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Abstract 

Decelerating climate change and environmental depletion requires rapid decarbonization and 

environmental protection to achieve the ambitious goals of the Paris Agreement. Since the 

transportation sector is the second largest emissions-emitting sector after the energy sector, 

with an ongoing upward trend, a rapid transition to sustainable mobility is crucial. Within the 

transport sector, personal mobility accounts for two thirds of these greenhouse gas emissions 

due to internal combustion vehicles (ICVs) and contributes to additional environmental 

challenges, including local air pollutants, increased noise levels, and resource depletion. The 

transition towards sustainable personal mobility is an extensive and multidimensional 

undertaking that should consider a variety of potential avenues for decarbonization and 

natural environment protection. Accordingly, this transition should encompass multiple 

sustainable transportation strategies, including technological innovations, shifts in 

transportation modalities, and a reduction in travel demand. Further, new sustainable mobility 

solutions must cover all facets of personal mobility needs for daily commuting, long-distance 

travel, and recreational mobility at the destination to provide a holistic mobility system. While 

the primary function of personal mobility remains the physical movement of people, it is 

imperative to develop intelligent and user-oriented information systems (IS) to leverage the 

sustainable potential of alternative mobility solutions. Therefore, this cumulative thesis 

comprises seven research articles focusing on two strategies for transitioning to sustainable 

transport systems. The first series of articles delves into ISs for technological advancements, 

addressing the integration, operation, and management of charging infrastructure for battery 

electric vehicles (BEVs) along the entire range of personal mobility needs. They illuminate the 

coupling of the energy and mobility sectors by implementing intelligent energy management 

systems, which facilitate the utilization of renewable energy sources. Further, they examine 

revenue-optimized and customer-oriented management of large-scale fast-charging hubs. 

Thus, this section aims at direct measures to achieve sustainable personal mobility through 

transitioning from ICVs to BEVs with the support of appropriate ISs. The second strategy 

analyzed in this thesis is the reduction of travel demand at overcrowded tourist Points of 

Interest (POIs) to protect natural environments. By developing elements of an active visitor 

management system, these papers explore approaches to prevent potential overcrowding 

aiming at a POI utilization that aligns with the current infrastructure. Consequently, this 

section outlines indirect measures to achieve sustainable personal mobility, focusing on 

mitigating environmental damage by reducing crowding at touristic POIs. Overall, this thesis 

contributes to Green IS and energy informatics research, providing a valuable foundation for 

the transition to sustainable personal mobility.  
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I Introduction 

I.1 Motivation 

Since the Industrial Revolution, global greenhouse gas (GHG) emissions have steadily 

increased, leading to rising temperatures and the beginning of a climate crisis (Ritchie et al., 

2024). In 2023, the year was observed to be the warmest on record, with temperature records 

being broken on numerous occasions. For the first time, a temperature increase of at least 1 °C 

occurred every single day compared to pre-industrial levels, with an average annual increase 

of 1.48 °C (ECMWF, 2024). Consequently, the impacts of global warming – such as heatwaves, 

heavy rainfall, and rising global mean sea levels – are already observable today (Lee et al., 

2023). To prevent further warming and mitigate climate change, 194 states and the entire 

European Union (EU) signed the Paris Agreement in 2015. This landmark agreement commits 

all parties to undertake regular assessments of their national contributions to GHG emissions 

reduction, aiming for a temperature increase limitation of at least well below 2 °C, preferably 

to 1.5 °C, while providing a pathway toward sustainable development (United Nations, 2015; 

Rogelj et al., 2016). In alignment with the ‘Sustainable Development Goals’ (SDGs) established 

by the UN General Assembly in 2015 (UN General Assembly, 2015), economically powerful 

nations have announced individual goals and actions to fulfill the commitments of the Paris 

Agreement. For instance, the United States introduced the ‘Inflation Reduction Act’ (The 

White House, 2023), China pledged to achieve carbon neutrality by 2060 (Hepburn et al., 

2021), and the EU launched the ‘Green Deal’ (European Commission, 2019) and aims to lead 

the world in implementing ecologically necessary measures while realizing economic potential. 

