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ABSTRACT

The Bayesian error estimation functional (BEEF-vdW) is widely used in surface science and catalysis, because it provides a balanced descrip-
tion of molecular, surface, and solid state systems, along with reliable error estimates. However, the nonlocal van-der-Waals density functional
(vdW-DF2) employed in BEEF-vdW can be computationally costly and displays relatively low accuracy for molecular systems. Therefore, this
work explores whether atom-pairwise and many-body dispersion treatments represent viable alternatives to using the vdW-DF2 functional
with BEEF-vdW. To this end, we investigate the performance of commonly used atom-pairwise corrections [i.e., the Tkatchenko–Scheffler
(TS) and the exchange-hole dipole moment (XDM) approaches] and many-body dispersion (MBD) treatments for molecular, surface, and
solid-state systems. The results indicate that atom-pairwise methods such as TS and particularly XDM provide a good balance of cost and
accuracy across all systems.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0248728

I. INTRODUCTION

Semilocal exchange–correlation (xc) functionals are popular in
condensed matter physics and surface science due to their favorable
cost–accuracy ratio. However, the simulations of surfaces, interfaces,
and catalytic reactions require a balanced description of molecu-
lar, surface, and solid state systems, including long-range van der
Waals (vdW) interactions. Unfortunately, because of the inher-
ently local nature of semilocal xc functionals, they are not capable
of describing long-range correlation effects comprehensively. As a
result, additional dispersion treatments must be used to accurately
represent dispersion-bound systems. To this end, the total energy
of the semilocal DFT method is corrected by a long-range dis-
persion contribution EvdW. This contribution is most commonly
obtained from atom-pairwise corrections,1–4 many-body dispersion
methods,5,6 or non-local functionals.7–11 Unfortunately, the interop-
erability of a given semilocal xc functional and a given long-range

dispersion method is not automatically guaranteed but has to be
carefully calibrated for molecular, surface, and solid state properties.

A popular general-purpose functional in condensed matter
physics and surface science is the BEEF-vdW method proposed
by Wellendorff et al.,12 which consists of a customized semilocal
xc functional and the nonlocal vdW-DF210 correction. In addition
to providing a balanced description of bulk and surface proper-
ties, the BEEF-vdW functional provides error estimates, which can
be propagated through complex multiscale models.13 This has, for
example, been used formodeling the conversion of exhaust gas emis-
sions from stoichiometric gasoline combustion,14 catalytic ammonia
synthesis,15 and syngas conversion.16

A practical disadvantage of BEEF-vdW is that the evaluation
of the nonlocal correlation energy for the vdW-DF2 functional,
in principle, requires solving a double integral over the spatial
coordinates, unlike the single integral evaluation for the semilocal
BEEF functional.17 This causes additional computational overhead.
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While efficient Fast Fourier Transform (FFT) implementations18 for
performing the double integration can reduce this computational
cost significantly, they are not available in all electronic structure
codes, limiting the availability of the BEEF-vdWmethod. More fun-
damentally, however, vdW-DF2 has shown the tendency to overesti-
mate lattice constants and molecule–molecule interactions, creating
a case for exploring alternatives to vdW-DF2.17

Alternatives to using nonlocal vdW functionals are com-
putationally efficient atom-pairwise dispersion treatments, such
as Grimme’s D3,1 D419 methods, the Tkatchenko–Scheffler
(TS) approach,2 and the exchange-hole dipole moment (XDM)
method.3,4 There are also various many-body dispersion approaches
(MBD@rsSCS and MBD-NL)5,6,20 that extend this concept beyond
pairwise interactions. In this work, we explore whether the per-
formance of the nonlocal vdW-DF2 functional in BEEF-vdW can
be emulated or even surpassed by pairwise or many-body dis-
persion treatments. With this goal in mind, we parameterize the
atom-pairwise and many-body dispersion corrections TS, XDM,
MBD@rsSCS, andMBD-NL for use with the semilocal part of BEEF-
vdW. Subsequently, we explore the performance of the resulting
methods for a range of solid state, surface, and adsorbate-surface
systems. For the self-consistency of the current paper, the different
approaches used are briefly reviewed.

II. THEORY

In the following, the original nonlocal BEEF-vdW functional
as described in Ref. 12 will be denoted as BEEF-vdW(DF2). Note
that prior to the development of BEEF-vdW(DF2), Mortensen et al.
reported a related non-dispersion-corrected GGA functional, which
is sometimes also termed BEEF.21 This is distinct from the semilo-
cal xc contribution to the BEEF-vdW functional. For simplicity (and
because the original functional by Mortensen et al. is not in com-
mon use), we will henceforth use the BEEF acronym to refer to the
semilocal part of the BEEF-vdW functional. The xc energy of the

dispersion corrected BEEF-vdW functional EBEEF−vdW(disp)
xc is given

by the evaluation of a semilocal xc contribution EBEEF
xc and a vdW

correction term EvdW,12

E
BEEF−vdW(disp)
xc ≙ EBEEF

xc + EvdW. (1)

Evaluations of these BEEF-vdW variants without and with alter-
native dispersion treatments will be denoted as BEEF-vdW(none),
BEEF-vdW(TS), BEEF-vdW(XDM), BEEF-vdW(MBD),
BEEF-vdW(MBD-NL), and BEEF-vdW(DF2).

The semilocal contribution is given by

E
BEEF
xc ≙ EBEEF

x + acELDA
c + (1 − ac)EPBE

c . (2)

Here, EBEEF
x is a parameterized GGA exchange functional and ac is

an empirical parameter mixing local and semilocal correlation con-
tributions ELDA

c and EPBE
c .22,23 As usual, the exchange term EBEEF

x is
given by

E
BEEF
x ≙ ∫ ϵ

LDA
x (n(r))FBEEF

x (s)dr, (3)

with the exchange enhancement factor FBEEF
x (s), the electron density

n(r), and its reduced density gradient s, which provides a measure
of the inhomogeneity of the density by relating the gradient of the
electron density∇n(r) to n(r),

s ≙ ∣∇n(r)∣
2kFn(r) (4)

with kF ≙ (3π2n(r))1/3.
The exchange enhancement factor FBEEF

x (s) is given by12

F
BEEF
x (s) ≙ ∑

m

amBm[ 2s2

4 + s2 − 1], (5)

with Bm being the mth-order Legendre polynomials. The exchange
coefficients am (of which there are Mx ≙ 30) are empirically fitted
and determine the shape of Fx. This is shown in Fig. 1, com-
pared to other common GGA functionals. Reduced density gradi-
ents s within the range of 0 < s ≤ 3 particularly strongly influence
the exchange repulsion between non-bonded fragments,27,28 which
must be properly matched to the dispersion correction in order to
obtain an accurate description of vdW interactions. For 0 < s ≤ 2.5,
FBEEF
x (s) is steeply increasing, leading to a rather repulsive exchange

energy contribution similar to other surface-science and molecular
functionals, such as revPBE and RPBE; see Fig. 1. The repulsive-
ness of BEEF exchange has the advantage that nonphysical bonding
effects are minimized, which avoids overcorrection and double
counting of dispersion contributions. In addition, GGA function-
als with steeply rising enhancement factors are known to obtain
accurate atomization energies.29 Meanwhile, combining a func-
tional with a steeply rising exchange enhancement factor, such
as revPBE, with nonlocal functionals of the vdW-DF family has

