∈I(j) on X with separable
RKHSs (H(j,r))r∈I(j) such that H(j,0) ⊆ Lp(PX) dense. For all n ∈ N, let kn :=
(kn,1, . . . , kn,An) such that for all a ∈ {1, . . . , An}

kn,a ∈
{
k(j,r)

Xn,a×Xn,a : j ∈ {1, . . . , ℓ}, r ∈ I(j)
}
.

These relatively weak assumptions can for the most part be ensured to hold true as they
only concern entities that can be chosen by the person computing the localized SVMs.15

Notably, the conditions that—directly or indirectly—concern the regionalization and there-
fore also the way this regionalization is obtained, can be ensured for most of the methods
mentioned in Section 2.2.1, with the exception of some of the kNN methods, which do not
satisfy (R2).
Remark 3.4.7. The condition supn∈N,a∈IX n,P

|Pn,a|p < ∞ is disadvantageous in that it re-
quires knowledge about all regionalizations X n, n ∈ N. Because

|Pn,a|pp =
∫

Xn,a

|P(· |x)|pp dPX
n,a(x) ≤ sup

x∈X
|P(· |x)|pp

for all n ∈ N and a ∈ IX n,P (and analogously also |P|pp ≤ supx∈X |P(· |x)|pp), it however
suffices if supx∈X |P(· |x)|p < ∞.

On the other hand, even though the finiteness of |P|p does already imply the finiteness
of |Pn,a|p for all n ∈ N and a ∈ IX n,P because

|Pn,a|pp =
∫

Xn,a

|P(· |x)|pp dPX
n,a(x) = 1

PX(Xn,a)
·
∫

Xn,a

|P(· |x)|pp dPX(x)

≤ 1
PX(Xn,a)

·
∫

X
|P(· |x)|pp dPX(x) = 1

PX(Xn,a)
· |P|pp ,

|P|p being finite is not sufficient to guarantee supn∈N,a∈IX n,P
|Pn,a|p < ∞, as can be seen

from the following example:
Let PX := U(0, 1) and P(· |X = x) := U(0, x−1/2) for all x ∈ (0, 1), where U(a, b) denotes

the uniform distribution on (a, b). Then, we have

|P|1 =
∫ 1

0

∫ 1√
x

0
y
√
x dy dx = 1 < ∞ ,

but for Xn,1 := (0, 1
n
), n ∈ N, we obtain

|Pn,1|1 =
∫ 1

n

0

∫ 1√
x

0
y
√
x dy · n dx =

√
n ,

15The most notable exception to this is the moment condition, which is however necessary for the
existence of functions with finite risks in the respective RKHSs and for even having a PX -a.s. unique
Bayes function lying in Lp(PX), cf. Remark 2.1.22.
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which yields supn∈N,a∈IX n,P
|Pn,a|p = ∞.

Hence, the condition supn∈N,a∈IX n,P
|Pn,a|p < ∞ is not superfluous in itself and can not

just be erased without adding a replacement like supx∈X |P(· |x)|p < ∞.

3.4.2 Lp-Consistency Using Regular Loss Functions
The subsequent theorem shows that localized SVMs are indeed Lp-consistent under As-
sumption 3.4.6.

Theorem 3.4.8. Let Assumption 3.4.6 be satisfied. Assume that f ∗
L,P exists and is PX-a.s.

unique. Define p∗
1 := max{p+ 1, p(p+ 1)/2}. Further choose p∗

2 := max{2(p− 1)/p, p− 1}
if p > 1 and p∗

2 ∈ (0,∞) arbitrary if p = 1. If the regularization parameters satisfy
λn,a ∈ (0, C) for all n ∈ N and a ∈ {1, . . . , An} for some C ∈ (0,∞), as well as

max
a∈IX n,P

β2
n,aλn,a → 0 (3.32)

and

min
a∈IX n,P

λ
p∗

1
n,adn,a

Ã
p∗

2
n

→ ∞ (3.33)

as n → ∞, then

lim
n→∞

∣∣∣∣∣∣fL,Dn,λn,kn,X n − f ∗
L,P

∣∣∣∣∣∣
Lp(PX)

= 0 in probability P∞.

Remark 3.4.9. The conditions (3.32) and (3.33) are closely connected to the ones from the
non-localized case (see Theorem 3.3.2), requiring that the regularization parameters tend
to 0, but not too fast. (3.32) however additionally needs to take changes in the kernels into
account by including βn,a, and (3.33) additionally states that the number of regions must
not grow too fast.

In some special cases, we can slightly simplify these two conditions:
If one only allows for a finite amount of kernels to choose from (instead of a finite amount

of families of kernels of type β), it is obviously possible to view each of these kernels as its
own family of kernels with index set I(j) = {0} and β(j,0) = 1 for all j ∈ {1, . . . , ℓ}, and
thus simplify (3.32) by eliminating βn,a from it.

Additionally, if the regionalization X n does not change with n, then Ãn is constant and
we can erase it from (3.33).

Hence, if both of these hold true (finite amount of kernels and constant regionalization),
the conditions regarding the regularization parameters are indeed exactly the same as in
Theorem 3.3.2 on Lp-consistency of non-localized SVMs, with the only difference being that
the conditions obviously need to hold true for each region now instead of only globally.

For proving Theorem 3.4.8, we need to investigate the difference between fL,Dn,λn,kn,X n

and f ∗
L,P. Analogously to the non-localized case, we do this by plugging in the theoret-

ical localized SVM fL,P,λn,kn,X n as an intermediate step. The two subsequent auxiliary
results examine the difference between fL,Dn,λn,kn,X n and fL,P,λn,kn,X n and that between
fL,P,λn,kn,X n and f ∗

L,P respectively.
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As the assumptions needed for these lemmas are slightly weaker than those needed in the
theorems from this section, Assumption 3.4.6 is not assumed to hold true in these lemmas,
but we will instead explicitly list the required assumptions in the lemmas.

Lemma 3.4.10. Let L : Y × R → [0,∞) be a convex, distance-based loss function of
upper growth type p ∈ [1,∞). Let the regionalizations X n, n ∈ N, satisfy (R1), (R3),
and let the weight functions wn,a, n ∈ N and a ∈ {1, . . . , An}, satisfy (W1), (W2),
(W3). Assume supn∈N,a∈IX n,P

|Pn,a|p < ∞. Let, for all n ∈ N and a ∈ {1, . . . , An},
kn,a be a bounded and measurable kernel on Xn,a with separable RKHS Hn,a, such that
supn∈N,a∈IX n,P

||kn,a||∞ < ∞. Define p∗
1 := max{p + 1, p(p + 1)/2}. Further choose p∗

2 :=
max{2(p − 1)/p, p − 1} if p > 1 and p∗

2 ∈ (0,∞) arbitrary if p = 1. If the regularization
parameters satisfy λn,a ∈ (0, C) for all n ∈ N and a ∈ {1, . . . ,mn} for some C ∈ (0,∞),
as well as

min
a∈IX n,P

λ
p∗

1
n,adn,a

Ã
p∗

2
n

→ ∞ (3.34)

as n → ∞, then

lim
n→∞

||fL,Dn,λn,kn,X n − fL,P,λn,kn,X n||L∞(PX) = 0 in probability P∞.

Proof. To shorten the notation, denote fP,n,a := fL,Pn,a,λn,a,kn,a and fDn,n,a := fL,Dn,a,λn,a,kn,a

for all n ∈ N and a ∈ {1, . . . , An}, as well as κ := supn∈N,a∈IX n,P
||kn,a||∞ and ρ :=

supn∈N,a∈IX n,P
|Pn,a|p throughout this proof.

Because applying (W1) and (W2) yields

|fL,Dn,λn,kn,X n(x) − fL,P,λn,kn,X n(x)| =
∣∣∣∣∣

An∑
a=1

wn,a(x) ·
(
f̂Dn,n,a(x) − f̂P,n,a(x)

)∣∣∣∣∣
≤

An∑
a=1

wn,a(x) ·
∣∣∣f̂Dn,n,a(x) − f̂P,n,a(x)

∣∣∣ ≤ max
a∈{1,...,An}

∣∣∣f̂Dn,n,a(x) − f̂P,n,a(x)
∣∣∣

for all n ∈ N and all x ∈ X , we obtain

||fL,Dn,λn,kn,X n − fL,P,λn,kn,X n||L∞(PX) ≤ max
a∈{1,...,An}

∣∣∣∣∣∣f̂Dn,n,a − f̂P,n,a

∣∣∣∣∣∣
L∞(PX)

= max
a∈IX n,P

||fDn,n,a − fP,n,a||L∞(PX
n,a) ≤ κ · max

a∈IX n,P
||fDn,n,a − fP,n,a||Hn,a

(3.35)

for all n ∈ N, with the last inequality holding true because of Lemma 2.1.10(i). Hence, we
start by fixing an n ∈ N and an a ∈ IX n,P and investigating the corresponding difference
on the right hand side of (3.35).

First, note that employing Lemma 2.1.10(i), Steinwart and Christmann (2008, eq. (5.4))
and Lemma 2.1.21(ii) yields

||fP,n,a||∞ ≤ ||kn,a||∞ · ||fP,n,a||Hn,a
≤ ||kn,a||∞ · RPn,a(0)1/2 ·λ−1/2

n,a ≤ cp,L,ρ,κ ·λ−1/2
n,a (3.36)

with cp,L,ρ,κ ∈ (0,∞) denoting a constant depending only on p, L, ρ and κ, but not on λn,a.
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Assume now without loss of generality that dn,a > 0 (which by (3.34) has to be satisfied
for n sufficiently large), i.e. that fDn,n,a is indeed an empirical SVM and not just defined
as the zero function. We know from Steinwart and Christmann (2008, Corollary 5.11) that
there exists a function hn,a : Xn,a × Y → R such that

||fDn,n,a − fP,n,a||Hn,a
≤ 1
λn,a

·
∣∣∣∣∣∣EDn,a [hn,aΦn,a] − EPn,a [hn,aΦn,a]

∣∣∣∣∣∣
Hn,a

(3.37)

and, for s := p/(p− 1),

||hn,a||Ls(Pn,a) ≤ 8p · cL ·
(
1 + |Pn,a|p−1

p + ||fP,n,a||p−1
∞

)
≤ 8p · cL ·

(
1 + ρp−1 + cp−1

p,L,ρ,κ · λ−(p−1)/2
n,a

)
≤ c̃p,L,ρ,κ · λ−(p−1)/2

n,a , (3.38)

where we employed (3.36) in the second and λn,a ≤ C in the third step, and where cL ∈
(0,∞) and c̃p,L,ρ,κ ∈ (0,∞) denote constants depending only on L respectively p, L, ρ and
κ.

Assume without loss of generality that p∗
2 ≤ 1 if p = 1. Then, we can apply Steinwart

and Christmann (2008, Lemma 9.2) with q := p/(p − 1) if p > 1 and q := 2/p∗
2 if p = 1,

which leads to q∗ := min{1/2, 1 − 1/q} = min{1/2, 1/p} = (p + 1)/(2p∗
1), to the function

hn,aΦn,a: First of all, with the help of (3.38) we obtain

||hn,aΦn,a||q :=
(
EPn,a

[
||hn,aΦn,a||qHn,a

])1/q

≤ ||kn,a||∞ · ||hn,a||Lq(Pn,a) ≤ κ · c̃p,L,ρ,κ · λ−(p−1)/2
n,a < ∞ ,

where we employed that, for all (x, y) ∈ Xn,a × Y ,

||hn,a(x, y)Φn,a(x)||qHn,a
= |hn,a(x, y)|q · ||Φn,a(x)||qHn,a

= |hn,a(x, y)|q · kn,a(x, x)q/2 ≤ |hn,a(x, y)|q ||kn,a||q∞

by the reproducing property. Hence, we obtain for all ε > 0, by combining this Lemma 9.2
with (3.37),

Pdn,a
n,a

(
Dn,a ∈ (Xn,a × Y)dn,a : ||fDn,n,a − fP,n,a||Hn,a

≥ ε

κ

)
≤ Pdn,a

n,a

(
Dn,a ∈ (Xn,a × Y)dn,a :

∣∣∣∣∣∣EDn,a [hn,aΦn, a] − EPn,a [hn,aΦn,a]
∣∣∣∣∣∣

Hn,a

≥ λn,aε

κ

)

≤ cq ·
(
κ ||hn,aΦn,a||q
λn,aεd

q∗
n,a

)q

≤ cq,p,L,ρ,κ ·
(

1
λ

(p+1)/2
n,a εdq∗

n,a

)q

with cq ∈ (0,∞) and cq,p,L,P,k ∈ (0,∞) denoting constants depending only on q (which
means only on p in the case p > 1) respectively q, p, L, ρ and κ.
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With this, we can now return to investigating the whole global predictors with the help
of (3.35): For all ε > 0 and n ∈ N, we have

Pn
(
Dn ∈ (X × Y)n : ||fL,Dn,λn,kn,X n − fL,P,λn,kn,X n||L∞(PX) ≥ ε∣∣∣∣ |Dn,1| = dn,1, . . . , |Dn,An| = dn,An

)
≤ Pn

(
Dn ∈ (X × Y)n : max

a∈IX n,P
||fDn,n,a − fP,n,a||Hn,a

≥ ε

κ∣∣∣∣ |Dn,1| = dn,1, . . . , |Dn,An| = dn,An

)
≤

∑
a∈IX n,P

Pdn,a
n,a

(
Dn,a ∈ (Xn,a × Y)dn,a : ||fDn,n,a − fP,n,a||Hn,a

≥ ε

κ

)

≤ cq,p,L,ρ,κ · Ãn · max
a∈IX n,P

(
1

λ
(p+1)/2
n,a εdq∗

n,a

)q

, (3.39)

and it remains to further investigate the right hand side:
If p > 1, we obtain (qq∗)−1 = ((p − 1)/p) · max{2, p} = p∗

2. If p = 1, we analogously
obtain (qq∗)−1 = (p∗

2/2) · 2 = p∗
2. Thus, we have

Ãn · max
a∈IX n,P

(
1

λ
(p+1)/2
n,a dq∗

n,a

)q

= max
a∈IX n,P

 Ã1/(qq∗)
n

λ
(p+1)/(2q∗)
n,a dn,a

qq∗

= max
a∈IX n,P

 Ã
p∗

2
n

λ
p∗

1
n,adn,a

qq∗

→ 0 , n → ∞ ,

by assumption. Hence, the whole right hand side of (3.39) converges to 0, which completes
the proof.

Lemma 3.4.11. Let L : Y ×R → [0,∞) be a convex, distance-based loss function of upper
growth type p ∈ [1,∞). Let the regionalizations X n, n ∈ N, satisfy (R1), (R2), and
let the weight functions wn,a, n ∈ N and a ∈ {1, . . . , An}, satisfy (W1), (W2), (W3).
Assume that |P|p < ∞. Let ℓ ∈ N and let, for j = 1, . . . , ℓ, k(j) := (k(j,r))r∈I(j) be a family
of measurable kernels of type β(j) := (β(j,r))r∈I(j) on X with RKHSs (H(j,r))r∈I(j) such that
H(j,0) ⊆ Lp(PX) dense. Let, for all n ∈ N and a ∈ {1, . . . , An},

kn,a ∈ {k(j,r)
Xn,a×Xn,a : j ∈ {1, . . . , ℓ}, r ∈ I(j)} .

If the regularization parameters satisfy λn,a > 0 for all n ∈ N and a ∈ {1, . . . , An} as well
as maxa∈IX n,P β

2
n,aλn,a → 0 as n → ∞, then

lim
n→∞

RL,P(fL,P,λn,kn,X n) = R∗
L,P .
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Proof. First, we show that all risks appearing in the assertion are finite: Lemma 2.1.21(ii)
yields RL,P(0) < ∞ as well as RL,Pn,a(0) < ∞ for all n ∈ N and a ∈ IX n,P (with the latter
holding true because |Pn,a|p < ∞ by Remark 3.4.7). Since R∗

L,P ≤ RL,P(0) by definition,
we obtain the finiteness of R∗

L,P. Furthermore,

RL,P(fL,P,λn,kn,X n) =
∫

X ×Y
L(y, fL,P,λn,kn,X n(x)) dP(x, y)

≤
∫

X ×Y

An∑
a=1

wn,a(x) · L(y, f̂L,Pn,a,λn,a,kn,a(x)) dP(x, y)

≤
An∑
a=1

∫
Xn,a×Y

L(y, fL,Pn,a,λn,a,kn,a(x)) dP(x, y)

=
∑

a∈IX n,P

P(Xn,a × Y) · RL,Pn,a(fL,Pn,a,λn,a,kn,a) ,

where we applied (W1), (W2) and the convexity of L in the second and its non-negativity
as well as (W1) and (W3) in the third step. In the last step, we employed that Xn,a × Y
is a P-zero set for a /∈ IX n,P, leading to the corresponding P-integrals being 0. Since
RL,Pn,a(fL,Pn,a,λn,a,kn,a) ≤ RL,Pn,a(0) for all a ∈ IX n,P by the definition of fL,Pn,a,λn,a,kn,a ,
and since we already saw that RL,Pn,a(0) < ∞, the finiteness of RL,P(fL,P,λn,kn,X n) follows
for all n ∈ N.

With the inner risk CL,P(· | x),x and the minimal inner risk C∗
L,P(· | x),x, we can now write

RL,P(fL,P,λn,kn,X n) − R∗
L,P

=
∫

X

(
CL,P(· | x),x(fL,P,λn,kn,X n(x)) − C∗

L,P(· | x),x

)
dPX(x)

≤
∫

X

An∑
a=1

wn,a(x) ·
(
CL,P(· | x),x(f̂L,Pn,a,λn,a,kn,a(x)) − C∗

L,P(· | x),x

)
dPX(x)

≤
An∑
a=1

∫
Xn,a

(
CL,P(· | x),x(fL,Pn,a,λn,a,kn,a(x)) − C∗

L,P(· | x),x

)
dPX(x)

=
∑

a∈IX n,P

(
P(Xn,a × Y) · RL,Pn,a(fL,Pn,a,λn,a,kn,a) −

∫
Xn,a

C∗
L,P(· | x),x dPX(x)

)
, (3.40)

where we applied Lemma 2.1.26 in the first, (W1), (W2) and the convexity of L in the
second, and (W1), (W3) and CL,P(· | x),x(fL,Pn,a,λn,a,kn,a) − C∗

L,P(· | x),x ≥ 0 for all x ∈ X (by
the definition of C∗

L,P(· | x),x) in the third step. In the final step, we once more used that
P(Xn,a × Y) = 0 for a /∈ IX n,P.
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If we define λ̃n := maxa∈IX n,P β
2
n,aλn,a as well as k̃n,a ∈ {k(j,r) : j ∈ {1, . . . , ℓ}, r ∈ I(j)}

such that k̃n,a Xn,a×Xn,a = kn,a and analogously k̃(0)
n,a ∈ {k(j,0) : j ∈ {1, . . . , ℓ}} such that

k̃(0)
n,a Xn,a×Xn,a = k(0)

n,a, we can further analyze the right hand side of (3.40) by noting that,
for all n ∈ N and a ∈ IX n,P,

RL,Pn,a(fL,Pn,a,λn,a,kn,a)

≤ RL,Pn,a(fL,Pn,a,λn,a,kn,a) + λn,a ·
∣∣∣∣∣∣fL,Pn,a,λn,a,kn,a

∣∣∣∣∣∣2
Hn,a

≤ RL,Pn,a(f
L,Pn,a,β2

n,aλn,a,k
(0)
n,a

) + λn,a ·
∣∣∣∣∣∣∣∣fL,Pn,a,β2

n,aλn,a,k
(0)
n,a

∣∣∣∣∣∣∣∣2
Hn,a

≤ RL,Pn,a(f
L,Pn,a,β2

n,aλn,a,k
(0)
n,a

) + β2
n,a · λn,a ·

∣∣∣∣∣∣∣∣fL,Pn,a,β2
n,aλn,a,k

(0)
n,a

∣∣∣∣∣∣∣∣2
H

(0)
n,a

≤ RL,Pn,a(f
L,P,λ̃n,k̃

(0)
n,a

Xn,a) + β2
n,a · λn,a ·

∣∣∣∣∣∣∣∣fL,P,λ̃n,k̃
(0)
n,a

Xn,a

∣∣∣∣∣∣∣∣2
H

(0)
n,a

≤ RL,Pn,a(f
L,P,λ̃n,k̃

(0)
n,a

Xn,a) + λ̃n ·
∣∣∣∣∣∣∣∣fL,P,λ̃n,k̃

(0)
n,a

Xn,a

∣∣∣∣∣∣∣∣2
H

(0)
n,a

≤ RL,Pn,a(f
L,P,λ̃n,k̃

(0)
n,a

Xn,a) + λ̃n ·
∣∣∣∣∣∣∣∣fL,P,λ̃n,k̃

(0)
n,a

∣∣∣∣∣∣∣∣2
H̃

(0)
n,a

.

Here, we employed the definition of fL,Pn,a,λn,a,kn,a respectively f
L,Pn,a,β2

n,aλn,a,k
(0)
n,a

as the min-
imizers of the respective regularized risks (combined with the fact that f

L,Pn,a,β2
n,aλn,a,k

(0)
n,a

∈
H(0)

n,a ⊆ Hn,a and that f
L,P,λ̃n,k̃

(0)
n,a

Xn,a ∈ H(0)
n,a by Berlinet and Thomas-Agnan, 2004, Theo-

rem 6) in the second and in the fourth step, and again Berlinet and Thomas-Agnan (2004,
Theorem 6) in the last step. Furthermore, the third step holds true because

||f ||Hn,a
= min

g∈H̃n,a:
g Xn,a =f

||g||H̃n,a
≤ min

g∈H̃
(0)
n,a:

g Xn,a =f

||g||H̃n,a
≤ βn,a · min

g∈H̃
(0)
n,a:

g Xn,a =f

||g||
H̃

(0)
n,a

= βn,a · ||f ||
H

(0)
n,a

for all f ∈ H(0)
n,a, where we once more applied Berlinet and Thomas-Agnan (2004, Theorem

6) and that H̃(0)
n,a ⊆ H̃n,a.

75



Plugging this into the right hand side of (3.40), we obtain

RL,P(fL,P,λn,kn,X n) − R∗
L,P

≤
∑

a∈IX n,P

(
P(Xn,a × Y) ·

(
RL,Pn,a(f

L,P,λ̃n,k̃
(0)
n,a

Xn,a) + λ̃n ·
∣∣∣∣∣∣∣∣fL,P,λ̃n,k̃

(0)
n,a

∣∣∣∣∣∣∣∣2
H̃

(0)
n,a

)

−
∫

Xn,a

C∗
L,P(· | x),x dPX(x)

)

=
∑

a∈IX n,P

(
P(Xn,a × Y) · λ̃n ·

∣∣∣∣∣∣∣∣fL,P,λ̃n,k̃
(0)
n,a

∣∣∣∣∣∣∣∣2
H̃

(0)
n,a

+
∫

Xn,a

(
CL,P(· | x),x(f

L,P,λ̃n,k̃
(0)
n,a

(x)) − C∗
L,P(· | x),x

)
dPX(x)

)

≤
ℓ∑

j=1

An∑
a=1

(
P(Xn,a × Y) · λ̃n ·

∣∣∣∣∣∣fL,P,λ̃n,k(j,0)

∣∣∣∣∣∣2
H(j,0)

+
∫

Xn,a

(
CL,P(· | x),x(fL,P,λ̃n,k(j,0)(x)) − C∗

L,P(· | x),x

)
dPX(x)

)

≤
ℓ∑

j=1
smax ·

(
λ̃n ·

∣∣∣∣∣∣fL,P,λ̃n,k(j,0)

∣∣∣∣∣∣2
H(j,0)

+ RL,P(fL,P,λ̃n,k(j,0)) − R∗
L,P

)
, (3.41)

with the third step holding true because of the summands being non-negative and the final
step employing that, for all j ∈ {1, . . . , l},

An∑
a=1

∫
Xn,a

(
CL,P(· | x),x(fL,P,λ̃n,k(j,0)(x)) − C∗

L,P(· | x),x

)
dPX(x)

=
∫

X

An∑
a=1
1Xn,a(x) ·

(
CL,P(· | x),x(fL,P,λ̃n,k(j,0)(x)) − C∗

L,P(· | x),x

)
dPX(x)

≤ smax ·
(
RL,P(fL,P,λ̃n,k(j,0)) − R∗

L,P

)
by (R2), and analogously ∑An

a=1 P(Xn,a × Y) ≤ smax.
Now, by Lemma 2.1.21(i), L is a P-integrable Nemitski loss of order p. Hence, for all

j ∈ {1, . . . , l}, we know from Steinwart and Christmann (2008, Theorem 5.31) that

R∗
L,P,H(j,0) := inf

f∈H(j,0)
RL,P(f) = R∗

L,P < ∞

and Steinwart and Christmann (2008, Lemma 5.15) then yields that

lim
n→∞

λ̃n

∣∣∣∣∣∣fL,P,λ̃n,k(j,0)

∣∣∣∣∣∣2
H(j,0)

+ RL,P(fL,P,λ̃n,k(j,0)) − R∗
L,P = 0

because λ̃n → 0 as n → ∞. Thus, the whole right hand side of (3.41) converges to 0
as n → ∞ and we obtain the assertion because RL,P(fL,P,λn,kn,X n) − R∗

L,P ≥ 0 by the
definition of R∗

L,P.
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Proof of Theorem 3.4.8. We can split up the difference, which we wish to investigate, as∣∣∣∣∣∣fL,Dn,λn,kn,X n − f ∗
L,P

∣∣∣∣∣∣
Lp(PX)

≤ ||fL,Dn,λn,kn,X n − fL,P,λn,kn,X n||Lp(PX) +
∣∣∣∣∣∣fL,P,λn,kn,X n − f ∗

L,P

∣∣∣∣∣∣
Lp(PX)

. (3.42)

Because ||fL,Dn,λn,kn,X n − fL,P,λn,kn,X n||Lp(PX) ≤ ||fL,Dn,λn,kn,X n − fL,P,λn,kn,X n||L∞(PX), we
know from Lemma 3.4.10 that the first summand on the right hand side converges to 0 in
probability as n → ∞.

Thus, only the second summand remains to be examined: From Lemma 3.4.11, we obtain

lim
n→∞

RL,P(fL,P,λn,kn,X n) = R∗
L,P .

We further know for all n ∈ N that fL,P,λn,kn,X n ∈ Lp(PX) because

||fL,P,λn,kn,X n||Lp(PX) ≤ ||fL,P,λn,kn,X n||L∞(PX) ≤ max
a∈{1,...,An}

∣∣∣∣∣∣f̂L,Pn,a,λn,a,kn,a

∣∣∣∣∣∣
L∞(PX)

≤ max
a∈IX n,P

∣∣∣∣∣∣fL,Pn,a,λn,a,kn,a

∣∣∣∣∣∣
L∞(PX

n,a)
≤ max

a∈IX n,P
||kn,a||∞

∣∣∣∣∣∣fL,Pn,a,λn,a,kn,a

∣∣∣∣∣∣
Hn,a

< ∞

by (W1), (W2) and Lemma 2.1.10(i), similarly to (3.35). Employing Theorem 3.2.1 and
Remark 3.2.2 then yields convergence to 0 (as n → ∞) of the second summand on the
right hand side of (3.42), which completes the proof.

Example 3.4.12. If p = 2, like for the popular least squares loss, we have p∗
1 = 3 and

p∗
2 = 1 in Theorem 3.4.8 and condition (3.33) therefore becomes

min
a∈IX n,P

λ3
n,adn,a

Ãn

→ ∞ .

If p = 1, like for the pinball loss or the ε-insensitive loss, we have p∗
1 = 2 and p∗

2 can be
chosen arbitrarily small. Hence, condition (3.33) relaxes even further in this case, becoming

min
a∈IX n,P

λ2
n,adn,a

Ãδ
n

→ ∞

for an arbitrarily small δ > 0.

In the subsequent example, we empirically examine the convergence postulated in The-
orem 3.4.8 for some simulated data. As this example also considers the case An = 1 for
the different investigated sample sizes n, it also covers the Lp-consistency of non-localized
SVMs that was stated in Theorem 3.3.2.

Example 3.4.13. We used R Statistical Software (R Core Team, 2022, v4.2.2) to perform
median regression (that is, we used the 0.5-pinball loss function in our SVMs) on synthetic
data generated according to the regression problem “Friedman 1” from the library mlbench
(Leisch and Dimitriadou, 2021) as described by Friedman (1991). Here, the input space X
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is 10-dimensional and each component of the input is uniformly distributed on [0, 1], with
however only 5 of these components actually influencing the output y via the function

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 ,

from which the value of y is obtained by adding an N (0, 1)-distributed error, which yields
that f ∗

L,P is PX-a.s. unique and coincides with f . The remaining 5 components of the input
data are hence just adding noise.

