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Abstract

Understanding the behavior of polymer melts during extrusion is essential

for optimizing processes and developing new materials. However, analyzing

the continuous data generated by an extruder poses significant challenges.

This paper investigates the utility of machine learning in predicting melt

pressure at the die plate in polylactic acid (PLA) bead foam extrusion, a

critical parameter in the extrusion process. Utilizing a random forest

(RF) model, we examine how various processing parameters influence melt

pressure. By segmenting the data into time-delayed intervals, we achieve

accurate predictions. We present forecasts of melt pressure at the die for

intervals of 5 s, 1 min, and 5 min, demonstrating particularly strong perfor-

mance for the 5-min forecast with a Mean Absolute Error (MAE) of 1.88

and the coefficient of determination (R2 score) of 0.90. By exploring time

series data, our study demonstrates the effectiveness of the RF model and pro-

vides a foundation for more advanced and precise control strategies in polymer

bead extrusion processes.
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1 | INTRODUCTION

Polymer foams feature unique cellular structures and
possess various attributes, including low density, high
strength, thermal insulation, damping properties, and
sound absorption capacities.1 Polymer foams have long
been essential products, simplifying our daily lives
through a wide range of applications. They play crucial
roles in numerous industries, particularly in insulation
and packaging, owing to their exceptional performance
characteristics.2–4

Polymer bead foams, a significant category of poly-
meric foams, have gained considerable attention across
various industrial sectors due to their versatile properties
and applications. They stand out for their unique features
and widespread utility.5–8 Particularly, polymer bead
foams made from polylactic acid (PLA) have garnered
significant interest in various industries due to their light-
weight nature, biodegradability, and versatility. The bio-
degradability of PLA bead foams distinguishes them as
environmentally friendly alternatives to conventional
petroleum-based foams, aligning with the growing
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emphasis on sustainable practices across industries.6,9–11

Among the multiple manufacturing processes, extrusion
stands out as an essential method for efficiently produc-
ing PLA bead foams. However, extrusion processes are
characterized by their continuous nature, posing unique
challenges in understanding and optimizing the process
parameters.

The use of artificial intelligence (AI) will be key to
improving the development speed of new products and
technologies. Machine learning (ML) has become
increasingly vital in the field of AI, playing an important
role in revolutionizing various industries and scientific
domains.12 Its significance lies in its ability to analyze
vast amounts of data from diverse sources, including
machines, devices, sensors, and digital platforms. With
the help of advanced algorithms and statistical tech-
niques, ML extracts valuable patterns, trends, and rela-
tionships from these datasets, enabling researchers,
analysts, and practitioners to derive actionable insights
and make informed decisions. To effectively use ML for
processes or product development, one needs a substan-
tial amount of data, which depends on the variability and
complexity of the process. Despite the abundance of
machine learning techniques, the use of digital methods
remains quite limited in scientific research for polymer
processing.13

One of the primary goals of ML is predictive model-
ing, wherein historical data is utilized to forecast future
outcomes or behaviors. Through techniques such as
regression analysis, ML algorithms can discern underly-
ing patterns and dependencies within the data, thereby
enabling accurate predictions about future events, trends,
or system behaviors. These predictive capabilities find
applications across numerous domains, including
finance, healthcare, marketing, manufacturing, transpor-
tation, material production, and more. The growing avail-
ability of big data, coupled with advancements in
computational power and algorithmic techniques, has
propelled the widespread adoption of ML across various
sectors. Its ability to uncover hidden insights, optimize
processes, and drive innovation has positioned ML as a
cornerstone of modern scientific inquiry and technologi-
cal advancement.14

A few attempts have been made to integrate ML tech-
niques into various aspects of polymer science, ranging
from polymer synthesis, utilizing high throughput
devices,15 to flow chemistry,16 and extending to polymer
processing and part production.13 The diverse range of
ML approaches underscores their high potential.17–20

Numerous studies have explored the combination of ML
with 3D printing and injection molding techniques.21,22

