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ABSTRACT Hand gestures are a form of natural communication used in human-computer interaction,
however, when gestures are video-based, extraction of features for classification is complex. Current machine
learning models struggle to achieve high accuracies when using videos recorded in realistic environments.
In this work, we propose a hybrid architecture consisting of a recurrent neural network (RNN), including a
long short-termmemory layer, on top of a convolutional neural network, to recognize dynamic hand gestures
recorded in realistic environments. We used a dataset of 6 dynamic hand gestures: scroll-left, scroll-right,
scroll-up, scroll-down, zoom-in, and zoom-out. Our implemented inception-v3 model extracted features and
provided the wrapped frame-feature map as input for the RNN, which performs the final classification. The
proposed model classifies gestures with an average accuracy of 83.66%. By doing so, we intend to narrow
the disparity between realistic environments and high accuracy. Finally, we compare the accuracy of our
proposed dynamic hand gesture recognition model with that of the benchmark.

INDEX TERMS Human-computer interaction, hand gesture recognition, video hand gesture, dynamic hand
gesture, machine learning, deep learning, convolution neural networks, CNN, recurrent neural network,
RNN, long-short-term memory, LSTM, inception model, inception-v3 architecture, hybrid architecture,
feature extraction.

I. INTRODUCTION
Human-Computer Interaction (HCI) describes the relation-
ship between humans and machines. With the increase
in information technology in the last decades, computer
systems have been integrated into our lives and are being
relied upon in many everyday life activities [1]. This
development requires a more natural and accessible HCI such
as communicating through gestures [2].
The application of gesture recognition affects many

relevant research areas such as smart home devices [3], gami-
fication [4], education [5], driving, and even lie detection [6].
Gestures describe body movements transmitting and

exchanging important information with the environment.
Nonverbal communication plays an important role in human
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interactions as it is a natural and intuitive way to convey
messages [6], [7]. In comparison to face, fingers, arms,
and body, hand gestures are the most widely used in
human-to-human interaction, therefore, easily applicable in
communicating with computers [8].

Research on gesture recognition derives from glove-based
devices, which the user had to put on and as a result,
the sensors detected hand activity. However, this method is
considered inconvenient and unsuitable for daily life [9].
A more suitable approach is vision-based detection. Gestures
are captured by a video camera which creates a sequence
of images [10], [11]. The use of deep learning algorithms,
especially convolutional networks (CNN), contributes to
the high performance of hand gesture recognition and
demonstrates high accuracy [1], [12]. This method provides
end-users with the opportunity to naturally interact with
computers without requiring special equipment. However,
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vision-based gesture recognition encounters a range of
challenges: real-time transmission of data, non-detection of
unusual gestures, and, consequently, lack of response from
the machine when faced with an unusual gesture [7].
Abdullahi and Chamnongthai [13], [14] showed a recog-

nition technology that requires minimal external equipment
and recognizes hand gestures even in realistic environments.
In both projects, they have developed novel methods to enable
American Sign Language (ASL) detection using a body-worn
Leap Motion Controller (LMC) that records skeletal videos
of the hands [13], [14]. With their novel architecture, they
have made it possible on the one hand to classify dynamic
hand signs well and also to include noise and errors in hand
motion tracking [13]. And on the other hand, they have also
developed an innovative method to distinguish similar hand
signs [14]. However, the authors were forced to generate
their own data, as extensive public datasets on 3D skeletal
information about the hand and where the subject is in motion
hardly exist [13], [14]. The data shown and constructed by
the authors, reveals that on the one hand the environment
is realistic, but on the other hand, the focus of the camera
is on the hands rather than on the whole body of the
subjects.

Overall and most importantly, realistic environments
require training with datasets consisting of images taken in
natural conditions. In previous works, most gestures were
very close to the camera enabling easier conditions for
a machine to detect and classify hand gestures in ideal
environments or with clear focus to the hands. However,
images of real-life gestures include other objects, people
in the background, and other elements [15]. Figure 1
demonstrates the works, which achieved high accuracy
using datasets with perfect environments,1 whereas, realistic
environments reduce the robustness of algorithms. This
presents a research gap in hand gesture recognition.

FIGURE 1. Current research gap between realistic environment and high
accuracy.

The research gap also includes the need for a possibility
for HCI in which subjects can simply make gestures in

1Perfect environment is defined as the following: no objects, or people in
the background, only hands or upper body are visible.

their natural environment with which they can interact with
machines and do not have to learn a sometimes complex type
of sign language. This requires an innovative method that
can classify recordings of subjects’ bodies in such a way
that even unconscious gestures are not misrecognized. The
basis for this is a new comprehensive data set that contains
entire subjects performing simple gestures, without focusing
on their hands.

In the following, we are aiming to discover to what extent
a machine can detect and recognize hand gestures in realistic
environments with the use of a deep learning model. Datasets
capturing images of real-life gestures including other
objects, people in the background, and other elements are
required to test and train deep-learning models for real-life
usage.