Accordingly, under the ‘European Climate Law’, all 27 EU member states have committed to 

make the EU the first climate-neutral continent by 2050 and to reduce emissions by at least 

55% by 2030 compared to 1990 levels (European Parliament, 2021). The regulations, 

measures, and subsidies encompass all sectors that emit GHG, including sustainable industrial 

production, clean energy generation, and transportation.  

The European Union has made considerable progress in reducing GHG emissions since 1990, 

with a reduction of nearly one-third (European Commission, 2023). However, this progress is 

still insufficient to meet the ambitious targets within the required timeframe. A breakdown of 

total emissions by major economic sectors reveals that the energy sector contributes the largest 

share, accounting for a quarter of GHG emissions (European Commission, 2023). Despite 

being the largest emitting sector, the energy sector achieved the most substantial emission 

reductions across all sectors (Lamb et al., 2022). This decarbonization of the energy sector is 

primarily driven by introducing renewable energy sources (RES), such as wind, solar, or 
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hydropower, alongside the phase-out of fossil fuel power plants (Papadis and Tsatsaronis, 

2020). Economically, this transformation is feasible as many new RES technologies have 

reached or fallen below the levelized cost of electricity of fossil fuel technologies (Timilsina, 

2021). However, the transition to new energy sources and electricity generation methods leads 

to new challenges in the power system. Given the substantial limitations of electricity storage 

capacity in comparison to overall demand, it is essential to maintain a balance between 

electricity supply and demand. But the weather-dependent electricity generation with RES 

leads to high seasonal and daily fluctuations, causing problematic imbalances and a potential 

decline in power quality (Lund et al., 2015; Sinsel, Riemke and Hoffmann, 2020). 

Consequently, new concepts and technologies are required to introduce flexibility on the 

supply and demand side to ensure balance and grid security (Michaelis et al., 2024).   

The literature classifies five categories of flexibility within the energy sector: supply-side 

flexibility, storage flexibility, transmission flexibility, demand-side flexibility, and inter-

sectoral flexibility (Heffron et al., 2020). Hence, integrating RES into the energy system 

requires adjustments not only on the electricity supply side but also entails the incorporation 

of new, flexible consumers. Those flexible and energy-demanding consumers can be found 

across industry, transport, and building (Hansen, Breyer and Lund, 2019; Körner et al., 2019; 

Ramsebner et al., 2021). The strategic integration of multiple sectors to enhance flexibility is 

known as Sector Coupling and facilitates system optimization to provide benefits across all 

sectors (Robinius et al., 2017; Fridgen et al., 2020). It enables adding more RES power plants 

into the grid, replacing conventional baseload systems through temporal and spatial energy 

balancing. For effective balancing, interconnected sectors must respond swiftly and accurately, 

requiring comprehensive digital information and communication systems that span from 

decentralized and centralized power plants through the electricity grid to storage and end 

consumers (Hansen, Breyer and Lund, 2019; Staudt, Lehnhoff and Watson, 2019). Moreover, 

the electrification and flexibilization of industry, transport, and building sectors contribute to 

their decarbonization and reduce reliance on fossil fuels. 

Following the energy sector, transportation is the second-largest source of GHG emissions. 

Unlike the energy sector, transportation has seen an increase in GHG emissions, rising by 24% 

since 1990 (Lamb et al., 2022; Statistisches Bundesamt, 2024). A closer examination of the 

transport sector reveals that passenger cars and motorcycles, i.e., personal mobility, account 

for 60% of the total GHG emissions in transport (Statistisches Bundesamt, 2024). The reliance 

on internal combustion vehicles (ICVs) not only exacerbates GHG emissions but also 

contributes to additional environmental challenges, including local air pollutants, increased 

noise levels, and resource depletion (Nykvist and Whitmarsh, 2008; Zhao et al., 2020). The 

high dependence on cars is attributable to automobile manufacturers' typically strong 
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economic influence, the infrastructure designed for automobiles, and the cultural status 

accorded to vehicles (Mattioli et al., 2020). Consequently, the policy also supports preserving 

personal mobility through private vehicles (Mattioli et al., 2020). In light of the pressing 

necessity for a sustainable transformation, solutions for urban areas, such as smart sustainable 

cities, are evolving (Meyer, 1981; Silva, Khan and Han, 2018). These solutions include an 

alternative to car ownership, which is achieved through providing shared services such as 