The analysis of continuous processes offers opportuni-
ties to expand beyond traditional methodologies,

enabling the application of various models to extensive
datasets. Bead foam extrusion, along with other extrusion
technologies, is particularly suitable for such analysis due
to its continuous nature and well-established technology,
which includes numerous temperature and pressure
sensors.6

In a study by Pech et al.,23 a neural network-based
ML model is utilized to investigate bead foam size param-
eters of expanded polystyrene foams on compression
properties. The model's predictions closely match experi-
mental findings, with a standard deviation of less than
3% relative to the experimental data. Another ML model
studied by Piumi et al.24 predicts the impact of microplas-
tics on soil properties using gradient boost regression
(GBR), achieving R2 values ranging from 0.86 to 0.99.

In recent years, time series analysis-based ML tech-
niques and their applications have gained significant
attention across diverse industries and research
domains.25–30 The potential of these techniques is partic-
ularly pronounced in the field of material processing.

The emergence of ML techniques has transformed the
analysis of time series data, enabling the extraction of
valuable insights and predictive capabilities across vari-
ous domains.31,32 Within polymer processing, ML-based
time series analysis offers promising avenues for under-
standing the complex relationships between process
parameters and product quality. In their study, Andrews
et al.33 employ supervised machine learning techniques
to analyze nanoseconds-long time series data, focusing
on energy fluctuations in molecular dynamics of poly-
mers. Recent studies have investigated the extrusion pro-
cesses of PLA bead foam using different ML
techniques.34 Despite extensive research, there is a nota-
ble absence of literature addressing the application of
time series-based machine learning approaches to poly-
mer bead foams, particularly those composed of PLA.

This paper explores the utilization of ML-based time
series analysis specifically tailored for PLA bead foam
extrusion. The objective is to predict the future melt pres-
sure at the die plate in the twin-screw extruder in bead
foam extrusion process. Melt pressure, a critical parame-
ter in bead foam extrusion, profoundly influences key
product attributes such as cell structure, density, and
mechanical properties. However, accurately predicting
melt pressure poses a formidable challenge due to the
complex interdependencies among process variables,
material properties, and environmental factors inherent
in extrusion processes. We address the challenges pre-
sented by PLA bead foam extrusion, including the need
for segmentation to accurately identify operational and
downtime periods. This will not only aid in isolating
meaningful segments for analysis but also facilitate the
development of targeted ML models for the bead foam
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extrusion process. Additionally, we shed light on the
complex process of data collection for time series analysis
in continuous manufacturing environments, underscor-
ing the significance of data acquisition strategies.

2 | MATERIALS AND METHODS

2.1 | Materials

In this investigation, PLA, specifically Ingeo 2003D
(NatureWorks Ltd., Minnetonka, MN), was employed.
This material is characterized by its high molecular
weight suitable for extrusion processes, featuring a
D-content of approximately 4.3% and a melting point of
150�C.35

2.2 | Method

Bead foam extrusion is a continuous process, utilizing a
tandem-extrusion line with two interconnected extruders,
as shown in Figure 1. The tandem extrusion setup is
often favored in industrial-scale operations due to its
enhanced dispersion capabilities for blowing agents,
chain extenders, and nanoadditives, coupled with tem-
perature control and cooling capacity. In the process of
producing PLA bead foams, the material is melted in the
twin-screw extruder (A-extruder, L/D = 42 with a screw
diameter of 25 mm), after which CO2 is introduced into
the molten material as a blowing agent. The temperature
profile as set to 25�C at the hopper to prevent ensure suf-
ficient dosing followed by 160�C for the next heating
zones and 180�C for rest of the A-Extruder. The melt and
CO2 are homogenized by the twin-screw extruder to cre-
ate a homogeneous single-phase mixture. Subsequently,

the melted material is transferred to the single-screw
extruder (B-extruder, L/D= 30 with a screw diameter of
45mm), where it undergoes cooling and temperature
equilibration. This cooling process results in an increase
in pressure within the B-extruder. Here the temperature
was varied between 175 and 140�C. Upon passing
through the die and entering the UWG (underwater
granulator), the material experiences a significant pres-
sure drop, leading to foaming or expansion. Within the
UWG, a rotating knife is utilized to cut the foaming
material into beads while maintaining specific water
pressure. The schematic diagram of the bead foam extru-
sion process is presented in Figure 1. The position of the
temperature and pressure sensor are also shown here,
which are placed right to the Die Plate. The varied pro-
cessing parameters can be seen in Table 1. The continu-
ous data was selected by extracting the machine
protocols and analyzed by python.