Concerning the research gap, our main contributions are as
follows:

1) We have developed a novel hybrid deep learning
architecture that is both computationally effective and quite
capable of classification.

2) With an average accuracy of 83.66%, we have suc-
cessfully managed to classify a new comprehensive dataset
on hand gesture recognition, with competitively comparable
results.

3) The architecture we show enables a system suitable for
real-world use, inwhich users can be in realistic environments
and without external equipment. As well as no need to
focus on the hands for gesture recognition. And in which
unintentional gestures are not misclassified and the subject’s
motion is taken into account.

In summary, with our novel deep learning architecture,
we are creating a possible new basis for modern HCI with
hand gesture recognition

This work is structured as follows: First, we provide an
overview of the related work followed by a presentation
of the used method, including a description of the dataset,
applied approach, data pre-processing, and the evaluation of
the model. After, we present the achieved results, followed
by a discussion. Finally in the conclusion, we point out the
limitations and describe future work.

II. RELATED WORK
A. EVOLUTION OF MODERN CONVOLUTIONAL NEURAL
NETWORKS
CNNs are a specific type of deep learning architecture,
that combines feature extraction and final classification
into a single step. By convolution and pooling methods,
they can optimize the feature extraction methods and
thereby improve the final classification [16]. Under the
name back-propagation algorithm, the foundation for today’s
CNNs was laid back in 1990, by establishing a network
that could recognize handwritten digits [17]. One of the
main applications of CNNs lies within image and video
classification as well as object recognition, and to this day
they are state-of-the-art for these applications [18]. However,
the networks of that time had little to do with today’s CNNs
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and could not be used for more complex image and video
classifications [19].

The first real breakthrough with more complex tasks
was achieved by Krizhevsky et al. [20] with their CNN
architecture AlexNet, which was the first model to win an
ImageNet competition. ImageNet represents one of the most
used image datasets for research. Building on this success,
other architectures were able to further improve classification
accuracy: VGGNet [21], GoogleNet (Inception Models) [22]
and ResNet [23]. The trend of themodels was to increase their
depth and complexity and thus they have gained classification
accuracy. The increasing complexity of the models has also
increased the computational power required, which has made
the models less and less practical for real-world use with less
powerful computing devices [19].
However, the current trend and state-of-the-art of classic

CNN architectures is trying to move back towards less
complex and more light-weights models that can also
be used on mobile devices or in general in real-world
scenarios [18].

EXCERPT ON DEEP LEARNING FOR VIDEO CLASSIFICATION
Basically, there are five different model architectures for
video classification tasks. 2-dimensional (2D) CNNs are
the most computationally inexpensive among them. They
use classical CNNs to perform feature extraction for the
individual frames and then use state-of-the-art classifica-
tion models to classify the fused features of all frames.
3-dimensional (3D)CNNs aremore complex than 2DCNNs,
and take the approach of adding another dimension to the
CNN to include the movements between individual frames.
Also Two-Stream Approaches are computationally quite
expensive in that they use both a CNN for the extraction
of spatial features and parallel a Recurrent Neural Network
(RNN) to detect the temporal features. Both feature vectors
are then fused for the final classification. RNNs can also be
used individually for classification, and thus represent a less
complex architecture compared to two-stream approaches.
There are alsoHybrid Approaches, in which CNN and RNN
architectures are combined to be able to include both spatial
and temporal features. Regarding RNNs, it can be seen that
long short-term memory (LSTM) and gated recurrent unit
(GRU) networks perform best and are therefore the two most
frequently used networks [24].
Given the complexity of the models, it must be noted that

the inclusion of optical flow via RNNs can lead to better
classification results on the one hand, but on the other hand
requires very high computing power, which makes real-world
use more difficult [24].

B. GESTURE RECOGNITION WITH DEEP LEARNING
There are numerous studies aiming to recognize hand
gestures with the aid of deep learning. In the following
section, we will review the most notable works.

Many papers achieved excellent technical accuracy in
research of both static and dynamic hand gesture recog-
nition [25], [26], [27]. Static hand gesture recognition
recognizes gestures while those poses are fixed (in the
form of images) and hands do not move. On the contrary
dynamic hand gesture recognition can recognize gestures
in motion in the form of videos [27]. Static hand gesture
recognition is often used in applications where gestures
are performed slowly and the image can be recognized
as a single frame, for example when interpreting sign
language [25], [28]. Dynamic gestures involve a sequence
of frames over time and differentiate in length due to
the speed of motion. Hand motions are common for real-
time recognition. This is possible with the aid of static
and dynamic models for classification, whereas dynamic
models have advantages over static ones due to easier
processing online [29]. However, classifying dynamic hand
gestures is more complex because both the hand shape, the
movement as well as the direction of the hand must be taken
into consideration [30]. As HCI requires real-time reaction,
processing fast motions in complex environments and
backgrounds, this research will focus on dynamic gestures
only [31].