FIG. 1. (a) The exchange enhance-
ment factor Fx as a function of the
reduced density gradient s for the
BEEF,12 RPBE,24 revPBE,25 PBE,23

and PBEsol26 GGA functionals. (b) Per-
formance of BEEF-vdW(none) compared
to RPBE, revPBE, PBE, and PBEsol for
lattice constants of 25 covalently bound
and metallic crystals from Sol27Lc.12
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shown to cause systematic overestimation of intermolecular bind-
ing distances, molecule-to-surface adsorption distances, and lattice
constants.30–33 Conversely, less repulsive functionals such as PBE
and PBEsol tend to overestimate lattice constants less or may even
underestimate them.34

A. Nonlocal vdW-DF2 dispersion treatment

BEEF-vdW(DF2) uses vdW-DF210 to compute the dispersion
contribution EvdW. This functional is part of a family of nonlo-
cal functionals9,10,35 based on the local polarizability approximation,
originally developed for layered systems.8,36,37 In principle, it can
be seamlessly combined with any semilocal functional. However,
the performance of the combined method strongly depends on the
properties of the underlying functional.38

The functionals of the vdW-DF family use the dielectric
response of the uniform electron gas (UEG) with electron density
n(r) to compute a nonlocal correlation contribution derived from
the adiabatic connection formula (ACF),8,9,37

E
nl
c ≙ ∫ ∞

0

1
2π

tr∥ln (1 −V χ̃) − ln ϵ(ω)∥d(−iω)
2π

, (6)

with iω denoting the imaginary frequencies, χ̃ being the density
response to a self-consistent potential with interfragment contribu-
tions removed,37 V being the electron–electron Coulomb interac-
tion, and ϵ(ω) being the dielectric function. Equation (6) can be
expanded to second order in terms of the effective plasmon prop-

agator Sxc with ϵ(ω) ≙ eSxc(ω) ≈ 1 + Sxc(ω) + Sxc(ω)
2

2! and using the

Fourier transform of Sxc, to obtain
9,35

E
nl
c ∥n∥ ≈∭ [1 − (q̂ ⋅ q̂ ′)2]Sxc(q,q′;ω)

× Sxc(q′,q;ω)d3q′d3qd(−iω)
4π

. (7)

This equation can be rewritten using a kernel ϕ∥n∥(r, r′), describing
the effective interaction between the electron density at two points
in space n(r′) and n(r′),7,9,10

E
nl
c ∥n∥ ≙ 1

2∬ n(r)ϕ∥n∥(r, r′)n(r′)d3r′d3r. (8)

To develop computationally tractable expressions of the inter-
action kernel ϕ, vdW functionals approximate the effective plasmon
propagator, typically using appropriate expressions for the plas-
mon frequency ωq(r). Different approximations for ωq(r) exist,
leading to various nonlocal vdW functionals, including vdW-
DF1, vdW-DF2, vdW-DF3, as well as VV0939 and VV10.40 For
vdW-DF2, the plasmon dispersion is rewritten in terms of q0(r),
which is given by9,10,35

q0(r) ≙ ϵintxc (r)
ϵLDAx

kF(r). (9)

Here, the internal GGA functional ϵintxc (r) is approximated by an
LDA exchange–correlation contribution and a quadratic gradient
correction,9,10,35

ϵ
int
xc (r) ≙ ϵLDAxc − ϵLDAxc Zab

s2

9
. (10)

vdW-DF1 and vdW-DF2 only differ by the gradient coefficient
Zab.

9,10 For vdW-DF1, Zab ≙ −0.8491 is used, which was parameter-
ized for use with the revPBE functional.9,41 vdW-DF1 gives reliable
results for adsorbed molecules and solid-state materials but overes-
timates molecule–molecule interaction distances.17 This deficiency
for molecule–molecule interactions is somewhat reduced by using
vdW-DF2, which simply entails setting Zab ≙ −1.887 in the inter-
nal functional designed for the less repulsive PW86R28,42 exchange
functional.10,35 However, this reparameterization causes vdW-DF2
to underestimate dispersion coefficients more than other vdW-DF
methods.36

B. Atom-pairwise and many-body dispersion
methods

A variety of atom-pairwise andmany-body dispersionmethods
are known in the literature. Herein, we focus on the TS2 and XDM3,4

methods as representative atom-pairwise treatments, as well as the
MBD@rsSCS5 and MBD-NL6 many-body methods.

1. Dispersion energy of interacting quantum
harmonic oscillators

Atom-pairwise and many-body dispersion treatments are
based on the long-range description of the dipole–dipole disper-
sion energy from interacting quantum harmonic oscillators (QHOs)
of charge densities, which are used to model polarizable atoms in
a molecule or a material.43,44 The dipole–dipole dispersion energy
Edisp,ab between two atoms a, b can be described by the instantaneous
interaction between two QHOs with imaginary angular frequency
iω,45

Edisp,ab ≙ − h̵

2π
∑
αγβδ

T
αγ

ab
T
βδ

ab∫ ∞

0
α
αβ
a (iω)αγδb (iω)dω. (11)

Here, ααβa and αγδ
b
represent the polarizability tensors of atoms a and

b, respectively. Tαγ

ab
and T

βδ

ab
are interaction tensors describing the

dipole interaction between sites Ra and Rb given by45

T
αβ

ab
≙ ∇α∇β

1
Rab

≙ 3Rα
abR

β

ab
− (Rab)2δαβ
(Rab)5 , (12)

where Rab ≙ ∣Ra − Rb∣ denotes the distance between Ra and Rb and∇α ≙ ∂

∂Rα
ab
. Considering that Tαγ

ab
, Tβδ

ab
∝ 1

R3
ab

, the dispersion energy,

see Eq. (11), can be rewritten with the dipole–dipole dispersion
coefficient C6,ab as

Edisp,ab ≙ −C6,ab

R6
ab

, (13)

which gives the correct long-range behavior ∝ 1
R6 . As a result, the

accuracy of the long-range dispersion term Edisp,ab is largely deter-
mined by the accuracy of the C6,ab coefficients. Consequently, we
are faced with the problem of how to evaluate C6 for arbitrary
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dispersion-bound systems from isolated atoms to molecules and
extended systems.