2.3 | Data analysis

For this study, we utilized a dataset comprising 20,998
data points collected over a four-day trial of the PLA bead
foam extrusion process. The bead foam extrusion data
was automatically logged into the Siemens Insight Hub1

software, a comprehensive data management system

FIGURE 1 Schematic illustration of

a bead foam extrusion machine with an

underwater pelletizing unit, showcasing

key processing components emphasized

for clarity. [Color figure can be viewed

at wileyonlinelibrary.com]

TABLE 1 Overview of varied process parameters.

Parameter Units Min Max

Blowing agent % 0 6

Rotating cutting speed RPM 2000 4500

Die plate hole (Diameter) mm 2 � 1.4 1 � 2.8

Die plate temperature �C 160 190
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utilizing Excel files to archive daily records. Prior to anal-
ysis, the data underwent preprocessing stages to ensure
accuracy and suitability for subsequent analysis proce-
dures. The preprocessing encompassed data cleaning to
rectify missing values, followed by data transformation
aimed at standardizing formats and aligning with the
necessary analytical tools, which involve feature engi-
neering to extract relevant information. After the data
was preprocessed using different Python's libraries, vari-
ous analytical techniques were applied to gain insights
from the data.

After the data cleaning process, segmentation of the
time series data was done. Segmentation is a basic tech-
nique used in time series analysis to divide a continuous
sequence of data into smaller overlapping subsets or win-
dows. Each segment contains a fixed number of consecu-
tive observations, and a target is associated with each
segment, usually positioned immediately after the last
observation in the segment. The segment moves along
the time series with a specific step size or shift, enabling
the creation of multiple overlapping segments. The seg-
mentation process is crucial for organizing the time series
data into relevant intervals that capture important pro-
cessing parameters (Algorithm 1).36,37

The segmentation process included the following
steps:

1. Time Windows: This step involves determining the
duration of time windows that best capture
the dynamics of the manufacturing process. Criteria
were established to segment the time series data into
distinct segments length, like 50, 100, 200, and 300.

2. Shift: This step defines a shift for the relevant time
series determining an offset or displacement parame-
ter that adjusts the temporal alignment of the data,
like 30, 50, 70, and 90 shift in this case.

Time series segmentation can also be observed visu-
ally in Figure 2, where the time series ut is segmented

with a segment length of L¼ 100, with shift of 50 to cre-
ate a dataset. Additionally, the targets are shown for dif-
ferent future time intervals, such as 5 s, 1min, and 5min.

2.4 | Data curation

The segmented time series data was created, with each
segment describing a distinct phase of the manufacturing
process characterized by unique processing parameters
and operational conditions. Subsequently, a new dataset
was constructed, compiling the complete data history for
each set of processing parameters. The new dataset
underwent curation to ensure its suitability for meaning-
ful observation in machine learning models and forecast-
ing. Data curation is especially crucial in the context of
applying machine learning techniques to data analysis,
particularly in processing settings such as extrusion
processes.

For data curation, we established a threshold value
of 75 bar for the melt pressure at the die. This thresh-
old helps identify downtime periods and instances
when the pressure falls below 75 bar. Such downtimes
not only signal periods of discontinued production but
also potentially indicate instances where the extruder
has been intentionally shut down for maintenance or
other operational reasons. This specific threshold was
selected due to its correlation with the stopping of
material flow through the extruder, a phenomenon
observed when the pressure at the die drops below this
level. This relationship is visually represented in
Figure 3, where distinct colors distinguish pressure
values above (blue) and below (red) the 75 bar thresh-
old. The melt pressure at the die is monitored using an
MD1 sensor, strategically positioned at the apex of the
die plate, concluding the A-extruder. This sensor boasts
a precision tolerance of approximately 1%. Accurate
measurement of melt pressure is crucial for maintaining
optimal processing conditions and ensuring the consis-
tency of the extruded polymer bead foam.