Two novel methods emerged exploring real-time hand
gesture recognition: Temporal Segment Networks (TSN) and
Temporal Shift Modules (TSM). Both tools are applied in
deep learning to analyze videos. TSNs split videos into
segments and analyze each segment separately so that the
machine recognizes the gesture in the overall video according
to the prediction of each segment [32]. However, the disad-
vantage is that TSN cannot build a temporal structure of the
video as well as put the segments in the right order. Whereas
TSMs support the neural network to capture the changing pat-
terns over time in the video, by enabling time adjustments of
different video segments. It means that TSM can arrange the
video streams in the right temporal relationship [33] These
methods reached an accuracy of 82.90% (TSN) and 85.10%
(TSM), indicating a slightly better result with TSM than with
TSN [34].

A further approach, presented byNaguri and Bunescu [35],
combines traditional CNNs with LSTM networks to rec-
ognize dynamic hand gestures from video sequences. This
approach reached promising results and an accuracy of
97.00%. As the gestures have been tracked by Leap Motion
sensor and were based not on images or videos but on
vectors, another paper using CNN and LSTM has been
investigated [35].
Nguyen and Luong [36] further developed this approach

on two streams of CNN architecture, allowing the system to
consider both the spatial and temporal aspects of the hand
gestures in videos. Hand gestures often involve complex
movements and disproportions of the hand. A two-stream
CNN with an LSTM can better capture these dynamics
compared to a single-stream CNN, reaching an accuracy
of 91.25% and improving computational time and memory
resources of the ConvNet model [36].
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Another useful method to evaluate video data is 3D
CNNs [37]. 3D CNNs can learn spatiotemporal features
directly from multiple feature maps, while 2D CNNs have
to learn only from a single feature map including width
and height dimensions, but lack the time dimensions [15].
Zhang and Wang [38] applied this advanced CNN method
to dynamic gestures and tested it with people sitting
close to the camera and showing particular gestures. This
approach achieved a good accuracy of 90%. However,
the authors state that it works only under the condition
of having a small distance between a person and a web
camera [38]. Another important challenge for dynamic hand
gesture recognition is a complex background, which distracts
the machine from relatively small hands and arms. This
obstacle is tackled by Zhu et al. combining both above
mentioned networks 3DCNN and LSTM. The keymentioned
by the author is that CNN effectively extracts short-term
spatiotemporal features, and passes them as input to LSTM.
This one helps to distinguish the correlation between separate
frames in a sequence learning long-term spatiotemporal
features. Together it builds a good framework for video
recognition [39].

Abdullahi et al. [13], [14] have also shown novel
approaches and architectures that can be used to better
recognize ASL hand gestures. Their approach is based on
skeletal hand videos of LMCs. First, the authors present a
new approach based on multi-stacked deep LSTMs, which
allows them to be sensitive to hand dynamics compared to
previous work. Also, their model allows the inclusion of
noise and errors in hand motion tracking. The architecture
uses a newly developed schema based on a bi-directional
recurrent neural network that handles feature extraction,
overcoming the problem of single LSTMs not being able to
learn features as well as their susceptibility to overfitting [13].
In another work, they have developed a model architecture
that addresses the existing problem of distinguishing similar
hand gestures in ASL. The new architecture uses a fast
fisher vector to extract the features from the video data
and then pass them on to a bi-directional long-short term
memory network [14]. In both works, the authors were
able to show great progress in ASL gesture recognition.
However, there are no widely available datasets for this
type of HCI, which is why the authors had to use specially
constructed data in which the focus of the videos is on the
hands.

Another approach uses ultra-wide-band (UWB) radars
to enable classification in more realistic environments.
Skaria et al. [40] tested architectures with 3D CNNs
or LSTMs for feature extraction with UWB data, while
Park et al. [41] showed a novel architecture using fast-fourier
transforms for classification to convert the video data from
a time-domain to a frequency-domain, thus improving clas-
sification results for CNNs using UWB data. In both cases,
very good results were achieved, although no comprehensive
dataset was available and own experiments were carried out.

UWB sensors for data acquisition are required for either
application.

When showcasing hand gesture recognition methods and
their accuracy, the datasets should also be taken into consid-
eration. The size of the dataset, the variety of gestures, and
the complexity of the background of the images all influence
how accurate the result is. According to our comparison
of datasets provided by [15], one of the benchmarks is the
ChaLearn LAP Iso GD (IsoGD) dataset. This one contains
47,933 videos with 249 action types, each sample contains
two values, RGB and depth. Each gesture was shot in a
natural environment. To improve the robustness, objective
conditions such as lighting and background were changed,
and nonstandard gestures were included [15]. However, all
studies testing their models using the IsoGD dataset show
relatively low accuracy. The highest accuracy of 67.71% was
reached by applying the ResC3D model [43].
Another benchmark is the Sheffield Kinect Gesture

dataset. Including a total of 10 categories of hand gestures:
circle (clockwise), triangle (anti-clockwise), up-down, right-
left, wave, ‘‘Z’’, cross, come here, turn-around, and pat.
However, this dataset consists of videos only with hand,
whereas the whole body is not visible. [15]. Research studies
using this dataset demonstrate high-accuracy results. When
applying the 3D CNN and bidirectional ConvLSTM as high
as 99.53%. When this method was applied to the IsoGD
dataset, the accuracy lowered to 62.14% [42].
Table 1 depicts an overview of the works with used datasets

(perfect/lab-like or realistic environment) and achieved
accuracy.

