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Abstract
Low dimensional subspaces are extracted out of highly complex turbulent pipe flow at 
Re

�
= 181 using a Characteristic Dynamic Mode Decomposition (CDMD). Having lower 

degrees of freedom, the subspaces provide a more clear basis to detect events which meet 
our understanding of large-scale coherent structures. To this end, a temporal sequence of 
state vectors from direct numerical simulations are rotated in space-time such that persis-
tent dynamical modes on a hyper-surface are found travelling along its normal in space-
time, which serves as the new time-like coordinate. The main flow features are captured 
with a minimal number of modes on a moving frame of reference whose velocity matches 
that of the most energetic scale. Reconstruction of the candidate modes in physical space 
gives the low rank model of the flow. The structures living in this subspace have long life-
times, posses wide range of length-scales and travel at group velocities close to that of the 
moving frame of reference. The modes within this subspace are highly aligned, but are 
separated from the remaining modes by larger angles. We are able to capture the essen-
tial features of the flow like the spectral energy distribution and Reynolds stresses with a 
subspace consisting of about 10 modes. The remaining modes are collected in two further 
subspaces, which distinguish themselves by their axial length scale and degree of isotropy.
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1 Introduction

Large-scale energetic coherent structures detected in turbulent flows have become an insep-
arable part of turbulence studies. Proof of their existence is promising as it implies that tak-
ing advantage of the notion of coherence can shed light on the high-dimensional turbulent 
flows with complex flow patterns. These structures contribute prominently to the turbulent 
kinetic energy while diffusing mass and momentum and carrying large desirable or unde-
sirable effects such as better mixture or more drag (Marusic et al. 2010).

In spite of large number of studies in the last decade to understand their physical prop-
erties there is still limited consensus in the scientific community on how to define these 
structures, what they physically look like, how long they live and how their length scales 
depend on Reynolds numbers. It is not fully understood what they feed on, how their 
regeneration mechanism works and how they interact with each other or with near wall 
turbulence.

Three groups of structures are well distinguished in literature by their length scales and 
wall-normal locations. Near-wall streaks are known as manifestations of the wall cycle of 
turbulence and have mean span-wise spacing of �+ = 100 and mean stream-wise length of 
�
+
x
= 1000 (Kline et al. 1967). Their origin and regeneration pattern has been the subject of 

many studies showing that they are formed by lift-up mechanism of the mean profile, mean 
shear and viscous diffusion (Chernyshenko and Baig 2005). Their self sustainability has 
been shown in studies like Jiménez and Moin (1991) where a minimal flow unit is simu-
lated as the smallest channel flow that can maintain turbulence.

Large scale motions (LSMs) are described as motions whose coherence is maintained as 
a result of eddies travelling at the same group velocity (Kim and Adrian 1999). Measure-
ments of Bailey and Smits (2010) show evidence for existence of such eddies in the outer 
layer being detached from the wall with small correlation with the near wall flow, whereas 
in the logarithmic region they are more likely to be attached to the wall. This suggests 
existence of attached LSMs in the near-wall region and detached ones in the outer layer. 
They are known to have stream-wise scale of 2-3 pipe radii and span-wise length scale of 
1 −1.5 radii (Guala et al. 2006).

Very Large-Scale Motions in pipe and channel flow (referred to as VLSMs by Adrian 
and coworkers) or superstructures in boundary layer flows (named by Marusic and cow-
orkers), appear to be longer and have streamwise length scale of 8-20 pipe radii (Vallikivi 
et al. 2015). While they are mostly seen in the logarithmic layer in boundary layer flow, 
they appear in the outer layer of internal flows (Monty et al. 2009). Kim and Adrian (1999) 
interpret VLSM as a result of stream-wise alignment of LSMs which exist in the outer 
layer, whereas Álamo and Jiménez (2006) argue that their formation is the result of linear 
and nonlinear processes.

Interactions of LSMs with the near-wall structures has been the subject of several stud-
ies. Toh and Itano (2005) consider large-scale structures as part of the turbulence and argue 
that they feed on their interactions with the near-wall small-scale structures. Del Álamo 
and Jiménez (2006) on the other hand interpret them as self-sustained structures. Apart 
from their regeneration mechanism, many key questions concerning LSM and VLSM are 
still unanswered including a uniform scaling law for their identification as well as a clear 
understanding of their origin and evolution. Differing views on the origin and nature of low 
wave number VLSMs question their dependence on geometry and outer layer variables.

Spectral analysis has been one of the key approaches commonly used to learn about 
the properties of such structures. Their footprints can be followed by observing the 
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premultiplied velocity spectra which represent the energy distribution in the wave number 
space. At sufficiently large Reynolds numbers two outer peaks appear in contour plots of 
spectra which are associated with VLSM and LSM (Rosenberg et al. 2013). The signature 
of large-scale energetic structures are hereby followed and their length scales and energy 
content at different wall normal positions are determined.

The outer spectral peaks have been mostly observed via experimental measurements 
as the well-resolved numerical studies have been limited to lower Reynolds numbers due 
to high computational costs. Nevertheless, Pirozzoli et al. (2021) have extended this limit 
considerably to Re

�
= 6000 and have shown that the present computations have reached 

a state where asymptotically high Reynolds number behaviour is starting to be seen. An 
example would be the DNS by Yao et al. (2023) where they clearly show the emergence of 
an energetic outer spectral peak at Re

�
= 5200.

Taking advantage of the spectral footprint, Bauer et al. (2019) apply a two dimensional 
Fourier cut-off filter to separate the structures based on the their known length-scales to 
investigate which length scales are responsible for feeding the largest scales and which 
ones feed from them. Besides differing views on the nature and origin of turbulent struc-
tures, the suitable approach for their analysis is also still under debate. Following the spec-
tral peaks helps to follow footprints of structures, but cannot provide insight to their evolu-
tion and interactions.

One of the major difficulties arising while studying the physical properties of large-scale 
coherent structures is that many of the findings can be biased by influences of smaller-scale 
structures and instabilities. This has led to an increasing interest in extracting the struc-
tures from the turbulent flows and to study their properties in the absence of small-scale 
structures. The latter, together with recent availability of large numerical and experimental 
datasets has led to increasing popularity of data driven methods.

