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Abstract

In the present paper we consider for A € R the existence of non-trivial solutions of
the following problems:

1. classical Cosserat spectrum
u€ C*G)" NG
Au = \Vdivu

|
oG

2. weak Cosserat spectrum
uwe HA(G)"
(Vu,Vg), = Mdivu,dive), V¢eH7(G)"

where G C R" is a bounded or an exterior domain and Hq (@) (cf. Definition 2.1)
is the suitable space for weak solutions.

This problem was investigated firstly by Eugene and Francois Cosserat. It is a
special case of the Lame equation and describes the displacement of a homogeneous
isotropic linear static elastic body without exterior forces.

In this paper we characterize the weak Cosserat spectrum for bounded or exterior
domains G C R" (n > 2) and 1 < ¢ < oo (for the definition of H2%(G) cf. Definition
3.1)

Theorem 14.1. Let n > 2, 1<q<oo,k€N,k22,k>%andletGCR”be
a bounded or an exterior domain with 0G € Ck+2,

1. The set

W = {AeR : thereisO#uc HM(G)", such that for all
¢ € Hy? (G)" holds (Vu, Vo), = A(divu,dive),, }

is finite or countably infinite.

2. For A € R\{1,2} the space
Vii={ue HG)" : (Vu, V), = A(divu,dive), V¢ e HI (G)"}
is finite dimensional.

3. For every sequence (\,;,) C W with A, # \; for m # [ holds

Am — 2 (m — o0)

(Vs : s H¥(G)} c W




Therefore A = 1 is an eigenvalue of infinite multiplicity and A = 2 is an accumulation
point of eigenvalues of finite multiplicity.
In this generality the result is new.

E. and F. Cosserat [Col-Co9] studied the classical Cosserat spectrum for certain
types of domains like a ball, a spherical shell or an ellipsoid. In chapter 16 we use
their approach for explicit solutions.

General results are due to Mikhlin [Mi, 1973], who investigated the Cosserat spec-
trum for n = 3 and ¢ = 2, and Kozhevnikov [Ko02, 1993], who treated bounded
domains in the case n = 3 and ¢ = 2. Kozhevnikov’s proof is based on the theory
of pseudodifferential operators.

Faierman, Fries, Mennicken and Moller [FFMM, 2000] gave a direct proof for bounded
domains, n > 2 and ¢ = 2.

Michel Crouzeix gave 1997 a simple proof for bounded domains, in case n = 2,3 and
q=2.

In this paper we use the idea of Crouzeix to proof the results for bounded and
exterior domains, n > 2 and 1 < ¢ < oo.

The following regularity theorem is new:

Theorem 15.5. LethQ,1<q<oo,k€N,k22,k>%andletGCR”be

either a bounded or an exterior domain with 9G € C*3. Assume that u € He¥(G),
A € R\{1,2} and

(Vu,V¢), = Mdivu,dive),  forall ¢ € HI (G)"

3. Au = A\Vdivu

It is amazing, that the eigenspaces of eigenvalues A\ ¢ {1,2} don’t depend on ¢!
Further we get important results for the classical Cosserat spectrum: A = 2 is an
accumulation point of eigenvalues, too. A = 1 is also a classical eigenvalue, because

for s € C3°(G) with u := Vs holds Au = Vdiv u.
Now we like to describe, how we proved these results.

Starting point was the paper [Si] of Christian G. Simader. He proved, that in the
case of the upper half space H = {(2/,z,) € R : &, > 0} there exists exactly two
eigenvalues, namely A = 1 and A = 2. Simader used the paper [MueR] and the
decomposition (cf. Theorem 4.2)

LY(H)=A%H)® BY(H)
He was able to solve explicitly in Ha “I(H)™ the equation

(VL,(p), Vo), = (p,dive), ¥¢eHL (H)"
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for a given p € LI(H), and proved by direct calculations, that for pg € A4(H) holds

divT,(po) = po
and for p, € BY(H)

. 1
divT,(pn) = 5Pn

We tried to carry over these results to the slightly perturbated half space H,, =
{(z',2,) € R" : 2, > w(z')} (for w € CZ(R™1)) and to domains with compact
boundary. Therefore we considered for suitable p > 0 and

0 ,ift>4u
PMGC(?O(R% ng,ugla pu(t):{ 1 ift<2,u

the isomorphism
f:+H,— H, f(z) = (x/,xn - w(x/)/)u(xn))

and the Piola transform (cf. [Cia, p.37PP])

-1

P HyU(H,)" — HPUH), (Po)(y) = [detf'(f )] /(7 @) e(f ()

and converted the inner products

<VP_1Q, VP_1Q>HLU respectively (div (P~ 'v), div (P_1Q)>Hw
by means of the transformation rule in inner products

<Vy, V@>H + B1(v,¢) respectively <divy, din>H + Ba(v, ¢)

By the properties of Piola’s transform By defines a compact operator, if dive €
B1(H), but we are not able to prove that for B; too.

As another approach we searched for a relationship of Green’s function G of the
Laplace operator (cf. Definition 17.4) to the reproducing kernel R in BY(G) (cf.
Definition 18.2), because with

Definition 11.1. Let n > 2 and let G C R” be either a bounded or an exterior
domain with G € C1.

1. Let T, : L9(G) — Hy(G)™ be defined by (cf. Theorem 2.9)
<qu(p), V@>G = <p, div@>G for all ¢ € I/-j.l’ql(G)"

2. Let Z, : LY(G) — LU(G), Zy(p) = div (L,p)

holds



Theorem 11.3. Let n > 2 and let G C R" be either z}\bounded or an exterior
domain with G € C1. Assume A € R. Then there is u € Hy?(G)" with

(Vu, V), = A{divu,dive),,  forall g € H (G)"
if and only if there is p € LY(G) with
AZqg(p) =p

In this case one can choose p = div u.

If G C R" is a bounded domain, for p € L(G) formally holds with u := T (p)

:/g(ag,y)(—Au)(y) dyZ/g(fL‘>y) (=Vp)(y) dy
G G

%@m::wmmz—z/@yxy P)() dy
=1

Z—Z/%ﬁwym oyt [0) Y 0,0.6(r.)dy
=1

= 16(}' -0 €

i=1

- /p(y) Y 9,00,G(x,y) dy
G

If therefore
& 1
Z aylaxlg(xa y) - ifR’('x’ y)

i=1

was a compact operator, the assertion about the Cosserat spectrum would follow
by the spectral theorem for compact Hermitian operators. We couldn’t prove that
directly. There are results about the relationship of Green’s function of the bilaplace
operator A% to the reproducing kernel in B%(G) (see [ELPP, Theorem 4.3, p.113]),
but we couldn’t find the relationship above.

After solving the Cosserat spectrum in another way we can prove the relationship
indirectly:



Theorem 19.1 Letn22,1<q<oo,kEN,k>1+%andletGCR"bea
bounded domain with G € C%t*. Let

be Green’s function of the Laplace operator in G and let R be the reproducing kernel
in BY(G). Then

Zy(p)(z) = ) + Z/ Yy) Oy, 0z, h(z,y) dy a.e. for p € BY(Q)

Therefore
& 1
i=1

is a compact operator.

For the unit sphere By (chapter 20) and for the half space one can prove this result
directly. In this cases reproducing kernel and Green’s function are known explictly.
It is an interesting question, whether it is possible to prove this directly in general,
too.

Finally we found the paper [Cr| of Michel Crouzeix. His sketch of a proof for bounded
domains and g = 2 is very short. He proved, that for p € B?(G) holds!

1
1 Z2(p) — §p||1,2;G < Clpll2c (%)

1. Tt suffices to prove (*) for p € H*2(G) N B%(G), because H*2(G) N B*(G) is
dense in B?(G) with respect to |-||2.c-
2. Obviously
1
1Z2(p) = 5 pll2zie = Clpllzie
3. Choose a sufficiently smooth ¢ : R® — R with

¢ ‘ . q o (outer unitary normal)

LCrouzeix considered only p € L?(G) with prda: = 0. That means no loss of generality, because for
arbitrary p € L?(G) for (XS Hé’Z(G) holds:

= /pdgp,div@g = <p, din>G
@

Furthermore only for p € L9(G) with [, pdz = 0 there is a constant C > 0, which doesn’t depend on p,
such that

<p,divg>
lpllgse < C WP el
0#pcHE? (@) @llq’

(see [St, Satz 8.2.1, p.256]). For our purpose the restriction to L?-functions with mean value zero is not
necessary.



and define for p € H"?(G) N B*(G) and u := T, (p) € Hy*(G)"

1
w:= uV({ — QPC

. One can show that w € Hé’2(G) and

1
Aw =2Vu-VVC+u-VAC = 5pAC € L*(@G)
Therefore w € H>?(G) and

|lwl2.2.¢ < Clpll2.a

. Furthermore 1
VuV( -~ (dive— 5 p) € Hy*(G)
Then
. 1 . 1
IV(dive =g plllze = [VIVOVE)l2e + IV [VwV¢ — (divu — 51))] 2
< Clpllac

and finally (x).

. Then for bounded domains by Rellich’s imbedding theorem Zs — %I is a com-

pact operator, and by the spectral theorem for compact self-adjoint operators
the assertion follows.

Now we describe for each part of the proof, which additional work was necessary to
carry over the results to exterior domains and the case 1 < g < oc.

1.

is proved in chapter 9. We need elliptic regularity theorems (Theorem 7.7 and
7.8) and for exterior domains the asymptotic behavior of harmonic functions
(Lemma 8.9).

. follows immediately by Definition 11.1 and Theorem 2.8.

. For ¢ € CE(R™) to hold we need in Theorem 6.1 G € C**1. Tt is possible,

that it suffices to assume that G € C*. But our proof is very elementary.

The definition of w was the ingenious idea of Crouzeix.

. is proved in Lemma 12.2 respectively 13.2. We need p € C°(G) and u €

1

C" (G)™. This is shown in Lemma 12.1 respectively 13.1 by means of Sobolev’s

imbedding theorems. Therefore we must assume 9G € C**2 with k& > % in
Theorem 14.1.

. In Lemma 12.3 respectively 13.3 we need again the regularity of p and u and

a few theorems about differentiable functions (chapter 5).



7. Then the estimate follows by Theorem 2.8.

8. Analogously to Rellich’s imbedding theorem for bounded domains the imbed-
ding H“9(G) N BY(G) in BY(G) is compact in exterior domains (Theorem
10.1). The proof is based on the asymptotic behavior of harmonic functions
(Theorem 8.7). For real Banach spaces the spectral theorem B.9 is applicable.
Finally we derive Theorem 14.1.

The regularity of the solutions (Theorem 15.5) can be proved as follows: If u €
Ho'(G)", A € R\{1,2} and

(Vu, Vo), = A(divu,dive),  forall g € HI (G)"
then with p := divu by Theorem 11.3 and 11.4 holds

p € BY(G), ANZy(p) =p

With g := —2; € R we derive by (%) respectively Theorem 12.4 and 13.4

A
-5

p=p (Zq(p) - ;p> € HY(G)

For 1 < g < n with ¢* = n"—fq holds p € L9 (G) and then

p=p <Zq*(p) - ;p> e H"(G)

By induction we derive p € H%*(G) for a certain n < s < oo, whence p € C°(G).
Because of the asymptotic behavior of B?-functions in exterior domains (Theorem
8.12) we derive further

pe HYM(G)NC'G) V1<g<oo

and i , .
Vuec HYMG)" NC (G) V1<g<o

For the regularity of higher derivatives we use use the density of H*4(G) N BY(Q)
in BY(G) with respect to ||-||s.¢ (Theorem 9.1 and 9.2) and the inequality (Lemma
15.3)

1
1Z4(m) = 5 Tllkac = CklImlli-1.66

Then we can prove

for all n < s < 0o. Therefore Theorem 15.5 holds.



Part I: Preliminaries
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1 Notations
For g € R", 0 < r < R we denote
B (zo) :={x € R" : |x — x| <1} B, :={x eR":|z| <7}

A g(z) :={z e R":r < |z —z9| < R} Arp={zeR":r <|z| <R}

Further we define for an open G C R"” and k € N

CHG) = {feCHG): fora € N, |a| <k there is f®) € C°(G)
with f(®|g = D f}
C§(G) = {f € C"G):supp(f) C G}

If 1 < ¢ < 0o we always use the notation

For f € LI(G) denote

1l = ( /| rfrqu)"

Usually we don’t strictly distinguish between a function and the corresponding equiv-
alence class in L9(G). For example the notation

feLiG)nCq)

means, that there is a (unique) continuous representative.

Let
H*(G) = {u: G — R| u measurable, Du € LI(G) for all |a| < k}
With 1
q
lulleac = | 3 1D"ullge for u € H"9(G)
oo <k

H*4(G) is a Banach space. Let
HY(G) = O (@)
Underlined terms always denote vectors
wi= (Upy ..., Up)
Often we use the notation
u e HY(G) instead of u € HY(G)"

or Vu e LY(G) instead of Vu € L1(G)"
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if no confusion could arise. Further we use the notations

f.o)e = /G fgdu
AT /G (0:f) (0sg) de
(B0 = X [ fiote
<vi7v2>c = Z/ (9if5) (Digj)d

i,7=1
(V2f,V?9), = Z/ (0:0;f) (9:0;g) dx
,j=1

and

Qe

Ifllge =

anllfz\lq, )

< 10i f1|2. )
=1
IV fllge = (Z@@jfz;e

IV fllge =

3
Qe

Hvi”q;G

if the expressions are well defined.

The inner product in R™ we denote most of the time by
n
my::Zaﬁiyi ifx, y e R"
but sometimes we write
n
) :Za:iyi ifx, yeR"

An exterior domain is a domain G C R” with R"\G compact and 0 € R™\G.
A CC B means: A, B C R” open, A bounded and A C B
Let

[ fllooic := Suplf( )|

zeG

12



and
Sp—1:={z €R":|z| =1} = 0B W = |Sn—1ln-1

If X is a real normed vector space, we denote by

F*
X*=<¢F*": X —>R| sup ﬂ < 00
jzf20 Il

its dual space.
The property (GA) denotes for G C R™:

(GA) There is an open () # K C R" with G = R"\K

13



2 The space H}(G)

Definition 2.1. Letn >2, 1 < ¢ < co and let G C R" satisfy (GA). Then

HM(G) = {u:G — R|umeasurable, u € LY(G N Br) VR >0,
Vu € LY(G) and for each n € Cg°(R"™) holds nu € H&’q(G)}

Definition 2.2. Let n > 2, 1 < ¢ < oo and let G C R" satisfy (GA). Then

f[&’q(G) := {u:G — R measurable | u € LY(GNBr) VR >0, Vu € LIG)
and there exists a sequence (u;) C C§°(G) so that
|l —uillgcnBr = 0 VR >0 and ||Vu— Vu,lqc — 0}

Theorem 2.3. Letn>2, 1<g<ooandlet G CR"” satisfy (GA). Then
(a) Hy"(G) € Hy*(G) € H*(G)
(b) For u € HY(G) by ||[Vull,¢ a norm is defined on He(G).

(c) Equipped with ||V - ||,g-norm Hy(G) is a Banach space being reflexive for
1 < g < oo Ifg =2 then H.l’Q(G) is a Hilbert space with inner product
(Vu, Vo) for u,v € Hy?(Q).

(d) ﬁé’q(G) is a closed subspace of He''(G) and ﬁé’q(G) = C§°(G)”v”q’c

Proof. see [Si/So, Theorem 1.2.2, p.27] O

Theorem 2.4. Letn>2,1<¢g< oo andlet G C R" satisfy (GA). Then

HM(G) = {u:G — R measurable |u € LY(GNBr) VR >0, Vu e LY(G)
and there exists a sequence (u;) C C§°(G) so that
lu — Ui”q,GﬂBR +||Vu — VU@‘”q,GﬂBR —0 VR>0}

Proof. see [Si/So, Theorem 1.2.4, p.29] O

Theorem 2.5. Letn >2, 1< ¢ < oo and let G C R" be open and bounded.
Then R
Ho'(G) = Hy'(G)

Proof. Easy consequence of Definition 2.1 O

14




Theorem 2.6. Let 2 <n < g < oo and let G C R" satisfy (GA). Then

Ho9(G) = Hy*(G)

Proof. see [Si/So, Theorem 1.2.7, p.31] O

Theorem 2.7. Let n > 2 and let G C R" be an exterior domain. Suppose
1 < g < n. Choose r > 0 with R"\G C B, and let

o _J o iffx]<r
Then
1. HY(G) c HM(G) and HY(G) £ HY(G)

2. HM(G) = fAIé?q(G) @ {ap, : a € R} in the sense of a direct decomposition.

Proof. see [Si/So, Theorem 1.2.16, p.36] O

Theorem 2.8 (Variational inequality in f[}’q(G)). Let G CR"™ (n>2)
be either a bounded or an exterior domain and let G € C'. Let 1 < ¢ < co. Then
there exists a constant C; = C(q,G) > 0 so that

(Vu, Vo)

IVullye < C;  sup Vue HyY(G)

0#¢€[§}’q/(G) ||Vd)| q .G
Proof. see [Si/So, Theorem II.1.1, p.45] O
Theorem 2.9 (Functional representation in H4(G)). Let G C R"

(n > 2) be either a bounded or an exterior domain and let G € C'. Let 1 < ¢ < c0.
Then for every F* € Hy'? (G)* there exists a unique u € Hy'?(G) so that

F*(¢) = (Vu, V) Yoe HH(G)

Furthermore with C; by Theorem 2.8 holds

C; M IVullye < sup {F*(9) = ¢ € BI(G) and |Volly.c <1} < |Vulye

Proof. see [Si/So, Theorem II1.1.2, p.45] O
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3 The space H2I(G)

Definition 3.1. Letn>2, 1 < ¢ < oo and let G C R" satisfy (GA). Then

H?9(G) := {u:G — R measurable | u, Vu € LY(G N Bg) VR >0,
V2u € LY(G) and for each n € C$°(R™) holds nu € Hg’q(G)}

Definition 3.2. Letn >2, 1 < ¢ < oo and let G C R™ satisfy (GA). Then

ﬁg,q(G) = {u:G—R|u, Vue LYYGNBgr) VR >0, V2 € LUQ)
and there exists a sequence (u;) C C§°(G) so that

0.6nBr T [IVu = Vui|ganp, — 0 YR>0

and ||Vu — V?u4lq,¢ — 0}

lu — u;

Theorem 3.3. Letn>2, 1<g< oo andlet G CR"” satisfy (GA). Then
(a) Hy(G) € Hy(G) € HY*(G)
(b) For u € H2(G) by ||V2ul|s.¢ a norm is defined on H(G).

(c) Equipped with ||V? - ||, g-norm HZ?(G) is a Banach space being reflexive for
1 < g < oo Ifg=2then H.Q’Z(G) is a Hilbert space with inner product
(V2u, V) for u,v € H2*(G).

—~ ~ R oo
(d) Hg’q(G) is a closed subspace of H2Y(G) and Hg’q(G) = Cf)’o(G)”V lo.c

Proof. see [MueR, Satz II.1, p.126] O

Theorem 3.4. Letn >2,1<g < oo and let G C R" satisfy (GA). Then

H>(G) = {u:G—>R|u, VueLI(GNBg) YR >0, Viue LI(G)
and there exists a sequence (u;) C C§°(G) so that
v = willg.crBr + IVe = Vuillgansg + Ve = Vuillqonp, — 0
for all R > 0}

Proof. see [MueR, Lemma I1.3, p.129] O

Theorem 3.5. Let n > 2, 1 < ¢ < oo and let G C R™ be open and bounded.
Then R
HY(G) = Hy(G)
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Proof. Easy consequence of Definition 3.1 O

Theorem 3.6. Let 2 <n < g < oo and let G C R" satisfy (GA). Then

H2(G) = Hi*(G)

Proof. see [MueR, Satz I1.3, p.133] O

Theorem 3.7. Let n > 2 and let G C R" be an exterior domain. Suppose
1 < g < n. Choose r > 0 with R"\G C B, and let

JAf |z] <7

o0 n 0
pr € CF(RY), 0<pp <1, wr(m)Z{l if 2] > 2

Furthermore define ¢;(x) := ¢, (z)z; for all i = 1,..,n. Then
1. @, Vi € ﬁ?S(G) for all 1 < s < oo,
2. HoU(G) € H2Y(G) and H2Y(G) # HY(G),
3. HX(G) = HY'(G) @ {ap, - a e Ry & {0 Bibri : fieR} for 1 <g< 2,

4. HY(G) = HY(G) @ {0, Bitdi = B € R} for & < g < n.

Proof. see [MueR, Lemma I1.8, p.140] and [MueR, Satz I1.4, p.144] O

Theorem 3.8 (Variational inequality in H29(G)). Let G C R" (n > 2)
be either a bounded or an exterior domain and let G € C2. Let 1 < ¢ < co. Then
there exists a constant Cy = C(g,n,G) > 0 so that

Au., A
lAulge < C,  sup  BLAY)

B B0) vy e B29(G)
075¢€g.2’q/(G) ||A¢HQI,G

Proof. see [MueR, Hauptsatz, p.191] O

Theorem 3.9 (Functional representation in ]Tlf’q(G)). Let G CR"
(n > 2) be either a bounded or an exterior domain and let G € C?. Let 1 < ¢ < co.