Given the continuous nature of our time series data
and its extensive historical record of processing parame-
ters, we encounter a common challenge associated with
data processing, the presence of numerous interrelated
parameters. Changes in one parameter can significantly
affect others, and this holds true for melt pressure at the
die as well. When the pressure exceeds a certain limit, it
can trigger machine shutdowns. Therefore, the data cura-
tion process becomes essential to retain all valid points
for further analysis, ensuring that only valid data are fed
into the model.

The models were developed using Python libraries,
including NumPy and scikit-learn, within Visual Studio

ALGORITHM 1 Segmentation of time
series

For a given time series ut, where t¼ 1,2,3,…,nð Þ,
and L� 50,100,200,300f g the segments,

Then, we define a target n such that for all
n�ℕ, and 1 shows a time step in future

n¼ L �utþ1 ð1Þ

4 of 11 SHAH ET AL.
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Code, also commonly referred to as VS Code. The code
was specifically written in Python 3.12 using VS Code.

2.5 | Model training

Multiple machine learning regression models were
screened to forecast the target property based on the
features. Initially, Decision Tree (DT), Random Forest
(RF), Least Squares Regression (LR), and Support

Vector Regressor (SVR) were evaluated. Out of all the
ML models, the Random Forest model showed the
best results and was selected for further analysis. To
evaluate the model performance, 5-fold cross-
validation was employed. This approach partitions the
dataset into five subsets of equal size. Then, the
model is iteratively trained on four subsets and vali-
dated on the remaining subset. This process is
repeated five times, with each subset used once as
the validation set. The average performance across all
iterations provides a robust assessment of the model's
generalization capability.

We split the data into training and testing sets for the
ML model. In the unshuffled scenario, we perform
the split without shuffling the data points. Specifically,
we allocate 80% of the data for training and the remain-
ing 20% for testing. However, unlike shuffled datasets
where the data points are randomly arranged before split-
ting, in unshuffled datasets, we simply take the first 80%
of the data for training the model. Subsequently, we eval-
uate the trained model's performance using the last 20%
of the data as the test set. This approach ensures that the
model is tested on data points that occur temporally after
the training data, mimicking real-world forecasting sce-
narios more accurately.

We compiled statistical data for each dataset gener-
ated with varying shift and segment parameters. This sta-
tistical summary comprises key metrics such as mean,
standard deviation, minimum, maximum, as well as the
25th, 50th (median), and 75th percentiles of the dataset.
This comprehensive statistical analysis provides valuable
insights into the distribution and variability of the data

FIGURE 2 Schematic illustration of the time series segmentation process to create a dataset using a segment length of 100 for the time

window and a shift parameter for the target. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 The plot illustrates the variation of the melt

pressure at the die over time. The red color indicates values of melt

pressure at the die less than 75 bar, representing downtime, while

the blue indicates values above 75 bar. [Color figure can be viewed

at wileyonlinelibrary.com]
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across different experimental configurations, facilitating
a deeper understanding of the forecasting results.

2.6 | Metrics

We employed two key metrics, the coefficient of determi-
nation (R2) and the mean absolute error (MAE), to evalu-
ate the performance of the model.

These metrics offer insights into the precision and
accuracy of the predictions made by each model:

1. R2 score represents the proportion of variance in the
target variable (melt pressure at the die in bar) that
can be explained by the models. A score closer to 1.0
signifies a stronger fit between the predicted and
actual values.

2. MAE measures the average magnitude of errors
between the predicted and actual values. Lower MAE
values indicate higher accuracy in forecasting.

