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Abstract  

Driven by, on the one hand, recent advances in the field of artificial intelligence (AI), such as 

the accessibility of large-scale data sources as well as the improvement of AI algorithms, and, 

on the other hand, growing competitive pressure and changing customer needs, many 

incumbents in the manufacturing sector have embarked on a journey to realize the business 

value of AI. In this vein, manufacturers enhance their operational efficiency and optimize 

existing processes, for example, by using anomaly detection to enable condition monitoring. 

Even further, AI paves the way to offer disruptive value propositions that push them beyond 

the limits of existing products or services, such as AI-based prediction and control of machine 

usage, to offer customized business models. To implement AI and unlock its business value, 

manufacturers have started to conduct AI projects. However, AI projects pose several 

challenges that arise on an overarching organizational level as well as on a project level. Those 

challenges are conceptualized using the three-dimensional technology-organization-

environment framework and extended by a fourth data-centric dimension. First, those 

challenges include business challenges, such as developing an organization-wide AI strategy 

or identifying the organizational capabilities required for those new AI-based business models. 

Second, technical challenges emerge, such as ensuring the explainability of AI models or 

managing technology-induced security issues at the organizational level. Third, these 

challenges encompass data challenges, such as providing enough high-quality labeled data or 

reducing the data dimensionality. Lastly, sustainability challenges must be considered, such as 

increasing fairness during AI projects or promoting responsible AI use. Motivated by these 

challenges, this cumulative dissertation provides solutions to conduct successful AI projects in 

the manufacturing sector. It comprises six research articles that deliver research artifacts to 

assist in overcoming the outlined challenges. 

Regarding the challenges AI projects reveal at an organizational level, research article #1 

provides 24 organization-wide success factors for AI projects, structured along four success 

dimensions and specified by 93 subordinated success manifestations, laying the foundations on 

how to plan and execute AI projects successfully. Thereafter, research article #2 addresses what 

capabilities manufacturers need to implement suitable AI-based and data-driven business 

models. The result is a maturity model that assists in identifying the organizational capabilities 

required. Since such AI and data-driven business models increase the risk of information 

technology security incidents, research article #3 addresses the issue of an organizational-wide 
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incident response management. A maturity model is developed that provides manufacturers 

with a comprehensive perspective on capabilities for developing effective incident response 

management since IT security incidents can never be prevented entirely. 

Focusing on the challenges at the project level, research article #4 develops a data-efficient 

active learning architecture for anomaly detection in industrial time series data and its 

instantiation for a real-world robotic screwdriving application. In particular, this helps to 

overcome the time-consuming anomaly data labeling challenge. Since such advanced AI 

approaches reduce the explainability of AI models, research article #5 compares and evaluates 

three frequently used transparent AI models and four different state-of-the-art Explainable AI 

(XAI) methods by conducting an online survey. The results encourage using XAI methods as 

the right choice of the methods enables an increase in the measured human-centered 

explainability by 10%. Lastly, research article #6 presents the sustainable machine learning 

design pattern matrix to overcome the sustainability challenges. The artifact serves as a 

diagnostic tool to capture the sustainability status quo and develop a vision regarding the 

sustainability of AI projects. 

In sum, this doctoral thesis strives to empower manufacturers to overcome the business, 

technical, data, and sustainability challenges of AI projects by presenting and evaluating 

applicable artifacts that contribute to the existing knowledge of AI in the manufacturing sector. 
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I Introduction 

1 Motivation  

Driven by the development of powerful hardware, the availability of extensive data sources, 

and the development of new algorithms, artificial intelligence (AI) evokes the interest of 

researchers and practitioners alike to create value in various domains such as education, finance, 

and manufacturing (Enholm et al., 2022; M. Kim et al., 2022). In this context, AI is typically 

associated with the ability of machines to accomplish cognitive functions that reference human 

intelligence, such as perceiving, reasoning, learning, interacting with the environment, 

problem-solving, decision-making, and even creativity (Benbya et al., 2021; Berente et al., 

2021; Russell & Norvig, 2016). Thus, AI does not describe a specific technology but rather 

stands for a plethora of algorithmic approaches, methods, and techniques that span across a 

wide range of application domains (Stone et al., 2022). The prevailing ones include machine 

learning (ML) (Ågerfalk, 2020; Merhi, 2023). ML is considered the core of present-day AI 

(Berente et al., 2021; Jordan & Mitchell, 2015). In general, ML comprises capabilities to learn 

from training data iteratively and to improve their results, solving tasks automatically without 

explicitly being programmed (Collins et al., 2021). ML is broadly categorized into three types: 

supervised learning, unsupervised learning, and reinforcement learning (Haenlein & Kaplan, 

2019; Jo, 2021). Supervised ML refers to methods associating inputs with target outputs based 

on labeled data to make classifications or predictions. Unsupervised ML represents methods 

that infer underlying patterns in unlabeled data without predefined outcomes, while 

reinforcement learning includes methods that optimize actions toward a predefined goal based 

on feedback using both penalties and rewards (Bertolini et al., 2021; Goodfellow et al., 2016). 

In this doctoral thesis, I subsume ML and the three types under the umbrella term AI to keep 

the wording consistent. 

Opening up new avenues for decision-support and problem-solving (Rai et al., 2019; Vial et 

al., 2023), organizations can utilize AI for a variety of purposes, ranging from analyzing and 

optimizing internal processes, designing novel product features or devising smart services to 

invent disruptive AI-based business models (Burström et al., 2021; Sjödin et al., 2021; Stahl et 

al., 2023). These formidable prospects fuel the ambition of organizations to unlock the 

underlying business value of AI (Shollo et al., 2022; Vial et al., 2023). The enormous potential 

of AI in business is evident from the considerable attention it has received in recent years. 

Global spending on AI reached $154 billion in 2023 across all industries (International Data 
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Corporation, 2023; Statista, 2024) and is predicted to grow to $298 billion by 2027, especially 

due to the current generative AI software spending (Gartner, 2024; Maslej et al., 2024). This 

means an almost doubling of the global AI spending compared to expenditure in 2023, which 

is in line with the projected compound annual growth rate for AI spendings of 19.1% between 

2023 and 2027 (Maslej et al., 2024; McKinsey, 2023). 

In this vein, the manufacturing sector – as a leading industry – has embarked on the journey to 

leverage AI (Bertolini et al., 2021; S. W. Kim et al., 2022a; Stahl et al., 2023). So far, incumbent 

manufacturers have focused on high-quality physical machinery and equipment as the 

differentiating feature for decades, but the industry’s market conditions have been changing 

recently (Favoretto et al., 2022). Although Germany still has a vital role in the global supply 

chain, underpinned by a high export ratio (e.g., Germany accounted for 18% of global 

machinery exports in 2023), international competition is growing steadily and increasing 

market pressure on incumbent firms (VDMA, 2024). For example, in 2021, the global 

machinery production volume amounted to nearly $71.5 billion. Germany accounted for 

approximately $8.9 billion, placing it second after China with around $21.8 billion, followed 

by Japan ($8.8 billion) in third place. In 2022, the global production volume amounted to $80.3 

billion, with Germany ($9.7 billion) in third place after China with $25.7 billion and Japan with 

almost $9.9 billion (VDMA, 2023). Therefore, the manufacturing sector is characterized by 

high competition and thus shrinking profit margins, especially at the core of machinery sales 

(Björkdahl, 2020). On top of that, factors – such as supply shortages caused by international 

conflicts, rising energy costs, higher wage settlements, and inflationary gains in raw material 

prices – are increasing cost pressure and reducing profit margins (Priyono et al., 2020). 

Additionally, the evolving requirements of both established and emerging customer segments 

necessitate digital solutions that automate, enhance, or streamline machine operations (Abrell 

et al., 2016; Loebbecke & Picot, 2015). Further, digital solutions, besides the pure physical 

machinery, facilitate the entry of new competitors from outside an industry, enabling them to 

enter new markets and exert pressure on established companies (Ritter et al., 2023; Stahl et al., 

2023). 

To counteract this, manufacturers are investing more and more in AI and the data collection 

and processing required. According to the “Global Machinery and Equipment Report” of Bain 

& Company (2024), 75% of manufacturing executives indicate that adopting and implementing 

AI is one of their top priorities. This is underlined by a study by the MIT Technology Review 

(2024) among 300 manufacturers, of which 64% are currently researching or experimenting 
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with AI. In the manufacturing sector, AI is enabled through the broader concepts of cyber-

physical systems (CPS) and the Industrial Internet of Things (IIoT) to generate the necessary 

data basis for AI. In CPS, physical components (e.g., machines and plants) and software 

components (e.g., in-line monitoring systems) are designed to interact with each other and the 

surrounding environment by exchanging data (Cui et al., 2020; Häckel et al., 2019). This 

enables seamless coordination between digital and real-world components. To enable the 

communication of and within CPS and the needed data exchange, manufacturers must connect 

their production assets, such as robots and machines, via the IIoT and process the resulting data 

(Baltuttis et al., 2022). The resulting data value can then be captured via data analytics and AI. 

On the one hand, this enables them to enhance operational efficiency and optimize existing 

processes (exploitation) (Holotiuk et al., 2024; Margherita & Braccini, 2023). For example, 

anomaly detection based on AI is becoming increasingly relevant in the manufacturing sector. 

Early detection of those anomalies in manufacturing applications, such as condition monitoring, 

fault diagnosis, or predictive maintenance, avoids economic and environmental losses due to, 

e.g., maintenance cost reduction, machine fault reduction, increased spare part life, or increased 

overall production (Bertolini et al., 2021; X. Li et al., 2022; Xiong et al., 2024). An example is 

Siemens Digital Industries at its production site in Amberg. The highly automated plant 

manufactures printed circuit boards, and AI is successfully used in two areas. First, they use in-

line process data to predict whether or not additional quality testing is necessary, eliminating 

unnecessary control operations. Second, machine data is leveraged to predict possible machine 

faults of the printed circuit board assembly lines to smooth production flow (Schmitt et al., 

2020; van Giffen & Ludwig, 2023). On the other hand, AI empowers manufacturers to offer 

their customers novel or adapted value propositions that push them past the limits of an existing 

product or service core (exploration) (Holotiuk et al., 2024; Knote et al., 2020; Stahl et al., 

2023). For example, digital connected machines enable AI-based insight into usage data and 

allow manufacturers to position themselves with new business models and move toward 

servitization of business (Favoretto et al., 2022; Gebauer et al., 2021). In this way, the 

advantages of AI can not only be exploited in the existing core business, such as the 

manufacturer’s production, but can also be marketed to customers in the form of digital and 

data-driven business models and services. This opens up opportunities for servitization in 

business-to-business customer relationships, as continuous connections between manufacturing 

companies and their customers provide manufacturers with contextual and constantly up-to-

date data regarding the conditions and uses of intelligent machines and devices (Ardolino et al., 

2018; Bertolini et al., 2021). The resulting offerings from manufacturers comprise integrated 



Introduction - Motivation  

4 

and intelligent bundles of products and services, often referred to as smart service systems 

(Beverungen et al., 2021; Heinz et al., 2022). This enables a continuous customer relationship 

instead of a single transactional relationship in the form of a one-time machine sale. One 

promising example from the manufacturing sector is WashTec, an incumbent manufacturer and 

world leader in car wash systems. These systems are operated in more than 80 countries 

worldwide. They continuously generate structured and unstructured data such as machine 

status, usage data, time-series sensor data, error messages, or even image data through their 

IIoT connectivity solution (Ritter et al., 2023). This data, stored centrally in a cloud data 

warehouse, can then be leveraged to create innovative customer-centric value propositions such 

as a new digital customer and service portal based on a continuous subscription. This allows 

the customer journey to be mapped digitally and additional AI-based services to be offered and 

flexibly monetized. Examples of this include car wash solutions tailored to individual vehicle 

models based on AI object recognition and a pay-per-use billing for the car wash operators, 

remote maintenance services depending on the service level agreement, or automated chemical 

supply services through AI-based prediction of consumption behavior (Häckel et al., 2022; 

Ritter et al., 2023; WashTec, 2024). 