Then for every F* € H>? (G)* there exists a unique u € H>%(G) so that
F(¢) = (V?u,V29) Vo€ H}(G)

Furthermore there exists a constant Dy, = D(q, G) with

DY VPullge < sup {F*(¢) : ¢ € HX(G) and ||V?¢|y ¢ < 1} < |IV?ullgc
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Proof. see [MueR, Lemma II1.15, p.164] and Theorem 3.8 O

Lemma 3.10. Let G C R" (n > 2) be either a bounded or an exterior domain
and let 1 < ¢ < co. Then

<v2u’ V2¢> = (Au, Ag) for all u € H>9(Q), ¢ € H>Y (G)

Proof. (a) Consider ¢y, 1,; from Theorem 3.7. It holds
Ojor(x) = OR0jpr(x) =0 for |x| < r and for |z| > 2r

Furthermore
]Q;Z)m( ) ]307“( )xz +901”(‘T)5ij
akajwm‘(x) = 8kaj90r(x)xi + ajSDT($)5ik + ak@r(x)‘sij

Therefore

5j3k1/1m‘, ajakcpr € CSO(A%,?)T)

(b) Suppose G C R™ is an exterior domain, R"\G' C B;. By Theorem 3.6 and 3.7
for u € H>%(G) there are v € ﬁg’q(G) and f € C°°(R") such that
9;0;f € C5°(Az 3,) C C°(G) and u=v+f

There is by Definition 3.2 a sequence (vi) C C§°(G) with ||[V2 (v — v)||4.c — 0.
Let ¢ € f-\I.Q’q/(G). Then

(Vu, V), = Z/aauaa]gbdx + Z/ 8;0,f 8;0;¢ dx

i,j=1 ,j=1 C°°(G)
- k1g202/aavkaaj¢d:c — Z/a aaf d;¢ dx
J B,j=1 ecoo
- k1groloz/aavkaaj¢dx + Z/aafaa]wm
i,j=1

= <AvaA¢>c (Af,Ad)q = (Au, Ad)g

(c) Suppose G C R™ is a bounded domain. Then H>(G) = Hg’q(G) and the
assertion follows as in (b) with f = 0. O

18



Theorem 3.11 (Functional representation in H2(G)). Let G CR"
(n > 2) be either a bounded or an exterior domain and let 9G € C2. Let 1 < ¢ < oo.

Then for every F* € lE\I.Q’q/(Gfk there exists a unique u € H>%(G) so that
F'(¢) = (Au, A¢) Vo€ HY(G)

Furthermore there exists a constant K, = K(n, ¢, G) with

K Ay < sup {F*(9) = 6 € B(G) and [Ad]y 6 <1} < [[Aullyq

Proof. Let F* € f[.z’q/(G)* be given. By Theorem 3.9 there exists a unique u €
H?%(G) and a constant D, = D(q, G) > 0 with

F*(¢) = (V2u,V29) Vo € I2(G)
D [V3ulg < sup {F*(6) : ¢ € B27(G) and [[V26lyc < 1} < IV?ullyc
By Lemma 3.10 it holds

F*(¢) = (Au,A¢) Yo € H>7(G)

and
—1 —1||92
Dy l[Aullge < Ko Dy [[Viullge
< Kusw{F'(9) : 6 € H2(G) and [V?6lyc <1}
F*
P N
05£¢€ﬁ'.274,(c) Hv ¢||q’,G
F*
< Kg sup i

05£¢€ﬁ.2’q,(G) ”A¢‘|Q’7G
— sup {F*(¢) : ¢ € H2(G) and || Adlly.c <1}

O

Remark By Theorem 3.9 and Lemma 3.10 we derive, that [|[V?||,.¢ and [|A-]|:¢
are equivalent norms on Hy%(G).
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4 The spaces AYG) and B?(G)

Definition 4.1. Let G C R"™ be either a bounded or an exterior domain with
0G € C?. Let 1 < g < co. Then

AYG) = {Au : ue H>(G)}
BYUG) = {heL!G) : (h,Ap)g=0 Vo¢ecHMG)}
Theorem 4.2. Let G C R™ be either a bounded or an exterior domain with

0G € C?. Let 1 < g < 0o. Then
LY(G) = AYG) @ BY(G)

in the sense of a direct decomposition

Proof. see [MueR, Satz IV.2.1, p.201] O
Remark By Weyl’s Lemma for h € B?(G) holds (for a representative) Ah = 0.
For bounded domains even holds

BY(G)={h € LYG) : Ah =0}

For exterior domains on the other hand there are harmonic L?-functions, which are
not in BY(G) (see [MueR| or Lemma 4.4).

Lemma 4.3. Let G C R"™ be either a bounded or an exterior domain with
0G € 0% Let 1 < ¢ < oo and h € BY(G)N HY(G). Then

(Vh, V)i =0

for each ¢ € ﬁ[.l’ql(G)

Proof. (a) For ¢ € ﬁ[ol’q/(G) there is a sequence (¢r) C C3°(G) such that

IVor = Vollg.c — 0
Then

(b) For ¢ = ¢, by Theorem 2.7 holds Vi, € C(G)" and ¢, € H>Y(G). Then

(Vh, Vo) =—(h,Apr) =0

(¢) By Theorem 2.5 - 2.7 the assertion follows. O
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Lemma 4.4. Let G C R" be an exterior domain with 0G € C2. Let ¢,, 1,; as
in Theorem 3.7. Let

L n|z|2_” , 2#0,n>3

(n—2)w
S(z) : —=Injz] , z#0,n=2
0 , 2=0,n>2

Then for all 4,5 =1,...,n holds

<8j57 A¢ri>G = _5ij

Proof. For z # 0 holds

_ Loz
8]5’(2) - _wn |Z|n

Then
(955, Atyi) = (0;5, A(wir))

— —(8, Adijor +i(9500)]) o

0ij (VS Vor)g — (AS, 2i(90r))

OmpreCse(Q)

— 5U<VS, V¢T>GQBQT

= —0i5(AS, 90r>GmBQT

n
2l

15 /a S (015)(:) g (z) 2 d

Bar ;_
=1 ™

1 .z oz
= _51']'/ Zilnfldwz = _51']'
wn Joss, &= 14" |4
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5 Theorems about differentiable functions

Lemma 5.1. Letn>2, R>0, h >0 and

Z;;h = {x=("2,) eR" : |2/| <R, 0<x, <h}
Zpp = {z= (@', x,) €R" ¢ |2'| < R, —h < x, <0}
Zpp = {xz=(",2,) R : |2/| <R, |z,| < h}
Er = {z=(,2,) eR" : |2/| <R, z, =0}
Suppose
fec(zf,)nc(7;,)
Let
Fla) ::{ , f(/m',amsn) , ‘ if0<z,<h
=3f(2!, —xp) +4f (2, %) if —h<z,<0
Then

Proof. (a) There are f; € C° (Z§7h> , 1 =1...n with fi‘Z?%h =0;f

(b) Fori=1...n—1and |2/| < R let (ht) C R with 0 < |hg| < R — |2'|, hy — O.
Let 0 < 2, < h. Then (2’ + hge;, xy,) € ZEh and

hy
f(@' + hpes, zn) — f(2! 1) = /0 (0: f) (2 + te;, xy) dt

For z,, — 0 we get

hi
f(x' + hge;,0) — f(2',0) = fi(2' +te;, 0) dt
0

= fi(z" + Crei, 0)hy
mean value theorem
with ( between 0 and hy, (this implies |(x| — 0 )
Therefore . .
L he0) — £(,0)
h—0 h

= fi(2',0)

(¢) For i = n and |2'| < R, O<mn<%let (hk)CRWith0<hk<%, hi — 0.
Then

h
f@ zn +he) — f(2 ) = / (On )2, zp +t)dt
0
For z,, — 0 we get
hi

f(wlv hi) — f($/70) = fn(x,at) dt = fn(x/> Cr)

0
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with 0 < ( < hg. Therefore

lim f(‘rlv h) — f(ljﬂ 0)

h—0 h
h>0

= fa(2,0)

(d) Obviously
17t 1(
F|z§,h € C (Zgy) F|z};,h € C (Zgy)
() Let i=1...n—1 and |z/| < R. Then

F(2' + he;, 0) — F(2',0) f(x' + he;, 0) — f(2',0)

. — 1- — Z /
a h o h & 0
(f) Let |2'| < R. Then
. F(2',h) — F(2',0) f(@',h) — f(a',0) ,
1 =1 = fu(z',0
hli% h hIE(IJ h (c) fla',0)
h>0 h>0
Furthermore
. F(2/,h) — F(«,0) _ =3f(@,—h) +4f (2, =) — f(«/,0)
lim = lim
h—0 h h—0 h
h<0 h<0
h
_ lim *3f(x/v *h) + Bf(xla 0) + 4f(l'/, _5) - 4f($/70)
h—0 h h
h<0
. 3f(@ h) = 3f(2',0)  2f(2',h) —2f(z',0)
= lim -
W0 h! h!
h'>0
= fn(mla O)

(g) Sofori=1,...,n—1 holds

fi($/7xn) 9 xTL Z O
0 F (z) =
—3f@'(l'/, xn) + 4fi($/, _%1) , T <0

and
fa(2!, ) , T, >0
O F(x) =
3fu(@,xn) = 2fn(2,—%) , 2, <0
That is
VF e Y (ZRJl)n

Theorem 5.2. Let G C R" be open and bounded with 0G € C.
Then f € 61((;) if and only if there exists f € C§(R™) such that f|g = f
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Proof. Let f € él(G) (the inversion is trivial). We denote again by f € C°(G) the
continuation of f. There are f; € C°(G) with fi|g = 0 f

(a) For g € OG there exists an open V,, C R™ with ¢y € V,. Further there is
R > 0 and a diffeomorphism ¢, : V3, — Zg g such that holds: ¢, (V,, NOG) = Er
and ¢z, (Ve N G) = Zg .-

Let V,, := Org (Z1 1)

(b) With V, by (a) (z € OG) holds:

oG c | J Ve
r€0G

Because of the compactness of G there are x1, ..., zy € JG such that with 171 = ‘7%
holds

N ~
oG c | v
i=1
Let f/o := (. Then
GclJv
=0

Choose ¢; € C§°(V;) for i = 0,1,..., N such that

N
ngz(x) =1 for all z € G
i=0
Define
gi == wif
Then

go € C&(Rn)
and for ¢,5 =1,..., N holds

igi = Oje)f +0i(0:f) = 9V|c
with g\ := (9;¢1)f + i f; € C°(G)
Define fori=1,...,N

hi(z) = gi (¢;'(2)) for all z € ZgivRi UEg, = ¢:(ViNnG)

Then
h; ECO (Zj’:«; Ri>
PR
and .
. _ (@) (-1 (-1
CLFAY [ (671 ][5 (67), -
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By Lemma 5.1 there is a

R; ) such that h; =h;
£ Zg,
2

hi € CY(Zn,
2

)

|

By the Definition of the continuation in Lemma 5.1 we see

hi € C§(Zn,,r,)

Let
fily) =hi(¢ily))  forally € Vi = ¢;(Zr, r,)
Then
fi e Ca(V, 4 F|_ =a
fi € Cy(Vi) an f o g
At least

O

Lemma 5.3. Let f € CY(R) with f(0) =0 and |f/(t)| < L for all t € R. Further
let G C R™ be open and 1 < ¢ < co. Then for u € H4(G) holds

flu) e HY(G)  Vf(u) = f'(w)Vu

Proof. sce [SIDGL, Satz 6.14] O

Lemma 5.4. Let G C R" be open and bounded. Let u € H“9(G) (strictly: let
u be a representative) and

Z(u) = {xeG : u(x)=0}

Then
diu(x) =0 for almost all x € Z(u) and foralli=1,...,n

Proof. sce [SIDGL, Satz 6.15] O

Theorem 5.5. Let 1 < ¢ < co and let G C R™ be open and bounded. Suppose
u € CYG)N HY(G) and u‘aG = 0. Then

ue HyY(G)
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Proof. (a) Choose

peCPR), 0<p<1, ot)=p(-t), ¢t) = { 1 jif |t >2

For k € N let .
fr(t) ::/ o(ks) ds
0
Then 1
k()=0 V[t < o
and
[¢] 2
= 5o < [ (1 phs) ds < min (1], )
0
Furthermore
o 0 ift=0
o =et) — {7 50
(b) Let

By Lemma 5.3 holds
Uk € Hl’q(G)

Because U|BG =0, u € C°(G) and G compact, there are G CC G with |u(x)| < %
for all x € G\Gy

Therefore
up(z) =0  VaeG\Gy
and
u € Hy''(G)
(¢) Now

lug(z) —u(x)| = |fr(u(z)) —u(x)] < min (]u(gg)], z> =0

(a)
for all x € G and therefore by the dominated convergence theorem

ur — ullgc — 0 (k — o0)

(d) By Lemma 5.4 for almost every x € Z(u) holds
@m@—awmgzammh—¢@m@):o
For x € G\Z(u) we get by (a):

Oiu(x) — dyug(x) — 0
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Again by the dominated convergence theorem

[ o duptar = [ Jouta) 1 - pliuto))]|as

(e) By the closedness of Hé’q(G) in H9(G) it follows
u e Hy'(G)

Oiu(z) [1 — ok u(x))} ‘q dzx — 0

O]

Theorem 5.6. Let G C R" be open with dG € C'. Suppose u € C'(R") and
ulp = 0.
Then there is A : 0G — R with

(Vu)(z) = Mx)N(x) for all x € 0G

where N (z) is the outer normal in z € 0G

Proof. Let © € 0G. Then there are open U C R" (z € U) and O C R*!, and
there is a one to one map ¢ : O — G NU with ¢ € C1(O;R") and ¢(s) = = with a
suitable s € O. That is

u(o(t)) =0 VteO

Differentiating this equation we derive by the chain rule

0= <(Vu)(<b(t)),gz(t)> VteO

0= ((Vu)(a). 5 6e))

It is known that for the tangent space holds

T.(0G) = span (gz(s), e 3i¢1 (5)>

Especially for ¢t = s

and

N(z) L T,(0G)
Therefore there is a A(x) € R such that
(Vu)(x) = M) N (z)
0

Lemma 5.7. Let1l < ¢ <ooandlet H := {(2',2,) € R": z, > 0} be the upper
half space. Suppose u € HyY(H) N C°(H). Then

U =0
oH
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Proof. Let u, € Cg°(H) with ||u — ug||1,¢;5 — 0. Then

(2, 2n) = up (2, 1) — up(2’,0) = / n(anuk)(wl,t)dt
\ﬁ/_/ O

As a convergent sequence (ug) is bounded
lugll1,g6 <C  VkeN

For x, < a we get by Holder’s inequality

1
(e, z,)| < U (Bnuk)(a:’,tﬂth]qaql’
0

/ lug (2, zp)|%dz’ - < / /\(3nuk)(m',t)|thda:’a;/
/| <r /| <r Jo

= / / |(Onug) (2, )96t da’ @
R7-1Jo
< (9q071

a
// \ug (2, )| 9d2’ dx, < Cla4 Vr >0
0 ' |<r

Therefore

1
a q a

// lu(2, xp)|%da’ dxy, | < // lug (', 2)|9d2’ dxy,
0Jz!|I<r 0Jz'|<r

1

a q
// |(u—uk)(3:',:z:n)|qd:n'd:vn]
0J|z'|<r

< Ca+llug —ullga

1
q
_l’_

_|_

For (k — oo0) we derive

1
a q
/ / |u(x’,xn)|qu'dxn] < Ca YVa>0 Vr>0
0 J)z'|<r

Define for r > 0 and 0 < z,, < 00
fr(zn) ::/ lu(z', xp,)|%da’
|/ |<r
Then f, is continuous in [0, oo[ for r > 0 and

/ fr(l'n)dl‘n < Claf Ya>0
0
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Therefore
1 a
/ (@ 0)4de = f(0) = 1 / £,(0) dzy
|z’ |<r a Jo

1 [ L[
= [ GO~ o) doat [ it da,

a

IN

max |f,(0) = fr(zn)| + C%a™!

0<z,p<a
For a — 0 we get
/ lu(z’,0)|%dz’ <0 Vr >0
|z’ |<r
Because u is continuous by a standard argument we finally derive
u(x’,0) =0 V' e R*!
O

Theorem 5.8. Let 1 < g < co and let G C R” be open with G € C!. Suppose
f€C'(G)n HM(G). Then

fl =0

oG

Proof. Let g € OG be arbitrary but fixed. There is an open g € V C R" and a
C*'-diffeomorphism ¢ : V — Zg g, (R > 0) with ¢(VNOG) = Eg, ¢(VNG) = ZER
(for the definition of Zg g, ER, Z;g’ r see Lemma 5.1). Without loss of generality we
can assume ¢ € él(V;R") and ¢~ ! € 61(ZR,R;R").
Choose ¢ € C3°(V) such that ¢(z¢) = 1. By Lemma A.13 we get

g:=pf¢€ H&’q(G nv)

and obviously by Theorem 5.2
g€ (V)

By Lemma A.14 holds
h:=gog¢g!e Hé’q(ZER) N C&(ZRR)
Define

oo hx) , wE€Zrp
hz) '_{ 0 , z€R"\Zgg

Then }
he Hy'(H) N C°(H)

By Lemma 5.7 follows

Therefore
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6 Exist f (e CHRY), ] _0, v‘ _N
xistence of (€ Cj(R"), ( o ¢ o

Theorem 6.1. Let n > 2, k € N and let G C R" either be a bounded or an
exterior domain with G € C*t1. Then there is

cech®m, ¢| =0, v¢| =N

oG

where N is the unitary outer normal of G.

Proof. (a) Denote M _:= 0G. For z9 € M there is an open zq € V C R and

h:V — R, he CFHIY(V) such that (VA)(zo) # 0 and
MNV ={zeV:h(z)=0}
Like in Theorem 5.6 one can prove
(Vh)(z) = +|(VR)(z)|[N(z) VzeMNV
Because (Vh)(zo) # 0 there is an open g € V C V such that
(Vh)(z) #0 VeeV

Vh and |[Vh|N both are continuous in V N M So we can assume without loss of

generality 3 3
(Vh)(x) = +|(Vh)(x)|N(x) YeeMNnV

Define

- h
VA

e CH(V)

Then
h(z) =0 VeeMNV

and forc e M NV

- 1 Vh

(Vh)(x) _h(? v<|Vﬁ(:v)|> + |Vﬁ| = N(z)
- ——
=N(z)

(b) Because M is compact and by (a), there are open Vi,...,V,, C R™ and h; €
C*(V;) such that

(Vhi)(z) #0 VeeV, Vi=1,...,m

and
MNV;={zeV;: hi(x) =0}
Furthermore

MCOV}
=1
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and
Vhi(z) = N(z) Vee MNV,

Choose ¢, € C§°(R™) such that

0<¢r<1, supp(dp) C Vi, » ¢r(z)=1 VeeM
k=1

Define
fi = ;h; € C§(V;) C CE(R™)
and

F= fi €C5RY

j=1
For z € M holds

f@) =" ¢j(@)hj(z) =0

a0
and
(V@) = > Vie@hi@)] = Y [(Vé)) () hy(x) +6;(x) (Vhy)(x)
Uire;) Uire;) | el o

— Z ¢j(x)N(z) = Z¢j($)N($) = N(z)
j=1

ER:
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7 Regularity theorems

Theorem 7.1. Let k € Z, k > 0 and let G C R" (n > 2) satisfy (GA) and
IG € C*F. Let 1 < ¢ < 0o and let p € H.l’q(G). Let 29 € OG and Ry > 0 and
assume that there is f € H*(G N Bg, (o)) so that

(Vp, Vo) = (f,¢)  forall ¢ € H- (G N B, (a0))

Then there exists 0 < Ry < Ry so that p‘GmBR € H?*%4(G N Bg, (z0)) and with

a constant Cy, = C(k, R, R1,G,q) > 0

x (0)

1Pll245,g:60BR, (z0) < Chk (Hf ky;GN By (z0) T 1P Lq;GﬂBRO(xO))

Proof. see [Si/So, Theorem 11.8.8, p.91] O

Theorem 7.2. Let 1 < ¢ < oo, z90 € R, R> 0 and p € H"(Bg(xo)). Let
kcZ, k>0andlet f € H*I(Bgr(zo)). Further assume

(Vp, Vo) = (f,9) for all ¢ € C5°(Br(20))

Then for 0 < Ry < R holds p‘BR (z0)
1
Cr =C(k,R,R1,q) > 0 so that

€ H**%4(Bpg, (20)) and there is a constant

||p||2+k,q;BRl(a70) < Ck? (Hf”k,q;BR(:co) + ”le,q;BR(zo))

Proof. see [Si/So, Theorem I11.8.9, p.91] O

Theorem 7.3. Let R>0,k€Z, k>0and 1 < g < oco. Let p € LY(Bs\BRg)
for all s > R and Vp € LY(R™\Bg). Further assume that there is f € H*9(R"\ Bg)
so that

(Vp, Vo) = (f,¢)  forall ¢ € Cg°(R"\Bg)

Then there exists R < Ry, < oo so that 0;0;p € H*4(R™\Bpg,) for i,j = 1,...,n
and with Cy, = C(n, k, R, Rk, q) > 0 holds

n
> 1003l grmna, < Cr (I flkgmenn + 1P1g5.0, 152

i.j=1

Proof. see [Si/So, Corollary 11.8.12, p.94] O
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Theorem 7.4. Let £k € Ng, £ > 0 and let G C R™ be a bounded domain
with 0G € C*+2. Suppose 1 < ¢ < co. Assume u € H&’q(G) and that there is
f € H*(G) such that

(Vu, Vo) = (f,9)¢ V¢ C5(G)

Then u € H?*%4(@G) and there exists a constant C = C(G, ¢, k,n) > 0 such that

lull2trge < Ck (fllkge + lulliege)

