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Abstract
Block copolymers (BCPs) have recently been explored in spherical confinement to form internally structured microparticles. 
While the behavior of AB diblock copolymers in confinement is comparably well studied, knowledge on confined ABC 
triblock terpolymers is still rather sparse. The latter are especially interesting as the third block allows the formation of a 
broader variety of multicompartment microparticles (MMs), but their synthesis is often realized through sequential polym-
erization, which can be work intensive and challenging. Here, we demonstrate that blending linear ABC triblock terpolymers 
with homopolymers is a versatile and straightforward method to tune the microphase behavior in MMs. We systematically 
blend polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (SBM or PS-b-PB-b-PM) with homopolymers of 
hPS, hPB, or hPM, to study the feasibility of this approach to replicate specific morphologies or access new ones. We utilize 
Shirasu Porous Glass (SPG) membrane emulsification and evaporation-induced confinement assembly (EICA) to produce 
narrowly size-dispersed MMs with defined inner structure. We analyze the MMs with dynamic light scattering (DLS), as 
well as transmission and scanning electron microscopy (TEM, SEM). We show that the resulting blend morphologies can be 
identical to those of the unblended SBM at same composition and that, depending on the location in the ternary microphase 
diagram, one SBM morphology can be converted into multiple different morphologies.

Keywords  3D confinement · ABC triblock terpolymers · Emulsification · Homopolymer blending · Microparticles · 
Morphology

Introduction

Block copolymers (BCPs) are a versatile class of soft mat-
ter, which consist of at least two covalently linked poly-
mer blocks[1]. Due to the inherent incompatibility of the 
blocks that arises from differences in their chemical and 

physical properties, BCPs find widespread use in research 
and applications, including nanomedicine[2–6], cataly-
sis[7, 8], compatibilization[9, 10], formation of mesoporous 
nanostructures[11–15] or energy storage[16, 17], to name 
a few examples. Irrespective of the intended use, control 
over the self-assembly or microphase behavior of BCPs 
is of vital importance for the quality and homogeneity of 
the final structure. While BCPs were primarily assembled 
in solution[18–23] or in bulk and at interfaces[24–32], 
their self-assembly in the confinement of emulsion drop-
lets only recently gained traction[33–43]. There, the BCP 
is typically dissolved in an organic solvent and emulsi-
fied with an aqueous surfactant solution to create a (3D) 
spherical confinement for the BCP. During evaporation 
of the organic solvent, the droplet shrinks, which concen-
trates the BCP, and ultimately triggers the nucleation and 
growth of the BCP morphology. The resulting solid mul-
ticompartment microparticles (MMs) thereby develop 
characteristic shapes and internal morphologies dictated 
by the BCP composition. In addition, parameters such as 
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the rate of solvent evaporation[34, 44] and the affinity of 
the surfactant for certain blocks[36, 41, 45–49] can influ-
ence the orientation of the morphology and hence the shape 
of the MMs. This process allowed to produce e.g. hybrid 
particles[50], mesoporous structures[51–53], and photonic 
pigments[54–56].

While the morphological behavior of AB diblock copoly-
mers in confinement is rather well understood, research on 
ABC triblock terpolymers is still comparably limited. The 
increased number of blocks and interaction parameters sub-
stantially increase the number of possible morphologies[1, 
57]. The wealth of achievable morphologies can be mapped 
into ternary microphase diagrams, where subtle changes in 
block volume fraction can induce striking morphological 
transitions. Despite the appeal of largely increased morpho-
logical complexity, the introduction of a third block (and 
tuning its length) can be accompanied by time-consuming 
and complicated synthesis. Instead of synthesizing libraries 
of ABC triblock terpolymers, blending with homopolymers 
(hP) is an efficient and fast way to create large libraries of 
morphologies. If the hP has a comparatively low molecular 
weight, it swells the corresponding domain and increases its 
volume fraction (wet brush regime)[27, 58–61]. In contrast, 
blending with a hP of similar or higher molecular weight to 
the corresponding block prevents mixing and leads to phase 
separation of the hP instead (dry brush regime)[62–64]. The 
concept of blending was demonstrated for ABC triblock ter-
polymers in bulk as well as for AB diblock copolymers in 
confinement with the goal to obtain a certain structure or to 
study the microphase behavior[27, 60, 61, 63–65]. For blend-
ing of ABC triblock terpolymers in confinement, much less 
is known about targeting or altering specific morphologies.