To summarize, it is evident that datasets depicting more
realistic conditions have a lower accuracy: datasets IPNHand
and IsoGD received the lowest accuracy with 62.14% [42],
67.71% [43], 82.90% and 85.10% [34]. All studies using less
complex datasets achieved an accuracy above 90.00% [36],
[38], [42].

Alzubaidi et al. [44] mention data scarcity as a crucial
problem for deep learning models in general but also
specific for video recognition. The lack of data can severely
impair the quality of a video recognition algorithm for
gesture recognition, for example. Sufficient video data
is not available for every practical application, which
could make gesture recognition more difficult to use.
However, there are also state-of-the-art solutions for this
challenge.

On the one hand, the possibility of artificially generating
several data based on the few existing data using a Generative
Adversarial Network in order to subsequently train the deep
learning models is discussed [45], [46]. On the other hand,
transfer learning is presented, which represents the possibility
of ‘‘further training’’ another model based on an already
trained deep learning model with just a little data and using
the finished model for this purpose. With this approach, use
cases with only a small amount of initial video data can also
be realized with a separate model [47].
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TABLE 1. Related Work using realistic or lab-like environment datasets and their respective accuracies.

C. HYBRID DEEP LEARNING BASICS
In a nutshell, the hybrid deep learning approach in video
gesture recognition is based on the fact that a gesture cannot
be recognized by a single frame, but rather that there is
a temporary relationship between individual frames of a
gesture [48]. Several studies have therefore already attempted
to use a hybrid approach between a CNN and an RNN,
in which the output of the CNN is used as input for the RNN.
In video classification tasks in general [49], [50], but also
especially in hand gesture recognition tasks [36], [48], [51].
While in a regular neural network, the neurons are only

connected forward, in an RNN there is the possibility that
neurons can also be connected to each other within a layer and
also in opposite directions between layers [52]. The concept
stems from the realization that the input and output of a neural
network can be dependent on each other, for example in video
sequences, where the classification of a frame can depend on
the classification of a previous frame [53].
LSTMs are a type of RNN that allows long-term depen-

dencies to be recognized and are therefore well suited for
the classification of sequences such as videos. In contrast
to regular RNNs, LSTMs have so-called memory cells,
which contain the output of the previous time and, based
on the new input, decide whether the information is relevant
and should be kept or discarded. In this way, connections
between the individual points in time can be recognized and
retained [54].

As shown in figure 2, the CNN is used for feature
extraction. CNNs are particularly well suited to identifying
the features of image data that are relevant for classification
bymeans of convolution and pooling, thereby forming feature
maps that facilitate classification and the identification of
patterns [55]. CNNs classify each image individually and do
not take into account any temporal relationships, instead, they
extract depth features for the classification of the images.
The hybrid architecture makes use of this fact and lets the
CNN output the feature maps for the individual frames, but
does not yet classify the images. As shown in figure 2, the
feature maps of all frames inside a time-frame are then passed
to the LSTM, which then performs the temporary feature
extraction and the final classification. This approach reaches

FIGURE 2. CNN-RNN basic architecture.

better classification results, since it makes use of both deep
learning architectures [36], [48], [51].

III. METHOD
A. HYBRID DEEP LEARNING ARCHITECTURE
In contrast to static images that represent hand signs, gestures
include movement and contain spatial information. These
more complex data are depicted using videos, which are
at their core image frames arranged in a fixed order, also
called a frame sequence. For motion recognition, this order
and, thus the temporal relationship, is crucial and must
be considered [15], [27], [56]. For this reason, a hybrid
architecture was applied by stacking an RNN which includes
an LSTM layer [54] on top of a CNN. In our case, the
Inception-v3 architecture by Google Inc. [57] was used to
extract the relevant features of the individual image frames
and provide the wrapped frame-feature map as input for the
RNN which performs the final classification. It is shown that
transforming video files into 2D spatiotemporal feature maps
with CNNs is a promising approach when it comes to video
classification tasks [42].

This kind of hybrid architecture is known as CNN-
RNN [36]. CNNs have been proven to work sufficiently
when it comes to static image recognition tasks. As stated
by Szegedy [57] the Inception-v3 architecture is highly
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optimized to be as ‘‘[efficient] as possible by suitably
factorizing convolutions and aggressive regularization’’.
This efficiency is relevant in case of limited hardware
specifications and confirmed our selection of the inception
architecture as a feature extractor in our machine learning
pipeline. The final classification layers are removed from
the inception architecture as it is shown in figure 3.
This reduction is necessary because the top layers are
implemented to classify single images. Thus, the model
provides 2048 features for every individual frame as output
which acts as input vector (all frames together) for our
following RNNwhich is referred to as the frame-feature map.
This input is passed with the dimensionality (None, 10, 2048)
with ‘‘None’’ being a placeholder for varying batch sizes.