2. Atom-pairwise corrections

Simplifying the problem to isotropic polarizabilities
ᾱa(iω), ᾱb(iω), the isotropic atom-pairwise C6,ab dispersion
coefficient is given by the Casimir–Polder integral,46

C6,ab ≙ 3
π∫

∞

0
ᾱa(iω)ᾱb(iω) dω. (14)

Now, distributing a set of atoms {a} to molecule A and atoms {b}
to molecule B, the dispersion energy Edisp,AB for molecules A, B can
be given by the atom-pairwise dispersion energy of atom-pairwise
a ∈ A, b ∈ B,45

Edisp,AB ≙ −∑
a,b

C6,ab

R6
ab

, (15)

leading to the pairwise additive description of the vdW interaction
term Edisp,AB, which gives the correct long-range behavior ∝ 1

R6 .
However, it is important to remember that polarizabilities and dis-
persion coefficients within a molecule or a fragment can be highly
anisotropic and are not simply the sum of the properties of the iso-
lated atoms, whichmake up themolecule.47 In fact, simply using free
atom polarizabilities and dispersion coefficients would result in large
errors for Edisp. This is because the polarizability of a given atom
in a molecule is affected by its environment. Nonetheless, we can
define effective polarizabilities ᾱa,eff, which take these environmental
effects into account. With these, and effective atom-pairwise disper-
sion coefficients C6,ab,eff, reliable Edisp can be recovered.2 How ᾱa,eff
and/or C6,ab,eff are approximated differs between the atom-pairwise
methods discussed below, each with its unique set of strengths and
weaknesses.

a. Tkatchenko–Scheffler method. We start with the method
developed by Tkatchenko and Scheffler (TS).2 In order to avoid hav-
ing to evaluate the frequency dependent polarizabilities ᾱ(iω) in the
Casimir–Polder integral [Eq. (14)] over all ω, ᾱ(iω) is first expanded
as a Padé series.48 The leading term in this series is

ᾱ
1
a(w) ≙ ᾱa,free

1 − ( ω
ηa
)2 (16)

with the effective frequency ηa. This leads to the London formula for
C6,ab,49

C6,ab ≙ 3
2
[ ηAηB

ηA + ηB ᾱa,freeᾱb,free], (17)

using free-atom references for the polarizability ᾱa,free, ᾱb,free. C6,ab

can then be rewritten in terms of homonuclear C6,aa,C6,bb by using
ηa ≙ 4

3
C6,aa

ᾱ2a,free
[derived from Eq. (17) for a ≙ b],2

C6,ab ≙ 2C6,aaC6,bb

[ αb,free
αa,free

C6,aa + αa,free
αb,free

C6,bb] . (18)

As mentioned above, using free-atom references for C6,aa,C6,bb

does not accurately reflect the C6,aa,C6,bb coefficients of atoms a, b
within a molecule or a solid. Therefore, the TS method uses effec-
tive dispersion coefficients C6,aa,eff,C6,bb,eff, which are defined via the
relationship between the polarizability and the atomic volume,2,50

resulting in

C6,aa,eff ≙ ( Va,eff

Va,free
)2C6,aa,free (19)

with free-atom reference values C6,aa,free.
The effective volume Va,eff of atom a in molecule A is obtained

by the Hirshfeld partitioning of the density n(r) with Hirshfeld
weights wa(r),2

Va,eff ≙ ∫ r
3
wa(r)n(r)d3r. (20)

Importantly, TS was specifically designed to describe molecular
vdW interactions but tends to overestimate them for metallic sys-
tems.51 This can be attributed to several factors. First, semilocal
GGA functionals already offer a reasonable description of the total
energies and polarizabilities of metallic systems, as they reduce to
LDA in regions of homogeneous electron density. Second, TS as
an atom-in-molecule approach fails to account for screening effects
and delocalized states in metallic systems, resulting in a signifi-
cant overestimation of C6 coefficients for bulk metals.52 As a result,
these combined effects lead to overestimated cohesive energies and
underestimated lattice constants when combining TS with semilo-
cal xc functionals for metallic systems.51 For such cases, pairwise
metal–metal TS dispersion contributions are usually excluded.53 In
addition, as Hirshfeld partitioning, see Eq. (20), uses neutral free
atom references, errors for ionic materials are expected.54 Iterative
Hirshfeld partitioning54 addresses this issue but is not widely avail-
able in electronic structure codes and complicates the calculation of
analytical energy gradients.

b. Exchange-hole dipole moment. Similarly to TS, XDM3,4,55

computes pairwise dispersion coefficients CXDM
6,ab based on the elec-

trostatic interaction of the instantaneous dipoles on atoms a, b. Here,
the source of these instantaneous dipoles is assumed to be the dipole
moment of the corresponding exchange hole.55,56 The dispersion
coefficients CXDM

6,ab are then given by55

C
XDM
6,ab ≙ ⟨d2X⟩a⟨d2X⟩bᾱa,effᾱb,eff⟨d2X⟩aᾱb,eff + ⟨d2X⟩bᾱa,eff (21)

with the exchange-hole dipole moment ⟨d2Xσ⟩ given by55

⟨d2Xσ⟩ ≙ ∫ ρσ(r1)d2Xσ(r1)d3r1. (22)

d2Xσ is the magnitude of the dipole moments of the electron and its
exchange hole squared. The polarizabilities ᾱa,eff, ᾱb,eff are computed
similarly to TS via Hirshfeld partitioning from free atomic densities
and polarizabilities, leading to similar limitations for ionic materi-
als. However, XDM can accurately describe molecular interactions
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as well as covalent solids and metals.4 For optimal performance of
dispersion-corrected density functionals using the XDM method,
Price et al. recommend using dispersionless exchange functionals,
such as B86b.52 In this context, the term dispersionless means
imposing a constraint on the large gradient limit of the exchange
enhancement factor Fx(s),

lim
s→∞

Fx(s) ∼ s2/5. (23)

This constraint makes the corresponding exchange functional
highly repulsive.52,57 In contrast, functionals that do not satisfy
this constraint may mimic dispersion-like behavior in the short
range, resulting in double counting of dispersion interactions and
overbinding effects.52 In practice, dispersionless functionals are
excellent for systems dominated by non-covalent interactions (such
as molecular crystals), but not necessarily good general-purpose
methods for molecules, solids, and surfaces. Fortunately, overcount-
ing effects can to a large extent be absorbed by appropriately
parameterized damping functions (see below).