In this work, we study the microphase behavior of pol-
ystyrene-block-polybutadiene-block-poly(methyl meth-
acrylate) (SBM) in confinement for 6 block compositions, 
and systematically blend hPS, hPB, or hPM into the respec-
tive morphologies to study the effect of added volume on 
morphology. For emulsification, we use a Shirasu Porous 
Glass (SPG) membrane setup, leading to near-monodisperse 
MMs with controlled size. The overall shape and inner mor-
phology of the MMs are analyzed by a combination of trans-
mission and scanning electron microscopy (TEM, SEM). 
We show the possibility of replicating specific terpolymer 
morphologies, determine blending limits (e.g. excessive 
blending), and demonstrate the potential by transforming the 
morphology of one SBM into multiple other morphologies.

Materials and Methods

Materials. Analytical grade solvents and chemicals were 
used as received without further purification unless stated 
otherwise. Sodium dodecyl sulfate (SDS, > 99%), styrene, 

methyl methacrylate, 2-cyano-2-propyl dodecyl trithiocar-
bonate (CPDTC), 2,2’-azobis(2-methylpropionitrile) (azo-
bisisobutyronitrile, AIBN) and polybutadiene homopolymer 
(hPB, Mn = 2.0 kg∙mol−1) were purchased from Sigma-
Aldrich. The monomers were purified by running them over 
a silica column before use. OsO4 was obtained from Science 
Services (OsO4, 4 wt.% in H2O) and ultrapure water from a 
Milli-Q® Integral Water Purification System. Regenerated 
cellulose tubes with a molecular weight cut-off of 12–14 
kDa and an average flat width of 33 mm (Sigma Aldrich) 
were used for dialysis. The polystyrene-block-polybutadi-
ene-block-poly(methyl methacrylate) triblock terpolymers 
(PS-b-PB-b-PM or SBM) were synthesized by sequential 
anionic polymerization as described previously[66].

Synthesis of PS and PM homopolymers. Both hP were 
synthesized with reversible addition-fragmentation chain 
transfer (RAFT) polymerization to control molecular weight, 
which was kept below the block lengths of the corresponding 
SBMs. For the synthesis of hPM, methyl methacrylate (6.2 
mL, 58.4 mmol, 39 eq.) and CPDTC (505 mg, 1.5 mmol, 1 
eq.) were dissolved in dioxane (30 mL) and a stock solution 
of AIBN in dioxane (1 g∙L−1) was prepared. Both solutions 
were bubbled with Argon for 20 min after which 24 µL of 
the AIBN solution (0.1 eq.) were added to the reaction ves-
sel. The reaction mixture was stirred under Argon at 80 °C 
for 2 h before it was rapidly cooled with liquid nitrogen and 
exposed to air to stop the reaction. The polymer was pre-
cipitated in n-hexane. Residual solvent was removed under 
reduced pressure to obtain 1.8 g of hPM (2.7 kg∙mol−1, 
Đ = 1.26). For the synthesis of hPS, styrene (16.8 mL, 146.9 
mmol, 92 eq.) and CPDTC (642 mg, 1.6 mmol, 1 eq.) were 
dissolved in anisole (10 mL) and a stock solution of AIBN in 
anisole (1 g∙L−1) was prepared. Both solutions were bubbled 
with Argon for 20 min after which 80 µL of the AIBN solu-
tion (0.3 eq.) were added to the reaction vessel. The reaction 
mixture was stirred under Argon at 80 °C for 2.75 h and then 
rapidly cooled with liquid nitrogen and exposed to ambient 
air to stop the reaction. The polymer was precipitated in 
iso-propanol. Residual solvent was removed under reduced 
pressure to obtain 4.8 g of hPS (3.0 kg∙mol−1, Đ = 1.10).

