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Abstract
This paper investigates population games under ambiguity in which players may adopt deci-
sion criteria different from one another. After defining equilibria for these situations by
extending well-known decision-theoretic criteria to the game-theoretic context, we apply
these concepts to examine the case of two-person games played within a population whose
relative proportions of decision criteria are unknown to the players. We state necessary and
sufficient conditions under which such games prompt the players to reveal their decision
criterion through their actions, and we show when the relative proportions may be learned
by observing the increasingly informed agents play.

Keywords Decision criteria · Learning · Population games

1 Introduction

In the last decades, the necessity of elevating the analysis of the individuals’ behavior from
observed actions to underlying mechanisms has emerged in various ways in different fields,
from psychology to ecology to evolutionary game theory [1, 9, 14, 16, 17, 19–21, 23, 31].
The general idea, as expressed e.g. by [14], is that

Natural environments are so complex, dynamic, and unpredictable that natural selection
cannot possibly furnish an animal with an appropriate, specific behavior pattern for
every conceivable situation it might encounter. Instead, we should expect animals to
have evolved a set of psychological mechanisms which enable them to perform well
on average across a range of different circumstances.

Here we take this idea seriously and consider a game-theoretic model where a population
of agents inhabits an environment consisting of a multitude of different games (which we
call multigame), and each individual in the population is endowed with a “psychological
mechanism” that produces a specific behavior for any possible game in the environment. The
main research question that we want to investigate then concerns the possibility of discerning
the different underlyingmechanisms by observing the agents’ expressed behaviors only. That
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is: Under which conditions is it possible to distinguish the agents’ underlying mechanisms
given their behavior?

In this work, we present a case where the agents’ behavior-generating mechanisms are
represented by different decision criteria and each of such criteria makes the agent act in a
certain way when faced with a specific game in the environment. The decision criteria that
we consider in the following are arguably the two main criteria for choice under ambiguity
from the decision-theoretic literature, i.e., maxmin expected utility and regret minimization.

The following example introduces a simple instance of the populationmodel that we study
in this paper. Consider a population living in an environment consisting of the three games
below. The first is a Prisoner’s Dilemma (PD), the second is a Stag Hunt (SH), and the third
is an anti-coordination game (AG).

PD I I I
I 2,2 0,3
I I 3,0 1,1

SH I I I
I 3,3 0,2
I I 2,0 2,2

AG I I I
I 1,1 2,5
I I 5,2 0,0

Individuals from such population randomly meet and play one of these three possible
games. Crucially, however, each individual plays the game based on her own behavior-
generating mechanism, namely, her own decision criterion—which we also refer to as the
individual’s type. Amaxmin player by definition chooses an action that guarantees the highest
minimum payoff. In the SH game, for instance, the minimum payoff that one can get from
action I is 0, while the minimum payoff from action I I is 2, and a maxmin player would
therefore choose action I I in the SH game. A regret-minimizing player instead aims to
choose an action that minimizes the regret, defined as the maximum amount possibly given
up by playing a certain action. For instance, the maximum regret from action I in the SH
game is 2, which is the payoff given up by playing action I when the opponent plays I I . By
similar reasoning, the regret from action I I in the SH game is 1, which is the payoff given
up by choosing I I when the opponent chooses I . A regret minimizer would hence play I I
in the SH game.

Similar computations lead to the conclusion that both a maxmin player and a regret-
minimizing player would choose action I I in the PD game too. In an environment consisting
uniquely of one or both of these two games the two player types would thus be behaviorally
indistinguishable. Looking at the AG game, however, one can compute that a maxmin player
would play action I while a regret minimizer would play action I I . In the environment
including all three games, the different types are distinguishable.

In the following, we study the conditions on the games in the environment ensuring that
the types in the population are distinguishable. To do that, we first define the concepts of
games with ambiguity on the decision criteria and of equilibrium in such games in Sect. 2,
and then we state the conditions for a 2 × 2 game to be informative, that is, to allow telling
different types apart, in Sect. 3. In Sect. 4, we introduce the population multigame, we study
the properties of the environment that guarantee that informative 2×2 games can always occur
with positive probability, and we generalize the results to the case of n × n games. Section5
then considers a specific instance of population multigame and shows how to compute the
probability of informative games in that particular case and that the agents can asymptotically
learn the precise proportions of types in the population. Section6 instead considers a variety of
different multigames and computes the probability of strongly informative games in different
cases bymeans of computer simulations. Finally, Sect. 7 concludes. Beforemoving to Sect. 2,
however, in the next subsection we say a few words on the literature related to the present
work.
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1.1 Related Literature

Although, as already mentioned above, the necessity of developing models with agents
characterized by different behavior-generating mechanisms has been explicitly advocated
especially by biologists and ecologists [14, 21, 23], the game-theoretic literature in eco-
nomics has almost always focused on models with homogeneous decision criteria—i.e.,
models where all the agents follow the same decision criterion [3, 22, 24–28, 30, 33]. A
few exceptions are the following. [2] study necessary and sufficient conditions for the exis-
tence of an equilibrium in games under ambiguity where the agents can have very general
subjective choice preferences. [10, 12, 13] and [18] introduce epistemic type spaces that
allow the agents to follow different decision criteria and to reason strategically about each
other’s criteria, but their results are purely on the epistemic side. On the evolutionary side,
the evolution of preferences [9, 11] is a branch of evolutionary game theory that studies the
evolutionary fitness of different subjective preferences, but the focus there is on the players’
subjective utility functions rather than on the players’ decision criteria. Moreover, here we
are primarily interested in the learning and not in the evolution of the players. The idea of
investigating multigame models has sometimes appeared in other fields too. [16] and [17]
study the evolution of decision criteria in an environment similar to the one we consider
here. [4] too consider evolutionary processes driven by a multigame environment, but with
the difference that their agents are defined by automata rather than by decision criteria. [38]
exploits a multigame consisting of three different games to explain the evolution of fairness,
but the types there are decision rules specific to those games and hence simpler than the
decision criteria examined here.

2 Games with Criterion Ambiguity

In the simple example from the previous section, the players were implicitly assumed to
hold uncertainty over the opponents’ actions and to use possibly different decision criteria
to cope with such uncertainty and to pick an action for any given game in the environment.
In population games, however, it is natural to imagine that the players’ uncertainty comes
from the distribution of the different types in the population. In this section, we formally
introduce population games with criterion ambiguity and show how the uncertainty on the
opponent’s actions is derived from the uncertainty on the type distribution in the population.
We interpret these games as modeling a situation in which players are drawn at random from
a large and mixed population where maxmin types (M) and regret-minimizing types (R)
coexist in unknown proportions. The concept of game with criterion ambiguity and that of
equilibrium in such games can then be formalized as follows.

Definition 1 A game with criterion ambiguity consists of the following components:

• a set of worlds �;
• a set of parameters �;
• a set I = {1, 2, 3, . . . , N } of players;
• for each player i ,

– an action set Ai ;
– a set of (criterion) types Ti ;
– a set of signals Si ;
– a criterion-assignment function τi : � → Ti ;
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– a signal function ςi : � → Si ;
– a utility function ui : A1 × · · · × An × � → R;

• for each λ ∈ �, a probability distribution Pλ over �.

A policy of player i in such a game is a function σi : Ti × Si → Ai that associates each
decision criterion and signal with an action.1

Note that if the set � is equipped with a probability distribution known to all the players,
this definition describes a Bayesian game [29]. However, we are interested in situationswhere
this is not the case and the players hold ambiguity (i.e., non-probabilistic uncertainty) about
the parameter λ.

Throughout the rest of the paper we denote typical profiles of signals and types by s ∈
S := S1 × S2 × · · · × SN and t ∈ T := T1 × T2 × · · · × TN , respectively. For profiles of
types, signals, or policies, we use the notation x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) for the
(N − 1)-dimensional vector that results by removing the i th coordinate from the vector x .

In games where the uncertainty only concerns the criteria adopted by the others, no private
information other than their own decision criterion is revealed to the agents. In the notation
above, this can bemodeled by assuming that the sets Si are all singletons. To ease notation, we
therefore dispense with the specification of the private signals si in the following discussion.

For any fixed value of λ, the type of a player is a random variable. Hence, given policies
(σi )i∈I , the action ai = σi (ti ) too is a random variable, and (a1, a2, . . . , aN ) is a random
vector. The utility of each player is therefore also a random variable, which has an expected
value for any fixed λ. Since all of these distributions depend on λ, the value of this expected
utility is a function of λ. We then let each player resolve the ambiguity about this expected
utility by means of the decision criterion given by his or her type.