In search of a strategic response to AI´s tremendous potential, as described in the previous 

paragraph, manufacturers have started to initiate AI projects and thus implement AI to unlock 

the underlying business value (Shollo et al., 2022; Vial et al., 2023). To execute AI projects, 

organizations must follow an AI project workflow that entails a series of AI project phases 

(Benbya et al., 2021; Vial et al., 2023). Generally, to accomplish a project's implementation, 

companies pass through the four main phases of planning, developing, deploying, and 

maintaining (Cooper & Zmud, 1990). While the overall discussion of projects, e.g., information 

technology (IT) projects, is mature, the emergence of AI projects challenges established 

knowledge owing to the differences between AI and IT projects, such as iterative learning, 

dependence on data, or unclear possibilities due to the current AI hype (Berente et al., 2021; 

Merhi, 2023). To address this, the literature elaborates on AI project workflows to guide the 

execution of AI projects. A comparison of the relevant different AI project workflows and their 

individual AI project phases is given in Table 1. 
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Table 1. Overview of AI project workflows 
  AI Project Workflows 

 

 CRISP-DM 
(Wirth & Hipp, 

2000) 

KDD 
(Fayyad et al., 

1996) 

CRISP-ML 
(Studer et al., 

2021) 

AIDOP 
(Allen et al., 

2017) 

TDSP 
(Tabladillo, 

2022) 

Microsoft ML 
workflow 

(Amershi et 

al., 2019) 

ML operation 
principles 

(Kreuzberger 

et al., 2023) 

A
I 

P
ro

je
c
t 

P
h

a
se

s 

Demand 

Specification 

Business 

understanding 

Understanding 

of the 

application 
domain 

Business 

understanding 
Plan 

Business 

understanding 

Model 

requirements 

MLOps 
product 

initiation, 

Requirements 
for feature 

pipeline 

Data Collection 

and Preparation 

Data 
understanding, 

Data preparation 

Data selection, 

preprocessing, 

and 
transformation 

Data 

understanding, 

Data 
preparation 

Data 

preparation, 

Build ground 
truth 

Data 

acquisition and 
understanding, 

Feature 

engineering 

Data 
collection, 

Data labeling, 

Data cleaning, 
Feature 

engineering 

Feature 
engineering 

pipeline 

Modeling and 

Training 

Modeling, 

Evaluation 

Algorithm 

selection, 
Data mining 

Modeling, 

Evaluation 

Train model, 

Evaluate model 

Model training, 

Model 
evaluation 

Model training, 

Model 
evaluation 

Experimentatio

n 

Deployment and 
Monitoring 

Deployment 
Interpretation, 

Evaluation 

Deployment, 

Monitoring and 

maintenance 

Deploy, 

Monitor, 
Capture 

feedback 

Deployment 

Model 

deployment, 
Model 

monitoring 

Automated ML 

workflow 

pipeline 

 

Within this dissertation, I reframe the four general project phases (Cooper & Zmud, 1990) by 

including a more data-centric perspective, accounting for AI specifics, and considering the AI 

project workflows from Table 1. This both accounts for a comprehensive overview of the whole 

AI project workflow in four phases, enables an end-to-end consideration of the entire AI project 

workflow, and forms the basic methodological structure for the research articles in this 

cumulative dissertation. First, during the planning phase, besides understanding the 

organizational problems and opportunities, there needs to be a stronger focus on identifying AI 

model requirements (Amershi et al., 2019; Kreuzberger et al., 2023). Second, there is a need 

for a data-centric phase prior to model development, as the data basis must be explicitly 

considered in AI projects besides the pure IT application development (Allen et al., 2017; 

Papagiannidis et al., 2023). Thus, the data challenges of data understanding, preparation, 

transformation, feature engineering, labeling, and cleaning must be taken into account 

(Tabladillo, 2022; Wirth & Hipp, 2000). Third, during the development phase, iterative 

training, experimentation, and evaluation loops should be conducted to benchmark different AI 

models (Fayyad et al., 1996; Tabladillo, 2022). This comprises the modeling, training, and 

evaluation of the ML models based on the previous phase’s data (Amershi et al., 2019). 

Depending on the AI model evaluation results, adjustments such as hyperparameter 

optimization can be made (Kreuzberger et al., 2023). Fourth, the deployment and monitoring 

phases should be considered together in AI projects, as changes such as data and concept drift 

must be continually monitored and could lead to redeployment (Kreuzberger et al., 2023). 

Consequently, this consists of deploying the AI model, transitioning the AI model into a 
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software product, and monitoring its predictions and decisions in a real-world environment 

(Studer et al., 2021). This leads to the four overarching AI project phases (Table 1). These four 

phases are not strictly sequential: iterations and feedback loops between the phases are both 

possible and necessary (Singla et al., 2018). The four phases provide a framework-agnostic 

analysis of the AI project workflow by aggregating different AI project workflow frameworks 

to a higher abstraction level. 

Nevertheless, despite the role of AI to serve as a driver for the exploitation of existing processes 

or the exploration of innovation and thus as a means for novel value promises in the 

manufacturing sector (S. W. Kim et al., 2022a; Vial et al., 2023), organizations encounter 

significant challenges when planning and executing AI projects (M. C. M. Lee et al., 2023; 

Merhi, 2023). From a theoretical lens, those challenges regarding the introduction of AI in 

companies are grounded in the technology-organization-environment (TOE) framework 

(Tornatzky & Fleischer, 1990) as established in previous work (e.g., Alsheibani et al., 2018; 

Chatterjee et al., 2021; Jöhnk et al., 2021; Pumplun et al., 2019) and widely applied in IS 

research (Baker, 2012; Wallace et al., 2020). The TOE framework represents a multi-perception 

theory and is used to investigate the adoption of technologies and innovations from a socio-

environmental and technical context at the firm level (Chatterjee et al., 2021). In general, the 

TOE framework comprises three interrelated dimensions: (a) the technological dimension 

describes the internal and external technologies available, (b) the organizational dimension 

focuses on the business characteristics that might influence the adoption process, such as the 

managerial structure, cultural competencies, and existing resources, and (c) the environmental 

dimension considers the structure of the industry including the firm’s competitors, suppliers, 

customers, and regulatory environment (Baker, 2012; Tornatzky & Fleischer, 1990). Following 

Zhu and Kraemer (2005), Baker (2012), and Wallace et al. (2020), the TOE framework can be 

adopted and extended to the specific technology, in this case, AI. Thus, on the one hand, since 

the basis of AI is data, the technology dimension is extended by a data-centric dimension. Data-

centric AI is a novel paradigm emphasizing that the systematic design and engineering of data 

are essential for building effective and efficient AI-based systems (Jakubik et al., 2024). On the 

other hand, to describe technology adoption with a focus on sustainability, recent works have 

moved to extend the conventional view on environmental factors with a focus on sustainability 

(Dadhich & Hiran, 2022; Kumar & Krishnamoorthy, 2020). Thus, the TOE framework and its 

adaptations lead to four specific challenges AI implementation and AI projects oppose, whereby 

these challenges arise during the four phases of the AI project workflow and occur both on an 
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overarching organization level (i.e., where several AI projects are considered together) and on 

an individual AI project level (i.e., where each AI project is considered individually) (Jöhnk et 

al., 2021; Merhi, 2023; Vial et al., 2023; Weber et al., 2023). These challenges encompass 

business challenges (e.g., developing an organization-wide AI strategy or identifying value-

adding AI use cases for individual projects), technical challenges (e.g., ensuring explainability 

of AI algorithms or managing technology-induced security issues at the organizational level), 

data challenges (e.g., providing enough labeled data to learn from or preventing data breaches), 

and sustainability challenges (e.g., promoting responsible AI use throughout the entire 

organization or increasing fairness during each AI project) (Dennehy et al., 2023; Enholm et 

al., 2022; Merhi, 2023; Papagiannidis et al., 2023; Weber et al., 2023). 

First, the business challenges refer to managing the transformation toward a business logic of 

AI-enabled value creation, delivery, and capture (Ibarra et al., 2018; Lins et al., 2021). Here, an 

organizational-wide AI strategy development and fit ensures the emergence of an AI strategy 

aligned with the company’s strategic landscape and vision. An initial task is exploring a target 

state or archetype that fits existing company processes and capabilities as well as existing and 

future customers based on established organizational assets like the products or market position 

(Stahl et al., 2023; Sund et al., 2021). This bundles all corporate efforts towards enabling, 

executing, and streamlining AI projects. Hence, organizations need to develop a tailored and 

aligned AI strategy that considers the available core and cultural competencies, as a one-size-

fits-all solution to an AI strategy does not work (Keding, 2021; Kolbjørnsrud et al., 2017; Shollo 

et al., 2022). In AI projects, organizations often focus on a wide array of technical questions 

without understanding the business problem (Weber et al., 2023). Hence, incumbents must 

focus on an apparent business problem understanding to comprehend, identify, and scope 

potential business problems (e.g., customer pain points) to develop productive AI systems 

(Kinkel et al., 2022; Kreuzberger et al., 2023). 

Second, manufacturers also face technology challenges when conducting AI projects. Amongst 

others, AI projects often get stuck in an experimental technical pilot phase without transitioning 

to productive systems (Benbya et al., 2021; Merhi, 2023). To successfully implement and fully 

grasp the real impact of AI models, there is a need to consider all AI project phases (Verdecchia 

et al., 2023; C.-J. Wu et al., 2022). Hence, an end-to-end view of the AI project workflow is 

crucial for aligning the project to the problem’s requirements, ensuring suitable feature 

engineering, selecting appropriate AI models, successfully deploying them, and maintaining 

their performance over time due to concept and data drift (Kreuzberger et al., 2023). 
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Furthermore, the AI model's technical explainability must be considered during development 

to ensure understandable and tractable AI models as they often come with the expense of 

lacking explainability despite their good performance, referred to as the black-box problem 

(Barredo Arrieta et al., 2020; Vilone & Longo, 2021). Hence, on the one hand, AI models lack 

transparency about how they process data to derive results, as non-deterministic outcomes occur 

(G. Miller, 2021). On the other hand, AI models can be manipulated, leading to different results. 

Thus, model explainability must be guaranteed to some extent to increase transparency, which 

creates the basis for trust and, therefore, broader AI adoption. This can be done by, e.g., 

considering opaque models or post-hoc explainability methods (Berente et al., 2021; Jordan & 

Mitchell, 2015; Vilone & Longo, 2021). Lastly, the ever-rising number of CPS and the resulting 

step increase in data collection on edge systems and the cloud leads to a steadily growing attack 

surface for cyberattacks (Häckel et al., 2019). Organizations should implement data security 

strategies (Bitzer et al., 2023; Böttcher et al., 2022; Leuthe et al., 2024), as, for instance, an 

infiltration of the systems and machinery is possible, leading to production downtimes or data 

disclosure which can have harsh financial and reputational consequences (Eitle et al., 2022; 

Papagiannidis et al., 2023). As a result, IT security has been identified as one of the biggest 

technology challenges and is a top priority for many IT executives (Kappelman et al., 2020). 

Third, data challenges arise as data is the key element to enable sophisticated AI projects (Jöhnk 

et al., 2021). A key challenge is organizational-wide data quality to ensure the accuracy, 

completeness, consistency, and integrity of data and the associated metadata management 

(Benbya et al., 2021; Weber et al., 2023). This provides the AI model in individual AI projects 

with high-quality training, evaluation, and production data, as biased and discriminatory data 

negatively impact AI systems (M. C. M. Lee et al., 2023; Reis et al., 2020; Vial et al., 2023). 

Subsequently, companies must ensure high-quality labeled data for AI projects. This, for 

example, becomes particularly evident in the important task of AI-based anomaly detection in 

CPS. Supervised learning models often struggle with class imbalances and require high 

numbers of labeled instances (anomalies) to perform well and correctly detect anomalies (Alaei 

& Noorbehbahani, 2017; Bertolini et al., 2021; Yuan & Wu, 2021). In manufacturing, these 

labels typically require domain-specific knowledge, are time-consuming, and are expensive to 

obtain; thus, they are often unattractive in practice (Xiong et al., 2024; Yu et al., 2021). 

Unsupervised learning models, by contrast, do not require labeled data and are most 

conventionally used (Chevrot et al., 2022; Pang et al., 2022). However, they are ineffective in 

handling high-dimensional data, are susceptible to high false-positive rates, and lack the 
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capability for multi-class anomaly detection and evaluation as well as tracking (Aggarwal, 

2017). Semi-supervised learning approaches that combine the former assume that the 

underlying data do not contain anomalies, making them hardly applicable in practice (Himeur 

et al., 2021; G. Kim et al., 2023). Thus, new approaches are needed to overcome the data 

labeling bottleneck and efficiently use data and expert feedback while aiming for improved 

anomaly detection performance. 

Fourth, the sustainability challenges of AI usage have increased significantly in recent years 

(Maslej et al., 2024; Schoormann et al., 2023). Within this dissertation, the concept of 

environmental, social, and governance (ESG) to operationalize sustainability is used. ESG is 

chosen as it enables a multidimensional perspective on sustainability and is frequently used in 

the corporate environment, for example, in the manufacturing sector due to regulatory 

requirements such as the EU Emission Trading System or the EU’s corporate sustainability 

reporting directive (Drempetic et al., 2020; Sætra, 2023). Overall, AI’s negative impacts on 

resource consumption, societal injustice, or even human rights cannot be neglected anymore 

(Cowls et al., 2023; Dennehy et al., 2023; Koniakou, 2023). For instance, AI holds the 

unintended risk of reflecting the implicit social bias at the expense of equality, e.g., between 

genders or ethnic groups (Gupta et al., 2022; van Noorden & Perkel, 2023). Furthermore, the 

amount of computing power needed to train current AI models has doubled every 3.4 months 

since 2012 (Amodei & Hernandez, 2018; Debus et al., 2023). The sustainability challenges of 

AI have therefore become more apparent (Mikalef et al., 2022), leading to calls to work toward 

the sustainability of AI (SAI) (Schoormann et al., 2023; Schwartz et al., 2020; Tornede et al., 

2022). Overall, SAI describes the sustainable design, development, and use of AI through its 

entire lifecycle and, therefore, across all phases of the AI project workflow (van Wynsberghe, 

2021). The environmental impact of the AI development and AI model must be considered in 

AI projects to reduce energy consumption, as the manufacturing sector, in particular, generates 

a lot of data due to continuous operation and the large number of machines, the processing of 

which in AI models is very computationally intensive (Patterson et al., 2022; Veit & Thatcher, 

2023; Verdecchia et al., 2023). Additionally, a further focus must be placed on social and ethical 

aspects of AI as well as increasing fairness during the AI project phases to foster responsible 

AI (Dennehy et al., 2023; Ferrara, 2023; Mikalef et al., 2022). Lastly, the sustainability 

challenges AI holds from a governance perspective, such as the EU AI Act, must be considered 

across the entire organization (Koniakou, 2023; Papagiannidis et al., 2023). 
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All in all, AI enables manufacturers a strategic response to changing customer requirements 

and competitive pressure by leveraging the value potential of data through exploitative and 

explorative AI projects. Nevertheless, due to the previously described four challenges, AI 

projects often fail to meet the intended outcomes or are even terminated before completion 

(Shollo et al., 2022; Vial et al., 2023). Specifically, AI projects tend to get stuck in an 

experimental pilot phase without transitioning from conceptual use cases to productive systems 

(Benbya et al., 2021; Merhi, 2023). This finding is consistent with studies indicating that about 

85% of AI projects have little to no impact (Shollo et al., 2022; Vial et al., 2023). This 

circumstance turns AI projects into a risky matter, as their failure entails sunk costs and may 

even jeopardize competitiveness (van Giffen & Ludwig, 2023). 

