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Abstract. We consider generators of positive C0-semigroups and, more generally, resolvent positive oper-
ators A on ordered Banach spaces and seek for conditions ensuring the negativity of their spectral bound
s(A). Our main result characterizes s(A) < 0 in terms of so-called small-gain conditions that describe the
behaviour of Ax for positive vectors x . This is new even in case that the underlying space is an L p-space
or a space of continuous functions. We also demonstrate that it becomes considerably easier to characterize
the property s(A) < 0 if the cone of the underlying Banach space has non-empty interior or if the essential
spectral bound of A is negative. To treat the latter case, we discuss a counterpart of a Krein–Rutman theorem
for resolvent positive operators. When A is the generator of a positive C0-semigroup, our results can be in-
terpreted as stability results for the semigroup, and as such, they complement similar results recently proved
for the discrete-time case. In the same vein, we prove a Collatz–Wielandt type formula and a logarithmic
formula for the spectral bound of generators of positive semigroups.

1. Introduction

Recently in [33], it was shown that linear positive discrete-time evolution equations
are exponentially stable if and only if the operator generating the evolution equation
has a kind of a uniform no-increase property. This result has been already applied for
the analysis of infinite networks [40,49] and the construction ofLyapunov functions for
composite systems [40]. Furthermore, it provided strong motivation for the analysis of
discrete-time nonlinear monotone systems [49]. For finite-dimensional linear positive
systems such criteria are well-known, see, e.g. [56, Section 1] for the discrete-time
case and [63] for the continuous-time case.
Although there is a vast literature on the stability of strongly continuous semigroups—

we refer, for instance, to the classical monographs [66], [26, Chapter V], [25] and
[23], as well as to the survey article [15]—characterizations of stability of positive
C0-semigroups by means of no-increase properties have, to the best of our knowledge,
only appeared in [42] so far, under quite different assumptions than the ones that we
consider in this paper. We derive several results of this kind, which strongly extend
the corresponding finite-dimensional results from [63].
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A considerable part of the theory of positive C0-semigroups is developed in the
setting of Banach lattices. Yet, we formulate our results in themore general framework
of ordered Banach spaces. On the one hand, this gives a wider range of applicability,
for instance, to positive semigroups that act on C∗-algebras or on Sobolev spaces.
On the other hand, recent contributions in the theory of positive dynamical systems
show that, even if one starts with a positive C0-semigroup on a Banach lattice X ,
one typically has to leave the class of Banach lattices if one extends the order to the
extrapolation space X−1—an object which occurs, for instance, in the perturbation
theory of positive semigroups [8,9] and in positive systems theory [7,14,29,30].

Stability of C0-semigroups

The most prototypical linear autonomous and continuous-time dynamical system is
described by a C0-semigroup—which we denote by (et A)t≥0 or by (T (t))t≥0—with
the generator A on a Banach space X . For an overview of the theory ofC0-semigroups,
we refer, for instance, to the monographs [26,54].
We are interested in the question whether the C0-semigroup converges to 0 with

respect to the operator norm as t → ∞, i.e. whether
∥
∥et A

∥
∥ → 0 as t → ∞. In this

case, ‖et A‖ ≤ Me−at for some a, M > 0 and all t ≥ 0, so the semigroup is said to
be uniformly exponentially stable. A necessary condition for the uniform exponential
stability of a C0-semigroup is negativity of the spectral bound of the generator A, i.e.
the condition

s(A) := sup {Re λ : λ ∈ σ(A)} < 0. (1.1)

This condition is in general not sufficient for uniform exponentially stability. On
the other hand, for many important classes of semigroups, such as eventually norm-
continuous semigroups, (1.1) is indeed equivalent to uniform exponential stability of
the semigroup; see Subsection 2.4 for more details.

Contributions

In this paper, we present a variety of characterizations for the property s(A) < 0
and related results under positivity assumptions. For the sake of generality, we do not
restrict ourselves to the infinitesimal generators of positive strongly continuous semi-
groups but prove the results for the more general class of resolvent positive operators,
originally introduced in [2].

After some preparations in Sect. 2, we present in Sect. 3 a general characterization of
the negativity of the spectral bound of resolvent positive operators in ordered Banach
spaces with a normal and generating cone. Next, in Sect. 4, we derive several further
characterizations in case if the cone has in addition non-empty interior. In Sect. 5, we
discuss a Krein–Rutman type theorem for resolvent positive operators and use it to
derive characterizations for the negativity of spectral bound for operators possessing
negative essential spectral bound. A Collatz–Wielandt formula for the generators of
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a class of positive C0-semigroups is proved in Sect. 6, and Sect. 7 contains a num-
ber of explicit logarithmic formulas for the spectral bound of generators of positive
C0-semigroups. In Appendix A, we prove a new characterization of uniform expo-
nential stability of general C0-semigroups on Hilbert spaces (without any positivity
assumption) and discuss how this is related to the main part of the paper.
Discrete-time counterparts of the results proved in Sects. 3, 4 and 5 have been estab-

lished in [33]. The differences in the formulations of the results are briefly explained
in Sect. 3.3. Some of our arguments are related to the techniques used by Karlin in his
classical study of positive operators [38].

Notation and terminology

We use the conventions N = {1, 2, 3, . . . } and Z+ = {0, 1, 2, . . . }. The identity
operator on aBanach spacewill be denoted by id (if the space is clear from the context).
For subsets A, B of a vector space X , we denote A + B := {a + b : a ∈ A, b ∈ B},
−B := {−b : b ∈ B}, and A − B := A + (−B).

2. Ordered Banach spaces, positive semigroups and resolvent positive operators

2.1. Ordered Banach spaces

By an ordered Banach space, we mean a pair (X, X+), where X is a real Banach
space and X+ is a closed cone in X , i.e. a closed convex subset of X such that
X+ + X+ ⊆ X+ and X+ ∩ (−X+) = {0}. We call X+ the positive cone in X . On
every ordered Banach space, there is a natural order relation ≤ which is given by
x ≤ y if and only if y − x ∈ X+. The elements of a positive cone are called positive
vectors. The positive cone X+ in an ordered Banach space (X, X+) is called total if
its linear span X+ − X+ is dense in X ; the cone is called generating if its linear span
is even equal to the whole space X . In this case, it can be shown (see, for instance, [1,
Theorem 2.37]) that there even exists a real number M > 0 such that each x ∈ X can
be written as

x = y − z for vectors y, z ∈ X+ that satisfy ‖y‖ , ‖z‖ ≤ M ‖x‖ . (2.1)

The positive cone X+ in X is called normal if there exists a real number C > 0 such
that

‖x‖ ≤ C ‖y‖

whenever 0 ≤ x ≤ y for vectors x, y ∈ X . For x, z ∈ X the set [x, z] := {y ∈ X : x ≤
y ≤ z} is called the order interval between x and z. It can be shown (see, for instance,
[1, Theorems 2.38 and 2.40]) that the following three assertions are equivalent:

(i) the positive cone is normal
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(ii) there exists a real number C > 0 such that

‖x‖ ≤ C max {‖a‖ , ‖b‖} for all x, a, b ∈ X satisfying x ∈ [a, b]; (2.2)

(iii) each order interval in X is norm bounded.

Concise lists of classical examples of ordered Banach spaces can, for instance, be
found in [5, Subsection 2.3], [34, Subsection 2.3] and [33, Section 2].

2.2. Positive operators, Banach spaces and their duals

Let (X, X+) be an ordered Banach space, and let L(X) denote the space of all
bounded linear operators on X . An operator T ∈ L(X) is called positive—which we
denote by T ≥ 0—if T X+ ⊆ X+. Similarly, a bounded linear functional x ′—i.e. an
element of the dual space X ′—is called positive if 〈x ′, x〉 ≥ 0 for all x ∈ X+; here,
we used the common notation 〈x ′, x〉 := x ′(x). If the cone X+ is total, then the dual
space X ′ also becomes an ordered Banach space when endowed with the dual cone
(X ′)+ that is defined to be the set of all positive bounded linear functionals on X .
The dual cone (X ′)+ is generating if and only if X+ is normal [43, Theorem 4.5];
and analogously, the dual cone (X ′)+ is normal if and only if X+ is generating [43,
Theorem 4.6].

2.3. Resolvent positive operators

Each real Banach space X has a complexification which is a complex Banach space
that is often denoted by XC (in fact, there are many complexifications of X , but they
are all isomorphic). For an overview about complexifications we refer, for instance,
to [50] and [31, Appendix C]. Complexifications are typically used to exploit spectral
theoretic properties of linear operators that are a priori defined on real Banach spaces;
a brief overview of this approach is, for instance, given in [31, Section C.3].
If (X, X+) is an ordered Banach space, we call a bounded linear operator T on XC

positive if it is the extension of a positive operator in L(X) to XC; this is equivalent
to saying that T leaves X invariant and its restriction to X is positive.

Now, let (X, X+) be an ordered Banach space and let A : X ⊇ dom (A) → X be
a closed linear operator. Whenever we talk about spectral properties of A, we shall
assume that A has been extended to a (automatically closed) linear operator AC on a
complexification XC of X and by any spectral property of A we tacitly refer to the
corresponding spectral property of AC. In particular, by the spectrum σ(A) and the
resolvent set ρ(A) of A we mean the spectrum σ(AC) and the resolvent set ρ(AC)

of AC. For every λ ∈ ρ(A), the resolvent of A at λ is the operator R(λ, A) :=
R(λ, AC) := (λ − AC)−1 ∈ L(XC).

An operator A : X ⊇ dom (A) → X is called resolvent positive if there exists a real
number ω such that the interval (ω,∞) is in the resolvent set of A and the resolvent
R(λ, A) is positive for each λ ∈ (ω,∞). A C0-semigroup (et A)t≥0 is called positive
if et A is positive for all t ≥ 0.
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One reason why resolvent positive operators are important is that every generator
of a positive C0-semigroup is resolvent positive. For more information on positive
C0-semigroups, we refer to the classical paper [12] and, in the more specific context
of Banach lattices, also to [52] and [10].
On the other hand, there also exist resolvent positive operators which are not genera-

tors ofC0-semigroups [2, Section 3]. Yet, even then resolvent positivity of an operator
A has consequences for the well-posedness of the Cauchy problem u̇(t) = Au(t):
indeed, under mild assumptions on the space X , it follows that every resolvent posi-
tive operator generates a once integrated semigroup [3, Theorem 3.11.7], which can
be interpreted as a weak form of well-posedness of the Cauchy problem (compare [3,
Corollary 3.2.11]).
Resolvent positive operators were introduced by Arendt in [2], and are mostly

studied on ordered Banach spaces with a generating and normal cone. However, their
very definition also makes sense on general ordered Banach spaces, and in several
sections below we will encounter situations where interesting results can be shown
about resolvent positive operators if the cone is only assumed to be total.
For a linear operator A : X ⊇ dom (A) → X define the spectral bound s(A) by

s(A) := sup{Re λ : λ ∈ σ(A)} ∈ [−∞,∞].

and the real spectral bound by

sR(A) := sup(σ (A) ∩ R) ∈ [−∞,∞].

Here, we use the convention sup(∅) = −∞. Clearly, we always have sR(A) ≤ s(A),
and if A is resolvent positive, then by definition of the resolvent positive operator, we
have sR(A) < ∞. If A generates a C0-semigroup (et A)t≥0, the number

ω(A) := inf{ω ∈ R : ∃M ≥ 1 ∀t ≥ 0
∥
∥
∥et A

∥
∥
∥ ≤ Metω} ∈ [−∞,∞)

is called the growth bound of A (or of the semigroup (et A)t≥0).
The following proposition contains several useful results about resolvent positive

operators.

Proposition 2.1. Let (X, X+)beanorderedBanach spaceand let A : X ⊇ dom (A) →
X be a resolvent positive operator on X.

(a) If sR(A) < λ < μ, thenR(λ, A) ≥ R(μ, A) ≥ 0. In other words, the resolvent
is positive and decreasing on the interval (sR(A),∞) and thus, in particular, on
the interval (s(A),∞).

(b) Assume that the cone X+ is generating, and define dom (A)+ := dom (A)∩X+.
Then, dom (A) = dom (A)+ − dom (A)+.
Assume now in addition that the cone X+ is generating and normal.

(c) The spectral bound satisfies s(A) < ∞. If σ(A) �= ∅, then s(A) is a spectral
value of A.
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(d) One has s(A) = sR(A).
(e) If λ ∈ R is in the resolvent set of A and λ < sR(A) = s(A), thenR(λ, A) is not

positive.

Proof. (a) We first show thatR(μ, A) ≥ 0 for all μ ∈ (sR(A),∞). To this end, let us
define the set

I :=
{

λ ∈ (sR(A),∞) : R(μ, A) ≥ 0 for all μ ∈ [λ,∞)
}

.

Then, I is a non-empty subinterval of (sR(A),∞), and I is closed in (sR(A),∞) by
the continuity of the resolvent. It suffices to show that I is also open, so let λ ∈ I .
For all μ in a sufficiently small left neighbourhood of λ, we can represent R(μ, A)

by means of the Taylor expansion

R(μ, A) =
∞
∑

n=0

(λ − μ)nR(λ, A)n+1,

so R(μ, A) ≥ 0 for those μ. This proves that I is indeed open, and hence equal to
(sR(A),∞). In particular, the resolvent is positive on the latter interval.
The fact that μ �→ R(μ, A) is decreasing on (sR(A),∞) is now easy to see: the

resolvent is analytic, and its derivative at any point μ ∈ (sR(A),∞) is given by
−R(μ, A)2 ≤ 0.
(b) Let x ∈ dom (A). Choose a real number λ in the resolvent set of A such that

R(λ, A) ≥ 0. Since X+ is generating in X , we can decompose the vector (λ − A)x
as (λ − A)x = y − z for two vectors y, z ∈ X+. Hence,

x = R(λ, A)(λ − A)x = R(λ, A)y − R(λ, A)z ∈ dom (A)+ − dom (A)+ ,

which proves the assertion.
(c) and (e) These results can, for instance, be found in [3, Proposition 3.11.2] (note

that the assumption that the cone be generating is not explicitly mentioned there since
the authors of [3] define the notion ordered Banach space in a way that the cone is
always generating).
(d) This follows immediately from (c). �

The proof of Proposition 2.1 (a) is an adaptation of an argument from [19, Propo-
sition 4.2]. For the sake of easier reference, we explicitly restate parts (a) and (b) of
the previous proposition for the case of positive C0-semigroups:

Corollary 2.2. Let (X, X+) be an orderedBanach space and let A : X ⊇ dom (A) →
X generate a positive C0-semigroup on X. Then, A is resolvent positive and hence
the following assertions hold.

(a) The inequality R(λ, A) ≥ R(μ, A) ≥ 0 holds for all real numbers λ < μ in
the interval (sR(A),∞) (and thus, in particular, in the interval (s(A),∞)).