Fabrication of (blended) polymer particles with SPG-
setup. The hP and SBM copolymers were separately dis-
solved in chloroform (CHCl3) to prepare stock solutions 
(chP = 20 g∙L−1 and cSBM = 10 g∙L−1) that were mixed in 
varying ratios to achieve desired blend compositions. The 
specifics of SBM and SBM/hP are listed in Table 1 and 
a more detailed description on how these compositions 
were calculated can be found online in the Supplementary 
Information (SI). In a typical experiment, 1 mL of SBM or 
SBM/hP solution was emulsified in 20 mL of an aqueous 
SDS solution with a concentration of 5 g∙L−1. For that, the 
polymer solution was pushed through an SPG membrane 
with a pore diameter of 600 nm using pressurized Argon. 
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The emulsion was kept stirring at 250 rpm to yield droplets 
with a homogeneous size distribution. After stirring for five 
additional days, the organic solvent had evaporated, which 
resulted in the formation of solid MMs with inner structure. 
The MM suspension (c = 0.5 g∙L−1) was dialyzed against 
ultrapure water to remove excess surfactant.

For SBM terpolymers, the volume fraction of the respec-
tive blocks is given in percent in the subscripts as φABC, 
while the superscripts provide the number average molecu-
lar weight, Mn, in kg∙mol−1, determined by size exclusion 
chromatography (SEC). Blend compositions follow a similar 
definition, i.e., subscripts refer to the final volume fraction 
φABC in percent as a combination of the original φABC plus 
added φhP. An overview of the SBMs and the SBM/hP used 
in this work is given in Table 1.

Transmission electron microscopy (TEM). To prepare 
TEM samples, MMs were first stained with Os by placing 
1.2 mL of MM suspension in an open vial, which was then 
put in a chamber together with another open vial contain-
ing OsO4 (4 wt.% in H2O). The chamber was closed, and 
the liquids were kept under stirring for 3 h after which 
the chamber was opened. To remove excessive Os, the 
MMs were cleaned by centrifugation and redispersion in 
ultrapure water. A drop of the MM suspension (c = 0.5 
g∙L−1) was placed on a carbon-coated copper grid (400 
mesh, Science Services) and excess liquid was blotted 
after 60 s using a filter paper. MMs were analyzed on a 
Talos L 120C (Thermo Fisher Scientific) with an accel-
eration voltage of 120 kV and an LaBF6-filament. Images 

were taken with a Ceta-F camera and Velox Software (Ver-
sion 3.8.80). The ImageJ open-source software package 
(Version 1.53 k) was used for processing the data[67]. 
Compartment sizes were measured and averaged over at 
least 50 different locations.

Scanning electron microscopy (SEM). A cryo-field 
emission SEM (Zeiss Cross Beam 340) equipped with an 
energy-selective detector for 16-bit image series acquisi-
tion with up to 40,000 × 50,000-pixel resolution and in 
lens chamber was used for SEM imaging. Samples for 
SEM measurements were prepared by putting one drop 
of an approximately 0.5 g·L−1 MM dispersion on a sili-
con wafer and dried for at least 4 h. The samples were 
then sputtered with 4 nm Au using a Quorum PP3010T-
Cryo chamber with integrated Q150T-Es high-end sputter 
coater.

Size exclusion chromatography (SEC). Information 
about number-average molecular weight (Mn) and disper-
sity (Đ = Mw/Mn) were obtained by SEC. The polymer was 
dissolved in THF at a concentration of 1.5 g·L−1 and the 
solution was then filtered through a PTFE syringe filter 
(pore size of 0.2 µm) prior to being measured on a 1260 
Infinity Instrument (PSS/Agilent, Mainz). The device 
was equipped with an isocratic pump, SDV PSS columns 
with porosities ranging from 102 – 106 Å, a differential 
refractometer, and a UV–Vis multiwavelength detec-
tor. For the synthesized hPS, PS standards were used for 
calibration (PSS/Agilent, Mainz) with molecular weights 
ranging from 1000 to 1 000 000 g·mol–1 and narrow size 