2 Structure of the Thesis and Related Work 

Overall, this dissertation aims to address the challenges AI implementation opposes in the 

manufacturing sector as described in the previous section – i.e., business, technology, data, and 

sustainability challenges – as its main research objective. As different organization-related and 

project-related capabilities are needed on an overarching organizational (i.e., where several AI 

projects are considered in conjunction) as well as a project-specific level (i.e., where each AI 

project is considered individually) to overcome these four challenges, each research article is 

assigned to one of the two levels. Furthermore, as those challenges arise during AI projects, the 

four-phased AI project workflow – i.e., “Demand Specification”, “Data Collection and 

Preparation”, “Modeling and Training”, and “Deployment and Monitoring” - is used to 

structure the research articles and the corresponding results. Hence, each research article 

focuses on one or more of the four challenges along the AI project workflow, either at an 

organizational level or a project level. However, a clear allocation of the four challenges to the 

four AI project phases is not entirely possible due to the phase`s dependencies and their iterative 

nature and is therefore not pursued in this dissertation. Even if, for example, business challenges 

primarily occur in the first phase, “Demand Speficiation”, data challenges often arise in the 

second phase, “Data Collection and Preparation”, and technical challenges often appear in the 

third and fourth phases, “Modeling and Training” and “Deployment and Monitoring”, 

sustainability challenges may occur in all phases. Further, business challenges likewise emerge 

in phases two to four, and data challenges can also occur in the other phases, such as in the 

“Deployment and Monitoring” phase. 
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First, concerning the organizational level, previous research analyzes AI implementation 

mainly against the backdrop of generic concepts such as AI adoption (e.g., Alsheibani et al., 

2019; Eitle & Buxmann, 2020; Rowland et al., 2022) or AI readiness in particular (e.g., Jöhnk 

et al., 2021; Pumplun et al., 2019; Uren & Edwards, 2023). Moreover, the literature describes 

the need to acquire or develop specific capabilities to accomplish AI implementation at an 

overarching organizational level (e.g., Mikalef et al., 2022; Sjödin et al., 2021; Weber et al., 

2023). Especially about the business challenges, previous research conceptualized AI business 

models and AI use cases as well as generic transformation paths towards AI implementation in 

the manufacturing sector (Bertolini et al., 2021; Björkdahl, 2020; S. W. Kim et al., 2022b). 

Although these studies altogether list relevant aspects to conduct AI implementation 

successfully and thus AI projects, they either do not provide a coherent and conclusive picture 

of capabilities and success factors required or are not explicitly geared towards the 

manufacturing sector. In terms of the technology challenges, especially those addressing IT 

security, these received little attention despite the high strategic relevance of digitalization and 

AI projects. Nevertheless, the attack surface of entire organizations continuously rises as, for 

example, more and more data is transferred between machines, the machines and the company, 

or even between companies (Lallie et al., 2021; Vial, 2019). While the literature suggests 

solutions, above all technical ones, for proactively enhancing IT security, security incidents 

cannot always be prevented (Schlette et al., 2021; Van Der Kleij et al., 2022). This increases 

the need for reactive IT security measures, especially, such as establishing an organizational-

wide incident response management, whereby the literature falls short here (Thangavelu et al., 

2021). Nevertheless, although existing frameworks for incident response management contain 

guidelines, practices, and requirements, they barely specify what capabilities organizations 

need to achieve these standards (Ahmad et al., 2022; De Haes et al., 2013). All in all, there is 

still a need for research to derive and structure the capabilities and success factors needed, 

especially regarding business and technology challenges on an organizational level, for 

successful AI projects in the manufacturing industry. 

Second, regarding the project level, recent publications propose recommendations and 

strategies to help manufacturers overcome the challenges that arise in AI projects, drawing on 

insights from real-world examples (e.g., van Giffen & Ludwig, 2023; Vial et al., 2023; Xiong 

et al., 2024). Nevertheless, executives seeking to understand better and manage their AI projects 

can only draw on a limited number of empirically evaluated studies, as AI projects differ from 

other IS and IT development projects (Vial et al., 2023). Especially regarding the sustainability 
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challenges, AI projects pose completely new hurdles (van Wynsberghe, 2021). Hence, there is 

an increasing demand from practitioners as well as calls for research to provide comprehensive 

design approaches and implementable best practices to conduct sustainable AI projects 

(Dennehy et al., 2023; Pappas et al., 2023; Shneiderman, 2021). Nevertheless, existing literature 

on this is either scarce or separated across different research areas (Dennehy et al., 2023; 

Patterson et al., 2022; Verdecchia et al., 2023), such as papers focusing on solutions to reduce 

the energy consumption of specific AI models (e.g., Patterson et al., 2022; Verdecchia et al., 

2023), the social and ethical aspects of AI by increasing fairness during AI projects (e.g., 

Ferrara, 2023; Mikalef et al., 2022), or the governance perspective of AI development and AI 

projects (e.g., Koniakou, 2023; Papagiannidis et al., 2023). Concerning the data challenges in 

AI projects, existing research is mainly engaged with optimizing data input features (Jakubik 

et al., 2024), whereby the topic of "data-centric AI" and, above all, the provision of labeled data 

in AI projects, has rarely been addressed to date despite its great relevance in practice, e.g., for 

in-line quality inspection (Xiong et al., 2024; Zeiser et al., 2023). In manufacturing applications, 

labeled data is usually provided by domain experts such as machine production employees. 

However, their time for this is limited and, therefore, often too few data labels are available 

(Finder et al., 2022; Zeiser et al., 2023). Hence, work needs to be done to efficiently use this 

data and expert feedback to minimize burdens in practice while aiming for improved 

performance of the AI models. In this vein of improved AI model performance, better AI 

models often come with the expense of lacking explainability, referred to as the black-box 

problem, which leads decision-makers to distrust or even reject them. Explainable AI (XAI) 

can be leveraged to overcome this technical challenge in AI projects as it helps to comprehend 

how an AI model decides, predicts, and performs its operations (Barredo Arrieta et al., 2020; 

Burkart & Huber, 2021; Rai, 2020). Nevertheless, around 70% of papers neglect evaluating 

XAI methods with users (Brasse et al., 2023) or only emulate the user evaluation (Ali et al., 

2023; Ribeiro et al., 2016), leading to inaccurate human-centered insights (Brasse et al., 2023; 

B. Kim et al., 2020). Hence, research is still needed to conduct human-centered evaluations 

collecting end-user feedback in the context of specific AI projects and use cases (Ali et al., 

2023; Ding et al., 2022a). 

As a cumulative dissertation, this work consists of six research articles placed in the four-phase 

AI project workflow and either contribute on an organizational or project-specific level to 

address the raised business, technology, data, and sustainability challenges (Figure 1). To 

achieve their aim, this dissertation builds on the previously described existing research to derive 



Introduction - Structure of the Thesis and Related Work  

13 

applicable artifacts that deliver prescriptive knowledge for research and practice and an impetus 

for future research. The research articles use the Design Science Research (DSR) paradigm 

(Hevner et al., 2004) and the Cross Industry Standard Process for Data Mining (CRISP-DM) 

(Wirth & Hipp, 2000) as their methodological approach. As such, the resulting solution-

oriented artifacts and their design are built on the extant research knowledge base to tackle real-

world problems and are evaluated in real-world world settings, e.g., based on AI projects, AI 

expert insights, or manufacturing data sets (Sonnenberg & vom Brocke, 2012b; vom Brocke et 

al., 2020). 

 

Figure 1. Assignment and structure of the research articles to the topic of this dissertation 

In this course, section II.1 – including research articles #1, #2, and #3 – provides insights on 

assessing and overcoming the challenges at an organizational level. Specifically, research 

article #1 provides a systematic overview of 24 success factors to be considered across the 

entire organizational level when conducting AI projects. The success factors are structured 

along four overarching success dimensions and specified by 93 subordinated success 

manifestations. Additionally, the success factors are mapped to the four AI project phases. The 

results were derived by synthesizing extant knowledge from a systematic literature review with 

emergent insights from an expert interview study. Next, as manufacturers need to determine 

their suitable target state at the beginning of an AI project, i.e., potential AI-based or data-driven 

archetypes, and the organizational capabilities required that either already exist or need to be 

developed, research article #2 provides a maturity model based on five distinct archetypes. 

Manufacturers can identify the appropriate archetypes and categorize themselves to 
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subsequently identify the capabilities necessary to implement those specific data-driven and 

AI-based business model archetypes. To ensure an integrated perspective on the entire 

organizational level, the maturity model levers all organizational layers of the enterprise 

architecture model by Urbach et al. (2021). As such projects continuously increase the attack 

surface for IT security incidents, such as data breaches, and security incidents cannot always be 

prevented, research article #3 focuses on reactive IT security measures by addressing the issue 

of organizational-wide incident response management (IRM). Such an IRM must be considered 

early in the AI project phases, i.e., as soon as data is stored and processed. The result of research 

article #3 is a maturity model for necessary IRM capabilities based on four focus areas and 29 

capability dimensions. It is evaluated with seven real-world manufacturing organizations to 

prove its fidelty with the real-world phenomena and ease of use. 

Overcoming the challenges at a project level, section II.2 presents three papers, including 

research articles #4, #5, and #6. Research article #4 proposes an application-oriented and data-

efficient Active Learning Architecture for Anomaly Detection in Manufacturing CPS, called 

ALMAN, in the course of the data challenges. This work aims to solve the data labeling 

bottleneck in practice, which is relevant in the “Data Collection and Preparation” and 

“Modelling and Training” phases. The key motivation for this paper is to efficiently use data 

and expert feedback to minimize burdens in practice while aiming for improved anomaly 

detection performance. The developed architecture is demonstrated and validated in a case 

study of a CPS robotic screwdriving application. Since such efficient but complex architectures 

reduce the explainability of AI models, research article #5 counteracts this by implementing 

three transparent AI models and applying four XAI methods to an artificial neural network 

using a real-world dataset. The explainability is evaluated through a survey with 137 

participants considering the human-centered dimensions of explanation satisfaction and 

perceived fidelity to quantify the added value of XAI methods. To complete the dissertation 

across all four AI project phases and to overcome the sustainability challenges of AI projects, 

research article #6 presents the sustainable ML design pattern matrix. This artifact provides 35 

design patterns structured along the four AI project phases and subdivides them into the 

introduced three sustainability dimensions of environmental, social, and governance. The 

results are grounded in justificatory knowledge from research, refined with naturalistic insights 

from expert interviews, and validated in three real-world AI case studies using a web-based 

instantiation. 



Introduction - Structure of the Thesis and Related Work  

15 

Section III concludes this dissertation with a summary of key findings, limitations, and provides 

an outlook on future research. Section IV contains the publication bibliography, and Section V 

offers additional information on all research articles (V.1), my contributions to each research 

article (V.2), and the research articles themselves (V.3 - 8). 
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II Research Overview for Successful AI Projects 

1 Challenges and Solutions at an Organizational Level 

AI provides manufacturers the basis for exploitative use cases to enhance operational efficiency 

and optimize existing processes such as condition monitoring and anomaly detection in the 

production facilities (Bertolini et al., 2021; van Giffen & Ludwig, 2023) as well as explorative 

use cases to offer novel or adapted value propositions that push them beyond the limits of an 

existing product or service core such as remote data-driven service solutions on a pay-per-use 

basis (Favoretto et al., 2022; Sjödin et al., 2021; Stahl et al., 2023), decision-makers must 

balance the potential and the challenges that appear in the AI projects and their respective AI 

project phases (Merhi, 2023; Vial et al., 2023; Westenberger et al., 2022). Thus, identifying, 

assessing, and understanding these challenges to provide solutions on an organizational level 

is essential for leveraging the potential added value that AI projects can create in the 

manufacturing sector. 

Research Article 1# - Uncovering the Sweet Spot of Artificial Intelligence Projects: An 

Exploration of Success Factors 

For organizations that aim to thrive in the trajectory of AI, an overarching systematic 

understanding of the requirements that drive the successful implementation of AI projects on 

an organizational level is indispensable (Duan et al., 2019; Dwivedi et al., 2021). In general, 

such requirements are usually referred to as success factors (SFs) (Bullen & Rockart, 1981). 