For CNNs, the model architecture follows established
patterns by applying a mathematical construct that typically
consists of three layers in sequence: convolution, pooling,
and fully connected (dense) layers. While the first two
perform feature extraction, the final fully connected layer
concatenates these features into a final output, in our case
the final classification. A CNN is a type of deep learning
model that can automatically and adaptively learn spatial
information from low- to high-level patterns. The convolution
task, as the name implies, is a key process in CNN. 2D
convolution is a composition of mathematical operations
where a specialized type of linear operation is applied on
a 2D grid which is typical for image data. The linear
operation that is applied to several image positions is called
kernel and consist of a small grid of parameter mostly in
a quadratic shape. A kernel size, which is typically 3 × 3,
and the number of kernels that are used for one convolution,
are key hyperparameters in CNNs [58]. Like conventional
established CNNs the inceptionmodel keeps these mentioned
patterns, but it should be added that the mapping of the
extracted features is happening in the following RNN model
where we have two fully connected layers.

The Inception-v3 model architecture, shown in figure 3,
mainly consists of 2D convolutional layers with batch
normalization and rectified linear unit (ReLU) activation
output, 2D pooling layers, and the inception blocks. As pool-
ing layers, both manifestations, average-pooling and max-
pooling, are used. The inception blocks consist of parallel
connected sub-pipelines mainly composed of convolutional
layers. These sub-pipelines are concatenated before being
passed on to the next sequential layer in the main pipeline,
which is frequently another Inception-v3 block.

Since the parallelized sub-pipelines within an inception
block can also be broken down into different structures, such
as multiple convolutional layers with or without different
pooling layers that can vary in layer depth, readers are
referred to Szegedy [57] for more detailed information. The
outstanding benefit associated with this parallelized structure
is the simultaneous application of filters with different kernel
sizes. This led not only to a big decrease in computational FIGURE 3. Hybrid architecture.
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costs but also to the ability to focus both on coarser and finer
patterns simultaneously and map them together at the end of
one inception block [57]. Following the last concatenation,
the input is transferred to a 2D global average pooling layer
where the dimensionality is finally reduced from (2, 3, 2048)
to (1, 1, 2048) and is then passed into the RNN as a wrapped
frame-feature map (10 frames at once).

Our RNN essentially consists of the LSTM layer which
plays a key role in incorporating the temporal context of
the individual frames in terms of classification. RNN is
one of the most forward ways to exploit sequences of
inputs. LSTM networks represent the further development
of RNN which facilitates remembering historic data [36].
With conventional ‘‘backward propagation through time’’ or
‘‘real-time recurrent learning’’ the problem arises that error
signals either blow up or vanish.While the further may lead to
oscillatingweights, the latter may lead to insufficiently bridge
long time lags. As a solution, Hochreiter and Schmidhuber
introduced a novel, efficient, gradient-based method (LSTM)
which improved many RNN architectures not only in
speed [54].

The dropout layers prevent the model from overfitting
on the training data by forcing the model to forget a part
of the neural connections (in our case 50%). A dropout is
embedded in the LSTM layer but also between the two fully
connected dense layers. The last dense layer leads to the final
classification using the softmax-activation function.

In comparison to the architectures shown in the related
works and in general to the three main architectures in the
field of dynamic gesture recognition, namely ‘‘Two-Stream
Networks’’, ‘‘3D CNNs’’ and ‘‘LSTMs.’’ Reference [15],
we show that a hybrid architecture, based on a 2D CNN
and an LSTM network, as it is already used in the field
of general video classification can also be used. In contrast
to two-stream networks, the CNN and RNN do not run in
parallel with feature vector fusion, but the two models are
used sequentially and the CNN’s feature vectors serve as
input for the RNN [24].

B. EVALUATION
When it comes to model compilation and evaluation the focus
is on the accuracy of the correct predictions. The accuracy
is calculated as the division of the sum of the true-positive-
instances (TP) and the true-negative-instances (TN) through
the total population (TOTAL)(1).

Accuracy =
TP+ TN
TOTAL

(1)

Additionally, to show deeper insights into the classification
errors the confusion matrix is used. Supported by this
visualization we present and discuss the precision (2) and the
true-positive-rate (TPR) also called Sensitivity (SN) or Recall
in this context. The precision is calculated by the division of
the TP through the positive predictions (POS PRED). The
TPR is calculated as all TP divided through the number of

actually positive instances (3).

Precision =
TP

POS PRED
(2)

Sensitivity(TPR) =
TP

ACTUAL POS
(3)

All the stated 6 gestures are equally relevant so we
can aggregate our calculations. To ensure a more robust
and representative model performance evaluation k-fold
cross-validation is applied as described in III-D (Data Pre-
Processing).