We proceeded by generating a regionalization data set of size 10,000, based on which we
used a k-means approach to partition X into 3, 5, 10, 20, 40 and 100 regions. For each
of these regionalization choices, we then used liquidSVM (Steinwart and Thomann, 2017)
with the 0.5-pinball loss function to compute corresponding localized SVMs for different
training set sizes ranging from n = 600 to n = 2,000,000. Additionally, we did the same
computations for a regular SVM (i.e. one based on a single global region). We used fixed
Gaussian RBF kernels not changing with n. By Example 3.4.12, Theorem 3.4.8 then
guarantees convergence of

∣∣∣∣∣∣fL,Dn,λn,kn,X n − f ∗
L,P

∣∣∣∣∣∣
L1(PX)

to 0 whenever λn,i tends to 0 slower

than d−1/2
n,i (because Ãn is constant for each fixed regionalization). For this reason, we chose

some constant ci > 0 on each region Xi (for each regionalization) and then used λn,i =
ci·d−1/3

n,i . To empirically verify the postulated convergence, we estimated the resulting values
of
∣∣∣∣∣∣fL,Dn,λn,kn,X n − f ∗

L,P

∣∣∣∣∣∣
L1(PX)

based on 1,000,000 test data points generated according
to “Friedman 1” without the random errors in order to obtain evaluations of the Bayes
function f ∗

L,P.
We repeated this whole procedure 30 times and collected the means of the estimated

values of
∣∣∣∣∣∣fL,Dn,λn,kn,X n − f ∗

L,P

∣∣∣∣∣∣
L1(PX)

for the different combinations of n and the number
of regions in Table 3.4.1.16 We also added the estimated standard errors of the means
based on these 30 repetitions in that table.

It can be seen that—no matter the number of regions—the convergence with respect to
n does indeed seem to take place. Looking at the table row-wise instead of column-wise,
one further notices that the number of regions yielding the best results slowly increased
as we increased n, starting from 1 (i.e. using a global SVM) for n = 600 and reaching the
maximum examined amount of regions, namely 100, for n = 2,000,000. Looking at how
small the estimated values of the standard errors of the means are, one can conclude that
this pattern was not just due to chance but really exists and hence supports the idea of
increasing the number of regions as n increases in practice.

This idea also gets supported by Table 3.4.2, where we collected the corresponding com-
putation times (training and testing times combined).17 The table shows that computation

16The missing values in the table are due to the corresponding localized SVMs not having been
computed—either because of having too few data points in the different regions (depicted by “–”) or because
of having so many data points in a single region that the calculations become exceedingly memory-intensive
(depicted by “+”).

17Because of us not computing a new regionalization for each n but instead using regionalizations that
are fixed independently of n, the computation times do not include the time needed for computing the
regionalization, which was however negligible for the simple k-means approach that was used. The time
needed for assigning training and test points to the different regions on the other hand is included in the
stated computation times.
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n
#Reg. 1 3 5 10 20 40 100

600 1.154 1.227 1.318 1.590 1.826 – –
0.025 0.028 0.020 0.009 0.010

2,000 0.967 0.952 0.954 1.084 1.227 1.403 –
0.024 0.030 0.019 0.009 0.005 0.004

6,000 0.846 0.799 0.764 0.812 0.874 0.981 1.160
0.026 0.032 0.020 0.009 0.005 0.003 0.002

20,000 0.744 0.689 0.640 0.641 0.657 0.703 0.800
0.027 0.032 0.019 0.009 0.004 0.002 0.002

60,000 0.663 0.612 0.559 0.544 0.541 0.557 0.611
0.028 0.031 0.018 0.009 0.004 0.002 0.002

200,000 + + 0.483 0.463 0.453 0.453 0.476
0.016 0.008 0.004 0.002 0.002

600,000 + + + 0.402 0.394 0.386 0.392
0.008 0.004 0.002 0.002

2,000,000 + + + + + 0.331 0.326
0.002 0.002

Table 3.4.1: Means and estimated standard errors of the means (in small font) of∣∣∣∣∣∣fL,Dn,λn,kn,X n − f ∗
L,P

∣∣∣∣∣∣
L1(PX)

for the regression problem “Friedman 1” with different train-
ing set sizes n and different amounts of underlying regions (based on 30 repetitions for
each combination). Bold font highlights the minimum value for each n.

times indeed drastically decrease as the number of regions increases, also recall the analyses
of computation times referenced in Section 2.2.1.

3.4.3 Risk Consistency Using Regular Loss Functions
To our knowledge, the only existing results which explicitly examine risk consistency of
localized SVMs are those by Hable (2013, Theorem 1) and Dumpert and Christmann
(2018, Theorem 3.1), both of which are in certain aspects considerably less general than
the subsequent Theorem 3.4.14: Dumpert and Christmann (2018) only considered Lipschitz
continuous (shifted) loss functions, whereas we take a look at distance-based loss functions,
thus covering a different subset of all loss functions, notably also including the popular
but not Lipschitz continuous least squares loss. Additionally, Dumpert and Christmann
(2018) assumed a fixed regionalization and fixed kernels on the different regions, which
stay the same independently of the size n of the underlying data set. We however also
allow for regionalizations which change with n (cf. Section 3.4.1), since the regionalization
is oftentimes not predefined in practice but instead might change when new data points
are added to the data set—for example, becoming finer when n grows. We also allow for
kernels that change with n and that are chosen from an possibly infinite set of kernels—for
example, Gaussian kernels whose bandwidth decreases as n increases (cf. Example 3.4.5).
Thus, we significantly generalize the investigations by Dumpert and Christmann (2018)
in these aspects. Hable (2013) on the other hand only allowed for a bounded output
space Y and only considered the special case of the regionalization stemming from some k-
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n
#Reg. 1 3 5 10 20 40 100

600 10 7 6 5 6 – –
2,000 28 13 10 8 7 8 –
6,000 86 32 22 14 11 10 13

20,000 340 95 61 34 21 16 16
60,000 1,486 509 178 94 51 32 26

200,000 + + 1,077 377 177 101 56
600,000 + + + 2,429 834 395 184

2,000,000 + + + + + 3,898 1,142

Table 3.4.2: Means of the computation times (training plus testing) in seconds based on
for the regression problem “Friedman 1” with different training set sizes n and different
amounts of underlying regions (based on 30 repetitions for each combination).

nearest neighbor method. Whereas this approach implicitly also allows for regionalizations
which change with n, this makes our Theorem 3.4.14 applicable to a much wider array of
localization methods—even though the k-nearest neighbor approach described by Hable
(2013) is not one of them because it can lead to condition (R2) from Section 3.4.1 being
violated, thus making our result and that of Hable (2013) applicable to different situations.

Apart from that, the oracle inequalities by Meister and Steinwart (2016), Thomann et al.
(2017), Mücke (2019), Blaschzyk and Steinwart (2022) of course also imply risk consistency
if the different parameters in these results are chosen accurately. However, these oracle
inequalities are only valid for the least squares respectively the hinge loss, whereas we
aim at deriving a much more general result which is applicable for the considerably larger
class of convex, distance-based loss functions (even though this class does not contain
the hinge loss). Additionally, these oracle inequalities require stricter conditions than our
consistency results, like for example X being contained in a ball of fixed radius, Y being
bounded, the kernels all being Gaussian kernels, and also additional requirements regarding
the regionalization.

In the subsequent theorem, we derive such a general result on risk consistency of localized
SVMs. Condition (3.43) in that theorem is slightly more restrictive and complicated than
its counterpart (3.33) in the result on Lp-consistency. However, the additional factor
λ

p∗
3

n,b can be eliminated from (3.43) in several important special cases, thus weakening and
simplifying this condition again: If the loss function is of growth type p = 1, one directly
obtains p∗

3 = 0, and if the regionalizations underlying the localized SVMs partition X or
f ∗

L,P exists and is PX-a.s. unique, the special cases (i) and (ii) of the theorem also yield
similar relaxations.
Theorem 3.4.14. Let Assumption 3.4.6 be satisfied. Define p∗

1 := max{p+ 1, p(p+ 1)/2}
and p∗

3 := max{p − 1, p(p − 1)/2}. Further choose p∗
2 := max{2(p − 1)/p, p − 1} if p > 1

and p∗
2 ∈ (0,∞) arbitrary if p = 1. If the regularization parameters satisfy λn,a ∈ (0, C)

for all n ∈ N and a ∈ {1, . . . , An} for some C ∈ (0,∞), as well as

max
a∈IX n,P

β2
n,aλn,a → 0
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and

min
a,b∈IX n,P

λ
p∗

3
n,bλ

p∗
1

n,adn,a

Ã
p∗

2
n

→ ∞ (3.43)

as n → ∞, then

lim
n→∞

RL,P(fL,Dn,λn,kn,X n) = R∗
L,P in probability P∞.

If some additional conditions are satisfied, it is possible to slightly relax assumption (3.43)
regarding the regularization parameters:

(i) If, for all n ∈ N, the regionalization X n is a partition of X , then it suffices if (3.43)
is satisfied for p∗

1 := max{2p, p2} and p∗
3 := 0.

(ii) If f ∗
L,P exists and is PX-a.s. unique, then it suffices if (3.43) is satisfied for p∗

3 := 0.

For proving this theorem, the following lemma is useful. Because it does not need all of
Assumption 3.4.6, the required assumptions are explicitly stated in the lemma instead.

Lemma 3.4.15. Let L : Y × R → [0,∞) be a convex, distance-based loss function of
upper growth type p ∈ [1,∞). Let the regionalizations X n, n ∈ N, satisfy (R1), (R3),
and let the weight functions wn,a, n ∈ N and a ∈ {1, . . . , An}, satisfy (W1), (W2),
(W3). Assume that |P|p < ∞ and supn∈N,a∈IX n,P

|Pn,a|p < ∞. Let, for all n ∈ N and
a ∈ {1, . . . , An}, kn,a be a bounded and measurable kernel on Xn,a with separable RKHS
Hn,a, such that supn∈N,a∈IX n,P

||kn,a||∞ < ∞. Define p∗
1 := max{p + 1, p(p + 1)/2} and

p∗
3 := max{p − 1, p(p − 1)/2}. Further choose p∗

2 := max{2(p − 1)/p, p − 1} if p > 1 and
p∗

2 ∈ (0,∞) arbitrary if p = 1. If the regularization parameters satisfy λn,a ∈ (0, C) for all
n ∈ N and a ∈ {1, . . . , An} for some C ∈ (0,∞), as well as

min
a,b∈IX n,P

λ
p∗

3
n,bλ

p∗
1

n,adn,a

Ã
p∗

2
n

→ ∞ (3.44)

as n → ∞, then

lim
n→∞

|RL,P(fL,Dn,λn,kn,X n) − RL,P(fL,P,λn,kn,X n)| = 0 in probability P∞.

If additionally, the regionalizations X n, n ∈ N, are partitions of X , then it suffices if
(3.44) is satisfied for p∗

1 := max{2p, p2} and p∗
3 := 0.

Proof. Assume, for all n ∈ N and a ∈ IX n,P, without loss of generality that dn,a > 0 (which
by (3.44) has to be satisfied for n sufficiently large), such that the respective local empirical
SVM fL,Dn,a,λn,a,kn,a is indeed an empirical SVM and not just defined as the zero function.
To shorten the notation, we denote fP,n := fL,P,λn,kn,X n , fDn,n := fL,Dn,λn,kn,X n , fP,n,a :=
fL,Pn,a,λn,a,kn,a and fDn,n,a := fL,Dn,a,λn,a,kn,a for all n ∈ N and a ∈ {1, . . . , An}, as well as
κ := supn∈N,a∈IX n,P

||kn,a||∞, ρ := |P|p ∨ supn∈N,a∈IX n,P
|Pn,a|p and λ̃n := mina∈IX n,P λn,a

throughout this proof. Additionally, note that Lemma 3.4.10 is applicable in the situa-
tion of this lemma (in the base case as well as in the special case of the regionalizations
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being partitions of X ) as (3.44) in combination with λn,b ∈ (0, C) for all n ∈ N and
b ∈ {1, . . . , An} implies the validity of (3.34).

We start by proving the main assertion before turning our attention to the special case
of the regionalizations being partitions of X afterwards.

By applying Lemma 2.1.21(iii) with q := p, we obtain

|RL,P(fDn,n) − RL,P(fP,n)|
≤ cp,L ·

(
|P|p−1

p + ||fP,n||p−1
Lp(PX) + ||fDn,n||p−1

Lp(PX) + 1
)

· ||fDn,n − fP,n||Lp(PX) , (3.45)

where cp,L ∈ (0,∞) denotes a constant only depending on p and L.
We can further analyze the right hand side of this inequality by noting that

||fP,n||L∞(PX) ≤ max
a∈{1,...,An}

∣∣∣∣∣∣f̂P,n,a

∣∣∣∣∣∣
L∞(PX)

= max
a∈IX n,P

||fP,n,a||L∞(PX
n,a) ≤ max

a∈IX n,P
cp,L,ρ,κ · λ−1/2

n,a ,

with the first inequality following from (W1) and (W2), similarly to (3.35), and the last
one analogously to (3.36), with cp,L,ρ,κ ∈ (0,∞) denoting a constant depending only on p,
L, ρ and κ. Hence,

||fP,n||p−1
Lp(PX) ≤ ||fP,n||p−1

L∞(PX) ≤ max
a∈IX n,P

cp−1
p,L,ρ,κ · λ−(p−1)/2

n,a = cp−1
p,L,ρ,κ · λ̃−(p−1)/2

n . (3.46)

Similarly, we obtain

||fDn,n||p−1
Lp(PX) ≤

(
||fP,n||Lp(PX) + ||fDn,n − fP,n||Lp(PX)

)p−1

≤ 2p−1 · cp−1
p,L,ρ,κ · λ̃−(p−1)/2

n + 2p−1 · ||fDn,n − fP,n||p−1
Lp(PX) , (3.47)

where we applied (3.46) in the last step.
Plugging (3.46) and (3.47) into (3.45) then yields

|RL,P(fDn,n) − RL,P(fP,n)|
≤ cp,L ·

(
ρp−1 + (2p−1 + 1) · cp−1

p,L,ρ,κ · λ̃−(p−1)/2
n + 2p−1 · ||fDn,n − fP,n||p−1

Lp(PX) + 1
)

· ||fDn,n − fP,n||Lp(PX)

= cp,L ·
( (

ρp−1λ̃(p−1)/2
n + (2p−1 + 1) · cp−1

p,L,ρ,κ + λ̃(p−1)/2
n

)
· λ̃−(p−1)/2

n · ||fDn,n − fP,n||Lp(PX) + 2p−1 · ||fDn,n − fP,n||p
Lp(PX)

)
≤ c̃p,L,ρ,κ ·

(
λ̃−(p−1)/2

n · ||fDn,n − fP,n||L∞(PX) + ||fDn,n − fP,n||p
L∞(PX)

)
,

where we employed λ̃n ≤ C and ||fDn,n − fP,n||Lp(PX) ≤ ||fDn,n − fP,n||L∞(PX) in the last
step.

We know from Lemma 3.4.10 that the second summand on the right hand side converges
to 0 in probability as n → ∞. Hence, we only need to further investigate the first summand.
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For this, we can proceed in exactly the same way as in the proof of Lemma 3.4.10 and only
need to additionally consider the factor λ̃−(p−1)/2

n . By doing this, we obtain for all ε > 0

Pn
(
Dn ∈ (X × Y)n : λ̃−(p−1)/2

n · ||fDn,n − fP,n||L∞(PX) ≥ ε∣∣∣∣ |Dn,1| = dn,1, . . . , |Dn,An| = dn,An

)
≤ Pn

(
Dn ∈ (X × Y)n : max

a∈IX n,P
||fDn,n,a − fP,n,a||Hn,a

≥ ελ̃(p−1)/2
n

κ∣∣∣∣ |Dn,1| = dn,1, . . . , |Dn,An| = dn,An


≤

∑
a∈IX n,P

Pdn,a
n,a

(
Dn,a ∈ (Xn,a × Y)dn,a : ||fDn,n,a − fP,n,a||Hn,a

≥ ελ̃(p−1)/2
n

κ

)

≤ cq,p,L,ρ,κ · Ãn · max
a∈IX n,P

(
1

λ̃
(p−1)/2
n λ

(p+1)/2
n,a εdq∗

n,a

)q

, (3.48)

analogously to (3.39), with cq,p,L,ρ,κ ∈ (0,∞) denoting a constant depending only on q, p,
L, ρ and κ. Here, as in the proof of Lemma 3.4.10, q := p/(p − 1) if p > 1, q := 2/p∗

2 if
p = 1, and q∗ := min{1/2, 1 − 1/q} = min{1/2, 1/p} = (p+ 1)/(2p∗

1) = (p− 1)/(2p∗
3).

Because (qq∗)−1 = p∗
2 (cf. proof of Lemma 3.4.10), we furthermore obtain

Ãn · max
a∈IX n,P

(
1

λ̃
(p−1)/2
n λ

(p+1)/2
n,a dq∗

n,a

)q

= max
a∈IX n,P

 Ã
p∗

2
n

λ̃
p∗

3
n λ

p∗
1

n,adn,a

qq∗

→ 0 , n → ∞ ,

by assumption. Hence, the whole right hand side of (3.48) converges to 0, which yields the
main assertion.

As for the special case of the regionalizations being partitions of X : If X n is a partition
of X , then the conditions (W2) and (W3) imply that wn,a = 1Xn,a for all a ∈ {1, . . . , An}.
Hence, we obtain

|RL,P(fDn,n) − RL,P(fP,n)|

=
∣∣∣∣∣
∫

X ×Y
L

(
y,

An∑
a=1
1Xn,a(x)f̂Dn,n,a(x)

)
dP(x, y)

−
∫

X ×Y
L

(
y,

An∑
a=1
1Xn,a(x)f̂P,n,a(x)

)
dP(x, y)

∣∣∣∣∣
=
∣∣∣∣∣

An∑
a=1

(∫
Xn,a×Y

L(y, fDn,n,a(x)) dP(x, y) −
∫

Xn,a×Y
L(y, fP,n,a(x)) dP(x, y)

)∣∣∣∣∣
≤

∑
a∈IX n,P

P(Xn,a × Y) ·
∣∣∣RL,Pn,a(fDn,n,a) − RL,Pn,a(fP,n,a)

∣∣∣
≤ max

a∈IX n,P

∣∣∣RL,Pn,a(fDn,n,a) − RL,Pn,a(fP,n,a)
∣∣∣ (3.49)
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in this case. In the third step, we applied that Xn,a × Y is a P-zero set for all a /∈ IX n,P,
leading to the corresponding P-integrals being 0.

The argument of the maximum on the right hand side of (3.49) can, for each a ∈ IX n,P,
be examined in the same way as we previously examined the difference on the left hand
side for proving the main assertion. A difference appears in (3.46), where we now have

||fP,n,a||p−1
Lp(PX

n,a) ≤ ||fP,n,a||p−1
L∞(PX

n,a) ≤ cp−1
p,L,ρ,κ · λ−(p−1)/2

n,a .

That is, we can omit the final step of bounding this with the help of λ̃n because we are
now not interested in maxa∈IX n,P ||fP,n,a||L∞(PX

n,a) but only in ||fP,n,a||L∞(PX
n,a) for a specific

a.
By applying this to the subsequent steps of our proof, we obtain

|RL,P(fDn,n) − RL,P(fP,n)|
≤ max

a∈IX n,P

∣∣∣RL,Pn,a(fDn,n,a) − RL,Pn,a(fP,n,a)
∣∣∣

≤ c̃p,L,ρ,κ · max
a∈IX n,P

(
λ−(p−1)/2

n,a · ||fDn,n,a − fP,n,a||L∞(PX
n,a) + ||fDn,n,a − fP,n,a||p

L∞(PX
n,a)

)

≤ c̃p,L,ρ,κ ·
(

max
a∈IX n,P

(
λ−(p−1)/2

n,a · ||fDn,n,a − fP,n||L∞(PX
n,a)

)
+ ||fDn,n − fP,n||p

L∞(PX)

)
,

where the second summand on the right hand side converges to 0 in probability by
Lemma 3.4.10.

As for the first summand, we can derive

Pn

Dn ∈ (X × Y)n : max
a∈IX n,P

(
λ−(p−1)/2

n,a · ||fDn,n,a − fP,n,a||L∞(PX
n,a)

)
≥ ε

∣∣∣∣ |Dn,1| = dn,1, . . . , |Dn,An| = dn,An


≤ cq,p,L,ρ,κ · Ãn · max

a∈IX n,P

(
1

λp
n,aεd

q∗
n,a

)q

,

analogously to (3.48). Finally, we obtain convergence to 0 of the right hand side, and thus
the assertion, because

Ãn · max
a∈IX n,P

(
1

λp
n,ad

q∗
n,a

)q

= max
a∈IX n,P

 Ã
p∗

2
n

λ
p∗

1
n,adn,a

qq∗

→ 0 , n → ∞ ,

by assumption, where we applied that p/q∗ = p∗
1 since p∗

1 = max{2p, p2} now.

Proof of Theorem 3.4.14. We start by proving the main assertion and the special case (i):
We can split up the difference, which we wish to investigate, as

|RL,P(fL,Dn,λn,kn,X n) − R∗
L,P|

≤ |RL,P(fL,Dn,λn,kn,X n) − RL,P(fL,P,λn,kn,X n)| + |RL,P(fL,P,λn,kn,X n) − R∗
L,P| . (3.50)
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The assertions then follow directly by applying Lemma 3.4.15 to the first and Lemma 3.4.11
to the second summand on the right hand side.

As for the special case (ii): If f ∗
L,P PX-a.s. uniquely exists, the assertion follows directly

from Theorem 3.4.8 and Theorem 3.2.3, which is applicable because f ∗
L,P ∈ Lp(PX) (cf.

Remark 3.2.2) and fL,Dn,λn,kn,X n ∈ Lp(PX) for all n ∈ N (cf. proof of Theorem 3.4.8).

If p = 1, the cases (i) and (ii) of Theorem 3.4.14 can be ignored since they do not yield an
actual relaxation because p∗

3 = 0 then also holds true in the general case. Furthermore, the
possible relaxations mentioned in Remark 3.4.9 are obviously also valid for Theorem 3.4.14.

The subsequent example transfers Example 3.4.13 to now examine risk consistency in-
stead of Lp-consistency. As it also considers the case An = 1 for the different investigated
sample sizes n, it also covers the risk consistency of non-localized SVMs that was stated in
Corollary 3.3.5.

Example 3.4.16. We look at the regression problem “Friedman 1” the same way as we did
in Example 3.4.13, notably also choosing the regularization parameters as λn,i = ci · d−1/3

n,i

for constants ci. Theorem 3.4.14 yields that RL,P(fL,Dn,λn,kn,X n) − R∗
L,P converges to 0

because the special case (ii) of that theorem tells us that condition (3.43) coincides with
(3.33) in the situation of this example, and the latter condition was explained to be satisfied
for this choice of λn,i in Example 3.4.13. Table 3.4.3 shows the resulting values of the
excess risk RL,P(fL,Dn,λn,kn,X n) − R∗

L,P, from which it can be seen that the postulated
convergence does indeed take place and that it does so considerably faster than that of∣∣∣∣∣∣fL,Dn,λn,kn,X n − f ∗

L,P

∣∣∣∣∣∣
L1(PX)

in Example 3.4.13.18

18The missing values in the table are due to the corresponding localized SVMs not having been
computed—either because of having too few data points in the different regions (depicted by “–”) or because
of having so many data points in a single region that the calculations become exceedingly memory-intensive
(depicted by “+”).
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n
#Reg. 1 3 5 10 20 40 100

600 0.316 0.344 0.381 0.498 0.604 – –
0.010 0.012 0.008 0.004 0.004

2,000 0.244 0.238 0.237 0.286 0.343 0.417 –
0.009 0.012 0.008 0.004 0.002 0.002

6,000 0.200 0.184 0.170 0.185 0.206 0.245 0.314
0.009 0.011 0.007 0.003 0.002 0.001 0.001

20,000 0.163 0.147 0.129 0.129 0.133 0.145 0.176
0.009 0.011 0.006 0.003 0.002 0.001 0.001

60,000 0.136 0.122 0.104 0.100 0.098 0.101 0.114
0.009 0.010 0.006 0.003 0.001 0.001 0.001

200,000 + + 0.082 0.077 0.074 0.072 0.076
0.005 0.002 0.001 0.001 0.001

600,000 + + + 0.061 0.059 0.056 0.055
0.002 0.001 0.001 0.000

2,000,000 + + + + + 0.044 0.041
0.001 0.000

Table 3.4.3: Means and estimated standard errors of the means (in small font) of the excess
risk RL,P(fL,Dn,λn,kn,X n) − R∗

L,P for the regression problem “Friedman 1” with different
training set sizes n and different amounts of underlying regions (based on 30 repetitions
for each combination). Bold font highlights the minimum value for each n.
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Chapter 4

Total Stability

This chapter concerns itself with total stability of SVMs and localized SVMs. That is, the
influence that simultaneous slight changes in probability measure, (vector of) regularization
parameter(s), (vector of) kernel(s) and—in the case of localized SVMs—regionalization
have on the resulting predictor is investigated.19 Naturally, one would hope that such
small changes only lead to small changes in the predictor, such that small random errors
in the available data do not completely skew the predictor.

The notion of total stability is formally defined in Section 4.1. Afterwards, Section 4.2
introduces ways to measure the differences between probability measures, regularization
parameters, kernels and regionalizations, which are needed to derive results on total sta-
bility of SVMs in Section 4.3 and on that of localized SVMs in Section 4.4.

Throughout this chapter, the following standard assumptions are assumed to hold true:

Assumption 4.0.1. Let X be a complete separable metric space and let Y ⊆ R be closed.
Let X and Y be equipped with their respective Borel σ-algebras BX and BY .

Note that the results from this chapter only consider SVMs and localized SVMs using
shifted loss functions. Because of Lemma 2.1.29, they can however be transferred to regular
loss functions whenever RL,P(0) < ∞.20

4.1 Introduction to Total Stability
Total stability can in some sense be seen as an extension to the considerably more well-
known concept of statistical robustness. Roughly speaking, the latter concerns itself with

19Total stability thus considers the effect of changes in all components influencing the predictor except
for the loss function. It is explained in Section 4.1, why it makes sense to treat the loss function differently
than probability measure, regularization parameter(s), kernel(s) and regionalization and not include it in
the notion of total stability.

20Transferring it to localized SVMs, Lemma 2.1.29 strictly speaking does not demand RL,P(0) < ∞,
but instead that the risks with respect to the local measures on all regions with positive probability are
all finite. If X̃ ⊆ X is such a region with P(X̃ × Y) > 0, it however follows from the definition of the local
measures that RL,P(0) < ∞ already implies RL,PX̃

(0) < ∞. (If on the other hand P(X̃ × Y) = 0, then
fL⋆,PX̃ ,λ,k = fL,PX̃ ,λ,k is immediately obvious from the definition of local SVMs.)
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the effect that changes in the probability measure (respectively the data) have on an
estimator and the estimator is called statistically robust if small changes in the probability
measure only lead to small changes in the (distribution of the) estimator. In practice, such
changes in the data for example occur because of measurement or rounding errors and can
therefore consist either of few extreme outliers or of slight changes in a large part of the
data. Different notions of statistical robustness take different approaches, for example, to
how these changes are quantified, but they all examine the same fundamental concept. We
refer to Huber (1964), Hampel (1971), Huber (1981), Hampel et al. (1986), Rousseeuw and
Leroy (1987), Maronna et al. (2006) among others for details on robust statistics.

When applying predictors like SVMs, we of course hope that such changes in the data
do not skew the predictions by too much, for which reason we would like SVMs to be
robust. Indeed, several papers derived results regarding different notions of statistical ro-
bustness. These include Bousquet and Elisseeff (2002), Christmann and Steinwart (2004,
2007), Christmann and Van Messem (2008), Hable and Christmann (2011), Sheng et al.
(2020), Eckstein et al. (2023). Additionally, Dumpert and Christmann (2018), Dumpert
(2020) transferred some of these results to localized SVMs. Similar considerations for re-
lated machine learning methods can for example be found in Poggio et al. (2004), Mukherjee
et al. (2006) and the references cited therein.

While classic statistical robustness only considers the effect of small changes in the
probability measure (respectively the data set in practice) on the resulting predictor, this
is not the only component influencing the resulting (localized) SVM. Instead, loss function,
regularization parameter(s), kernel(s) and—for localized SVMs—regionalization also play
a role.

Among these, the loss function stands out as it usually is entirely predefined and not
chosen depending on the data in practice. Instead the loss function is chosen depending on
the property of the underlying distribution one wishes to estimate. If one tries to estimate
the function of conditional means, one might choose the least squares loss, whereas the
τ -pinball loss is the obvious choice for estimating the function of conditional τ -quantiles,
and so on. Hence, the choice of the loss function describes the goal of the prediction and
it is usually entirely intended that changes in the loss function can lead to considerable
changes in the predictor. For this reason, the effect of such changes in the loss function is
not included in the notion of total stability that is considered here.

On the other hand, regularization parameter(s), kernel(s) and regionalization are usually
not predefined but instead chosen data-dependently. To be more specific, the type of kernel
is often predefined (for example, a Gaussian RBF kernel), but not its hyperparameter(s).
Regularization parameter and hyperparameter(s) of the kernel are often chosen from some
predefined grid by means of cross-validation. Thus, they might change if the data changes
and one would hope that (localized) SVMs are not only stable/robust with respect to the
changes in the data itself but also with respect to the changes in regularization parameter(s)
and kernel(s) that might result from them or from slightly changing the grid used in the
cross-validation scheme.

Similar considerations suggest themselves regarding the regionalization: As described in
Section 2.2.1, there are different methods for obtaining a regionalization in practice, like for
example tree based methods. All of them have in common that the resulting regionalization
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depends on the data that is used for generating it. Hence, changes in the data might also
lead to changes in the regionalization and it seems sensible to investigate whether localized
SVMs are also stable with respect to such changes.