In formulas, the expected utility that follows from type ti using action ai , given that the
other players adopt policies σ−i , is

Eλ[ui | ai , ti , σ−i ] =
∫

�

ui (ai , σ−i (τ−i (ω)), ω) Pλ(dω | ti ). (1)

Definition 2 Let an incomplete information gamewith criterion ambiguity be given as above,
with Ti = {M, R} for all i ∈ I . We say that a policy profile (σ ∗

i )i∈I is an equilibrium if, for
all i ∈ I , the policy σ ∗

i maximizes the function

σi �→ inf
λ∈�

Eλ[ui | σi (M), M, σ ∗−i ]
and minimizes the function

σi �→ sup
λ∈�

{
sup
ai∈Ai

Eλ[ui | ai , R, σ ∗−i ] − Eλ[ui | σi (R), R, σ ∗−i ]
}

.

2.1 Population Games with Criterion Ambiguity

As a main source of ambiguity about the criteria, we consider a large population of agents
using different decision criteria that randomly meet to play games. Since it is often unlikely
to know the precise distribution of types in a large population, we allow the agents to hold
unmeasurable uncertainty about the distribution of criteria in the population they are part

1 There is no consensus in game theory about the possibility of using mixed actions (see for instance [32] for
a discussion). Here we follow the position of [13] and [12].
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of. In particular, the rest of this paper is concerned with a class G of two-player population
games with criterion ambiguity. At first, we focus on 2 × 2 symmetric games, and we later
show how the results can be generalized to n × n symmetric games.2

In the following, we assume that each of the two players i ∈ {1, 2} has his or her own deci-
sion criterion ti ∈ {M, R} revealed, but holds unmeasurable uncertainty about the opponent’s
criterion. Specifically, we assume that

Pλ(t3−i = R | ti = R) = Pλ(t3−i = R | ti = M) = λ

Pλ(t3−i = M | ti = R) = Pλ(t3−i = M | ti = M) = 1 − λ

where λ ∈ [λ, λ] ⊆ [0, 1] is subject to unmeasurable uncertainty. In the case of 2× 2 games,
the agents are equipped with the binary action sets A1 = A2 = {I , I I }, and their utility
functions are defined in terms of the symmetric 2 × 2 game matrix

I I I
I a, a b, c
I I c, b d, d

for all ω ∈ �, where (a, b, c, d) ∈ R
4. The two players of this game are then agents

sampled at random from a large population characterized by the unknown parameter λ. For
convenience, we use the vector notation σi = (σi (M), σi (R)) to specify the policy function
of each agent i ∈ {1, 2}.
Example 3 Suppose two agents are randomly drawn from a population consisting of a pro-
portion λ of regret minimizers and 1−λ of maximinimizers. The exact value of λ is unknown
and subject to ambiguity, with λ ∈ [1/5, 1/2]. The two agents thus play the following coor-
dination game under ambiguity about the value of λ.

I I I
I 1, 1 0, 0
I I 0, 0 2, 2

What are the equilibria of this game? Each player in this game is a regret type with
probability λ and a maxmin type with probability 1 − λ, and their policy functions take the
form of pairs of pure actions, with one action for each of these two types. By inspecting each
of the 16 policy profiles, we can reject the ones in which any of the two players is not using
a best reply.

Consider first the case in which the row player faces the column policy σ2 = (I , I ). Given
such a homogeneous policy, the action of the column player is deterministic and hence not
subject to uncertainty, unmeasurable or otherwise.We therefore find that the unique best reply
to this policy is σ1 = (I , I ). We similarly find that the unique best reply to σ2 = (I I , I I )
is σ1 = (I I , I I ). Since the exact same argument holds for the column player, it follows that
the policies

(σ1, σ2) = ((I , I ), (I , I ))

(σ1, σ2) = ((I I , I I ), (I I , I I ))

are both equilibria of this game, and that the homogeneous policies (I , I ) and (I I , I I ) appear
in no other equilibria.

2 Having symmetric games only allows us to stick with the single-population model, as we need not consider
a different population for each role in the game.
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Suppose now that the column player uses the policy σ2 = (I , I I ). Then the conditional
expected utilities of the row player given λ are

Eλ[u1 | (I , (I , I I ))] = 1 − λ

Eλ[u1 | (I I , (I , I I ))] = 2λ

For the maxmin type of the row player, action I is a best reply to σ2 = (I , I I ) since the
inequality

min
λ∈[1/5,1/2] 1 − λ ≥ min

λ∈[1/5,1/2] 2λ

reduces to the true statement 1/2 ≥ 2/5. For the regret-minimizing type of the row player,
on the other hand, action I I is a best reply to σ2 = (I , I I ). This follows from the fact that
the conditional regrets of action I and I I given λ are

max
a1∈A1

Eλ[u1 | (a1, (I , I I ))] − Eλ[u1 | (I , (I , I I ))] = max{0, 3λ − 1}
max
a1∈A1

Eλ[u1 | (a1, (I , I I ))] − Eλ[u1 | (I , (I , I I ))] = max{1 − 3λ, 0},

and

max
λ∈[1/5,1/2]

{max{0, 3λ − 1}} ≥ max
λ∈[1/5,1/2]

{max{1 − 3λ, 0}}

reduces to the true statement 1/2 ≥ 2/5. The policy σ1 = (I , I I ) is thus a best reply to the
policy σ2 = (I , I I ).

Suppose now that the column player uses σ2 = (I I , I ). We then find that

Eλ[u1 | (I , (I I , I ))] = λ

Eλ[u1 | (I I , (I I , I ))] = 2(1 − λ)

It follows that action I I is a best reply for the regret type, since

max
a1∈A1

Eλ[u1 | (a1, (I I , I ))] − Eλ[u1 | (I , (I I , I ))] = max{0, 2 − 3λ}
max
a1∈A1

Eλ[u1 | (a1, (I I , I ))] − Eλ[u1 | (I I , (I I , I ))] = max{3λ − 2, 0}

and

max
λ∈[1/5,1/2]

{max{0, 2 − 3λ}} ≥ max
λ∈[1/5,1/2]

{max{3λ − 2, 0}}

reduces to the true statement 7/5 ≥ 0. Action I is thus not a regret-minimizing reply to the
policy σ1 = (I I , I ), and hence σ2 = (I I , I ) cannot be a best reply to σ1 = (I I , I ). Since we
have already ruled out the options σ2 = (I , I ) and σ2 = (I I , I I ) above, the only remaining
option is σ2 = (I , I I ). However, we have also seen that (σ1, σ2) = ((I , I I ), (I I , I )) is not
an equilibrium, and since the game is symmetric, neither is (σ1, σ2) = ((I I , I ), (I , I I )).

In sum, we have that the three policy profiles

(σ1, σ2) = ((I , I ), (I , I ))

(σ1, σ2) = ((I I , I I ), (I I , I I ))

(σ1, σ2) = ((I , I I ), (I , I I ))

are the only equilibria of the game.
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We are interested here in symmetric equilibria, i.e., equilibria such that σ1 = σ2, as this
is the only type of equilibrium that can be interpreted as a population adaptive strategy. In
particular, in the case of 2 × 2 games we are interested in the policy profiles

(σ1, σ2) = ((I , I I ), (I , I I ))

(σ1, σ2) = ((I I , I ), (I I , I ))

since a population playing according to any of these profiles allows the observers to infer the
decision criteria of the players from their actions. In gameswhere exactly one of these profiles
is the sole symmetric equilibrium, the players necessarily reveal their decision criterion. We
then say that such games are strongly informative, and in the next sectionweprovide necessary
and sufficient conditions for a game to be strongly informative.

3 Strongly Informative Games

Strongly informative games are the key to the learning of the actual proportions of decision
criteria in the population, because only by playing strongly informative games the players
unambiguously reveal their type. For any interval [λ, λ] with λ < λ, it is solely the positive
probability of a strongly informative game to occur that can give the players relevant infor-
mation about the proportions in the population. In this section, we characterize the region
of strongly informative games in R

4 and we next provide conditions on the distribution of
possible games in the class G that guarantee the occurrence of strongly informative games.

3.1 Strong Informativity with Full Uncertainty

We first formulate the conditions under which a game (a, b, c, d) is strongly informative
given that all the players have full unmeasurable uncertainty about the proportions of decision
criteria, i.e., for λ ∈ [0, 1]. As a first step, we can immediately reduce the set of strongly
informative games by discarding all games that are not anti-coordination games. In the
following, informativity in 2 × 2 games will be enough for most of our purposes. However,
we can prove the following result for general n×n games. To that aim, we partition the class
of symmetric n × n games into three sets:

• coordination games: ai ∈ br(ai ) for all pure actions ai ,
• anti-coordination games: ai /∈ br(ai ) for all pure actions ai ,
• mixed games: ai ∈ br(ai ) for some ai , and a′

i /∈ br(a′
i ) for some a′

i ,

where br(ai ) is the set of best replies to action ai . Then the following result holds.

Proposition 4 Only anti-coordination games can be strongly informative.

Proof See Appendix A. 	