2.7 | Optimizing time settings

Our initial analysis began by segmenting the data with a
length of 300 and a shift of 50 to forecast the melt pres-
sure 5 s into the future. This choice was guided by the
frequency of data collection, which occurred at 5-s inter-
vals. Thus, initiating the forecast at 5 s allowed for a nat-
ural progression in our analysis. For this specific
combination of shift and segment length, the MAE was
found to be 3.49. This average MAE includes four individ-
ual MAE values corresponding to shuffled, unshuffled,
statistically shuffled, and statistically unshuffled data.
Furthermore, we conducted analyses with decreasing seg-
ment lengths, including 200, 100, and 50. Figure 4 depicts
a contour plot illustrating the optimization of time set-
tings, with the dark blue region indicating the best
parameter combination. Additionally, the shift parameter
was considered alongside segment length. The overview
of the all the data and corresponding MAE can be seen in
Table 2. For further insights into the forecasting perfor-
mance, detailed MAE and R2 values for each segment are
provided in the Supporting information (Data S1).

The experiments were continuously monitored,
where signals were recorded every 5 s during many hours
and for different days. The choice of 5 s, 1 min, and
5 min for which predictions were performed in advance,
lies in the fact that they provide a reasonable range
involving the shortest time step (5 s) and a much longer
one (5 min). Although other time ranges could have been
used, the current one allowed for a proof-of-concept
investigation, which was the aim of this study.

3 | RESULTS AND DISCUSSION

This work utilized a Random Forest-based time series
model to develop a forecasting framework for melt pres-
sure at the die in PLA bead foam extrusion. The RF
regressor is a powerful ML technique renowned for its
ability to handle complex and nonlinear relationships
within data. We applied the RF model to diverse datasets
created by varying the shift and time window
parameters.

Both metrics, R2 and MAE, provide valuable insights
into model performance. We opted to prioritize MAE for
further analysis due to its sensitivity to variations in the
shift and time window parameters. By focusing on MAE,
we could distinguish precise changes in model perfor-
mance resulting from modifications in these parameters.
This approach enabled us to identify the optimal combi-
nation of shift and segment length that led to the most
accurate and reliable forecasts of melt pressure at the die
in the PLA bead foam extrusion process.

We conducted forecasting experiments using various
combinations of segment lengths and suitable shifts to
determine the optimal configuration for minimizing
MAE. This comprehensive analysis allowed for a thor-
ough examination of the impact of segment length on
forecasting accuracy, providing valuable insights into the
effectiveness of different segmentation strategies. Upon
analyzing each combination of the shift and segment
length parameters, our analysis reached a significant con-
clusion aimed at minimizing the average MAE. Notably,

FIGURE 4 Contour plot illustrating the relationship between

shift and segment length. The dark blue region indicates the

minimum mean absolute error (MAE), representing a global

minimum. Similarly, the dark red region indicates the maximum

MAE. [Color figure can be viewed at wileyonlinelibrary.com]
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our investigation revealed that the most promising com-
bination for further analysis is a segment length of
100 with a shift parameter of 50. This particular configu-
ration consistently exhibited superior forecasting perfor-
mance, characterized by reduced MAE values across
various experimental conditions. The choice of a segment
length of 100 and a shift parameter of 50 was informed
by several factors. First, this configuration strikes a bal-
ance between capturing sufficient temporal information
within each segment and ensuring an appropriate level of
overlap between adjacent segments. Additionally, the
50-unit shift enables the creation of multiple overlapping
segments, facilitating model training while retaining tem-
poral coherence in the data. Overall, this optimized com-
bination has the potential to enhance forecasting
accuracy and reliability in melt pressure prediction for
PLA bead foam extrusion.

This observation is evident in the contour plot in
Figure 4, where the dark blue region signifies the global
minimum for MAE. Within this region, we identify the
average MAE to be 2.41, which represents the mini-
mum value across all parameter combinations tested.
Consequently, for further analysis and model refine-
ment, we opted to retain the shift parameter at 50 and
the segment length at 100. This strategic decision is
driven by the desire to capitalize on the optimal fore-
casting performance achieved within this region,
thereby enhancing the accuracy and reliability of our
predictive models for melt pressure at the die in PLA
bead foam extrusion.

