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Abstract

The quest to understand nature and the search for new materials have always been at the heart of
the natural sciences. Nowadays, the understanding of biological systems and the design of new
materials is routinely guided, complemented or even made possible by computer simulations of
their electronic structure. The aim of this thesis is to improve these computer simulations by
improving the underlying theory. The central question we need to ask ourselves for this purpose
is: What are the requirements for the computational method?

The electronic structure is determined by the laws of quantum mechanics. Biological systems
are often large, and in order to find the best material for a given application, many candidate
materials, often solids, have to be screened. Therefore, our computational method must be fast
and capable of handling many electrons at once. In this setting, density functional theory is
usually the method of choice.

For the practical application of density functional theory, one crucial approximation must be
made that determines both the accuracy and the computational effort: the density functional
approximation to the exchange-correlation energy. For the study of large biological systems
or for high-throughput materials screening, only the computationally most efficient density
functionals, the so-called semilocal functionals, are generally feasible.

Topical problems such as catalysis often exhibit surfaces or interfaces that require an accurate
description of different types of systems, particularly of both molecules and solids. For charge
separation in photocatalytic water splitting or in solar cells, the size of the band gap is of crucial
importance. Weak interactions are often decisive for the stability of biological systems and
layered materials, as well as for the binding of ligands to a surface. Consequently, we strive for
a semilocal density functional with sufficient accuracy for molecules and solids, band gaps and
energetic bonds, including weak bonds. Finding out what is crucial for a density functional to
achieve this, and ultimatively designing one that does so, is the quest of this thesis.

To this end, I first recall the relevant concepts of density functional theory: the fundamentals
of density functional theory, the traditional semilocal density functionals and their limitations,
and finally, why the class of orbital-dependent meta-Generalized Gradient Approximations
(meta-GGAs) is suitable for the goal of this thesis (their orbital dependence is the key to describe
nonlocal properties). Subsequently, I investigate which requirements a meta-GGA must fulfill in
order to provide an accurate description of band gaps in the first step, of band gaps and energetic
bonds in the second step, and third of weakly interacting systems.

First, I demonstrate that the orbital dependence of meta-GGAs is the key to predict the right
band gaps for the right reason, that is, by including the derivative discontinuity with proper
size. In the course of this study, I refine the construction principle for a sizeable derivative
discontinuity in meta-GGAs. Next, in investigating what is required to combine accuracy for
band gaps and energetic binding, I find that the construction principle for a sizeable derivative
discontinuity leads to a strong repulsion between weakly interacting systems. Therefore, I next
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investigate what is decisive for the description of weakly interacting systems with meta-GGAs.
From this I deduce a second construction principle that ensures a proper description of the short-
and intermediate-range Van der Waals interactions. Thus, I now have two construction principles
that allow to control these two types of nonlocality in the density functional approximation.

To combine these findings in a new meta-GGA, I complement the established design strategy
for nonempirical density functionals with the two construction principles for appropriate
nonlocality and propose the design strategy of “enhancement factor engineering”. However,
combining the two construction principles in a nonempirical meta-GGA contradicts the usual
treatment of the gradient expansion for slowly varying densities. Consequently, I revisit the
gradient expansion in meta-GGAs and demonstrate how a so far unexplored degree of freedom
in the gradient expansion enables a more balanced treatment, and in particular the fulfillment of
the two construction principles.

Finally, I combine all these insights, i.e., the construction principles for proper nonlocality, the
design strategy of enhancement factor engineering, and the balanced treatment of the gradient
expansion, to develop a nonempirical meta-GGA that combines state-of-the-art accuracy for
band gaps, energetic bonding, and weak interactions at a very attractive computational cost.
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Kurzdarstellung

Das Bestreben, die Natur zu verstehen, und die Suche nach neuen Materialien stehen schon
immer im Mittelpunkt der Naturwissenschaften. Heutzutage wird das Verständnis biologischer
Systeme und die Entwicklung neuer Materialien routinemäßig durch Computersimulationen
ihrer elektronischen Struktur angeleitet, ergänzt oder sogar erst ermöglicht. Ziel der vorliegenden
Arbeit ist es, diese Computersimulationen durch Verbesserung der zugrunde liegenden Theorie
zu verbessern. Die zentrale Frage, die wir uns zu diesem Zweck stellen müssen, lautet: Was sind
die Anforderungen an die rechnergestützte Berechnungsmethode?

Die elektronische Struktur wird durch die Gesetze der Quantenmechanik bestimmt. Bio-
logische Systeme sind oft groß, und um das beste Material für eine bestimmte Anwendung zu
finden, müssen viele in Frage kommende Materialien, oft Feststoffe, gescreent werden. Daher
muss unsere rechnergestützte Methode schnell sein und viele Elektronen auf einmal behandeln
können. In diesem Setting ist die Dichtefunktionaltheorie in der Regel die Methode der Wahl.

Für die praktische Anwendung der Dichtefunktionaltheorie muss eine entscheidende Näherung
vorgenommen werden, die sowohl die Genauigkeit als auch den Rechenaufwand bestimmt: die
Dichtefunktionalnäherung an die Austausch-Korrelationsenergie. Für die Untersuchung großer
biologischer Systeme oder für das Hochdurchsatz-Screening von Materialien kommen in der
Regel nur die rechnerisch effizientesten Dichtefunktionale, sogenannte semilokale Funktionale,
in Frage.

Aktuelle Probleme wie die Katalyse weisen häufig Oberflächen oder Grenzflächen auf, die eine
genaue Beschreibung verschiedener Systemtypen, insbesondere von Molekülen und Festkörpern,
erfordern. Für die Ladungstrennung in der photokatalytischen Wasserspaltung oder in Solarzellen
ist die Größe der Bandlücke von entscheidender Bedeutung. Schwache Wechselwirkungen sind
oft entscheidend für die Stabilität biologischer Systeme und geschichteter Materialien, sowie
für die Bindung von Liganden an eine Oberfläche. Daher streben wir nach einem semilokalen
Dichtefunktional mit ausreichender Genauigkeit für Moleküle und Festkörper, Bandlücken
und energetische Bindungen, einschließlich schwacher Bindungen. Herauszufinden, was für
ein Dichtefunktional entscheidend ist, um dies zu erreichen, und schließlich ein Funktional zu
entwerfen, das dies tut, ist das Ziel dieser Dissertation.

Zu diesem Zweck rufe ich zunächst die dafür relevanten Konzepte der Dichtefunktionaltheorie
in Erinnerung: die Grundlagen der Dichtefunktionaltheorie, die traditionellen semilokalen
Dichtefunktionale und wann sie an ihre Grenzen kommen, und schließlich, warum die Klasse der
orbitalabhängigen meta-Generalized Gradient Approximations (meta-GGAs) für das Ziel dieser
Dissertation geeignet ist. Anschließend untersuche ich, welche Anforderungen ein meta-GGA
erfüllen muss, um eine genaue Beschreibung von Bandlücken im ersten Schritt, von Bandlücken
und energetischen Bindungen im zweiten Schritt und drittens von schwach wechselwirkenden
Systemen zu ermöglichen.
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Zunächst zeige ich, dass die Orbitalabhängigkeit von meta-GGAs der Schlüssel zur Vorher-
sage der richtigen Bandlücken aus dem richtigen Grund ist, nämlich durch Einbeziehung der
sogenannten derivative discontinuity mit der richtigen Größe. Im Rahmen dieser Untersuchung
verfeinere ich das Konstruktionsprinzip für eine große derivative discontinuity in meta-GGAs. Im
nächsten Schritt, der Untersuchung der Voraussetzung für die Kombination von Genauigkeit für
Bandlücken und energetische Bindungen, stelle ich fest, dass das Konstruktionsprinzip für eine
beträchtliche derivative discontinuity zu einer starken Abstoßung zwischen schwach wechselwir-
kenden Systemen führt. Daher untersuche ich als nächstes, wie meta-GGAs eine Beschreibung
schwach wechselwirkender Systeme ermöglichen können. Daraus leite ich ein zweites Kon-
struktionsprinzip ab, das eine korrekte Beschreibung der Van-der-Waals Wechselwirkungen
im Nah- und Mittelbereich gewährleistet. Somit habe ich nun zwei Konstruktionsprinzipien,
die es ermöglichen, diese beiden Arten von Nichtlokalität in der Dichtefunktionalnäherung zu
kontrollieren.

Um diese Erkenntnisse in einem neuen meta-GGA zu kombinieren, ergänze ich die etablierte
Konstruktionsstrategie für nicht-empirische Dichtefunktionale um die beiden Konstruktions-
prinzipien für geeignete Nichtlokalität und schlage die Konstruktionsstrategie des “enhance-
ment factor engineering” vor. Allerdings steht die Kombination der beiden oben genannten
Konstruktionsprinzipien in einem nicht-empirischen meta-GGA im Widerspruch zur üblichen
Behandlung der Gradientenentwicklung für langsam veränderliche Dichten. Daher überprüfe ich
die Gradientenentwicklung in meta-GGAs und zeige, wie ein bisher unerforschter Freiheitsgrad
in der Gradientenentwicklung eine ausgewogenere Behandlung ermöglicht, sowie insbesondere
die Erfüllung der beiden Konstruktionsprinzipien.

Schließlich kombiniere ich all diese Erkenntnisse, d.h. die Konstruktionsprinzipien für
angemessene Nichtlokalität, die Konstruktionsstrategie des enhancement factor engineering
und die ausbalancierten Behandlung der Gradientenentwicklung, um ein nicht-empirisches
meta-GGA zu entwickeln, das modernste Genauigkeit für Bandlücken, energetische Bindung
und schwache Wechselwirkungen zu sehr attraktiven Rechenkosten vereint.
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CHAPTER 1

Introduction

It is generally accepted that our planet earth is heating up and that we as humans need to take
action to keep this global warming in a manageable range [ipc23]. The main driver of global
warming is the release of greenhouse gases from the consumption of fossil fuels to generate
heat and electricity. To reduce the consumption of fossil fuels, we need to generate more heat
and electricity from renewable sources, e.g., through more efficient solar cells, and reduce our
consumption of heat and energy, especially in industrial processes.

The key to increasing the efficiency of solar cells and industrial catalysis or the capacity of
batteries for storing “green” energy, are novel materials that are specifically designed for their
respective purpose [KLJ+20, HYB+20, SD21, DV21, ESL+22]. Just as important as efficiency
is the search for cheaper and more sustainable materials that can replace critical ingredients such
as lithium [NYBA18, HL19, CMDN20] or lead [ZHL+18]. Nowadays, new materials, including
the above mentioned so-called energy materials, are often predicted computationally using
a combination of high-throughput materials screening and advanced computational quantum
mechanical simulations [LCdJ+21, RZ22]. Both of these steps require methods that combine
high computational efficiency with sufficient accuracy.

Consequently, the subject of the present thesis is the fundamental validation and improvement
of existing computational methods, and ultimately the introduction of a new method, all of
which aim to provide sufficient accuracy for many important applications at a very attractive
computational cost. While the present thesis is therefore mainly concerned with the rather
abstract development of new computational methods in the field of quantum mechanics, the
resulting methods are already available [SCM24a, SCM24b, LSOM24] in large program
packages for large-scale simulations and material predictions or will be available with the
next release [VAS24, SCM25].

Due to its favorable balance between accuracy and computational cost, Density Functional
Theory (DFT) has become very popular for electronic structure calculations. Fundamentally
based on the Hohenberg-Kohn theorem [HK64] and widely applicable through the Kohn-Sham
formalism [KS65], DFT circumvents the enormous numerical effort necessary for solving the
many-body Schrödinger equation directly. In particular for these achievements, Walter Kohn was
awarded his share of the Nobel prize in 1998 [Koh99]. Instead of the many-body wavefunction,
DFT is based on the electronic density as its main variable.

Although DFT is exact in principle, a crucial approximation must be made in practical
DFT calculations, namely for the so-called exchange-correlation energy as a functional of the
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Chapter 1 Introduction

electronic density. Already the earliest and simplest Density Functional Approximations (DFAs),
the Local Density Approximation (LDA) [HK64] and the Generalized Gradient Approximation
(GGA) [Bec86, PY86] showed great success in solid state physics and chemistry. However,
these computationally very efficient approximations have well-known limitations, see, e.g.,
Ref. [KK08]. A particularly profound limitation is that these traditional semilocal DFAs are
unable to predict properties that require so-called ultranonlocality, e.g., the band gaps of solids,
for fundamental reasons [PL83, SS83, SS85, Per85], as we discuss in detail in Chapter 3.

Historically, this shortcoming of the traditional semilocal density functionals was first
addressed by applying so-called self-interaction corrections [Per79, PZ81]. While these sub-
stantially improve over LDA and GGA for ultranonlocal properties [PZ81], self-interaction
corrected density functionals come at a significantly increased computational cost [PRSP15] and
are often hampered by their limited accuracy for chemical bonds [VS04]. More successful in this
regard was the mixing of semilocal DFAs with a fraction of so-called exact exchange, the DFT
equivalent of the Fock energy, which led to the class of hybrid functionals [Bec93a, Bec93b]
(see also Ref. [KK08]). However, the evaluation of the exact exchange energy is, especially for
large or periodic systems, even more computationally demanding. Therefore, computationally
cheaper ways to include a proper description of ultranonlocality are strongly desirable. On-top
empirical methods can achieve this in certain cases [Kul15]. However, a nonempirical density
functional would offer much more reliability and transferability [GCDV24].

Although they have been around for over 35 years [Bec88], only the last decade has shown
that the class of meta-Generalized Gradient Approximations (meta-GGAs) can provide the
required ultranonlocality [YPSP16, PYB+17, AK19, KBM23]. In addition, meta-GGAs offer
another type of nonlocality: they can incorporate the short-and intermediate-range van der Waals
interactions [ZT06, MFH10, SRZ+16, YKC19]. At the same time, meta-GGAs offer an overall
higher accuracy than LDA and GGA and remain comparable to LDA and GGA in terms of
computational effort [SRZ+16]. This makes meta-GGAs a very attractive choice for materials
modeling.

In practice, however, this is impaired by the fact that so far no single meta-GGA achieves an
accurate description of both energetic bonds, including weak bonds, and ultranonlocal properties,
e.g., band gaps. The aim of the present thesis is therefore to find out whether this is possible
at all, what would be crucial in a meta-GGA to achieve this, and if possible, to construct a
meta-GGA that does so.

This thesis consists of three parts. In Part I, we introduce and discuss the concepts of
DFT relevant to this work: The fundamentals of DFT in Chapter 2, the traditional semilocal
functionals LDA and GGA in Chapter 3, and finally the orbital-dependent semilocal meta-
GGAs in Chapter 4. In Part II, we outline the results of the five publications that make up
Part III. In Chapter 5, we analyze in detail what is required in meta-GGAs to achieve state-
of-the-art accuracy for ultranonlocal properties in the first step [Pub1, Pub2], for band gaps
and energetic bonds in the second step [Pub3], and for weakly interacting systems in the
third step [Pub4]. Based on the findings from these analyses, we refine the established design
strategy for nonempirical meta-GGAs [Pub5, Pub4]. Additionally, we demonstrate how a so
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far unexplored degree in the gradient expansion for slowly varying densities allows for a more
balanced treatment in meta-GGAs [Pub5]. Finally, in Chapter 6 we combine all our findings
and insights to ultimately construct a best-of-both-worlds meta-GGA and demonstrate that it
indeed achieves state-of-the art accuracy for both energetic bonds, including weak bonds, and
band gaps.
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Part I

Concepts of Density Functional Theory
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CHAPTER 2

Fundamentals of Density Functional Theory

Within the Born-Oppenheimer approximation [BO24], the electronic structure of materials
is determined by the electronic many-body Schrödinger equation [Sch26]. However, the
computational demand to solve the Schrödinger equation encounters a so-called exponential wall
with respect to the number of electrons in the system [Koh99]. An elegant way to circumvent
this exponential wall was found by Hohenberg and Kohn in 1964 [HK64]. They showed by
means of the variational principle that instead of solving the Schrödinger equation for the
wavefunction, the electron density n can also be used as the central variable. The latter reduces
the number of spatial variables for a three-dimensional system of N electrons from 3N to 3.
The Hohenberg-Kohn theorem in particular states that the many-body wavefunction and thus
every ground-state property is a unique functional of the ground-state density. The electronic
ground-state density n is in principle determined as the minimizer of the total energy E[n], i.e.,
by the variational equation

δ

δn(r)

[
E[n]−µ

(∫
n(r) d3r−N

)]
= 0 , (2.1)

where µ is a Lagrange multiplier of the subsidiary condition that enforces the correct particle
number. As important as the Hohenberg-Kohn proof of existence is a practicable formalism for
calculating the density. To this end, the total energy can be written as a functional of the density
in the form

E[n] = T [n]+
∫

vext(r)n(r) d3r+EH[n]+Er[n] , (2.2)

where T is the kinetic energy, vext the external potential, EH the Hartree energy, and Er the
residual. While vext is determined by the system under study (in particular the nuclei), EH stems
from the classical Coulomb energy and reads (we use atomic units throughout)

EH[n] =
1
2

∫∫ n(r)n(r′)
|r− r′| d3r d3r′ . (2.3)

In contrast, the explicit density dependence of T [n] and Er[n] is not known and needs to be
approximated in practice. Since finding good approximations to T [n] is difficult, DFT is
usually used in the Kohn-Sham formalism [KS65]. The latter maps the interacting many-body
Schrödinger equation onto a system of non-interacting single-particle Schrödinger equations
that generates the same electronic density. The resulting so-called Kohn-Sham equations read
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Chapter 2 Fundamentals of Density Functional Theory

n = ∑
N
j=1

∣∣ϕ j
∣∣2

EH[n], Exc[n]

vKS = δEH[n]
δn + δExc[n]

δn + vext

{ϕ j}{ j=1,...,N}

Kohn-Sham
equations

Figure 2.1: The Kohn-Sham self-consistent cycle: A first guess for the orbitals {ϕ j} yields the electronic
density. From this, the Hartree and exchange-correlation energy functionals are obtained. Taking
the functional derivatives leads to an approximate Kohn-Sham potential. Solving the Kohn-Sham
equations with this approximate potential yields a new set of orbitals. This procedure is repeated until
self-consistence is achieved. Thus, the orbitals depend implicitly on the density via the Kohn-Sham
equations.

(for the sake of simplicity, we neglect the spin in the following)
(
−1

2
∇

2 + vKS(r)
)

ϕi(r) = εiϕi(r) . (2.4)

Their solutions {ϕi}i=1,...,N are called Kohn-Sham orbitals, vKS is the Kohn-Sham potential (to
be defined below), and {εi}i=1,...,N are the Kohn-Sham eigenvalues. The kinetic energy is now
approximated by the kinetic energy of the non-interacting system

Ts[n] = Ts[{ϕ j[n]}] =−1
2

N

∑
j=1

∫
ϕ
∗
j (r)∇

2
ϕ j(r) d3r . (2.5)

Ts depends implicitly on the density via the Kohn-Sham orbitals, as we illustrate in Fig. 2.1.
Consequently, the total energy of Eq. (2.2) is replaced by

E[n] = Ts[n]+
∫

vext(r)n(r) d3r+EH[n]+Exc[n] , (2.6)

where the residual Exc is called the exchange-correlation (xc) energy. Finally, the Kohn-Sham
potential reads

vKS = vH + vext + vxc , (2.7)
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where the Hartree potential vH and the exchange-correlation potential vxc are obtained as
functional derivatives from the respective energy functionals via

vH(r) =
δEH[n]
δn(r)

, vxc(r) =
δExc[n]
δn(r)

. (2.8)

In practice, the Kohn-Sham equations (2.4) are solved iteratively, as illustrated in Fig. 2.1.
This formalism has the advantage that the kinetic energy of the non-interacting system Ts is a
reasonable approximation to the kinetic energy of the interacting system. Thus, only the density
dependence of the relatively small contribution Exc[n] needs to be approximated. Nevertheless,
Exc[n] is often decisive, e.g., for chemical bonding. Unfortunately, although the Hohenberg-
Kohn theorem [HK64] guarantees the existence of an exchange-correlation functional that yields
the exact ground-state density, its proof is not constructive. Consequently, finding suitable
approximations for Exc[n] is the holy grail of DFT and also the main concern of the present
thesis.

The exchange-correlation energy is often further split into an exchange and a correlation part.
This is motivated by the following formal definition of the exchange part, the so-called exact
exchange energy (for which it is necessary to explicitly denote the spins)

Eexact
x [n] =−1

2 ∑
σ=↑,↓

Nσ

∑
i, j=1

∫∫
ϕ∗

iσ (r)ϕiσ (r′)ϕ∗
jσ (r′)ϕ jσ (r)

|r− r′| d3r d3r′ . (2.9)

The remainder Exc −Eexact
x is then defined as the correlation energy. The correlation energy can

be further split into a long-range part, sometimes called the static correlation, and a more local
component, the dynamical correlation [MNH96, HC01]. In practice, it is often advantageous to
approximate the dynamical correlation by a semilocal correlation functional and the combination
of exact exchange and static correlation by a semilocal exchange functional for three reasons
[NNH96, GSB97, Cre01, MCH02, KK08]. First, the evaluation of the double integral in Eq. (2.9)
is computationally demanding. Second, good approximations for the static correlation are hard
to find and computationally even more demanding. Third, there are certain similarities between
the exact exchange energy and the static correlation. Therefore, approximating their sum by a
semilocal functional often leads to good results due to cancellation of errors [PSTS08, KK08].

Despite their formal similarity, the (Kohn-Sham) exact exchange energy is different from
the Fock energy of Hartree-Fock theory, because in Eq. (2.9) the Kohn-Sham orbitals are used.
Moreover, for a given approximation of the exchange-correlation energy, one can uniquely
determine its exchange part via uniform density scaling to the high-density limit [Lev91].
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CHAPTER 3

Traditional Semilocal Functionals

3.1 Local Density Approximation

The simplest approximation to Exc[n] is to use the exchange-correlation energy of a homogeneous
electron gas also for inhomogeneous systems, which leads to the Local Density Approxima-
tion (LDA) [HK64, KS65]. The exchange energy of a homogeneous electron gas is known
analytically [DG90]:

ELDA
x [n] = Ax

∫
n4/3(r) d3r (3.1)

with Ax =−(3/4)(3/π)1/3. The correlation energy of a homogeneous electron gas is known
analytically only for certain limits [PW92]. However, it was calculated very accurately using
Quantum Monte Carlo (QMC) simulations [CA80] and several parametrizations of this data
exist [VWN80, PZ81, PW92]. Even though the density is clearly not uniform in real systems,
the LDA has often been found to yield accurate predictions of experimental results, see, e.g.,
Ref. [KK08] and references therein. Nevertheless, the LDA systematically and significantly
overestimates atomization energies [PA82] and underestimates bond lengths [PA82] and band
gaps [PL83].

3.2 Generalized Gradient Approximation

A natural extension of the LDA is to include the gradient expansion for slowly varying densities
[PK03] that we discuss in detail in Section 5.5. However, direct use of the second-order gradient
expansion as the next systematic correction for slowly-varying densities results in spurious
positive correlation energies for atoms [MB68] and worsens Exc in general. This issue is solved
by considering Generalized Gradient Approximations (GGAs) of the form

EGGA
xc [n] = Ax

∫
n4/3FGGA

xc [n,∇n] d3r , (3.2)

where the enhancement factor Fxc accounts for the local enhancement of the exchange-correlation
energy with respect to the LDA. That is, Fxc = 1 everywhere leads back to the LDA. In
nonempirical density functionals, Fxc is constructed based on the gradient expansion and further
known properties of the exact functional [PBE96, PK03, SRP15, KLP23], see also Section 5.4.
Although GGAs represent a significant improvement over the LDA, e.g., in terms of atomization
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Chapter 3 Traditional Semilocal Functionals

energies and bond lengths [PBE96, PK03], both share several fundamental limitations.

3.3 Limitations of LDA and GGA

At the heart of many of the problems encountered with LDA and GGA are the presence of
self-interaction and the absence of a derivative discontinuity in the exchange-correlation energy
[KK08, CMSY12]. Both of these issues are interlinked and their wide-reaching consequences
are often influenced by both. Nevertheless, we first introduce the concepts of self-interaction
and derivative discontinuity separately before discussing their consequences together.

3.3.1 Self-Interaction

The origin of the self-interaction lies in the fact that the classical Coulomb interaction implies
the Hartree-like energy

1
2

N

∑
i, j
i̸= j

∫∫ |ϕi(r)|2|ϕ j(r′)|2
|r− r′| d3r d3r′ , (3.3)

which becomes the Hartree energy of equation (2.3) only if the terms with i = j are added to the
sum. These supernumerary (i = j)-terms in equation (2.3) resemble an artificial interaction of
each orbital with itself. This has immediate consequences in real systems. Most prominently,
in one-electron systems the Hartree energy does not vanish, while there clearly should be no
electron-electron interaction at all [PZ81].

In the exact exchange-correlation functional this spurious self-interaction is exactly com-
pensated for by the exchange part, Eq. (2.9). Thus, for any one-electron density n1e the exact
exchange-correlation functional satisfies the conditions [PZ81]

EH[n1e]+Exc[n1e] = 0 , (3.4)

Ec[n1e] = 0 . (3.5)

A DFA that violates condition (3.4) is said to suffer from ”one-electron self-interaction”.
Semilocal DFAs do not possess the nonlocality inherent to the Hartree energy and are therefore
unable to exactly compensate for this spurious self-interaction. For LDA and GGA, the situation
is even worse: they introduce an additional self-interaction in their correlation part, as the latter
does not vanish in one-electron regions. That is, they violate condition (3.5). This spurious
self-interaction of the correlation part is referred to as ”self-correlation”. As a consequence
of violating the conditions (3.4) and (3.5), LDA and GGA suffer from a self-interaction error
[PZ81, KKP04, PRSP15]. We discuss in Chapter 4, how more advanced semilocal DFAs can
reduce the self-interaction error by resolving the issue of self-correlation and reducing the
one-electron self-interaction.

In the Literature also the term ”many-electron self-interaction” appears [MSCY06, RPC+06].
This, however, describes a separate issue [RPC+07, SK16], namely the straight-line condition

12



3.3 Limitations of LDA and GGA

discussed in the next section, compare also Ref. [KK20].

3.3.2 Derivative Discontinuity

The discovery of the derivative discontinuity of the exchange-correlation energy dates back
to 1982, when the Hohenberg-Kohn theorem was extended to non-integer particle numbers
[PPLB82]. This extension is mathematically necessary to properly define the variational equation
(2.1) and the functional derivative δE[n]/δn. To this end, consider an integer N0 ∈ N0 and let
0<η < 1. Then, the energy functional is generalized to non-integer particle numbers N =N0+η

using the constrained search formalism [Lev79, Val80, PPLB82], in which the total energy
is minimized with respect to number-conserving variations of the density. Consequently, the
ground state energy is the lowest energy that a statistical mixture of the pure N − 1 and N
electron ground states can attend. This yields

E(N) = (1−η)E(N0)+ηE(N0 +1). (3.6)

Obviously, E(N) is piecewise linear between integer particle numbers, which implies the so-
called straight-line condition for DFAs [PPLB82]. It is the deviation from this straight-line
condition that is sometimes referred to as the many-electron self-interaction error mentioned in
the previous section.

The piecewise linearity of E(N) implies that E(N) is continuously differentiable everywhere
except for integer particle numbers. There, its slope changes discontinuously, giving rise to

∆g = lim
η→0+

(
∂E
∂N

∣∣∣∣
N0+η

− ∂E
∂N

∣∣∣∣
N0−η

)
. (3.7)

∆g carries the following physical meaning [PYB+17]. Consider the removal of an electron from
the N0-particle system. This requires the energy

I(N0) = E(N0 −1)−E(N0) , (3.8)

which is called the ionization potential. On the other hand, the energy required to add an electron
to the system is the electron affinity

A(N0) = E(N0)−E(N0 +1) . (3.9)

Comparison of Eqs. (3.6)–(3.9) shows that ∆g equals the fundamental gap I −A, i.e.,

∆g = I(N0)−A(N0) . (3.10)

In order to gain further insights, we analyze which parts of the energy functional E[n] contribute
to the discontinuity on the right-hand side of Eq. (3.7), and thus to the fundamental gap. To this
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end, reconsider the Kohn-Sham partitioning of the total energy, Eq. (2.6). Obviously, the terms

δEH[n]
δn(r)

= vH(r) and
δ
∫

vext(r′)n(r′) d3r′

δn(r)
= vext(r)

are continuous in the density. Therefore, the discontinuity at integer particle numbers must
result from the contributions of Ts and Exc. Consequently, the fundamental band gap splits into
[PL83, SS83]

∆g = lim
η→0+

(
δTs[n]
δn(r)

∣∣∣∣
N0+η

− δTs[n]
δn(r)

∣∣∣∣
N0−η

)
+ lim

η→0+

(
δExc[n]
δn(r)

∣∣∣∣
N0+η

− δExc[n]
δn(r)

∣∣∣∣
N0−η

)

=: ∆KS +∆xc . (3.11)

Here, the contribution due to the noninteracting kinetic energy Ts is called the Kohn-Sham gap
∆KS, as it corresponds to the energy difference between the lowest unoccupied (LU) and the
highest occupied (HO) Kohn-Sham eigenvalue at integer electron number [KK08],

∆KS = εN0+1(N0)− εN0(N0) = εLU − εHO. (3.12)

The second term in Eq. (3.11), ∆xc, is the derivative discontinuity [PL83, SS83]. It is well estab-
lished that the derivative discontinuity is non-vanishing for the exact functional [PL83, Per85,
GSS86] and has significant physical consequences [PL83, Per85, GSS86, MK05, GMR06b,
GMR06a, YCMS12, PYB+17, YPSP16, AGC+23]. In particular, Eqs. (2.8) and (3.11) imply
that the derivative discontinuity causes a spatially uniform jump in the exchange-correlation
potential when the particle number crosses an integer [PPLB82, PL83, SS83],

lim
η→0+

(
vxc(r)

∣∣∣∣
N0+η

− vxc(r)
∣∣∣∣
N0−η

)
= ∆xc . (3.13)

Thus, an infinitesimally small change of the density at any point r can lead to a finite global
change of the potential vxc. To distinguish this type of nonlocality from the nonlocality inherent
to the Hartree energy, the nonlocality associated with the derivative discontinuity is often referred
to as ultranonlocality [Pub2]. For LDA and GGA, the second term in Eq. (3.11) vanishes, because
in both Exc[n] depends continuously on the density. Therefore, these traditional semilocal DFAs
lack the derivative discontinuity and the physics it conveys.

3.3.3 Consequences

Underestimation of band gaps

An important consequence of the missing derivative discontinuity is that LDA and GGA
systematically underestimate the band gaps, i.e., fundamental gaps, of solids [PL83]. Figure 3.1
illustrates this by comparing the band gaps of LDA (with the correlation part as parametrized
by Perdew and Wang [PW92]) and the popular GGA PBE [PBE96] to experimental band
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3.3 Limitations of LDA and GGA

gaps. Additionally, we show the highly accurate Kohn-Sham gap of sodium chloride from
Ref. [AGC+23] that was obtained by inversion of a QMC density. Figure 3.1 shows that LDA
and GGA provide reasonable approximations to the Kohn-Sham gap [Per85], but completely
miss the derivative discontinuity ∆xc. This systematic failure of the traditional semilocal density
functionals became known as “the band gap problem of DFT” [PL83, SS83, SS85, Per85].

We should note that the (range-separated) hybrid functional HSE06 [HSE03, HSE06, KVIS06],
when appropriately evaluated, has been shown to provide much more reliable band gaps than
LDA and GGA [CC10], albeit at a considerably higher computational cost, especially in solids.
Therefore, the notion “band gap problem of semilocal DFT” would be more precise at this point.
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Figure 3.1: Band gaps of solids for LDA and the GGA PBE [PBE96] (calculated using the BAND code
[SCM23b]) compared to experimental data (taken from [Pub1]). The dotted line illustrates agreement with
the experimental values. The green cross marks the highly accurate Kohn-Sham gap of sodium chloride
from Ref. [AGC+23]. The difference between this accurate Kohn-Sham gap and the experimental gap
illustrates the derivative discontinuity ∆xc.

To understand the physical origin of the band gap problem of DFT, we first need to clarify the
physical meaning of the Kohn-Sham eigenvalues and how band gaps are usually calculated from
Kohn-Sham DFT. Although the Kohn-Sham eigenvalues were initially introduced only as math-
ematical objects, at least the highest occupied eigenvalue has a precise physical interpretation
[PL83]: It is minus the ionization potential [Jan78], i.e.,

I =−εHO . (3.14)
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For the lowest unoccupied eigenvalue the Eqs. (3.10)–(3.12) then imply

A =−(εLU +∆xc) . (3.15)

Thus, the Kohn-Sham eigenvalue gap –even for the exact density functional– does not yield
the fundamental gap ∆g = I −A, but the Kohn-Sham gap ∆KS = ∆g −∆x [SS83, PL83, GSS88].
In solids, the eigenvalue gap becomes the band gap. However, the experimental band gap
corresponds to the fundamental gap, whereas the Kohn-Sham gap is only a mathematical object
without direct physical meaning. Consequently, also the band gaps of solids lack ∆xc when they
are calculated within the Kohn-Sham scheme [SS85, Per85]. Comparison of Eqs. (3.8) and (3.9)
shows that ∆g = E(N +1)+E(N −1)−2E(N), i.e., in finite systems, the fundamental gap can
be calculated from separate Kohn-Sham calculations for the (N −1)-, N-, and (N +1)-particle
ground states, respectively. However, this does not apply to the band gaps of solids, as solids are
usually modeled using periodic boundary conditions and therefore with an infinite number of
electrons.

Thus, for the calculation of band gaps in practice, we need a formalism that includes the
derivative discontinuity in the eigenvalue gap. Consequently, for band gap calculations, one
usually switches to a so-called generalized Kohn-Sham scheme [SGV+96], where the energy is
no longer minimized with respect to the density, but with respect to the orbitals, and ∆xc can
be absorbed in the generalized Kohn-Sham eigenvalue difference. We introduce generalized
Kohn-Sham schemes in more detail in the context of orbital-dependent exchange-correlation
functionals in Section 4.2.2. In fact, we explain in Chapter 4 why orbital dependence is the key
to incorporating the derivative discontinuity in the (generalized Kohn-Sham) eigenvalue gap and
thus to more accurate band gaps. This is emphasized in [Pub1], where we demonstrate that the
derivative discontinuity can be fully included in the orbital-dependent semilocal meta-GGAs.
For LDA and GGA, however, switching to a generalized Kohn-Sham scheme does not help
because LDA and GGA miss the derivative discontinuity anyway.

To avoid confusion, we should emphasize that there are two distinct sources of errors when
calculating band gaps from DFT eigenvalue differences [PYB+17]. On the one hand, the
exchange-correlation potential and the eigenvalue gap of the Kohn-Sham formalism do not
include the derivative discontinuity. This is a characteristic of the formalism that is usually
circumvented by switching to a generalized Kohn-Sham scheme. On the other hand, the chosen
DFA can additionally introduce errors for the Kohn-Sham gap and/or the size of the derivative
discontinuity. These errors are characteristics of the selected approximation to the exact Exc[n].

Delocalization error

Another noteworthy consequence of the self-interaction error and a missing derivative discontinu-
ity is the tendency of LDA and GGA to overly delocalize electrons. This so-called delocalization
error [MSCY08, CMSY08] was recently even claimed to be the “greatest outstanding challenge
in DFT” [BADJ23]. Its relation to the self-interaction error and a missing derivative discontinuity
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3.3 Limitations of LDA and GGA

can be understood as follows [KK20]. On the one hand, due to the artificial interaction of each
orbital with itself, the total energy is lowered when the orbital is smeared out, which corresponds
to a more delocalized charge. This manifests itself, for example, in excessively delocalized LDA
and GGA densities of the localized d and f states in transition metals [Kul15, MW16, LK19].
On the other hand, due to the missing derivative discontinuity, there is no potential barrier that
stops the charge distribution from splitting into fractional contributions centered around different
nuclei, thereby delocalizing the charge.

As an illustrative example for the latter, consider a combined system of two subsystems in
an external electric field. As we move the subsystems apart, each subsystem must contain an
integer number of electrons. But what happens if we subsequently increase the external electric
field? When the subsystems are sufficiently far apart, no charge should be transferred until
the strength of the external electric field exceeds the difference between the electron affinity
of the acceptor and the ionization potential of the donor [Per90]. This requires a finite step in
the exchange-correlation potential that counteracts the external field and prevents a fractional
transfer of charge [KKP04]. This field-counteracting potential barrier is induced by the derivative
discontinuity and is one central objective of study in [Pub2]. If this potential barrier is missing,
such as in LDA and GGA, the total energy is minimized by delocalizing the charge distribution
of one electron over both subsystems, leading to fractional electron numbers in both subsystems.
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CHAPTER 4

Orbital-Dependent Semilocal Functionals

4.1 Meta-Generalized Gradient Approximations

Additionally to the more fundamental shortcomings of LDA and GGA discussed in the previous
chapter, these traditional semilocal functionals are typically only accurate for either molecules
or solids [PRC+08]. These limitations, particularly the self-correlation, were the motivation
for adding further semilocal ingredients to the enhancement factor, which led to the class of
meta-GGAs [Bec88, Bec96, VS98, PKZB99, TPSS03, ZT06, PRC+09, SRP15, TM16, DFC16,
AK19, FKN+20]. In addition to the density and its gradient, meta-GGAs also depend on (the
gradient of) the occupied orbitals via the noninteracting kinetic energy density (as obtained from
Eq. (2.5) via partial integration)

τ(r) =
1
2

N

∑
j=1

∣∣∇ϕ j(r)
∣∣2 . (4.1)

As we explain in Sections 4.3, 5.1, and 5.3, this form of orbital dependence is the key that makes
nonlocal features accessible to semilocal DFAs [EH14, AK19, Pub1, Pub2, MFH10, Pub4].

Historically, functionals that depend on the Laplacian of the density (rather than on the kinetic
energy density) are also referred to as meta-GGAs. However, these differ qualitatively from
kinetic energy dependent functionals, as they can not provide the same form of nonlocality, in
particular no ultranonlocality at all. Therefore, throughout this thesis we neglect the dependency
on the Laplacian of the density and consider only meta-GGAs of the form

EmGGA
xc [n] = Ax

∫
n4/3FmGGA

xc [n,∇n,τ] d3r . (4.2)

In practice, meta-GGAs are parametrized in composite variables that depend on n, ∇n, and τ and
allow for a physical interpretation. These are usually the Wigner-Seitz radius rs = (4πn/3)−1/3

for the density dependence and the reduced density gradient s = |∇n|/[2(3π2)1/3n4/3] for the
dependence on the density gradient. For the dependence on the kinetic energy density τ , z =
τW/τ or α =

(
τ − τW

)
/τunif are often used, where τW = |∇n|2/8n is the von Weizsäcker kinetic

energy density and τunif = (3/10)(3π2)2/3n5/3 is the kinetic energy density of the uniform
electron gas. To generate the spin-dependent version of Eq. (4.2), one usually applies the
spin-scaling relation of exact exchange [OP79], Ex[n↑,n↓] = 1

2 Ex[2n↑]+ 1
2 Ex[2n↓]. The exact
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spin dependence of correlation is not known. It is therefore often modeled in terms of the
spin-polarization ζ = (n↑−n↓)/(n↑+n↓).

One major advantage of meta-GGAs over LDA and GGA is that meta-GGAs can distinguish
more qualitatively different regions of space [SXR12, SXF+13]. In particular, the use of τ

enables to detect regions of space that are dominated by a single orbital [Bec88, BE90], so-called
iso-orbital regions. This is possible because τW is the iso-orbital limit of τ , i.e., τ = τW if
n = |ϕi|2 with a single orbital ϕi. As a consequence, z = 1 and α = 0 indicate regions of space
dominated by a single orbital, such as the free hydrogen atom, the hydrogen molecule, or the
region close to the nucleus where the 1s orbital dominates over all others. Therefore, such
variables are often called iso-orbital indicators. Furthermore, for a homogeneous electron gas
the gradient of the density vanishes, which implies s = 0 and τW = 0. Thus, z = 0 and α = 1,
together with s = 0, indicate regions of homogeneous density such as in metallic bonds. Finally,
α has the additional advantage over many other iso-orbital indicators that it can detect regions
of large density overlap between closed shells such as the bond center of noncovalent bonds,
since α ≫ 1 in such regions [SXF+13].

Moreover, the kinetic energy density based iso-orbital indicators enable meta-GGAs to
significantly reduce the self-interaction error. This is because, one the one hand, they allow
to eliminate self-correlation by making the correlation vanish in one-electron regions. One
the other hand, they also make it possible to use the hydrogen atom as a model system for
the iso-orbital limit of the exchange energy [TPSS03, SRP15, AK19]. The latter makes the
exchange part approximately free from one-electron self-interaction for compact one-electron
densities [SBW+19].

Their overall higher flexibility allows meta-GGAs to satisfy more properties of the exact
functional simultaneously [SRP15, KLP23], which is for example realized in the SCAN meta-
GGA [SRP15]. Meta-GGAs can therefore achieve higher accuracy than LDA and GGA for a
variety of properties (see, e.g., Refs. [ZT06, FKN+20]), in particular for the geometries and
energies of diversely (including weakly) bonded molecules [SRZ+16] and solids [IW18].

4.2 Different treatments of meta-GGAs

Besides their overall higher flexibility and accuracy, (kinetic energy dependent) meta-GGAs are
conceptually different to LDA and GGA for the following reason. In contrast to these traditional
semilocal DFAs that depend only on the density and its derivatives, the potential of meta-GGAs
(and orbital-dependent exchange-correlation functionals in general) can not be calculated via
Eq. (2.8) straightforwardly. Instead, one can either obtain the unique multiplicative Kohn-
Sham potential via the optimized effective potential (OEP) method or resort to a generalized
Kohn-Sham scheme. In the latter, the potential is obtained by minimizing the total energy with
respect to the orbitals instead of the density. Thus, calculating the functional derivative of the
exchange-correlation energy with respect to the orbitals is sufficient. The latter can be done
straightforwardly also for functionals that depend on the kinetic energy density.
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We briefly discuss these two approaches in the following. While generalized Kohn-Sham
schemes are used in the majority of applications today, the OEP method is particularly important
for conceptual reasons. For example, we exploit their subtle differences in [Pub1] to gain
valuable insights into the physical origin and justification of our computational predictions.

4.2.1 The Optimized Effective Potential and the Krieger-Li-Iafrate
Approximation

In this section, we briefly introduce the OEP method [SH53, TS76] and the Krieger-Li-Iafrate
(KLI) approximation to the OEP [KLI92]. For a detailed derivation and comprehensive
discussion of the OEP method and the KLI approximation, see Ref. [KK08]. To calculate
the potential of an orbital-dependent exchange-correlation functional, we apply the chain rule to
the spin-dependent version of Eq. (2.8) to obtain [GL94]

vxc,σ (r) = ∑
α,β=↑,↓

Nα

∑
i=1

[∫∫
δExc[{ϕ jτ}]

δϕiα(r′)
δϕiα(r′)

δvKS,β (r′′)
δvKS,β (r′′)

δnσ (r)
d3r′ d3r′′+ c.c.

]
, (4.3)

where c.c. denotes the complex conjugate. Next, we identify δvKS,β (r′′)/δnσ (r) with the
inverse of the static non-interacting response function and evaluate the functional derivative
δϕiα(r′)/δvKS,β (r′′) using first-order perturbation theory (see Ref. [KK08] for details) to obtain
an integral equation for the optimized effective potential vOEP

xc,σ ,

Nσ

∑
i=1

∫
ϕ
∗
iσ (r

′)
[
vOEP

xc,σ (r
′)−uxc,iσ (r′)

]
GKS,iσ (r,r′)ϕiσ (r) d3r′+ c.c.= 0 , (4.4)

with orbital-specific potential operators

uxc,iσ (r) =
1

ϕ∗
iσ (r)

δExc[{ϕ jτ}]
δϕiσ (r)

(4.5)

and the Kohn-Sham Green’s function

GKS,iσ (r,r′) =
∞

∑
k=1,k ̸=i

ϕkσ (r)ϕ∗
kσ
(r′)

εiσ − εkσ

. (4.6)

Solving the OEP equation (4.4) yields the unique multiplicative exchange-correlation potential
vOEP

xc,σ associated with the orbital-dependent DFA in the Kohn-Sham formalism. However,
the OEP equation is an integral equation that needs to be solved iteratively and involves
the Kohn-Sham Green’s function that runs over all occupied and unoccupied orbitals and
eigenvalues. Therefore, solving the OEP equation directly is computationally extremely
demanding. Consequently, approximations to the Green’s function and thus to the OEP are
commonly used. The most important one in the context of this thesis, and also the most popular,
is the KLI approximation [KLI92].

In the KLI approximation, the eigenvalue differences in the denominator of the Green’s func-
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tion are approximated by a single constant for all orbitals of the same spin, i.e., εiσ − εkσ = ∆εσ

for all i,k. This simplifies the Kohn-Sham Green’s function to

GKS,iσ (r,r′) =
∞

∑
k=1,k ̸=i

ϕkσ (r)ϕ∗
kσ
(r′)

∆εσ

=
1

∆εσ

[
δ (r− r′)−ϕiσ (r)ϕ∗

iσ (r
′)
]
, (4.7)

where δ (r− r′) is the Dirac delta function. In the second step, the closure relation of the
Kohn-Sham orbitals,

∞

∑
k=1

ϕkσ (r′)ϕ∗
kσ (r) = δ (r− r′) , (4.8)

was used. Substituting this approximated Green’s function into the OEP equation (4.4) and
solving it for vOEP

xc,σ leads to the KLI equation

vKLI
xc,σ (r) =

1
2nσ (r)

Nσ

∑
i=1

|ϕiσ (r)|2
[
uxc,iσ (r)+

(
v̄KLI

xc,iσ − ūxc,iσ
)]

+ c.c. , (4.9)

where v̄KLI
xc,iσ and ūxc,iσ denote the orbital averages

v̄KLI
xc,iσ =

∫
ϕ
∗
iσ (r)v

KLI
xc,σ (r)ϕiσ (r) d3r , ūxc,iσ =

∫
ϕ
∗
iσ (r)uxc,iσ (r)ϕiσ (r) d3r . (4.10)

The KLI equation (4.9) is still an integral equation because of the orbital average v̄KLI
xc,iσ on the

right-hand side. Nevertheless, solving the KLI equation is considerably less time consuming
than solving the exact OEP equation. Moreover, the eigenvalues obtained within the KLI
approximation are usually a good approximation to those obtained with the exact OEP method
[KP03].