In the case of 2 × 2 symmetric games, let us denote the two revealing policy functions
by σ ◦ := (I , I I ) and σ • := (I I , I ). We can then give necessary and sufficient conditions
in terms of the utility values (a, b, c, d) for the policy profiles (σ ◦, σ ◦) and (σ •, σ •) to be
strict equilibria in anti-coordination games, and hence for a game to be strongly informative
under full unmeasurable uncertainty.
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Theorem 5 Suppose that (a, b, c, d) is an anti-coordination population game and that λ ∈
[0, 1]. Then the policy profile (σ ◦, σ ◦) defines a strict equilibrium if and only if

a > d and c − a > b − d.

The profile (σ •, σ •) defines a strict equilibrium if and only if

a < d and c − a < b − d.

Proof See Appendix A. 	

It is also crucial to note that the profile of policy functions (σ ◦, σ ◦) and the dual profile

(σ •, σ •) cannot be both strict equilibria of the same game.

Corollary 6 At most one of the two profiles (σ ◦, σ ◦) and (σ •, σ •) can be a strict equilibrium.

Proof See Appendix A. 	


3.2 Strong Informativity with Partial Uncertainty

In this section, we find necessary and sufficient conditions for (σ ◦, σ ◦) and (σ •, σ •) to be
strict equilibria in situations where the agents’ uncertainty is not described by the full unit
interval [0, 1], but by some non-empty subinterval [λ, λ] ⊆ [0, 1]. We derive our results by
showing that a game (a, b, c, d) played in this state of partial uncertainty is equivalent to an
“inner game” played in a state of full uncertainty. For brevity, we write

〈
(a, b, c, d), [λ, λ]〉

for the game with game matrix (a, b, c, d) played in the information state described by the
uncertainty interval [λ, λ]. Notice that each game (a, b, c, d) and uncertainty interval [λ, λ],
together with a policy profile (σi )i∈{1,2}, define an inner game as follows.

Definition 7 For
〈
(a, b, c, d), [λ, λ]〉 and policy function σ3−i : {M, R} → {I , I I }, the

corresponding inner game (a′, b′, c′, d ′) for player i is given by

a′ = Eλ[ui | I , M, σ3−i ] = Eλ[ui | I , R, σ3−i ]
b′ = Eλ[ui | I , M, σ3−i ] = Eλ[ui | I , R, σ3−i ]
c′ = Eλ[ui | I I , M, σ3−i ] = Eλ[ui | I I , R, σ3−i ]
d ′ = Eλ[ui | I I , M, σ3−i ] = Eλ[ui | I I , R, σ3−i ]

Since we are interested in games where players reveal their decision criterion, the relevant
inner games are those given by the revealing policy σ ◦ = (I , I I ) and by the revealing policy
σ • = (I I , I ). For

〈
(a, b, c, d), [λ, λ]〉 and revealing policy σ ◦ the corresponding inner game

(a◦, b◦, c◦, d◦) is thus defined by

a◦ = a + λ(b − a)

b◦ = a + λ(b − a)

c◦ = c + λ(d − c)

d◦ = c + λ(d − c)

Similarly, the inner game (a•, b•, c•, d•) corresponding to σ • = (I I , I ) is defined by

a• = b + λ(a − b)

b• = b + λ(a − b)

c• = d + λ(c − d)

d• = d + λ(c − d)
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Fig. 1 An inner anti-coordination
game

Note that the two inner games are identical when [λ, λ] = [0, 1]. Figure1 shows an example
of inner game (a◦, b◦, c◦, d◦) for [λ, λ] = [0.4, 0.8] and (a = 1, b = 2, c = 5, d = 0).

Looking at Fig. 1, it should be clear that only anti-coordination games can give rise to inner
games that are also anti-coordination games, but some anti-coordination games give rise to
inner games with weakly or strictly dominant actions, depending on where the uncertainty
interval [λ, λ] is located with respect to the intersection point of the expected-utility lines of
the two actions. Intuitively, if the intersection point of the two expected-utility lines in Fig.1
is not inside the uncertainty interval [λ, λ], then one of the two actions dominates the other
in the inner game (a◦, b◦, c◦, d◦). More precisely, we need the following additional concept.

Definition 8 For an inner game
〈
(a, b, c, d), [λ, λ]〉, the indifference point associated with

the policy σ ◦ = (I , I I ) is the quantity

λ◦ = c − a

c − a + b − d
.

The indifference point associated with σ • = (I I , I ) is

λ• = b − d

c − a + b − d
.

The following theorem then provides the necessary and sufficient conditions for strong
informativity under partial uncertainty.

Theorem 9 The policy profile (σ ◦, σ ◦) is the unique strict equilibrium of
〈
(a, b, c, d), [λ, λ]〉

if and only if

λ < λ◦ < λ, a◦ > d◦ and c◦ − a◦ > b◦ − d◦.

The policy profile (σ •, σ •) is the unique strict equilibrium of
〈
(a, b, c, d), [λ, λ]〉 if and only

if

λ < λ• < λ, a• < d• and c• − a• < b• − d•.

Proof See Appendix A. 	

Corollary 10 Any positive affine transformation of a strongly informative game is still a
strongly informative game.

Proof See Appendix A. 	
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3.3 Geometric Conditions of Strong Informativity

In the previous subsection, we have seen that the policy profile (σ ◦, σ ◦) is the sole symmetric
equilibrium of the anti-coordination game (a, b, c, d) if and only if

λ < λ◦ < λ, c◦ − a◦ > b◦ − d◦ and a◦ > d◦, (2)

while (σ •, σ •) is the sole symmetric equilibrium if and only if

λ < λ• < λ, c• − a• < b• − d• and a• < d•. (3)

Given an uncertainty interval [λ, λ], the game (a, b, c, d) is thus informative if it satisfies one
of these two mutually exclusive conditions. These two sets of strongly informative games
admit a compact and instructive graphical representation. If we set

x = b − a

c − a + b − d

y = c − a

c − a + b − d

then the three conditions which ensure that (σ ◦, σ ◦) is the sole equilibrium of (a, b, c, d)

can be written as the three linear inequalities

λ < y < λ,
λ + λ

2
< y and y < λ − (λ − λ)x,

each of which is exactly equivalent to one of the original conditions. Similarly, the conditions
ensuring that (σ •, σ •) is the sole equilibrium can be written as

1 − λ < y < 1 − λ, y <
1 − λ + 1 − λ

2
and y > (1 − λ) − (λ − λ)x .

Assuming that (a, b, c, d) is an anti-coordination game, the set of informative games for
the uncertainty interval [λ, λ] can thus be represented as the intersection of three linearly
delimited regions in two-dimensional space, as shown in Fig. 2.3

4 The PopulationMultigame

In classic population games, agents from a population are randomly matched to repeatedly
play a unique fixed game

G0,G0,G0, . . . .

If agents in our population are faced with such a situation they will almost never be able to
learn about the actual proportions of decision criteria. We thus extend standard population
game models to a framework where at each time t = 1, 2, 3, . . . members of the population
are randomly matched to play a randomly selected game

G1,G2,G3, . . . .

3 Besides allowing for a compact graphical representation, the two variables x and y carry game-theoretic
significance too: y is the indifference point, which corresponds to the point where the two lines cross in Fig. 2,
while x encodes the slopes of the two lines. For x ≤ 0, both lines have nonpositive slope; for x ≥ 1, both
lines have nonnegative slope; for 0 < x < 1, one line has positive slope and one negative.
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Fig. 2 Strong informativity in anti-coordination games

We call this model the population multigame.4 Moreover, we assume that all the agents in
the population are born equally ignorant, i.e., at time t = 0 (when no game has been played
yet), all players hold full uncertainty about the proportions in the population [λ, λ] = [0, 1].
We also assume that, at any time t ≥ 0, the outcomes of the games which have been played
are commonly known within the population.

4.1 The Probability of Strong Informativity

When a population is engaged in an infinite sequence of different interactions, the players will
be able to refine their uncertainty interval [λ, λ] to a single point in the limit only if they will
keep receiving informative evidence about the population composition, i.e., only if strongly
informative games will keep arising. If we interpret the games in the infinite sequence as
a product of the environment where the population lives, it is meaningful to investigate the
properties of the environment that ensure positive probability of strongly informative games
to occur for any [λ, λ] with λ < λ. In particular, we assume that the game matrix (a, b, c, d)

is a random vector sampled from some probability distribution on R
4, which is supposed

to encode the properties of the environment. It then makes sense to ask for the probability
that the game (a, b, c, d) has some property. In the following, we formulate conditions under
which the game is strongly informative with a positive (although possibly small) probability.

Definition 11 We say that a measure P is absolutely continuous on a set J if P(I ) > 0 for
any open set I ⊆ J .

It would be more precise to say “absolutely continuous with respect to the Lebesgue
measure”, but since we only need this particular instantiation of the concept, we dispense
with formalities.

4 Note that the concept of random-payoff games has been introduced in game theory and studied from different
angles by [5–8, 35]. It is also possible to relate such multigame to the literature on stochastic games [34], with
the caveat that the sequence of random games in the multigame does not depend on the actions played by the
agents in the games.
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Proposition 12 Suppose that the joint distribution of (a, b, c, d) is absolutely continuous on
some non-empty hypercube (L, H)4. Then there is positive probability that the random game
(a, b, c, d) is strongly informative with respect to the uncertainty interval [0, 1].
Proof See Appendix A. 	