To further evaluate our shown method, we use another
architecture to compare their classification accuracies. Since
we use an approach using an RNN, we use GRUs as a
reference method, as these together with LSTM networks are
the most promising types of RNNs with the best accuracies in
video classification tasks [24]. For the comparison, we leave
the same data in the same folds as in the architecture with
the LSTM network, but replace it with a GRU, resulting in a
CNN-GRU architecture. We then calculate the accuracies for
each fold and compare them with the initial results.

In addition to changing the RNN architectures, we also
tested other state-of-the-art models for feature extraction to
demonstrate the robustness and efficiency of our chosen
approach. In addition to the inception model described above,
we tested feature extraction using the VGG16, VGG19,
ResNet50, and Xception models, which are all currently used
models for feature extraction in research. The architecture
already described changes to the extent that the CNN
for feature extraction is replaced in comparison to the
methodology described and the new architecture is tested
and compared with both RNN methods. The CNN models
differ in their architecture but can be exchanged flexibly
in our proposed architecture. However, the feature vectors
generated by the models differ in their dimensions. While
the Inception, ResNet50, and Xception models output vectors
with 2048 features, the VGG models generate vectors with
only 512 features. Due to this fact, we had to adapt the
input shape of the RNN architectures to the different feature
vectors.

C. HAND GESTURE DATASET
We used the Depth_Camera_Dataset [59] to train and
evaluate our machine learning model which is made up of
6 different hand gestures with a total of 662 sequences corre-
sponding to each gesture. Each sequence contains 40 frames
where one of the following actions is executed: scroll-left,
scroll-right, scroll-up, scroll-down, zoom-in, and zoom-out.
10 frames of scroll-right and zoom-out are presented in
figure 4, respectively. These gestures are carried out by
different people at different time instances. Additionally,
the entire body is in front of the camera, accomplishing
natural movements to simulate natural HCI instead of an
isolated, lab-like environment. Moreover, the background
of the captured images is complex and realistic, sometimes
including other people in the background and other factors
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FIGURE 4. Example of RGB dynamic hand gestures: scroll-right and
zoom-out.

that occur in real-world situations. This realistic environment
makes the dataset stand out. As stated by the collectors of
the dataset, the hand is oriented in various ways while being
captured simultaneously. All the movements are captured
with an Intel RealSense Depth Camera D435 which collected
both RGB and depth frames at the same time. For our
data-driven approach to classifying these gestures by a
machine learning algorithm, we focused on the RGB variant
of the dataset. Because of hardware and runtime limitations,

we used 3000 sequences (500 sequences per class) and
extracted only every 4th frame out of the respective sequence.

D. DATA PRE-PROCESSING
For data pre-processing, the Python libraries NumPy, Pandas,
and TensorFlow are mainly used. The individual frames of
a gesture sequence are loaded from a directory and stored
in a Pandas DataFrame as a 4-dimensional array where
the individual frames are stacked and represent one entire
movement. The dimensionalities result from the height and
width of the individual frames, where each of the data points
consists of an RGB tuple of depth 3, which represents the
respective color channel in a 0-255 encoding. The final
input format is therefore (10, 120, 160, 3) because each of
our frames has a resolution of 120 × 160 pixels and we
focused on 10 frames per gesture. Regarding the data size
and limited computing capacity only every 4th frame is used,
as more frames did not increase the accuracy to an effective
comprehensive.

Furthermore, a uniformly distributed sample size of data is
preprocessed containing 3000 movements (500 × 6 different
gestures) separated with the percentages 70%, 20%, and 10%
for training, validation, and test data respectively. The dataset
is shuffled before the allocation is made but it is ensured
that the percentage of classes in each dataset is maintained
to be representative. There is no predefined train-test split
on this dataset, so we ensured a random division in the
respective sets using the Python pseudorandom module
random. K-fold cross-validation is applied by dividing the
3000 movements into 5 stratified folds where the percentage
of samples for each class is maintained through every
train/test split across all folds here as well. This ensures a
more robust model performance evaluation since the effects
of a biasing nonrepresentative train/test split are averaged out
by evaluating the different folds. It is shown that batching the
individual instances for training and testing does not yield to
increased accuracy, so we provided the instances unbatched
in our final model fit.

IV. RESULTS
The end-to-end machine learning project was developed
and executed in Google Colaboratory (Colab). Colab is
known as a cloud service based on Jupyter Notebook and
provides access to a runtime configured for deep learning
and a robust GPU as well as a user-friendly interface for
developing and educating purposes. Nevertheless, there are
of course limitations in terms of GPU, RAM, and runtime.
The GPU we applied for the model compilation was mainly
the NVIDIA-A100-SXM. The functionalities and modules
of the TensorFlow v2.11.0 environment were used for this
purpose. The model is trained for 100 epochs with an
initial learning rate of 0.001. To ensure sufficient learning
the categorical-cross-entropy cost function as training- and
validation loss is minimized utilizing the adam-optimizer.