(car-)sharing or public transportation (Shaheen and Cohen, 2013, 2021; Felix Baumgarte et 

al., 2021; Baumgarte, Keller, et al., 2022). However, in rural areas, the economic viability of 

shared services is typically limited. Further, the lack of infrastructure and the distances 

involved hinder the utilization of micro-mobility solutions such as e-bikes and e-scooters 

(Flipo, Ortar and Sallustio, 2023). Therefore, private cars remain the most important means 

of transportation for people with a wide range of mobility demands and who live outside urban 

areas (Prillwitz and Barr, 2011). This personal travel encompasses daily activities such as 

commuting to work, shopping, local leisure activities, visiting friends and family, and the less 

frequently occurring long-distance trips and recreational travel at the touristic destination 

(Prillwitz and Barr, 2011). While frequent car use in daily life often extends to long-distance 

trips and recreational mobility (Prillwitz and Barr, 2011), it is striking that even strong positive 

attitudes towards sustainability have a limited impact on altering travel behavior (Böhler et al., 

2006). This underscores the pressing need to develop sustainable alternatives to ICVs. 

One solution for achieving sustainable personal mobility is the utilization of Battery Electric 

Vehicles (BEVs). While they may have higher GHG emissions during production, the electric 

drive train can significantly reduce overall emissions during operation (Onat et al., 2019). 

However, the impact of BEVs largely depends on the electricity mix used for charging. In 

countries that still rely heavily on fossil fuels, the environmental benefits of BEVs are not 

significantly better than those of ICVs (Onn et al., 2017; Wolfram and Wiedmann, 2017; 

Trudewind, Schreiber and Haumann, 2014). Conversely, BEVs substantially improve 

emissions reductions in regions with high RES utilization (Hawkins et al., 2013; Messagie et 

al., 2014; Onat et al., 2019). Thus, the electrification of the transport sector presents an 

opportunity to couple the mobility and energy sectors, facilitating the decarbonization of 

individual mobility as the use of RES for energy generation increases (Lamb et al., 2022). 

For the ramp-up of electromobility, simultaneous and continuous development of charging 

infrastructure is crucial (Funke et al., 2019). Therefore, the EU has set the goal of installing at 

least 3 million public charging points by 2030 (European Comission, 2020), which is a 

challenging target given the current number of nearly 700’000 public charging points in 2024 

(European Comission, 2024). Charging infrastructure can be divided into three levels: Level 1 

refers to slow AC charging at a standard outlet; Level 2 corresponds to AC charging up to 22 
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kW with a wallbox; and Level 3 is the DC fast-charging infrastructure with charging capacities 

up to 350 kW (Lee et al., 2020). Private or public charging in residential areas at Level 1 or 

Level 2 is the most important location, followed by charging at work due to the long dwell times 

(Hardman et al., 2018). While Level 3 fast-charging infrastructure represents the least utilized 

infrastructure type, the availability is still crucial as it enables longer travel distances and acts 

as a safety net for unforeseen circumstances (Neaimeh et al., 2017; Hardman et al., 2018). 

Thus, the structured development of charging infrastructure requires not only an adequate 

number of charging stations but also a strategically thoughtful and user-oriented setup of the 

charging types (Kchaou-Boujelben, 2021). Additionally, user behavior, service preferences, 

and cost expectations vary depending on the charging level and location (Schmidt, Staudt and 

Weinhardt, 2020). Therefore, a customized approach for designing, operating, and managing 

charging infrastructure is essential. Beyond the charging availability for BEVs, the charging 

infrastructure serves as a crucial link between the energy and mobility sectors. Intelligent 

energy management systems, called smart charging, can enhance the utilization of RES by 

optimizing the charging schedule and power allocation (Daina, Sivakumar and Polak, 2017; 

Sachan, Deb and Singh, 2020). These sector-coupling smart charging approaches aim to 

achieve multiple objectives, including cost reduction (Seddig, Jochem and Fichtner, 2019; Yan, 

Zhang and Kezunovic, 2019; F. Baumgarte et al., 2021), grid stabilization (Singh, Jagota and 

Singh, 2018) and customer satisfaction (Fridgen et al., 2021; Bollenbach et al., 2024). 