After introduction of Proper Orthogonal Decomposition (POD) to fluid dynamics by 
Lumley (1967), numerous variations of this method were proposed building on the main 
idea which was to extract spatial and temporal flow structures from numerical and experi-
mental data by decomposing the flow to spatially uncorrelated modes. This was particu-
larly desirable as the largest amount of energy could be captured with the fewest number 
of modes, but also required the flow to be projected to orthogonal basis, hence removing 
the possibility for the modes to linearly interact. An example would be the study by Hell-
ström and Smits (2014) who applied snapshots POD (Sirovich 1987) to cross-sectional PIV 
measurements, and found that the first 10 snapshots POD modes contribute 43% to aver-
age Reynolds shear stress and 15% to the kinetic energy. In a different approach, Dynamic 
Mode Decomposition (DMD) was introduced by Schmid and Sesterhenn (2008) decom-
posing the flow to correlated spatial modes possessing certain temporal frequencies and 
decay rates.

A majority of these methods decompose the flow on a stationary frame of reference 
leading to the need for large number of modes to describe the convecting features in the 
transport-dominated flows. This issue is addressed by several studies (Rowley and Mars-
den (2000) and Reiss et al. (2018)) introducing a spatial transformation in form of a shift. 
Sesterhenn and Shahirpour (2019) proposed a different approach by applying a spatio-tem-
poral transformation in form of a rotation in space and time on a moving frame of reference 
along the characteristics of the flow. They observed a faster drop of singular values on a 
rotated frame compared to a shifted one.

In what follows we apply a CDMD to DNS data of turbulent pipe flow at Re
�
= 181 

with the objective of extracting a low dimensional subspace which mimics the main 
features of the flow such as Reynolds stress components, anisotropy invariant map and 
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axial velocity spectra. This offers a suitable basis for isolating the scales which are 
responsible for the spectral peaks (and will be the subject of a future study building up 
on the findings reported in this manuscript).

The flow under study only accommodates the energetic near-wall streaks where 
the larger outer layer structures have not emerged yet. This is confirmed by several 
studies showing that the LSMs and VLSMs emerge at Re

�
≥ 1500 in pipe (Feldmann 

et al. 2018) and channel flow (Álamo and Jiménez 2003) where a more distinct scale 
separation will take place. Although the streaks possess smaller axial lengths scales 
compared to the other two groups of structures, in their absence at lower Reynolds 
numbers, streaks are the largest and the most energetic scales. Hence, they are referred 
to as large scales in this study to distinguish them from the smaller and less energetic 
scales.

2  Numerical Methods and Computational Details

The data used for the study is generated using an open-source, hybrid parallel DNS 
code (López et  al. 2020). Hereby, Navier-Stokes equations are solved in cylindrical 
coordinates for an incompressible pipe flow fulfilling mass and momentum conserva-
tions given by

where �(�, t) and p(�, t) represent velocity field (u,  v,  w) in cylindrical coordinates 
� = (x, r, �) and dynamic pressure respectively. No-slip boundary condition is applied at 
the walls together with periodic boundary condition for the inlet and outlet. The governing 
equations are solved for velocity and pressure, discretised with a combined Fourier-Galer-
kin / finite difference method in space and using a semi-implicit fractional-step of Hugues 
and Randriamampianina (1998), using second-order-accurate backwards differences and 
second order linear extrapolation for nonlinear term. More details on the numerical scheme 
can be found in the study by Shi et al. (2015). Simulations are carried out at bulk Reyn-
olds number of Reb = 2RUb∕� = 5300 for pipe length of L = 50R with R, Ub and � being 
respectively the pipe radius, bulk velocity and kinematic viscosity. The mentioned domain 
length has been chosen based on the study by Feldmann et  al. (2018) which considers 
L∕R ≥ 42 to be sufficiently large to ensure that large-scale flow features are captured, ful-
filling the requirement of capturing a minimum integral energy threshold of 2/3.

After the final grid refinement, calculations have been advanced for 400 convective 
time steps tc = R∕Ub , during which CFLmax = 0.5 was maintained, leading to simula-
tion time step of dt = 4.93 × 10

−4 tc . The grid spacing measured in wall units is chosen 
so that there are 5 and 20 points bellow y+ = 1 and y+ = 10 respectively, with the first 
point in the vicinity of the wall at y+ = 0.026 . The + superscript denotes normalisa-
tion by inner scaling using viscous length-scale �∕u

�
 and friction velocity u

�
=
√
�w∕� 

where �w and � are the wall shear stress and density respectively. Further details on 
the simulation and grid spacing are mentioned in table  1. To ensure statistical con-
vergence, the results are validated by comparing the statistical flow properties such as 
mean velocity and Reynolds stress components with benchmark DNS data in the next 
chapters.

(1)∇ ⋅ � = 0 , �t� + � ⋅ ∇� = −∇p +
1

Reb
∇2

�,
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3  Methodology

Investigating transport-dominated phenomena on a stationary frame of reference 
adversely influences the observations. To remedy this issue, Sesterhenn and Shahirp-
our (2019) proposed a Characteristic DMD. The essence of a characteristic decomposi-
tion of the flow is to seek coherence as a persistent behaviour observed in space and 
time coupled together on a moving frame of reference, as opposed to spatial or tempo-
ral coherence individually. They introduced a transformation T  in form of a rotation 
in space and time T(�(x, r, �, t)) = �(�, r, �, �) and used the drop of singular values as a 
measure of how well the convected phenomena can be described on each frame of refer-
ence. The algorithm is summarised in Fig. 1 where a rotation via three shears is imple-
mented as proposed by Paeth (1990).

Two major advantages were presented for the spatio-temporal transformation. The 
first one is that convected phenomena could be described on the rotated frame with far 
fewer modes compared to a stationary frame. In addition, it was shown that singular 
values drop faster along the characteristics compared to those taken on a shifted moving 
frame which is obtained by a purely spatial transformation. The second advantage is that 
as expected, dynamics of the detected structures are captured more accurately.