Success factors refer to settings and conditions that directly or indirectly influence the project 

outcome (Baccarini, 1999; Turner & Müller, 2003). In the literature, the study of the factors 

that affect the success and failure of IT projects is among the most prominent research streams 

(Dwivedi et al., 2015). Nevertheless, researchers and practitioners seeking an overview of the 

SFs for AI projects can only draw on a limited number of studies (Duan et al., 2019; Merhi, 

2023). While one could argue that AI projects, as a subset of IT projects, share the same SFs, 

the SFs for IT projects do not immediately apply to AI projects due to the inherent 

characteristics of AI and the specific AI project workflow (Berente et al., 2021; Vial et al., 

2023). As such, only a few studies list factors that facilitate the successful implementation of 

AI projects (e.g., Baier et al., 2019; Jöhnk et al., 2021; G. Miller, 2021; van Giffen & Ludwig, 

2023; Weber et al., 2023). Furthermore, studies by Lee et al. (2023) and Merhi (2023) provide 

initial overviews of the antecedents of SFs, but they do not provide a holistic and integrated 

compilation of SFs, as they do not provide empirical evidence and only consider a limited 
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amount of literature. Hence, research article #1 aims to answer the following research question: 

What are the SFs for AI projects? 

The research article follows a three-stage research approach. First, a systematic literature review 

is conducted to develop an initial set of SFs (Webster & Watson, 2002; Wolfswinkel et al., 

2013), following the five-step process: define, search, select, analyze, and present. This 

ultimately comprised 109 articles relevant for further analysis to iteratively synthesize insights 

and derive SFs for AI projects (Corbin & Strauss, 1990). Second, an in-depth interview study 

with 20 subject matter experts is performed, mainly from the manufacturing sector, to validate, 

refine, and extend the initial results toward a final set of SFs (Bettis et al., 2015; Goldkuhl, 

2012). Third, a focus group discussion to situate the SFs in a broader context by mapping them 

to the four phases of the AI project workflow is conducted (Nyumba et al., 2018; Tremblay et 

al., 2010). The result is a framework of 24 SFs for AI projects, structured along four overarching 

success dimensions (i.e., datability, desirability, feasibility, and viability) and specified by 93 

subordinated success manifestations. For each SF, the results provide a comprehensive 

description and depict specific AI characteristics that illustrate their relevance and necessity. 

Thereby, the four success dimensions specify the key action fields when planning and executing 

AI projects from a higher-level perspective. In contrast, the 93 success manifestations provide 

operational support for successful AI projects from a lower-level perspective. An exemplary 

SF “Data-centric technology stack” indicating its organizational-wide relevance is given below, 

whereby all SF can be found in the research article: 

“Data-centric technology stack aims to integrate data from different sources while remaining 

scalable and strives to create data repositories such as data lakes that enable mature, non-

fragmented data structures (Hukkelberg & Rolland, 2020; Mikalef et al., 2019). A mature data 

infrastructure helps organizations leverage their AI systems over the long term (Shollo et al., 

2022). Since data is never stored in just one place due to existing legacy systems (Alsheibani 

et al., 2020), data centralization helps to structure data through unified, centralized data stores 

and robust data storage systems with sufficient networking capabilities (Brock & Von 

Wangenheim, 2019; De Silva & Alahakoon, 2022). In this sense, organizations should aim for 

a robust data storage system as a key concern in AI projects (Alsheibani et al., 2020; Merhi, 

2023). Furthermore, data consolidation helps extract, load, and merge data by combining data 

from various sources and transforming them according to the underlying use case (Sjödin et 

al., 2021). To do so, organizations must develop a scalable processing and data pipeline system 

to handle data actuality, velocity, and volume (J. Li et al., 2021; Ransbotham et al., 2017). Here, 
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data transfer refers to how data is transferred between different systems. This is mainly because 

data from legacy systems need to be made usable (Pumplun et al., 2019; van Giffen & Ludwig, 

2023). Those resulting data transfer pipelines must be secured by creating automated routines 

for data transmission and transformation (Merhi, 2023; Sjödin et al., 2021).” 

Finally, by illustrating how the SFs manifest in the four key phases of the AI project workflow, 

as shown in Figure 2, the results provide an authoritative instance for a systematic 

understanding of the scope and scale in which they emerge on an overarching level in AI 

projects. Hereafter, four key findings, together with associated recommendations for the 

successful implementation of AI projects on an organizational level, are described. 

 

Figure 2. Contextualization of the SFs in the AI project workflow 

The results are novel as they are the first to systematically explore the SFs for AI projects by 

synthesizing extant knowledge from scientific literature with emergent insights into the 

trajectory of AI through empirical and practical data. From a theoretical perspective, the study 

of the SFs for AI projects provides three main implications. First, the work complements the 

existing body of knowledge in IS research on SFs for IT projects, as well as the successful 
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implementation of AI in organizations. Second, the results facilitate further theorizing on the 

successful implementation of AI in general. Third, the work contributes to recent discussions 

on the “sweet spot” concept regarding  I projects.  hile much is known about the interplay of 

the trifecta of desirability, feasibility, and viability as a foundation of project success, the 

research article found that AI projects only lead to valuable outcomes when datability is present. 

From a practical perspective, the study of the SFs for AI projects provides two main 

implications for managers as organizational decision-makers (e.g., business development 

representatives and AI project leads). First, managers should leverage the results to structure 

strategic discussions among various organizational stakeholders on how to advance the 

successful implementation of AI. Second, managers can build on the results to assess and 

actively monitor the extent to which their current AI projects cover relevant SFs. 

Research Article 2# - Data or Business First? – Manufacturers´ Transformation toward 

Data-driven Business Models 

The manifold possibilities for AI-based and data-driven value propositions available to 

manufacturers further complicate the business challenge at the beginning of AI projects to 

explore a target state or archetype that fits existing company processes as well as existing and 

future customers. Here, different value propositions characterize different archetypes of data-

driven business models (DDBMs) (Hunke et al., 2022), leading to significant variations in the 

organizational capabilities required (Vial, 2019). Against this backdrop, research article #2 

guides manufacturing companies in, on the one hand, the identification of DDBMs by using 

DDBM archetypes that can be adopted (Müller & Buliga, 2019) and, on the other hand, the 

transforming toward the archetypes using a maturity model to address the following research 

question: What capabilities do manufacturers require to transform toward distinct archetypal 

data-driven business models? 

The methodological approach follows the procedure model of Becker et al. (2009) that specifies 

the DSR methodology for maturity models regarding their design and evaluation. Based on 

interviews with practitioners, the work outlines three key requirements for the maturity model 

to be developed: First, the model should integrate established business model archetypes to 

offer clear guidance on the target state of transformation. Second, the model should allow 

comprehensive coverage of socio-technical capabilities on all organizational layers. Third, the 

model must include complete capability descriptions to enhance the model’s prescriptive value 

and usability for practice. Based on these requirements, the data-driven business model maturity 
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model (DDBM3) was developed using the archetypal data-driven business models of Hunke et 

al. (2022) (i.e., data provider, insight provider, recommendation provider, and digital-solution 

provider) as maturity levels (columns). To cover all organizational levels, it uses the layered 

enterprise architecture model of Urbach and Röglinger (2019) to structure the model’s    

capability dimensions (rows) in five major focus areas. Finally, as a continuous maturity model, 

it offers capability descriptions for every cell in the resulting matrix. 

The archetypal DDBMs serve as strategic orientation for the transformation by systematically 

characterizing different configurations of DDBMs. In the first archetype data provider, 

manufacturers provide customers with (product) data beyond the physical product. The data is 

only moderately processed, provided in a standardized form, and subject to descriptive analytics 

(Hartmann et al., 2016), such as aggregated reports on machine utilization. The insight provider 

business model delivers diagnostic and supportive insights, such as digital alerts triggered when 

machines or processes malfunction. The customization increases further with the 

recommendation provider business model, which provides customized recommendations based 

on predictive analytics, such as AI-driven root cause analysis or automatic course of action 

(Hunke et al., 2022; Sarker, 2021). Finally, manufacturers can act as digital solution providers, 

opening up novel ways of doing business, e.g., by turning into a smart data platform provider. 

In this context, value is created through unique digital information, and the physical product 

recedes into the background (Beverungen et al., 2021). 

Figure 3 illustrates the DDBM3, encompassing the five focus areas based on the enterprise 

architecture mode and the five archetypes. The first focus area, business model, includes four 

capabilities dimensions (i.e., “value proposition,” “customer interaction,” “moneti ation and 

pricing,” and “sales and channel management”). These outward-faced capability dimensions 

are essential for manufacturers to define, market, and monetize data-driven business models 

based on the archetypal offerings. The second focus area, business processes, includes four 

capability dimensions (i.e., “strategy and vision for data-based business,” “data-centric process 

management,” “knowledge sharing and management,” and “product life cycle management”). 

It especially covers specific processual capabilities that create, deliver, and capture the value of 

data-driven services and describes how to manage the needed activities. The third focus area, 

people and applications, includes cultural aspects (“recognition and mindset”), soft and hard 

skills (“methods,“ “data analytics competencies”), responsibilities (“roles and 

responsibilities”), and tools (“data analytics tooling”) for data-driven business models at the 

employee level and seeks to empower the staff members. The fourth focus area, data and 
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information, comprises four capability dimensions (i.e., “applied forms of analytics,” “data 

management, “ “data governance and quality,“ and “hori ontal and vertical data integration”). 

Thus, it covers data management, the integration of data sources (horizontal and vertical), the 

establishment of governance and quality mechanisms, and the analytics applied to data. The 

last focus area, infrastructure, is comprised primarily of technological enablers that 

organizations need to provide DDBMs. The associated capabilities include the secure and 

scalable operation of software and hardware. It comprises five capability dimensions (i.e., “data 

analytics software management and operations, “ “data-driven service integration and 

deployment,” “data architecture and scaling,“ “cybersecurity and -privacy,” and “cyber-

physical systems and connectivity”).  

In line with the development procedure of Becker et al. (2009), the DDBM3 was evaluated 

using artificial and naturalistic settings. The artificial evaluation is based on an academic focus 

group (Nyumba et al., 2018; Tremblay et al., 2010). The naturalistic evaluation involves 

applying the model with executives of two manufacturing companies, Alpha and Beta, to assess 

their status quo and target the state of transformation toward DDBM (Sonnenberg & vom 

Brocke, 2012b) (Sonnenberg & vom Brocke, 2012). The results show that the two 

manufacturers took different approaches to transform toward data-driven business models, 

namely “data first” and “business first”, as presented in  igure  .  or  lpha, a “business first” 

approach was identified.  lpha’s transformation was mainly driven from the business side as 

customers demanded data delivery from connected machinery. Hence, Alpha demonstrates 

higher maturity levels in most capabilities dimensions relating to the business model and 

business processes focus areas in the upper levels of the DDBM3. Against this, shortcomings 

were identified in the bottom capability dimensions, for example, in the focus areas of data and 

information as well as infrastructure. In contrast, Beta, with the “data first” approach, exhibits 

more mature capabilities in the technological and data-related areas of the DDBM3 (e.g., 

“cyber-physical systems” or “data analytics software management and operations”). However, 

Beta’s capabilities are less developed in the business-related capability dimensions, such as 

value proposition and digital channel management. 
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Figure 3. The data-driven business model maturity model (DDBM3) and its application at 

two manufacturers 

All in all, the DDBM3 enables the exploration of a target state or archetype for DDBM. The 

contribution of this research article is twofold: First, the model can serve as an ‘analytical lens’ 

that allows an investigation of the progress of the DDBM transformation across all 

organizational levels (Pöppelbuß & Röglinger, 2011). Thus, research can identify patterns and 

maturation paths that emerge from its application. This may unravel success factors or 

impediments associated with distinct paths of maturation. Second, the naturalistic 

demonstration of the DDBM´s proves applicability and usefulness for practitioners. In this vein, 

the DDBM3 allows a status quo assessment and derives fields of action to develop the 

capabilities required for the aspired DDBM, especially at the beginning of the respective 

projects. 
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Research Article #3 – Managing the Inevitable – A Maturity Model to Establish Incident 

Response Management Capabilities 

Nevertheless, the introduction of new digital capabilities and technologies through AI projects 

causes the attack surface of organizations to expand continuously. In this vein, the global cost 

of cyber-attacks is estimated to grow by 15% per year, from $3 trillion in 2015 to $10.5 trillion 

annually by 2025 (Microsoft, 2016; Morgan, 2021). Nowadays, around two-thirds of 

organizations are affected by cyber-attacks yearly, some even several times (Barreuther et al., 

2022; Cyberedge Group, 2021). Despite the best security measures, security incidents cannot 

be completely averted. AI projects, in particular, are susceptible to security incidents as they 

process large volumes of data that are often highly critical because, for example, they allow 

conclusions to be drawn about the machines and their intellectual property. Hence, the 

mitigation of these incidents plays a decisive role in reducing the extent of damage and restoring 

the operability of systems as quickly as possible across the entire organizational structure 

(Ahmad et al., 2022). 

Therefore, Incident Response Management (IRM) has been established as an effective tool for 

reactive IT security (Van Der Kleij et al., 2022). IRM aims to maintain the business processes, 

minimize the impacts of security incidents, and respond effectively to them (Ruefle et al., 2014; 

Wegener et al., 2016). Thereby, IRM can be seen as a process including the phases of incident 

preparation, incident detection, incident resolution, and post-incident activity (Ab Rahman & 

Choo, 2015; Ahmad et al., 2022; Cichonski et al., 2012). Although IRM has great significance 

within most companies (Ahmad et al., 2012; Ruefle et al., 2014), it is often not well developed. 