In the following, these considerations are transferred into formal definitions of total
stability of SVMs and localized SVMs. Note that these definitions are highly adapted to
the results presented in this thesis. They could of course also be generalized to different
norms on the left hand side of the bound as well as to slightly different kinds of bounds, as
long as the principal idea of total stability is adhered to: bounding the difference between
the predictors by a weighted sum of the differences in the components influencing the
predictors.

For SVMs, the previous considerations lead to the notion of total stability needing to
consider simultaneous changes in the whole triple (P, λ, k) consisting of probability mea-
sure, regularization parameter and kernel. Because of this focus on the triple (P, λ, k), we
will usually omit the loss function from the notation for SVMs and localized SVMs in this
chapter.

Definition 4.1.1 (Total Stability of SVMs). Let L : X ×Y ×R → [0,∞) be a loss function
and let L⋆ be its shifted version. Let A be a set of assumptions. We call SVMs based on
L⋆ totally sup-stable (under the assumptions A and with respect to d1, d2 and d3) if, for
all P1,P2, λ1, λ2, k1, k2 satisfying A ,

||fP1,λ1,k1 − fP2,λ2,k2||∞ ≤ c1 · d1(P1,P2) + c2 · d2(λ1, λ2) + c3 · d3(k1, k2) (4.1)

where, for ℓ = 1, 2, 3, cℓ ∈ (0,∞) can be written as

cℓ = max {cℓ,λ1 , cℓ,λ2} · max {cℓ,k1 , cℓ,k2}

for constants cℓ,λj
and cℓ,kj

depending on λj and kj respectively, j = 1, 2. That is, each cℓ

is allowed to depend on each of λ1, λ2, k1, k2 individually but not on their differences.
For p ∈ [1,∞), we call SVMs based on L⋆ totally Lp-stable (under the assumptions A

and with respect to d1, d2 and d3) if (4.1) holds true with ||·||∞ replaced by ||·||Lp(PX
i ),

i = 1, 2, and with d3 := d3,PX
i

being allowed to depend on PX
i .

Note that even though d1, d2 and d3 are not required to be metrics, those that are used
in the results on total stability and introduced in Sections 4.2.1 to 4.2.3 do actually satisfy
the axioms of a metric.

Similarly to the previous definition, total stability of localized SVMs considers changes in
the whole quadruple (P,λ,k,X ) consisting of probability measure, vector of regularization
parameters, vector of kernels, and regionalization. Alas, Section 4.4.2 will explain that it
is not possible to derive meaningful bounds on ||fP1,λ1,k1,X 1 − fP2,λ2,k2,X 2||∞ if the two
regionalizations do actually differ. Hence, we first give a definition of regionalization-
subtotal stability of localized SVMs, i.e. stability with respect to changes in only the triple
(P,λ,k), while the regionalization stays the same (as do the associated weight functions).

For the subsequent definitions, recall the notations PX and X ∗
1,2 from Section 2.2.2,

denoting the vector of local measures on X associated with P respectively the combined
regionalization of two regionalizations X 1 and X 2.
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Definition 4.1.2 (Regionalization-Subtotal Stability of Localized SVMs). Let L : X ×Y ×
R → [0,∞) be a loss function and let L⋆ be its shifted version. Let A be a set of assump-
tions. We call localized SVMs based on L⋆ regionalization-subtotally sup-stable (under
the assumptions A and with respect to d1, d2 and d3) if, for all P1,P2,λ1,λ2,k1,k2,X
satisfying A ,

||fP1,λ1,k1,X − fP2,λ2,k2,X ||∞ ≤ c1 ·d1(P1,X ,P2,X ) + c2 ·d2(λ1,λ2) + c3 ·d3(k1,k2) , (4.2)

where, for ℓ = 1, 2, 3, cℓ ∈ (0,∞) can be written as

cℓ = max {cℓ,λ1 , cℓ,λ2} · max {cℓ,k1 , cℓ,k2} (4.3)

for constants cℓ,λj
and cℓ,kj

depending on λj and kj respectively, j = 1, 2. That is, each cℓ

is allowed to depend on each of λ1,λ2,k1,k2 individually but not on their differences.
For p ∈ [1,∞), we call localized SVMs based on L⋆ regionalization-subtotally Lp-stable

(under the assumptions A and with respect to d1, d2 and d3) if (4.2) holds true with ||·||∞
replaced by ||·||Lp(PX

i ), i = 1, 2, with d3 := d3,PX
i

being allowed to depend on PX
i , and with

each of c1, c2, c3 being allowed to additionally depend on PX
i (X ) := (PX

i (X1), . . . ,PX
i (XA))

via a factor cℓ,PX
i (X ) that is multiplied to (4.3).

Definition 4.1.3 (Total Stability of Localized SVMs). Let L : X × Y × R → [0,∞) be
a loss function and let L⋆ be its shifted version. Let A be a set of assumptions. For
p ∈ [1,∞), we call localized SVMs based on L⋆ totally Lp-stable (under the assumptions
A and with respect to d1, d2, d3 and d4) if, for all P1,P2,λ1,λ2,k1,k2,X 1,X 2 satisfying
A ,

||fP1,λ1,k1,X 1 − fP2,λ2,k2,X 2 ||Lp(PX
i ) ≤ c1 · d1(P1,X ∗

1,2
,P2,X ∗

1,2
) + c2 · d2(λ1,λ2)

+ c3 · d3(k1,k2) + c4 · d4(X 1,X 2)

for i = 1, 2 and where, for ℓ = 1, 2, 3, 4, cℓ ∈ (0,∞) can be written as

cℓ = max{cℓ,PX
i (X 1), cℓ,PX

i (X 2)} · max {cℓ,λ1 , cℓ,λ2} · max {cℓ,k1 , cℓ,k2}

for constants cℓ,PX
i (X j), cℓ,λj

and cℓ,kj
depending on PX

i (X j) := (PX
i (Xj,1), . . . ,PX

i (Xj,Aj
)),

λj and kj respectively, j = 1, 2. That is, each cℓ is allowed to depend on each of
PX

i (X 1),PX
i (X 2),λ1,λ2,k1,k2 individually but not on their differences. Additionally,

d2 := d2,X ∗
1,2

, d3 := d3,PX
i ,X ∗

1,2
and d4 := d4,PX

i
are allowed to depend on PX

i and/or X ∗
1,2.

Suitable distance measures d1, d2, d3 and d4 are described in Section 4.2.
So far, there are—to our knowledge—no results on total stability of localized SVMs.

Results on total stability of non-localized SVMs have already been derived by Christ-
mann et al. (2018). These are however considerably generalized by those derived in Sec-
tion 4.3. Namely, Theorems 2.7 and 2.10 from Christmann et al. (2018) both show total
sup-stability (in the case of the latter, an application of the property ||f ||∞ ≤ ||k||∞ ||f ||H ,
see Lemma 2.1.10(i) from this thesis, is needed to actually obtain sup-stability), but com-
pared to Theorem 4.3.19 they impose additional assumptions regarding both the loss func-
tion L and either the regularization parameters λ1 and λ2 (Theorem 2.7) or the kernels k1
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and k2 (Theorem 2.10). The generalization that Theorem 4.3.19 achieves is explained in
more detail in Section 4.3.4 and comes with a small drawback regarding the distance d3 for
measuring the difference between the kernels, cf. Remark 4.3.21. Additionally, Section 4.3
contains results with respect to two different choices of d1, namely the total variation dis-
tance and the Wasserstein distance, whereas Christmann et al. (2018) only considered the
former. This further substantially adds to the list of comparisons in Definition 4.1.1 for
which one can obtain meaningful bounds, cf. Section 4.2.1.

4.2 Measuring Differences between the Components
Influencing (Localized) Support Vector Machines

This section describes the different ways in which the distance measures dj, j = 1, . . . , 4, in
the definitions of total stability from Section 4.1 are chosen in the results on total stability
from Sections 4.3 and 4.4.

4.2.1 Differences between Probability Measures
There exist many different metrics for quantifying the difference between two probability
measures. This section does not give a complete overview of such metrics. Instead, it
focuses on those two that are used in the results from Sections 4.3 and 4.4, namely the
total variation distance and the Wasserstein distance, and gives some examples of when
these distances are useful and when they are not. A more extensive overview of metrics for
probability measures is given by Rachev (1991), Gibbs and Su (2002), see also Zolotarev
(1976) for some theoretical considerations underlying such metrics.

We start by giving a definition of the total variation distance, see also Tierney (1996,
p. 61).

Definition 4.2.1 (Total Variation Distance). Let P1,P2 be probability measures on some
measurable space (Ω,A). The total variation distance between P1 and P2 is given by

dtv(P1,P2)

:= sup
{

n∑
i=1

|P1(Si) − P2(Si)|
∣∣∣∣∣ n ∈ N , S1, . . . , Sn measurable partition of Ω

}
= 2 · sup

S∈A
|P1(S) − P2(S)| .

Note that some authors define the total variation distance as half of that from Defini-
tion 4.2.1, see for example Tsybakov (2009, Definition 2.4). Further, the total variation
distance does actually define a metric on the space of probability measures on (Ω,A), cf.
Tsybakov (2009, p. 84). In our case, the measurable space usually is (X × Y ,BX ×Y).

There are several situations in which two probability measures are similar with respect
to the total variation distance, and results on total stability using this metric will therefore
yield meaningful bounds. One such situation is the comparison of two empirical distri-
butions, where one is obtained from the other by perturbing (for example, because of
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measurement/reading errors) or adding (because of obtaining new observations) a small
amount of data points:21

Example 4.2.2. Let n ∈ N and let D1 and D2 be the empirical distributions belonging to
data sets D1 and D2 with D1 := (ω1, . . . , ωn) ∈ Ωn.

If D2 := (ω̃1, . . . , ω̃n) ∈ Ωn is of the same size as D1 but differs from D1 in at most
ℓ ∈ N data points, which means that we have (after potentially reordering the data sets)
(ω1, . . . , ωn−ℓ) = (ω̃1, . . . , ω̃n−ℓ), then

dtv(D1,D2) ≤ 2ℓ
n
.

Similarly, if D2 was obtained by adding m ∈ N new data points to D1, such that now
D2 := (ω1, . . . , ωn, ωn+1, . . . , ωn+m) ∈ Ωn+m, then

dtv(D1,D2) ≤ 2m
n+m

.

Similarly, this metric can be useful for comparing probability measures that have densi-
ties with respect to the same measure:

Example 4.2.3. Suppose that Pn, n ∈ N, and P are probability measures with densities
fn, n ∈ N, and f with respect to some measure µ on the measurable space (Ω,A). If
the densities satisfy fn → f µ-almost everywhere as n → ∞, then Scheffé’s Theorem (cf.
Billingsley, 1995, Theorem 16.12) yields

dtv(Pn,P) = 2 · sup
S∈A

|Pn(S) − P(S)| ≤ 2 ·
∫

Ω
|fn − f | dµ → 0 , n → ∞ .

On the other hand, the subsequent two examples show cases in which the total variation
distance is not useful.

Example 4.2.4. Suppose that P is a probability measure with Lebesgue density on the
measurable space (Ω,A) and that Dn is the empirical distribution belonging to a data set
Dn := (ω1, . . . , ωn) ∈ Ωn drawn from P. Then, we have

dtv(P,Dn) = 2 · |P(supp(Dn)) − Dn(supp(Dn))| = 2 · |0 − 1| = 2

because of the finiteness of the support supp(Dn) of Dn and the Lebesgue continuity of P.
As this holds true regardless of the size n of the data set, dtv(P,Dn) does not converge to
0 as n → ∞ in such cases.

Example 4.2.2 showed that the total variation distance yields meaningful bounds for two
of the three main types of changes in the data, in which one would naturally hope that
the resulting predictors do not change by much: (arbitrarily large) measurement/reading
errors in a small amount of data points, and adding a small amount of new data points.
For the third such slight change of the data, namely slight changes in a large amount of
the data points (for example, because of general imprecision in measuring the data), it is
however easy to see from the subsequent example that dtv is not as useful.

21Examples 4.2.2 to 4.2.4 are taken from the peer-reviewed paper Köhler and Christmann (2022).
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Example 4.2.5. Let n ∈ N and let D1 be the empirical distribution belonging to a data
set D1 := (ω1, . . . , ωn) ∈ Ωn. Assume that D2 := (ω̃1, . . . , ω̃n) ∈ Ωn is obtained from D1 by
just slightly perturbing all n data points, for example by adding the same small ε > 0 to
all ωi, i = 1, . . . , n, and let D2 be the associated empirical distribution. Then,

dtv(D1,D2) ≥ 2 · |D1(supp(D1)) − D2(supp(D1))| = 2 · |1 − 0| = 2

if not by chance ωi coincides with ω̃j for some i, j. This holds true no matter how small
the perturbations in the data points are. Similarly, if not all but only some ratio q ∈ (0, 1)
of the data points is perturbed, one still obtains dtv(D1,D2) ≥ 2q, no matter how small
these perturbations are.

To conclude, total stability results using the total variation distance are useful for bound-
ing the influence of slight changes in the underlying distribution (cf. Example 4.2.3) or that
of perturbing or adding a small amount of data points (cf. Example 4.2.2).

They do however not yield useful bounds in the situations from Examples 4.2.4 and 4.2.5,
i.e. for comparing an empirical distribution with an underlying distribution with Lebesgue
density and for bounding the influence of slight changes in all data points (or at least
in a significant portion of them). The former of these two negative examples is not the
primary focus of considerations on total stability anyway, as total stability is mainly about
the effect of small changes in the data respectively the underlying distribution and not
about comparing an empirical with a theoretical SVM. The latter example, i.e. having
slight measurement errors in many/all data points, however constitutes a typical situation
occurring in practical problems. One would hope that such slight errors do also only lead
to slight changes in the resulting predictor, but Example 4.2.5 shows that total stability
results using the total variation distance can not help here.

At this point, the Wasserstein distance comes into play, which will also be used in stability
results in Sections 4.3 and 4.4 and which yields meaningful bounds in this situation, cf.
Example 4.2.8—and actually even in the situation from Example 4.2.4, cf. Example 4.2.10.

Definition 4.2.6 (Wasserstein Distance). Let d ∈ N and let Ω ⊆ Rd be separable, com-
plete and equipped with its Borel σ-algebra. Let P1,P2 be probability measures on Ω. The
Wasserstein distance (of order 1) between P1 and P2 is given by

dW(P1,P2) := inf
ν

∫
Ω×Ω

||ω − ω′||1 dν(ω, ω′) ,

where the infimum is taken over all joint distributions ν on Ω×Ω with marginal distributions
P1 and P2.22

Note that the Wasserstein distance can also be defined for other metrics than the one
induced by ||·||1 and for higher orders, cf. Villani (2009, Definition 6.1), but we only need
this special case from Definition 4.2.6. Also note that the Wasserstein distance is also known
by several other names in the literature, for example Kantorovich-Rubinstein distance or
earth mover’s distance, see also Villani (2009, pp. 118–119).

22There always exists at least one such distribution ν as it is possible to choose ν as the product measure
P1 ⊗ P2.
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Further note that dW defines a metric if one only allows for probability measures P which
satisfy∫

Ω
||x− x0||1 dP(x) < ∞ (4.4)

for some (and hence every) x0 ∈ Ω, cf. Dudley (2004, Lemma 11.8.3 and subsequent
Remark). This subspace of Borel probability measures is also called Wasserstein space (of
order 1) and denoted by W1(Ω). For probability measures P1 and P2 from this Wasserstein
space, the Kantorovich-Rubinstein theorem yields the sometimes useful dual representation

dW(P1,P2) = sup
{∫

Ω
f dP1 −

∫
Ω
f dP2

∣∣∣∣ |f |1 ≤ 1
}
, (4.5)

where |f |1 denotes the Lipschitz constant of f , cf. Villani (2009, Remark 6.5).
More detailed introductions to Wasserstein distances including their interpretation as

measuring the optimal transport cost between two measures can for example be found in
Rachev and Rüschendorf (1998), Villani (2009), Panaretos and Zemel (2020).
Remark 4.2.7. Using the dual representation of the Wasserstein distance, it can be observed
that both the total variation and the Wasserstein distance share the same structure of being
special cases of so-called integral probability metrics (see Müller, 1997), which means that
they can both be written as

d•(P1,P2) = sup
f∈F•

∣∣∣∣∫ f dP1 −
∫
f dP2

∣∣∣∣ ,
where d• denotes either of dtv and dW and F• is a suitable class of functions (see Müller,
1997, Section 5.2 for dtv). Further examples of such integral probability metrics include
the Kolmogorov distance as well as the Dudley distance (also known as bounded Lipschitz
distance) and the maximum mean discrepancy (MMD). Among these, the Dudley distance
possesses the nice property of metrizing weak convergence (Dudley, 2004, Theorem 11.3.3)
and it additionally bears close resemblance to the Wasserstein distance because of the
similarity of the associated function classes,

FDudley = {f ; |f |1 + ||f ||∞ ≤ 1} ⊆ {f ; |f |1 ≤ 1} = FW .

Thus, dDudley can be bounded by dW and convergence with respect to dW hence implies
weak convergence as well. Because the reverse does in general not hold true, dW does
in general however not metrize weak convergence but instead metrizes a slightly stronger
statement, see Villani (2009, Definition 6.8 and Theorem 6.9).

MMD (see Gretton et al., 2006; Muandet et al., 2017) on the other hand is particu-
larly interesting because it is often referred to in a way that seems very different from
the definition of integral probability metrics, namely as the distance between the kernel
mean embeddings of two probability distributions. These kernel mean embeddings can
be seen as embeddings of the distributions into an RKHS and therefore transfer the idea
of using RKHSs for representing single data points (cf. Section 2.1.2) to using them for
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representing whole distributions, see Sriperumbudur et al. (2011) for the relation between
kernels that are typically used for SVMs and kernels that are typically used for such em-
beddings. Because of its representation as an integral probability metric (Muandet et al.,
2017, Section 3.5), MMD however also has a close connection to the total variation as well
as the Wasserstein distance. This connection gets especially apparent in Sriperumbudur
et al. (2010, Theorem 21), where it is shown that both can be used to upper bound MMD.
Lastly, Sriperumbudur et al. (2010, Theorems 23 and 24) give conditions under which
MMD metrizes weak convergence, with the former theorem being further generalized by
Sriperumbudur (2016, Theorem 3.2).

A major advantage that the Wasserstein distance offers over the total variation distance
lies in the fact that it is also useful in the situation of Example 4.2.5. In the following,
the situations from Examples 4.2.2 and 4.2.5 are combined into a single example because
the Wasserstein distance is able to handle them both similarly well, yielding bounds of the
same structure for both:

Example 4.2.8. Let n ∈ N and let D1 and D2 be the empirical distributions belonging to
data sets D1 and D2 with D1 := (ω1, . . . , ωn) ∈ Ωn.

If D2 := (ω̃1, . . . , ω̃n) ∈ Ωn is of the same size as D1, then

dW(D1,D2) ≤
∫

Ω×Ω
||ω − ω̃||1 d

(
1
n

n∑
i=1

δ(ωi,ω̃i)

)
(ω, ω̃) = 1

n

n∑
i=1

||ωi − ω̃i||1 .

Hence, the Wasserstein distance is small no matter whether D2 was obtained from D1 by
changing few data points greatly (first scenario in Example 4.2.2) or by changing many
data points slightly (scenario in Example 4.2.5).

Similarly, if D2 was obtained by adding m ∈ N new data points to D1, such that now
D2 := (ω1, . . . , ωn, ωn+1, . . . , ωn+m) ∈ (X ×Y)n+m (second scenario in Example 4.2.2), then

dW(D1,D2) ≤ inf
µ

∫
Ω×Ω

||ω − ω̃||1 d
(

1
n+m

n∑
i=1

δ(ωi,ωi) + m

n+m
µ

)
(ω, ω̃)

= m

n+m
· inf

µ

∫
Ω×Ω

||ω − ω̃||1 dµ(ω, ω̃)

= m

n+m
· dW(D1, D̃2) ,

where D̃2 is the empirical distribution associated with (ωn+1, . . . , ωn+m) and where the
infimum is taken over all joint distributions µ with marginal distributions D1 and D̃2.

In both scenarios from Example 4.2.2, the bound derived for the total variation distance
was stronger than that derived for the Wasserstein distance in Example 4.2.8 if the data
points that differ between D1 and D2 differ by much (first scenario) respectively if the added
data points inD2 are very different from those already present inD1 (second scenario). This
is due to the total variation distance only being influenced by the number of points differing
between D1 and D2 but not by how large those individual differences are. Nevertheless, the
bounds derived for the Wasserstein distance can also be useful as they also become smaller
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if the number of differing/added points decreases. Additionally, the Wasserstein distance
shows the great advantage of also yielding a nice bound in the scenario from Example 4.2.5.

Furthermore, the Wasserstein distance can also be used for the comparison between two
theoretical distributions if they have densities with respect to the same measure, i.e. in the
scenario from Example 4.2.3:

Example 4.2.9. Suppose that Pn, n ∈ N, and P are probability measures from the
Wasserstein space W1(Ω) with densities fn, n ∈ N, and f with respect to some measure
µ on the measurable space (Ω,BΩ). Assume that the densities satisfy fn → f µ-almost
everywhere as n → ∞.

Defining gn by gn(ω) := ||ω||1 · (fn(ω) − f(ω)) for ω ∈ Ω, one obtains that g+
n → 0

µ-almost everywhere and that 0 ≤ g+
n (ω) ≤ ||ω||1 · fn(ω) for all ω and n. As Pn ∈ W1(Ω),

ω 7→ ||ω||1 · fn(ω) is µ-integrable, and hence the dominated convergence theorem yields∫
g+

n dµ → 0 as n → ∞. Analogously,
∫
g−

n dµ → 0 follows as well and one therefore obtains∫
Ω

||ω||1 dPn(ω) −
∫

Ω
||ω||1 dP(ω) =

∫
Ω
gn(ω) dµ(ω) → 0 , n → ∞ .

By replacing ||·||1 with an arbitrary bounded and continuous function, one can show in
a similar way that Pn converges weakly to P. Together, these two facts show that the
probability measures satisfy Villani (2009, Definition 6.8(i)), for which reason Villani (2009,
Theorem 6.9) yields that

dW(Pn,P) → 0 , n → ∞ .

Lastly—even though this is not the main focus of results on total stability, as explained
earlier—, the Wasserstein distance can even be useful for comparing an empirical distribu-
tion with an underlying theoretical distribution with Lebesgue density, i.e. in the scenario
for which Example 4.2.4 showed that the total variation distance can not be used.

Example 4.2.10. Suppose that P ∈ W1(Ω) is a probability measure with Lebesgue density
and that Dn is the empirical distribution belonging to a data set Dn := (ω1, . . . , ωn) ∈ Ωn

drawn from P. Then Panaretos and Zemel (2020, Proposition 2.2.6) yields

dW(P,Dn) → 0 , n → ∞ ,

almost surely.
If P even lies in a Wasserstein space of some slightly higher order,23 then Dereich et al.

(2013, Theorem 1) and Fournier and Guillin (2015, Theorems 1 and 2) even bound the rate
of convergence by n−1/d.24 Alas, one observes the curse of dimensionality as it is in general
not possible to derive a better rate, cf. Dereich et al. (2013, Theorem 2) and Fournier
and Guillin (2015, p. 709). See also Weed and Bach (2019) for related considerations in
compact metric spaces.

23This means that ||x− x0||1 is replaced by ||x− x0||q1 in condition (4.4) for some suitably chosen q
slightly greater than 1.

24To be more precise, this rate is derived for d ≥ 3 and the rates for d = 1, 2 differ slightly.
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Remark 4.2.11. If Ω is assumed to be bounded, the Wasserstein distance can actually
be bounded by some multiple of the total variation distance, cf. Gibbs and Su (2002,
Theorem 4). Further, it is obvious that W1(Ω) contains all (Borel) probability measures
on Ω in this case, for which reason the observations from Examples 4.2.9 and 4.2.10 then
hold true without needing to explicitly require the probability measures to be in W1(Ω).

To conclude, for measuring the difference between two probability measures P1 and P2,
the results on total stability of SVMs will use either

d1(P1,P2) = dtv(P1,P2)

or

d1(P1,P2) = dW(P1,P2)

in Definition 4.1.1. For comparing two vectors of local measures on a regionalization
X = {X1, . . . ,XA}, the results will use

d1(P1,X ,P2,X ) = max
a∈{1,...,A}

d•(P1,Xa ,P1,Xa)

for sup-stability and

d1(P1,X ,P2,X ) =
A∑

a=1
d•(P1,Xa ,P1,Xa) ,

for Lp-stability in Definitions 4.1.2 and 4.1.3, with d• denoting either of dtv and dW.

4.2.2 Differences between Regularization Parameters
As the regularization parameters are just real numbers, it suggests itself to measure the
difference between two regularization parameters λ1 and λ2 by just calculating the absolute
value of their difference and hence choose

d2(λ1, λ2) = |λ1 − λ2|

in Definition 4.1.1. For vectors λ1 and λ2 underlying localized SVMs that are both based
on the same regionalization and that are hence of the same length, the results will use

d2(λ1,λ2) = ||λ1 − λ2||∞

for sup-stability and

d2(λ1,λ2) = ||λ1 − λ2||1 ,

for Lp-stability in Definition 4.1.3. If the regionalizations differ, Section 4.4.2 yields that
this can be reduced to the case of still comparing vectors of the same length, for which
reason it is still valid to use these choices.
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4.2.3 Differences between Kernels
Since the kernels are functions, it suggests itself to use an analogous norm for d3 as the
one on the left hand side in Definition 4.1.1, namely

||·||• :=
||·||∞ for sup-stability,

||·||Lp(PX
i ⊗PX

i ) for Lp-stability.

To be more specific, the results need a slightly adapted version of ||·||•, namely

d3(k1, k2) = ||k1 − k2||• +
√

||k1 − k2||• . (4.6)

Remark 4.2.12. Even though
√

||·||• is not a norm, it is easy to see that it still induces a
metric. Hence, d3 is also a metric since it is the sum of two metrics.25

Note that k1 − k2 is generally not a kernel. Therefore, if one chooses ||·||• in (4.6) as the
supremum norm, ||k1 − k2||∞ denotes the general supremum norm of a function instead of
the special definition of ||·||∞ for kernels stated in (2.2).

In the following, two examples are given in order to illustrate the behavior of this supre-
mum norm ||k1 − k2||∞ as well as the whole distance d3 from (4.6).26 First of all, Ex-
ample 4.2.13 compares two Gaussian kernels with different bandwidths and examines how
this difference influences ||k1 − k2||∞. Such a difference can for example arise from two
practitioners using slightly different grids for their cross-validation schemes or from them
having slightly different data at hand cf. Section 4.1.

Example 4.2.13. Let X = Rd for some d ∈ N and let kγ be the Gaussian RBF kernel
with bandwidth γ > 0 on X , cf. Example 2.1.12. For γ1, γ2 > 0 and x, x′ ∈ X , we then
have

|kγ1(x, x′) − kγ2(x, x′)| =
∣∣∣∣∣exp

(
−||x− x′||22

γ2
1

)
− exp

(
−||x− x′||22

γ2
2

)∣∣∣∣∣
=

∣∣∣∣∣∣∣exp

−

∣∣∣∣∣∣ x
γ2

− x′

γ2

∣∣∣∣∣∣2
2

γ2
1/γ

2
2

− exp

−

∣∣∣∣∣∣ x
γ2

− x′

γ2

∣∣∣∣∣∣2
2

1


∣∣∣∣∣∣∣

=
∣∣∣∣∣kγ1/γ2

(
x

γ2
,
x′

γ2

)
− k1

(
x

γ2
,
x′

γ2

)∣∣∣∣∣
and analogously∣∣∣kγ1/γ2 (x, x′) − k1 (x, x′)

∣∣∣ = |kγ1(γ2x, γ2x
′) − kγ2(γ2x, γ2x

′)| .

25If ||·||• = ||·||Lp(PX
i

⊗PX
i

), then ||·||• of course strictly speaking only defines a seminorm, for which
reason the distance d3 between two distinct kernels can be zero. As usual, one formally needs to switch to
equivalence classes of kernels in order for ||·||Lp(PX

i
⊗PX

i
) to actually define a norm, which we however omit

for ease of notation.
26These two Examples 4.2.13 and 4.2.14 are slightly adapted versions of Examples 4 and 5 from the

peer-reviewed paper Köhler and Christmann (2022).
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γ1/γ2 1 1.01 1.05 1.1 1.5 2
||kγ1 − kγ2 ||∞ 0.000 0.007 0.036 0.070 0.290 0.472
d3(kγ1 , kγ2) 0.000 0.093 0.225 0.335 0.829 1.160

Table 4.2.1: Ratio between the bandwidths γ1 and γ2 of two Gaussian RBF kernels, as well
as the resulting value of ||kγ1 − kγ2 ||∞ and the corresponding value of d3(kγ1 , kγ2) for d3 as
defined in (4.6)

As x, x′ ∈ X implies that x/γ2, x
′/γ2, γ2x, γ2x

′ ∈ X as well (because X = Rd), we hence
obtain

||kγ1 − kγ2||∞ =
∣∣∣∣∣∣kγ1/γ2 − k1

∣∣∣∣∣∣
∞
.

Therefore, changing the bandwidth from γ1 to γ2 results in a value of ||kγ1 − kγ2||∞ which
depends only on the ratio between γ1 and γ2. We computed ||kγ1 − kγ2||∞ for some such
ratios γ1/γ2 and collected the results in Table 4.2.1. Additionally, that table also includes
the corresponding values of d3 as defined in (4.6).