Table 1  Details of the simulation and grid spacing. N
x
 , N

r
 , and N

�
 are the number of grid points in (x, r, �) 

directions and Re
�
= Ru

�
∕� is defined as shear Reynolds number

Re
�

u
�
∕U

b
N
x
× N

r
× N

�
(Δx+) (Δr+)

min
(Δr+)

max
(�Δr+)

min
(�Δr+)

max

181 0.068 1800 × 120 × 286 5 0.08 2.2 0.002 0.04

Fig. 1  CDMD algorithm (Sesterhenn and Shahirpour 2019) demonstrating the spatio-temporal rotation on 
a space-time diagram taken from DNS of pipe flow at wall normal distance of y∕R = 0.5 . Contours corre-
spond to axial velocity perturbations normalised by bulk velocity
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Having chosen the frame of reference, the decomposition method is selected based on 
the fact that the goal of this study is to analyse the interactions between the modes. We 
intend to present a framework in which the origins of structures, their regeneration mecha-
nism, their sustainability and finally their decay process can be investigated. Therefore, the 
obtained eigen modes should be found such that they can give energy to other modes or 
to feed from them, and as a result, should not be forced to be normal to each other. To 
this end, the standard dynamic mode decomposition (Schmid 2010) has been taken as the 
main basis for decomposing the flow field. Three subsets of the modes are detected, recon-
structed in spatio-temporal space and transformed back to physical space, where their con-
tributions to Reynolds stress tensor and their anisotropy invariant maps are studied. Further 
details of the method can be found in the relevant manuscript (Sesterhenn and Shahirpour 
2019).

A reference is needed to validate the identity of captured structures. What many studies 
have in common in their definition of coherent structures, is the footprint they leave behind 
in the Fourier space, in premultiplied energy spectra. Therefore, we verify our detected 
structures, by how well they represent the spectral peak and therefore, we use velocity field 
as the state vector in our analysis.

4  Results and Discussions

4.1  Detection of the Dominant Group Velocity

The main goal in the first step is to find the direction of characteristics along which the 
large-scale features of the flow can be described with fewest modes possible. The slope of 
the characteristics represents the group velocity ug at which the most energetic large-scale 
features are being convected and is defined as the axial length-scale travelled per unit con-
vective time defined as tc = R∕Ub.

Detecting structures on a moving frame of reference does not imply that a unique group 
velocity is assumed for different scales. Rather, it enables us to detect and describe dif-
ferent scales using a minimal number of modes (Sesterhenn and Shahirpour 2019). Each 
of the detected scales are travelling at group velocities close to that of the moving frame. 
Their group velocities are dependant on the axial and azimuthal wave number as well as 
the wall-normal location (Del Álamo and Jiménez 2009).

In Fig. 2, space-time diagram is shown for three velocity components at wall-normal 
location y∕R = 0.5 for one azimuthal location. The colourmap represents the corresponding 

Fig. 2  Space-time diagrams for u a, v b and w c normalised by bulk velocity Ub at wall-normal location 
y∕R = 0.5
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velocity component normalised by bulk velocity. Although several group velocities can be 
observed for each component, one dominant group velocity can be perceived which corre-
sponds to the energetic large-scale events. The dominant group velocity will get essentially 
smaller by moving closer to the wall and into the wall layer, and it will be larger in the 
outer layer and close to the pipe axis. A second observation is that the main group velocity 
appears to stay relatively constant for 50 tc which is the time required to travel through the 
pipe once.

The objective is to decompose the flow into modes which describe the complete veloc-
ity field. Therefore, the direction along which the decomposition is applied should be cho-
sen optimally for all velocity components. Optimality here is defined by detection of large-
scale features using a minimal number of modes and is quantified by the drop of singular 
values along the characteristics. For each time-step the entire velocity field is stacked in 
one column vector which forms one of the columns of matrix M(Nph×Nt)

 with Nph and Nt cor-
responding to the number of spatial points in physical space and time-steps respectively. 
The spatio-temporal rotation is then applied to M for a range of angles spaced 0.1 radian 
from each other. After each rotation, a singular value decomposition is carried out and the 
drop of singular values are recorded as shown in Fig. 3a. A piecewise cubic interpolation is 
then used to fit a curve to all the points and to find the maximum drop which is shown with 
a red marker for rotation angle of �g = 1.311 corresponding to group velocity of 
ug = 1.06Ub = 15.5 u

�
 . This group velocity is equal to the mean radial velocity found at 

wall-normal location y+ = 1 − (r∕R)+ = 44 . In Fig.  3b, ug is annotated along with the 
mean radial velocity profile compared with the benchmark data by El Khoury et al. (2013). 
By rotating the matrix M by �g , the data will be transformed to a moving frame of reference 
with the direction of characteristics serving as the new time coordinate. We search for 
coherent structures in planes normal to the characteristics as they travel in space and time 
and undergo minimal changes while maintaining their coherence.

4.2  Decomposition and Subspace Detection

Having detected the optimal group velocity, matrix M is formed using 500 timesteps with 
spatial resolution of (900 × 60 × 143) in (x, r, �) directions. To ensure that the dynamics of 
the modes are captured correctly, timestep of dtCDMD = 0.2 tc is chosen between the col-
umns of M. Therefore, each event moving at Ub propagates two times through the entire 

Fig. 3  Drop of singular values for a range of rotation angles a and mean radial velocity profile compared 
against the benchmark data b 
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pipe. Transforming the data to spatio-temporal space and choosing the largest � − � win-
dow in the rotated frame of reference results in the snapshots matrix in spatio-temporal 
space Xst = T(M) , with N

�
= 290 and N

�
= 843 points along � and � respectively. A stand-

ard DMD is carried out to decompose Xst into the dynamic modes �i and their correspond-
ing coefficients ci(�) such that Xst = �C where � and C are matrices of dynamic modes 
and their coefficients for all timesteps. Continuous-time eigenvalues are transformed back 
to physical space with their real and imaginary parts representing decay rates and frequen-
cies of the modes respectively in physical time. In Fig. 4, time averaged mode coefficients 
normalised by their L

2
 norm, dimensionless decay rates ̂d = d∕(Ub∕R) and frequencies 

̂f = f∕(Ub∕R) are plotted with the modes being sorted by their decay rates. All the fre-
quencies in spatio-temporal space are within the range of 0 ≤ ̂fst < 2.5 which corresponds 
to 0 ≤ ̂f < 10 after transformation to physical space.

Next, a subset of modes is to be selected constituting a subspace (subspace I) to fulfil 
certain criteria which are chosen with the knowledge that for turbulent pipe flow at this 
Reynolds number, there exists only one peak in the premultiplied energy spectra. The first 
criteria is that subspace I should accommodate energetic structures with large spatio-tem-
poral length-scales. Therefore, it is expected to have a large contribution to the spectral 
peak which is known as the footprint of large-scale structures in premultiplied energy spec-
tra. Given the nature of coherent structures, the second criteria dictates that the modes in 
this subspace should not possess large decay rates. This is to ensure that energetic modes 
with short lifetimes will not be a member of this subspace. Similarly, the candidate modes 
are expected to have small frequencies and not undergo strong oscillations.