Both the OEP method and the KLI approximation to the OEP enable the treatment of orbital-
dependent exchange-correlation functionals within the Kohn-Sham formalism. While this has
several advantages, most notably a unique multiplicative potential, it has the drawback that the
band gaps calculated within OEP or KLI do not correspond to the band gaps of real systems for
a fundamental reason: they lack the derivative discontinuity (compare Section 3.3.3). Therefore,
band gaps are usually calculated using generalized Kohn-Sham schemes [PYB+17, YPSP16].

4.2.2 Generalized Kohn-Sham schemes

Conceptually, a generalized Kohn-Sham scheme maps the real interacting system to a partially
interacting model system that can be represented by a single Slater determinant [SGV+96] (in
contrast to a noninteracting model system in the case of conventional Kohn-Sham). The basic
idea of generalized Kohn-Sham schemes is that choosing a proper interacting model system that
includes parts of the exchange and correlation effects leads to a smaller energy component that
remains to be approximated. In practice, this translates to using a different splitting between the
explicitly orbital-dependent and explicitly density-dependent parts in Eq. (2.6), i.e., using other
explicitly orbital-dependent parts than the noninteracting kinetic energy.

22



4.2 Different treatments of meta-GGAs

Formally, a generalized Kohn-Sham scheme is obtained by defining an energy functional of
the orbitals S[{ϕ jσ}] and an associated energy functional of the density FS[n] that is obtained
from the Slater determinant that minimizes S and under the constraint that the orbitals yield the
prescribed density n [SGV+96] (see also [KK08, KSRAB12]),

FS[n] = min
{ϕ jσ}→n(r)

S[{ϕ jσ}] . (4.11)

The minimizing orbitals {ϕ jσ} play a role similar to the Kohn-Sham orbitals. Similar to
Eqs. (2.2) and (2.6), the total energy can then be written as

E[n] =
∫

vext(r)n(r) d3r+FS[n]+RS[n] (4.12)

with a remainder energy functional RS[n]. Analogous to the Kohn-Sham equations (2.4), one
obtains a set of generalized Kohn-Sham equations

[
vext(r)+OS[{ϕ jσ}]+ vR,σ (r)

]
ϕiσ (r) = εiσ ϕiσ (r) (4.13)

with the generalized Kohn-Sham eigenvalues εiσ , the generally nonlocal, orbital-specific operator
OS[{ϕ jσ}] that depends on the choice of S (but not on vext or vR), and a local remainder potential

vR,σ (r) =
δRS[n]
δnσ (r)

. (4.14)

Importantly, the generalized Kohn-Sham equations (4.13) are as rigorous as the Kohn-Sham
equations (2.4) in the sense that their solution for the orbitals retains the ground-state density of
the original interacting system. The generalized Kohn-Sham system is specified by the choice
for S[{ϕ jσ}] and in analogy to approximating Exc[n] in conventional Kohn-Sham, one could in
principle seek for approximations to RS[n]. In practice, however, orbital-dependent functionals
such as meta-GGAs, self-interaction corrected functionals, and hybrid functionals are usually
still based on explicit approximations to Exc[n,{ϕ jσ}] [KK08], where we deliberately denote
the orbital dependence explicitly, and not RS[n].

The conventional Kohn-Sham system is the particular generalized Kohn-Sham system in which
S is the Slater-determinant expectation value of the kinetic energy operator, i.e., S[{ϕ jσ}] =
Ts[{ϕ jσ}] [SGV+96]. In this case, OS is the single-particle kinetic energy operator OS[{ϕ jσ}] =
−1

2 ∇2, the remainder energy RS is the sum of the Hartree and the exchange-correlation energy,
and Eq. (4.13) reduces to the conventional Kohn-Sham equations. Consequently, compared to
the conventional Kohn-Sham equations, a general S generates the additional explicitly orbital-
dependent term OS[{ϕ jσ}]ϕiσ + 1

2 ∇2ϕiσ for each orbital ϕiσ .

For an orbital-dependent exchange-correlation energy we thus have two natural choices for S.
One the one hand, we can use the Slater-determinant expectation value of the kinetic energy
operator and obtain the Kohn-Sham potential via the OEP method. On the other hand, we can
additionally assign the orbital-dependent part of the exchange-correlation energy (eventually
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Chapter 4 Orbital-Dependent Semilocal Functionals

plus parts of the only density-dependent part of Exc or the Hartree energy to make it a functional
of a single slater determinant) to S[{ϕ jσ}] (or FS[n] respectively) and the (remaining) density-
dependent part of Exc and EH to the remainder RS[n] [BK18]. The latter approach defines the
generalized Kohn-Sham system for the particular choice of exchange-correlation functional.
Reassuringly, for a DFA that depends only on the density (and its derivatives), the corresponding
generalized and conventional Kohn-Sham systems coincide.

For meta-GGAs in generalized Kohn-Sham, δExc/δϕiσ is a one-particle operator potential.
Thus, S is simply Ts[{ϕ jσ}]+EmGGA

xc [{ϕ jσ}], where the density and its gradient are expressed
in terms of the occupied orbitals {ϕ jσ} via n[{ϕ jσ}] = ∑ j,σ |ϕ jσ |2, while the remainder RS is
the Hartree energy [BK18, RASK23]. The corresponding meta-GGA potential

vmGGA
σ = vloc

σ + vτ
σ (4.15)

consists of the local potential

vloc
σ =

∂exc

∂nσ

−∇ · ∂exc

∂ (∇nσ )
(4.16)

and the differential operator vτ
σ defined by

vτ
σ ϕiσ =−1

2
∇ ·
[

∂exc

∂τσ

∇ϕiσ

]
, (4.17)

where exc = Axn4/3FmGGA
xc is the exchange-correlation energy density (i.e.

∫
exc(r) d3r = Exc).

The generalized Kohn-Sham equations for a meta-GGA thus read
[

vext(r)−
1
2

∇
2 + vτ

σ (r)+ vloc
σ (r)+ vH(r)

]
ϕiσ (r) = εiσ ϕiσ (r) . (4.18)

Obviously, vloc
σ is a local GGA-like potential, while vτ

σ is a nonlocal orbital-dependent kinetic
energy-like differential operator. Therefore, the derivative discontinuity in meta-GGAs is entirely
due to vτ

σ [YPSP16, AK19]. As we discuss in [Pub1], this implies that the τ dependence of
a meta-GGA makes it possible to find suitable generalized Kohn-Sham schemes in which the
exchange-correlation potential includes the derivative discontinuity and the eigenvalue difference
εLU − εHO is a good approximation to the fundamental gap.

Conceptually, there is an important difference between conventional and generalized Kohn-
Sham: unlike conventional Kohn-Sham, where there is a unique exact energy functional and
potential, there are infinitely many exact generalized Kohn-Sham schemes, because for each
S[{ϕ jσ}] and corresponding FS[n], the remainder energy functional RS[n] = Eexact

xc [n]−FS[n]
complements it to the exact exchange-correlation functional of conventional Kohn-Sham.
Nevertheless, once a DFA is chosen, the generalized Kohn-Sham system is fixed, i.e., the choice
of Exc[n,{ϕ jσ}] uniquely determines the corresponding generalized Kohn-Sham equations.

Given that, in addition to loosing a unique reference functional and potential, OS[{ϕ jσ}]+ 1
2 ∇2

is in general an orbital-dependent operator instead of a single multiplicative potential, what is
the advantage of using a generalized Kohn-Sham scheme instead of the conventional Kohn-
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Sham scheme? In a nutshell, the advantage of generalized Kohn-Sham is that OS[{ϕ jσ}]+ 1
2 ∇2

is additionally nonlocal and thus enables the description of (ultra)nonlocal features. Since
OS[{ϕ jσ}]+ 1

2 ∇2 is a nonlocal operator, it can generate the ultranonlocality associated with the
derivative discontinuity, while RS[n] as an explicit functional of the density can not. Therefore,
one can seek for orbital-dependent exchange-correlation approximations and thus orbital-
dependent functionals S that yield a derivative discontinuity of desired size in the sense that
the eigenvalue gap εLU − εHO is a good approximation to the fundamental gap ∆g [SGV+96,
SEKB10, KSRAB12, PYB+17, YPSP16, AK19]. The approximation of the remainder RS also
influences the band gaps, as it changes the local potential. Compared to OS[{ϕ jσ}], however, the
local potential usually only has a minor influence on the eigenvalues. Consequently, choosing a
suitable generalized Kohn-Sham scheme, i.e., a suitable orbital-dependent functional S, is the
key that enables the prediction of reasonable band gaps of solids and HOMO-LUMO gaps of
molecules from generalized Kohn-Sham eigenvalue differences.

4.3 Ultranonlocality from meta-GGAs

Current meta-GGAs with high accuracy for energetic properties of molecules and solids are
still systematically wrong for properties that require a substantial ultranonlocality, such as
experimental band gaps [ZT09, YPSP16]. The reason for this is that although some of these
meta-GGAs include a derivative discontinuity, it is still systematically to small [YPSP16].

To achieve a derivative discontinuity of proper size, the following construction principle was
found [AK19]

∂Fx

∂α
< 0 . (4.19)

The derivation of this construction principle contains one crucial approximation, namely
approximating ∂Fxc/∂α by its average in the “energetically important region”, ∂Fxc/∂α

[AK19, Pub1]. By doing so, one can show that

∆x =−c∂Fx/∂α (4.20)

with a constant c > 0. Here, ∆x is the derivative discontinuity due to the exchange part. Thus,
choosing ∂Fx/∂α < 0 everywhere ensures a positive exchange derivative discontinuity and
the magnitude of ∂Fx/∂α indicates the size of ∆x. The same line of argumentation holds for
exchange and correlation together.

Notably, the exchange part of the TASK meta-GGA [AK19] has been designed based on the
construction principle (4.19). Throughout this thesis, TASK refers to the combination of TASK
exchange with LDA correlation in the parametrization of Perdew and Wang [PW92], as suggested
in Ref. [AK19]. In fact, TASK predicts significantly more realistic band gaps than GGAs and
earlier meta-GGAs [AK19, BSH+20, Pub1] and also provides a substantial improvement over
previous meta-GGAs for further ultranonlocal properties [HSK20, RASK23, Pub2].

However, as we show in Refs. [Pub3, Pub4], TASK systematically underestimates the binding
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strength of energetic bonds, especially weak bonds. Therefore, on the one hand we have meta-
GGAs like SCAN that are quite accurate for energetic bonds and reasonably accurate for weak
interactions, but are systematically wrong for properties that require substantial ultranonlocality,
such as band gaps. On the other hand, we have meta-GGAs like TASK that show a more realistic
treatment of ultranonlocal properties, but systematically underestimate bonding energies and
fail to properly bind weakly bound systems. The ultimate goal of Part II, and of this thesis, is
to resolve this dilemma by constructing a best-of-both-worlds meta-GGA that combines the
description of ultranonlocal properties as with TASK with the description of energetic binding
as with SCAN in a single semilocal density functional.
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A Guide for the Publications
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CHAPTER 5

Towards combined Accuracy for Band Gaps
and Energetic Bonds from meta-GGAs

Part II discusses the main findings of the papers that make up Part III in the following order.
First, in Section 5.1 we show that the TASK meta-GGA predicts accurate band gaps of solids for
the right reason [Pub1], i.e., by including a derivative discontinuity of proper size. Furthermore,
we revisit and refine the construction principle for a sizeable derivative discontinuity given in
equation (4.19) [Pub1, Pub2]. Next, in Section 5.2 we analyze the description of energetic
bonds with TASK and propose a correlation functional to remove the self-correlation of TASK
[Pub3]. In Section 5.3, we work out what is decisive for the description of weak interactions
with meta-GGAs. In particular, we clarify the influence of the kinetic energy density dependence
and deduce a construction principle for the description of short- and intermediate-range van der
Waals interactions [Pub4].

To combine these findings in a new general purpose meta-GGA, we first extend the established
design strategy for nonempirical meta-GGAs [Pub5, Pub4], see Section 5.4. This new design
strategy requires a more flexible form of the gradient expansion [Pub5]. Therefore, we derive
the general form of the gradient expansion in meta-GGAs in Section 5.5.

Finally, we bring all these insights and developments together to construct LAK [Pub5],
a nonempirical meta-GGA that balances nonlocality and energetic binding and combines
accuracy for band gaps, energetic bonds, and weak interactions [Pub5, Pub4]. To highlight this
achievement, we present it in a separate chapter, Chapter 6.
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5.1 Accurate Band Gaps for the Right Reason

We have already explained in Section 3.3.3 why the traditional semilocal DFAs, LDA and GGA,
systematically underestimate the band gaps of solids: they miss the derivative discontinuity for a
fundamental reason. Moreover, we discussed in Section 4.2.2 that meta-GGAs, when evaluated
in a generalized Kohn-Sham scheme, can in principle include the derivative discontinuity through
their orbital dependence. Finally, in Section 4.3 we noted that the TASK meta-GGA predicts
fairly realistic band gaps of solids.

Notably, also GGAs with a more realistic prediction of band gaps have been constructed
[AK13]. To achieve this, however, GGAs must predict artificially increased Kohn-Sham gaps,
since they can not include the derivative discontinuity. Consequently, the predictions of such
GGAs for many other properties deteriorate [LA16, COM14]. Therefore, it is of high interest
to check whether TASK predicts the accurate band gaps for the wrong reason (i.e., mainly
by increasing the Kohn-Sham gap) or for the right reason (i.e., by including the derivative
discontinuity with proper size).

This is the motivation of [Pub1], where we estimate the derivative discontinuity of TASK
by comparing its Kohn-Sham and generalized Kohn-Sham gaps. Figure 5.1 compares the
generalized Kohn-Sham gaps of TASK with its Kohn-Sham gaps (as obtained within the KLI
approximation to the OEP), the LDA gaps, and the QMC-derived Kohn-Sham gaps for silicon
and sodium chloride from Ref. [AGC+23]. Clearly, the generalized Kohn-Sham gaps of TASK
are much closer to the experimental data than the LDA gaps. Moreover, the Kohn-Sham gaps of
TASK are slightly larger than the LDA gaps and close to the reliable QMC-derived Kohn-Sham
gaps. Thus, TASK predicts both reliable Kohn-Sham gaps and generalized Kohn-Sham gaps
close to fundamental gaps from experiments. Consequently, TASK also predicts a derivative
discontinuity of proper size. This demonstrates that TASK indeed predicts the right band gaps
for the right reason and thus overcomes the “band gap problem of (semilocal) DFT”.

Furthermore, in [Pub1] we revisit the construction principle for a sizeable derivative discon-
tinuity, equation (4.19). To gain insights beyond the underlying averaging approximation, we
analyze which spatial regions and corresponding parameter ranges are most important for the
derivative discontinuity in differently bound solids. Based on these insights, we refine the above
construction principle (4.19) in [Pub5] to

∂Fx

∂α




< 0, everywhere

roughly constant for 0.2 ≲ α ≲ 1.5
. (cp1)

We deliberately write this construction principle for exchange-only to make it more transparent.
However, the same condition applies to Fxc for not too small densities with 0 ≤ rs ≲ 5. In [Pub1],
we further discuss the impact of correlation on the derivative discontinuity and find arguments
for a negative correlation derivative discontinuity. As a third and final result, [Pub1] shows that
TASK predicts reasonable band gaps even for metal-halide perovskites, for which the band gap
is notoriously hard to predict. This demonstrates the transferability of the construction principle
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Figure 5.1: Band gaps of solids with the meta-GGA TASK [AK19] compared to LDA gaps and
experimental data. Left: Small gap systems; Right: Large gap systems. The difference between
the generalized Kohn-Sham (GKS) gaps and the Kohn-Sham (KS) gaps shows the exchange derivative
discontinuity ∆x, illustrated for Kr by a blue arrow. The green crosses mark the QMC-derived Kohn-Sham
gaps from Ref. [AGC+23]. The dotted line illustrates agreement with the experimental values. Modified
from [Pub1].

and its underlying approximation.
The insights from our detailed analysis of the construction principle (4.19) have also con-

tributed to [Pub2]. There, existing meta-GGAs are analyzed with respect to the construction
principle for a sizeable derivative discontinuity. As a proof-of-concept, [Pub2] shows that
by using the construction principle (4.19) in an extreme way, even an exact-exchange like
static response to an external electric field can be obtained from a meta-GGA. This once again
demonstrates the capability of the construction principle to generate ultranonlocality.
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5.2 Accurate Band Gaps and Improved Energetic Bonds

As mentioned above, the TASK meta-GGA in its original form is TASK exchange [AK19]
combined with LDA correlation in the parametrization of Perdew and Wang [PW92]. Despite its
success for band gaps and ultranonlocality, it was already observed in Ref. [AK19] that TASK is
not particularly good for atomization energies. On the one hand, TASK exchange includes the
hydrogen atom as an exact model system, which reduces the one-electron self-interaction. On the
other hand, TASK still contains self-correlation through the use of LDA correlation. The latter
is not only unsatisfactory from a fundamental point of view, but also contributes significantly to
the strong underestimation of binding energies with the TASK meta-GGA [AK19, Pub3].

We therefore suggest in Ref. [Pub3] to combine TASK exchange with a simple corrected
correlation (CC) functional that removes the self-correlation of TASK, while leaving its accuracy
for band gaps unaffected. We refer to this as the TASK+CC meta-GGA. Although TASK+CC
does not reach state-of-the-art meta-GGA accuracy for energetic binding, it significantly
improves over the original TASK functional for atomization energies and reaction barrier
heights [Pub3].

As an illustrative and simple example of density functional construction, we shortly explain
the mechanism of the CC correlation. The CC correlation is based on the iso-orbital indicator z
and the spin-polarization ζ (see Section 4.1 for definitions) and reads

ECC
c [n↑,n↓] =

∫
n(r)εCC

c (r) d3r . (5.1)

with the CC correlation energy density per particle

ε
CC
c (r) =

(
1− z(r)ζ 2(r)

)
ε

LDAc(r) . (5.2)

εLDAc(r) is the LDA correlation energy density per particle. The prefactor (1− zζ 2) in Eq. (5.2)
vanishes if z = 1 and ζ = 1, i.e., in one-electron regions. Thus, εCC

c = 0 in one-electron regions,
which makes TASK+CC free from self-correlation. Both in regions of spin-unpolarized density
(ζ = 0) and in regions of homogeneous density (z = 0), the prefactor is equal to one and LDA
correlation is restored. Consequently, TASK+CC is equivalent to TASK for spin-unpolarized
systems, i.e., in particular for the homogeneous electron gas and for typical solids. In this way,
TASK+CC restores the accuracy of TASK for the band gaps of solids.

To explore the limits of this approach, we also develop and investigate the CCaLDA correlation
that reduces a systematic error of TASK+CC for systems containing hydrogen. However,
this comes at the price of reintroducing self-correlation, which is why we do not consider
TASK+CCaLDA a general purpose meta-GGA.

Finally, our analysis of the performance for bond lengths in Ref. [Pub3] reveals an issue for
weakly bound systems, especially for systems with alkali metals. For such systems, TASK (and
equivalently TASK+CC for spin-unpolarized systems) predicts a far too weak binding. The
situation is even worse for van der Waals systems [Pub4]. As we show in Fig. 5.2 for the argon
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dimer, TASK is even more repulsive than exact (Hartree-Fock) exchange. Unfortunately, even
dispersion corrections [Gri11] are not able to reasonably compensate for such a strong repulsion.
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Figure 5.2: Ar2 binding curves of TASK and exact (Hartree-Fock) exchange compared to highly accurate
CCSDT reference values [JHBV09]. The DFT calculations were performed using a QZ4P basis set in the
ADF code of the Amsterdam Modeling Suite [SCM23a].

Similar observations hold for other weak interactions such as hydrogen bonds [Leh23] and, to
a lesser extent, ionic bonds. Unfortunately, this diminishes the otherwise useful capabilities of
TASK in situations where the dynamics or geometry of weakly interacting systems is important,
such as the description of charge transfer in large donor-acceptor complexes or the noncovalent
adsorption of molecules on a surface, as TASK would often incorrectly predict these systems to
be unstable.
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5.3 Understanding van der Waals Interactions in meta-GGAs

Weak interactions in chemistry include several types of interactions, such as hydrogen bonds and
van der Waals interactions. In the following, we focus on the van der Waals interactions, which
include dispersion interactions in particular. Van der Waals forces originate from spontaneous
dipole moments due to fluctuations in the charge density and therefore even act between neutral
systems without permanent dipole moments. These spontaneous dipole moments generate an
electric field that decays as E ∝ R−3 and that induces a dipole moment dind ∝ R−3 in the other
system. The resulting van der Waals force corresponds to a potential U =−C6R−6 ∝ dindE,
which is the attractive long-range part of the London dispersion interactions [Lon30]. Con-
sidering quadrupole moments and three-body interactions gives rise to terms proportional to
R−8 (quadrupole-dipole), R−10 (quadrupole-quadrupole), and R−9 (three-bodies) and so on.
Consequently, the van der Waals interactions are proportional to −C6R−6 in the long-range,
while the higher order terms contribute in the intermediate range.

Due to the very nature of the London dispersion in charge fluctuations, they can also occur
between completely non-overlapping densities. Therefore, semilocal (or even conventional
hybrid) density functionals can not capture the long-range R−6 decay of the van der Waals
interaction [AT02, RPC05, GHBB16]. Recovering this term within DFT requires to include
long-range correlations between induced density fluctuations. Such a nonlocal treatment of
correlation can be achieved with the random phase approximation [EF11, TTG21]. However, the
use of unoccupied orbitals in the random phase approximation causes a considerable increase in
computational cost, even compared to hybrid functionals. Alternatively, a DFA can be combined
with an additional method for the explicit treatment of dispersion effects, such as a nonlocal
density-based correlation functional [DRS+04, DRS+05, VVV10, SGDG13] or an a posteriori
dispersion correction [Gri04, BJ05, TS09, Gri11]. For comprehensive reviews on the explicit
modeling of dispersion in electronic structure calculations, see, e.g., Refs. [GHBB16, SVVT19].

However, the exact density functional (that is unknown, but whose existence is guaranteed
by the Hohenberg-Kohn theorem [HK64]) describes all electron-electron interactions exactly,
including weak interactions. As we discuss in [Pub4], it is therefore desirable, both from a
fundamental perspective and for practical considerations, to have the DFA itself treat dispersion
interactions as well as possible, just like the exact functional would do.

Similar to the case of ultranonlocality, the traditional semilocal DFAs lack the required nonlo-
cality to describe weak interactions. However, while in the LDA this leads to an overestimation
of weak interactions, typical GGAs underestimate them. In particular, both do not provide an
appropriate description of the short- and intermediate-range van der Waals interactions. Once
more, meta-GGAs can help to provide the required nonlocality, as first observed for the M06-L
meta-GGA [ZT06, MFH10]. By virtue of their α dependence or, more generally, their kinetic
energy density dependence, meta-GGAs can discriminate between covalent and dispersion
interactions [MFH10, SXF+13]. This makes it possible for meta-GGAs to capture the short- and
intermediate-range van der Waals interactions [SRZ+16, YKC19]. In situations where a precise
description of the long-range van der Waals interactions is also important, an additional method
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that only covers the long-range terms, most importantly the −C6R−6 term, is then sufficient
[PYPS16, PBSP17].

Although several meta-GGAs provide an improved description of weak interactions [ZT06,
SXF+13, SRP15] by recognizing different types of bonds through their kinetic energy de-
pendence [MFH10, SXF+13, YKC19], the underlying mechanism is not yet well understood.
In fact, an earlier study on the impact of the α dependence on the description of weakly
interacting systems found unclear results [SXF+13]: One the one hand, the authors argue that a
monotonically decreasing dependence on α would increase the binding of weakly interacting
systems at the example of the MS2 meta-GGA [SHX+13] compared to GGAs. On the other
hand, they note in the supplementary material that the meta-GGA MS1 [SHX+13], which falls
more strongly with α than MS2 but is otherwise comparable, predicts less binding than MS2.

In [Pub4] we therefore aim to understand what is decisive for the description of weak
interactions in meta-GGAs, and in particular to clarify the role of the kinetic energy density
dependence. To this end, we perform a detailed analysis of the important parameter ranges,
especially for the reduced density gradient s and the iso-orbital indicator α , see Fig. 2 in
[Pub4]. There, we study the argon dimer as a well-established model systems for van der Waals
interactions [LG93, VMG02, JWD04, TP05, RPC05, KB09, YB10, TH13]. In addition to s
and α , we compare the Wigner Seitz radius rs and the enhancement factors of the meta-GGAs
SCAN, TASK, and LAK. From our analysis, we conclude that (1) ∂Fxc/∂ s > 0 increases the
binding if s ≲ 1.2 and decreases the binding if s ≳ 1.2, (2) ∂Fxc/∂α < 0 for α ≳ 0.4 decreases
the binding of weakly interacting systems, and (3) the α dependence for α ≲ 0.4 is of minor
importance for the binding, because, except for the core region, α rarely becomes smaller than
0.4 in both the argon atom and dimer.

Our finding (1) is in line with Refs. [JBT21, JCBT24], where the authors show that in GGAs
local maxima in the s dependence of the enhancement factor near s = 1.2 (with the precise
value depending on the system of study) are decisive for the description of weakly interacting
systems. Moreover, finding (1) is consistent with Ref. [YKC19], where the authors point out the
importance of inflection points in the s dependence of the enhancement factor for the description
of weakly interacting systems. Furthermore, finding (2) aligns with the observation noted in the
supplementary material of Ref. [SXF+13]. In fact, our analysis can also explain the stronger
binding of MS2 for weakly interacting systems compared to GGAs as a consequence of its
strongly reduced increase in s for s ≳ 1.2 combined with a comparably small dependence on α ,
compare Fig. 2 in Ref. [SHX+13].

However, our conclusions differ from earlier findings for GGAs [LG93, ZPY97, MLL09,
KB09, Coo10, PBJ21], where the large-gradient behavior of exchange has been found to be
decisive for the description of weakly interacting systems. This originates in a fundamental
difference between GGAs and meta-GGAs. Because the gradient expansion in GGAs fixes the s
dependence for small s, different GGAs are merely different for small and medium values of
s. Consequently, their behavior for large s, although a comparatively small contribution to the
total energy, can become decisive for weak interactions. In meta-GGAs, the gradient expansion
offers much more flexibility (as we discuss in Section 5.5) and the s dependence in meta-GGAs
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can differ already for small values of s. Therefore, the details of finding (1) become important
and dominate over the large-gradient contributions.

Moreover, our findings (1) and (2) explain why TASK predicts such a strong repulsion for
weakly bound systems. On the one hand, finding (2) implies that the construction principle for
proper ultranonlocality of TASK, ∂Fx/∂α < 0, as well as its refined version (cp1), leads to a
significant repulsion in weakly bound systems. On the other hand, also the s-dependence of
TASK leads to increased repulsion, as one can see by comparing finding (1) with Fig. 2(b) of
[Pub4]. In order to obtain an appropriately ultranonlocal meta-GGA that satisfies (cp1) and at
the same time reasonably predicts weak interactions, we thus need a construction principle that
increases the binding strength of van der Waals systems.

Fortunately, our analysis enables us to deduce the following construction principle for a proper
description of the short- and intermediate-range van der Waals interactions in ultranonlocal
meta-GGAs [Pub5, Pub4]

∂Fxc

∂ s

∣∣∣∣
α=1




> 0 for 0.5 ≲ s ≲ 1.2

< 0 for s ≳ 1.2
. (cp2)

Both construction principles, (cp1) and (cp2), are realized in the Lebeda-Aschebrock-Kümmel
(LAK) meta-GGA [Pub5]. In Fig. 5.3, we show the binding curves of PBE, SCAN, M06-L,
TASK, and LAK for the argon dimer and the krypton dimer, well-established model systems for
studying van der Waals interactions [LG93, VMG02, TP05, RPC05, GÁ07, KB09, JBSD09,
TH13, Goe15]. For comparison, we also show highly accurate CCSDT reference data [JHBV09,
JHBV16]. The remarkable accuracy of LAK in this paradigm situation of weak interactions
demonstrates the capability of the construction principle (cp2) in capturing the nonlocality
associated with the short- and intermediate-range van der Waals interactions [Pub4].
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Figure 5.3: Ar2 and Xe2 binding curves of LAK compared to selected semilocal DFAs and highly accurate
CCSDT reference values [JHBV09, HJB17]. Taken from [Pub4].
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5.4 Enhancement Factor Engineering: Density Functionals based on
Insights from Mathematics, Physics, and Chemistry

This section largely follows a corresponding section of [Pub4]. Following our goal of combining
proper ultranonlocality with the capability to describe short- and intermediate-range van der
Waals interactions in a single meta-GGA, we extend the successful design strategy for nonem-
pirical density functionals (e.g. Refs. [PBE96, PRC+09, SRP15, AK19, FKN+20, FKN+22,
KLP23]) of combining exact constraints with exactness for model systems, so-called appropriate
norms, by the two construction principles (cp1) and (cp2). In the following, we explain the idea
behind this strategy of designing exchange-correlation functionals.

A semilocal exchange-correlation functional, and thus the approximation to all electron-
electron interactions, is completely defined by its enhancement factor. On the one hand, the
exact constraints and model systems restrict the enhancement factor through inequalities, scaling
relations, and exact limits [KLP23]. On the other hand, the degree of nonlocality of a density
funcitonal depends to a large extent on the details of its enhancement factor in between these
limits. However, the exact constraints and model systems provide only limited information
on how the enhancement factor should be modeled in this intermediate range. Therefore, the
construction principles guide the enhancement factor in the intermediate range to ensure proper
nonlocality. In our case, these are the ultranonlocality associated with the derivative discontinuity
(cp1) and the short- and intermediate-range van der Waals interactions (cp2).

Importantly, we consider the graph of the enhancement factor the decisive property that should
be obtained in a nonempirical fashion. Recall that the graph of a function f is the set of ordered
pairs (x,y), where f (x) = y. For example, the graph of Fx is the set {((s,α),Fx(s,α)) |(s,α) ∈
[0,∞)2}. The graph defines the enhancement factor and thus the density functional uniquely.
Experience has shown that a lot of information about the performance of a functional can be
obtained just from the graph [Pub2]. Furthermore, all exact constraints, appropriate norms, and
construction principles also apply to the graph. In addition, we aim for a smooth enhancement
factor, a condition found to be important for more accurate densities and the numerically stability
of density functional approximations [MBS+17a, Kep17, MBS+17b]. Given these conditions,
it is then up to us to find a suitable representation of the graph in terms of functions. While
Occam’s razor advises us to find the simplest possible representation of the graph, it remains a
mathematical problem to find functions that can generate this graph.

Following the argumentation above, the construction principles thus guide the graph of the
enhancement factor in a range in which the graph was not previously determined by physical
reasons. In other words, the construction principles are additional conditions that tailor the
choice of mathematical functions that satisfy the exact constraints and appropriate norms, based
on chemical and physical insights. Because we design our functional via conditions on the graph
of its enhancement factor, we call this design strategy “enhancement factor engineering”.

The motivation for the design strategy of enhancement factor engineering emerges from the
following considerations. From a mathematical point of view, we desire the enhancement factor
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to satisfy as many analytical conditions as possible that we know about from the exact exchange-
correlation functional. This is achieved by adhering to the exact constraints. From a physical
point of view, we additionally want the enhancement factor to be correct for certain model
systems, such as the homogeneous electron gas. These are the appropriate norms. Finally, from
a chemical point of view, we wish to include existing chemical intuition into the enhancement
factor. From the authors’ point of view, taking into account existing knowledge about electronic
structure or chemical intuition does not mean fitting parameters to large databases, but rather
incorporating known facts about the electronic structure of certain types of systems into the
design of the graph of the enhancement factor. This leads to the construction principles. In this
sense, the strategy of enhancement factor engineering combines the insights from mathematics,
physics, and chemistry.
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5.5 The General Form of the Gradient Expansion for Meta-GGAs

The gradient expansion for slowly varying densities is an important exact constraint and the
cornerstone of many nonempirical density functionals [PBE96, PKZB99, TPSS03, PRC+08,
PRC+09, SRP15, TM16, AK19, FKN+20]. Furthermore, it is the origin and justification
of the terms GGA and meta-GGA. For slowly varying densities, the gradient corrections to
the exchange-correlation energy of the homogeneous electron gas are known to second order.
Traditionally, the gradient expansion is written in terms of the reduced density gradient and
reads [GR76, PK03, ED11]

EGE2
xc [n] = Ax

∫
n4/3Cs(rs)µs2 d3r , (5.3)

where µ = 10/81 is the gradient expansion coefficient of the exchange energy. The density
dependence of Cs is known numerically from the random phase approximation [MB68, GR76,
HL86, RG86] and has been parametrized by Rasolt and Geldart [RG86]. Unfortunately, the
gradient expansion in the form of Eq. (5.3) is not compatible with the construction principle
(cp1), because Eq. (5.3) implicitly assumes ∂Fxc/∂α = 0 for s= 0 and α = 1 [SRP15]. However,
this just is a remnant of the fact that Eq. (5.3) became popular for GGAs, which are not suitable
for including ultranonlocal features in the potential anyway. We show in the following that
Eq. (5.3) is only one particular form of the gradient expansion in which the dependence on the
kinetic energy density is suppressed. For meta-GGAs that depend on the kinetic energy density,
reformulations of Eq. (5.3) that explicitly take into account a dependence on the kinetic energy
density naturally appear more suitable.

As we demonstrate in [Pub5], the kinetic energy density dependence in meta-GGAs provides
an additional degree of freedom in the gradient expansion. The origin of this additional freedom
lies in the fact that not only the gradient of the density ∇n, but also the kinetic energy density
τ contributes to the gradient expansion. The expansion of τ to second order in ∇n reads
[BJC76, PSHP86]

τ = τ
unif(1+(5/27)s2 +(20/9)q)+O(∇4) , (5.4)

where q = ∇2n/
[
4(3π)2/3n5/3

]
is the reduced Laplacian of the density and τunif was defined in

Section 4.1. For the iso-orbital indicator α this implies the gradient expansion

α = 1− (40/27)s2 +(20/9)q+O(∇4) . (5.5)

Consequently, meta-GGAs can satisfy the gradient expansion with contributions from both s
and τ or α , respectively. To obtain the general form of the gradient expansion in meta-GGAs,
we rewrite Eq. (5.3) as

EGE2
xc [n] = Ax

∫
n4/3 [Cµs(rs)µss2 +Cµα

(rs)µα(α −1)
]

d3r , (5.6)

where we assume without loss of generality Cµs(0) =Cµα
(0) =Cs(0) (otherwise rescale µs and
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µα ). In [Pub5], we additionally assumed Cµs = Cµα
. This choice was made for the sake of

clarity in the presentation and because in the context of [Pub5], the more general form would
have led to essentially identical coefficients Cµs and Cµα

anyway. Nevertheless, we stick to the
more general form here and only restrict it if necessary.

To recover the correct gradient expansion in the energy, we demand that the right-hand sides
of Eqs. (5.3) and (5.6) are equivalent, that is

∫
n4/3 [Cµs(rs)µss2 +Cµα

(rs)µα(α −1)
]

d3r =
∫

n4/3Cs(rs)µs2 d3r . (5.7)

To relate the density-dependence of the coefficients Cµs and Cµα
to that of Cs, we transform the

term in α − 1 to terms in s2 via (5.5) and integration by parts (considering only terms up to
second order in ∇n and assuming that the density falls off fast enough, as is the case in physically
meaningful systems),

∫
n4/3 [Cµs(rs)µss2 +Cµα

(rs)µα(α −1)
]

d3r

(5.5)
=
∫

n4/3 [Cµs(rs)µss2 +Cµα
(rs)µα

(
−40/27s2 +20/9q

)]
d3r

p.I.
=
∫

n4/3
[
Cµs(rs)µs +

20
27
[
rsC′

µα
(rs)−Cµα

(rs)
]

µα

]
s2 d3r .

(5.8)

Thus, the general form of the gradient expansion yields the same energy as the common one, if

µCs(rs) = µsCµs(rs)+6µµα

[
rsC′

µα
(rs)−Cµα

(rs)
]
. (5.9)

This differential equation finally connects Cµs and Cµα
to Cs. Since Cµs(0) =Cµα

(0) =Cs(0), the
high-density, i.e., rs → 0, limit of Eq. (5.9) yields µ = µs −6µµα . Consequently, µs is uniquely
determined by µα via

µs = (1+6µα)µ . (5.10)

Thus, we can eliminate µs in Eq. (5.9) to obtain

Cs(rs) =Cµs(rs)+6µα

(
rsC′

µα
(rs)+Cµs −Cµα

(rs)
)
. (5.11)

This shows that by choosing µα = 0, we get back to the common gradient expansion using only
s. However, this differential equation does not determine Cµs and Cµα

uniquely for a given µα .
Therefore, in [Pub5] we additionally assume Cµs =Cµα

, which yields

Cs(rs) =Cµα
(rs)+6µα

(
rsC′

µα
(rs)
)
. (5.12)

For µα ̸= 0 this differential equation uniquely determines Cµα
in terms of Cs and µα , as we

discuss in detail in the Supplemental Material of [Pub5]. This completes the derivation of the
general gradient expansion in s and α .
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In summary, this yields the gradient expansion

EGE2
xc [n] = Ax

∫
n4/3 [(1+6µα)µCµα

(rs)s2 +µαCµα
(rs)(α −1)

]
d3r , (5.13)

where µα is a parameter that controls the balancing of the contributions from s and α to the
gradient expansion and Cµα

is uniquely determined by Cs. In particular, for s = 0 and α = 1,
we have ∂Fxc/∂α = µα , i.e., µα controls the size of the derivative that enters (the exchange-
correlation version of) the construction principle for ultranonlocality (cp1). Consequently, µα

allows to adjust the amount of ultranonlocality in a meta-GGA. Additionally, choosing a proper
value for µα allows to satisfy both the gradient expansion and the construction principle (cp1)
[Pub5].

The gradient expansion of the exchange energy alone is known to fourth order [SvB96]. Using
similar arguments, the gradient expansion of the exchange energy can also be partitioned into
contributions from s and α , which is a central pillar in the construction of TASK [AK19].

From a fundamental perspective, the partial integration from (α −1) or q to s2 means that the
energy remains the same, but the energy density and thus the potential changes. In this way, we
can one the one hand achieve similar accuracy for energetic binding as meta-GGAs based on
the traditional form of the gradient expansion, which requires accurate total energies. On the
other hand, we can simultaneously increase the ultranonlocality of the functional, which is, at
fixed particle number, a property of the potential. Additionally, the balanced treatment of the
gradient expansion leads to a smoother enhancement factor and thus increases the numerical
stability [MBS+17a, Kep17, MBS+17b]. Figure 5.4 illustrates in a simplified way how using
the balanced gradient expansion in LAK, the first meta-GGA intentionally based on the gradient
expansion of the form (5.13) with µα ̸= 0, makes it possible to achieve accurate predictions for
both energetic binding and band gaps.

Gradient
Expansion

𝝉𝛁𝐧

numerical stability

band gaps
energetic
binding

LAK

Figure 5.4: Illustration of how the balanced treatment of the gradient expansion in LAK allows to balance
the “seesaw of the gradient expansion” between energetic binding, ultranonlocality (e.g. band gaps), and
numerical stability.
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CHAPTER 6

A new meta-GGA that combines Accuracy for
Band Gaps and Energetic Bonds

Combining all the insights obtained in the previous sections, we have constructed the nonempiri-
cal meta-GGA LAK. To this end, we have combined all 17 exact constraints that a meta-GGA
can satisfy [SRP15], 4 model systems (including the hydrogen atom to reduce one-electron
self-interaction), the two construction principles discussed in Sections 5.1 and 5.3, and the
balanced treatment of the gradient expansion. As a result, LAK is free from self-correlation,
reduces the (one-electron) self-interaction, achieves an appropriate ultranonlocality, and captures
the short- and intermediate-range van der Waals interactions. We will not repeat all the details of
the construction and definition of LAK, but refer to [Pub5]. In the following, we focus instead
on the predictions of LAK for band gaps, energetic binding, and weak interactions.

Figure 6.1 summarizes the performance of LAK for atomization energies, bond lengths, lattice
constants of solids, band gaps of semiconductors, and weak interactions in a very compact form.
There, we compare LAK to the two nonempirical density functionals whose design philosophy
we have followed most closely, the GGA PBE [PBE96], and the meta-GGA SCAN [SRP15].
Moreover, we compare to the meta-GGA M06-L [ZT06], for which it was first observed that
meta-GGAs can capture van der Waals interactions [MFH10], and to the (range-separated)
hybrid functional HSE06 [KVIS06, HSE03, HSE06] that is known to yield fairly realistic band
gaps [CC10] and therefore often used for band gap predictions with DFT. However, being
a hybrid functional, HSE06 is significantly more computationally costly than the semilocal
functionals, especially for periodic systems.

The left-hand side of Fig. 6.1 shows that LAK is an overall improvement over PBE and M06-L.
In comparison to SCAN and HSE06, LAK improves or is on par for all observables except
for the lattice constants of solids. On the one hand, lattice constants are important, because
starting with a wrong geometry often causes errors in other observables. On the other hand, it is
instructive to compare the errors relative to the reference values, as on the right-hand side of
Fig. 6.1. There, we see that the relative error in the lattice constants is smaller than 3 % for all
considered functionals, i.e., all functionals predict reasonable lattice constants. Overall, Fig. 6.1
underlines the universality of LAK, since only LAK achieves relative errors of 10 % or below
for all considered properties, including band gaps and weak interactions, for which some of the
other functionals exhibit significant errors.

Remarkably, LAK is furthermore the best pure semilocal density functional, i.e., density func-
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Figure 6.1: Overall performance of selected density functionals for Main-Group Atomization ener-
gies (MGAE109) [PT11], Main-Group Bond Lengths (MGBL20) [PT14], Lattice Constants (LC20)
[SMC+11], semi-conductor Band Gaps (scBG15) [Pub5], and weak interactions (S22) [JŠČH06, MBS11].
Left: mean absolute deviation relative to the worst performing functional for each category. Right: mean
absolute relative deviation from the reference values. Taken from [Pub4].

tional without additional correction, on GMTKN55 [Pub4]. GMTKN55 is a large database, often
used to benchmark density functionals for General Main-group Thermochemistry, Kinetics, and
Noncovalent (i.e. weak) interactions [GHB+17] and consists of 5 subcategories: basic properties
and reaction energies of small molecules, reaction energies for large systems and isomerization
reactions, barrier heights, and inter- and intramolecular noncovalent interactions (NCIs). To make
the errors for the different properties and system sizes contained in GMTKN55 comparable, they
are typically measured by the weighted total mean absolute deviation WTMAD-2 [GHB+17]. In
Fig. 6.2, we compare LAK with PBE and the previously best-performing pure semilocal density
functional on GMTKN55, the meta-GGA r2SCAN [FKN+20], a revised version of SCAN. LAK
and r2SCAN both improve significantly over PBE, highlighting the overall improvement of
meta-GGAs over GGAs [SRZ+16]. Among the meta-GGAs, LAK improves over r2SCAN for
GMTKN55 as a whole and all its subcategories except for the basic properties, for which LAK
and r2SCAN are on par. This demonstrates LAKs ability to accurately predict both covalent and
noncovalent interactions. We attribute this improved accuracy of LAK compared to r2SCAN to
the more balanced treatment of the gradient expansion and LAK’s more pronounced nonlocality.

LAK reaches an accuracy that is comparable even to the best dispersion-corrected semilocal
density functionals for GMTKN55 [Pub4]. The only dispersion-corrected semilocal method
that shows a significant improvement over LAK for GMTKN55 is B97M-V [MHG15], which
we attribute to the fact that B97M-V is constructed semi-empirically based on parts of the
GMTKN55 database and the combined approach B97M-V to design the density functional
together with a dispersion correction [Pub4].
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Figure 6.2: Weighted mean absolute deviation WTMAD-2 in kcal/mol for the GMTKN55 database and
its subcategories for selected nonempirical semilocal density functionals: the GGA PBE [PBE96], the
previously best-performing meta-GGA r2SCAN [FKN+20], and the newly developed meta-GGA LAK.
Taken from [Pub4]

A particularly interesting subset of the GMTKN55 database is the MB16-43 set of decompo-
sition energies of artificial molecules [KG09], because any chemical intuition was deliberately
avoided in its creation. This “mindless” design makes it a good indicator of the transferability
of a density functional to novel chemistry [GCDV24]. Table 6.1 compares LAK with the
nonempirical GGA PBE, the empirical meta-GGA M06-L, and the nonempirical meta-GGA
SCAN. This allows drawing several conclusions. First, the significantly better performance of
the nonempirical functionals demonstrates the higher transferability of nonempirical density
functionals compared to empirical ones [HS17, EHN+21, GHEM21]. Second, the improvement
of SCAN and LAK over PBE emphasizes the progress in nonempirical DFAs from GGA to
meta-GGA. [SRZ+16, IW18]. Third, and most importantly in the context of this work, the

Table 6.1: Mean absolute error of PBE, M06-L, SCAN, and LAK for the MB16-43 set of decomposition
energies of artificial molecules [KG09] in kcal/mol. All values taken from [Pub4].

PBE M06-L SCAN LAK
GGA meta-GGA meta-GGA meta-GGA

nonempirical empirical nonempirical nonempirical

23.3 64.1 15.7 16.4
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similar accuracy of SCAN and LAK shows that no transferability is lost when the construction
principles for proper nonlocality are included into the design strategy for nonempirical density
functionals. In particular, we can thus expect that the transferability of LAK is on a similar level
as the demonstrated transferability of SCAN [SRZ+16, FKN+20].