Similarly to Example 4.2.13, one might also be interested in the effect on the SVM of
not slightly changing the bandwidth of the Gaussian kernel, but instead for example be
interested in the effect of switching to a suiting Wendland kernel (cf. Wendland, 2005,
Definition 9.11 and the subsequent results), which possesses the numerical advantage of
having a compact support:
Example 4.2.14. Let X = R5 (other dimensions can be analyzed analogously and yield
similar results). Let kγ be the Gaussian kernel with bandwidth γ > 0 on X and let kW
be the normalized Wendland kernel on X defined by kW(x, x′) := ψ6,3(||x− x′||2) with ψ6,3
as in Chernih et al. (2014, Theorem 3.3, with α := γ−2).27 This results in ||kγ − kW||∞ ≈
0.0037, and thus d3(kγ, kW) ≈ 0.0650 with d3 as in (4.6), being quite small and hence the
corresponding SVMs closely resembling each other because of their stability with respect
to changes in the kernel which is shown in Proposition 4.3.14.

For vectors k1 and k2 of kernels underlying localized SVMs that are both based on the
same regionalization of size A ∈ N and that are hence of the same length, the results will
use

d3(k1,k2) = max
a∈{1,...,A}

(
||k1,a − k2,a||∞ +

√
||k1,a − k2,a||∞

)
for sup-stability and

d3(k1,k2) =
A∑

a=1

(
||k1,a − k2,a||Lp(PX

i ⊗PX
i ) +

√
||k1,a − k2,a||Lp(PX

i ⊗PX
i )

)
for Lp-stability in Definition 4.1.3. Again, if the regionalizations differ, Section 4.4.2 yields
that this can be reduced to the case of still comparing vectors of the same length, for which
reason it is still valid to use one of the above two choices.

27Note that the notation used in that paper differs from the one used by Wendland (2005), such that the
function ϕ6,3 used in the definition of ψ6,3 in the mentioned theorem corresponds to ϕ5,3 in the notation
of Wendland (2005).
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4.2.4 Differences between Regionalizations
Assume throughout this section that the two regionalizations X 1 = {X1,1, . . . ,X1,A1} and
X 2 = {X2,1, . . . ,X2,A2} that are compared are both partitioning regionalizations of X , and
that Q is a probability measure on X (in the results, this will be PX

i , i = 1, 2). Them
being partitioning regionalizations will also be required in Section 4.4.2 on total stability of
localized SVMs, which is the only section in which the difference between two regionaliza-
tions comes into play. It is not straightforward how to quantify this difference. However,
in Section 4.4.2, two different quantities connected to the regionalizations arise that are
relevant for bounding the difference between two localized SVMs and which both in some
sense characterize the difference between two regionalizations. Both of these quantities can
be defined intersection-wise, that is, for each b ∈ {1, . . . , B} and corresponding region of
the combined regionalization X ∗

1,2 = {X ∗
1 , . . . ,X ∗

B} separately.
First off,∣∣∣Q(X1,a(1,b)) − Q(X2,a(2,b))

∣∣∣
shows to play a role in the bound. This difference in size (according to the probability
measure Q) has to be accounted for since a large difference could possibly lead to the local
SVM in the smaller of the two regions being fitted much closer to its underlying data than
its counterpart and the two local SVMs therefore greatly differing on the intersection X ∗

b .
Secondly,

QXi,a(i,b)
(X ∗

b ) ·
(
1 − QXi,a(i,b)

(X ∗
b )
)

plays a role as well for i = 1, 2. If each region from X 1 closely coincides with a region
from X 2, then the probability QXi,a(i,b)

(X ∗
b ) appearing in this term will be either close to

0 or close to 1 for all b ∈ {1, . . . , B} and i ∈ {1, 2} and the regionalizations are therefore
similar to each other in the sense of this second criterion.

In the bound in Section 4.4.2, these two quantities need to be combined in the following
way:

ξQ,b(X 1,X 2) :=
∣∣∣Q(X1,a(1,b)) − Q(X2,a(2,b))

∣∣∣
+ max

{
Q(X1,a(1,b)),Q(X2,a(2,b))

}
·

2∑
i=1

1
2 · QXi,a(i,b)

(X ∗
b ) ·

(
1 − QXi,a(i,b)

(X ∗
b )
)

+
√

QXi,a(i,b)
(X ∗

b ) ·
(
1 − QXi,a(i,b)

(X ∗
b )
) , (4.7)

for all b ∈ {1, . . . , B}.
Summing this over all intersections from X ∗

1,2, one can choose

d4,Q(X 1,X 2) =
B∑

b=1
ξQ,b(X 1,X 2)
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in Definition 4.1.3.
In the following, we give a few examples on the behavior of d4,Q in different situations.

Example 4.2.15. Let X 1 = {X1,1, . . . ,X1,A1} be a partitioning regionalization of size
A1 ∈ N. Let X 2 = {X2,1, . . . ,X2,A1+1} be a partitioning regionalization of size A1 + 1 that
satisfies X2,a = X1,a for all a ∈ {1, . . . , A1 − 1}, such that the only difference between the
two regionalizations is that X1,A1 was split in two, which results in X ∗

1,2 = X 2. Denoting
q := Q(X1,A1), we have Q(X2,A1) = θq and Q(X2,A1+1) = (1 − θ)q for some θ ∈ (0, 1).28

This yields

ξQ,b(X 1,X 2) = 0 ∀ b ∈ {1, . . . , A1 − 1} ,
ξQ,A1(X 1,X 2) = |q − θq|

+ max{q, θq} ·
(1

2θ(1 − θ) +
√
θ(1 − θ) + 1

2 · 1 · 0 +
√

1 · 0
)

= q ·
(

(1 − θ) + θ(1 − θ)
2 +

√
θ(1 − θ)

)
,

ξQ,A1+1(X 1,X 2) = |q − (1 − θ)q|

+ max{q, (1 − θ)q}
(1

2(1 − θ)θ +
√

(1 − θ)θ + 1
2 · 1 · 0 +

√
1 · 0

)
= q ·

(
θ + θ(1 − θ)

2 +
√
θ(1 − θ)

)
,

and hence

d4,Q(X 1,X 2) = q ·
(

1 + θ(1 − θ) + 2
√
θ(1 − θ)

)
.

Example 4.2.16. Let X 1 = {X1,1, . . . ,X1,A1} be a partitioning regionalization of size
A1 ∈ N. Let X 2 = {X2,1, . . . ,X2,A1} be a second partitioning regionalization of size A1
that satisfies X2,a = X1,a for all a ∈ {1, . . . , A1 − 2}, and X1,A1−1 ⊂ X2,A1−1 (and hence
X1,A1 ⊃ X2,A1), such that the only difference between the two regionalizations is that a
part of X1,A1 was moved to X2,A1−1, which results in

X ∗
1,2 = {X1,1, . . . ,X1,A1−2,X1,A1−1︸ ︷︷ ︸

=X ∗
A1−1

,X1,A1 ∩ X2,A1−1︸ ︷︷ ︸
=X ∗

A1

, X2,A1︸ ︷︷ ︸
=X ∗

A1+1

} .

Assume that Q(X1,A1−1) = Q(X1,A1) =: q to slightly simplify the notation and calculations.
We hence have Q(X2,A1−1) = (1 + θ)q and Q(X2,A1) = (1 − θ)q for some θ ∈ (0, 1).29 This

28We assume that Q(X2,A1),Q(X2,A1+1) > 0 because we would trivially obtain d4,Q(X 1,X 2) = 0 oth-
erwise.

29We assume that Q(X2,A1−1),Q(X2,A1) > 0 because we would trivially obtain d4,Q(X 1,X 2) = 0 oth-
erwise.
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Figure 4.2.1: Behavior of d4,Q(X 1,X 2) as a function of θ in the situation of Example 4.2.16
for q = 1

2 . Please note that d4,Q(X 1,X 2) is decreasing for values of θ close to 1.

yields

ξQ,b(X 1,X 2) = 0 ∀ b ∈ {1, . . . , A1 − 2} ,

ξQ,A1−1(X 1,X 2) = q ·
(
θ + θ

2(1 + θ) +
√
θ

)
,

ξQ,A1(X 1,X 2) = q ·
(
θ + θ(1 − θ)(1 + θ)

2 + (1 + θ)
√
θ(1 − θ) + θ

2(1 + θ) +
√
θ

)
,

ξQ,A1+1(X 1,X 2) = q ·
(
θ + θ(1 − θ)

2 +
√
θ(1 − θ)

)
,

and hence

d4,Q(X 1,X 2) = q ·
(

3θ + θ

1 + θ
+ 2

√
θ + θ(1 − θ)(2 + θ)

2 + (2 + θ)
√
θ(1 − θ)

)
,

whose behavior can be seen in Figure 4.2.1 for the case q = 1
2 , i.e. for the case of X 1

and X 2 both consisting of only two regions (for different q, the principal behavior of d4,Q
depending on θ does of course not change, but all values get scaled according to q).

Example 4.2.17. Let X 1 = {X1,1, . . . ,X1,A1} be a partitioning regionalization of size
A1 ∈ N satisfying Q(X1,a) = 1/A1 for all a ∈ {1, . . . , A1}. Let X 2 = {X2,1, . . . ,X2,A1} be a
second partitioning regionalization of size A1 that satisfies

Q(X1,a ∩ X2,a) = 1 − θ

A1
∀ a ∈ {1, . . . , A1} ,

Q(X1,a ∩ X2,a+1) = θ

A1
∀ a ∈ {1, . . . , A1 − 1} ,

Q(X1,A1 ∩ X2,1) = θ

A1
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Figure 4.2.2: Visualization of situation from Example 4.2.17 for a two-dimensional X that
is assumed to be equipped with a uniform distribution Q.

(and hence also Q(X2,a) = 1/A1 for all a ∈ {1, . . . , A1}) for some θ ∈ (0, 1), which can
be interpreted as the borders between the regions all being moved by a share of θ in the
probability mass of the regions, see Figure 4.2.2 for a visualization for a two-dimensional
X . This results in

X ∗
1,2 = {X1,1 ∩ X2,1︸ ︷︷ ︸

=X ∗
1

,X1,1 ∩ X2,2,X1,2 ∩ X2,2, . . . ,X1,A1 ∩ X2,A1 ,X1,A1 ∩ X2,1︸ ︷︷ ︸
=X ∗

2A1

}

and yields

ξQ,b(X 1,X 2) = 1
A1

·
(
θ(1 − θ) + 2

√
θ(1 − θ)

)
∀ b ∈ {1, . . . , 2A1}

and hence

d4,Q(X 1,X 2) = 2θ(1 − θ) + 4
√
θ(1 − θ)

independently of A1.

Lastly note that, even though the preceding examples showed that d4,Q seems to be
sensible for quantifying the difference between two regionalizations because it takes small
values when one would intuitively describe the regionalizations as being similar and vice
versa, d4,Q does in general not define a metric as can be seen in the following.
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Example 4.2.18. Let X = R and Q = U(0, 4) be the uniform distribution on (0, 4). Let

X 1 = {X } , X 2 = {(−∞, 2), [2,∞)} , X 3 = {(−∞, 2), [2, 3), [3,∞)} .

From Example 4.2.15, we immediately obtain

d4,Q(X 1,X 2) = 1 ·

1 + 1
2 · 1

2 + 2
√

1
2 · 1

2

 = 9
4 ,

d4,Q(X 2,X 3) = 1
2 ·

1 + 1
2 · 1

2 + 2
√

1
2 · 1

2

 = 9
8 .

d4,Q(X 1,X 3) can be obtained in a similar way: The structure of X 1 and X 3 immediately
yields X ∗

1,3 = X 3 and with that

ξQ,1(X 1,X 3) =
∣∣∣∣1 − 1

2

∣∣∣∣+ max
{

1, 1
2

}
·

1
2 · 1

2 · 1
2 +

√
1
2 · 1

2 + 1
2 · 1 · 0 +

√
1 · 0


= 9

8 ,

ξQ,2(X 1,X 3) =
∣∣∣∣1 − 1

4

∣∣∣∣+ max
{

1, 1
4

}
·

1
2 · 1

4 · 3
4 +

√
1
4 · 3

4 + 1
2 · 1 · 0 +

√
1 · 0


= 27 + 8

√
3

32 = ξQ,3(X 1,X 3) ,

which altogether yields

d4,Q(X 1,X 3) = 90 + 16
√

3
32 ≈ 3.68 > 3.375 = d4,Q(X 1,X 2) + d4,Q(X 2,X 3) .

Hence, d4,Q does not satisfy the triangle inequality and does therefore not define a metric.

Remark 4.2.19. Apart from the triangle inequality, d4,Q satisfies all properties of a met-
ric if we define it on equivalence classes of regionalizations instead of on regionalizations
themselves, where two regionalizations X 1 = {X1,1, . . . ,X1,A1} and X 2 = {X2,1, . . . ,X2,A2}
are called equivalent, X 1 ≡ X 2, if

∀ a1 ∈ {1, . . . , A1} ∀ a2 ∈ {1, . . . , A2} with X1,a1 ∩ X2,a2 ̸= ∅ :
Q(X1,a1) = Q(X2,a2) and Q(X1,a1 ∩ X2,a2) ∈ {0,Q(X1,a1)} . (4.8)

This does indeed define an equivalence relation: Reflexivity and symmetry are trivial, so
only transitivity remains to show. For this, assume that X 1 ≡ X 2 and X 2 ≡ X 3 and let
a1 ∈ {1, . . . , A1} and a3 ∈ {1, . . . , A3} be such that X1,a1 ∩ X3,a3 ̸= ∅. Then, X 2 being a
regionalization implies that there exists a2 ∈ {1, . . . , A2} such that

(X1,a1 ∩ X3,a3) ∩ X2,a2 ̸= ∅ ,
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and hence, because of X 1 ≡ X 2 and X 2 ≡ X 3,

Q(X1,a1) = Q(X2,a2) = Q(X3,a3) ,

which yields the first property from (4.8). For proving the second property, assume without
loss of generality that Q(X1,a1 ∩ X3,a3) > 0, and choose

ã2 := arg max
a2∈{1,...,A2}

Q
(
(X1,a1 ∩ X3,a3) ∩ X2,a2

)
.

This implies, for i = 1, 3,

Q(Xi,ai
∩ X2,ã2) ≥ Q

(
(X1,a1 ∩ X3,a3) ∩ X2,ã2

)
> 0

and hence, because of X 1 ≡ X 2 and X 2 ≡ X 3,

Q(Xi,ai
∩ X2,ã2) = Q(Xi,ai

) = Q(X2,ã2) ,
Q(Xi,ai

∩ ∁X2,ã2) = Q(Xi,ai
) − Q(Xi,ai

∩ X2,ã2) = 0 ,
Q( ∁Xi,ai

∩ X2,ã2) = Q(X2,ã2) − Q(Xi,ai
∩ X2,ã2) = 0 .

Thus,

Q(X1,a1 ∩ X3,a3) = Q
(
(X1,a1 ∩ X3,a3) ∩ X2,ã2

)
+ Q

(
(X1,a1 ∩ X3,a3) ∩ ∁X2,ã2

)
︸ ︷︷ ︸

≤Q(X1,a1 ∩ ∁X2,ã2 )=0

= Q(X1,a1 ∩ X2,ã2) − Q(X1,a1 ∩ X2,ã2 ∩ ∁X3,a3)︸ ︷︷ ︸
≤Q(X2,ã2 ∩ ∁X3,a3 )=0

= Q(X1,a1) ,

which finally yields X 1 ≡ X 3.
Now, if X 1 and X 2 are element of the same equivalence class [X 1], then we have

by definition that Q(X1,a(1,b)) = Q(X2,a(2,b)) and QXi,a(i,b)
(X ∗

b ) ∈ {0, 1} for i = 1, 2 and
b = 1, . . . , B, and hence ξQ,b(X 1,X 2) = 0 for b = 1, . . . , B, where B denotes the number
of regions in the combined regionalization X ∗

1,2 = {X ∗
1 , . . . ,X ∗

B}. Thus,

d4,Q(X 1,X 2) =
B∑

b=1
ξQ,b(X 1,X 2) = 0

in this case. If on the other hand [X 1] ̸= [X 2], there exists at least one b0 ∈ {1, . . . , B}
such that Q(X1,a(1,b0)) ̸= Q(X2,a(2,b0)) or QXi,a(i,b0)

(X ∗
b0) /∈ {0, 1} and hence—as this trivially

implies that max{Q(X1,a(1,b0)),Q(X2,a(2,b0))} > 0 holds true—also ξQ,b0(X 1,X 2) > 0. As
ξQ,b(X 1,X 2) ≥ 0 for all b ∈ {1, . . . , B}, we have

d4,Q(X 1,X 2) =
B∑

b=1
ξQ,b(X 1,X 2) ≥ ξQ,b0(X 1,X 2) > 0

in this case. As symmetry is trivially satisfied by d4,Q, it does indeed satisfy all properties
of a metric on these equivalence classes of regionalizations except for the triangle inequality.
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4.3 Total Stability of Support Vector Machines
In this section, total stability of SVMs, as it was defined in Definition 4.1.1, is derived based
on the distance measures from Section 4.2. As intermediate steps, Sections 4.3.1 to 4.3.3
consider stability with respect to only one component of the triple (P, λ, k) changing at
a time, before these results are finally combined in Section 4.3.4 to actually derive total
stability.

In Sections 4.3.1 and 4.3.2, only sup-stability but not Lp-stability is investigated. As

||g||Lp(Q) ≤ ||g||∞ (4.9)

for all probability measures Q on X , p ∈ [1,∞) and measurable functions g, the corre-
sponding results can still be used to derive total Lp-stability in Section 4.3.4.

All main results from this section impose the following assumptions on loss function,
probability measures, regularization parameters and kernels:

Assumption 4.3.1. Let L : X × Y × R → [0,∞) be a convex, Lipschitz continuous loss
function and let L⋆ be its shifted version. Let P,P1,P2 be probability measures on X × Y ,
λ, λ1, λ2 > 0, and k, k1, k2 be bounded and measurable kernels on X with separable RKHSs
H,H1, H2.

Note that the requested separability of the RKHSs is always satisfied for continuous
kernels, cf. Lemma 2.1.10(iii). The results using the Wasserstein distance to measure the
difference between two probability measures additionally require the following:

Assumption 4.3.2. Let X ⊆ Rd for some d ∈ N. Let L be distance-based with repre-
senting function ψ such that ψ is differentiable and ψ as well as its derivative ψ′ are both
Lipschitz continuous. Let X̃ ⊇ X with X̃ ⊆ Rd be open and assume that k = k̃ X ×X for
a kernel k̃ on X̃ that can be written as k̃(x, x′) = φ(||x− x′||22) for all x, x′ ∈ X̃ , where
φ : R≥0 → R is a twice continuously differentiable function satisfying φ(0) − φ(r) ≤ c2

k

2 · r
for all r ≥ 0 for some ck ≥ 0. Analogously for k1, k2 with open sets X̃1, X̃2 ⊇ X , functions
φ1, φ2 and constants ck1 , ck2 ≥ 0.

Note that these additional assumptions on the kernels are satisfied by popular kernels
such as the Gaussian RBF kernels, cf. Corollary 4.3.7.

Several parts of this section coincide with parts of the peer-reviewed paper Köhler and
Christmann (2022) that was published in Journal of Machine Learning Research: Propo-
sition 4.3.3 as well as the results from Section 4.3.3 appear in Appendix A of that paper.
Proposition 4.3.10 is similar to a further result from the same Appendix A, but improves
the derived bound by a factor of 2, which makes the bound asymptotically sharp. In Sec-
tion 4.3.4, the parts using the total variation distance have already been published similarly
in Section 2 of that paper, but the results have been improved based of the improvement
achieved in Proposition 4.3.10. The results using the Wasserstein distance have not been
published before.
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4.3.1 Stability Regarding Changes in the Probability Measure
First, stability with respect to the total variation distance is examined. The proof of the
subsequent proposition closely coincides with that given in the proof of Theorem 2.7 of
Christmann et al. (2018), but slightly generalizes it to not necessarily differentiable loss
functions. Notably, the proposition shows that ||fP1,λ,k − fP2,λ,k||∞ grows at most linearly
in the difference between P1 and P2 as measured by the total variation distance.

Proposition 4.3.3. Let Assumption 4.3.1 be satisfied. Then,

||fP1,λ,k − fP2,λ,k||∞ ≤ ||k||2∞ |L|1
λ

· dtv(P1,P2) .

Proof. First of all,

||fP1,λ,k − fP2,λ,k||∞ ≤ ||k||∞ · ||fP1,λ,k − fP2,λ,k||H

by Lemma 2.1.10(i). By Christmann et al. (2009, Theorem 7), there exists a function h
from the subdifferential of L⋆ with respect to fP1,λ,k such that

||fP1,λ,k − fP2,λ,k||H ≤ 1
λ

·
∣∣∣∣∣∣∣∣∫ h(x, y)Φ(x) dP1(x, y) −

∫
h(x, y)Φ(x) dP2(x, y)

∣∣∣∣∣∣∣∣
H

≤ 1
λ

·
∫

||h(x, y)Φ(x)||H d|P1 − P2|(x, y)

≤ 1
λ

· sup
(x,y)∈X ×Y

|h(x, y)| · sup
x∈X

||Φ(x)||H ·
∫

1 d|P1 − P2|(x, y)

= 1
λ

· sup
(x,y)∈X ×Y

|h(x, y)| · sup
x∈X

√
k(x, x) · dtv(P1,P2)

≤ 1
λ

· |L|1 · ||k||∞ · dtv(P1,P2) ,

where we used Christmann et al. (2018, Lemma 6.1) in the second and the reproducing
property in the fourth step. This yields the assertion.

It is not clear whether the bound from Proposition 4.3.3 is sharp or not. For minimal
examples such as the subsequent one, it is off by a factor of 2. We look at such simple cases
in most of the examples in this chapter—mostly at distributions whose support consists
only of a small amount of points—because this simplicity makes it feasible to actually
analytically derive SVMs and therefore assess the quality of the different bounds derived
in this chapter.

Example 4.3.4. Let X ⊆ Rd for some d ∈ N, Y = R, L⋆ = L∗
0.5-pin be the shifted

0.5-pinball loss, λ > 0, and k be a Gaussian RBF kernel.30 Let further P1 = δ(x1,y1) and
P2 = δ(x2,y2) be Dirac distributions in some (x1, y1), (x2, y2) ∈ X ×Y satisfying y1 > 0 > y2.

30Other loss functions and kernels satisfying certain conditions can also be used without changing much
in the example.
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For i = 1, 2, using the representation of SVMs from Christmann et al. (2009, Theorem 7),
one obtains

fPi,λ,k = − 1
2λ ·

∫
hi(x, y)Φ(x) dPi(x, y) = − 1

2λ · hi(xi, yi)Φ(xi) ,

for some hi : X × Y → R from the subdifferential of L⋆ with respect to fPi,λ,k (see Defini-
tion 2.1.14). By the definition of the pinball loss, we obtain

hi(xi, yi) =


−1

2 , if yi > fPi,λ,k(xi) ,
c ∈

[
−1

2 ,+
1
2

]
, if yi = fPi,λ,k(xi) ,

+1
2 , if yi < fPi,λ,k(xi) ,

that is, |hi(xi, yi)| ≤ 1
2 and hence

|fPi,λ,k(xi)| ≤ 1
4λ · k(xi, xi) = 1

4λ

because k(xi, xi) = 1 for the Gaussian RBF kernel.
Now assume that λ is chosen in such a way that y1 > (4λ)−1 and y2 < −(4λ)−1. The

former condition implies that y1 > fP1,λ,k(x1) and hence h1(x1, y1) = −1
2 , which yields that

fP1,λ,k = 1
4λ · Φ(x1) .

Analogously, the latter condition yields that

fP2,λ,k = − 1
4λ · Φ(x2) .

Hence, we obtain

||fP1,λ,k − fP2,λ,k||∞ = 1
4λ · ||Φ(x1) + Φ(x2)||∞

for these values of λ. If additionally P1 and P2 are such that x1 = x2, this reduces to

||fP1,λ,k − fP2,λ,k||∞ = 1
4λ · ||2Φ(x1)||∞ = 1

2λ

by the definition of Gaussian RBF kernels.
On the other hand, the bound from Proposition 4.3.3 yields

||fP1,λ,k − fP2,λ,k||∞ ≤ ||k||2∞ |Lτ -pin|1
λ

· dtv(P1,P2) = 1
2λ · dtv(P1,P2) = 1

λ
.

Thus, the bound is greater than the actual supremum norm by a factor of 2 in this situation.
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Because stability with respect to the Wasserstein distance would also yield meaningful
bounds in situations in which stability with respect to the total variation distance does not
bound ||fP1,λ,k − fP2,λ,k||∞ in a meaningful way, cf. Section 4.2.1, we now aim at deriving
such a stability result as well. To our knowledge, the only existing result on stability with
respect to the Wasserstein distance is Theorem 7 from Eckstein et al. (2023). Compar-
ing the subsequent result to the referenced Theorem 7 however yields several differences
regarding the assumptions and the situations for which the results are applicable. One
major advantage of the subsequent result is not requiring Y to be bounded. Additionally,
it yields a bound not only on an L2- but on the stronger ∞-norm, but in exchange has
to include λ−2 instead of only λ−1 (cf. Eckstein et al., 2023, Remark 8) in the bound.
Finally, the two results are valid for completely distinct sets of loss functions and thus
applicable in different learning scenarios. Whereas the referenced Theorem 7 is applicable
for the popular least squares loss (which is possible because of the authors assuming Y to
be bounded) but no other loss functions, the subsequent result can be used for a whole
class of loss functions, however excluding the least squares loss because of requiring the
loss to be Lipschitz continuous (as already stated in Assumption 4.3.1).

As did Proposition 4.3.3, the subsequent proposition also shows that ||fP1,λ,k − fP2,λ,k||∞
grows at most linearly in the difference between P1 and P2, which is however measured by
the Wasserstein distance now.

Proposition 4.3.5. Let Assumptions 4.3.1 and 4.3.2 be satisfied. Then,

||fP1,λ,k − fP2,λ,k||∞

≤ ||k||∞
λ

· max
{

|ψ|1ck + (−2φ′(0))1/2 |ψ|1|ψ′|1 ||k||2∞
λ

, |ψ′|1 ||k||∞

}
· dW(P1,P2) .

It is not clear yet whether it is possible to further weaken the conditions on L from As-
sumptions 4.3.1 and 4.3.2 and still obtain an analogous stability result using the Wasserstein
distance.

In order to prove Proposition 4.3.5, the following lemma bounding the slope of an SVM
is needed, which follows as a special case from Steinwart and Christmann (2008, Corol-
lary 4.36):

Lemma 4.3.6. Let X ⊆ Rd for some d ∈ N. Let k be a kernel on X with RKHS H.
Let X̃ ⊇ X with X̃ ⊆ Rd be open and assume that k = k̃ X ×X for a kernel k̃ on X̃ that
can be written as k̃(x, x′) = φ(||x− x′||22) for all x, x′ ∈ X̃ , where φ : R≥0 → R is a twice
continuously differentiable function. Then, every f ∈ H satisfies

|f(x) − f(x′)|
||x− x′||1

≤ (−2φ′(0))1/2 · ||f ||H ∀x, x′ ∈ X , x ̸= x′ .

Proof. For x, x′ ∈ Rd, denote in this proof by xi, x
′
i, i = 1, . . . , d, the components of x, x′.

Further denoting the argument of φ by r, one obtains for all i ∈ {1, . . . , d} and all x, x′ ∈ X̃

∂k̃(x, x′)
∂xi

= ∂φ(||x− x′||22)
∂r

· ∂ ||x− x′||22
∂xi

= ∂φ(||x− x′||22)
∂r

· 2(xi − x′
i) ,
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and hence

∂2k̃(x, x′)
∂x′

i∂xi

= ∂2φ(||x− x′||22)
∂x′

i∂r
· 2(xi − x′

i) + ∂φ(||x− x′||22)
∂r

· (−2)

= −4 · ∂
2φ(||x− x′||22)

∂r2 · (xi − x′
i)2 − 2 · ∂φ(||x− x′||22)

∂r
.

With H̃ denoting the RKHS of k̃, Steinwart and Christmann (2008, Corollary 4.36) yields
that all f̃ ∈ H̃ satisfy∣∣∣∣∣∂f̃(x)

∂xi

∣∣∣∣∣ ≤
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

H̃
·
(

−4 · ∂
2φ(||x− x||22)

∂r2 · (xi − xi)2 − 2 · ∂φ(||x− x||22)
∂r

)1/2

=
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

H̃
·
(

−2 · ∂φ(0)
∂r

)1/2

for all i ∈ {1, . . . , d} and all x ∈ X̃ . With us denoting φ′ := ∂φ
∂r

, we hence obtain

|f̃(x) − f̃(x′)|
||x− x′||1

≤ (−2φ′(0))1/2 ·
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

H̃

for all f̃ ∈ H̃ and all x, x′ ∈ X̃ . Finally, Berlinet and Thomas-Agnan (2004, Theorem 6)
yields that H consists exactly of the restrictions to X of the elements of H̃ and that

(−2φ′(0))1/2 · ||f ||H = (−2φ′(0))1/2 · min
f̃∈H̃:

f̃ X =f

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
H̃

≥ min
f̃∈H̃:

f̃ X =f

|f̃(x) − f̃(x′)|
||x− x′||1

= |f(x) − f(x′)|
||x− x′||1

for all f ∈ H and all x, x′ ∈ X .