We hypothesize that the modes fulfilling the mentioned criteria are expected to pos-
sess another significant property. Due to the spatio-temporal coherence of the flow cap-
tured by these modes, they are expected to have major interactions with each other, but 
have smaller interactions with the rest of the modes. We define this interaction in terms 

Fig. 4  Dynamic mode amplitudes, decay rates and frequencies
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of the angle between the modes as well as the energy which is gained or lost by the flow 
as a result of presence of each two modes in a subspace. This implies that the modes in 
subspace I, besides being energetic, should have small angles between each other and 
large ones with the remaining modes.

To calculate the energy of a subspace, we first consider subspace S comprised of two 
modes S = {�

1
,�

2
} and coefficients matrix CS with rows defined as c

1
(�) and c

2
(�) that 

can be used to obtain XS = SCS . Columns of XS and CS can be used to write for each 
timestep �S(�) = S cS(�) = �

1
c
1
(�) + �

2
c
2
(�) . The total energy of S integrated along � is 

then defined by

and energy of S can be written for each time step � as

where the terms E
1
(�) and E

2
(�) in Eq. 3 correspond to the energy of modes �

1
 and �

2
 

respectively at one timestep.
The term E

1|2(�) represents the energy added to or taken from Xs as a result of super-
position of �

1
 and �

2
 . Coexistence of two non-orthogonal modes (or subspaces) leads 

to interactions between them which can be studied in terms of their kinematic and 
dynamic properties. The former corresponds to how the net result of their interaction 
influences for instance the kinetic energy and other turbulent properties of Xs . The lat-
ter on the other hand focuses on the temporal evolution of the interaction and quantifies 
how presence of each mode influences the role of the other in time. In this study we are 
mainly investigating the kinematics of subspace interactions (referred to ‘interactions’ 
from here on out) and their dynamics are the subject of a future study.

For modes that are orthogonal to each other, the term E
1|2 vanishes and for mode 

pairs with small angles, E
1|2 can have large positive or negative values. Equation 3 can 

be generalised to the case where �
1
 and �

2
 are each a subspace.

To detect a subspace In with n most energetic modes that represents the full field 
energy with fewest number of modes, and to observe how the subspace energy changes 
as the next energetic mode is added to it, cumulative energy is calculated for the first n 
dominant modes, integrated along � and normalised by the total energy as

and plotted in Fig. 5a for the first 50 modes. EIn
 represents energy of subspace I possess-

ing n modes integrated over time. A fast drop is observed for the first few modes added, 
where two minima are observed for 4 and 6 modes resulting in subspace energy close to 1. 
( �I

4
= 1.1 and �I

6
= 0.9 ). Adding more modes increases the energy, but finally by having 11 

modes, subspace energy will drop again to �I
11
= 0.9 . It is clear that adding the next modes 

makes only minimal changes in the subspace energy.

(2)ES =

N
�∑

�=1

c
∗
S
(�) S∗S cS(�),

(3)

ES(�) = �
∗
S
(�)�S(�) = c

∗
S
(�) S∗S cS(�) =

(
c∗
1
(�)�∗

1
+ c∗

2
(�)�∗

2

)(
�
1
c
1
(�) + �

2
c
2
(�)

)

= c∗
1
(�)�∗

1
�
1
c
1
(�)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

E
1
(�)

+ c∗
1
(�)�∗

1
�
2
c
2
(�) + c∗

2
(�)�∗

2
�
1
c
1
(�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E
1|2(�)

+ c∗
2
(�)�∗

2
�
2
c
2
(�)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

E
2
(�)

,

(4)�In
= EIn

∕E
�
.
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Next, relative error is calculated for reconstruction of modes in subspace In having n 
modes with the corresponding coefficients matrix CIn

 (Eq.  5). Three matrix norms have 
been used with p = {1,∞,F} for one-norm, infinity norm and frobenius norm respectively.

As shown in Fig. 5b, all relative errors reach two minima for 4 and 6 modes, increase for 7 
modes, and then drop strongly for 11 modes while minimally changing beyond that point. 
As depicted in Fig. 5c, these 11 modes have very small frequencies compared to the rest of 
the modes.

The candidate 11 modes are highlighted in red in Fig. 4 with red bars. They have a small 
mean decay rate of ̂dI = 0.022 and undergo minimal oscillations with average frequency 
of ̂fI = 0.086 in the range of 0 ≤ ̂f ≤ 0.2 . All the remaining modes oscillate with larger 
frequencies 0.22 ≤ ̂f ≤ 9.86 with the exception of mode 420 which has a large decay rate 
and small amplitude and therefore does not meet the criteria to be part of this subspace. 8 
of the candidate modes have large amplitudes c̄∕‖ ̄C‖ ≥ 0.1 and the rest, in spite of hav-
ing smaller amplitudes 0.05 ≤ c̄∕‖ ̄C‖ ≤ 0.07 , still possess much smaller frequencies com-
pared to the rest of the modes. Therefore, based on the cumulative energy of subspace I, 
its relative error, mode amplitudes, their decay rates and frequencies, the first 11 dominant 
modes are chosen as members of subspace I.

Having detected a subset of energetic modes matching the mentioned criteria, we verify 
orthogonality of each member of this subset to modes residing inside and outside the sub-
set. Mode-pair angles m

33
∠mi are plotted as an example in Fig. 6a with blue markers show-

ing the angles that mode 33 (one of the members of subspace I) makes with all the other 

(5)�n = ‖X − InCIn
‖p∕‖X‖p.

Fig. 5  Cumulative energy a, relative error b and frequencies c of the first n dominant modes

Fig. 6  Angles between mode-pairs m
33
∠mi a, m

237
∠mi and m

280
∠mi b 
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modes. Filled blue markers, correspond to subspace I members. It is readily seen that major-
ity of the modes outside subspace I, are almost orthogonal to mode 33 as they accumulate 
close to � = 90 . On the other hand, the smallest angles are made with members of subspace I 
( m

393
 and m

409
 ), indicating interaction between m

33
 with a small decay rate, with two modes 

with rather larger decay rates. In Fig. 6b, mode pair angles m
237

∠mi and m
280

∠mi are plotted. 
Here it is also observed that modes outside subspace I are mostly orthogonal to m

237
 and m

280
 . 

These two modes appear to make small angles with one another and rather larger angles with 
the rest of the modes in subspace I. A similar behaviour exists for all the modes in subspace I.