Example 13 Suppose that a, b, c, d are independently sampled from the uniform distribu-
tion on the unit interval. Then the probability that the random game (a, b, c, d) is strongly
informative for (σ ◦, σ ◦) with respect to the uncertainty interval [0, 1] is

∫ a=1

a=0

∫ d=a

d=0

∫ c=1

c=a

∫ b=d+c−a

b=d
1 dPa dPd dPc d Pb = 1

24
.

By symmetry, the total probability that (a, b, c, d) is strongly informative with respect to
[0, 1] is 1/12.

The next result connects the positive probability of strong informativity with full uncer-
tainty to the positive probability of strong informativity with partial uncertainty, [λ, λ] ⊆
[0, 1].
Proposition 14 If the joint distribution of (a, b, c, d) is absolutely continuous on a non-empty
hypercube (L, H)4 ⊂ R

4, then the distribution of (a◦, b◦, c◦, d◦) is absolutely continuous
on a non-empty hypercube (L◦, H◦)4 ⊆ (L, H)4, and the distribution of (a•, b•, c•, d•) is
absolutely continuous on a non-empty hypercube (L•, H•)4 ⊆ (L, H)4.

Proof See Appendix A. 	

The following theorem then makes use of the last two propositions to prove a general

result about the positive probability of strong informativity.

Theorem 15 Suppose that the joint distribution of (a, b, c, d) is absolutely continuous on
some non-empty hypercube (L, H)4. Then there is positive probability that the random game
(a, b, c, d) is strongly informative with respect to [λ, λ] for any λ < λ.

Proof See Appendix A. 	

Theorem 15 also entails that whenever the four entries a, b, c, d have independent and

absolutely continuous distributions on a common interval (L, H), the probability of strongly
informative games is positive. For concreteness, in Sect. 5 we give a detailed analysis of the
case where a, b, c, d are independent random variables uniformly distributed over a common
interval. Before doing that, we take a look at n × n games and show how our sufficiency
results for 2 × 2 games extend to n × n games too.

4.2 The n× n Case

Symmetric n× n games can be represented as in the following game matrix, where the entry
ui j is the row player’s utility from playing the i th action against column player’s j th action.

I I I ... n
I u11 u12 ... u1n
I I u21 u22 ... ...
... ... ... ... ...
n un1 ... ... unn
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Theorem 16 If the joint distribution of (ui j )1≤i, j≤n is absolutely continuous on a non-empty
hypercube (L, H)n×n ⊂ R

n×n, then strongly informative n × n games have positive proba-
bility for λ �= λ.

Proof See Appendix A. 	


It follows from Theorem 16 that whenever the utility values of the n × n game matrix
are sampled independently from a distribution that is absolutely continuous on a common
interval, then strongly informative games have positive probability for any λ �= λ.

After having stated sufficiency conditions for strong informativity in 2 × 2 games in
Theorem 15 and in n × n games in Theorem 16, in the next two sections we compute the
probability of strong informativity in some concrete cases, i.e., for some fixed distributions of
the utility values. Specifically, in Sect. 5 we analytically compute the probability of strongly
informative 2× 2 games for utility values that are i.i.d. from the uniform distribution on the
unit interval, and we also analyze the speed of learning of the agents in that case. In Sect. 6,
we compute the probability of strong informativity by means of computer simulations for
games with more than two actions and for utility values between 0 and 1 coming from a
range of different distributions.

5 Limit-Learnability in the Uniform Case

In this section, we focus on the case in which a, b, c, d are drawn independently from a
uniform distribution on the unit interval. The two constants x and y which played a crucial
role in determining whether the game (a, b, c, d) was strongly informative in Sect. 3.3 will
then vary randomly, and we will now treat them as random variables X and Y .

In this section, we will compute the conditional distribution of X and Y given that
(a, b, c, d) is an anti-coordination game, and use this conditional distribution to approximate
the probability of encountering a strongly informative game. Having found this probability,
we can make some observations on the interaction between the level of uncertainty and the
rate at which new strongly informative games appear, and we can then draw conclusions
about the asymptotic rate of decrease in |λ − λ| over time.

5.1 The Density of X and Y

When the entries of the game matrix G = (a, b, c, d) are sampled independently from a
uniform distribution on the unit interval [0, 1], the probability density at G is p(G) = 1
everywhere inside [0, 1]4 and p(G) = 0 outside. The set A of anti-coordination games
inside the hypercube is defined by the inequalities

0 ≤ a < c ≤ 1

0 ≤ d < b ≤ 1

By symmetry and independence of (a, b, c, d), the probability of this set is P(A) = 1/4.
Hence, the conditional probability density at (a, b, c, d), given that it is an anti-coordination
game, is

p(a, b, c, d | A) =
{
4 (a, b, c, d) ∈ A

0 otherwise
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Wenowapproximate the conditional probability thatG = (a, b, c, d) is strongly informative,
given that it is an anti-coordination game. To this purpose, define a coordinate transformation
T by

X = b − a

c − a + b − d
(4)

Y = c − a

c − a + b − d
(5)

V = a

c − a + b − d
(6)

Z = d (7)

Under T , the region A ⊆ R
4 is mapped onto a region T (A) ⊆ R

4 defined by

0 ≤ V < Y + V ≤ X + Y + V − 1

Z

0 ≤ X + Y + V − 1 < X + V ≤ X + Y + V − 1

Z

These joint inequalities on X , Y , V and Z imply the following conditional inequalities: given
a fixed value of (X , Y ), we have v∗(x, y) ≤ V , where

v∗(x, y) = max {0, 1 − X − Y } ,

and given a fixed value for (X , Y , V ), we have 0 ≤ Z ≤ z∗(x, y, v), where

z∗(x, y, v) = min

{
X + Y + V − 1

Y + V
,
X + Y + V − 1

X + V

}
.

If we know the probability density of (X , Y , V , Z), we can use these conditional ranges to
integrate out the nuisance variables V and Z . The transformation T is almost everywhere
invertible, with the inverse relation T−1 given by

a = V Z

X + Y + V − 1

b = Z(X + V )

X + Y + Z − 1

c = Z(Y + V )

X + Y + V − 1
d = Z

At (X , Y , V , Z) = (x, y, v, z), the Jacobian determinant of T−1 satisfies

det(∇T−1) = z3

(x + y + v − 1)4
.

This determinant measures the amount of volume deformation introduced by the trans-
formation T . Since p(a, b, c, d | A) = 4 everywhere on A, it follows that the density of
(X , Y , V , Z) is given by

q(x, y, v, z | A) =
{
4z3/(x + y + v − 1)4 (x, y, v, z) ∈ T (A)

0 otherwise.
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Fig. 3 Amap of the four regions of (X , Y )-space on which the conditional probability density function q(x, y)
is nonzero. For y < 0 or y > 1, q(x, y) = 0

We can find the probability density function of (X , Y ) by integrating out V and Z from this
density function, using the ranges computed above:

q(x, y | A) =
∫∫

T (A)

q(x, y, v, z | A) dz dv

=
∫ v=∞

v=v∗(x,y)

∫ z=z∗(x,y,v)

z=0
q(x, y, v, z | A) dz dv.

The value of the upper bound z∗ depends on whether x ≤ y or x > y, while the lower bound
v∗ depends on whether x + y ≥ 1 or x + y < 1. Hence, this double integral can be split
up into four subintegrals covering each of these four cases. We compute each of these four
double integrals separately, finding

q(x, y | A) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/(3x3) x > y, x + y ≥ 1

1/(3(1 − x)3) x ≤ y, x + y < 1

1/(3y3) x > y, x + y < 1

1/(3(1 − y)3) x ≤ y, x + y ≥ 1

0 y < 0 or y > 1

Equivalently, this density function can be written as

q(x, y | A) = 1

3

(
1

1/2 + max{|x − 1/2|, |y − 1/2|}
)3

(8)

where (x, y) lies on the horizontal band defined by 0 < y < 1. Note that the four different
cases are separated by the diagonals of the unit square, as shown in Fig. 3.

5.2 The Probability of Informativity in the Uniform Case

Having now found the exact conditional distribution of (X , Y ), we can approximate the
conditional probability that the informative policy profile (σ ◦, σ ◦) is the sole symmetric
equilibrium of the game. As observed in Sect. 3.3, this event coincides with the set

ϕ◦ =
{
x < 0,

λ + λ

2
< y < λ

}
∪

{
0 ≤ x <

1

2
,

λ + λ

2
< y < λ − (λ − λ)x

}
. (9)

As previously discussed, a similar set ϕ• exists for the profile (σ •, σ •). We can then compute
the conditional probability of ϕ◦ given that (a, b, c, d) is an anti-coordination game as two
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separate integrals:

P(ϕ◦ | A) =
∫ x=0

x=−∞

∫ y=λ

y= λ+λ
2

q(x, y | A) dy dx

+
∫ x=1/2

x=0

∫ y=λ−(λ−λ)x

y= λ+λ
2

q(x, y | A) dy dx .