Summary

The aim of this thesis is to improve computer simulations for predicting the electronic structure
of real materials by improving the underlying theoretical description. Because we aim for a
computationally efficient method, we resorted to the class of semilocal density functionals within
DFT. We identified a correct prediction of the electronic structure and the chemical stability,
band gaps and electronic bonds, including weak bonds, to be crucial for the computational
method. The combination of the (ultra)nonlocality required for accurate prediction of band gaps
and weak interactions on the one hand and affordable computational cost on the other hand is
provided by the class of orbital-dependent meta-GGAs [AK19, Pub1, MFH10, Pub2, Pub4].

Subsequently, we investigated what is decisive in meta-GGAs to achieve accuracy for
band gaps in the first step [Pub1], band gaps and energetic bonds in the second step [Pub3],
and third for weakly interacting systems [Pub4]. From this, we deduced two construction
principles for proper nonlocality, (cp1) and (cp2) [Pub4, Pub5]. By extending the design strategy
for nonempirical density functionals, leading to the design strategy of enhancement factor
engineering [Pub4, Pub5], and revisiting the gradient expansion for slowly varying densities,
enabling a more balanced treatment [Pub5], we were finally able to combine our insights and
construct the nonempirical meta-GGA LAK [Pub5] that achieves state-of-the-art accuracy for
band gaps and energetic bonds, including weak bonds, at very affordable computational cost
[Pub4, Pub5]. This combination makes LAK a very promising functional for advanced materials
modeling, e.g., in the field of energy materials, for large biological complexes, interfaces, and
surfaces.

We expect our new strategy of enhancement factor engineering and the partitioning of the
gradient expansion to inspire the future construction of DFAs and are excited to see what
discoveries and material predictions the LAK functional will make possible.
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[HJB17] R. Hellmann, B. Jäger and E. Bich, State-of-the-art ab initio potential energy curve
for the xenon atom pair and related spectroscopic and thermophysical properties, J.
Chem. Phys. 147, 034304 (2017).

[HK64] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864
(1964).

[HL86] C. D. Hu and D. C. Langreth, Beyond the random-phase approximation in nonlocal-
density-functional theory, Phys. Rev. B 33, 943 (1986).

[HL19] Y.-S. Hu and Y. Lu, 2019 Nobel prize for the Li-ion batteries and new opportunities
and challenges in Na-ion batteries, ACS Energy Lett. 4, 2689–2690 (2019).

[HS17] S. Hammes-Schiffer, A conundrum for density functional theory, Science 355,
28–29 (2017).

[HSE03] J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened
Coulomb potential, J. Chem. Phys. 118, 8207 (2003).

[HSE06] J. Heyd, G. E. Scuseria and M. Ernzerhof, Erratum: Hybrid functionals based on a
screened Coulomb potential, J. Chem. Phys. 124, 219906 (2006).

[HSK20] F. Hofmann, I. Schelter and S. Kümmel, Molecular excitations from meta-
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Right band gaps for the right reason at low computational cost with a meta-GGA
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In density functional theory, traditional explicit density functionals such as the local density approximation and
generalized gradient approximations cannot accurately predict the band gap of solids for a fundamental reason:
They lack the exchange-correlation derivative discontinuity. By comparing Kohn-Sham and generalized Kohn-
Sham calculations, we here show that the nonempirical meta-generalized-gradient-approximation (meta-GGA)
TASK from Aschebrock and Kümmel [Phys. Rev. Res. 1, 033082 (2019)] predicts the right gaps for the right
reason, i.e., as a combination of a proper Kohn-Sham gap and a substantial derivative discontinuity contribution.
For many materials from small-gap semiconductors to large-gap insulators, the proper band gap is thus obtained.
We further study a group of metal-halide perovskites for which the band gap is notoriously hard to predict. For
these materials, TASK yields band gaps very similar to the nonlocal screened hybrid Heyd-Scuseria-Ernzerhof
functional, yet at a fraction of the hybrid functional’s computational cost. We discuss the influence of correlation
functionals, and open questions in the comparison of calculated band gaps with experimental ones.

DOI: 10.1103/PhysRevMaterials.7.093803

I. INTRODUCTION

The discovery of new materials is key for many applica-
tions [1] such as the next generation of solar modules [2–4],
catalysts with improved efficiency [5], or batteries for energy
storage [6,7]. For the computational screening of new mate-
rials, numerically efficient methods are required that predict
material properties with sufficient accuracy [7–9]. Density
functional theory (DFT) is very popular for such electronic
structure calculations due to its balance between useful accu-
racy and reasonable computational cost. An example for an
ongoing materials discovery quest is the search for nontoxic,
earth-abundant, and stable semiconductors that can serve as
light-converting materials in a wide range of applications.
Metal-halide perovskites are a broad family of materials
with outstanding chemical and electronic diversity that have
received a lot of attention because of their versatile and
highly tunable material properties [10–13]. The quintessential
metal-halide perovskite, methylammonium (MA) lead iodide
(CH3NH3PbI3), e.g., has been used in solar cells with certified
power conversion efficiencies exceeding 26% [14]. Since the
family of metal-halide perovskites comprises thousands of
stable materials [15,16], material-selection procedures have to
be based on suitable criteria. The band gap is one of the most
important properties for high-throughput material discovery
and should be slightly larger than 1 eV for single-junction
solar cells as a consequence of the detailed-balance limit [17].
Predicting the band gaps of perovskites with a reasonable reli-
ability, yet at the same time low computational cost such that

*stephan.kuemmel@uni-bayreuth.de

many materials can be computationally screened, is therefore
an important task.

The (fundamental) band gap Eg of a system with N elec-
trons is defined by

Eg = I (N ) − A(N ), (1)

where I (N ) is the ionization potential and A(N ) is the electron
affinity of the N-electron system, respectively. In a DFT cal-
culation within the Kohn-Sham scheme, the band gap splits
[18,19] into the Kohn-Sham gap �KS and the exchange-
correlation (xc) derivative discontinuity �xc,

Eg = I (N ) − A(N ) = �KS + �xc. (2)

The Kohn-Sham gap

�KS = εKS
LU − εKS

HO (3)

stems from the orbital-dependent kinetic energy [20] and is
the difference between the lowest unoccupied (LU) and the
highest occupied (HO) one-electron energy. For occupation
numbers that respect the Aufbau principle, it is always non-
negative [21].

The xc derivative discontinuity on the other hand vanishes
for density functional approximations that explicitly depend
only on the density, or quantities directly derived from it,
e.g., its spatial derivatives [18,22–26]. Therefore the local
density approximation (LDA) [27] and generalized gradient
approximations (GGAs) [28,29] severely underestimate the
band gaps of semiconductors and insulators. The comparison
with Green’s-function-based quasiparticle calculations has led
to the estimate that the xc derivative discontinuity often is
responsible for 30–50 % or more of the band gap [30,31],
and recent reconstructions of the exact Kohn-Sham system

2475-9953/2023/7(9)/093803(14) 093803-1 ©2023 American Physical Society
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for solids have confirmed the substantial contribution that �xc

makes to the gap [32].
Within the Kohn-Sham scheme, �KS would not generally

correspond to the fundamental gap even for the unknown
exact xc functional [22,30,32–35]. However, for orbital-
dependent functionals, the generalized Kohn-Sham formalism
offers an attractive alternative [36]. In generalized Kohn-Sham
theory the potential is no longer multiplicative. Depend-
ing on the xc approximation used, it leads to a set of
orbital-dependent differential (meta-GGA) or integral (exact
exchange) operators. This allows one to strive for xc approxi-
mations where the eigenvalue gap of the generalized partially
interacting reference system equals the fundamental gap, i.e.,
for which

�gKS = ε
gKS
LU − ε

gKS
HO = Eg. (4)

This is exploited, for example, in the range-separated
hybrid Heyd-Scuseria-Ernzerhof functional (HSE) [37,38],
where the short-range–long-range splitting parameter is used
to empirically find a good generalized Kohn-Sham system.
A more sophisticated choice of the generalized Kohn-Sham
system is made in the optimally tuned range-separated hybrids
[39,40], where a system-dependent parameter is fixed by en-
forcing the ionization potential (IP) theorem [41] for the N
and N + 1 electron systems as closely as possible. This tun-
ing amounts to choosing the generalized Kohn-Sham system
which minimizes �xc [40,42,43] and aims for �gKS = Eg.

Comparison of Eqs. (2) and (4) shows that for a given
xc functional, the difference between the generalized Kohn-
Sham gap and the Kohn-Sham gap equals the xc derivative
discontinuity,

�xc = �gKS − �KS. (5)

Note that Eq. (5) only holds under the assumption that the
orbitals do not change when switching from the Kohn-Sham
to a generalized Kohn-Sham formalism. The latter is at least
true in perturbation theory to first order [44].

In the past, local multiplicative potentials were constructed
yielding a Kohn-Sham gap that closely approximates the fun-
damental gap [45,46]. These constructions, however, lead to
other problems, e.g., divergences [47,48], too narrow bands
[49], the lack of an energy functional and therefore, e.g., no
prediction of bond lengths [45], a rather poor description of
energetic binding [50], and numerical issues [51]. In the light
of Eq. (2), one might interpret these issues as reflections of
intrinsic inconsistencies that result when trying to map the
effects of the nonlocal �xc into a local potential.

Meta-generalized-gradient-approximations (meta-GGAs)
[52–61] that depend on the kinetic energy density τ , and thus
on the occupied Kohn-Sham orbitals, can have a nonvanishing
xc derivative discontinuity [61–63], because the orbitals are
implicit, nonlocal functionals of the density. Thus meta-GGAs
in principle can improve band-gap prediction when evaluated
in a generalized Kohn-Sham scheme [63,64]. In practice,
however, the derivative discontinuity of many meta-GGAs
is relatively small [62,63,65], so that the band gaps are not
quantitatively accurate.

Therefore, so far functionals used for band-gap predic-
tion typically include exact exchange [38,39,66,67] and thus
come at a computational expense much larger than an LDA

or GGA calculation. As a consequence, they have rarely
been used for computationally demanding applications such
as extensive materials screening. Because meta-GGAs have
semilocal computational costs, they are the natural choice
for large-scale calculations, provided they achieve the desired
accuracy. Therefore understanding the nature of the xc deriva-
tive discontinuity in meta-GGAs and how it relates to the
prediction of band gaps is a topic of substantial current interest
[61,63,68–70].

In this paper, we show that the TASK meta-GGA from As-
chebrock and Kümmel [61] yields the right band gaps for the
right reason, namely by incorporating a substantial contribu-
tion from the derivative discontinuity on top of a Kohn-Sham
gap with a magnitude similar to exact Kohn-Sham gaps.

II. GENERATING A SIZABLE DERIVATIVE
DISCONTINUITY IN META-GGAS

The meta-GGAs that we study here [71] depend on the
electron density n, its gradient ∇n, and the (positive) nonin-
teracting kinetic energy density

τ = h̄2

2m

∑
σ

Nσ∑
i=1

|∇ϕiσ |2. (6)

In the single-orbital limit, the kinetic energy density tends
to the von Weizsäcker kinetic energy density

τW = h̄2

8m

|∇n|2
n

, (7)

while in the uniform-density limit it becomes

τunif = 3h̄2

10m
(3π2)2/3n5/3 =: Asn

5/3. (8)

The exchange energy is typically parametrized in dimen-
sionless quantities that have a physical interpretation in certain
limits. Here, we consider the reduced density gradient

s2 = 1

4(3π2)2/3

|∇n|2
n8/3

, (9)

which can be used to detect noncovalent interactions [72], and
the iso-orbital indicator

α = τ − τW

τunif
, (10)

which tends to zero in the iso-orbital limit, to one in the
uniform-density limit, and to infinity in regions dominated by
density overlap between closed shells [73]. Thus the meta-
GGA exchange energy of a spin-unpolarized system reads

EmGGA
x =

∫
emGGA

x (n,∇n, τ )d3r

= Ax

∫
n

4
3 F mGGA

x (s2, α)d3r (11)

with the (exchange) enhancement factor F mGGA
x (s2, α) and

Ax = −(3e2/4)(3/π )1/3. To obtain the exchange energy of
a spin-polarized system, the exact spin scaling relation [74]
can be applied to Eq. (11). The correlation energy is often
defined via the (correlation) energy density per particle εc.
For a direct comparison between exchange and correlation,
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the enhancement factor of correlation over LDA exchange is
defined as

EmGGA
c =

∫
nεmGGA

c (n,∇n, τ )d3r

=: Ax

∫
n

4
3 F mGGA

c (rs, s2, α)d3r, (12)

where the correlation enhancement factor, in addition to
the dependence on s and α, depends on the Seitz radius
rs = (4πn/3)−1/3. Typically, it also depends on a quantity
for modeling the spin dependence, e.g., the spin polarization
ζ = (n↑ − n↓)/(n↑ + n↓), but we have suppressed the spin
dependence here for ease of notation.

It is well established that the xc derivative discontinuity is
an important feature of the exact functional [18–20,75]. It was
already discussed 40 years ago in the context of the straight
line condition of Perdew, Parr, Levy, and Balduz [20], which
states that the total energy as a function of the (fractional) par-
ticle number consists of straight lines between integer particle
numbers. At integer particle numbers, however, the total en-
ergy has a kink, corresponding to a jump in its derivative. This
derivative discontinuity with respect to the particle number
equals the fundamental band gap of a solid,

Eg = ∂E

∂N

∣∣∣∣
+

− ∂E

∂N

∣∣∣∣
−
, (13)

where |− and |+ denote derivatives evaluated on the electron-
deficient and electron-rich side of the integer particle number.
On the right-hand side, all energy contributions that are con-
tinuous in the density do not contribute. Thus

Eg =
(

δTs[n]

δn(r)

∣∣∣∣
+

− δTs[n]

δn(r)

∣∣∣∣
−

)
︸ ︷︷ ︸

�KS

+
(

δExc[n]

δn(r)

∣∣∣∣
+

− δExc[n]

δn(r)

∣∣∣∣
−

)
︸ ︷︷ ︸

�xc

,

(14)
where the discontinuity originating in the noninteracting ki-
netic energy equals the Kohn-Sham gap of Eq. (3), and the
second term is the derivative discontinuity of the exchange-
correlation energy. In a meta-GGA, the latter is due to the
orbital dependence of Exc. Consequently, the xc derivative
discontinuity of a meta-GGA reads

�mGGA
xc =

∫
∂exc

∂τ
(r′)

[
δτ (r′)
δn(r)

∣∣∣∣
+

− δτ (r′)
δn(r)

∣∣∣∣
−

]
d3r′. (15)

To obtain further insight, one can simplify this expression by
approximating the first term by its average over an “energeti-
cally important region,”

∂exc

∂τ
≈ ∂exc

∂τ
. (16)

This derivation has been used in the construction of the TASK
functional for exchange [61], and here we underpin it with ad-
ditional considerations. The “energetically important region”
denotes the spatial region in which the dominant contributions
to the above integral emerge. The accuracy of this approxima-
tion may vary from system to system and especially between
solids and molecules. Still, it provides useful insights into how
an xc derivative discontinuity of desired sign and size can be
generated.

The approximation of Eq. (16) allows one to pull the
approximated term in front of the integral. Since the non-
interacting kinetic energy density τ integrates to the usual
noninteracting kinetic energy functional Ts, this leads to

�mGGA
xc ≈ ∂exc

∂τ
�KS. (17)

This implies that the xc derivative discontinuity of a meta-
GGA is approximately proportional to the Kohn-Sham
gap—if the approximation of Eq. (16) is justified. When one
goes beyond this approximation, then there is the possibility
for a nonvanishing xc discontinuity despite a vanishing Kohn-
Sham gap. We discuss such a case (CdO) below. Within the
approximation, the sign as well as the size of the xc derivative
discontinuity can be controlled via the proportionality factor
∂exc/∂τ , since the Kohn-Sham gap is non-negative.

It has been conjectured that the total xc derivative dis-
continuity as well as that of exchange must be positive in
electronic systems. These conclusions have been based on,
e.g., the numerical evidence that typical semilocal functionals
(LDA and GGAs) systematically underestimate band gaps of
solids [32] and explicit calculations of �x and �xc [76–80],
as well as the observation that the ground-state energy as a
function of particle number is concave upwards for systems
with repulsive interactions. Because the exchange contribu-
tion to the xc derivative discontinuity, �x, is typically much
larger than that from correlation, we first consider exchange.
A detailed discussion of the contribution from correlation
follows in Sec. V.

To obtain a positive exchange derivative discontinuity, the
proportionality condition equation (17) implies that one has to
construct the meta-GGA exchange energy such that

∂ex

∂τ
> 0 (18)

in the energetically important region. Moreover, the magni-
tude of ∂ex/∂τ , together with the Kohn-Sham gap, determines
the size of �x. For a parametrization of the exchange enhance-
ment factor Fx in s and α the condition of Eq. (18) is equivalent
to the condition [61]

∂Fx

∂α
< 0. (19)

Thus there is a construction principle for the meta-GGA en-
hancement factor by which one can control the sign as well
as the size of the exchange (x) or exchange-correlation (xc)
derivative discontinuity.

III. RIGHT BAND GAPS FOR THE RIGHT REASON

In the following, we show that this construction principle
indeed leads to the proper prediction of band gaps. In the con-
text of this discussion, it is helpful to have in mind some
general aspects of band-gap calculations. First, one must be
aware that the calculated gaps depend on the lattice param-
eters and on numerical choices such as the size of the basis
set, whether a pseudopotential is used or not, and possibly the
details of the employed pseudopotential. Second, relativistic
effects can influence the band structure of some materials
noticeably. Third, the xc approximation influences the band
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(a) (b)

FIG. 1. Calculated vs experimental band gaps of (a) small-gap systems and (b) large-gap systems. The difference between the generalized
Kohn-Sham (gKS) gaps and the Kohn-Sham (KS) gaps shows the exchange derivative discontinuity, illustrated for Kr by a blue arrow.
Experimental bond lengths and experimental band gaps have been chosen as in Ref. [61] for all systems except NaCl. The bond length
and reference value of NaCl are taken from Ref. [32] to allow for comparison with the QMC data. The green crosses mark the QMC-derived
Kohn-Sham gaps of Si (0.69 eV) and NaCl (5.25 eV) from Ref. [32]. The dotted line illustrates exact agreement with the reference values.

structure via the single-particle gap and possibly the deriva-
tive discontinuity. Fourth and finally, for orbital-dependent xc
approximations, it can make an important difference whether
one is using the Kohn-Sham or the generalized Kohn-Sham
scheme. In the Supplemental Material [81] we discuss these
different aspects and show, e.g., in Tables SII and SIII, results
for different density functionals and different levels of taking
into account relativistic effects. In this paper, our focus is on
the above-discussed meta-GGA construction principle.

The TASK meta-GGA for exchange [61] adheres to this
principle and combines it with the fulfillment of nonempirical
exact constraints. A correlation functional to go along with
TASK is the iso-orbital corrected correlation (CC) [82]. It
is based on the local spin density approximation (LSDA) in
the parametrization of Perdew and Wang [83]. For systems
without spin polarization, such as the solids in the test set
studied below, the CC is identical to the LSDA correlation.
In the following, we just write “TASK” to refer to TASK
exchange with LSDA correlation to simplify the notation.

The decisive step for disentangling the single-particle
contribution and the derivative discontinuity contribution to
the band gap is to compare the gaps obtained within the
Kohn-Sham scheme with those obtained from the generalized
Kohn-Sham scheme; cf. Eq. (5) [84]. This logic has already
been followed in Ref. [63]. Additionally, we compare the
Kohn-Sham gaps of TASK with those of the LDA and with
very recent quasiexact Kohn-Sham gaps obtained by inversion
of highly accurate quantum Monte Carlo (QMC) ground-state
densities [32].

We have performed all calculations using the BAND code
[85–91] of the Amsterdam Modeling Suite. To this end, we

have implemented an optimized effective potential (OEP)
routine for TASK, using the Krieger-Li-Iafrate (KLI) ap-
proximation [92]. The Supplemental Material [81] lists the
numerical details. It has previously been reported that the
OEP routine for meta-GGAs in BAND needs an extremely
fine (radial) Becke grid [63]. Our calculations with the TASK
functional did not need this fine grid; cf. Sec. VI and the Sup-
plemental Material [81]. Our experience that TASK [with both
LDA correlation (LDAc) and CC] is numerically stable and
efficient is in line with several very recent numerical stability
analyses [93–95], which conclude that the numerical stability
of TASK is on par with that of the Perdew-Burke-Ernzerhof
functional (PBE) [96].

Figure 1 shows the computed band gaps compared with the
experimental reference values for small-gap [i.e., smaller than
4 eV; Fig. 1(a)] and large-gap [i.e., larger than 4 eV; Fig. 1(b)]
systems. On the one hand, the figure confirms the previous
finding [61] that TASK evaluated in the generalized Kohn-
Sham scheme predicts band gaps reliably for a large variety
of systems. Especially for large-gap systems, which are very
challenging for many other methods [69], TASK predicts the
band gap quite accurately. The same trend has very recently
been observed in a comprehensive study on the impact of the
exchange enhancement factor on band gaps [70].

An important insight going beyond Ref. [61], on the
other hand, emerges when looking at the Kohn-Sham gaps
of TASK. The figures show that these Kohn-Sham gaps are
close to or slightly larger than the gaps from LDA. Com-
parison of the Kohn-Sham and the generalized Kohn-Sham
gaps thus demonstrates that the accurate prediction of the
band gaps with TASK is not obtained by incorrectly open-
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ing large Kohn-Sham gaps. Instead, TASK correctly includes
a substantial contribution from the derivative discontinuity,
which here stems from the TASK exchange. The difference
between the generalized Kohn-Sham gap and the Kohn-Sham
gaps indicates the derivative discontinuity, as highlighted for
the example of Kr by the blue arrow in Fig. 1. One sees that
here, �x ≈ 3.7 eV, i.e., the discontinuity is responsible for
about a third of the gap.

For most small-gap semiconductors, the fact that TASK
achieves larger gaps than LDA can be attributed to two effects:
First, the Kohn-Sham gaps are larger than those of the LDA,
closing about half of the difference with respect to experiment.
The remaining difference is then closed by the derivative
discontinuity contribution that is included in the generalized
Kohn-Sham eigenvalue gap. The situation is different for the
large-gap systems. There, the relative increase of the TASK
Kohn-Sham gaps over the LDA gaps is much smaller. This
trend is in line with the accurate QMC-derived Kohn-Sham
gaps from Ref. [32]: Also for the quasiexact Kohn-Sham gaps,
the relative increase compared with the LDA gaps is larger for
the small-gap system Si than for the large-gap system NaCl.
Furthermore, also in terms of the absolute magnitude, the
QMC-derived gaps support the meta-GGA results, as similar
Kohn-Sham gaps are found in both approaches. The meta-
GGA generalized Kohn-Sham gaps, on the other hand, are
much larger and close to the experimental band gaps.

These results thus demonstrate that the meta-GGA predicts
the right band gaps for the right reason: TASK does not require
that the Kohn-Sham gap be spuriously opened up to match the
experiment, but instead yields a Kohn-Sham gap that is some-
what larger than the LDA gap yet still of similar magnitude. It
combines the Kohn-Sham gap with a substantial contribution
from the derivative discontinuity to reach a band gap close to
the experimental one. The high accuracy of the meta-GGA
generalized Kohn-Sham gaps attests the usefulness of the
construction principle of Eq. (19).

As a side remark, and in view of Sec. VI, we note that we
also compared the band gaps obtained with TASK with the
ones obtained with the HSE functional. The corresponding
data are shown in Table SIV of the Supplemental Material.
It shows that (with the exception of diamond, see below),
TASK and HSE yield similar results for systems with gaps of
up to ∼5 eV, whereas TASK yields larger gaps than HSE for
systems with larger band gaps, in agreement with experiment.

IV. ENERGETICALLY IMPORTANT REGIONS
IN DIFFERENT TYPES OF SYSTEMS

The trends described in the previous section hold for the
large majority of systems. However, it is worthwhile to discuss
the concept of averaging over the “energetically important
region” [cf. Eq. (16)] in greater detail, because there are
two interesting exceptions in our set of data. The first one
is diamond, where we observe a rather large deviation of
the TASK generalized Kohn-Sham gap from the experimental
band gap. TASK enhances the Kohn-Sham gap of diamond
only marginally compared with LDA, and the derivative dis-
continuity is insignificant. At least as remarkable is CdO.
There, the Kohn-Sham gap of TASK vanishes like that of

LDA, but the generalized Kohn-Sham gap is nevertheless in
very good agreement with the experimental data.

These effects must have their origin in the electronic struc-
ture. In order to understand what is special about these two
systems, we analyze their electronic structure in comparison
to other materials. For this comparison we chose as one ref-
erence Ge, because its band gap is of very similar magnitude
to the one of CdO and its lattice structure is similar to the
one of diamond. As a second reference we chose NaCl, as its
lattice structure is similar to the one of CdO and the QMC
reference value is available. In the Supplemental Material we
also discuss Si as a third natural reference system.

Figure 2 shows the electronic structure parameters rs, s,
and α, which enter the meta-GGA as the input, as well as
the enhancement factor of TASK and (minus) its derivative
with respect to α for Ge and C (diamond), and NaCl and CdO
in Figs. 2(a) and 2(b), respectively. The input parameters are
taken from a self-consistent TASK calculation in BAND. From
these, we calculate F TASK

xc and −∂F TASK
xc /∂α and finally plot

all quantities along a path in the unit cell as indicated in the
caption.

First, we compare Ge and diamond. Both systems are
covalently bonded and have a diamond cubic lattice, so one
might expect that they are similarly well described. However,
Fig. 1 shows that for Ge the derivative discontinuity �xc is
responsible for about half of the experimental gap, while it
nearly vanishes for diamond. It is not obvious where this
difference comes from; therefore we take a closer look at the
electronic structure. Figure 2(a) shows that in both systems,
∂F TASK

xc /∂α has a similar magnitude everywhere except for
the core region and the bonding region, where we define
the bonding region as the central region between the nuclei
with the shortest core-core distance, as denoted in Fig. 2. The
core region, however, is unlikely to contribute significantly to
�xc. In the bonding region the magnitude of ∂F TASK

xc /∂α is
approximately a factor of 2 larger for Ge than for diamond, as
seen in the insets in Fig. 2(a). This is a relevant observation
in view of Eq. (19): A more negative ∂F TASK

xc /∂α leads to
a larger derivative discontinuity. Therefore we conclude that
the bonding region is very important for these strongly bound
systems, i.e., the bonding region makes a large part of the
energetically important region in the sense of Eqs. (15) and
(16). The reason for the different values of ∂F TASK

xc /∂α is
the different values of α in the bonding region. In the bond-
ing region of diamond, α takes rather small values down to
α ≈ 0.2, while in Ge, as well as in NaCl and CdO, α is larger
than 0.4 everywhere (except for the core region). However,
for α ≈ 0.2, TASK has much less α-derivative than for larger
values of α; cf. Fig. 3. Furthermore, in diamond the density
in the bonding region is larger, i.e., rs is smaller than for
Ge, and this also reduces the derivative discontinuity because
∂exc/∂τ ∝ n−1/3∂Fxc/∂α ∝ rs∂Fxc/∂α. Thus, in the case of
diamond, the chosen parametrization of the TASK functional
does not sufficiently pick up the energetically important re-
gion.

Next, let us compare Ge and CdO. Ge and CdO have
a similar experimental band gap, and TASK predicts simi-
lar generalized Kohn-Sham gaps for both. However, TASK
predicts a vanishing Kohn-Sham gap for CdO, while for Ge
the predicted Kohn-Sham gap is of the magnitude that one
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FIG. 2. The values of the Seitz radius rs, the reduced density gradient s, and the iso-orbital indicator α along a path in the unit cell. (a) Ge
and C in the diamond cubic structure. (b) NaCl and CdO in the rock-salt cubic structure. All values are calculated self-consistently with TASK
in BAND [91]. Based on these values, the TASK enhancement factor Fxc and its derivative with respect to α, ∂Fxc/∂α, are calculated. The path is
defined as A → B → C → A → D, where A = (0, 0, 0), B = (0, 0, 1

2 ), C = (0, 1
2 , 1

2 ), and D = ( 1
2 , 1

2 , 1
2 ) (fractional coordinates with respect

to lattice vectors). Along the path, the positions of the nuclei and the bonding region are indicated. The insets for Ge and C show a zoomed
version of the bonding region. Note that the plots show the negative of ∂Fxc/∂α.

FIG. 3. Derivative of the TASK (exchange) enhancement factor
F TASK

x with respect to α as a function of α for different values of s.
The inset has a logarithmic x axis.

expects for such semiconductors [30,32,34]. Figure 2 reveals
the obvious substantial differences between Ge and CdO as
a consequence of their different crystal structures. While Ge
is in the diamond cubic structure, CdO is in the rock-salt
cubic structure, like NaCl. This reflects their different bonding
types: Ge and diamond are covalently bound, while CdO
and NaCl are ionic crystals. Therefore a Kohn-Sham gap
close to the (vanishing) LDA Kohn-Sham gap for CdO—
and consequently, a larger contribution from the derivative
discontinuity—is in line with the discussion in the previous
section: There, we already observed that the difference be-
tween the Kohn-Sham gaps of LDA and TASK is different for
ionic crystals and covalently bound crystals.

For the ionic crystals NaCl and CdO, it is not as clear
as for the covalently bound systems what the energetically
important region is. While the size of the Kohn-Sham gap of
TASK in NaCl corresponds to about two-thirds of the size of
the experimental gap, which is the right order of magnitude
as confirmed by the QMC-derived Kohn-Sham gap, TASK
predicts a vanishing Kohn-Sham gap for CdO. Still, the gen-
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eralized Kohn-Sham gap of TASK matches the experimental
value quite accurately in both systems. From Fig. 2, we ob-
serve that in a large part of the bonding region, ∂F TASK

xc /∂α

nearly vanishes in NaCl and is small in CdO. This suggests
that in the ionic crystals the bonding region is not as important
for the gap as it is in the covalently bound semiconductors. In-
stead, the inner valence region, and possibly the core-valence
region, become more important. (Here we define the inner
valence region in the following way: Starting from the point
where the reduced density gradient s has a minimum between
two nuclei, go in the direction of one of the neighboring nuclei
towards the highest maximum of s. The inner valence region
starts at this maximum and reaches to the next minimum of s
in the direction of the nearest nucleus.) The dependence of Fxc

on rs, s, and α, i.e., many input quantities, hinders a detailed
analysis. However, the overall more negative ∂F TASK

xc /∂α in
CdO compared with NaCl can explain a larger relative con-
tribution from the derivative discontinuity in CdO. To gain
further insight, it would be of great interest to know the exact
Kohn-Sham gap of CdO and see whether it indeed vanishes.
QMC calculations in the spirit of Ref. [32] for CdO would
therefore be of great interest.

Finally, we summarize the influence of the different bond-
ing types on the energetically important region. In Fig. 2, we
observe that for the covalently bound systems, α has a local
minimum at the bond center, while in the ionic crystals α

has a local maximum at the bond center. Therefore different
regions of α are energetically important for the different types
of bonds. On the one hand, in Ge and C the bonding region
and thus values of α between 0.2 and 1 are very important.
On the other hand, in NaCl and CdO the inner valence and
the core-valence regions and thus values of α between 0.4
and 2 appear to be energetically most important. Figure 3
shows that the magnitude of ∂F TASK

xc /∂α is particularly high
for α between 0.4 and 2. This underlines the importance of
the construction principle, Eq. (19), and explains why TASK
yields reliable band gaps for many systems.

V. THE IMPACT OF CORRELATION

While there is a lot of evidence that the total xc deriva-
tive discontinuity as well as the one of pure exact exchange
should be positive, there are several hints that the contribution
from correlation should typically be negative: Exact exchange
typically yields a derivative discontinuity that is too large
[34,77], which implies that the correlation part of the exact
functional must have a negative contribution to �xc. For the
correlation that corresponds to the dynamical (random phase
approximation) screening in the GW approximation, this has
also been confirmed explicitly [34].

In the context of meta-GGAs, we have a further argu-
ment supporting this point of view based on the enhancement
factor for fully spin-polarized systems. As shown above,
the derivative discontinuity can be linked to the derivative of
the enhancement factor with respect to α via Eq. (19). In the
one-electron case (α = 0), the exact correlation must vanish
identically to make the correlation free from self-interaction.
Since the correlation energy of the exact functional is nonpos-
itive, we have [97] εc(α = 0) � εc(α), and thus Fc(α = 0) �
Fc(α) for all values of α and of the remaining parameters. In

particular, the correlation energy density of the homogeneous
electron gas is negative everywhere, and thus Fc(n,∇n =
0, α = 0) < Fc(n,∇n = 0, α = 1) for all values of the den-
sity n. Consequently, the average of ∂Fc/∂α for α between 0
and 1 must be positive. Because 0 < α < 1 typically makes a
large part of the energetically important region, the analog of
Eq. (19) for correlation indicates �c < 0.

These considerations indicate which trends are to be ex-
pected for exact exchange and exact correlation. In the
construction of approximate functionals, however, one ad-
ditionally has to take into account that semilocal exchange
functionals do not model exact exchange, but effectively cover
exchange and nondynamical correlation [75,98–103]. There-
fore the relative contributions of meta-GGA exchange and
meta-GGA correlation to the total derivative discontinuity
may differ depending on the specific functional construction
strategy, and only their sum, i.e., the total �xc, is of decisive
relevance. This is in line with the long-known experience
that semilocal approximations for exchange (x) and correla-
tion (c) must match and are therefore best designed together.
The correlation functionals of popular meta-GGAs such as
Strongly Constrained and Appropriately Normed (SCAN)
[60], r2SCAN [104], and M06-L [56] have a noticeable neg-
ative contribution to the derivative discontinuity. They are
therefore expected to reduce band gaps (cf. the Supplemental
Material [81], where this is explicitly confirmed for SCAN).
The results shown in Fig. 1 indicate that TASK exchange,
which has been constructed differently from previous meta-
GGAs by following the philosophy of Eq. (18), needs a
different kind of correlation functional. The CC–meta-GGA
correlation [82] takes this into account: While having a non-
positive derivative discontinuity in general, it preserves the
high quality of the band gaps for the systems in the test set.

VI. BAND GAPS OF METAL-HALIDE PEROVSKITES

The test set studied in Sec. III provides a reasonable bench-
mark as it spans a broad range of materials with band gaps
from large to small. While the focus of Sec. III is on the
comparison of the gaps from generalized Kohn-Sham and
Kohn-Sham theory, it is reassuring to know that the high
quality of the generalized Kohn-Sham gaps from the TASK
functional has been confirmed also for other, yet larger test
sets [69]. However, from a materials science perspective, the
question of how reliably DFT can predict the gaps of very
complex materials is also highly relevant. For many such
materials, definite reference values have not been established
yet, excluding them from typical test sets. Furthermore, for
some materials, predicting the band gap correctly is chal-
lenging in general, i.e., not only for DFT, but also for other
many-body methods. A paradigmatic example is the mate-
rial family of metal-halide perovskites, which pose a serious
challenge even for Green’s-function-based many-body per-
turbation theory in the GW approximation [105–108]. The
GW approach is currently considered to be the “gold stan-
dard” for the prediction of band gaps of solids [109], but it
requires material-dependent, sufficiently accurate DFT start-
ing points [108,110] or computationally demanding (partial)
self-consistency and the incorporation of vertex corrections
for halide perovskites [107,111]. While the considerations
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TABLE I. Kohn-Sham (for PBE) and generalized Kohn-Sham
(for HSE and TASK) band gaps (in eV) calculated with the different
programs VASP [113,114] and BAND [115]. The VASP values are taken
from Ref. [108]; other values are from this work. See main text for
details.

PBE PBE HSE TASK HSE
System VASP BAND VASP BAND BAND

MAPbI3 0.21 0.09 0.82 0.81
MAPbBr3 0.55 0.41 1.30 1.38
CsSnBr3 0.06 0.01 0.63 0.73
(MA)2BiTlBr6 0.60 0.44 1.00 1.25
Cs2TlAgBr6 −0.66 −0.57 0.20 −0.05 0.08
Cs2TlAgCl6 0.00 0.00 1.09 0.75 1.07
Cs2BiAgBr6 1.09 1.05 1.95 1.86
Cs2InAgCl6 1.16 1.18 2.61 2.49 2.49
Cs2SnBr6 1.10 1.10 2.14 2.07
Cs2Au2I6 0.70 0.71 1.16 0.91

presented in the literature [56,63,69,112] and in this paper
suggest that a meta-GGA such as the TASK functional is an
attractive option for predicting band gaps, the question arises
whether it can also predict the band gaps of metal-halide
perovskites with quantitative accuracy.

The HSE screened hybrid functional [37,38] is one of
the most reliable common functionals for the purposes of
band-gap prediction [69]. A reasonable description of the
band gaps of semiconductors has been part of its construction
strategy, and HSE generalized Kohn-Sham gaps often give
reasonable estimates of the true fundamental gaps. A major
drawback is, however, that the Fock-like integrals that are
required in an HSE calculation are computationally demand-
ing, and especially so in plane-wave calculations, limiting the
possibilities of rapid materials screening. A computationally
efficient meta-GGA giving band gaps similar to the HSE
functional would thus be an attractive alternative. Therefore
we examine in the following whether the TASK meta-GGA
can fulfill this promise by comparing TASK band gaps with
HSE band gaps. Table I summarizes results for ten different
metal-halide perovskites. These systems span a broad range
of gaps from below 1 eV to over 2.5 eV, and a broad range of
chemical complexity from single perovskites with chemical
formula ABX3 to the quaternary double perovskites with for-
mula A2BB′X6, where A is a monovalent cation such as Cs+ or
CH3NH+

3 (MA), B and B′ are metal cations, and X is a halide
anion. In all cases we used experimental structures with the
structural details reported in Ref. [108]. In the compounds in
which A = MA, we replaced MA with Cs in our calculations
to avoid spurious symmetry breaking induced by the dipole
moment of the MA molecule in the primitive cubic unit cell
[116,117]. This choice, as well as other technical choices,
e.g., regarding pseudopotentials, basis sets, the k grid, and
other convergence criteria, influence the calculated numbers.
We report these parameters and resulting estimates of the
technical accuracy of the calculations in the Supplemental
Material [81].

We use the all-electron code BAND for the TASK calcula-
tions. In this way we avoid any inconsistency that would result
from the fact that self-consistent pseudopotentials are not yet

available for the TASK functional. On the other hand, we can-
not use BAND for all HSE calculations, because in BAND, HSE
via the LIBXC interface [118] is only available for calculations
without spin-orbit coupling (SOC) or with scalar-relativistic
SOC. Full SOC, however, plays an important role in some of
the materials in Table I. Therefore, for the HSE band gaps, we
rely on the Vienna ab initio simulation package (VASP) values
reported in Ref. [108] (with self-consistent SOC) for most
of the halide perovskites and double-check only the ones for
which SOC plays a negligible role (Cs2TlAgBr6, Cs2TlAgCl6,
and Cs2InAgCl6) with HSE in BAND. The TASK calcula-
tions with BAND use the zeroth-order regular approximation
(ZORA) [89] for including SOC for all materials except the
abovementioned three exceptions, for which we performed
scalar-relativistic calculations.

To give an impression of the possible consequences of the
technical differences between VASP and BAND, we report in
the first column of Table I the PBE band gaps calculated
with VASP using plane waves and projector-augmented wave
pseudopotentials, and in the second column we report the PBE
gaps from our calculations using BAND with an all-electron
localized basis set. This comparison shows that differences of
∼0.15 eV can result just due to technical differences between
the VASP calculations from Ref. [108] and the BAND calcula-
tions from this work.

With this in mind, we now compare the HSE band gaps
in the third column of Table I with the TASK band gaps in
the fourth column. For most systems, the values are rather
close, and differences are within the ∼0.15 eV range that
we already observed in the PBE comparison. However, for
MA2BiTlBr6, the TASK gap is larger by 0.25 eV, and for
Cs2TlAgBr6, Cs2Au2I6, and Cs2TlAgCl6, the HSE gap is
larger by 0.25, 0.25, and 0.34 eV, respectively. We therefore
take a closer look at these special cases before drawing gen-
eral conclusions. Among these outliers, Cs2TlAgBr6 appears
particularly noteworthy, because with TASK the gap is close
to zero but negative, whereas with HSE we find a gap close
to zero but positive. We look into this case in more detail
in order to check whether this reflects a qualitative differ-
ence between the two xc approximations, or just sensitivity
to the computational details. To this end, we repeated the
HSE calculation for Cs2TlAgBr6 using BAND. This is possible
because SOC plays a minor role here, as discussed above.
The corresponding number is shown in the fifth column of
Table I. With BAND, the HSE gap of Cs2TlAgBr6 is 0.12 eV
smaller than with VASP. As a further test we also calculated
the band gap of Cs2TlAgBr6 using the TASK functional in
QUANTUM ESPRESSO (QE) [122,123], i.e., another plane-wave
code. In QE, the TASK gap of Cs2TlAgBr6 is 0.04 eV, i.e.,
small but positive. Both results show that technical differences
play a major role for the sign of the band gap in this system,
and we conclude that Cs2TlAgBr6 does not reveal a qualitative
difference between HSE and TASK; however, the gap is so
close to zero in either case that technical differences can be
decisive for whether the gap is slightly positive or slightly
negative.

For the sake of completeness we also calculated the band
gaps of the other two materials for which full SOC does
not play a role with HSE in BAND. The corresponding num-
bers in the fifth column of Table I show that TASK and
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FIG. 4. PBE, HSE, and TASK band structures as calculated with
BAND for Cs2InAgCl6. Not only the gaps, but also the band structures
are rather similar for HSE and TASK. The hatched and shaded re-
gions indicate experimental values for the band gap, with the hatched
region indicating the gap, and the shaded region indicating the range
from different experiments [119–121].

HSE yield identical gaps for Cs2InAgCl6 with BAND, and for
Cs2TlAgCl6 the difference between HSE and TASK is slightly
reduced when the functionals are compared within BAND. As

a further check, we compared not only the gaps, but also
the band structures. Figure 4 shows the comparison for the
exemplary case of Cs2InAgCl6. The band structures obtained
with TASK and HSE are very similar, with slight differences
in the dispersion of the conduction band at the L and X points.

In summary, we therefore conclude that the band gaps
obtained from HSE and TASK are not identical, but close to
each other. Both functionals seem to capture the band struc-
ture physics of complex metal-halide perovskite materials in
a similar way. This finding suggests that instead of basing
band structure estimates on the nonlocal, screened hybrid
functional HSE, one may as well use the meta-GGA TASK
for these purposes. Our findings also suggest that the TASK
functional may be an attractive starting point for a subsequent
GW calculation.

The reason for why this is is an attractive option from a
computational perspective is summarized in Table II. It shows
the computational time required for an HSE and a TASK
calculation for each of the three metal-halide perovskites for
which SOC plays a minor role and which therefore can rea-
sonably be compared within BAND. The most relevant column
is the last one. It reports the time relative to a PBE calculation
with the same computational settings for a complete calcula-
tion with the given xc functional. By reporting these relative
values, Table II provides an impression of the computational
expense independent of the specific hardware that we used.
For the sake of transparency and completeness, we further
report the hardware and absolute timings. The numbers reveal
that a calculation using TASK takes about three times as long
as the PBE calculation, whereas an HSE calculation can take
more than a factor of 90 longer than the PBE calculation.
Using TASK instead of HSE typically saves a factor of about
25 in computational time. As a relevant side note we point
out that calculations with TASK do not require a finer numer-
ical grid than the PBE calculations. Many program packages
have default settings that use an extra fine radial grid (“grid

TABLE II. Computational time required for a self-consistent field (SCF) calculation with PBE, TASK, and HSE with BAND including the
sampling of the band structure. The last column reports the compute time of HSE and TASK relative to a PBE calculation. For completeness,
the prior columns report absolute numbers obtained on a compute node with two CPUs of type Intel Xeon E5-2630 v4 at 2.20 GHz (Broadwell)
with 2 × 32 GB RAM (in total 20 physical cores, hyperthreading enabled) using a 4 × 4 × 4 k grid, without a frozen core, normal numerical
quality, and disabled symmetry and including scalar relativistic effects in the ZORA. Note that the TASK calculations do not require the grid
boost, which many programs switch on as a default for meta-GGAs. DZ and TZP denote double-zeta and triple-zeta polarized basis sets,
respectively.

CPU time (s) CPU time relative to PBE (s)

System xc Basis Grid boost SCF step Total SCF step Total

Cs2TlAgCl6 PBE TZP ✗ 45 1021 1.00 1.00
Cs2TlAgCl6 TASK TZP ✗ 140 2969 3.11 2.88
Cs2TlAgCl6 TASK TZP

√
324 6890 7.20 6.75

Cs2TlAgCl6 HSE TZP ✗ 4560 78699 106.05 77.09
Cs2TlAgBr6 PBE DZ ✗ 25 561 1.00 1.00
Cs2TlAgBr6 TASK DZ ✗ 106 2170 4.24 3.87
Cs2TlAgBr6 TASK DZ

√
258 5153 10.32 9.18

Cs2TlAgBr6 HSE DZ ✗ 2867 53006 114.68 94.47
Cs2InAgCl6 PBE DZ ✗ 13 453 1.00 1.00
Cs2InAgCl6 TASK DZ ✗ 56 1268 4.31 2.80
Cs2InAgCl6 TASK DZ

√
141 2913 10.85 6.43

Cs2InAgCl6 HSE DZ ✗ 1320 23518 101.54 51.91
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boost”) in meta-GGA calculations, because meta-GGAs such
as SCAN and M06-L require a fine grid due to their numerical
sensitivity. TASK calculations, however, converge well to the
proper values on the regular grid. Therefore the grid boost,
which typically more than doubles computational times, can
be disabled.

We thus arrive at the final important finding of this paper:
The TASK meta-GGA functional that only requires semilocal
orbital input predicts band gaps similar to the ones from the
fully nonlocal screened hybrid HSE, but at much lower com-
putational cost—in the cases that we studied typically lower
by a factor of 25.