3. Many-body dispersion methods

Atom-pairwise methods can accurately predict long-range
dipole–dipole dispersion interactions but neglect the anisotropy of
atomic environments, screening, and many-body effects. Many-
body dispersion methods such as MBD@rsSCS5,20 and MBD-NL6

address these shortcomings using a Random Phase Approximation
(RPA) formalism and anisotropic polarizabilities.58

To this end, MBD@rsSCS and MBD-NL start from the uncou-
pled dipole description of QHOs and add many-body interactions
by computing the energy of coupled QHOs using the MBD Hamil-
tonian. The MBD Hamiltonian for the interaction of N QHOs
on atoms a with polarization weight displacement μa and the
long-range dipole–dipole interaction tensor TLR

ab is given by

HMBD ≙ − N∑
a=1

1
2
∇2

μa + N∑
a=1

1
2
ω
2
aμ

2
a + N∑

a>b

ωaωb

√
αa(0)αb(0)μ+a TLR

ab μb.

(24)

Diagonalizing the MBD Hamiltonian in the basis of QHOs gives
modes with 3N squared eigenfrequencies λi ≙ ω2

i . The MBD energy
is then given by the zero-point energy difference of coupled QHOs
and uncoupled QHOs,5

EMBD ≙ 1
2

3N∑
i=1

√
λi − 3

2

N∑
a=1

ωa. (25)

The MBD@rsSCS method builds on the TS dispersion cor-
rection. In particular, TS provides atom-pairwise isotropic atomic
polarizabilities αTSa as starting points. To include the effects of short-
range electrodynamic screening and anisotropy of chemical bond-
ing on the polarizabilities, range-separated self-consistent screening
(rsSCS) of the short-range atomic polarizabilities with the short-
range dipole–dipole interaction tensor Ta,SR is performed.20 This
involves solving a Dyson-like equation for each atom a, from which
screened polarizabilities αrsSCSa (iω) and their screened characteristic
frequencies ωa are obtained self-consistently,5

α
rsSCS
a (iω) ≙ αTSa,SR(iω) − αTSa (iω)Taα

rsSCS
a (iω). (26)

To ensure the convergence of these self-consistent equations, a
robust electron density partitioning scheme for obtaining the input
polarizabilities αTSa (iω) [see Eq. (20)] must be used. An inadequate
partitioning into atomic fragments can lead to convergence issues
of the rsSCS scheme or highly overestimated polarizabilities. This
is, for example, observed for metallic systems with very delocalized
electron densities.6

In contrast, MBD-NL uses the VV10 (Vydrov and van Voorhis)
functional40 to obtain atomic polarizabilities by averaging over
αVV∥n∥(r,ω) for each atom a,

α
VV
a (ω) ≙ ∫ wa(r)g(I, χ)αVV∥n∥(r,ω)dr, (27)

with Hirshfeld weights wa, the local ionization potential I,59 and the
iso-orbital indicator function χ.60 To avoid double counting, a cut-
off function g(I, χ) from the SCAN functional is used.6 The VV10
polarizability functional is an approximation that is geared toward
solid systems and consequently does not reach the accuracy of high
level reference polarizabilities for free atoms. To ensure amore accu-
rate description, polarizabilities αrVVa are obtained by normalizing
the ratio of αVV,freea to highly accurate free atom values αref,freea ,6

α
rVV
a ≙ αVVa αref,freea

αVV,freea

. (28)

However, for highly polarized systems far from the free atom
description, MBD-NL might still underestimate polarizabilities and
consequently the dispersion interaction.

C. Damping functions

The dispersion energy of atom-pairwisemethods Edisp ∝ −C6,ab

R6
ab

[Eq. (15)] and many-body methods Edisp ∝ −Tab ⋅ Tab [Eq. (11)]
diverge in the short-range limit Rab → 0. To prevent this, and to
adapt the dispersion correction to the underlying short-ranged
xc functional, damping functions are employed. For pairwise
corrections, these take the form

Edisp ≙ − ∑
n=6,8,10

∑
a,b

Cn,ab

Rn
ab

fdamp(Rab) (29)

for the leading-order (C6,ab) and higher-order (C8,ab, C10,ab, . . .)
terms.

The damping function fdamp interpolates Edisp between

the asymptotic limits Edisp(Rab →∞) ≙ −∑n∑a,b
Cn,ab

Rn
ab

and

Edisp(Rab → 0) ≙ c with c being finite or zero. In the following,
the damping functions used for the TS and XDM methods are
introduced, although other variants exist.61–63 These consist of the
Wu–Yang (WY) and Becke–Johnson (BJ) functions, respectively.
The WY function is a Fermi-type function given by2,64

f
WJ
damp(Rab) ≙ 1

1 + exp [−d( Rab

sR ⋅RvdW,ab
− 1)] (30)

with parameters d, sR and pairwise reference vdW radii RvdW,ab. The
BJ damping function is given by65
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f
BJ
damp,n(Rab) ≙ Rn

ab

Rn
ab + (α1 ⋅ RvdW,ab + α2)n (31)

with parameters α1,α2 and pairwise reference vdW radii RvdW,ab.
The role of fdamp is twofold. On the one hand, it ensures that the

dispersion treatment does not cause singularities for small Rab. On
the other hand, it is crucial to ensure a reasonable description of sys-
tems going from the long-range dispersion interaction description
to the short-range semilocal xc functional. This is essential because
equilibrium geometries of dispersion-bound systems are often situ-
ated in the intermediate range. Therefore, the parameterization of
fdamp has to be adjusted to the used xc functional, although not all
parameters are necessarily functional-dependent. For example, the
damping strength d of the WY damping function has been shown to
have a robust performance for fixed d ≙ 20 regardless of the underly-
ing functional.66 In contrast, the onset of the damping (determined
by sR for the WY damping function and by α1 and α2 for the BJ
damping function) is highly functional dependent and consequently
has to be adjusted for each xc functional separately.

Similarly, the divergence of the many-body MBD@rsSCS and
MBD-NL methods is prevented by range-separating the short-(TSR) and long-range (TLR) components of the dipole–dipole
interaction tensor T,

TSR ≙ (1 − frange(Rab))T (32)

and

TLR ≙ T − TSR. (33)

For frange, a modified WY damping function with damping strength
d ≙ 6 is used.20 Note that the functional-specific parameter β for the
MBD methods corresponds to the parameter sR in Eq. (30).

