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A B S T R A C T

Kernel-based regularized risk minimizers, also called support vector machines (SVMs), are known to possess
many desirable properties but suffer from their super-linear computational requirements when dealing with
large data sets. This problem can be tackled by using localized SVMs instead, which also offer the additional
advantage of being able to apply different hyperparameters to different regions of the input space. In this
paper, localized SVMs are analyzed with regards to their consistency. It is proven that they inherit 𝐿𝑝- as well
as risk consistency from global SVMs under very weak conditions. Though there already exist results on the
latter of these two properties, this paper significantly generalizes them, notably also allowing the regions that
underlie the localized SVMs to change as the size of the training data set increases, which is a situation also
typically occurring in practice.
1. Introduction

Kernel-based regularized risk minimizers based on a general loss
function, which are also known as (general) support vector machines
(SVMs), play an important role in statistical machine learning, which
is due to two main reasons: First, they are known to possess many
desirable theoretical properties such as universal consistency, statistical
robustness and stability, and good learning rates [1–5]. Secondly,
they are the solutions of finite-dimensional convex programs [6] and
empirically observe good performance [7,8] – at least if the data set is
not too large. For large data sets, SVMs however suffer from their com-
putational requirements growing at least quadratically in the number
of training samples, with regards to both time and memory [9–11].

There exist different approaches to circumvent this problem, one of
them being the use of localized SVMs, which implement the idea of not
computing one SVM on the whole input space but instead dividing this
input space into different (not necessarily disjoint) regions, computing
SVMs on each of these regions, and then joining them together in order
to obtain a global predictor. In addition to the computational advantage
this approach offers, it can also yield improved predictions as it adds
flexibility by allowing for differing underlying hyperparameters being
chosen in the different regions. In Section 3.1, we discuss these advan-
tages in more detail, as well as briefly mentioning some of the different
approaches for circumventing the computational challenges.

Note that there exist many different approaches on how to divide
the input space into regions and thus also on how to compute a
localized SVM. The main goal of this paper is not to propose and
analyze a new method of computing localized SVMs, but instead to

E-mail address: hannes.koehler@uni-bayreuth.de.

derive new theoretical results which are as general as possible and
therefore applicable to many of the different existing methods. As we
therefore do not focus on any specific way of localizing the input space
and as training and testing times of course depend on the method
chosen for localization, the empirical analysis of these computation
times is not the main focus of this paper. Some computation times for
different amounts of regions are however still given in Example 4.6, and
we also give a quick review on some existing analyses of computation
times for localized SVMs based on different localization methods in
Section 3.1.

To be more specific on the theoretical results derived in this paper,
we prove that localized SVMs are risk consistent as well as 𝐿𝑝-consistent
under certain mild conditions. Notably, we also allow for the regional-
ization, which underlies a localized SVM, to change as the size of the
data set increases. This is natural to allow for because the regionaliza-
tion is often not predefined but instead data-dependent in practice (cf.
Section 3.1 and also Remark 3.1) and might for example become finer
as the size of the data set increases.

Because of SVMs being defined as minimizers of some regularized
risk function, risk consistency is the natural type of consistency to
consider, and there already exist some results on risk consistency
respectively learning rates (which imply risk consistency) of localized
SVMs, see [12–15] among others. However, all of these in some as-
pects offer considerably less generality than the result we derive (see
Section 4 for more details). On the other hand, 𝐿𝑝-consistency is of
interest as it compares functions themselves instead of their risks, and,
to our knowledge, there do not exist any results on 𝐿𝑝-consistency of
localized SVMs so far.
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The results derived in this paper build on those from [16], where a
general connection between risk consistency and 𝐿𝑝-consistency was es-
tablished and this connection was used to obtain results on consistency
of non-localized SVMs. This paper now transfers these results to the
case of localized SVMs. The aforementioned generality of also allowing
for regionalizations of the input space that change as the size of the
data set increases however evokes the challenge that it is not possible to
obtain consistency of localized SVMs directly from that of non-localized
ones. For this reason, we use from [16] only those results that concern
the general connection between risk consistency and 𝐿𝑝-consistency,
but not those on consistency of non-localized SVMs. To overcome the
added difficulty that comes from the changes in the regionalization,
parts of the deviations that are investigated for proving consistency
are bounded in a suitable way by according deviations for functions
that do not depend on the regionalization (see especially the proof of
Lemma A.2).

The paper is organized as follows: Section 2 contains some general
prerequisites as well as a formal definition of SVMs, whereas the
localized approach is described in more detail in Section 3. The main
results can be found in Section 4, and finally, Section 5 gives a short
summary.

2. Prerequisites

Before introducing localized SVMs in Section 3.2 and stating our
results about their consistency in Section 4, we first need to define the
underlying (non-localized) SVMs in more detail as well as state some
additional prerequisites.

Given a training data set 𝐷𝑛 ∶= ((𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)) ∈ ( × )𝑛 con-
sisting of independent and identically distributed (i.i.d.) observations
sampled from some unknown probability measure P on a space  ×  ,
we aim at learning a function 𝑓 ∶ → R. More specifically, we denote
by (𝑋, 𝑌 ) a pair of random variables with values in  ×  distributed
according to P, and the goal is to estimate certain characteristics of the
conditional distribution P(⋅ ∣ 𝑋) of 𝑌 given 𝑋. We impose the following
standard and not very restrictive assumptions on the underlying space
 ×  throughout this paper:

Assumption 2.1. Let  be a complete separable metric space and
let  ⊆ R be closed. Let  and  be equipped with their respective
Borel 𝜎-algebras  and  . Let P ∈ 1( × ), where 1( × )
denotes the set of all Borel probability measures on the measurable
space ( ×  ,× ).

Notably,  ⊆ R guarantees that the conditional probability P(⋅ ∣ 𝑋)
does indeed uniquely exist [17, Theorems 10.2.1 and 10.2.2], because
 is Polish [18, p. 157].

Which exact characteristics of P(⋅ ∣ 𝑋) are to be learned is deter-
mined by the chosen loss function, which is a measurable function
𝐿∶ ×  × R → [0,∞). For example, estimating the conditional mean
function can be approached by using the least squares loss, and con-
ditional quantile functions can be estimated by using the pinball loss.
𝐿(𝑥, 𝑦, 𝑓 (𝑥)) quantifies the loss associated with predicting 𝑓 (𝑥) while the
true output belonging to 𝑥 is 𝑦, and the goal is to find a predictor whose
expected loss is as small as possible. To this end, we call

𝐿,P(𝑓 ) ∶= EP [𝐿(𝑋, 𝑌 , 𝑓 (𝑋))]

L-risk (or just risk) of a measurable function 𝑓 , and

∗
𝐿,P ∶= inf{𝐿,P(𝑓 ) ∣ 𝑓 ∶ → R measurable}

Bayes risk. We call a measurable function 𝑓 ∗
𝐿,P achieving 𝐿,P(𝑓 ∗

𝐿,P) =
∗
𝐿,P a Bayes function.

A sequence (𝑓𝑛)𝑛∈N is called risk consistent if
∗

2

𝐿,P(𝑓𝑛) → 𝐿,P , 𝑛→ ∞ ,
in probability, and it is called 𝐿𝑝-consistent for some 𝑝 ∈ [1,∞) if

𝑓𝑛 − 𝑓 ∗
𝐿,P

‖

‖

‖𝐿𝑝(P𝑋 )
→ 0 , 𝑛→ ∞ ,

n probability, where P𝑋 denotes the marginal distribution on  asso-
iated with P. For the latter consistency property, we always assume
∗
𝐿,P to P𝑋 -almost surely (a.s.) uniquely exist. As mentioned in the
ntroduction, the notion of 𝐿𝑝-consistency does directly depend on the
ifference between the functions instead of on the difference between
heir risks, which additionally depends on the loss function and the
onditional distribution of 𝑌 .

As P is unknown, it is not possible to minimize 𝐿,P directly and
ne instead has to use the empirical risk

𝐿,D𝑛 (𝑓 ) ∶= ED𝑛 [𝐿(𝑋, 𝑌 , 𝑓 (𝑋))] = 1
𝑛

𝑛
∑

𝑖=1
𝐿(𝑥𝑖, 𝑦𝑖, 𝑓 (𝑥𝑖)) ,

where

D𝑛 ∶=
1
𝑛

𝑛
∑

𝑖=1
𝛿(𝑥𝑖 ,𝑦𝑖)

is the empirical distribution corresponding to 𝐷𝑛, with 𝛿(𝑥𝑖 ,𝑦𝑖) denoting
he Dirac measure in (𝑥𝑖, 𝑦𝑖). In order to avoid overfitting, a regulariza-
ion term is added to this empirical risk, which results in the empirical
VM being defined as the solution of the minimization problem

𝐿,D𝑛 ,𝜆,𝑘 ∶= arg inf
𝑓∈𝐻

𝐿,D𝑛 (𝑓 ) + 𝜆‖𝑓‖
2
𝐻 . (1)

ere, 𝜆 > 0 controls the amount of regularization and H is a reproducing
ernel Hilbert space (RKHS) over  . Each such RKHS is associated with
kernel on  , which is a symmetric and positive definite function
∶ ×  → R. We call k bounded if ‖𝑘‖∞ ∶= sup𝑥∈

√

𝑘(𝑥, 𝑥) < ∞.
We refer to [19–21] for a detailed introduction of kernels, RKHSs and
their properties.

By the empirical representer theorem [cf. 2, Theorem 4.2], such
empirical SVMs always take the form

𝑓𝐿,D𝑛 ,𝜆,𝑘 =
𝑛
∑

𝑖=1
𝛼𝑖𝑘(⋅, 𝑥𝑖)

for some 𝛼1,… , 𝛼𝑛 ∈ R. In practice, these unknown coefficients are
obtained by solving a suitable convex optimization program, see for
example [2, Section 9.2].

The goal of Section 4 is to derive 𝐿𝑝- respectively risk consistency of
localized versions of such SVMs as the size 𝑛 of the data set increases.
As an intermediate step in the according proofs, we additionally need
the theoretical SVM

𝑓𝐿,P,𝜆,𝑘 ∶= arg inf
𝑓∈𝐻

𝐿,P(𝑓 ) + 𝜆‖𝑓‖
2
𝐻 . (2)

As a last part of these prerequisites, we need to specify some
properties of loss functions. We only investigate loss functions which
are convex – by which we mean convexity in the last argument of
𝐿 – and additionally distance-based. The latter is a property that is
satisfied by most of the typical loss functions for regression tasks, but
not necessarily by those used in classification tasks. However, some
distance-based losses are also popular choices in classification tasks,
like for example the least squares loss, cf. [22, Section 1.4].

Definition 2.2. A loss function 𝐿∶  ×  × R → [0,∞) is called
distance-based if there exists a representing function 𝜓 ∶ R → [0,∞)
satisfying 𝜓(0) = 0 and 𝐿(𝑥, 𝑦, 𝑡) = 𝜓(𝑦 − 𝑡) for all (𝑥, 𝑦, 𝑡) ∈  ×  × R.

Let 𝑝 ∈ (0,∞). A distance-based loss 𝐿∶ ×  × R → [0,∞) with
representing function 𝜓 is of

(i) upper growth type 𝑝 if there is a constant 𝑐 > 0 such that

𝜓(𝑟) ≤ 𝑐 (|𝑟|𝑝 + 1) ∀ 𝑟 ∈ R ,

(ii) lower growth type 𝑝 if there is a constant 𝑐 > 0 such that

𝑝
𝜓(𝑟) ≥ 𝑐 |𝑟| − 1 ∀ 𝑟 ∈ R ,
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(iii) growth type 𝑝 if L is of both upper and lower growth type 𝑝.

Since the first argument does not matter in distance-based loss
unctions, we often ignore it and write 𝐿∶ × R → [0,∞) and 𝐿(𝑦, 𝑡)

instead.
For example, the aforementioned least squares loss and pinball loss

are of growth type 2 and 1 respectively. Depending on the growth type
𝑝, our results require that the averaged 𝑝th moment of P is finite, which
guarantees that there exists a function in H that has finite risk. This
averaged 𝑝th moment is defined as

|P|𝑝 ∶=
(

∫ ∫𝑌
|𝑦|𝑝 dP(𝑦 ∣ 𝑥) dP𝑋 (𝑥)

)1∕𝑝
=
(

∫
|P(⋅ ∣ 𝑥)|𝑝𝑝 dP𝑋 (𝑥)

)1∕𝑝
,

thus making the moment condition |P|𝑝 < ∞ slightly more restrictive
when dealing with loss functions of a higher growth type. In the def-
inition of the averaged 𝑝th moment, |P(⋅ ∣ 𝑥)|𝑝 denotes the 𝑝th moment
of P(⋅ ∣ 𝑥), where for an arbitrary distribution Q on  this 𝑝th moment
is defined by

|Q|𝑝 ∶=
(

∫
|𝑦|𝑝 dQ(𝑦)

)1∕𝑝
.

3. Localized approach

As mentioned in the introduction, SVMs, while possessing many
desirable theoretical properties, suffer from their super-linear (with
respect to the size of the training data set) computational requirements
when dealing with large data sets. There exist different approaches to
reduce this computational complexity, one of them being localization.
Section 3.1 gives a quick overview of some existing approaches as well
as an introduction of the idea behind and the additional advantages of
the localization approach. Section 3.2 formally defines localized SVMs
and states requirements which the underlying structure, like the regions
and the applied kernels, need to satisfy.