Finally, we briefly comment on the comparison with ex-
perimental band gaps, which is particularly challenging for
complex materials such as the metal-halide perovskites for
which the range of experimentally reported band gaps can
be substantial. While the focus of our paper is not on the
comparison with experiment, it is worth noting that for some
systems, e.g., Cs2BiAgBr6, the gaps calculated with HSE and
TASK are close to the measured gaps, while for others the
difference can be as large as ∼0.8 eV, e.g., for MAPbI3 and
Cs2InAgCl6; cf. Fig. 4. These differences are generally in
line with observations from molecular-dynamics simulations
showing that anharmonic structural fluctuations at elevated
temperatures can lead to a significant renormalization of the
band gap [107,124,125], reported to be as large as 0.7 eV for
some halide perovskites [107]. Furthermore, exciton binding
energies of some metal-halide perovskites are of the order of
several hundred meV [126], and orbital symmetries can lead
to parity-forbidden transitions [127,128]. This further com-
plicates the comparison with experimentally measured band
gaps, which are typically extracted from optical absorption
measurements. A detailed, benchmarklike comparison of the-
ory and experiment is therefore challenging for the broad fam-
ily of metal-halide perovskites. Nevertheless, in itself and as a
starting point for subsequent GW calculations, it is a promis-
ing finding for computational materials science that the TASK
meta-GGA allows for a qualitatively reasonable prediction of
the gap similar to HSE at much reduced computational cost.

VII. SUMMARY AND CONCLUSIONS

In summary, we have shown why and how meta-GGAs
can predict the right band gaps of solids for the right rea-
son by generating a sizable derivative discontinuity. This
demonstrates that meta-GGAs can provide accurate band gaps

at semilocal computational cost without suffering from the
shortcomings that other semilocal methods have. By com-
paring calculations within the Kohn-Sham scheme and the
generalized Kohn-Sham scheme for the TASK functional, we
have demonstrated how the construction principle ∂exc/∂τ >

0, which corresponds to ∂Fxc/∂α < 0, is crucial for the deriva-
tive discontinuity and thus the nonlocality of a meta-GGA. We
further argued that the contribution that correlation makes to
the derivative discontinuity should generally be negative, and
that the relative magnitude of the contributions from exchange
and correlation for semilocal functionals may depend on the
specific construction principles that are used. In addition to
a test set of well-studied solids for which TASK yields band
gaps close to the experimentally measured ones, we have also
investigated a set of ten metal-halide perovskites for which
the band gaps are notoriously difficult to predict. We have
shown that for these systems, the band gaps found with TASK
are close to the band gaps that one finds with HSE; yet the
computational cost of the TASK calculation is lower by a
factor of about 25. The combination of reasonable accuracy
and numerical efficiency thus makes the TASK meta-GGA
a natural choice for computationally efficient first-principles
band-gap screening.

All authors together conceptualized the work. T.L. per-
formed the calculations reported in Secs. III, IV, and V and
wrote the required routines. T.A. performed the calculations
reported in Sec. VI and wrote the required routines. T.L. and
S.K. wrote the manuscript, and all authors discussed the final
version.
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I. COMPUTATIONAL DETAILS REGARDING SECTIONS III – V OF THE MAIN PAPER

In this Section we list the numerical settings that we used to calculate the band gaps in the Kohn-Sham (KS)
and the generalized Kohn-Sham (gKS) approach. We used the code Band [1–7] for all calculations. For the KS
calculations, we relied on the Krieger-Li-Iaftrate (KLI) approximation [8] to the Optimized Effective Potential (OEP)
and a frozen core, just as done in previous work [9]. Our numerical settings are listed in Table I.

TABLE I. Numerical settings used in the KS and gKS calculations in BAND. Default is used for all calculations except for
SCAN in the Kohn-Sham scheme (OEP in the KLI approximation). For Ar and Kr, we used a different basis set and a different
value for MGGAOEPWaitIter than for the other systems, see text.

key default SCAN OEP
NumericalQuality Good Good
KSpace

Type Regular Regular
Quality Good Good

BeckeGrid
RadialGridBoost 3.0 1.0
Quality Good -
UserRadMulFactor - 20
UserCoreL - 11
UserInter1L - 13
UserInter2L - 21
UserExterL - 31
UserExterLBoost - 35

XC
MGGAOEPMaxIter - 10000
MGGAOEPConvergence - 1.0d-10
MGGAOEPMaxAbortIter - 100
MGGAOEPMaxErrorIncrease - 100
MGGAOEPWaitIter - | 10 | 7 10 | 7

Basis
Type TZ2P | QZ4P TZ2P | QZ4P

Relativity
Level Scalar Scalar

BandStructure
Enabled True True
Automatic False False
DeltaK 0.02 0.02

Previous work reported that for SCAN, the KLI routine in BAND needs an extremely fine (radial) Becke grid
[9]. We observe the same in our calculations with the SCAN functional, but TASK exchange with SCAN correlation
(TASKx+SCANc) and even more TASK (with LDA or CC correlation) are much easier to converge than SCAN.

∗ stephan.kuemmel@uni-bayreuth.de; http://tp4.uni-bayreuth.de/en
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TABLE II. Band gaps in eV. The calculations were performed in BAND [7] with fixed experimental bond lengths. Experimental
bond lengths and experimental band gaps are chosen as in Ref. [13] for all systems except NaCl. The bond length and reference
value of NaCl are taken from Ref. [14] to allow for comparison with the QMC data. We used the numerical settings reported
in Table I.
System LDA PBE M06-L SCAN TASKx+SCANc TASK Expt.

gKS gKS KS gKS KS gKS KS

Ar 8.17 8.64 10.36 9.52 8.53 12.35 8.64 13.30 9.19 14.3
BN 4.42 4.53 4.93 5.04 4.74 4.55 4.23 5.52 4.90 6.22
C 4.13 4.17 4.68 4.58 4.27 3.61 3.83 4.35 4.30 5.48
CdO 0.00 0.00 0.00 0.01 0.00 0.20 0.00 0.83 0.00 0.84
GaAs 0.40 0.63 1.11 0.86 0.58 1.22 0.88 1.68 1.01 1.52
Ge 0.00 0.11 0.48 0.18 0.00 0.40 0.32 0.83 0.41 0.74
Kr 6.81 7.17 8.34 8.02 7.14 10.69 7.35 11.50 7.77 11.6
LiCl 6.08 6.38 7.18 7.31 6.38 8.29 5.70 9.52 6.27 9.4
LiF 8.95 9.15 9.41 10.09 9.12 11.71 8.09 12.84 8.76 13.6
MgO 4.74 4.81 5.05 5.66 4.83 6.25 4.67 7.26 5.24 7.22
MgS 3.31 3.56 4.26 4.24 3.54 4.84 3.51 5.84 4.06 5.4
NaCl 4.60 4.96 5.85 5.74 5.08 7.35 4.31 8.45 4.82 8.5
Si 0.54 0.63 1.04 0.89 0.71 0.36 0.45 1.07 0.87 1.17
SiC 1.36 1.41 1.65 1.74 1.60 1.28 1.17 2.07 1.74 2.42
ZnS 1.84 2.08 2.86 2.62 2.10 3.08 2.10 3.81 2.48 3.66

MSE -2.4 -2.3 -1.7 -1.7 -2.2 -1.1 -2.5 -0.2 -2.0
MAE 2.4 2.3 1.7 1.7 2.2 1.1 2.5 0.3 2.0
RMSE 3.0 2.7 2.1 2.1 2.7 1.2 3.0 0.5 2.6

rel. MAE 50 45 30 35 45 28 46 7 36 %

While TASKx+SCANc still needs a very fine radial grid (RadialGridBoost 3.0), TASK by itself is already converged
with BeckeGrid Quality Good and a RadialGridBoost of 1, cf. Table IV.

Our implementation of the KLI routine for TASK is similar to that of SCAN [9]. However, our numerical settings
differ from those used in [9] in two points: First, we use the QZ4P basis set [6] for Ar and Kr, since the results are
different from those obtained using the TZ2P basis set if a frozen core is used. In particular, with QZ4P the all-electron
results and the frozen core results coincide with the all-electron TZ2P results, compare Tables IV and II, while they
differ from the frozen core results with TZ2P, both in the KS and gKS calculations. It should be noted that one can
not use the QZ4P basis set for all systems because it is too diffuse and therefore leads to (almost) linear dependency
for most systems. Second, we improve the numerical stability and computation time of the KS calculations by first
running some self-consistent gKS cycles before switching to the KS scheme. We use 10 gKS cycles for all systems
except Ar, Kr, and NaCl, because these three systems are already converged after 10 gKS cycles. Thus, we use 7 gKS
cycles for Ar, Kr, and NaCl. The difference that one obtains in the band gaps when using some initial gKS cycles or
not is less than 0.01 eV.

To generate the data shown in Figure 2 in the main text, we use TASK with the numerical settings shown in Table
1, but we perform all-electron calculations, i.e., core none.

II. DETAILED RESULTS FOR THE BAND GAPS OF THE MATERIALS FROM THE TEST SET USED
IN SECTION III OF THE MAIN PAPER

Table II lists the values of the band gaps discussed in Section III of the main text, and additional values for the
PBE [10], M06-L [11], SCAN [12], and TASKx+SCANc functionals.

Additionally, we study the effect of relativistic corrections in Table III. There, we compare for PBE, SCAN, and
TASK the band gaps obtained without relativistic corrections (None), with scalar relativistic corrections in the
ZORA approximation (Scalar) and with Spin-Orbit coupling (SOC) in the ZORA approximation. In line with earlier
observations [9], we conclude that scalar relativistic effects are important and have to be included. The computationally
much more expensive spin-orbit coupling on the other hand is negligible for most systems and its effect is not larger
than 0.1 eV for the semiconductors Ge and GaAs and 0.2 eV for the large gap insulator Kr. Moreover, its effect is
very similar for all three functionals studied in Table III. Therefore, we include scalar relativistic effects in the ZORA
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approximation in the Sections III – V of the main paper, as denoted in Table I.

TABLE III. Generalized Kohn-Sham band gaps in eV. The calculations were performed in BAND [7] with fixed experimental
bond lengths. Experimental bond lengths and experimental band gaps are the same as in Table II. The numerical parameters
are taken from Table I, except for the explicitly specified level of relativity. Note that in contrast to Table I, all-electron
calculations were performed here.

System PBE SCAN TASK Expt.
None Scalar SOC None Scalar SOC None Scalar SOC

Ar 8.71 8.65 8.58 9.60 9.53 9.47 13.36 13.28 13.22 14.3
BN 4.54 4.53 4.52 5.02 5.01 5.00 5.51 5.50 5.49 6.22
C 4.18 4.17 4.17 4.57 4.56 4.56 4.34 4.33 4.33 5.48
CdO 0.28 0.00 0.00 0.78 0.00 0.00 1.77 0.89 0.87 0.84
GaAs 1.21 0.55 0.44 1.56 0.83 0.73 2.36 1.72 1.61 1.52
Ge 0.54 0.06 0.00 0.73 0.24 0.14 1.25 0.86 0.76 0.74
Kr 7.35 7.17 6.95 8.21 8.02 7.80 11.68 11.45 11.23 11.6
LiCl 6.46 6.37 6.33 7.41 7.32 7.28 9.65 9.55 9.51 9.4
LiF 9.21 9.17 9.15 10.21 10.17 10.15 12.97 12.93 12.91 13.6
MgO 4.84 4.78 4.77 5.75 5.69 5.68 7.39 7.33 7.32 7.22
MgS 3.63 3.55 3.52 4.33 4.25 4.22 5.76 5.74 5.72 5.4
NaCl 5.04 4.97 4.92 5.83 5.76 5.72 8.66 8.57 8.53 8.5
Si 0.62 0.61 0.59 0.86 0.85 0.83 1.05 1.04 1.02 1.17
SiC 1.41 1.41 1.41 1.73 1.73 1.72 2.05 2.05 2.04 2.42
ZnS 2.38 2.10 2.08 2.93 2.63 2.61 4.20 3.84 3.82 3.66

MSE -2.1 -2.3 -2.3 -1.5 -1.7 -1.7 -0.0 -0.2 -0.2
MAE 2.1 2.3 2.3 1.5 1.7 1.7 0.5 0.4 0.4
RMSE 2.7 2.7 2.8 2.0 2.1 2.2 0.6 0.5 0.5

rel. MAE 36 46 48 20 35 36 22 8 7 %

To allow for a direct comparison with HSE results, we additionally report all-electron results with TASK in Table
IV. There, we show that first, the choice RadialGridBoost 1.0, i.e., no grid boost, is sufficient with TASK, second,
that the calculations are converged with respect to the basis set, and third, that we obtain the same generalized
Kohn-Sham gaps with TASK in an all-electron calculation and with a frozen core.

Because Si is a well-studied material and is often used as a reference system, we supplement the discussion of
Figure 2 in the main text with a comparison of Si and diamond in Figure 1. Overall, α (and s) take similar values
in Si and diamond. Therefore, on first sight one may think that the analysis given in the main text that explains
the underestimation of the band gap in diamond should also apply to Si. However, in diamond the fraction of the
bonding region, and therefore the region of small α, is larger than in Si. Additionally, the density in the bonding
region is larger in diamond, i.e., rs is larger in the bonding region of Si. As ∂exc/∂τ ∝ rs∂Fxc/∂α, both of these
effects increase the gap in Si compared to the one in diamond.

We further note that in comparison to Ge, in Si the contribution from the Kohn-Sham gap to the band gap is larger.
This is in line with the QMC data for Si and the fact that the LDA gap vanishes for Ge, whereas the Kohn-Sham gap
is about half of the experimental gap for Si.
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TABLE IV. Generalized Kohn-Sham band gaps in eV. The calculations were performed in BAND [7] with fixed experimental
bond lengths. Experimental bond lengths and experimental band gaps are the same as in Table II. The numerical parameters
are taken from Table I, except for the explicitly specified basis set and the RadialGridBoost (RGB), which is set to 1.0, since
this is sufficient with TASK. Note that for comparison with HSE, all-electron calculations were performed here, i.e., core none,
which is the reason for the differences between TASK TZ2P in this table and in Table II.
System TASK HSE

RGB 3.0, TZ2P RGB 1.0, TZ2P TZP DZ TZ2P DZ

Ar 13.28 13.28 14.41 21.79 10.31 20.54
BN 5.50 5.50 5.51 6.29 5.91 6.57
C 4.33 4.33 4.35 4.79 5.37 5.75
CdO 0.89 0.89 0.88 0.80 0.86 0.77
GaAs 1.72 1.72 1.71 1.40 not conv. 1.10
Ge 0.86 0.86 0.88 0.53 0.74 0.44
Kr 11.45 11.45 12.20 18.17 8.55 16.36
LiCl 9.56 9.55 9.55 9.35 7.71 7.66
LiF 12.93 12.93 12.92 12.67 not conv. 11.29
MgO 7.33 7.33 7.31 7.09 6.53 6.31
MgS 5.74 5.74 5.87 5.76 4.58 4.44
NaCl 8.57 8.57 8.57 8.40 not conv. 6.23
Si 1.04 1.04 1.06 1.53 1.17 1.48
SiC 2.05 2.05 2.06 2.91 2.36 3.04
ZnS 3.84 3.84 3.84 3.75 3.23 3.24

MSE -0.2 -0.2 -0.1 0.9 0.2
MAE 0.4 0.4 0.3 1.2 1.5
RMSE 0.5 0.5 0.5 2.6 2.3

rel. MAE 8 8 8 16 22
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FIG. 1. The values of the Wigner-Seitz radius rs, the reduced density gradient s, and the iso-orbital indicator α along a path
in the unit cell. All values are calculated self-consistently using TASK in BAND [7]. Based on these values, the TASK+LDAc
enhancement factor Fxc and its derivative with respect to α, ∂Fxc/∂α, are calculated. Note that the negative of ∂Fxc/∂α is
shown. The path is defined as A → B → C → A → D, where A = (0, 0, 0), B = (0, 0, 1

2 ), C = (0, 1
2 , 1

2 ), and D = ( 1
2 , 1

2 , 1
2 ).

Along the path, the positions of the nuclei and the bonding region are indicated.

III. COMPUTATIONAL DETAILS RELATED TO THE METAL-HALIDE PEROVSKITE
CALCULATIONS IN SECTION VI OF THE MAIN PAPER

The upper lines of Table V show for the example of Cs2BiAgBr6 how the computational parameters in Band
influence the band gap that one obtains with PBE. Taking into account spin-orbit coupling (SOC) is mandatory. The
differences between the TZ2P basis and a small core on the one hand, and the QZ4P basis with no core on the other,
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are however negligible. Also the differences between a 4 × 4 × 4 k-grid and a 5 × 5 × 5 k-grid are negligible for the
purposes of this paper. Therefore, a 4 × 4 × 4 k-grid with a small core and the TZ2P basis was used for the TASK
calculations, as shown in the last line. We also performed convergence tests with respect to the k-grid and core for
CsPbBr2 with TASK. These confirmed that with the above mentioned settings, the band gap is converged within ca.
0.01 eV.

TABLE V. Band gap of Cs2BiAgBr6 as obtained with the listed computational parameters in Band for PBE exchange and
correlation and for TASK exchange with LDA correlation.

xc k-grid Basis Numerical Quality Core SOC (ZORA) Band Gap (eV)
PBE 4 × 4 × 4 TZ2P Good Small SOC 1.050
PBE 4 × 4 × 4 TZ2P Good Small Scalar 1.269
PBE 4 × 4 × 4 TZ2P Good Small w/o 0.876
PBE 4 × 4 × 4 TZ2P Good None SOC 1.049
PBE 4 × 4 × 4 QZ4P Good None SOC 1.052
PBE 5 × 5 × 5 TZ2P Good None SOC 1.063
TASK 4 × 4 × 4 TZ2P Good Small SOC 1.857

For the HSE calculations in Band the numerical situation is more involved. As mentioned in the main text, HSE is
only available via LibXC [15] in Band for calculations without SOC or with scalar relativistic SOC. Therefore, we had
to restrict the HSE calculations with Band to Cs2TlAgBr6, Cs2TlAgCl6, and Cs2InAgCl6. However, when we tried
to use in the HSE calculations the same numerical parameters that we used for PBE and TASK, the HSE calculations
did not converge. For being able to converge the calculations, we had to use somewhat less strict numerical settings,
as shown in Table VI.

TABLE VI. Numerical settings used for the HSE calculations with BAND. SC indicates a lower (Basic) soft confinement radius
of the basis functions.

System k-grid Basis Numerical Quality Core Band Gap (eV)
Cs2TlAgCl6 4 × 4 × 4 DZ Normal None 1.061
Cs2TlAgCl6 4 × 4 × 4 TZP Normal None 1.070
Cs2TlAgBr6 4 × 4 × 4 DZ (SC) Normal None 0.128
Cs2TlAgBr6 4 × 4 × 4 DZ Normal None 0.117
Cs2TlAgBr6 4 × 4 × 4 TZP (SC) Normal None 0.084
Cs2InAgCl6 4 × 4 × 4 DZ Normal None 2.478
Cs2InAgCl6 4 × 4 × 4 TZP Normal None 2.490

In Quantum Espresso (QE) we could use the TASK functional only via LibXC (version 5.0.0) for systems without
SOC, as a noncollinear implementation of meta-GGAs is not available and SOC calculations require noncollinearity
in QE. This, however, is sufficient to check the special case of Cs2TlAgBr6 discussed in the main text. Fully-
relativistic optimized norm-conserving Vanderbilt PBE pseudopotentials (ONCVPSP) were obtained from http:
//www.pseudo-dojo.org/ and used for all QE calculations. We used a cutoff energy of 120 Ryd., a 10 × 10 × 10
k-grid, and a convergence threshold of 1 × 10−6 Ryd. for the TASK (+LDA correlation) calculation with QE. As
discussed in the main text, this calculation leads to a slightly positive band gap of 0.04 eV, in contrast to the slightly
negative gap of −0.05 eV obtained with Band.
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ABSTRACT
We review the concept of ultranonlocality in density functional theory and the relation between ultranonlocality, the derivative discontinuity
of the exchange energy, and the static electric response in extendedmolecular systems.We present the construction of a newmetageneralized
gradient approximation for exchange that captures the ultranonlocal response to a static electric eld in very close correspondence to exact
exchange, yet at a fraction of its computational cost. This functional, in particular, also captures the dependence of the response on the system
size. The static electric polarizabilities of hydrogen chains and oligoacetylene molecules calculated with this metaGGA are quantitatively
close to the ones obtained with exact exchange. The chances and challenges associated with the construction of metaGGAs that are intended
to combine a substantial derivative discontinuity and ultranonlocality with an accurate description of electronic binding are discussed.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0173776

I. LOCALITY, NONLOCALITY,
AND ULTRANONLOCALITY IN DFT

Density functional theory (DFT) is a very successful approach
to the electronic structure problem.1–4 This success rests on the
highly nontrivial fact that the intricate quantum manybody effects
of exchange and correlation (xc) can be captured with an accu
racy that is good enough for many practical applications with
relatively “simple” functionals of the density, such as the local den
sity approximation (LDA) and generalized gradient approximations
(GGAs). Such semilocal xc approximations provide an unrivaled
computational efciency. The constraintguided construction strat
egy that has been advocated by Perdew, to whom this special issue
is dedicated, has led to some of the most widely used semilocal
functionals.5–7

However, there are wellknown classes of problems where LDA
and typical GGAs fail even qualitatively. One of them is the elec
trical response of extended systems and longrange chargetransfer.

The challenges, both conceptual and practical, that DFT can face in
describing the electrical response of innite periodic systems have
been discussed from different perspectives in the past.8–17 Here,
we focus on extended but nite systems. In these, the longrange
chargetransfer problem manifests itself in both groundstate18,19
and timedependent20,21 DFT. Our focus here is on groundstate
DFT, and in this groundstate theory, the hallmark chargetransfer
problem is the huge overestimation of the static electric longitu
dinal dipole polarizability of extended molecular systems that is
observed with LDA and GGAs. The failure can be traced back19,22
to a wellknown qualitative difference between the response of
the exact exchange potential and the one of LDA and GGAs: the
exact exchange response potential counteracts the externally applied
dipole eld, while the one of LDA and GGAs works with it. This
feature of exact exchange has been termed “ultranonlocality.”19,22,23
Hydrogen chains and polyacetylene serve as the prime examples for
studying this ultranonlocality and the groundstate chargetransfer
problem,18,19,22,24–42 and they also set the stage for the present work.

J. Chem. Phys. 159, 234107 (2023); doi: 10.1063/5.0173776 159, 2341071

© Author(s) 2023

12
D
e
ce
m
b
er
20
24
14
:28
:11



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Since the terms local, semilocal, nonlocal, and ultranonlocal have
been used in somewhat different contexts in the past, we rst clarify
in which sense we use these terms in the present work.

One context in which these terms are used in groundstate DFT
is the denition of the xc energy

Excn =  excnr d3r (1)

in terms of an xc energy density excnr. An approximation to
excr is called nonlocal when evaluating it at the point r requires
information from fardistant points r′, e.g., via an integration over
all space. The hallmark example of nonlocality is the exact exchange
energy density

eexx r = − e2

2 ∑
σ=↑,↓

Nσ∑
i,j=1  φ∗

iσrφ∗
jσr’φjσrφiσr’r − r’ d3r′. (2)

An approximation is local or semilocal in terms of Eq. (1) when
the xc energy density can be evaluated based on quantities that are
already available in a usual calculation, such as the density and the
orbitals, and these quantities need to be evaluated only at r or an
innitesimal neighborhood of r, respectively, to nd excr.

When the terms semilocal and nonlocal are used in this sense,
they are also often associated with computational expense, in the
sense that semilocal functionals are usually cheaper to evaluate than
nonlocal ones. The term ultranonlocal, however, is difcult to dene
based on Eq. (1). For dening and understanding ultranonlocality,
it is helpful to look at the terms local, semilocal, and nonlocal from
a second, different perspective and think in terms of the xc potential
vxcr.

In this second perspective, the term “locality” refers to how
the xc potential vxc at a given point r depends on the density nr.
That is, in a local approximation, it sufces to know the density n at
r to compute vxcr at this point r. In a semilocal approximation, it
sufces to know n and ∇n at the given point r to calculate vxcr.
Although calculating ∇nr requires information about the density
beyond just r and is, therefore, not a strictly local procedure, the
required additional information is restricted to an innitesimally
small neighborhood around r, i.e., semilocal. An approximation is
called “nonlocal” when vxcr depends continuously on the value of
the density in regions of space that are far from the point r.43 The
Hartree potential is a typical example of a potential that is nonlocal
in this sense.

Ultranonlocality is different from this usual nonlocality. We
call a potential ultranonlocal when vxcr nonvanishingly depends
on the density at points r′ that can be innitely distant from r,
or when an innitesimally small change of the density can lead
to a nite change of the potential. The nite “jumps” of the
Kohn–Sham xc potential that are associated with the derivative
discontinuity44,45 are a paradigm example of ultranonlocality. The
eldcounteracting terms mentioned in the second paragraph can
be understood in terms of such potential steps induced by the
derivative discontinuity:26,34 As the external eld moves charge to
a molecular unit, the potential “jumps up” on this unit and, thus,
counteracts the polarizing eld.

One should be aware that the three different contexts—energy
density, computational cost, and xc potential—in which the terms

local, semilocal, etc., are used, result in the fact that the classi
cation of a functional can be nonobvious. We elucidate what we
mean by this sentence with the help of two examples. The rst is the
Average Density SelfInteraction Correction (ADSIC) functional,46
which can be interpreted as a global average over the wellknown
orbital specic Perdew–Zunger SIC.47 In terms of the rst denition
via the energy density, ADSIC is nonlocal, as it features a Hartee
type integral in the xc approximation. In terms of computational
cost, however, ADSIC is classied as local as it is hardly more
expensive than the LDA. Furthermore, the ADSIC functional does
not show48 the eldcounteracting terms that are the hallmark of
(ultra)nonlocality.

The second example is metaGGAs. They are semilocal in terms
of energy density and computational cost. However, their poten
tial can show ultranonlocality, as demonstrated in Ref. 49. There
is, however, an open question with respect to the degree of ultra
nonlocality that can be reached with a metaGGA. While Ref. 49
demonstrated that a metaGGA can show ultranonlocality and can
thus also improve the static electric response of extended molecu
lar systems, the degree of ultranonlocality did not match the one
of exact exchange. Furthermore, the electrical response, while being
much improved compared to usual semilocal functionals, did not
fully capture the features that exact exchange shows, for exam
ple, with respect to the dependence of the response on the system
size. This raises the question whether a metaGGA can really reach
the same degree of ultranonlocality as exact exchange or whether
the electrical response that exact exchange yields incorporates fea
tures that decisively depend on the nonlocal Fock integrals and, thus,
cannot be reproduced by a metaGGA.

This is the question that this paper addresses. In Sec. II, we
review existing metaGGAs in view of a criterion that allows one
to estimate the degree of ultranonlocality that one can expect from a
metaGGA. In Sec. III, we present a new metaGGA that we con
struct nonempirically by focusing on constraints that guarantee
important properties of the potential vxr and ultranonlocality.
We demonstrate in Sec. IV that this metaGGA reproduces the
static electric response in close and quantitative similarity to exact
exchange, despite using only quantities that can be evaluated at
semilocal computational cost. The calculations also show that the
functional can be evaluated without numerical problems. In the
concluding Sec. V, we put these results into perspective with other
requirements that xc approximations are typically expected to fulll
and discuss possible future developments.

II. ULTRANONLOCALITY IN METAGGAS
By convention, semilocal functionals are often not given in the

form of Eq. (1) but use a factorization with an enhancement factor
Fx that indicates how strongly the functional differs from the LDA.
We here focus on metaGGAs for exchange that are written in the
form

EmGGA
x n = Ax  n4/3Fxs,α d3r, (3)

where Ax = −3e2/43/π1/3, and the enhancement factor
Fxs,α is parameterized in terms of the dimensionless variables
s = ∇n/23π21/3n4/3 and α = τ − τW/τunif. Here,
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n = σ=↑,↓Nσ
j=1 φ jσ 2 is the density, and the kinetic energy

density τ,

τr = h̵2

2m ∑
σ=↑,↓

Nσ∑
j=1 ∇φjσr2, (4)

is evaluated using the Kohn–Sham or generalized Kohn–Sham
orbitals φiσ , depending on which framework of DFT one is
working in. The von Weizsäcker kinetic energy density is
τW = h2∇n2/8mn, and τunif = Asn5/3 with As = 3h̵2/10m3π22/3 is the kinetic energy density of the homogeneous electron
gas. e and m are the elementary charge and the electron mass,
respectively. The parameterization of the enhancement factor in
s and α is used in many metaGGAs50 (although other variables
are used with success as well51). In our experience, s and α are
well suited for modeling xc approximations in which representing
limiting cases, such as the homogenous electron gas limit α → 1
or isoorbital limit α → 0, is part of the construction strategy.

In the following, we focus the formal discussion mostly on
the derivative discontinuity and not on other manifestations of
ultranonlocality, such as the eldcounteracting terms. We can do
so because, as explained in previous studies,20,26,49,52 a substan
tial derivative discontinuity will automatically translate into an
improved description of the observables for which ultranonlocality
is of interest, such as static chargetransfer properties and eld
counteracting terms. Since exchange contributes dominant parts to
the ultranonlocal response,19,24 as conrmed by the exact correlation
contribution to the response in hydrogen chains,39 we further focus
on exchange functionals.

The exchange derivative discontinuity for a system with
N electrons is dened by

Δx = vxr+ − vxr− = δExn
δnr ∣+ − δExn

δnr ∣−, (5)

where + and − denote evaluation of the functional derivative at
N + ϵ and N − ϵ, with ϵ → 0, respectively. As the functional deriva
tive of a metaGGA is given by

δEmGGA
x n
δnr = ∂ex

∂n
r −∇ ⋅  ∂ex

∂∇n
r

+  ∂ex
∂τ

r’δτr’
δnr d3r′, (6)

the derivative discontinuity of a metaGGA is given by

ΔmGGA
x =  ∂ex

∂τ
r’[ δτr’

δnr ∣+ − δτr’
δnr ∣−] d

3r′. (7)

From this exact expression, one can derive an approximate one that
allows one to easily develop a feeling for the expected nonlocality of
a given metaGGA by simple visual inspection of the enhancement
factor. The key thought is the “system averaging approximation”
that replaces ∂ex/∂τ in the integrand of Eq. (7) by its average over
the integration region. This allows us to pull this average ∂ex/∂τ
out of the integral. Interchanging the integration and the functional

derivative, one can then integrate τ and obtain the approximate
relation

ΔmGGA
x ≈ ∂ex

∂τ
[ δTsn
δnr ∣+ − δTsn

δnr ∣−]. (8)

The second factor on the right is just the Kohn–Sham eigenvalue
gap53 Δs, and thus, one obtains ΔmGGA

x ≈ ∂ex/∂τΔs in the system
averaging approximation. Since Δs ∈ 0, this equation shows that a
metaGGA that fullls

∂ex
∂τ

∈ 0 (9)

will yield a positive exchange derivative discontinuity, as it should.
Thus, Eq. (9) can be used as a guideline in metaGGA construc
tions that aim at functionals that yield a pronounced derivative
discontinuity Δx and related features, such as ultranonlocality.

For practical purposes, one prefers metaGGAs that are param
eterized in s and α; cf. Eq. (3). One can translate the condition of
Eq. (9) to these variables by using the chain rule in combination with
Eq. (3) and the denition of α. This shows49 that a positive ΔmGGA

x is
guaranteed when

∂Fx/∂α ≜ 0. (10)

The system averaging approximation is a nontrivial step, and
its consequences have recently been discussed in detail in the con
text of bandgap prediction.54 However, based on it, Eqs. (9) and
(10) allow us to gain a priori intuition for how much derivative dis
continuity and (ultra)nonlocality to expect from a metaGGA in a
very simple way, namely by inspecting plots of the enhancement
factor.

Figure 1 shows plots of the exchange enhancement factor
Fxs,α as a function of α for different values of s for some paradigm
metaGGAs that we selected from the large number of metaGGAs
that are available in the literature. The left and middle panels in
the top row show plots of the PKZB (Perdew, Kurth, Zupan, and
Blaha55) and TPSS (Tao, Perdew, Staroverov, and Scuseria6) meta
GGAs, respectively. Evidently, their enhancement factors hardly
show any slope, and the enhancement factor of PKZB for small val
ues of s even slightly increases as a function of α. This observation,
together with Eqs. (9) and (10), explains the earlier reported ndings
that, e.g., TPSS does not show nonlocality,61 PKZB and TPSS show
only a minute derivative discontinuity,52 and yield band gaps sim
ilar to usual GGAs.62 Many other metaGGAs, e.g., the ones from
Refs. 63–68, show similarly small derivatives ∂Fx/∂α, and one thus
expects similarly little ultranonlocality from them.

The rightmost panel in the rst row depicts the enhancement
factor of the local τ approximation.56 This nonempirical metaGGA
shows a very pronounced dependence of the enhancement factor
on α, and one can, therefore, expect pronounced effects of ultra
nonlocality. However, all the curves for different values of s are
monotonically increasing. Thus, Eq. (10) indicates that the local
τ approximation56 will lead to a negative exchange derivative dis
continuity, contrary to the sign that one nds in exact exchange.
Based on general arguments,54 one expects that correlation will also
contribute a negative sign to the derivative discontinuity. Therefore,
the local τ approximation will yield an overall negative xc derivative
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FIG. 1. Plots of the enhancement factor Fxs,α⌞ as a function of α for different values of s for the metaGGAs (from left top to bottom right): PKZB,55 TPSS,6 local τ,56 M06
L,57 M11L,58 MN15L,59 SCAN,7 TASK,49 and PBEGX.60 A negative slope in these plots leads to a positive exchange derivative discontinuity. For the localτ approximation,
not all the curves for the different values of s fall within the plotted range.

discontinuity—which calls this approximation into question in view
of the expectation of a positive derivative discontinuity.69

The second row of panels depicts the enhancement factors of
the M06L,57 M11L,58 and MN15L59 metaGGAs for exchange.
Fitting parameters to large databases is part of the construction strat
egy of these functionals, and this leads to substantial variations in
the enhancement factors. Consequently, because there is no univer
sal trend in the slope of Fx, it is difcult to deduce general statements
about the magnitude and the sign of the derivative discontinuity for
M06L and M11L based on Eq. (10) and the plots of the enhance
ment factor: For some ranges of α, the slope is negative while it is
positive for others, and for values of s ⪆ 2, the enhancement factor
increases with increasing α, i.e., shows a trend similar to the local
τ approximation. The same is true for the revM06L functional,70
which is not shown in Fig. 1. Thus, the strength of the derivative
discontinuity and ultranonlocal effects with these functionals can

be very different for different systems, depending on which val
ues of s and α are realized and which range of the enhancement
factor is thus probed. The MN15L functional, on the other hand,
shows a more uniform enhancement factor. For most values of s,
Fx decreases with increasing α, which translates into the proper
sign for the exchange discontinuity according to Eq. (10). This
general trend is, however, violated for s = 0 for values of α ⪅ 0.5,
and therefore, some uncertainty about the strength of the exchange
discontinuity in this functional remains.

The bottom line of panels in Fig. 1 nally shows three exam
ples of functionals for which one can be sure to nd a nonnegative
exchange discontinuity and at least some degree of ultranonlocality:
The enhancement factors of the metaGGAs SCAN,7 TASK,49 and
PBEGX60 decrease with increasing α for all values of s. SCAN shows
more slope than, e.g., TPSS, and consequently, SCAN improves band
gaps more than TPSS due to a larger contribution from the deriva
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tive discontinuity.71–73 There are several other functionals,74–78 not
shown in Fig. 1 for the sake of space, whose enhancement factors
show a similar or somewhat less negative derivative in α than SCAN.
These functionals can, therefore, be expected to also show some
degree of ultranonlocality, although not much. A larger degree of
ultranonlocality can be expected from the TASK functional, which,
while satisfying the same set of exact constraints as SCAN, has
a more pronounced negative slope. Consequently, band gaps pre
dicted with TASK reach a yet higher and remarkable accuracy49,62
due to a substantial contribution54 from the exchange discontinuity.
In terms of the slope of the enhancement factor, cf. the bottom right
panel in Fig. 1, one would expect that the PBEGX functional shows
a derivative discontinuity and ultranonlocality of a strength between
SCAN and TASK. However, checking this in practice for systems
of practically relevant complexity seems presently impossible, as the
PBEGX functional is numerically very illbehaved.79

The degree of ultranonlocality and the magnitude and sign of
the derivative discontinuity that one expects from a metaGGA can
thus, in many cases, simply be estimated by analyzing the slope of
the enhancement factor as a function of α. (We note in passing that
this slope also determines the importance of the gaugeinvariance
restoring currentdensity correction when metaGGAs are used in
timedependent DFT.80,81) To the best of our knowledge, among
the presently existing metaGGAs, the TASK functional is the one
that shows the most pronounced effects of ultranonlocality.82,99
This, however, leads to the question that was mentioned toward
the end of the introduction. In Ref. 49, the practical manifestation
of ultranonlocality was tested for the TASK functional by using it
to calculate the static electric polarizabilities of hydrogen chains,
i.e., one of the paradigm test systems for the static chargetransfer
problem.18,19,22,24,26,27,29–38,40,41 While TASK signicantly improves
the calculated polarizabilities compared to other semilocal function
als, it does not fully match exact exchange in terms of the strength
of the eldcounteracting terms. In particular, for the longer chains,
the differences between TASK and exact exchange became notice
able. Thus, the question arises whether a metaGGA can really
capture the same degree of ultranonlocality as exact exchange or
whether there is a fundamental limitation of the metaGGA concept,
e.g., resulting from the lack of exchangelike integrals, to yield full,
exactexchangelike ultranonlocality.

III. THE EXACTEXCHANGE LIKE RESPONSE
(EEL) METAGGA

In the following, we demonstrate that one can construct a
metaGGA based solely on semilocalcost functional ingredients
that indeed yields an ultranonlocal static electric response in quan
titative agreement with the exact exchange for hydrogen chains and
in close similarity for real oligomers. The guidelines in our construc
tion are the hydrogen atom as the paradigm localized oneelectron
system and the homogeneous electron gas as the paradigm extended
manyelectron system.

Our construction starts at the isoorbital limit. In this limit,
α ≡ 0, the exchange enhancement factor effectively depends only on
s and can, therefore, be represented by a GGAtype enhancement
factor,

Fxs,α = 0 = Gs2. (11)

The SCAN7 and TASK49 metaGGAs choose

GSCANx = h0x1 − exp −c0 x−1/4 (12)

in order to obey the strongly tightened bound83 for twoelectron
densities,

Fxs,α = 0 ≤ 1.174 = h0x, (13)

and to enforce the correct nonuniform coordinate scaling of the
exchange energy per particle to the true twodimensional limit.84,85
With the choice7 c0 = 4.9479, SCAN and TASK obtain the exact
hydrogen atom energy via spin scaling. Thus, for hydrogenic sys
tems, the ansatz indirectly also minimizes the oneelectron self
interaction energy. As our aim is to obtain a physical potential
that is similar to the one of exact exchange, we want to avoid the
divergences that GGAtype potentials typically show at a nucleus.
Therefore, we generalize GSCANx of Eq. (12) to

Gx; x0 = h0x{1 − exp −cx − x0−1/4Θx − x0}, (14)

where Θx is the Heaviside step function. Here, x0 ≥ 0 is an addi
tional parameter that ensures Gx; x0 = h0x for x ≤ x0. We choose
x0 = s20 with s0 = 6π−1/3 being the minimal value of s realized in a
doubly occupied, 1sorbital like exponential density. This eliminates
the spurious divergence in the exchange potential at the nucleus
due to ∇2n contributions.6,86 With the choice c = 4.759 279, we
ensure that the exact hydrogen atom energy is obtained again. This
oneorbital limit enhancement factor is referred to as Gx in the
following.

We now generalize the oneorbital limit Gx to a general
metaGGA enhancement factor Fxs,α by making use of the obser
vation that in the oneorbital limit, the reduced kinetic energy
density t = τ/τunif is proportional to s2, i.e., more precisely t → 5

3 s
2,

because τ → τW.87 Furthermore, we make use of the general relation
3t/5 = s2 + 3α/5, which follows from the denition of α. Combin
ing these steps, one can dene a general enhancement factor by the
linear combination

Fxs,α; k = kGs2 + 3α/5 −Gs2 +Gs2. (15)

The idea of this linear combination is to dene a family of enhance
ment factors as a function of the parameter k that all share the same
oneorbital limit, i.e., respect the hydrogen atom limiting case, yet
differ in their dependence on α. Furthermore, the strength of the
αdependence is directly controlled by the parameter k. As Gx is
a monotonically decreasing function, restricting k to positive values,
i.e., k ∈ 0, ensures that

∂Fx/∂α ≜ 0. (16)

Thus, the correct sign of the exchange derivative discontinuity, i.e.,
Δx ∈ 0, is guaranteed for all enhancement factors of the type of
Eq. (15).

In the following, we are interested in k ∈ 1 to obtain an appre
ciable magnitude of the derivative discontinuity and associated
ultranonlocal properties. Since α ≥ 0, the monotonicity of G implies
that the enhancement factors of Eq. (15) for k ∈ 1 are bounded from
both below and above,

−k + 1h0x ≤ Fxs,α; k ≤ Fxs,α = 0; k ≤ h0x. (17)
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While the upper bound is reasonable as it imposes the conjectured
strongly tightened bound,83

Fxs,α ≤ Fxs,α = 0 ≤ h0x, (18)

the lower bound does not ensure the positivity of Fx and, thus, can
not guarantee the negativity of the exchange energy for any density.
In practice, a negative Fx can arise from Eq. (15) for k ∈ 1 when s is
small and α is very large because then the negative second term can
dominate over the positive rst and third terms. This problem, how
ever, can be avoided by a change of variables. We replace α with the
monotonically increasing expression

α̃α;α0 = α0 tanh α/α0. (19)

This maintains the behavior for small values of α, i.e., α̃ ∼ α for
α → 0, while realizing an upper bound α0, i.e., limα→∞ α̃ = α0.

The thus introduced parameter α0 has to be chosen large
enough to guarantee that Eq. (19) provides a nonconstant map
ping from α to α̃ for the physically signicant range of αvalues, i.e.,
preserves the physically relevant behavior of α, and small enough
to guarantee the positivity of Fx. We found that the choice of
α0 = 3 respects both conditions.88 Therefore, we arrive at the nal
expression

Fxs,α; k,α0 = kGs2 + 3 α̃α;α0/5 −Gs2 +Gs2. (20)

The remaining parameter k is determined by enforcing the homoge
neous electron gas limit, i.e.,

Fxs = 0,α = 1 = 1. (21)

Imposing this limit yields

kα0 = (1 − h0x)/G3 α0 tanh α−10 /5 − h0x (22)

with k ≈ 51.5558 for α0 = 3. This concludes the construction of the
exactexchangelike response (EEL) functional, i.e., EEEL

x is given by
Eq. (3) with the Fx of Eq. (20) and the just mentioned values for the
parameters k and α0.

Figure 2 shows a plot of this FEEL
x as a function of α for different

values of s, in analogy to the plots shown in Fig. 1. However, note
that the scale of the vertical axis has been extended in Fig. 2 due to
the EEL functional’s stronger dependence on α.

IV. STATIC ELECTRIC RESPONSE OF EXTENDED
MOLECULAR SYSTEMS

This functional construction did not address covalent binding,
and therefore, it should not be expected that it leads to a “general
purpose” functional that would, for example, reliably describe elec
tron bonds of different kinds. However, by constructing Eq. (20)
such that it respects the hydrogen atom, the homogeneous elec
tron gas, and the principle of a large derivative discontinuity, we
aimed at a functional that is reasonable for 1sorbital densities, for
delocalized electrons, and yields sizeable eldcounteracting terms.
As a consequence, Eq. (20) should be well capable of describing
the static electric response of systems such as hydrogen chains or
conjugated polymers, whose electronic structure shows both atomic
like and delocalized features and in which eldcounteracting terms

FIG. 2. Plots of the enhancement factor FEELx s,α⌞ from Eq. (20) as a function of
α for different values of s.

are decisive for obtaining reasonable values for the electric polar
izability. As previously explained, we thus want to clarify whether a
metaGGA that only uses semilocal ingredients can achieve an ultra
nonlocal response of the samemagnitude as the fully nonlocal exact
exchange.

Hydrogen chains with alternating bond lengths of 2 and
3 a0 are, as mentioned above, a wellestablished reference system
for checking the ability of manybody methods to describe the elec
trical response of and static chargetransfer in extended systems.
In fact, among the different molecular chains that have been stud
ied in the context of ultranonlocality in DFT, hydrogen chains have
even been identied as a particularly challenging test.23 Table I lists
the results from our calculations of the longitudinal static electric
dipole polarizability of hydrogen chains of increasing length. We
here do not compare to many other previously published meta
GGAs, because such a comparison has been done in earlier work49
and it showed—conrming earlier ndings52,61—that traditional
metaGGAs do not show much ultranonlocality and, therefore, lead
to a substantial overestimation of the polarizabilities of extended,
chainlike systems. Our focus is, therefore, on metaGGAs that have
been constructed to yield a substantial derivative discontinuity and,
thus, eldcounteracting terms, i.e., the PoC and TASK functionals
from Ref. 49 and the EEL functional from this work. We compare
these functionals to exact exchange (EXX) as the reference, and we
also show results from the exchange LDA as the paradigm local
approximation.