(b) If X+ is generating, then dom (A)+ is generating in dom (A), i.e. dom (A) =
dom (A)+ − dom (A)+.
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Proof. If λ ∈ R is located on the right of the growth boundω(A), thenR(λ, A) can be
represented as theLaplace transformof the semigroup and is hence positive. Therefore,
A is resolvent positive. Hence, the claims (a) and (b) follow from Proposition 2.1. �

To the best of our knowledge, positivity of the resolvent on the right of the spectral
bound has only been shown in the literature so far if the cone X+ is normal and gen-
erating: in this case one has s(A) = sR(A) and one does not need the connectedness
argument from the proof of Proposition 2.1(a) since the Laplace transform represen-
tation of the resolvent converges (as an improper Riemann integral) on the right of
s(A) rather than only on the right of the growth bound [12, Theorem 2.4.2(2)].

We close this subsection with two examples which show that Proposition 2.1 (c)–
(e) does not remain true, in general, if one drops the assumption that the cone X+ is
normal. The examples are adaptions of a classical example ofBonsall [13, Example (iv)
on pp.57–58] which shows that the spectral radius of a positive operator need not be
a spectral value if the cone is not normal.

Examples 2.3. Let � ⊆ C be a bounded domain, which is symmetric with respect
to reflection at the real axis; note that this implies � ∩ R �= ∅. Let A(�) denote the
space of all continuous functions � → C which are holomorphic inside �. This is
a complex Banach space with respect to the sup norm. Let X ⊆ A(�) denote the
subset of those functions that are real-valued on�∩R. Then, X is a real Banach space
with respect to the sup norm and A(�) is the complexification of X . Indeed, for every
f ∈ A(�) the function f ∗ given by f ∗(z) := f (z) for all z ∈ � is well-defined due
to the symmetry of � and belongs to A(�), and we have f = g1 + ig2, where the
functions g1 := 1

2 ( f + f ∗) and g2 := 1
2i ( f − f ∗) are in X . Moreover, the intersection

X ∩ i X is {0} by the identity theorem for holomorphic functions.

Now let S ⊆ � ∩ R be a set which has an accumulation point in � and let X+
consist of those functions in X which map S into [0,∞). This is a closed cone in X
by the identity theorem for holomorphic functions, so (X, X+) is an ordered Banach
space.

It follows from 1� ∈ X that the cone X+ is generating (and even has an interior
point, see Lemma 4.1). However, X+ is not normal. To see this, choose a point z0 ∈
� ∩ R and define functions fn ∈ X by fn(z) = sin

(

n(z − z0)
) + 1 for each z ∈ �

and each integer n ≥ 1. Then 0 ≤ fn ≤ 21� for each n (note that the inequalities are,
are usual, meant with respect to the order generated by X+, so 0 ≤ fn ≤ 21� means
0 ≤ fn(z) ≤ 2 for all z ∈ S ⊆ � ∩ R). However, since sin is unbounded on C, one
has supn ‖ fn‖∞ = ∞.

Now let the operator AC ∈ L(A(�)) be given by (AC f )(z) = z f (z) for all f ∈
A(�) and all z ∈ �. Then, AC leaves X invariant and is the complex extension of the
operator A := AC|X . One can easily check that the spectrum of AC—and hence of
A—equals �. Moreover, A is positive if and only if S ⊆ [0,∞).

Let us now consider two more specific situations:
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(a) Let � be a subset of the right half plane which satisfies

sup(� ∩ R) < sup{Re z : z ∈ �}.

Then, A is positive since S ⊆ � ∩ R is contained in (0,∞) and hence A is
resolvent positive as a consequence of the Neumann series representation of
the resolvent. One has sR(A) = sup(� ∩ R) and s(A) = sup{Re z : z ∈
�}. So sR(A) < s(A) and s(A) is not a spectral value of A. This shows that
Proposition 2.1 (c) and (d) does not remain true, in general, if X+ is not normal.

(b) Let� := {z ∈ C : 1 < |z − 2| < 2} and choose S := (0, 1). Then, A is positive
and hence resolvent positive. Moreover, the number s(A) = sR(A) = 4 is a
spectral value of A. At the number 2 ∈ ρ(A), the resolvent of A is given by
R(2, A) f (z) = 1

2−z f (z) for all f ∈ A(�) and all z ∈ �. Since 1
2−z > 0 for all

z ∈ S = (0, 1), it follows that R(2, A) is positive despite 2 < sR(A) = s(A).
This shows that Proposition 2.1 (e) does not hold, in general, if the cone is not
normal.

2.4. Stability of C0-semigroups

The main purpose of this article is to characterize for resolvent positive operators
A, in a variety of situations, the property s(A) < 0. The motivation for studying this
property is as follows:
Let us first consider a C0-semigroup (et A)t≥0 with the generator A on a Banach

space X . An important stability property of semigroups is the uniform exponential
stability: a semigroup (et A)t≥0 is called uniformly exponentially stable, if there are
numbers M, a > 0, such that

∥
∥
∥et A

∥
∥
∥ ≤ Me−at for all t ≥ 0.

It is not hard to see that uniform exponential stability of the semigroup implies that
s(A) < 0; see, for instance, [66, Proposition 1.2.1]. At the same time, the converse
implication does not hold in general, even for C0-groups on Hilbert spaces, see [66,
Example 1.2.4] or [26, Section IV.3]. Even if s(A) = −∞, the semigroup does not
need to be uniformly exponentially stable [17, Exercise 4.13]. This behaviour is due
to a failure of the spectral mapping theorem for general C0-semigroups; for a detailed
explanation of this, we refer, for instance, to [26, Section IV.3].
On the other hand, for many classes of semigroups the spectral bound s(A) is

equal to the growth bound ω(A) of the semigroup. If this is the case, one says that
T satisfies the spectrum determined growth property [17, p. 161]. A notable class of
C0-semigroups that satisfy the spectrum determined growth assumption are eventually
norm-continuous semigroups [26, Theorem 1.10, p. 302], and thus, as a special case,
analytic semigroups. For a very general condition that implies equality of the spectral
bound and the growth bound, we refer to [47, Corollary 1.4(i)], where semigroups that
are norm continuous at infinity are studied.
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2.5. Stability of positive C0-semigroups

Positivity of semigroups enters the game due to the following two reasons:

(1) On many important spaces, every positive semigroup has the spectrum deter-
mined growth property. This is, for instance, true on L p-spaces for p ∈ [1,∞)

(see [68] or [69, Theorem 1] or, for a strong simplification of the proof, the
recent article [67]), and also on many spaces of continuous functions (see, for
instance, [52, Theorem B-IV−1.4] or, for a more recent and simpler argument,
[6, Theorem 1]). See also Subsection 3.4.

(2) Positivity provides uswithways to show theproperty s(A) < 0without explicitly
computing or estimating the spectrum of A.

The focus of the present article is on point (2). Our results apply to a slightly more
general situation than described above. We do not only focus on the case where A
generates a positive C0-semigroup. Instead, we consider the more general situation
where A is a resolvent positive operator. One advantage of this approach is that resol-
vent positive operators are closely related to integrated semigroups, a more general
concept than C0-semigroups; just as for the C0-semigroup case, stability properties
of integrated semigroups are strongly tied to the spectrum of their generator (see, for
instance, [24, Theorem 6.1]), which is why the inequality s(A) < 0 is also of interest
for operators A that do not generate C0-semigroups.

3. Spectral stability of resolvent positive operators

In this section, we characterize the condition s(A) < 0 for resolvent positive op-
erators acting on ordered Banach spaces with generating and normal cones. In view
of the preceding discussion, this is relevant in order to establish uniform exponential
stability of linear systems. Characterizations under different assumptions on the cone
will be given in the subsequent sections.

3.1. A characterization of spectral stability

For a subset S and a vector x in a Banach space X , we denote by

dist(x, S) := inf {‖x − y‖ : y ∈ S}

the distance from x to S. We proceed to our first main result:

Theorem 3.1. Let (X, X+) be an ordered Banach space with generating and normal
cone and let A : X ⊇ dom (A) → X be a resolvent positive operator. Then, the
following assertions are equivalent:

(i) Spectral stability: The spectral bound of A satisfies s(A) = sR(A) < 0.
(ii) Positive resolvent at 0:The operator A : dom (A) → X is bijective and−A−1 =

R(0, A) is positive.
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(iii) Monotone bounded invertibility property: There exists a number c > 0 such that

−Ax ≤ y ⇒ ‖x‖ ≤ c ‖y‖

for all 0 ≤ x ∈ dom (A) and all 0 ≤ y ∈ X.
(iv) Uniform small-gain condition: There exists a number η > 0 such that

dist(Ax, X+) ≥ η ‖x‖ for all 0 ≤ x ∈ dom (A) . (3.1)

(v) Robust small-gain condition: There exists a number ε > 0 such that

(A + P)x �≥ 0

whenever x is a positive nonzero vector in dom (A) and P : X → X is a positive
linear operator of norm ‖P‖ ≤ ε.

(vi) Rank-1 robust small-gain condition: There exists a number ε > 0 such that

(A + P)x �≥ 0

whenever x is a positive nonzero vector in dom (A) and P : X → X is a positive
linear operator of norm ‖P‖ ≤ ε and of rank 1.

For some background information about the terminology small-gain condition, we
refer to Subsection 3.2.

Let A : X ⊇ dom (A) → X denote a closed linear operator. If λ is a scalar and
(xn) ⊆ dom (A) is a sequence of vectors such that ‖xn‖X = 1 for each n and

(λ − A)xn → 0 in X,

then λ is called an approximate eigenvalue of A, and (xn) is called an approximate
eigenvector associated to λ. Every approximate eigenvalue of A is in the spectrum of
A.
To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. Let (X, X+) be an ordered Banach space with generating cone and let
A : X ⊇ dom (A) → X be a resolvent positive operator. Assume that A has at least
one spectral value in R.
Then, sR(A) is an approximate eigenvalue of A, and there exists an associated

approximate eigenvector that consists of positive vectors.

The proof is a simple adaptation of [26, Proposition IV.1.10]. In [33, Lemma 3.4],
we gave a similar argument to obtain the lemma for the special case of bounded positive
operators (note that normality of the cone that is assumed in this reference, is only
needed there to ensure that the spectral radius is in the spectrum). Still, we include the
details here to be more self-contained.
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Proof of Lemma 3.2. First note that sR(A) is a spectral value of A since the spectrum
is closed. Now, choose a sequence (sn) of real numbers such that sn ↓ sR(A); then
we have ‖R(sn, A)‖ → ∞. Hence, we can find a sequence of normalized vectors
wn ∈ X such that ‖R(sn, A)wn‖ → ∞.
Using that the cone is generating we can, according to (2.1), find M > 0 such that

for each n ∈ N there are vn, bn ∈ X+ satisfying

wn = vn − bn and ‖vn‖ ≤ M‖wn‖ = M and ‖bn‖ ≤ M‖wn‖ = M.

If both sequences
( ‖R(sn, A)vn‖

)

n and
( ‖R(sn, A)bn‖

)

n are bounded, then by the
triangle inequality also the sequence

( ‖R(sn, A)wn‖
)

n must be bounded, which
is not true. Hence at least one of these sequences—let us say

( ‖R(sn, A)vn‖
)

n—
is not bounded. Thus, we can find a subsequence (vnk )k of (vn)n such that βk :=
∥
∥R(snk , A)vnk

∥
∥ → ∞ as k → ∞. By dropping finitely many elements of our se-

quence if necessary, we may assume that βk > 0 for each k.
We now obtain the desired approximate eigenvector (xk) by setting

xk := 1

βk
R(snk , A)vnk , k ∈ N.

Clearly, each xk is normalized, and it is also in the cone X+ sinceR(snk , A) is positive
according to Proposition 2.1(a). Finally, (xk) is indeed an approximate eigenvector for
sR(A) since we have

(

sR(A) − A
)

xk = (

sR(A) − snk
)

xk + 1

βk
vnk → 0

as k → ∞; here we used that βk → ∞ and that the sequence (vnk ) is bounded. �

Now we can show Theorem 3.1:

Proof of Theorem 3.1. “(i)⇒(ii)”ByProposition 2.1(d), one has sR(A) = s(A). Thus,
Proposition 2.1(a) shows the claim.

“(ii)⇒(iii)” If −Ax ≤ y for 0 ≤ x ∈ dom (A) and 0 ≤ y ∈ X , then it follows
from the positivity of R(0, A) that 0 ≤ x ≤ R(0, A)y. So the monotone bounded
invertibility property follows from the boundedness of R(0, A) and the normality of
the cone.
“(iii)⇒(iv)” Let 0 ≤ x ∈ dom (A) and let ε > 0. There exists a vector z ∈ X+

such that

dist(Ax, X+) + ε ≥ ‖Ax − z‖ .

We can decompose the vector Ax − z as Ax − z = u − v for positive vectors u, v that
satisfy the norm estimate

‖u‖ , ‖v‖ ≤ M ‖Ax − z‖ ≤ M dist(Ax, X+) + Mε;
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here, M > 0 is the constant from (2.1). Now we can estimate the vector −Ax as

−Ax = v − u − z ≤ v,

so the monotone bounded invertibility property implies that

‖x‖ ≤ c ‖v‖ ≤ cM dist(Ax, X+) + cMε.

Since ε was arbitrary, this implies the uniform small-gain condition with constant
η = 1/(cM).

“(iv)⇒(v)” Set ε = η/2. Let P : X → X be a positive linear operator of norm
at most ε and let x ∈ X+ be a nonzero vector. Then, the distance between Ax and
(A + P)x is given by

‖Ax − (A + P)x‖ = ‖Px‖ ≤ ε ‖x‖ < η ‖x‖ ,

where we used x �= 0 for the strict inequality at the end. Hence, (A + P)x cannot be
positive due to the uniform small-gain condition.
“(v)⇒(vi)” This implication is obvious.
“(vi)⇒(i)” Let ε > 0 be as in (vi) and assume towards a contradiction that s(A) ≥

0. Since the cone X+ is generating and normal, s(A) is a spectral value of A (see
Proposition 2.1(c)) and thus coincides with sR(A). Hence, Lemma 3.2 yields that s(A)

is an approximate eigenvalue of A and that there exists a corresponding approximate
eigenvector (xn) that consists of vectors 0 ≤ xn ∈ dom (A) such that ‖xn‖ = 1 and
(s(A) − A)xn → 0 as n → ∞. For each n, we find vectors yn, zn ∈ X+ such that

(A − s(A))xn = yn − zn,

and according to (2.1), we can choose these vectors such that yn, zn → 0 as n → ∞.
Now let M ′ > 0 be the constant from (2.1), but for the dual space X ′; this constant
exists since the cone in X+ is normal, so the dual cone is generating [43, Theorem 4.5].
As zn → 0, there exists an index n0 such that M ′ ∥∥zn0

∥
∥ ≤ ε.