3.1. Overview of localized and other approaches

Approaches to reduce the computational complexity of SVMs in-
clude using twin SVMs [23–27], online learning approaches such as
stochastic gradient descent [28–32], as well as algorithms approximat-
ing the kernel matrix via column subsampling [33–36], and random
feature approximations of the kernel [37–41], with [42] comparing the
last two approaches. Additionally, there are also methods combining
multiple of these approaches [43,44].

Closer to the localized approach are methods that decompose the
available data set into 𝑚 ∈ N subsets and train 𝑚 ‘‘small’’ SVMs
on these subsets instead of a single ‘‘large’’ one on all of 𝐷𝑛, which
can substantially reduce the training time as well as required stor-
age space because of the aforementioned super-linear computational
requirements of SVMs. This can for example be done by means of
distributed learning [45–50], which randomly splits 𝐷𝑛 into subsets,
trains an SVM on each such subset, and then averages the resulting 𝑚
SVMs in order to obtain the final predictor.

In the localized approach, one also trains SVMs on subsets of 𝐷𝑛,
but the split of 𝐷𝑛 is now obtained in a spatial way – based on some
regionalization of the input space  – instead of randomly. Following
early theoretical investigations of such localized approaches [51,52],
different methods for obtaining the required regions have been exam-
ined. These include decision trees [53–56], 𝑘-nearest neighbors (𝑘NN)
methods [14,57–60], as well as variants of 𝑘-means [61,62]. In compar-
ison to distributed learning, this has the disadvantage that, no matter
which method of regionalization is chosen, the process of regionalizing
the input space clearly also takes some time for large data sets – albeit
considerably less time than just training an SVM on the whole data set
–, thus making the computational gain of such a localized approach
in the training phase smaller than that of distributed learning. On the
3

other hand, the evaluation of the resulting predictor for a test sample
can actually be significantly faster in localized approaches than it is in
distributed ones: Whereas one has to evaluate each of the 𝑚 different
SVMs (and then average the results) in distributed learning, it suffices
to evaluate the one SVM belonging to the region of the test sample in
localized learning (if the regions do not overlap).

Several of the referenced publications on localized SVMs also in-
clude experimental analyses of how much the respective methods of
localization reduce the computation time in comparison to regular
SVMs. For example, Chang et al. [54] compared their decision tree
based localized SVMs DTSVM (among some other approaches) to reg-
ular SVMs on different medium-size data sets (ca. 10,000 to 500,000
samples, using about two thirds of them for training) and observed
drastic reductions in training time, especially for the larger ones among
these data sets. Depending on how the training of SVMs was imple-
mented, the training time for the largest data set was reduced by
a factor of almost 3,700 or even 5,800 [54, Figures 5 and 10]. At
the same time, DTSVM exhibited comparable or even increased test
accuracy over regular SVMs [54, Figures 6 and 11] and also drastically
reduced testing time [54, Table 4]. Additionally, they also took a look
at some large-size data sets (ca. 600,000 to 5,000,000 samples), for
which they could not perform a comparison with regular SVMs because
of them requiring an excessive amount of training time and memory,
but showed that DTSVM is able to still perform well on such large-
size data sets. Similarly, Segata and Blanzieri [59] compared different
variants of their 𝑘NN based localized SVMs with regular SVMs on
different data sets containing ca. 50,000 to 1,000,000 data samples
and also observed decreased training and testing times (by factors
ranging up to ca. 100 for the variant FaLK-SVM, which was the one
observing the highest test accuracy) as well as comparable or even
increased test accuracy [59, Tables 5–7]. Gu and Han [62] perform
similar comparisons for their 𝑘-means based localized SVMs CSVM
(as well as for some other approaches), however only for data sets
containing only ca. 3,000 to 60,000 training samples – which were
however very high-dimensional, consisting of up to 784 features. Even
for these rather small data sets, CSVM exhibits training times that are
considerably lower than those of regular SVMs (called ‘‘kernel SVM’’
in their tables), by factors of up to almost 130, while at the same time
yielding comparable test accuracy [62, Tables 2 and 3]. In all of these
three publications, the library LIBSVM [63] was used for computing
SVMs. Thomann et al. [11] on the other hand, used their own library
liquidSVM [64] and looked at very large training data sets of up to
almost 10,000,000 samples. They showed that localized SVMs based on
the Voronoi partition approach that is built into liquidSVM can be
computed in few hours and yield good test accuracy (as with the large-
size data sets used by Chang et al. [54], it was of course not feasible to
also compute regular SVMs for such large data sets in order to compare
them). Additionally, by using not only a single but instead multiple
machines, they succeeded in obtaining good results in just a little over
one day of combined training and testing time even for an enormous
training data set consisting of 32,000,000 samples in 631 dimensions –
whereas among the other data sets used in the four papers mentioned
in this paragraph, there was none that had more than 54 dimensions
and at the same time more than 240,000 samples.

Even though the exact training and testing time depends on the
method chosen for localization as well as on the exact implementation
and therefore differs between these publications, they all observed a
drastic reduction compared to the computation time of regular SVMs.
In addition to this computational gain, localizing the SVM approach
can also yield advantages regarding the quality of prediction – compared
to distributed learning as well as regular SVMs: Whereas the underly-
ing true function, which one aims to estimate, can of course exhibit
discontinuities, SVMs based on a continuous and bounded kernel such
as the commonly used Gaussian RBF kernel are always continuous
(and bounded) themselves [3, Lemma 4.28]. This can lead to SVMs
not accurately modeling the true function near such discontinuities,

but instead greatly oscillating and overshooting – an effect that is also
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Fig. 3.1. A global SVM (left plot) and a localized SVM (right plot; splits between the regions at 𝑥 = 3 and 𝑥 = 6) fitted to the same data which was generated according to
the plotted true function and some normally distributed error. The global SVM (slightly) overshoots at the discontinuity at 𝑥 = 3 and oscillates too much for 𝑥 ≤ 6 because the
underlying hyperparameters have to be chosen in a way that also allows for a reasonably good fit for 𝑥 > 6, where the true function oscillates very quickly. The localized SVM
does not exhibit these problems and yields a considerably better fit overall.
(
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known from Fourier series, where it is called the Gibbs phenomenon,
cf. [65]. Additionally, in global learning approaches like SVMs, the
complexity of the predictor is usually controlled globally by a very
small amount of hyperparameters. Hence, an accurate prediction can be
difficult for such global approaches if the complexity and variability of
the true function, or that of the conditional distributions P(𝑌 ∣ 𝑋 = 𝑥),
greatly differ between different areas of the input space  , even if
the true function does not exhibit any discontinuities. Both of these
problems can be overcome by the use of localized methods, as a good
regionalization can split the input space into separate regions at (or
at least close to) discontinuities and such that the complexity and
variability do not change too much throughout the individual regions,
see also Fig. 3.1.

This intuition of localized SVMs also being able to improve reg-
ular SVMs with regard to the quality of prediction gets affirmed
by Blaschzyk and Steinwart [12], who, in the case of using the hinge
loss for classification, derived learning rates exceeding those known
for regular SVMs. Whereas most of the papers on localized SVMs men-
tioned in the preceding paragraphs focus on the experimental analysis
of a specific method of localization, [12] constitutes an example of a
paper deriving theoretical results and additionally not requiring any
special method of localization (instead only requiring the resulting
regionalization to satisfy some conditions which are often quite mild).
There are several papers taking a similar approach and also deriving
learning rates for such localized SVMs, with [11] also using the hinge
loss and [15,66] investigating least squares regression.

Whereas learning rates of course also imply (risk) consistency,
they always require additional assumptions regarding the unknown
probability measure P because of the no-free-lunch theorem [67], and
most of the mentioned papers for example additionally require  to
be contained in some ball and  to be bounded as well. We however
take an approach similar to Dumpert and Christmann [13], Dumpert
[68], Köhler and Christmann [69], who allowed for even more general
regionalizations as well as more general kernels and loss functions
and did not impose any restrictive assumptions regarding P, and who
then proved that localized SVMs are risk consistent (which we in some
aspects considerably generalize in Section 4), statistically robust with
respect to the maxbias as well as the influence function, and totally
stable with respect to simultaneous changes in not only the probability
measure but also the regularization parameter, the kernel and the
regionalization. We derive results on 𝐿𝑝- as well as risk consistency in
Section 4.

3.2. Prerequisites regarding localized SVMs

Before stating our results in Section 4, we first have to formally
4

define localized SVMs as well as to specify the mild assumptions which h
we need to impose upon the regionalizations in order to be able to then
derive our results.

As already mentioned, we actually allow for regionalizations that
change with 𝑛. For 𝑛 ∈ N, we define the regionalization 𝑛 as 𝑛 ∶=
{𝑛,1,… ,𝑛,𝑚𝑛} for sets 𝑛,1,… ,𝑛,𝑚𝑛 . We further denote 𝑛(𝑥) ∶= {̃ ∈
𝑛 ∣ 𝑥 ∈ ̃} for all 𝑥 ∈  and 𝑛 ∈ N, and assume the following three
conditions to hold true:

(R1) 𝑛,1,… ,𝑛,𝑚𝑛 ⊆  complete (as metric spaces) and measurable
such that  =

⋃𝑚𝑛
𝑖=1 𝑛,𝑖 for all 𝑛 ∈ N.

(R2) ∃ 𝑠max ∈ N such that |𝑛(𝑥)| ≤ 𝑠max for all 𝑥 ∈  and 𝑛 ∈ N.

R3) The sequence (𝑛)𝑛∈N is stochastically independent of the se-
quence (𝐷𝑛)𝑛∈N of training data sets.

emark 3.1. Condition (R3) might seem restrictive at first glance
ecause it seemingly constitutes a restriction to only using regionaliza-
ions whose construction does not take the observed data into account.
owever, one can easily circumvent this restriction by randomly par-

itioning the whole data set into not only the usual three parts –
amely a training data set 𝐷𝑛, a validation data set and a test data
et – but four parts instead, where the fourth part is a regionalization
ata set. This way, the regionalizations can be chosen data-dependently
ithout violating (R3). By putting only a relatively small part of the
vailable data into the regionalization data set – because one reason for
egionalizing is to just reduce the subsequent training time of the SVMs,
or which no ‘‘perfect’’ regionalization is necessary –, this procedure
oes not substantially reduce the amount of data available for training,
alidating and testing.

Note that (R1) tells us that, for every 𝑛 ∈ N, the regions need not
ecessarily be pairwise disjoint but can instead also overlap – as long as
R2) is satisfied, that is, as long as the number of regions overlapping
oes not exceed some global constant 𝑠max in any point 𝑥 ∈  . If the
egionalization does not change with 𝑛, then (R2) is trivially satisfied
or 𝑠max = 𝑚1.

emark 3.2. By [70, Lemma I.6.4 and Theorem I.6.12], any subset
f a separable metric space is a separable metric space again if it is
quipped with the metric of the original space. Hence, Assumption 2.1
eing satisfied for  implies it also being satisfied for the regions 𝑛,𝑖,
∈ N and 𝑖 ∈ {1,… , 𝑚𝑛}.

In order to define local SVMs on the different regions, we need to

ave a probability measure on each of these regions. It suggests itself
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to define these measures by restricting P. For 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛},
we define the local measure P𝑛,𝑖 on 𝑛,𝑖 ×  by

P𝑛,𝑖 ∶=
⎧

⎪

⎨

⎪

⎩

1
P(𝑛,𝑖×) ⋅ P 𝑛,𝑖× , if P(𝑛,𝑖 × ) > 0

0 , else.

This obviously only is a probability measure if P(𝑛,𝑖 × ) > 0, but we
will see that we can mostly ignore the regions with P(𝑛,𝑖 × ) = 0 for
our results. We denote

𝐼𝑛 ,P ∶=
{

𝑖 ∈ {1,… , 𝑚𝑛} ∣ P(𝑛,𝑖 × ) > 0
}

and �̃�𝑛 ∶= |𝐼𝑛 ,P| for 𝑛 ∈ N. Similarly, we define the local empirical
measures D𝑛,𝑖 by

D𝑛,𝑖 ∶=

⎧

⎪

⎨

⎪

⎩

1
D𝑛(𝑛,𝑖×) ⋅ D𝑛 𝑛,𝑖× , if D𝑛(𝑛,𝑖 × ) > 0

0 , else,

such that (if D𝑛(𝑛,𝑖 × ) > 0) they are the empirical probability
measures associated with the subsets 𝐷𝑛,𝑖 ∶= 𝐷𝑛 ∩ (𝑛,𝑖 × ) of 𝐷𝑛, for
which we denote 𝑑𝑛,𝑖 ∶= |𝐷𝑛,𝑖|.

As mentioned before, one of the goals behind this localized ap-
proach is to increase the method’s capability to accurately learn a
function whose complexity and variability differ between different
areas of the input space, by separating these areas into different regions.
Since a principal mechanism for controlling the complexity of an SVM
is the choice of the regularization parameter and of the kernel (respec-
tively the hyperparameters of the kernel), one should therefore also
be allowed to choose different regularization parameters and kernels
in the different regions. We hence have, for each 𝑛 ∈ N, a vector of
regularization parameters 𝝀𝒏 ∶= (𝜆𝑛,1,… , 𝜆𝑛,𝑚𝑛 ), with 𝜆𝑛,𝑖 > 0 for all
𝑖 ∈ {1,… , 𝑚𝑛}, and a vector of kernels 𝒌𝒏 ∶= (𝑘𝑛,1,… , 𝑘𝑛,𝑚𝑛 ), where 𝑘𝑛,𝑖
is a kernel on 𝑛,𝑖 for each 𝑖 ∈ {1,… , 𝑚𝑛}.