Often, IRM is seen as a cost-center because it creates resourcing constraints (Ahmad et al., 

2021) and management awareness is missing (Van Der Kleij et al., 2022). Furthermore, 

organizations face challenges like limited resources (Kuypers et al., 2016) since IRM is a timely 

and cost-intensive task. Nevertheless, IRM can be considered crucial for organizations as 

incidents can escalate into emergencies and lead to reputational or financial losses, besides 

disrupting business continuity (Farahmand et al., 2003; Thangavelu et al., 2021). In March 

2024, for instance, the battery manufacturer Varta had to shut down its entire five production 

sites and administration for around four weeks after a ransomware attack (Varta, 2024). 

According to the IBM 2022 Cost of a Data Breach Report (IBM, 2022), the average data breach 

cost for manufacturers was around $4.47 million. To address this problem, managers need to 

know what IRM capabilities are required to allocate their tight budget appropriately. However, 

many approaches do not apply to organizations with immature IRM capabilities, especially for 
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small and medium-sized enterprises when the IRM maturity is low. Thus, research article #3 

answers the following research question: Which capabilities do organizations need to approach 

incident response management? 

To tackle this research question, the central artifact of research article #3 is an IRM maturity 

model (IRM3) closely aligned with practical requirements. The work follows the well-

established approach of Becker et al. (2009), building on the DSR principles by Hevner et al. 

(2004) and the evaluation patterns by Sonnenberg and vom Brocke (2012b) (i.e., Eval 1-4). 

First, five expert interviews were conducted to derive the need for the IRM3 and elicit three 

design requirements: First, applicability to organizations with immature IRM. Second, 

consideration of the social-technical perspective. And third, extensive evaluation in practice. 

Afterward, the research gap was justified by identifying related MMs screening existing models 

based on the interviews and a literature search (Eval 1). This revealed that the existing models 

(e.g., the Security Incident Management Maturity Model ‘SIM ’ of Stikvoort (2019)) could not 

fulfill or only partly fulfill all three requirements. Thus, building on and enhancing existing 

literature, a new MM was developed (Becker et al., 2009). The resulting IRM3 possesses four 

focus areas (i.e., organization, human, tools, and processes) and a total of 29 capability 

dimensions (Figure 4). The capabilities describe the as-is situation of IRM in a particular stage 

and enable organizations to find themselves in one of the capabilities. With regard to a focus 

level MM-design, the number of maturity capabilities varies between two and five and changes 

in terms of quality or quantity over the stages (Van Steenbergen et al., 2010). At the end of the 

development process, the I M ’s design was evaluated regarding fidelity with the real-world 

phenomena, completeness, and internal consistency (Eval 2) (Sonnenberg & vom Brocke, 

2012a) using an academic focus group (Tremblay et al., 2010). First, the focus area organization 

contains seven dimensions describing pre-defined interaction of humans, resources, 

infrastructures, and processes. It is about specific and strategic goals related to IRM. It includes 

fundamental principles and organizational measures to structure and implement IRM. The 

realization of these organizational aspects requires the involvement of decision-makers. 

Second, the focus area human consists of six dimensions that describe how employees work 

together to realize organizational goals. This focus area considers the collective values and 

behaviors of individuals or teams and, thus, the human factor. Consequently, the area covers 

dimensions that affect or require employee participation to respond appropriately to incidents. 

Third, the focus area tools contains eight dimensions and concentrates on the applications, 

programs, services, and other parts of equipment to conduct incident response. These tools 
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enable the company to achieve the goals described in the focus area organization. With their 

help, an organization can improve its IRM regarding time, granularity, or quality. Fourth, the 

focus area processes consists of eight dimensions and defines IRM procedures carried out by 

tools or humans. The procedures support the incident management or services, which are part 

of the incident response process. To increase the effectiveness of IRM, procedures need to be 

repeatable, measurable, adaptable, and documented. For Eval3, the IRM3 was transferred into 

an online survey tool to enable a straightforward assessment. This online tool was pre-tested by 

the authors’ team and then validated by two practitioners. As this yielded minor corrections to 

the model, the authors decided to move forward to an application of the IRM3 in a real-world 

context. Hence, in Eval 4, the IRM 3 was applied to seven German organizations from the 

manufacturing sector to provide a naturalistic evaluation and assess its practical value 

(Sonnenberg & vom Brocke, 2012a). After conducting seven applications, which no longer led 

to any new adjustments, the model’s effectiveness, applicability, and generality were proven. 

The IRM3 and the design process contribute to theory and practice. From a practical point of 

view, the work provides a highly applicable and accessible tool that enables management to 

approach IRM in a structured way in AI projects. In doing so, the IRM3 leverages existing 

knowledge from other works in the IRM domain to provide a holistic scope of IRM capabilities. 

The model's descriptive value helps organizations capture the status quo to identify weaknesses 

in IRM. With this assessment of their current IRM practice, organizations can prioritize further 

measures and decide which capabilities need to be considered in their context. From an 

academic perspective, the I M ’s aim and scope enrich the e isting knowledge base on I M. 

By targeting an industry-independent IRM capability assessment for low-maturity 

organizations, IRM3 addresses a relevant but unfilled research gap. In contrast to existing 

works, the IRM3 in this paper is developed in a practical context, thus going through the entire 

artifact development and evaluation process (Becker et al., 2009). On the one hand, this 

increases the validity of the IRM results and, on the other hand, provides relevant insights into 

the development of IRM capabilities in different organizations. 
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Figure 4. The Incident Response Management Maturity Model (IRM3) and its application 
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All in all, to conclude section II.1, the three research articles #1, #2, and #3 contribute to 

overcoming the challenges AI projects pose at an organizational level. Research article #1 

focuses on an overarching view of challenges and solutions across all four AI project phases by 

deriving practical-grounded SFs. Research article #2 is primarily concerned with the first AI 

project phase, "Demand Specification", with the identification of meaningful target states in the 

form of DDBMs and the structuring of the organization-wide capabilities required for this. 

Research article #3 focuses on the later AI project phase and the necessary IRM throughout the 

entire organizational layers, as AI projects increase the cyber attack surface, such as the 

unwanted outflow of machine data through the introduction of new digital technologies. 

2 Challenges and Solutions at a Project Level 

Besides overcoming the challenges of AI projects at an overarching organizational level, 

manufacturers are confronted with the specific challenges in individual AI projects. In each AI 

project, the AI project phases are characterized by sequential dependencies, feedback loops, 

and an indefinite number of data exploration as well as AI model experimentation cycles 

(Amershi et al., 2019; Kreuzberger et al., 2023; Vial et al., 2023). The results of the AI model's 

performance and, thus also, the success of the AI projects is greatly influenced by the 

underlying data basis and, in particular, the data labels provided, which makes it difficult to 

plan and manage the AI project outcome (Merhi, 2023; Vial et al., 2023). Additionally, 

especially in real-world AI projects whose results are delivered to or used by end users, the 

explainability of the AI models must be considered to create trust and acceptance (Barredo 

Arrieta et al., 2020; Brasse et al., 2023). This explainability needs to be implemented technically 

and, furthermore, addresses the increasingly relevant sustainability challenges of AI projects. 

The growing widespread use of ever-larger AI models means that the environmental, social, 

and governance challenges must additionally be taken into account in each phase of an AI 

project (Papagiannidis et al., 2023; Veit & Thatcher, 2023; Verdecchia et al., 2023). Hence, 

motivated by these challenges, the following three research articles seek to provide solutions at 

a project level. 

Research Article #4 – A Data-Efficient Active Learning Architecture for Anomaly 

Detection in Industrial Time Series Data 

A large number of AI projects in the manufacturing sector deal with anomaly detection, 

especially due to the rising number of CPS and the amount of data available (Bertolini et al., 

2021; Pang et al., 2022). Anomalies are described as instances that significantly deviate from 
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other observations, allowing conclusions to be made about unexpected machine behavior (Z. 

Li et al., 2021). Hence, anomaly detection is increasingly recognized to reveal early indicators 

of machine failures and to enable condition monitoring, fault diagnosis, or predictive 

maintenance (Bertolini et al., 2021; Feng & Tian, 2021). However, with the increasing 

comple ity of today’s CPS, traditional rule-based approaches for anomaly detection are 

insufficient, and AI-based approaches are gaining importance (Barbado et al., 2022; Yuan & 

Wu, 2021). Since CPS are often operated continuously and multiple sensors are used, 

multivariate time series data is a starting point for anomaly detection (Zhao et al., 2020). 

Although supervised and unsupervised AI approaches reveal successful results for multivariate 

time series, barriers exist in practice (Z. Li et al., 2021; Saqlain et al., 2023). Supervised learning 

models often struggle with class imbalances and require high numbers of labeled instances 

(anomalies). These labels typically require domain-specific knowledge and are time-consuming 

to obtain (Alaei & Noorbehbahani, 2017; Yuan & Wu, 2021). Unsupervised learning models 

do not require labeled data and are most conventionally used (Chevrot et al., 2022; Pang et al., 

2021). However, they are ineffective in handling high-dimensional data and are susceptible to 

high false-positive rates (Aggarwal, 2017). 

To overcome this bottleneck, research article #4 proposes an Active Learning Architecture for 

Anomaly Detection in Manufacturing CPS called ALMAN. The key motivation is to efficiently 

use data and expert feedback to minimize burdens in AI projects while aiming for improved 

anomaly detection performance. Active learning systems aim to label previously unlabeled 

instances by querying an oracle, i.e., a human expert, thereby enhancing accuracy with as few 

labeled data as possible, thus minimizing the costs of labeling (Das et al., 2016; Finder et al., 

2022; Ren et al., 2022). The goal is to select an optimal number of unlabeled data instances that 

are annotated by a domain expert, maximizing the learning ability of the AI model (X. Wu et 

al., 2021). An active learning framework consists of two components: a query engine that 

selects the data instances from the unlabeled pool and an oracle that provides the corresponding 

labels (Finder et al., 2022; Settles, 2010). The query process is repeated until adequate 

performance is achieved (Settles, 2010). Das et al. (2016) introduce a budget of 𝐵 queries 

indicating the capacity of the expert system. The goal is to maximize the total number of true 

anomalies within the budget 𝐵. 

To realize the ALMAN’s architecture, this work combines an unsupervised deep-learning 

model with a supervised deep-learning model involving a human feedback module. Thus, the 
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following three components are defined: an unsupervised model, a feedback module, and an 

active anomaly detection model (Figure 5). 

 

Figure 5. Components and information flow of the active learning architecture 

The appropriate selection of the unsupervised model builds on the taxonomy of deep learning 

approaches for anomaly detection (Pang et al., 2022). Hence, an autoencoder (AE) is chosen 

that is trained to reconstruct a given input by finding a latent representation of the data (Chevrot 

et al., 2022; Goodfellow et al., 2016). Anomaly detection with an AE relies on the assumption 

that normal cases can be reconstructed more accurately than anomalies. The unlabeled data and 

the previously described unsupervised model serve as input for the feedback module. The 

module’s output represents a set of labeled data (𝑥, 𝑦) as depicted in Figure 5. Internally, the 

feedback module consists of a query strategy and an expert system. The query strategy selects 

a subset of examples from the training data that are presented to the expert system for 

classification. Subsequently, the architecture of the active supervised model is based on a 

feedforward neural network to finally classify the anomalies. 

To evaluate and interpret ALMAN’s performance, the research article #3 uses the real-world 

universal robot screwdriving anomaly detection data set (AURSAD) (Leporowski et al., 2021). 

The data set describes the repeated execution of an assembly process by a collaborative robot 

type with an average execution time of 15 s. The data set includes 1,420 records representing 

normal operations and 625 records indicative of various fault states, such as damaged screws 

or damaged plate threads. With the goal of a data-efficient approach, the AURSAD data is 
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divided into two data sets for binary anomaly detection. Data set I contains four features of 

energy consumption data, and data set II contains seven features of mechanical properties. After 

a five-stage processing of this data, three different experiments are conducted. First, a 

sensitivity analysis is applied to identify the optimal query strategy for ALMAN. Second, the 

approach is compared with the solely unsupervised model to evaluate the performance of active 

learning. Third, the data efficiency of ALMAN is analyzed. Within those experiments, 

ALMAN´s data efficiency was proven as exemplary shown in Figure 6. While the active 

learning approach detects anomalies with comparable high performance for both data sets (F1 

scores of 0.865 for energy data and 0.849 for mechanical process data), the unsupervised model 

trained based on mechanical process data fails to reliably detect the anomalies (F1 score of 

0.286) but performs sufficiently well with the help of active learning (F1 score of 0.545). 

Consequently, in both approaches, the use of energy consumption data considering the F1 score 

is more reasonable. 

 

Figure 6. F1 score comparison of the active learning system with the unsupervised model for 

energy and mechanical process data 

In summary, the research article #4 makes the following four contributions. First, it proposes 

ALMAN to overcome the limitations and drawbacks of existing supervised and unsupervised 

approaches for anomaly detection in manufacturing applications. Second, it demonstrates and 

validates the developed active learning architecture in a case study of a cyber-physical robotic 

screwdriving application. The results indicate that the active learning system outperforms a 

state-of-the-art unsupervised model by 59% in F1 score. Third, the work investigates the data 

efficiency potential of using energy consumption data only for anomaly detection instead of 

common, hardly accessible mechanical process data. Findings emphasize the data efficiency 
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potential of energy consumption data with F1 scores similar to those using mechanical process 

data. Fourth, the active learning architecture enables costly expert feedback to be used 

efficiently and, thus, reduces concerns about the limitations of existing anomaly detection 

approaches or even adds an active learning model to an already existing unsupervised model in 

manufacturing applications. 