Additionally, BEVs’ batteries can serve as mobile electricity storage, enabling spatiotemporal 

load shifting. However, to enable cross-sector automated and coordinated interaction, it is 

necessary to expand the hardware of BEVs and charging infrastructure and design and develop 

overarching Green Information Systems (IS) (Watson, Boudreau and Chen, 2010). Then, the 

electrification of mobility does not solely represent an additional burden on local grids and 

electricity demand but can also support the challenging management of volatile RES by 

providing additional electricity storage and demand-side flexibility (Dedrick et al., 2023). 

However, the mere reduction of GHG emissions in personal transportation is insufficient to 

achieve overarching sustainable mobility. Travelers often view vacations as a break from their 

usual eco-friendly behaviors, acting unsustainable as they perceive such travel as a minor 

fraction of their annual mobility needs (Barr et al., 2010). However, when aggregated across 

all travelers, this disparity between sustainable values and actual behavior becomes a 

significant issue for tourist sites (Juvan and Dolnicar, 2014). Notably, the total increase in 

travel poses challenges for freely accessible and natural tourist Points of Interest (POIs). Often, 

single popular destinations face the problem of overcrowding and overtourism, leading to 

strained infrastructure and natural degradation (McKinsey&Company, 2017). The lack of 

adequate infrastructure results in visitors utilizing unpaved roads, parking their vehicles in 
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protected areas without authorization, and creating new trails that contribute to the 

deterioration of the natural environment. Therefore, to protect rare natural phenomena, an 

active visitor management system is crucial to mitigate overcrowding, i.e., reduce mobility, 

while maintaining visitor's freedom of choice. 

The transition towards sustainable personal mobility is an extensive and multidimensional 

undertaking that should consider a variety of potential avenues for decarbonization and 

natural environment protection. Moreover, the transition should challenge existing thinking 

patterns and encompass travel demands beyond the daily commute, including long-distance 

travel and recreational mobility at the destination (Prillwitz and Barr, 2011). Alongside 

technological advancements and new mobility services, the development of digital IS is 

imperative to enable automated energy monitoring, control, management, and user 

integration (Strüker et al., 2021). Incorporating behavior and personal preferences into the 

design of future sustainable mobility is essential for the acceptance of new solutions. Thus, the 

development of a multitude of interconnected, coordinated, and sustainable mobility options 

is pivotal in addressing the personal mobility needs of all individuals.  

I.2 Research Aim 

Sustainable transport systems are defined as those that "contribute to social and economic 

welfare, without damaging the environment or depleting environmental resources" (Nykvist 

and Whitmarsh, 2008). The creation and establishment of such systems involve a broad array 

of novel products and services, which are digitally interconnected across various sectors. As 

such, this dissertation aligns itself with the research domain of Green IS – a field that extends 

beyond the creation of sustainable Information and Communication Technologies (ICT) to 

include individuals, processes, and software in the conceptualization of ISs (Watson, Boudreau 

and Chen, 2010). Thereby, ICTs embedded in ISs leverage sustainable transport systems to 

become “intelligent” or “smart”, consequently promoting the efficient and sustainable use of 

scarce resources (Kranz et al., 2015). Specifically, the subfield Energy Informatics in Green IS 

focuses on information engineering within energy networks aiming at the development of 

sustainable services and prototypes (Watson, Boudreau and Chen, 2010; vom Brocke et al., 

2013; Goebel et al., 2014; Staudt, Lehnhoff and Watson, 2019). Regardless of the chosen mode 

of transportation, its primary function remains the physical movement of people from one 

place to another (Stocker et al., 2021). However, IS can provide auxiliary services that enable 

the creation of additional digital business models or the dissemination of innovative IT-driven 

services (Piccinini et al., 2015; Graf-Drasch et al., 2023). For example, digital accessibility and 

convenience are critical success factors for dispersing new sustainable mobility or 

management services (Hildebrandt et al., 2015). IS can also boost the usage of BEVs by 
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enhancing their attractiveness. Particularly in the context of charging infrastructure, IS can 

simplify route planning, including charging stops, initiating reservations, and facilitating 

effortless payments (Brendel and Mandrella, 2016). Moreover, energy informatics enhances 

both economic and environmental efficiency by leveraging the flexibility of BEVs to cut costs 

and increase the utilization of RES (Sachan, Deb and Singh, 2020; Baumgarte, Eiser, et al., 

2022). Therefore, with digitalization and automation, Green IS enables the development of 

new products and services that drive the transition towards a sustainable personal transport 

system. 