Based on the regularization parameters, kernels and a loss function
L, one obtains from (2) SVMs

𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ∶𝑛,𝑖 → R , 𝑛 ∈ N, 𝑖 ∈ {1,… , 𝑚𝑛} ,

which we call local SVMs on 𝑛,𝑖. If P𝑛,𝑖 is the zero measure, the
above SVM is undefined and we just define it as the zero function,
𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ≡ 0, in this case. Analogously, we define the local empirical
SVMs

𝑓𝐿,D𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ∶𝑛,𝑖 → R , 𝑛 ∈ N, 𝑖 ∈ {1,… , 𝑚𝑛} ,

as in (1), with 𝑓𝐿,D𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ≡ 0 if D𝑛,𝑖 is the zero measure.
Since we want to combine these local SVMs in order to obtain a

global predictor on  , we first need to extend them in a way such that
they are defined on all of  . That is, for all functions 𝑔∶ ̃ → R on
̃ ⊆  , we define the zero-extension �̂�∶ → R by

�̂�(𝑥) ∶=

{

𝑔(𝑥) , if 𝑥 ∈ ̃ ,
0 , else .

Now, all that is left to do in order to obtain our global predictors, is
to equip the local SVMs with weight functions which pointwisely con-
trol the influence of each local SVM in areas where two or more regions
overlap. We only impose the following three standard assumptions for
weight functions on them:

(W1) 𝑤𝑛,𝑖 ∶ → [0, 1] measurable for all 𝑖 ∈ {1,… , 𝑚𝑛} and 𝑛 ∈ N.

(W2) ∑𝑚𝑛
𝑖=1𝑤𝑛,𝑖(𝑥) = 1 for all 𝑥 ∈  and 𝑛 ∈ N.

(W3) 𝑤 (𝑥) = 0 for all 𝑥 ∉  and all 𝑖 ∈ {1,… , 𝑚 } and 𝑛 ∈ N.
5

𝑛,𝑖 𝑛,𝑖 𝑛 a
Our global predictor 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
, which we call localized SVM even

though it is not necessarily an SVM itself, is then defined by

𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
∶ → R , 𝑥 ↦

𝑚𝑛
∑

𝑖=1
𝑤𝑛,𝑖(𝑥) ⋅ 𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 (𝑥) (3)

or 𝑛 ∈ N. Analogously, we define the empirical localized SVM

𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
∶ → R , 𝑥 ↦

𝑚𝑛
∑

𝑖=1
𝑤𝑛,𝑖(𝑥) ⋅ 𝑓𝐿,D𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 (𝑥) (4)

or 𝑛 ∈ N.
Finally, before stating the consistency results for localized SVMs in

ection 4, we introduce the concept of families of kernels of type 𝜷 which
ill be needed in those results.

efinition 3.3. Let 𝐼 be an index set such that 0 ∈ 𝐼 . For kernels 𝑘(𝑟)
nd constants 𝛽(𝑟) ∈ (0,∞), 𝑟 ∈ 𝐼 , we say that 𝒌 ∶= (𝑘(𝑟))𝑟∈𝐼 is a family
f kernels of type 𝜷 ∶= (𝛽(𝑟))𝑟∈𝐼 if, for all 𝑟 ∈ 𝐼 ,

(i) 𝐻 (𝑟) ⊇ 𝐻 (0), where 𝐻 (𝑟) and 𝐻 (0) are the RKHSs associated with
𝑘(𝑟) and 𝑘(0) respectively, and

(ii) ‖𝑓‖𝐻 (𝑟) ≤ 𝛽(𝑟) ⋅ ‖𝑓‖𝐻 (0) for all 𝑓 ∈ 𝐻 (0).

emark 3.4. By [21, Theorem 2.17] (see also [19, Part I.7] and [20,
ection 4.5] for related considerations), condition (i) from Defini-
ion 3.3 already implies that there exists some 𝛽(𝑟) ∈ (0,∞) such that
ii) is satisfied as well. Hence, every family of kernels satisfying (i) will
lso be a family of kernels of type 𝜷 for suitable 𝜷. Furthermore, the
ame theorem also yields that the two conditions from Definition 3.3
re equivalent to

(iii) (𝛽(𝑟))2 ⋅ 𝑘(𝑟) − 𝑘(0) is a kernel,

or which reason families of kernels of type 𝜷 are equivalently charac-
erized by (iii) holding true for all 𝑟 ∈ 𝐼 .

xample 3.5. Let 𝑑 ∈ N,  ⊆ R𝑑 non-empty and 𝐼 be an index set such
hat 0 ∈ 𝐼 . For 𝑟 ∈ 𝐼 , define 𝑘(𝑟) as the Gaussian kernel with bandwidth
(𝑟) ∈ (0,∞), that is,

(𝑟)(𝑥, 𝑥′) ∶= exp

(

−
‖

‖

𝑥 − 𝑥′‖
‖

2
2

(𝛾 (𝑟))2

)

∀ 𝑥, 𝑥′ ∈  .

By [3, Proposition 4.46], the conditions from Definition 3.3 are satisfied
with 𝛽(𝑟) ∶= (𝛾 (0)∕𝛾 (𝑟))𝑑∕2 if 𝛾 (0) ≥ sup𝑟∈𝐼⧵{0} 𝛾 (𝑟).

Hence, every family (𝑘(𝑟))𝑟∈𝐽 , 0 ∉ 𝐽 , of Gaussian kernels with
ounded bandwidth can be turned into a family of kernels of type
= ((𝛾 (0)∕𝛾 (𝑟))𝑑∕2)𝑟∈𝐼 , 𝐼 ∶= 𝐽 ∪ {0}, by choosing 𝑘(0) as the Gaussian

ernel with bandwidth 𝛾 (0) = sup𝑟∈𝐽 𝛾 (𝑟).

We introduced these families of kernels of type 𝜷 since we will
require all kernels 𝑘𝑛,𝑖, 𝑛 ∈ N, 𝑖 ∈ {1,… , 𝑚𝑛}, used in the local SVMs to
come from the union of 𝓁 ∈ N such families 𝒌(𝟏),… ,𝒌(𝓵). To be more
specific, 𝒌(𝒋), 𝑗 = 1,… ,𝓁, will consist of kernels on  and each 𝑘𝑛,𝑖 will
be the restriction of such a kernel to 𝑛,𝑖 × 𝑛,𝑖. That is, we will have
𝑘𝑛,𝑖 = 𝑘(𝑗0 ,𝑟0) 𝑛,𝑖×𝑛,𝑖 for some 𝑗0 ∈ {1,… ,𝓁} and 𝑟0 ∈ 𝐼 (𝑗0), where 𝐼 (𝑗0)

denotes the index set of the 𝑗0-th family. Based on this, we introduce
the additional notation 𝛽𝑛,𝑖 ∶= 𝛽(𝑗0 ,𝑟0) and 𝑘(0)𝑛,𝑖 ∶= 𝑘(𝑗0 ,0) 𝑛,𝑖×𝑛,𝑖 (in case
f ambiguity regarding 𝑗0 and 𝑟0, any of the options may be chosen),
hich will be needed later on.

Note that the concept of families of kernels of type 𝜷 also allows for
nfinite index sets (see also Example 3.5). This will lead to the kernels
𝑛,𝑖, 𝑛 ∈ N, 𝑖 ∈ {1,… , 𝑚𝑛}, being allowed to be chosen from an possibly
nfinite set of kernels.

. Consistency of localized SVMs

In the following, we first derive 𝐿𝑝-consistency (Section 4.1) and
fterwards risk consistency (Section 4.2) of localized SVMs as defined
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in Section 3.2. To our knowledge, there do not exist any results on 𝐿𝑝-
onsistency of localized SVMs so far, and whereas there do exist results
n their risk consistency, our result significantly generalizes those
n several ways. Before stating the results, we impose the following
ssumptions, which we assume to hold true throughout this section:

ssumption 4.1.

• Let 𝐿∶ × R → [0,∞) be a convex, distance-based loss function
of growth type 𝑝 ∈ [1,∞).

• Let 𝑛 ∶= {𝑛,1,… ,𝑛,𝑚𝑛}, 𝑛 ∈ N, be regionalizations satisfying
(R1), (R2), (R3), and let 𝑤𝑛,𝑖, 𝑛 ∈ N and 𝑖 = 1,… , 𝑚𝑛, be weight
functions satisfying (W1), (W2), (W3).

• Let 𝓁 ∈ N and let, for 𝑗 = 1,… ,𝓁, 𝒌(𝒋) ∶= (𝑘(𝑗,𝑟))𝑟∈𝐼 (𝑗) be
a family of uniformly bounded and measurable kernels of type
𝜷(𝒋) ∶= (𝛽(𝑗,𝑟))𝑟∈𝐼 (𝑗) on  with separable RKHSs (𝐻 (𝑗,𝑟))𝑟∈𝐼 (𝑗) such
that 𝐻 (𝑗,0) ⊆ 𝐿𝑝(P𝑋 ) dense. Let, for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛},

𝑘𝑛,𝑖 ∈
{

𝑘(𝑗,𝑟) 𝑛,𝑖×𝑛,𝑖 ∶ 𝑗 ∈ {1,… ,𝓁}, 𝑟 ∈ 𝐼 (𝑗)
}

.

• Assume |P|𝑝 <∞ and sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 < ∞.

emark 4.2. The condition sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 < ∞ is disadvanta-
eous in that it requires knowledge about all regionalizations 𝑛, 𝑛 ∈ N.
ecause

P𝑛,𝑖|𝑝𝑝 = ∫𝑛,𝑖
|P(⋅ ∣ 𝑥)|𝑝𝑝 dP𝑋𝑛,𝑖(𝑥) ≤ sup

𝑥∈
|P(⋅ ∣ 𝑥)|𝑝𝑝

or all 𝑛 ∈ N and 𝑖 ∈ 𝐼𝑛 ,P (and analogously also |P|𝑝𝑝 ≤ sup𝑥∈ |P(⋅ ∣ 𝑥)|𝑝𝑝),
t however suffices if sup𝑥∈ |P(⋅ ∣ 𝑥)|𝑝 < ∞.

On the other hand, even though the finiteness of |P|𝑝 does already
mply the finiteness of |P𝑛,𝑖|𝑝 for all 𝑛 ∈ N and 𝑖 ∈ 𝐼𝑛 ,P because

P𝑛,𝑖|𝑝𝑝 = ∫𝑛,𝑖
|P(⋅ ∣ 𝑥)|𝑝𝑝 dP𝑋𝑛,𝑖(𝑥) =

1
P𝑋 (𝑛,𝑖)

⋅ ∫𝑛,𝑖
|P(⋅ ∣ 𝑥)|𝑝𝑝 dP𝑋 (𝑥)

≤ 1
P𝑋 (𝑛,𝑖)

⋅ ∫
|P(⋅ ∣ 𝑥)|𝑝𝑝 dP𝑋 (𝑥) = 1

P𝑋 (𝑛,𝑖)
⋅ |P|𝑝𝑝 ,

P|𝑝 being finite is not sufficient to guarantee sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 < ∞,
as can be seen from the following example:

Let P𝑋 ∶=  (0, 1) and P(⋅ ∣ 𝑋 = 𝑥) ∶=  (0, 𝑥−1∕2) for all 𝑥 ∈ (0, 1),
where  (𝑎, 𝑏) denotes the uniform distribution on (𝑎, 𝑏). Then, we have

|P|1 = ∫

1

0 ∫

1
√

𝑥

0
𝑦
√

𝑥 d𝑦 d𝑥 = 1 < ∞ ,

ut for 𝑛,1 ∶= (0, 1𝑛 ), 𝑛 ∈ N, we obtain

P𝑛,1|1 = ∫

1
𝑛

0 ∫

1
√

𝑥

0
𝑦
√

𝑥 d𝑦 ⋅ 𝑛 d𝑥 =
√

𝑛 ,

hich yields sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 = ∞.
Hence, the condition sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 < ∞ is not superfluous

n itself and cannot just be erased without adding a replacement like
up𝑥∈ |P(⋅ ∣ 𝑥)|𝑝 < ∞.

.1. 𝐿𝑝-Consistency of localized SVMs

The subsequent theorem shows that localized SVMs are indeed
𝑝-consistent under Assumption 4.1.

heorem 4.3. Let Assumptions 2.1 and 4.1 be satisfied. Let 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
,

∈ N, be defined as in (4) and assume that 𝑓 ∗
𝐿,P is P𝑋 -a.s. unique. Define

∗
1 ∶= max{𝑝 + 1, 𝑝(𝑝 + 1)∕2}. Further choose 𝑝∗2 ∶= max{2(𝑝 − 1)∕𝑝, 𝑝 − 1}
f 𝑝 > 1 and 𝑝∗2 ∈ (0,∞) arbitrary if 𝑝 = 1. If the regularization parameters
atisfy 𝜆𝑛,𝑖 ∈ (0, 𝐶) for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛} for some 𝐶 ∈ (0,∞),
s well as

max 𝛽2𝑛,𝑖𝜆𝑛,𝑖 → 0 (5)
6

𝑖∈𝐼𝑛,P
t

nd

min
𝑖∈𝐼𝑛,P

𝜆
𝑝∗1
𝑛,𝑖𝑑𝑛,𝑖

�̃�
𝑝∗2
𝑛

→ ∞ (6)

as 𝑛→ ∞, then

lim
𝑛→∞

‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿𝑝(P𝑋 )
= 0 in probability P∞.