It is not difficult to see that there exists a functional 0 ≤ z′ ∈ X ′ of norm at most M ′
such that 〈z′, xn0〉 ≥ 1 (we refer to [33, Lemma 3.5] for a detailed proof of this). Now
we define a positive rank-1 operator P : X → X by the formula Pv = 〈z′, v〉zn0 for
each v ∈ X .

This operator P has norm ‖P‖ = ∥
∥z′

∥
∥

∥
∥zn0

∥
∥ ≤ M ′ ∥∥zn0

∥
∥ ≤ ε. But on the other

hand, as we assumed s(A) ≥ 0,

Axn0 + Pxn0 ≥ (A − s(A))xn0 + Pxn0

= yn0 − zn0 + 〈z′, xn0〉zn0 ≥ −zn0 + zn0 = 0.

This contradicts the rank-1 robust small-gain condition. �
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3.2. The finite-dimensional case revisited

Let us briefly compare Theorem 3.1 with a classical result in finite dimensions. Let
(X, X+) be a finite-dimensional ordered Banach space with generating cone (normal-
ity is automatic in finite dimensions) and let A : X → X be a linear operator such
that et A is positive for each t ≥ 0 (equivalently: A is resolvent positive). Stern proved
in [63, Corollary 1.6] that s(A) < 0 if and only if

Ax �≥ 0 for all x ∈ X+ \ {0}. (3.2)

Due to the occurrence of similar conditions in so-called small-gain theorems for the
stability of networks (see, for instance, [20,36,49]), we call (3.2) a small-gain condi-
tion.
In infinite dimensions, the condition (3.2) is not sufficient to guarantee that s(A) <

0, as each of the following simple examples shows:

Examples 3.3. (a) Equip the space L2(R) with the pointwise almost everywhere
order and let (et A)t≥0 denote the left shift semigroup on X = L2(R), i.e. et A f =
f ( · +t) for all f ∈ L2(R) and each t ≥ 0. The domain of A is the Sobolev space
H1(R) and one has A f = f ′ for each f ∈ H1(R). If a function 0 ≤ f ∈ H1(R)

satisfies f ′ = A f ≥ 0, then f is increasing and hence f = 0 as f ∈ L2(R).
Therefore, A f �≥ 0 for all nonzero 0 ≤ f ∈ dom (A). Yet, one has s(A) = 0:
by using the Fourier transform one can see that σ(A) = iR.

(b) Endow X := 
2(N) with the pointwise order, let R ∈ L(X) denote the right
shift and let A := R − 1

2 id. As R is positive it is resolvent positive and hence,
A is resolvent positive, too. If x ∈ X+ satisfies Ax ≥ 0, then

(0, x1, x2, . . . ) ≥ 1

2
(x1, x2, x3, . . . ),

so x = 0. This shows that A satisfies the condition (3.2). Yet, the spectrum of R
is the closed unit disc and hence s(A) = 1

2 > 0.

Yet, Theorem 3.1 shows that the small-gain condition (3.2) can be replaced with
the uniform small-gain condition (3.1), which is indeed equivalent to s(A) < 0. It is
worthwhile to explain the relation between the conditions (3.1) and (3.2) at an intuitive
level: for positive x , the condition Ax �≥ 0 from the small-gain condition (3.2) can be
rewritten as dist(Ax, X+) > 0, and the uniform small-gain condition (3.1) is simply
a uniform version thereof.
In finite dimensions, it easily follows from a compactness argument that the con-

ditions (3.1) and (3.2) are equivalent (alternatively, this also follows from the above
quoted [63, Corollary 1.6] and from Theorem 3.1 since both conditions are equivalent
to s(A) < 0).

3.3. Single operators vs. C0-semigroups

Theorem 3.1 gives characterizations for the negativity of the spectral bound of resol-
vent positive operators and thus in particular for generators of positiveC0-semigroups.
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Those characterizations are the counterparts for the small-gain criteria of stability of
discrete-time semigroups shown recently in [33]. In particular, a counterpart of The-
orem 3.1 says (among other statements) the following (see [33, Theorem 3.3]):

Theorem 3.4. Let (X, X+) be an ordered Banach space with generating and normal
cone and assume that T ∈ L(X) is a positive operator. Then, the following assertions
are equivalent:

(i) The spectral radius of T satisfies r(T ) < 1.
(ii) There is a number c > 0 such that one has

(id−T )x ≤ y ⇒ ‖x‖ ≤ c ‖y‖ .

for all x, y ∈ X+.
(iii) There exists a number η > 0 such that for each x ∈ X+

dist
(

(T − id)x, X+) ≥ η ‖x‖ .

Note that, since in Theorem 3.4 the cone X+ is generating and normal, the positivity
of T implies that r(T ) is a spectral value of T (see, for instance, [60, paragraph 2.2
on p. 311]), and hence r(T ) = sR(T ) = s(T ). Hence, the condition r(T ) < 1 is
equivalent to s(T − id) < 0.

After this reformulation, looking at Theorems 3.1 and 3.4, we see that the statements
of Theorems 3.1 are “translated” into the statements of Theorems 3.4 by substituting
T − id instead of A. This difference can be understood by noting that mimicking the
definition of the infinitesimal generator of a strongly continuous semigroup, the role of
the “infinitesimal generator” for the discrete-time semigroup {T k : k ∈ Z+} is played
by T − id.

3.4. Equality of the spectral and growth bound

Let (et A)t≥0 be a positive C0-semigroup on an ordered Banach space with nor-
mal and generating cone. Theorem 3.1 characterizes the property s(A) < 0. This is
equivalent to et A → 0 in operator norm as t → ∞ if the semigroup has the spectral
determined growth property s(A) = ω(A). As explained in Subsection 2.5 this prop-
erty is, for instance, satisfied for positive semigroups on L p-spaces. The following
theorem gives another sufficient condition for this property. A set S in an ordered
Banach space (X, X+) is called order bounded if there exist points x, y ∈ X such that
S ⊆ [x, y].

Theorem 3.5. Let (X, X+) be an ordered Banach space with generating and normal
cone and let A : X ⊇ dom (A) → X generate a positive C0-semigroup on X. Let
0 ≤ t0 < t1 and assume that the set {et A f : t ∈ [t0, t1]} is order bounded for each
f ∈ X. Then, s(A) = ω(A).
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Proof. Since replacing A with A − c id for any number c ∈ R does not change the
order boundedness assumption, it suffices to prove that if s(A) < 0, then ω(A) ≤ 0
(by a similar argument as in Corollary 4.9). So assume that s(A) < 0.

First, we will show that the orbit {et Ax : t ≥ 0} is norm bounded for every x ∈ X+.
From this fact and the assumption that X+ is generating, it then follows that the orbit
of each vector in X is norm bounded and by the uniform boundedness principle, we
thus get boundedness of the semigroup, so ω(A) ≤ 0.
So fix x ∈ X+. We will use the following known result: since the cone X+ is

assumed to be normal and generating, the resolvent R(0, A) is given by

R(0, A)x =
∫ ∞

0
esAx ds for each x ∈ X,

where the integral converges as an improper Riemann integral [12, Theorem 2.4.2(2)].
Due to the order boundedness assumption, there exists a vector y ∈ X+ such that

0 ≤ et Ax ≤ y for all t ∈ [t0, t1]. For every t ≥ t1, this implies

et Ax = 1

t1 − t0

∫ t1

t0
e(t−s)AesAx ds ≤ 1

t1 − t0

∫ t1

t0
e(t−s)Ay ds

≤ 1

t1 − t0

∫ ∞

0
esA y ds = 1

t1 − t0
R(0, A)y.

As the cone is normal, this implies that {et Ax : t ≥ t1} is norm bounded and hence,
{et Ax : t ≥ 0} is norm bounded, too, as claimed. �

In the special case where X is a Banach lattice and t0 = 0, Theorem 3.5 was proved
in [32, Theorem 3.1]. Our proof is an adaptation of the proof in this reference, which
is in turn an adaptation of the proof of [6, Theorem 1]. Theorem 3.5 contains various
known results as special cases:

Examples 3.6. Let (et A)t≥0 be a positive C0-semigroup on an ordered Banach space
(X, X+) and assume that the cone X+ is normal and generating. Each of the following
conditions implies that s(A) = ω(A).

(a) The cone X+ has non-empty interior. In this case, proofs of s(A) = ω(A) can,
for instance, be found in [4, Theorem 5.3] or [2, Corollary 2.3].
The result is a special case of Theorem 3.5 since the existence of an interior
point of X+ implies that every norm bounded set in X is order bounded, see
Lemma 4.1. We will give another proof of the equality s(A) = ω(A) for X+
with non-empty interior in Corollary 4.9.
Typical examples of spaces X in which the cone has non-empty interior are
spaces C(K ) of continuous functions on compact Hausdorff spaces K and the
self-adjoint parts of unital C∗-algebras.

(b) Every compact set in X is order bounded.
This is equivalent to so-called α-directedness of X , see [70, Theorem 1], and the
equality s(A) = ω(A) on such spaces was proved in [11, Theorem 4] and [12,
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Corollary 2.4.5]. The equality is also an immediate consequence of Theorem 3.5
since the set {et A f : t ∈ [0, 1]} is compact and thus, due to the assumption on
X , order bounded for each f ∈ X .
Typical examples of such spaces X are spaces C0(L) of continuous functions
that vanish at infinity on locally compact Hausdorff spaces L and the self-adjoint
parts of arbitrary C∗-algebras.

(c) There exists a time t0 ≥ 0 and a vector h ∈ X+ such that the range et0AX is
contained in the so-called principal ideal Xh := ⋃

c∈[0,∞)[−ch, ch].
In the special case where X is a Banach lattice, a proof of s(A) = ω(A) in this case
can be found in [52, TheoremC-IV−1.1(b) on p. 334]. In the general case, the equality
follows from Theorem 3.5 by the following argument:

Since X+ is normal, one can show that Xh is a Banach space with respect to the
so-called gauge norm ‖ · ‖h given by ‖x‖h := min{c ≥ 0 : x ∈ [−ch, ch]} for all
x ∈ Xh . Moreover, also by the normality of the cone, Xh endowed with this norm
embeds continuously into X . It thus follows from the closed graph theorem that et0A

is a continuous operator from X to Xh . So we conclude from the semigroup law that,
for each f ∈ X , the set {et A f : t ∈ [t0, t0 + 1]} is norm bounded in Xh and hence
order bounded in X .

We point out that the equality s(A) = ω(A) for generators of positive semigroups
does not hold on general ordered Banach spaces with normal and generating cone;
see, for instance, [3, Example 5.1.11] for a counterexample.

4. Stability if the cone has interior points

In this section, we consider the case where the cone in an ordered Banach space
(X, X+) has non-empty (topological) interior and show a similar result as Theorem 3.1
for this case; the point is that the additional assumption on the cone allows for char-
acterizations of s(A) by a priori weaker statements. Moreover, it gives us equality of
the spectral and the growth bound of positive semigroups, as pointed out in Exam-
ple 3.6(a).

Note that the assumption that the cone X+ has non-empty interior is rather strong;
it is, for instance, satisfied for spaces of continuous functions over compact sets, and
for L∞-spaces, but it is not satisfied on L p-spaces for p < ∞, unless the space is
finite-dimensional.
We will need the following well-known equivalences. For a more detailed discus-

sion, we refer, for instance, to [34, Definition 2.4(iii) and (v) and Proposition 2.11].

Lemma 4.1. Let (X, X+) be an ordered Banach space and let z ∈ X+. The following
statements are equivalent:

(i) The vector z is an element of the topological interior of X+.
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(ii) The vector z is an order unit, i.e. for each y ∈ X there exists ε > 0 such that
z ≥ εy.

(iii) There is c > 0, such that for all y ∈ X with ‖y‖ ≤ c, we have −z ≤ y ≤ z.

For two vectors x, y ∈ X , we write x � y (or y � x) if there exists an interior
point z of X+ such that x + z ≤ y.
We will need the following result about the existence of dual eigenvectors:

Proposition 4.2. Let (X, X+) be an ordered Banach space and suppose that the cone
X+ is normal and has non-empty interior. Let A : X ⊇ dom (A) → X be a densely
defined resolvent positive linear operator.
Then, the spectral bound s(A) satisfies s(A) > −∞, it is an eigenvalue of the dual

operator A′, and there exists a corresponding eigenvector 0 ≤ z′ ∈ dom
(

A′).

Our proof of the proposition is a simple adaptation of an analogous result for pos-
itive operators in [58, Eigenvalue Theorem on p.705]. We need the following simple
observation: we can identify the square X ′ × X ′ with the dual of the Banach space
X × X by identifying each pair (x ′, y′) ∈ X ′ × X ′ with the functional

X × X � (x, y) �→ 〈x ′, x〉 + 〈y′, y〉 ∈ R.

Bymeans of this identification, X ′ ×X ′ carries a weak∗-topology, which is easily seen
to coincide with the product topology of the weak∗-topology on X ′.

Proof of Proposition 4.2. It was shown in [4, bottom of page 174] that σ(A) is non-
empty, so s(A) > −∞. As A is densely defined, the dual operator A′ : X ′ ⊇
dom

(

A′) → X ′ is well-defined. Furthermore, σ(A′) = σ(A) and thus s(A′) = s(A)

(see [71, Theorem 2 on p.225]). As for μ ∈ (s(A′),+∞) we have that R(μ, A′) =
(R(μ, A))′ [71, Theorem 2 on p.225], and since the dual of a positive operator is
again positive, we obtain that A′ is resolvent positive on the ordered Banach space
(X ′, (X ′)+), with s(A′) = s(A).

Since the dual cone (X ′)+ is generating and normal, it follows from Proposition 2.1
(d) that s(A′) = sR(A′). Hence, it follows from Lemma 3.2 that s(A′) is even an
approximate eigenvalue of A′ with an approximate eigenvector (x ′

n) in (X ′)+.
As ‖x ′

n‖ = 1 for all n ∈ N, by the Banach–Alaoglu theorem [16, Theorem V.3.1 on
p. 130] there is a weak∗-convergent subnet of (x ′

n), whose weak
∗-limit we denote by

z′ ∈ (X ′)+. Since the graph of A′ is weak∗-closed in X ′ × X ′ [65, Proposition 1.1.1],
it follows that z′ ∈ dom

(

A′) and A′z′ = s(A)z′.
So it only remains to show that z′ is nonzero. To this end, fix an interior point z ∈ X+

of X+. Then, there exists a number ε > 0 such that the order interval [−z, z] contains
Bε := {x ∈ X : ‖x‖ ≤ ε}; see Lemma 4.1(iii). This implies that for each x ′ ∈ (X ′)+
and each x ∈ Bε

〈x ′,−z〉 ≤ 〈x ′, x〉 ≤ 〈x ′, z〉,
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and thus

〈x ′, z〉 ≥ sup
x∈Bε

|〈x ′, x〉| = ε
∥
∥x ′∥∥ .