Research Article #5 – Leveraging Explainable AI for Informed Building Retrofit 

Decisions: Insights from a Survey 

Although previous work shows that such efficient but complex AI models as, for example, 

presented in the previous research article #4, can often achieve more accurate predictions than 

conventional rule- or physical-based methods, these models come with the expense of lacking 

explainability, referred to as the black-box problem, which leads decision-makers to distrust or 

even reject them (Barredo Arrieta et al., 2020; Burkart & Huber, 2021). Indeed, comprehending 

why a model makes certain decisions is often as important as its prediction accuracy (B. Kim 

et al., 2020; Shin, 2021). XAI can be leveraged to create this understanding as it helps to 

comprehend how a model decides, predicts, and performs its operations. Hence, research article 

#5 implements three common transparent models (Linear Regression, Decision Tree, QLattice) 

and applies four prevailing XAI methods (Partial Dependency Plots, Accumulated Local 

Effects, Local Interpretable Model-Agnostic Explanations, Shapley Additive Explanations) to 

an artificial neural network (ANN) to evaluate the effectiveness of these XAI methods. 

Measuring the effectiveness of XAI methods can either be done by using quantitative objective 

metrics such as sensitivity measures (Kindermans et al., 2019; T. Miller, 2017; Vilone & Longo, 

2021) or by conducting human-centered evaluations collecting end-user feedback (Ali et al., 

2023; Ding et al., 2022b). Regarding the last, either qualitative questions (i.e., open-ended 

survey) aimed at achieving deeper insights or quantitative questions (i.e., close-ended survey) 

aimed to be statistically analyzed can be used (Ali et al., 2023; K. Lee et al., 2022). 

Nevertheless, around 70% of research articles neglect evaluating XAI methods with potential 

users (Brasse et al., 2023) or only emulate the user evaluation (Ali et al., 2023), leading to 

inaccurate human-centered insights (Brasse et al., 2023; S. W. Kim et al., 2022b). To conduct 

this human-centered evaluation, research article #5 uses a real-world dataset of 25,000 

residential buildings as the energy consumption prediction in buildings remains a challenge to 

fighting climate change with widely reported inaccuracies in prediction, known as the energy 

performance gap. Especially the building sector accounts for 36% of total global energy 

consumption and, therefore, faces a need for decarbonization (Ahlrichs et al., 2022; Visscher et 
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al., 2016). Also, the manufacturing sector, which has a large number of old production halls 

combined with decreasing demolition rates (Saffari & Beagon, 2022), necessitates both an 

increase in the stagnating rate (Mayer et al., 2022) and depth of retrofits to reduce energy 

consumption effectively (Tsoka et al., 2022; Yalcintas, 2008). In addition to the environmental 

aspect, adequate retrofit measures are often cost-effective (Adisorn et al., 2020; Ahlrichs & 

Rockstuhl, 2022). Hence, these issues lead to the first research question of research article #5: 

What is the perceived degree of explainability of explainable artificial intelligence methods in 

building energy consumption forecasting? 

As explainability is typically viewed as a trade-off with prediction accuracy (Barredo Arrieta 

et al., 2020), it is of interest to investigate this trade-off in the case of building energy 

consumption forecasting, leading to the second research question: To what extent does 

explainability affect the prediction accuracy of machine learning models in building energy 

consumption forecasting? 

To answer these two research questions, the work follows a three-step approach (Figure 7). 

First, the four ML models and the four XAI methods on a real-world dataset of German one- 

and two-family residential buildings are implemented. The model’s prediction accuracy is 

assessed with three commonly used prediction accuracy metrics, i.e., metrics Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), 

for predicting annual building energy consumption (Amasyali & El-Gohary, 2018). Second, the 

degree of explainability of these models and XAI methods is evaluated by conducting an online 

survey with 137 participants, thereby addressing the first research question. The survey is 

conducted among mostly non-AI-experts based on the two human-centered dimensions of 

Explanation Satisfaction and Perceived Fidelity (Hoffman et al., 2018; Löfström et al., 2022) 

using a seven-point Likert scale. Third, the second research question is examined by evaluating 

the prediction accuracy of the AI models while taking into account the explainability based on 

the survey. Hence, the results are combined and analyzed to address the trade-off between 

prediction accuracy and explainability in data-driven building energy consumption forecasting 

and derive implications. 
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Figure 7. Methodological three-step approach of research article #5 

The results of the three steps are shown in compact form in Figure 8. First, the results of the 

prediction accuracies, i.e., the first step, are presented on the left-hand side. The final results of 

the models on the testing set confirm the findings of previous works that the ANN achieves 

better prediction accuracy results than the transparent models (Dosilovic et al., 2018). When 

looking at the MAE and the RMSE (MAE = 32.94, RMSE = 43.67), the ANN achieves a better 

value by about 4% than the transparent models on average. To statistically test these 

observations, a Wilcoxon-Signed-Rank test (Siegel, 1956) with a 1% significance level is 

applied. The test statistically confirmed the assumption that there is a difference between the 

prediction accuracy of the ANN and each of the transparent models, but not within the 

transparent models. Second, the XAI methods elevate the ANN to a comparable level of 

explainability as the transparent models. The decision tree achieves the best results in terms of 

explainability with a score of 5.21, followed by linear regression with a score of 5.07. Thus, the 

two common transparent models fare the best. However, they are closely followed by the XAI 

methods PDP (5.01) and SHAP (4.83), with some differences not even being statistically 

significant. Next in order, with a little distance, are ALE (4.55) and LIME (4.68). Thus, the 

right choice of the post-hoc XAI methods based on the well-performing ANN enables an 

increase in the Explainability by 10% (i.e., when considering ALE with 4.55 to the comparable 

global post-hoc method PDP with 5.01). Third, the results indicate that for the transparent 

model's linear regression (RMSE = 45.55) and decision tree (RMSE = 45.33), the higher 

Explainability is accompanied by poorer Prediction Accuracy compared to the opaque model 

ANN (RMSE = 43.67), as shown in the right-hand side of Figure 8. 
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Figure 8. Results: 1) Comparison of prediction accuracies 2) Explainability evaluation from 

the online survey 3) Trade-off between explainability and prediction accuracy 

In sum, research article #5 contributes to existing research in five ways. First, it closes the 

existing research gap of the lack of evaluation of XAI methods by real end users, i.e., potential 

property owners, which leads to meaningful research results that can be applied in practice. 

Second, various XAI methods are applied to the prediction of the long-term energy performance 

of buildings with the aim of explaining the prediction mechanisms, considering the influence 

of numerous input features. These XAI methods, on the one hand, reduce complexity while 

maintaining accuracy by removing less important input features and, on the other hand, provide 

guidance for decision-makers by revealing the key factors to focus on when determining 

appropriate retrofit measures (Pham et al., 2020; Rai, 2020). Third, it demonstrates a practical 

approach for a human-based measurement and evaluation of the degree of Explainability of 

XAI methods based on two dimensions, which can be transferred to other fields (Löfström et 

al., 2022). Fourth, by addressing the research gaps and providing an analysis of the application 

of XAI methods to an ANN, which has been done insufficiently in the residential energy context 

(Machlev et al., 2022; Tsoka et al., 2022). Fifth, the results are transferred into implications and 

recommendations for research, policy, and decision-makers based on the quantified trade-off 

between prediction accuracy and explainability. 

Research Article #6 – Towards Sustainability of AI – Identifying Design Patterns for 

Sustainable Machine Learning Development 

As more and more AI projects are conducted (Benbya et al., 2021; Berente et al., 2021; Bertolini 

et al., 2021),  I’s negative impacts on resource consumption, societal injustice, or even human 

rights cannot be neglected anymore (Cowls et al., 2023; Dennehy et al., 2023; Koniakou, 2023), 

leading to calls to work toward the sustainability of AI (SAI) (Schoormann et al., 2023; 

Schwartz et al., 2020; Tornede et al., 2022). SAI describes the sustainable design, development, 

and use of AI through its entire lifecycle, i.e., across all phases of the AI project workflow (van 

Wynsberghe, 2021). Nevertheless, previous work is fragmented across several streams, leading 
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to overlapping recommendations and difficulties, especially for practitioners, to 

comprehensively assess possible measures to conduct more sustainable AI projects. At the same 

time, there is an increasing call for research to shift from pure principles to comprehensive 

design approaches and implementable best practices for SAI, for instance, to avoid involuntary 

exclusion or unnecessary resource consumption (Dennehy et al., 2023; Pappas et al., 2023; 

Shneiderman, 2021; Vassilakopoulou & Hustad, 2023). Here, design patterns (DPs) have been 

proven to be valuable, as they capture best practices, guidelines, and recommendations and are 

a common tool to provide methodological support (Gamma, 1995; Goel et al., 2023). They have 

the advantage of being specific to solve a problem but also generic enough to address future 

similar problems, as they provide simple entry points and are easy to understand (Gregor et al., 

2020). Thus, research article #6 poses the following research question: What are design patterns 

that ML development stakeholders can incorporate to increase the sustainability of the ML 

development process? 

To answer this research question, the overarching artifact of the research article #6 is a 

comprehensive framework, namely the Sustainable Machine Learning Design Pattern Matrix 

(SML-DPM), that provides researchers and practitioners with recommendations to increase the 

sustainability of the ML development process and thus the sustainability of AI projects. The 

SML-DPM provides 35 DPs structured along four phases of the AI project workflow and 

subdivides them into three sustainability dimensions. The work follows the DSR paradigm to 

develop the SML-DPM in close alignment with four literature-grounded key requirements 

(Hevner et al., 2004; Peffers et al., 2007): 1) End-to-end consideration of the ML development 

process, 2) Holistic view on sustainability, 3) Applicability of the design patterns for ML 

development stakeholder, and 4) Clear assignment of the ML development stakeholders 

involved. The first set of DPs is derived from 41 multivocal references (Garousi et al., 2019). 

To evaluate and iterate on these DPs, the criteria developed by Sonnenberg and vom Brocke 

(2012a) are used. Thus, the work first assesses their applicability and usefulness through focus 

groups and semi-structured interviews with industry experts. Thereafter, a web-based prototype 

to evaluate the intentions of users, levering the SML-DPM based on a case study in three real-

world AI projects, is developed. 

The final SML-DPM (Figure 9) is divided into the ESG dimensions on the vertical axis and the 

AI project phases on the horizontal axis. The environmental dimension encompasses 14 DPs, 

the social dimension 12 DPs, and the governmental dimension 9 DPs. The DPs are assigned to 

the ML development stakeholders. The work opted for this explicit and non-overlapping one-
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to-one allocation, which makes it clear when which DP is relevant and clearly applicable in an 

AI project. The evaluation of the SML-DPM revealed four global, pattern-agnostic insights for 

AI projects: 1) The relationship between today’s application of design patterns and increases in 

revenue, 2) Environmental sustainability in ML implies cost reductions, 3) Context-dependency 

and its focal points for sustainability, and 4) The bigger, the better does not hold true for 

sustainability in ML development. 

 

Figure 9. The Sustainable Machine Learning Design Pattern Matrix (SML-DPM) 

The design, content, and evaluation of the SML-DPM and the associated DPs led to three main 

contributions. First, the SML-DPM bridges the gap between the ESG sustainability concept and 

the end-to-end ML development process. Second, the 35 DP with justificatory knowledge from 

expert insights are provided, which enables to increase the sustainability of the AI project 

phases within AI projects. Third, the work contributes by providing extensive naturalistic 

insights into the SML-DPM’s application based on its web-based prototype.  

The research has two primary theoretical implications. First, the work has opened a new 

discussion on how to structure SAI and, subsequently, what SAI comprises regarding clear and 

implementable practices. It specifically investigated the relationship between the end-to-end AI 

project workflow and the three sustainability dimensions of environmental, social, and 

governance. Thus, the results shed light on the end-to-end process view of ML by opening a 

discussion about the different AI project phases and the unique sustainability challenges faced 
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in each of these (Papagiannidis et al., 2023). Second, by presenting the 35 DPs and validating 

them with subject matter experts, the article have responded to calls for research into merging 

hitherto fragmented theoretical knowledge and validating it with practitioner views, facilitating 

theorizing toward sustainable AI (Veit & Thatcher, 2023; Verdecchia et al., 2023). From a 

practical perspective, the SML-DPM holds two primary implications. First, the different 

stakeholders can lever the SML-DPM to capture the status quo and to develop a vision 

regarding the sustainability of the AI project workflow. Second, the SML-DPM guides the 

different stakeholders in implementing DPs for the sustainable development of ML. The DPs 

act as a simple point of entry, as they are easy to understand. Thus, ML development 

stakeholders can use the SML-DPM to identify DPs that fit their role (e.g., business 

stakeholder), the current project phase (e.g., Modeling and Training), and the sustainability 

focus (e.g., environmental). 

In sum, to conclude section II.2, the three research articles #4, #5, and #6 contribute to 

overcoming the challenges AI projects pose at a project level. Research article #4 develops a 

data-efficient active learning architecture for anomaly detection in industrial time series data to 

tackle the data challenges. Research article #5 compares and evaluates three frequently used 

transparent AI models and four different XAI methods to overcome the technical black-box 

challenge. Lastly, research article #6 introduces the SML-DPM to overcome the sustainability 

challenges in AI projects. 
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III Summary and Limitations 

1 Summary 

Due to, on the one hand, recent advances in the field of AI, such as the accessibility of large-

scale data sources as well as the improvement of AI algorithms, and, on the other hand, growing 

global competitive pressure and changing customer needs, the manufacturing sector has 

embarked on a journey to lever the potential business value of AI (Berente et al., 2021; S. W. 