On each of these two regions, q behaves differently. Since 0 < y < 1, when x ≤ 0 we can
reduce the density expression q(x, y | A) in Eq. 8 to

q(x, y | A) = 1

3

(
1

1 − x

)3

.

The first term of P(ϕ◦ | A) thus has the value

P

{
x < 0,

λ + λ

2
< y < λ

∣∣∣∣ A
}

=
∫ x=0

x=−∞

∫ y=λ

y= λ+λ
2

q(x, y | A) dy dx = λ − λ

12
.

For 0 ≤ x < 1/2, we simplify computations by means of the sandwich bounds

1

3
≤ q(x, y | A) ≤ 1

3

(
1

1 − x

)3

.

By integrating all three components, we find that

λ − λ

24
≤ P

{
0 ≤ x <

1

2
,

λ + λ

2
< y < λ − (λ − λ)x

∣∣∣∣ A
}

≤ λ − λ

12
.

Adding up the two terms, we thus have the conditional probability

λ − λ

8
≤ P(ϕ◦ | A) ≤ λ − λ

6
. (10)

Since P(A) = 1/4, this entails that the unconditional probability satisfies

λ − λ

32
≤ P(ϕ◦) ≤ λ − λ

24
. (11)

Note that this agrees with the result in Sect. 4.1 for the case of λ − λ = 1. Finally, the total
probability of sampling an informative game is

P(ϕ) = P(ϕ◦ ∪ ϕ•) = P(ϕ◦) + P(ϕ•) = 2P(ϕ◦) (12)

since the sets ϕ◦ and ϕ• are symmetric and disjoint.

5.3 The Asymptotic Speed of Learning

In the previous subsection, we assumed that the uncertainty interval was fixed and arbitrary
and computed some bounds on the probability that a randomly generated game is strongly
informative. In this section, we will assume such randomly generated games are played
repeatedly between randomly selected pairs of players from a mixed population of maximin-
imizers and regret minimizers, and that the behavior of the selected players is visible to all
members of the population.



Dynamic Games and Applications

Under some reasonable assumptions about the learning rule employed by the members of
the population, this causes the probability of observing a new strongly informative game to
tend to zero. However, as we also will argue, this convergence is slow enough to allow the
members of the population to exactly determine the type proportions in the limit.
Stipulation of learning rule Every time two randomly selected players are plucked from the
population and play a strongly informative game, they both reveal their type. Upon observing
a sequence of strongly informative games, one can therefore count the number of times the
players revealed themselves as maximinimizers or regret minimizers and use this tally to
estimate the probability that a randomly drawn player will be of a certain type.

Suppose that k is the number of times the players have revealed themselves to be regret
minimizers, and thatm is the total number of strongly informative games played. For reasons
that we will justify below, we assume that any rational observer of this sequence of events
forms the belief that λ, the true proportion of regret minimizers, lies within an uncertainty
interval with bounds

λm = k

m
− C√

m

λm = k

m
+ C√

m

whereC > 0 is afixedbut arbitrary constant independent ofm. In otherwords, our assumption
is that the width of the uncertainty interval is

λm − λm = 2C√
m

(13)

after the observation of m strongly informative games.
The waiting-time distribution Between two strongly informative games, a number of non-
informative games is played. After the first m strongly informative games have been played,
one needs to play a certain number of games before the next strongly informative game
appears. Since the games themselves are generated randomly, this waiting time 
m ≥ 1 is
itself a random variable.

As we have seen in the previous section, the probability that a specific random game is
strongly informative depends on the width of the uncertainty interval, but we have assumed
that the uncertainty interval remains unchanged as long as no new information is revealed.
The process of waiting for the next strongly informative game can therefore be modeled as
the process of flipping a bent coin with a fixed success parameter pm until it comes up heads.
This means that the random variable 
m follows a geometric distribution with parameter
pm . This distribution has an expected value of

E[
m] = 1

pm

and a variance of (1 − pm)/p2m ≤ 1/p2m .
Bounds on the waiting time As we have seen above, the probability pm depends on the
width of the uncertainty interval and satisfies

λ − λ

16
≤ pm ≤ λ − λ

12
. (14)

With the assumptions above, this is equivalent to

C

8
√
m

≤ pm ≤ C

6
√
m

. (15)
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As we have seen, the expected waiting time before the (m + 1)th strongly informative game
arrives is E[
m] = 1/pm . We thus have

6
√
m

C
≤ E[
m] ≤ 8

√
m

C
(16)

Note also that Var [
m] ≤ 1/pm ≤ 64m/C .
Total waiting time Since the waiting time from themth to the (m+1)th strongly informative
game is
m , thewaiting time until a total ofm strongly informative games have been observed
is a random variable

T = 
1 + 
1 + · · · + 
m

By the linearity of expectations,

m∑
i=1

6
√
i

C
≤ E[T ] ≤

m∑
i=1

8
√
i

C

which can be weakened to

3

C
m3/2 ≤ E[T ] ≤ 8

C
m3/2.

Since the waiting times 
1,
2, . . . , 
m are independent, we also have

Var [T ] ≤
m∑
i=1

64i

C
≤ 64

C
m2.

This variance grows quadratically in m, so (T − E[T ])2 will tend to be larger when m is
large. In relative terms, however, we have

Var

[
T − E[T ]

E[T ]
]

= E

[
Var [T ]
E[T ]2

]
≤ 64m2/C

(C/(3m3/2))2
= 64C

9m
,

which goes to zero as m → ∞. Hence T /E[T ] will converge to 1 as m → ∞ by, for
instance, Chebyshev’s inequality.
Limit-learnability We can now briefly summarize in informal terms what we have seen so
far. We have shown that the total number of games required in order to observe m strongly
informative games is on the order of T ∼ m3/2. Conversely, when one has observed a total
of T games, one can expect the number of strongly informative games among them to be on
the order of m ∼ T 2/3. Since we have assumed that the width of the uncertainty interval is
inversely proportional to

√
m, it will be on the order of

∣∣λm − λm

∣∣ ∼ (T 2/3)−1/2 = T−1/3 (17)

These results obtain because we have assumed that the agents in the population update
their beliefs when new information is revealed, so that the waiting time before the next
informative event gradually increases. By contrast, if the agents did not update their beliefs,
then the waiting time between strongly informative games would remain constant over time,
and m and T would be of the same order of magnitude.

Since T−1/3 → 0 for t → ∞, it follows that the players will ultimately learn the
proportions of the two agent types in the sense that

∣∣λm − λm

∣∣ → 0
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for m → ∞. This is a somewhat surprising result since it is also the case that pm → 0
for m → ∞, so that the strongly informative games become more infrequent as the agents
become more informed.
Learning rule justification Going back to the stipulated learning rule, we still have to give
a justification for the assumption that the width of the uncertainty interval is proportional to
1/

√
m after the observation of m strongly informative games. Our argument for this choice

has a positive and a negative aspect. The positive part of the argument shows that it is possible
to estimate the parameter of a Bernoulli distribution from m observations with an expected
error of 1/

√
m, whereas the negative part shows that no substantially lower error is possible.

The positive part of our argument consists of the law of large numbers as formulated, for
instance, by Chebyshev:

Theorem 17 Let X1, X2, X3, . . . be a series of independent and identically distributed ran-
dom variables with a shared mean E[Xi ] = λ and a finite variance, and let

λ̂m = (X1 + · · · + Xm)/m

be the empirical average of the first m observations. Then for any α > 0 there is a constant
δ > 0 such that for all m > 0,

P(|λ − λ̂m | < δ/
√
m) ≥ 1 − α.

This theorem ensures that the mean of a distribution is estimated by the empirical mean
of a sample with an accuracy proportional to 1/

√
m. A proof can be found in [15], ch. IX

and X.
The negative part of our argument relies on much more recent results about the limits on

the speed of learning. For the purposes of stating this theorem, let λ1, λ2 ∈ (0, 1) be the
parameters of two coin flipping distributions, and let m observations be drawn from one of
these two distributions. A hypothesis test is then a function that maps a data set to one of the
two parameter values. We say that the two distributions are (m, α)-distinguishable if there
is a hypothesis test that returns the correct parameter value with probability 1− α for a data
set of size m. We then have:

Theorem 18 There are δ > 0 and α > 0 such that for all m, if two parameters λ1, λ2 ∈ (0, 1)
satisfy the proximity condition |λ1 − λ2| < δ/

√
m, then the corresponding coin flipping

distributions are not (m, α)-distinguishable.

This theorem allows us to conclude that the confidence bounds provided by Chebyshev’s
inequality are the best we can hope for: the width of the confidence interval cannot shrink at a
rate faster than 1/

√
m. This result can be proven by using the Hellinger distance between two

binomial distributions to lower-bound the minimax risk for the hypothesis test, as discussed
extensively elsewhere [36, 37].