D. Parameterization

Each of the atom-pairwise and many-body dispersion treat-
ments considered in this work (TS, XDM, MBD@rsSCS, and MBD-
NL) uses different approximations to describe dispersion interac-
tions and different empirical damping functions fdamp. Now, we aim
to adequately parameterize these corrections for use with the semilo-
cal BEEF xc functional. To facilitate a fair comparison between the
methods, we fit the functional specific parameters for the disper-
sion correction methods on the same dataset and loss function. The
dataset we use as a reference is the S22 dataset67 of CCSD(T)/CBS
extrapolated interaction energies from Takatani et al.,68 which is
routinely used to fit and benchmark methods for noncovalent inter-
actions. In particular, S22 was also used as a part of the parameter-
ization procedure of the BEEF-vdW(DF2) functional so that using
this dataset ensures consistency with the original functional.

The loss function for the parameterization was determined as
the root mean square error (RMSE) of the S22 dataset,

RMSE ≙
¿ÁÁÀ 1

N

N

∑
i=1

(EBEEF−vdW(disp) − ECCSD(T)/CBS)2. (34)

The xc specific parameters for each correction were optimized with
the Nelder–Mead algorithm.69,70 The resulting parameters can be
found in Table I.

TABLE I. Fitted functional dependent parameters of TS, MBD@rsSCS, MBD-NL, and
XDM for use with the BEEF xc functional. Constrained optimization was used for XDM
to ensure that the van der Waals radii in the BJ damping Rvdw,ab remain physically
meaningful, i.e., Rvdw,ab > 0. For details, see the supplementary material.

vdW treatment Fitted functional dependent parameters

TS sR ≙ 0.6038
MBD@rsSCS β ≙ 0.5522
MBD-NL β ≙ 0.5927
XDM a1 ≙ 1.6217, a2 ≙ −1.6217

This reveals that the damping functions result in relatively
short-ranged onsets of the correction. For example, the TS function
has sR ≙ 0.6038. For similarly repulsive surface-science function-
als such as revPBE or RPBE, comparable parameters are found
[sR(RPBE) ≙ 0.590, sR(revPBE) ≙ 0.585].71 In the literature, such
short onsets of the dispersion correction are attributed to non-
dispersionless xc functionals, which might impact the performance
of the semiempirical dispersion correction and result in the over-
stabilization of hydrogen bonding and the understabilization of
dispersion-bound systems for some types of dispersion correc-
tions.52 However, we note that the BEEF xc functional was originally
developed with the use of the nonlocal vdW-DF2 functional inmind.
Without vdW-DF2, the short-range correlation contributions from
vdW-DF2 will also be absent. This is bound to impact the short-
range behavior of the overall xc energy. Therefore, it is not surprising
that additive dispersion corrections might try to compensate for this
effect by using a short onset of the correction.

Note that while the choice to parameterize the damping func-
tion to non-covalent molecular dimers is the most commonly used
approach, in principle other properties (such as chemisorption ener-
gies, see below) could also be used for fitting. This would clearly
improve the results for these properties, but it has the danger of
producing a method that is right for the wrong reason (e.g., by par-
tially attributing covalent interactions to dispersion). In general, this
would lead to a less transferable method and can have unforeseen
detrimental consequences for other properties.

E. Computational details

BEEF-vdW(disp) computations with TS, MBD@rsSCS, MBD-
NL, and XDM were performed using the electronic structure code
FHI-aims72 (version 221103) with tight numeric atomic orbital
(NAO) basis and integration settings on an HPC cluster with Intel
Xeon Cascade Lake-AP processors (Xeon Platinum 9242). FHI-aims
uses an all-electron approach, treating core and valence electrons
explicitly, facilitating a consistent treatment of lighter and heav-
ier elements. Relativistic effects are included with the atomic scalar
zeroth-order approximation.73 For all computations using the TS
dispersion correction, metal–metal interactions were excluded. The
self-consistency convergence criteria for non-spin polarized com-
putations were set to 1 × 10−5 eV (total energy), 1 × 10−3 eV (sum
of eigenvalues), 1 × 10−4 e/Å 3 (charge density), and 1 × 10−3 eV/Å
(forces). For structure relaxations, forces were relaxed below
5 × 10−2 eV/Å. Figure S1 shows the convergence of cohesive
energy for both spin-polarized and non-spin-polarized relaxations,
confirming proper convergence of the computed observables.
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FHI-aims employs the BEEF xc functional as implemented
in libxc.74 The corresponding keyword in FHI-aims is: xc libxc

GGA_XC_BEEFVDW. In addition, the keywords atomic_solver

sratom and atomic_solver_xc pw-lda were employed.
Although FHI-aims supports computations with the vdW-DF2
functional, its implementation does not make use of the FFT
approach demonstrated later by Román-Pérez and Soler et al.18 and
is therefore not practical for larger molecular and bulk structures.
Consequently (and to ensure consistency with the literature), all
reference values for BEEF-vdW(DF2) are taken from Ref. 12.

III. RESULTS AND DISCUSSION

Having parameterized the atom-pairwise and many-body dis-
persion corrections for use with the semilocal BEEF xc functional,
we test the performance of these methods for a range of molecular,
solid, and surface systems, for which the original BEEF-vdW(DF2)
functional was designed. In particular, we examine the performance
for noncovalent molecular systems (S22x575 and S66x1063,76,77),
solids (Sol27Ec12 and Sol27Lc12), and chemisorption of adsorbates
on metal surfaces (CE2712).

A. Noncovalent, intermolecular interactions

First, we examine the performance of the BEEF-vdW variants
for the interaction energies of the S22 dataset,67 compared to the
CCSD(T)/CBS extrapolated interaction energies from Takatani
et al.;68 see Fig. 2(a). The reference method BEEF-vdW(DF2) under-
estimates the interaction energies12 compared to CCSD(T)/CBS.
This underestimation is in part due to the generally repulsive
nature of the BEEF xc functional. In fact, exchange functionals
with similarly steeply rising exchange enhancement factors, such as
revPBE, also exhibit underestimated interaction energies for the S22
dataset when combined with nonlocal vdW-DF functionals.12,33,38

Furthermore, vdW-DF2 is just a reparameterized version of vdW-
DF1, which has shown deficiencies for molecule–molecule
interactions that cannot be fully remedied by a simple
reparameterization.33,35,38

All atom-pairwise and many-body dispersion corrections
improve the accuracy of the interaction energies compared to BEEF-
vdW(DF2) on average. In particular, the pairwise XDM and TS
methods obtain highly accurate interaction energies for the S22
dataset. In contrast, MBD@rsSCS and MBD-NL exhibit slightly
higher errors compared to the atom-pairwise corrections. Examin-
ing the performance of the MBD methods for functionals of similar
repulsiveness, such as RPBE and revPBE, we notice a comparable
level of errors for the S22 dataset (see the supplementary material).
In contrast, less repulsive functionals, such as PBE and PBE0, have
demonstrated very good performance for the S22 dataset with these
corrections.5,20 This suggests that the underestimation of the inter-
action energies stems mainly from the repulsive nature of the BEEF
functional rather than from the shortcomings of the MBD@rsSCS
and MBD-NL methods.