Hence, we have 〈x ′
n, z〉 ≥ ε for each n and thus, 〈z′, z〉 ≥ ε, so z′ is indeed nonzero.

�
Resolvent positivity does not guarantee that the resolvent maps the interior of X+

into itself. The next proposition gives a simple yet useful characterization of this
property.

Proposition 4.3. Let (X, X+) be an ordered Banach space with int (X+) �= ∅. Let
A : X ⊇ dom (A) → X be a resolvent positive linear operator and λ > sR(A). The
following statements are equivalent:

(i) R(λ, A) maps int (X+) into int (X+).
(ii) D(A) ∩ int (X+) �= ∅.

Proof. “(i)⇒(ii)” This is clear, as D(A) = R(λ, A)X and int (X+) �= ∅.
“(ii)⇒(i)” Let z ∈ D(A)∩ int (X+). Then, there is x ∈ X such thatR(λ, A)x = z.

Let y be an arbitrary interior point of X+. By Lemma 4.1(ii), there is ε > 0 with
y ≥ εx . As A is resolvent positive, by Proposition 2.1(a), R(λ, A) is a positive
operator, and thus

R(λ, A)y ≥ εR(λ, A)x = εz � 0,

which proves (i). �
Note that, if X+ has non-empty interior, every densely defined operator A (and thus,

for instance, every generator of a C0-semigroup) satisfies condition (ii) in Proposi-
tion 4.3. On the other hand, it is easy to find operators that do not satisfy the equivalent
conditions of the previous proposition (and are thus not densely defined). Here is an
example:

Example 4.4. Endow the space 
∞ with the usual cone 
+∞ of sequences that are non-
negative in each component. Clearly, 
+∞ has non-empty interior. The multiplication
operator A : 
∞ ⊇ dom (A) → 
∞ that is given by

dom (A) = {x = (xn)n∈N ∈ 
∞ : (−nxn)n∈N ∈ 
∞} ,

Ax = (−nxn)n∈N

has spectral bound s(A) = −1 and is resolvent positive, but dom (A) does not contain
any interior points of 
+∞.

We note in passing that, as the operator A in the previous example is not densely
defined, it does not generate a C0-semigroup. (And in fact, all C0-semigroups on 
∞
have bounded generator [52, Theorem A-II−3.6(2)].)
Wewill exploit also the following result, which is closely related to [4, formula (5.2)

in Theorem 5.3] and [33, Proposition 3.9]:
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Proposition 4.5. Let (X, X+) be an ordered Banach space with int X+ �= ∅ and let
A : X ⊇ dom (A) → X be a densely defined resolvent positive linear operator. Then,

sR(A) ≥ inf
{

λ ∈ [0,∞) : ∃x ∈ int (X+) ∩ dom (A) s.t. Ax � λx
}

.

Proof. Let λ > sR(A). Then, λ is in the resolvent set of A and, as A is a resolvent
positive operator, Proposition 2.1(a) implies that R(λ, A) is a positive operator.

Take an arbitrary point y ∈ int (X+) and define x := R(λ, A)y ∈ dom (A)+.
As A is densely defined, clearly D(A) ∩ int (X+) �= ∅, so by Proposition 4.3, x ∈
dom (A) ∩ int (X+). Now, we estimate Ax as

Ax = (

A − λ id+λ id
)R(λ, A)y = −y + λR(λ, A)y = −y + λx � λx .

This completes the proof. �

Remark 4.6. If the cone X+ is in addition normal, then a stronger counterpart of
Proposition 4.5 holds, see [4, Theorem 5.3].

The following theorem, which characterizes the stability of resolvent positive oper-
ators in case that X+ has non-empty interior, complements [33, Theorem 3.10], where
powers of positive operators are considered.

Theorem 4.7. Let (X, X+) be an ordered Banach space and suppose that the cone
X+ is normal and has non-empty interior. Let A : X ⊇ dom (A) → X be densely
defined and resolvent positive linear operator.
Then, A generates a positive C0-semigroup on X, and the following assertions are

equivalent:

(i) Spectral stability: The spectral bound of A satisfies s(A) < 0.
(ii) Dual small-gain condition: For each nonzero 0 ≤ x ′ ∈ dom

(

A′), we have

A′x ′ �≥ 0.

(iii) Interior point small-gain condition, first version: For every interior point z of
X+, there is a number η > 0 such that

Ax �≥ −η ‖x‖ z for all nonzero x ∈ dom (A)+ . (4.1)

(iv) Interior point small-gain condition, second version: There exists an interior point
z of X+ and a number η > 0 such that

Ax �≥ −η ‖x‖ z for all nonzero x ∈ dom (A)+ . (4.2)

(v) Strong decreasing property, first version: There exists an interior point z of X+
belonging to dom (A) such that Az � 0.

(vi) Strong decreasing property, second version: There exists an interior point z of
X+ belonging to dom (A) and a number λ < 0 such that Az ≤ λz.

(vii) Strong stability: For each x ∈ X we have et Ax → 0 as t → ∞.
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(viii) Weak attractivity on the cone: For each x ∈ X+, we have inf t≥0
∥
∥et Ax

∥
∥ = 0.

(ix) Uniform exponential stability: The growth bound of the semigroup (et A)t≥0

satisfies ω(A) < 0.

Proof. The fact that A generates a positiveC0-semigroup is shown in [4, Theorem5.3].
Let us now prove that claimed equivalences.
“(i)⇒(ii)” Since s(A) = s(A′) < ∞, it follows from Proposition 2.1(a) that

R(0, A′) = R(0, A)′ ≥ 0. Assume now that 0 ≤ x ′ ∈ dom
(

A′) and that A′x ′ ≥ 0.
By applying the positive resolventR(0, A′) to this inequality, we obtain −x ′ ≥ 0, so
x ′ ≤ 0. Since x ′ was assumed to be positive, it follows that x ′ = 0.
“(ii)⇒(i)” Assume that the number s(A) = s(A′) is at least 0. According to Propo-

sition 4.2, s(A′) is an eigenvalue of A′ with an eigenvector 0 ≤ z′ ∈ dom
(

A′).
Hence,

A′z′ = s(A′)z′ ≥ 0,

which contradicts (ii) since z′ is positive and nonzero.
“(i)⇒(iii)” In view of Theorem 3.1(iv), the condition s(A) < 0 implies the uniform

small-gain condition, i.e. there is η̃ > 0 such that

dist(Ax, X+) ≥ η̃ ‖x‖ for all x ∈ dom (A)+ . (4.3)

Let z be an interior point of X+. We show that (4.1) holds with η := η̃
2‖z‖ . Indeed,

suppose that (4.1) fails for this η. Then, there exists a nonzero vector x ∈ dom (A)+
such that Ax + η ‖x‖ z ≥ 0. Hence,

dist(Ax, X+) ≤ ∥
∥Ax − (

Ax + η ‖x‖ z)∥∥ = η̃

2
‖x‖ .

This together with (4.3) can only hold if x = 0, so we arrived at a contradiction.
“(iii)⇒(iv)” This implication is obvious.
“(iv)⇒(i)” In view of Theorem 3.1(iv), it suffices to show that the uniform small-

gain condition holds. So let z ∈ int (X+) and η > 0 be as in (iv). For the interior point
z of X+ pick a corresponding number c > 0 as in Lemma 4.1(iii). We show that the
uniform small-gain condition (4.3) holds with η̃ := cη. Indeed, suppose that this is
not the case. Then, there is x ∈ dom (A)+ such that

dist(Ax, X+) < cη ‖x‖ .

Thus, x �= 0 and there is y ∈ X+ such that ‖Ax−y‖
η‖x‖ ≤ c. By the choice of c, we obtain

Ax ≥ Ax − y ≥ −η‖x‖z,
which contradicts (iv).
“(i)⇒(v)” This implication follows by Proposition 4.5.
“(v)⇒(vi)” Take z as in item (v). As−Az ∈ int (X+), by Lemma 4.1 there is λ < 0

such that −Az ≥ −λz, which implies that Az ≤ λz.
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“(vi)⇒(vii)” Let z be an interior point of X+ that is an element of dom (A) and
assume that λz ≥ Az for a real number λ < 0. From this estimate, we first de-
rive a corresponding estimate for the resolvent of A, and then—by means of Euler’s
formula—an estimate for the semigroup generated by A:

For each real number μ > max{s(A), 0} the resolvent R(μ, A) is positive by
Proposition 2.1 (a), so we obtain

λR(μ, A)z ≥ R(μ, A)Az = −z + μR(μ, A)z,

which implies that

μ

μ − λ
z ≥ μR(μ, A)z, and hence

(
μ

μ − λ

)n

z ≥
(

μR(μ, A)
)n

z

for each n ∈ N0. Now, fix a time t > 0. If n ∈ N is such large that n/t > s(A), then
the preceding inequality yields, by substituting μ = n/t ,

(

1 − tλ

n

)−n

z ≥
(n

t
R(n

t
, A

))n
z.

The left hand side converges to etλz as n → ∞, and the right-hand side converges to
et Az as n → ∞ by Euler’s formula for C0-semigroups [26, Corollary III.5.5].
Hence, et Az ≤ etλz for each t > 0. Since λ < 0, this implies that et Az → 0 as

t → ∞.
As z is an interior point of X+, there is a nonzero multiple of the unit ball in X

which is contained in the order interval [−z, z], see Lemma 4.1. Tshe normality of the
cone thus implies that we even have et Ax → 0 as t → ∞ for each x from the unit
ball, and by linearity of the semigroup, the same holds for all x ∈ X .
“(vii)⇒(viii)” This implication is obvious.
“(viii)⇒(ix)” Let z be an interior point of X+. By multiplying z with a positive

scalar if necessary, we may assume that the unit ball in X is contained in the order
interval [−z, z], see Lemma 4.1. Moreover, due to the normality of the cone, there
exists a numberC > 0 for which the inequality (2.2) holds. Now, choose a time t0 > 0
such that

∥
∥et0Az

∥
∥ ≤ 1

2C . For each x in the unit ball of X we have by positivity of the
semigroup that et0Ax ∈ [−et0Az, et0Az], so

∥
∥
∥et0Ax

∥
∥
∥ ≤ C

∥
∥
∥et0Az

∥
∥
∥ ≤ 1

2
.

Hence, the operator et0A has norm at most 12 , which proves that the n-th powers of e
t0A

converge to 0 with respect to the operator norm as n → ∞. Since the C0-semigroup
(et A)t≥0 is operator norm bounded on the compact time interval [0, t0], we thus obtain
et A → 0 with respect to the operator norm as t → ∞.
“(ix)⇒(i)” This implication is a consequence of the general fact that the spectral

bound of a semigroup generator is dominated by the growth bound of the semigroup
[26, Corollary II.1.13]. �
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The fact, mentioned in the theorem, that a resolvent positive and densely defined
linear operator generates a positiveC0-semigroup, is a consequence of the normality of
the cone and of the existence of an interior point of the positive cone [4, Theorem 5.3];
this is not true for more general ordered Banach spaces.

The equivalent condition (ii) in Theorem 4.7 is particularly nice since it does not
require any kind of uniform estimate (in contrast to condition (iv) in Theorem 3.1).
The following simple example, which is an adaptation of Example 3.3(a), shows that
the equivalence of (i) and (ii) in Theorem 4.7 does not hold in general, if X+ has empty
interior.

Example 4.8. Let (et A)t≥0 denote the right shift semigroup on X = L2(R), i.e.
et A f = f ( · − t) for all f ∈ L2(R) and all t ≥ 0. Here, we endow L2(R) with
the pointwise almost everywhere order. The domain of the generator A is the Sobolev
space H1(R) and A acts A f = − f ′ for all f ∈ H1(R). The dual operator A′ also has
domain H1(R) and one has A′ f = f ′ for each f ∈ H1(R).

So if 0 ≤ f ∈ H1(R) satisfies f ′ = A′ f ≥ 0, then f is increasing and hence
f = 0 since f ∈ L2(R). This shows that condition (ii) in Theorem 4.7 is satisfied.
However, one has s(A) = 0 since one can see by a Fourier transform argument that
σ(A) = iR.

As an immediate consequence ofTheorem4.7, one re-obtains the following classical
result which we already discussed in Example 3.6(a) since it can also be derived as a
consequence of Theorem 3.5.

Corollary 4.9. Let the assumptions of Theorem 4.7 hold. Then, s(A) = ω(A).

Proof. Assume for a contradiction that s(A) < ω(A). Then, there exists a number
c ∈ R such that

s(A − c id) < 0 < ω(A − c id).

This contradicts the equivalence of items (i) and (ix) of Theorem 4.7 since the operator
A − c id satisfies the assumptions of the theorem. �

5. A Krein–Rutman type theorem and its consequences for stability

In this section, we consider resolvent positive operators A for which the essential
spectral bound is strictly negative; for such operatorswe first discuss an analogue of the
Krein–Rutman theorem, and then give a version of the stability result in Theorem 3.1;
the advantages if A has strictly negative essential spectral bound, are that we obtain
a simpler characterization of (spectral) stability and that, at the same time, we need
fewer assumptions on the underlying space.
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5.1. The essential spectrum

Let us first recall a few facts about the essential spectrum of unbounded operators. A
bounded linear operator T between two Banach spacesW and X is called a Fredholm
operator if its kernel has finite dimension and its range has finite co-dimension (and
as a consequence of the latter property, the range of T is then automatically closed;
see, for instance, [35, Corollary XI.2.3 on p.187]). Obviously, if T is bijective, then
it is Fredholm. One can prove that the set of all Fredholm operators from W to X is
open ( [35, Theorem XI.4.1 on p.189]).
Now, let A : X ⊇ dom (A) → X be a closed linear operator on a complex

Banach space X . Then, dom (A) is a Banach space with respect to the graph norm,
and a complex number λ is said to be in the essential spectrum σess(A) if the mapping
λ id−A from the Banach space dom (A) to the Banach space X is not Fredholm (here,
id : dom (A) → X denotes the canonical injection). Let us recall a few standard facts
about the essential spectrum in the following proposition.

Proposition 5.1. Let A : X ⊇ dom (A) → X be a closed linear operator on a
complex Banach space X.

(a) The essential spectrum of A is closed and it is contained in the spectrum of A.
(b) If A has non-empty resolvent set and compact resolvent, then σess(A) = ∅.