A small angle between two modes, provides the potential for a large energy interaction. 
But as inferred from Eq. 3, the term E

1|2 is dependant also on the mode coefficients besides 
the inner product of the two modes. Therefore in the next step, integrated energy interactions 
̂Ei|k are calculated between each mode (k) in subspace I and all the other modes (i) normalised 
by the total energy of the flow (with .̂ denoting the normalisation). The results are plotted 
for ̂Ei|237 in Fig. 7a with circles and diamond markers corresponding to positive and negative 
values respectively. Filled markers represent modes in subspace I, which show clearly the larg-
est interactions with m

237
 , some with positive and some with negative values. Apart from the 

contributions of the modes in subspace I (filled markers), two distinct regions also appear in 
this plot. A smaller number of modes can be seen at ̂Ei|237 ≥ 10

−3 and majority of them seem 
to be accumulated below this limit. This implies that there are certain modes outside subspace 
I, which are interacting more than the rest with m

237
 . These two regions appear for all the 

modes in subspace I indicating emergence of a second subspace, whose members are chosen 
based on how much energy they bring or take from the flow while interacting with subspace I. 
To detect the modes fitting in the new subspace, the term ̂Ei|I should be calculated for all the 
members of subspace I as

with N
�
 and NI being the total number of modes and the number of modes in subspace I 

respectively. The vector calculated using Eq. 6 is sorted in a descending order and modes 
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Fig. 7  Normalised energy interactions between mode m
237

 (a member of Sub I) and all the other modes a, 
and cumulative energy interaction between subspace I and the rest of the modes b 
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in subspace I are excluded from the set in order to detect the largest contributions to sub-
space I. Cumulative energy interaction is then given for the first p dominant contributions 
by

and is plotted in Fig.  7b. Cumulative energy contribution rises rapidly with the first 10 
modes and reaches a saturation point after 60 modes, beyond which the energy does not 
change much by adding the remaining modes. Taking 67 modes, where a red dashed line is 
plotted, captures 98% of the total contribution (grey solid line).

Having detected a second subspace, the remaining modes are grouped together to form 
the third subspace. Subspaces I, II and III each with 11, 67 and 346 modes amount to 3%, 
15% and 82% of the total number of modes respectively. Their total kinetic energy is cal-
culated using Eq. 2 being equal to 97% , 15% and 2% of the snapshots energy for the first, 
second and third subspaces respectively. Subspace interactions I | II and II | III lead to 12% 
and 2% energy loss, whereas interactions between the first and third subspaces does not 
cause any overall energy gain or loss.

To demonstrate a comparison with decompositions on a stationary frame of refer-
ence, the two following studies are considered. Hellström and Smits (2014) show for 
example that the first 10 snapshots POD modes represent 14% and 15% of the energy for 
ReD = 47000 and ReD = 93000 with ReD being the Reynolds number based on the cen-
treline velocity. Covering a wider range of Reynolds numbers, Yu et  al. (2022) apply a 
Fourier decompositions in the azimuthal direction and a POD in the radial direction at 
180 ≤ Re

�
≤ 6000 . The cumulative energy of the first POD mode associated with the first 

10 azimuthal modes amounts approximately to 33% and 40% for shears Reynolds numbers 
of 180 and 6000 respectively. Their first, third and fifth POD modes contribute respectively 
60% , 80% and 90% to the energy of the azimuthal modes at Re

�
= 6000.

In the next step, each of the detected subspaces are reconstructed along � . To have a 
visual comparison between the full field and the subspaces, space-time diagrams are plot-
ted for axial velocity components in Fig. 8 at wall-normal location y = 0.34R ( y+ = 61.5 ) 
for one azimuthal location. Comparing the full field with Subspace I in Fig. 8a and b, it can 
be seen that the large-scale flow patterns are present very well in spite of the fact that only 
3% of the modes exist in this subspace. Magnitudes of negative and positive perturbations 
agree well with those of the full field. Small-scale patterns are clearly missing from the 
reconstruction as expected. Dominant structures in this subspace appear to remain station-
ary along the direction of �.

Subspace II in Fig. 8c accommodates small-scale patterns with perturbations which are 
considerably less energetic than those captured in subspace I. Oblique patterns emerging 
show that structures here have different group velocities compared to the dominant one. 
Some appear to move backwards relative to the moving frame of reference indicating a 
slower convection velocity, whereas others move forward at higher velocity. Absence of 
strong vertical patterns in this figure shows that no energetic structure moving with the 
dominant group velocity is present in subspace II.

(7)𝛾p,I =

p∑
j=1

̂Ej�I

N
𝜏
−NI∑
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Subspace III with 82% of the modes bears traces of some small-scale patterns similar to 
those in subspace II, but is mainly populated with very small-scale structures. No dominant 
group velocity is observable in this subspace.

4.3  Subspaces in Physical Space

Each reconstructed subspace is transformed back to physical space. In Fig. 9, iso-surfaces of 
streamwise velocity component are shown for the full field (Fig. 9a) and for each subspace. 
Similar to what was seen in the spacetime diagram, the structures in subspace I (Fig.  9b) 
appear to be similar to those in full filed. This resemblance is observed in terms of where high 
and low momentum regions are located and also in terms of amplitudes of perturbations (In 
both subfigures iso-levels u = ±0.1Ub are plotted). Axial length-scales in both figures per-
ceived from the large-scale structures agree well and they will be examined in the next chap-
ters in premultiplied velocity spectra.

Subspace II in Fig. 9c on the other hand, accommodates only smaller scale structures with 
lower perturbation magnitudes (with iso-levels u = ±0.04Ub ). The modes in this subspace 
were chosen based on the level of their interactions with subspace I causing large energy gains 
or losses. On the other hand it was shown in Fig. 5 that the total energy of the flow will not 
change drastically beyond 11 modes. This implies that although the two subspaces have large 
energy interactions, the overall energy of subspace I remains relatively constant. Subspace III 
is plotted with iso-levels u = ±0.005Ub with two major length-scales being present in the 
flow, both of which are smaller than those present in the other subspaces.

Fig. 8  Space-time diagram in spatio-temporal space for the full field a and subspaces I b, II c and III d, at 
wall-normal location y = 0.34R and one azimuthal point
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4.4  limitations and Constraints

The statistical turbulence properties of the full field diverge from those of the snapshots 
matrix in physical space Xph = T

−1(Xst) . The first reason is that in order for the second 
order statistics to converge, 4000 data realisations recorded for 400 convective timesteps 
have been used, whereas taking the same number of timesteps for DMD was not possi-
ble due to memory limitations. The second reason is the linear interpolation used for the 
spatio-temporal transformations.