Proof of Proposition 4.3.5. First note that Y ⊆ R being closed by Assumption 4.0.1 di-
rectly implies that Y is separable and complete, see also Bauer (2001, p. 157). Hence,
X × Y is separable and complete as well and the definition of the Wasserstein distance is
applicable.

By Lemma 2.1.10(i),

||fP1,λ,k − fP2,λ,k||∞ ≤ ||k||∞ · ||fP1,λ,k − fP2,λ,k||H .

Now, since L is differentiable (which is equivalent to ψ being differentiable), Christmann
et al. (2009, Theorem 7) yields that for the function h : X × Y → R defined by h(x, y) =
(L⋆)′(y, fP1,λ,k(x)) = L′(y, fP1,λ,k(x)) = −ψ′(y − fP1,λ,k(x)),31 we have

||fP1,λ,k − fP2,λ,k||H ≤ 1
λ

·
∣∣∣∣∣∣∣∣∫ h(x, y)Φ(x) dP1(x, y) −

∫
h(x, y)Φ(x) dP2(x, y)

∣∣∣∣∣∣∣∣
H
.

31As usual, (L⋆)′ and L′ denote the derivatives with respect to the last argument of the (shifted) loss
function.
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Therefore, for any probability measure Q on (X ×Y)×(X ×Y) with marginal distributions
P1 and P2,32 we have

||fP1,λ,k − fP2,λ,k||H ≤ 1
λ

·
∣∣∣∣∣∣∣∣∫ (

h(x, y)Φ(x) − h(x′, y′)Φ(x′)
)

dQ((x, y), (x′, y′))
∣∣∣∣∣∣∣∣

H

≤ 1
λ

·
∫

||h(x, y)Φ(x) − h(x′, y′)Φ(x′)||H dQ((x, y), (x′, y′))

≤ 1
λ

·
∫

||h(x, y)Φ(x) − h(x, y)Φ(x′)||H dQ((x, y), (x′, y′))

+ 1
λ

·
∫

||h(x, y)Φ(x′) − h(x′, y′)Φ(x′)||H dQ((x, y), (x′, y′)) ,
(4.10)

where Diestel and Uhl (1977, Theorem II.2.4) was applied in the second step.
The integrands of the two summands on the right hand side of (4.10) can now be exam-

ined separately, starting with the first one:

||h(x, y)Φ(x) − h(x, y)Φ(x′)||H = |h(x, y)| ·
〈

Φ(x) − Φ(x′) , Φ(x) − Φ(x′)
〉1/2

H

= |h(x, y)| ·
(
k(x, x) + k(x′, x′) − 2k(x, x′)

)1/2

= |h(x, y)| ·
√

2 ·
(
φ(0) − φ(||x− x′||22)

)1/2

≤ |ψ|1 · ck · ||x− x′||2 , (4.11)

where the reproducing property was applied in the second and ||h||∞ ≤ |L|1 = |ψ|1 (cf.
Christmann et al., 2009, Theorem 7) in the last step.

Now, we can take a look at the the integrand of the second summand: By Lemma 4.3.6,

|f(x) − f(x′)| ≤ (−2φ′(0))1/2 · ||f ||H · ||x− x′||1
for all f ∈ H and x, x′ ∈ X .

Combining this with

||Φ(x′)||H = ⟨Φ(x′) , Φ(x′)⟩1/2
H = (k(x′, x′))1/2 = (φ(0))1/2 = ||k||∞

by the reproducing property and because of (2.2), and with ψ′ being Lipschitz continuous,
yields

||h(x, y)Φ(x′) − h(x′, y′)Φ(x′)||H
= ||Φ(x′)||H ·

∣∣∣h(x, y) − h(x′, y′)
∣∣∣

= ||k||∞ ·
∣∣∣ψ′(y − fP1,λ,k(x)) − ψ′(y′ − fP1,λ,k(x′))

∣∣∣
≤ ||k||∞ · |ψ′|1 ·

∣∣∣(y − fP1,λ,k(x)) − (y′ − fP1,λ,k(x′))
∣∣∣

≤ ||k||∞ · |ψ′|1 ·
(
|y − y′| + |fP1,λ,k(x) − fP1,λ,k(x′)|

)
≤ ||k||∞ · |ψ′|1 ·

(
|y − y′| + (−2φ′(0))1/2 ||fP1,λ,k||H ||x− x′||1

)
. (4.12)

32As Q can be chosen as the product measure of P1 and P2, at least one such Q always exists.
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Since additionally ||x− x′||2 ≤ ||x− x′||1 as well as ||fP1,λ,k||H ≤ λ−1|L|1 ||k||∞ (cf. Christ-
mann et al., 2009, equations (16) and (17)) and |L|1 = |ψ|1 (cf. Lemma 2.1.16(iii)), plugging
(4.11) and (4.12) into (4.10) yields

||fP1,λ,k − fP2,λ,k||H
≤ 1
λ

·
∫

|ψ|1 · ck · ||x− x′||2 dQ((x, y), (x′, y′))

+ 1
λ

·
∫

(||k||∞ · |ψ′|1 ·
(

|y − y′| + (−2φ′(0))1/2 |ψ|1 ||k||∞
λ

||x− x′||1

)
dQ((x, y), (x′, y′))

≤ 1
λ

· max
{

|ψ|1ck + (−2φ′(0))1/2 |ψ|1|ψ′|1 ||k||2∞
λ

, |ψ′|1 ||k||∞

}

·
∫ (

|y − y′| + ||x− x′||1
)

dQ((x, y), (x′, y′)) .

Because |y − y′| + ||x− x′||1 = ||(x, y) − (x′, y′)||1 and Q was allowed to be an arbitrary
probability measure with marginal distributions P1 and P2, this completes the proof.

Note that the assumptions imposed on the kernel in Proposition 4.3.5 are satisfied by
popular kernels such as for example the Gaussian RBF kernels, cf. Example 2.1.12, which
gets captured by the subsequent corollary.

Corollary 4.3.7. Let Assumptions 4.3.1 and 4.3.2 be satisfied.33 Let γ ∈ (0,∞) and kγ

be the Gaussian RBF kernel on X with bandwidth γ and RKHS Hγ. Then,
∣∣∣∣∣∣fP1,λ,kγ − fP2,λ,kγ

∣∣∣∣∣∣
∞

≤ 1
λ

· max
{√

2 · |ψ|1
γ

(
1 + |ψ′|1

λ

)
, |ψ′|1

}
· dW(P1,P2) .

Proof. kγ is measurable and bounded by 1. Furthermore, kγ(x, x′) = φγ(||x− x′||22) for all
x, x′ ∈ X if one defines

φγ : R≥0 → R, r 7→ exp
(

− r

γ2

)
.

φγ is twice continuously differentiable and, because exp(t) ≥ 1 + t for all t ∈ R, it satisfies

φγ(0) − φγ(r) = 1 − exp
(

− r

γ2

)
≤
c2

kγ

2 · r ∀ r ≥ 0

for ckγ
:=

√
2

γ
.

Hence, Proposition 4.3.5 can be applied and yields the assertion because ||kγ||∞ = 1 and

φ′
γ(0) = exp

(
− 0
γ2

)
·
(

− 1
γ2

)
= − 1

γ2 .

33Those parts of the assumptions that concern the kernels k, k1, k2 are of course of no relevance for this
corollary as it already specifies the use of special kernels, namely Gaussian RBF kernels. Instead, the
proof of this corollary shows that the Gaussian RBF kernels indeed possess the properties required from
k, k1, k2, such that they can be plugged in for k in Proposition 4.3.5.
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Indeed, Proposition 4.3.5 using the Wasserstein distance can yield considerably better
bounds than Proposition 4.3.3 using the total variation distance. To observe this, we look
at a similar situation as that in Example 4.3.4. However, we do not use the pinball loss
now because this loss function does not satisfy Assumption 4.3.2 which is required by
Proposition 4.3.5.

Example 4.3.8. Let X ⊆ Rd for some d ∈ N, Y = R, λ > 0, and k be the Gaussian RBF
kernel of bandwidth γ > 0. Let α > 0, L be the α-Huber loss defined by

L(x, y, t) :=


(y−t)2

2 , if |y − t| ≤ α,

α|y − t| − α2

2 , if |y − t| > α ,

and L⋆ be its shifted version.34 Let further P1 = δ(x1,y1) and P2 = δ(x2,y2) be Dirac distri-
butions in some (x1, y1), (x2, y2) ∈ X × Y satisfying y1, y2 > 0.

As in Example 4.3.4, we obtain for i = 1, 2

fPi,λ,k = − 1
2λ · hi(xi, yi)Φ(xi) ,

for some hi : X × Y → R from the subdifferential of L⋆ with respect to fPi,λ,k. By the
definition of the Huber loss, we obtain

hi(xi, yi) =


−α , if yi > fPi,λ,k(xi) + α ,

−(y − fPi,λ,k(xi)) , if yi ∈ [fPi,λ,k(xi) − α, fPi,λ,k(xi) + α] ,
α , if yi < fPi,λ,k(xi) − α ,

that is, |hi(xi, yi)| ≤ α and hence

|fPi,λ,k(xi)| ≤ α

2λ · k(xi, xi) = α

2λ .

Now assume that λ is chosen in such a way that y1, y2 > α · (2λ)−1 + α. This implies,
for i = 1, 2, that yi > fPi,λ,k(xi) + α and hence hi(xi, yi) = −α, which yields that

fPi,λ,k = α

2λ · Φ(xi) .

Hence, we obtain

||fP1,λ,k − fP2,λ,k||∞ = α

2λ · ||Φ(x1) − Φ(x2)||∞

for these values of λ.
For the bounds from Proposition 4.3.3 and Proposition 4.3.5 (or more specifically the

special case from Corollary 4.3.7 as we are using Gaussian RBF kernels), note that one
34Other loss functions and kernels satisfying certain conditions can also be used without changing much

in the example.
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|x(1)
1 − x

(1)
2 | 0.01 0.1 0.5 1 2 5 10

boundtv/ ||fP1,λ,k − fP2,λ,k||∞ 466.34 46.71 9.72 5.48 4.07 4.00 4.00
boundW/ ||fP1,λ,k − fP2,λ,k||∞ 6.59 6.61 6.87 7.74 11.51 28.28 56.59

Table 4.3.1: Ratio between the bound using the total variation distance (boundtv) as well
as the bound using the Wasserstein distance (boundW) and the actual supremum norm
||fP1,λ,k − fP2,λ,k||∞ for α = λ = γ = 1 and different distances |x(1)

1 − x
(1)
2 | in the scenario

described in Example 4.3.8.

can easily derive |L|1 = |ψ|1 = α and |ψ′|1 = 1, where ψ denotes the representing function
of L. The bound from Proposition 4.3.3 using the total variation distance therefore yields

||fP1,λ,k − fP2,λ,k||∞ ≤ ||k||2∞ |L|1
λ

· dtv(P1,P2) = α

λ
· dtv(P1,P2) = 2α

λ
.

The bound from Corollary 4.3.7 using the Wasserstein distance can be simplified to

||fP1,λ,k − fP2,λ,k||∞ ≤ 1
λ

· max
{√

2 · |ψ|1
γ

(
1 + |ψ′|1

λ

)
, |ψ′|1

}
· dW(P1,P2)

= 1
λ

· max
{√

2 · α
γ

(
1 + 1

λ

)
, 1
}

· ||(x1, y1) − (x2, y2)||1

As the latter bound additionally considers the distance between (x1, y1) and (x2, y2), it
seems likely that it might be the superior one if this distance is small and the inferior one
if it is large—as long as the bandwidth γ, which also only appears in the latter bound, is
fixed. Table 4.3.1 affirms this by collecting how both the bound using the total variation
distance and the one using the Wasserstein distance compare to the actual supremum
norm ||fP1,λ,k − fP2,λ,k||∞ for different distances between (x1, y1) and (x2, y2). To be more
specific, we assumed that this distance comes entirely from the first component x(1)

i of xi,
i.e. that y1 and y2 coincide and that x1 and x2 coincide in all components but the first one.

Lastly, we present another lemma, which is similar to Lemma 4.3.6, also bounding the
slope of an SVM, but which is only applicable for the Gaussian RBF kernel and empir-
ical SVMs. In exchange for this reduced generality, the subsequent lemma strengthens
Lemma 4.3.6 by considering ||x− x′||2 instead of ||x− x′||1 and deriving the exact same
bound apart from that (because φ′(0) = −γ−2 for the Gaussian kernel, cf. proof of Corol-
lary 4.3.7). Even though this strengthened bound is not used in the results on (total)
stability (because the Wasserstein distance needs the 1-norm instead of the 2-norm of the
difference anyway), we still explicitly state this lemma since it might also be interesting in
its own right because of the popularity of the Gaussian RBF kernel.
Lemma 4.3.9. Let X ⊆ Rd for some d ∈ N. Let L : X × Y × R → [0,∞) be a convex
loss function and let L⋆ be its shifted version. Let γ ∈ (0,∞) and kγ be the Gaussian RBF
kernel on X with bandwidth γ and RKHS Hγ. Let Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n

and λ > 0. Then,∣∣∣fDn,λ,kγ (x) − fDn,λ,kγ (x′)
∣∣∣

||x− x′||2
≤

√
2
γ

·
∣∣∣∣∣∣fDn,λ,kγ

∣∣∣∣∣∣
Hγ

∀x, x′ ∈ X , x ̸= x′ . (4.13)
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Proof. The assertion gets proven by showing that the absolute value of the directional
derivative of fDn,λ,kγ in direction of any unit vector (with respect to ||·||2) can not be
greater than the right hand side of (4.13). For the purpose of this proof, elements of a
vector x ∈ X ⊆ Rd are denoted by x(ℓ), ℓ = 1, . . . , d.

By Steinwart and Christmann (2008, Theorem 5.5), there exist α1, . . . , αn ∈ R such that
fDn,λ,kγ can be written as

fDn,λ,kγ (x) =
n∑

i=1
αikγ(x, xi) ∀x ∈ X . (4.14)

Now, let x = (x(1), . . . , x(d))T ∈ X be arbitrary but fixed. We only examine the derivative
of fDn,λ,kγ in direction of the unit vector (d−1/2, . . . , d−1/2)T because each derivative in
the direction of a different unit vector can be viewed as a derivative in the direction
(d−1/2, . . . , d−1/2)T by just rotating x as well as x1, . . . , xn around the origin accordingly
(because of kγ being rotationally invariant). With a slight abuse of notation, we denote
this directional derivative by f ′

Dn,λ,kγ
in the following. For investigating f ′

Dn,λ,kγ
, we first

need the partial derivatives of fDn,λ,kγ with respect to each of the components x(1), . . . , x(d).
With zi := x− xi for i = 1, . . . , n, we obtain

∂fDn,λ,kγ (x)
∂x(ℓ) = − 2

γ2 ·
n∑

i=1
αi exp

(
−||x− xi||22

γ2

)(
x(ℓ) − x

(ℓ)
i

)

= − 2
γ2 ·

n∑
i=1

αi exp
(

−||zi||22
γ2

)
z

(ℓ)
i

for ℓ = 1, . . . , d. Observing that

f ′
Dn,λ,kγ

(x) = 1√
d

·
d∑

ℓ=1

∂fDn,λ,kγ (x)
∂x(ℓ)

and applying the Cauchy-Schwarz inequality then yields

(
f ′

Dn,λ,kγ
(x)
)2

= 1
d

·
(

d∑
ℓ=1

∂fDn,λ,kγ (x)
∂x(ℓ)

)2

≤
d∑

ℓ=1

(
∂fDn,λ,kγ (x)

∂x(ℓ)

)2

= 4
γ4 ·

d∑
ℓ=1

n∑
i=1

n∑
j=1

αiαj exp
(

−
||zi||22 + ||zj||22

γ2

)
z

(ℓ)
i z

(ℓ)
j

= 4
γ4 ·

n∑
i=1

n∑
j=1

αiαj exp
(

−
||zi||22 + ||zj||22

γ2

)
⟨zi, zj⟩ (4.15)

Because of the representation from (4.14), the reproducing property additionally yields
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that ∣∣∣∣∣∣fDn,λ,kγ

∣∣∣∣∣∣2
Hγ

=
〈

n∑
i=1

αikγ(·, xi) ,
n∑

j=1
αjkγ(·, xj)

〉
Hγ

=
n∑

i=1

n∑
j=1

αiαj exp
(

−
||xi − xj||22

γ2

)

=
n∑

i=1

n∑
j=1

αiαj exp
(

−
||zi − zj||22

γ2

)
(4.16)

because xi − xj = zj − zi for all i, j ∈ {1, . . . , n}.
To prove the assertion, it hence suffices to show that the right hand side of (4.15) can

be bounded by 2γ−2 times the right hand side of (4.16). That is, we have to prove that

2
γ2 ·

n∑
i=1

n∑
j=1

αiαj

(
exp

(
−

||zi − zj||22
γ2

)
− 2
γ2 exp

(
−

||zi||22 + ||zj||22
γ2

)
⟨zi, zj⟩

)
≥ 0 (4.17)

for all α1, . . . , αn, z1, . . . , zn ∈ R. As this is equivalent to

k1 : Rd ×Rd , (z, z′) 7→ exp
(

−||z − z′||22
γ2

)
− 2
γ2 exp

(
−||z||22 + ||z′||22

γ2

)
⟨z, z′⟩

being positive definite and as k1 is obviously symmetric, (4.17) holding true is equivalent
to k1 being a kernel on Rd, which is what gets proven in the following.

First of all, define

k2 : Rd ×Rd , (z, z′) 7→ exp
(

2⟨z, z′⟩
γ2

)
− 2
γ2 ⟨z, z′⟩ ,

k3 : Rd ×Rd , (z, z′) 7→ exp (⟨z, z′⟩) − ⟨z, z′⟩
k4 : Rd ×Rd , (z, z′) 7→ ⟨z, z′⟩ .

As k4 is known to define a kernel onRd (cf. Berlinet and Thomas-Agnan, 2004, Lemma 1),
it follows analogously to Cristianini and Shawe-Taylor (2000, Corollary 3.13), by using the
polynomial coefficients α1 := 1

1! − 1 = 0 and αm := 1
m! > 0 for m ̸= 1, that

∞∑
m=0

αmk
m
4 (z, z′) = exp (k4(z, z′)) − k4(z, z′) = k3(z, z′)

also defines a kernel on Rd. Because

k2(z, z′) = k3(ψ(z), ψ(z′)) ∀ z, z′ ∈ Rd

for ψ : Rd → Rd , z 7→
√

2
γ
z, Cristianini and Shawe-Taylor (2000, Proposition 3.12) yields

that k2 is a kernel on Rd as well. By definition, there therefore exist a Hilbert space H
and a feature map Φ2 : Rd → H such that

k2(z, z′) = ⟨Φ2(z) , Φ2(z′)⟩H ∀ z, z′ ∈ Rd .
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Defining

Φ1 : Rd → H , z 7→ exp
(

−||z||22
γ2

)
· Φ2(z)

finally yields

k1(z, z′) = exp
(

−||z||22 + ||z′||22
γ2

)
· k2(z, z′)

= exp
(

−||z||22 + ||z′||22
γ2

)
· ⟨Φ2(z),Φ2(z′)⟩H

= ⟨Φ1(z),Φ1(z′)⟩H ∀ z, z′ ∈ Rd .

Hence, H and Φ1 are feature space respectively feature map of k1. Thus, k1 is a kernel on
Rd, which completes the proof.

4.3.2 Stability Regarding Changes in the Regularization Param-
eter

Similarly to Proposition 4.3.3 on stability regarding changes in the probability measure
with respect to the total variation distance, the proof of the subsequent result on stability
regarding changes in the regularization parameter also closely coincides with that of a
result from Christmann et al. (2018), in this case Theorem 2.6, but slightly generalizes it
to not necessarily differentiable losses, while at the same time improving the derived bound
by a factor of 2. It also constitutes an improvement by a factor of 2 compared with Köhler
and Christmann (2022, Lemma 14). The proposition shows that ||fP,λ1,k − fP,λ2,k||∞ grows
at most linearly in |λ1 − λ2| as long as min{λ1, λ2} does not decrease.

Proposition 4.3.10. Let Assumption 4.3.1 be satisfied. Then,

||fP,λ1,k − fP,λ2,k||∞ ≤ ||k||2∞ |L|1
2 min{λ1, λ2}2 · |λ1 − λ2| .

In order to achieve the aspired improvement by a factor of 2 in the bound, the following
lemma is needed:

Lemma 4.3.11. Let Assumption 4.3.1 be satisfied. Then,

||fP,λ,k||H ≤ ||k||∞ |L|1
2λ .

Proof. Assume without loss of generality that ||fP,λ,k||H > 0 since the case ||fP,λ,k||H = 0
is trivial.

Christmann et al. (2009, Theorem 7) yields the existence of a function h : X × Y → R

satisfying ||h||∞ ≤ |L|1 as well as

fP,λ,k = − 1
2λ

∫
h(x, y)Φ(x) dP(x, y) .
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By using this function h and applying the reproducing property as well as in the last step
Lemma 2.1.10(i), we obtain

||fP,λ,k||2H =
〈
fP,λ,k , − 1

2λ

∫
h(x, y)Φ(x) dP(x, y)

〉
H

= − 1
2λ

∫
h(x, y) · fP,λ,k(x) dP(x, y)

≤ 1
2λ

∫
|h(x, y)| · |fP,λ,k(x)| dP(x, y)

≤ |L|1
2λ ||fP,λ,k||∞

≤ ||k||∞ |L|1
2λ ||fP,λ,k||H .

Dividing by ||fP,λ,k||H yields the assertion.

Proof of Proposition 4.3.10. To shorten the notation, define fi := fP,λi,k, i = 1, 2, in this
proof. By Lemma 2.1.10(i),

||f1 − f2||∞ ≤ ||k||∞ · ||f1 − f2||H .

Assume now without loss of generality that ||f1 − f2||H > 0 since the case ||f1 − f2||H = 0
is trivial.

Christmann et al. (2009, Theorem 7) yields functions h1 and h2 from the subdifferential
of L⋆ (with respect to f1 respectively f2) such that

f1 − f2 = − 1
2λ1

·
∫
h1(x, y)Φ(x) dP(x, y) + 1

2λ2
·
∫
h2(x, y)Φ(x) dP(x, y) .

From this we obtain, by applying the reproducing property in the last step,

||f1 − f2||2H = ⟨f1 − f2, f1 − f2⟩H

=
〈 1

2λ2
·
∫
h2(x, y)Φ(x) dP(x, y), f1 − f2

〉
H

−
〈 1

2λ1
·
∫
h1(x, y)Φ(x) dP(x, y), f1 − f2

〉
H

= 1
2λ2

·
∫
h2(x, y)(f1(x) − f2(x)) dP(x, y)

− 1
2λ1

·
∫
h1(x, y)(f1(x) − f2(x)) dP(x, y) . (4.18)

Because L (and thus also L⋆, cf. Lemma 2.1.30) is convex and hi(x, y) ∈ ∂L⋆(x, y, fi(x))
for all (x, y) ∈ X × Y and for i = 1, 2, we know that

hi(x, y) · (t− fi(x)) ≤ L⋆(x, y, t) − L⋆(x, y, fi(x)) ∀ t ∈ R, i = 1, 2 ,

more specifically

h1(x, y) · (f2(x) − f1(x)) ≤ L⋆(x, y, f2(x)) − L⋆(x, y, f1(x))
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and

h2(x, y) · (f1(x) − f2(x)) ≤ L⋆(x, y, f1(x)) − L⋆(x, y, f2(x)) .

Plugging these two inequalities into (4.18) yields

||f1 − f2||2H ≤
( 1

2λ2
− 1

2λ1

)
·
∫
L⋆(x, y, f1(x)) − L⋆(x, y, f2(x)) dP(x, y)

=
( 1

2λ2
− 1

2λ1

)
·
(
EP [L⋆(X, Y, f1(X))] − EP [L⋆(X, Y, f2(X))]

)
(4.19)

Now, ||f1 − f2||2H being positive implies that the right hand side of this inequality has to be
positive as well. That is, both factors need to have the same sign. First assume λ1 > λ2:

In this case 1
2λ2

− 1
2λ1

> 0 and thus EP [L⋆(X, Y, f1(X))] − EP [L⋆(X, Y, f2(X))] has to
be positive as well. Because of the definition of f1 as the minimizer of the regularized risk
with regularization parameter λ1, we know that

EP [L⋆(X, Y, f1(X))] + λ1 ||f1||2H ≤ EP [L⋆(X, Y, f2(X))] + λ1 ||f2||2H .

From this, it follows that

0 < EP [L⋆(X, Y, f1(X))] − EP [L⋆(X, Y, f2(X))] ≤ λ1 ·
(
||f2||2H − ||f1||2H

)
= λ1 · (||f1||H + ||f2||H) · (||f2||H − ||f1||H) ≤ λ1 · (||f1||H + ||f2||H) · ||f1 − f2||H

with the last inequality holding true because of λ1(||f1||H + ||f2||H) ≥ 0 and the reverse
triangle inequality. Plugging this into (4.19) and dividing by ||f1 − f2||H , we obtain

||f1 − f2||H ≤ 1
2 ·
(

max{λ1, λ2}
min{λ1, λ2}

− 1
)

· (||f1||H + ||f2||H) . (4.20)

The case λ2 > λ1 yields the same inequality.
By additionally applying Lemma 4.3.11, we now obtain

||f1 − f2||H ≤ |L|1 ||k||∞
2 ·

(
max{λ1, λ2}
min{λ1, λ2}

− 1
)

·
( 1

2λ1
+ 1

2λ2

)

≤ |L|1 ||k||∞
2 min{λ1, λ2}

·
(

max{λ1, λ2} − min{λ1, λ2}
)

· 2
2 min{λ1, λ2}

= |L|1 ||k||∞
2 min{λ1, λ2}2 · |λ1 − λ2|

which yields the assertion.

The subsequent minimal example shows that the bound from Proposition 4.3.10 is
asymptotically sharp:
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Example 4.3.12. Let X ⊆ Rd for some d ∈ N, Y = R, L⋆ = L∗
0.5-pin be the shifted

0.5-pinball loss, k be a Gaussian RBF kernel, and P = δ(x0,y0) be the Dirac distribution in
some (x0, y0) ∈ X × Y , where we assume y0 > 0 for simplicity.35 As in Example 4.3.4, we
obtain

fP,λi,k = 1
4λi

· Φ(x0)

for i = 1, 2 if λi > (4y0)−1. For λ2 > λ1 > (4y0)−1, we therefore obtain

||fP,λ1,k − fP,λ2,k||∞ =
( 1

4λ1
− 1

4λ2

)
· ||Φ(x0)||∞ = 1

4λ1λ2
· (λ2 − λ1) .

On the other hand, the bound from Proposition 4.3.10 yields

||fP,λ1,k − fP,λ2,k||∞ ≤ ||k||2∞ |Lτ -pin|1
2λ2

1
· (λ2 − λ1) = 1

4λ2
1

· (λ2 − λ1) .

Thus, the bound is greater than the actual supremum norm only by a factor of λ2/λ1, which
converges to 1 if we replace λ2 by a sequence (λ2,n)n∈N satisfying λ2,n ↘ λ1 as n → ∞.

4.3.3 Stability Regarding Changes in the Kernel
The stability results from this section are the ones leading to the main differences to those
derived by Christmann et al. (2018). In addition to not requiring the underlying loss func-
tion to be differentiable, the results from this section also eliminate additional assumptions
regarding the regularization parameter respectively the kernels from Christmann et al.
(2018, Lemmas 6.4 and 6.5). These generalizations are discussed in more detail in Sec-
tion 4.3.4, where the results from Sections 4.3.1 to 4.3.3 are combined in order to derive
total stability.

We start by giving a result on sup-stability, before then turning the attention to Lp-
stability. Contrary to the results from the previous sections considering changes in P
and λ, the subsequent proposition does not yield a bound growing strictly linearly in the
difference between k1 and k2 but instead also includes the square root of this difference,
which dominates the behavior of the bound for small differences.
Remark 4.3.13. It would also be possible to state an analogous result that only uses the
linear part in the bound ||k1 − k2||∞, cf. Christmann et al. (2018, Lemma 6.4). This would
however require the additional assumptions regarding loss function and regularization pa-
rameters that were mentioned before and that are laid out in more detail at the beginning
of Section 4.3.4.

Proposition 4.3.14. Let Assumption 4.3.1 be satisfied and let κ := max{||k1||∞ , ||k2||∞}.
Then,

||fP,λ,k1 − fP,λ,k2||∞ ≤ |L|1
λ

·
(1

2 · ||k1 − k2||∞ + κ ·
√

||k1 − k2||∞
)
.