Table 1   SBM or SBM/hP used 
in this work

a  Subscripts are volume fractions of the blocks, φABC, superscripts the Mn (kg∙mol−1) determined via SEC 
and 1H-NMR. b Dispersity of SBM terpolymers obtained from SEC with PS standards in THF as eluent. 
c Added volume fraction φhP. d Final composition after blending φABC. Subscripts denote the combined 
volume fraction of the block and hP; superscripts show the Mn of the original SBM. e Morphologies: 
ll = lamella-lamella, lpl = lamella-perforated lamella, lr = lamella-ring, coc = cylinder-on-cylinder

Polymera Đb Added vol% hP (≈φhP)c Final compositiond Morphologye MM shape

S32B40M28
125 1.05 - S32B40M28

125 ll spherical
 + 55% hPS (φPS = 0.18) S50B29M21 lpl spherical

S50B30M20
159 1.09 - S50B30M20

159 lpl spherical
S59B16M25

119 1.11 - S59B16M25
119 lr spherical

 + 20% hPS (φPS = 0.11) S70B11M19 coc spherical
S33B23M44

100 1.10 - S33B23M44
100 coc spherical

 + 20% hPS (φPS = 0.06) S39B21M40 lpl spherical
 + 40% hPS (φPS = 0.13) S46B18M36 lr spherical
 + 30% hPB (φPB = 0.06) S30B29M41 coc/ll prolate ellipsoid
 + 55% hPB (φPB = 0.12) S28B35M37 ll prolate ellipsoid

 + 15% hPM (φPM = 0.07) S29B20M51 coc spherical
 + 25% hPM (φPM = 0.12) S26B18M56 coc spherical

S41B25M34
143 1.09 - S41B25M34

143 lpl prolate ellipsoid
 + 50% hPS (φPS = 0.20) S61B16M23 lr prolate ellipsoid

S74B12M14
89 1.06 - S74B12M14

89 coc spherical
 + 150% hPB (φPB = 0.17) S60B29M11 coc/hPB prolate-ellipsoid
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distributions. For the synthesized hPM, PM standards were 
used in the same Mn-range.

Results and Discussion

Fabrication of MMs. All MMs (SBM or SBM/hP) were 
fabricated according to the following procedure. First, 
polymers were separately dissolved in chloroform (CHCl3) 
at concentrations of cSBM = 10 g∙L−1 or chP = 20 g∙L−1. 
Depending on the desired blend composition, the SBM solu-
tion was mixed with a predetermined amount of hP solu-
tion. The mixture was then emulsified with an aqueous SDS 
solution (cSDS = 5 g∙L−1) using the SPG membrane setup 
with a pore diameter of 600 nm. The organic solution was 
pushed through the membrane using pressurized Argon and 
the emulsion droplets were sheared off of the membrane by 
stirring. CHCl3 evaporated over the course of several days 
under continuous stirring, which led to the formation of solid 
MMs. The blend compositions were chosen to move between 
areas of the ternary microphase diagram with known mor-
phologies (unblended SBMs) to verify whether hP blending 
is able to replicate the morphology of one SBM by blending 
another. Of the investigated SBM terpolymers or SBM/hP 
blends, we were able to induce morphology transitions from 
lamella-lamella (ll) to lamella-perforated lamella (lpl), from 
lpl to lamella-ring (lr), from lr to cylinder-on-cylinder (coc), 
and from coc to ll, lpl, and lr. The morphologies will be 

discussed in more detail in the individual sections below. An 
overview of the SBM and SBM/hP morphologies in confine-
ment can be found in Fig. 1.