Proof. (a) The closedness of σess(A) follows from the fact that the set of Fredholm
operators is open, and the inclusion σess(A) ⊆ σ(A) follows from the fact that every
bijective operator is Fredholm.
(b) Fixμ ∈ ρ(A). Then,μ id−A is bijective fromdom (A) to X and thus aFredholm

operator. Moreover, id : dom (A) → X is compact since A has compact resolvent and
thus, for every λ ∈ C the operator

λ id−A = (λ − μ) id+(μ id−A) : dom (A) → X

is a compact perturbation of a Fredholm operator and thus also Fredholm [35, Theo-
rem XI.4.2 on p.189]. �

For a closed operator A : X ⊇ dom (A) → X , we call

sess(A) := sup{Re λ : λ ∈ σess(A)} ∈ [−∞,∞].
the essential spectral bound of A. Assume that sess(A) < ∞ and that the right half
plain

� := {λ ∈ C : Re λ > sess(A)}
has non-empty intersection with the resolvent set of A. Then, it follows from so-called
analytic Fredholm theory that A has at most countably many spectral values in�, that
all these spectral values are isolated in � (though some of them might accumulate
at ∂�), and that all spectral values of A in � are poles of the resolvent of A with
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finite-rank spectral projections. Indeed, this follows immediately by applying [35,
Corollary XI.8.4 on p.203] to the operator mapping

W : � → L(dom (A) ; X), λ �→ λ id−A.

5.2. A Krein–Rutman type theorem

Let us first recall the Krein–Rutman theorem for positive linear operators. In one of
its rather general versions, it says the following: if (X, X+) is an ordered Banach space
with total cone and T : X → X is a positive and bounded linear operator such that the
essential spectral radius of T satisfies ress(T ) < r(T ), then r(T ) is an eigenvalue of
T and of the dual operator T ′, and both T and T ′ have a positive eigenvector for this
eigenvalue. The main difficulty in the proof is to show that r(T ) is in the spectrum of
T ; this is quite easy if the cone is even assumed to be generating and normal, but it is
more involved in the general case.
Still, a variety of different proofs is known for the theorem, see, for instance, [44,

Theorem 6.1 on p.262] for Krein and Rutman’s classical proof based on a pertur-
bation argument, [72, Theorem 1] for an argument that reduces the theorem to the
finite-dimensional case, [53, Corollary 2.2 on p.324] for a proof based on nonlinear
arguments, [45, Theorem 6.1] for an argument based on the (long-time) behaviour of
the powers T n , and [60, 2.4 on p.312] for a proof based on Pringsheim’s theorem from
complex analysis.
A version of the Krein–Rutman theorem for resolvent positive operators reads as

follows:

Theorem 5.2. (Krein–Rutman for resolvent positive operators) Let (X, X+) be an
ordered Banach space with total cone and let A : X ⊇ dom (A) → X be a resolvent
positive linear operator. Assume that sess(A) < s(A).
Then, s(A) < ∞, the number s(A) is an eigenvalue of A, and there exists a cor-

responding eigenvector in X+. If A is, in addition, densely defined, then s(A) is also
an eigenvalue of the dual operator A′ and there exists a corresponding eigenvector in
(X ′)+.

This theorem can essentially be found in [37, Corollary 2.9(ii)], where it was shown
by applying theKrein–Rutman theorem for positive operators to the resolvent of A and
invoking a spectral mapping theorem; however, the property s(A) < ∞ is assumed
(rather than proved) there, and the existence of a positive dual eigenvector is not
mentioned. A very similar result can also be found—though only under the additional
assumption that the cone be generating and normal—in [64, Proposition 3.10].
It appears worthwhile to give an alternative and more direct proof of Theorem 5.2,

which does not rely on the Krein–Rutman theorem for positive operators. We present
such a proof below; it is based on Bernstein’s representation theorem for completely
monotone functions. This argument is close in spirit to the aforementioned proof of
the Krein–Rutman theorem that relies on Pringsheim’s theorem. It is also loosely
reminiscent of the proof of [51, Theorem 4.3].



J. Evol. Equ. Stability criteria for positive semigroups Page 25 of 49    12 

Proof of Theorem 5.2. The first part of the proof is to show that s(A) < ∞ and
s(A) ∈ σ(A). Afterwards, we will derive the remaining assertions from standard
spectral theory.
So assume to the contrary that either s(A) = ∞ or that s(A) is < ∞ but not in the

spectrum. As sR(A) ∈ [−∞,∞) is either −∞ or in the spectrum of A, this means
that sR(A) < s(A). Thus, after a translation of A by a real number we may, and will,
assume that sess(A) < 0 < s(A), but that the set [0,∞) is in the resolvent set of A
(i.e. sR(A) < 0).
Sowefind a spectral valueλ0 of Awhose real part is strictly positive; since sess(A) <

0, we know from the properties listed in Subsection 5.1 that λ0 is an isolated spectral
value of A and a pole of the resolvent R( · , A); let k ≥ 1 denote pole order. Then,
the limit Q−k := limλ→λ0(λ − λ0)

kR(λ, A) exists with respect to the operator norm,
and is equal to the −k-th coefficient of the Laurent series expansion of the resolvent
about λ0; in particular, Q−k �= 0.

Now fix a vector 0 ≤ x ∈ X and a functional 0 ≤ x ′ ∈ X ′. We will show next that
〈x ′, Q−k x〉 = 0; this yields a contradiction to Q−k �= 0 since the span of X+ is dense
in X and the span of (X ′)+ is weak∗-dense in X ′.
As explained in Subsection 5.1, A has at most countably many spectral values with

strictly positive real part, and all these spectral values are isolated. Hence, the open set
D := {λ ∈ ρ(A) : Re λ > 0} is connected. Now consider the holomorphic mapping

f : D → C,

λ �→ 〈x ′,R(λ, A)x〉.

The restriction of the mapping f to the interval (0,∞) is completely monotone, i.e.
its derivatives satisfy (−1)n f (n)(λ) ≥ 0 for all n ∈ N0 and all λ ∈ (0,∞). Indeed,
for λ ∈ (0,∞) we have

(−1)n f (n)(λ) = 〈x ′, (−1)nR(n)(λ, A)x〉 = 〈x ′, n!R(λ, A)n+1x〉,

and the operator R(λ, A) is positive as shown in Proposition 2.1(a).
Since f |(0,∞) is completely monotone, we can apply Bernstein’s representation

theorem for completely monotone functions (see, e.g. [61, Theorem 1.4]), which tells
us that f |(0,∞) is the Laplace transform of a positive measure on [0,∞) —more
precisely, there exists a positive (and σ -finite) measure μ on the Borel σ -algebra on
[0,∞) such that

f (λ) =
∫

[0,∞)

e−λt dμ(t)

for each λ ∈ (0,∞). This readily implies that the integral

g(λ) :=
∫

[0,∞)

e−λt dμ(t)
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even converges for every complex number λwith real part> 0, and that g is an analytic
function on the right half plane in C.
By the identity theorem for analytic functions, f coincides with g on D (due to

the connectedness auf D) and thus, in particular, in a pointed neighbourhood of λ0.
Therefore,

〈x ′, Q−k x〉 = lim
λ→λ0

(λ − λ0)
k f (λ) = lim

λ→λ0
(λ − λ0)

kg(λ) = 0,

where the last equality follows from k ≥ 1 and from the fact that g is analytic in λ0.
So we arrived at our desired contradiction and have thus proved that s(A) is finite and
a spectral value of A.

The rest of the proof is now standard spectral theory:
Since sess(A) < s(A), the number s(A) is a pole of the resolvent and hence an

eigenvalue of A. Let j ≥ 1 denote its pole order and R− j the − j-th coefficient of
the Laurent series expansion of R( · , A). Then R− j is nonzero and all vectors in its
range, except for 0, are eigenvectors of A for the eigenvalue s(A). Since

R− j = lim
λ→s(A)

(λ − s(A)) jR(λ, A) = lim
λ↓s(A)

(λ − s(A)) jR(λ, A),

were the limits exist in operator norm, we conclude from the positivity of the resolvent
on the right of s(A) (Proposition 2.1(a)) that the operator R− j is positive.
The span of X+ is dense in X and R− j is nonzero, there exists a vector x ∈ X+

such R− j x �= 0. Hence, R− j x is a positive eigenvector of A for the eigenvalue s(A).
Finally, assume in addition that A is densely defined, so that the dual operator A′

is well-defined. Then, A′ has the same spectrum as A, and R(λ, A′) = R(λ, A)′ for
each λ in the resolvent set of A. Hence, s(A) is also a pole of the resolvent of A′,
and by repeating the previous argument (where we use now that the span of (X ′)+
if weak∗-dense in X ′) we also obtain a positive eigenvector of A′ for the eigenvalue
s(A). �

In the next subsections, we show general results on how the Krein–Rutman type
Theorem5.2 can be used to derive information about the location of the spectral bound.
Before this, we find it worthwhile to demonstrate the use of Theorem 5.2 in a simple
toy example.

Example 5.3. Endow the Banach space Cper([0, 1]) of continuous functions f on
[0, 1] that satisfy f (0) = f (1) with the pointwise order. Let (et A)t∈[0,∞) be the
periodic right shift semigroup on X . Its generator is given by

dom (A) = { f ∈ X : f is differentiable and f ′ ∈ X},
A f = − f ′.

Let V : [0, 1] → R be a continuous function that satisfies V (0) = V (1) and denote the
bounded linear operator X → X , f �→ V f also by V . We will show that s(A+V ) =
∫ 1
0 V (x) dx .
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Note that this is relevant for the stability of the perturbed semigroup (et (A+V ))t≥0:
due to the choice of the space X , the growth bound ω(A + V ) of this semigroup
coincides with s(A+ V ) (see Example 3.6(a)). Thus, the semigroup converges to 0 in
operator norm if and only if

∫ 1
0 V (x) dx < 0.

Proof. First note that A + V generates a positive semigroup and that A, and thus
A+ V , has compact resolvent due to the Arzelà–Ascoli theorem. Hence, σess(A+ V )

is empty.
Set s := s(A + V ). Since the cone X+ is normal and has non-empty interior, it

follows from Proposition 4.2 (or from [52, Theorem B-III.1.1]) that s > −∞. Hence,
s is an eigenvalue of A + V with an eigenvector f ∈ X+ according to Theorem 5.2.
So we have s f = (A + V ) f = − f ′ + V f . Thus,

f (x) = exp
( − sx +

∫ x

0
V (y) dy

)

f (0)

for all x ∈ [0, 1]. Since f �= 0 we conclude that f (0) �= 0. We now substitute
x = 1 and use that f (0) = f (1). This gives es = exp

( ∫ 1
0 V (y) dy

)

and hence

s = ∫ 1
0 V (y) dy, as claimed. �

We note in passing that the proof did not use the fact that the eigenvector f is in
X+. However, it used the fact that the spectral bound s is indeed in the spectrum (and
hence an eigenvalue).

5.3. Spectral stability for operators with small essential spectrum

As a consequence of the preceding Theorem 5.2, we easily obtain the following
characterization of spectral stability for resolvent positive operators.

Corollary 5.4. Let (X, X+) be an ordered Banach space with total cone and let A :
X ⊇ dom (A) → X be a resolvent positive linear operator; assume that sess(A) < 0.
Then, the following assertions are equivalent:

(i) Spectral stability: The spectral bound of A satisfies s(A) < 0.
(ii) Positive resolvent at 0: The operator A is invertible and the resolvent −A−1 =

R(0, A) is positive.
(iii) All 0-super-eigenvectors of A are negative: If x ∈ dom (A) satisfies

Ax ≥ 0

then x ≤ 0.
(iv) Small-gain condition: For each nonzero 0 ≤ x ∈ dom (A), we have

Ax �≥ 0.

Proof. “(i)⇒(ii)” This is a consequence of Proposition 2.1(a).
“(ii)⇒(iii)” Since −A−1 is positive, it follows from Ax ≥ 0 that −x ≥ 0.
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“(iii)⇒(iv)” Let 0 ≤ x ∈ dom (A). If Ax ≥ 0, then it follows from (iii) that x ≤ 0
and hence, x = 0.

“(iv)⇒(i)” Assume that s(A) ≥ 0. Since sess(A) < 0, we can then apply Theo-
rem 5.2 and conclude that s(A) is finite and an eigenvalue of A with an eigenvector
0 ≤ x ∈ dom (A). Thus, Ax = s(A)x ≥ 0, so (iv) fails. �

Note that Stern’s finite-dimensional results from [63, Theorem 1.4] can be seen as
a special case of the equivalence of (i) and (iv) in Corollary 5.4 since the essential
spectrum is always empty in finite dimensions.

5.4. The spectral bound of operators with small essential spectrum

While Corollary 5.4 contains a characterization of the property s(A) < 0, more
generally one can instead also give a precise formula for the value of s(A) as a conse-
quence of the Krein–Rutman type Theorem 5.2. We do so in the following corollary.

Corollary 5.5. Let (X, X+) be an ordered Banach space with total cone and let A :
X ⊇ dom (A) → X be a resolvent positive linear operator; assume that σess(A) = ∅
or that sess(A) < s(A). Then, s(A) < ∞ and

s(A) = sup{λ ∈ R : ∃0 � x ∈ dom (A) such that Ax ≥ λx}.
If s(A) > −∞, the supremum is even a maximum.

Proof. In each of the cases σess(A) = ∅ and sess(A) < s(A) it follows from Theo-
rem 5.2 that s(A) < ∞.

“≥” Let λ ∈ R and let 0 � x ∈ dom (A) such that Ax ≥ λx , i.e. (λ − A)x ≤ 0.
Assume for a contradiction that λ > s(A). Then, the resolvent R(λ, A) is positive
according to Proposition 2.1 (a) and hence, 0 ≤ x = R(λ, A)(λ− A)x ≤ 0, so x = 0;
this contradicts x �= 0. So we conclude that λ ≤ s(A).

“≤” If s(A) = −∞, there is nothing to prove, so assume that s(A) > −∞.
According to the assumptions, we then have s(A) > sess(A). Thus, it follows from
Theorem 5.2 that s(A) is an eigenvalue of A with an eigenvector 0 � u ∈ dom (A).
Hence, Au = s(A)u, so s(A) is an element of the set under the supremum on the right,
and we thus conclude that s(A) is indeed the claimed maximum. �

Another formula for s(A) under similar (though slightly stronger) assumptions than
in the previous corolllary will be given in Theorem 7.4. For self-adjoint semigroups
on Hilbert spaces, related results can also be found in Theorem 7.5 and Corollary 7.7.

6. A Collatz–Wielandt formula

For matrices 0 ≤ A ∈ R
d×d (where the inequality is meant entrywise) recall the

so-called Collatz–Wielandt formula

r(A) = max
0�x∈Rd

min
j∈{1,...,d}
x j �=0

(Ax) j
x j

(6.1)
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for the spectral radius r(A) of A, see, for instance, [48, formula (8.3.3) on p. 670].
This can be easily generalized to yield a formula for the spectral bound of matrices
whose off-diagonal entries are non-negative (i.e. matrices A that satisfy et A ≥ 0 for
all t ≥ 0):

Proposition 6.1. Let A = (A jk)
d
j,k=1 ∈ R

d×d and assume that A jk ≥ 0 for all
indices j �= k. Then

s(A) = max
0�x∈Rd

min
j∈{1,...,d}
x j �=0

(Ax) j
x j

The proposition can be derived by applying the classical Collatz–Wielandt for-
mula (6.1) to the matrix A + c id for a sufficiently large real number c. However,
we prefer to include a direct proof, since it will serve as a blueprint for an infinite-
dimensional generalization of the formula in the sequel.