Theorem 4.3 yields that localized SVMs can indeed be guaranteed to
asymptotically achieve the goal of learning the Bayes function 𝑓 ∗

𝐿,P, i.e.
the best predictor as measured by the applied loss function, arbitrarily
well in the sense of the 𝐿𝑝-norm. This guarantee is given under weak
assumptions, which for the most part only concern entities that can
be chosen by the person computing the localized SVM, and which
can therefore be ensured to hold true.1 Notably, the conditions that –
directly or indirectly – concern the regionalization and therefore also
the way this regionalization is obtained, can be ensured for most of the
methods mentioned in Section 3.1, with the exception of some of the
𝑘NN methods, which do not satisfy (R2).

In the following, Example 4.4 and Remark 4.5 take a look at how
conditions (5) and (6) simplify in certain situations that might occur
in practical applications of localized SVMs. Afterwards, Example 4.6
empirically shows how the convergence guaranteed by Theorem 4.3
takes place. For this, we look at simulated data rather than real world
data sets because for real world data sets the Bayes function would be
unknown and it would therefore not be possible to accurately estimate
‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿𝑝(P𝑋 )
.

Example 4.4. If 𝑝 = 2, like for the popular least squares loss, we have
𝑝∗1 = 3 and 𝑝∗2 = 1 and condition (6) therefore becomes

min
𝑖∈𝐼𝑛,P

𝜆3𝑛,𝑖𝑑𝑛,𝑖
�̃�𝑛

→ ∞ .

f 𝑝 = 1, like for the pinball loss or the 𝜀-insensitive loss, we have 𝑝∗1 = 2
nd 𝑝∗2 can be chosen arbitrarily small. Hence, condition (6) relaxes
ven further in this case, becoming

min
∈𝐼𝑛,P

𝜆2𝑛,𝑖𝑑𝑛,𝑖
�̃�𝛿𝑛

→ ∞

for an arbitrarily small 𝛿 > 0.

emark 4.5. In some special cases, we can slightly simplify the
onditions regarding the regularization parameters in Theorem 4.3:

If one only allows for a finite amount of kernels to choose from
instead of a finite amount of families of kernels of type 𝜷), it is

obviously possible to view each of these kernels as its own family of
kernels with index set 𝐼 (𝑗) = {0} and 𝛽(𝑗,0) = 1 for all 𝑗 ∈ {1,… ,𝓁}, and
hus simplify (5) by eliminating 𝛽𝑛,𝑖 from it.

Additionally, if the regionalization 𝑛 does not change with 𝑛, then
̃ 𝑛 is constant and we can erase it from (6).

Hence, if both of these hold true (finite amount of kernels and
onstant regionalization), the conditions regarding the regularization
arameters are exactly the same as in [16], where 𝐿𝑝-consistency of

non-localized SVMs was derived, with the only difference being that
the conditions obviously need to hold true for each region now instead
of only globally.

1 The most notable exception to this is the so-called moment condition from
he last part of Assumption 4.1, which is however fundamentally necessary for
he existence of a function 𝑓 ∈ 𝐿𝑝(P𝑋 ) with finite risk [cf. 3, Lemma 2.38(iii)]
nd therefore also necessary for even having a P𝑋 -a.s. unique Bayes function
hat lies in 𝐿 (P𝑋 ).
𝑝
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Table 1
Estimated values of ‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿1 (P𝑋 )
for the regression problem Fried-

man 1 with different training set sizes 𝑛 and different amounts of underlying
regions.

𝑛
#Reg. 1 3 5 10 20 40 100

600 1.14 1.34 1.39 1.57 1.76 – –
2,000 0.95 1.02 1.08 1.08 1.25 1.39 –
6,000 0.87 0.88 0.88 0.85 0.93 1.00 1.16

20,000 0.79 0.74 0.74 0.68 0.71 0.72 0.81
60,000 0.70 0.66 0.63 0.58 0.59 0.57 0.62

200,000 – – 0.54 0.50 0.50 0.46 0.48
600,000 – – – 0.44 0.44 0.40 0.40

2,000,000 – – – – – 0.34 0.33
u
c
n
p
𝑛
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W
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Example 4.6. We used R Statistical Software [71, v4.2.2] to perform
median regression (that is, we used the 0.5-pinball loss function in our
SVMs) on synthetic data generated according to the regression problem
Friedman 1 from the library mlbench [72] as described by Friedman
[73]. Here, the input space  is 10-dimensional and each component
of the input is uniformly distributed on [0, 1], with however only 5 of
these components actually influencing the output 𝑦 via the function

𝑓 (𝑥) = 10 sin(𝜋𝑥1𝑥2) + 20(𝑥3 − 0.5)2 + 10𝑥4 + 5𝑥5 ,

from which the value of 𝑦 is obtained by adding an  (0, 1)-distributed
rror, which yields that 𝑓 ∗

𝐿,P is P𝑋 -a.s. unique and coincides with 𝑓 .
We proceeded by generating a regionalization data set of size

0,000, based on which we used a 𝑘-means approach to partition 
into 3, 5, 10, 20, 40 and 100 regions. For each of these regionalization
choices, we then used liquidSVM [64] with the 0.5-pinball loss
function to compute according localized SVMs for different training
set sizes ranging from 𝑛 = 600 to 𝑛 = 2,000,000. Additionally, we
did the same computations for a regular SVM (i.e. one based on a
single global region). We used fixed Gaussian RBF kernels not changing
with 𝑛. By Example 4.4, Theorem 4.3 then guarantees convergence of
‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿1(P𝑋 )
to 0 whenever 𝜆𝑛,𝑖 tends to 0 slower than

−1∕2
𝑛,𝑖 (because �̃�𝑛 is constant for each fixed regionalization). For this
eason, we chose some constant 𝑐𝑖 > 0 on each region 𝑖 (for each
egionalization) and then used 𝜆𝑛,𝑖 = 𝑐𝑖 ⋅ 𝑑

−1∕3
𝑛,𝑖 .

To empirically verify the postulated convergence, we collected esti-
ations of the resulting values of ‖‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿1(P𝑋 )
(based on

,000,000 test data points generated according to Friedman 1 without
he random errors in order to obtain evaluations of the Bayes function
∗
𝐿,P) in Table 1.2 It can be seen that – no matter the number of
egions – the convergence does indeed seem to take place. For small
, having only a small amount of regions yields better results than
aving more regions. This is plausible because the number of training
oints in the individual regions gets too small in the latter case. As 𝑛
owever increases, the localized SVMs that are based on larger numbers
f regions quickly catch up or even overtake those that are based on
ewer regions, which supports the idea of increasing the number of
egions as 𝑛 increases in practice.

This idea also gets supported by Table 2, where we collected the
ccording computation times (training and testing times combined).3
he table shows that computation times indeed drastically decrease as
he number of regions increases, also recall the analyses of computation
imes referenced in Section 3.1.

2 The missing values in the table are due to the according localized SVMs
ot having been computed – either because of having too few data points in
he different regions or because of having so many data points in a single
egion that the calculations become exceedingly memory-intensive.

3 Because of us not computing a new regionalization for each 𝑛 but instead
sing regionalizations that are fixed independently of 𝑛, the computation times
o not include the time needed for computing the regionalization, which was
owever negligible for the simple 𝑘-means approach that was used. The time
eeded for assigning training and test points to the different regions on the
7

ther hand is included in the stated computation times. s
4.2. Risk consistency of localized SVMs

Now, we can turn our attention to risk consistency of localized
SVMs. To our knowledge, the only existing results which explicitly
examine risk consistency of localized SVMs are those by Hable [14,
Theorem 1] and Dumpert and Christmann [13, Theorem 3.1], both of
which are in certain aspects considerably less general than the sub-
sequent Theorem 4.7: Dumpert and Christmann [13] only considered
Lipschitz continuous (shifted) loss functions, whereas we take a look
at distance-based loss functions, thus covering a different subset of all
loss functions, notably also including the popular and not Lipschitz
continuous least squares loss. Additionally, Dumpert and Christmann
[13] assumed a fixed regionalization and fixed kernels on the differ-
ent regions, which stay the same independently of the size 𝑛 of the
nderlying data set. We however also allow for regionalizations which
hange with 𝑛 (cf. Section 3.2), since the regionalization is oftentimes
ot predefined in practice but instead might change when new data
oints are added to the data set – for example, becoming finer when
grows. We also allow for kernels that change with 𝑛 and that are

hosen from an possibly infinite set of kernels – for example, Gaussian
ernels whose bandwidth decreases as 𝑛 increases (cf. Example 3.5).
hus, we significantly generalize the investigations by Dumpert and
hristmann [13] in these aspects. Hable [14] on the other hand only
llows for a bounded output space  and only considers the special case
f the regionalization stemming from some 𝑘-nearest neighbor method.
hereas this approach implicitly also allows for regionalizations which

hange with 𝑛, this makes our Theorem 4.7 applicable to a much wider
rray of localization methods – even though the 𝑘-nearest neighbor
pproach described by Hable [14] is not one of them because it can
ead to condition (R2) from Section 3.2 being violated, thus making
ur result and that of Hable [14] applicable to different situations.

Apart from that, the oracle inequalities by Meister and Steinwart
15], Thomann et al. [11], Mücke [66], Blaschzyk and Steinwart [12]
f course also imply risk consistency if the different parameters in these
esults are chosen accurately. However, these oracle inequalities are
nly valid for the least squares respectively the hinge loss, whereas
e aim at deriving a much more general result which is applicable for

he considerably larger class of convex, distance-based loss functions.
dditionally, these oracle inequalities require stricter conditions than
ur consistency results, like for example  being contained in a ball of
ixed radius,  being bounded, the kernels all being Gaussian kernels,
nd also additional requirements regarding the regionalization.

In the subsequent theorem, we derive such a general result on the
isk consistency of localized SVMs. Condition (7) in that theorem is
lightly more restrictive and complicated than its counterpart (6) in
he result on 𝐿𝑝-consistency. However, the additional factor 𝜆

𝑝∗3
𝑛,𝑗 can be

liminated from (7) in several important special cases, thus weakening
nd simplifying this condition again: If the loss function is of growth
ype 𝑝 = 1, one directly obtains 𝑝∗3 = 0, and if the regionalizations
nderlying the localized SVMs partition  or 𝑓 ∗

𝐿,P is P𝑋 -a.s. unique, the

pecial cases (i) and (ii) of the theorem also yield similar relaxations.



Neurocomputing 598 (2024) 128060H. Köhler

𝑛
𝑝
i
s
a

a

𝑛

I
a

a
c
a

E
w
p

(
t
t
t

n
t
r

Table 2
Computation times (training plus testing) in seconds for the regression problem
Friedman 1 with different training set sizes 𝑛 and different amounts of underlying
regions.

𝑛
#Reg. 1 3 5 10 20 40 100

600 12 7 7 5 6 – –
2,000 29 13 11 8 7 8 –
6,000 85 31 21 14 10 9 12

20,000 537 95 61 33 21 15 14
60,000 1,481 466 167 92 50 29 24

200,000 – – 1,028 398 172 100 54
600,000 – – – 2,410 743 388 175

2,000,000 – – – – – 3,821 1,103
e
b
i

Theorem 4.7. Let Assumptions 2.1 and 4.1 be satisfied. Let 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
,

∈ N, be defined as in (4). Define 𝑝∗1 ∶= max{𝑝 + 1, 𝑝(𝑝 + 1)∕2} and
∗
3 ∶= max{𝑝 − 1, 𝑝(𝑝 − 1)∕2}. Further choose 𝑝∗2 ∶= max{2(𝑝 − 1)∕𝑝, 𝑝 − 1}
f 𝑝 > 1 and 𝑝∗2 ∈ (0,∞) arbitrary if 𝑝 = 1. If the regularization parameters
atisfy 𝜆𝑛,𝑖 ∈ (0, 𝐶) for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛} for some 𝐶 ∈ (0,∞),
s well as max𝑖∈𝐼𝑛,P 𝛽

2
𝑛,𝑖𝜆𝑛,𝑖 → 0 and

min
𝑖,𝑗∈𝐼𝑛,P

𝜆
𝑝∗3
𝑛,𝑗𝜆

𝑝∗1
𝑛,𝑖𝑑𝑛,𝑖

�̃�
𝑝∗2
𝑛

→ ∞ (7)

s 𝑛→ ∞, then

lim
→∞

𝐿,P(𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
) = ∗

𝐿,P in probability P∞.

f some additional conditions are satisfied, it is possible to slightly relax
ssumption (7) regarding the regularization parameters:

(i) If, for all 𝑛 ∈ N, the regionalization 𝑛 is a partition of  , then it
suffices if (7) is satisfied for 𝑝∗1 ∶= max{2𝑝, 𝑝2} and 𝑝∗3 ∶= 0.

(ii) If 𝑓 ∗
𝐿,P is P𝑋 -a.s. unique, then it suffices if (7) is satisfied for 𝑝∗3 ∶= 0.