35Other loss functions and kernels satisfying certain conditions can also be used without changing much
in the example.
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In order to prove Proposition 4.3.14 we need an auxiliary statement giving two inequal-
ities which are well-known for Lebesgue integrals, but which are needed for RKHS-valued
Bochner integrals in the proof. Even though we suppose that this statement is also already
established for Bochner integrals, we did not find a reference in the literature, for which
reason we prove it here. See Diestel and Uhl (1977), Diestel (1984), Denkowski et al. (2003)
for a detailed introduction to Bochner integrals.
Lemma 4.3.15. Let Q be a probability measure on some measurable space (Ω,A) and let
k be a bounded and measurable kernel on Ω with RKHS H. Let g : Ω → H be a Q-Bochner
integrable function. Then,∣∣∣∣∣∣∣∣∫

Ω
g(x) dQ(x)

∣∣∣∣∣∣∣∣
∞

≤
∫

Ω
||g(x)||∞ dQ(x) (4.21)

and, for all p ∈ [1,∞),∣∣∣∣∣∣∣∣∫
Ω
g(x) dQ(x)

∣∣∣∣∣∣∣∣
Lp(Q)

≤
∫

Ω
||g(x)||Lp(Q) dQ(x) . (4.22)

Proof. By Denkowski et al. (2003, Definition 3.10.7), g being Q-Bochner integrable means
that there exists a sequence (sn)n∈N of so-called simple functions sn : Ω → H, ω 7→∑mn

j=1 b
(n)
j 1

A
(n)
j

(ω), with b
(n)
j ∈ H, A(n)

j ∈ A and 1
A

(n)
j

denoting the indicator function

on A
(n)
j for all n ∈ N and j ∈ {1, . . . ,mn}, such that

lim
n→∞

∫
Ω

||g(ω) − sn(ω)||H dQ(ω) = 0 . (4.23)

Then, the same definition tells us that∫
Ω
g(ω) dQ(ω) := lim

n→∞

∫
Ω
sn(ω) dQ(ω) ,

where∫
Ω
sn(ω) dQ(ω) :=

mn∑
j=1

b
(n)
j Q

(
A

(n)
j

)
for all n ∈ N. Additionally, we know from Diestel (1984, Chapter IV) that we can without
loss of generality assume A(n)

1 , . . . , A(n)
mn

to be pairwise disjoint for all n ∈ N.
Let now ||·||• denote either of ||·||∞ and ||·||Lp(Q). Then,

∣∣∣∣∣∣∣∣∫ g(ω) dQ(ω)
∣∣∣∣∣∣∣∣

•
=
∣∣∣∣∣∣
∣∣∣∣∣∣ lim
n→∞

mn∑
j=1

b
(n)
j Q

(
A

(n)
j

)∣∣∣∣∣∣
∣∣∣∣∣∣
•

= lim
n→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
mn∑
j=1

b
(n)
j Q

(
A

(n)
j

)∣∣∣∣∣∣
∣∣∣∣∣∣
•

≤ lim
n→∞

mn∑
j=1

∣∣∣∣∣∣b(n)
j

∣∣∣∣∣∣
•

Q
(
A

(n)
j

) = lim
n→∞

mn∑
j=1

∫ ∣∣∣∣∣∣b(n)
j

∣∣∣∣∣∣
•
1

A
(n)
j

(ω) dQ(ω)


= lim
n→∞

∫ mn∑
j=1

∣∣∣∣∣∣b(n)
j

∣∣∣∣∣∣
•
1

A
(n)
j

(ω) dQ(ω)
 = lim

n→∞

∫ ∣∣∣∣∣∣
∣∣∣∣∣∣
mn∑
j=1

b
(n)
j 1

A
(n)
j

(ω)
∣∣∣∣∣∣
∣∣∣∣∣∣
•

dQ(ω)


= lim
n→∞

(∫
||sn(ω)||• dQ(ω)

)
=
∫

||g(ω)||• dQ(ω) , (4.24)
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where we applied the continuity of ||·||• as a function on H in the second step and the
pairwise disjointness of A(n)

1 , . . . , A(n)
mn

in the second to last row, with the continuity of ||·||•
holding true because ||h||Lp(Q) ≤ ||h||∞ ≤ ||k||∞ ||h||H and thus

||h||• ≤ ||k||∞ ||h||H (4.25)

for all h ∈ H, cf. Lemma 2.1.10(i). Additionally, the equality in the last step of (4.24)
holds true because∣∣∣∣∫ ||g(ω)||• dQ(ω) − lim

n→∞

(∫
||sn(ω)||• dQ(ω)

)∣∣∣∣
≤ lim

n→∞

(∫ ∣∣∣ ||g(ω)||• − ||sn(ω)||•
∣∣∣ dQ(ω)

)
≤ lim

n→∞

(∫
||g(ω) − sn(ω)||• dQ(ω)

)
≤ ||k||∞ · lim

n→∞

(∫
||g(ω) − sn(ω)||H dQ(ω)

)
= 0 . (4.26)

Here, we employed the finiteness of the two summands on the left hand side in the first
step, and the reverse triangle inequality, (4.25) and (4.23) in the remaining steps. In the
first step, the finiteness of the first summand follows directly from (4.25) and Denkowski
et al. (2003, Theorem 3.10.9), and the finiteness of the second one can be shown by again
using (4.25) and then slightly adapting the proof of the mentioned theorem:

lim
n→∞

(∫
||sn(ω)||H dQ(ω)

)
≤ lim

n→∞

(∫
||sn(ω) − g(ω)||H dQ(ω) +

∫
||g(ω)||H dQ(ω)

)
= lim

n→∞

(∫
||sn(ω) − g(ω)||H dQ(ω)

)
+
∫

||g(ω)||H dQ(ω)

=
∫

||g(ω)||H dQ(ω) < ∞

with the first inequality holding true because of the second integral on its right hand
side being finite (cf. Denkowski et al., 2003, Theorem 3.10.9) and the first one being
finite for n sufficiently large, cf. (4.23). The same equation (4.23) additionally yields that
limn→∞ (

∫
||sn(ω) − g(ω)||H dQ(ω)) exists and the linearity of the limit can therefore be

applied in the second step. Finally, (4.23) and the mentioned Theorem 3.10.9 yield the
last two steps.

Proof of Proposition 4.3.14. To shorten the notation, define fi := fP,λ,ki
, i = 1, 2, in this

proof.
Define k̃i := ki

2 for i = 1, 2. By Lemma 2.1.11, H̃i = Hi (equipped with the norm
||·||H̃i

=
√

2 ||·||Hi
) is the RKHS of k̃i. Thus, fi ∈ H̃i for i = 1, 2.

In the next step, define a new space which contains f1 as well as f2 by

H̃ := H̃1 ⊕ H̃2 :=
{
g : X → R

∣∣∣ g = g1 + g2, g1 ∈ H̃1, g2 ∈ H̃2
}
.
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Berlinet and Thomas-Agnan (2004, Theorem 5) tells us that H̃ equipped with the norm

||g||2H̃ := min
g1∈H̃1, g2∈H̃2 : g1+g2=g

(
||g1||2H̃1

+ ||g2||2H̃2

)
∀ g ∈ H̃

is the RKHS of the reproducing kernel k̃ := k̃1+k̃2 = (k1+k2)/2. Since obviously f1, f2 ∈ H̃,
we now use this new RKHS as an aid for investigating the difference between f1 and f2.

First of all, because k̃ is measurable and bounded by ||k̃||∞ ≤ 1
2 (||k1||∞ + ||k2||∞) < ∞

and H̃ is obviously separable, there exists a unique SVM fP,λ,k̃ =: f̃ (Christmann et al.,
2009, Theorem 7). The triangle inequality then yields

||f1 − f2||∞ ≤ ||f1 − f̃ ||∞ + ||f2 − f̃ ||∞ . (4.27)

By applying Christmann et al. (2009, Theorem 7), both of the differences on the right hand
side can be expanded as

fi − f̃ = − 1
2λ ·

∫
hi(x, y)Φi(x) dP(x, y)

+ 1
2λ ·

∫
h̃(x, y)Φ̃(x) dP(x, y)

= 1
2λ ·

∫
hi(x, y)

(
Φ̃(x) − Φi(x)

)
dP(x, y)

+ 1
2λ ·

∫ (
h̃(x, y) − hi(x, y)

)
Φ̃(x) dP(x, y) (4.28)

with hi and h̃ from the subdifferential of L⋆ (with respect to fi respectively f̃). Thus,
Lemma 2.1.10(i) yields for i = 1, 2

∣∣∣∣∣∣fi − f̃
∣∣∣∣∣∣

∞
≤
∣∣∣∣∣∣∣∣ 1

2λ ·
∫
hi(x, y)

(
Φ̃(x) − Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣ 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y)
∣∣∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣∣∣ 1

2λ ·
∫
hi(x, y)

(
Φ̃(x) − Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
∞

+ ||k̃||∞ ·
∣∣∣∣∣∣∣∣ 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y)
∣∣∣∣∣∣∣∣

H̃
. (4.29)

Now, the first summand on the right hand side of (4.29) can easily be bounded by∣∣∣∣∣∣∣∣ 1
2λ ·

∫
hi(x, y)

(
Φ̃(x) − Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
∞

≤ 1
2λ · ||hi||∞ · sup

x∈X

∣∣∣∣∣∣Φ̃(x) − Φi(x)
∣∣∣∣∣∣

∞

≤ |L|1
2λ ·

∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
∞
, (4.30)

where we applied Lemma 4.3.15 in the first step and obtained the bound for hi from
Christmann et al. (2009, Theorem 7).
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As for the square of the H̃-norm in the second summand on the right hand side of (4.29),
applying (4.28) yields

∣∣∣∣∣∣∣∣ 1
2λ ·

∫ (
h̃(x, y) − hi(x, y)

)
Φ̃(x) dP(x, y)

∣∣∣∣∣∣∣∣2
H̃

=
〈 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y) , fi − f̃
〉

H̃

−
〈 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y) ,
1

2λ ·
∫
hi(x′, y′)

(
Φ̃(x′) − Φi(x′)

)
dP(x′, y′)

〉
H̃
, (4.31)

where the reproducing property can be applied to the first of these two inner products in
order to obtain〈 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y), fi − f̃
〉

H̃

= 1
2λ ·

∫ (
h̃(x, y) − hi(x, y)

) (
fi(x) − f̃(x)

)
dP(x, y) ≤ 0 .

This inequality holds true because L⋆ is convex which implies that for all (x, y) ∈ X × Y
we have s1 ≤ s2 for every s1 ∈ ∂L⋆(x, y, t1), s2 ∈ ∂L⋆(x, y, t2) with t1 ≤ t2. Now there
are two cases: Either at least one of the two factors in the integrand is zero or the two
factors have different signs. Therefore, the integrand, and hence also the whole integral, is
non-positive.

Plugging this into (4.31) results in
∣∣∣∣∣∣∣∣ 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y)
∣∣∣∣∣∣∣∣2

H̃

≤
∣∣∣∣〈 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y) ,
1

2λ ·
∫
hi(x′, y′)

(
Φ̃(x′) − Φi(x′)

)
dP(x′, y′)

〉
H̃

∣∣∣∣
= 1

4λ2 ·
∣∣∣∣∫ ∫ (

h̃(x, y) − hi(x, y)
)
hi(x′, y′)

(
k̃(x, x′) − ki(x, x′)

)
dP(x′, y′) dP(x, y)

∣∣∣∣
≤ 1

4λ2 ·
∣∣∣∣∣∣h̃− hi

∣∣∣∣∣∣
∞

· ||hi||∞ ·
∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
∞

≤ |L|21
2λ2 ·

∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
∞
, (4.32)

where we again applied the reproducing property in the second step and Christmann et al.
(2009, Theorem 7) for bounding h̃− hi and hi in the last step.

By the definition of k̃, we further know that

∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
∞

=
∣∣∣∣∣
∣∣∣∣∣k1 + k2

2 − ki

∣∣∣∣∣
∣∣∣∣∣
∞

=
∣∣∣∣∣
∣∣∣∣∣k1 − k2

2

∣∣∣∣∣
∣∣∣∣∣
∞

= ||k1 − k2||∞
2
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for i = 1, 2, as well as
∣∣∣∣∣∣k̃∣∣∣∣∣∣

∞
=
∣∣∣∣∣
∣∣∣∣∣k1 + k2

2

∣∣∣∣∣
∣∣∣∣∣
∞

≤ ||k1||∞ + ||k2||∞
2 ≤ max {||k1||∞ , ||k2||∞} = κ .

Thus, we obtain the assertion by combining (4.27) with (4.29), (4.30) and (4.32):

||f1 − f2||∞ ≤
∣∣∣∣∣∣f1 − f̃

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣f2 − f̃

∣∣∣∣∣∣
∞

≤
2∑

i=1

(
|L|1
2λ ·

∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣k̃∣∣∣∣∣∣

∞
· |L|1√

2λ
·
√∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
∞

)

≤ |L|1
λ

·
(1

2 · ||k1 − k2||∞ + κ ·
√

||k1 − k2||∞
)
.

For similar minimal examples as those investigated in Examples 4.3.4 and 4.3.12, the
linear part of the bound from Proposition 4.3.14 actually suffices. We slightly adapt the
mentioned examples by not only considering Gaussian RBF kernels because the kernel is
the focus of this example:

Example 4.3.16. Let Y = R, L⋆ = L∗
0.5-pin be the shifted 0.5-pinball loss,36 λ > 0,

and P = δ(x0,y0) be the Dirac distribution in some (x0, y0) ∈ X × Y , where we assume
y0 > 0 for simplicity. Let further k1 and k2 be measurable and bounded kernels with
separable RKHSs (for example, Gaussian RBF kernels, see Example 2.1.12). Similarly to
Examples 4.3.4 and 4.3.12, one then obtains

fP,λ,ki
= 1

4λ · Φi(x0)

for i = 1, 2 if ki(x0, x0) < 4λy0. Hence, if both k1(x0, x0) < 4λy0 and k2(x0, x0) < 4λy0
hold true, we have

||fP,λ,k1 − fP,λ,k2||∞ = 1
4λ · ||Φ1(x0) − Φ2(x0)||∞ ≤ 1

4λ · ||k1 − k2||∞ ,

which exactly coincides with the linear part of the bound from Proposition 4.3.14 because
|Lτ -pin|1 = 1/2.

Remark 4.3.17. We also examined further examples that were slightly more complex than
Example 4.3.16 but still simple enough that it was feasible to derive a closed formula for the
SVMs. That is, we looked at distributions P whose support did consist of different small
amounts of points instead of only a single point, and considered kernels such as Gaussian
RBF kernels or constant kernels. For all the examples we considered, the linear part of the
bound from Proposition 4.3.14 always sufficed, for which reason we suspect that it might
actually be possible to eliminate the other part from the bound from Proposition 4.3.14.

Additionally, an analogous result to Proposition 4.3.14 which however considers Lp-
stability instead of sup-stability also holds true:

36Other loss functions satisfying certain conditions can also be used without changing much in the
example.
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Proposition 4.3.18. Let Assumption 4.3.1 be satisfied and let κ := max{||k1||∞ , ||k2||∞}.
Let p ∈ [1,∞). Then,

||fP,λ,k1 − fP,λ,k2||Lp(PX) ≤ |L|1
λ

·
(1

2 · ||k1 − k2||Lp(PX⊗PX) + κ ·
√

||k1 − k2||Lp(PX⊗PX)

)
.

Proof. The proof is almost identical to that of Proposition 4.3.14 with ||·||∞ being replaced
by ||·||Lp(PX), for which reason only the differences are highlighted here.

First of all, because of (4.9), we obtain analogously to (4.29)∣∣∣∣∣∣fi − f̃
∣∣∣∣∣∣

Lp(PX)
≤
∣∣∣∣∣∣∣∣ 1

2λ ·
∫
hi(x, y)

(
Φ̃(x) − Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
Lp(PX)

+
∣∣∣∣∣∣∣∣ 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y)
∣∣∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣∣∣ 1

2λ ·
∫
hi(x, y)

(
Φ̃(x) − Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
Lp(PX)

+
∣∣∣∣∣∣k̃∣∣∣∣∣∣

∞
·
∣∣∣∣∣∣∣∣ 1

2λ ·
∫ (

h̃(x, y) − hi(x, y)
)

Φ̃(x) dP(x, y)
∣∣∣∣∣∣∣∣

H̃
.

Then, the first summand on the right hand side can be bounded in an analogous way to
(4.30):∣∣∣∣∣∣∣∣ 1

2λ ·
∫

X ×Y
hi(x, y)

(
Φ̃(x) − Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
Lp(PX)

≤ 1
2λ

∫
X ×Y

∣∣∣∣∣∣hi(x, y)
(
Φ̃(x) − Φi(x)

)∣∣∣∣∣∣
Lp(PX)

dP(x, y)

≤ 1
2λ · ||hi||∞ ·

∫
X

∣∣∣∣∣∣Φ̃(x) − Φi(x)
∣∣∣∣∣∣

Lp(PX)
dPX(x)

= 1
2λ · ||hi||∞ ·

∫
X

(∫
X

∣∣∣k̃(x, x′) − ki(x, x′)
∣∣∣p dPX(x)

)1/p

dPX(x)

≤ |L|1
2λ ·

∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
Lp(PX⊗PX)

,

where we applied Lemma 4.3.15 in the first step, and Christmann et al. (2009, Theorem 7)
(for obtaining the bound on hi) as well as Hölder’s inequality in the last step. Finally, it
is possible to tighten the bound from the last steps of (4.32) in the following way:

1
4λ2 ·

∣∣∣∣∫ ∫ (
h̃(x, y) − hi(x, y)

)
hi(x′, y′)

(
k̃(x, x′) − ki(x, x′)

)
dP(x′, y′) dP(x, y)

∣∣∣∣
≤ |L|21

2λ2 ·
∫ ∫ ∣∣∣k̃(x, x′) − ki(x, x′)

∣∣∣ dP(x′, y′) dP(x, y)

= |L|21
2λ2 ·

∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
L1(PX⊗PX)

≤ |L|21
2λ2 ·

∣∣∣∣∣∣k̃ − ki

∣∣∣∣∣∣
Lp(PX⊗PX)

.

The assertion then follows in the same way as in the proof of Proposition 4.3.14.
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4.3.4 Total Stability
In this section, the results from Sections 4.3.1 to 4.3.3 are combined into bounds on the
difference between two SVMs differing in the whole triple (P, λ, k), that is, into results on
total stability of SVMs. All results are based on decomposing the difference between the
two SVMs as

||fP1,λ1,k1 − fP2,λ2,k2||∞ ≤ ||fP1,λ1,k1 − fP2,λ1,k1||∞ + ||fP2,λ1,k1 − fP2,λ2,k1||∞
+ ||fP2,λ2,k1 − fP2,λ2,k2||∞ (4.33)

for total sup-stability and as

||fP1,λ1,k1 − fP2,λ2,k2||Lp(PX
i ) ≤ ||fP1,λ1,k1 − fP2,λ1,k1||Lp(PX

i )

+ ||fP2,λ1,k1 − fP2,λ2,k1||Lp(PX
i )

+ ||fP2,λ2,k1 − fP2,λ2,k2||Lp(PX
i ) (4.34)

for total Lp-stability. Of course, the order of decomposition can also be varied, for example
changing λ instead of P in the first step, thus considering the difference between fP1,λ1,k1

and fP1,λ2,k1 in the first summand on the right hand side of the decompositions. This is
also taken into account in the results.

The first theorem considers total sup-stability (with the difference between the proba-
bility measures being measured by the total variation distance) and, as already mentioned
in Section 4.1, considerably generalizes Christmann et al. (2018, Theorem 2.7): First of
all, an additional condition on L that was required by Christmann et al. (2018) gets elim-
inated. Previously, L did not only need to be convex and Lipschitz continuous but also
differentiable. Since many popular loss functions are not differentiable (e.g., pinball loss,
ε-insensitive loss, hinge loss), this change makes the result applicable to a considerably
larger class of learning tasks. Secondly, in Christmann et al. (2018, Theorem 2.7) it was
assumed that the regularization parameters λ1 and λ2 were greater than some specified
positive constant, which is unsatisfactory because the regularization parameter used by an
SVM has to converge to zero as the size of the training data set tends to infinity in order
to achieve consistency, cf. Chapter 3.

In order to circumvent the latter problem, Christmann et al. (2018) additionally provided
another result (Theorem 2.10), in which λ1 and λ2 are allowed to be arbitrarily close to
zero and instead of ||fP1,λ1,k1 − fP2,λ2,k2 ||∞ they bound ||fP1,λ1,k1 − fP2,λ2,k2||H1

. Because of
Lemma 2.1.10(i) and because k1 is assumed to be bounded, this also translates to a bound
for ||fP1,λ1,k1 − fP2,λ2,k2 ||∞. Alas, this result obviously requires the RKHSs H1 and H2 be
nested, H2 ⊆ H1, and additionally uses ||k1 − k2||H1

instead of the more easily interpretable
||k1 − k2||∞ in the bound.

In the subsequent theorem, it is neither required that λ1 and λ2 are greater than some
positive constant nor that H1 and H2 are nested. Furthermore, the improvement in the
bound coming from the difference between λ1 and λ2 derived in Section 4.3.2 transfers to
this theorem as well.
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Theorem 4.3.19. Let Assumption 4.3.1 be satisfied. Denote κ := max{||k1||∞ , ||k2||∞}
and τ := min{λ1, λ2}. Then,

||fP1,λ1,k1 − fP2,λ2,k2||∞ ≤ |L|1
τ

·
(
κ2 · dtv(P1,P2) + κ2

2τ · |λ1 − λ2|

+ 1
2 · ||k1 − k2||∞ + κ ·

√
||k1 − k2||∞

)
.

Proof. Applying Propositions 4.3.3, 4.3.10 and 4.3.14 to the decomposition (4.33) of the
investigated norm ||fP1,λ1,k1 − fP2,λ2,k2||∞ yields

||fP1,λ1,k1 − fP2,λ2,k2||∞ ≤ ||k1||2∞ |L|1
λ1

· dtv(P1,P2) + ||k1||2∞ |L|1
2 min{λ1, λ2}2 · |λ1 − λ2|

+ |L|1
λ2

·
(1

2 · ||k1 − k2||∞ + κ ·
√

||k1 − k2||∞
)
.

Since the order of decomposition can of course be varied freely, we also obtain analogous
bounds with k1 being replaced by k2 (and vice versa) as well as λ1 by λ2 (and vice versa) in
some of these summands. Since the right hand side of the assertion is greater or equal to the
right hand sides of all of the bounds generated this way, the assertion directly follows.

Recall the examples from Section 4.2 on how the different quantities on the right hand
side of the bound behave in different situations.
Remark 4.3.20. To formally use the metric d3 from (4.6) in Definition 4.1.1 of total stability
of SVMs, the bound from Theorem 4.3.19 can of course be bounded further by applying

1
2 · ||k1 − k2||∞ + κ ·

√
||k1 − k2||∞ ≤ max

{1
2 , κ

}
·
(

||k1 − k2||∞ +
√

||k1 − k2||∞
)

= max
{1

2 , κ
}

· d3(k1, k2) .

This can be done similarly in the remaining results of this section.
Remark 4.3.21. It is also possible to state an analogous result to Theorem 4.3.19 that uses
||k1 − k2||∞ instead of ||k1 − k2||∞ +

√
||k1 − k2||∞, in exchange for imposing the additional

assumptions regarding loss function and regularization parameters that were explained
before this theorem, cf. Christmann et al. (2018, Theorem 2.7).

In addition, it is also possible to analogously derive a new result on total sup-stability
using the Wasserstein distance to measure the distance between the probability measures.
This has the advantage of also yielding meaningful bounds in situations in which Theo-
rem 4.3.19 does not yield such meaningful bounds, cf. Section 4.2.1.
Theorem 4.3.22. Let Assumptions 4.3.1 and 4.3.2 be satisfied. Denote

κ := max {||k1||∞ , ||k2||∞} ,
τ := min {λ1, λ2} ,

η := max
j=1,2

(
||kj||∞ · max

{
|ψ|1ckj

+
(
−2φ′

j(0)
)1/2 |ψ|1|ψ′|1 ||kj||2∞

τ
, |ψ′|1 ||kj||∞

})
.
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Then,

||fP1,λ1,k1 − fP2,λ2,k2||∞ ≤ 1
τ

·
(
η · dW(P1,P2) + |ψ|1κ2

2τ · |λ1 − λ2|

+ |ψ|1
2 · ||k1 − k2||∞ + |ψ|1κ ·

√
||k1 − k2||∞

)
.

Proof. The proof works analogously to that of Theorem 4.3.19 by just applying Proposi-
tion 4.3.5 instead of Proposition 4.3.3.

Again, recall the examples from Section 4.2 on how the different quantities on the right
hand side of the bound behave in different situations. Additionally, applying Corollary 4.3.7
instead of Proposition 4.3.5 in the proof yields a more specialized result for the Gaussian
RBF kernel, in which the properties of that kernel are plugged in.
Remark 4.3.23. Similarly to Remark 4.3.21, it is also possible to derive an analogous result
to Theorem 4.3.22 that uses ||k1 − k2||∞ instead of ||k1 − k2||∞+

√
||k1 − k2||∞, in exchange

for imposing the additional assumptions regarding regularization parameters that were
explained at the beginning of this section by applying Christmann et al. (2018, Lemma 6.4)
instead of Proposition 4.3.14 in the proof.

Now, the subsequent Theorem 4.3.24 states a result which is very similar to Theo-
rem 4.3.19 but which shows total Lp-stability instead of total sup-stability:

Theorem 4.3.24. Let Assumption 4.3.1 be satisfied. Denote κ := max{||k1||∞ , ||k2||∞}
and τ := min{λ1, λ2}. Then, for all p ∈ [1,∞) and i ∈ {1, 2},

||fP1,λ1,k1 − fP2,λ2,k2||Lp(PX
i )

≤ |L|1
τ

·
(
κ2 · dtv(P1,P2) + κ2

2τ · |λ1 − λ2|

+ 1
2 · ||k1 − k2||Lp(PX

i ⊗PX
i ) + κ ·

√
||k1 − k2||Lp(PX

i ⊗PX
i )

)
.

Proof. Applying Proposition 4.3.18 as well as Propositions 4.3.3 and 4.3.10 in combination
with (4.9) to the decomposition (4.34) of ||fP1,λ1,k1 − fP2,λ2,k2||Lp(PX

i ) yields for i = 2

||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
2 )

≤ ||k1||2∞ |L|1
λ1

· dtv(P1,P2) + ||k1||2∞ |L|1
2 min{λ1, λ2}2 · |λ1 − λ2|

+ |L|1
λ2

·
(1

2 · ||k1 − k2||Lp(PX
2 ⊗PX

2 ) + κ ·
√

||k1 − k2||Lp(PX
2 ⊗PX

2 )

)
≤ κ2|L|1

τ
· dtv(P1,P2) + κ2|L|1

2τ 2 · |λ1 − λ2|

+ |L|1
τ

·
(1

2 · ||k1 − k2||Lp(PX
2 ⊗PX

2 ) + κ ·
√

||k1 − k2||Lp(PX
2 ⊗PX

2 )

)
.
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Analogously, reversing the order of decomposition (such that Proposition 4.3.18 can be
applied to a summand with probability measure P1 in both SVMs) yields for i = 1

||fP1,λ1,k1 − fP2,λ2,k2||Lp(PX
1 )

≤ |L|1
λ1

·
(1

2 · ||k1 − k2||Lp(PX
1 ⊗PX

1 ) + κ ·
√

||k1 − k2||Lp(PX
1 ⊗PX

1 )

)

+ ||k2||2∞ |L|1
2 min{λ1, λ2}2 · |λ1 − λ2| + ||k2||2∞ |L|1

λ2
· dtv(P1,P2)

≤ κ2|L|1
τ

· dtv(P1,P2) + κ2|L|1
2τ 2 · |λ1 − λ2|

+ |L|1
τ

·
(1

2 · ||k1 − k2||Lp(PX
1 ⊗PX

1 ) + κ ·
√

||k1 − k2||Lp(PX
1 ⊗PX

1 )

)
.

As it was the case for the result on total sup-stability, it is also possible to analogously
derive a result on total Lp-stability that uses the Wasserstein distance instead of the total
variation distance in the bound.
Theorem 4.3.25. Let Assumptions 4.3.1 and 4.3.2 be satisfied. Denote

κ := max {||k1||∞ , ||k2||∞} ,
τ := min {λ1, λ2} ,

η := max
j=1,2

(
||kj||∞ · max

{
|ψ|1ckj

+
(
−2φ′

j(0)
)1/2 |ψ|1|ψ′|1 ||kj||2∞

τ
, |ψ′|1 ||kj||∞

})
.

Then, for all p ∈ [1,∞) and i ∈ {1, 2},
||fP1,λ1,k1 − fP2,λ2,k2||Lp(PX

i )

≤ 1
τ

·
(
η · dW(P1,P2) + |ψ|1κ2

2τ · |λ1 − λ2|

+ |ψ|1
2 · ||k1 − k2||Lp(PX

i ⊗PX
i ) + |ψ|1κ ·

√
||k1 − k2||Lp(PX

i ⊗PX
i )

)
.

Proof. The proof works analogously to that of Theorem 4.3.24 by just applying Proposi-
tion 4.3.5 instead of Proposition 4.3.3.

The results on total Lp-stability become particularly useful in Section 4.4.2 where the
total stability of localized SVMs is investigated. In that section, it will be explained that no
meaningful result on total sup-stability can be derived in this situation, but it will at least
still be possible to derive results on total Lp-stability, which are based on Theorems 4.3.24
and 4.3.25.

4.4 Total Stability of Localized Support Vector Ma-
chines

The goal of this section lies in deriving total stability of localized SVMs. As already
hinted at in Section 4.1, it is however only possible to derive meaningful results on total
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Lp-stability and not on total sup-stability. Therefore, before investigating total stability
in Section 4.4.2, regionalization-subtotal stability is examined in Section 4.4.1 because for
this it is also possible to obtain meaningful results on sup-stability.

The parts of this section using the total variation distance already appeared in the peer-
reviewed paper Köhler and Christmann (2022, Section 3), which was published in Journal
of Machine Learning Research. The parts using the Wasserstein distance have not been
published before.