Proof of Proposition 6.1. Let m(A) denote the maximum on the right-hand side.
“≤” The number s(A) is an eigenvalue of A with an eigenvector 0 � y ∈ R

d (this
well-known fact is a finite-dimensional special case of Theorem 5.2). Hence,

s(A) = min
j∈{1,...,d}
y j �=0

(Ay) j
y j

≤ m(A).

“≥” Let 0 � x ∈ R
d and assume for a contradiction that

s(A) < min
j∈{1,...,d}
x j �=0

(Ax) j
x j

=: λ.

Note that we have λx ≤ Ax . Indeed, for those indices j which satisfy x j �= 0, the
inequality λx j ≤ (Ax) j follows from the definition of λ; and for those j which satisfy
x j = 0, we have λx j = 0 ≤ ∑n

j=1 A jkxk = (Ax) j , where the inequality in the
middle is true since A jk ≥ 0 for k �= j .
As et A ≥ 0 for all t ≥ 0, it follows from λ > s(A) that R(λ, A) ≥ 0, see

Proposition 2.1 (a). We apply this to the inequality (λ − A)x ≤ 0 and thus obtain
x ≤ 0; this is a contradiction since x � 0. �

Now we prove an infinite-dimensional version of this Collatz–Wielandt type for-
mula. It holds, for instance, for operators whose essential spectrum is empty (which
is, for instance, satisfied for every operator with compact resolvent, see Proposi-
tion 5.1(ii)).
Let (X, X+) be an ordered Banach space, let A : X ⊇ dom (A) → X be a

closed linear operator, and let n ≥ 0 be an integer. We call a continuous functional
x ′ : dom (An) → R (where continuous means continuous with respect to the graph
norm on dom (An)) positive if 〈x ′, x〉 ≥ 0 for all x ∈ dom (An) ∩ X+.
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Definition 6.2. Let (X, X+) be an ordered Banach space, let A : X ⊇ dom (A) → X
be a closed linear operator, and let n ≥ 0 be an integer.We say that a set F of continuous
and positive functionals on dom (An) determines positivity if the following implication
holds for each x ∈ dom (An):

〈x ′, x〉 ≥ 0 for all x ′ ∈ F ⇒ x ≥ 0.

Remark 6.3. If F is as in the preceding definition and 0 ≤ x ∈ dom (An) is nonzero,
then there exists at least one functional x ′ ∈ F such that 〈x ′, x〉 > 0. Indeed, if
〈x ′, x〉 = 0 for all x ′ ∈ F , then x ≥ 0 as well as −x ≥ 0 and hence x = 0.

If (X, X+) is an ordered Banach space, then the set of all positive functionals in
X ′ always determines positivity (independently of the choice of A). Let us list a few
examples of smaller sets that also determine positivity.

Examples 6.4. (a) If L is a locally compact Hausdorff space and X = C0(L), then
the set F = {δω : ω ∈ L} of all point evaluations determines positivity (no
matter the choice of A).

(b) If X = 
p for p ∈ [1,∞], then the set of coordinate functionals {ek : k ∈ N},
where ek is defined as 〈ek, x〉 := xk for each x ∈ X , determines positivity (again,
for any operator A).

(c) Let p ∈ (1,∞), let � ⊆ R
d be a bounded domain with, say, C∞-boundary

and let � : L p(�) ⊇ dom (�) := W 2,p(�) ∩ W 1,p
0 (�) → L p(�) denote

the Dirichlet Laplace operator on L p(�). For sufficiently large n ∈ N, the
domain dom (�n) embeds into the continuous functions C0(�) that vanish at
the boundary of �.
In this case, the set of point evaluations {δx : x ∈ �} determines positivity. This
is an examplewhere the choice of the operatormatters since the point evaluations
δx are not well-defined on L p(�), but only on dom (�n) for sufficiently large n.

(d) Let H be a complex Hilbert space and letL(H)sa denote the (real) Banach space
of self-adjoint bounded linear operators on H , endowedwith the cone of positive
semi-definite operators.
For every x ∈ H , define the functional ϕx : L(H)sa → R by 〈ϕx ,C〉 :=
(x |Cx) for all C ∈ L(H)sa. Then, the set {ϕx : x ∈ H} determines positivity
(independently of the choice of A).

The following is our Collatz–Wielandt formula. It is reminiscent of the Donsker–
Varadhan formula for the principal eigenvalue of second-order differential operators
[22]; see also [21].

Theorem 6.5. Let A : X ⊇ dom (A) → X be the generator of a positive C0-
semigroup on an ordered Banach space (X, X+) with total cone X+. Assume that
the essential spectrum σess(A) is empty or that sess(A) < s(A). Let n ≥ 0 be an
integer and let F �= ∅ be a set of positive and continuous functionals on dom (An)
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that determines positivity. Then, s(A) < ∞ and the formula

s(A) = sup
0�x∈dom(An+1)

inf
x ′∈F

〈x ′,x〉�=0

〈x ′, Ax〉
〈x ′, x〉

holds.

Note that, in case that σess(A) = ∅, it may happen that both sides of the equality
are equal to −∞. We remark that Collatz–Wielandt type results for positive linear
operators (rather than for generators of positive semigroups) are studied in [27,28,46].

Proof of Theorem 6.5. First note that indeed s(A) < ∞: if sess(A) < s(A) this follows
directly from Theorem 5.2; and if σess(A) = ∅, then sess(A) = −∞, so it also follows
from Theorem 5.2 that s(A) < ∞.

Now let m(A) denote the supremum on the right-hand side. We essentially follow
the proof of Proposition 6.1.
“≤” If s(A) = −∞, this inequality is trivial, so assume that s(A) > −∞. Then, we

have sess(A) < s(A) in any case. So according to theKrein–Rutman type Theorem5.2,
s(A) is an eigenvalue of A with an eigenvector y ∈ X+. Since every eigenvector of A
is in dom

(

An+1
)

, it follows that

s(A) = inf
x ′∈F

〈x ′,y〉�=0

〈x ′, Ay〉
〈x ′, y〉 ≤ m(A).

Here, we used that, as mentioned in Remark 6.3, there exists at least one functional
x ′ ∈ F such that 〈x ′, y〉 �= 0.
“≥” Assume for a contradiction that there exists 0 � x ∈ dom

(

An+1
)

such that

s(A) < inf
x ′∈F

〈x ′,x〉�=0

〈x ′, Ax〉
〈x ′, x〉 =: λ.

Then, we have λx ≤ Ax . Indeed, for those x ′ ∈ F that satisfy 〈x ′, x〉 �= 0 the
inequality 〈x ′, λx〉 ≤ 〈x ′, Ax〉 follows from the definition of λ. And for those x ′ ∈ F ′
that satisfy 〈x ′, x〉 = 0, it follows from the positivity of the semigroup (et A)t≥0 that

〈x ′, Ax〉 = lim
t↓0

〈x ′, et Ax〉
t

≥ 0 = 〈x ′, λx〉.

For the first equality, we used that Ax = limt↓0 et Ax−x
t with respect to the graph norm

in dom (An) since x ∈ dom
(

An+1
)

. As F determines positivity, it thus follows that
λx ≤ Ax , as claimed.

By assumption, s(A) < λ. Hence, Proposition 2.1(a) ensures that the resolvent
R(λ, A) is positive. We now apply this operator to the inequality (λ − A)x ≤ 0 and
thus obtain x ≤ 0, which is a contradiction to x � 0. �

Let us describe three more concrete situations where this result can be applied. The
first one is a direct generalization of Proposition 6.1 to sequence spaces.
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Corollary 6.6. Let A be the generator of a positive C0-semigroup on 
p for 1 ≤ p <

∞, and assume that σess(A) = ∅ or that sess(A) < s(A). Then, s(A) < ∞ and

s(A) = sup
0�x∈dom(A)

inf
j∈N
x j �=0

(Ax) j
x j

.

Proof. This follows directly from Theorem 6.5 if we chose n = 0 and F ⊆ (
p)′ to
be the set of all canonical unit vectors. �

Note that, in the situation of the corollary, the inequality s(A) < ∞ follows not
only from Theorem 6.5 but also more directly from Proposition 2.1 (c) (as the cone in

p is generating and normal).
The second concrete situation that we discuss are semigroups on spaces of contin-

uous functions.

Corollary 6.7. Let A be the genereator of a positive C0-semigroup onC0(L), where L
is a locally compactHausdorff space. Assume thatσess(A) = ∅ or that sess(A) < s(A).
Then, s(A) < ∞ and

s(A) = sup
0�u∈dom(A)

inf
ω∈L

u(ω) �=0

(Au)(ω)

u(ω)
.

Proof. This follows directly from Theorem 6.5 if we chose n = 0 and F ⊆ (C0(L))′
to be the set of all point evaluation maps. �

As in the previous corollary, the inequality s(A) < ∞ can also be directly inferred
from Proposition 2.1 (c) (alternatively to Theorem 6.5) here, as the cone in C0(L) is
normal and generating.
The third situation that we consider is a more specific example: We perturb the

Neumann Laplace operator on a bounded interval by a potential and give criteria for
its spectral bound to be strictly positive, even if the potential has a large negative part.

Example 6.8. Let ∅ �= (a, b) ⊆ R be a bounded and open interval and let � :
L2(a, b) ⊇ dom (�) → L2(a, b) denote the Neumann Laplace operator with domain

dom (�) := {u ∈ H2(a, b) : u′(a) = u′(b) = 0}

given by �u = u′′. Let V ∈ C([a, b]) and consider the operator A := � + V with
domain dom (A) := dom (�). Then,

s(A) = sup
0�u∈dom(A2)

inf
ω∈[a,b]
u(ω) �=0

(u′′(ω)

u(ω)
+ V (ω)

)

. (6.2)

To see this, first notice that A generates a positive C0-semigroup. Indeed, it is well
known that the Neumann Laplace operator � generates a positive semigroup on
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L2(a, b). SinceV is a bounded perturbation, A also generates aC0-semigroup (et A)t≥0

( [26, Theorem III.1.3 on p.158]) and this semigroup is positive since we have

et A = e−t‖V ‖∞et (�+V+‖V ‖∞) ≥ 0

for all t ≥ 0, where the inequality at the end follows from the Dyson–Phillips series
expansion since the operator V + ‖V ‖∞ is positive (see, e.g. [10, Proposition 11.6
and Corollary 11.7] for details).
Since the semigroup generated by A is positive and since A has empty essential

spectrum (indeed, A has compact resolvents as dom (A) ⊆ H2(a, b) embeds com-
pactly into L2(a, b)), we can apply Theorem 6.5: in this theorem, choose n = 1 and
let F be the set of all point evaluations at points in [0, 1]; then we immediately obtain
the claimed formula (6.2). (Note that it is useful here to have the case n = 1 available
in the theorem: point evaluations are not well-defined on L2(0, 1), but they are well
defined on dom (A) = dom (�) ⊆ H2(0, 1).)
In the rest of this example, we will study the following question in two interesting

cases, and formula (6.2) will turn out to be useful in the second case:

Under which conditions on the potential V
does the operator A have strictly positive spectral bound?

1st case: V has integral 0 but V �= 0.
We will show that always s(A) > 0 in this case. This might be slightly surprising

at first glance since the Neumann Laplace operator does have spectral bound 0—so
due to the assumption that V has integral 0, it does not seem clear at first glance how
V influences the spectral bound.
To prove that s(A) > 0, first note that, as the constant function 1 is in the kernel

of � and in the domain of A, we have 〈A 1,1〉 = ∫ b
a V (ω) dω = 0. So 0 is in the

numerical range of A, and since A is self-adjoint it follows, for instance, from the
spectral theorem for self-adjoint operators, that 0 is in the convex hull of σ(A). So
s(A) ≥ 0.

Now assume for a contradiction that s(A) = 0. Then, for instance, by considering
the spectral expansion of A (for self-adjoint operators with compact resolvent) we
see that the equality 〈A 1,1〉 = 0 implies that 1 is an eigenvector of A. Hence,
0 = A 1 = V 1 = V , which is a contradiction since we assumed that V �= 0.

2nd case: V is bounded above and its integral is close to −∞.
For this case, we are going to show the following existence result: For the interval

(a, b) = (−π/2, π/2), we can find a C∞-function V on [−π/2, π/2] whose integral
is arbitrarily close to −∞ and which satisfies V ≤ 3 and s(A) ≥ 1.

Again, this is somewhat surprising since one might expect a very negative integral
value of V to draw the spectral bound of A to the left rather than to the right.

A specific class of examples where this occurs can be obtained as follows. For the
potential V , which is yet to be determined, consider the function

h : ω �→ 2

sin2 ω
− 4 + V (ω)
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for ω ∈ [−π/2, π/2] \ {0}. Close to 0 the function ω �→ 2
sin2 ω

has a non-integrable

singularity at 0 (as it behaves asymptotically like 2
ω2 there).

Hence, we can choose a C∞-function V on [−π/2, π/2] which has the following
properties: (a) V ≤ 3 everywhere; (b) h(ω) ≥ 1 for all ω �= 0; (c) V has a sharp
negative peak close to 0 and its integral is arbitrarily close to −∞.
In order to estimate s(A) for our choice of V , we use formula (6.2) with the function

u := sin2. By a brief computation one can check that u ∈ dom (�) as well as
�u ∈ dom (�) and Vu ∈ dom (�) (since V is smooth and since both u and its
derivatives vanish at the boundary of the interval). Hence, formula (6.2) yields

s(A) ≥ inf
ω∈[−π/2,π/2]

ω �=0

( u′′(ω)

u(ω)
+ V (ω)

︸ ︷︷ ︸

=h(ω)

)

≥ 1,

as claimed.

Of course, numerous results about the spectral bound of the operator � + V (or
equivalently, about the ground energy of the Schrödinger operator −� + Ṽ , with
Ṽ := −V , to use the sign convention that is common in mathematical physics) are
available in the literature. For instance, with regard to the first case in the example
above, we also point to a result by Simon on the whole spaceR rather than on bounded
intervals [62, Theorem 2.5].