In this study, we conducted forecasts of the melt pres-
sure at the die for three different time horizons: 5 s,
1 min, and 5 min into the future. These forecasting
results are summarized in Table 2.

Table 2 provides a comprehensive overview of the
MAE for each forecasting horizon, utilizing different
datasets tailored for the analysis of time series data.
The “One-column” section of the table presents fore-
casts based only on historical melt pressure data. On
the other hand, the “All-column” section incorporates
the historical data of all processing parameters to fore-
cast the melt pressure at the die. Furthermore, the “All-

column stats” section includes the statistical description
of all processing parameters to enhance forecasting
accuracy and provide deeper insights into the predictive
modeling process.

Predictions were also made on the training set to
assess the model's performance. By comparing the accu-
racy of the predictions on the training set with those on
the test set, we can see the presence of some overfitting,
as the test error is larger than the training error, for
example, for the 5 s ahead forecasting the MAE (shuffled)
is 1.22 for the test set and 0.66 for the training set. These
difference in accuracy indicates that the trained RF
model exhibits a moderate amount of overfitting, whose
magnitude depends on the time in advance of the predic-
tion (see Supporting information (Data S1) for more
details).

3.1 | Five seconds ahead forecasting

Initially, our approach involves forecasting the pressure
at the die using a 5-s forecasting window. Here, we
observe that the MAE is highly sensitive to our data.
While we achieve R2 of 0.96 with an MAE of 1.22 for
shuffled data, indicating a good fit, it's noteworthy that
the model benefits from the randomness introduced by
shuffling. However, even in the unshuffled scenario, as
depicted in Figure 5, the model shows acceptable
performance, with an R2 of 0.50 and an MAE of 0.07. This
indicates that the unshuffled scenario closely resembles
real-world conditions, where the model lacks knowledge
about the remaining 20% of the data. Despite this limita-
tion, the model's predictive capabilities remain robust,
highlighting its efficacy in forecasting melt pressure at
the die.

3.2 | One minute ahead forecasting

Expanding our analysis to encompass 1-min
forecasting intervals enhances our ability to capture
longer-term trends and insights within the system. By

TABLE 2 Mean Absolute Error (MAE) for prediction of melt pressure at the Die for PLA bead foam extrusion using the Δt¼ 100 time

units and shift parameter= 50 for 5 s, 1min, and 5min in future.

Time in future

Shuffled Unshuffled

One-column All-column All-column stats One-column All-column All-column stats

5 s 3.58 0.82 0.07 3.19 3.33 2.28

1 min 10.91 1.62 5.31 5.83 0.12 3.02

5 min 24.45 1.88 13.18 10.84 0.17 4.65
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extending our predictions to cover a full minute, we
gain a deeper understanding of the evolving dynamics.
This broader scope enables more practical applications,
as forecasting melt pressure 1 min into the future pro-
vides valuable insights into process trends. Our model
demonstrates strong performance in this scenario,
achieving an R2 score of 0.97 and an MAE of 1.18 for
shuffled data, with similarly promising results for
unshuffled data with an R2 score of 0.92 and MAE= 0.13.
A parity plot can be seen in Figure 6 to compare the ML
model performance.

3.3 | Five minutes ahead forecasting

Expanding our research horizon, we check the model
with 5-min ahead forecasting, aiming to uncover a more
significance understanding of the underlying processing
dynamics. This extended time frame allows us to unveil
precise patterns and trends that may avoid detection
within shorter forecasting windows. Through rigorous
analysis and experimentation, our objective is to decode
the complex interplay of variables and their implications
for future system states.

FIGURE 5 Comparing true and predicted melt pressure values at the die, we analyze shuffled and unshuffled data. Specifically, we

forecast melt pressure for a 5-s interval using 100 time steps (equivalent to 250 s) and a shift of 50. Evaluation metrics include (MAE) and

(R2) after 5-fold cross-validation. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Comparison between the true value and predicted value of the melt pressure at the Die for shuffle and unshuffle data.