Morphological transition through hPS blending. Here 
and in the following, we will move through the ternary 
microphase diagram shown in Fig. 1, starting in the cyan area 
(ll-morphology) and increase the hPS content towards the 
red area (coc-morphology), i.e., we first transition from cyan 
to purple, then to dark blue and finally to red. We start by 
adding 55 vol% hPS relative to the PS block of S32B40M28

125 
equaling to an increase of φPS = 0.18 to reach a final com-
position of S50B29M21 (Fig. 2a). According to DLS, all pro-
duced MMs show a monomodal and narrow size distribution 
of around dh ≈ 600 nm irrespective of blending (Figure S1). 
The addition of hPS (or any hP) does not negatively affect 
the stability of the emulsion droplets or disturb the micro-
phase separation during MM solidification. The unblended 
S32B40M28

125 originally formed spherical MMs with a con-
centric ll-morphology. The surface appears smooth (Fig. 2b) 
as PM forms the outermost shell, followed by a dark PB 
lamella (stained with OsO4) and a thicker, gray PS lamella. 
This pattern (MBSSBM) alternates towards the center of the 
MM. This structure is expected as all blocks have similar 
volume fractions. After blending with hPS to S50B29M21, 
we still find a concentric arrangement and a spherical MM 
(Fig. 2c), but the PB domain changed its appearance from 
a continuous lamella (dark line) to a discontinuous pattern 
(dark dotted line). The structural transition is induced as the 

Fig. 1   Ternary microphase diagram of SBM and SBM/hP blends. 
The different morphologies are color coded. SBM morphologies are 
represented by empty diamonds, while SBM/hP blends are shown 

as filled triangles. The color of the triangle represents the homopol-
ymer that was used for blending: green = hPS, black = hPB and 
orange = hPM
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hPS accumulates in the PS domains, resulting in a distinct 
swelling of the PS lamellae, as evidenced by the increase 
of lamella width (w) from wlam, PS ≈ 23 nm to wlam, PS ≈ 29 
nm. The incorporation of the hPS also leads to a relative 
decrease of φPB from 0.40 to 0.30, which lies below the 
ll-lpl transition value of around φPB, ll↔lpl ≈ 0.36, so that 
PB forms a perforated lamella, yielding an lpl-morphology.
[25, 60] Comparing this morphology with the unblended 
S50B30M20

159 with similar volume fractions of the blocks, 
we also find the lpl-morphology (Fig. 2d)[60] with identical 
features as compared to the blended S50B29M21. The main 
differences are the larger domain sizes that originate from 
the larger molecular weight of the unblended S50B30M20

159. 
Blending thus allows to migrate between different areas of 
the ternary microphase diagram.

Blending does, however, has its limits as demonstrated 
by the addition of the relatively large 150 vol% hPB rela-
tive to the PB block of S74B12M14

89, equaling to an increase 
of φPB = 0.17 to obtain S60B29M11 (Figure S2a). There, we 
observed phase separation of the added hPB instead of 
blending. The morphology of S74B12M14

89 can be ascribed 
to a cylinder-on-cylinder morphology within a PS matrix, 
as previously found for SBT triblock terpolymers with sim-
ilar block volume fractions [43]. The blended S60B29M11 

retains the morphology, despite the increase of φPB = 0.12 
to φPB = 0.29, mainly because the hPB accumulates at the 
tip of the MMs (Figure S2b). The hPB compartment can 
be clearly seen in TEM as dark collapsed areas, but also in 
the SEM as flattened or dimpled areas. This behavior was 
unexpected, as the M ≈ 2 kg∙mol−1 of the homopolymer is 5 
times smaller than the Mn, PB ≈ 10 kg∙mol−1 of the PB block, 
and we therefor should be working in the wet brush regime 
[61, 68]. One explanation might be that the PB block has 
an overall small φPB = 0.12 and the microdomain may not 
be able to take up larger amounts of additional hPB before 
being saturated, i.e. the PB blocks are stretched to a critical 
threshold and unable to accommodate further hPB.