Kim et al., 2022b; Merhi, 2023). Many manufacturers enhance or plan to enhance their 

operational efficiency and optimize existing processes, for example, by leveraging historical 

error messages to provide automatic maintenance suggestions for new machine faults (Bertolini 

et al., 2021; van Giffen & Ludwig, 2023). Furthermore, AI enables them to adapt or even offer 

novel value propositions, for example, replacing hardware-based measurement techniques with 

software-based AI control solutions that are less susceptible to maintenance (Favoretto et al., 

2022; Ritter et al., 2023; Stahl et al., 2023). 

In response to these promising opportunities, manufacturers have initiated AI projects and thus 

unlock AI´s business value (Shollo et al., 2022; Vial et al., 2023). Nevertheless, AI projects 

challenge established knowledge due to AI specifics such as iterative learning, the dependency 

on data, the interdependencies of the AI project phases, or unclear possibilities due to the 

current AI hype. Consequently, many AI projects often get stuck in an experimental pilot phase 

without transitioning to productive systems (Benbya et al., 2021; Merhi, 2023). This finding 

goes along with studies indicating that about 85% of AI projects have little to no impact (Shollo 

et al., 2022; Vial et al., 2023). Thus, implementing AI poses manufacturers with several 

challenges that arise on an overarching organization level as well as on an individual AI project 

level (Jöhnk et al., 2021; Vial et al., 2023; Weber et al., 2023). Those challenges encompass 

business challenges (e.g., developing an organization-wide AI strategy), technical challenges 

(e.g., ensuring explainability of AI algorithms), data challenges (e.g., providing enough labeled 

data), and sustainability challenges (e.g., promoting responsible AI use) (Dennehy et al., 2023; 

Enholm et al., 2022; Merhi, 2023; Papagiannidis et al., 2023; Weber et al., 2023; Westenberger 

et al., 2022). Motivated by these challenges, this doctoral thesis seeks to provide solutions to 

conduct successful AI projects in the manufacturing sector. To structure the results of the six 

included research articles, the four-phased AI project workflow is used, and each research 

article focuses on one or more of the four challenges, either at an organizational level or a 

project level. 
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Concerning the challenges AI projects reveal at an overarching organizational level, Section 

II.1 provides an initial entry point to the topic of this cumulative dissertation by presenting an 

overview of 24 organization-wide success factors for AI projects, structured along four success 

dimensions, i.e., datability, desirability, feasibility, and viability, and specified by 93 

subordinated success manifestations. The SFs are further situated in a broader context by 

mapping them to the four phases of the AI project workflow, i.e., “Demand Specification”, 

“Data Collection and Preparation”, “Modeling and Training,” and “Deployment and 

Monitoring”, and four recommendations to capture a hands-on perspective on the requirements 

for successful AI projects are derived (research article #1). Thereafter, this thesis provides a 

maturity model for the capabilities necessary to identify and implement suitable data-driven 

and AI-based business model archetypes, especially relevant at the beginning of AI projects, 

i.e., the “Demand Specification” phase. The maturity model builds on Hunke et al. (2022) 

archetypal data-driven business models (i.e., data provider, insight provider, recommendation 

provider, and digital solution provider) and is structured along the entire organizational 

architecture using the five-layered enterprise architecture model of Urbach and Röglinger 

(2019) (research article #2). As introducing AI and data-driven business models increases the 

organization's attack surface for cyberattacks such as data breaches and security incidents 

cannot always be prevented, Section II.1 concludes by presenting the IRM3. The IRM3 is an 

IRM maturity model closely aligned with practice expectations under a socio-technical 

perspective and consists of four focus areas (i.e., organization, human, tools, and processes) 

and 29 capability dimensions. The IRM3 takes a comprehensive view on the entire organization 

to answer the research question of which capabilities organizations require to approach IRM. 

The maturity model is applied to seven different organizations to investigate their status quo 

and target state of IRM capabilities (research article #3). 

Regarding the challenges at the specific project level, Section II.2 provides three in-depth 

investigations to overcome AI projects' challenges. First, a data-efficient active learning 

architecture for anomaly detection (AIMAN) in industrial time series data and its instantiation 

for a real-world robotic screwdriving application representing a CPS is proposed. Overcoming 

the time-consuming anomaly data labeling challenge in practice, particularly relevant in the AI 

project phases of “Data Collection and Preparation” as well as “Modeling and Training”, the 

approach optimizes an unsupervised model based on an autoencoder with budgeted expert 

feedback using four different strategies for querying the unlabeled data. The results demonstrate 

that the active learning approach outperforms a state-of-the-art unsupervised model by 59% in 
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F1-Score (research article #4). Second, as such advanced AI architectures increase the technical 

black box problem (Barredo Arrieta et al., 2020), three different transparent AI models (Linear 

Regression, Decision Tree, QLattice) and four different XAI methods (Partial Dependency 

Plots, Accumulated Local Effects, Local Interpretable Model-Agnostic Explanations, Shapley 

Additive Explanations) are compared based on a real-world dataset to overcome the lack of 

explainability. Their human-centered explainability is evaluated by conducting an extensive 

online survey with 144 participants in the domain of building energy prediction. The results 

quantify the explainability and accuracy in predicting building energy consumption and 

encourage using XAI methods as the right choice of the XAI method enables an increase in the 

measured explainability by 10% compared to the poorer performing transparent AI models and 

the other XAI methods (research article #5). Third, to conclude section II.2, the SML-DPM is 

presented to overcome the sustainability challenges, i.e., environmental, social, and 

governance, throughout all AI project phases. Hence, the SML-DPM embraces 35 DPs for 

increased sustainability in the AI project workflow. The SML-DPM was developed following 

the DSR paradigm in close alignment with four literature-grounded key requirements (Hevner 

et al., 2004; Peffers et al., 2007) and evaluated with industry experts and in three AI project 

case studies based on a web-based prototype. The SML-DPM serves as a diagnostic tool for 

different AI project stakeholders to capture the sustainability status quo and develop a vision 

regarding the sustainability of their AI project workflow in their current and future AI projects 

(research article #6). 

2 Limitations and Future Research 

The results of this doctoral thesis need to be reflected against limitations that provide an impetus 

for future research. While the six research articles contain a detailed perspective on the 

limitations of this research endeavor (see Appendix V.3 to V.8), this section provides an 

aggregated overview of the limitations. Thus, the following presents three overarching 

limitations and avenues for future research to overcome challenges for successful AI projects 

in the manufacturing industry. 

First, the research results in this thesis build on existing knowledge to contribute novel artifacts 

for research and practice. Thus, the results were established inductively based on qualitative 

interview studies and multivocal literature reviews. Drawing on the research methodologies of 

the DSR paradigm (Hevner et al., 2004; Peffers et al., 2007) and the CRISP-DM (Wirth & Hipp, 

2000), the underlying problem statements, design objectives, and the applicability, 
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completeness, and consistency of the artifacts are assessed through evaluations with both 

practitioners and academics, for example, based on AI projects, AI expert insights, or real-

world data sets. Accordingly, some limitations are inherent in the nature of these 

methodological approaches despite their rigor. In this vein, in research article #1, the validation 

and refinement of the SFs were conducted through an interview study with 20 subject matter 

experts. While expert interviews provide the opportunity to explore an emerging phenomenon 

in depth, the perspectives of individual participants are subjective (Etikan, 2016). Thus, future 

research should use a confirmatory study (e.g., Delphi study) to substantiate the findings. 

Similarly, while the maturity models regarding DDBM and IRM of research articles #3 and #4 

are developed and evaluated based on data from multiple organizations, researchers could study 

a larger sample of organi ations to challenge the findings’ consistency. Regarding the resulting 

technical architecture in research article #4, the active learning approach was evaluated on a 

single data set, limiting the generalization. The same as for the data set holds true for the 

conducted data split into an energy and a mechanical data set to evaluate the data efficiency. 

Thus, future research could extend the approach to other manufacturing applications. To do so, 

the paper provides the code as an open-source GitHub repository. Last, regarding research 

article #5, the evaluation reduced the explainability to the human-centered explainability with 

the two dimensions of explanation satisfaction and perceived fidelity. Future research could 

include the model's inherent complexity and technical factors, such as the number of variables 

in the form of a multi-dimensional study. Nevertheless, the practical-oriented approaches and 

real-world data included can be considered a strength of this doctoral thesis, and the selected 

research methods are supposed to serve as blueprints to address the described limitations in 

future research. 

Second, the developed maturity models of research articles #2 and #3, as well as the technical 

artifacts of research articles #4 and #5, either use simplifying assumptions or consider input 

parameters as deterministic or expected values. Research article #2 builds on established 

archetypes of data-driven business models (Hunke et al., 2022) and, therefore, uses a primarily 

deductive approach (Bhattacherjee, 2012). While established as structural frameworks, these 

archetypes come with some limitations. The consideration of different archetypal business 

models could fall short in accounting for their suitability within the company's specific context, 

such as its size or regional focus. This presents an opportunity for future research to scrutinize 

the qualitative appropriateness of specific archetypes within a company's context. Moreover, 

archetypal business models could oversimplify the reality, limiting the potential for 
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customization while facilitating the identification of a target business model, thus opening 

avenues for future research. Research article #4 assumes that the expert system always correctly 

labels the data, which may not be true in practice. Experts working under time and quality 

pressures in a heavily efficiency-driven production environment may make human errors, 

distorting the data labels. Given this, future research can build on Zhu and Yang (2019), who 

developed a concept that distinguishes between expert systems of different levels of reliability. 

Lastly, as research article #5 focuses on data-based research, the work is limited by the dataset 

used and the model optimization conducted. For instance, the dataset is missing information 

about the insulation of specific components of the buildings and occupant behavior influencing 

energy consumption. Further, other approaches exist to optimize each AI model, such as 

choosing a different cross-validation split. Future studies could address both aspects by 

collecting the necessary data and enhancing model optimization before XAI analysis. 

Nevertheless, it should be mentioned that assumptions must be made in all methodological 

procedures and that the assumptions made in this work have been either validated theoretically 

or practically. 

Third, this thesis takes an organizational level perspective (Section II.1) and a project level 

perspective (Section II.2) to overcome the four challenges, i.e., business, technical, data, and 

sustainability challenges, AI projects entail. This structure has been stimulated by previous 

research and confirmed by the results of this thesis. As such, it complements overarching 

organizational management contributions (e.g., on organizational readiness for AI, AI adoption, 

and AI capabilities development) and existing AI project case studies (e.g., insights from real-

world AI projects and AI project workflows). However, the results presented are expected to, 

on the one hand, overlap with findings from these related research streams and, on the other 

hand, overlap with themselves as there are dependencies from the organizational level to the 

project level and vice versa. Accordingly, future research is encouraged to further advance 

knowledge synthesis between the different research angles to conduct successful AI projects. 

Finally, given the relation of AI to ML and data science, this dissertation does not assert sole 

ownership of the insights presented herein over AI. Instead, it seeks to inspire cross-disciplinary 

learning and to derive specific interpretations in the context of AI and AI projects. 

In sum, this work contributes to the existing knowledge of AI in the manufacturing sector by 

presenting artifacts and approaches that help tackle the business, technical, data, and 

sustainability challenges of AI projects. Therefore, notwithstanding the above limitations, I 
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hope this doctoral thesis will support researchers and practitioners in navigating the 

opportunities and challenges of AI in the manufacturing industry. 
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2 Individual Contribution to the Research Articles  

This cumulative dissertation comprises six research articles representing the main body of 

work. All articles were developed in teams with multiple co-authors. This section details the 

respective research settings and highlights my individual contributions to each research article. 

Research article #1: I co-authored this research article with Simon Meierhöfer, Björn Häckel, 

and Thomas Kolbeck. Overall, the development of the article and its research idea were mainly 

driven by Simon Meierhöfer and myself. As the paper was developed in a three-phased 

methodical approach, I closely engaged in all three phases to derive, structure, and evaluate the 

paper’s main findings. Regarding the development of the research article, I co-developed the 

initial draft of the research paper, and I was mainly engaged in identifying and structuring the 

success factors as well as their integration into the core artifact. While, to a large extent, this 

article reflects the work of Simon Meierhöfer and myself, all co-authors promoted the 

advancement of the paper throughout the entire project. 

Research article #2: This research article was developed by a team of four co-authors (Bastian 

Stahl, Björn Häckel, Daniel Leuthe, and Christian Ritter). Together, we developed the maturity 

model for archetypes and capabilities required for distinct data-driven business models in the 

manufacturing sector. My contributions included specifying the research method and deriving 

the structure and content of the final artifact, especially with regard to the technical dimensions 

based on the identified related work. Furthermore, I conducted several interviews with industry 

experts to evaluate the maturity model. I engaged in the initial draft of the paper and its further 

textual elaboration throughout the revisions. Bastian Stahl is the lead author of this paper. 