4.4.1 Regionalization-Subtotal Stability
As this section considers regionalization-subtotal stability, it is about the comparison of
two localized SVMs fP1,λ1,k1,X and fP2,λ2,k2,X that are based on the same regionalization
X := {X1, . . . ,XA} of size A ∈ N (and on the same weight functions). As in the definition of
regionalization-subtotal stability (cf. Definition 4.1.2), these localized SVMs are allowed to
be based on different probability measures P1 and P2, on different vectors of regularization
parameters λ1 and λ2 as well as on different vectors of kernels k1 and k2 on X . The results
from this section need the following assumptions regarding the components influencing the
localized SVMs:

Assumption 4.4.1.

• Let L : X × Y ×R → [0,∞) be a convex, Lipschitz continuous loss function and let
L⋆ be its shifted version.

• Let X := {X1, . . . ,XA} be a regionalization of X of size A ∈ N and let the weight
functions wa, a = 1, . . . , A, satisfy (W1), (W2), (W3).

• For i = 1, 2, let Pi be a probability measure on X × Y that is positive on X .

• For i = 1, 2, let λi := (λi,1, . . . , λi,A) ∈ (0,∞)A.

• For i = 1, 2, let ki := (ki,1, . . . , ki,A) be a vector of bounded and measurable kernels
on X with separable RKHSs Hi,a, a = 1, . . . , A.

Note again that the separability of the RKHSs is always satisfied if the associated kernels
are continuous, cf. Lemma 2.1.10(iii). For i ∈ {1, 2} and a ∈ {1, . . . , A}, further introduce
the shortening notation Pi,a := Pi,Xa based on the local probability measures defined in
(2.6).

For the results using the Wasserstein distance in the bound, the following is required as
well:

Assumption 4.4.2.

• Let X ⊆ Rd for some d ∈ N.

• Let L be distance-based with representing function ψ such that ψ is differentiable
and ψ as well as its derivative ψ′ are both Lipschitz continuous.
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• For a = 1, . . . , A, let Xa be complete.

• For i = 1, 2 and a = 1, . . . , A, let X̃i,a ⊇ Xa with X̃i,a ⊆ Rd be open and assume
that ki,a = k̃i,a Xa×Xa for a kernel k̃i,a on X̃i,a which can be written as k̃i,a(x, x′) =
φi,a(||x− x′||2) for all x, x′ ∈ X̃i,a, where φi,a : R≥0 → R is a twice continuously
differentiable function satisfying φi,a(0) − φi,a(r) ≤

c2
ki,a

2 · r for all r ≥ 0 for some
cki,a

≥ 0.

Recall that popular kernels such as the Gaussian RBF kernels can be written is such a
way as it is requested in Assumption 4.4.2, cf. Corollary 4.3.7.

The succeeding theorem states that Theorem 4.3.19 can be transferred to the situation
at hand, i.e., that localized SVMs inherit regionalization-subtotal sup-stability from the
total sup-stability of regular SVMs:

Theorem 4.4.3. Let Assumption 4.4.1 be satisfied. Denote

κa := max
{
||k1,a||∞ , ||k2,a||∞

}
,

τa := min {λ1,a, λ2,a} ,

for all a ∈ {1, . . . , A}. Then,

||fP1,λ1,k1,X − fP2,λ2,k2,X ||∞

≤ |L|1 · max
a∈{1,...,A}

1
τa

·
(
κ2

a · dtv(P1,a,P2,a) + κ2
a

2τa

· |λ1,a − λ2,a|

+ 1
2 · ||k1,a − k2,a||∞ + κa ·

√
||k1,a − k2,a||∞

)
.

Proof. To shorten the notation, define fi := fPi,λi,ki,X and fi,a := fPi,a,λi,a,ki,a
, i = 1, 2,

a = 1, . . . , A, in this proof. By the definition of f1 and f2,

||f1 − f2||∞ ≤ sup
x∈X

A∑
a=1

wa(x) ·
∣∣∣f̂1,a(x) − f̂2,a(x)

∣∣∣
≤ sup

x∈X
max

a∈{1,...,A}

∣∣∣f̂1,a(x) − f̂2,a(x)
∣∣∣

= max
a∈{1,...,A}

∣∣∣∣∣∣f̂1,a − f̂2,a

∣∣∣∣∣∣
∞
, (4.35)

where we applied (W1) and (W2) in the second step. Since the functions f̂i,a have not
been defined as SVMs but instead as zero-extensions of SVMs fPi,a,λi,a,ki,a

on Xa, we cannot
apply Theorem 4.3.19 to the right hand side of (4.35) yet. However, these functions can
actually be seen as SVMs on X themselves, f̂i,a = fP̂i,a,λi,a,k̂i,a

(where P̂i,a and k̂i,a denote
the zero-extensions of Pi,a and ki,a respectively):

According to Meister and Steinwart (2016, Lemma 2), we have Ĥi,a = { ĝ | g ∈ Hi,a} and
||ĝ||Ĥi,a

= ||g||Hi,a
for all g ∈ Hi,a for Ĥi,a denoting the RKHS of k̂i,a. Since additionally
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RL⋆,P̂i,a
(ĝ) = RL⋆,Pi,a

(g) for all g ∈ Hi,a (because the whole probability mass of P̂i,a is on
Xa where ĝ and g coincide), the definition of SVMs yields fP̂i,a,λi,a,k̂i,a

= f̂Pi,a,λi,a,ki,a
(= f̂i,a).

Thus, Theorem 4.3.19 can be applied to the right hand side of (4.35) since the functions
f̂i,a are actually SVMs on the complete space X (whereas the functions fi,a are SVMs on
the not necessarily complete spaces Xa, for which reason the theorem can not be applied to
||f1,a − f2,a||∞ even though this term is obviously equivalent to ||f̂1,a − f̂2,a||∞). By doing
this, the assertion follows, but with every Pi,a replaced by P̂i,a and ki,a by k̂i,a. Because of
them just being zero-extensions of Pi,a and ki,a respectively, this does however not influence
the respective distances.

Remark 4.4.4. To formally obtain a bound exactly as proposed in Definition 4.1.2 and
based on the distance measures from Section 4.2, it suffices to further bound the inequality
from Theorem 4.4.3 by

||fP1,λ1,k1,X − fP2,λ2,k2,X ||∞

≤ |L|1 · max
a∈{1,...,A}

1
τa

·
(
κ2

a · dtv(P1,a,P2,a) + κ2
a

2τa

· |λ1,a − λ2,a|

+ 1
2 · ||k1,a − k2,a||∞ + κa ·

√
||k1,a − k2,a||∞

)

≤ |L|1 ·
(

max
a∈{1,...,A}

κ2
a

τa

· max
a∈{1,...,A}

dtv(P1,a,P2,a) + max
a∈{1,...,A}

κ2
a

2τ 2
a

· max
a∈{1,...,A}

|λ1,a − λ2,a|

+ max
a∈{1,...,A}

max{1
2 , κa}
τa

· max
a∈{1,...,A}

(
||k1,a − k2,a||∞ +

√
||k1,a − k2,a||∞

))

≤
(

max
i∈{1,2}

max
a∈{1,...,A}

|L|1
λi,a

)
·
(

max
i∈{1,2}

max
a∈{1,...,A}

||ki,a||2∞

)
· d1(P1,X ,P2,X )

+
(

max
i∈{1,2}

max
a∈{1,...,A}

|L|1
2λ2

i,a

)
·
(

max
i∈{1,2}

max
a∈{1,...,A}

||ki,a||2∞

)
· d2(λ1,λ2)

+
(

max
i∈{1,2}

max
a∈{1,...,A}

|L|1
λi,a

)
·
(

max
i∈{1,2}

max
a∈{1,...,A}

max
{1

2 , ||ki,a||∞
})

· d3(k1,k2) ,

denoting by P1,X ,P2,X vectors of local measures as defined in Section 2.2.2. For the
remaining results from this section as well as for those from Section 4.4.2, one can proceed
analogously to formally obtain a bound in the exact shape of that in Definition 4.1.2
respectively that in Definition 4.1.3.

As for non-localized SVMs, it is again possible to derive a result on regionalization-
subtotal sup-stability using the Wasserstein distance in an analogous way.
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Theorem 4.4.5. Let Assumptions 4.4.1 and 4.4.2 be satisfied. Denote
κa := max

{
||k1,a||∞ , ||k2,a||∞

}
,

τa := min {λ1,a, λ2,a} ,

ηa := max
j=1,2

 ||kj,a||∞

· max
{

|ψ|1ckj,a
+
(
−2φ′

j,a(0)
)1/2 |ψ|1|ψ′|1 ||kj,a||2∞

τa

, |ψ′|1 ||kj,a||∞

} ,
for all a ∈ {1, . . . , A}. Then,

||fP1,λ1,k1,X − fP2,λ2,k2,X ||∞

≤ max
a∈{1,...,A}

1
τa

·
(
ηa · dW(P1,a,P2,a) + |ψ|1κ2

a

2τa

· |λ1,a − λ2,a|

+ |ψ|1
2 · ||k1,a − k2,a||∞ + |ψ|1κa ·

√
||k1,a − k2,a||∞

)
.

Proof. We have
||fP1,λ1,k1,X − fP2,λ2,k2,X ||∞ ≤ max

a∈{1,...,A}

∣∣∣∣∣∣f̂P1,a,λ1,a,k1,a − f̂P2,a,λ2,a,k2,a

∣∣∣∣∣∣
∞

= max
a∈{1,...,A}

∣∣∣∣∣∣fP1,a,λ1,a,k1,a − fP2,a,λ2,a,k2,a

∣∣∣∣∣∣
∞
,

where the first step is equivalent to (4.35) and the second follows from fP1,a,λ1,a,k1,a and
fP2,a,λ2,a,k2,a being defined on the same region Xa. By Remark 3.4.2, each region Xa, a =
1, . . . , A, is separable again. As the regions are additionally assumed to be complete,
Theorem 4.3.25 can be applied to the norms on the right hand side, which yields the
assertion.

Similarly, Theorem 4.3.24 can be transferred as well in order to obtain results on regionalization-
subtotal Lp-stability, first based on the total variation distance.
Theorem 4.4.6. Let Assumption 4.4.1 be satisfied. Denote

κa := max
{
||k1,a||∞ , ||k2,a||∞

}
,

τa := min {λ1,a, λ2,a} ,

for all a ∈ {1, . . . , A}. Then, for all p ∈ [1,∞) and i ∈ {1, 2},
||fP1,λ1,k1,X − fP2,λ2,k2,X ||Lp(PX

i )

≤ |L|1 ·
A∑

a=1

(
PX

i (Xa)
)1/p

τa

·
(
κ2

a · dtv(P1,a,P2,a) + κ2
a

2τa

· |λ1,a − λ2,a|

+ 1
2 · ||k1,a − k2,a||Lp(PX

i,a⊗PX
i,a)

+ κa ·
√

||k1,a − k2,a||Lp(PX
i,a⊗PX

i,a)

)
.

134



Proof. To shorten the notation, define fi := fPi,λi,ki,X and fi,a := fPi,a,λi,a,ki,a
, i = 1, 2,

a = 1, . . . , A, in this proof. By the definition of f1 and f2,

||f1 − f2||Lp(PX
i ) ≤

A∑
a=1

∣∣∣∣∣∣wa ·
(
f̂1,a − f̂2,a

)∣∣∣∣∣∣
Lp(PX

i )

≤
A∑

a=1

(∫
X

∣∣∣f̂1,a(x) − f̂2,a(x)
∣∣∣p dPX

i (x)
)1/p

=
A∑

a=1

(
PX

i (Xa) ·
∫

Xa

∣∣∣f̂1,a(x) − f̂2,a(x)
∣∣∣p dPX

i,a(x)
)1/p

=
A∑

a=1

(
PX

i (Xa)
)1/p

·
(∫

X

∣∣∣f̂1,a(x) − f̂2,a(x)
∣∣∣p dP̂X

i,a(x)
)1/p

=
A∑

a=1

(
PX

i (Xa)
)1/p

·
∣∣∣∣∣∣f̂1,a − f̂2,a

∣∣∣∣∣∣
Lp(P̂X

i,a)
. (4.36)

Here, we applied (W1) in the second, f̂1,b and f̂2,b being zero on X \ Xb in combination
with the definition of the local measures Pi,a (cf. (2.6)) in the third, and the definition of
P̂i,b as zero-extension of Pi,b in the fourth step.

Noting that f̂1,a and f̂2,a are SVMs on X themselves, f̂i,a = fP̂i,a,λi,a,k̂i,a
(cf. proof of

Theorem 4.4.3), Theorem 4.3.24 can now be applied to the norms on the right hand side
of (4.36). This yields the assertion (as in the proof of Theorem 4.4.3 with P̂i,a and k̂i,a

instead ob Pi,a and ki,a which does not change the respective norms).

Similarly to how it was the case for sup-stability, an analogous result using the Wasser-
stein distance also follows directly.

Theorem 4.4.7. Let Assumptions 4.4.1 and 4.4.2 be satisfied. Denote

κa := max
{
||k1,a||∞ , ||k2,a||∞

}
,

τa := min {λ1,a, λ2,a} ,

ηa := max
j=1,2

 ||kj,a||∞

· max
{

|ψ|1ckj,a
+
(
−2φ′

j,a(0)
)1/2 |ψ|1|ψ′|1 ||kj,a||2∞

τa

, |ψ′|1 ||kj,a||∞

} ,
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for all a ∈ {1, . . . , A}. Then, for all p ∈ [1,∞) and i ∈ {1, 2},

||fP1,λ1,k1,X − fP2,λ2,k2,X ||Lp(PX
i )

≤
A∑

a=1

(
PX

i (Xa)
)1/p

τa

·
(
ηa · dW(P1,a,P2,a) + |ψ|1κ2

a

2τa

· |λ1,a − λ2,a|

+ |ψ|1
2 · ||k1,a − k2,a||Lp(PX

i,a⊗PX
i,a)

+ |ψ|1κa ·
√

||k1,a − k2,a||Lp(PX
i,a⊗PX

i,a)

)
.

Proof. One obtains

||fP1,λ1,k1,X − fP2,λ2,k2,X ||Lp(PX
i )

≤
A∑

a=1

(
PX

i (Xa)
)1/p

·
∣∣∣∣∣∣f̂P1,a,λ1,a,k1,a − f̂P2,a,λ2,a,k2,a

∣∣∣∣∣∣
Lp(P̂X

i,a)

=
A∑

a=1

(
PX

i (Xa)
)1/p

·
∣∣∣∣∣∣fP1,a,λ1,a,k1,a − fP2,a,λ2,a,k2,a

∣∣∣∣∣∣
Lp(PX

i,a)
,

where the first step is equivalent to (4.36) and the second follows from fP1,a,λ1,a,k1,a and
fP2,a,λ2,a,k2,a being defined on the same region Xa as PX

i,a. By Remark 3.4.2, each region Xa,
a = 1, . . . , A, is separable again. As the regions are additionally assumed to be complete,
Theorem 4.3.25 can be applied to the norms on the right hand side, which yields the
assertion.

To conclude, regionalization-subtotal stability of localized SVMs—be it sup- or Lp-
stability and with respect to the total variation or the Wasserstein distance—follows from
the corresponding total stability of the underlying non-localized SVMs seamlessly and it
is possible to accordingly bound the difference between two such localized SVMs based
on the differences between the underlying probability measures, regularization parameters
and kernels.

4.4.2 Total Stability
As explained in Section 4.1, one would hope that localized SVMs are stable with respect to
changes in the underlying regionalization as well because this regionalization is often also
chosen in a data-dependent way (for example, using decision trees, cf. Bennett and Blue,
1998; Wu et al., 1999; Tibshirani and Hastie, 2007; Chang et al., 2010, among others). That
is, the goal of this section now lies in deriving not only regionalization-subtotal stability
(cf. Section 4.4.1) but even total stability results.

However, it can readily be seen from the simple example visualized in Figure 4.4.1 that
we will not be able to derive meaningful results regarding total sup-stability. In that figure,
two localized SVMs are being compared. Both of them are based on the same training
data (that is, on the same empirical distribution) generated according to

X ∼ U(−1, 1) , Y |X ∼ sign(X) + ε with ε ∼ N (0, 0.5) ,
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Figure 4.4.1: Comparison of two localized SVMs based on the same distribution, regular-
ization parameters and kernels, but on slightly different regionalizations. [This figure was
first published in Köhler and Christmann, 2022.]

with U(a, b) denoting the uniform distribution on (a, b) and N (µ, σ2) the normal distri-
bution with mean µ and variance σ2. Furthermore, both localized SVMs use the same
regularization parameter and the same Gaussian RBF kernel on every region. They only
differ in the underlying regionalization: The input space is split into two parts in both
cases, but for f1 the border between the two regions is at x = 0 (thus exactly capturing
the pattern in the data) whereas it is moved slightly to the right, to x = 0.05, for f2.

It can easily be seen from Figure 4.4.1 that this very minor change in the regionalization
greatly impacts the maximum difference between f1 and f2 and it is thus obviously not
possible to bound this maximum difference between two localized SVMs in any meaningful
way. However, the same Figure 4.4.1 also suggests that it might still be possible to find
such meaningful bounds on the L1(PX

i )-norm of the difference (which is rather small in the
example, approximately 0.06, compared to the supremum norm of about 0.95), similarly
to Theorems 4.4.6 and 4.4.7. In the following, we simplify this example even further in
order to also showcase the observed behavior analytically:

Example 4.4.8. Let X = Y = R, PX = U(−1, 1) and, for x ∈ X ,

P(· |X = x) =
δ0 , if x < 0 ,
δ1 , if x ≥ 0

with U(a, b) denoting the uniform distribution on (a, b) and δy denoting the Dirac distribu-
tion in y ∈ Y . Let X 0 = {(−∞, 0), [0,∞)} and X n = {(−∞, 1/n), [1/n,∞)} for n ∈ N.
Let L⋆ = L∗

0.5-pin be the shifted 0.5-pinball loss and, for each i ∈ N0 and a ∈ {1, 2}, let
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ki,a ≡ 1 be a constant kernel on Xi,a and λi,a = 1.37

For the local SVMs fPXi,a
,λi,a,ki,a

, i ∈ N0 and a = 1, 2, we obtain from Christmann et al.
(2009, Theorem 7)

fPXi,a
,λi,a,ki,a

= − 1
2λ ·

∫
hi,a(x, y)Φi,a(x) dPXi,a

(x, y) (4.37)

for some hi,a : Xi,a × Y → R from the subdifferential of L⋆ with respect to fPXi,a
,λi,a,ki,a

.
Notably, as (Φi,a(x))(x′) = ki,a(x′, x) = 1 for all x, x′ ∈ Xi,a, (4.37) yields that

fPXi,a
,λi,a,ki,a

(x′) = −1
2 ·
∫
hi,a(x, y) dPXi,a

(x, y) ∀x′ ∈ Xi,a , (4.38)

i.e. that fPXi,a
,λi,a,ki,a

is a constant function. By the definition of the 0.5-pinball loss, we
further have

hi,a(x, y) =


−1

2 , if y > fPXi,a
,λi,a,ki,a

(x) ,
c ∈

[
−1

2 ,+
1
2

]
, if y = fPXi,a

,λi,a,ki,a
(x) ,

+1
2 , if yi < fPXi,a

,λi,a,ki,a
(x) ,

that is, |hi(x, y)| ≤ 1
2 for all (x, y) ∈ Xi,a × Y . Therefore,

|fPXi,a
,λi,a,ki,a

(x′)| ≤ 1
4 ∀x′ ∈ Xi,a .

For i ∈ N0, the definition of P(· |X = x) and that of the regionalization X i then yields that
y = 1 > fPXi,a

,λi,a,ki,a
(x) and hence hi,2(x, y) = −1

2 for PXi,2-almost all (x, y). Therefore,
(4.38) yields that indeed

fPXi,2 ,λi,2,ki,2(x′) = 1
4 ∀x′ ∈ Xi,2 .

At the same time, we have, for all i ∈ N0,

fPXi,1 ,λi,1,ki,1(x′) = 0 ∀x′ ∈ Xi,1 ,

because the function is constant by (4.38) and because all other possible constant functions
would lead to contradictions: fPXi,1 ,λi,1,ki,1 < 0 would by the definition of P(· |X = x) imply
that hi,1(x, y) = −1

2 for PXi,1-almost all (x, y), which would by (4.38) yield the contradiction
fPXi,1 ,λi,1,ki,1 ≡ 1

4 ≥ 0. Similarly, fPXi,1 ,λi,1,ki,1 > 0 would imply that

PXi,1

(
hi,1 = 1

2

)
≥ PXi,1

(
fPXi,1 ,λi,1,ki,1(x) > y

)
≥ PXi,1 (Xi,1 × {0}) ≥ 1

2
by the definition of P(· |X = x) and X i, which would by (4.38) yield the contradiction

fPXi,1 ,λi,1,ki,1 ≡ −1
2 ·
∫
hi,1(x, y) dPXi,1(x, y) ≤ −1

2 ·
(1

2 · 1
2 + 1

2 ·
(

−1
2

))
= 0 .

37ki,a is indeed a kernel on Xi,a because choosing the feature space Hi,a = R and the feature map
Φi,a : Xi,a → Hi,a , x 7→ 1 yields ki,a(x, x′) = 1 = ⟨Φi,a(x),Φi,a(x′)⟩Hi,a

for all x, x′ ∈ Xi,a.
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Summing up, we obtain for the respective localized SVMs (using the simplified definition
from Remark 2.2.8 which omits the weight functions because of the regionalizations being
partitioning):

fP,λ,k,X 0(x) =
0 , if x < 0 ,

1
4 , if x ≥ 0 ,

fP,λ,k,X n(x) =
0 , if x < 1

n
,

1
4 , if x ≥ 1

n
,

∀n ∈ N .

This yields

||fP,λ,k,X 0 − fP,λ,k,X n ||∞ = 1
4

for all n ∈ N, even though both localized SVMs that are being compared are based on
the same probability measure, regularization parameters and kernels, and the underlying
regionalizations become arbitrarily similar as n → ∞. On the other hand,

||fP,λ,k,X 0 − fP,λ,k,X n||L1(PX) = 1
8n

does indeed converge to 0 as n → ∞, i.e. as the regionalizations X 0 and X n become more
similar.

As suggested by the preceding examples, it will indeed be possible to derive meaningful
bounds on the L1(PX

i )-norm of the difference of two localized SVMs, i.e. to derive results
on the total L1-stability of localized SVMs. Before stating the corresponding theorems,
Assumption 4.4.1 from the preceding section first needs to be modified such that it fits the
situation of this section. For this, recall Definition 2.2.4 of the combined regionalization
X ∗

1,2 of two regionalizations X 1 and X 2, as much of the analysis of this section is based
on this combined regionalization and auxiliary local SVMs on its regions.

Assumption 4.4.9.

• Let L : X × Y ×R → [0,∞) be a convex, Lipschitz continuous loss function and let
L⋆ be its shifted version.

• For i = 1, 2, let X i := {Xi,1, . . . ,Xi,Ai
} be a partitioning regionalization of X of size

Ai ∈ N.

• For i = 1, 2, let Pi be a probability measure on X ×Y that is positive on the combined
regionalization X ∗

1,2 := {X ∗
1 , . . . ,X ∗

B} of X 1 and X 2.

• For i = 1, 2, let λi := (λi,1, . . . , λi,Ai
) ∈ (0,∞)Ai .

• For i = 1, 2, let ki := (ki,1, . . . , ki,Ai
) be a vector of bounded and measurable kernels

on X i with separable RKHSs Hi,a, a = 1, . . . , Ai.
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The main additional assumption coming into play compared to the previous section is
that the regionalizations need to be partitioning. Note that this comes with the slight
notation-wise advantage of being able to just use the simplified definition of localized
SVMs from Remark 2.2.8 and completely omit the weight functions and the associated
assumptions.

Similarly, the additional assumptions needed in results using the Wasserstein distance
in the bound need slight modifications as well:

Assumption 4.4.10.

• Let X ⊆ Rd for some d ∈ N.

• Let L be distance-based with representing function ψ such that ψ is differentiable
and ψ as well as its derivative ψ′ are both Lipschitz continuous.

• For a = 1, . . . , A2, let X2,a be complete.

• For a = 1, . . . , A2, let X̃2,a ⊇ X2,a with X̃2,a ⊆ Rd be open and assume that
k2,a = k̃2,a X2,a×X2,a for a kernel k̃2,a on X̃2,a which can be written as k̃2,a(x, x′) =
φ2,a(||x− x′||2) for all x, x′ ∈ X̃2,a, where φ2,a : R≥0 → R is a twice continuously
differentiable function satisfying φ2,a(0) − φ2,a(r) ≤

c2
k2,a

2 · r for all r ≥ 0 for some
ck2,a ≥ 0.

Before stating the results, some additional notation needs to be introduced. For i = 1, 2
and a = 1, . . . , Ai, the shortening notation Pi,a := Pi,Xi,a

(based on the local measures
defined in (2.6)) gets used, and additionally denote

Ji,a :=
{
b ∈ {1, . . . , B} | X ∗

b ⊆ Xi,a

}
̸= ∅ .

Further additional notation arises from the already mentioned auxiliary SVMs on the
regions X ∗

1 , . . . ,X ∗
B from X ∗

1,2 that are used in the results. For i = 1, 2 and b = 1, . . . , B,
denote by a(i, b) that index a ∈ {1, . . . , Ai} such that X ∗

b ⊆ Xi,a (which is well-defined
because of X i being partitioning) and by P∗

i,b := Pi,X ∗
b

and k∗
i,b := ki,a(i,b) X ∗

b
×X ∗

b
auxiliary

distributions and kernels on the sets X ∗
1 , . . . ,X ∗

B. By Berlinet and Thomas-Agnan (2004,
Theorem 6), k∗

i,b is actually a kernel (on X ∗
b ) again.

Even though, as explained at the beginning of this section (cf. Figure 4.4.1 and Ex-
ample 4.4.8), we cannot derive meaningful results on total sup-stability, it is now indeed
possible to prove the subsequent result on total L1-stability of localized SVMs.38 For this,
recall the definition of ξQ,b(X 1,X 2), for a probability measure Q on X , that was given in

38Theorem 4.4.11 is only stated with respect to the L1(PX
1 )- but not with respect to the L1(PX

2 )-norm.
This was done only for the sake of notational clarity, and the theorem of course also holds true with
respect to L1(PX

2 )-norm if the indices on the right hand side of the bound are adjusted accordingly,
which is immediately obvious if one interchanges the roles of the two localized SVMs whose difference gets
bounded.
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(4.7):

ξQ,b(X 1,X 2) :=
∣∣∣Q(X1,a(1,b)) − Q(X2,a(2,b))

∣∣∣
+ max

{
Q(X1,a(1,b)),Q(X2,a(2,b))

}
·

2∑
i=1

1
2 · QXi,a(i,b)

(X ∗
b ) ·

(
1 − QXi,a(i,b)

(X ∗
b )
)

+
√

QXi,a(i,b)
(X ∗

b ) ·
(
1 − QXi,a(i,b)

(X ∗
b )
) .

Theorem 4.4.11. Let Assumption 4.4.9 be satisfied. Denote

κb := max
{∣∣∣∣∣∣k1,a(1,b)

∣∣∣∣∣∣
∞
,
∣∣∣∣∣∣k2,a(2,b)

∣∣∣∣∣∣
∞

}
,

τb := min
{
λ1,a(1,b), λ2,a(2,b)

}
,

ρ1,b := max
{
PX

1 (X1,a(1,b)),PX
1 (X2,a(2,b))

}
,

for all b ∈ {1, . . . , B}. Then,

||fP1,λ1,k1,X 1 − fP2,λ2,k2,X 2||L1(PX
1 )

≤ |L|1 ·
A2∑

a=1
PX

1 (X2,a) ·
||k2,a||2∞
λ2,a

· dtv(P1,X2,a ,P2,X2,a)

+ |L|1 ·
B∑

b=1

(
ρ1,b · κ

2
b

2τ 2
b

·
∣∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣∣
+ PX

1 (X ∗
b ) ·

(
1

2τb

·
∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

+ κb

τb

·
√∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

)

+ κ2
b

τb

· ξPX
1 ,b(X 1,X 2)

)
.

Proof. In addition to the auxiliary distributions and kernels introduced prior to the theo-
rem, we also need auxiliary regularization parameters in this proof. Denote these parame-
ters by λ∗

i,j,b := (PX
j,Xi,a(i,b)

(X ∗
b ))−1λi,a(i,b) for i, j = 1, 2 and b = 1, . . . , B.