Proof. (a) Let x € 0G. Then

(Vu, Vo) =(f,¢)g Vel (GNBi(x)) C CF(G)

Because Ho? (G N By(z)) = HY (G 1 By(x)) = C(G N By(x)) 1o cnm @
(Vu,Ve)g = (fd)q ¥ ¢€H " (GNBi(x))

and therefore by Theorem 7.1 there is 0 < R, < 1 and a constant C, = Cy(k, ¢, G, z)
such that

H**R(Gn B
i € ( R. (7))

and

Cl (Hf”k,q;GﬁB1(a:) + ”uHLq;GﬂBl(x))
Cr (I fllkge + llullge)

Hu”2+k,q;GﬁBRx (z)

IA A

(b) Let € G. Then there is R, > 0 such that Bag, (z) C G. Obviously

U € Hl’q(Bng(x))

Bag, ()

and
(Vu, Vo) = (f,d)g Ve C5(Bar,(2))
By Theorem 7.2 we derive

u c H*h(Bp (x
o (Br, ()

and there is a constant Cy = Co(k,q,z,G) > 0 such that

[ull2tkg:r, @) < C2 (Ifllkge + lullige)

(c) Because G is compact we find M, N € N and open balls V; C R™ as in (a) and
Uj C G as in (b) such that

N N M
ocgclyvi Gclyviu vy,
=1 =1 j=1
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Choose p;, € C5°(Uj), ¢ € Cg°(V;) with 0 < ¢;,¢; <1 and

N

M
d @)+ ) dilz)=1 Vzed
j=1

=1

By (a) and (b) holds

and

u ‘

U € H2+k’q(Uj)7 ||U”2+k,q;Uj < Co ([ fllkgsc + llulligc)

Uj

e H*H(GNVY), |ullzenger: < Cui (Ifllkgc + lullige)

aGnv;

(d) Let now z € C§°(R™) and a € N, || <2+ k. Then

Define

and

M N
/ u(DO‘z)dm:/ u D Z¢j2+z¢iz dx
G G j=1 i—1

_Z/ u D ( QOJ dac—l—Z/ ($iz) da

GNV; ~—~—
GC°°(U ) €C5°(GNV;)
M
1)l / D* <u‘ > oz dx + (=1) / < > iz dx
]z::l U; Uj ’ Z anv; Gnv;
D u , xeU,
gj(x) := ( Uj> !
0 else
D~ ‘ ) 7
hi(z) = (u Gm%) reGNV
0 else

Then

and with

holds

Therefore

that is

N M
hi=Y _¢ihi+ Y g € LIUG
i=1 j=1

/u(DO‘ ) dz = ( |a|/ hz dx
G

D% = h € LY(G) Vie|<2+k
u € H* (@)
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and by (c)

1
q

M N
lulosrae < | D CE,+> Cl | (If
j=1 i=1

k,aq;G T ”UHLq;G)

O]

Theorem 7.5. Let k € Ny, k > 0 and let G C R™ be an exterior domain with
dG € C*+2 and R"\G C Bpg,. Suppose 1 < ¢ < co. Assume u € Hy (@) and that
there is f € H*9(G) such that

(V’U,, v¢>G = <f7 ¢>G v ¢ € C(C))O(G)

Then Vu € HF4(G) and there exists a constant C, = C(G,q,k,n) > 0 and
Ry, > Ry such that

IVullisrac < Cr (Iflkac + lullacass, + [ Vulac)

Proof. (a) As in Theorem 7.4 one can show

vu( e H"""(GNBg) VR> R,
GNBgr

and
||Vu”l+k,q;GﬂBR < O (Hf”k,q;GﬂBzR + ||U||1,q;GﬁBzR)

(b) By Theorem 7.3 there is Ry > Ry and Cy > 0 with

v H"h(R™B
Wy, €N BR,)
and
”qulJrk,q;R"\BRk < Oy (Hf”k,q;Rn\BRO + [Ju 1,q;Bng\BRO)
(c) Finally by (a),(b) and Lemma A.5 the assertion follows. O

Theorem 7.6. Let k € No, £ > 0 and let G C R™ be either a bounded or an
exterior domain with G € C2t*. Let u € Hy''(G) and Au € H*4(G). Then

Vu € HA1L9(@)

and there is a constant Cy, = C(k,G,q,n) > 0 and a Ry > 0 such that

IVulliinge < Cr (1Aulge + lullgonsn, + [Vully)
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Proof. For ¢ € C3°(G) holds

<vu’ vQZ)>G = _<Au’ ¢>G

and the assertion follows by Theorem 7.4 and Theorem 7.5. O

Theorem 7.7. Let £k € Ng, £k > 0 and let G C R™ be a bounded domain
with 0G € C*T*. Suppose 1 < ¢ < oco. Assume u € Hg’q(G) and that there is
f € H*(G) such that

(Au, Ad) = (f,d)  forall ¢ € C(Q)

Then

u e HY (@)
Proof. see [SiLec, Theorem 9.12, p.157] with m = 2. O
Theorem 7.8. Let £k € Ng, £ > 0 and let G C R"™ be an exterior domain

with 0G € C**. Suppose 1 < ¢ < oco. Assume u € ﬁ?’q(G) and that there is
f € H*(G) such that

<Aua AQZ)>G = <f7 ¢>G v Qb € CSO(G)
Then for every r > 0 holds

u e HY**4(G N B,)
GNBy

Proof. The Proof is exactly the same as in [SiLec, Theorem 9.12 respectively 9.11,
p.156]. O

Theorem 7.9. Let G C R" be a bounded domain with G € C. Let1 < s < oo
and assume that p € Hy*(G) = Hy*(G). Let 1 < g < oo and assume that

Sq(p) == sup (Y, Vé) < 00

0#£p€CS°(G) HV(qu’;G
Then p € Hy'(G) and with C, > 0 by Theorem 2.8 holds

HVqu;G < G Sq(p)

Proof. see [Si/So, Theorem I1.5.1, p.66] O
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Theorem 7.10. Let G C R" be an exterior domain with G € Cl. Let
1 < s < oo and suppose p € H.l’S(G). Let 1 < ¢ < 0o and assume that

Sq(p) == sup (Vp, Vo)

— < 0
0£¢ec=(a) IVolly.a

(where C°(G) == {¢o + cor : ¢ € C§°(G), ¢ € R} with ¢, as in Theorem 2.7)
Then p € He?(G) and with C, > 0 by Theorem 2.8 holds

HVPHq;G < Cq Sq(p)

Proof. see [Si/So, Theorem I11.5.3, p.67] O
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8 The asymptotic behavior of harmonic functions in ex-
terior domains

Lemma 8.1. Let U C R™ be open. Assume that p > 0, x € R™ such that
B,(x) CU. Let p: U — R be a harmonic function. Then
P < nn+1) 1
[(9ip)(2)] < w1, lp(z + y)|dy

P

Proof. With Ap = 0 holds Ad;p = 0 too. Let 0 < € < p. Because of the mean
value property we derive

1 Gaug 1 Yj

o;ip)(x oip)(x+y)dy = p(z+y dw
( J )( ) |BE‘ B. ( J )( ) |BE’ oB. ( )|y‘ Yy
no
= et [ et e = I [ a0 d

Therefore

W,

St o) = [ plate€)¢dug

n Snfl
and

/Op e” %(@p)(x) de = /Op gt \/Sn_l p(x +e) & dwe de

Next .
n+l1 Wn - Yj
—— " —(0jp)(x —/ plr +y) dy
and finally
nn+1) 1
@) < "D [ el ay

P

O

Lemma 8.2. Let G C R"™ be open and let p € LY(G) (1 < ¢ < 00) be harmonic
in G. Assume that G; C G such that d := dist(G1,9G) > 0. Then

n+1 d
10ipllge = —p—llplge  forall0 <R <y

Proof. By Lemma 8.1 we have for x € G; and 0 < R < %

n—+1
oip)(x)] < ——— r+y)|ld
(9jp) ()] BBl /s, Ip(x +y)| dy

1
n—+1 _ q =1
B (/B \p<x+y>rqdy) Bl
R

IN

R

n+1 _1 q
= B ([ e p)
Br
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This implies

</01 |(81p)(x)|qd$>‘1’ < n;1 |B| " </G1 /BR |p(a¢—|—y)|qdyd;p)

A

IN
S
|+
—
w
ol
|
Q=
7 N\
5
2y
S
=
&
=
QU
I
QU
NS
N——
|

O]

Lemma 8.3. Let U C R™ be open. Assume that p > 0, x € R™ such that
By(x) C U. Let p: U — R be a harmonic function. Then for all i,j,k =1,...,n
holds

n(n +1)% 27+2
wWn, pn+2

(0:0;p) ()] < /B Ip(z + v)| dy

P

and ( )3 +3
n(n+1)° _, 3"
o 2 /B Ip(z +y)ldy

P

(0:0;0kp)(z)| <

Proof. (a) By Lemma 8.1 we derive

n(n + 1) 2n+l
Wy, pn+1

(0:05p) ()| < /B @l

and for y € By ()

n(n+1) 27+

@rwl < "L s
j Wn Pl Bg(y)
Then
(n + 1 22 (n+1) / /
0;0:p) ()] < )| dz dy
(9i0;p) ()| oz S D) 5y 5y z)|
nQ(n + 1 22 7L+1 / /
< )| dz dy
wnZ 2(n+1) Bp (@) ‘
n?(n +1)2 22( "+1)
= w 2 2(n+1) % ’ |dZ
n B,(x)

n(n + 1)2 on+2
- un—ﬁ / p(2)) d
Wn P By(x)
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(b) By Lemma 8.1 and (a) we get

n(n + 1)% 37+2

(0:0;0p)(@)| < == P

/ 10k0)(v)| dy
Bgég(f)

and for y € B2, ()

3

n(n +1) 3ntl
I = N CILE
r\Y
3
Therefore
n2(n +1)3 320+3
(0:0;0u)()] < - / Ip(2)] d= dy
J w 2 p2 +3 Bgf(x) B%(y)
’/L2(TL+ 1)3 32n+3 / /
< ’ ip(2)| dz dy
wn® PP By, (@) JB()

2
n?(n+1)3 323 w, (2p\"
- mer IS () [ wee:
“n p n o\ 3 By ()
1 3 3n+3
_ 1), +3/ ip(2)] d
Wn P By ()

O]

Lemma 8.4. Letn>2 R>0,1<q¢<ooandletue LI(R"\Br) be harmonic
in R"\ Bp. Let

v(z) = |z "u <|xx\2> for all z € B%\{O}

be the Kelvin transform. Then v ist harmonic in B1\{0} and
R

/ ()l [y]42=2n dy = / ()| dy
B% Rn\BR

Proof. (a) For Av =0 see e.g. [ABR, p.62].

=R y
[ wwpae =2 [ ()
AR, Ay 1 |y
) 2—n n—2
= ul s ) lyl" " |yl
/A ‘ <|y!2)

— /A ()] [y]7D2n gy

(b) Let r > R. Then by Lemma A.6 holds

a1
|y [?" W

By

7 1
2

S
==

Sl
T
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For r — oo the assertion follows. O

Lemma 8.5. Letn>2, R>0,1<¢<ooandletue LI(R"\Br) be harmonic
in R"\ Bg. Let

v(z) = |z " u <|xx‘2> for all z € B%\{O}

be the Kelvin transform. Then there is a constant C(n,q) > 0 such that for all

0<r< %
/ lo(y)| dy

IN

1
n q
C(n,q)rat? </B o (y)|? |y|2n=2) =2 dy)

— Clng)rit? / fu(2)|? da
R™\ B

Proof. (a) Assume 1 < ¢ < co. Then

qg(n—2)—2n 2n—q(n—2)

/ ()| dy = / fo(g)] [y |y == dy
B, B,
q—1

1
q 2n—q(n—2)
< (/ |v<y>rqry\q<“>2”dy)q(/ y 5 dy)q
B, B

q

q

[ @) cn ()
R™\B1

0
=~

Q=

n(g—1)+2n—q(n—2)
— ([ @] cogrtE
R™\B1

1
q
n+2q

— / u(@)7dz | C(n,q)r™
R"\Bl.

(b) Assume ¢ = 1. Then

/ w(y)ldy = / ()] Jy] =220 [y 2+ dy

T

IA

2 [y ay

rtn / |u(zx)| dz
R™\B1

e
~
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Lemma 8.6.
in R"\ Bp. Let

Letn >2, R>0,1<g < oo andlet u € LY(R™\ Bg) be harmonic

qu)::\xﬁ—"zb( x ) for all z € By \{0}

a2
be the Kelvin transform. Then there is a © € C°°(B 1) such that
R
Af):OiDB% and @|B%\{O}:U

Proof. (a) Let

Let

Then
Pk

oo 0 iflt| <1
peCPR), 0<p<l, m@:{l ﬁu>2

pe(x) :==p(klz])  VEkeEN

0 if |z] <
e CPR"), 0<pp <1, pplx)= { 1 it ;:1;} >

NN

and there is a constant C' > 0 such that

(b) Let ¢ € C5°(B

IVorlloo S EC [|0:05pk]l00 < k*C

). Then pr¢ € CSO(B%\{O}) and

1
R

0=(v,Alpx9)) g, = (v, 9Apr)p, +2(v, VorVP) g, + (v, pAd)p,

R

R " =
We estimate
(00, | < [18cCR / fo(a)| da
b B,
k
9 2 %4—2
Lemma 8.5 HQZ)H (TL Q) <k> HUHQ,R \Br

= Kaou (§) 0 (o)

Similarly we derive

(¢) Obviously

and

(0, VorVe)p, —0 (k— o)

b
PrVAY — vAP a.e. in B1
R

pevd] < [Adllle] € L'(B))

—_————
by Lemma 8.5
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By the dominated convergence theorem we get

<U7PkA¢>BL - <”7A¢>BL (k — o)
R R
By (b) we derive for (kK — o0)
<Uv A¢>Bl =0
R
and finally by Weyl’s Lemma the assertion. O
Theorem 8.7. Let n > 2, R > 0,1 < g < co. Then there is a constant

C = C(n,q,R) > 0 such that for each x € R™\Byg and for every harmonic u €
L%(R™\ Bpgr) holds

Cllullyzm gy |17 Jif g =1
]u(x)] < ¢ ||u||q;]R"\BR |$|_2 >if 1<qg<2 ifn =2

Cllullgrm gy 2|71 if2 < g < oo

( Cllulligm by, 2" ifq=

c Hqu;R"\BR |$’_n ,if 1<qg< n
u(z)] < itn >3
c ||u||q;R"\BR |33’1_n Aif n_ < q < n

C ||u||q;R"\BR |x|27n 7if # <g < Y,

Proof. (a) Let

v(z) = |z " u (|j|2> for all z € B%\{O}

be the Kelvin transform. By Lemma 8.6 there is a harmonic continuation of v in

B L which we again denote by v. Because of the mean value property and Lemma
8.5 holds for 0 < r < %

1

v(0 <
[v(0)] Bl

lv(y)l dy

Q=

IA
oy
s
Q
—~
3
=
=
Q3
+
[\]
5
=2
w
Sl
=
—
&
=
)
g

Q|
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which tends to 0 for (r — 0), if
n .
5—1—2—7120 that is n>q(n—2)

So we derive

v(0)=0 ifn=2

n
= if n > dg< ——
v(0) =0 if n >3 an 4= —5

(b) Similarly by Lemma 8.1 and Lemma 8.5 we get

@0 < M0 [ iy

IA
&
=
3
+
(=
Q
3
=
=
Q|
+
[\
T
2
w
S
=
—
)
N—
-
i~
g

which tends to 0 for (r — 0), if
E—|—2—(n—i—1)20 that is n>qn—1)
q

So we derive

(0jv)(0) =0 ifnZQandqgﬁ

(c) Similarly by Lemma 8.3 and Lemma 8.5 we get

nn 2
o) < M [ )y

Wn

1
2 1 n !
et L g ri [ u@rds
Wn rh ]Rn\Bi
2r

—0 (r—0)

IA

which tends to 0 for (r — 0), if
ﬁ-1—2—(71—#2)20 that is 1>gq
q

Therefore

(0;05v)(0) =0 ifn>2and g=1
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(d) For x € B1 there exists by Taylor’s theorem a,, b, ¢, € B1 such that
R R

v(z) = v(0)+ (Vov(az), )
o(z) = mm+ammpw+%«mﬁw@@@@

D*v)(0) Dv)(cz) o
v(z) = Z(Oﬂ)()x —l—z(a?()x

<2 |oo|=3

(e) Let n > 3 and -5 < ¢ < co. Let x € B

n—2

S Then by the mean value property
2
and Lemma 8.5

1
(@) < / fo(y)] dy
]BL B ()
2R 2R
< Ki(n,R) /B o(y)| dy

1
R

< Ka(n, R, q) [lullgrm sy,
For y € R™\ Bag therefore holds

pl = b ()

< |y* " Ka(n, R,q) lullg:rm\ B

(f) Let n > 3 and -3 < ¢ < 5 orlet n =2 and 2 < ¢ < co. Then by (a) v(0) =0
and for x € B L holds by Lemma 8.1 and Lemma 8.5

nn+1)
Wn,

O)(@) < (2R)"™1 /B ol

2R

< K3(n,R)/ lv(y)| dy

B,
R

IN

K4(na R7 q) Hqu;R”\BR
and therefore by (d)

jo(2)]

|2(0) +(V(az), )|
R
< |Volag)lla] < Ks(n, R.g)llulyzm s, |2

For y € R™\ Byr therefore holds

pl = i ()

ly|' ™" Ka(n, R, q) ||ullgzn 5,

IN
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(g) Let n > 2 and 1 < ¢ < 5. Then by (a) and (b) v(0) = 0, Vv(0) = 0 and for
r€B L holds by Lemma 8.3 and Lemma 8.5

n(n + 1)?

Wn

(0:0;0) ()| (4R)"™? /B ol

2R

< Ke(n.R) /B ()| dy

R

< K7(n,R,q) Hqu;R"\BR
and therefore by (d)
1
()| = [v(0) + (V0(0), z) +((Hessv)(by) z, )
\_6/ T/ 2

2

1 n
< §\x|2 D 1@:00)0) | < Ks(n, R, q) ||ull gz sy, 21
i,j=1

For y € R™\ Byr therefore holds

wl = i ()

< |y|7" Ks(n, R, q) [|ullgrm\ By

h) Let n > 2 and ¢ = 1. Then by (a), (b) and (c) v(0) = 0, 9;v(0) = 0 and
0;0;v(0) = 0, and for x € Bﬁ holds by Lemma 8.3 and Lemma 8.5

3
@) @] < "Ry [ ju)ay
Wn, Bﬁ(:c)

< Ko(n.R) /B ()| dy

IN

Kio(n, R) [[ullyzm 5y
and therefore by (d) analogously to (f) and (g)
lv(z)] < Kii(n, R) ||ullyre By ||

For y € R™\ Byr therefore holds

il = i ()

< y7" ! Kii(n, R) [lulli gz B

46



Theorem 8.8. Let n > 2, R > 0,1 < g < co. Then there is a constant
C = C(n,q,R) > 0 and a function f, € LI(R™\Bag) such that for each x € R"\ Bap
and for every harmonic u € LY(R™\ Bg) holds

u(z)] < Cllullgrm\sg fo(x)

Proof. For k € 7Z holds

o0
|- |¥~" € LY(R™\Byg) < / P g < oo
2R
& n—1+qg(k—n)< -1

& n<qn—k)

Therefore
n=2: || €LIR\Byr) & q>32
n=2: |-|?2€L{(R"\Byr) & g¢q>1
n=2: |-|7t € LYR™"\Bar) <& ¢>2
n>3: |-l e LR Bop) & g > o
n>3: |-|7" e LI(R™\Bag) & g>1
n>3: |['T"eLIRN\Br) & q>
n>3: |- e LI R"\Bp) & ¢q>-"5
and the assertion follows by Theorem 8.7 O

Lemma 8.9. Let G C R" be open and let p € LY(G) (1 < ¢ < 00) be harmonic
in G. Assume that G; C G such that d := dist(G1,9G) > 0. Then

H>4(G
Pl € (G1)

Proof. (a) It is well known that p € C°°(G). We prove by induction
aH(a'
p|, e HH(@)

for every k € N and every G’ C G with dist(G’,9G) > 0.
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(b) k=1 : By Lemma 8.2 we derive for G’ C G with dist(G’,0G) > 0

4n+1
ol < e g Pl < o0

(¢c) k— k+1: For k € N may hold
D%p € LY(G")

for every |a| = k and every G’ C G with dist(G’,0G) > 0.
Let Gy C G with dist(Gp, 9G) > 0. Choose

G' = {r € G : dist(z,0G) > %dist(Go,(?G)}

Then Gy C G’ C G, dist(G',0G) > 0 and dist(Gp, dG") > 0.

Because AD%p = 0 in G’ and by assumption D% € L(G") we derive by Lemma 8.2

4(n+1)

;i Dpl|4: < —F
19:D0%pllgscro < dist(Go, 0G")

||Dap||q;G’ <0

Lemma 8.10. Letn>2,C >0, R> 1 and let p be harmonic in R"\Bxz.
2

1. If n > 3 and
p(z)| < Claf>~"

for all |z| > R, then there is a constant C' > 0 such that
Oip(a)] < Claf' ™"
for all [x| >2Rand alli=1,...,n.

2. If n>2and
p(z)| < Claf'™"

for all |z| > R, then there is a constant C' > 0 such that
Oip(a)] < Claf ™
forall || >2R and alli =1,...,n.