Knowing that larger volume fractions of hP will lead to 
phase separation, we continue our path in the ternary micro-
phase diagram from the lpl-morphology (purple area) into 
the lr-morphology (dark blue area) by feeding PS into an 
unblended SBM (Fig. 3a). S41B25M34

143 develops an lpl-
morphology in elliptic MMs with axially stacked orienta-
tion (Fig. 3b). In the axially stacked case, PS/PM lamellae 
are clearly visible as linear stripes (discs), whereas the per-
forated lamellae of PB can be identified by a combination 
of dark dots and diagonal stripes. Compared to the spheri-
cal shape that we usually find for the MMs, the ellipsoidal 

Fig. 2   Morphological transition of the ll-to lpl-morphology  by 
blending of S32B40M28

125 with 55 vol% hPS. a) Ternary microphase 
diagram with blending pathway indicated by the arrow. b) TEM 
image of S32B40M28

125 MMs with ll-morphology (SEM in inset). c) 

TEM image of S50B29M21 MMs with lpl-morphology after blend-
ing (SEM in inset). d) The lpl-morphology of S50B30M20

159. PB was 
stained with OsO4 and appears darkest. Scale bars are 200 nm

Fig. 3   Morphological transition of lpl- to lr-morphology by blend-
ing S41B25M34

143 with 50 vol% hPS. a) Ternary microphase diagram 
with blending pathway indicated by the arrow. TEM and SEM (inset) 

images of b) unblended S41B25M34
143 and c) S61B16M23 blended with 

50 vol% hPS. PB was stained with OsO4 and appears darkest. Scale 
bars are 200 nm
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shape and the axial stacking of the lamellae are likely caused 
by an interplay of two competing contributions. While the 
preferred interaction of the surfactant (here: SDS) with 
one of the blocks (here: the PM block) typically favors 
the spherical arrangement [36], a relatively high Mn (as in 
S41B25M34

143) entropically impedes bending of the lamel-
lae and therefor favors a flat, axially stacked arrangement. 
Blending S41B25M34

143 with 50 vol% hPS relative to the PS 
block is equal to an increase in φPS = 0.20 to reach a final 
composition of S61B16M23. This change in composition trig-
gers a morphological transition of the PB microdomain into 
the lr-morphology. The thickness of the PS lamellae did not 
noticeably increase through blending (from 40 to 41 nm), 
but the lamella thickness is more homogeneous throughout 
the MM. The addition of low Mn hPS also appeared to cause 
a relaxation of the morphology, because the PS lamellae are 
more planar across the MM diameter instead of being bent, 
and the MM surface appears smoother than before in SEM 
and TEM.

As we continue to enrich the PS domain, we observed 
MM with a PS matrix, which requires the PB and PM micro-
domains to change their shape as well (Fig. 4). Addition 
of 20 vol% hPS relative to the PS block of S59B16M25

119 
is equal to an increase of φPS = 0.11 to obtain S70B11M19. 
Since S59B16M25

119 possess an lr-morphology (Fig. 4a), we 
expected the transition of at least two microdomains when 
φPS is increased [69]. Whereas the MMs still show a spheri-
cal structure with a smooth surface in SEM, TEM shows 
that PS now forms the matrix while PM changed into hex-
agonally packed cylinders (Fig. 4c). The PB domains main-
tain their cylindrical form and diameter, dcyl, PB ≈ 15 nm, 
resulting in an overall coc-morphology. The morphological 
change of PM is accompanied by an increase in the micro-
domain size from dcyl PM ≈ 27 nm in the blend compared to 
the thickness of the PM lamellae wlam, PM ≈ 20 nm before 
blending. Since the volume fraction φPM decreases during 
blending, an increase in PM domain size seems counterin-
tuitive at first. However, the total volume of the PM block 

remains the same while the lamella microdomains separate 
into cylinders, which – at constant chain length – will result 
in a larger diameter.