Forecasting the melt pressure at the die for 1 min ahead with the segment length of 100. The model is based on MAE and R2 score after

5-fold cross-validation. [Color figure can be viewed at wileyonlinelibrary.com]
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Our exploration into 5-min forecasting offers valuable
insights into the resilience and predictive capabilities of
our models across varying temporal scales. Our model's
proficiency in forecasting melt pressure over a 5-min
horizon is evidenced by an R2 score of 0.90 and an MAE
of 1.88 for shuffled data. Similarly, for unshuffled data,
the model demonstrates strong forecasting performance,
with an R2 score of 0.59 and an MAE of 0.20. These
results can be seen in Figure 7 for more insight.
These findings underscore the robustness and reliability
of our forecasting approach, providing valuable guidance
for real-world process optimization and decision-making.

4 | PRACTICAL
IMPLEMENTATION IN INDUSTRY

Although the current work is a proof-of-concept investi-
gation performed at an academic institution, we offer
here a simplified discussion of points we consider
important for implementing the AI model in industry.
First, the RF model could be deployed in the same
cloud service (e.g., Amazon Web Services, AWS) where
the monitored extrusion signal is being stored. Every,
say, 10 s, the signals of all parameters monitored for
the last 100 time steps (or 500 s) would be combined
and preprocessed (via a simple Python script running in
the same AWS cloud) to exhibit the format/shape
needed for predicting the die pressure. Whenever the
predicted die pressure for example, 5 min in advance is
outside the desired normal range of operation, either a
message or a visual alert could be sent (also via the

Python script) to the operator in charge, so that he/she/
they can make a decision on how to proceed, or a color
signal could be sent to a local monitor. The operator
could change the basic processing parameters of the
operation or even shut down the equipment to decrease
waste. If the extruder can be controlled from the cloud,
another ML model (also deployed in the AWS cloud)
could already suggest slight changes in some of the pro-
cessing parameters, so that the predicted die pressure
could be corrected to fall within the normal range,
where no actions from the operator would be required.

5 | CONCLUSION

In this study, we successfully demonstrated the effective-
ness of a time series-based machine learning approach
for forecasting melt pressure at the die in PLA bead foam
extrusion, a critical process parameter in this domain.
Employing a random forest algorithm, we systematically
explored various segmentation and shift parameters to
identify the optimal configuration.

Our findings reveal that a segment length of 100 with
a shift of 50 yields the highest forecast accuracy for melt
pressure at the die. Additionally, we conducted a compre-
hensive statistical analysis, including key metrics such as
mean, standard deviation, minimum, maximum, as well
as the 25th, 50th (median), and 75th percentiles of the
data, to evaluate its impact on model performance. Eval-
uation of the random forest model using both shuffled
and unshuffled datasets demonstrated robust forecasting
capabilities.

FIGURE 7 Comparison between the true value and predicted value of the melt pressure at the Die for shuffle and unshuffle data. This

include forecasting the melt pressure at the die for 5 min ahead with the segment length of 100. The model is based on MAE and R2 score

after 5-fold cross-validation. [Color figure can be viewed at wileyonlinelibrary.com]
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Furthermore, we assessed the model's performance
across different time horizons: 5 s, 1 min, and 5 min
ahead. For shuffled data, the model achieved an impres-
sive R2 score of 0.96 with an MAE of 1.22, indicating a
strong fit. Even in the unshuffled scenario, the model
performed well, with an R2 score of 0.50 and an MAE
of 0.07.

Similarly, strong performance was observed for
1-min and 5-min ahead forecasting, further highlighting
the model's effectiveness across various forecasting
horizons.

Overall, our study underscores the potential of time
series-based machine learning techniques for forecasting
critical process parameters in PLA bead foam extrusion.
By using advanced algorithms and thorough data analy-
sis, we provide valuable insights for process optimization
and decision-making in this field, laying the groundwork
for future advancements.
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