3. If n > 2 and
p(z)| < Clz|™

for all |z| > R, then there is a constant C' > 0 such that
Oip(x)] < Claf ™!

forall || >2R and alli =1,...,n.
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Proof. (a) Let n > 3 and
p(z)| < Claf™

for all |z| > R. Let

n
s =
n—2
There is s < ¢ < 0o with
nz(n—3)q
and
p € LYR™\B3r)
4
Then

p€ L*(Aray)
for all » > R. By Lemma 8.2 we derive

1
Aln +1) g

4(n+1)
HaipH3§AQr,3r < s HPHS;AMT = —

r

/ \dex]
Ar,4r

Holder  4(n 4+ 1 a q—s
g Hntl) ( / rm%) Apar|
with £>1 r Arar

o (n) n(qg—s)
- r T ”pH(I?ArAr

Because

nlg —s) <1 <= n(g—s) <sq¢ < ng—ns < sqg <= nqg < s(qg+n)
5q
ng

n+q  n—2

—

< qn—2) <n+qg <= q(n-3) <n

for r > R > 1 holds
Haip”5§AQr,3r S Cl <n> Hqu;ATAT

and
P04, . < Cq/ 2|92 dg = Clw, /4T n=1+9(2-n) gy
, e :
- TH—(;(;U—n) [(4ryra@m) e Cy(n, q) e
Therefore

s(ntq(2-m))
10ipl15, 45,5, < Cs(n,q)r™
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and

10l e = EZMmmAd . EZWwMAJ)
? R, 7 ?
s(n+q(2—n))
o) 3 m—1 q
< 3 Cyng) ((2) R)
m=1
>0
——N—

= mi::o@;(”v ¢, R) [ (;

So we get .

(91‘1) c Lm<Rn\B2R)
and 0;p is harmonic in R™\ Br. Therefore

2

dip € L"~* (R™\Bg)

and by Theorem 8.7 there is a constant C5 = C5(n, q, R, p) > 0 such that
|(0;p)(z)| < Cs x|t for all |x| > 2R
(b) Let n > 2 and
p(x)] < Clzf'™"

for all |x| > R. Let

There is s < ¢ < co with
nz(n-—2)q

and
p € L(R"\Ban)
Similarly to (a) follows
|(Dip)(z)] < Clz|™  for all |z] > 2R

(c) Let n > 2 and
p(z)] < Clz|™

for all |z| > R. Let
s:=1

There is 1 = s < g < oo with
n>(n-1)q

and
p € LUR"\Bun)

Similarly to (a) follows
[(0ip)(z)] < Cla| ! for all |z| > 2R
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Lemma 8.11. Let n > 2, G C R" be an exterior domain, and let u be harmonic

in G. Let r > 0, ¢, and ,; as in Theorem 3.7.
1. Forall R > 2r and all k=1,...,n holds

GNBR

/ummdx = /u Z/ (D5u)(

GNBR OBR =1 5Bg

and

2. If there are R > r, C' > 0 with
u(z)] < Claf'™"

for all |x| > R, then

/uAgon:): =0
G

3. If there are R > r, C' > 0 with
lu(z)] < Clz[™"

for all |x| > R, then for k =1,...,n holds

/uAi/)rkdx =0
G

/ ulp,dr = *Z /(alu)(x)r;dw
=1 5Bg

'fzxk

dwy

Proof. (a) Let R > 2r. Then by Gaufy’ Theorem

/ ulp,dz = / (V) (Vi) dz

GNBgr GNBr

= / Augprdac—Z/au %«)de

GNBr =0 =1 5By

:—Z/ﬁu xl

leR

(b) Let R > 2r and k =1,...,n. Again by Gaufy’ Theorem we derive

/ uAY,p dr = / Z Oiu)(x)0;[xrer () daj—i—/ 28 Trpor(x

GNBgr GNBRr = 0Bgr

51

33




= / (Au)(x) zpeor(z) de — / Z Oiu)(x) zk o (z ) erlz) g l‘ dwz+
GNBr :o oBg =1
n ;
/ Zézk or(z dww u(z) Zxk (Oior) () — dwy =
— T ||
dBR dBR =0

:_Z/au xl‘”’“dwz /()f;k’dwx

=1 5By OBg

(c) Assume that for all |z| > R holds
u(z)] < Cla|'™"

By Lemma 8.10 therefore

for all |x| > 2R. This implies

/uAgordx = / uAp, dz ® Z /(azu)(ac)‘?’dwx

e GNBag =1 9Byp
< Z(ZR)”_l C (2R) "wy
=1
For R — oo then
/u Ap,dr = 0
G

(d) Assume that for all |z| > R holds
lu(z)] < Clz[™

By Lemma 8.10 therefore 3
|(0u)(2)] < C'la| ™

for all |x| > 2R. This implies

/u A dx| = / u Aty dx

G GNBsr

® —Z/au ) +/<)||

Br

< (2R)"'C(2R)"wn+ Y (2R)"'C(2R) " 'Ruwy,
=1
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For R — oo therefore

/uA@Z)dex =0

G
O

Theorem 8.12. Letn>2,1< ¢ < oo, G CR" be an exterior domain, and let
u € LY(G) be harmonic in G. Then

u € BY(Q)
if and only if there are C' > 0, R > 1 with
lu(z)] < Clz|™"

for all |z| > R.

Proof. (a) Assume that for all |z| > R holds
lu(z)] < Cla|™
By Lemma 8.11 then for £ =1,...,n holds
/uA¢dex = /uAcprd:c =0
G G
Further for ¢ € C§°(G)
0 = /(Au)qf)dm = /qubd:U
G

G

Therefore also for ¢ € ﬁg ’q/(G)

0 = JulAddx
/ b

G
By Theorem 2.6 and 2.7 then

0 = /uAd)da: V¢ e H2(G)
G

and therefore
u € BY(Q)

(b) Assume that
u € BY(G)

Let R > 0 with R"\G C Br. Let
2

v(z) = |z[> " u <‘5’2> for each x € B%\{O}
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be the Kelvin transform. By Lemma 8.6 there is a harmonic continuation of v in

0. This continuation we again denote by v. By Taylor’s formula for every z € B L
2R

there is a, € B L such that
2

v(z) = v(0) 4+ Z(@iv)(ax)x
i=1

Define

n

w(z) = v(@) —v(0) = > () (ax)x;

i=1
Because 0;v is bounded in B% there is a M > 0 with
2
< M W
lw(z)] < M |z| 2l < 55
Let

(Kw)(x) == |z|* " w <‘;’2) for each x € R"\Bag

be the Kelvin transform of w. Then for |z| > 2R holds

(Fuw) ()] < [22" M = =

M ’x|17n
||

Further by [ABR, S.62]
AKw =0

So we derive by Lemma 8.11

/KwAcprda: =0

But also holds
(Kw)(z) = u(z) - [2]* " (0)

and therefore

/Kw Ap,dr = /UAQDT dx —U(O)/|J;]2_” (Ap,)(x) dx
G G G
=0

(O, 12*7") (901 ) () dev
1

GNBay =
= ) [ @ AR dr o) [ @l grt)
S 2, o
GmBQr =0 8B2r =1
n o
— 0(0) / > m) ol 2
OBa, i=1

= 0(0)(2—n)2r)" 1 2r) "W, = v(0)(2—n)w,
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For n > 3 follows
v(0) =0

For n = 2 by part (a) of the proof of Theorem 8.7 holds

v(0) =0

By Taylor’s formula for every z € B 1 there is b, € B1 such that
2R 2R

v(z) = v(0)+ ) (9v)(0)x; + %((Hessv)(bx) x,x)
N

n
1=

[y

=0

Define

3

h(z) = v(x)—Z(@iv)(O)xi = %((Hessv)(bx) x,T)

i=1
Because 0;0;v is bounded in B 1 there is C' > 0 with
2R
h@)| < Clal? Y2l < o=
- - 2R
Let

(Kh)(z) == |z|* ™ h (,;;) for each x € R"\ Bag

be the Kelvin transform of h. Then for |z| > 2R holds
1

(ER@)] < [P C g = e
Further by [ABR, S.62]
AKh =0
So we derive by Lemma 8.11
/Kh AYppdr = 0
G
But also holds
. n i n xi
(Kh)(z) = u(z) — |z Z(aw)(o)W = u(z) — (62-@)(0)‘37,”

i=1
and therefore for all k=1,...,n

n

0 = / Kh A da = / wAiide = 3 (0)(0) / |;”‘n (M) () da
G G

fe i=1

W
1=
|
&
3
7
Q
<
SN—
—~~
o
SN—
&
o
I
|
&
N
—
ASY
<
~
—~
(=)
~—



Then

That is

and for || > 2R holds
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9 The density of H"(G)N BYG) in BYG)

Theorem 9.1. Let n>2, keN k>21<qg<ooandlet G CR" be a
bounded domain with G € C***. Suppose p € BI(G).
Then there is a sequence (h,,) C H*9(G) N B(G) such that

| Aom, _qu;G —0 (m — o0)

Proof. (a) Consider Friedrichs’ mollifier p. for ¢ > 0. Because G is bounded, we
have
pe € C5°(R™) € H>®(G) Ve>0

By Theorem 3.11 there is s € H>Y(G) such that

(859,86) = (p.Ad)g Vo H(G)
Because 0G € C?*F k> 2, p. € H*4(G) and

(8s9,86) = (Aped)e Vo E€CT(G)

we derive by Theorem 7.7
As®) e HR9(@)

(b) For ¢ € ﬁg’q/(G) we also get

<AS(E), A¢>G’ = <p€7 A¢>G - <p7 A¢>G
=0

= (p: =1, AP)g
and therefore by Theorem 3.8
As) A
1A < C,  sup M
Oyé(Z)EI/‘\IE’qI(G) ||A¢”ql
< Cyllpe =pllge — 0 (¢ =0)
(c) Let
hE) = p. — Asl®)
Then by (a)
he) e H1(@) N BY(G)

and by (b)

4G T HAS(E)HQ;G

1K —plye < |Ip- —pl

< (1+CY) lIpe —pllge =0 (e —0)
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Theorem 9.2. Letn>2 keN k>2 1<g< ooandlet G CR" be an
exterior domain with G € C?T*. Suppose p € BI(G).
Then there is a sequence (h,,) C H*1(G) N B9(G) such that

| Aim, _qu;G —0 (m— o0)

Proof. (a) Consider Friedrichs’ mollifier p, for ¢ > 0. Let R"\G C Br for R > 0.
2

Then R
dist(R™\Bg, 0G) > dist(R"\Br,0Br) = Bl
2

Therefore by Lemma A.12 for each x € R™\ Br and for every 0 < & < % holds

and p. € LY(R™\Bg) is harmonic in R™\Bg. By Lemma 8.9 we derive

€ H9(R™\ Bagr)

p
“IRn\ B2

Because p. € C*°(R") obviously for every r > 0 holds

€ H>*(B,)

r

Pe

Finally for every 0 < € < % holds

pe € H™I(R"™)

(b) By Theorem 3.11 there is s©©) € H2(G) such that
(8s9,80) = (pAd)g Vo€ HI(G)
Because 0G € C?*F k> 2, p. € H*4(G) and
(2s9,80) = (Ap.d) Vo€ CF(G)
we derive by Theorem 7.8 for each r > 0 and for every 0 < € < %

As® € H*(G N B,)

GNB,

Let ¢ € C3°(R™\Bgr) C ﬁf’ql(G). Then for every 0 < ¢ < £ holds by (a)
(859,86) = (p. D¢} =0

Therefore by Weyl’s Lemma As(®) € L9(G) is harmonic in R"\ Bg. Again by Lemma
8.9 we derive

As(®) € H*9(R"\Bag)

R™\Bsr
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R
By Lemma A.5 we get for every 0 < e < 5

As®) e HH(@)

(¢) For ¢ € H>7(G) we also get

<AS(6), A¢>G’ = <psa A¢>G - <p’ A§Z5>G
=0
= (p: —p,A¢)g

and therefore by Theorem 3.8

(e)
1A5©)]| 6 M

IN

Cy sup
075¢Eﬁ3’ql(0) ||A¢”ql

IN

Collpe = pllge — 0 (e —0)

(d) Let
hE) = p. — Asl®)

Then by (a) and (b)
(e) k.q q R
h'e e H*(G) N BY(Q) v0<s<2

and by (c)

A

G T HAS(E)HQ;G

1K —plye < |pe —pl

IN

(1+ Cq) llpe _PHq;G —0 (¢6—0)
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10 The compactness of the imbedding H'(G)NBY(G) C
B%(G) in exterior domains

Theorem 10.1 Letn > 2,1 < ¢ < oo and let G C R™ be an exterior domain
with G € C1.
Then the imbedding

H™“(G)N BY(G) — BY(G)

is compact.

Proof. (a) H"(G) is a reflexive space. Every closed subspace of a reflexive space
is reflexive (see e.g. [Alt, Satz 6.8, p.216]). Therefore H14(G) N BY(G) is reflexive.
By the Hahn-Banach theorem one can easily prove

1, * _ 1, *
(H q(G)mBq(G)> = H™(G) (GBI (G

So by Lemma B.5 it suffices to show: For a sequence (hy) C H"9(G) N BY(G) with
F*(hy) — 0 for all F* € HY9(G)* holds ||hgg:¢ — O.

(b) Let R > 0 such that R"\G C Br. Then
2
G, . =GNB,

for r > R is bounded and
G, € C*

Let F* € HY9(G,)* be given. Define
F*(h) == F* (h}GT) Y he HY(G)

Then obviously F* € HY(G)* and therefore
F*(hy) — 0

that is
F*(hk\GT) -0

Because the imbedding H'9(G,) — L4(G,) is compact (see e.g. [Alt, Satz 8.8,
p.314]) we derive

”hk”q;GﬂBT — 0 (k — 00) Vr>R

(c) Let € R™\Bag. Define

F*(h) :=h(z) VheH"(G)NBYG)
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Then by the mean value property

Fh)| = )] < —

< — h(z +y)|dy
Bal i, h(z +y)|

-1 q—1
< [Bg|" ||hllge |Br| T

_1
< [Bg|l 9 |h|l1gc

Therefore
e Hl’q(G)*

that is
hi(z) = F*(hg) — 0 Vx € R"\Bag

(d) By Theorem 8.8 there is an f, € LI(R™\Bag) such that for each x € R"\Bar
holds

hie(@)] < Cllhillgrm\ B, fo()
By assumption there is an C’ > 0 with

1P|

ac < C' VkeN
Therefore by (c) and the dominated convergence theorem follows

Hthq;R”\BQR - 0 (k - OO)

(e) By (b) and (d) we finally get

1Pkl =0 (k—o0)
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Part II: The Cosserat spectrum
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11 Definition of the operator 7, and its fundamental
properties

Definition 11.1. Let n > 2 and let G C R” be either a bounded or an exterior
domain with 0G € C*.

L Let T, : L9(G) — He9(G)™ be defined by (cf. Theorem 2.9)
(VI,(p). Vo), = (p.divg), forall ¢ € H(G)"

2. Let Zg : LYG) — LUG),  Zy(p) :=div(T,p)

Theorem 11.2. Let n > 2 and let G C R” be either a bounded or an exterior
domain with G € C'. Then

1 Z AQ(G) . AQ(G) — Aq(G)7 Zq(po) = Do fOI' eaCh Po c Aq(G)
. Rq q
2. Zq B4(G) s BY(G) — BY(G)

Proof. (a) Let pg € AY(G). Then py = As with s € HZ?Y(G). Like in the proof of
Lemma 3.10 there are v € Hg’q(G) and f € C°°(R") such that

0;0;f € C3°(G) and s=v+f

There is by Definition 3.2 a sequence (vi) C C§°(G) with ||[V2 (v, — v)|l4.c — 0.
Let ¢ € HY(G)". Then

(VVs, Vo), = /aava@j dx + Z/ 0;0;f Oipj dx
b=l wi=t GC"C(G)
= kli_)n;oZ/E)({)vk&qb]daz - Z/ (95 0:0i1 )¢5 du
) 3,j=1 ecoo (@)

= lim Z/aavkaﬂﬁ]dm + Z/aafaqujdx

k—o0
i,j=1

= <Av,din>G+<Af,diVQ>G = <p0,diVQ>G

Therefore
Vs =1T,(po)

and
Z4(po) = div (Lypo) = As = po
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(b) Let pj, € BY(G). Let ¢ € H?? (G). Then Vi € HY? (G)". Like in (a) there are
v e B> (G) and f € C*°(R™) such that

0;0;f € C3°(G) and p=v+f
There is by Definition 3.2 a sequence (vg) C C§°(G) with ||[V2(vg — v)|s:.¢ — 0.Then

0= <ph7 AQP>G = <ph7 div v‘p>G = <qu(ph)7 VVQO>G

= lim (VZT,(pn), VVur), + (VL (pr), VV] )a

k—o0
€C5e(G)

= Thm (Ly(pn), VAVE) = {Tgp), ¥ é}f/ /e
€C§e(G)

= (div (Ty(pn)), Ap),

Therefore
Zy(pn) = div (L, (pn)) € BY(G)

O

Theorem 11.3. Let n > 2 and let G C R" be either z}\bounded or an exterior
domain with G € C1. Assume A € R. Then there is u € Hy?(G)" with

(Vu, V), = A{divu,dive),,  forall g € H (G)"
if and only if there is p € LY(G) with
AZqg(p) =p

In this case one can choose p = div u.

Proof. (a) Assume that there is u € .FAI.l’q(G)” with

(Vu, V), = Adivu,dive),,  forall g € H (G)"

Let

p:=divu
Then

AT (p) =u
and

ANZy(p) =divu=p

(b) Assume that there is p € LY(G) with
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Let
u:=1T,(p)
Then

<VQ,VQ>G = <p,din>G = )\<Zq(p),divg>G

= Mdivu,dive),,  forall g € HM (G)"

O]

Theorem 11.4. Let n > 2 and let G C R" be either a bounded or an exterior
domain with G € C!. Assume that for A € R and p € LI(G) holds

Zq(p) = Ap

Then A =1 or p € BY(Q)

Proof. Decompose by Theorem 4.2
p=po+pr,  po€ANG), pne€ BIG)
Then by Theorem 11.2
Apo+Apn = Zg(po) + Zg(pr) = po+ Zg(pn)

Therefore
(A=1D)po+Apn — Zy(pn) =0
—— N ——
€AI(G) €B1(G)

Because the decomposition in Theorem 4.2 is direct we get
(A=1)po =0

that is A=1or pyp =0 O
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12 The eigenvalues in B%(G) for exterior domains

This chapter base on the idea of Michel Crouzeix [Cr|, that is mentioned in the
introduction.