Together, these two results show that a confidence interval of the shape

λm = λ̂m − C√
m

(18)

λm = λ̂m + C√
m

(19)

will contain the true parameter λ with a probability that neither converges to 0 nor to 1 as
m → ∞. By contrast, if

|λm − λm |√
m

→ ∞
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for m → ∞, the probability of error would tend to 0, and if we had

|λm − λm |√
m

→ 0

for m → ∞, the probability of error would tend to 1. This hence justifies our assumption
that any rational agent must use confidence intervals of width proportional to 1/

√
m when

estimating the parameter of a Bernoulli distribution from m observations.

6 Strong Informativity for Beta and Dirichlet Distributions

In this section, we expand the analysis from the previous section to games with more than
two actions and different utility-matrix distributions. We empirically estimate the probability
of encountering a strongly informative game both in the case where each cell in the utility
matrix is sampled independently from the beta distribution and in the case where the entire
utility matrix is a sample from a Dirichlet distribution (and hence utility values are no longer
independent).
The beta distribution The beta distribution is a distribution over the unit interval parameter-
ized by two parameters α and β. We focus exclusively on the case where the two parameters
are identical, α = β = r . In our first set of experiments, we use such beta distributions to
sample each value of the utility matrix independently.

The probability density functions of the beta distribution for some of these parameters
are shown in Fig. 4. As the figure illustrates, the beta distribution is identical to the uniform
distribution when α = β = 1, while it comes to resemble a Bernoulli distribution for
α, β → 0 and an increasingly narrow normal distribution as α, β → ∞.
The Dirichlet distribution The Dirichlet distribution of order D is a probability distribution
over the (D−1)-dimensional probability simplex (i.e., over (D−1)-vectorsvwith0 ≤ vd ≤ 1
and

∑
d vd = 1). The Dirichlet distribution of order D is parameterized by a vector of D

positive parameters α1, ..., αD .
We once again focus on the symmetric parameter vectors, αd = r for all d . Dirichlet

distributions with such parameter vectors are equal to the uniform distribution when r = 1.
They become increasingly concentrated around the corners of the simplex as r → 0 and
increasingly concentrated around the center point of the simplex for r → ∞.
Beta-distribution experiments In our first set of experiments, we consider symmetric n×n
gamematriceswhose values are drawn from symmetric beta distributions.We can thus empir-
ically estimate the probability that such randomly generated games are strongly informative.

Fig. 4 Examples of beta distributions. Left: α = β = 0.25. Center: α = β = 1. Right: α = β = 50
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Fig. 5 Frequencies of strongly informative games for independently beta-distributed utility values in the case
of maximum uncertainty [λ, λ] = [0, 1] on the left, and in the case of reduced uncertainty [λ, λ] = [0.6, 0.8]
on the right

We set the number of actions equal to

n = 2, 3, 5, 7, 11

and the two (identical) beta parameters equal to

r = 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 8, 10, 20, 30, 40, 50.

Weadditionally try two different uncertainty intervals, [λ, λ] = [0, 1] and [λ, λ] = [0.6, 0.8].
Figure5 tabulates the estimated probability that a random game will be informative for every
possible combination of these parameter choices. The estimated probabilities are based on a
sample of 105 games.

A few observations are in order. First, the observed frequency of strongly informative
games for the case of maximum uncertainty [λ, λ] = [0, 1]with two actions and beta param-
eters α = β = 1 is precisely 0.08296, which is within the theoretical bounds found in
Sect. 5, 0.0625 ≤ 0.08296 ≤ 0.0833. This is also true for the case of reduced uncertainty
[λ, λ] = [0.6, 0.8], where we have 0.0125 ≤ 0.0159 ≤ 0.0166.

Second, both the case ofmaximumuncertainty and the case of reduced uncertainty display
a similar pattern,with lower frequency of strongly informative games in the bottom left corner,
as the number of actions increases and the beta parameters decrease. Overall, 2 × 2 games
turn out to be the most informative for all the chosen parameters of the beta distribution.

Figure6 illustrates the effect of shrinking the uncertainty interval in two cases, one inwhich
the number of actions is heldfixed atn = 2, andone inwhich the beta parameters are heldfixed
at α = β = 1. As expected, both tables show that the probability of encountering a strongly
informative game tends to 0 as the uncertainty interval shrinks. Perhaps more interestingly,
the right-hand inset shows that the probability of encountering a strongly informative game
also depends negatively on the number of actions available to the players.
Dirichlet-distribution experimentsWe now turn to the case of Dirichlet-distributed utility
values. As mentioned above, we now sample the entire n × n symmetric game matrix from
a Dirichlet distribution of order D = n2 with identical parameters α1 = · · · = αD = r . We
again choose the following number of actions

n = 2, 3, 5, 7, 11
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Fig. 6 Frequencies of strongly informative games during learning. On the left: frequencies for different
parameters of the beta distribution during learning in 2 × 2 games. On the right: frequencies for different
numbers of actions during learning for beta parameters α = β = 1

Fig. 7 Frequencies of strongly informative games for Dirichlet-distributed utility values in the case of maxi-
mum uncertainty [λ, λ] = [0, 1] on the left, and in the case of reduced uncertainty [λ, λ] = [0.6, 0.8] on the
right

in all combinations with the parameter values

r = 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 8, 10, 20, 30, 40, 50

and in all combinations with two choices of uncertainty interval. The results are shown in
Fig. 7.

There are some noticeable differences between Figs. 5 and 7. First, the highest frequencies
of strongly informative games are roughly twice as high when utility values are Dirichlet-
distributed aswhen utility values are beta-distributed. This holds both in the case ofmaximum
uncertainty (0.15 vs 0.08) and in the case of reduced uncertainty (0.016 vs 0.025). Second,
the frequency of strongly informative games for 2 × 2 games is nearly independent of the
distribution parameters when the utility values are sampled independently from the beta
distribution, whereas it depends heavily on the distribution parameters when the gamematrix
is sampled in its entirety from a Dirichlet distribution.

Figure8 instead shows the frequencies of strongly informative games as the uncertainty
interval shrinks. Except for the differences just observed, the two graphs of Fig. 8 look similar
to those of Fig. 6.
Learning dynamicsThe probability of encountering a strongly informative games decreases
as the uncertainty interval shrinks. As we have seen in Sect. 5, this has the consequence that
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Fig. 8 Frequencies of strongly informative games during learning. On the left: frequencies for different
parameters of the Dirichlet distribution during learning for two actions. On the right: frequencies for different
numbers of actions during learning for Dirichlet parameters (α1, ..., αD) = (1, ..., 1)

Fig. 9 Cumulative number of strongly informative games (y-axis) over 10000 games randomly generated by
drawing i.i.d. utility values from a symmetric beta distribution (x-axis). The number of games between two
subsequent steps in the curves corresponds to the waiting time between a strongly informative game and the
next strongly informative game

the total number of strongly informative games over time grows slower than linearly when
the agents learn as they play. Figures9 and 10 illustrate this effect by plotting the cumulative
number of strongly informative games under different distributional assumptions.

All the curves plotted are concave, illustrating the fact that the waiting time before the
next strongly informative game increases as the total number of strongly informative games
increases. In particular, the growth rate for the 2×2 games with uniformly distributed utility
values (α = β = 1) is consistent with a growth rate of T 2/3 strongly informative games after
a total of T games have been played (Fig. 9, top right inset).
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Fig. 10 Cumulative number of strongly informative games (y-axis) over 10000 games randomly generated by
drawing i.i.d. matrices of utility values from a Dirichlet distribution (x-axis). The number of games between
two subsequent steps in the curves corresponds to the waiting time between a strongly informative game and
the next strongly informative game

Figure9 also shows that random2×2 games aremore likely to be strongly informative than
games with n > 2 when the utilities are drawn independently from a beta distribution. This
contrast is strongest when α and β are closer to 0 and is barely detectable when α = β = 10.

As Fig. 10 shows, random 2 × 2 games are also more likely to be strongly informative
in the Dirichlet-distributed case when the parameters α1 = · · · = αD are larger. When the
parameters α1 = · · · = αD are close to 0 instead, the informativity with n = 2 is lower than
the informativity with n > 2.

7 Discussion

One of the most crucial steps in the development of modern psychology was the realization
that an exclusive focus on expressed behavior had started to weigh down the discipline: in
order to explain the behaviors, the concept of a private and unobservable mental process
would have to be reintroduced. Recent works in biology and ethology have started to suggest
that the same might hold for animal behavior in general [14, 21, 23]. In evolutionary game
theory, ideas of this kind have given rise to studies on the evolution of preferences, which
elevate the level of explanation from expressed behaviors to subjective utilities (e.g., [1, 9,
11]).