Research article #3: I co-authored this research article with Michael Bitzer, Björn Häckel, 

Joshua Ott, Bastian Stahl, and Jacqueline Strobel. All six co-authors jointly developed the 

incident response management maturity model. Hence, all co-authors contributed equally to the 

article’s content and supported the project throughout its duration. In this vein, I was especially 

involved in the steps of the conceptualization, the structure of the methodology, and writing the 

original draft. Additionally, I engaged in the further development and its additional textual and 

content-related refinement throughout the two revisions. 

Research article #4: This research article was developed by a team of five co-authors (David 

Holtz, Can Kaymakci, Daniel Leuthe, Simon Wenninger, and Alexander Sauer). Our 

collaborative effort resulted in developing the active learning architecture and its validation in 

a case study. My contributions especially included outlining the overall storyline of the research 
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article, writing its textual content such as the introduction, theoretical background, experiment 

results, and, in particular, the methodical approach. Thus, I engaged in the initial draft of the 

paper and led its further textual and technical elaboration throughout the submissions and 

revisions. All co-authors contributed equally to the article’s content. 

Research article #5: This research article was developed by a team of four co-authors (Daniel 

Leuthe, Jonas Mirlach, Simon Wenninger, and Christian Wiethe). As the leading author, I 

developed the artifact's basic research idea and concept and contributed significantly to the 

design of the three-step research methodology - of both technical model development and data 

provision. Further, I contributed to the structure of the overarching storyline, evaluation, and 

writing all sections of the manuscript.  dditionally, I was in charge of preparing the article’s 

refinement and preparing it for submission. While, to a large extent, this article reflects my 

work, all co-authors promoted the advancement of the paper throughout the entire project. 

Research article #6: I co-authored this research article with Tim Meyer-Hollatz, Anja 

Senkmüller, and Tobias Plank. In particular, Tim Meyer-Hollatz and I played a crucial role in 

the entire process, from the creation and conceptualization of the research idea, investigation, 

development, visualization, and evaluation of the results to writing all chapters of the original 

manuscript draft. Furthermore, together with Tim Meyer-Hollatz, I contributed significantly to 

preparing the research article for submission and extensively revising the paper after receiving 

feedback during the review process. All four co-authors contributed to the article’s content and 

supported the project throughout its duration.  
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3 Research Article #1 

Uncovering the Sweet Spot of Artificial Intelligence Projects: An Exploration of Success 

Factors 

Authors: Leuthe, Daniel; Meierhöfer, Simon; Häckel, Björn; Kolbeck, Thomas 

 

 Submitted Working Paper 

 

Extended 

Abstract1: 

Organizations across industries aim to disseminate AI through respective 

projects. Nevertheless, despite the role of AI to serve as a driver for innovation, 

organizations encounter significant pitfalls when planning and executing AI 

projects (Merhi 2023). As a result, AI projects often fail to live up to the intended 

outcomes or are terminated before completion. This circumstance turns AI 

projects into a risky matter, as their failure entails sunk costs and may jeopardize 

competitiveness (Vial et al. 2023). 

Hence, for organizations that aim to thrive in the trajectory of AI, a systematic 

understanding of the requirements that drive the successful implementation of 

AI projects is indispensable. This research article refers to such antecedents as 

success factors (SFs) (Bullen and Rockart 1981). In the literature, the number of 

studies that deal with the successful implementation of AI in organizations has 

grown remarkably in recent years. Here, scholars discuss AI implementation 

mainly against the backdrop of concepts such as AI adoption in general or AI 

readiness in particular (Jöhnk et al. 2021; Weber et al. 2023). Moreover, the 

literature points to the need to develop or acquire specific capabilities to 

accomplish AI implementation. Studies by Lee et al. (2023) and Merhi (2023) 

provide initial overviews of SFs, but they do not provide a holistic compilation 

of SFs, as they do not provide empirical evidence and only consider a limited 

amount of literature. Hence, this research article aims to answer the following 

research questions: What are the SFs for AI projects? 

To answer the research question, a three-stage research approach is conducted 

(i.e., systematic literature review, in-depth interview study, focus group 

discussions). The result is a framework of 24 SFs for AI projects, structured 

along four overarching success dimensions (i.e., datability, desirability, 

feasibility, and viability) and specified by 93 subordinated success 

 
1 At the time of writing, this research article is under review for publication in a scientific journal. Therefore, 

an extended abstract, taken from the research article, is provided here. 
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manifestations. For each SF, a comprehensive description and the specific AI 

characteristics are provided. Finally, by illustrating how the SFs manifest in the 

four key phases of the AI project workflow, the results provide an authoritative 

instance for a systematic understanding of the scope in which they emerge in AI 

projects. 

The results are novel as they systematically explore the SFs for AI projects by 

synthesizing extant knowledge from literature with insights into the trajectory of 

AI through empirical data. In this way, we not only lay the foundation for 

researchers to advance knowledge on how to conceptualize and operationalize 

AI projects, but also provide empirical groundwork for further theorizing on the 

successful implementation of AI in general. Further, the results provide 

organizational stakeholders with a coherent and conclusive picture of the SFs 

and their tangible SMs contextualized in the AI project workflow that help them 

plan and execute AI projects successfully. 

Keywords: Artificial Intelligence, Artificial Intelligence Project, Artificial Intelligence 

Project Workflow, Project Management, Project Success, Success Factors 

References: Bullen CV, Rockart JF (1981) A primer on critical success factors. Center for 

Information Systems Research, Massachusetts Institute of Technology 69:1–
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Data or Business First? – Manufacturers´ Transformation toward Data-driven Business 

Models 

Authors: Stahl, Bastian; Häckel, Björn; Leuthe, Daniel; Ritter, Christian 

 

Published in: Schmalenbach Journal of Business Research (SBUR) (2023) 

 

Abstract: Driven by digital technologies, manufacturers aim to tap into data-driven 

business models, in which value is generated from data as a complement to 

physical products. However, this transformation can be complex, as different 

archetypes of data-driven business models require substantially different 

business and technical capabilities. While there are manifold contributions to 

research on technical capability development, an integrated and aligned 

perspective on both business and technology capabilities for distinct data-driven 

business model archetypes is needed. This perspective promises to enhance 

research’s understanding of this transformation and offers guidance for 

practitioners. As maturity models have proven to be valuable tools in capability 

development, we follow a design science approach to develop a maturity model 

for the transformation toward archetypal data-driven business models. To 

provide an integrated perspective on business and technology capabilities, the 

maturity model leverages a layered enterprise architecture model. By applying 

and evaluating in use at two manufacturers, we find two different transformation 

approaches, namely 'data first' and 'business first’. The resulting insights 

highlight the model’s integrative perspective’s value for research to improve the 

understanding of this transformation. For practitioners, the maturity model 

allows a status quo assessment and derives fields of action to develop the 

capabilities required for the aspired data-driven business model. 

 

Keywords: Data-driven business models, data-driven services, data analytics, 

manufacturing, enterprise architecture 
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Managing the Inevitable – A Maturity Model to Establish Incident Response Management 

Capabilities 

Authors: Bitzer, Michael; Häckel, Björn; Leuthe, Daniel; Ott, Joshua; Stahl, Bastian; 

Strobel, Jacqueline 

 

Published in: Computers & Security (2023) 

 

Abstract: Although the ongoing digital transformation offers new opportunities for 

organizations, more emphasis on information security is needed due to the 

evolving cyber-threat landscape. Despite all preventive measures, security 

incidents cannot entirely be mitigated. Organizations must establish incident 

response management to treat inevitable incidents in a structured manner and 

under considerable time pressure. If not handled, incidents can result in 

reputational or financial losses and disrupt business continuity. Especially 

organizations that have not addressed incident response management 

extensively need to understand which capabilities are required to develop their 

incident response management. However, research still lacks a practice-

grounded and socio-technical conceptualization of those capabilities and their 

development. For such challenges, maturity models have proven valuable in 

practice and research. This paper follows a design science research approach to 

develop an incident response management maturity model (IRM3) closely 

aligned with practice requirements under a socio-technical lens. Iteratively 

applying and evaluating the IRM3 with seven real-world organizations leverages 

its comprehensive view based on four focus areas and 29 capability dimensions 

to understand which capabilities organizations need to approach incident 

response management. Building on existing research, this work provides a 

comprehensive perspective on incident response management and its associated 

capabilities. For practitioners, especially in organizations with initial incident 

response maturity, the IRM3 offers descriptive value when used as a status quo 

assessment tool and prescriptive value by outlining capabilities for successful 

incident response management. 

 

Keywords: Design science research, Incident response management, Information security, 

Maturity model, Socio-technical 
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A Data-Efficient Active Learning Architecture for Anomaly Detection in Industrial Time 

Series Data 

Authors: Holtz, David; Kaymakci, Can; Leuthe, Daniel; Wenninger, Simon; Sauer, 

Alexander 

 

Published in: Flexible Services and Manufacturing Journal (2025) 

 

Abstract: Anomaly detection is becoming increasingly important and has found its way 

into manufacturing applications. The potential is seen in use cases such as 

maintenance cost reduction, machine fault reduction, or increased overall 

production based on industrial time series data. However, obstacles arise in 

practice. Supervised algorithms lack limited and expensive labeled training data, 

and unsupervised algorithms do not have the capabilities for evaluation and 

tracking. We propose a data-efficient architecture for anomaly detection using 

energy consumption time series data to address these limitations. To do so, we 

design an active learning model that optimizes an unsupervised model by 

integrating budgeted expert feedback. Our solution builds on an autoencoder to 

leverage latent space representations for an additional supervised feedforward 

network trained with expert knowledge labels to distinguish between normal 

data and anomalies. Four different strategies for querying the still-unlabeled data 

are compared so that the e pert’s resources are used efficiently.  e validate our 

concept in an industrial robotic screwdriving application based on energy data 

for condition monitoring. Findings for the application tested indicate that 

anomaly detection performance can be significantly increased by 59 % for the 

F1 score with active learning compared to unsupervised models. Furthermore, 

models trained only on energy consumption data exhibit the same performance 

as models trained on difficult-to-obtain mechanical process data, thus 

confirming the practicality of our proposed approach and data efficiency for the 

use of easily accessible energy data in manufacturing applications. While our 

approach enables an active learning model to be added to an existing 

unsupervised model, it allows for straightforward benchmarking and extension 

to other manufacturing applications. 

Keywords: Anomaly Detection, Active Learning, Data Efficient, Manufacturing System, 

Multivariate Time Series 
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Leveraging Explainable AI for Informed Building Retrofit Decisions: Insights from a 

Survey 

Authors: Leuthe, Daniel; Mirlach, Jonas; Wenninger, Simon; Wiethe, Christian 

 

Published in: Energy and Buildings (2024) 

 

Abstract: Accurate predictions of building energy consumption are essential for reducing 

the energy performance gap. While data-driven energy quantification methods 

based on machine learning deliver promising results, the lack of Explaina-bility 

prevents their widespread application. To overcome this, Explainable Artificial 

Intelligence (XAI) was intro-duced. However, to this point, no research has 

examined how effective these explanations are concerning decision-makers, i.e., 

property owners. To address this, we implement three transparent models 

(Linear Regression, Decision Tree, QLattice) and apply four XAI methods 

(Partial Dependency Plots, Accumulated Local Effects, Local Interpreta-ble 

Model-Agnostic Explanations, Shapley Additive Explanations) to an Artificial 

Neural Network using a real-world dataset of 25,000 residential buildings. We 

evaluate their Prediction Accuracy and Explainability through a survey with 137 

participants considering the human-centered dimensions of explanation 

satisfaction and perceived fidelity. The results quantify the Explainability-

Accuracy trade-off in building energy consumption forecasting and how it can 

be counteracted by choosing the right XAI method to foster informed retrofit 

decisions. For research, we set the foundation for further increasing the 

Explainability of data-driven energy quantification methods and their human-

centered evaluation. For practice, we encourage using XAI to reduce the 

acceptance gap of data-driven meth-ods, whereby the XAI method should be 

selected carefully, as the Explainability within the methods varies by up to 10%. 

 

Keywords: Building energy performance; Energy efficiency; Energy quantification 

methods; Explainability-accuracy trade-off; Explainable artificial intelligence; 

Survey 
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Towards Sustainability of AI – Identifying Design Patterns for Sustainable Machine 

Learning Development 

Authors: Leuthe, Daniel; Meyer-Hollatz, Tim; Plank, Tobias; Senkmüller, Anja 

 

Published in: Information Systems Frontiers (2024) 

 

Abstract: As artificial intelligence (AI) and machine learning (ML) advance, concerns 

about their sustainability impact grow. The emerging field "Sustainability of AI" 

addresses this issue, with papers e ploring distinct aspects of ML’s 

sustainability. However, it lacks a comprehensive approach that considers all 

ML development phases, treats sustainability holistically, and incorporates 

practitioner feedback. In response, we developed the sustainable ML design 

pattern matrix (SML-DPM) consisting of 35 design patterns grounded in 

justificatory knowledge from research, refined with naturalistic insights from 

expert interviews and validated in three real-world case studies using a web-

based instantiation. The design patterns are structured along a four-phased ML 

development process, the sustainability dimensions of environmental, social, 

and governance (ESG), and allocated to five ML stakeholder groups. It 

represents the first artifact to enhance each ML development phase along each 

ESG dimension. The SML-DPM fuels advancement by aggregating distinct 

research, laying the groundwork for future investigations, and providing a 

roadmap for sustainable ML development. 

 

Keywords: Artificial Intelligence, Design Patterns, ESG, Machine Learning, Sustainability 

of AI 

 

 

 