The rightmost column of Table I shows the exact exchange
results, which are the reference numbers for our present purposes.
The leftmost column shows the results from the local exchange, and
these highlight the wellknown problem of the local approximation:
The polarizability is systematically overestimated, and the deviation
has a pronounced size dependence: Errors increase signicantly with
increasing system size and reach almost 60% for H40. TASK, which
is constructed to fulll the gradient expansion and many other exact
constraints, i.e., follows universal design criteria for overall accu
racy,89 considerably improves over the LDA and yields much more
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TABLE I. Static electric longitudinal dipole polarizabilities in a30 for the hydro
gen chains H2N for different exchange energy functionals. DFT calculations were
performed selfconsistently with the potentials of all orbitaldependent functionals
evaluated in the Krieger–Li–Iafrate (KLI) approximation.44

H2N xLDA TASK PoC EEL EXX

H2 13.2 12.1 12.1 12.0 12.0
H4 39.6 34.7 31.9 33.7 33.2
H6 76.4 64.5 55.5 60.9 60.3
H8 120.6 98.7 81.0 91.9 90.9
H10 169.6 135.5 107.4 123.7 123.4
H12 221.8 173.7 134.3 158.0 156.9
H14 275.9 212.9 161.4 190.8 191.1
H16 331.2 252.5 188.6 226.4 225.5
H18 387.3 292.4 215.9 259.4 260.3
H20 444.0 332.6 243.3 295.8 295.1
H24 558.1 413.2 298.1 365.4 365.0
H28 672.9 494.1 353.1 435.3 435.1
H32 788.1 575.2 408.1 505.2 505.3
H36 903.6 656.4 463.2 575.3 575.6
H40 1019.2 737.6 518.4 645.3 646.0

realistic polarizabilities than other metaGGAs.49 However, for large
chain lengths, the deviation goes up to 14%, i.e., the difference with
respect to exact exchange becomes noticeable. The PoC functional,
which was presented in Ref. 49 as a very simple proofofconcept
with a focus on only the derivative discontinuity, shows deviations
of up to 19% but of the opposite sign, i.e., it yields polarizabili
ties that are signicantly too low. The EEL functional nally yields
polarizabilities in very close agreement with exact exchange.

The trends in these results become yet clearer when one visu
alizes the data by plotting the relative polarizability with respect to
exact exchange as a function of system size, as shown in Fig. 3. This
shows that the smallest systems are reasonably well described by
all exchange approximations, except for LDA, which shows a 10%
deviation already for H2. However, the dependence on the system
size is very different for the different functionals. LDA deviations
increase signicantly with system size and have not yet saturated
at H40, the largest hydrogen system in our study. This size depen
dence is a hallmark sign of missing the required ultranonlocality.19,23
TASK also shows an increasing deviation, but the deviation saturates
at about 15% already around H24. The simple PoC functional shows
both a larger deviation with the opposite sign and a slower conver
gence of the deviation. The EEL functional, nally, stays very close
to the exact exchange values for all system sizes, i.e., yields an almost
ideal horizontal line at 1.00. This demonstrates that a metaGGA can
capture ultranonlocality in hydrogen chains in very close, quantita
tive agreement with exact exchange, despite being constructed from
semilocal functional ingredients and without using nonlocal Fock
exchange integrals.

This is a truly encouraging result. However, the hydrogen atom
was one of the guiderails in the construction of the EEL functional
and one may, therefore, argue that it is to some extent “natural”
that the EEL functional describes hydrogen chains well. Checking
whether the EEL functional yields a reasonable response for other
extended systems is, therefore, a relevant second test. Polyacetylene,

FIG. 3. Static electric longitudinal dipole polarizability from density functional
exchange approximations divided by the polarizability obtained with exact
exchange for different metaGGAs and LDA as labeled in the gure. The discrete
symbols denote the calculated data, while the continuous lines are ts that just
serve as a guide to the eye.

or more precisely, C2NH2N+2 oligomers of increasing length, provide
for a second established and challenging test of response proper
ties. Figure 4 claries the geometry that we based our calculations
on and which we chose as in earlier studies18,36 for ease of com
parison of the results. Table II shows the longitudinal static electric
dipole polarizabilities that one obtains for such acetylene oligomers.
It is interesting to note that here, all functionals, including the PoC,
yield larger polarizabilities than exact exchange. In order to clar
ify the trends, we again plot the polarizability with respect to the
one from exact exchange as a function of the system size. Figure 5
reveals that the situation for polyacetylene differs from the one for
the hydrogen chains in several respects. First, the trend with the
system size is less uniform for all functionals, even the LDA. As a
consequence, one cannot safely determine a saturation value for the
deviation of any of the functionals, and we thus also refrain from
showing ts. The data points themselves, however, still reveal the
trends clearly enough. The LDA again shows the largest deviations,
up to ∼35%, and also the steepest slope in the relative deviation.
The PoC functional shows relatively large deviations for the small
oligomers but has a negative slope in the relative deviation, i.e., the
relative deviation decreases for the larger systems. For most systems,
PoC yields deviations of about 20%. The deviation of the TASK func
tional increases with increasing system size, but at a lesser rate than
LDA, and the deviations are between 9% and 19%. The best results
are again obtained with the EEL functional: for most systems, the
deviations are around 5% and the largest deviation is about 10%. It
is also interesting to observe that for smaller oligomers, there seems
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FIG. 4. Sketch of the geometry18,36 that the polyacetylene calculations are based on; see the main text for discussion.

TABLE II. Static electric longitudinal dipole polarizabilities in a30 for the C2NH2N+2
oligomers of polyacetylene for different exchange energy functionals. DFT calcu
lations were performed selfconsistently with the potentials of all orbitaldependent
functionals evaluated in the KLI approximation.44

C2NH2N+2 xLDA TASK PoC EEL EXX

C4H6 91 85 95 81 77
C6H8 179 167 189 160 153
C8H10 301 280 307 265 254
C10H12 460 426 467 406 385
C12H14 656 606 658 566 539
C14H16 889 819 860 765 721
C16H18 1158 1056 1103 990 917
C20H22 1798 1621 1645 1509 1367
C24H26 2564 2312 2282 2111 1970
C28H30 3439 3071 2977 2824 2570

to be very little variation in the deviation with the system size, which
indicates that the EEL functional captures the size dependence of the
response in great similarity to exact exchange. For large oligomers,
there seems to be some increase in the deviation, although the sit
uation is not uniform as C24H26 shows a relatively small deviation
of 7%.

These ndings might appear somewhat unsystematic at rst
sight, but they can be understood when one analyzes the response
potential in the way suggested by Ref. 19, i.e., by plotting the dif
ference between the response potential with an external applied
dipole eld and without. This analysis is shown for the largest sys
tem in our study, C28H30, in Fig. 6. The full black line shows the
exact exchange response, and the dashed line shows the constant
potential of the polarizing dipole eld. One clearly sees the eld
counteracting effect of exact exchange: The response potential has
an overall slope opposite to the slope of the external polarizing eld.
It is well known19,24,26 that functionals such as LDA and GGAs miss
this eldcounteracting term completely and, therefore, their polar
izabilities are too large. Figure 6 also shows the response obtained
from the three metaGGAs, and this leads to an explanation of the
above discussed ndings.

FIG. 5. Longitudinal polarizabilities for the C2NH2N+2 oligomers of polyacetylene
for different exchange energy functionals relative to the polarizability found with
EXX.

The rst striking observation is that the PoC functional is more
strongly eldcounteracting than the exact exchange itself, as seen
by the higher value of response potential on the far left and the
lower value on the far right. However, along the chain, the PoC
potential shows much more pronounced up and downspikes than
exact exchange. To connect these observations to the above reported
ndings, one has to keep in mind that the response of an extended
molecular system is strongly inuenced by two different effects: On
the one hand, the eldcounteracting terms are important, and their
relative importance increases with increasing system size. On the
other hand, the shape of the potential itself, i.e., the wells and bar
riers that the Kohn–Sham potential features between the different
segments of the molecular chain, also have a pronounced inuence.
If these wells and barriers are not of the correct height, then an
externally applied eld can shift electron density along the molec
ular backbone too easily or too hard, and this, too, leads to errors
in the polarizability. This second effect, however, does not depend
strongly on the system size, as the potential structure is similar in
every repeat unit of the polymer. The pronounced spikes that one
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FIG. 6. Full lines: plots of the difference of the response potentials with and without an externally applied eld19 for the molecule C28H30 for exact exchange as the reference
and the metaGGAs EEL, PoC, and TASK, as labeled. The dashed line indicates the potential associated with the polarizing uniform electric eld. See the text for discussion.

sees in Fig. 6 in the response potential of the PoC functional show
that the potential structure differs pronouncedly from the one of
exact exchange. Thus, the PoC functional gives a wrong response, yet
the deviation decreases for larger systems because for the latter, the
relative importance of the eldcounteracting terms increases, and
these are overestimated by PoC. The decrease in the relative devi
ation that is observed for PoC in Fig. 5 is thus a consequence of a
lucky error cancellation of the two different effects for intermediate
oligomer lengths. For systems longer than the ones that we study
here, one thus expects from the PoC functional an underestimation
of the relative polarizability in analogy to the trend that was observed
for the hydrogen chains.

Looking at the potential structure of the TASK functional in
Fig. 6 shows that it is much more similar to the exact exchange than
the one of PoC. The eld counteracting term, however, is underes
timated: One clearly sees that there is a eldcounteracting effect,
i.e., the existence of the ultranonlocality effect is conrmed also for
polyacetylene. The counteracting slope, however, is somewhat too
small. This explains why TASK overestimates the polarizabilities of
polyacetylene.

Finally, looking at the plot for the EEL functional shows that its
response potential structure is also quite similar to exact exchange.
Furthermore, it shows a signicant eldcounteracting term. The
slope does not fully reach the one of exact exchange, but it is more
pronounced than the one found with TASK and can thus keep the
relative errors below 10% for all system sizes. These observations are
in line with Table II and Fig. 5: They explain the relative accuracy
of the different metaGGAs and, more importantly, demonstrate
that while the quantitative accuracy of the EEL functional is smaller
for the polarizability of polyacetylene than for the one of hydrogen
chains, the pronounced increase in the deviation with the sys
tem size is strongly reduced. This conrms that metaGGAs can
indeed capture the ultranonlocal response in great similarity to exact
exchange.

V. CONCLUSION
The above results demonstrate that ultranonlocality of the

Kohn–Sham exchange potential can be reached with metaGGAs.
This nding has the potential for a signicant impact: MetaGGAs
offer the hope that material research in which a proper descrip
tion of the derivative discontinuity and eldcounteracting terms is
decisive, e.g., because band gaps or longrange charge transfer and

the electric response play an important role, can be done based on
metaGGAs. Up until now, such studies have usually had to resort
to the different variants of hybrid functionals. Hybrids increase
the computational cost enormously. This often limits studies to
small, simplied models and prevents calculations that correspond
to experimental reality. Themuch lower computational cost of meta
GGAs54 can enable calculations on larger scales, both in space and
in time, and can thus bring rstprinciples simulations closer to
material research reality.

Whether metaGGAs can live up to this promise will, how
ever, depend on further serious research efforts. Our construction
of the EEL functional, which took into account just two paradigm
systems, the hydrogen atom and the homogenous electron gas, and
one construction principle, the negative slope of Fx in α, showed
that a reasonable accuracy was obtained for polyacetylene, while
extremely accurate results were obtained for the hydrogen chain
response. The accuracy for the hydrogen chains is plausible in view
of the hydrogen atom being taken into account in the functional con
struction. Following this logic, it seems reasonable to assume that
a generally accurate functional needs to be constructed by taking
into account more of the physics of, for example, covalent binding,
which is important in molecules and solids. Thus, the challenge is
to construct more general functionals that yield a sizeable deriva
tive discontinuity and ultranonlocal response while at the same time
yielding accurate binding energies.

FIG. 7. Visualization of FEELx s,α⌞ as a threedimensional contour. One can thus
see that Eq. (10) is fullled at all points in s,α⌞space.
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There is hope that this will be possible because, so far, we have
taken Eq. (10) literally: Functionals such as TASK and EEL fulll
this condition for all values of s and α, as visualized for the EEL
functional in Fig. 7. This is sufcient for guaranteeing a positive
derivative discontinuity. However, while Eq. (10) is a sufcient con
dition, it is not a necessary one. Equation (9) shows that violating
Eq. (10) for some regions of s and α is acceptable as long as Eq. (9) is
fullled for the energetically important region. The yet more general
Eq. (7) widens the perspective further: Depending on which values
of s and α are probed by a given system’s electronic structure, the
integral of Eq. (7) can be positive even if the integrand locally takes
on negative values in some regions of space. Thus, there is exibility
in constructing functionals with a pronounced ultranonlocality that
has not yet been systematically explored in functionals such as TASK
and EEL.

These ideas are in line with Ref. 90, which argues that enforcing
conditions locally to guarantee satisfaction of global bounds is typi
cally excessive. Some guidance on which values of s are relevant for,
for example, atomization energies or transition state barrier heights,
is available from earlier studies.91,92 For α, and yet more for the com
bination of the variables, the situation is more complex. However,
some steps to identify decisive parameter regions have recently been
taken, e.g., by demonstrating the importance of the semicore region
for bond lengths in solids,93 by analyzing which combinations of n,
s, and α are important for determining the band gaps of solids,54 and
by studying which part of the vast parameter space is probed by the
densities of real Coulomb systems and the constraints that are rel
evant there.90 It is also clear that exploiting the freedom to locally
deviate from Eq. (10) on the one hand, while, on the other hand,
respecting the requirement of a negative derivative of Fx in α in a
way that overall guarantees a positive derivative discontinuity, might
require new ways of thinking about functional construction. In this
light, it is reassuring to observe that promising new construction
principles for metaGGAs keep emerging.94–97

Based on the demonstration that metaGGAs, without doubt,
can reach ultranonlocality, which has been given in this paper, there
is thus hope that semilocal functionals can shed off some of their
traditional qualitative shortcomings while retaining their computa
tional efciency. However, one must also be aware that metaGGAs
do not feature conventional nonlocality as in the Hartreeterm. This
puts some limits on what can be reached within the metaGGA
form. It seems unlikely, for example, that a metaGGA will gen
erally be able to meet the straightline condition for the energy as
a function of particle number.69,98 Furthermore, while metaGGAs
can easily be made selfcorrelationfree for oneelectron densities
by using isoorbital indicators, the missing nonlocality prevents
them from being generally free from oneelectron selfinteraction.
The static charge transfer that we studied here is not too sensi
tive to these limitations. However, the limitations are more strongly
seen in recent timedependent DFT calculations based on meta
GGAs:81 While incorporating the derivative discontinuity does
improve chargetransfer excitations to some extent, quantitative
accuracy would require further improvements in the potential, e.g.,
to yield more strongly bound eigenvalues and the proper longrange
asymptotics. It might, therefore, be a promising route for future
functional development to combine the ultranonlocality that meta
GGAs naturally incorporate with the nonlocality that a oneelectron

selfinteraction correction, e.g., of the Perdew–Zunger type,47 can
bring.
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It has been demonstrated that a meta-generalized gradient approximation (meta-GGA) to the exchange-
correlation energy of density functional theory can show a pronounced derivative discontinuity and significant
ultranonlocality similar to exact exchange, and can accurately predict the band gaps of many solids. We here
investigate whether within the meta-GGA form these properties are compatible with a reasonable accuracy for
electronic binding energies. With the help of two transparent and inexpensive correlation functional constructions
we demonstrate that this is the case. We report atomization energies, show that reliable bond lengths are obtained
for many systems, and find promising results for reaction barrier heights, while keeping the strong derivative
discontinuity and ultranonlocality, and thus accuracy for band gaps.

DOI: 10.1103/PhysRevResearch.4.023061

I. INTRODUCTION

Density functional theory (DFT) is one of the most widely
used many-body theories, with successes in many branches
of electronic structure theory [1]. DFT comes in the mathe-
matical structure of a single-particle theory, yet incorporates
many-particle effects via the exchange-correlation (xc) energy
functional Exc. This allows the practitioner who is interested
in electronic structure problems to choose the level of ac-
curacy and computational cost by choosing a certain class
of xc approximation. The local density approximation [2,3]
(LDA) and generalized gradient approximation [4,5] (GGA)
functionals are computationally efficient. Higher accuracy can
typically be reached with hybrid functionals [6], where re-
cent years have seen a lot of activity in the development
of advanced forms such as local hybrid functionals [7–10],
range-separated hybrid functionals [11–20], and local range-
separated hybrid functionals [21–23]. Further advanced xc
approximations can reach a level at which DFT rivals wave-
function-based methods in accuracy [24].

However, much of the success of DFT in applied elec-
tronic structure theory rests on its computational efficiency,
and a certain dilemma has thus been limiting DFT applica-
tions for a long time: The computationally efficient LDA and
GGA forms suffer from systematic shortcomings, many of
which can be traced back to the very features which make
these forms efficient. The sole dependence of their energy
density on the electron density n(r) and its gradient ∇n(r)
leads to expressions for the energy and the xc potential
that can efficiently be numerically evaluated, but also pre-
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vents that important features of the exact xc functional are
reflected in these functionals. Especially the lack of a deriva-
tive discontinuity in Exc, which leads to a particle-number
discontinuity in the corresponding Kohn-Sham xc potential
vxc(r), has seriously detrimental consequences in many ap-
plications, e.g., the prediction of band gaps [25] and response
properties [26–28]. The derivative discontinuity and the corre-
sponding (ultra-)nonlocality can be incorporated into Exc, e.g.,
by including exact exchange [29–31] or via self-interaction
corrections [32–34]. This, however, increases the computa-
tional cost sharply compared to a plain GGA calculation.
Model potentials [35–37] and especially tailored GGAs can
provide some improvement [38,39], but come with their own
set of problems and serious limitations [40–44].

The functional class of the meta-GGAs [45] seems ideally
suited to resolve the dilemma between the need for semilo-
cal computational efficiency on the one hand, and the need
to capture (ultra-)nonlocality-physics on the other hand. De-
pending only on the density, its gradient, and the gradient
of the orbitals, makes meta-GGAs semilocal in terms of the
computational cost. However, as the orbitals are nonlocal
functionals of the density, meta-GGAs, in principle, depend
nonlocally on the density as well [31]. Unfortunately though,
the experience in practice for a long time had been that typical
meta-GGAs can improve over GGAs in the accuracy of, e.g.,
atomization energies [46–50], yet offer little nonlocality [51].

With the recent construction of the meta-GGA by T.
Aschebrock, S. Kümmel (TASK) for exchange [52] it has
been demonstrated that a meta-GGA can have a pronounced
derivative discontinuity and can reproduce many of the (ultra-
)nonlocal features that previously could only be reached with
exact exchange. This demonstrated that (ultra-)nonlocality is
not just, in principle, a feature that meta-GGAs can have,
but also in practice. However, the TASK meta-GGA for
exchange has so far been combined with plain LDA corre-
lation [52] (LDAc) [53]. This was a preliminary step, taken
for the simple reason that LDAc is universal and thus better
suited for combining it with a new exchange functional than
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a correlation functional that has been tailored towards some
other specific exchange functional. While the combination
of TASK exchange with LDAc yields excellent results for
the fundamental band gap of many materials in the gener-
alized Kohn-Sham evaluation [39,52], and promising results
for response properties [52,54], the atomization energies are
of limited accuracy [52]. Thus, one may speculate whether
the meta-GGA form is too limited to yield accurate binding
energy physics and pronounced nonlocality at the same time,
e.g., whether one and the same meta-GGA can yield both good
atomization energies and band gaps.

In this article we take a step towards answering this ques-
tion. Our focus here is not (yet) on the development of the
best possible meta-GGA correlation functional to go with the
TASK exchange functional, but on exploring whether having
a pronounced derivative discontinuity and having good atom-
ization energies are necessarily mutually exclusive within the
meta-GGA functional form. To this end we focus on very
transparent forms for a semilocal correlation functional that
ensure that the excellent band gaps that are found with TASK
exchange and LDAc remain intact, while atomization energies
are improved. We specifically discuss the role of one-electron
self-interaction, and we also report bond lengths, atomization
energies, and reaction barrier heights for TASK exchange in
combination with different correlation functionals. We find
that it is possible to construct a functional that yields the
same accurate band gaps as the combination of TASK and
LDAc, while at the same time yielding greatly improved
atomization energies.

II. TASK EXCHANGE WITH ISO-ORBITAL
CORRECTED LDA CORRELATION

Following usual practice we write the correlation energy in
terms of the electron density n(r) and the correlation energy
density per particle εc,

Ec[n↑, n↓] =
∫

n(r)εc(r)d3r. (1)

As explained above our aim is to check whether one can
find a transparent correlation functional that yields reason-
able atomization energies when combined with the TASK
exchange functional, without ruining the good features of
TASK exchange that result from its pronounced nonlocality.
Our first step is to correct for one-electron self-correlation.
This is close-lying and natural because first, TASK exchange
was designed with a focus on reducing one-electron errors
(by ensuring the correct energy for the hydrogen atom),
second, TASK exchange mimics exact exchange, which is
one-electron self-interaction free, and third, one-electron self-
correlation can readily be eliminated within the meta-GGA
form by using iso-orbital indicators [55]. One such indicator is

z(r) = τW (r)

τ (r)
, (2)

where

τ (r) = h̄2

2m

∑
σ=↑,↓

Nσ∑
i=1

|∇ϕiσ (r)|2 (3)

is the noninteracting kinetic energy density that is obtained
from the Kohn-Sham or generalized Kohn-Sham spin orbitals
ϕiσ (r), respectively, and

τW (r) = h̄2

8m

|∇n(r)|2
8n(r)

(4)

is the von Weizsäcker kinetic energy density. The latter is the
single-orbital limit of τ , thus, z approaches one in regions of
spatially identical orbitals. By multiplying z with the square
of the spin polarization

ζ (r) = n↑(r) − n↓(r)

n↑(r) + n↓(r)
, (5)

one obtains the one-spin-orbital region indicator zζ 2. This
can be used to define a transparent form of an LDA-based
self-interaction corrected correlation (CC) functional [10] via

εCC(r) = (1 − z(r)ζ 2(r))εLDAc(r) , (6)

where εLDAc is the correlation energy density of LDA,
including its spin dependence, which we, however, do not
denote explicitly for ease of notation. In our calculations we
use the LDA in the parametrization of Perdew and Wang [3].

The CC correlation is a very transparent functional that
does not contain any empirical parameter. Combining it with
TASK exchange, denoted by TASK+CC in the following,
leads to a nonempirical meta-GGA that fulfills many exact
constraints. TASK exchange satisfies all exact constraints for
exchange that SCAN exchange does [52,56]. Since τW and
hence z vanish for a uniform density, the CC correlation
equals the LDA correlation in the uniform-density limit and
for spin-unpolarized densities. On the other hand, the CC
correlation vanishes for any fully spin-polarized one-electron
density because (1 − zζ 2) vanishes in this case, resulting in no
one-electron self-interaction error. Thus, TASK+CC is exact
for the ground-state energy of the hydrogen atom. The same
would hold for (1 − z|ζ |k ) with k > 0, but in our experience
k = 2 is optimal. Both the LDA correlation energy and the CC
correlation energy are nonpositive and vanish under uniform
density scaling to the low-density limit, i.e., go to the correct
limiting value. The combined functionals TASK+LDAc and
TASK+CC are size extensive and satisfy the general Lieb-
Oxford bound (Fxc � 2.215) [57] as tightened by Chan and
Handy [58], where Fxc, the enhancement over local exchange,
is defined by Exc = ∫

nεLDA
x Fxcd3r. Finally, TASK+LDAc

and TASK+CC are smooth at fixed electron number, which
is beneficial for numerical computations and has recently
been suggested as an exact constraint that a meta-GGA can
satisfy [59].

By construction, the CC correlation equals the LDA corre-
lation in the uniform-density limit and for spin-unpolarized
systems. Therefore, the sizable derivative discontinuity is
guaranteed to be preserved for spin-unpolarized systems and it
is guaranteed that TASK+CC yields the same good results as
TASK+LDAc for the band gaps that were studied in Ref. [52].

For a first impression of the performance of TASK+CC
in predicting atomization energies we use a test set of 10
diatomic molecules [63]. For those, very accurate Kohn-Sham
all-electron calculations can be done on a real-space pro-
late spheroidal grid with the all-electron code DARSEC [64].
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TABLE I. Atomization energies of diatomic molecules in
kcal/ mol. The values for the established nonempirical func-
tionals LDA [3], Perdew-Burke-Ernzerhof (PBE) [5], and the
Strongly Constrained and Appropriately Normed meta-GGA
(SCAN) [56] are listed for comparison. TASK+LDAc, TASK+CC,
and TASK+CCaLDA are TASK exchange with PW92-LDA cor-
relation, CC correlation, and the functional that combines CC and
LDA correlation in the form of Eq. (9) (CCaLDA), respectively. The
CCaLDA correlation is introduced in Sec. III. The experimental val-
ues (with zero point vibration removed) and the experimental bond
lengths were taken from Ref. [60] (cf. the Supplemental Material [61]
of Ref. [22] for numerical details and comments about numerical
stability [52,62]).

Molec. LDA PBE SCAN TASK TASK TASK Expt.
+LDAc +CC +CCaLDA

H2 112.9 104.6 107.7 117.0 144.8 117.0 109.5
FH 162.0 142.0 138.7 139.2 158.5 144.6 141.1
LiH 60.8 53.5 55.6 58.9 79.4 64.0 58.0
Li2 23.8 19.9 18.1 11.6 24.8 21.8 24.7
LiF 156.3 139.0 138.1 130.2 142.2 140.7 138.3
F2 78.0 52.8 37.4 23.4 34.2 34.2 38.4
CO 299.2 269.1 255.2 234.6 265.9 265.9 259.5
N2 268.0 243.9 220.9 174.9 227.4 227.4 228.3
NO 199.4 170.9 146.5 109.3 147.3 147.3 152.5
O2 175.1 144.1 127.0 103.8 124.7 124.7 120.5

MSE 26.5 6.9 −2.6 −16.8 7.8 1.7
MAE 26.7 9.7 3.9 18.5 9.9 4.3
RMSE 32.7 12.3 4.6 24.8 14.6 4.7

Table I compares TASK+CC with LDA, the GGA PBE [5],
the meta-GGA SCAN [56], and TASK+LDAc [65]. We used
the Krieger-Li-Iafrate (KLI) apprximation [29] for the Kohn-
Sham calculations with orbital dependent functionals, and
information about numerical details, e.g., the advantages of
writing the functional derivative in terms of

√
n instead of

n, is given in the Supplemental Material [61]. At the bottom
of the table the usual statistical measures summarize the per-
formance of each functional, i. e., the mean absolute error
(MAE), the mean signed error (MSE), and the root mean
square error (RMSE), cf. the Supplemental Material [61]. The
comparison shows that TASK+CC is still significantly less
accurate than SCAN, but the CC correlation reduces the MAE
by more than a factor of two compared to TASK+LDAc.
TASK+CC is thus on a similar level of accuracy as the PBE
functional for this test set. This first test therefore already
demonstrates that a suitable correlation functional can signif-

icantly improve atomization energies while maintaining the
pronounced ultranonlocality of the TASK exchange.

A closer look at the data reveals that the error is mostly
due to a systematic overestimation of the atomization energy
of hydrogen-containing molecules. For molecules that do not
contain hydrogen, the MAE is reduced by a further factor of
two. Therefore, in the next section we explore how much can
be gained by focusing on hydrogen in a specific construction
called CCaLDA correlation. However, before doing so we
study the main grroup atomization energies (MGAE109) [66]
as a large benchmark test set for atomization energies. Ta-
ble II summarizes the statistical measures for MGAE109.
Similar to what we have already seen for the diatomic test
set, TASK+CC improves significantly over TASK+LDAc.
For detailed data we refer to Table S.II in the Supplemental
Material [61]. These show that the performance is systemati-
cally different for different classes of molecules. TASK+CC
is systematically overbinding all hydrocarbons by about 5
kcal/ mol. For inorganic molecules the situation is different
and less systematic. While TASK+CC tends to underbind
most of the inorganic molecules that contain elements from
the second main group, it overbinds many molecules that
contain heavier elements. However, TASK+CC is system-
atically overbinding all molecules which contain hydrogen.
Therefore, one again observes that hydrogen containing sys-
tems play a special role for TASK+CC, and we thus take a
closer look at them in the following. We mention in passing
that in the Supplemental Material [61] we also show results
for TASK exchange alone and in combination with SCAN
correlation.

III. HEURISTIC FURTHER IMPROVEMENT
OF ATOMIZATION ENERGIES

The systematic overestimation of the atomization energies
of hydrogen-containing molecules that we observed in the
previous section can be improved by changing the isoorbital
limit. In the following we show that one can reduce the MAE
of TASK+CC by nearly another factor of two by modifying
solely this limit. To this end, we interpolate between the CC
correlation and LDA correlation by a function of the isoorbital
indicator α [69], which is defined by

α(r) = τ (r) − τW (r)

τF (r)
, (7)

where

τF (r) = 3h̄2

10m
(3π2)

2
3 n(r)

5
3 (8)

TABLE II. MGAE109 [66] main-group atomization energies per bond in kcal/ mol. The calculations were performed with the QZ4P-basis
set in the Amsterdam Density Functional (ADF) program of the Amsterdam Modeling Suite (AMS) [67] using the generalized Kohn-Sham
scheme.

LDA PBE SCAN TASK TASK TASK
+LDAc +CC +CCaLDA [68]

MSE 19.5 3.8 −0.1 −12.1 6.1 −1.4
MAE 19.5 4.2 1.4 12.3 7.3 4.2
RMSE 21.7 6.0 2.2 14.4 9.2 5.2
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TABLE III. MGBL20 [71] main-group bond lengths in Å. The calculations were performed with the QZ4P-basis set in AMS/ADF [67].

LDA PBE SCAN TASKx TASK TASK TASK
+LDAc +SCANc +CC

MGHBL9 [72] (Main-group hydrogenic bond lengths)

MSE 0.015 0.011 0.002 0.016 0.001 0.009 0.001
MAE 0.015 0.011 0.002 0.016 0.005 0.009 0.005
RMSE 0.015 0.011 0.003 0.018 0.007 0.011 0.007

MGNHBL11 [71] (Main-group Non-hydrogenic bond lengths)

MSE −0.006 0.007 −0.005 0.024 0.006 0.006 0.006
MAE 0.007 0.007 0.006 0.024 0.006 0.009 0.006
RMSE 0.010 0.008 0.007 0.030 0.011 0.012 0.011

is the uniform-density limit of τ . The correlation energy den-
sity of the CCaLDA functional reads

εCCaLDA(r) = f (α(r))εCC(r) + [1 − f (α(r))]εLDAc(r) , (9)

where we use the function

f (α(r)) = (1 + c)
α(r)

1 + cα(r)
(10)

to switch between LDA and CC correlation. The form of
f (α) and the parameter c = 10000 are chosen such that only
the isoorbital limit (α ≈ 0) of εCC is modified. The changes
in the atomization energies that result from the CCaLDA
construction can be studied in Table I for the dimer test set.
As intended, the atomization energies of TASK+CCaLDA
match those of TASK+CC for molecules containing neither
hydrogen nor lithium, while the energy of H2 matches that of
TASK+LDAc. Only the energies of the hydrogen atom and
the lithium atom are changed compared to TASK+CC, where
the latter effect is due to the singly occupied 2s orbital in
the lithium atom, which induces a relatively large iso-orbital
region. As one can see in Table II, TASK+CCaLDA also
significantly improves the prediction of the atomization en-
ergies for the large MGAE109 test set and is on par with PBE.
Taking into account that the TASK exchange is designed for
a qualitatively correct description of ultranonlocality and the
derivative discontinuity, this is an encouraging observation.
It is noteworthy also from the perspective that the CCaLDA
functional does not use any empirical parameters, as c has not
been fitted to minimize the deviation from experimental data,
but was chosen to provide the desired single-orbital limit.

Detailed data for the MGAE109 test can be found in Table
S.II in the Supplemental Material [61].

For putting these results into a larger perspective we note
that the LDA correlation is far from being the optimal choice
for a correlation functional in the iso-orbital limit: Neither
is it free from self-interaction, nor is it the best choice for
optimizing the atomization energies of TASK for hydrogen-
containing molecules. We are therefore convinced that the
MAE could be further improved by a more sophisticated
choice for the iso-orbital limit. However, we do not pursue
a functional construction of the TASK+CCaLDA type any
further because of a conceptual shortcoming: Compared to
TASK+CC, TASK+CCaLDA gains its increased accuracy
for the atomization energies of hydrogen containing systems
by making a correction to the energy of the hydrogen atom,
which is exact in TASK+CC, instead of the energy of the
hydrogen-containing molecules, which would need the cor-
rection. The results for TASK+CCaLDA can therefore be
seen in the light of Ref. [70], which discusses the limits of
judging the quality of an exchange-correlation approximation
based on the errors in atomization energies. Nevertheless, the
TASK+CCaLDA construction has the value that it demon-
strates that atomization energies at least on the level of PBE,
and at the same time band gaps on the level of TASK+LDAc,
are possible with a meta-GGA. Further efforts for a meta-
GGA correlation functional to go along with TASK exchange
will therefore be well invested. In such efforts, one will need
to pay attention to the form of the orbital dependence of
the correlation functional, since this dependence will in gen-
eral also lead to a correlation contribution to the derivative
discontinuity.

TABLE IV. DGH4 [73] bond lengths of diatomic molecules containing heavy elements, in Å. The calculations were performed with the
QZ4P-basis set in AMS/ADF [67]. Relativistic effects were included in the ZORA [74] approximation (required for Ag).

Molecule LDA PBE SCAN TASKx TASK + LDAc TASK + SCANc TASK + CC Expt.

NaBr 2.471 2.518 2.503 2.678 2.638 2.623 2.638 2.502
HBr 1.430 1.431 1.417 1.432 1.413 1.420 1.413 1.414
ZnS 2.007 2.046 2.017 2.053 2.026 2.006 2.026 2.046
Ag2 2.485 2.571 2.520 2.605 2.564 2.519 2.564 2.530

MSE −0.025 0.019 −0.008 0.069 0.037 0.019 0.037
MAE 0.032 0.019 0.011 0.069 0.047 0.045 0.047
RMSE 0.034 0.024 0.015 0.096 0.071 0.064 0.071
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TABLE V. DBH24/08 [78] barrier heights in kcal/ mol.
The calculations were performed with the QZ4P-basis set in
AMS/ADF [67].

LDA PBE SCAN TASKx TASK TASK TASK
+LDAc +SCANc +CC

MSE −13.7 −8.5 −7.2 5.8 4.1 −0.6 2.6
MAE 13.7 8.5 7.3 7.5 5.0 3.1 4.5
RMSE 17.1 10.4 8.3 9.0 6.3 4.0 6.5

IV. BOND LENGTHS AND BARRIER HEIGHTS

In the remaining part of this paper we return to investi-
gating TASK+CC, as this functional is better justified than
CCaLDA from a conceptual point of view, and also test
TASK+LDAc for further observables, namely bond lengths
and reaction barriers. As the functionals TASK+LDAc,
TASK+CC, and TASK+CCaLDA are equivalent for spin-
unpolarized systems, the bond-length tests done for TASK-
LDAc also tell us the bond lengths that one obtains with the
other two functionals for spin-unpolarized systems.

We show results for the bond lengths of molecules consist-
ing of main-group atoms (MGBL20) in Table III (details are
listed in Table S.III in the Supplemental Material [61]) and
for bond lengths of diatomic molecules which contain heavy
elements (DGH4) in Table IV. TASK+LDAc has an MAE
of about 0.005 Å for the MGBL20 set of main-group bond
lengths, i.e., an accuracy on the level of PBE and SCAN. For
the DGH4 set which contains heavy elements, TASK+LDAc
performs significantly worse. However, the error is at the level
of PBE and SCAN except for the NaBr molecule. The bond
length of the latter is overestimated by more than 0.1 Å. Table
S.I in the Supplemental Material [61] shows that this is a
general feature of TASK for systems which contain alkali
metals [75]. We have analyzed the interplay of s and α in
these systems and found that systems with alkali metal atoms
are special because both α and s become rather large in the
core-valence separation region. This finding is to some extent
in line with earlier, GGA-based observations about the special
role of s in alkali-metal atom containing solids [76], and sys-
tematic deviations for solids with alkali metal atoms have also
been observed with the Haas, Tran, Blaha, Schwarz (HTBS)
GGA [77]. The bond length analysis thus revealed an issue
that will need to be addressed in future work.

Table V shows results for a test set of diverse barrier
heights (DBH24). For detailed data we refer to Table S.IV
in the Supplemental Material [61]. The main observation
is that TASK in combination with each of the correlation
functionals reaches a remarkable accuracy in comparison
to LDA, PBE, and SCAN. This observation is interesting
also from the perspective that it has been argued that for
a good description of barrier heights, true exchange non-
locality is beneficial [56,79]. From this point of view the
good results that we find here can be interpreted as a natu-
ral consequence of the ultranonlocality that has been one of
the main guiding principles in the construction of the TASK
functional.

V. SUMMARY AND CONCLUSIONS

Traditionally, there has been a dividing gap in the world
of density functional exchange-correlation approximations.
They were either computationally efficient like the (semi)local
LDA and GGAs, but lacked a derivative discontinuity and
ultranonlocality. Or they could show ultranonlocality, like the
self-interaction corrections [34] and various forms of hybrid
functionals [18], yet at the price of a steeply increased com-
putational cost. It has long been known that meta-GGAs, in
principle, can build a bridge over this gap, because being
orbital dependent they can incorporate ultranonlocality, while
using the density, the orbitals and their gradients only locally,
their computational cost remains semilocal [31]. The TASK
meta-GGA for exchange is a functional that, different from
many previous meta-GGAs, shows pronounced ultranonlo-
cality. Previous work that combined it with LDA correlation
demonstrated very good accuracy for the band gaps of many
solids, but a limited accuracy for the atomization energies of
molecules. This raised the question whether it is at all possible
to achieve both, good binding energies on the one hand, and
pronounced ultranonlocality and accurate band gaps on the
other, within the meta-GGA form. It also was an open ques-
tion what kind of results would be achieved with the TASK
construction for other observables such as bond lengths and
reaction barrier heights. These questions were addressed in
this work.

We showed that TASK exchange with LDA correlation
is accurate for many bond lengths, and we identified alkali
metals as difficult cases that will need further work. TASK ex-
change in combination with different correlation functionals is
accurate for reaction barrier heights. One can interpret this as
a natural consequence of the exact-exchange-like nonlocality
that is guaranteed by the construction principles that were
used for the TASK exchange.

We further showed that two correlation functionals of very
transparent form and without empirical parameters lead to
a considerably improved accuracy for atomization energies.
Furthermore, TASK exchange with CC correlation is attrac-
tive from a computational perspective because the calculations
converge well, in contrast to some other meta-GGAs. It is not
as accurate for atomization energies as other functionals, e.g.,
the SCAN meta-GGA, yet its remarkable accuracy for band
gaps in combination with the reasonable description of elec-
tronic binding makes it ideal for material science problems,
e.g., when one wants to screen the band gap of many com-
pounds from first principles, and thus needs computational
efficiency together with qualitative nonempirical reliability.
The present paper presents an important step forward by
demonstrating that pronounced ultranonlocality and reason-
able electronic binding are not mutually exclusive and can
well be achieved within the meta-GGA form. Therefore, there
is hope that further improved meta-GGAs with pronounced
ultranonlocality can be developed in future work.
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I. STATISTICAL MEASURES

The following statistical measures are used in the tables here and in the main paper for summarizing the functionals’
performance. For a set of N calculated values of a given quantity, x1, ..., xN , and a corresponding set of experimental
values e1, ..., eN , one obtains a general impression of a functional’s performance by the mean absolute error, MAE =
1
N

∑N
i=1 |xi − ei| . Systematic deviations show up in the mean signed error, MSE = 1

N

∑N
i=1 (xi − ei) . Finally, one can

check whether the error is dominated by a few outliers or uniformly distributed across all systems via the root mean
square error, RMSE =

(
1
N

∑N
i=1 (xi − ei)2

)1/2
.

II. DETAILED DATA

In the following we provide the bond lengths of Na2 and Li2 (Table S.I), the detailed data for the MGAE109 testset
of main-group atomization energies (Table S.II), the MGBL20 testset of main-group bond lengths (Table S.III), and
the DBH24/08 testset of diverse barrier heights (Table S.IV).

TABLE S.I. Bond lengths of Na2 and Li2 in Å. The calculations were performed with the QZ4P-basis set in AMS/ADF [1].
The experimental values are taken from Ref. [2].

Na2 Li2

LDA 3.003 2.708
PBE 3.090 2.729
SCAN 3.096 2.747
TASKx 3.674 3.049
TASK+LDAc 3.522 2.935
TASK+SCANc 3.498 2.963
TASK+CC 3.522 2.935
Expt. 3.079 2.673
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TABLE S.II. Atomization energies per bond of main group molecules in kcal/mol. The calculations were performed with the
QZ4P-basis set in AMS/ADF [1]. The MGAE109 set of main-group atomization energies is taken from Ref. [3].

Molecule LDA PBE SCAN TASKx TASK+LDAc TASK+SCANc TASK+CC TASK+CCaLDA[4] Expt.

CH 92.31 84.65 81.72 46.51 72.95 66.92 97.18 83.28 84.23
CH2 (3B1.) 106.37 97.26 98.34 74.91 93.23 93.24 108.68 94.78 95.38
CH2 (1A1.) 99.35 89.44 87.65 55.14 80.91 75.50 103.36 89.46 90.73
CH3 113.02 103.31 104.10 74.82 97.19 95.65 114.84 100.94 102.63
CH4 115.55 104.98 104.90 75.53 98.66 96.89 116.83 102.93 105.11
C2H2 153.28 138.32 133.90 96.28 122.26 123.17 142.92 133.65 135.18
C2H4 126.42 114.27 112.52 79.50 102.64 102.64 120.60 109.48 112.74
C2H6 113.39 102.38 101.88 71.33 93.24 92.78 110.04 98.13 101.85
HCO 166.25 147.40 140.85 98.47 125.09 127.99 145.14 138.02 139.72
H2CO 144.43 128.50 124.34 86.81 112.44 112.90 132.06 122.68 124.89
CH3OH 117.20 103.95 102.50 69.76 92.71 92.53 110.04 98.86 102.71
HCN 180.27 163.08 153.59 99.81 133.44 134.07 162.09 155.14 156.72
NH2NH2 103.08 90.58 86.88 44.73 71.17 70.91 92.82 81.70 87.72
CH3Cl 112.19 99.97 99.00 69.29 90.42 91.02 106.40 95.96 99.11
CH3SH 107.25 95.65 94.98 64.94 86.84 87.02 103.90 92.81 94.90
C3H4 (pro.) 133.58 120.16 117.38 82.58 105.79 107.06 123.60 114.33 117.51
C4H4O 129.39 114.51 111.24 75.12 96.26 99.87 111.59 105.38 110.48
C4H4S 124.57 110.72 107.81 73.27 94.01 97.97 109.19 103.03 107.07
C4H5N 124.95 111.05 107.76 70.34 92.31 95.50 108.73 101.78 107.19
C4H6 (tra.) 127.79 114.91 112.72 78.24 100.50 101.88 117.37 108.10 112.53
C4H6 (yne.) 126.85 113.95 111.71 77.80 100.09 101.48 116.96 107.69 111.61
C5H5N 130.89 116.77 113.22 74.73 96.86 100.17 113.34 107.03 112.56
CCH 154.60 138.48 132.86 95.32 117.88 122.17 137.84 130.90 132.66
CH2OH 119.29 105.35 103.59 69.58 92.27 93.17 109.29 98.78 102.52
CH3CN 141.07 127.07 122.63 82.04 107.77 108.95 128.21 119.87 123.20
CH3NH2 110.11 98.46 96.75 61.38 85.22 84.74 104.04 92.46 97.05
CH3NO2 123.83 106.81 101.07 59.08 83.81 86.97 102.64 95.58 100.30
CHCl3 106.09 89.71 86.77 55.91 73.07 79.51 84.65 81.15 86.45
CHF3 139.61 119.37 114.97 83.56 102.35 106.89 114.16 110.69 114.68
CH2CH 126.73 114.44 112.61 79.23 101.45 102.48 118.90 108.48 111.52
HCOOCH3 131.57 115.76 112.91 76.09 99.06 100.86 115.87 107.83 112.27
HCOOH 149.24 130.41 125.75 86.19 111.22 113.89 129.43 122.31 125.38
C2H5 112.82 101.97 101.71 70.87 92.32 92.33 108.76 97.17 100.65
C4H6 (bic.) 103.11 91.96 90.10 60.77 79.43 81.77 93.23 85.65 89.78
C4H6 (cyc.) 114.42 102.39 100.40 68.17 88.51 90.53 103.69 95.35 100.20
HCOCOH 150.37 132.45 126.99 86.36 110.78 113.71 128.76 123.07 126.80
CH3CHO 129.69 115.66 113.12 78.34 101.34 102.39 118.63 109.31 112.91
C2H4O 126.07 111.60 109.04 72.90 96.22 98.15 113.51 104.19 108.52
C2H5O 114.30 101.45 100.30 66.72 88.28 89.02 104.47 94.49 99.86
CH3OCH3 113.92 101.18 100.06 67.16 89.04 89.24 105.49 95.02 99.81
CH3CH2OH 115.42 102.64 101.42 68.82 90.77 91.20 107.22 96.75 101.35
C3H4 (all.) 134.11 120.64 117.71 82.65 105.85 107.33 123.66 114.40 117.25
C3H4 (cyc.) 112.07 100.23 97.51 66.62 86.83 88.93 102.10 94.16 97.57
CH3COOH 134.13 118.17 115.23 78.83 101.89 104.05 118.71 110.67 114.81
CH3COCH3 124.47 111.05 109.12 75.16 97.30 98.54 113.81 104.51 108.72
C3H6 107.56 96.46 95.14 65.28 85.25 86.45 100.22 90.95 94.85
CH3CHCH2 121.26 109.17 107.71 74.96 97.06 97.66 113.89 103.47 107.61
C3H8 112.77 101.48 100.88 69.74 91.17 91.28 107.42 96.29 100.71
C2H5OCH3 113.51 100.98 99.94 67.19 88.65 89.19 104.69 94.55 99.60
C4H10 (iso.) 112.57 101.06 100.44 68.88 90.06 90.52 106.01 95.32 100.26
C4H10 (anti.) 112.44 101.00 100.34 68.88 90.06 90.48 106.01 95.32 100.13
C4H8 (cyc.) 108.64 97.26 96.11 65.06 85.14 86.46 100.11 90.84 95.78
C4H8 (iso.) 118.95 106.83 105.56 72.82 94.45 95.35 110.78 100.67 105.36
C5H8 (spi.) 105.27 93.96 92.28 62.35 81.41 83.53 95.46 87.51 91.77
C6H6 131.07 117.41 114.69 79.13 100.33 103.44 115.83 108.88 114.01
CH3CO 135.33 120.65 117.43 81.35 104.27 106.31 121.42 113.01 116.40
CH3CHCH3 112.84 101.57 101.02 69.62 90.74 91.30 106.76 95.95 100.11
C4H9 (t.) 112.86 101.36 100.70 68.97 89.92 90.77 105.71 95.29 99.98
CH2CO 156.77 139.45 134.35 95.28 120.53 123.35 139.52 132.48 133.18

Continued on next page.
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Molecule LDA PBE SCAN TASKx TASK+LDAc TASK+SCANc TASK+CC TASK+CCaLDA[4] Expt.