The first limitation could be only partially removed using a streaming DMD (Hemati 
et al. 2014) and at the expense of truncating the singular values. As in this study it was 
intended to keep all non-zero singular values, a streaming DMD was not used. Employ-
ing higher order interpolation schemes and using larger number of timesteps, substan-
tially increase the computation time specially at higher Reynolds numbers. It was also 
observed that the present setup does not bias the conclusions. Therefore, turbulence 
properties of the subspaces in subchapters 4.5 and 4.8 are presented using three refer-
ences. The first two references are the full field and DNS data by El Khoury et al. (2013) 

Fig. 9  Iso-surfaces of axial velocity component of the full field compared against each subspace. Iso-levels 
for the full field a and subspace I b are identical with yellow and blue corresponding to u = ±0.1Ub . In 
subfigures c and d iso-levels of u = ±0.04Ub and ±0.005Ub are plotted respectively for subspaces II and III
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which are compared against each other to validate the simulation results. Xph serves as 
the third reference against which the subspaces are compared. In subchapter  4.6, the 
difference between the length scales in snapshots and the full field is compensated by 
applying the same correction to the snapshots and all subspaces.

4.5  Contribution to Reynolds Stress Tensor

Contributions of each subspace to components of Reynolds stress tensor are calculated in 
physical space and are compared against the snapshots Xph (plotted in black dashed lines), 
the full field (plotted in grey solid lines) and the benchmark data (plotted in red dotted 
lines) in Fig. 10. This helps to verify whether the differences between subspace statistics 
and the full field, are a result of the constraints mentioned in chapter 4.4, or a property 
of the flow represented by the corresponding subspace. The invariants of Reynolds stress 
tensor are also calculated for each subspace to provide a measure of how the entire tensor 
compares with that of the snapshots. The first invariant being equal to the turbulent kinetic 
energy is already reported in the previous chapter for each subspace. The remaining two 
are presented in this chapter.

To ensure the accuracy and reliability of the simulated data, Reynolds stress components 
of the full filed are plotted in grey solid lines and are compared against the benchmark 

Fig. 10  Reynolds stress components of the full field (grey solid lines) compared against those of the bench-
mark data (red dashed lines), each subspace (coloured solid lines) and the snapshots matrix (black dashed 
line). Black and blue lines collapse very well in all figures which indicates a very large contribution of sI to 
Reynolds stress components
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DNS data by El Khoury et al. (2013) plotted in red dotted lines in Fig. 10. Stress tensor 
components of the full field agree very well with those of the benchmark with the peaks 
being located at y+ = [15, 56, 36, 32] for ⟨u2⟩ , ⟨v2⟩ , ⟨w2⟩ and ⟨uv⟩ respectively.

Subspace I (sI) (plotted in solid blue lines), shows substantial contributions to the stress 
components of the snapshots (plotted in dashed black lines) with average contribution 
of 98% . The wall-normal locations of the peaks coincide with those of the snapshots at 
y+ = [14, 50, 28, 28] for ⟨u2⟩ , ⟨v2⟩ , ⟨w2⟩ and ⟨uv⟩ . The second and third stress tensor invari-
ants of this subspace amount to 97% and 96% of those of the snapshots.

Subspace II which appears with axial length-scales smaller than sI and larger than sIII 
(Fig. 9) is plotted in green solid lines. It contributes most to the radial stress component 
( 22% ) and least to the axial-radial one ( 6% ) reaching the peak values at wall-normal loca-
tions y+ = 28 and y+ = 14 respectively. The peaks of axial and azimuthal components 
occur at y+ = 14 and y+ = 16 with 14% and 21% contributions to the corresponding com-
ponents of snapshots. Except for the axial component, all the peaks in this subspace have 
moved clearly closer to the wall compared to the snapshots. The second and third invari-
ants of the stress tensor of this subspace are equal to 2% and 0.4% of those of the snapshots 
respectively.

Subspace III accommodating very small scale structures and represented by 82% of the 
modes has 3.3% average contribution to the diagonal Reynolds stress components and 0.1% 
to ⟨uv⟩ reaching their maxima at y+ = [12, 92, 74, 31] respectively. This subspace contrib-
utes less than 0.02% to the second and third invariants of stress tensor.

We emphasise that the success measure of the method is how well Reynolds stress 
components in subspace I (plotted in solid blue lines) collapse with those of the snapshots 
(plotted in dashed black lines). The divergence of snapshots from the full field is caused by 
the constraints mentioned in chapter 4.4.

While the sum of three subspaces gives the snapshots (sI + sII + sIII = Xph) , the sum of 
stress components of all three subspaces in Fig. 10 clearly does not amount to those of the 
snapshots (⟨u2⟩sI + ⟨u2⟩sII + ⟨u2⟩sIII ≠ ⟨u2⟩Xph

) . This is due to the fact that the subspaces are 
not orthogonal to each other and therefore their inner products are non-zero. This implies 
that their coexistence leads to interactions which result in either adding or removing energy 
from the flow. To quantify the net impact of subspace interactions on the Reynolds stress 
components, ⟨u2⟩ and ⟨uv⟩ are written for subspace S = {�

1
,�

2
} as

Equations 8 and 9 can be generalised to the case where �
1
 and �

2
 are each a subspace. 

For the case that subspace S is comprised of more modes, the inner products should be 
calculated for each mode pair accordingly. Similar to what was shown for the energy of 
subspaces, it can be seen here that subspace interactions results in non-zero values for the 
terms ⟨u 2⟩

�
1
��

2
 and ⟨uv⟩

�
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2
 . By extending Eq. 8 to the three subspaces, the following will 

be valid
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These terms are calculated for each subspace pair and plotted in Fig. 11 along with the 
Reynolds stress components of each subspace. Figures are zoomed to highlight each 
curve. It can be seen for all diagonal components, that while the three subspaces acquire 
positive values for all wall normal locations, their interactions have negative values. The 
same observation is valid for ⟨uv⟩ component in subspaces I and II, whereas subspace III 
becomes slightly negative in the outer layer.

A second observation which is valid in all components is that sII and sI|sII exhibit very 
similar behaviours with opposite signs. This implies that the contribution of subspace sII 
is almost entirely compensated by its interactions with sI. While a similar behaviour can be 
seen for subspace III and its interaction with sII, sI|sIII term is close to zero for all wall-
normal locations.