By applying the triangle inequality, the left hand side of the assertion can be expanded
as

||fP1,λ1,k1,X 1 − fP2,λ2,k2,X 2 ||L1(PX
1 ) ≤

∣∣∣∣∣∣fP1,λ1,k1,X 1 − fP1,λ∗
1,1,k∗

1,X ∗
1,2

∣∣∣∣∣∣
L1(PX

1 )

+
∣∣∣∣∣∣fP1,λ∗

1,1,k∗
1,X ∗

1,2
− fP1,λ∗

2,1,k∗
2,X ∗

1,2

∣∣∣∣∣∣
L1(PX

1 )

+
∣∣∣∣∣∣fP1,λ∗

2,1,k∗
2,X ∗

1,2
− fP2,λ2,k2,X 2

∣∣∣∣∣∣
L1(PX

1 )
(4.39)

with λ∗
i,j := (λ∗

i,j,1, . . . , λ
∗
i,j,B) and k∗

i := (k∗
i,1, . . . , k

∗
i,B) for i, j = 1, 2. We will now examine

the three norms from the right hand side of (4.39) separately:
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(i) For a function g : X ∗
b → R, denote by g̃ its zero-extension to X1,a(1,b) (respectively

to X1,a(1,b) × X1,a(1,b) if the function is instead defined on X ∗
b × X ∗

b ). Defining k◦
1,a :=∑

b∈J1,a
k̃∗

1,b yields for all a ∈ {1, . . . , A1} new local SVMs fP1,a,λ1,a,k◦
1,a

which are
defined as

fP1,a,λ1,a,k◦
1,a

= arg inf
f∈H◦

1,a

RL⋆,P1,a(f) + λ1,a ||f ||2H◦
1,a
. (4.40)

Now, combining Berlinet and Thomas-Agnan (2004, Theorem 5) and Meister and
Steinwart (2016, Lemma 2) yields that k◦

1,a is indeed a kernel on X1,a and that its
RKHS is given by

H◦
1,a =

f : X1,a → R

∣∣∣∣∣∣ f =
∑

b∈J1,a

f̃b, fb ∈ H∗
1,b for b = 1, . . . , B

 ,

with the decomposition of each such f ∈ H◦
1,a being unique because of the sets

X ∗
1 , . . . ,X ∗

B, the domains of the functions fb, being pairwise disjoint because X 1 and
X 2 being partitioning. Thus, the mentioned results also yield

||f ||2H◦
1,a

=
∑

b∈J1,a

||fb||2H∗
1,b

for all f ∈ H◦
1,a. Additionally, again because of the domains of the functions fb being

pairwise disjoint, it is possible to also expand the risk from (4.40) similarly to the
preceding expansion of the H◦

1,a-norm:

RL⋆,P1,a(f) =
∫

X1,a

L⋆(x, y, f(x)) dP1,a(x, y)

=
∑

b∈J1,a

∫
X ∗

b

L⋆(x, y, fb(x)) dP1,a(x, y)

=
∑

b∈J1,a

PX
1,a(X ∗

b ) ·
∫

X ∗
b

L⋆(x, y, fb(x)) dP∗
1,b(x, y)

=
∑

b∈J1,a

PX
1,a(X ∗

b ) · RL⋆,P∗
1,b

(fb) ,

where (2.6) was applied in the third step.
Plugging this into (4.40) yields

fP1,a,λ1,a,k◦
1,a

= arg inf
f∈H◦

1,a

∑
b∈J1,a

(
PX

1,a(X ∗
b ) · RL⋆,P∗

1,b
(fb) + λ1,a ||fb||2H∗

1,b

)

=
∑

b∈J1,a

˜arg inf
fb∈H∗

1,b

(
PX

1,a(X ∗
b ) · RL⋆,P∗

1,b
(fb) + λ1,a ||fb||2H∗

1,b

)

=
∑

b∈J1,a

˜arg inf
fb∈H∗

1,b

(
RL⋆,P∗

1,b
(fb) + λ1,a

PX
1,a(X ∗

b )
||fb||2H∗

1,b

)

=
∑

b∈J1,a

f̃P∗
1,b,λ∗

1,1,b
,k∗

1,b
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and thus

fP1,λ∗
1,1,k∗

1,X ∗
1,2

=
B∑

b=1
f̂P∗

1,b,λ∗
1,1,b

,k∗
1,b

=
A1∑

a=1

∑
b∈J1,a

f̂P∗
1,b,λ∗

1,1,b
,k∗

1,b
=

A1∑
a=1

f̂P1,a,λ1,a,k◦
1,a
.

The first difference on the right hand side of (4.39) can therefore also be interpreted as
the difference between two localized SVMs that are based on the same regionalization
X 1 (and on the same probability measure and vector of regularization parameters).
An application of Theorem 4.4.6 hence yields

∣∣∣∣∣∣fP1,λ1,k1,X 1 − fP1,λ∗
1,1,k∗

1,X ∗
1,2

∣∣∣∣∣∣
L1(PX

1 )
=
∣∣∣∣∣∣
∣∣∣∣∣∣fP1,λ1,k1,X 1 −

A1∑
a=1

f̂P1,a,λ1,a,k◦
1,a

∣∣∣∣∣∣
∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
A1∑

a=1
PX

1 (X1,a)

·

 1
2λ1,a

·
∣∣∣∣∣∣k1,a − k◦

1,a

∣∣∣∣∣∣
L1(PX

1,a⊗PX
1,a)

+
max

{
||k1,a||∞ ,

∣∣∣∣∣∣k◦
1,a

∣∣∣∣∣∣
∞

}
λ1,a

·
√∣∣∣∣∣∣k1,a − k◦

1,a

∣∣∣∣∣∣
L1(PX

1,a⊗PX
1,a)

 .
Because

k◦
1,a(x, x′) =

k1,a(x, x′) , if ∃ b ∈ J1,a : x, x′ ∈ X ∗
b ,

0 , else ,

we furthermore know that max
{
||k1,a||∞ ,

∣∣∣∣∣∣k◦
1,a

∣∣∣∣∣∣
∞

}
= ||k1,a||∞ and

∣∣∣∣∣∣k1,a − k◦
1,a

∣∣∣∣∣∣
L1(PX

1,a⊗PX
1,a)

=
∫

X1,a

∫
X1,a

∣∣∣k1,a(x, x′) − k◦
1,a(x, x′)

∣∣∣ dPX
1,a(x′) dPX

1,a(x)

=
∑

b∈J1,a

∫
X ∗

b

∫
X1,a\X ∗

b

|k1,a(x, x′)| dPX
1,a(x′) dPX

1,a(x)

≤ ||k1,a||2∞ ·
∑

b∈J1,a

PX
1,a(X ∗

b ) ·
(
1 − PX

1,a(X ∗
b )
)

which finally results in∣∣∣∣∣∣fP1,λ1,k1,X 1 − fP1,λ∗
1,1,k∗

1,X ∗
1,2

∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
A1∑

a=1
PX

1 (X1,a) ·

 ||k1,a||2∞
2λ1,a

·
∑

b∈J1,a

PX
1,a(X ∗

b ) ·
(
1 − PX

1,a(X ∗
b )
)

+ ||k1,a||2∞
λ1,a

·
√ ∑

b∈J1,a

PX
1,a(X ∗

b ) ·
(
1 − PX

1,a(X ∗
b )
) .
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(ii) The second norm on the right hand side of (4.39) already consists of the difference of
two localized SVMs that are based on the same regionalization X ∗

1,2 (and the same
probability measure), without us needing to make any changes beforehand. We can
therefore directly apply Theorem 4.4.6 and obtain∣∣∣∣∣∣fP1,λ∗

1,1,k∗
1,X ∗

1,2
− fP1,λ∗

2,1,k∗
2,X ∗

1,2

∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
B∑

b=1
PX

1 (X ∗
b ) ·

 (κ∗
b)2

2(τ ∗
1,b)2 ·

∣∣∣λ∗
1,1,b − λ∗

2,1,b

∣∣∣
+ 1

2τ ∗
1,b

·
∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

+ κ∗
b

τ ∗
1,b

·
√∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

 (4.41)

with

κ∗
b := max

{∣∣∣∣∣∣k∗
1,b

∣∣∣∣∣∣
∞
,
∣∣∣∣∣∣k∗

2,b

∣∣∣∣∣∣
∞

}
≤ max

{∣∣∣∣∣∣k1,a(1,b)

∣∣∣∣∣∣
∞
,
∣∣∣∣∣∣k2,a(2,b)

∣∣∣∣∣∣
∞

}
= κb ,

because k∗
i,b and ki,a(i,b) coincide everywhere k∗

i,b is defined, and

τ ∗
1,b := min

{
λ∗

1,1,b, λ
∗
2,1,b

}
≥ min

{
λ1,a(1,b), λ2,a(2,b)

}
= τb

because of λ∗
i,1,b being defined as (PX

1,Xi,a(i,b)
(X ∗

b ))−1λi,a(i,b). Thus, (4.41) still holds
true after replacing κ∗

b and τ ∗
1,b by κb and τb. Additionally, applying the definition of

λ∗
i,1,b again as well as the definition of PX

1,Xi,a(i,b)
yields

∣∣∣λ∗
1,1,b − λ∗

2,1,b

∣∣∣ = 1
PX

1 (X ∗
b )

·
∣∣∣λ1,a(1,b) · PX

1 (X1,a(1,b)) − λ2,a(2,b) · PX
1 (X2,a(2,b))

∣∣∣
≤ 1

PX
1 (X ∗

b )
·
(
λ1,a(1,b) ·

∣∣∣PX
1 (X1,a(1,b)) − PX

1 (X2,a(2,b))
∣∣∣

+ PX
1 (X2,a(2,b)) ·

∣∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣∣ )
as well as analogously∣∣∣λ∗

1,1,b − λ∗
2,1,b

∣∣∣ ≤ 1
PX

1 (X ∗
b )

·
(
λ2,a(2,b) ·

∣∣∣PX
1 (X1,a(1,b)) − PX

1 (X2,a(2,b))
∣∣∣

+ PX
1 (X1,a(1,b)) ·

∣∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣∣ ) ,
and hence∣∣∣λ∗

1,1,b − λ∗
2,1,b

∣∣∣
≤ 1

PX
1 (X ∗

b )
·
(
τb ·

∣∣∣PX
1 (X1,a(1,b)) − PX

1 (X2,a(2,b))
∣∣∣+ ρ1,b ·

∣∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣∣ ) .
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Plugging this into (4.41) finally yields∣∣∣∣∣∣fP1,λ∗
1,1,k∗

1,X ∗
1,2

− fP1,λ∗
2,1,k∗

2,X ∗
1,2

∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
B∑

b=1

ρ1,b · κ
2
b

2τ 2
b

·
∣∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣∣
+ PX

1 (X ∗
b ) ·

(
1

2τb

·
∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

+ κb

τb

·
√∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

)

+ κ2
b

τb

·
∣∣∣PX

1 (X1,a(1,b)) − PX
1 (X2,a(2,b))

∣∣∣
 .

(iii) The third norm on the right hand side of (4.39) can be analyzed similarly to the first
one. Let the (̃·)-notation now denote zero-extensions to X2,a(2,b) instead of X1,a(1,b).
Analogously to (i), it can be shown that

fP1,λ∗
2,1,k∗

2,X ∗
1,2

=
B∑

b=1
f̂P∗

1,b,λ∗
2,1,b

,k∗
2,b

=
A2∑

a=1

∑
b∈J2,a

f̂P∗
1,b,λ∗

2,1,b
,k∗

2,b
=

A2∑
a=1

f̂P1,X2,a
,λ2,a,k◦

2,a
,

where k◦
2,a := ∑

b∈J2,a
k̃∗

2,b for a = 1, . . . , A2. We can thus also interpret the third
difference on the right hand side of (4.39) as the difference between two localized
SVMs that are based on the same regionalization X 2 (and on the same vector of
regularization parameters) and apply Theorem 4.4.6:∣∣∣∣∣∣fP1,λ∗

2,1,k∗
2,X ∗

1,2
− fP2,λ2,k2,X 2

∣∣∣∣∣∣
L1(PX

1 )

=
∣∣∣∣∣∣
∣∣∣∣∣∣

A2∑
a=1

f̂P1,X2,a
,λ2,a,k◦

2,a
− fP2,λ2,k2,X 2

∣∣∣∣∣∣
∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
A2∑

a=1
PX

1 (X2,a) ·

 ||k2,a||2∞
λ2,a

· dtv(P1,X2,a ,P2,X2,a)

+ ||k2,a||2∞
2λ2,a

·
∑

b∈J2,a

PX
1,X2,a

(X ∗
b ) ·

(
1 − PX

1,X2,a
(X ∗

b )
)

+ ||k2,a||2∞
λ2,a

·
√ ∑

b∈J2,a

PX
1,X2,a

(X ∗
b ) ·

(
1 − PX

1,X2,a
(X ∗

b )
) ,

where we employed that max{||k2,a||∞ , ||k◦
2,a||∞} = ||k2,a||∞ and∣∣∣∣∣∣k2,a − k◦

2,a

∣∣∣∣∣∣
L1(PX

1,X2,a
⊗PX

1,X2,a
)

≤ ||k2,a||2∞ ·
∑

b∈J2,a

PX
1,X2,a

(X ∗
b ) ·

(
1 − PX

1,X2,a
(X ∗

b )
)
,

which follows in the same way as the analogous statements in (i).
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Plugging these three bounds into (4.39) and additionally observing

Ai∑
a=1

PX
1 (Xi,a) ·

 ||ki,a||2∞
2λi,a

·
∑

b∈Ji,a

PX
1,Xi,a

(X ∗
b ) ·

(
1 − PX

1,Xi,a
(X ∗

b )
)

+ ||ki,a||2∞
λi,a

·
√ ∑

b∈Ji,a

PX
1,Xi,a

(X ∗
b ) ·

(
1 − PX

1,Xi,a
(X ∗

b )
)

≤
Ai∑

a=1

∑
b∈Ji,a

PX
1 (Xi,a) ·

||ki,a||2∞
λi,a

·

1
2 · PX

1,Xi,a
(X ∗

b ) ·
(
1 − PX

1,Xi,a
(X ∗

b )
)

+
√

PX
1,Xi,a

(X ∗
b ) ·

(
1 − PX

1,Xi,a
(X ∗

b )
)

≤
B∑

b=1
ρ1,b · κ

2
b

τb

·

PX
1,Xi,a(i,b)

(X ∗
b ) ·

(
1 − PX

1,Xi,a(i,b)
(X ∗

b )
)

2

+
√

PX
1,Xi,a(i,b)

(X ∗
b ) ·

(
1 − PX

1,Xi,a(i,b)
(X ∗

b )
) ,

i = 1, 2, yields the assertion.

Even though allowing for differing regionalizations makes this result on total stability
look more complicated than those on regionalization-subtotal stability from Section 4.4.1
at first glance, the statement indeed keeps the nice structure of bounding the difference
between the two localized SVMs based on the difference between the vectors of local mea-
sures, vectors of regularization parameters, vectors of kernels, and now additionally the
regionalizations. The main difference to Section 4.4.1 lies in the fact that we only derived
such a result on L1- but not on sup-consistency because of the difficulties explained in the
context of Figure 4.4.1.

Looking at the proof of Theorem 4.4.11, an analogous result using the Wasserstein dis-
tance instead of the total variation distance can not be derived by just replacing all occur-
rences of Theorem 4.4.6 (result on regionalization-subtotal Lp-stability using the total vari-
ation distance) by Theorem 4.4.7 (analogous result using the Wasserstein distance) because
the auxiliary kernels k◦

i,a from the proof can not be written as k◦
i,a(x, x′) = φ◦

i,a(||x− x′||2)
for functions φ◦

i,a—even if one assumes that the kernels ki,a can be written in such a way—
as they do not only depend on ||x− x′||2 but also on whether x and x′ are contained in the
same X ∗

b ∈ X ∗
1,2. However, the situation at hand can easily be reduced to two parts which

can be handled by Theorem 4.4.11 and Theorem 4.4.7 respectively, yielding the following:

Theorem 4.4.12. Let Assumptions 4.4.9 and 4.4.10 be satisfied. Denote

κb := max
{∣∣∣∣∣∣k1,a(1,b)

∣∣∣∣∣∣
∞
,
∣∣∣∣∣∣k2,a(2,b)

∣∣∣∣∣∣
∞

}
,

τb := min
{
λ1,a(1,b), λ2,a(2,b)

}
,

ρ1,b := max
{
PX

1 (X1,a(1,b)),PX
1 (X2,a(2,b))

}
,
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for all b ∈ {1, . . . , B}. Then,

||fP1,λ1,k1,X 1 − fP2,λ2,k2,X 2||L1(PX
1 )

≤
A2∑

a=1
PX

1 (X2,a) ·
||k2,a||∞
λ2,a

· max
{

|ψ|1ck2,a + (−2φ′
2,a(0))1/2 |ψ|1|ψ′|1 ||k2,a||2∞

λ2,a

, |ψ′|1 ||k2,a||∞

}
· dW(P1,X2,a ,P2,X2,a)

+ |L|1 ·
B∑

b=1

(
ρ1,b · κ

2
b

2τ 2
b

·
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∣∣∣
+ PX

1 (X ∗
b ) ·

(
1

2τb

·
∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

+ κb

τb

·
√∣∣∣∣∣∣k∗

1,b − k∗
2,b

∣∣∣∣∣∣
L1((P∗

1,b)X⊗(P∗
1,b)X)

)

+ κ2
b

τb

· ξPX
1 ,b(X 1,X 2)

)
.

Proof. Bound ||fP1,λ1,k1,X 1 − fP2,λ2,k2,X 2 ||L1(PX
1 ) by

||fP1,λ1,k1,X 1 − fP2,λ2,k2,X 2||L1(PX
1 )

≤ ||fP1,λ1,k1,X 1 − fP1,λ2,k2,X 2 ||L1(PX
1 ) + ||fP1,λ2,k2,X 2 − fP2,λ2,k2,X 2 ||L1(PX

1 ) .

The assertion then follows directly from applying Theorem 4.4.11 to the first summand on
the right hand side and Theorem 4.4.7 to the second one.
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Chapter 5

Conclusion and Outlook

The past few years have seen a rapid surge in popularity of machine learning and artificial
intelligence. Machine learning approaches have been greatly successful at learning un-
known relations between input and output variables in scenarios that are far too complex
to model them by hand or by classic statistical methods. Some such approaches—like deep
learning—take their popularity mainly from this empirical success and have their theoret-
ical justification just slowly catching up. Support Vector Machines (SVMs) on the other
hand are already investigated very well and are known to possess many desirable theoret-
ical properties, even though there are still some open questions. In addition, even though
SVMs also observe good performance if the training data set is not too large, they do—for
large data sets—suffer from their computational requirements growing super-linearly in
the size of the training data set (with respect to computation time as well as computer
memory).

The contribution of this thesis is twofold: On the one hand, we further refined the
list of theoretical properties of SVMs by deriving new properties as well as considerably
generalizing some that were already known. On the other hand, we tackled the super-linear
computational requirements of SVMs by also investigating analogous theoretical properties
of localized SVMs, which are based on the idea of dividing the input space into different
spatial regions and then training local SVMs on these regions instead of a single global
SVM on the whole input space. In addition to reducing the computational costs, localized
SVMs can also offer benefits over regular SVMs (as well as over other approaches that also
reduce the computational costs of SVMs) when it comes to the quality of predictions—
as we discussed in Section 2.2.1, with Example 2.2.1 showing this possible improvement
regarding the quality of predictions for simulated data.

The examined theoretical properties can be split into two groups which correspond to
Chapter 3 and Chapter 4 respectively, with Chapter 3 containing the results from the
peer-reviewed papers Köhler (2024a,b) and Chapter 4 those from the peer-reviewed paper
Köhler and Christmann (2022), but both chapters also adding previously unpublished
results. To be more specific, Chapter 3 gives results on different types of consistency—
namely risk consistency, Lp-consistency and H-consistency—, with Section 3.2 notably
containing results that are valid not only for (localized) SVMs, but which instead state very
general connections between different types of consistency that can also be applied to other
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learning methods. It was shown that risk consistency—for the risk employing a distance-
based loss function of growth type p—and Lp-consistency are equivalent under relatively
mild assumptions (Theorems 3.2.1 and 3.2.3) and that both are implied by H-consistency
(Corollary 3.2.4). These mild assumptions however include the finiteness of the averaged
p-th moment of the distribution P. As P is usually unknown in practice, this moment
condition is disadvantageous and we hoped to be able to eliminate it by switching to shifted
loss functions, which is an approach that can in many cases lead to the moment condition
not being required anymore (at least for loss functions of growth type 1), see Section 2.1.4.
Surprisingly and even though we succeeded at showing that the moment condition is indeed
not required for L1-consistency implying risk consistency (Theorem 3.2.13) as well as for
the connection to H-consistency (Corollary 3.2.14) when using shifted loss functions, it
was however possible to prove that this benefit of shifted loss functions does not take full
effect for the other direction of the connection between Lp- and risk consistency: It is not
possible to just omit the moment condition and still obtain Lp-consistency directly from
risk consistency, even when using shifted loss functions (Propositions 3.2.6 and 3.2.8). It
might however be possible to replace the moment condition by some different condition(s)
that might be less restrictive. We succeeded in deriving such alternative and in some sense
weaker (see Examples 3.2.11 and 3.2.12) conditions in the special case of the applied loss
function being the pinball loss (Theorem 3.2.10). An interesting open question is how such
alternative conditions could look like for other loss functions and especially whether it is
possible to derive weaker conditions that can replace the moment condition not only for
singular loss functions such as the pinball loss but instead for wider classes of loss functions.

The general connections between the different types of consistency were then used as an
aid in deriving new consistency results for SVMs in Section 3.3 as well as for localized SVMs
in Section 3.4. To our knowledge, such results for general loss functions only existed for
risk consistency but not for Lp- and H-consistency before, which is in parts due to SVMs
being defined as minimizers of regularized risk functionals and risk consistency therefore
being a property that is more closely connected to this definition than the other two types
of consistency are. We thus derived results on Lp- and H-consistency which are completely
new in that generality (Sections 3.3.1 and 3.3.3 to 3.3.5 for regular SVMs and Section 3.4.2
for localized SVMs).39

Regarding risk consistency, we have to differentiate between regular and localized SVMs.
For regular SVMs, there already existed very general results on risk consistency. The contri-
bution of this thesis is to apply the discovered connection between Lp- and risk consistency
to derive slightly modified conditions which also yield risk consistency (Corollary 3.3.5):
On the one hand, we were able to slightly relax the conditions imposed on the sequence of
regularization parameters λn, requiring λp∗

n n → ∞ only for p∗ = max{p + 1, p(p + 1)/2}
instead of for p∗ = max{2p, p2} as it was required by Christmann and Steinwart (2007,
Theorem 12), where p again denotes the growth type of the applied distance-based loss
function. This does not change the condition if p = 1 but constitutes a relaxation whenever
p > 1 (Example 3.3.1). On the other hand, we had to add the assumption of the Bayes
function f ∗

L,P PX-a.s. uniquely existing as a tradeoff. For localized SVMs, existing re-
39Note that the results on H-consistency were only derived for regular but not for localized SVMs

because there does not necessarily exist a self-evident RKHS H containing the respective localized SVMs.

150



sults such as Hable (2013, Theorem 1) and Dumpert and Christmann (2018, Theorem 3.1)
indeed offer significantly less generality than our Theorem 3.4.14, for example requiring
special methods for obtaining the regionalizations underlying the localized SVMs, the out-
put space Y being bounded, the regionalization not changing as the size of the training
data set increases or only considering Lipschitz continuous loss functions.40

In addition to consistency, we also examined the total stability of SVMs and localized
SVMs, which was the topic of Chapter 4. That is, we looked at the effect that changes
in the underlying probability measure P respectively data set as well as in the applied
regularization parameter λ and kernel k—and in case of localized SVMs additionally in
the regionalization X —have on the resulting (localized) SVM. More specifically, we derived
bounds of the type

||fP1,λ1,k1 − fP2,λ2,k2||• ≤ c1 · d1(P1,P2) + c2 · d2(λ1, λ2) + c3 · d3(k1, k2)

in the case of global SVMs and analogous bounds that additionally consider the difference
between the two underlying regionalizations in the case of localized SVMs. Note that the
constants c1, c2, c3 are known, see Sections 4.3.4 and 4.4. We derived such bounds for
||·||• being either the supremum norm or a suitable Lp-norm and called the correspond-
ing properties total sup-stability respectively total Lp-stability.41 The motivation behind
investigating total stability is the same as that behind investigating classic statistical ro-
bustness: In practice, there can always be slight errors in the data one has at hand—be
it small measurement or rounding errors affecting all data points or more drastic errors
affecting a smaller share of the data points, for example stemming from human errors in
writing down the data—and one would hope that such slight errors do only lead to small
deviations in the resulting SVM if it is compared to the one that would have been ob-
tained by using the “correct” data. Total stability takes this approach one step further
and additionally considers the effect of slight changes in regularization parameter, kernel
and regionalization.

To derive the corresponding bounds, each influence was examined separately, starting
with the probability measure. Here, we considered two different ways to measure the differ-
ence between P1 and P2, namely the total variation distance and the Wasserstein distance.
The total variation distance had already been used by Christmann et al. (2018) whose
bound we slightly generalized by also allowing for loss functions that are not differentiable,
such as the pinball loss (Proposition 4.3.3). The Wasserstein distance on the other hand
had already been used in a stability result by Eckstein et al. (2023), which we however
also generalized in several aspects, see also the discussion preceding the result in Propo-
sition 4.3.5. In Section 4.2.1, we discussed in detail how both the total variation and the
Wasserstein distance behave in different possible scenarios. For example, we noted that the
Wasserstein distance offers the advantage of also being able to provide meaningful results
if two empirical distributions are being compared, where one is obtained from the other

40Even though our conditions can generally be seen as the less restrictive ones, this is no strict comparison
and there also exist situations in which those by Hable (2013) or those by Dumpert and Christmann (2018)
are satisfied even though ours are not, see also the discussion at the beginning of Section 3.4.3.

41In contrast to the results on Lp-consistency in Chapter 3, the loss function did not need to be distance-
based of growth type p in these stability results.
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by slightly shifting the whole data set (Example 4.2.8). Looking at minimal examples, we
saw that the derived bound using the Wasserstein distance can indeed yield considerably
better results than the one using the total variation distance in such a situation, but that
this comparison flips if the shift between the two underlying data sets increases (Exam-
ple 4.3.8). For this reason, each of the two bounds has its merit. Analogous minimal
examples further showed that the bound using the total variation distance is sharp up to
a factor of at most 2 (Example 4.3.4). It remains an open question whether there also
exist examples that completely exhaust the bound, thus making it sharp, or whether it is
possible to further improve the bound.

The bounds regarding the differences between regularization parameters and kernels are
also similar in shape to bounds already derived by Christmann et al. (2018). They how-
ever also considerably generalize the bounds by Christmann et al. (2018), especially the
one considering the difference between the kernels, which does not only eliminate the need
for the loss function to be differentiable but also additional assumptions on the regular-
ization parameter respectively kernels that were required by Christmann et al. (2018).
In addition to the achieved generalization, Proposition 4.3.10 also improves the existing
bounds regarding the difference between the regularization parameters by a factor of at
least 2, thus making it asymptotically sharp (Example 4.3.12). The bound with respect to
the difference between the kernels on the other hand pays for the mentioned considerable
generalizations by adding a non-linear term to the bound

||fP,λ,k1 − fP,λ,k2 ||∞ ≤ |L|1
λ

·
(1

2 · ||k1 − k2||∞ + max{||k1||∞ , ||k2||∞} ·
√

||k1 − k2||∞
)
,

which dominates the bound whenever the two kernels are reasonably close. For minimal
examples such as the one considered in Example 4.3.16, the linear part of the bound
actually suffices and is sharp. So far, we have, however, not been able to actually eliminate
the non-linear part from the bound (without imposing additional assumptions like the ones
used by Christmann et al., 2018), for which reason it remains an open question whether
this is possible or whether there also exist examples for which the linear part does not
suffice.

These different bounds were then combined in order to obtain results on total stability
of SVMs (Section 4.3.4) as well as localized SVMs (Section 4.4.1). To be more specific, the
bounds directly resulting from this actually only yielded regionalization-subtotal stability
instead of total stability in the latter case, because our notion of total stability in the local-
ized case additionally includes stability with respect to changes in the regionalization. For
deriving such stability also with respect to changes in the regionalization, it was necessary
to define a notion of difference between two regionalizations. This was less straightforward
than for the difference between regularization parameters, kernels and—because there al-
ready existed many well-investigated distance measures for this, such as the total variation
and the Wasserstein distance—also probability measures. In Section 4.2.4, we introduced
such a possible notion of difference and gave examples on its behavior showing that it
successfully captures what one would intuitively describe as regionalizations being similar
or dissimilar, even though it does not define a metric because it does in general not satisfy
the triangle inequality (Example 4.2.18). With this, it was possible to indeed derive results

152



on total stability of localized SVMs (i.e. bounds for the difference between localized SVMs
that also differ with respect to their regionalization) as well in Section 4.4.2, however only
on L1-stability but not on sup-stability as we were able to give examples showing that it is
not possible to derive meaningful results on total sup-stability of localized SVMs (Exam-
ple 4.4.8). For future work, it might be interesting to examine whether it is also possible
to change the derived bound in such a way that it uses a notion of difference between
regionalizations which actually defines a metric.

In summary, the focus of this thesis was to mathematically derive certain properties—
consistency and total stability—of SVMs and localized SVMs. Whereas we still also in-
cluded empirical investigations (based on simulated data) affirming the results on con-
sistency (Examples 3.4.13 and 3.4.16), we did for this reason not perform any empirical
studies on total stability. Hence, another extension of this thesis that might be of interest is
to, for example, look at simulated or real-world data and compute (localized) SVMs based
on different probability measures,42 regularization parameters, kernels and regionalizations,
and then to compare their actual difference with the bounds that were derived in Chapter 4
(which we did analytically for minimal examples in Section 4.3). It has to be noted that the
bounds will oftentimes take values that greatly exceed the actual differences—even though
the minimal examples from Section 4.3 showed that parts of the bounds are indeed sharp
or at least almost sharp—, which is however a completely natural drawback of their strong,
non-probabilistic nature and generality that cannot be circumvented without impeding at
least one of these two desirable properties.

42This can for example be achieved by taking different parts of the available data into account for
computing the different (localized) SVMs.
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