CN 219.10 197.06 177.00 101.71 139.92 147.14 178.85 178.86 181.36
CO 298.58 268.50 253.92 196.05 234.09 238.05 265.13 264.80 259.74
N2 266.97 243.11 218.72 116.76 172.70 173.32 225.33 225.32 228.48
NO 197.70 171.60 150.51 70.06 112.20 118.62 148.85 148.51 152.75
O2 174.46 143.06 127.02 75.51 103.87 115.19 124.22 123.55 120.83
F2 78.00 52.67 36.89 7.38 22.57 29.21 33.39 33.39 39.03
CO2 236.25 207.77 196.17 144.97 176.79 183.31 199.29 198.96 195.08
Si2 94.07 79.60 75.70 47.01 69.42 74.93 90.82 90.83 76.38
P2 143.05 121.28 111.68 51.92 97.06 98.74 142.91 142.91 117.59
S2 134.94 114.87 108.85 73.54 97.69 109.10 115.52 115.86 104.25
Cl2 86.55 65.43 58.07 31.85 47.16 57.12 57.40 57.31 59.75
SiO 224.71 196.62 187.66 138.74 175.58 175.87 204.44 204.10 193.06
SC 201.80 179.55 167.18 121.42 154.39 160.69 184.09 184.27 171.76
SO 167.42 140.95 131.82 85.37 112.64 122.45 130.66 130.49 126.48
ClO 105.35 81.30 69.61 25.03 47.28 57.46 63.15 62.76 65.45
ClF 96.91 72.12 61.27 31.61 48.06 56.02 58.59 58.54 62.79
SO2 167.96 140.10 130.36 81.59 111.18 119.27 131.44 131.19 130.31
AlCl3 116.15 101.92 104.24 87.58 102.83 104.41 110.45 110.41 104.21
AlF3 161.04 142.59 141.15 123.47 141.89 141.06 149.81 149.81 143.65
BCl3 128.95 111.67 110.75 84.31 99.36 105.67 107.20 107.15 108.48
BF3 182.57 160.22 156.75 129.83 147.61 150.85 155.75 155.75 156.99
C2Cl4 119.29 100.11 95.33 59.85 77.08 86.72 88.01 87.98 93.96
C2F4 148.76 125.82 119.02 83.15 101.79 109.12 112.95 112.96 118.21
CCl4 101.97 83.24 79.35 47.46 62.67 72.33 72.06 72.02 79.05
CF3CN 157.72 135.88 128.03 85.79 107.91 114.24 123.25 123.26 128.23
CF4 149.36 125.34 119.81 88.09 105.55 112.67 115.23 115.23 119.48
ClF3 77.17 55.02 46.29 17.24 30.63 39.74 37.75 37.73 42.44
NF3 103.88 81.18 70.04 29.41 48.89 56.83 63.07 63.07 68.56
PF3 147.59 124.85 120.45 88.03 108.73 112.24 121.78 121.78 121.67
SiCl4 112.59 96.30 97.31 74.14 89.90 94.66 98.74 98.69 97.18
SiF4 164.18 143.00 141.83 118.53 137.23 138.48 146.37 146.37 144.07

NH 95.31 88.50 84.92 38.91 67.59 64.29 93.41 79.50 83.10
NH2 103.90 94.33 92.27 49.21 77.48 74.89 101.76 87.85 91.30
NH3 112.39 100.65 98.20 59.89 87.35 85.42 110.03 96.13 99.34
OH 124.03 109.88 108.68 69.13 97.38 95.15 119.74 105.50 107.22
H2O 133.17 117.13 114.59 81.52 108.73 107.57 129.61 115.54 116.49
HF 162.01 142.01 136.94 112.60 139.24 139.07 158.56 144.65 141.63
SiH2 (1A1.) 83.29 73.92 74.64 49.49 73.87 67.65 95.22 81.32 76.11
SiH2 (3B1.) 73.79 65.85 69.25 53.41 69.72 67.48 84.96 71.06 65.74
SiH3 82.42 74.15 76.86 55.70 76.05 71.98 92.97 79.07 76.00
SiH4 86.93 78.38 80.87 58.04 79.82 74.84 97.44 83.54 81.24
PH2 86.79 77.20 78.27 47.17 72.34 68.94 94.91 81.00 76.60
PH3 89.85 79.68 80.50 50.72 75.49 72.07 97.03 83.13 80.76
H2S 103.17 91.05 91.07 63.79 88.01 86.63 108.22 94.40 91.95
HCl 122.20 106.43 105.64 82.46 106.33 106.13 125.35 111.40 107.50
NH2NH2 103.08 90.58 86.88 44.73 71.17 70.91 92.82 81.70 87.72
H2O2 111.62 93.95 88.98 51.40 75.90 77.20 94.47 84.98 89.68
Si2H6 82.92 74.31 76.56 53.61 73.95 70.37 90.12 78.21 76.56
HOCl 106.37 87.62 82.13 47.14 69.52 73.08 86.00 78.86 83.12
H2 113.05 104.62 107.65 85.25 116.98 107.65 144.79 116.98 109.49
SH 99.56 87.99 88.60 59.42 84.03 82.45 105.29 91.56 87.00

MSE 19.51 3.79 -0.10 -35.61 -12.05 -10.09 6.11 -1.39
MAE 19.51 4.23 1.36 35.61 12.26 10.22 7.33 4.21
RMSE 21.73 5.99 2.16 37.80 14.39 12.30 9.25 5.17
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TABLE S.III. MGBL20 [5] main-group bond lengths in Å. The calculations were performed with the QZ4P-basis set in
AMS/ADF [1].

Molecule LDA PBE SCAN TASKx TASK+LDAc TASK+SCANc TASK+CC Expt.

MGHBL9 [6] (Main-Group Hydrogenic Bond Lengths)

H2 0.765 0.750 0.741 0.744 0.729 0.741 0.729 0.741
CH4 1.096 1.095 1.087 1.107 1.090 1.097 1.090 1.086
NH3 1.021 1.021 1.012 1.027 1.011 1.018 1.011 1.012
H2O 0.970 0.969 0.960 0.968 0.955 0.961 0.955 0.957
HF 0.932 0.930 0.920 0.924 0.913 0.919 0.913 0.917
C2H2 1.074 1.070 1.062 1.080 1.065 1.074 1.065 1.063
HCN (C H) 1.079 1.075 1.066 1.085 1.070 1.079 1.070 1.065
H2CO (C H) 1.121 1.117 1.107 1.135 1.117 1.126 1.117 1.102
OH 0.985 0.983 0.974 0.986 0.972 0.978 0.971 0.970

MSE 0.015 0.011 0.002 0.016 0.001 0.009 0.001
MAE 0.015 0.011 0.002 0.016 0.005 0.009 0.005
RMSE 0.015 0.011 0.003 0.018 0.007 0.011 0.007

MGNHBL11 [5] (Main-Group Non-Hydrogenic Bond Lengths)

CO 1.127 1.135 1.125 1.145 1.134 1.139 1.134 1.128
N2 1.095 1.102 1.092 1.108 1.098 1.102 1.098 1.098
F2 1.385 1.414 1.399 1.432 1.411 1.395 1.411 1.412
C2H2 (C C) 1.201 1.207 1.196 1.219 1.205 1.212 1.205 1.203
HCN (C N) 1.150 1.158 1.147 1.167 1.155 1.161 1.155 1.153
H2CO (C O) 1.198 1.208 1.197 1.216 1.204 1.207 1.204 1.203
CO2 1.162 1.171 1.158 1.179 1.166 1.171 1.166 1.160
N2O (N N) 1.129 1.137 1.125 1.144 1.131 1.137 1.131 1.128
N2O (N O) 1.176 1.189 1.180 1.198 1.184 1.183 1.184 1.184
Cl2 1.980 2.005 1.997 2.049 2.015 1.989 2.015 1.988
MgS 2.127 2.152 2.130 2.204 2.166 2.170 2.166 2.143

MSE -0.006 0.007 -0.005 0.024 0.006 0.006 0.006
MAE 0.007 0.007 0.006 0.024 0.006 0.009 0.006
RMSE 0.010 0.008 0.007 0.030 0.011 0.012 0.011
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TABLE S.IV. DBH24/08 [7] barrier heights in kcal/mol. The calculations were performed with the QZ4P-basis set in AMS/ADF
[1].

Reaction LDA PBE SCAN TASKx TASK+LDAc TASK+SCANc TASK+CC Expt.

OH + CH4 CH3 + H2O -16.77 -5.24 -1.36 16.54 11.98 5.07 9.02 6.50
reverse 2.43 9.13 11.83 32.77 28.99 24.44 25.68 19.60
H + OH O + H2 -1.88 3.72 3.28 13.48 5.92 5.06 0.66 10.70
reverse -12.85 -1.54 2.15 29.92 25.82 17.04 25.81 13.10
H + H2S H2 + HS -6.77 -1.13 -2.68 12.43 6.66 2.38 1.14 3.50
reverse -0.49 9.38 11.43 29.52 31.65 19.23 34.79 17.30
H + N2O OH + N2 2.71 10.11 9.55 32.55 25.88 20.94 19.14 17.13
reverse 32.69 53.07 65.18 92.48 91.31 70.67 92.97 82.27
H + ClH HCl + H 2.05 9.58 9.18 31.46 22.90 16.45 18.39 18.00
reverse 2.05 9.58 9.18 31.46 22.90 16.45 18.39 18.00
CH3 + FCl CH3F + Cl -10.69 -5.69 -3.77 12.32 9.53 8.95 6.75 6.75
reverse 35.55 41.23 45.46 57.53 57.69 52.96 55.73 59.16
Cl– CH3Cl ClCH3 Cl– 6.74 7.09 6.99 11.92 12.80 13.22 12.80 13.41
reverse 6.74 7.09 6.99 11.92 12.80 13.22 12.80 13.41
F– CH3Cl ClCH3 F– -1.29 -1.07 -1.94 0.60 1.52 2.24 1.52 3.44
reverse 21.51 21.43 24.91 31.72 31.34 29.10 31.34 29.42
OH– + CH3F CH3OH + F– -14.85 -11.39 -10.86 7.03 5.42 3.65 5.42 -2.44
reverse 3.92 6.70 7.26 23.39 24.45 22.82 24.45 17.66
H + N2 HN2 -2.24 5.21 4.20 25.55 16.73 11.75 10.33 14.36
reverse 9.29 8.99 9.68 3.51 9.37 7.14 12.84 10.61
H + C2H4 CH3CH2 -5.46 -0.15 -4.50 10.87 8.21 2.55 3.56 1.72
reverse 39.36 40.31 43.16 38.58 48.92 43.31 53.11 41.75
HCN HNC 44.91 45.65 46.38 45.53 47.72 43.90 47.72 48.07
reverse 30.89 30.79 32.50 32.06 33.71 30.52 33.71 32.82

MSE -13.70 -8.47 -7.17 5.79 4.08 -0.55 2.58
MAE 13.70 8.47 7.29 7.54 5.00 3.08 4.52
RMSE 17.07 10.37 8.25 9.01 6.30 4.01 6.51
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III. META-GGA NUMERICS

Numerical observations for meta-GGAs

Some Meta-GGAs have been observed to be numerically difficult [8, 9]. Most of these numerical problems arise in
the outer region of a system, and they are quite sensitive to the actual implementation of the functional derivative of
the (x/c-)energy with respect to the Kohn-Sham orbitals,

δEx/c

δϕiσ
, (S.1)

used in the calculation of the KLI and generalized Kohn-Sham potential, respectively. Therefore, the potential in such
cases is typically set to zero at spatial points at which the density is lower than a functional- and algorithm-dependent
threshold. We do not need such a cut-off in the CC correlation in our calculations with TASK+CC. However, we find
that it is strongly beneficial to write terms that appear in the functional derivative of Eq. S.1, i.e., in the potential,
in terms of

√
n instead of n wherever possible. This can be done using the relations

∇n = 2
√
n∇n1/2 and ∇2n = 2

√
n∇2n1/2 + |∇n|

2

2n . (S.2)

One example is the von Weizsäcker kinetic energy density, which can be rewritten from Eq. (4) to τW (r) =
h̄2

2m

∣∣∣∇n 1
2 (r)

∣∣∣
2
. In this way, numerical instabilities that can arise from division by the electron density at outer

grid points, at which the density is extremely small, are avoided. Replacing n by
√
n can make the difference between

convergence and non-convergence for certain systems in the diatomic testset with DARSEC for TASK+CC. A similar
observation has previously been made in the context of local hybrid functionals [10].

The CCaLDA correlation is numerically more demanding due to its almost step-like interpolation. To converge the
calculation of the lithium atom with TASK+CCaLDA in DARSEC, we need to implement a spin-dependent density
cut-off, i.e., we set the potential with corresponding spin to zero whenever the density with corresponding spin
becomes smaller than a given threshold. Otherwise, the unoccupied spin-channel in the 2s-orbital causes numerical
problems. However, this is not sufficient in ADF. We assume that this is the case because in ADF the above
mentioned replacement of n by

√
n is not implemented. The same holds for the calculation of the hydrogen atom

with TASK+CCaLDA in ADF. In ADF, α does not exactly vanish in the calculation of the hydrogen atom due to
numerical issues (in contrast to the corresponding calculation in DARSEC). Similar numerical problems in regions of
small α have been described for the SCAN meta-GGA [8].

Replacing z by terms in α or β

We have investigated whether the numerical stability can be improved by replacing z by a term in the iso-orbital
indicators α or

β(r) = τ(r)− τW (r)
τ(r) + τF (r) . (S.3)

While α can take values in [0,∞[, β is restricted to the interval [0, 1[ and therefore has been suggested to be suitable for
improving numerical stability by avoiding large numbers [11]. Moreover, β is reported to reduce the sharp oscillations
in the derivatives with respect to nσ, ∇nσ, and τσ, which lead to numerical difficulties in other α-based meta-GGAs
[11]. In the iso-orbital limit one finds τW = τ and thus z = 1, α = 0, and β = 0. For the uniform density limit, one
has τW = 0 and τ = τF , which implies z = 0, α = 1, and β = 1

2 .
Thus, to restore the correct behavior of the CC correlation in the iso-orbital limit and in the uniform density limit,

z can be replaced by an iso-orbital indicator designed in terms of, e.g., 1− α or 1− 2β.
All tested combinations of TASK exchange with correlation functionals that mimic the CC correlation using terms

of α or β give worse atomization energies than TASK combined with the original CC correlation. Additionally, their
numerical stability in self-consistent calculations is not improved. While TASK combined with correlation functionals
of β appears to be of similar numerically stability as TASK+CC, the functionals designed with α are numerically
much less stable. Thus, the choice of the iso-orbital indicator is important for the accuracy and the numerical stability
of the corresponding functional.
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Comment on OH not being axially symmetric

The diatomic test set that we use here differs from the one used in some other works [12–14] as we chose to omit
the OH molecule. The reason is that the DARSEC code requires axial symmetry, but the hydroxyl radical density as
obtained in an PBE calculation with QChem 5.2[15] deviates slightly from axial symmetry. To see this, we compare
the density of the OH molecule in a plane perpendicular to the bond axis (z-axis), which is shifted from the center
of the bond by twice the Bohr radius towards the oxygen atom, with that of the O2 molecule in Figure S.1. While
the density of the O2 molecule remains unchanged under rotation of 90° around the bond axis, the density of the OH
molecule does not. The density of the OH molecule however remains unchanged under rotation of 180° around the
bond axis.
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FIG. S.1. Total density in a plane perpendicular to the bond axis. Both calculations were performed in QChem 5.2[15] with
PBE and the 6-311G++(3df,3dp) basis set. Left: OH molecule. Right: O2 molecule.
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A meta-Generalized Gradient Approximation that describes weak interactions
in addition to bond energies and band gaps

Timo Lebeda∗ and Stephan Kümmel†

Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany

We show that the recently proposed Lebeda-Aschebrock-Kümmel (LAK) meta-generalized gradi-
ent approximation, the accuracy of which was previously established for atomization energies, bond
lengths, and band gaps, also captures weak interactions near equilibrium without a dispersion cor-
rection. We discuss how this is achieved. Furthermore, we show that among the semilocal cost pure
functionals, LAK is the one that reaches the highest accuracy for the large GMTKN55 database for
general thermochemistry and kinetics. Next, we explain the design strategy of enhancement factor
engineering. Its key idea is to complement exact constraints with construction principles. Finally,
we discuss areas of research in which the use of LAK may offer advantages over existing functionals.

I. INTRODUCTION

For modeling real materials, weak interactions are of
considerable importance. In the realm of soft materials,
e.g., biological systems, at interfaces, and surfaces, the
accurate description of both covalent binding and weak
interactions is essential [1]. As such systems typically
also comprise a large number of atoms, computational
efficiency becomes a critical aspect.

Its attractive balance between computational accuracy
and computational cost made density functional the-
ory (DFT) the workhorse of electronic structure the-
ory. Regarding weak interactions, however, there is
a long-standing debate whether ground-state exchange-
correlation approximations can and should capture weak
interactions [1–15]. In principle, the situation is clear:
The exact exchange-correlation functional correctly de-
scribes all electron-electron interactions, and thus also
weak interactions. However, early and common ap-
proximations to the exact functional, such as the lo-
cal density approximation (LDA), the generalized gra-
dient approximation (GGA), and exact (Hartree-Fock)
exchange poorly describe weak interactions. Therefore,
these methods are typically combined with additional
methods for the explicit treatment of dispersion effects,
such as nonlocal density-based functionals [16–18] or a
posteriori dispersion corrections [19–23]. An alternative
are fully nonlocal functionals, e.g., based on the random
phase approximation [24, 25]. While conceptually satis-
fying, they usually come at a steeply increased computa-
tional cost.

In this paper we focus on the computationally most
efficient exchange-correlation approximations, i.e., the
class of semilocal density functionals. The capability of
meta-generalized gradient approximations (meta-GGAs)
to describe noncovalent interactions [26] has ben at-
tributed to their ability to discriminate between cova-
lent and dispersion interactions through their kinetic en-
ergy dependence [27]. Thus, in contrast to the LDA and

∗ timo.lebeda@uni-bayreuth.de
† stephan.kuemmel@uni-bayreuth.de

GGA, the description of dispersion interactions in meta-
GGAs can be based on systematic concepts, as meta-
GGAs can describe both covalent and dispersive inter-
actions by ”seeing” and responding adequately to the
different bonding types [27, 28]. This allows for an accu-
rate description of short- and intermediate-range van der
Waals interactions [13, 29]. Of course, semilocal density
functionals can not capture the long-range −C6/R

6 de-
cay of the van der Waals attraction that exists even for
non-overlapping electron densities [23, 30, 31]. In case an
accurate description of noncovalent interactions far from
equilibrium is important, meta-GGAs that include short-
and intermediate-range van der Waals interactions can
still benefit from a long-range dispersion correction [12],
as is well-known from the many successes of dispersion-
corrected DFT.

While some authors argue that a proper density func-
tional approximation should not contain any dispersion
interaction and dispersion should only be captured by a
dispersion correction [9, 14], many of the frequently and
successfully used density functionals today either capture
the short- and intermediate-range part of the dispersion
interaction [13, 29] and are corrected for the long-range
part if necessary [12, 32], or the density functional is
directly designed together with its dispersion correction
[33–35]. However, from a fundamental perspective, as
well as for practical computations, it is desirable to have
the density functional itself treat dispersion interactions
as well as possible, just like the exact functional would
do.

Here, we show that the recent nonempirical Lebeda-
Aschebrock-Kümmel (LAK) meta-GGA [36] captures
noncovalent interactions near equilibrium remarkably
well. In this article we rationalize this property of the
functional by working out what is decisive for the de-
scription of weak interactions in meta-GGAs. Further-
more, we assess LAK on the large GMTKN55 database
for thermochemistry, kinetics, and noncovalent interac-
tions [37]. The results show that LAK is the best pure,
semilocal cost density functional on GMTKN55, where
pure means without an additional dispersion correction.
This demonstrates that LAK manages to describe both
covalent and noncovalent interactions with good accuracy
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from pure DFT. Finally, we discuss the general perfor-
mance of LAK and outline areas where we consider LAK
a possible improvement upon existing functionals.

II. LAK FOR NONCOVALENT BINDING

We start by directly assessing the LAK functional for
a paradigm situation of weak interaction, the binding en-
ergy curves of rare gas dimers. Figure 1 shows that LAK
captures the van der Waals attraction of rare gas dimers
near the equilibrium bond length quite reasonably, and
in particularly so for the often challenging heavier atoms.
In Figure 1, we compare the binding curves of Ne2, Ar2,
Kr2, and Xe2 for the GGA PBE [38] and the meta-GGAs
SCAN [39], M06-L [26], TASK [40], and LAK [36] with
highly accurate CCSDT reference data [41–44]. Rare gas
dimers are well-established model systems for van der
Waals interactions [6–8, 10, 31, 45–53] because, firstly,
dispersion interactions are the only source of attraction
between rare gas atoms and, secondly, highly accurate
reference data is available for these systems. We com-
pare LAK with PBE, SCAN, and TASK exchange plus
LDA correlation (in the parametrization of Perdew and
Wang [54]) because they all share the same nonempir-
ical construction philosophy. Additionally, we compare
to M06-L [26], because it was the first semilocal density
functional for which the capture of noncovalent interac-
tions was systematically explained [27].

All DFT results in this section are obtained from self-
consistent all-electron calculations in adf [55, 56] using
the QZ4P basis set, the setting “excellent” numerical ac-
curacy and a radial grid boost of 3. These extremely
fine numerical settings are required to avoid oscillations
in the M06-L binding curves [50], and we adopt them for
all functionals. However, we should point out that the
numerical properties of meta-GGAs depend very much
on the details of the construction, and while some meta-
GGA are numerically cumbersome, others are as benev-
olent as GGAs [36, 40, 57, 58].

Figure 1 summarizes the well-known behavior of PBE,
M06-L, and SCAN: PBE, while still rather accurate for
the Ne2 binding curve, increasingly underestimates the
binding with increasing atomic mass. M06-L predicts
similar binding curves as PBE for Ar2 and Kr2, but
its binding strength relative to PBE increases with the
atomic mass. SCAN improves over PBE and M06-L for
all systems except Ne2, predicting a larger binding en-
ergy near equilibrium and much more accurate equilib-
rium bond lengths. However, while SCAN is reasonably
accurate for the argon dimer, it increasingly underesti-
mates the binding energy with increasing atomic mass,
similar to PBE. This might be due to the use of the com-
pressed argon dimer as one of the “appropriate norms”
in the construction of SCAN.

LAK and TASK, whose exchange enhancement factors
look formally similar to each other and share the same
realization of the gradient expansion of exchange, pre-

dict decisively different binding curves: LAK, on the one
hand, predicts reasonable binding curves and is remark-
ably accurate even for the xenon dimer. TASK, on the
other hand, predicts no binding at all (or only minimal
binding at about twice the CCSDT bond length) and is
even more repulsive than exact exchange. This broad
spectrum of predictions for weakly bound systems illus-
trates the delicate sensitivity of the description of weak
interactions on details of the meta-GGA construction.

III. RATIONALIZING NONCOVALENT
INTERACTIONS IN META-GGAS

In the following we take a look at how meta-GGAs
acquire their sensitivity to noncovalent interactions.
Nonempirical meta-GGAs often use the iso-orbital indi-
cator

α =
τ − τW

τunif
(1)

with the kinetic energy density τ = 1
2

∑N
j=1 |∇φj |2,

its uniform electron gas limit τunif = (3/10)(3π2)2/3n5/3,
and its iso-orbital limit τW = |∇n|2/(8n). Here,
{ϕj} denote the (generalized) Kohn-Sham orbitals,

n =
∑N

j=1 |ϕj |2 is the electron density, and we use
atomic units throughout. Since we only consider spin-
unpolarized systems in this section, we suppress spin in-
dices in the notation.
Using α as the kinetic energy dependent variable has

the advantage that it can discriminate between iso-
orbital regions (α = 0), uniform densities (α = 1), and
regions of density overlap between closed shells (α ≫ 1)
[28]. Consequently, covalent bonds have small α at the
middle of the bond, whereas dispersive bonds have large
α.
Besides n and α, the exchange energy of a

meta-GGA depends on the reduced density gradient
s = |∇n|/[2(3π2)1/3n4/3] in the form

Ex[n] = Ax

∫
n4/3Fx(s, α)d

3r , (2)

where the exchange enhancement factor Fx is the lo-
cal enhancement of the exchange energy density over
the exchange energy density of a uniform electron gas,

eunifx = Axn
4/3 with Ax = −(3/4) (3/π)

1/3
. Conse-

quently, regions of Fx > 1 correspond to a locally en-
hanced exchange energy density and are energetically fa-
vored, whereas regions of Fx < 1 correspond to a lower
local exchange energy density and are energetically sup-
pressed. Similarly, the enhancement factor of exchange
and correlation together, Fxc, is defined by

Exc[n] = Ax

∫
n4/3Fxc(rs, s, α) d

3r , (3)

with the Wigner-Seitz radius rs = (4πn/3)
−1/3

.
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FIG. 1. Rare gas dimer binding curves of LAK compared to selected semilocal density functionals and CCSDT reference values
[41–44].

The mechanisms of how and to what extent GGAs can
model noncovalent interactions have been discussed in
the Literature [3, 45, 59–61]. However, little is known for
meta-GGAs. While the ability of alpha to recognize re-
gions of noncovalent bonds is well-established [27, 28], the
influence of α on the description of noncovalent interac-
tions is not yet clear [62]. Thus, to understand noncova-
lent interactions in meta-GGAs, especially with respect
to the α-dependence, we compare the (exchange) en-
hancement factors of SCAN, TASK, and LAK in Figure
2. For the sake of transparency we first base the following
arguments on only the exchange part of the functionals,
but it is clear that only exchange and correlation together
provide the correct description of weak bonds. Figure 2a
shows F SCAN

x , FTASK
x , and FLAK

x (all scaled by a factor
of 10) along the bond axis z of the argon dimer at the
experimental equilibrium bond length 3.758 Å [63] (solid
lines) and the argon atom (dotted lines). Each enhance-
ment factor is obtained from a self-consistent all-electron
calculation with the respective functional in the darsec
code [64, 65], a real-space code for diatomic molecules
and atoms. Additionally, we show rs and the meta-GGA
ingredients s and α, as obtained from the calculation
with LAK. As discussed above, α becomes zero in single-

orbital regions and thus at the position of the nucleus,
whereas it becomes large in regions of density overlap
between closed shells such as at the bond center of Ar2
and in the asymptotic tail of the density far from the
nucleus. The gradient of the density, and thus also s,
vanishes at the bond center. Except for the binding re-
gion, s and α are undistinguishable for the atom and the
dimer. Therefore, the same holds for the enhancement
factors.

Figure 2b shows the exchange enhancement factors
F SCAN
x , FTASK

x , and FLAK
x as functions of s for α = 0,

α = 1, and α → ∞. All three enhancement factors share
the same limit for α = 0. Additionally, all three function-
als share the same asymptotic decay as s−1/2 for s → ∞.
Therefore, all three enhancement factors are very simi-
lar for the asymptotic tail of the density, especially LAK
and TASK, compare the large z limit of Figure 2a. Be-
cause the enhancement factors of LAK and TASK there-
fore only show significant differences both between each
other and between atom and molecule in the binding re-
gion, the decisively different binding behavior of LAK
and TASK for rare gas dimers must be due to their dif-
ferent behavior in this region. Figure 2c therefore shows
a version of Figure 2a zoomed in on the binding region.
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FIG. 2. (a), (c), and (d): Enhancement factors of SCAN, TASK, and LAK along the bond axis z of the argon dimer at
equilibrium distance (solid lines) and for the argon atom (dotted lines). The position of the nuclei is −1.879 Å and 1.879 Å for
the dimer and 1.879 Å for the atom. The horizontal gray lines in (c) mark α = 0.4 and s = 1.2. (b): Exchange enhancement
factors of SCAN, TASK, and LAK as functions of the reduced density gradient s for α = 0 (dotted), α = 1 (solid), α → ∞
(dashed). The vertical gray lines mark s = 1.2. Since all three exchange enhancement factors are equivalent for α = 0, the
lines for α = 0 coincide.

Since the binding region is only present in the dimer,
s and α in this region differ decisively between atom and
dimer. In fact, starting from the nucleus, first α be-
comes different at α ≈ 0.4, rising much faster for the
dimer due to the increased density overlap between the
two atoms. Slightly closer to the center of the bond, also
s starts to differ. Starting from s ≈ 1.2, the reduced
density gradient of the atom increases faster than that
of the dimer. In the latter, s reaches a peak value of
s ≈ 1.7, begins to decrease and eventually becomes zero
at the center of the bond. Thus, regions of s ≲ 1.2 are
more energetically relevant in the dimer, whereas regions
of s ≳ 1.2 are more energetically relevant in the atom.
This finding is in line with the analysis of Jenkins and
coworkers [60, 61], which showed that in GGAs regions
with ∂Fx/∂s > 0 contribute attractively to the bind-
ing if s ≲ 1.2 and repulsively if s ≳ 1.2. Consequently,
semilocal density functionals predict a stronger binding

of weakly interacting systems if they have a local maxi-
mum in s near s = 1.2. Our results are further consistent
with Ref. 13, where the authors point out that inflection
points in the s-dependence of the enhancement factor are
important for the description of weakly interacting sys-
tems. Ultimately, these insights have been the basis of
the second construction principle of LAK [36].

Additionally, Figure 2c clarifies the situation regarding
the α-dependence, as it suggests a similar criterion for α:
regions of ∂Fx/∂α > 0 contribute attractively to the ex-
change binding for α ≳ 0.4, because they energetically fa-
vor the dimer [66]. It is questionable if the α-dependence
for α ≲ 0.4 plays any role at all for the binding, because,
except for the core region, α rarely becomes smaller than
0.4 in both the argon atom and dimer.

Inspection of Figure 2b shows that FLAK
x has a local

maximum at s = 1.2 for the relevant values of α > 0.4,
while F SCAN

x has a local maximum and FTASK
x a lo-
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cal minimum at slightly larger reduced density gradi-
ents. While the local maxima of SCAN and LAK are
attractive, the local minimum of TASK is repulsive. Ad-
ditionally, all three enhancement factors decrease with
α [36, 67] and this decrease is much more pronounced
in LAK and TASK than in SCAN (this essentially re-
flects the construction principle of TASK and construc-
tion principle one of LAK). Thus, the α-dependence of
all three functionals contributes repulsively. Especially
for α > 1, ∂Fx/∂α of TASK is clearly the most nega-
tive, as can be seen by comparing SCAN, TASK, and
LAK for α = 1 and α → ∞ in Figure 2b. As a result,
TASK acts extremely repulsively, since both its s- and its
α-dependence are strongly repulsive and FTASK

x is there-
fore significantly smaller in the dimer around the center
of the bond. Consequently, TASK penalizes the bond
energetically and avoids the accumulation of density be-
tween the two closed-shell systems.

SCAN and LAK have a more balanced binding behav-
ior. This is reflected in Figure 2c in the fact that FTASK

x

is much smaller in the dimer near the bond center of the
dimer than in the corresponding distance from the nu-
cleus of the single atom, whereas there is almost no dif-
ference for F SCAN

x and only a small difference for FLAK
x .

Although this makes LAK exchange and SCAN exchange
significantly less repulsive than TASK exchange, neither
just by itself predicts binding at the equilibrium distance.
Instead, only the inclusion of the correlation parts in
LAK and SCAN leads to the appropriate binding. There-
fore, we now extend the analysis to exchange and correla-
tion together in Figure 2d. For exchange and correlation
together, the differences between SCAN and LAK are
much smaller than for their exchange parts alone. This
is because, on the one hand, SCAN is constructed such
that all its derivatives with respect to α vanish at α = 1,
giving rise to small kinks in F SCAN

x (z) and F SCAN
xc (z)

whenever α = 1. LAK correlation, on the other hand,
counteracts the α-dependence of exchange (a condition
required for the expected signs of the exchange and cor-
relation contributions to the derivative discontinuity [58])
and therefore increases the binding of the argon dimer.

Our results regarding the s-dependence might seem
to be in conflict with earlier studies that argue that for
GGAs the large-gradient behavior of exchange would be
decisive for the description of weakly interacting systems
[3, 10, 14, 45, 59, 68]. However, our results are in line with
other studies [7, 31] that attributed the above-mentioned
finding to the fact that the small-gradient behavior of
GGAs is typically determined by the gradient expansion
and therefore usually very similar. Thus, the description
of weak interactions in GGAs can be modified by their
behavior for large s. Meta-GGAs, on the other hand, pro-
vide an additional degree of freedom in the gradient ex-
pansion, allowing a much greater variety of small s behav-
iors to be compatible with the gradient expansion [36].
Therefore, the actually dominant influence of s around
1.2 [60, 61] becomes more important in meta-GGAs.

In summary, our analyses for the argon dimer con-

firm the findings of Refs. 13, 60, and 61: Local maxima
and inflection points in the s-dependence of the enhance-
ment factor are decisive for correctly describing weakly
interacting systems with semilocal DFT. More precisely,
∂Fxc/∂s > 0 increases the binding if s ≲ 1.2 and de-
creases the binding if s ≳ 1.2. Furthermore, our analyses
suggest a similar criterion for α: ∂Fxc/∂α < 0 for α ≳ 0.4
decreases the binding of weakly interacting systems.

IV. LAK FOR GENERAL
THERMOCHEMISTRY

We are aware that good results for the rare gas bind-
ing curves do not guarantee good results for dispersion
interactions in general, in particular for organic and bio-
logical systems [31]. Moreover, good results for disper-
sion interactions alone are not sufficient in typical appli-
cations, but the accurate description of both, noncova-
lent and covalent interactions is important. To this end,
we test LAK on the large GMTKN55 (General Main-
group Thermochemistry, Kinetics, and Noncovalent in-
teractions) database [37].

The GMTKN55 database includes basic properties
and reaction energies of small molecules, reaction ener-
gies for large systems and isomerization reactions, bar-
rier heights, and inter- and intramolecular noncovalent
interactions. To make these different quantities com-
parable, density functionals are typically benchmarked
on GMTKN55 using the weighted total mean abso-
lute deviation WTMAD-2 [69]. Table I summarizes
the WTMAD-2 of several nonempirical semilocal den-
sity functionals, including LAK and the best-performing
dispersion corrected semilocal density functionals for the
GMTKN55 database and its subcategories. We have not
included TASK in Table I because TASK is not partic-
ularly well suited for the description of energetic bonds
[40, 70] and, as explained above, noncovalent interactions
(WTMAD-2 of 48.24 kcal/mol). The results for the pure
density functionals, i.e., density functionals without ad-
ditional dispersion correction, were obtained from fully
self-consistent all-electron calculations in adf [55, 56].
We use the QZ4P basis set except for the anions in
the GMKTN55 database, which require more diffuse ba-
sis functions. Therefore, we use the AUG/ATZ2P aug-
mented basis set for all anions. We ensure benchmarking
accuracy by using excellent numerical accuracy and a ra-
dial grid boost of 3. Our results for PBE and SCAN are
in line with those of Ref. 37, given that a different code
is used. The results for the dispersion corrected methods
are from the Literature. The detailed data for all subsets
is provided in the Supplemental Material [71].

It is worth noting that both LAK and TASK did not
show any convergence issues for any of the 2462 single-
point calculations of the GMTKN55 database. The nu-
merical stability of LAK and TASK is supported by re-
cent findings [36, 57, 70, 72, 73], and is in contrast to the
often-cited convergence issues of several other popular
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meta-GGAs [50, 57]. Regarding convergence with respect
to the numerical settings, e.g., the number of grid points,
however, LAK is often more challenging than TASK and
r2SCAN. Nevertheless, also in this respect LAK con-
verges faster than M06-L and SCAN and does not show
any artificial oscillations [36]. Investigating what makes
a meta-GAA numerically stable is a further worthwhile
task for future work.

Table I reveals a central result of this work. It shows
that LAK is, to the best of the authors’ knowledge, the
best-performing pure semilocal density functional on the
GMTKN55 database. In Ref. 37 from 2017, a large num-
ber of density functionals were tested on GMTKN55, and
the best-performing semilocal density functionals were
M06-L (WTMAD-2 of 8.67 kcal/mol) and SCAN (8.72
kcal/mol). To the best of our knowledge, r2SCAN with
a WTMAD-2 of 8.49 kcal/mol is the only semilocal den-
sity functional that has been able to surpass this value
since then. LAK improves this with a WTMAD-2 of 7.77
kcal/mol.

Taking a look at the subcategories of GMTKN55 in
Figure 3 reveals that LAK achieves this improvement by
matching the accuracy of r2SCAN for the covalent in-
teractions of small and large molecules, while improving
upon r2SCAN for barrier heights and noncovalent inter-
actions.
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properties
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15
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LAK

FIG. 3. WTMAD-2 in kcal/mol for the GMTKN55 database
and its subcategories for selected nonempirical semilocal den-
sity functionals: the GGA PBE, the meta-GGA r2SCAN, and
the meta-GGA LAK.

LAK reaches an accuracy that is comparable even
to the best dispersion-corrected semilocal density func-
tionals for GMTKN55, and is more accurate than all
dispersion-corrected semilocal density functionals re-
ported in Ref. 37. Only SCAN-D3 with an WTMAD-2 of

7.86 reaches a similar accuracy as LAK. Since 2017, only
r2SCAN-D4 [74] with a WTMAD-2 of 7.54 kcal/mol, and
the semi-empirical B97M-V [34] with a WTMAD-2 of
5.46 kcal/mol [75] (and their respective r2SCAN+rVV10
[76], r2SCAN-3c [77], B97M-D3, and B97M-D4 [78] vari-
ants) have improved upon SCAN-D3. Figure 3 com-
pares LAK with the best-performing dispersion-corrected
semilocal methods B97M-V and r2SCAN-D4. While
LAK and r2SCAN are on par for the WTMAD-2
database as a whole, their performance for the subcate-
gories differs. While LAK is more accurate for the barrier
heights, r2SCAN-D4 is more accurate for the noncovalent
interactions. The latter finding is expected, as the pa-
rameters of the D4 dispersion correction of r2SCAN-D4
are fitted to subsets of GMTKN55 for noncovalent in-
teractions, whereas LAK is a nonempirical pure density
functional.

B97M-V shows a significant improvement over LAK
and r2SCAN-D4 for all quantities except for the re-
action energies and for the intramolecular noncova-
lent interactions of r2SCAN-D4. Given that B97M-V
is constructed semi-empirically based on parts of the
GMTKN55 database, this is not too surprising. Never-
theless, the amount of improvement indicates that the ad-
ditional flexibility of the combined approach of B97M-V,
namely designing the semilocal density functional to-
gether with a dispersion correction [33, 34], can yield
improved results for thermochemistry and kinetics. A
nonempirical meta-GGA based on a partitioning of the
gradient expansion similar to LAK, but designed to-
gether with a dispersion correction, and consequently
most likely therefore dropping the second construction
principle of LAK, thus represents an interesting target
for future research.

It is worth looking at two specific subsets of the
GMTKN55. The major shortcoming of semilocal den-
sity functionals is their fundamental inability to fully
cancel the Hartree self-energy. This can be seen from
the SIE4x4 set of self-interaction error related prob-
lems, for which LAK has a mean absolute deviation
(MAD) of 17.29 kcal/mol, r2SCAN of 17.90 kcal/mol, and
M06-L of 17.94 kcal/mol. This indicates that LAK im-
proves only marginally upon other popular meta-GGAs
for self-interaction problems. Another noteworthy subset
is the MB16-43 set of decomposition energies of artificial
molecules [79]. Due to its “mindless” design, it can serve
as an indicator of the transferability of a density func-
tional to novel chemistry [80]. It is often reported that
nonempirical density functionals are more transferable
than empirical ones, and their respective performance on
MB16-43 supports this view [74, 77]: While the MADs
of the empirical M06-L (64.05 kcal/mol) and the semi-
empirical B97M-V (35.35 kcal/mol [75]) are high, the
nonempirical functionals PBE (23.34 kcal/mol), SCAN
(15.74 kcal/mol), and r2SCAN (12.83 kcal/mol) are sys-
tematically and significantly more accurate for MB16-43.
LAK has a MAD of 16.36 kcal/mol on MB16-43, simi-
lar to the MAD of SCAN, emphasizing its nonempirical
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TABLE I. WTMAD-2 in kcal/mol for the GMTKN55 database [37] and its subcategories. Upper half of the table: Nonempirical
semilocal density functionals; data from this work. Lower half of the table: Semilocal density functionals with dispersion
correction optimized for (parts of) GMTKN55; data from the Literature. The Supplemental Material [71] reports the error
statistics for the subsets of GMTKN55.

Basic Large BHs Intermol. NCIs Intramol. NCIs All NCIs GMTKN55

PBE 6.82 15.99 16.69 15.62 19.46 17.50 13.79
SCAN 5.28 8.76 14.88 10.24 8.20 9.24 8.65
r2SCAN 4.98 9.04 13.80 10.49 8.10 9.32 8.49
LAK 5.12 8.83 11.42 9.49 6.95 8.25 7.77

SCAN-D3 [37] 5.31 7.86 14.94 8.50 6.61 7.58 7.86
r2SCAN-D4 [74] 5.55 8.26 14.29 7.46 5.74 6.62 7.54
B97M-V [75] 3.68 9.30 7.52 3.56 5.76 4.64 5.46
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FIG. 4. WTMAD-2 in kcal/mol for the GMTKN55
database and its subcategories: LAK compared with the
best-performing dispersion-corrected semilocal functionals
B97M-V and r2SCAN-D4.

nature and suggesting a similar transferability to novel
chemistry as SCAN. Finally, it is worth to mention that
compared to other semilocal-cost functionals, LAK has
the additional advantage of considerably improving the
prediction of band gaps, es detailed in Ref. 36.

V. ENHANCEMENT FACTOR ENGINEERING:
DENSITY FUNCTIONALS BASED ON

INSIGHTS FROM MATHEMATICS, PHYSICS,
AND CHEMISTRY

In the construction of LAK [36], we extended the suc-
cessful design strategy for nonempirical density function-
als (e.g. Refs. [38–40, 81–84]) of combining exact con-

straints with exactness for model systems, so-called ap-
propriate norms, by the further nonempirical concept
of construction principles. In the following we explain
the idea behind this strategy of designing exchange-
correlation functionals.

A semilocal exchange-correlation functional, and thus
the approximation to all electron-electron interactions,
is completely defined by its enhancement factor. On the
one hand, the exact constraints and model systems re-
strict the enhancement factor through inequalities, scal-
ing relations, and exact limits [84]. On the other hand,
the degree of nonlocality of a density funcitonal depends
to a large extent on the details of its enhancement factor
in between these limits. However, the exact constraints
and model systems provide only limited information on
how the enhancement factor should be modeled in this
intermediate range. Therefore, the construction princi-
ples guide the enhancement factor in the intermediate
range to ensure proper nonlocality. In the case of LAK,
these are the ultranonlocality associated with the deriva-
tive discontinuity and the short- and intermediate-range
van der Waals interactions.

Importantly, we consider the graph of the enhancement
factor the decisive property that should be obtained in
a nonempirical fashion. The graph defines the enhance-
ment factor and thus the density functional uniquely. Ex-
perience has shown that a lot of information about the
performance of a functional can be obtained just from the
graph [67]. Furthermore, all exact constraints, appropri-
ate norms, and construction principles also apply to the
graph. In addition, we aim for a smooth enhancement
factor, a condition found to be important for more ac-
curate densities and the numerically stability of density
functional approximations [85]. Given these conditions,
it is then up to us to find a suitable representation of
the graph in terms of functions. While Occam’s razor
advises us to find the simplest possible representation of
the graph, it remains a mathematical problem to find
functions that can generate this graph.

Following the argumentation above, the construction
principles thus guide the graph of the enhancement fac-
tor in a range in which the graph was not previously
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determined by physical reasons. In other words, the con-
struction principles are additional conditions that tailor
the choice of mathematical functions that satisfy the ex-
act constraints and appropriate norms, based on chemical
and physical insights. Because we design our functional
via conditions on the graph of its enhancement factor,
we call this design strategy “enhancement factor engi-
neering”.

Notably, using a limited number of parameters to rep-
resent the graph can make it easier to find a suitable rep-
resentation of the graph in terms of functions. We want
to emphasize that the parameters introduced in this way
are only a means to the end of representing the graph,
and are therefore fundamentally different from parame-
ters determined, e.g., by fitting to databases. Moreover,
the use of too many parameters is prevented by the con-
dition of a smooth enhancement factor. At this point,
we want to emphasize that parameters in a method are
not empirical per se, but that it depends on how they are
fixed. If they are fixed by fitting to databases, they are
empirical. In contrast, if they are fixed by mathemati-
cal constraints, we regard them as nonempirical. How-
ever, for a given enhancement factor, one can always find
more general functions from which one can obtain this
enhancement factor by fixing several parameters (e.g.,
quasi-trivially by setting them to zero or one) [86]. The
graph of the enhancement factor, however, is independent
of its parametrization and thus of any parameters.