Lemma 12.1. Let n > 2,1 <qg< o0, k€ Nandlet G CR"” be an exterior
domain with dG € C**2. Suppose p € BI(G) N H*4(G) and u := T, (p). Then

1. Vu € H(G)” and [|Vulrge < C(G.k,q,n) |plleqc

3. ueC'(G) (ith>1)

4. peC?@) (it k> 1)

<Vy, V?>G = <p, div?>c = _<VP’ 9>G
and for ¢ € C§°(G) and i =1,...,n
<vul7v90>6’ = _<8’Lp7 ¢>G
Because G € C*+2 by Theorem 7.5, Lemma A.15 and Theorem 2.8 we derive
Vu € H(G)™

and

IN

IVullk,ge Ci(G,k,q;n) [HVPHk—l,q;G + ”QHq;GﬂBRk + Vullga

S CQ(G7k7Q7n) Hp||k7CI§G

(b) For ¢ € C5°(G)™ holds

<A@7?>G = —<V@,V@>G = <VP7Q>G

Therefore
Ay = Vp

(¢) Suppose k > - Let R > 0 large enough such that (G N Bg) € C**2. Then
ue H*H(GnB,)" Vr>R
and therefore by Sobolev’s imbedding theorem (see e.g. [Alt, Satz 8.13, p.319])
weC(GNB)" VYr>R

Finally also holds

Similarly one can prove

66



Lemma 12.2. Leth?,1<q<oo,k€N,k>%andletGCR”bean
exterior domain with 0G € C**2 N C*. Suppose

peBUG)NHM(G)  w:=T,(p)

Further let

3(R™ = =N
CGCO(R )a C@G 07 VCE)G

Define 1
w:= uV({ — 52?(

Then
w e Hy'(G)n H*9(G) N CY(R™)

and there is a constant C' = C(n, ¢, G, () > 0 such that

HwHQ,q;G <C Hqu;G

Proof. (a) Let R > 0 such that supp(¢) C Bg and R"\G C Bg. Choose 1 €
C3°(R™) with n(z) = 1 for 2 € supp(¢). By the definition of Hy'?(G) holds

nu € Hy'(G)"

By Lemma A.3 follows
uV¢ = (nu) V¢ € Hy'(G)

Because (by Theorem 5.5)
¢ € Hy*(G)

and
[¢lloo + IV(]loo < 00

we derive by Lemma A.4

p¢ € Hy"(G)
and by Lemma 12.1 and Theorem 5.2

w e Hy'(G) N CY(R™)
(b) We have

dw = > Oy ;¢ + 90— —~ p b
SR P CAIAD PENC I RN NPLSS

= oo
gla gla Hl’q(GﬂBR) Cé(Rn) c>®(@G) ¢ gla gla

Therefore by Lemma A.1 and by Lemma 12.1

1 1
Aw = Au-V(+2Vu-VV(+u-VA(—- -( Ap =VpV(— -pA¢
~—— 2° —~~ 2
=Vp =0

1
= 2Vu- VVC+u- VA — 5pAC
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By Lemma A.15 and Theorem 2.9 we derive

HAw”q;G < CI(C)HVHHq;G+CQ(C)||EHq;GﬁBR+C3(C)Hp||q;G
S C4(C7n7QaG7R)Hqu§G

(c) Again by Lemma A.15 and Theorem 2.9 holds

Hqu;G < CS(C)HHHq;GﬂBR"‘CG(C)HPHq;G

IN

C7(C7 q, G? R)Hp”q,G

(d) We have w € H&’q(G) and w(z) = 0 for |z| > R. Therefore
w € Hy'(G N Bag)

and by Theorem 2.8 and Poincare’s Lemma

(Vw, Vo)

[Vwl

6 = |IVwllgens,r, < Cy sup v
0£6€Ce (GNBygr) 1V Oy

— C Sup <Aw7 d)>
 0tsec(GnBr) IVOlly

< Cg(q,G,R) HAwHQ;GﬂBm% - CB(q7G7R) ”Aqu;G

(e) By Theorem 7.6 we finally derive w € H?%(G) and

[wllzge < Co(Grg,n) (|Aw]lge + llw

l,q;G)

S ClO(Ga Q7n7<7R) Hqu;G
(b),(c),(d)

O]

Lemma 12.3. LethQ,1<q<oo,k:€N,k22,k>%andletGCR”be
an exterior domain with 0G € C**2. Suppose

p e BYG)N H(G)

Then ]
Zy(p) — 3P € BY(G)n H"(G)

and there is a constant C' = C'(n, ¢, G) > 0 such that

1
IIZq(p)—5p|\1,q;G < Clpllge
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Proof. (a) With u := T (p) holds Z,(p) — $p =dive — 3 p. By Lemma 12.1 and

Theorem 11.2 we get
1
Z4(p) = 5 p € BU(G) N H I(G)

and by Theorem 2.9 holds

1
1Z4(p) = 5 Pllec = Ciln, @) llpllge

(b) Let Nnow by Theorem 6.1
€ 03 R =0 V =N
C O( )a C G 9 C

and define )
w:= uV({ — 51)(
Then by Lemma 12.2
w e Hy(G) N H>9(G) N CY(R™)

By Lemma A.1 therefore
VwV¢ € HY(G)

and
Daw = 3 (0ry)(05€) + D us(Di0,) — (@) — 1p(DiC)
j=1 =1
VoVe = Y (9u)(0;0)(0:€) + Y u;(8:0;0)(8:¢)
i,j=1 =1
"1 1
=2 5@m)¢ (@ 25 (9:€)(:C)
i=1 i=1
Therefore
VwV(¢ — (divu — %p) = | D (0)(9;0)(8:C) - diVU]
i,j=1
+ > ui(2:0;€)(9:0)
i,7=1
—Z ¢ (9:C) + ép 1- Z(@-C)(@C)]
=1

= fitfotfa+fa

¢) Because by Lemma 12.1 u € HM Gy NC'(G)" we derive by Theorem 5.8
(c) y y

u =0
oG
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and by Theorem 5.6 for z € 0G
(Vug)(x) = Ai(z)N ()

For = € OG therefore holds

> (0 (@) (95 (@) (2 (x) = Y Aj(@)Ni(@)Nj(x) N (=)
i,j=1 i,j=1
= IN@PPD_ N@)Nj(@) = > (05u)(x)
j=1 j=1
= divu(x)
Therefore
fi € COR™ N HY(G), f1]8G =0

For n € C§°(R™) with supp(n) C Bgr, R"\G C Bg holds nf; € H"(G N Bg) N
C°(G' N Bg) and

=0
nh OGUOBR

Therefore by Theorem 5.5
nfi € Hy(G N Bg) € Hy'(G)

and R
fi € H(G)

(d) We have u; € Ho''(G) and (8;0,¢)(8i¢) € CH(R™). Let supp(¢) C Br, R"\G C
Bg. Choose i € C3°(R"™) with n(z) = 1 for # € Bg. Then nu; € Hy?(G) and by
Lemma A.3

n

fa= ) ui(@i0;0)(0:C) = D muj(0:0;¢)(9:¢) € Hy*(G)

ij=1 ij=1

(e) By Theorem 5.5 holds ¢ € HyU(G) and d;p € H“(G), 8;¢ € H“(G). By
Lemma A.4 we derive

f3 € Hy'(G)

(f) It holds

1=Y @000, =1-INP| =0
i=1
Therefore

fie HMG)NCG).  fif =0

and by Theorem 5.5 R
fr€ Hy'(G)
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(g) By (c)-(f) holds
1 ~
VwV( - (divu— o p) € HLY(G)
and therefore by Theorem 2.8

19 [Vve — (divu— 3 p)]|

G =

(V|Vwve - (divu—1p)], Vo)

< C sup =
I 0¢¢€ﬁ.1’q'(G) HV(qu/
. <V [VwVC} ; V¢> v [V VC} H
= sup < w G
Lemma 4.3 1 0¢¢Eﬁ3’ql(G) ||V¢||q/ ! !

Finally by Lemma 12.2

. 1 . 1
IV@ive—3p)lea < IV [VoVe = (divi— 5 p)|lge + IV VoVl

IN

(1+C) [V[Vuvellaa < Cola€) fullage

IN

C3<na q, G7 C)HpH‘LG

(h) By (a) and (g) the assertion follows. O

Theorem 12.4. LethQ,1<q<oo,k€N,k22,k>%andletGC]R”be
an exterior domain with 0G € C*+2. Suppose

p € BY(G)

Then )
Zq(p) — 5P € BUG)N HY(G)

and there is a constant C' = C'(n, ¢, G) > 0 such that

1
”Zq(p) - *PHLq;G < CHqu;G
2

Proof. (a) By Theorem 9.2 there is a sequence (p,,) C BY(G) N H*9(G) such that

lPm *PHq;G —0

By Lemma 12.3 holds

1 1
||(Zq(Pm) - ipm) - (Zq(pm’) - §pm’)”1,q;G < Cllpm _Pqu;G —0
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By the completeness of H%9(G) there exists a u € H(G) with

1
||(Zq(pm) - gpm) - UHl,q;G —0
Because .
||Zq(pm) - ipmHl,q;G <C ||pqu;G

we get for (m — o0)
lullLge < Clpllge

(b) By Theorem 11.2 we derive

Zy(p) — %p € BY(G)

and by Theorem 2.9 and the definition of Z, there exists C1(n,q) > 0 such that

1
| Zq(m) — §7r||q;G < Ci(n,q) [7llga vr e BY(G)

Therefore

1 1

||(Zq(pm) - *pm) - (Zq(p) - *p)Hq;G < 1 Hp _pqu;G —0

2 2

We get
1
u = Zy(p) — ip

and the assertion follows by (a) O

Theorem 12.5. LethQ,1<q<oo,k:€N,k:22,k>%andletGCR"be
an exterior domain with G € C**t2. Then

Zy — %I : BY(G) — BY(G)

is a compact operator.

Proof. By Theorem 12.4 for all p € B4(G) holds

1
HZq(p) - 519 ‘Lq;G <C Hqu;G

Let (pm) C BY(G) with ||pml¢q < C < o for each m € N. Then
1 N
HZq(pm) - §pm||1,q;G < COC<x

Because the imbedding BY(G) N H9(G) — BY(G) is compact (Theorem 10.1) there
is a subsequence (pm,) C (pm) such that (Zy(pm,) — 5 pm,) is Cauchy in BY(G). O
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13 The eigenvalues in B%(G) for bounded domains

This chapter base on the idea of Michel Crouzeix [Cr|, that is mentioned in the
introduction.

Lemma 13.1. Let n >2,1<qg< o0, k€ Nandlet G CR"” be a bounded
domain with G € C*+2. Suppose p € BY(G) N H*4(G) and u := T,(p). Then

1. Vu € H(G)" and [|Vulkge < C(G.k,q,n) |pllkgc

3. ue O (G (itk>1)

4.peC@G) (ifk>12)

Proof. (a) For ¢ € C5°(G)™ we have
(Vu, Vo), = (p.dive), = —(Vp.¢),
and for p € C°(G) and i =1,...,n
(Vui, Vol = —(0ip,¢)q
Because G € C*+2 by Theorem 7.4, Lemma A.15 and Theorem 2.8 we derive
Vu € HH(G)™
and

Hvﬁnk,q;G < Ci(G,k,q,n) [HvPHk—l,q;G + ||@Hq;G + ||v@||q;G]

IN

CZ(G) k? q, n) Hka,q;G

(b) For ¢ € C5°(G)™ holds
<AQ’Q>G = —<VQ,VQ>G = <VP’Q>G

Therefore
Au=Vp
(c) Suppose k > 7. By (a) we get
u € HFLa(g)n
and therefore by Sobolev’s imbedding theorem (see e.g. [Alt, Satz 8.13, p.319])
—1

uwe T (G)

Similarly one can prove

peC@)
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Lemma 13.2. Letn22,1<q<oo,k€N,k>%andletGCR”bea
bounded domain with dG € C**t2 N C*. Suppose

peBUG)NHM(G)  w:=T,(p)

Further let

3(R™ = =N
CGCO(R )a C@G 07 VCE)G

Define 1
w= uVe — opg

Then
w e Hy'(G)n H*9(G) N CY(R™)

and there is a constant C' = C(n, ¢, G, () > 0 such that

HwHQ,q;G <C Hqu;G

Proof. (a) By Lemma A.3 follows
uV¢ € Hy'(G)

Because (by Theorem 5.5)
¢ € Hy'(G)

we derive by Lemma A .4
p¢ € Hy"(G)

and altogether
w e Hy'(G) N CY(RM)

(b) We have
oiw = Oiu; 0;¢C + uj 0;0;¢—= 0 —= 0;
=D Oy 9C D w 90¢—5 I, ¢ 5 p 9
J=1 gla pgla J= gla pgla c®(G) ¢ gla gla

Therefore by Lemma A.1 and by Lemma 13.1

1 1
Aw = Au -V(+2Vu-VV(+u-VA(—-( Ap —VpV( — —pA(
NI 27~ 2
=Vp =0

1
= 2Vu-VV(+u-VA(— ipAQ
By Poincare’s Lemma and Theorem 2.9 we derive

||Aqu;G < Cl(OHVQHq;G+02(<)HQHq;G+C3(O”qu;G

S C4<<7”7Q7G)HPHQ?G
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(c) Again by Poincare’s Lemma and Theorem 2.9 holds

lwllge < C5(O)lu

s + Cs(Q)llp

‘q;G

< Ci(6a.G)lpllge

(d) We have w € H& /(@) and therefore by Theorem 2.8 and Poincare’s Lemma

(Vw, Vo)

Vullge < C sup ~———+

Vel Tosoccr@) IVOly
A

N

ozpece (@) [IVElly

< Cs(g, G) [|Awlqq

(e) By Theorem 7.6 we finally derive w € H*9(G) and

[wll2,g:¢ < Co(G,q,n) (|Awllge + [lw

1.4:G)

S ClO(Gv Qan7C) ||p||q;G
(b),(c),(d)

O]

Lemma 13.3. Letn > 2, 1<q<oo,kEN,kEQ,kz>%andletGCR”bea
bounded domain with dG € C¥*2. Suppose

p e BYG)N H(G)

Then )
Z4(p) = 5 p € BU(G) N H™I(G)

and there is a constant C' = C'(n, ¢, G) > 0 such that

1
1Z4(p) = 5 Plhigc = Clpllac

Proof. (a) With u := T (p) holds Z,(p) — $p =dive — 3 p. By Lemma 13.1 and
Theorem 11.2 we get

Z4(p) ~ 3 p € BU(G) N HH(G)

and by Theorem 2.9 holds

1
||Zq(p) - iqu;G < Ci(n,q) |p| G
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(b) Let now by Theorem 6.1

3(R™ = =N
CGCO( )a C@G 07 VC8G

and define 1

wi= uV( — 5pg
Then by Lemma 13.2
w e Hy'(G) N H>(G) N CY(R™)

By Lemma A.1 therefore
VwV(¢ e HY(G)

and
o = 3 (0u)(@0) + 3 (3:0,0) — 1O — 200
j=1 j=1
VwVe = > (9u))(95)(0i0) + Y u;(8:0;¢)(9:C)
i,j=1 i,j=1
-3 Lowcio il (0:0)(8:€)
P 2 P 2
Therefore
VwV( — (divae — %p) = Z (0iu)(0;C)(0:C) — diVU]
i,j=1

+ 3 u(8:0;0)(9:0)

ij—1
—Z 2C+1p

= fitfotfz+fa

1- Z(@-C)(aio]

=1

(¢) Because by Lemma 13.1 u € Hé’q(G)” N Ul(G)" we derive by Theorem 5.8

@ oG
and by Theorem 5.6 for z € 0G

(Vu;)(z) = Ai(2)N ()
For x € OG therefore holds

n

Y (@) (@) (9;¢)(2) (9:¢)(x) = Y Nj(@)Ni(w)Nj(x)Ni(x)

i,j=1 i,j=1
= \N(m)|22)\](:c)]\fj(x) = Z(a,uj)(x)
j=1 j=1
= divu(z)



Therefore by Theorem 5.2
fr e COR™M) N HY(G), fi o =0

and by Theorem 5.5
Ji € Hy"(G)

(d) We have uj € Hy)(@) and (8;0,¢)(8;¢) € CA(R™). Then by Lemma A.3

n

Z (8:0;0)(0:C) € Hy'(G)

(e) By Theorem 5.5 holds ¢ € Hy%(G) and dip € H“(Q), 9;¢ € HY(G). By
Lemma A.4 we derive
Js € Hy'(G)

(f) It holds

n

1=Y @)@, = 1= INP|, =
=1
Therefore
fre HY(G) N C*(@), f4‘ —0

and by Theorem 5.5
fa € Hy(G)
(g) By (c)-(f) holds
1
VuV( -~ (diva— o p) € Hy'(@)
and therefore by Theorem 2.8

19 [ Vv — (divu— 3 p)]|

q;G <

<v [vag ~ (dive— %p)] , v¢>

< C sup =
opeeii @ IV&le
e ) e [vuvc])
= sup < w G
Lemma 4.3 q0¢¢€f13’ql(G) ||V¢qu ! !

Finally by Lemma 13.2

IV(iva—plee < 19[uve - @ive— 5 p)lse + IV[Veve] o
< (1+C) |V[Vuve] g < Coa.0)llwlzgq
< CO3(n, ¢, G, Qlpllge
(h) By (a) and (g) the assertion follows. O
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Theorem 13.4. Letn22,1<q<oo,k:€N,k:22,k:>%andletGC]R”be
a bounded domain with 9G € C¥*2. Suppose

p € BY(G)

Then .
Zy(p) — 5p € BUG)N H"(G)

and there is a constant C' = C'(n, ¢, G) > 0 such that

1
1Z4(p) = 5 Plhiac = Clpllac

Proof. (a) By Theorem 9.1 there is a sequence (p,,) C BY(G) N H"4(G) such that

lPm — p“q;G —0

By Lemma 13.3 holds

1 1
||(Zq(pm) - §pm) - (Zq(pm’) - §pm’)||1,q;6' < Cllpw _Pqu;G —0

By the completeness of H%9(G) there exists a u € H(G) with

1
||(Zq(pm) - §pm) - UHl,q;G’ —0
Because 1
”Zq(pm> - §pm||1,q;G <C ”pqu;G

we get for (m — o0)
lullige < Clplge

(b) By Theorem 11.2 we derive

Zy(p) - 5 € BY(G)

and by Theorem 2.9 and the definition of Z,

1
12,(7) ~ 2 7llge < Cumg)lmlge V€ BYG)
Therefore
1 1
||(Zq(pm) - ipm) - (Zq(p) - §p)Hq;G < Cillp=pmllge — 0
We get
1
u = Zq(p) - 5P

and the assertion follows by (a) O
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Theorem 13.5. Letn22,1<q<oo,k:€N,k:22,k:>%andletGC]R”be
a bounded domain with G € C**2. Then

1
Zy — 5[ : BY(G) — BY(G)

is a compact operator.

Proof. By Theorem 13.4 for all p € B4(G) holds

1
1Z4(p) = 5 Plhige = Clpllge
Let (pm) C BY(G) with ||pyq.c < C < oo for each m € N. Then

1 -
”Z‘I(pm) - ipmul,q;G < CC <

Because the imbedding H'9(G) — L4(G) is compact (see e.g. [Alt, Satz 8.9, p.314])
there is a subsequence (pm,) C (pm) such that (Zy(pm,) — 5 pm,) is Cauchy in BY(G).
O
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14 The Cosserat spectrum

Theorem 14.1. LethQ,1<q<oo,/~ceN,k22,k>%andletGCR”be

either a bounded or an exterior domain with 0G € Ckt2,

1. For s € HY*(G) and uy := Vs holds

<V@o, VQ>G = <divg0,din>G for all ¢ € f[}ﬂ’(g)

2. If A € R and u € Hy'?(G) with
(Vu, Vo), = Adivu,dive),  forall g € HI (G)
then A =1 or divu € BY(G)
3. The set

W = {)\ e€R : thereis0#u € f]}’q(G) such that for all ¢ € ﬁ.l,q’(G)
holds (Vu, VQ>G = A{divy, din>G}

is finite or countably infinite.

4. For A € R\{1,2} the vector space
Vi = {ue HG) : (Vu,V¢), = A{divu,dive),, forall ¢ € H(G)}
is finite-dimensional.

5. For every sequence (\,,) C W with A\, # \; for m # [ holds

Am — 2 (m — o0)

Proof. (a) Let s € H2%(G). By Theorem 2.5 - 2.7 we derive for e ]Tl.l’q/(G)

<VVS,VQ>G = <As,div9>G = <dist,din>G

(b) Let A € R and u € Hy?(G) with
(Vu,V¢), = A(divu,dive),  forall ¢ € HI(G)
By Theorem 11.3 with p := divw holds
AZy(p) =p
If A\=0, then v =0 and divu € BY(G). If A # 0, we derive by Theorem 11.4
A=1 or divu € BYG)

(c) By Theorem 11.3 and (b) holds: A € W\{0, 1} if and only if there is p € BY(G)
with Z,(p) = %p
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By Theorem 12.5, Theorem 13.5 and Theorem B.9 O'I(DR)(Zq) is finite or countably
infinite. Therefore

1
w\{0,1} = {M €R : L€ U;R>(Zq)}
is finite or countably infinite too.

(d) Let A € W\{0,1,2}. For u € V) by Theorem 11.3 and (b) holds

1
divu € N ()\I - Zq>

Let m € N and let «V, ..., u(™ € V) be linearly independent. Let aj,...,a, € R
be given with

m

Zai divg(i) =0

i=1

Then for ¢ € ﬁ.l’q/(G)

m

Zai <Vg(i),VQ>G = ﬁ;ai)\<divu(i),div¢>G =0

i=1

By Theorem 2.8 follows

m

Zai g(i) =0

i=1
and by assumption
a] = ... = Qm = 0

So we derive )
dimV, < dim N ()\I — Zq)
But by Theorem 12.5, Theorem 13.5 and Theorem B.9 holds

1
dim NV ()\I—Zq> < 0

(e) Let (Ar,) € W with A\, # A; for m # . Without loss of generality we can assume

Am ¢ {0,1,2}. Then
() e {3}

is a sequence of distinct eigenvalues of Z,. By Theorem 12.5, Theorem 13.5 and
Theorem B.9 holds

N =

1
Am
That is
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15 Regularity of the solutions

Theorem 15.1. LethQ,1<q<oo,/~ceN,k22,k>%andletGCR”be
either a bounded or an exterior domain with 9G € C*+2. Assume that p € BI(G),

A € R\{3} such that

Then for all 1 < § < oo holds

Zy(p) = Ap

pe HY(G)NnCG)

and

Proof. (a) By Theorem 12.4 respectively 13.4 with p:= X\ — % 2 0 holds

1

p= - (Zq(p) — 1p) e HY(G)

7

(b) If ¢ = n, by Hélder’s inequality and Theorem 8.7 follows

foral< g <n.