Remark 6.9. Theorem 6.5 can be generalized to operators which do not generate
semigroups, but are densely defined and resolvent positive and satisfy theHille–Yosida
type estimate

lim sup
λ→∞

‖λR(λ, A)‖ < ∞

Instead of the formula Ax = limt↓0 et Ax−x
t in dom (An) for x ∈ dom

(

An+1
)

one
then has to use the subsequent Lemma 6.10 in the proof. (Note that the lemma can be
transferred to vectors x ∈ dom

(

An+1
)

and convergence in dom (An) by multiplying
with (μ − A)n from the right and with R(μ, A)n from the left, for an arbitrary point
μ in the resolvent set of A.)

Lemma 6.10. Let A : X ⊇ dom (A) → X be a densely defined linear operator on a
Banach space X, and assume that there exist real numbers M ≥ 1 and λ0 such that
every real number λ > λ0 is in the resolvent set of A and satisfies ‖λR(λ, A)‖ ≤ M.

Then for every x ∈ dom (A), we have λ2R(λ, A)x − λx → Ax with respect to the
norm in X as λ → ∞.

Proof. We first note that AR(λ, A) converges strongly to 0 on X as λ → ∞. Indeed,
for y ∈ dom (A) one has

‖AR(λ, A)y‖ = ‖R(λ, A)Ay‖ ≤ M

λ
‖Ay‖ → 0
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as λ → ∞. Moreover, the operators AR(λ, A) ∈ L(X) are uniformly bounded as
λ → ∞, since AR(λ, A) = − id+λR(λ, A) has norm at most 1 + M for large λ.
Hence, the claimed strong convergence follows from the density of dom (A) in X .

Moreover, the equality λR(λ, A) − id = AR(λ, A) implies that, for x ∈ dom (A),

λ2R(λ, A)x − λx = λR(λ, A)Ax = Ax + AR(λ, A)Ax → Ax

as λ → ∞, as claimed. �

7. Logarithmic formulas for the spectral bound

In this final section, we show how the spectral bound of the generator of a positive
semigroup can, under appropriate assumptions, be computed from a single orbit of
the semigroup. For self-adjoint positive semigroups on L2-spaces, this was shown
in [41, Theorem 2.1]; we will generalize this result in Theorem 7.5 to more general
classes of ordered Hilbert spaces, and we will give another version of the result in
Theorem 7.4 which does not need any Hilbert space structure at all, but requires
stronger assumptions on the semigroup instead.
In order to state and prove our results, we need to discuss several notions that are

related to the idea of “strict (or strong) positivity” of a vector. There are several ways
to make this concept precise, and we recall them in the following definition.

Definition 7.1. Let (X, X+) be an ordered Banach space.

(a) A vector u ∈ X+ is called a quasi-interior point of X+ if the vector subspace
⋃

n∈N
[−nu, nu] of X is dense in X .

(b) A vector u ∈ X+ is called an almost interior point of X+ if 〈x ′, u〉 > 0 for every
nonzero functional x ′ ∈ (X ′)+.

(c) A functional u′ ∈ (X+)′ is called strictly positive if 〈u′, x〉 is nonzero for every
nonzero vector x ∈ X+.

The notions of quasi-interior and almost interior points are subtle. It is easy to see that
every quasi-interior point is automatically almost interior, and the converse implication
is known to be false, in general, see [57, p. 136] and [43, Section 3.6]. However, in
all known counterexamples the positive cone is only total, but not generating. If the
cone is generating (or even more, generating and normal), it is, to the best of our
knowledge, open whether the concepts of quasi-interior points and almost interior
points coincide (see [34, Open Problem 2.5]). However, they are known to coincide in
each of the following cases: (a) if (X, X+) is a Banach lattice [59, Theorem II.6.3(a)
and (c)]; (b) if, more generally, (X, X+) has normal and generating cone and the
Riesz decomposition property [39, Theorem 6]; (c) if (X, X+) is the self-adjoint
part of a C∗-algebra, endowed with the cone of positive semi-definite elements [34,
Example 2.15(i)]; (d) if the positive cone X+ has non-empty interior —in this case, a
point u ∈ X+ is an interior point if and only if it is a quasi-interior point if and only
if it is an almost interior point [34, Corollary 2.8].
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The reason why quasi-interior and almost interior points are useful for our purposes
are the characterizations in the following two propositions. Recall that order intervals
were defined in Subsection 2.1.

Proposition 7.2. Let (X, X+) be an orderedBanach space. For u ∈ X+, the following
are equivalent:

(i) The vector u is a quasi-interior point of X+.
(ii) If a functional x ′ ∈ X ′ vanishes on the order interval [0, u], then x ′ = 0.
(iii) If Y is a Banach space and a bounded linear operator T : X → Y vanishes on

the order interval [0, u], then T = 0.

Proof. All equivalences immediately follow from the fact that the span of the order
interval [0, u] is equal to the linear space U = ⋃

n∈N
[−nu, nu], and from the well-

known corollary of the Hahn–Banach theorem that U is dense in X if and only if for
every functional x ′ ∈ X ′ the condition 〈x ′, x〉 = 0 for all x ∈ U implies x ′ = 0. �

While the above proposition is almost trivial, it still sheds some light to the distinc-
tion between quasi-interior and almost interior points when compared to the following
characterization of the latter concept; themain difference is that, now, one has to restrict
the attention to positive operators and functionals in the equivalent conditions.

Proposition 7.3. Let (X, X+) be an ordered Banach space. For u ∈ X+ the following
are equivalent:

(i) The vector u is an almost interior point of X+.
(ii) If a positive functional x ′ ∈ (X ′)+ vanishes on the order interval [0, u], then

x ′ = 0.
(iii) If (Y,Y+) is an ordered Banach space and a positive bounded linear operator

T : X → Y vanishes on the order interval [0, u], then T = 0.
(iv) If (Y,Y+) is an ordered Banach space and a positive bounded linear operator

T : X → Y satisfies T u = 0, then T = 0.

Proof. “(i)⇒(iv)” Let (Y,Y+) and T be as in (iv) and assume that Tu = 0. For every
positive y′ ∈ (Y ′)+, we then have 〈T ′y′, u〉 = 〈y′, Tu〉 = 0 and thus, as T ′y′ is a
positive functional and u is an almost interior point of X+, we have have T ′y′ = 0.
But since Y+ is a cone in Y , the span of the positive functionals on Y is weak∗-dense
in Y ′. Thus, T ′y′ = 0 for each y′ ∈ Y ′, so we conclude that T ′ = 0 and thus T = 0.

“(iv)⇒(iii)” This implication is obvious.
“(iii)⇒(ii)” This implication is obvious.
“(ii)⇒(i)” Let x ′ ∈ (X ′)+ be a positive functional such that 〈x ′, u〉 = 0. For every

x ∈ [0, u], it then follows from the positivity of x ′ that

0 ≤ 〈x ′, x〉 ≤ 〈x ′, u〉 = 0,

so 〈x ′, x〉 = 0. According to (ii), this implies that x ′ = 0, so u is indeed an almost
interior point of X+. �
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Now we can prove the first main result of this section. Recall that a C0-semigroup
(et A)t≥0 on a Banach space is called eventually compact if the operator et A is compact
for some t ≥ 0 (and hence, for all subsequent t).

Theorem 7.4. Let (et A)t≥0 be a positive and eventually compact C0-semigroup with
generator A on an ordered Banach space (X, X+). If u ∈ X+ is an almost interior
point and u′ ∈ (X ′)+ is a strictly positive functional, then

s(A) = ω(A) = lim
t→∞

log〈u′, et Au〉
t

. (7.1)

Proof. The equality s(A) = ω(A) is true for each eventually compact C0-semigroup
on every Banach space, see [26, Corollary IV.3.12 on p.281], so we only need to show
the equality on the right.
Note that for every λ > ω(A) there exist numbers M,C > 0 such that

lim sup
t→∞

log〈u′, et Au〉
t

≤ lim sup
t→∞

log(‖u′‖Meλt‖u‖)
t

≤ lim sup
t→∞

C + λt

t
= λ.

Thus, we have (for not necessarily eventually compact semigroups) that

ω(A) ≥ lim sup
t→∞

log〈u′, et Au〉
t

, (7.2)

This implies that if ω(A) = −∞, then the right-hand side in (7.1) is equal to −∞ as
well.
Assume now that ω(A) ∈ R. Let (tn) ⊆ [0,∞) be a sequence of times that con-

verges to ∞. In view of (7.2), to prove (7.1) it suffices to show the existence of a
subsequence (tnr ) such that

log〈u′, etnr Au〉
tnr

→ ω(A).

To this end, we use the eventual compactness of the semigroup: it implies, see [26,
Corollary V.3.2 on pp.330–331], that there exist finitely many numbers iβ1, . . . , iβ
 ∈
iR, nonzero bounded linear operators Q1, . . . , Q
, and an integer k ≥ 0, such that

t−ke−tω(A)et A =



∑

j=1

eiβ j t Q j + S(t)

for all t > 0, where the S(t) are bounded linear operators for t ≥ 0 which satisfy
‖S(t)‖ → 0 as t → ∞; moreover, for each j ∈ {1, . . . , 
} the number ω(A) + iβ j is
an isolated spectral value of A and for the associated spectral projections P1, . . . , P


we have Pj Qh = 0 for j �= h and Pj Q j = Q j for each j .
We can find a subsequence (tnr ) of (tn) such that, for each j ∈ {1, . . . , 
}, the

sequence (eiβ j tnr ) converges to a point μ j on the complex unit circle. Thus,

t−k
nr e−tnr ω(A)etnr A →



∑

j=1

μ j Q j =: Q
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Clearly, the operator Q is positive as a limit of positive operators. Moreover, Q is
nonzero since, for instance, P1Q = μ1Q1 �= 0. As u is an almost interior point of X+
it thus follows from Proposition 7.3(iv) that Qu �= 0; and as u′ is a strictly positive
functional, we thus conclude that 〈u′, Qu〉 �= 0. Hence, the limit log(〈u′, Qu〉) of

log
(

t−k
nr e−tnr ω(A)〈u′, etnr Au〉

)

= −k log tnr − tnr ω(A) + log〈u′, etnr Au〉

is a real number (rather than −∞), and thus

log〈u′, etnr Au〉
tnr

converges to ω(A), as desired. �

Now we come to the second main result of this section. By an ordered Hilbert
space, we mean an ordered Banach space (H, H+) endowed with an inner product
that induces the norm on H . If we identify H with its dual space by means of the
Riesz–Fréchet representation theorem, the dual cone (H ′)+ becomes a subset of H
and is thus given by

(H ′)+ = {x ∈ H : (x |y) ≥ 0 for all y ∈ H+}.
We use this identification in the formulation of the following theorem. Note that,
if H = L2(�,μ) for some measure space (�,μ) is endowed with the pointwise
almost everywhere order, then H+ = (H ′)+, i.e. the cone is self-dual. Self-dual cones
on Hilbert spaces have been studied on various occasions in the literature; see, for
instance, the classical paper [55].
The following theorem is a generalization of [41, Theorem 2.1], where the result

was prove for L2-spaces with their usual cone (see the discussion after the theorem
for more details).

Theorem 7.5. Let (et A)t≥0 be a positive and self-adjoint C0-semigroup with gener-
ator A on a nonzero ordered Hilbert space (H, H+), and assume that H+ ⊆ (H ′)+.
Let u, v ∈ H+ and assume that there exists a quasi-intererior point w ∈ H+ such
that u, v ≥ w. Then,

−∞ < s(A) = ω(A) = lim
t→∞

log(v | et Au)

t
.

A few comments are in order before we prove the theorem. The assumptions that
u, v ≥ w and that w be a quasi-interior point immediately implies that u, v are
quasi-interior points, too. We do not know if, conversely, for all quasi-interior points
u, v ∈ H+ there always exists a quasi-interior point w ∈ H+ that satisfies u, v ≥ w.
However, if H = L2(�,μ) for a σ -finite measure space (�,μ) is endowed with its
usual order, then the quasi-interior points of H+ are precisely those functions which
are strictly positive almost everywhere. Hence, for two quasi-interior points u, v it then
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follows that the infimum w := u ∧ v is also a quasi-interior point, and this function
clearly satisfies u, v ≥ w. The latter observation is the reason why, on L2-spaces, it
suffices to assume that u and v are quasi-interior points. Hence, the L2-version of the
theorem in [41, Theorem 2.1] has slightly simpler assumptions.
For the proof of the theorem, we need one more ingredient— namely, a version of

Proposition 7.2 for symmetric bilinear mappings:

Proposition 7.6. Let (X, X+) be an ordered Banach space, let Y be a Banach space,
and let b : X × X → Y be a continuous bilinear mapping which is symmetric (in the
sense that b(x1, x2) = b(x2, x1) for all x1, x2 ∈ X).
If b is nonzero and u ∈ X+ is a quasi-interior point, then there exists a point

ũ ∈ [0, u] such that b(ũ, ũ) �= 0.

Proof. Assume that b(ũ, ũ) = 0 for all ũ ∈ [0, u]. It immediately follows that
b(ũ, ũ) = 0 for all ũ ∈ C := ⋃

n∈N
[0, nu]. Next we show that the same is true

even for all ũ ∈ ⋃

n∈N
[−nu, nu]. So fix such a ũ; we can write it as ũ = ṽ − w̃ for

some ṽ, w̃ ∈ C . The real polynomial function

t �→ b(ṽ − tw̃, ṽ − tw̃)

vanishes for t ∈ (−∞, 0] since ṽ − tw̃ ∈ C for all these t . By the identity theorem
for polynomials, we conclude that the polynomial is identically 0, so in particular for
t = 1 we obtain, b(ũ, ũ) = 0.