The motivation for the design strategy of enhancement
factor engineering emerges from the following considera-
tions. From a mathematical point of view, we desire the
enhancement factor to satisfy as many analytical con-
ditions as possible that we know about from the exact
exchange-correlation functional. This is achieved by ad-
hering to the exact constraints. From a physical point
of view, we additionally want the enhancement factor to
be correct for certain model systems, such as the homo-
geneous electron gas. These are the appropriate norms.
Finally, from a chemical point of view, we wish to in-
clude existing chemical intuition into the enhancement
factor. From the authors’ point of view, taking into ac-
count existing knowledge about electronic structure or
chemical intuition does not mean fitting parameters to
large databases, but rather incorporating known facts
about the electronic structure of certain types of systems
into the design of the graph of the enhancement factor.
This leads to the construction principles. In this sense,
the strategy of enhancement factor engineering combines
the insights from mathematics, physics, and chemistry.

VI. WHEN TO CHOOSE THE LAK
EXCHANGE-CORRELATION FUNCTIONAL?

The zoo of density functionals is constantly growing
and it is often hard to choose an appropriate functional
for a given task. Therefore, we provide our current view
of the advantages and disadvantages of LAK, and high-

light areas where LAK could be an attractive choice.
Figure 5 summarizes the performance of LAK reported

in Ref. 36, complemented by the performance of LAK for
the S22 set of weak interactions [87, 88]. As in Section II,
we compare LAK with PBE, SCAN, and M06-L. How-
ever, due to its inadequacy with respect to weak interac-
tions, we replace TASK with the range-separated hybrid
HSE06 [89, 90], which has become the de-facto standard
for DFT band structure prediction, and is therefore of-
ten used in materials simulations. The left-hand side
shows the mean absolute deviation relative to the worst
performing density functional in the respective category.
LAK performs best or almost best for all properties ex-
cept for the lattice constants. To estimate the importance
of LAKs attractive accuracy for band gaps, covalent and
weak interactions against its relatively less accurate lat-
tice constants, we compare the mean absolute relative de-
viation from the reference values on the right-hand side of
Figure 5. While the relative error in the lattice constants
is below 2% for all tested functionals, LAK is the only
functional that achieves relative errors of about 10% for
band gaps and weak interactions. Although highly accu-
rate lattice constants are critical in some applications, the
broad spectrum of properties that LAK can accurately
predict makes it an attractive choice for large-scale ma-
terials simulations that require high accuracy for a large
variety of properties at low computational cost.
In the following, we highlight several areas where

we consider LAK a possible improvement over existing
density functionals by providing either higher accuracy
at similar computational cost, or similar accuracy at
strongly reduced computational cost. We write this at a
time when LAK has not yet been tested extensively, i.e.,
the following statements are to be seen as “hopefully edu-
cated guesses”. Its balanced accuracy for band gaps and
energetic binding together with its reasonable description
of noncovalent interactions makes LAK a promising func-
tional for surface and interface problems, as well as bio-
logical systems in which covalent and weak interactions
play together. Last but not least, LAK (and equally well
TASK for this task) can predict the band structure of
semiconductors with a similar quality as HSE, but at a
fraction of HSE’s computational cost [58].

VII. CODE AVAILABILITY STATEMENT

The LAK meta-GGA is available in ams, in particular
in adf and band, (in the trunk and since AMS2025), as
well as in vasp (since version 6.5.0).

ACKNOWLEDGMENTS

The authors thank Jianwei Sun for helpful discussions
on the rare gas dimers. We appreciate financial support
from the Deutsche Forschungsgemeinschaft, DFG pro-
jectnumber 457582427, from the Bavarian State Ministry



9

MGAE109

MGBL20

LC20 scBG15

S22
0.25

0.50

0.75

1.00

PBE

SCAN

LAK

M06-L

HSE

MGAE109

MGBL20

LC20 scBG15

S22

10%

50%

PBE

SCAN

LAK

M06-L

HSE

FIG. 5. General performance of selected density functionals for Main-Group Atomization energies (MGAE109) [91], Main-
Group Bond Lengths (MGBL20) [92], Lattice Constants (LC20) [93], semi-conductor Band Gaps (scBG15) [36], and weak
interactions (S22) [87, 88]. Left: MAD relative to the worst performing functional for each category. Right: mean absolute
relative deviation from the reference values.

of Science, Research, and the Arts for the Collaborative
Research Network “Solar Technologies go Hybrid”, and
from the Elite Study Program “Biological Physics” of the
Elite Network of Bavaria.

TL and SK conceptualized the work. TL performed

the research, wrote the required routines, ran the cal-
culations, and analyzed the results. TL wrote the first
draft of the manuscript. TL and SK worked out the final
manuscript.

[1] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chal-
lenges for density functional theory, Chem. Rev. 112,
289 (2012).

[2] B. I. Lundqvist, Y. Andersson, H. Shao, S. Chan, and
D. C. Langreth, Density functional theory including van
der Waals forces, Int. J. Quantum Chem. 56, 247 (1995).

[3] Y. Zhang, W. Pan, and W. Yang, Describing van der
Waals Interaction in diatomic molecules with generalized
gradient approximations: The role of the exchange func-
tional, J. Chem. Phys. 107, 7921 (1997).

[4] W. Kohn, Y. Meir, and D. E. Makarov, Van der Waals
energies in density functional theory, Phys. Rev. Lett.
80, 4153 (1998).

[5] M. Lein, J. F. Dobson, and E. K. U. Gross, Toward the
description of van der Waals interactions within density
functional theory, J. Comput. Chem. 20, 12 (1999).

[6] T. Van Mourik and R. J. Gdanitz, A critical note on
density functional theory studies on rare-gas dimers, J.
Chem. Phys. 116, 9620 (2002).

[7] J. Tao and J. P. Perdew, Test of a nonempirical density
functional: Short-range part of the van der Waals inter-
action in rare-gas dimers, J. Chem. Phys. 122, 114102
(2005).
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[40] T. Aschebrock and S. Kümmel, Ultranonlocality and ac-
curate band gaps from a meta-generalized gradient ap-
proximation, Phys. Rev. Res. 1, 033082 (2019).

[41] R. Hellmann, E. Bich, and E. Vogel, Ab initio potential
energy curve for the neon atom pair and thermophysi-
cal properties of the dilute neon gas. i. neon–neon inter-
atomic potential and rovibrational spectra, Mol. Phys.
106, 133 (2008).
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describes weak interactions in addition to bond energies and band gaps”
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Tables I - V provide the mean signed error (MSE), the mean absolute error (MAE), and the root mean square error
(RMSE) for the subsets of the GMTKN55 database [1].

TABLE I. Basic properties and reaction energies for small systems.

PBE SCAN r2SCAN LAK
Subset MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

W4-11 13.10 14.67 18.11 -0.30 3.46 4.87 0.54 3.73 5.12 -1.08 4.16 5.86
G21EA 2.64 3.26 3.99 -0.13 3.65 4.19 -0.00 3.56 4.11 -0.28 3.48 4.09
G21IP -0.04 3.78 4.85 -0.23 4.89 5.87 -0.37 4.69 5.71 -1.23 5.02 6.11
DIPCS10 -2.20 4.56 5.96 -2.55 4.80 5.86 -2.69 4.96 5.90 -4.26 5.62 7.38
PA26 1.35 2.00 2.71 3.02 3.06 4.01 2.50 2.52 3.31 4.16 4.16 5.00
SIE4x4 23.17 23.17 25.96 17.72 17.72 20.31 17.90 17.90 20.48 17.29 17.29 19.89
ALKBDE10 5.92 6.38 9.96 1.42 5.04 6.99 2.21 5.05 7.47 0.35 4.83 5.88
YBDE18 -2.56 6.04 7.20 -3.42 3.84 4.22 -3.72 4.06 4.56 -3.44 3.65 4.13
AL2X6 -4.37 4.37 5.03 1.04 1.21 1.41 0.27 0.82 1.07 0.43 0.89 1.10
HEAVYSB11 -2.18 4.54 5.28 -3.09 3.09 3.64 -4.43 4.43 5.28 -7.44 7.44 8.46
NBPRC 1.04 2.73 3.41 -1.23 2.05 2.58 -0.34 1.46 1.88 -0.33 2.13 2.55
ALK8 0.44 2.61 3.46 2.17 3.04 4.01 1.77 2.81 3.79 2.59 3.36 4.83
RC21 4.55 5.53 6.40 5.02 5.66 6.27 4.01 4.52 5.04 4.49 4.88 5.37
G2RC 0.94 5.95 7.28 -1.16 5.83 7.18 -0.52 5.08 6.27 -1.41 5.83 7.20
BH76RC 1.14 4.07 5.96 -0.00 3.11 4.17 0.14 2.95 4.02 0.24 2.93 3.89
FH51 1.81 3.28 4.58 -0.56 2.51 3.75 0.07 2.09 3.23 -0.61 2.66 3.76
TAUT15 0.21 1.86 2.36 0.30 1.84 2.40 0.29 1.66 2.18 -0.33 1.43 1.64
DC13 1.88 10.32 13.08 0.18 6.94 10.36 1.81 8.58 11.59 1.27 7.94 11.24

WTMAD-2 6.82 5.28 4.98 5.12

TABLE II. Reaction energies for large systems and isomerisation reactions.

PBE SCAN r2SCAN LAK
Subset MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

MB16-43 -11.59 23.34 31.05 9.97 15.74 19.98 4.60 12.83 16.50 -9.21 16.36 20.87
DARC 6.37 6.49 7.31 -0.24 2.12 2.41 2.60 3.11 3.59 0.75 2.28 2.57
RSE43 -3.03 3.03 3.35 -1.31 1.31 1.82 -1.49 1.49 1.79 -0.88 0.98 1.25
BSR36 -7.32 7.32 8.46 -2.57 2.57 3.08 -1.78 1.78 2.11 -3.29 3.29 4.48
CDIE20 1.79 1.79 1.98 1.50 1.50 1.64 1.64 1.64 1.77 1.66 1.66 1.81
ISO34 -0.92 1.76 2.45 -0.29 1.32 1.84 -0.15 1.30 2.02 -0.19 1.33 2.14
ISOL24 -3.30 6.52 9.94 -0.64 3.55 5.19 -1.31 4.42 6.53 -1.34 3.86 5.55
C60ISO -10.36 10.36 12.45 -6.01 6.10 8.05 -5.10 5.32 7.25 -4.43 4.75 6.56
PArel 0.24 1.82 2.56 0.68 1.49 2.23 0.65 1.54 2.21 0.57 1.35 2.05

WTMAD-2 15.99 8.76 9.04 8.83
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TABLE III. Reaction barrier heights.

PBE SCAN r2SCAN LAK
Subset MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

BH76 -8.85 8.89 10.24 -7.45 7.51 8.28 -6.90 6.95 7.75 -6.17 6.25 7.16
BHPERI -3.93 3.93 4.37 -4.80 4.80 5.09 -3.90 3.90 4.18 -3.11 3.15 3.43
BHDIV10 -7.75 8.18 9.13 -5.55 6.46 6.95 -4.99 5.91 6.47 -3.23 4.48 5.13
INV24 -2.74 2.99 3.54 0.61 2.50 7.26 0.62 2.69 7.69 1.06 2.06 5.98
BHROT27 0.31 0.44 0.61 0.81 0.83 1.15 0.73 0.74 1.02 0.70 0.73 0.97
PX13 -11.49 11.49 11.66 -8.31 8.31 8.48 -8.90 8.90 9.13 -3.52 3.52 3.71
WCPT18 -8.53 8.53 8.89 -6.14 6.14 6.77 -6.01 6.01 6.62 -3.51 3.56 4.48

WTMAD-2 16.69 14.88 13.80 11.42

TABLE IV. Intermolecular noncovalent interactions.

PBE SCAN r2SCAN LAK
Subset MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

RG18 -0.19 0.27 0.39 -0.01 0.20 0.25 -0.07 0.21 0.27 0.19 0.19 0.25
ADIM6 -3.22 3.22 3.58 -1.58 1.58 1.74 -1.84 1.84 2.02 -0.16 0.17 0.19
S22 -2.41 2.42 3.40 -0.46 0.82 1.12 -0.85 0.99 1.34 0.55 0.56 0.72
S66 -2.00 2.02 2.52 -0.46 0.81 0.96 -0.77 0.90 1.11 0.53 0.58 0.68
HEAVY28 -0.45 0.49 0.58 -0.33 0.36 0.41 -0.48 0.48 0.54 0.26 0.33 0.46
WATER27 0.78 2.51 3.60 6.67 7.27 9.70 3.54 4.10 5.23 7.98 7.98 12.47
CARBHB12 0.94 0.99 1.50 1.08 1.10 1.68 0.83 0.92 1.46 1.27 1.27 1.67
PNICO23 -0.10 0.86 1.27 0.64 0.83 1.35 0.31 0.64 1.13 0.98 0.98 1.27
HAL59 -0.07 1.29 1.85 0.73 1.07 1.73 0.28 0.99 1.45 1.23 1.23 1.56
AHB21 0.03 0.83 1.12 -1.11 1.17 1.55 -0.68 0.90 1.26 -0.68 0.72 1.14
CHB6 0.17 0.70 0.97 -0.09 0.39 0.45 0.13 0.44 0.49 0.36 0.56 0.79
IL16 -1.07 2.09 3.25 -2.97 2.97 4.26 -2.55 2.55 4.06 -3.28 3.28 4.57

WTMAD-2 15.62 10.24 10.49 9.49

TABLE V. Intramolecular noncovalent interactions

PBE SCAN r2SCAN LAK
Subset MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

IDISP 2.95 10.32 11.91 1.55 4.46 5.74 1.71 5.48 7.15 2.15 4.14 6.14
ICONF 0.14 0.43 0.71 0.25 0.30 0.46 0.23 0.30 0.51 0.19 0.33 0.57
ACONF 0.64 0.64 0.71 0.38 0.38 0.41 0.44 0.44 0.48 0.23 0.23 0.25
Amino20x4 -0.03 0.49 0.62 0.10 0.26 0.34 0.03 0.25 0.31 -0.05 0.19 0.24
PCONF21 -0.82 3.41 3.68 -0.16 0.83 0.92 -0.27 0.97 1.04 0.16 0.78 0.93
MCONF -1.67 1.75 1.99 -0.27 0.51 0.61 -0.42 0.59 0.71 0.28 0.41 0.50
SCONF 0.15 0.34 0.44 0.41 0.55 0.60 0.32 0.40 0.43 0.10 0.18 0.20
UPU23 1.18 1.80 2.53 0.10 0.65 0.85 0.18 0.78 1.01 -0.41 0.58 0.72
BUT14DIOL 0.11 0.25 0.34 0.31 0.31 0.33 0.14 0.16 0.20 0.33 0.33 0.35

WTMAD-2 19.46 8.20 8.10 6.95
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The gradient expansion has been a long-standing guide rail in density-functional theory. We here
demonstrate that for exchange-correlation approximations that depend on the gradient of the density and
the kinetic energy density, i.e., for meta-generalized gradient approximations (meta-GGAs), there is a so far
unexploited degree of freedom in the gradient expansion that allows to shift the relative weight of gradient
and kinetic energy contributions. As the dependence on the kinetic energy density determines the derivative
discontinuity, this allows to construct meta-GGAs that adhere to the known exact constraints, yet have new
properties. We demonstrate this with the construction of a meta-GGA that describes both electronic bonds
and band gaps with remarkable accuracy.

DOI: 10.1103/PhysRevLett.133.136402

Computational materials modeling plays an increasingly
important role in the search for new energy materials, as it
enables the rational design of new compounds [1–5]. Its
balance between useful accuracy and reasonable computa-
tional cost made density-functional theory very popular for
electronic structure calculations. Between the computation-
ally efficient generalized gradient approximations (GGAs)
and the overall more accurate, but computationally much
more demanding hybrid functionals, there is the class of
meta-generalized gradient approximations (meta-GGAs)
[6–15].
Meta-GGAs have conceptual limitations that they share

with the local density approximation and GGAs. In par-
ticular, they are not one-electron self-interaction free and
thus suffer from a delocalization error [16]. Overcoming this
limitation requires nonlocality as realized, e.g., in different
types of hybrid functionals; see, e.g., [17–21].
However, over the past decade, meta-GGAs have made

great progress [13–15,22–25], offering almost hybrid
accuracy for electronic bonds at almost GGA computa-
tional cost. For example, meta-GGAs made considerable
progress on solving the dilemma [26] of choosing between
accurate electronic bonds for either molecules or solids
[10,14,27,28] and they improved the description of weakly
bound systems, both alone [11,14,29] and in combination
with dispersion corrections [13,30]. More recently, meta-
GGAs were shown to capture the (ultra)nonlocality and
derivative discontinuity that are required to accurately
predict band gaps [15,31–35].
For many applications, it would be very advantageous to

combine high accuracy for both electronic bonds and band

gaps within a single computationally efficient meta-GGA
[36–42]. So far, however, there is no meta-GGA that offers
state-of-the-art accuracy for both. Here, we aim to close
this gap.
The key idea behind the new construction is to exploit

the fact that in meta-GGAs both the density gradient and
the kinetic energy density contribute to the gradient
expansion of the exchange-correlation energy. Thus, via
a partial integration, one can make them contribute with
different relative weights [15,43], while maintaining the
integrity of the gradient expansion. Since the dependence
on the kinetic energy density determines the degree of
nonlocality in a meta-GGA [15,34,35,44], adjustment of
the relative contributions from the density gradient and the
kinetic energy density allows to reach a new, careful
balance between energetic binding and (ultra)nonlocal
features of the potential.
In our construction, this balanced treatment is guided by

fulfilling the exact constraints that a meta-GGA can satisfy
[14,45] on the one hand, and on the other hand by insights
that emerged from analyzing existing GGAs and meta-
GGAs [29,46–55].
As the first step of the derivation, we discuss the general

gradient expansion of exchange and correlation with
contributions from the density gradient and the kinetic
energy density. We consider the exchange-correlation
energy of a meta-GGA in its usual form Exc ¼ Ex þ Ec
with

Ex½n� ¼ Ax

Z
n4=3Fxðs; αÞd3r; ð1aÞ

Ec½n↑; n↓� ¼
Z

nεcðrs; ζ; s; αÞd3r: ð1bÞ*Contact author: timo.lebeda@uni-bayreuth.de
†Contact author: stephan.kuemmel@uni-bayreuth.de
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Here, Fx is the enhancement factor of exchange, εc
is the correlation energy density per particle, and Ax ¼
−ð3=4Þð3=πÞ1=3. We use atomic units throughout. The spin
dependence of the exchange energy can be obtained via the
exact spin-scaling relation [56]. Semilocal functionals can
be parametrized in different variables [19,50,57]. We here
use the Wigner-Seitz radius rs ¼ ð4πn=3Þ−1=3, the spin
polarization ζ ¼ ðn↑ − n↓Þ=ðn↑ þ n↓Þ, the reduced density
gradient s, and the iso-orbital indicator α. These are

s ¼ j∇nj=½2ð3π2Þ1=3n4=3�; α ¼ ðτ − τWÞ=τunif : ð2Þ

Here, n is the electron density, τ ¼ ð1=2ÞPocc
σ;i j∇φiσj2 is

the noninteracting kinetic energy density, fφiσg are the
(generalized) Kohn-Sham orbitals, τW ¼ j∇nj2=8n is the
single-orbital limit of τ, and τunif ¼ ð3=10Þð3π2Þ2=3n5=3 is
the uniform electron gas limit of τ [58].
The dimensionless parameters s and α ensure the correct

uniform density scaling behavior of the exchange energy
[59]. Furthermore, we choose α as the τ-dependent variable
because of its ability to recognize different types of orbital
overlap [50,60,61]. While α was reported to lead to
numerical instabilities [62,63], more recent meta-GGAs,
especially TASK [15], whose construction is strongly based
on α, demonstrate that a balanced dependence on α can lead
to numerically very stable meta-GGAs [34,63–67].
For a weakly inhomogeneous electron gas, the gradient

corrections to the exchange-correlation energy are known
to second order [68,69],

EGE2
xc ½n� ¼ Ax

Z
n4=3CsðrsÞμs2d3r; ð3Þ

with μ ¼ 10=81 the gradient expansion coefficient of
exchange. The density dependence of Cs is known numeri-
cally from the random phase approximation [68,70–72] and
has been parametrized by Rasolt and Geldart [72].
Meta-GGAs depend on two variables that contribute to

the gradient expansion, in our parametrization s and α.
Consequently, there is a freedom to fulfill the gradient
expansion with different relative contributions from s and
α. To date, nonempirical meta-GGAs have been con-
structed based on the gradient expansion of exchange
using only s [14], only α [43], or both [15]. So far, only
s has been used for the gradient expansion of correlation
[14]. We note that r2SCAN [24] uses both s and α for the
respective separate gradient expansions of exchange and
correlation. There, however, the α dependence is only
introduced a posteriori for numerical reasons [24,73,74].
As pointed out in Ref. [74], this causes numerical problems
if the gradient expansion of exchange is satisfied to
fourth order.
Here, we present the general gradient expansion of

exchange and correlation using both variables s and α.
To this end, we write Eq. (3) in the more general form

EGE2
xc ½n� ¼ Ax

Z
n4=3CμαðrsÞ½μss2 þ μαðα − 1Þ�d3r: ð4Þ

μs and μα are only defined up to multiplication with a
constant, which we fix by Cμαð0Þ ¼ Csð0Þ. Then μs is
uniquely determined by μα and the gradient expansion.
The explicit dependency will be derived in Eq. (9).
Consequently, μα controls the relative contributions from
s and α to the gradient expansion.
The density dependence of Cμα , which depends para-

metrically on μα, is obtained as follows. First, we expand
the noninteracting kinetic energy density τ to second order
in ∇n [75,76],

τ ¼ τunif ½1þ ð5=27Þs2 þ ð20=9Þq� þOð∇4Þ; ð5Þ

with q ¼ ∇2n=½4ð3πÞ2=3n5=3� the reduced Laplacian of the
density. Thus,

α ¼ 1 − ð40=27Þs2 þ ð20=9ÞqþOð∇4Þ: ð6Þ

Inserting Eq. (6) into Eq. (4), transforming the terms in q to
terms in s2 by partial integration and keeping only terms up
to second order in ∇n, we obtain

Z
n4=3CμαðrsÞ½μss2þμαðα−1Þ�d3r

¼p:I:
Z

n4=3
�
CμαðrsÞμsþ

20

27
½rsC0

μαðrsÞ−CμαðrsÞ�μα
�
s2d3r:

ð7Þ

Consequently, the partitioned gradient expansion of Eq. (4)
yields the same energy as the common one of Eq. (3) to
second order if

μCsðrsÞ ¼ μsCμαðrsÞ þ 6μμα½rsC0
μαðrsÞ − CμαðrsÞ�; ð8Þ

which is a differential equation that connects Cμα to Cs.
Since Cμαð0Þ ¼ Csð0Þ, the high-density limit of Eq. (8)
yields μ ¼ μs − 6μμα. Consequently, μs is uniquely deter-
mined by μα via

μs ¼ ð1þ 6μαÞμ: ð9Þ

Inserting Eq. (9) into Eq. (8) yields

CsðrsÞ ¼ CμαðrsÞ þ 6μαrsC0
μαðrsÞ: ð10Þ

For μα ¼ 0, this restores the common gradient expansion in
s, while for μα ≠ 0 this differential equation allows to
determine Cμα from Cs. The general solution of Eq. (10)
and a computationally efficient approximation to it are
given in the Supplemental Material [77,78]. Thus, the
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derivation of the general gradient expansion in s and α now
is in principle complete.
For using this general gradient expansion in specific,

constraint-guided functional construction, it is advisable to
look at exchange and correlation separately, as they are
governed by different constraints. In analogy to Eq. (4),
we define partitionings of the gradient expansions for
exchange-only and correlation-only by

EGE2
xjc ½n� ¼ Ax

Z
n4=3½μs;xjcs2 þ μα;xjcðα − 1Þ�d3r: ð11Þ

Inserting the gradient expansion of exchange-only yields
that μs;x is uniquely determined by μα;x via [15]

μs;x ¼ ð1þ 6μα;xÞμ: ð12Þ
Finally, the gradient expansion of correlation is

EGE2
c ½n� ¼ EGE2

xc ½n� − EGE2
x ½n�, i.e., Eq. (4) minus Eq. (11)

for exchange. This leads to

μα;cðrsÞ ¼ CμαðrsÞμα − μα;x; ð13aÞ

μs;cðrsÞ ¼ μ½CμαðrsÞð1þ 6μαÞ − ð1þ 6μα;xÞ�: ð13bÞ

Two free parameters remain, μα;x and μα. While μα controls
the contribution of α—and thus the kinetic energy density
—to the gradient expansion of exchange and correlation
together, μα;x controls the one of exchange-only. Since the α
dependence of the enhancement factor determines its
degree of ultranonlocality [15,23,34,35], μα;x and μα con-
trol the ultranonlocality of a meta-GGA.
We now use these concepts to derive a new meta-GGA,

for brevity denoted as LAK (initials of the authors), that is
based on the above introduced partitioning of the gradient
expansion and on fulfilling the exact constraints that a
meta-GGA can fulfill [14]. Furthermore, we use the
strategy of interpolating between the iso-orbital limit
α ¼ 0 and the homogeneous electron gas limit α ¼ 1
[14,15,43,50,51] in both exchange and correlation. This
method led to the successful meta-GGAs SCAN [14] and
TASK [15]. However, we fix the problem of a too small
derivative discontinuity in SCAN and a too weak binding in
TASK by choosing the particular factors in this interpola-
tion distinctly differently. In the following, we emphasize
the general ideas, whereas the Supplemental Material [77]
reports the arguments and mathematical steps in detail.
We determine μα based on the following four conditions

for the enhancement factor Fxc: (i) ∂Fxc=∂α < 0 to ensure a
positive derivative discontinuity [15,34]. This implies
μα > 0. (ii) The α dependence of exchange should exceed
that of correlation to reflect that the contribution of
exchange to the derivative discontinuity typically exceeds
that of correlation. This implies μα;x < 0. (iii) As we have
argued recently [34], there are many reasons to expect that
correlation alone has a negative contribution to the
derivative discontinuity, corresponding to ∂Fc=∂α > 0.

Consequently, the fact that Cμα is of the order of −1 in
the most relevant density range for μα > 0 [77] implies
μα < −μα;x. (iv) Fxc has a monotonic and smooth depend-
ence on α.
The value μα ¼ −μα;x=2 that emerges as the natural

average suggested by conditions (i) and (iii) meets all of
these requirements. Therefore, we adopt it in the following.
Next, we introduce the exchange part of LAK. We use

Eq. (1a) with the enhancement factor

FLAK
x ðs; αÞ ¼ h0xgxðsÞ þ ½1 − fxðαÞ�ðh1xðsÞ − h0xÞgnumðsÞ

ð14Þ
because the separation of variables allows to conveniently
fix μα;x via the fourth-order gradient expansion of exchange
[15]. Applying the strongly tightened bound for α ¼ 0
(Fx ≤ 1.174) [79] leads to μα;x ¼ −0.209 897. gx ensures
the exact hydrogen atom energy to reduce one-electron
self-interaction [14,15].
fx and h1x are guided by the gradient expansion of

exchange to fourth order [80] with contributions from s and
α [15]. This particularly makes Fx recover the exact
homogeneous electron gas limit. The forms of fx and h1x
are further tightened by the following two constraints:
negativity of the exchange energy (locally via Fx > 0) and
nonuniform density scaling [81,82] (via Fx ∝ s−1=2 for
s → ∞ [79]). Additionally, we extend the strongly tight-
ened bound for α ¼ 0 to all α, as suggested in Ref. [79].
While the exact constraints allow to fix Fx in several

limits and by upper and lower bounds, there is still much
freedom in how to interpolate between these limits. One
way to fix the enhancement factor in this intermediate range
is the use of so-called appropriate norms [14,45], i.e.,
nonbonded model systems. LAK exchange uses the hydro-
gen atom as an appropriate norm. However, we are not
aware of a suitable appropriate norm for the (ultra)non-
locality that we aim for. Therefore, we use two construction
principles to guide the enhancement factor of LAK. First,
we demand the following extension of condition (ii):

∂Fx

∂α

�
< 0; everywhere

roughly constant for 0.2≲ α≲ 1.5
: ð15Þ

This condition is known to be important for a sizeable
positive (exchange) derivative discontinuity across a wide
range of systems [15,34]. It is related to the nonlocal
constraint n3 of Ref. [45]. Condition (15) determines the
form of fx. Second, we demand

∂Fxc

∂s

����
α¼1

�
> 0 for 0.5≲ s≲ 1.2

< 0 for s≳ 1.2
; ð16Þ

a condition known to increase the binding of weakly bound
systems [53,54]. The latter is important because condition
(15) severely weakens the binding of such systems [83].
Condition (16) determines the form of h1x.
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Finally, gnum reduces the α dependence for large values
of s, which helps to resolve the convergence issues of meta-
GGAs [15,24]. The form of gnum is chosen such that the
numerical stability is improved, but the predicted total
energies remain unchanged.
Next, we build the correlation based on Eq. (1b) and our

partitioning of the gradient expansion. Like exchange, it is
based on the successful idea of interpolating between α ¼ 0
and α ¼ 1,

εLAKc ðrs;ζ;s;αÞ¼ ε0cðrs;ζ;sÞþ ½1−fcðrs;αÞ�
× ½ε1cðrs;ζ;sÞ− ε0cðrs;ζ;sÞ�gnumðsÞ: ð17Þ

The interpolation function fc and the GGA terms ε1c and ε0c
are introduced below.
The important new insight from our partitioning of the

gradient expansion is that the interpolation function fc
should depend not only on α or some other iso-orbital
indicator, but also explicitly on rs and thus on the density.
Taking into account this dependence is a new feature that
arises naturally from our realization of the gradient expan-
sion as follows. Combine Eqs. (1b), (11), and (13) to obtain
the gradient expansion coefficients

ð∂εc=∂αÞjζ¼0;s¼0;α¼1ðrsÞ ¼ Acμα;cðrsÞ=rs; ð18aÞ

ð∂εc=∂s2Þjζ¼0;s¼0;α¼1ðrsÞ ¼ Acμs;cðrsÞ=rs; ð18bÞ

with Ac ¼ ð4π=3Þ−1=3Ax. The 1=rs in Eq. (18b) is typically
accounted for by using t2 ¼ cts2=rs with (for ζ ¼ 0) ct ¼
ð3π2=16Þ2=3 as the reduced gradient for correlation [14,84].
Equation (18a) implies to analogously replace (α − 1) by
ðα − 1Þ=rs near α ¼ 1. We therefore suggest the iso-orbital
indicator for correlation

α̃ ¼ ðα − 1Þ=ðrsαÞ: ð19Þ

In addition to its proper density dependence near α ¼ 1,
α̃ → −∞ in the iso-orbital limit independently of rs. Thus,
α̃ takes unique values for both α ¼ 0 and α ¼ 1.
Transforming Eq. (18) to t and α̃ yields the gradient
expansion coefficients

βtðrsÞ ¼ ðAc=ctÞμs;cðrsÞ; βα̃ðrsÞ ¼ −Acμα;cðrsÞ: ð20Þ

For the complete definition of Eq. (17), we still need to
define fc, ε0c , and ε1c . For these, we use the forms

fcðrs; αÞ ¼
2

π
arctan

�
π

2
fGE2c ðrsÞα̃ðrs; αÞ

�
; ð21aÞ

ε0cðrs; ζ; sÞ ¼ GcðζÞ½εLDA0c ðrsÞ þH0ðrs; sÞ�; ð21bÞ

ε1cðrs; ζ; sÞ ¼ εLSDAc ðrs; ζÞ þH1ðrs; ζ; tðrs; sÞÞ: ð21cÞ

For fc, we use the iso-orbital indicator α̃ suggested in
Eq. (19) and determine fGE2c by the gradient expansion,
Eq. (20). The form of fc is chosen for consistency with
exchange and guarantees fcjα¼0 ¼ 1 and fcjα¼1 ¼ 0,
regardless of rs > 0.
We take the general idea for the forms of ε0c and ε1c from

SCAN [14], but determine the functions distinctly differ-
ently using our new strategy.
For the correlation energy density per particle of the

homogeneous electron gas εLSDAc , we use the parametriza-
tion of Perdew and Wang [85]. The basic idea in the
construction of H1 is to satisfy our partitioning of the
gradient expansion and all exact constraints relevant to H1

with a form that is similar to the respective construction in
PBE and SCAN. As for exchange, the condition (16)
determines the form of H1 in the intermediate range.
Importantly,H1 is subject to the only exact constraint for

which LAK and SCAN differ, the Lieb-Oxford bound.
LAK satisfies the recently improved bound Fxc ≤ 2.1346
[86], whereas SCAN satisfies the previous best bound
Fxc ≤ 2.215 [87]. Note that, strictly speaking, the Lieb-
Oxford bound is a bound on the exchange-correlation
energy. However, to guarantee it for all possible densities,
it is usually applied locally [79].
In the iso-orbital limit α ¼ 0, we adoptGc from SCAN to

make the correlation free from one-electron self-interaction.
For the term εLDA0c , we use the coupled cluster-motivated
correlation of Ref. [88], but modified in order to satisfy the
lower bound on the exchange-correlation energies of two-
electron systems (Fxc ≤ 1.67082) [89] and the helium iso-
electronic series norm [88]. ForH0, we adopt the form from
SCAN to ensure consistency withH1. In contrast to SCAN,
however, we use the correlation energy of the high-density
limit of the two-electron ion with the nucleus number
Z → ∞ [90] as the appropriate norm for H0.
This completes the construction of LAK. In the follow-

ing, we assess its performance for energetic binding and the
band gaps of semiconductors. To this end, we compare
LAK to the two nonempirical functionals whose construc-
tion principles we have followed as close as possible, the
GGA PBE [84] and the meta-GGA SCAN [14,24].
Additionally, we compare to the range-separated hybrid
HSE06 [91–93] that has become a standard for band gap
prediction based on density-functional theory [94].
We have implemented LAK in the codes ADF [95–97]

and BAND [96,98–104] of the Amsterdam Modeling Suite.
As common for meta-GGAs, these implementations within
a generalized Kohn-Sham scheme [105] follow the method
of Ref. [106]. Except for the HSE lattice constants, all
results shown here were obtained from fully self-consistent
all-electron calculations. Computational details, detailed
data, and the working equations of LAK are reported in the
Supplemental Material [77].
Table I in very compact form summarizes the striking

result that our construction makes accessible. It shows that
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LAK has energetics as good as SCAN, but band gaps as
good as HSE, yet without exact exchange. We discuss
noncovalently bound systems in the Supplemental
Material [77,107].
Figure 1 shows the fundamental band gaps of semi-

conductors as obtained in a generalized Kohn-Sham for-
malism [105]. The latter takes into account the effects of the
derivative discontinuity [34,112,113]. We deliberately
focus on semiconductors with a band gap in the techno-
logically relevant range of 0.5 to 4.0 eV. The striking
observation is that the band gaps calculated with LAK are
in good agreement with the experimental gaps, and in fact,

close to the ones found with HSE. That this is a nontrivial
achievement is seen in the comparison to SCAN, which
closes only about half of the gap between the PBE gaps and
the experimental gaps.
These results underscore the potential of the meta-GGA

class of exchange-correlation functionals. The remarkable
overall performance of LAK is achieved through a well-
balanced interplay between s and α in both exchange and
correlation.
In summary, we have shown how the gradient expansion

for exchange and correlation can be naturally partitioned
with contributions from the gradient of the density and
from the kinetic energy density. Inspired by the construc-
tions of the nonempirical meta-GGAs SCAN, which is very
accurate for energetic bonds but systematically under-
estimates band gaps, and TASK, which is very accurate
for band gaps but strongly underbinding, we constructed a
best of both worlds meta-GGA that combines their respec-
tive state-of-the-art accuracy for both.
The resulting meta-GGA LAK appears as an attractive

alternative to computationally demanding hybrid function-
als for large scale applications, e.g., in the realm of energy
relevant materials, where the interaction of molecules and
solids, interfaces, and band gaps play a prominent role.
Furthermore, we are convinced that the new partitioning of
the gradient expansion, combined with the constantly
emerging further insights on meta-GGAs [33–35,86,114–
118], will help to guide and improve the construction of
further meta-GGAs and meta-GGA hybrid functionals in
the future.
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Philipsen, S. Lebègue, J. Paier, O. A. Vydrov, and J. G.
Ángyán, Assessing the performance of recent density
functionals for bulk solids, Phys. Rev. B 79, 155107
(2009).

[50] J. Sun, B. Xiao, and A. Ruzsinszky, Communication:
Effect of the orbital-overlap dependence in the meta
generalized gradient approximation, J. Chem. Phys. 137,
051101 (2012).

[51] J. Sun, R. Haunschild, B. Xiao, I. W. Bulik, G. E. Scuseria,
and J. P. Perdew, Semilocal and hybrid meta-generalized
gradient approximations based on the understanding of the
kinetic-energy-density dependence, J. Chem. Phys. 138,
044113 (2013).

[52] J. H. Yang, D. A. Kitchaev, and G. Ceder, Rationalizing
accurate structure prediction in the meta-GGA SCAN
functional, Phys. Rev. B 100, 035132 (2019).

[53] T. Jenkins, K. Berland, and T. Thonhauser, Reduced-
gradient analysis of van der Waals complexes, Electron.
Struct. 3, 034009 (2021).

[54] T. Jenkins, D. Chakraborty, K. Berland, and T.
Thonhauser, Reduced-gradient analysis of molecular ad-
sorption on graphene with nonlocal density functionals,
Phys. Rev. B 109, 035427 (2024).

[55] P. Kovács, F. Tran, P. Blaha, and G. K. H. Madsen,
Comparative study of the PBE and SCAN functionals:
The particular case of alkali metals, J. Chem. Phys. 150,
164119 (2019).

[56] G. L. Oliver and J. P. Perdew, Spin-density gradient ex-
pansion for the kinetic energy, Phys. Rev. A 20, 397 (1979).

[57] J. W. Furness and J. Sun, Enhancing the efficiency of
density functionals with an improved iso-orbital indicator,
Phys. Rev. B 99, 041119(R) (2019).

[58] To account for the spin-scaling, τunif contains the addi-
tional factor dsðζÞ ¼

�ð1þ ζÞ5=3 þ ð1 − ζÞ5=3�=2 in the
case of correlation.

[59] M. Levy and J. P. Perdew, Hellmann-feynman, virial, and
scaling requisites for the exact universal density func-
tionals. Shape of the correlation potential and diamagnetic
susceptibility for atoms, Phys. Rev. A 32, 2010 (1985).

[60] A. D. Becke and K. E. Edgecombe, A simple measure of
electron localization in atomic and molecular systems,
J. Chem. Phys. 92, 5397 (1990).

[61] J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao,
A. Ruzsinszky, G. I. Csonka, G. E. Scuseria, and J. P.
Perdew, Density functionals that recognize covalent, met-
allic, and weak bonds, Phys. Rev. Lett. 111, 106401
(2013).

[62] E. R. Johnson, A. D. Becke, C. D. Sherrill, and
G. A. DiLabio, Oscillations in meta-generalized-gradient
approximation potential energy surfaces for dispersion-
bound complexes, J. Chem. Phys. 131, 034111 (2009).

[63] S. Lehtola and M. A. L. Marques, Many recent density
functionals are numerically ill-behaved, J. Chem. Phys.
157, 174114 (2022).

[64] F. Hofmann, I. Schelter, and S. Kümmel, Molecular
excitations from meta-generalized gradient approxima-
tions in the Kohn–Sham scheme, J. Chem. Phys. 153,
114106 (2020).

[65] A. J. A. Price, K. R. Bryenton, and E. R. Johnson, Require-
ments for an accurate dispersion-corrected density func-
tional, J. Chem. Phys. 154, 230902 (2021).

[66] R. Kingsbury, A. S. Gupta, C. J. Bartel, J. M. Munro, S.
Dwaraknath, M. Horton, and K. A. Persson, Performance
comparison of r2SCAN and SCAN metaGGA density
functionals for solid materials via an automated, high-
throughput computational workflow, Phys. Rev. Mater. 6,
013801 (2022).

[67] S. Lehtola, Atomic electronic structure calculations with
Hermite interpolating polynomials, J. Phys. Chem. A 127,
4180 (2023).

[68] D. J. W. Geldart and M. Rasolt, Exchange and correlation
energy of an inhomogeneous electron gas at metallic
densities, Phys. Rev. B 13, 1477 (1976).

[69] E. Engel and R. M. Dreizler, Density Functional Theory,
1st ed., Theoretical and Mathematical Physics (Springer,
Berlin, Heidelberg, 2011).

PHYSICAL REVIEW LETTERS 133, 136402 (2024)

136402-7



[70] S.-K. Ma and K. A. Brueckner, Correlation energy of an
electron gas with a slowly varying high density, Phys. Rev.
165, 18 (1968).

[71] C. D. Hu and D. C. Langreth, Beyond the random-phase
approximation in nonlocal-density-functional theory,
Phys. Rev. B 33, 943 (1986).

[72] M. Rasolt and D. J. W. Geldart, Exchange and correlation
energy in a nonuniform fermion fluid, Phys. Rev. B 34,
1325 (1986).

[73] A. P. Bartók and J. R. Yates, Regularized SCAN func-
tional, J. Chem. Phys. 150, 161101 (2019).

[74] J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J.
Sun, Construction of meta-GGA functionals through re-
storation of exact constraint adherence to regularized
SCAN functionals, J. Chem. Phys. 156, 034109
(2022).

[75] M. Brack, B. Jennings, and Y. Chu, On the extended
thomas-fermi approximation to the kinetic energy density,
Phys. Lett. B 65, 1 (1976).

[76] J. P. Perdew, V. Sahni, M. K. Harbola, and R. K. Pathak,
Fourth-order gradient expansion of the fermion kinetic
energy: Extra terms for nonanalytic densities, Phys. Rev. B
34, 686 (1986).

[77] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.133.136402 for a
summary of the exact constraints, appropriate norms,
and construction principles; the comprehensive working
equations of LAK; details regarding the construction of
LAK; the explicit solution of Eq. (10); reference atomic
energies; noncovalent interactions and numerical stability;
details on the computational methods; and the full test set
data.

[78] F. Oberhettinger, Hypergeometric functions, in Handbook
of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Applied Mathematics Series
Vol. 55, edited by M. Abramowitz and I. A. Stegun
(US Government printing office, Washington, D.C.,
1964), pp. 555–566.

[79] J. P. Perdew, A. Ruzsinszky, J. Sun, and K. Burke,
Gedanken densities and exact constraints in density func-
tional theory, J. Chem. Phys. 140, 18A533 (2014).

[80] P. S. Svendsen and U. von Barth, Gradient expansion of the
exchange energy from second-order density response
theory, Phys. Rev. B 54, 17402 (1996).

[81] M. Levy, Density-functional exchange correlation through
coordinate scaling in adiabatic connection and correlation
hole, Phys. Rev. A 43, 4637 (1991).

[82] A. Görling and M. Levy, Requirements for correlation
energy density functionals from coordinate transforma-
tions, Phys. Rev. A 45, 1509 (1992).

[83] T. Lebeda, T. Aschebrock, and S. Kümmel, First steps
towards achieving both ultranonlocality and a reliable
description of electronic binding in a meta-generalized
gradient approximation, Phys. Rev. Res. 4, 023061 (2022).

[84] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
gradient approximation made simple, Phys. Rev. Lett. 77,
3865 (1996).

[85] J. P. Perdew and Y. Wang, Accurate and simple analytic
representation of the electron-gas correlation energy, Phys.
Rev. B 45, 13244 (1992).

[86] M. Lewin, E. H. Lieb, and R. Seiringer, Improved Lieb–
Oxford bound on the indirect and exchange energies, Lett.
Math. Phys. 112, 92 (2022).

[87] G. Kin-Lic Chan and N. C. Handy, Optimized Lieb-Oxford
bound for the exchange-correlation energy, Phys. Rev. A
59, 3075 (1999).

[88] J. T. Margraf, C. Kunkel, and K. Reuter, Towards density
functional approximations from coupled cluster
correlation energy densities, J. Chem. Phys. 150,
244116 (2019).

[89] E. H. Lieb and S. Oxford, Improved lower bound on the
indirect Coulomb energy, Int. J. Quantum Chem. 19, 427
(1981).

[90] S. Ivanov and M. Levy, Connections between high-density
scaling limits of DFT correlation energies and second-
order Z−1 quantum chemistry correlation energy, J. Phys.
Chem. A 102, 3151 (1998).

[91] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid func-
tionals based on a screened Coulomb potential, J. Chem.
Phys. 118, 8207 (2003).

[92] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum:
Hybrid functionals based on a screened Coulomb potential,
J. Chem. Phys. 124, 219906 (2006).

[93] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E.
Scuseria, Influence of the exchange screening parameter
on the performance of screened hybrid functionals,
J. Chem. Phys. 125, 224106 (2006).

[94] J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin,
Energy band gaps and lattice parameters evaluated with the
heyd-scuseria-ernzerhof screened hybrid functional,
J. Chem. Phys. 123, 174101 (2005).

[95] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca
Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T.
Ziegler, Chemistry with ADF, J. Comput. Chem. 22,
931 (2001).

[96] E. Van Lenthe and E. J. Baerends, Optimized slater-type
basis sets for the elements 1–118, J. Comput. Chem. 24,
1142 (2003).

[97] SCM, Theoretical Chemistry, Vrije Universiteit, Amster-
dam, The Netherlands, ADF 2022.102 (a modified version
is used) (2022).

[98] G. te Velde and E. J. Baerends, Precise density-functional
method for periodic structures, Phys. Rev. B 44, 7888
(1991).

[99] G. Wiesenekker and E. J. Baerends, Quadratic integration
over the three-dimensional brillouin zone, J. Phys.
Condens. Matter 3, 6721 (1991).

[100] M. Franchini, P. H. T. Philipsen, and L. Visscher, The
Becke fuzzy cells integration scheme in the Amsterdam
Density Functional program suite, J. Comput. Chem. 34,
1819 (2013).

[101] M. Franchini, P. H. T. Philipsen, E. van Lenthe, and L.
Visscher, Accurate coulomb potentials for periodic and
molecular systems through density fitting, J. Chem.
Theory Comput. 10, 1994 (2014).

[102] E. v. Lenthe, E.-J. Baerends, and J. G. Snijders, Relativistic
regular two-component Hamiltonians, J. Chem. Phys. 99,
4597 (1993).