If 𝑝 = 1, the cases (i) and (ii) can be ignored since they do not yield
n actual relaxation because 𝑝∗3 = 0 then also holds true in the general
ase. Furthermore, the possible relaxations mentioned in Remark 4.5
re obviously also valid for Theorem 4.7.

xample 4.8. We look at the regression problem Friedman 1 the same
ay as we did in Example 4.6, notably also choosing the regularization
arameters as 𝜆𝑛,𝑖 = 𝑐𝑖 ⋅ 𝑑

−1∕3
𝑛,𝑖 for constants 𝑐𝑖. Theorem 4.7 yields that

𝐿,P(𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
) − ∗

𝐿,P converges to zero because the special case
ii) of that theorem tells us that condition (7) coincides with (6) in
he situation of this example, and the latter condition was explained
o be satisfied for this choice of 𝜆𝑛,𝑖 in Example 4.6. Table 3 shows
he resulting values of 𝐿,P(𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛

) −∗
𝐿,P, from which it can be

seen that the postulated convergence does indeed take place and that it
does so considerably faster than that of ‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿1(P𝑋 )
in

Example 4.6.4

5. Discussion

In this paper, the 𝐿𝑝- and risk consistency of localized SVMs has
been investigated, as localized SVMs can offer reduced computational
requirements as well as advantages regarding the quality of the pre-
dictions over non-localized SVMs (cf. Section 3.1). We saw that it is
possible to derive both types of consistency of localized SVMs under
very mild conditions on the underlying probability distribution as well
as the applied regionalization and the kernels used in the different local
SVMs. Notably, we even allowed for regionalizations which change as

4 The missing values in the table are due to the according localized SVMs
ot having been computed – either because of having too few data points in
he different regions or because of having so many data points in a single
egion that the computation becomes exceedingly memory-intensive.
8

the size 𝑛 of the data set increases – in contrast to [13], where risk
consistency of localized SVMs had already been examined, but only for
non-changing regionalizations and kernels and for a different subset of
loss functions. Hence, we added another entry to the list of properties
that localized SVMs inherit from non-localized ones. This further justi-
fies applying localized SVMs to learning problems, especially to those
in which non-localized methods struggle, like in big data scenarios or
if the function which one wishes to estimate contains discontinuities
or exhibits greatly differing complexity and variability across different
areas of the input space.
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Appendix A. Auxiliary results

In this section, we prove auxiliary results that are needed in the
proofs of Theorems 4.3 and 4.7. In both these results, the difference
between 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛

and 𝑓 ∗
𝐿,P is examined – the 𝐿𝑝-norm of the differ-

nce in the former and the difference between the risks in the latter. In
oth cases, we do not examine this difference directly, but instead plug
n the theoretical localized SVM 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

as an intermediate step
and then examine the difference between 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛

and 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
as well as that between 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

and 𝑓 ∗
𝐿,P. The lemmas from this

section deal with these differences.
As the assumptions needed for these lemmas are slightly weaker

than those needed in the theorems from Section 4 (and additionally
differ between these lemmas), Assumption 4.1 is not assumed to hold
true in this section, but we will instead explicitly list the required
assumptions in the lemmas.
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𝑛

P

𝜅

Table 3
Estimated values of 𝐿,P(𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛

)−∗
𝐿,P for the regression problem Friedman

1 with different training set sizes 𝑛 and different amounts of underlying regions.

𝑛
#Reg. 1 3 5 10 20 40 100

600 0.31 0.39 0.41 0.49 0.58 – –
2,000 0.24 0.26 0.28 0.28 0.36 0.41 –
6,000 0.21 0.21 0.21 0.20 0.23 0.25 0.31

20,000 0.18 0.16 0.16 0.14 0.15 0.15 0.18
60,000 0.15 0.14 0.13 0.11 0.12 0.10 0.12

200,000 – – 0.10 0.09 0.09 0.08 0.08
600,000 – – – 0.07 0.07 0.06 0.06

2,000,000 – – – – – 0.05 0.04
b
w

P

Lemma A.1. Let Assumption 2.1 be satisfied. Let 𝐿∶ × R → [0,∞)
be a convex, distance-based loss function of upper growth type 𝑝 ∈ [1,∞).
Let 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

and 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
, 𝑛 ∈ N, be defined as in (3) and (4)

such that the underlying regionalizations and weight functions satisfy (R1),
(R3), (W1), (W2), (W3) and sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 < ∞. Assume that, for
all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛}, 𝑘𝑛,𝑖 is a bounded and measurable kernel on
𝑛,𝑖 with separable RKHS𝐻𝑛,𝑖, such that sup𝑛∈N,𝑖∈𝐼𝑛,P

‖

‖

𝑘𝑛,𝑖‖‖∞ <∞. Define
𝑝∗1 ∶= max{𝑝 + 1, 𝑝(𝑝 + 1)∕2}. Further choose 𝑝∗2 ∶= max{2(𝑝 − 1)∕𝑝, 𝑝 − 1}
if 𝑝 > 1 and 𝑝∗2 ∈ (0,∞) arbitrary if 𝑝 = 1. If the regularization parameters
satisfy 𝜆𝑛,𝑖 ∈ (0, 𝐶) for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛} for some 𝐶 ∈ (0,∞),
as well as

min
𝑖∈𝐼𝑛,P

𝜆
𝑝∗1
𝑛,𝑖𝑑𝑛,𝑖

�̃�
𝑝∗2
𝑛

→ ∞ (A.1)

as 𝑛→ ∞, then

lim
→∞

‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

‖

‖

‖𝐿∞(P𝑋 )
= 0 in probability P∞.

roof. To shorten the notation, we will denote 𝑓P,𝑛,𝑖 ∶= 𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖
and 𝑓D𝑛 ,𝑛,𝑖 ∶= 𝑓𝐿,D𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛}, as well as
∶= sup𝑛∈N,𝑖∈𝐼𝑛,P

‖

‖

𝑘𝑛,𝑖‖‖∞ and 𝜌 ∶= sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 throughout this
proof.

Because applying (W1) and (W2) yields

|

|

|

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
(𝑥) − 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

(𝑥)||
|

=
|

|

|

|

|

𝑚𝑛
∑

𝑖=1
𝑤𝑛,𝑖(𝑥) ⋅

(

𝑓D𝑛 ,𝑛,𝑖(𝑥) − 𝑓P,𝑛,𝑖(𝑥)
)|

|

|

|

|

≤
𝑚𝑛
∑

𝑖=1
𝑤𝑛,𝑖(𝑥) ⋅

|

|

|

𝑓D𝑛 ,𝑛,𝑖(𝑥) − 𝑓P,𝑛,𝑖(𝑥)
|

|

|

≤ max
𝑖∈{1,…,𝑚𝑛}

|

|

|

𝑓D𝑛 ,𝑛,𝑖(𝑥) − 𝑓P,𝑛,𝑖(𝑥)
|

|

|

for all 𝑛 ∈ N and all 𝑥 ∈  , we obtain
‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

‖

‖

‖𝐿∞(P𝑋 )
≤ max
𝑖∈{1,…,𝑚𝑛}

‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐿∞(P𝑋 )

= max
𝑖∈𝐼𝑛,P

‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐿∞(P𝑋𝑛,𝑖)
≤ 𝜅 ⋅ max

𝑖∈𝐼𝑛,P

‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
(A.2)

for all 𝑛 ∈ N, with the last inequality holding true because of [3,
Lemma 4.23]. Hence, we start by fixing an 𝑛 ∈ N and an 𝑖 ∈ 𝐼𝑛 ,P
and investigating the corresponding difference on the right hand side
of (A.2).

First, note that employing [3, Lemma 4.23, equation (5.4) and
Lemma 2.38(i)] yields

‖

‖

𝑓P,𝑛,𝑖
‖

‖∞ ≤ ‖

‖

𝑘𝑛,𝑖‖‖∞ ⋅‖
‖

𝑓P,𝑛,𝑖
‖

‖𝐻𝑛,𝑖
≤ ‖

‖

𝑘𝑛,𝑖‖‖∞ ⋅P𝑛,𝑖 (0)
1∕2 ⋅𝜆−1∕2𝑛,𝑖 ≤ 𝑐𝑝,𝐿,𝜌,𝜅 ⋅𝜆

−1∕2
𝑛,𝑖 (A.3)

with 𝑐𝑝,𝐿,𝜌,𝜅 ∈ (0,∞) denoting a constant depending only on 𝑝, L, 𝜌 and
𝜅, but not on 𝜆𝑛,𝑖.

Assume now without loss of generality that 𝑑𝑛,𝑖 > 0 (which by (A.1)
has to be satisfied for 𝑛 sufficiently large), i.e. that 𝑓D𝑛 ,𝑛,𝑖 is indeed
an empirical SVM and not just defined as the zero function. We know
from [3, Corollary 5.11] that there exists a function ℎ𝑛,𝑖 ∶𝑛,𝑖 ×  → R
such that
‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
≤ 1
𝜆𝑛,𝑖

⋅ ‖‖
‖

ED𝑛,𝑖
[

ℎ𝑛,𝑖𝛷𝑛,𝑖
]

− EP𝑛,𝑖
[

ℎ𝑛,𝑖𝛷𝑛,𝑖
]

‖

‖

‖𝐻𝑛,𝑖
(A.4)

and, for 𝑠 ∶= 𝑝∕(𝑝 − 1),

‖ℎ ‖ ≤ 8𝑝 ⋅ 𝑐 ⋅
(

1 + |P |

𝑝−1 + ‖𝑓 ‖

)

9

‖ 𝑛,𝑖‖𝐿𝑠(P𝑛,𝑖) 𝐿 𝑛,𝑖 𝑝 ‖ P,𝑛,𝑖‖∞
≤ 8𝑝 ⋅ 𝑐𝐿 ⋅
(

1 + 𝜌𝑝−1 + 𝑐𝑝−1𝑝,𝐿,𝜌,𝜅 ⋅ 𝜆
−(𝑝−1)∕2
𝑛,𝑖

)

≤ 𝑐𝑝,𝐿,𝜌,𝜅 ⋅ 𝜆
−(𝑝−1)∕2
𝑛,𝑖 , (A.5)

where we employed (A.3) in the second and 𝜆𝑛,𝑖 ≤ 𝐶 in the third step,
and where 𝑐𝐿 ∈ (0,∞) and 𝑐𝑝,𝐿,𝜌,𝜅 ∈ (0,∞) denote constants depending
only on 𝐿 respectively 𝑝, L, 𝜌 and 𝜅.

Assume without loss of generality that 𝑝∗2 ≤ 1 if 𝑝 = 1. Then, we can
apply [3, Lemma 9.2] with 𝑞 ∶= 𝑝∕(𝑝−1) if 𝑝 > 1 and 𝑞 ∶= 2∕𝑝∗2 if 𝑝 = 1,
which leads to 𝑞∗ ∶= min{1∕2, 1 − 1∕𝑞} = min{1∕2, 1∕𝑝} = (𝑝 + 1)∕(2𝑝∗1),
to the functions ℎ𝑛,𝑖𝛷𝑛,𝑖, 𝑛 ∈ N: First of all, with the help of (A.5) we
obtain

‖

‖

ℎ𝑛,𝑖𝛷𝑛,𝑖‖‖𝑞 ∶=
(

EP𝑛,𝑖

[

‖

‖

ℎ𝑛,𝑖𝛷𝑛,𝑖‖‖
𝑞
𝐻𝑛,𝑖

])1∕𝑞

≤ ‖

‖

𝑘𝑛,𝑖‖‖∞ ⋅ ‖
‖

ℎ𝑛,𝑖‖‖𝐿𝑞 (P𝑛,𝑖) ≤ 𝜅 ⋅ 𝑐𝑝,𝐿,𝜌,𝜅 ⋅ 𝜆
−(𝑝−1)∕2
𝑛,𝑖 < ∞ ,

where we employed that, for all (𝑥, 𝑦) ∈ 𝑛,𝑖 ×  ,

‖

‖

ℎ𝑛,𝑖(𝑥, 𝑦)𝛷𝑛,𝑖(𝑥)‖‖
𝑞
𝐻𝑛,𝑖

= |ℎ𝑛,𝑖(𝑥, 𝑦)|
𝑞 ⋅ ‖

‖

𝛷𝑛,𝑖(𝑥)‖‖
𝑞
𝐻𝑛,𝑖

= |ℎ𝑛,𝑖(𝑥, 𝑦)|
𝑞 ⋅ 𝑘𝑛,𝑖(𝑥, 𝑥)𝑞∕2 ≤ |ℎ𝑛,𝑖(𝑥, 𝑦)|

𝑞
‖

‖

𝑘𝑛,𝑖‖‖
𝑞
∞

y the reproducing property, cf. for example [2, Definition 2.9]. Hence,
e obtain for all 𝜀 > 0, by combining this Lemma 9.2 with (A.4),

𝑑𝑛,𝑖
𝑛,𝑖

(

𝐷𝑛,𝑖 ∈ (𝑛,𝑖 × )𝑑𝑛,𝑖 ∶ ‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
≥ 𝜀
𝜅

)

≤ P𝑑𝑛,𝑖𝑛,𝑖

(

𝐷𝑛,𝑖 ∈ (𝑛,𝑖 × )𝑑𝑛,𝑖 ∶ ‖

‖

‖

ED𝑛,𝑖
[

ℎ𝑛,𝑖𝛷𝑛, 𝑖
]

− EP𝑛,𝑖
[

ℎ𝑛,𝑖𝛷𝑛,𝑖
]

‖

‖

‖𝐻𝑛,𝑖
≥
𝜆𝑛,𝑖𝜀
𝜅

)

≤ 𝑐𝑞 ⋅

(

𝜅‖
‖

ℎ𝑛,𝑖𝛷𝑛,𝑖
‖

‖𝑞

𝜆𝑛,𝑖𝜀𝑑
𝑞∗
𝑛,𝑖

)𝑞

≤ 𝑐𝑞,𝑝,𝐿,𝜌,𝜅 ⋅

(

1
𝜆(𝑝+1)∕2𝑛,𝑖 𝜀𝑑𝑞

∗

𝑛,𝑖

)𝑞

with 𝑐𝑞 ∈ (0,∞) and 𝑐𝑞,𝑝,𝐿,P,𝑘 ∈ (0,∞) denoting constants depending
only on 𝑞 (which means only on 𝑝 in the case 𝑝 > 1) respectively 𝑞, 𝑝,
L, 𝜌 and 𝜅.