Nykvist and Whitmarsh (2008) identified three main strategies for transitioning to sustainable 

transportation: technological advancements, changes in transportation modes, and a 

reduction in travel demand. These strategies are interdependent and work synergistically to 

address not just emission reduction, but also other issues such as congestion, noise pollution, 

traffic collisions, and resource depletion (Nykvist and Whitmarsh, 2008). Thereby, new 

sustainable mobility solutions must cover all facets of personal mobility, including daily 

commuting and occasional travel needs. Consequently, a 3x3 matrix emerges, comprising the 

three transition strategies and the personal mobility requirements for daily commuting, long-

distance travel, and recreational mobility at the destination (Prillwitz and Barr, 2011). Given 

its broad coverage of the transformation towards sustainable personal mobility, this research 

domain has extensive scope. Thus, to ensure a degree of specificity and academic rigor in this 

dissertation, I will focus on the technological innovation of BEVs, including charging 

infrastructure, and the reduction of travel demand at touristic POIs, by examining individual 

relevant aspects in these areas as illustrated in Figure 1. 

 

Figure 1. Research papers within the matrix of transition strategies to sustainable personal mobility 

Given that cars are one of the most important modes of transportation (Prillwitz and Barr, 

2011), the first area of research emphasizes the potential for emission reduction through 

technological advancement. The emission reduction is achieved by coupling the sectors energy 
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and mobility, utilizing the charging infrastructure for BEVs (Robinius et al., 2017; Fridgen et 

al., 2020). As purchasing a mobility solution like a car is a significant investment, it must fulfill 

multiple travel demands. BEVs, as an alternative to ICVs, therefore require charging 

infrastructure that can meet the daily charging needs (e.g., at frequently visited locations with 

long dwell times, such as work or home), extend the range for long journeys (e.g., on highways 

and country roads), and enable trips at travel destinations (e.g., at the hotel) (Hardman et al., 

2018). The requirements for a charging infrastructure vary considerably based on location, 

BEVs’ dwell time, and the expectations and behavior of BEV drivers (Funke et al., 2019; 

Schmidt, Staudt and Weinhardt, 2020). Consequently, different ISs are required to manage 

the charging infrastructure and processes under the prevailing circumstances. 

When BEVs are parked and plugged in for extended periods (e.g., at work, home, or hotels), an 

intelligent charging system can flexibly shift the charging processes to minimize associated 

emissions (Sachan, Deb and Singh, 2020). Bidirectional BEVs, which have both charging and 

discharging capabilities, can further serve as mobile energy storage, enabling the temporal and 

spatial shifting of stored low-emission electricity (Buonomano, 2020). Given that shifting from 

ICVs to BEVs already necessitates behavioral changes, additional complex and cross-sectoral 

energy management systems (EMS) could earn acceptance if they are built around existing 

behavioral patterns. Therefore, to design EMSs, including bidirectional charging for the 

workplace, home, or hotel, it is essential to analyze and understand how existing behavioral 

patterns impact the emission reduction potential and how (de-)charging processes can be 

integrated into a building's electricity needs (research paper 1 and 2). 

In contrast, along highways and country roads, there is a growing need for large-scale fast-

charging hubs (LFCHs) capable of simultaneously serving numerous BEVs. These LFCHs are 

characterized by high charging power, short BEV dwell times, and often limited resources due 

to substantial investment and operational costs (Funke et al., 2019). From the operator’s 

perspective, efficient resource use is vital for maximizing revenue. It is, therefore, beneficial to 

explore the applicability of revenue management (RM) theory using dynamic pricing to 

establish successful business models for LFCHs (research paper 3). However, even when 

managing the LFCH via dynamic pricing, the stochastic arrival of customers can sometimes 

lead to reaching the total power capacity limit. Hence, developing an additional EMS that 

enhances customer satisfaction by smartly distributing the available power is crucial for 

maintaining and increasing the acceptance of BEVs (research paper 4). 