The S22 dataset can be classified by bonding type into predom-
inantly hydrogen-bonded, dispersion-bound, and “mixed” com-
plexes. We examine the performance of the dispersion treatments
for each bonding category in Fig. 2(b). Unsurprisingly, the plain
BEEF xc functional (without dispersion corrections) exhibits the
largest mean absolute relative error (MARE) for all bonding cate-
gories. It is least effective when describing dispersion-bound systems
and performs best for hydrogen-bonded systems, which are predom-
inantly bound by classical electrostatic interactions. When using
the dispersion corrected BEEF-vdW variants, the errors across all
bonding categories are reduced. Nonetheless, the performance of the
dispersion corrected methods is strongly influenced by the charac-
ter of the underlying BEEF xc functional, with identical ordering
of relative errors for H-bonds, mixed and dispersion bound sys-
tems. Examining the performance of the reference BEEF-vdW(DF2)

FIG. 2. Performance of BEEF-vdW(disp) with TS, MBD@rsSCS, MBD-NL, and XDM compared to the uncorrected, plain BEEF-vdW(none), and the original BEEF-vdW(DF2)
functional for the S22 dataset. Reference values are CCSD(T)/CBS interaction energies.68 (a) Interaction energy error distributions. The mean and extrema are shown by
black lines. (b) Mean absolute relative interaction energy error categorized for predominantly hydrogen, dispersion, and “mixed” bonded complexes. BEEF-vdW(DF2)
interaction energies are from Ref. 12. CCSD(T)/CBS interaction energies are from Ref. 68.
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method, it exhibits comparatively high errors across all bonding
categories and especially for hydrogen-bonded systems, where it
performs significantly worse than the other variants. Indeed, BEEF-
vdW(DF2) is known to perform worse compared to vdW-DF1
(vdW-DF1-revPBE) and vdW-DF2 (vdW-DF1-PW86R) for the S22
dataset.78 Overall, the atom-pairwise TS and XDM methods show
the highest accuracy for all interactions, while the many-body dis-
persion methods MBD@rsSCS and MBD-NL tend to underestimate
the interaction energies to a similar degree as BEEF-vdW(DF2).

The S22 dataset consists of 22 equilibrium geometries of small
molecular dimers. In practice, dispersion corrected DFT methods
are used to study complex systems, for which equilibrium as well as
non-equilibrium interactions of differently sized systems andmolec-
ular fragments have to be adequately described. To explore this
regime, we next examine the performance of the BEEF-vdW vari-
ants for the S22x575 and S66x1063,76,77 datasets, which are common
benchmark sets for noncovalent interactions. S22x5 includes four
additional non-equilibrium configurations for each S22 dimer struc-
ture at 0.9, 1.2, 1.5, and 2.0 times the equilibrium distance. S66x10
includes 660 configurations of 66 molecular dimers (partially over-
lapping with S22) at ten intermolecular distances (at 0.7, 0.8, 0.9,
0.95, 1.0, 1.05, 1.1, 1.25, 1.5, and 2.0 times the equilibrium distance).
Compared to S22, S66 offers a larger variety of dimers for each
bonding category.

First, we analyze how the mean absolute interaction energy
error changes with intermolecular separation between molecules for
S22x5 in Fig. 3(a). For the underlying BEEF xc functional, the error
increases with decreasing intermolecular distance. This effect stems
from the missing attractive dispersion contributions, the overly
repulsive nature of the BEEF functional, as well as from discrepan-
cies between the BEEF and CCSD(T) description of the electrostatic
contributions. BEEF-vdW(DF2) decreases the MAE compared to
not using any dispersion treatment but still follows the tendency of

BEEF-vdW(none) to be overly repulsive at short distances. Compar-
ing the atom-pairwise and many-body methods, the latter show a
similar performance to DF2, whereas TS and XDM have on aver-
age the smallest errors over all interaction distances. However, the
many-bodymethods outperform the atom-pairwisemethods TS and
XDM for larger intermolecular separations.

We further investigated how effective the atom-pairwise and
many-body dispersion corrections are in treating molecular systems
of increasing size; see Fig. 3(b). The error of the underlying BEEF
functional without dispersion treatment increases for increasing sys-
tem size, because the dispersion interaction energy is size extensive.
The TS method effectively decreases the error but increasingly over-
corrects with increasing system size. This limited transferability to
the S66 dataset might be a result of overfitting on the S22 dataset.
In contrast, both examined MBD methods (yellow and cyan) do
not display such a systematic overestimation, although they dis-
play some outliers where the dispersion energy is underestimated.
Finally, the XDM method (orange) shows an effective correction to
a constant error regardless of system sizes, even though the method
on average overcorrects slightly across the full range of systems.

This is further corroborated by considering the performance
on the L7 dataset (see Fig. S7).79 L7 consists of large molecu-
lar complexes, based on binding patterns found in supramolecular
biological systems, containing dispersion and hydrogen-bonded sys-
tems. All employed dispersion corrections improve the description
of these interactions compared to the uncorrected, plain BEEF-
vdW(none) functional. Consistent with the analysis of the S22 and
S66 sets, we find that TS has a slight tendency toward overbinding
for these large systems, while the many-body dispersion correc-
tions tend to underbind. XDM again emerges as the most accurate
method.