With this, we can now return to investigating the whole global
predictors with the help of (A.2): For all 𝜀 > 0 and 𝑛 ∈ N, we have

P𝑛
(

𝐷𝑛 ∈ ( × )𝑛 ∶ ‖

‖

‖

𝑓𝐿,D𝑛,𝝀𝒏 ,𝒌𝒏 ,𝑛 − 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
‖

‖

‖𝐿∞(P𝑋 )
≥ 𝜀

|

|

|

|𝐷𝑛,1| = 𝑑𝑛,1,… , |𝐷𝑛,𝑚𝑛 | = 𝑑𝑛,𝑚𝑛
)

≤ P𝑛
(

𝐷𝑛 ∈ ( × )𝑛 ∶ max
𝑖∈𝐼𝑛,P

‖

‖

‖

𝑓D𝑛,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
≥ 𝜀
𝜅

|

|

|

|𝐷𝑛,1| = 𝑑𝑛,1,… , |𝐷𝑛,𝑚𝑛 | = 𝑑𝑛,𝑚𝑛
)

≤
∑

𝑖∈𝐼𝑛,P

P𝑑𝑛,𝑖𝑛,𝑖

(

𝐷𝑛,𝑖 ∈ (𝑛,𝑖 × )𝑑𝑛,𝑖 ∶ ‖

‖

‖

𝑓D𝑛,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
≥ 𝜀
𝜅

)

≤ 𝑐𝑞,𝑝,𝐿,𝜌,𝜅 ⋅ �̃�𝑛 ⋅ max
𝑖∈𝐼𝑛,P

(

1
𝜆(𝑝+1)∕2𝑛,𝑖 𝜀𝑑𝑞

∗
𝑛,𝑖

)𝑞

, (A.6)

and it remains to further investigate the right hand side:
If 𝑝 > 1, we obtain (𝑞𝑞∗)−1 = ((𝑝 − 1)∕𝑝) ⋅max{2, 𝑝} = 𝑝∗2. If 𝑝 = 1, we

analogously obtain (𝑞𝑞∗)−1 = (𝑝∗2∕2) ⋅ 2 = 𝑝∗2. Thus, we have

�̃�𝑛 ⋅ max
𝑖∈𝐼𝑛 ,P

(

1
𝜆(𝑝+1)∕2𝑛,𝑖 𝑑𝑞

∗

𝑛,𝑖

)𝑞

= max
𝑖∈𝐼𝑛 ,P

(

�̃�1∕(𝑞𝑞∗)
𝑛

𝜆(𝑝+1)∕(2𝑞
∗)

𝑛,𝑖 𝑑𝑛,𝑖

)𝑞𝑞∗

= max
𝑖∈𝐼𝑛 ,P

⎛

⎜

⎜

⎝

�̃�
𝑝∗2
𝑛

𝜆
𝑝∗1
𝑛,𝑖𝑑𝑛,𝑖

⎞

⎟

⎟

⎠

𝑞𝑞∗

,
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which by assumption converges to 0 as 𝑛→ ∞. Hence, the whole right
hand side of (A.6) converges to 0, which completes the proof. □

Lemma A.2. Let Assumption 2.1 be satisfied. Let 𝐿∶ × R → [0,∞) be
a convex, distance-based loss function of upper growth type 𝑝 ∈ [1,∞).
Let 𝓁 ∈ N and let, for 𝑗 = 1,… ,𝓁, 𝒌(𝒋) ∶= (𝑘(𝑗,𝑟))𝑟∈𝐼 (𝑗) be a family
f measurable kernels of type 𝜷(𝒋) ∶= (𝛽(𝑗,𝑟))𝑟∈𝐼 (𝑗) on  with RKHSs

(𝐻 (𝑗,𝑟))𝑟∈𝐼 (𝑗) such that 𝐻 (𝑗,0) ⊆ 𝐿𝑝(P𝑋 ) dense. Assume that |P|𝑝 < ∞.
et 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

, 𝑛 ∈ N, be defined as in (3) such that the underlying
egionalizations and weight functions satisfy (R1), (R2), (W1), (W2) and
W3), and such that

𝑛,𝑖 ∈ {𝑘(𝑗,𝑟) 𝑛,𝑖×𝑛,𝑖 ∶ 𝑗 ∈ {1,… ,𝓁}, 𝑟 ∈ 𝐼 (𝑗)}

or all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛}. If the regularization parameters satisfy
𝑛,𝑖 > 0 for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛} as well as max𝑖∈𝐼𝑛,P 𝛽

2
𝑛,𝑖𝜆𝑛,𝑖 → 0

s 𝑛→ ∞, then

lim
→∞

𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
) = ∗

𝐿,P .

roof. Define the inner risk 𝐿,P(⋅∣𝑥) as

𝐿,P(⋅∣𝑥)(𝑡) ∶= ∫
𝐿(𝑦, 𝑡) dP(𝑦 ∣ 𝑥) ∀ 𝑥 ∈  , 𝑡 ∈ R

nd denote by
∗
𝐿,P(⋅∣𝑥) ∶= inf

𝑡∈R
𝐿,P(⋅∣𝑥)(𝑡) ∀ 𝑥 ∈ 

he minimal inner risk at 𝑥. We will use these in order to split the risk of
given function (and the Bayes risk) into an outer integral with respect

o P𝑋 and the inner risk.
First, we however show that all risks appearing in the assertion are

inite: [3, Lemma 2.38(i)] yields 𝐿,P(0) < ∞ as well as 𝐿,P𝑛,𝑖 (0) < ∞
or all 𝑛 ∈ N and 𝑖 ∈ 𝐼𝑛 ,P (with the latter holding true because
P𝑛,𝑖|𝑝 < ∞ by Remark 4.2). Since ∗

𝐿,P ≤ 𝐿,P(0) by definition, we
obtain the finiteness of ∗

𝐿,P. Furthermore,

𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
) = ∫×

𝐿(𝑦, 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
(𝑥)) dP(𝑥, 𝑦)

≤ ∫×

𝑚𝑛
∑

𝑖=1
𝑤𝑛,𝑖(𝑥) ⋅ 𝐿(𝑦, 𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 (𝑥)) dP(𝑥, 𝑦)

≤
𝑚𝑛
∑

𝑖=1
∫𝑛,𝑖×

𝐿(𝑦, 𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 (𝑥)) dP(𝑥, 𝑦)

=
∑

𝑖∈𝐼𝑛,P

P(𝑛,𝑖 × ) ⋅𝐿,P𝑛,𝑖 (𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ) ,

where we applied (W1), (W2) and the convexity of 𝐿 in the second and
its non-negativity as well as (W1) and (W3) in the third step. In the last
step, we employed that 𝑛,𝑖 ×  is a P-zero set for 𝑖 ∉ 𝐼𝑛 ,P, leading to
the according P-integrals being 0. Since 𝐿,P𝑛,𝑖 (𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ) ≤ 𝐿,P𝑛,𝑖 (0)
for all 𝑖 ∈ 𝐼𝑛 ,P by the definition of 𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 , and since we already
saw that 𝐿,P𝑛,𝑖 (0) < ∞, the finiteness of 𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

) follows for
all 𝑛 ∈ N.

With this, we can now write

𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
) −∗

𝐿,P

= ∫

(

𝐿,P(⋅∣𝑥)(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
(𝑥)) − ∗

𝐿,P(⋅∣𝑥)

)

dP𝑋 (𝑥)

≤ ∫

𝑚𝑛
∑

𝑖=1
𝑤𝑛,𝑖(𝑥) ⋅

(

𝐿,P(⋅∣𝑥)(𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 (𝑥)) − ∗
𝐿,P(⋅∣𝑥)

)

dP𝑋 (𝑥)

≤
𝑚𝑛
∑

𝑖=1
∫𝑛,𝑖

(

𝐿,P(⋅∣𝑥)(𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 (𝑥)) − ∗
𝐿,P(⋅∣𝑥)

)

dP𝑋 (𝑥)

=
∑

𝑖∈𝐼𝑛,P

(

P(𝑛,𝑖 × ) ⋅𝐿,P𝑛,𝑖 (𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ) − ∫𝑛,𝑖
∗
𝐿,P(⋅∣𝑥) dP𝑋 (𝑥)

)

,

(A.7)
10
where we applied [3, Lemma 3.4] in the first, (W1), (W2) and the con-
vexity of 𝐿 in the second, and (W1), (W3) and 𝐿,P(⋅∣𝑥)(𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ) −
∗
𝐿,P(⋅∣𝑥) ≥ 0 for all 𝑥 ∈  (by the definition of ∗

𝐿,P(⋅∣𝑥)) in the third step.
In the final step, we once more used that P(𝑛,𝑖 × ) = 0 for 𝑖 ∉ 𝐼𝑛 ,P.

If we define �̃�𝑛 ∶= max𝑖∈𝐼𝑛,P 𝛽
2
𝑛,𝑖𝜆𝑛,𝑖 as well as �̃�𝑛,𝑖 ∈ {𝑘(𝑗,𝑟) ∶

𝑗 ∈ {1,… ,𝓁}, 𝑟 ∈ 𝐼 (𝑗)} such that �̃�𝑛,𝑖 𝑛,𝑖×𝑛,𝑖 = 𝑘𝑛,𝑖 and analogously

�̃�(0)𝑛,𝑖 ∈ {𝑘(𝑗,0) ∶ 𝑗 ∈ {1,… ,𝓁}} such that �̃�(0)𝑛,𝑖 𝑛,𝑖×𝑛,𝑖 = 𝑘(0)𝑛,𝑖 , we can further
nalyze the right hand side of (A.7) by noting that, for all 𝑛 ∈ N and
∈ 𝐼𝑛 ,P,

𝐿,P𝑛,𝑖 (𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 )

≤ 𝐿,P𝑛,𝑖 (𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 ) + 𝜆𝑛,𝑖 ⋅
‖

‖

‖

𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖
‖

‖

‖

2

𝐻𝑛,𝑖

≤ 𝐿,P𝑛,𝑖 (𝑓𝐿,P𝑛,𝑖 ,𝛽𝑛,𝑖2𝜆𝑛,𝑖 ,𝑘(0)𝑛,𝑖
) + 𝜆𝑛,𝑖 ⋅

‖

‖

‖

‖

𝑓𝐿,P𝑛,𝑖 ,𝛽𝑛,𝑖2𝜆𝑛,𝑖 ,𝑘(0)𝑛,𝑖
‖

‖

‖

‖

2

𝐻𝑛,𝑖

≤ 𝐿,P𝑛,𝑖 (𝑓𝐿,P𝑛,𝑖 ,𝛽𝑛,𝑖2𝜆𝑛,𝑖 ,𝑘(0)𝑛,𝑖
) + 𝛽2𝑛,𝑖 ⋅ 𝜆𝑛,𝑖 ⋅

‖

‖

‖

‖

𝑓𝐿,P𝑛,𝑖 ,𝛽𝑛,𝑖2𝜆𝑛,𝑖 ,𝑘(0)𝑛,𝑖
‖

‖

‖

‖

2

𝐻 (0)
𝑛,𝑖

≤ 𝐿,P𝑛,𝑖 (𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖 𝑛,𝑖 ) + 𝛽
2
𝑛,𝑖 ⋅ 𝜆𝑛,𝑖 ⋅

‖

‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖 𝑛,𝑖
‖

‖

‖

‖

2

𝐻 (0)
𝑛,𝑖

≤ 𝐿,P𝑛,𝑖 (𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖 𝑛,𝑖 ) + �̃�𝑛 ⋅
‖

‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖 𝑛,𝑖
‖

‖

‖

‖

2

𝐻 (0)
𝑛,𝑖

≤ 𝐿,P𝑛,𝑖 (𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖 𝑛,𝑖 ) + �̃�𝑛 ⋅
‖

‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖
‖

‖

‖

‖

2

�̃� (0)
𝑛,𝑖

.

ere, we employed the definition of 𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 and 𝑓𝐿,P𝑛,𝑖 ,𝛽2𝑛,𝑖𝜆𝑛,𝑖 ,𝑘(0)𝑛,𝑖
as

the minimizers of the respective regularized risks (combined with the
fact that 𝑓𝐿,P𝑛,𝑖 ,𝛽𝑛,𝑖2𝜆𝑛,𝑖 ,𝑘(0)𝑛,𝑖

∈ 𝐻 (0)
𝑛,𝑖 ⊆ 𝐻𝑛,𝑖 and that 𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖 𝑛,𝑖 ∈ 𝐻 (0)

𝑛,𝑖
by [20, Theorem 6]) in the second and in the fourth step, and again [20,
Theorem 6] in the last step. Furthermore, the third step holds true
because

‖𝑓‖𝐻𝑛,𝑖
= min

𝑔∈�̃�𝑛,𝑖∶

𝑔 𝑛,𝑖 =𝑓

‖𝑔‖�̃�𝑛,𝑖
≤ min

𝑔∈�̃�(0)
𝑛,𝑖 ∶

𝑔 𝑛,𝑖 =𝑓

‖𝑔‖�̃�𝑛,𝑖
≤ 𝛽𝑛,𝑖 ⋅ min

𝑔∈�̃�(0)
𝑛,𝑖 ∶

𝑔 𝑛,𝑖 =𝑓

‖𝑔‖�̃� (0)
𝑛,𝑖

= 𝛽𝑛,𝑖 ⋅ ‖𝑓‖𝐻 (0)
𝑛,𝑖

or all 𝑓 ∈ 𝐻 (0)
𝑛,𝑖 , where we once more applied [20, Theorem 6] and that

̃ (0)
𝑛,𝑖 ⊆ �̃�𝑛,𝑖.