During the whole pipeline, the activation function rectified
linear unit (ReLU) is applied before transferring the output
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into the next layer, except for the LSTM layer and the final
output layer. There, the hyperbolic tangent (TANH) and the
softmax function are used, respectively.

The saturation of training and validation loss can be
obtained in figure 8. The training- and validation accuracy
also saturates as shown in figure 9 and achieved the
percentages 96.43% and 85.50% after 100 epochs on our best
fold. On the final evaluation of the test set an accuracy of
86.33% could be achieved. The final train-, validation-, and
test-accuracies of the remaining folds are shown in table 2.
By applying k-fold cross-validation with 5 stratified folds we
achieved the averaged accuracies of 96.73%, 84.77%, and
83.66% for the train-, validation-, and test-sets.

The confusion matrix resulting from the test evaluation can
be observed in figure 5.

FIGURE 5. Confusion matrix of test-data fold 1.

As it can be extracted from the matrix the gesture
scroll-down is the most precisely detected movement with
a TPR of 96%. The zoom-out gesture is the least precisely
detected movement with a TPR of 76%. Most classification
confusions occur to the algorithm when distinguishing the
gestures scroll-right and scroll-up as well as zoom-in and
zoom-out. In 16% of the cases where the true gesture was
scroll-right, our model misclassified the movement as scroll-
up. In 12% of the cases, where the true gesture was zoom-in
our model misclassified the movement as zoom-out. In 16%
of the cases where the true gesture was zoom-in, our model
misclassified the movement as zoom-out. As can be seen in
figures 6 and 7 this behavior also occurs on the associated
training and validation data.

The training and validation loss of other folds as well as the
associated training and validation accuracy can be observed
in the appendix (figures 1-4). Further confusion matrices
resulting from other folds can be observed in the appendix
as well (figures 5-16).

For many classification tasks, it is often important to
determine how close the decision from the algorithm was.

FIGURE 6. Confusion matrix of training-data fold 1.

FIGURE 7. Confusion matrix of validation-data fold 1.

Because the final classification layers deliver a probability
array it is often a very close decision between the Top N
classified classes. For this purpose, we further evaluated how
well our model predicted when the correct prediction has only
the second or third-highest probability.

In addition to the results of the Inception-RNN architec-
tures, table 2 also shows the results of the Xception-RNN
architectures. The classification results of the CNN-RNN
architectures with VGG16, VGG19, and ResNet50 as feature
extraction models were not shown, as these did not exceed
the random guess probability of 16.67% across all folds.

V. DISCUSSION
As shown in the accuracy and loss plot in figures 8, 9
our proposed model architecture successfully learns to solve
our classification problem with a solid test accuracy. The
amount of data is sufficient in interplay with the complexity
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TABLE 2. Achieved accuracies of all datasets across all folds.

FIGURE 8. Loss during training.

FIGURE 9. Accuracy during training.

of input properties to allow a proper generalization. This
can be substantiated by the robust accuracy resulting from
all train/test splits across all folds. It is shown whether
an overfitting or an underfitting has occurred. The risk of
overfitting the training data is also addressed with the two
dropout layers at the top of the RNN.

By looking at the confusion matrices it is shown that the
error properties maintain over the different sets across all
folds. The most misclassifications occur when the model is
distinguishing the gestures scroll-right and scroll-up as well
as zoom-in and zoom-out. The former misclassification is
very likely to occur because of unclean movements. In the
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post-analysis of the misclassifications, it could be observed
that individual probands moved their arm slightly up before
or while scrolling right. This seems to confuse the algorithm
and has already been manifested in the training set. But
as shown in figure 5 the TPR of both gestures scroll-right
and scroll-up is still above 80% so these events have a low
occurrence rate. If we consider the gestures zoom-in and
zoom-out the algorithm is confronted with big challenges
distinguishing these actions, which is understandable because
the movements are similar and only differ in the temporal
direction. It could be observed that individual probands tend
to perform the opposite gesture to reach the initial starting
point for the gesture execution. For example, a slight zoom-in
is performed before the zoom-out gesture. This is explainable
because it seems natural for the human to further increase
the range of motion to emphasize the executed gesture more,
which in this case may imply performing a part of the
opposite move in advance of the actual gesture.

Our results with the excerpt in table two demonstrate that
our shown architecture provides the best accuracies among
many different state-of-the-art models, demonstrating the
robustness and efficiency of the approach. We hypothesise
that the Inception and Xception models, as described in other
research works [57], are efficient at extracting features and
that the bigger number of identified features compared to the
other models, might lead to better RNN classification results.

Considering the data scarcity problem mentioned in the
related work section, our model and its architecture with the
underlying dataset could serve as a model to realize further
use cases of HCI where there is not enough video material
of the individual hand gestures available. However, this
possibility would have to be investigated in future research.