To further test the transferability of the parameters, we further-
more assessed the performance of the new BEEF-vdW variants on

FIG. 3. Performance of BEEF-vdW(disp) with TS, MBD@rsSCS, MBD-NL, and XDM compared to the plain, uncorrected BEEF-vdW(none) and the original BEEF-
vdW(DF2)12 functional for CCSD(T)/CBS interaction energies68 for (a) nonequilibrium intermolecular separations of the S22x5 dataset and (b) with the system size for
the S22x5 1.0 (crosses) and S66x10 1.0 (dots) datasets. BEEF-vdW(DF2) interaction energies are from Ref. 12.
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the NCIA250 dataset,80 which was designed to represent the worst-
performing cases within the D1200, HB375, HB300SPX, SH250,
and R739 datasets of non-covalent molecular interactions (2846
data points) in a concise way with only 250 systems. The perfor-
mance of BEEF-vdW(disp) variants largely aligns with the perfor-
mance observed for the S22 and S66 datasets. Indeed, the RMSEs
for NCIA250 are comparable to or lower than those for S22; see
Fig. S8. This confirms that the parameterizations presented herein
are transferable to more complex non-covalent bonding situations.
Indeed, it is notable that the many-body dispersion methods such as
BEEF-vdW(MBD@rsSCS) and BEEF-vdW(MBD-NL) perform sig-
nificantly better compared to the S22 dataset and are on par with the
atom-pairwise methods here.

B. Cohesive energies and lattice constants

The good performance of the new BEEF-vdW variants for
molecular dimers relative to the original BEEF-vdW(DF2)method is
encouraging. However, dispersion corrections are generally param-
eterized for exactly these interactions so that good performance is
expected. For a general-purpose method, this should not come at the
cost of lower performance for the properties of bulk solids. To ver-
ify this, we used the Sol27Ec and Sol27Lc datasets,12 which contain
lattice constants (a0) and cohesive energies (Ecoh) of 27 crystalline
systems, namely Li(bcc), Na(bcc), K(bcc), Rb(bcc), Ca(fcc), Sr(fcc),
Ba(bcc), V(Bcc), Nb(bcc), Ta(bcc), Mo(bcc), W(bcc), Fe(bcc),
Rh(fcc), Ir(fcc), Ni(fcc), Pd(fcc), Pt(fcc), Cu(fcc), Ag(fcc), Au(fcc),
Al(fcc), Pb(fcc), C(dia), Si(dia), Ge(dia), and Sn(dia). The experi-
mental reference values for Ecoh and a0 from Ref. 12 are zero-point
vibrational energy (ZPVE) and zero-point anharmonic expansion
(ZPAE) corrected to enable the comparison of computational results
with experiment. The cohesive energy Ecoh is computed from the
energy of the free atom Eatom and the energy of the bulk solid Ebulk

with Nbulk atoms,

Ecoh ≙ Eatom − Ebulk
Nbulk

. (35)

The performance of the BEEF-vdW variants for the Sol27
dataset is shown in Fig. 4. The reference method BEEF-vdW(DF2)
underestimates cohesive energies (note that by definition Ecoh > 0)
and overestimates lattice constants compared to the experimental
reference values. This is a known behavior for vdW-DF used with
xc functionals that display steeply rising exchange enhancement fac-
tors.33 Indeed, other functionals commonly used in surface science
(such as revPBE and RPBE) are also known to overestimate lat-
tice constants.24 Unsurprisingly, the uncorrected BEEF-vdW(none)
shows an even stronger underbinding behavior.

The TS method was not designed to account for screening
effects and delocalized states needed to describe metallic systems,
leading to large overbinding effects for pairwise metal–metal inter-
actions. Therefore, in practice, pairwise metal–metal interactions
are usually excluded for the TS method. Consequently, BEEF-
vdW(TS) is identical to BEEF-vdw(none) for the metals in the
dataset but shows improved results for covalently bound solids
(see the supplementary material). On average, this results in a
slight improvement in BEEF-vdW(TS) over BEEF-vdW(none), but
worse performance than the original BEEF-vdW(DF2) method.
MBD@rsSCS can, in principle, improve the description of metal-
lic systems compared to TS, as it models many-body effects as well
as gives a more realistic description of atomic polarizabilities due
to the self-consistent rsSCS scheme. However, MBD@rsSCS shows
strong overbinding for metals because the atomic partitioning of the
polarizability fails to accurately represent the inherently delocalized
nature of metallic systems.81 For the Sol27Ec and Sol27Lc datasets,
this leads to strongly overestimated polarizabilities for the metals
and/or negative eigenvalues for the MBD Hamiltonian. Therefore,
we could not obtain cohesive energies and lattice constants for

FIG. 4. Performance of BEEF-vdW(disp) with TS (metal–metal interaction terms excluded), MBD-NL, XDM compared to the plain, uncorrected BEEF-vdW(none) and the
original BEEF-vdW(DF2)12 functional for the Sol2712 dataset. (a) Cohesive energy deviation to experiment. (b) Lattice constant deviation to experiment. Cohesive energies
and lattice constants for BEEF-vdW(DF2) are from Ref. 12. The mean and extrema are shown by black lines.
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the full Sol27 dataset using the MBD@rsSCS method. However,
BEEF-vdW(MBD@rsSCS) does yield accurate lattice constants and
cohesive energies for the non-metallic systems within Sol27 (C, Si,
Ge); see the supplementary material.

Dispersion corrections that are able to handle the delocal-
ized nature of metallic electrons more effectively, such as XDM
and MBD-NL, obtain reasonable, albeit slightly underbound, cohe-
sive energies for the Sol27 dataset. XDM’s robust performance
results in better cohesive energies compared to BEEF-vdW(TS),
although it cannot quite reach the accuracy of the original BEEF-
vdW(DF2). Lattice constants obtained with BEEF-vdW(XDM) show
an improved mean error compared to BEEF-vdW(TS) and BEEF-
vdW(DF2) but also exhibit a relatively wide spread of errors. BEEF-
vdW(MBD-NL) shows good overall performance for all examined
bulk materials and obtains the most accurate lattice constants of all
examined methods. In summary, the examined covalently bound
and metallic systems are severely underbound by the BEEF xc func-
tional, which is also reflected in the performance of the dispersion
corrected BEEF-vdW variants. Due to significantly overestimated
polarizabilities resulting in negative eigenvalues from the diago-
nalization of the MBD Hamiltonian, the use of MBD@rsSCS for
metallic systems is not advisable. Overall, BEEF-vdW(MBD-NL)
shows the best performance in obtaining cohesive energies and lat-
tice constants for the Sol27 dataset, closely followed by the XDM
method.