Plugging this into the right hand side of (A.7), we obtain

𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
) −∗

𝐿,P

≤
∑

𝑖∈𝐼𝑛,P

(

P(𝑛,𝑖 × ) ⋅

(

𝐿,P𝑛,𝑖 (𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖 𝑛,𝑖 ) + �̃�𝑛 ⋅
‖

‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖
‖

‖

‖

‖

2

�̃� (0)
𝑛,𝑖

)

−∫𝑛,𝑖
∗
𝐿,P(⋅∣𝑥) dP𝑋 (𝑥)

)

=
∑

𝑖∈𝐼𝑛,P

(

P(𝑛,𝑖 × ) ⋅ �̃�𝑛 ⋅
‖

‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖
‖

‖

‖

‖

2

�̃� (0)
𝑛,𝑖

+∫𝑛,𝑖

(

𝐿,P(⋅∣𝑥)(𝑓𝐿,P,�̃�𝑛 ,�̃�(0)𝑛,𝑖
(𝑥)) − ∗

𝐿,P(⋅∣𝑥)

)

dP𝑋 (𝑥)
)

≤
𝓁
∑

𝑗=1

𝑚𝑛
∑

𝑖=1

(

P(𝑛,𝑖 × ) ⋅ �̃�𝑛 ⋅
‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0)
‖

‖

‖

2

𝐻 (𝑗,0)

+∫𝑛,𝑖

(

𝐿,P(⋅∣𝑥)(𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0) (𝑥)) − ∗
𝐿,P(⋅∣𝑥)

)

dP𝑋 (𝑥)
)

≤
𝓁
∑

𝑗=1
𝑠max ⋅

(

�̃�𝑛 ⋅
‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0)
‖

‖

‖

2

𝐻 (𝑗,0) +𝐿,P(𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0) ) −∗
𝐿,P

)

, (A.8)

ith the third step holding true because of the summands being non-
egative and the final step employing that, for all 𝑗 ∈ {1,… , 𝑙},
𝑚𝑛
∑

∫

(

𝐿,P(⋅∣𝑥)(𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0) (𝑥)) − ∗
𝐿,P(⋅∣𝑥)

)

dP𝑋 (𝑥)

𝑖=1 𝑛,𝑖
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= ∫

𝑚𝑛
∑

𝑖=1
1𝑛,𝑖 (𝑥) ⋅

(

𝐿,P(⋅∣𝑥)(𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0) (𝑥)) − ∗
𝐿,P(⋅∣𝑥)

)

dP𝑋 (𝑥)

≤ 𝑠max ⋅
(

𝐿,P(𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0) ) −∗
𝐿,P

)

by (R2), and analogously ∑𝑚𝑛
𝑖=1 P(𝑛,𝑖 × ) ≤ 𝑠max.

Now, by [3, Lemma 2.38(i)], 𝐿 is a P-integrable Nemitski loss of
rder 𝑝. Hence, for all 𝑗 ∈ {1,… , 𝑙}, we know from [3, Theorem 5.31]
hat
∗
𝐿,P,𝐻 (𝑗,0) ∶= inf

𝑓∈𝐻 (𝑗,0)
𝐿,P(𝑓 ) = ∗

𝐿,P <∞

nd [3, Lemma 5.15] then yields that

lim
→∞

�̃�𝑛
‖

‖

‖

𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0)
‖

‖

‖

2

𝐻 (𝑗,0) +𝐿,P(𝑓𝐿,P,�̃�𝑛 ,𝑘(𝑗,0) ) −∗
𝐿,P = 0

because �̃�𝑛 → 0 as 𝑛 → ∞. Thus, the whole right hand side of
(A.8) converges to 0 as 𝑛 → ∞ and we obtain the assertion because
𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

) −∗
𝐿,P ≥ 0 by the definition of ∗

𝐿,P. □

Lemma A.3. Let Assumption 2.1 be satisfied. Let 𝐿∶ × R → [0,∞)
be a convex, distance-based loss function of upper growth type 𝑝 ∈
[1,∞). Assume that |P|𝑝 < ∞. Let 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

and 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
, 𝑛 ∈

, be defined as in (3) and (4) such that the underlying regionaliza-
ions and weight functions satisfy (R1), (R3), (W1), (W2), (W3) and
up𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝 < ∞. Assume that, for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛},
𝑛,𝑖 is a bounded and measurable kernel on 𝑛,𝑖 with separable RKHS 𝐻𝑛,𝑖,
uch that sup𝑛∈N,𝑖∈𝐼𝑛,P

‖

‖

𝑘𝑛,𝑖‖‖∞ < ∞. Define 𝑝∗1 ∶= max{𝑝 + 1, 𝑝(𝑝 + 1)∕2}
nd 𝑝∗3 ∶= max{𝑝−1, 𝑝(𝑝−1)∕2}. Further choose 𝑝∗2 ∶= max{2(𝑝−1)∕𝑝, 𝑝−1}
f 𝑝 > 1 and 𝑝∗2 ∈ (0,∞) arbitrary if 𝑝 = 1. If the regularization parameters
atisfy 𝜆𝑛,𝑖 ∈ (0, 𝐶) for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛} for some 𝐶 ∈ (0,∞),
s well as

min
𝑖,𝑗∈𝐼𝑛,P

𝜆
𝑝∗3
𝑛,𝑗𝜆

𝑝∗1
𝑛,𝑖𝑑𝑛,𝑖

�̃�
𝑝∗2
𝑛

→ ∞ (A.9)

as 𝑛→ ∞, then

lim
→∞

|

|

|

𝐿,P(𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
) −𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

)||
|

= 0 in probability P∞.

If additionally, the regionalizations 𝑛, 𝑛 ∈ N, are partitions of  , then it
suffices if (A.9) is satisfied for 𝑝∗1 ∶= max{2𝑝, 𝑝2} and 𝑝∗3 ∶= 0.

Proof. Assume, for all 𝑛 ∈ N and 𝑖 ∈ 𝐼𝑛 ,P, without loss of generality
that 𝑑𝑛,𝑖 > 0 (which by (A.9) has to be satisfied for 𝑛 sufficiently large),
such that the respective local empirical SVM 𝑓𝐿,D𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 is indeed an
empirical SVM and not just defined as the zero function. To shorten the
notation, we denote 𝑓P,𝑛 ∶= 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

, 𝑓D𝑛 ,𝑛 ∶= 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
, 𝑓P,𝑛,𝑖 ∶=

𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 and 𝑓D𝑛 ,𝑛,𝑖 ∶= 𝑓𝐿,D𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖 for all 𝑛 ∈ N and 𝑖 ∈ {1,… , 𝑚𝑛},
as well as 𝜅 ∶= sup𝑛∈N,𝑖∈𝐼𝑛,P

‖

‖

𝑘𝑛,𝑖‖‖∞, 𝜌 ∶= |P|𝑝 ∨ sup𝑛∈N,𝑖∈𝐼𝑛,P |P𝑛,𝑖|𝑝
and �̃�𝑛 ∶= min𝑖∈𝐼𝑛,P 𝜆𝑛,𝑖 throughout this proof. Additionally, note that
Lemma A.1 is applicable in the situation of this lemma (in the base case
as well as in the special case of the regionalizations being partitions
of ) as (A.9) in combination with 𝜆𝑛,𝑗 ∈ (0, 𝐶) for all 𝑛 ∈ N and
𝑗 ∈ {1,… , 𝑚𝑛} implies the validity of (A.1).

We start by proving the main assertion before turning our atten-
tion to the special case of the regionalizations being partitions of 
afterwards.

By applying [3, Lemma 2.38(ii)] with 𝑞 ∶= 𝑝, we obtain

|𝐿,P(𝑓D𝑛 ,𝑛) −𝐿,P(𝑓P,𝑛)|

≤ 𝑐𝑝,𝐿 ⋅
(

|P|𝑝−1𝑝 + ‖

‖

𝑓P,𝑛
‖

‖

𝑝−1
𝐿𝑝(P𝑋 )

+ ‖

‖

‖

𝑓D𝑛 ,𝑛
‖

‖

‖

𝑝−1

𝐿𝑝(P𝑋 )
+ 1

)

⋅ ‖‖
‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖𝐿𝑝(P𝑋 )
, (A.10)

where 𝑐𝑝,𝐿 ∈ (0,∞) denotes a constant only depending on 𝑝 and 𝐿.
We can further analyze the right hand side of this inequality by

noting that

‖

‖

𝑓P,𝑛‖‖ 𝑋 ≤ max ‖

‖𝑓P,𝑛,𝑖
‖

‖ 𝑋
11

𝐿∞(P ) 𝑖∈{1,…,𝑚𝑛} ‖ ‖𝐿∞(P )
= max
𝑖∈𝐼𝑛,P

‖

‖

𝑓P,𝑛,𝑖‖‖𝐿∞(P𝑋𝑛,𝑖)
≤ max
𝑖∈𝐼𝑛,P

𝑐𝑝,𝐿,𝜌,𝜅 ⋅ 𝜆
−1∕2
𝑛,𝑖 ,

with the first inequality following from (W1) and (W2), similarly to
(A.2), and the last one analogously to (A.3), with 𝑐𝑝,𝐿,𝜌,𝜅 ∈ (0,∞)
denoting a constant depending only on 𝑝, 𝐿, 𝜌 and 𝜅. Hence,

‖

‖

𝑓P,𝑛‖‖
𝑝−1
𝐿𝑝 (P𝑋 )

≤ ‖

‖

𝑓P,𝑛‖‖
𝑝−1
𝐿∞(P𝑋 )

≤ max
𝑖∈𝐼𝑛,P

𝑐𝑝−1𝑝,𝐿,𝜌,𝜅 ⋅ 𝜆
−(𝑝−1)∕2
𝑛,𝑖 = 𝑐𝑝−1𝑝,𝐿,𝜌,𝜅 ⋅ �̃�

−(𝑝−1)∕2
𝑛 . (A.11)

Similarly, we obtain

‖

‖

‖

𝑓D𝑛 ,𝑛
‖

‖

‖

𝑝−1

𝐿𝑝(P𝑋 )
≤
(

‖

‖

𝑓P,𝑛
‖

‖𝐿𝑝(P𝑋 ) +
‖

‖

‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖𝐿𝑝(P𝑋 )

)𝑝−1

≤ 2𝑝−1 ⋅ 𝑐𝑝−1𝑝,𝐿,𝜌,𝜅 ⋅ �̃�
−(𝑝−1)∕2
𝑛 + 2𝑝−1 ⋅ ‖‖

‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖

𝑝−1

𝐿𝑝(P𝑋 )
, (A.12)

where we applied (A.11) in the last step.
Plugging (A.11) and (A.12) into (A.10) then yields

|𝐿,P(𝑓D𝑛 ,𝑛) −𝐿,P(𝑓P,𝑛)|

≤ 𝑐𝑝,𝐿 ⋅
(

𝜌𝑝−1 + (2𝑝−1 + 1) ⋅ 𝑐𝑝−1𝑝,𝐿,𝜌,𝜅 ⋅ �̃�
−(𝑝−1)∕2
𝑛 + 2𝑝−1 ⋅ ‖‖

‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖

𝑝−1

𝐿𝑝(P𝑋 )
+ 1

)

⋅ ‖‖
‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖𝐿𝑝(P𝑋 )

= 𝑐𝑝,𝐿 ⋅
((

𝜌𝑝−1�̃�(𝑝−1)∕2𝑛 + (2𝑝−1 + 1) ⋅ 𝑐𝑝−1𝑝,𝐿,𝜌,𝜅 + �̃�
(𝑝−1)∕2
𝑛

)

⋅ �̃�−(𝑝−1)∕2𝑛 ⋅ ‖‖
‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖𝐿𝑝(P𝑋 )
+ 2𝑝−1 ⋅ ‖‖

‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖

𝑝

𝐿𝑝(P𝑋 )

)

≤ 𝑐𝑝,𝐿,𝜌,𝜅 ⋅
(

�̃�−(𝑝−1)∕2𝑛 ⋅ ‖‖
‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖𝐿∞(P𝑋 )
+ ‖

‖

‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖

𝑝

𝐿∞(P𝑋 )

)

,

where we employed �̃�𝑛 ≤ 𝐶 and ‖𝑓D𝑛 ,𝑛−𝑓P,𝑛‖𝐿𝑝(P𝑋 ) ≤ ‖𝑓D𝑛 ,𝑛−𝑓P,𝑛‖𝐿∞(P𝑋 )
in the last step.