The present paper too can be read as an attempt to explain observable behaviors in terms
of more general processes, in this case different rules for decision making under uncertainty.
Rather than considering various decision criteria as competing philosophical theories, they
can be interpreted as high-level strategies that may coexist or play off against each other.
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From this point of view, the multigame model introduced here allows to study the various
criteria of rational choice from a population standpoint, as advocated in [23] and [21].

The focus here was on learning: we have investigated a population consisting of distinct
subpopulations using different decision criteria, asking whether the members of that popu-
lation could ultimately come to learn its composition just from observing the actions of their
peers. Since the only source of ambiguity was the population composition, and the difference
between the decision criteria vanishes when ambiguity does, it was not immediately obvious
that this could ever be the case. As it turned out, such limit-learnability is guaranteed in a
large class of important cases.

The general research question thus pertained to the relationship between directly observ-
able and not directly observable features of the population. The methods employed here,
however, are very general in nature and could also be used to address many other issues
surrounding decision making and rational choice in the presence of uncertainty: for instance,
research addressing themerits of different criteria from an evolutionary rather than philosoph-
ical perspective could prove profitable to the theory of rational choice. In allowing the various
decision criteria to coexist and interact in the model, we may come to better understand the
advantages and disadvantages of each of them.

A Proofs

A.1 Proofs of Sect. 3

A.1.1 Proof of Proposition 4

Proof When ai ∈ br(ai ) for some action ai , then all the types of all the players playing ai is
an equilibrium of the game. Both coordination games and mixed games therefore cannot be
strongly informative. 	


A.1.2 Proof of Theorem 5

Proof To prove the first part of this theorem, we show that σ ◦ is a strictly best reply to σ ◦
by considering player i’s two types separately: we show that action I is strictly better for
type M if and only if a > d , and that action I I is strictly better for type R if and only if
c − a > b − d .

For i ∈ {1, 2}, the expected utilities for a maximinimizing type from actions I and I I
when faced with the policy σ ◦ = (I , I I ) are

Eλ[ui | I , M, σ ◦] = (1 − λ)a + λb

Eλ[ui | I I , M, σ ◦] = (1 − λ)c + λd

Action I is thus a best reply for the maximinimizer if and only if

min
λ∈[0,1] {(1 − λ)a + λb} > min

λ∈[0,1] {(1 − λ)c + λd} .

Since the minimum of a linear function over a compact interval is attained at one of the
endpoints, this is equivalent to

min{a, b} > min{c, d}.
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Since we assume that (a, b, c, d) is an anti-coordination game, we know that a < c and
d < b. This implies that:

• a < d if and only if min{a, b} < min{c, d};
• a > d if and only if min{a, b} > min{c, d};
• a = d if and only if min{a, b} = min{c, d}.

Hence, the maximinimizing type strictly prefers action I if and only if a > d .
Given a fixed λ ∈ [0, 1], the regrets of player i against the policy σ ◦ = (I , I I ) are

max
ai

Eλ[ui | ai , R, σ ◦] − Eλ[ui | I , R, σ ◦] = max {0, (1 − λ)(c − a) + λ(d − b)}
max
ai

Eλ[ui | ai , R, σ ◦] − Eλ[ui | I I , R, σ ◦] = max {0, (1 − λ)(a − c) + λ(b − d)}

When maximizing these regrets over λ ∈ [0, 1], we obtain
max

λ∈[0,1]{max
ai

Eλ[ui | ai , R, σ ◦] − Eλ[ui | I , R, σ ◦]} = max {c − a, d − b}
max

λ∈[0,1]{max
ai

Eλ[ui | ai , R, σ ◦] − Eλ[ui | I I , R, σ ◦]} = max {a − c, b − d}

Therefore, the regret minimizer strictly prefers I I over I if and only if

max {c − a, d − b} > max {a − c, b − d} .

Assuming that (a, b, c, d) is an anti-coordination game, the regret minimizer has a strict
preference for action I I if and only if

c − a > b − d.

The second half of the theorem for σ • is proven analogously. 	


A.1.3 Proof of Corollary 6

Proof The conditions

a > d and c − a > b − d

for (σ ◦, σ ◦) to be an equilibrium are trivially incompatible with the conditions

a < d and c − a < b − d

for (σ •, σ •) to be an equilibrium. Any anti-coordination game (a, b, c, d) can thus satisfy at
most one of the two pairs of inequalities. 	


A.1.4 Proof of Theorem 9

To prove Theorem 9, we need to prove some auxiliary propositions first.

Proposition 19 A policy σi is a best reply to σ ◦ = (I , I I ) in
〈
(a, b, c, d), [λ, λ]〉 if and only if

it is a best reply to σ ◦ in 〈(a◦, b◦, c◦, d◦), [0, 1]〉. Similarly, a policy σi is a best reply to σ • =
(I , I I ) in

〈
(a, b, c, d), [λ, λ]〉 if and only if it is a best reply to σ • in 〈(a•, b•, c•, d•), [0, 1]〉.
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Proof Suppose player 3−i uses the policy σ ◦ = (I , I I ). For typeM of player i , the expected
utilities associated with actions I and I I are then, for a fixed value of λ,

Eλ[ui | I , M, σ ◦] = (1 − λ)a + λb = a + λ(b − a)

Eλ[ui | I I , M, σ ◦] = (1 − λ)c + λd = c + λ(d − c)

These two are functions of λ, and the maximinimizing type of player i prefers the action with
the highest minimum. Action I is thus a strictly best reply for this type if and only if

min
λ∈[λ,λ]

{a + λ(b − a)} > min
λ∈[λ,λ]

{c + λ(d − c)} .

Given that linear functions on compact intervals reach their minima at the endpoints, this is
equivalent to

min
{
a + λ(b − a), a + λ(b − a)

}
> min

{
c + λ(d − c), c + λ(d − c)

}
,

that is,

min
{
a◦, b◦} > min

{
c◦, d◦} .

ByTheorem 5, this inequality is satisfied if and only if action I is themaximinimizer’s strictly
best reply to σ ◦ in 〈(a◦, b◦, c◦, d◦), [0, 1]〉. By inverting the inequalities, we similarly find
that action I I is the strictly best reply to σ ◦ for the maximinimizer in

〈
(a, b, c, d), [λ, λ]〉 if

min
{
a◦, b◦} < min

{
c◦, d◦} .

Now consider the regret-minimizing type of player i , faced with an opponent using the
policy σ ◦. For a fixed value of λ, the regrets associated with actions I and I I are then

max
ai

Eλ[ui | ai , R, σ ◦] − Eλ[ui | I , R, σ ◦] = max {0, (1 − λ)(c − a) + λ(d − b)}
max
ai

Eλ[ui | ai , R, σ ◦] − Eλ[ui | I I , R, σ ◦] = max {0, (1 − λ)(a − c) + λ(b − d)}

The regret-minimizing type of player i prefers whichever of these expression has the lowest
maximum. Action I I is thus a strictly best reply if and only if

max
λ∈[λ,λ]

{0, (1 − λ)(a − c) + λ(b − d)} < max
λ∈[λ,λ]

{0, (1 − λ)(c − a) + λ(d − b)} .

This inequality has the form

max
λ∈[λ,λ]

{0, f (λ)} < max
λ∈[λ,λ]

{0,− f (λ)}

where f is the function

f (λ) = (1 − λ)(a − c) + λ(b − d).

Since either f (λ) or − f (λ) is nonpositive, the inequality is equivalent to

max
λ∈[λ,λ]

{ f (λ)} < max
λ∈[λ,λ]

{− f (λ)}.

The function f (λ) is linear in λ and ranges between the values

f (λ) = (1 − λ)(a − c) + λ(b − d) = a◦ − c◦

f (λ) = (1 − λ)(a − c) + λ(b − d) = b◦ − d◦
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and of course inversely for − f . Maximizing over these pairs of values, we thus find that
action I I is a strictly best reply to σ ◦ if and only if

max
{
a◦ − c◦, b◦ − d◦} < max

{
c◦ − a◦, d◦ − b◦} .

By Theorem 5 this is satisfied if and only if action I I is the regret minimizer’s strictly best
reply to σ ◦ in 〈(a◦, b◦, c◦, d◦), [0, 1]〉. Inverting the inequalities, we similarly find that action
I is a strictly best reply if and only if

max
{
a◦ − c◦, b◦ − d◦} > max

{
c◦ − a◦, d◦ − b◦} .

Replacing σ ◦ with σ •, the second part of the theorem is proven analogously. 	

Proposition 20 For the policy profile (σ ◦, σ ◦) to be the unique strict equilibrium of the
population game with ambiguity

〈
(a, b, c, d), [λ, λ]〉, it is necessary that (a◦, b◦, c◦, d◦) be

an anti-coordination game, i.e., c◦ > a◦ and b◦ > d◦. Similarly, for (σ •, σ •) to be the unique
strict equilibrium of

〈
(a, b, c, d), [λ, λ]〉, (a•, b•, c•, d•)must be an anti-coordination game.