As shown in the theoretical background, the state-of-the-
art in the field of classic CNNs is increasingly trying to
develop lighter and less complex architectures, which also
achieve very good classification results and can therefore be
better used in real-world scenarios. The architecture we use
corresponds exactly to this current trend, as we use a highly
efficient model with the Inception-v3 model, which is also
efficient in the use of computation resources [57]. Our quite
competitively comparable results with this model suggest that
the architecture we have shown can further complement the
current state-of-the-art.

VI. CONCLUSION
In this work, we proposed a neural network with a hybrid
architecture to classify hand gesture video sequences in a
realistic environment with complex backgrounds and other
factors that occur in real-world situations. This architecture
consists of an RNN on top of a CNN which operates as a
feature extractor providing 2D spatiotemporal feature maps
as input for the RNN. We applied our proposed model on
Depth_Camera_Dataset, which is a large dataset containing
6 different gestures where we achieved a sufficient final
accuracy of 86.33% on our best fold but confirmed that
the results are very robust through all folds with a 5-fold

cross-validation. It can be observed, that our model achieves
high recognition accuracies and maintains robustness against
complex circumstances in the environment around the
gesture, while still being low on computational costs.

With our proposed machine learning model, our goal was
to address the research gap between realistic background
environments and high accuracy in gesture recognition.
In comparison to related works, we achieved a slight increase
in the benchmark but if the averaged accuracy over all folds
is considered we are 1.44% beneath the current benchmark
stated in table 1. It has to be mentioned, that there are more
gestures to classify in the approach of Benitez-Garcia et al.
[34]. Nevertheless, we could prove with our proposed model
that it is possible to classify the Depth_Camera_Dataset to
a near benchmark accuracy of classifying hand gestures in
a complex environment. The most misclassification occurs
when the model is distinguishing the gestures scroll-right
from scroll-up and zoom-in from zoom-out. The former
is very likely to result from an unclean direction of the
movement in advance of the actual gesture. The latter is very
likely because of the similarity of the gestures performed.
There are several ways to optimize our model in further
iterations. With dynamic learning rate adaption and multiple
training epochs, the feature extractor, as well as our RNN
could be further optimized. Also, different optimizers can be
used in the training and validation process.

Also, our model might be a solution to data scarcity,
which is one of the problems of state-of-the-art deep learning
approaches. Transfer learning, which refers to using a
pre-trained model as a basis for further deep learning models
to overcome the data problem, is a current trend in deep
learning approaches [44]. To enable the use of gesture recog-
nition in various different and individual HCI applications,
our proposed architecture could act as a transfer learning
model and address the problem of missing data in these.

A. LIMITATION AND FUTURE WORK
Although we focused on gestures in a natural, complex, and
non-lab-like environment HCI in the real world often takes
place in even more difficult situations. For instance, when
the angle of the proband is considerably different from the
frontal position or multiple people perform multiple gestures
simultaneously. For these highly advanced challenges, our
model may not be able to deliver sufficient results, especially
when it comes to several gestures at the same time. It should
also be mentioned that several more relevant hand gestures
can be taken into consideration when expanding HCI to more
sophisticated levels of interactions. In our approach we only
focused on the RGB images, however, it makes sense to check
if depth images bring better results. Moreover, it is possible
to focus on different frame sequences, like including just
the middle 10 or 20 frames of the 40 frame sequence or
including all possible values for frame density and to estimate
and evaluate the greatest cost-benefit ratio. In the case of the
more sophisticated levels of interactions, more gestures can
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be included, and the model could be further developed and
optimized in this way.

To address the problem of performing opposite gestures to
get to the starting point for gesture execution, the algorithm
can be further trained to distinguish the crucial starting points
of a hand gesture and the actual gesture to be classified. It may
be valuable to observe the velocity of the gestures or to split
the action into different segments and focus on the last/most
significant one. In this case, a pre-classification could be
made on which movement in the sequence is the most
relevant movement to identify with the highest probability.
Further research has to be done to better emphasize the
micro-movements people tend to do before, while, and after
the relevant gesture to address this topic. This challenge has
also been mentioned and thoroughly discussed in [39].

We have tested our novel deep learning architecture in our
work with a modern comprehensive dataset on dynamic hand
gestures. Even though there are not many other datasets in
this area with non-lab-like environments, this is a limitation,
which is why we will evaluate the shown architecture with
further datasets in future research and will also show further
evaluation metrics.

If we take another look at the current trends in machine
learning, we can see that the use of generative adversarial
networks for data generation is increasing. Future research
could therefore also investigate whether the relatively high
error rate in the area of scroll-up and scroll-down movements
could be compensated for by artificially generated additional
videos for those cases. In general, with regard to the state-
of-the-art in deep learning, it could be investigated whether
our architecture can be used in the area of transfer learning,
as mentioned earlier in our article, and whether artificially
generated data is suitable for our approach.

Last but not least, we demonstrated a novel approach for
the video classification task of hand gestures and were able to
compare many state-of-the-art models and identify the most
suitable combination. In further work, we will try to optimise
this architecture by using additional datasets and applying
hyper-parameter tuning and fine-tuning, for example.
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