We know from Lemma A.1 that the second summand on the right
hand side converges to 0 in probability as 𝑛→ ∞. Hence, we only need
to further investigate the first summand. For this, we can proceed in
exactly the same way as in the proof of Lemma A.1 and only need to
additionally consider the factor �̃�−(𝑝−1)∕2𝑛 . By doing this, we obtain for
all 𝜀 > 0

P𝑛
(

𝐷𝑛 ∈ ( × )𝑛 ∶ �̃�−(𝑝−1)∕2𝑛 ⋅ ‖‖
‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖𝐿∞(P𝑋 )
≥ 𝜀

|

|

|

|𝐷𝑛,1| = 𝑑𝑛,1,… , |𝐷𝑛,𝑚𝑛 | = 𝑑𝑛,𝑚𝑛
)

≤ P𝑛
(

𝐷𝑛 ∈ ( × )𝑛 ∶ max
𝑖∈𝐼𝑛,P

‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
≥
𝜀�̃�(𝑝−1)∕2𝑛

𝜅
|

|

|

|𝐷𝑛,1| = 𝑑𝑛,1,… , |𝐷𝑛,𝑚𝑛 | = 𝑑𝑛,𝑚𝑛
)

≤
∑

𝑖∈𝐼𝑛,P

P𝑑𝑛,𝑖𝑛,𝑖

(

𝐷𝑛,𝑖 ∈ (𝑛,𝑖 × )𝑑𝑛,𝑖 ∶ ‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
≥
𝜀�̃�(𝑝−1)∕2𝑛

𝜅

)

≤ 𝑐𝑞,𝑝,𝐿,𝜌,𝜅 ⋅ �̃�𝑛 ⋅ max
𝑖∈𝐼𝑛,P

⎛

⎜

⎜

⎝

1
�̃�(𝑝−1)∕2𝑛 𝜆(𝑝+1)∕2𝑛,𝑖 𝜀𝑑𝑞

∗

𝑛,𝑖

⎞

⎟

⎟

⎠

𝑞

, (A.13)

analogously to (A.6), with 𝑐𝑞,𝑝,𝐿,𝜌,𝜅 ∈ (0,∞) denoting a constant de-
pending only on 𝑞, 𝑝, 𝐿, 𝜌 and 𝜅. Here, as in the proof of Lemma A.1,
𝑞 ∶= 𝑝∕(𝑝 − 1) if 𝑝 > 1, 𝑞 ∶= 2∕𝑝∗2 if 𝑝 = 1, and 𝑞∗ ∶= min{1∕2, 1 − 1∕𝑞} =
min{1∕2, 1∕𝑝} = (𝑝 + 1)∕(2𝑝∗1) = (𝑝 − 1)∕(2𝑝∗3).

Because (𝑞𝑞∗)−1 = 𝑝∗2 (cf. proof of Lemma A.1), we furthermore
obtain

�̃�𝑛 ⋅ max
𝑖∈𝐼𝑛 ,P

(

1
�̃�(𝑝−1)∕2𝑛 𝜆(𝑝+1)∕2𝑛,𝑖 𝑑𝑞

∗

𝑛,𝑖

)𝑞

= max
𝑖∈𝐼𝑛 ,P

⎛

⎜

⎜

⎝

�̃�𝑝
∗
2
𝑛

�̃�𝑝
∗
3
𝑛 𝜆

𝑝∗1
𝑛,𝑖𝑑𝑛,𝑖

⎞

⎟

⎟

⎠

𝑞𝑞∗

→ 0 , 𝑛→ ∞ ,

y assumption. Hence, the whole right hand side of (A.13) converges
o 0, which yields the main assertion.

As for the special case of the regionalizations being partitions of  :
f 𝑛 is a partition of  , then the conditions (W2) and (W3) imply that
𝑛,𝑖 = 1𝑛,𝑖 for all 𝑖 ∈ {1,… , 𝑚𝑛}. Hence, we obtain

| (𝑓 ) − (𝑓 )|
𝐿,P D𝑛 ,𝑛 𝐿,P P,𝑛
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b

=
|

|

|

|

|

∫×
𝐿

(

𝑦,
𝑚𝑛
∑

𝑖=1
1𝑛,𝑖 (𝑥)𝑓D𝑛 ,𝑛,𝑖(𝑥)

)

dP(𝑥, 𝑦)

− ∫×
𝐿

(

𝑦,
𝑚𝑛
∑

𝑖=1
1𝑛,𝑖 (𝑥)𝑓P,𝑛,𝑖(𝑥)

)

dP(𝑥, 𝑦)
|

|

|

|

|

=
|

|

|

|

|

|

𝑚𝑛
∑

𝑖=1

(

∫𝑛,𝑖×
𝐿(𝑦, 𝑓D𝑛 ,𝑛,𝑖(𝑥)) dP(𝑥, 𝑦) − ∫𝑛,𝑖×

𝐿(𝑦, 𝑓P,𝑛,𝑖(𝑥)) dP(𝑥, 𝑦)
)

|

|

|

|

|

|

≤
∑

𝑖∈𝐼𝑛,P

P(𝑛,𝑖 × ) ⋅ ||
|

𝐿,P𝑛,𝑖 (𝑓D𝑛 ,𝑛,𝑖) −𝐿,P𝑛,𝑖 (𝑓P,𝑛,𝑖)
|

|

|

≤ max
𝑖∈𝐼𝑛,P

|

|

|

𝐿,P𝑛,𝑖 (𝑓D𝑛 ,𝑛,𝑖) −𝐿,P𝑛,𝑖 (𝑓P,𝑛,𝑖)
|

|

|

(A.14)

in this case. In the third step, we applied that 𝑛,𝑖 ×  is a P-zero set
for all 𝑖 ∉ 𝐼𝑛 ,P, leading to the according P-integrals being 0.

The argument of the maximum on the right hand side of (A.14) can,
for each 𝑖 ∈ 𝐼𝑛 ,P, be examined in the same way as we previously
examined the difference on the left hand side for proving the main
assertion. A difference appears in (A.11), where we now have
‖

‖

𝑓P,𝑛,𝑖‖‖
𝑝−1
𝐿𝑝(P𝑋𝑛,𝑖)

≤ ‖

‖

𝑓P,𝑛,𝑖‖‖
𝑝−1
𝐿∞(P𝑋𝑛,𝑖)

≤ 𝑐𝑝−1𝑝,𝐿,𝜌,𝜅 ⋅ 𝜆
−(𝑝−1)∕2
𝑛,𝑖 .

That is, we can omit the final step of bounding this with the help of �̃�𝑛
because we are now not interested in max𝑖∈𝐼𝑛,P

‖

‖

𝑓P,𝑛,𝑖‖‖𝐿∞(P𝑋𝑛,𝑖)
but only

in ‖

‖

𝑓P,𝑛,𝑖‖‖𝐿∞(P𝑋𝑛,𝑖)
for a specific 𝑖.

By applying this to the subsequent steps of our proof, we obtain

|𝐿,P(𝑓D𝑛 ,𝑛) −𝐿,P(𝑓P,𝑛)|

≤ max
𝑖∈𝐼𝑛 ,P

|

|

|

𝐿,P𝑛,𝑖 (𝑓D𝑛 ,𝑛,𝑖) −𝐿,P𝑛,𝑖 (𝑓P,𝑛,𝑖)
|

|

|

≤ 𝑐𝑝,𝐿,𝜌,𝜅 ⋅ max
𝑖∈𝐼𝑛 ,P

(

𝜆−(𝑝−1)∕2𝑛,𝑖 ⋅ ‖‖
‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐿∞(P𝑋𝑛,𝑖)
+ ‖

‖

‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖

𝑝

𝐿∞(P𝑋𝑛,𝑖)

)

≤ 𝑐𝑝,𝐿,𝜌,𝜅 ⋅
(

max
𝑖∈𝐼𝑛 ,P

(

𝜆−(𝑝−1)∕2𝑛,𝑖 ⋅ ‖‖
‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐿∞(P𝑋𝑛,𝑖)

)

+ ‖

‖

‖

𝑓D𝑛 ,𝑛 − 𝑓P,𝑛
‖

‖

‖

𝑝

𝐿∞(P𝑋 )

)

,

where the second summand on the right hand side converges to 0 in
probability by Lemma A.1.

As for the first summand, we can derive

P𝑛
(

𝐷𝑛 ∈ ( × )𝑛 ∶ max
𝑖∈𝐼𝑛,P

(

𝜆−(𝑝−1)∕2𝑛,𝑖 ⋅ ‖‖
‖

𝑓D𝑛 ,𝑛,𝑖 − 𝑓P,𝑛,𝑖
‖

‖

‖𝐿∞(P𝑋𝑛,𝑖)

)

≥ 𝜀

|

|

|

|𝐷𝑛,1| = 𝑑𝑛,1,… , |𝐷𝑛,𝑚𝑛 | = 𝑑𝑛,𝑚𝑛

)

≤ 𝑐𝑞,𝑝,𝐿,𝜌,𝜅 ⋅ �̃�𝑛 ⋅ max
𝑖∈𝐼𝑛,P

(

1
𝜆𝑝𝑛,𝑖𝜀𝑑

𝑞∗
𝑛,𝑖

)𝑞

,

analogously to (A.13). Finally, we obtain convergence to 0 of the right
hand side, and thus the assertion, because

�̃�𝑛 ⋅ max
𝑖∈𝐼𝑛,P

(

1
𝜆𝑝𝑛,𝑖𝑑

𝑞∗
𝑛,𝑖

)𝑞

= max
𝑖∈𝐼𝑛,P

⎛

⎜

⎜

⎝

�̃�
𝑝∗2
𝑛

𝜆
𝑝∗1
𝑛,𝑖𝑑𝑛,𝑖

⎞

⎟

⎟

⎠

𝑞𝑞∗

→ 0 , 𝑛→ ∞ ,

y assumption, where we applied that 𝑝∕𝑞∗ = 𝑝∗1 since 𝑝∗1 = max{2𝑝, 𝑝2}
now. □

Appendix B. Proofs

Proof of Theorem 4.3. We can split up the difference, which we wish
to investigate, as
‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿𝑝(P𝑋 )

≤ ‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

‖

‖

‖𝐿𝑝(P𝑋 )
+ ‖

‖

‖

𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓 ∗

𝐿,P
‖

‖

‖𝐿𝑝(P𝑋 )
.

(B.1)

Because ‖

‖

‖

𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
− 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

‖

‖

‖𝐿𝑝(P𝑋 )
≤

‖

‖𝑓 − 𝑓 ‖

‖ , we know from Lemma A.1 that the
12

‖

𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛 𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
‖𝐿∞(P𝑋 )
first summand on the right hand side converges to 0 in probability as
𝑛→ ∞.

Thus, only the second summand remains to be examined: From
Lemma A.2, we obtain

lim
𝑛→∞

𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
) = ∗

𝐿,P .

We further know for all 𝑛 ∈ N that 𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
∈ 𝐿𝑝(P𝑋 ) because

‖

‖

‖

𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

‖

‖

‖𝐿𝑝(P𝑋 )
≤ ‖

‖

‖

𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

‖

‖

‖𝐿∞(P𝑋 )
≤ max

𝑖∈{1,…,𝑚𝑛}

‖

‖

‖

𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖
‖

‖

‖𝐿∞(P𝑋 )

≤ max
𝑖∈𝐼𝑛 ,P

‖

‖

‖

𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖
‖

‖

‖𝐿∞(P𝑋𝑛,𝑖)
≤ max

𝑖∈𝐼𝑛 ,P
‖

‖

𝑘𝑛,𝑖‖‖∞
‖

‖

‖

𝑓𝐿,P𝑛,𝑖 ,𝜆𝑛,𝑖 ,𝑘𝑛,𝑖
‖

‖

‖𝐻𝑛,𝑖
<∞

by (W1), (W2) and [3, Lemma 4.23], similarly to (A.2). Employing [16,
Theorem 3.2 and Remark 3.3] then yields convergence to 0 (as 𝑛 →
∞) of the second summand on the right hand side of (B.1), which
completes the proof. □

Proof of Theorem 4.7. We start by proving the main assertion and
the special case (i): We can split up the difference, which we wish to
investigate, as

|𝐿,P(𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
) −∗

𝐿,P|

≤ |𝐿,P(𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
) −𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛

)| + |𝐿,P(𝑓𝐿,P,𝝀𝒏 ,𝒌𝒏 ,𝑛
) −∗

𝐿,P| .

(B.2)

The assertions then follow directly by applying Lemma A.3 to the first
and Lemma A.2 to the second summand on the right hand side.

As for the special case (ii): If 𝑓 ∗
𝐿,P is P𝑋 -a.s. unique, the assertion fol-

lows directly from Theorem 4.3 and [16, Theorem 3.4], which is appli-
cable because 𝑓 ∗

𝐿,P ∈ 𝐿𝑝(P𝑋 ) (cf. [16, Remark 3.3]) and 𝑓𝐿,D𝑛 ,𝝀𝒏 ,𝒌𝒏 ,𝑛
∈

𝐿𝑝(P𝑋 ) for all 𝑛 ∈ N (cf. proof of Theorem 4.3). □
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