4.6  Energy Spectra

The energy content of each length-scale is analysed for each subspace using premultiplied 
streamwise spectra of velocity auto correlations ( �uu,�vv,�ww ) and cross correlation ( �uv ) 
plotted in Fig.  12 for the snapshots in coloured contours and black contour lines. Blue, 
green and orange dashed contour levels represent subspaces I, II and III respectively. All 
the spectra have been normalised by the variance of the corresponding velocity component 

(10)⟨u2⟩sI + ⟨u2⟩sII + ⟨u2⟩sIII + ⟨u2⟩sI�sII + ⟨u2⟩sII�sIII + ⟨u2⟩sI�sIII = ⟨u2⟩Xph
.

Fig. 11  Reynolds stress components of each subspace (coloured solid lines) and the net impact of their 
interactions on the Reynolds stresses (dash dotted lines)
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and by the peak value in the snapshots spectra. Blue dashed lines and black solid contour 
lines correspond to the same levels annotated in black. Black circle and plus markers indi-
cate spectral peaks of the snapshots and subspace I. Coloured plus markers point to the 
peak locations of the corresponding subspace. The horizontal dotted and dashed lines are 
plotted as a reference for the commonly accepted axial length-scales of LSMs at �x = 2R 
and 3R respectively. Inspecting the axial spectra of the full field shows that scales with 
energy levels larger than 30% of the spectral peak have been captured completely, whereas 
for radial and azimuthal spectra this corresponds to 10% of the spectral peaks.

In the spectra of axial velocity in Fig. 12a, all large-scale structures are captured in sub-
space I and maximum energy is found for wave-length �+ = 1006 at y+ = 13.8 . Smaller 
structures with up to length-scale of �+ = 300 are also present in this subspace. Energy of 
wave-lengths �+ ≤ 300 drop compared to the snapshots at 3 ≤ y+ ≤ 30 , where the solid 
black levels diverge from the dashed blue ones. Subspaces II and III appear with spectral 
peaks having smaller axial length-scales of �+ = 304 and 97 at y+ = 11.6 and 9.5 with nor-
malised peak energy of 0.37 and 0.02 respectively.

The radial velocity component has the shortest axial wave-length compared to the other 
two components as seen in Fig. 12b with the main peak occurring at y+ = 57 for �+ = 201 
for the snapshots and sI. The peaks of subspaces II and III emerge with smaller wave-
lengths of �+ = 134 and 25 at y+ = 24 and 87 with normalised peak energy of 0.3 and 
0.084 respectively. What can be observed in all subplots of Fig.  12, is that the spectral 

Fig. 12  Premultiplied spectra of velocity auto correlations �uu a, �vv b, �ww c and cross correlation �uv d. 
Coloured contours and solid black lines correspond to the snapshots. Subspaces sI, sII and sIII are plotted 
in blue, green and orange dashed lines respectively. Dotted and dashed grey lines represent the wave lengths 
�x = 2R and 3R respectively. All the spectra have been normalised by the variance of the corresponding 
velocity component and by the peak value in the snapshots spectra
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peaks found for subspace I coincide with those in the snapshots, in terms of their wall-
normal locations and axial wave-lengths, with their energy content peaking on average at 
99% of the snapshots spectral peaks. Subspace I has captured large-scale energetic struc-
tures, and where its energy diverges from the snapshots, the next subspaces emerge with a 
peak. Spectral peaks in subspace II show a strong shift to the vicinity of the wall, although 
the shift is smaller for kx�uu . Subspace III appears in all spectral maps with two low energy 
peaks, one below the main peak closer to the wall and one above it, with length-scales 
�
+ ≤ 100 . The more energetic peak belongs to the one with larger wave-length for �uu and 

�uv , whereas for �vv and �ww it represents the smaller wave-length.
Given the low Reynolds number investigated in this study, outer flow structures such as 

LSMs and VLSMs are not formed. The only present structures are the large-scale streaks 
whose wall-normal locations and axial wave-lengths match those of the spectral peaks in 
Fig.  12. It can bee seen that the streaks have been captured in subspace I together with 
smaller scale structures which are persistent in time. This shows that subspace I represents 
the spectral footprint of the flow with a high accuracy using only 3% of the total modes.

4.7  Interactions in Fourier Space

Spectral interactions between the detected subspaces are studied in Fourier space. Super-
position of non-orthogonal modes belonging to different subspaces will lead to addition or 
extraction of energy from the flow. To quantify this energy and track the scales responsible 
for it, velocity spectrum (�uu)S of subspace  S = {�

1
,�

2
} is written for the streamwise fluc-

tuations as

where û  represents the Fourier transform of u. The last term in this equation, being the 
inner product of the two subspaces in Fourier space, quantifies the energy content per wave 
number added or extracted from the flow, and highlights the wave numbers at which the 
latter takes place. A similar equation can be written for spectra of velocity cross-correlation 
(�uv)S where the inner product is written between streamwise component of one subspace 
and the radial component of the other.

These equations can be generalised for the case where each of the constituent modes are a 
subspace. The relevant terms are then computed for the three detected subspaces and the 
results are depicted in Fig. 13. Interactions sI|sII, sII|sIII and sI|sIII are plotted respectively 
in blue, green and orange dashed lines. Coloured contours of the snapshots are also plot-
ted as a reference. In all the spectral maps, sI|sII and sII|sIII terms show negative values 
whereas the sI|sIII term has very small but positive values.

In the spectra of uu, a negative peak is formed for sI|sII at �+ = 353 and y+ = 11.6 
which is in the vicinity of the peak in sII. The normalised peak value is �uu, sI|sII = −0.34 
which is very close in magnitude to that of the spectral peak of sII with �uu, sII = 0.37 . This 
shows that the energy which is added to the flow by sII is almost entirely compensated by 
the superposition of sI and sII. A similar behaviour is observed in all the spectral maps 
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in Fig. 13. In order to illustrate the latter, contour lines of velocity spectra are plotted in 
solid green lines with contour levels identical to those of the sI|sII. It is clearly seen that 
the dashed blue lines and green solid lines coincide closely in all the plots. A very similar 
trend exists for the sII|sIII and sI|sIII. This explains how sI can have 97% contribution to 
turbulent kinetic energy.