(c) If 1 < ¢ <n, with

*

we derive by Sobolev’s imbedding theorems (see e.g. [Alt, Satz 8.9, p.314])

pe LY (GNB,)

By Theorem 8.7 also holds

2

pe HY(G)

n
n—q

p €LY (G)

Therefore by Theorem 7.9 respectively 7.10

T,(p) € Hy" (G)"

and

<qu(p)7 VQ>G = <p, diV@>G

Because of the uniqueness in Theorem 2.9 we derive

T

and therefore

T,(p) = Ty (p)

Zy(p) = Zg(p)
Then by Theorem 12.4 respectively 13.4

p = ;(Zq(p) - ;p>

_ ;(Zq*(p) _ ;p) € H'(Q)
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One can easily show

m—times

n—2q’ n —mq
By induction there is a n < s < oo with
p € H”(G)
(d) Assume that for a n < s < co holds: p € HY*(G). By Sobolev’s imbedding
theorems (see e.g. [Alt, Satz 8.13, p.319]) holds
peC’(GNB,) Vr>0

Therefore
peC@)
By Holder’s inequality we derive

peL{GNB,) Vr>0 Vi<{i<oo

and by Theorem 8.12 i
p € LYG) V1<g<oo

As in (c) one can prove
Zy(p) = Zy(p) Vi<g<oo

and by Theorem 12.4 respectively 13.4 follows

p = — Zq(p)—lp _ 1 Zgj(p)—lp e HY9(G@) Vi<j<o
( 2) u( 2)

O]

Lemma 15.2. Letn>2 1<¢g<oo, keN, k> % and let G C R™ be either a
bounded or an exterior domain with G € C*t4. Assume that

peBUG)NHM(G)  w:="T,(p)

—q

Further let

k+3 mn
R = =N
CECO ( )7 C[“)G’ 07 VcaG

Define 1
wi= uVe — opg

Then
w e Hy'(G) N H*R9(G) n CY(R™)

and there is a constant Cy = Cx(k,n,q, G, ) > 0 such that

lwlizikge < Crlpllkge
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Proof. All assumptions of Lemma 12.2 respectively 13.2 are satisfied. Therefore we
can use all equalities and inequalities which appear in these proofs. By part (b) of
the proof of Lemma 12.2 respectively 13.2 holds

1
Aw = 2Vu-VV(+u- VA( —=pA(
—— 2
€eHk1(G)

By Lemma 12.1 respectively 13.1 und Lemma A.15 respectively Poincare’s Lemma
follows

N

CLONVul

[Aw]lk.q:c ka6 T C2(Qullkgcnpa + C3(QPlkge

S C4(C)n7 q, G7 R)Hkau‘FG

So by Theorem 7.6
w e H*TH(@)

and
[wll24kge < Cs(Gq,n. k) ([[Aw|kge + [[wlhge)
< Cﬁ(Ga q,n, Ca Rv k) Hp||k7q;G
by part (c¢) and (d) of the proof of Lemma 12.2 respectively 13.2. O

Lemma 15.3. LethQ,1<q<oo,k€N,k>1+%andletGCR”be
either a bounded or an exterior domain with G € C*13. Assume that

p e BYG)N H(G)
Then

Z4(p) ~ 3p € BYG) N HM(G)

and there is a constant Cy = C(k,n,q,G) > 0 such that

1
||Zq(p) - §p”k,q;G < Ck ||ka—1,q;G

Proof. All assumptions of Lemma 12.3 respectively 13.3 are satisfied. Therefore we
can use all equalities and inequalities which appear in these proofs. Further we can
choose there because of Theorem 6.1

C c C(/)f-i-Q(Rn)

With the notations of the proof of Lemma 12.3 respectively 13.3 by part (g) holds

VwV(¢ — (divy — %p) e HM(G)

—_—
€B1(G)
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Furthermore

A[VwVC — (divu — %p)] = A(VwV()
By Lemma 15.2 applied to k = k — 1 and p € BY(G) N Hi“’q(G) holds
A(VwV() € H24(Q)
and

[AVwVQ)lk-2gc < Ci(Q) lwllivrge < Ca(Cn,k,q,G) lIpllk-1,4:6
By Theorem 7.6 follows

) 1
IVwV({ — (divu — §P)”k,q;G <

. 1
< Colnuh.0.6) [IAVTO -z + [V0¥C — divie— 5 o)l

By part (a) and (g) of the proof of Lemma 12.3 respectively 13.3 we can see

. 1
||divu — §p||q;G < Cu(n,q) lIpllga

and
, 1
HV[VU}VC — (divu — 5p)] lge < C5(n,q,G, Q) lIpllgc

By Lemma 12.2 respectively 13.2 further holds
IVuV(ige < C6(Q) wlloge < Cr(¢n,q,G) |Ipllge

So we derive
i 1
[VwV(¢ — (divu — §p)||k,q;c < Cs(¢,n,q,GL k) [Ipllk-1,4:6
As one can see above, also holds

[VuV(lkge < Co(Q) [wlkt1.¢ < Cro(Cn, ¢, G k) IPlk-1.06

Altogether we get

. 1
vavCHk,q;G + |[VwV{ — (divu — 9

IN

. 1
[divu — §p||k,q;G P)lkgc

IN

Cll(C7 n,q, G7 k) Hka—l,q;G
]

Theorem 15.4. Letn > 2, 1<q<oo,/~c€N,k22,k>%andletGCR”be
either a bounded or an exterior domain with 9G € C*+3. Assume that p € BI(G),
A € R\{3} such that

Zg(p) = Ap
Then for all 1 < § < oo holds

p € HM(G)
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Proof. By Theorem 15.1 for all 1 < ¢ < oo holds
pe HY(G)NC'G)

and
Z4(p) = Zz(p)

Choose an arbitrary 1 < s < oo with s > n. By Theorem 9.1 respectively 9.2 there
is a sequence (p,,) C H™(G) N B*(G) with

lPm _pHS;G — 0 (m — o0)

By Lemma 15.3 (observe k > 2 > 1+ %) holds
1
(Zy — 5I)me e H**(G)NB*(G) VieN
and

1 1
1(Zs = 5D om = pw)llkssc < Cill(Zs = 5D (pm = P)llk-1.56

<

1
< CpCrr...Co H(Zs - 51)(pm - pm/) 1,5:G

12.4
13§4 Ckckfl"‘CQCHpm_pm’Hs;G — 0

Because H"*(Q) is complete, there exists g € H**(G) such that

1
lg — (Zs — QI)kpm ksc — 0 (m— o0)

Because (Z; — 31)F is a bounded operator, also holds

1 1
H(Zs - §I)kp - (Zs - il)kpm|

56 — 0 (m — o0)

Therefore
(Zs — =I)fp = g€ H(G)

With p =X — % = 0 holds

so we derive

1
(Zs= 5D = ubp
and also
1 1 \* hs

for all 1 < s < oo with s > n.
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By Holder’s inequality holds
pe HM(GNB,) Vr>0 V1<{j<oo

We already know that i
pe HY(G) V1i<{i<oo

By Lemma 8.10 and Theorem 8.7 finally follows
pe HY(G) Vi<j<oo
O

Theorem 15.5. Letn22,1<q<oo,/<:€N,k22,k>%andletGCR”be

either a bounded or an exterior domain with G € C*3. Assume that u € Hq 1Q),
A e R\{1,2} and

(Vu,Vg), = Mdivu,dive),  forall ¢ € HI (G)"

2. ue ' (Q),

3. Au = A\Vdivu

Proof. By Theorem 11.3 and Theorem 11.4 with p := divu holds
p € BY(G)

and
AZy(p) = p
If A =0 holds uw = 0. If A # 0 we derive by Theorem 15.1 and 15.4 for all 1 < § < oo

pe HM(G),  Z,(p) = Zy(p)
By Lemma 12.1 respectively 13.1 then
Vue HH(G)™ V1< g§<oo
By Theorem 7.9 respectively 7.10 also holds
we HH(G)" V1<g<oo
By Sobolev’s imbedding theorems (see e.g. [Alt, Satz 8.13, p.319]) follows
ue Q)
Because of k > 1 for ¢ € C§°(G)™ holds
(Au, Q>G = —(Vu, VQ>G = —X{divy, din>G = A (Vdivu, Q}G

Therefore
Au = A\Vdivu
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16 Explicit solutions for B; and R”\E

Lemma 16.1. Let n > 2, k € Z, k # —% and let Q = By or Q = R"\B.

Assume that f € C%(Q) is harmonic in © and that for all A > 0, z € Q with Az € Q
holds

fOa) = N f(a)

Define
1

o(@) = g (e = 1) f(a)

Then
1. v € CVQ) NC>®(NQ),
2. Av(z) = f(z) for all z € Q,

3. v = 0.
o0

Proof. (a) Obviously

and

(b) So we derive for x € Q by Euler’s identity

Av(e) = g @) A2 1) + 2(VN)@) Y (2 - 1)

2n + 4k
2 T
Flef o 2 )

1

= ik [f(:c) 2n + 2 Z2(&f)(w) xz}
i=1

1

= o [0S + @) = @)
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Theorem 16.2. Letn>2 ke Z, k# —% +1andlet Q = By or Q = R"\By.
Assume that p € 61(9) is harmonic in Q and that for all A > 0, z € Q with Az €
holds

p(x) = Np(z)

Define
1

o) = g

> = 1) (Vp)()
Then

1. ue C'Q)" N C>(Q)",

2. Au = Vp,
3. u = 0,
0N
3P, n=2
4. divu =
2+}172p I n>3

Proof. (a) For A >0, z € Q with Az € Q holds
p(ha) = N p(x)
Differentiating by x; leads to
(@p)(Ax) X = N (Oip) (=)

that is
(@) (Az) = A1 (9p)(2)
d;p € C°(Q) is harmonic in Q. Therefore by Lemma 16.1

ue COQ)" N Ce Q)"

and

Au = Vp, u‘
- p 1o

(b) Further for x € Q

1 n

divu(zr) = on Ak~ 1) [22(311?)(37)35@ + (J=)* - 1) Z(aiaip)(l')}
i=1

1 - k
R T ;(&-p)(m)xi = mp(ﬂﬁ)

=kp(z)
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Remark 16.3. (a) In the case of the unit ball By C R"™ we consider harmonic
homogeneous polynomials of degree kK > 1. We denote a sequence of such polyno-
mials by (py.) (for example one can choose py(x) = x¥). Theorem 16.2 is applicable
by pr and we define

1

It Ak—1) (lz[* = 1) (Vpr)(2)

up () =
Then by Theorem 16.2
u, € CO(B)"NC®(B)", Ay, = Vp in By

and

U =0 divu, = in By
Yk OB, 9 Yk

Therefore for k € N holds
Awuy, = 2Vdivay, itn=2

and

-2
Auk:<2—|—nk )Vdivuk ifn>3

If n > 3 therefore there is a sequence (uy,) of classical eigenfunctions for eigenvalues,
which tends to 2.

(b) Because obviously

Up S COO(RTL), U, 98, =0

by Theorem 5.5 we derive for each 1 < ¢ < o0
uy € Hy'(By)" = Hy9(By)"
and for ¢ € C§°(By)

n—2

(Vi V0)y, = ~(Buea)y, = - (242 (Vv o),

n—2 . .
= (Q—i— ? ><d1vuk,d1v¢>B1

Because ) R
Hy" (B1)" = HY (B))"

also holds

(Vuy,, Vo), = <2 + 2z - 2) (divay,dive), Ve HyY' (B)"

and (uy) is a sequence of weak eigenfunctions for the same eigenvalues.
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Remark 16.4. (a) In the case of the exterior of the unit ball R™\ By we consider
the fundamental solution

L 2>, 2#0,n>3

(n—2)wn,
S(z) = —=Inlz| , z#0,n=
0 , 2=0,n>2

and its derivatives. If n > 3 we define for a € N

1
2n+4(2—-n—lof —1) (

Uy () = j2|* — 1) (VD*S)(x)

If n = 2, we consider only |a| > 1. By Theorem 16.2 for the considered « holds

u, € COR™M\BY)" NC¥([R"BY)", =

=

‘8B1

and
n—2

Au, = (2+ Vdiv u,, in R™\ By
2—n—|a

(b) As one can easily check, for the considered « holds
u, € LYB,\B))" V1<g<oo ¥Yr>0

and
l<g<oo , if|a|>2,n>2

Vu, € LIRMB)™ for { s <g<oo , ifla]=1,n>2

T <g<oo , ifa=0,n>3
For n € C§°(R™) with supp(n) C Br (R > 1) for the above ¢ holds

M, € HY(BR\B1)" N C°(BR\B1)"

and

U =0
Mo dBRrUIB,

Therefore by Theorem 5.5 o
nug € Hy*(BR\B1)"

and also o
nu, € Hy'(R"\B;)"
That is
l<g<oo , if|la|>2,n>2
u, € HMRMB)" for { 2y <g<oo , ifla]=1n>2

Lo<g<oo , fa=0,n>3



(c) If « € NpI, || > 2, for ¢ € C5°(R™\By) holds

(Ve VO)pug = —(Dter gz

n—2 .
n-—2 . .
— <2 + Cy——— |a|> <d1vga,d1v9>Rn\B—1
Therefore we also derive
n—2

H_‘a'> (divag, divé) g, 5

for all ¢ € Hy? (R™By)"™.

(d) Let ¢, as in Theorem 2.7 (that is » > 1). Then for |a| > 2 and i =1,...,n
(Vai, Vor)gm gy = pli_)ngo (Vuai, Vor) g \gr =

Py
it dw,

= lim _<A“aiv‘:0T>Bp\BT+ /Z(ajuai)(z) &(jz 2]

p—00 f
9B, 7~ =1(p>2r)

Nasg

a -2 - ;
® i |- (2 + ") (Oiv ta, 90 57 + / 3 Ojuai) (2) L dw,

p—00 2—n—|a z
a e B
. n—2 .
n—2 2 - Zj
—(o9x = di “d T I d

< + 5 |Oé|> / IV Uq, B w2 + / Z}( Juaz)(2> 2| wz]

8B, 0B,

Because for large |z| and [,m =1,...,n holds

|(Oam)(2)] < C(n,a) |21 2P0 = C(n,a) |21

we derive
lim [ |(Qtiam)(2)|dw, < C(n,a) lim p"1+277=lel — o (for |a| > 2)
e dB, e
Therefore
n—2 .
(Vai, Vor)gmpg, = <2+ 2—n—|a]> (div uq, igr)gm By

(e) By Theorem 2.5 - 2.7 we derive by (c) and (d) for |a| > 2

n —

(Vita, V&) g = <2+ ><divua,div¢>Rn\Bl

2—n—la
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for all ¢ € H? (R™\By)".

Therefore {u,, : |a| > 2} is a countable set of weak eigenfunctions for eigenvalues,
which have only 2 as aa accumulation point. Because of

—9
294" 21 V]| >1
2—n—|a

and by Theorem 11.3 and 11.4 follows
divu, € BY(R"\By) Vie| >2 V1i<g< o

and therefore o
D“S € BYR"\By) V| >2 V1<g< o

(f) Let n > 2 and "5 < ¢ < oo. Then by Lemma 4.4 for j = 1,...,n holds
9;S ¢ BY(R™\By), 9;S € LY(R™\By)
For |o| = 1 therefore holds
divu, € LIRMB)) \ BY(R"\B)

By (b) we have R
u, € Hy'(R"\B)"

Assume for contradiction that for a A € R and for all ¢ € HM (R™\B;)" holds
(Vi V) g = A{div g, dive),, o
Then for ¢ € C(‘)’O(R"\Bil)n
(Dt ) gy = M(Vivitg, @) 5

and therefore
Au, = AVdivu,

167

By (a) we derive
n—2

24— = A

+ 2—n— o

But by Theorem 11.3 and 11.4 holds
A =1
That is
n—2 _

2—n—|a]
and so |a| = 0, a contradiction!
So w,, is for || = 1 a classical solution of the eigenvalue problem, but it is not a

weak solution.
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Part III: Green’s function and
reproducing kernels
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17 Existence of Green’s function

Lemma 17.1. Let n > 2 and let

m|2’|2_n s Z#O, n23
S(z) := —=Injz| , z#0,n=2
0 , 2=0,n>2

be the fundamental solution of the Laplace operator. Then for each R > 0 and

for all f € CY(Bg) holds

lim |S(2) f(2)|dw, = 0
e—0 9B,

lim Zl /d |08 F() e = —0)

e—0 4
1=

Proof. (a) There is M < oo such that |f(z)] < M for all z € Bg. Then

Me"flﬁs%” , n>3
| 1s@se)d. <
0Be Ms‘ln|5]) , n=2
(b) For every n > 2 holds
1 Zi
0;5)(z) = —
@) = —5-

Therefore

(c) Let n > 3. Then

3

-0 (e—0)

1 1 c n—14+2—n 1
= |S(2)|dz = r dr = (75 -0 (e—0)
Be 0




(d) Let n =2. Thenfor 0 <e <1

1 1 [¢ 1)1 € €1 1
[istnas = =L [Crwrar = Ll - [ e tal
€ B: € Jo €2 0 0 2 r
1(1 1 1 1
= —Z [252 1116—462] = —5elet e =0 (e —0)

(e) For n > 2 holds

€
/ 1(9,9)(2)| d= < / P g e 0 (e 0)
B: 0

O]

Theorem 17.2. Let n > 2 and let S be the fundamental solution of the Laplace
operator. Then for every z # 0 holds

AS(z) =0

and for all u € C3(R™) and for each z € R™ holds

u(w) = | S —u)[-dulw)]dy

Proof. see [SIDGL, Satz 3.1] O

Theorem 17.3. Let n > 2 and let S be the fundamental solution of the Laplace
operator. Let G C R™ be a bounded domain with 0G € C'. Assume that there is
h: G x G — R such that for all z,y € G holds

h(z,) € CH(G)NCHG),  Ayh(z,y) =0

Define
P(z,y) = S(z —y) + h(z,y)

Suppose u € él(G) NC?*(G) and f := —Au € C%G). Then for each x € G holds

we) = [ |otwn B utn 255 oy 4 [ ot o)

(where 8% denotes differentiation along the outward normal to 0G)

Proof. see [SIDGL, Satz 3.3] O
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Theorem and Definition 17.4. Let n > 2 and let S be the fundamental
solution of the Laplace operator. Let G C R™ be a bounded domain with 0G € C3.
Then there is a unique h : G x G — R such that for all z,y € G holds

hz,) € C(G),  Ayhlz,y) =0
and for z € G, y € 0G holds
h(z,y) = =S(z —y)

We define by

the Green’s function of the Laplace operator in G.

Proof. (a) Choose p € C3°(R™) with 0 < p <1 and

_ o =t

9

Define for » > 0

Then S, € C*°(R") and therefore
S, € H*?"(@)

For z € G choose 0 < 1, < 1 dist(z, G). By Theorem 2.9 there s f,, (z,-) € H&’Q"(G)
such that

(Vifro(@): V)G = (VySp(@ =), V) Vo e By (@)
For ¢ € C§°(G) holds
(vyfrz (z,-), V90>G = _<AyS7'z (x—-), <P>G
Therefore by Theorem 7.4 because of 9G € C? holds
Jro(x.") € Hy™(G) 0 HP#"(G)

By 3— 5. =2+ % and by Sobolev’s imbedding theorem (see e.g. [Alt, Satz 8.13,
p.319]) holds

fr(z,) €CHG)  VYzeG
Further by Weyl’s Lemma
Ay fro (2, y) = S, (2 = y)} =0 VzyeG
By Theorem 5.8 also holds
fro(z,y) =0 VeeG Vye oG

Define
h(z,y) = fr.(@,y) = S, (z —y)
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Then all assertions are fulfilled.

(b) Let h(M) and h(? be two functions with the above properties. For a fixed 2o € G
holds

A (o, .)‘ — 1@ (a0, .)‘

oG oG

and
Ay [h(l)(wo,y) —h® (3307?/)] =0 VyedG

Therefore by the maximum principle

B — (2

O]

Lemma 17.5. Let n > 2 and let G € R™ be a bounded domain with 0G € C3.
Then for Green’s function holds

G(z,y) = G(y, ) for all x,y € G

Proof. (by [He, p. 238])
Let x1,29 € G, 11 # w2. Let € > 0 with B.(x1) C G, Bs(z2) C G and
Be(x1) N Be(w2) =0

Then by Green’s identity

0 — / (G(x1,y) AyG(w2,9) — G2, ) AyG(x1,7) ] dy
N——— S———
G\(Be(z1)UB:(z2)) =0 =0

0 15)
_ / [9e1,9) 5 92 9) = Gozy) 5G] doy

oG =0 =0

- / Z [g(wlay) ayig('r%y) % - g(x27y) 8yig(x1’y) ‘yj] dwy
0B (1) "=

- / Z [g(xlay) ayig(x%y) % - g($27y) 8y¢g($1ay) ‘yj] dwy
9B (x2) =1

For ¢ — 0 we derive by Lemma 17.1

0= —g(ajg,aﬁl) + g(xla $2)
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Lemma 17.6. Let n > 2,1 < g < oo and let G C R™ be a bounded domain
with G € C3. Then for Green’s function G(z,y) = S(x — y) + h(z,y) and for all
1,7 =1,...,n holds

1. 0y,h € LY(G x G)
2. 0z;0,,h € LG x G)
3. 0y;0x;h € LY(G" x G) for all G' cC G

4. 9,,h € CO(G x G)

Proof. (a) Let z € G and r, :=  dist(z,G). Then by the proof of Theorem 17.4
(Vyfro(2,:), Vo) = (VySr (=), Vo) Ve e CF(G)
By Theorem 7.9 follows
IVyfro (@, )llge < CqlIVySr,(z = )llge
Because [(z,y) — VySy, (z —y)] € C°(R™ x R") and G is bounded, we derive

[ ot dedy < [ (10, f )l + 10,8, = )" dody
GxG GxG

C1+1) [ 0uSnlo -yl dody < o
—_———
GxG <M

IN

Therefore by Lemma 17.5

GxG GxG

= [ 1@un @l dedy

GxG
o [ Ouble) dedy < oo

GxG
(b) Like in (a) with r, := 1 dist(z, G) holds

<Vyfrx(x7 ‘)7V80>G = <VySra: (z — ’>7V90>G Vo e CyP(G)
Because f,, (z,-) € 62(G) therefore follows
(Ayfro(z,),0)c = (AySr(z =), 0)g Ve e ()

Because C3°(G) is dense in Lq/(G), we derive

(Ayfro(@,),0)g = (BySp(x =)0  VYeeLl(G)
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Further because of the L? — L7 -duality, we get

A T s )
HAysz(xv ')Hq;G = sup { yfz(:x ) ‘P)G
peL? (G) H(p”q/

< ”Aysm (z — ')Hq;G VereG

Then

/ Ayfos (2, y)|? dedy < / A8y (z — )| dedy < oo

By Theorem 7.6 holds

1fre (@, )20 < C(Gig,m) [llAyfm(% Wae + 1 fr. (-]

l,q;G}

< GG (18 (@ Ml + Iy e (@) ]

Poincare
So by (a)
/ ‘8yj3yifrz(a:,y)‘q drdy < oo
GxG
and also
/ ‘ayjayih(x,y)lq drdy < oo
GxG
Therefore
/ ‘axjaxih(x,y)’q dedy = / \axjaxi [h(y, )] |q dz dy
GxG GxG

N / ‘8%' |:<8yih‘)(y7 x)} |q dz dy
GxG

= / ‘ 0y, 0y, h) y,:c)‘q dx dy

e /‘88h ‘qudy<oo

(c) Let xp € G, § > 0 and Bjgs(zo) C G. As one can see by the uniqueness of h in
the proof of Theorem 17.4

1
For x € Bys(xg) therefore holds

h(x,y) = f(S(xay) - 55(33 - y)
Let o € Bys(zp). Then for every ¢ € C5°(G) and every 0 < |h| < ¢ holds

(Vylfs(z + hei,-) — fs(z, -)],V<p>G = (Vy[Ss(z + he; — ) — Ss(z — -)],ch>G

100



By Theorem 7.9 follows
||Vy [fé(x + hei, ) — fs(z, )] ||q;G < (g ||vy [56(55 + he; — ) — Ss(x — )] Hq;G

Because S5 € C*°(R") and G is bounded, we derive by the mean value formula

1
/B - T 1Vy [Ss(x + he; — ) — Ss(z — )] HZ;G dx < C1(6,70,G) < 00
25 (20

for each 0 < |h| < §. Therefore

Oy, h X — 0y, ) 1
/ y; [o (@ + hei, y) b f3(2,) drdy < C3(6,70,G) < 00

h
Bas(20)xG

for each 0 < |h| < 4.