C. Molecular chemisorption on metallic surfaces

One of the main areas of application of the BEEF-vdW func-
tional is in heterogeneous catalysis. This is notoriously challenging
for semilocal functionals, as it requires simultaneously describ-
ing extended (metallic) catalyst surfaces, molecular adsorbates, and
their mutual interactions. In this section, we examine the perfor-
mance of the new BEEF-vdW variants for describing molecular
chemisorption on metallic surfaces. BEEF-vdW(DF2) was specifi-
cally designed for this task, with the CE17 chemisorption dataset
featuring prominently in the loss function.12 Herein, we consider the
broader CE27 chemisorption dataset, of which CE17 is a subset (see
Fig. 5). These benchmarks encompass chemisorption energies of
small molecules on late transition metal surfaces at low coverages.12

Here, the chemisorption energy ΔEc is defined as

ΔEc ≙ EAM − EM − EA, (36)

with EA, EM, and EAM being the energies of the adsorbate, the
metallic surface, and the combined system, respectively. To obtain
the chemisorption energies, adsorbates, surfaces, and combined
systems were relaxed with each of the examined methods (see
the supplementary material for details). Chemisorption energies
involving oxygen ΔEc(O) were evaluated as described in Ref. 12
as ΔEc(O) ≙ 1

2(ΔEc(O2) − Eb(O2)) with ΔEc(O2) computed using
Eq. (36) and the dioxygen bond energy Eb(O2) ≙ 5.11 eV from
Ref. 82.

Above, we have observed that the uncorrected BEEF-
vdW(none) underbinds both non-covalent and bulk systems. There-
fore, it is not surprising that the chemisorption energies obtained
with BEEF-vdW(none) are underbound as well. Meanwhile, the
original BEEF-vdW(DF2) model performs best for this benchmark,

FIG. 5. Performance of BEEF-vdW(disp) with TS (metal–metal interactions
excluded) and XDM compared to the plain, uncorrected BEEF-vdW(none) and
the original BEEF-vdW(DF2) functional for the CE27 dataset regarding the
chemisorption energy deviation to experiment. Chemisorption energies obtained
with BEEF-vdW(DF2) are from Ref. 12. The mean and extrema are shown by
black lines.

as might be expected given its specialized parameterization. Unfor-
tunately, the many-body methods considered above could not be
applied here. While the limitations of MBD@rsSCS for metals were
already discussed (and are well known), MBD-NL also proved to be
numerically unstable in some of the cases (as reflected in the nega-
tive eigenvalues of the MBDHamiltonian). This can be attributed to
the inadequacy of free atom references for the polarizabilities when
describing metal surfaces.51 Indeed, when using screened reference
polarizabilities and C6 coefficients from the vdWsurf method, the
MBD-NL calculations could be performed. However, these screened
parameters are only available for few elements (Ni, Cu, Zn, Pd, Ag,
Pt, and Au) and have not been widely tested with MBD-NL. Never-
theless, this points to the fact that a robust MBD-NL-based surface
science functional can be developed.

In contrast, the simpler atom-pairwise methods (TS and XDM)
already yield reasonable results in all cases, although significant devi-
ations (above 0.5 eV in some cases) were observed for both methods.
Nevertheless, XDM in particular is a robust and computationally
efficient alternative for describing chemisorption with the BEEF
functional. The excellent performance of BEEF-vdW(DF2) under-
scores the advantage of specifically designing an xc functional with
a given dispersion correction in mind, as was, for example, also
done for the B97-D functional and the 3c methods developed by
Grimme for molecular systems.66,83 A bespoke surface-science ori-
ented functional based on XDM would thus likely display an even
better performance.

IV. CONCLUSION

To increase the general applicability of the BEEF-vdW func-
tional for surface science applications, the performance of alter-
native BEEF-vdW variants using computationally efficient atom-
pairwise and many-body dispersion treatments was explored. The
atom-pairwise TS method shows robust performance for all non-
covalent interactions investigated, with particularly good perfor-
mance for molecular dimers, although a slight overcorrection for
larger systems is observed. When metal–metal dispersion inter-
actions are neglected, BEEF-vdW(TS) provides an overall robust
method for the description of solids and chemisorption. However,
it does not reach the accuracy of the original BEEF-vdW(DF2)
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method. The atom-pairwise XDM method shows well-rounded
behavior for all examined systems. For molecular systems, XDM’s
performance is similar to that of TS with the difference that it shows
no signs of deterioration for larger molecular dimers. In contrast to
TS, XDM significantly improves the prediction of solid-state prop-
erties and chemisorption energies. Overall, the BEEF-vdW(XDM)
method thus can be recommended as a general-purpose functional,
with comparable and, for molecular systems, somewhat better accu-
racy than BEEF-vdW(DF2). Importantly, the uncertainty estimates
from BEEF-vdW, intrinsic to the underlying semilocal functional,
remain applicable to the BEEF-vdW(XDM) variant.

The many-body MBD@rsSCS and MBD-NL methods show a
reliable performance for molecular dimers, comparable to BEEF-
vdW(DF2), but are outperformed by TS and XDM. This is mostly
due to the repulsive nature of the underlying BEEF xc functional.
The simpler atom-pairwise methods seem to be better able to adjust
to these issues, with appropriately parameterized damping func-
tions. Unfortunately, MBD@rsSCS is not applicable for metallic
systems and adsorbate-metal systems, because the atomic partition-
ing of the polarizability does not accurately capture the inherently
delocalized nature of metallic systems. This results in significantly
overestimated polarizabilities and/or negative eigenvalues for the
MBD Hamiltonian. As a result, it is overall not advisable to use
MBD@rsSCS with the BEEF xc functional. In contrast, MBD-NL
is significantly more reliable, performing best for the Sol27 dataset.
Unfortunately, MBD-NL also displayed numerical issues for certain
chemisorbed systems so that it could not be rigorously evaluated in
this context.

Based on the presented results, the pairwise XDM correction
can be recommended as a cost-efficient drop-in replacement for the
DF2 method in the BEEF-vdW functional, when the use of the lat-
ter is computationally inconvenient. Indeed, BEEF-vdW(XDM) is
actually an improvement over the original for molecular systems.
As mentioned above, the XDM method is often used in combi-
nation with dispersionless exchange functionals (such as B86b) for
molecular applications. These are defined via an exact condition for
the large-gradient limit of the exchange enhancement factor. This
condition is incompatible with the local Lieb–Oxford bound that is
(at least approximately) obeyed by surface science and condensed
matter functionals such as PBE, RPBE, and BEEF.9 In this sense,
BEEF-vdW(XDM) can be considered to be complementary to these
functionals. More broadly, the current work indicates that develop-
ing new functionals in the spirit of BEEF-vdW based on XDMwould
be highly promising. If the remaining numerical issues can be over-
come, theMBD-NLmethod would also be highly promising for such
a development, since it shows the best performance for solids and is
known to be highly accurate for molecules, when combined with an
appropriate xc functional.

SUPPLEMENTARY MATERIAL

The supplementary material encompasses additional computa-
tional details and analysis.
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