[103] E. S. Kadantsev, R. Klooster, P. L. De Boeij, and T. Ziegler,
The formulation and implementation of analytic energy

PHYSICAL REVIEW LETTERS 133, 136402 (2024)

136402-8



gradients for periodic density functional calculations with
STO/NAO Bloch basis set, Mol. Phys. 105, 2583 (2007).

[104] SCM, Theoretical Chemistry, BAND 2023.104 (a modi-
fied version is used) (Vrije Universiteit, Amsterdam, The
Netherlands, 2023).

[105] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy,
Generalized Kohn-Sham schemes and the band-gap prob-
lem, Phys. Rev. B 53, 3764 (1996).

[106] R. Neumann, R. H. Nobes, and N. Handy, Exchange
functionals and potentials, Mol. Phys. 87, 1 (1996).

[107] B. Jäger, R. Hellmann, E. Bich, and E. Vogel, Ab initio pair
potential energy curve for the argon atom pair and
thermophysical properties of the dilute argon gas. I.
Argon–argon interatomic potential and rovibrational spec-
tra, Mol. Phys. 107, 2181 (2009).

[108] R. Peverati and D. G. Truhlar, Communication: A global
hybrid generalized gradient approximation to the exchange-
correlation functional that satisfies the second-order den-
sity-gradient constraint and has broad applicability in
chemistry, J. Chem. Phys. 135, 191102 (2011).

[109] R. Peverati and D. G. Truhlar, Quest for a universal density
functional: The accuracy of density functionals across a
broad spectrum of databases in chemistry and physics,
Phil. Trans. R. Soc. A 372, 20120476 (2014).

[110] J. Sun, M. Marsman, G. I. Csonka, A. Ruzsinszky, P. Hao,
Y.-S. Kim, G. Kresse, and J. P. Perdew, Self-consistent
meta-generalized gradient approximation within the pro-
jector-augmented-wave method, Phys. Rev. B 84, 035117
(2011).

[111] S. Jana, B. Patra, S. Śmiga, L. A. Constantin, and P. Samal,
Improved solid stability from a screened range-separated

hybrid functional by satisfying semiclassical atom theory
and local density linear response, Phys. Rev. B 102,
155107 (2020).

[112] J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross,
M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang,
A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, and A.
Görling, Understanding band gaps of solids in generalized
Kohn–Sham theory, Proc. Natl. Acad. Sci. U.S.A. 114,
2801 (2017).

[113] Z. H. Yang, H. Peng, J. Sun, and J. P. Perdew, More
realistic band gaps from meta-generalized gradient ap-
proximations: Only in a generalized Kohn-Sham scheme,
Phys. Rev. B 93, 205205 (2016).

[114] A. D. Kaplan and J. P. Perdew, Laplacian-level meta-
generalized gradient approximation for solid and liquid
metals, Phys. Rev. Mater. 6, 083803 (2022).

[115] C. M. Horowitz, C. R. Proetto, and J. M. Pitarke, Towards
a universal exchange enhancement factor in density func-
tional theory, Phys. Rev. B 107, 195120 (2023).

[116] C. M. Horowitz, C. R. Proetto, and J. M. Pitarke, Con-
struction of a semilocal exchange density functional from a
three-dimensional electron gas collapsing to two dimen-
sions, Phys. Rev. B 108, 115119 (2023).

[117] S. Jana, S. Śmiga, L. A. Constantin, and P. Samal, Semi-
local meta-gga exchange–correlation approximation from
adiabatic connection formalism: Extent and limitations,
J. Phys. Chem. A 127, 8685 (2023).

[118] R. Pederson and K. Burke, The difference between
molecules and materials: Reassessing the role of exact
conditions in density functional theory, J. Chem. Phys.
159, 214113 (2023).

PHYSICAL REVIEW LETTERS 133, 136402 (2024)

136402-9



Supplementary material for “Balancing the Contributions to the Gradient Expansion:
Accurate Binding and Band Gaps with a Nonempirical Meta-GGA”

Timo Lebeda,∗ Thilo Aschebrock, and Stephan Kümmel†
Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany

This supplemental material provides a summary of the exact constraints, appropriate norms, and construction
principles of the LAK meta-GGA, the comprehensive working equations of LAK, details regarding the construction of
LAK, the explicit solution of equation (10) of the main text, reference atomic energies, a numerical stability analysis
for the argon dimer, details on the computational methods, and the full test set data.

EXACT CONSTRAINTS, APPROPRIATE NORMS, AND CONSTRUCTION PRINCIPLES

Here, we summarize the exact constraints that LAK fulfills and the appropriate norms and construction principles
used for the construction of LAK. We have checked LAK for all the exact constraints listed in the Supplemental
Material of Ref. 1. Note that, in contrast to Ref. 1, we list the second-order gradient expansion as an exact constraint
for exchange and correlation together instead of for correlation alone, because strictly speaking the second-order
gradient expansion holds for exchange and correlation together [2].

Exact Constraints for Exchange

(x1) Negativity of the exchange energy

(x2) Exact spin-scaling relation

(x3) Uniform density scaling

(x4) Fourth-order gradient expansion

(x5) Non-uniform density scaling

(x6) Strongly tightened bound for two-electron densities

Exact Constraints for Correlation

(c1) Non-positivity of the correlation energy

(c2) Uniform density scaling to the high-density limit

(c3) Uniform density scaling to the low-density limit

(c4) Zero correlation energy for any one-electron spin-polarized density (no self-correlation)

(c5) Non-uniform density scaling

Exact Constraints for Exchange and Correlation

(xc1) Size extensivity

(xc2) Second-order gradient expansion

(xc3) General Lieb-Oxford bound (as tightened by Lewin, Lieb, and Seiringer (LLS) [3])

(xc4) Weak dependence upon relative spin polarization in the low-density limit

(xc5) Static linear response of the uniform electron gas

(xc6) Lieb-Oxford bound for two-electron densities
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Appropriate Norms

(n1) Uniform and slowly-varying densities

(n2) The hydrogen atom

(n3) The helium iso-electronic series

(n4) The Z → ∞ limit of the two-electron ion

Construction Principles

(p1) ∂Fx
∂α

{
< 0, everywhere
roughly constant for 0.2 <∼ α <∼ 1.5

(p2) ∂Fxc
∂s

∣∣∣∣
α=1

{
> 0 for 0.5 <∼ s <∼ 1.2
< 0 for s >∼ 1.2

LAK satisfies all the exact constraints that SCAN satisfies. Additionally, LAK satisfies a newer, stronger version of
the general Lieb-Oxford bound and the gradient expansions in a balanced way. SCAN does not use the appropriate
norm (n3), but instead the jellium surface energy, the helium atom, the limit of large atomic number for the rare-gas
atoms, and the compressed argon dimer. In SCAN, 10 parameters are fitted to these appropriate norms, whereas in
LAK only 3 parameters (bx, b1c, and χ0) are determined by appropriate norms and 2 parameters (ax and ac) by the
construction principles.

LAK WORKING EQUATIONS

Here, we summarize the equations required to conveniently implement LAK. In many modern electronic structure
codes, exchange and correlation are implemented separately. We therefore split Exc = Ex + Ec with

Ex[n] = Ax

∫
n4/3Fx(s, α)d3r, (1a)

Ec[n↑, n↓] =
∫

nεc(rs, ζ, s, α)d3r, (1b)

like in Eq. (1) of the main text and give the definitions for Fx(s, α) and εc(rs, ζ, s, α).

Exchange

F LAK
x (s, α) = h0

xgx(s) + (1 − fx(α))
(
h1

x(s) − h0
x
)

gnum(s) (2)

Ax = −(3/4)(3/π)1/3 (3)

gx(s) = 1 − e−bxs−1/2
(4)

fx(α) = 2
π

arctan
[

π

2

(
c1

α − 1
α

+ c2 (α − 1)2
)]

(5)

c1 = µα,x/(h0
x − 1) (6)

c2 = (µα,x + να)/(h0
x − 1) (7)

h1
x(s) = hGE4

x (s) + kx(s)
(
ax − hGE4

x (s)
)

(8)
hGE4

x (s) = 1 + µs,xs2 + νss4 + h0
x [1 − gx(s)] (9)

kx(s) = exp
(
−1/

[
(s/ax)2(1 + s2)

])
(10)

gnum(s) = 1 − e−(anum/s)2
(11)
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In the following, we list all parameters appearing in the exchange part of LAK and how they were determined.

h0
x = 1.174

µα,x = −
(

97 + 3h0
x +

[
(3h0

x)2 + 74166h0
x − 64175

]1/2)
/1200

να = (73 − 50µα,x)/5000
µs,x = (10 + 60µα,x)/81

νs = −(1606 − 50µα,x)/18225
bx = 4.9479
ax = 1.1

anum = 5

(x6)

(x4)

(x4)
(x4)
(x4)
(n2)
(p2)
(numerical stability)

Correlation

εLAK
c (rs, ζ, s, α) = ε0

c(rs, ζ, s) + [1 − fc(rs, α)]
[
ε1

c(rs, ζ, s) − ε0
c(rs, ζ, s)

]
gnum(s) (12)

ε0
c(rs, ζ, s) =

[
εLDA0

c (rs) + H0(rs, s)
]

Gc(ζ) (13)

εLDA0
c (rs) = − b1c

1 + b2crs
(14)

H0(rs, s) = b1c ln
[
1 + w0(rs)

(
1 −

[
1 + 4χ0s2]−1/4)]

(15)

w0(rs) = exp
[
−εLDA0

c (rs)/b1c
]

− 1 (16)
Gc(ζ) = [1 − 2.3631 [dx(ζ) − 1]] (1 − ζ12) (17)

dx(ζ) = 1
2

[
(1 + ζ)4/3 + (1 − ζ)4/3

]
(18)

fc(rs, α) = 2
π

arctan[π2 fGE2
c (rs)α̃(rs, α)] (19)

α̃(rs, α) = α − 1
rsα

(20)

fGE2
c (rs) = βα̃(rs)

ε1
c(rs, 0, 0) − ε0

c(rs, 0, 0) (21)

βα̃(rs) = −Acµα,c(rs) (22)
µα,c(rs) = Cµα

(rs)µα − µα,x (23)
ε1

c(rs, ζ, s) = εLSDA
c (rs, ζ) + H1(rs, ζ, t(rs, s)) (24)

H1(rs, ζ, t(rs, s)) =
{

H1
+(rs, ζ, t(rs, s)), βt(rs) ≥ 0

H1
−(rs, ζ, t(rs, s)), βt(rs) < 0

(25)

t2(rs, ζ, s) = ct(ζ)s2/rs (26)
ct(ζ) = (3π2/16)2/3/ϕ2(ζ) (27)

ϕ(ζ) = 1
2

[
(1 + ζ)2/3 + (1 − ζ)2/3

]
(28)

βt(rs) = Ac
ct

µs,c(rs) (29)

Ac = (4π/3)−1/3Ax (30)
µs,c(rs) = µ [Cµα(rs)(1 + 6µα) − (1 + 6µα,x)] (31)

(32)
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H1
+(rs, ζ, t(rs, s)) = γϕ3 ln

[
1 + w1

(
1 − g+

1
) (

1 − g+
2 + g+

3
)]

(33)
H1

−(rs, ζ, t(rs, s)) = γϕ3 ln
[
1 + w1

(
1 − g−

1
) (

1 − g−
2 − g−

3
)]

(34)
γ = (1 − ln(2))/π2 (35)

w1(rs, ζ) = exp
[
−εLSDA

c (rs, ζ)/(γϕζ)3)
]

− 1 (36)

g±
1 (rs, t) =

[
1 ± 4A(rs, ζ)t2]−1/4 (37)

g±
2 (rs, t) =

[
1 + (A(rs, ζ)t2)2]−1 (38)

g+
3 (rs, t) =

[
1 + acA(rs, ζ)t2]−1 (39)

g−
3 (rs, t) =

[
1 − (w1(rs, ζ) + b3c)A(rs, ζ)t2]−1 (40)

A(rs, ζ) = βt(rs)
γw1(rs, ζ) (41)

gnum(s) = 1 − e−(anum/s)2
(42)

For εLSDA
c , we use the parametrization of Perdew and Wang [4]. Cµα(rs) is defined in Eq. (62) below. In the

following, we list all parameters appearing in the correlation part of LAK and how they were determined.

µα = −µα,x/2
b1c = 0.0468
b2c = 0.205601
χ0 = 1.55344
b3c = 2.85
ac = 10
anum = 5

(ultranonlocality and smoothness; see main text)
(n3)
(xc6)
(n4)
(p2)
(numerical stability; identical to exchange)

DETAILED CONSTRUCTION OF THE LAK FUNCTIONAL

In this section, we explain technical details in the construction of the meta-GGA LAK that we omitted in the main
text for the sake of clarity.

Details about LAK exchange

Here, we detail the exchange part of LAK. As noted in the main text, we use the enhancement factor

F LAK
x (s, α) = h0

xgx(s) + (1 − fx(α))
(
h1

x(s) − h0
x
)

gnum(s), (43)

because the separation of variables allows to conveniently fix µα,x via the fourth-order gradient expansion of exchange.
Applying the strongly tightened bound for α = 0, Fx ≤ 1.174 =: h0

x [5], leads to µα,x = −0.209897 [6]. Like in SCAN
and TASK, gx(s) = 1 − e−bxs−1/2 with bx = 4.9479 ensures the exact hydrogen atom energy to reduce one-electron
self-interaction [1, 6].

Guided by the gradient expansion of exchange to fourth order with contributions from s and α [6], we define

h1
x(s) = hGE4

x (s) + kx(s)
(
ax − hGE4

x (s)
)

, (44a)

fx(α) = 2
π

arctan
(

π

2

(
c1

α − 1
α

+ c2 (α − 1)2
))

. (44b)

Here, hGE4
x (s) = 1 + µs,xs2 + νss4 + h0

x [1 − gx(s)], c1 = µα,x/(h0
x − 1), and c2 = (µα,x + να)/(h0

x − 1) are determined
by the gradient expansion. In particular, the last term of hGE4

x cancels a small contribution from the first term of
F LAK

x . The term

kx(s) = exp
(
−1/

[
(s/ax)2(1 + s2)

])
(45)
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compensates for the divergence of the gradient expansion as s → ∞, thus ensuring the negativity of the exchange
energy density.

As emphasized in the main text, these considerations fix fx and h1
x in several limits (in particular for s → 0,

s → ∞, α = 0, α ≈ 1) and by upper and lower bounds. To determine them in the intermediate range, we apply the
construction principles. Following this strategy, we use the arctan in fx because it allows us to fulfill the required
limits for α = 0, α = 1, and α → ∞ and at the same time satisfy the first construction principle, Eq. (15) of the main
text (construction principle (p1) above), compare Figure 1b. Similarly, ax = 1.1 and the form of kx are determined
by the second construction principle, Eq. (16) of the main text (construction principle (p2) above), compare Figure
1a.

Finally, gnum(s) = 1 − e−(anum/s)2 reduces the α-dependence for large values of s. This has been shown to reduce
the convergence issues of meta-GGAs [6, 7]. We choose anum = 5 to improve the numerical stability without changing
the predicted total energies.

Figure 1 shows the exchange enhancement factor of LAK (a) as a function of the reduced density gradient s for
several values of α and (b) as a function of α for several values of s.

(a)
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(b)

0.7

0.8

0.9

1.0

1.1

1.2

0 1 2 3 4 5

F x
(s

,α
)

α

s = 0 s = 0.5 s = 1 s = 3 s = 5

FIG. 1. The LAK exchange enhancement factor F LAK
x of Eq. (2) for a spin-unpolarized system (a) as a function of s for several

values of α and (b) as a function of α for several values of s.
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Details about LAK correlation

Here, we detail the correlation part of LAK. Like exchange, it is based on a balanced treatment of the gradient
expansion and on the successful idea of interpolating between α = 0 and α = 1,

εLAK
c (rs, ζ, s, α) = ε0

c(rs, ζ, s) + [1 − fc(rs, α)]
×

[
ε1

c(rs, ζ, s) − ε0
c(rs, ζ, s)

]
gnum(s).

(46)

As outlined in the main text, we use the interpolation function

fc(rs, α) = 2
π

arctan
[π

2 fGE2
c (rs)α̃(rs, α)

]
(47)

with the iso-orbital indicator α̃ = (α − 1)/(rsα). Further, fGE2
c (rs) = βα̃(rs)/

[
ε1

c(rs, 0, 0) − ε0
c(rs, 0, 0)

]
is determined

by the gradient expansion (the density-dependence of the gradient expansion coefficient βα̃ is derived in Eq. (20) of
the main text, ε0

c and ε1
c are defined below). As in fx and for the same reasons, we also use the arctan in fc. This

additionally ensures the consistency of exchange and correlation.
Next, we detail the correlation term for the iso-orbital limit α = 0,

ε0
c(rs, ζ, s) = Gc(ζ)

[
εLDA0

c (rs) + H0(rs, s)
]

. (48)

We adopt Gc from SCAN to make the correlation free from one-electron self-interaction via fc(rs, 0) = 1 and
Gc(|ζ| = 1) = 0 [1]. For the term εLDA0

c that depends only on the local density, we modify the coupled cluster-
motivated correlation from Ref. 8,

εLDA0
c (rs) = −b1c/(1 + b2crs). (49)

As in Ref. 8, we use b1c = 0.0468, which is fit to the helium iso-electronic series norm. In contrast to Ref. 8,
we determine b2c = 0.205601 by the lower bound on the exchange-correlation energies of two-electron systems,
Fxc ≤ 1.67082 [9]. For H0, we adopt only the form from SCAN,

H0(rs, s) = b1c ln
[
1 + w0(rs)

(
1 −

[
1 + 4χ0s2]−1/4)]

, (50)

but determine χ0 = 1.55344 from fitting to the correlation energy Ec = −0.0467 Ha of the high-density limit of the
two-electron ion with the nucleus number Z → ∞ [10]. Here, w0(rs) = exp[−εLDA0

c (rs)/b1c] − 1.
Finally, we detail the correlation term for the homogeneous electron gas limit α = 1,

ε1
c(rs, ζ, s) = εLSDA

c (rs, ζ) + H1(rs, ζ, t(rs, s)). (51)

Here, εLSDA
c denotes the correlation energy density per particle of the homogeneous electron gas. The construction of

H1 is somewhat more involved, as detailed below. As noted in the main text, the basic idea is to satisfy our partitioning
of the gradient expansion and all exact constraints relevant to H1 in a way that is similar to the respective construction
in PBE and SCAN. Like for exchange, we use the second construction principle, Eq. (16) of the main text (construction
principle (p2) above), to determine the form of H1 in the intermediate range.

Compared to the respective constructions in PBE and SCAN, the detailed construction of H1 is somewhat more
involved for the following reason. According to Eq. (13) of the main text, there exist combinations of µα and µα,x
such that µα,c and µs,c can have a zero in rs. For the values used in LAK, µα = 0.1049487 and µα,x = −0.2098974,
µα,c does not have a zero, but µs,c does have a zero at rs ≈ 50. Consequently, also βt does have a zero and changes its
sign from positive to negative at rs ≈ 50. While such a change in sign can become important for specific combinations
of µα and µα,x, this is of minor importance for the values used in LAK. Densities corresponding to rs

>∼ 50 are so
small that the region where βt is negative has almost no influence on the predicted energies. However, the change in
sign causes a negative argument in a logarithm if used in the PBE or SCAN construction without modification.

Consequently, to obtain a well-defined functional everywhere that fulfills all the desired exact constraints, we define
H1(rs, ζ, t) piecewise in rs via

H1 =
{

γϕ3 ln
[
1 + w1

(
1 − g+

1
) (

1 − g+
2 + g+

3
)]

, βt(rs) ≥ 0,

γϕ3 ln
[
1 + w1

(
1 − g−

1
) (

1 − g−
2 − g−

3
)]

, βt(rs) < 0,
(52)
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with γ, ϕ(ζ), and w1(rs, ζ) adopted from PBE [11] and SCAN [1]. We also adopt A(rs, ζ) = βt(rs)/(γw1(rs, ζ)) from
SCAN, but with βt according to Eq. (20) of the main text. Further, we take g1 from SCAN and expand the SCAN
expression for H1 by the term (1 − g2 − g3) with

g1(x) = 1
(1 + 4x)1/4 , g2(x) = 1

1 + x2 , g3(x) = 1
1 + x

, (53)

where we distinguish the cases βt > 0 and βt < 0 by

g+
1 (rs, ζ, t) = g1(At2), g−

1 (rs, ζ, t) = g1(−At2),
g+

2 (rs, ζ, t) = g2(At2), g−
2 (rs, ζ, t) = g2(−At2),

g+
3 (rs, ζ, t) = g3(acAt2), g−

3 (rs, ζ, t) = g3(− [w1(rs, ζ) + b3c] At2).
(54)

Eqs. (53) and (54) follow from the following considerations, which conclude the construction of H1.

i) To ensure smoothness at the zero of βt, we aim at analogous definitions for βt > 0 and βt < 0.

ii) To make correlation properly scale to a finite negative value per electron under uniform density scaling to the
high-density limit [12], all functions are defined in terms of At2.

iii) To avoid a zero in the denominator, all functions for βt < 0 use −At2, since this is positive for βt < 0.

iv) Like in SCAN, using (1 − g+
1 ) alone would fulfill all exact constraints relevant to H1 for βt > 0, in particular the

gradient expansion. (1 − g−
1 ) is defined analogously to (1 − g+

1 ), but with a different sign of At2 to avoid a zero
in the denominator. As a consequence, however, using (1 − g−

1 ) alone would fulfill the gradient expansion with
the wrong sign. Therefore, g−

2 (t = 0) = g−
3 (t = 0) = 1 to restore the correct sign of the gradient expansion via

multiplication by (1−g−
2 −g−

3 ) in H1. Following consideration i), we analogously have g+
2 (t = 0) = g+

3 (t = 0) = 1.
Thus, (1 − g+

2 + g+
3 ) in H1 maintains the correct sign of the gradient expansion for βt > 0.

v) g2 and g3 must tend to zero faster than g1 to maintain the correct non-uniform density scaling via εc ∝ s−1/2

for s → ∞. We choose the simplest functions that fulfill this requirement for g2 and g3.

vi) The argument of the logarithm in Eq. (52) must remain positive for all rs. Since w1 is unbounded for rs → 0
and 0 ≤ (1 − g−

1 ) ≤ 1, the term (1 − g−
2 − g−

3 ) must become less negative with decreasing rs at the same rate
as w1 increases, in order to avoid a negative argument of the logarithm. This is ensured by the term w1 in the
denominator of g−

3 .

vii) To ensure the LLS-bound Fxc ≤ 2.1346 [3], we introduce the parameter b3c in g−
3 that we determine to b3c = 2.85

using this constraint, compare Figure 2.

ix) For smoothness at the zero of βt, the definitions of g+
2 and g+

3 follow those of g−
2 and g−

3 as closely as possi-
ble. Additionally, g+

3 is tailored towards fulfilling the second construction principle, Eq. (16) of the main text
(construction principle (p2) above). These considerations lead to ac = 10 ≈ w1(1, 0) + b3c.

Note that one could alternatively stick with the simpler PBE or SCAN form for H1 and let βt smoothly tend to
zero for rs

>∼ 50 to avoid the change in sign in βt. Such a procedure could be motivated by the limited accuracy of the
parametrization of Cs for such low densities. However, this procedure would result in correlation having a different
gradient expansion coefficient than exchange in the low-density limit of the homogeneous electron gas. But the
cancellation of the exchange and correlation gradient expansions in the homogeneous electron gas limit is important
for a static linear response of the uniform electron gas [13]. Consequently, removing the zero in βt is in contradiction
with our nonempirical construction strategy and the form of H1 in LAK, although somewhat more involved, is a
consequence of our nonempirical construction strategy.

Figure 2 shows the exchange-correlation enhancement factor Fxc = Fx +Fc of LAK in the low-density limit rs → ∞.
Note that the enhancement factor of correlation is Fc(rs, ζ, s, α) = Acrsεc(rs, ζ, s, α).
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FIG. 2. The LAK enhancement factor F LAK
xc in the low-density limit rs → ∞ for a spin-unpolarized system as a function of s

for several values of α. The LLS bound is the global bound Fxc ≤ 2.1346 as tightened by Lewin, Lieb, and Seiringer [3]. The
α = 0 bound is the bound for two-electron systems, Fxc|α=0 ≤ 1.67082 [9].

EXPLICIT SOLUTION OF EQUATION (10) OF THE MAIN TEXT

As discussed in the main text, shifting the contributions to the gradient expansion between s and α leads to a
transformed density-dependent coefficient Cµα

for the gradient expansion. Cµα
depends parametrically on µα. For

fixed µα, the density dependence of Cµα
is determined by Cs via the differential equation (Eq. (10) of the main text)

Cs(rs) = Cµα
(rs) + 6µαrsC ′

µα
(rs). (55)

For µα = 0, this restores the common gradient expansion coefficient Cs of the gradient expansion in s-only. For
µα > 0, the general solution to this differential equation is given by

Cµα
(rs) = cκr−κ

s + κr−κ
s

∫ rs

0
Cs(x)xκ−1dx, (56)

while for µα < 0 it is given by

Cµα(rs) = cκr−κ
s − κr−κ

s

∫ ∞

rs

Cs(x)xκ−1dx, (57)

with κ = 1/(6µα). In both cases cκ = 0 corresponds to the only solution that behaves regularly both in the high- and
low-density limit. We use Cs in the parametrization by Rasolt and Geldart [14]

Cs(rs) = −16π(3π2)1/3

3000µ

2.568 + 23.266rs + 0.007389r2
s

1 + 9.723rs + 0.472r2
s + 0.07389r3

s

, (58)

where µ = 10/81. The solutions to Eqs. (56) and (57) can be represented using hypergeometric functions [15]. Since
LAK uses a positive µα, we restrict the following discussion to the case µα > 0. For µα < 0 similar expressions can
be derived.
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For any µα > 0, and thus κ > 0, the solution to Eq. (56) can be expressed as

Cµα
(rs) = 1

π
Re

[
− 3.40792 2F1 (1, κ; 1 + κ; −8.66954rs)

+ (0.0103142 + 0.015838i) 2F1 (1, κ; 1 + κ; z1rs)
+ (0.0103142 − 0.015838i) 2F1 (1, κ; 1 + κ; z∗

1rs)

+ κrs

(1 + κ)(2 + κ)
[

− 30.8756(2 + κ) 2F1 (1, 1 + κ; 2 + κ; −8.66954rs)

+ (0.0934461 + 0.143483i) 2F1 (1, 1 + κ; 2 + κ; z1rs)
+ (0.0934461 − 0.143483i) 2F1 (1, 1 + κ; 2 + κ; z∗

1rs)
− 0.00980572κrs 2F1 (1, 2 + κ; 3 + κ; −8.66954rs)
+ (0.0000296774 + 0.0000455685i)(1 + κ)rs 2F1 (1, 2 + κ; 3 + κ; z1rs)

+ (0.0000296774 − 0.0000455685i)(1 + κ)rs 2F1 (1, 2 + κ; 3 + κ; z∗
1rs)

]]

(59)

with z1 = −(0.0267302 + 0.0883654i) and the Gaussian (or ordinary) hypergeometric function [15]

2F1 (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n! . (60)

Here, (q)n denotes the (rising) Pochhammer symbol

(q)n =
{

1 , n = 0,∏n−1
k=0(q + k) , n > 0.

(61)

As hypergeometric functions are unpractical for numerical calculations, it is advisable to approximate them in a
suitable way, as detailed in the next section.
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FIG. 3. Comparison of Cs, Cµα , and Capprox
µα

for µα = 0.1049487.
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Parametrization of Cµα

For convenient implementation, we approximate the analytical solution, Eq. (59), for the value used in LAK,
µα = 0.1049487, by

Capprox
µα

(rs) = Cs(0) 1 + 0.1r0.65
s

(1 + 0.065r0.9
s )(1 + 0.03r1.2

s ) . (62)

Here, Cs(0) = −16π(3π2)1/32.568/(3000µ) is the high-density (rs → 0) limit of Eqs. (58) and (59). The other
six parameters are obtained by fitting to the analytical solution for Cµα

as given in Eq. (59) in the energetically
important region 0 < rs < 10. In this region, the relative deviation |Capprox

µα
− Cµα

|/Cµα
remains well below 1 %.

Figure 3 shows the untransformed coefficient Cs, the transformed coefficient Cµα
, and the approximated transformed

coefficient Capprox
µα

as functions of the Wigner-Seitz radius rs, i.e., their density dependence. As noted in the main
text, Cs and Cµα are of the order of −1 in the energetically important region. Since Cs itself is a parametrization
of numerical data, Eq. (62) is merely a parametrization of the transformed numerical data by simple functions that
does not introduce additional noteworthy uncertainties.

REFERENCE TOTAL ATOMIC ENERGIES

In this section, we report LAK atomic energies. These are calculated self-consistently in ADF [16] with the numerical
settings of Table III. To obtain total energies with ADF, we calculate the bare cores (no electrons) such that the ADF
fragment is the sum of the core and the free electrons. Additionally, we apply the key FragMetaGGAToten to apply
the accurate grid also to the fragment. Note, however, that ADF is tailored towards binding energies and not towards
highly accurate total energies.

Table I reports reference total, exchange-correlation, exchange, and correlation energies for the nitrogen and neon
atom, respectively. These can be used to check future implementations of LAK, with the above mentioned caveat
about the accuracy of ADF for total energies.

Table II reports total atomic energies and corresponding exchange-correlation, exchange, and correlation energies
of the rare gas atoms neon, argon, krypton, and xenon. For comparison, we also list the respective values for SCAN.
Note that the limit of large atomic number for the rare-gas atoms is used as an appropriate norm in the construction of
SCAN, but not in LAK. Table II shows that the exchange and correlation energies of LAK are nevertheless reasonable.

TABLE I. Reference total atomic energies and corresponding exchange(-correlation) energies in Hartree for the nitrogen and
neon atom calculated self-consistently in ADF. LAKx denotes LAK exchange-only.

LAK LAKx
E Exc E Ex

N -54.4406058165 -6.5385912464 -54.2056308070 -6.2961690583
Ne -129.0724611872 -12.3982382510 -128.6846406935 -12.0028303080

TABLE II. Total atomic energies and corresponding exchange-correlation, exchange, and correlation energies in Hartree for the
rare gas atoms Ne, Ar, Kr, and Xe calculated self-consistently in ADF. The reference values are from Ref. [1].

Ne Ar Kr Xe
Exc Ex Ec Exc Ex Ec Exc Ex Ec Exc Ex Ec

SCAN -12.507 -12.163 -0.344 -31.115 -30.424 -0.691 -97.466 -95.709 -1.757 -189.002 -186.102 -2.900
LAK -12.398 12.010 -0.388 -30.751 -29.948 -0.803 -95.090 -93.950 -2.039 -186.138 -182.805 -3.333
Ref -12.499 -12.108 -0.391 -30.911 -30.188 -0.723 -95.740 -93.890 -1.850 -182.200 -179.200 -3.000
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NONCOVALENT INTERACTIONS AND NUMERICAL STABILITY

Figure 4 shows the potential energy curve of the argon dimer with LAK for different settings of NumericalAccuracy
in ADF. For comparison, we also show the binding curves of M06-L [17] and a highly accurate CCSDT reference [18].
We recognize that LAK shows a minimum and thus binds the argon dimer. Similar binding curves are obtained for
other noncovalently bound systems.

Regarding numerical stability, we observe that LAK does not show any oscillatory behavior like M06-L if the
numerical accuracy is reduced. Instead, LAK is nicely converged in ADF with Good numerical accuracy. If, as
recommended for many Meta-GGAs in ADF, the radial grid is boosted by a factor of three, even Basic (the lowest)
numerical accuracy is sufficient for a converged Ar2 binding curve. Therefore, we conclude that LAK is numerically
stable and does not suffer from the long-standing numerical issues of other popular Meta-GGAs.
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FIG. 4. Ar2 potential energy curve for different settings of NumericalAccuracy in ADF [16]. B: Basic, N: Normal, G: Good,
VG (and M06-L VG): VeryGood, B3: Basic with RadialGridBoost 3.0, LAK and M06-L: Excellent with RadialGridBoost
3.0. Ref denotes the CCSDT values from Ref. [18]. The right-hand side shows a zoom on the LAK equilibrium bond length.

COMPUTATIONAL DETAILS

In this Section we list the numerical settings that we have used to calculate the data reported in the main text.
For the atomization energies, the interaction energies, and the bond lengths we used the code ADF [16, 19, 20]
of the Amsterdam Modeling Suite. Our numerical settings are listed in Table III. These settings are extremely
accurate in order to ensure highly accurate results. In practice, Good numerical accuracy and no radial grid boost
(RadialGridBoost 1.0) should be sufficient, as we have shown at the example of the Ar2 binding curve in the previous
section.
TABLE III. Numerical settings used in the calculations for the MGAE109 [21] and MGBL20 [22] sets using the ADF package
of the Amsterdam Modeling Suite.

key MGAE109 MGBL20
NumericalQuality Excellent Excellent
BeckeGrid

RadialGridBoost 3.0 3.0
Basis

Type QZ4P QZ4P
Core None None

Relativity
Level Scalar Scalar

For the lattice constants and band gaps we used the code Band [20, 24–30] of the Amsterdam Modeling Suite.
Our numerical settings are listed in Table IV. To check that these are sufficient, we compare them with results
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TABLE IV. Numerical settings used in the calculations for the LC20 [23] and SCBG15 (defined below) sets using the BAND
package of the Amsterdam Modeling Suite.

key LC20 SCBG15
NumericalQuality Good Good
KSpace

Type Regular Regular
Quality Good Good

BeckeGrid
RadialGridBoost 1.0 1.0

Basis
Type QZ4P TZ2P

Relativity
Level Scalar Scalar

BandStructure
Enabled - True
Automatic - False
DeltaK - 0.02

obtained using increased numerical accuracy in Table V. There, we show the band gaps obtained for LAK with the
default settings, with Spin-Orbit coupling (SOC) in the ZORA approximation, with the largest available basis set
QZ4P, and with a RadialGridBoost (RGB) of 3 (which is the default for many meta-GGAs in ADF and BAND). It
is well-established that (scalar) relativistic effects are important for calculations of lattice constants and band gaps
for elements in the fourth row and below [31–33]. Additionally, for some systems studied here, the computationally
much more expensive spin-orbit coupling is also important. It has the largest effect for systems that contain heavy
elements. Within the SCBG15 set, systems with Te are most affected by Spin-Orbit coupling with differences to the
scalar relativistic calculations of up to 0.28 eV for BeTe. While its effect is typically very similar for different functionals
[33], we have included the results with scalar relativistic effects in the main text, because hybrid functionals with
Spin-Orbit coupling are not available in BAND. Thus, we have to stick with scalar relativistic effects to make the
results of the semilocal functionals comparable to HSE. Note that although the LC20 set contains several systems
with heavy elements, the Spin-Orbit coupling appears to be less important for the lattice parameters than for the
band gaps.

TABLE V. SCBG15 band gaps in eV with LAK for different computational settings. See text for explanations of the settings.

System default SOC QZ4P GB3 Expt.

Ge 0.83 0.74 0.84 0.83 0.74
Si 1.15 1.13 1.12 1.14 1.17
InP 1.69 1.67 1.68 1.69 1.42
CdTe 1.53 1.27 1.55 1.54 1.48
GaAs 1.57 1.47 1.57 1.57 1.52
AlSb 1.63 1.44 1.64 1.64 1.69
CdSe 1.55 1.43 1.55 1.55 1.73
AlAs 2.14 2.05 2.15 2.14 2.23
GaP 2.29 2.27 2.26 2.29 2.35
ZnTe 2.18 1.91 2.18 2.18 2.39
SiC 2.14 2.14 2.12 2.15 2.42
AlP 2.40 2.39 2.36 2.40 2.50
BeTe 2.54 2.26 2.53 2.54 2.80
ZnSe 2.39 2.27 2.38 2.39 2.82
ZnS 3.18 3.16 3.15 3.17 3.72

MSE -0.12 -0.23 -0.13 -0.12
MAE 0.18 0.26 0.19 0.18
RMSE 0.23 0.32 0.24 0.23
rel. MAE 8 11 9 8 %
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Regarding the numerical accuracy, we observe that using a larger basis set or a finer radial Becke grid does not
change the calculated band gaps significantly. The largest single difference is only 0.03 eV with the QZ4P basis set
for the band gap of Si. We therefore conclude that our default settings are appropriate. Note that we did not use the
QZ4P basis set for all calculations, because HSE with QZ4P is computationally extremely demanding and we chose
to make different functionals directly comparable by using identical numerical settings whenever possible.

For the LC20 set calculations with HSE are computationally extremely demanding. Using a smaller basis set than
TZ2P appears to give results far from the basis set limit. We therefore draw on literature data for the LC20 set with
HSE and use the QZ4P basis set for all other functionals. A finer radial Becke grid (RGB of 3) does not change
the lattice constants obtained with LAK by more than 0.001 Å. In Ref. 34 values for the MSE and MAE of HSE
for the LC20 set are given. Unfortunately, it remains unclear how relativistic effects were taken into account there
and no values for the individual systems are provided. Therefore, we take the values for the individual systems from
Ref. 31. These are calculated with small-core relativistic effective core potentials. In Ref. 31 it is estimated that they
differ from all-electron scalar-relativistic values by about 0.02 Å. Unfortunately, Ca, Sr, and Ba are not considered
in Ref. 31. We therefore provide the error measures for both the full LC20 set and LC20 without Ca, Sr, and Ba in
Table VII.

DETAILED RESULTS

Tables VI–IX list the detailed values of the bond lengths, atomization energies, lattice parameters, and band gaps
discussed in the main text. RMSE denotes the root mean square error and rel. MAE the mean absolute error relative
to the reference values. Table VIII defines the SCBG15 set of semiconductors with band gaps in the technologically
relevant range of 0.5 to 4.0 eV. Figure 5 shows the limitations of semilocal DFT for systems where freedom from
self-interaction is important at the examples of the H +

2 and He +
2 potential energy curves.
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FIG. 5. Potential energy curves for H +
2 and He +

2 . All results calculated self-consistently in ADF [16] with QZ4P basis set.
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TABLE VI. MGBL20 [22] main group bond lengths in Å.

Molecule PBE SCAN LAK HSE Ref.

H2 0.750 0.741 0.741 0.744 0.741
CH4 (C H) 1.095 1.087 1.089 1.088 1.086
NH3 (N H) 1.021 1.012 1.014 1.011 1.012
H2O (O H) 0.969 0.960 0.960 0.958 0.957
HF 0.931 0.920 0.920 0.918 0.917
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TABLE IX. MGAE109 [21] main group atomization energies in kcal/ mol.

Molecule PBE SCAN LAK HSE Expt.

CH 84.6 82.2 81.4 82.8 84.2
CH2 (3B1.) 194.4 197.1 196.3 193.2 190.8
CH2 (1A1.) 178.8 175.8 177.0 175.9 181.5
CH3 309.8 312.7 312.3 307.6 307.9
CH4 419.8 420.0 421.6 416.6 420.4
C2H2 414.7 402.5 398.7 403.2 405.5
C2H4 571.1 563.4 562.5 562.0 563.7
C2H6 716.3 713.9 715.2 709.7 713.0
HCO 294.6 282.4 280.2 279.0 279.4
H2CO 385.2 373.6 373.0 370.7 374.7
CH3OH 519.3 513.1 513.3 507.8 513.5
HCN 326.0 307.5 303.7 310.0 313.4
NH2NH2 452.4 433.9 433.1 436.2 438.6
CH3Cl 399.5 395.9 397.2 393.7 396.4
CH3SH 477.7 474.9 477.8 471.2 474.5
C3H4 (pro.) 720.5 705.5 701.5 705.5 705.1
C4H4O 1029.7 1002.9 993.1 1000.3 994.3
C4H4S 995.4 971.5 965.4 971.3 963.6
C4H5N 1109.6 1078.9 1068.5 1081.6 1071.9
C4H6 (tra.) 1033.5 1016.1 1012.5 1014.4 1012.7
C4H6 (yne.) 1024.9 1006.9 1002.7 1006.4 1004.5
C5H5N 1283.5 1247.2 1236.3 1250.1 1238.1
CCH 276.7 266.5 261.8 265.6 265.3
CH2OH 421.0 414.9 413.4 409.1 410.1
CH3CN 635.0 613.9 609.8 615.7 616.0
CH3NH2 590.4 580.7 580.4 579.2 582.3
CH3NO2 640.2 607.1 605.8 601.8 601.8
CHCl3 358.2 346.3 347.5 345.4 345.8
CHF3 477.0 459.9 455.7 455.6 458.7
CH2CH 457.5 451.3 448.5 448.3 446.1
HCOOCH3 809.6 791.5 788.1 782.4 785.9
HCOOH 521.1 503.8 501.9 497.6 501.5
C2H5 611.5 611.0 610.3 605.3 603.9
C4H6 (bic.) 1010.9 992.6 988.5 993.6 987.6
C4H6 (cyc.) 1023.2 1005.5 1000.5 1005.2 1002.0
HCOCOH 661.7 636.3 633.4 631.8 634.0
CH3CHO 693.5 679.7 678.8 675.3 677.4
C2H4O 669.1 655.2 653.1 651.0 651.1
C2H5O 709.6 703.1 701.3 695.4 699.0
CH3OCH3 808.8 801.4 800.3 793.4 798.5
CH3CH2OH 820.5 812.3 812.3 805.5 810.8
C3H4 (all.) 723.4 707.5 703.9 707.0 703.5
C3H4 (cyc.) 701.1 683.7 680.8 686.0 683.0
CH3COOH 826.5 807.8 805.5 800.1 803.7
CH3COCH3 998.8 983.4 982.2 977.3 978.5
C3H6 867.6 857.3 855.8 856.1 853.7
CH3CHCH2 872.9 862.9 861.7 860.2 860.9
C3H8 1014.3 1009.9 1010.8 1004.4 1007.1
C2H5OCH3 1110.0 1100.6 1099.3 1091.2 1095.6
C4H10 (iso.) 1313.1 1307.2 1307.9 1299.8 1303.4
C4H10 (anti.) 1312.3 1305.9 1306.5 1299.0 1301.7
C4H8 (cyc.) 1166.5 1154.8 1152.1 1151.5 1149.4
C4H8 (iso.) 1174.5 1162.7 1161.2 1158.4 1159.0
C5H8 (spi.) 1314.6 1293.7 1289.5 1294.1 1284.7
C6H6 1408.0 1378.7 1369.2 1379.9 1368.1
CH3CO 602.8 588.2 585.4 583.6 582.0
CH3CHCH3 913.6 910.3 909.3 903.6 901.0
C4H9 (t.) 1215.6 1209.9 1208.8 1201.9 1199.7
CH2CO 557.4 538.5 535.1 535.8 532.7

Continued on next page.



18

Molecule PBE SCAN LAK HSE Expt.

CN 196.9 177.4 172.1 177.8 181.4
CO 268.4 254.7 253.1 254.1 259.7
N2 243.0 218.6 215.5 224.3 228.5
NO 171.4 150.7 149.3 151.8 152.8
O2 142.9 127.6 130.0 122.7 120.8
F2 52.7 36.9 38.0 34.4 39.0
CO2 415.1 393.3 391.2 389.3 390.2
Si2 79.3 75.5 70.6 73.2 76.4
P2 120.9 111.3 107.2 111.0 117.6
S2 114.5 108.5 110.0 105.9 104.2
Cl2 65.2 57.4 59.1 58.7 59.8
SiO 196.4 187.8 184.8 182.7 193.1
SC 179.4 167.5 166.7 167.2 171.8
SO 140.6 131.9 132.2 126.0 126.5
ClO 81.1 69.6 68.9 66.3 65.5
ClF 72.0 60.9 61.4 60.4 62.8
SO2 279.5 260.7 260.2 251.5 260.6
AlCl3 304.5 310.7 314.1 302.4 312.6
AlF3 426.6 422.3 423.4 412.9 430.9
BCl3 334.3 330.9 333.3 326.5 325.4
BF3 480.2 469.7 468.6 464.5 471.0
C2Cl4 499.5 475.8 474.1 476.5 469.8
C2F4 628.2 595.3 586.2 592.0 591.1
CCl4 332.3 316.4 317.6 315.5 316.2
CF3CN 678.7 640.5 631.0 640.0 641.2
CF4 500.7 479.1 473.7 474.5 477.9
ClF3 165.0 138.6 135.8 129.4 127.3
NF3 243.4 209.9 208.4 207.0 205.7
PF3 373.8 360.6 356.1 354.3 365.0
SiCl4 383.5 386.7 388.7 378.1 388.7
SiF4 570.3 565.6 564.2 554.2 576.3

NH 88.4 84.9 82.7 85.1 83.1
NH2 188.5 184.4 183.6 182.7 182.6
NH3 301.7 294.4 295.1 294.1 298.0
OH 109.8 109.0 109.6 105.3 107.2
H2O 234.0 229.3 231.2 226.2 233.0
HF 141.9 136.8 137.8 136.4 141.6
SiH2 (1A1.) 147.6 149.1 150.0 147.0 152.2
SiH2 (3B1.) 131.1 137.9 139.5 131.5 131.5
SiH3 221.8 230.0 232.5 222.7 228.0
SiH4 312.8 322.8 324.8 314.4 324.9
PH2 154.1 156.2 156.9 152.6 153.2
PH3 238.6 241.1 242.5 236.5 242.3
H2S 181.7 181.8 185.0 179.1 183.9
HCl 106.2 105.2 107.1 104.4 107.5
NH2NH2 452.4 433.9 433.1 436.2 438.6
H2O2 281.5 267.4 269.5 261.6 269.0
Si2H6 518.8 534.6 537.8 520.8 535.9
HOCl 174.9 164.1 165.9 161.7 166.2
H2 104.6 107.7 108.9 104.3 109.5
SH 87.8 88.4 90.1 86.4 87.0

MSE 12.4 1.4 -0.0 -1.9
MAE 13.9 3.8 3.5 4.0
RMSE 17.4 4.6 4.5 5.5
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Weiterhin erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern bzw. -vermittlern
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