Because of the weak compactness of L? there is g;; € L9(Bas(zo) x G) and a sequence
(h) C R with 0 < |hg| < 6 and hy — 0 (k — o00) such that

/ ayjf5(x+hkeiay)_8yjf5(xay)
hy,

(v, y)drdy —
Bg(g(mo)XG

— / gij(x,y) ¢(x,y) dx dy (k — 00)
Bas(w0)xG

for all ¢ € C§°(Bas(xo) x G).
For ¢ € C5°(Bs(xo) x G) holds

ayjfLS(x + hkeia y) - 8yjf5($7y)

" ¢(z,y)dedy =
k
Bas(z0)xG
x — hre;,y) — o(x,
= / Oy, fs(@,y) V)( - h‘Z) #a,) dvdy —
Bas(z0)xG
= [ ahlew sy (ko)
by (a)
Bas(w0)xG
Therefore
| ssewowndedy = — [ 0, fsw)0n0(0y) drdy
Bs(z0)xG Bs(zo)xG
= / f&(% y) 62/]'8%(;5(:67 y) dx dy
B(;(:Eo)XG

for all ¢ € C§°(Bs(zo) x G). We get

Oy, 0z, f5 = 9ij € LU (Bs(zo) x G)
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and
0y, 0z, h € LY(Bs(xo) x G)

(d) For G’ cC G there are N € N, §; > 0 and z; € G such that Bigs,(2;) C G and

N
G c | Bs,(x)
i=1

respectively

N

Gch<UBMm0xG
i=1

Then by (c) and a partition of unity 9,,0,,h € LY(G" x G) follows.

(e) By (a), (b) and (d) holds

Op,h € HY(G' xG) VG cCcG Vi<g<oo

By Sobolev’s imbedding theorems (see e.g. [Alt, Satz 8.13, p.319]) follows

Op,h € CV(G x G)
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18 Existence of reproducing kernels in B?(G)

Theorem 18.1. Let 1< g < oo and let G C R" be either a bounded domain or
an exterior domain. Assume that F* € BY(G)*. Then there is a unique h € BY(G)
such that

F*(r) = (h,m)  forall 7 € BY(G)

and with the constant Cj; by Theorem 3.8 holds

_ F*(m
(1+Cq) 1Hth;G < sup (r)

Tl < [[hllge
0£meBd (G) 1Tllg’

Proof. By the Hahn-Banach-Theorem there is F* € L% (G)* such that
o =F||F) = F
B (G)

There exists f € LY(G) such that

F'(9)=({f.9)c YgeL(G)
and )
1fllge = I1F=] = 1F7]]
By Theorem 4.2 holds

f= As + _h
€AI(G) €BIG)

and for 7 € BY(G) holds

F¥(m) = F*(m) = (f,m) = (As,m) +{h,7) = (h,7)
~——
—0(4.1)
Further by Theorem 3.8
As, A A
aslye < €, s P 0w L2 < e
0£6c A2 (Q) q 0#£peH Y (G) a

and therefore
[hllge < L+ C)llfllge = 1+ Co) [[F|

and
1E < [[hllge

by Holder’s inequality.
(b) Let KM, h(? € BY(G) with
1) — (@ q
<h ,7r>G <h ,7T>G for all 7 € BY (G)
Then by Theorem 4.2

<h(1),g>G - <h<2>,g>G for all g € LY (G)



and therefore

almost everywhere. O

Theorem and Definition 18.2. Let G C R™ be either a bounded or an
exterior domain.

1. Let 1 < ¢ < 0o. Then for each = € GG there is a unique
Ry(z,) € B (G)

such that
p(z) = / Ry(z,y) ply) dy a.e. for all p € BY(G)
G

The function
Ry:GxG—R
is called reproducing kernel of B4(G) for each 1 < ¢ < 0.

2. Let G C R” ne a bounded domain. For 1 < ¢q,s < co and for every x, y € G
holds

RQ(xvy) = Rs($,y), Rq(x’?/) = Rq(yvx)

Therefore in the case of a bounded domain we can use the notation

R =Ry

Proof. (a) For p € BY(G) by Weyl’s Lemma there is a unique p € C*(G) with
p = p almost everywhere and Ap = 0. We identify this p with the equivalence class
p € B(@G). In this sense the notation p € BY(G)NC*(G) is meaningful and unique.

Let x € G. For p € BYG) (NC*(G)) and r < dist(z,0G) by the mean value
property holds

_ q—1
/ ()l dy < 1B,V B[ / p(y)| dy

By (z) By (z)

wpr™\
< <n ) 72
n

For r — dist(z, 0G) we derive

p(x)] < B

Q=

‘q;G

n

)l < (42) 7 [aist(2.06)] " lplac

n

Therefore for every fixed x € G the map
p = p(@)| € BUG)
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By Theorem 18.1 there is a unique Ry(z,-) € BY (G) with

pa) = [ Ry(ws)pto) dy
almost everywhere for every p € B4(G) (NC*(G))

(b) For z, y € G holds

Rylz.y) = /G Ry (4,7) Ry(z,2) dz = /G Ry(.2) Ry (. 2) dz = Ry (y.)

Especially for g = 2
RQ(xay) = RQ(yax)

(c) Let G C R™ be a bounded domain. Then by Weyl’s Lemma and Theorem 2.5
holds
BYG) = {he LI(G) : Ah=0}

If 2 < t < oo, we derive ¢ < 2 =2'. Then by Holder’s inequality
Ro(z, ) € BY(G)

and for p € BY(G) C B?(G) almost everywhere holds

p(z) = /g Ra(z, ) p(y) dy

Because of the uniqueness in (a) follows
Ra(z,y) = Re(z,y) V2 <t< oo
If 1 <t <2, we have 2 < t' < co and therefore by (b)

Rt(x7y> = Rt’(@/vw) = RQ(ywx) = RQ(wvy)
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19 Relationship of Green’s function to reproducing ker-
nels

Theorem 19.1 Letn22,1<q<oo,k€N,/~c>1+%andletGCR”bea
bounded domain with G € C?t*. Let

G(x,y) = S(z —y) + h(z,y)
be Green’s function of the Laplace operator in G and let R be the reproducing kernel
in BY(G). Then

Zy(p)(z) = ) + Z/ Y) Oy, O, h(z,y) dy a.e. for p € BY(G)

Therefore
& 1
i=1

is a compact operator.

Proof. (a) At the beginning assume that p € H*(G) N BY(G). By Lemma 13.1
holds . ,
u:="T,p) €C (G)", VueH"(G)", Au=Vp
By Sobolev’s imbedding theorem (see e.g. [Alt, Satz 8.13, p.319]) also holds
peCl(@). uwel(@)
By Theorem 5.8 holds

y‘ =0
oG

and therefore by Theorem 17.3

= /Gg(ac,y) (—Au;)(y)dy = /G [S(:r —y)+ h(x,y)} (=0ip)(y) dy

For r > 0 define S, as in the proof of Theorem 17.4. Let
wP@) = [ [Sie=9)+hie)] (on)w)dy
Then by Lemma 17.6 ulm € C(@) and

o) = [ (00,0 = 1) + 20, 0)] (<0 o) dy

Further holds

W -l < [ [1-o ()] 15 - nienwia
< / S| @)W dy < M [ [S()|d=
Bar(x) S—————

Bar
<M
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By Lemma 17.1 (ugr)) is uniformly convergent in G to u (for » — 0). Furthermore

o () — /G ((858)(@ = y) + Du, bl y) | (-0 (w) dy’ _

[@sie-n@nwa - [©5)0-nenmal <
G G
1
< -
N /BQT(Q:) r [P

. /Bw) [1_,)(’“7;9’)] (0;8)(@ — )] [(Bp)(w)] dy <

<M

,<Ix—y|>‘ 5@ =)l @) W) dy +

T
<M

<C

<1

<kl [ st + [ @) d

r By

Therefore by Lemma 17.1 (8]-111(-7“)) is uniformly Cauchy in G (for » — 0). By Lemma
A.16 exists

divu(z) = zn: /G [8@S(az—y)+ax,-h(x,y)} (=0ip)(y) dy
=1

By Lemma 17.6 we can apply Gaufl’ Theorem and derive

e—0

divu(z) = lim Z/G\B o [8mi5(ac —y)+ 5xih(x,y)} (=0ip)(y) dy
i=1 =\T

= lim e [; Dy 0, S(x — y) + ; Oy, O I(x, y)} p(y) dy

=—AS(z—y)=0
_ ; /a ) (02,5 = y) + 0u,(w,9)] p(y) Nily) deo,

Yi — X4

[amS(ac —y) + O, h(z, y)} p(y) ]

dwy

By the definition of Green’s functions holds
S(x—y)+h(r,y) =0 VyedG VzelG
and therefore also
Ou, [S(z —y) + h(z,y)] =0 Vye dG VzedG
Because p € C°(GQ) and 9,,h € C°(G x G) we get

. Yi — T4
lim / Oz, h(z,y) p(y dwy, = 0
=0 z_: 0B () (=.v)p(v) ly—af Y
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Furthermore by Lemma 17.1 holds

. - Yi — T4
lim / 0z,5(x —y) p(y dw, =
tig 3 [ 0aS( =) plo) =y

n

= lim Z /835 —(0:9)(2) p(x — 2) EZ‘ dw, = p(x)

e—0 4
=1

Altogether we derive
Zy(p)(z) = divu(z) = p(z)+ / > 0y, 00, h(x,y) ply) dy
e i=1

for every z € G and every p € H*4(G) N B(G).

(b) Let now p € BY(G) be arbitrary. Then we identify p and the unique harmonic
representative p € C°°(G) with p = p almost everywhere in G. Define

F(p)(z) = /Zayiaxih(a?,y)p(y) dy VzeG
o =1

By Theorem 9.1 there is a sequence (p,,) C H*(G) N BY(G) such that

lpm = pllgc — 0 (m — o0)

By (a) holds
F(pm) = Z¢(pm) — Pm Vm eN

Because Z, is a bounded operator, we derive F(py,) € LY(G) and

| ' (pm) — F(pm’)||q;G < ||Zq(pm) - Zq(pm/)Hq;G + |lpm —pm’Hq;G —0

So there is g € LY(G) with
1E(pm) = gllgc — 0

and
g = Zy(p) —p

By the Riesz-Fischer Theorem there is subsequence (which we again denote by (pm,))
such that F(p,,) — ¢ pointwise almost everywhere in G. Further

Fon)@) = FO@] < [ 310,00 )] o) ~ )| dy
e} =1

1

q/

/Zlayﬁxih(x,y)lqldy IPm = pllge — 0
e =1

IA

<oo (Lemma 17.6)
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Therefore F(p) = g € LY(G) and F(p) = Z,(p) — p, that is
Z)@) = pla) + [ 30,0 he ) p0) dy
o i=1

for almost every z € G and every p € BY(G).
(c) By (b) for p € B4(G) and almost every x € G holds

[ St oubw vy + 5 [ Ry = 2,6)@ - 5
a =1 e

and because by Theorem 13.5 Z, — %I is a compact operator, in this sense

= 1

i=1

is a compact operator.
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20 Explicit calculation for B,

Theorem 20.1. Let n > 2. Let S the fundamental solution of the Laplace
operator. Then
Gp, = S(x—y)+hp,(z,y)
with
2—n

o L= 2 y) + Py T forn>3

hBl (‘7:7 y) =

= In/1—2(z,y) + [z]2[y]2 , forn=2

is Green’s function of the Laplace operator for the unit ball Bj.

Proof. Obviously by Definition 17.4. O

Theorem 20.2. Letn > 2. Then
(n—4) |z|*|y|* + (8(x,y) —2n —4) [z[*|y]* + n
wn (1—2(z,y) + [o2ly|2) T2

R, (I7 y) =

is the reproducing kernel of BY(G) for 1 < ¢ < oc.

Proof. see [ABR, Theorem 8.13, p.157] and Theorem 18.2. O

Remark 20.3. (a) We now consider explicitly the operator

- 1
Z 0y, 0z, hB, (z,y) + B R, (z,y)

i=1
from Theorem 19.1. For n > 2 holds
1 _n
Ouhm(vy) = 5 [1=20@) +[oPyP] 7 (= 22+ [2f*20:)
n
1 _n
= 1= 2az,y) + 2Plyl] (=i + Lol )
Wn,
and further
n 31 2 2
w0y (y) = =[] T (—mi+laly) (= 20+ 2 yP) +

+ [} 2 (—1—|—2xiy,~)
Therefore
21,22 !
wn [1= 2, y) + 2Pyl " 01,0k, (2,y) =
= (= i+ [2[%y) (nyi — nailyl?) + (= 1+ 2z0:) (1 — 2(z, y) + |2[}y)*) =

= —nziy + nloPy? + nally? — nlzP lyPriy — 1+ 20y +
+2(x,y) — dxiyi (z,y) — |2 [yl* + 20z jyPz v
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and

1—-2 21,2] 2! na Oy h =
Wn, (z,y) + |z|*[y| ; . Oy g,y (2, 9)

= —n(z,y) + nlz? \yf + nlz yl* — nlz? ly (z,y) — n + 2z, y) +
+2n (z,y) — Kz, y)° — nlz [y]* + 2= |y]* (z,y) =

= (n+2){ay) + nlzPlyP + @—n) |2y (,y) — n - 4(z,y)*

Then
2,212 T & 1
on [1 =20 9) + laPP| | S0u0uhm,wy) + § R, (@9) =

n+2)(z,y) + nlzlyl? + 2—n) 2] [y (@,y) —n

— (n+2) e, y)* +
(-2

Vet lylt + Az, ) 2P [y — (n+2) 2Py + § =
= (n+2zy) = § =2 Plyl + (6= m)lzPly(e,y) - 4e,y)* + (G - 2)lalyl*
= (1 —2(z,y) + \x!2|y!2) ( — 02z, y) + (2 - 2)‘x,2|y’2)

Altogether holds

a 1 =2 42z, y) + (2 = 2)|zy)?
Zaxiayih& (a:,y) + §RB1 (x,y) = : < > (2 )| ‘ |72L‘
= wn (1= 2(e,9) + [2[2[y]?)

(b) Next we prove that the integral kernel
—5 +2(z,y) + (5 = 2)[/lyf?

Kn(x’y) = T
wn (1= 202, ) + [2[21y]?)

is compact in L9(By). For this aim we define

f(xay) =1- 2<x,y> + |5L“2|y‘2
and

n n
gn(z,y) = -5+ 2(x,y) + (5 - 2) |2 |y|?

(c) For n =2 holds

go(z,y) = —1+2x,y) — [z*y* = —f(z,y)
So
1
Kofe) = o
v

is as a Hilbert-Schmidt kernel compact.
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(d) For z,y € By holds

3 1 1 1
93($ay) = —5+ 2<$ay> Y |f1}‘|2|y’2 = —5+ <$7y> Yy |$|2|y’2 + <$7y> -1
2 2 2 "o
<l|z||y]
1 2
<~ (allyl D+ {my) — 1 <0
—_— ——
>0 <0
and for n >4

n n
gn@,y) < —Z+2allyl+ (5 -2) 2Pl < —5+2+(5-2) = 0
——
>0
Further holds
flay) = 1=20z[ |y + [«ly]* = (1 - |z|[y])
Therefore for n > 3 and z,y € By
LUz, y) + (2= )|z |y|?
Koz.y) = 2 (x,y) + (2 — 5)[z|*| |g
wn (1= 2(z, ) + al2lyl?)

<0

2 2
L= 2(z,y) + ey + |=[*]y)* — 1+

n
2
wn (1= 2(@,9) + |oPlyP2)

(- 22 [y[*)

210,12 n
1= 2(z,y) + [a*ly["+ 5 (1 — |o[y)) 1 + ISCI lyl)

= o
wn (1= 202, ) + |2f2ly[2)

1

_ 12wy + PP+ (1= 2 y) + [ PlyP)?
wn (1= 20z, ) + 2 2ly[2)*

1 n

- 51 + n—1
wn (1= 2(2,9) + |22ly]?) w (1= 2000) + [22lyf2)
Because of
o=yl = |2+ [yl - 2(z,y)

= 1=2(w,y) +[alPlyl® + 2 = 1+ [y* - oyl

= 1=2(z,y) +|aPlyl® + [’ =1+ |yI> (1~ |2

I/\{@
—

IN

1= 2z, y) + [z*|y|?
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holds

1 n

|Kn(z,y)] <

ol — "2 wnlz =g

@ —yl+n _ _ 2+4n

wplz—y[" T wplz -yt

and K, is as a Schur kernel compact.
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A Proofs

Lemma A.l. Let G C R” be open and let 1 < g < co. Suppose f,g € HY(Q)

f-g€ HY(G) and 08;(f-g) = (9;f)g+ f(9ig)

Proof. We have f-g € L1(G) because f is bounded.
Because H = W [Me/Se] there is a sequence (gx) C C®(G) N HY9(G) with

19 — 9gkll1,q.c — 0

Let ¢ € C3°(G). Then

/G F90i¢dz f bounded klggo /G 1 95 0i6p d
= hm/ [0 (9r9) dfﬁ—/ f (Oigr) ¢ dx
k—o00 G ~—— el

€C5(G)

= lim — (&f) gk ¢d$ — / f (@gk) ¢d$
G G

k—oo
- /G (D) g + f (Big)] ¢ dar

Therefore
0i(f-g) = (0if)g + f(0ig) € LU(G)
O

Lemma A.2. Let G C R" be open and let 1 < ¢ < co. Suppose f € H"9(G),
g € C§°(G). Then

f-g€ Hy'(G) and 9i(f-g) = (8if)g + f(Dig)

Proof. By Lemma A.1 we have f-g € HY(G) and 9;(f-g) = (0:f)g + f(di9)
Because H = W [Me/Se] there is a sequence (fx) C C*(G) N HY(G) with

| f — frllig;e — 0

Then
1fxg = fallge < Ngllooicllfr = fllga — 0
IV(frg = fDllee < IV =V Hallge + 1(fe = HVallee
< N9l (Vi = V)l + IV9llosiall(fe = Fllga

which tends to 0 for (k — o0). By frg € C5°(G) C Hol’q(G) and the closedness of
H&’q(G) in H19(G) the assertion of the Lemma follows. O
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Lemma A.3. Let G C R" be open and let 1 < ¢ < co. Suppose f € H"9(G),
g € Hy'(G) and ||fl|locit + [V fllocscs < 00. Then

frg€ Hy(G) and 0i(f-g) = (8if)g + f(Dig)

Proof. There is a sequence (g;) C C§°(G) with

lg — ngLq;G —0

Then

A

lgef — fallae < Ifllccllgr — gllge — 0
IV(grf = fllac < 1(Vgx — V) fllaa + I(gr — 9)Vfllga
< Nflloosc (Ve = Vllga + IV fllooicll (9 — 9 llgie

which tends to 0 for (k — o0). By grf € Hé’q(G) (Lemma A.2) and the closedness
of Hé’q(G) in H%9(G) the assertion of the Lemma follows. O

Lemma A .4. Let G € R™ be eAither a bounded or an exterior domain with
dG € C'. Suppose f € HY(G), g € Ha'(GQ) and ||g]loc:c + | V9lloo:c < 00. Then

f-ge HH(G) and 9i(f-g) = (8if)g + [(Dig)

Proof. (a) First let G be bounded, that is He''(G) = Hy'(G) by Lemma 2.5.