Morphological transitions by blending hPS, hPB, or 
hPM. We next utilize S33B23M44

100, whose composition 
resides within the coc-morphology with PB cylinders on 
PS cylinders embedded in a PM matrix (Fig. 5a, b), but is 
likewise located near the lpl region (blue region in Fig. 5a) 
and the ll region (purple region in Fig. 5a). Thus, multi-
ple transitions could be expected after blending. First, we 
blended S33B23M44

100 with hPS to obtain S39B21M40 (20 
vol%; φPS = 0.06) and S46B18M36 (40 vol%; φPS = 0.13). The 
morphology of S39B21M40 already shows signs of change 
towards an lpl-morphology but is still in a transition state 
so that the MM appears disordered (Figure S3)[70]. While 
merging of PS cylinders into lamellae takes place to some 
extent, the added hPS is not sufficient to induce a full transi-
tion. Blending a larger amount of hPS to reach S46B18M36 
fully realized the transition and continuous PS lamellae are 
observed (Fig. 5c). During merging of cylinders, the PS 
domain decreases in thickness from cylinders with a diam-
eter of dcyl, PS ≈ 40 nm to lamellae with a width of wlam, PS 
≈ 25 nm. At the same time, the PM matrix adopts a lamella 
morphology as well, and PB now forms rings instead of 
straight cylinders due to the concentric PS/PM lamellae.

Next, we blended S33B23M44
100 with hPM to obtain 

S29B20M51 (15 vol%; φPM = 0.07; Fig. 5d) and S26B18M56 
(25 vol%; φPM = 0.12; Figure S3d). Both blends led to a coc 
morphology, but now the packing of PS domains is clearly 
hexagonal instead of tetragonal. The PB cylinders are at the 
interface between the PS cylinders and the PM matrix. Even 
though we did not observe a change in the microdomains, the 
results demonstrate that blending also allows to induce rather 
subtle changes in morphologies, making it a powerful tool 
for finetuning. Finally, we blended S33B23M44

100 with hPB to 
S30B29M40 (30 vol%;φPB = 0.06; Figure S3e) and S28B35M37 
(55 vol%; φPB = 0.12; Fig. 5e). In these blended composi-
tions, all blocks have about equal volume fractions for which 

Fig. 4   Blending of S59B16M25
119 with 20 vol% hPS. a) Ternary 

microphase diagram with blending pathway indicated by the arrow. 
b) TEM and SEM (inset) images of unblended S59B16M25

119 and c) of 

S70B11M19 blended with 20 vol% hPS. PB was stained with OsO4 and 
appears darkest. Scale bars are 200 nm
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a transition to the ll-morphology is expected. For S30B29M40 
(Figure S3e), we already partially see this trend, i.e., PS and 
PM clearly transition to lamellae, while PB mostly forms 
perforated lamellae, leading to the lpl-morphology. Again, 
the addition of more hPB led to continuous PB lamellae and 
a homogeneous axially stacked ll-morphology (Fig. 5e). 
Merging of PB cylinders towards lamellae is accompanied by 
merging of PS cylinders into lamellae with a thickness of wPS 
≈ 18 nm. Since no PS was added to the system, the decrease 
in PS domain size is more pronounced than discussed above 
(S46B18M36

100, Fig. 5c). In comparison, the decrease of the 
PB domain size is rather small, i.e., the width of the lamellae, 
wPB ≈ 17 nm, is only about 2 nm smaller than the diameter 
of the PB cylinders found for S33B23M44

100.

Conclusions

In conclusion, we showed that blending linear SBM triblock 
terpolymers with homopolymers is an effective strategy for 
tuning the inner structure of terpolymer-based multicompart-
ment microparticles. We induced and analyzed one-, two- or 
three-compartment-transitions in the particle morphologies 
and demonstrated the versatility and potential of this approach. 
In parallel, we investigated possible issues and limitations 

related to over-blending of the homopolymer, such as phase 
separation of the added homopolymers. Our results demon-
strate that this blending approach successfully replicates the 
morphologies of pure SBM terpolymers, thereby avoiding 
the time- and cost-intensive synthesis of different terpolymer 
compositions. Looking ahead, we aim to further leverage the 
acquired knowledge and potential for the structural analysis of 
triblock terpolymer based microparticles and the establishment 
of a ternary microphase diagram as a comprehensive guideline 
for targeting specific morphologies. Future research will also 
investigate the simultaneous blending with two homopolymers 
to expand the scope of this approach.
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