As u is a quasi-interior point of X+, the set
⋃

n∈N
[−nu, nu] is dense in X . Due

to the continuity of b, it thus follows that b(x, x) = 0 for all x ∈ X . Finally, as b is
symmetric, it follows from the polarization identity

2b(x1, x2) = b(x1 + x2, x1 + x2) − b(x2, x2) − b(x1, x1),

that b(x1, x2) = 0 for all x1, x2 ∈ X , which contradicts the assumption b �= 0. �

Proof of Theorem 7.5. Self-adjoint operators on nonzero spaces always have non-
empty spectrum, so s(A) > −∞. Moreover, the equality s(A) = ω(A) holds for all
analytic semigroups and thus, in particular, for all self-adjoint semigroups. To prove
the remaining equality we may, and shall, assume that s(A) = ω(A) = 0. We need to
show that

lim sup
t→∞

log(v | et Au)

t
≤ 0 ≤ lim inf

t→∞
log(v | et Au)

t

The first inequality readily follows from ω(A) = 0. To show the second inequality,
we follow the main idea of the proof given in [41, Theorem 2.1], although we present
the details in a somewhat different manner: by the multiplier version of the spectral
theorem for self-adjoint operators there exists ameasurable space (�,μ), ameasurable
function m : � → (−∞, 0], and a unitary operator U : H → L2(�,μ) such that
A = U∗MmU , where Mm : L2(�,μ) ⊇ dom (Mm) → L2(�,μ) is the operator that
acts as the multiplication with m.
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Moreover, 0 is in the essential range of m since we assumed 0 = s(A).1 2

Let ε > 0 and let Q denote the spectral projector of A associated with the real
interval [−ε, 0], i.e. Q := U∗M1SU , where S := m−1([−ε, 0]) ⊆ �. Note that S has
nonzero measure since 0 is in the essential range of m, and hence Q is nonzero.
As w is a quasi-interior point of X+ and Q is self-adjoint, Proposition 7.6 shows

the existence of a (nonzero) vector w̃ ∈ [0, w] such that (w̃|Qw̃) �= 0, and thus
(w̃|Qw̃) = (Qw̃|Qw̃) > 0 (as Q̃ is a self-adjoint projection). For all t ≥ 0, we have

(v|et Au) ≥ (w̃|et Aw̃) ≥ e−tε(w̃|Qw̃),

where the first inequality follows from the positivity of the semigroup and the assump-
tion H+ ⊆ (H ′)+ (which implies that (v| · ) and (w̃| · ) are positive functionals and
that the former dominates the latter), and where the second inequality follows from
the spectral theorem for A and its generated semigroup, i.e. from

(w̃|et Aw̃) = (U w̃|etmU w̃)L2(�,μ)

=
∫

�

etm(ω) |U w̃(ω)|2 dμ(ω)

≥
∫

�

e−tε 1S(ω) |U w̃(ω)|2 dμ(ω)

= e−tε(U w̃|M1SU w̃)L2(�,μ) = e−tε(w̃|Qw̃).

As (w̃|Qw̃) > 0, we conclude that

lim inf
t→∞

log(v | et Au)

t
≥ −ε,

which proves the claim. �

As pointed out in [41, Example 2.4], the self-adjointness in Theorem 7.5 cannot be
dropped, even on L2-spaces with their usual order. Theorem 7.5 can be used to derive
a number of interesting consequences. The first one is another explicit formula for
s(A).

Corollary 7.7. Let (et A)t≥0 be a positive and self-adjoint C0-semigroup with gener-
ator A on a nonzero ordered Hilbert space (H, H+), assume that H+ ⊆ (H ′)+ and
that H+ contains a quasi-interior point. Then

−∞ < s(A) = ω(A) = inf
{

λ ∈ R : ∃u ∈ qint (H+) ∩ dom (A) s.t. Au ≤ λu.
}

,

where qint (H+) denotes the set of quasi-interior points in H+.

1I.e. dom (Mm ) = { f ∈ L2(�, μ) : m f ∈ L2(�,μ)} and Mm f = m f for all f ∈ dom (Mm ).
2We note that the semigroup generated by Mm on L2(�, μ), i.e. (Metm )t≥0, is conjugate to (et A)t≥0 via
U , but in contrast to (et A)t≥0 it does not have any positivity properties, in general.
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Proof. We only need to show the equality on the right-hand side.
“≤” Let λ ∈ R and let u ∈ qint (H+) ∩ dom (A) such that Au ≤ λu. We need to

show that ω(A) ≤ λ.
By the same argument as in the proof of “(vi)⇒(vii)” in Theorem 4.7, one can see

that the inequality Au ≤ λu together with the positivity of the semigroup implies that

et Au ≤ eλt u

for all t ∈ [0,∞). By applying Theorem 7.5 (with u = v = w), we thus obtain

ω(A) = lim
t→∞

log(et Au|u)

t
≤ lim

t→∞
log

(

etλ ‖u‖2 )

t
= λ.

“≥” Let λ > s(A); we show that λ is an element of the set under the infimum. To
this end, let v ∈ H+ be a quasi-interior point (which exists by assumption), and set
u := R(λ, A)v. Since the resolvent operatorR(λ, A) is positive and has dense range,
it follows that u is also a quasi-interior point of H+ [34, Proposition 2.21]. Moreover,
u ∈ dom (A). Finally we note that

Au = AR(λ, A)v = λu − v ≤ λu.

This concludes the proof. �

We point out that the same formula as in Corollary 7.7 is true if (X, X+) is an
arbtirary ordered Banach space whose cone is normal and has non-empty interior (in
particular, without any self-adjointness assumption on the semigroup); this was proved
in [4, Theorem 5.3] (note that, if the cone has non-empty interior, the quasi-interior
points and the interior points coincide [34, Corollary 2.8]).
Another interesting consequence is the fact that, for self-adjoint positive semigroups,

there is no eigenvalue different from s(A) which has a quasi-interior point as its
eigenvector.

Corollary 7.8. Let (et A)t≥0 be a positive and self-adjoint C0-semigroup with gener-
ator A on a nonzero ordered Hilbert space (H, H+), assume that H+ ⊆ (H ′)+.

Let λ ∈ R be an eigenvalue of A and assume that there exists a corresponding
eigenvector u ∈ dom (A) which is a quasi-interior point of H+. Then λ = s(A).

Proof. Since Au = λu ≤ λu, the number cannot be smaller than s(A) according to
Corollary 7.7. �
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Appendix A. Stability of (non-positive) semigroups on Hilbert spaces

In this appendix, we give a, to the best of our knowledge new, characterization
of uniform exponential stability of general C0-semigroups (without any positivity
assumption) on complex Hilbert spaces. We will show that one of the implications
in the theorem is a consequence of a classical result of Gearhart–Prüß–Greiner, and
that the other implication can either be obtained by using a solution to Lyapunov’s
equation (A.2) or by employing our Theorem 3.1.
Let H be a complex Hilbert space, endowed with an inner product (·|·). While no

order structure is assumed, a connection to positivity might not be too surprising to
readers familiar with the characterization of stability in terms of Lyapunov’s equation:
If A generates a C0-semigroup on H , the growth bound of the semigroup satisfies

ω(A) < 0 if and only if there exists a self-adjoint operator P ∈ L(H) which is
positive semi-definite and injective (i.e. (Px |x) > 0 for x ∈ H\{0}) and which solves
Lyapunov’s equation

(Ax |Px) + (Px |Ax) = −(x |x) for all x ∈ dom (A) ; (A.1)

see [18, Theorem 5.1.3]. This is intrinsically related to the mappings L(H) � S �→
et AS(et A)∗ ∈ L(H), which leave the positive cone in the self-adjoint part of L(H)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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invariant and constitutes thus a positive semigroup (though this semigroup will not be
strongly continuous, in general). Clearly, (A.1) is equivalent to

Re(Ax |Px) = −1

2
for all x ∈ dom (A) of norm ‖x‖H = 1. (A.2)

The following theorem is the main result of this appendix.Wewill show that the impli-
cation “(i)⇒(ii)” can either be obtained by directly employing (A.1), or by following
an approach related to the proof (A.1)— where we will, however, consider the action
of the operators S �→ et AS(et A)∗ on the space K(H) of compact operators on H ;
considering the action on K(H) rather than on B(H) will give us strong continuity
with respect to the time variable.

Theorem A.1. Let A be the generator of a C0-semigroup on a complex Hilbert space
H. The following are equivalent:

(i) The growth bound of the semigroup satisfies ω(A) < 0.
(ii) There exists a number η > 0 with the following property: for each x ∈ dom (A)

of norm ‖x‖H = 1 there is vector y ∈ H of norm ‖y‖H = 1 which satisfies

Re
(

(y|x)(Ax |y)
)

≤ −η.

The advantage that we see in condition (ii) in the theorem compared to Lyapunov’s
equation (A.2) is that vector y in condition (ii) is not required to depend linearly (or in
any other structured way) on x . Assertion (ii) should also be compared to the stronger
energy estimate

Re(Ax |x) ≤ −η for all x ∈ dom (A) of norm ‖x‖H = 1,

which is equivalent to the “quasi-contractive” exponential stability condition
∥
∥et A

∥
∥ ≤

e−tη for all t ≥ 0.
Let us first show that the proof of the implication “(ii)⇒(i)” in the theorem is

a consequence of a classical theorem on the stability of C0-semigroups on Hilbert
spaces:
Proof of “(ii)⇒(i)” in Theorem A.1. Assume that ω(A) ≥ 0. Then, it follows from
the Gearhart–Prüß–Greiner theorem [26, TheoremV.1.11] that there exists a sequence
of complex numbers (λn) in the resolvent set of A such that Re λn > 0 for each n
and ‖R(λn, A)‖ → ∞. We can thus choose normalized vectors zn ∈ H such that
αn := ‖R(λn, A)zn‖H → ∞, and we define vectors

xn := 1

αn
R(λn, A)zn ∈ dom (A)

of norm ‖xn‖H = 1. For each xn , choose a normalized vector yn as in assertion (ii)
of the theorem. Then

Axn = − 1

αn
zn + λnxn,

and thus
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−η ≥ Re
(

(yn|xn)(Axn|yn)
)

= Re
(

− 1

αn
(yn|xn)(zn|yn) + λn(yn|xn)(xn|yn)

)

≥
−Re

(

(yn|xn)(zn|yn)
)

αn
→ 0,

which is a contradiction. �
We will now give two different proofs for the converse implication “(i)⇒(ii)” in

TheoremA.1. The first one is essentially an application of Lyapunov’s equation (A.2):
Proof of “(i)⇒(ii)” in Theorem A.1 via Lyapunov’s equation. Since the inequality
ω(A) < 0 holds, there exists a positive semi-definite and injective operator P ∈ L(H)

that satisfies Lyapunov’s equation (A.2).
In order to show (ii), let x ∈ dom (A) have norm 1. We choose y := Px/‖Px‖H

(which is well-defined since the denominator is nonzero due to the injectivity of P),
and with this choice

Re
(

(y|x)(Ax |y)
)

= 1

‖Px‖2H
Re

(

(Px |x)(Ax |Px)
)

= (Px |x)
‖Px‖2H

Re
(

(Ax |Px)
)

= − (Px |x)
2‖Px‖2H

.

In order to find an upper estimate for the latter term, define Q := P/ ‖P‖. So the
self-adjoint operator Q is also positive semi-definite, and it has norm 1. For every
nonzero x ∈ H , we have

− (Px |x)
2‖Px‖2H

= − 1

‖P‖
(Qx |x)
2‖Qx‖2H

.

Now we use the multiplier version of the spectral theorem for self-adjoint operators:
it allows us to represent x as an L2-function f (over a suitable measure space �) and
Q is the multiplication with a real-valued L∞ function m that takes values in [0, 1].
So

− 1

‖P‖
(Qx |x)
2‖Qx‖2H

= − 1

‖P‖
∫

�
m | f |2

2
∫

�
m2 | f |2 ≤ − 1

2 ‖P‖;

the last inequality follows from that fact thatm takes values in [0, 1] only— this implies
that m2 ≤ m, so the function under the integral in the denominator is (pointwise)
smaller than the function under the integral in the numerator. So we proved that
assertion (ii) is satisfied with η = 1

2‖P‖ . �
Finally, we give a second proof of the implication “(i)⇒(ii)” in Theorem A.1—but

this timewe employ our Theorem 3.1 about positive semigroups for the proof. Readers
familiar with the proof of Lyapunov’s equality will probably not be too surprised about
the main approach in the proof; however, we find it worthwhile to give all arguments
in detail anyway, since they provide an interesting relation to the theory of positive
C0-semigroups on ordered Banach spaces.
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We will need the following lemma. Let K(H) denote the C∗-algebra of compact
linear operators on H and letK(H)sa denote its self-adjoint part. As usual, we denote
by K(H)+sa the cone of those operators K in X that satisfy σ(K ) ⊆ [0,∞). Then,
(K(H)sa,K(H)+sa) is an ordered Banach space with normal and generating cone, and
K(H) is a complexification of K(H)sa. We call an operator positive definite if its
spectrum is contained in (0,∞).

We have the following formula for the distance to the positive cone in X :

Lemma A.2. Let H be a complexHilbert space. For every self-adjoint compact linear
operator K on H that is not positively definite 3, one has

dist(K ,K(H)+sa) = sup
{

− (Ky|y) : y ∈ H, ‖y‖H = 1
}

.

Proof. “≥”: For every operator L ∈ K(H)+sa and every vector y ∈ H of norm 1 one
has

‖K − L‖ ≥ ((L − K )y|y) ≥ −(Ky|y).

“≤”: Let λ ∈ R denote the number on the right-hand side of the claimed equality.
Then, −λ is the minimum of σ(K ), and −λ ≤ 0 since K is not positively definite. As
a consequence of the spectral theorem for self-adjoint compact operators we can split
K as K = K+ − K− for operators K+, K− ∈ K(H)+sa such that the spectral radius
of K− is equal to λ. Hence,

dist(K ,K(H)+sa) ≤ ∥
∥K − K+∥

∥ = ∥
∥K−∥

∥ = λ.

This proves the claim. �

Now we give our second proof of the implication “(i)⇒(ii)” in Theorem A.1. We
use the following notation: for all x, y ∈ H the symbol x ⊗ y ∈ L(H) denotes the
rank-1 operator on H given by (x ⊗ y)z = (z|y)x for all z ∈ H ; it has operator norm
‖x‖ ‖y‖.
Proof of “(i)⇒(ii)” in Theorem A.1 via positive semigroups. For each t ∈ [0,∞)

consider the operator Tt on K(H)sa that is given by

Tt (K ) = et AK (et A)∗ for all K ∈ K(H)sa.

This operator is positive. The family (Tt )t≥0 clearly satisfies the semigroup law.More-
over, it is strongly continuous, as can be seen be first checking strong continuity on
finite-rank operators K and then using a density argument. Hence, (Tt )t≥0 is a posi-
tive C0-semigroup on the ordered Banach space (K(H)sa,K(H)+sa); let us denote its
generator by L .

3The latter assumption is automatically satisfied due to the compactness of K if H is infinite-dimensional,
as in this case 0 ∈ σ(K ).
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It follows from ω(A) < 0 that ω(L) < 0, and hence s(L) < 0. So we can apply
Theorem 3.1 and part (iv) of the theorem tells us that here exists a number η > 0 such
that

dist(L(K ),K(H)+sa) ≥ η ‖K‖ for all 0 ≤ K ∈ dom (L) .

Now let x ∈ dom (A) of norm ‖x‖H = 1 and consider the rank-1 operator x ⊗ x ∈
K(H)+sa; it has norm 1. Moreover, it is easy to check that this operator is in dom (L)

and that we have L(x ⊗ x) = (Ax) ⊗ x + x ⊗ (Ax). Hence,

dist
(

(Ax) ⊗ x + x ⊗ (Ax),K(H)+sa
) ≥ η.

By Lemma A.2, we thus find an operator a normalized vector y ∈ H such that

−
(

[(Ax) ⊗ x + x ⊗ (Ax)]y
∣
∣
∣ y

)

≥ η/2

This means precisely that Re
(

(y|x)(Ax |y)
)

≤ −η/4. �
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