By Lemma A.1 we get f-g € HY4(G) and 0;(f-g) = (0:f)g + f(9ig)

Let an arbitrary 1 < s < co be given. Then
g€ L*(G), VgelL*(G)
because |G| < 0o and ||g||sc;c + || V9l|oo:¢ < 00. Therefore

(Vg,Vg) <

IVgllse < o0
ozpece (@) [Vollsic  Holder °

By Theorem 7.9 we derive
geHy*(G) V1<s<oo

(b) Now let 1 < s < g be fixed. Then f € H"*(G) by Hélder’s inequality because
G is bounded. Let A := % > 1. Because

1,322
g€ H, (G)
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there is a sequence (gx) C C§°(G) with

gk —gll;,

S\ .oy T O
A—1 ’G

Because of Lemma A.2 holds
for € Hy®(G)

and
I for — fallsc = /G |f17 |lgr — gl da
1 A=l
A A s\ A
o (L) (st a)”
Holder with A G G
<00 —0
Further
IV(fax — f)llsc < IV (gr — Dllse + 1 (Var — V9)llse
and

A—1

17 F)gh— D)l < ( / mex)*( / \gk—gyfﬁdx) T
<00 —0

as above. Similarly follows

1f(Vgr = Vg)llsg — 0
Altogether we derive
1fgk = f9l1s6 — 0

Therefore
fg € Hy*(G)

and

sup  VUDVOygirae < oo

0£4€CE°(G) ”VGZ)Hq’;G

By Theorem 7.9 finally we get
fg € Hy*(G)

(c) Let now G be an exterior domain. Then
fg € LUG)

because f € LY(G) and g is bounded. Because H = W [Me/Se| there is a sequence
(fx) € C=(G) N HY(@) with

| f — frllig;e — 0
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Let ¢ € C5°(G). Then

/fg@igbdzn = lim/ g fr 00 dx
G k—oo Ji

g bounded

~ i /G 00 (fod) di — /G 9 (Bif) dde

€C(C)

~ i - /G (Dig) fu bz — /G g (Difi) ¢ da
- /G (D:f) g+ £ (Dig)] b da

Therefore

@(ﬁg)Z(éz/m-ngjaw)elﬂ«%
elLd S

Let 7 € C3°(R™). Then by definition of He(G):
ng € Hy"(G)

For K := supp(n) there is a R > 0 with K C Br and R"\G C Bpg. Define
U := GN Bg. Then U is a bounded domain with OU € C'. We have

Hy'(U HY(U
ng|,, € Ho"(U),  f|, € H(U)

By (b) we get
(n9)flv € Hy"(U)
and
n(gf) € Hy"(G)
By definition of Hy?(G) we finally get
fg € HY(G)

O]

Lemma A.5. Let G C R™ be an exterior domain. Let u € LY(G N Bg)
for all R > 0. Assume that there exist fi(R) = 0; (u‘GmBR) € LG N Br) and

gi = 0; (U‘R"\BRl) € LYR™\Bg,) for i =1,...,n (with R"\Bgr, C G). Then

Vu € LY(G)

Proof. For R’ > R holds
fi(R,) = fl-(R) a.e. in GN By
So we are able to define

fi(z) = fi(R) (x) a.e. for x € GN Bg
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Then
fi € LY(G N Bg) VR>0

Let ¢ € C§°(R™\Bpg,) with supp(¢) C GN Bgr Then

(9i:O)pm\Br, = —(W0i0)pmp, = —(40i9)gnpy,
= *<fia¢>GmBR = <fiv¢>]R”\BR1
Therefore
fi=g¢; ae. in LY(R"\Bg,)
and

o;u = fl S Lq(G)

Lemma A.6. Forn>2let f: R"\{0} — R"\{0}, f(z) := ﬁ Then f~1 = f
and )
detf'(z) = ——=

|x|2n

Proof. due to C.G.Simader

Obviously f? = id and

xI; ’$‘2(5Z — 23%&3‘
ifte) =05 (1) =

2 _ [z
Xy 3 T1T2 e T1Tn

—2)" T1T2 x2 —
detf/(x) = (|JU\421 22

2 T
T1Tn a2 — %
We now prove that
22— =P
1= T122 12y
2
2 T
T1T2 Ty | 2' _ ‘5U|2n
(=2)"
2
2 x
1T . a2 — %

n = 2 : The case n = 2 can be derived by simple calculation

n — n+ 1: Let the assumption be true foran € N, n > 2
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For x; = 0 we have |z| = |(z2,...,%Zn+1)| and by assumption

2 2
x? — % T1T2 T1Tp —% 0 . 0
2 Jz)? 2 _ [z
T1T2 T~ oo _ 0 - %
2 _ |z? 2 _ |z?
xlxn ... xn —_ T 0 .. xn —_ T
2 2n 2(n+1
P (e _ a2
2 \(=2") "
For z1 # 0
22l
1 2 122 L1Ln+1
2 [2?

1T A l=?
14n+1 n+1 2
xr
T — % 12 T T1Tn+1
" 2 _ |z
2 T
pry xl
2 l=?
Tn+1 T2Tp+1 - Ty 2

by subtracting the first column multiplied by x; of the j-th column:

o — 2P melel? wmsla o zagalaf?
1 211 23:12 211 271
v —EZE 0 0
. 2
0
|z|2
Tn+1 0 0 T

by multiplication of x1 to the first row:

72 — =2 @z w3z zpqalef?
1 2 2 2 2
s —EE 0 0
2
- o
0
2
Tn+1 0 0 s —%
2
by dividing the last columns by %:
2 -,
1 2 2 X3 Tn+1
Zo -1 0 0
B |$|2n
= on 0 -1
: . 0
Tn+1 0 0 cee —1
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by adding the j-th column multiplied by x; to the first column for (j =2,...,n):

x%+x%+...+x%+l—$ To X3 o Tpgl
22 0 -1 0 0
= on 0 -1
: K 0
0 o o0 - -1
20 faf? [a2+)

_ =

o 2 V' =T

O

Lemma A.7. Let G C R" be an exterior domain with R"\G C Br. Suppose
2
1 < q < oo. Assume u € Ho'(G) and

o (R™ 0 ,if|lz|] <R
peCTRY), 0<p<l, p(m):{ N ifi;v}>2R
Then )
pu € HY(G)
and
Oi(pu) = (Oip)u + p(O;u)
0;0;(pu) = (0;0;p)u + (0ip)(O5u) + (9jp)(0su) + p(0;0;u)

Proof. (a)

lpullgens, < llullgens, <oo V7 >0

(b) Let ¢ € C§°(G). Then

/Gpu&-qbdx = /Guai v9) dx—/Gu((?ip)gbdx

€Ce*(G)
- —/ (&u)qu)dx—/ u (0ip) ¢ dx
G G

Therefore
Oi(pu) = (0ip)u + p(Oyu) € LY(G N By) Vr>0
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(c) Let ¢ € C§°(G). Then

—
=

| ou@perae @ - [ oo
G G

—
=
=

- / (951) p (90) do — / u(Bip) (9;0) da
G G

_ /G @) ; (pg) da + /G (D) (93p) b d
€05°(G)

- [ wof@pildot [ u@op)ods

€Ce(@)
= | K00ut @) @5)+ @) (O) + p(0,000)] o
Therefore
0,0, (pu) = (930:p)u + (,p)(Dyu) + (950)(Bhw) + p(D0hu) € LI(G)
(d) For n € C§°(R™) we have np € C§°(G) and therefore by definition of ]iA[.Q’q(G)

n(pu) = (np)u € HY(G)

So altogether R
pu € HZ(G)

Definition A.8 (Friedrichs’ mollifier).
(i) Let j € C§°(R™), j >0, j(x) =0 for |z| > 1, j(z) = j(—x) and [ j(z)dz = 1.
Rn

T

For ¢ > 0 let j.(2) := "5 (£). For a suitable j € C3°(R) we also assume
j(x) = j(|z|) for each x € R"

(ii) Let 1 < ¢ < oo and let G C R™ be open and f € L9(G). Let

] fl@) , zeG
9(x) '_{ 0 , else

Then we denote by
fe(x) = / Je(x —y)g(y) dy forx € R", and € > 0

Friedrichs’ mollifier.

We could choose for example
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0 , tf>1

1
~ 12
](t> 3——{ ce -t ) ’t| <1

with a suitable ¢ € R

Lemma A.9. Let1<gq<ooand fe LIR"), g€ L?(R"). Then

(f,9e) = (fe, 9) Ve >0

Proof. By Fubini’s theorem

e = [ 9@) [ o= o) fw)dyds = (f.g)

O]

Lemma A.10. Let 1 < ¢ < oo and let G C R™ be open and f € LY(G) with
Vf e LYG). Let G' C G such that d = dist(G',0G) > 0. Let 0 < & < d. Then

0:)e(2) = [ )| @) vred

Proof. Let

Then

O

Lemma A.11. Let 1< ¢ < oo and let G C R™ be open. Suppose f € LI(G).
Then

L ([fellgrn < [ fllgc Ve>0

2. |Ife = f”q;G —0 (6—0)
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Proof. see [SiDGL, Satz 2.5 O

Lemma A.12. Let G C R™ be open. Assume that v : G — R is a harmonic
function. Let G; C G with d := dist(G1,9G) > 0. Then

ue(x) = u(l:)

foreachx € Gy and for all 0 < e < d

Proof.

us(z) = / " Je(z — 2)u(z)dz = / o je(z — z)u(z) dz
r=aty /8(0) Je(u(z +y) dy
— /06 1 57715 (g) /9n1 u(x + r&) dwe dr
= [ereni (D) dru

0
= u(x)/o Tn_l/s Je(r€) dwe dr

= ) /B e = )

O]

Lemma A.13. Letl < g < ooandlet G,V C R" be open. Suppose f € Hé’q(G)
and ¢ € C3°(V). Then
p-f € Hy"(GNV)

Proof. By Lemma A.1 we get

froe HY(G) and 8i(f-¢) = (0:f)¢ + f(Oip)
Let fr € C§°(G) with
I fe — fllige — 0 (k— o0)

Define
gk = pfr € CeP(GNYV)

Then

1frp = follgarny < llellooll fi = fllgg — 0

Hv(fk@ - f(P)Hq;GﬂV H(ka - Vf)cp! GNV T+ I (fx — f)V‘PHq;GﬂV
[elloall (Vi = Vg + IVellsoll(fe — Pllga

which tends to 0 for (kK — o0). O
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Lemma A.14. Let 1 < ¢ < oo and let G,G" C R™ be open and bounded.
Assume that ¢ : G — G’ is a C'-diffeomorphism with ¢ € él(G;Rn) and ¢~ ! €
(G RM).

1. Suppose g € CJ(G). Then h:=go ¢! € CY(G).
2. Suppose g € CH(G) N Hé’q(G). Then h:=go¢~! € CL(G") N Hé’q(G’).

Proof. (a) Let g € CJ(G). Let x € G’ with h(z) # 0. Then g (¢~*(x)) # 0. That
is ¢~ 1(z) € supp(g). We get = € ¢ (supp(g)). Therefore

{z € G :h(z)#0} C ¢ (supp(g))
and

supp(h) C ¢ (supp(g)) C ¢(G) =

b) Let g € C1(G) N H*"(G). Obviously h € C1(G') and
0

n

(Oih) () = > (Okg) (W ()) (Dithy) ()

k=1

where 1) := ¢~ 1. Then

Ih(z)[ dz = / @) detd (3)] dy < oo
G’ G N———

bounded
and
i q
[ 1omairds = [ |3 @o)) @) o) detd' )] dy <o
G’ Gy —_— Y——
bounded bounded
Therefore
h e HY(G)

Let g € C§°(G) with
gk = 9llige — 0 (k — o0)

Define
hi = gro¢ ' € CH(G') c Hy'(G)
We derive
@) = ()" dz = [ o) = acl)l" [detd/ ()] dy —0
G ———
bounded
and

/ 10sh() — Db ()| da =

/]Z 19)(5) ~ (@90)(0)] ) (6)| [detd ()] dy — 0
bounded bounded

125



Lemma A.15. Let 1 < g < oo and let G C R™ be an exterior domain. Then
there is a constant C' = C(n, ¢, G) > 0 such that for u € Hy%(G) and R > 0 holds

n—

1 1
lullgerner < CR A |Vullg:6nBg

Proof. (a) Let § > 0 with 0 € Bs C R"\G. Let u € C{°(G), 0 < r < R and
£€ S,-1. Then

ure) = u(r) - u(s) = | " Tute) - i
We derive

r R
u(re)t < 7o /5 Vu(te)| dt < i /5 Vu(te) dt

Further holds

/ u(r€) |7 duve
Sn—1

IN

-1 R tn—l .
R pro| |Vu(té)|? dwe dt
é Sn— 1

IN

R
RI-1stn / 1 / (Vu(te)|? dwe dt
g Sn—l

— q
_Hquq;GﬁBR

Finally

R
_ 1 11
s, = [ [ e ducdr < RS Tl g,
n—1
Therefore the assertion holds for v € C§°(G)

(b) Let now u € He'(G). Choose n € C°(R™) with n(z) = 1 for |z| < R. Then
nu € Hé’q(G) and there is a sequence (ux) C C§°(G) such that

lnu — urll1gc — 0
Especially

v —ugllrgenr = lImu—uklligenBr < llnu — ukll1ge — 0

and the assertion follows by (a). O

Lemma A.16. Let G C R™ be open. Assume that f; € C1(G) (k € N) and
f : G — R such that fix(x) — f(x) for every x € G and that (9;f) is uniformly
Cauchy in G foralli=1,...,n.

Then f € C}(G) and
Oif = lim 8;f
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Proof. Denote
fi = lim 0 f
k—o0

Then f; is continuous. For xz € G, p > 0, B,(z) C G, h € R and |h| < p holds
h
fr(x + he;) — fr(x) = / (0 fr)(x + te;) dt
0

For k — oo we derive
h
flx 4+ he;) — f(x) = / filx +te;)dt = h fi(x +the;)
0

with ¢, between 0 and h. Therefore

o J@+he) = f@)

o h = fi(x)
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B Spectral theory of compact operators in real Banach
spaces

All proofs of this section are due to [Alt].

Theorem B.1. Let X be a normed real vector space and let Y C X be a closed
subspace with Y # X. Then for every 0 < 6 < 1 there is zy € X such that

|lzgll =1 and 6 < dist(zg,Y)

Proof. see [Alt, Satz 2.4, p.87] O

Lemma B.2. Let X be a normed real vector space and let Y C X be finite-
dimensional. Then Y is a closed subspace of X.

Proof. see [Alt, Lemma 2.8, p.91] O

Theorem B.3. Let X be a normed real vector space and let B;(0) C X be
compact. Then
dim X < oo

Proof. see [Alt, Satz 2.9, p.92] O

Definition and Theorem B.4. Let X and Y be real Banach spaces. Then a
bounded linear operator T : X — Y is compact, if one of the following equivalent
properties is fulfilled:

1. T(B1(0)) is compact in Y.

2. For every bounded sequence (x,) C X there exists a subsequence (z,) such
that (T'z,, ) C Y is convergent.

Proof. see [Alt, Definition 8.1, p.301] O

Lemma B.5. Let X and Y be real Banach spaces and let X be reflexive. Then
a linear operator 7' : X — Y is compact, if and only if for every sequence (z,) C X
with

weak

Ty — v €X (n — o0)
holds
| Tz, — Tx|ly — 0 (n — o0)
Proof. see [Alt, Lemma 8.2, p.302] O
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Lemma B.6. Let X, Y and Z be real Banach spaces. Let 77 : X — Y and
Ty : 'Y — Z be bounded linear operators. Assume that either 77 or T, is compact.
Then

T5 T is compact.

Proof. (a) Let (xz,) C X be a bounded sequence.

(b) Assume that 77 is compact. Then there is a subsequence (zp,) such that
(Tixyn,) C Y is convergent. Because T5 is bounded, (T2T1x,,) C Z is convergent
too.

(c) Assume that T, is compact. Then (Thz,,) C Y is a bounded sequence and
therefore by Defintion B.4 there exists a subsequence (T, ) such that (15T, ) C
Z is convergent. ]

Definition B.7. Let X be a real Banach space and let T : X — X be a bounded
linear operator. Then we define by

—_

N(T):={z € X : Tx = 0} the nullspace of T,
2. R(T):={y € X : thereis an z € X with Tz = y} the range of T,

3. pB(T) .= {A€R : N(A\I —T) = {0} and R(\[ —T) = X} the real resol-
vent set of T,

4. o®(T) := R\p®)(T) the real spectrum of T,

5. O'SR) (T):={xe o®(T) : N\ -T) # {0}} the set of eigenvalues of T.

Theorem B.8. Let X be a real Banach space and let T': X — X be a compact
operator. Let A:=1 —T. Then

1. dimN(A) < oo,
2. R(A) is a closed subspace of X,

3. if N(A) = {0}, then R(A) = X.

Proof. (a) Let x € N(A) with ||z|| < 1. Then |Tz| = ||z| < 1. Therefore
B1(0) N N(A) C T(B1(0))

and

B1(0) N N(A) ¢ T(B1(0))

Because T is compact, T'(B1(0)) is compact, and because B1(0) N N(A) is closed,
we derive that B;(0) N N(A) is compact too. By Theorem B.3 holds

dim N(A4) < o0
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(b) Let x € R(A). Then there are %,, € X with A%, — x. Choose a,, € N(A) such
that
|Zr, — an| < 2dist(Z,, N(A))

Let z,, := &, — a,. Then dist(Z,, N(A)) = dist(z,, N(A)), Az, = Az,. Altogether
holds
zn € X, Az, — x, |lznl < 2dy, = 2dist(z,, N(A))

Assume for contradiction that (d,) is not bounded. Then there is a subsequence
(dyn,,) with 0 < dp, — oo for k — oco. Let

Then

Because (yj) is bounded and T is compact, there is a subsequence (yg,) with Ty, —
y for [ — co. We derive

Yoo = Ay, +Tyr, —y
and by the continuity of A

Ay = lim Ay, = 0
l—00

Therefore y € N(A) and

Tn
Hykl - y” > diSt(yklvN(A)) = dist <d L 7N<A)> = d =1

s n,

which is a contradiction. So (d,) is bounded, and therefore (z,,) is bounded too.
Then there is a subsequence (x,, ) such that

Txy, — 2 (k — o0)

Therefore
r — Az, = A(Az,, +Tx,,) — Az + 2)

and

z = Alx+z2) € R(A)

(c) Let N(A) = {0}. Assume for contradiction that there is z € X\ R(A).

Assume A"z € R(A™!) for n > 0. Then there would be y € X with A%z = A"ty
that is A"(x — Ay) = 0. By N(A) = {0} we would derive x — Ay = 0, i.e. z € R(A),
which is a contradiction. Therefore

A"z € R(AM\R(A™)  ¥n>0

Further
n+1 n+ 1 .
n+1l __ n+l __
A = ({I-T) _I+,;_1< k >(—T)

compact by Lemma B.6
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By (b) R(A™1') is closed. So there is a,+1 € R(A™!) such that

0 < [|[A™ — aps1|| < 2dist (A"z, R(A™))

Consider An
T — Qp41
Ty = ———— € R(A"
" A"z — api1| (A"
For y € R(A™"1) holds
A" — (a1 + [[A" — ana||y)||
Hxn - yH -
| A"z — a1
dist (A"z, R(A™t)) S 1
- | A"z — apqq || -2
For m > n we derive
1
ITzn = Tam| = llzn = (Azp + 20 — Aze)|| > 5
ER(Ant1)

On the other hand (x,) is bounded and T is compact, so there is a subsequence
(2p, ) such that
|70, — Tanll =0 (k1 o0)

which is a contradiction. O

Theorem B.9. Let X be a real Banach space and let T': X — X be a compact
operator. Then

L o®(T)\{0} € 0 (T),
2. o®)(T) is finite or countably infinite,
o®)(T) is bounded,

4. if e®)(T) is countably infinite, for every sequence (\;) € o®(T)\{0} with
M # A (kK #1) holds Ay — 0 for k — oo,

5. dim N(M —T) < oo for every A € R\{0}.

Proof. (a) Let A € R\{0}. Then by Theorem B.8 dim N (I — £) < co and therefore
dim N(A — T) < oo

(b) Let 0 # X\ ¢ O‘I(;R)(T). Then dim N(I — %) = {0} and by Theorem B.8 holds

N(I-L)y=X,ie Xe p®(T). This proves

T\ {0} € of(T)
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(c) Let (\p) € a®(T)\{0} with A\, # N (k # 1). By (b) there are eigenvectors
en € X\{0} such that Te,, = A\, e,. Define

X, :=span (eq,...,ep)

Assume that eq,...,e,_1 are linearly independent. Let a; € R such that
n
Z ager =0
k=1
If a,, = 0 by assumption holds a; = ... = a,—1 = 0. If a,, # 0 we derive

1 n—1
0 = Te,— e, = an()\nT)kZ_lakek

1

3
|

a
= ZE A — ) er
g I
= 2
and therefore a1 = ... = a,_1 = 0. So a, = 0, which is a contradiction. By

induction follows
dim X, =n VneN

By Theorem B.1 and Theorem B.2 there are x,, € X,, such that
1
lanll =1 and o < dist(zn, Xn-1)

Further
n n—1
(T=Xn)zn = (T = X)) anker = > ank(Me—An)er € Xp1 YR €N
k=1 k=1

and

n
Tz, = Zank/\kek c X, Vn eN

k=1
Therefore for m < n holds
Tn Tm 1 1 1
T(—)—-T(+— = n 7Tn_>\nn_7Tm > =
ITG2) = TEN = low+ 5 (Tn = M) = 5= Tom]| = 5
Eanl

Because T' is compact, no subsequence of (f\—z) is bounded. Therefore
77 = Il =00 (n—00)

and
A — 0 (n — o0)

(d) By (c) we know that ¢(®)(T")\ [—r, ] is finite for every > 0. Therefore o(®)(T)
is bounded and

oSN} = Ua®mn |- ]
neN

So o®)(T) is finite or countably infinite. O
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