Proof Consider policy σ ◦ and the corresponding inner game (a◦, b◦, c◦, d◦). If this inner
game has a weakly or strictly dominant action a∗

i such that, for all λ ∈ [λ, λ], and all ai ∈ Ai ,

Eλ[ui | a∗
i , ti , σ

◦] ≥ Eλ[ui | ai , ti , σ ◦],
then a∗

i is the best reply to policy σ ◦ under both decision criteria ti ∈ {M, R} in the inner
game. Hence, (σ ◦, σ ◦) is not an equilibrium. If (a◦, b◦, c◦, d◦) is a coordination game,
then (a, b, c, d) too is a coordination game. Hence, the policy profiles ((I , I ), (I , I )) and
((I I , I I ), (I I , I I )) are both symmetric equilibria regardless of the uncertainty interval.
Lastly, if in the game (a◦, b◦, c◦, d◦) all actions are equivalent (i.e., a◦ = c◦ and b◦ = d◦),
then any profile is an equilibrium, regardless of the uncertainty interval. The same is true
also if we consider the other revealing policy function σ •. It follows that unless the inner
game is an anti-coordination game, neither (σ ◦, σ ◦) nor (σ •, σ •) can be the unique strict
equilibrium. 	

Proposition 21 Suppose that (a, b, c, d) is an anti-coordination game. Then the inner game
(a◦, b◦, c◦, d◦) is an anti-coordination game (i.e., c◦ > a◦ and b◦ > d◦) if and only if

λ < λ◦ < λ.

The inner game (a•, b•, c•, d•) is an anti-coordination game (i.e., c• > a• and b• > d•) if
and only if

λ < λ• < λ.

Proof By expanding the inequality λ < λ◦ we get

λ <
c − a

c − a + b − d
,

which simplifies to

a + λ(b − a) < c + λ(d − c),

that is,

a◦ < c◦.
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Similarly, by expanding and simplifying the inequality λ◦ < λ we obtain

a + λ(b − a) > c + λ(d − c),

that is,

b◦ > d◦.

Substituting σ ◦ with σ •, the second part of the proof proceeds analogously. 	

Finally, we are in the position to prove Theorem 9.

Proof By Proposition 21, the game (a◦, b◦, c◦, d◦) is an anti-coordination game if and only
if λ < λ◦ < λ, and the game (a•, b•, c•, d•) is an anti-coordination game if and only if
λ < λ• < λ. By Proposition 19, the policy profile (σ ◦, σ ◦) is an equilibrium of the game〈
(a, b, c, d), [λ, λ]〉 if and only if it is an equilibrium of the game 〈(a◦, b◦, c◦, d◦), [0, 1]〉,
and (σ •, σ •) is an equilibrium of

〈
(a, b, c, d), [λ, λ]〉 if and only if it is an equilibrium

of 〈(a•, b•, c•, d•), [0, 1]〉. By Theorem 5, these two equilibrium conditions reduce to the
two conjunctions (a◦ > d◦ and c◦ − a◦ > b◦ − d◦), and (a• < d• and c• − a• < b• − d•),
respectively. Finally, at most one of the two profiles (σ ◦, σ ◦) and (σ •, σ •) can be a strict
equilibrium by Corollary 6. 	


A.1.5 Proof of Corollary 10

Proof Suppose the game (a, b, c, d) is strongly informative for the interval [λ, λ]. Any trans-
formation T : R4 → R

4 such that

(a, b, c, d) �→ (sa + r , sb + r ′, sc + r , sd + r ′) r , r ′, s ∈ R, s > 0

preserves the quantitiesλ◦ andλ• aswell as all the relevant inequalities involving the variables
a◦, b◦, c◦, d◦ and a•, b•, c•, d•. 	


A.2 Proofs of Sect. 4

A.2.1 Proof of Proposition 12

Proof By the assumption of absolute continuity it holds that

P(L < a < H) > 0

P(L < d < a | a) > 0

P(a < c < H | a) > 0

Note moreover that d < a and c < H collectively imply that d + c − a < H , while a < c
implies that d < d + c − a. It follows that (d, d + c − a) ⊆ (L, H), and that

P(d < b < d + c − a | a, c, d) > 0.

Hence, the conjunction of these four events has positive probability. By Theorem 5, the
second, third, and fourth of these events also ensures that (σ ◦, σ ◦) is the only symmetric
equilibrium of the game, and therefore that the game is strongly informative with respect to
the uncertainty interval [0, 1]. (A similar argument can be made for (σ •, σ •).) 	
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A.2.2 Proof of Proposition 14

Proof We give the proof for the case of (a◦, b◦, c◦, d◦). The case of (a•, b•, c•, d•) is analo-
gous. The inner game (a◦, b◦, c◦, d◦) consists of the two rows, (a◦, b◦) and (c◦, d◦), which
are linear transformations of the corresponding outer rows (a, b) and (c, d), respectively.
The linear transformation can be represented by the matrix

T =
(
1 − λ λ

1 − λ λ

)
.

By construction, T has the same effect on both outer rows, and the distribution of both rows
is absolutely continuous over (L, H)2 by assumption. It thus follows that if we can inscribe a
square (L◦, H◦)2 in the image of (L, H)2 under T , then the hypercube (L◦, H◦)2×(L◦, H◦)2
will be contained in the image of (L, H)2 × (L, H)2 under T . We want to argue that there
is a square (L◦, H◦)2 which is contained in the image of (L, H)2.

The mapping defined by T leaves two of the corners of (L, H)2 unchanged,

T

(
L
L

)
=

(
L
L

)
, T

(
H
H

)
=

(
H
H

)
,

and it leaves all points on the main diagonal unchanged as well. Moreover, T maps the square
(L, H)2 onto a parallelogram of area

det(T ) · (H − L)2 = (λ − λ) · (H − L)2 > 0.

This parallelogram degenerates to a line on the main diagonal of the square when λ−λ = 0,
but it otherwise has positive area. Putting these two observations together, we thus conclude
that all points on the diagonal of (L, H)2 are inner points of the parallelogram T ((L, H)2)

when λ − λ > 0. Hence, it is possible to inscribe an open set and therefore a small square
(L◦, H◦)2 into the parallelogram T ((L, H)2) along the diagonal of (L, H)2, as shown in
Fig. 11.

It thus follows that if the distribution of (a, b, c, d) is absolutely continuous on a non-
empty hypercube (L, H)4, then the distribution of (a◦, b◦, c◦, d◦) is absolutely continuous
on a non-empty hypercube (L◦, H◦)4. 	


Fig. 11 The square (L, H)2

contains a parallelogram
T ((L, H)2) which in turn
contains a smaller square
(L◦, H◦)2. All three figures
contain a segment of the diagonal
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A.2.3 Proof of Theorem 15

Proof Fix [λ, λ] with λ < λ. By Proposition 14, we can find a non-empty hypercube
(L◦, H◦)4 where the distribution of (a◦, b◦, c◦, d◦) is absolutely continuous. Hence, by
repeating the argument given in Proposition 12 within the smaller hypercube (L◦, H◦)4 we
get

P(L◦ < a◦ < H◦) > 0

P(L◦ < d◦ < a◦ | a◦) > 0

P(a◦ < c◦ < H◦ | a◦) > 0

P(d◦ < b◦ < d◦ + c◦ − a◦ | a◦, c◦, d◦) > 0

By Theorem 9, this ensures the positive probability of the profile (σ ◦, σ ◦) being the sole
symmetric equilibrium for [λ, λ]. The case of (a•, b•, c•, d•) is analogous. 	


A.2.4 Proof of Theorem 16

Proof Fix [λ, λ] with λ �= λ. By Theorem 15, there is positive probability of sampling
u1,1, u1,2, u2,1, u2,2 that satisfy the anti-coordination inequalities u1,1 < u2,1 and u2,2 <

u1,2, and the inequalities

u◦
1,1 > u◦

2,2, u◦
2,1 − u◦

1,1 > u◦
1,2 − u◦

2,2, and λ < λ◦ < λ,

where u◦
1,1, u

◦
1,2, u

◦
2,1, u

◦
2,2 are the equivalent of a◦, b◦, c◦, d◦ for u1,1, u1,2, u2,1, u2,2 =

a, b, c, d . Absolute continuity implies that n × n games where

ui, j < min{u1, j , u2, j } for 2 < i ≤ n and 1 ≤ j ≤ n

have positive probability too. In such games, all actions different from I and I I turn out to
be strictly dominated and will not be chosen by either player type in any equilibrium. The
only possible equilibria are thus profiles where only actions I and I I are chosen. But then
notice that from

u◦
1,1 > u◦

2,2, u◦
2,1 − u◦

1,1 > u◦
1,2 − u◦

2,2, and λ < λ◦ < λ,

it follows that the only possible equilibrium is when type M plays I and tyspe R plays
I I . Hence, the only equilibrium of the n × n game is (σ ◦, σ ◦), which proves that strongly
informative n × n games have positive probability. The argument for (σ •, σ •) is analogous.
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