The peaks closest to the wall in this figure are the ones formed by sII|sIII with the peaks 
magnitude being one order of magnitude smaller than those in sI|sII. The peaks in the 
spectral map of sI|sIII is also one order of magnitude smaller than those of sII|sIII with 
small but positive peak values, which adds a minimal level of energy to the overall kinetic 
energy. Another pattern observed in all sub-figures is the overall elliptical shape of the 
contour lines with their major axes being almost parallel to y+ axis. This is opposed to 
the concentric circular contour lines which are mainly present in the uu spectral map for 
small y+ values. The extended elliptical contours show a much larger slope when moving 
on a vertical line with constant y+ . This means that the energy content per wave number 
changes slowly as y+ increases and changes more rapidly as wave numbers change.

4.8  Anisotropy Invariant Map of the Subspaces

We study the structure of turbulent flow in each subspace by investigating the invariants of 
anisotropic Reynolds stress tensor

Fig. 13  Premultiplied velocity spectra �uu a, �vv b, �ww c and �uv d. Coloured contours correspond to the 
snapshots. Subspace interactions sI|sII, sII|sIII and sI|sIII are plotted in blue, green and orange dashed lines 
respectively. All the spectra have been normalised by the variance of the corresponding velocity component 
and by the peak value in the snapshots spectra
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A triangular domain is introduced by Banerjee et  al. (2007) as a barycentric anisotropy 
map inside which all realisable Reynolds stress invariants are located. The vertices of the 
triangle represent three limiting states of one-component (1c), two-component (2c) and 
three-component isotropic turbulence, located respectively at X

1c = (1, 0) , X
2c = (0, 0) and 

X
3c = (1∕2,

√
3∕2) as shown in Fig. 14. Moving away from the isotropic vertex on the blue 

edge corresponds to axi-symmetric contraction which ends up at the disc-like anisotropy 
at 2c vertex. Alternatively, moving on the black edge towards the 1c vertex corresponds 
to axi-symmetric expansion leading to needle-like anisotropy. The red edge connecting 1c 
and 2c vertices depicts the two-component limit. This map is defined using a linear com-
bination of positive scalar metrics. These metrics are functions of eigenvalues of aij being 
sorted as �

1
≥ �

2
≥ �

3
 and are used to defined the coordinate system ( xB, yB ) given by

where
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Fig. 14  Isotropy invariant map of the full field a subspace I b, subspace II c and subspace III d 
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To have a measure of the total anisotropy, aij is calculated using temporal averaging and 
weighted spatial averaging over all radial points and the results are plotted in annotated 
black markers in Fig.  14a. Subspaces I, II and III (shown with rectangle, diamond and 
triangle markers respectively) appear to be aligned on a line moving towards the isotropic 
state, with subspace III clearly being the most isotropic one. Snapshots averaged isotropy is 
plotted with a red circular marker being away from the full field due to the fewer number of 
timesteps available in the snapshots. Subspace I is almost exactly on top of the red marker 
showing a similar anisotropy to the snapshots.

The invariant map is plotted for the full field and for each wall-normal location in 
Fig. 14. To clearly inspect the isotropy state at each wall layer, a different colourmap has 
been chosen to distinguish four wall layers. Grey colourmap is set for the viscous sublayer, 
blue for the buffer layer between the viscous and logarithmic layer ( 5 ≤ y+ ≤ 30 ), green 
for the logarithmic layer and a heat colourmap is chosen for the overlap and outer layer 
( 50 ≤ y+ ≤ 181 ). The map starts for the full field at the wall at the two-component limit 
in Fig. 14a and moves towards the one-component vertex. At y+ = 10 in the buffer layer 
a sharp bend is observed after which the trajectory moves towards the centre of the map 
where a second bend is reached at y+ ≈ 83 followed by a straight path towards the isotropic 
vertex at the centre of the pipe.

The map for subspace I is plotted in Fig. 14b for each wall-normal location. The first 
bend takes place at the same location as the full field whereas the second bend appears 
earlier at y+ = 65 followed by an S shaped movement towards the isotropic state. Similarly, 
subspace II starts on the wall on the two-component limit but closer to disc-like isotropy 
moving more rapidly towards the 1c vertex, reaching a softer bend at y+ = 10 . After that, 
the trajectory follows a straight line approaching the axi-symmetric expansion limit where 
the second bend takes place moving away from the black edge at y+ ≈ 83 . A third bend is 
reached at y+ ≈ 120 after which the flow approaches the isotropic state close to the pipe 
axis.

Subspace III shows a very different behaviour starting on the two-component limit and 
moving towards the disc-like anisotropy where it almost reaches the 2c vertex in the vis-
cous sublayer at y+ = 1.3 . A very soft bend takes place at 7.5 ≤ y+ ≤ 14 followed by a path 
towards the isotropic state. In the overlap layer at 57 ≤ y+ ≤ 65 the trajectory gets closest 
to the isotropic state after which it departs towards the axi-symmetric contraction limit at 
the pipe axis.

The anisotropy invariant map of subspace I resembles that of the snapshots very closely. 
This serves as another indication that subspace I successfully represents the main flow fea-
tures with a minimal number of modes making it a reliable reduced order model of the flow 
to further investigate the embedded scales.

5  Summary and Conclusions

The wave-like definition of coherent structures in a characteristic frame of reference in 
transport-dominated turbulent flows proves to be very efficient for the two following rea-
sons: The main features of pipe flow at Reb = 5300 are captured accurately with only 3% of 
the modes which form an almost orthogonal subspace to the rest of the modes. This sub-
space reproduces 97% of the turbulent kinetic energy of the full flow, and more than 96% of 
the invariants of the Reynolds stress tensor. Its spectral signature matches the snapshots in 
terms of wall-normal locations and wavelengths of the premultiplied energy spectra.
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This subspace serves as a low rank model of the flow representing the main flow prop-
erties discussed above. It accommodates the large-scale energetic streaks and low energy 
smaller scales responsible for the anisotropy map of the flow. Separating the streaks from 
the smaller scales in subspace I is the subject of a future study where interactions between 
different scales in sI will be investigated.

The second reason is that the remaining modes can be further divided into two sub-
spaces based on their cumulative energy contributions to subspace I. The Third subspace 
accommodates very small scales with short turn-over times and persists as a turbulent 
background motion. The second subspace lives in between the mentioned subspaces I and 
III having faster decay rates than the other two subspaces with their spectral peak length 
scales being substantially smaller than the first and substantially larger than the third 
subspace.

We speculate that at higher Reynolds numbers more modes would be needed to build 
subspace I and the scale separation between the subspaces would increase. We base our 
speculation on the fact that the flow becomes more complex and wider range of group 
velocities would be present in the flow.
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