More than reducing GHG emissions is required to fully target the broader ambition of 

sustainable personal transport. Overloaded infrastructures resulting in congestion, extended 

search times for a parking spot, and illegal parking pose a challenge, particularly at freely 

accessible and natural tourist POIs (Paidi et al., 2022). These POIs, so-called Hot Spots, often 
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attract visitors from a wide radius, leading to overcrowding and straining of the inadequate 

infrastructure at the natural POI. Thus, an actual reduction in travel demand is required to 

solve the problem of natural depletion caused by overcrowding. Hard, restrictive visitor 

management measures, such as bans, provide only a solution if the visitors are already on site. 

They also may result in tourist dissatisfaction. Therefore, preventive, soft measures with close 

monitoring and active visitor management are necessary, specifically for open-spaced natural 

POIs (Schmücker et al., 2022). Combined with digital technologies, these soft measures, such 

as recommendation systems, often provide untapped potential to effectively prevent 

overcrowding before it even occurs (Spenceley et al., 2015; Veiga et al., 2018). Hence, to enable 

an automated and fully digitalized active visitor management system, research in occupancy 

prediction with low time granularity of open-spaced and freely accessible POIs is required to 

predict potentially overcrowded times (research papers 5 and 6). To reduce travel at the 

overcrowded POI, similar, less busy alternatives, so-called Cold Spots, should be suggested to 

potential visitors so they can choose a less crowded POI or route. This necessitates the 

development of a method for determining route similarities, including several POIs, based on 

their descriptive features while minimizing the regular interference of experts for better 

scalability (research paper 7). 

The overarching aim of this thesis is, first, to explore the coupling of the energy and mobility 

sector with the integration of charging infrastructure for BEVs along the entire range of 

mobility needs. Second, this thesis dives into reducing travel demand at natural-based POIs to 

protect natural environments and enable the development of an active visitor management 

system for potentially overcrowded POIs. From a methodological point of view, this thesis 

contributes to academic research by applying multiple methods, including optimization 

models, data analysis, Machine Learning (ML) prediction, and Shapley Additive exPlanation 

(SHAP) values. Thereby, the research builds upon multiple academic theories and concepts, 

such as the bankruptcy problem within game theory (Thomson, 2019), Expectation-

Disconfirmation Theory (EDT) (Oliver, 1980; Tse and Wilton, 1988), and Revenue 

Management (Talluri and van Ryzin, 2004). 

I.3 Structure of the Thesis 

This thesis is cumulative and comprises seven research papers, as detailed in Table 1. The 

matrix presented in Section I.2, Figure 1 builds the basis of the structure, combining the 

strategies for transitioning to sustainable mobility and personal mobility needs. My research 

is centered on technological advances and travel demand reduction, whereby each research 

paper answers a specific research question. All papers are closely interconnected and align with 

the overarching objective of sustainable personal mobility. The remainder of this thesis is 
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structured as follows: Section II addresses the technological advancement of charging 

infrastructure for BEVs, which serve as replacements for ICVs. Thereby, I shed light on how 

Vehicle-to-Building (V2B) approaches at the workplace (research paper 1) and hotels (research 

paper 2) can contribute to reducing associated emissions under consideration of individual 

mobility patterns. Further, I examine the operation of LFCHs with regard to the application of 

RM for enhancing profitability (research paper 3) and the integration of an EMS for improving 

customer satisfaction (research paper 4). Section III deals with the reduction of travel demand 

at natural tourist POIs to prevent overcrowding via an active visitor management system. The 

focus lies on predicting occupancy (research papers 5 and 6) and the automated identification 

of similar POIs to enable recommendation (research paper 7). Section IV concludes by 

summarizing the insights of this thesis and outlining recommendations for future research. 

Section V includes the references, and Section 0 is the appendix, providing detailed 

information on all seven embedded research papers. 

Structure of the thesis Research 
paper 

Research paper title 

2. Integrating 
electric 
vehicles in the 
course of 
technological 
advances 

2.1 Vehicle-to-
Building 
strategies for 
emission 
reduction 

Research 
paper 1 

The impact of user behavior and grid-
associated emissions on the emission 
reduction potential of electric vehicle-
based spatiotemporal residential load 
shifting 

Research 
paper 2 

Empowering Sustainable Hotels: A 
Guest-Centric Optimization for Vehicle-
to-Building Integration 

2.2 
Management 
of large-scale 
fast-charging 
hubs 

Research 
paper 3 

Revenue Management in a Large-Scale 
Fast Charging Hub for Electric Vehicles: 
A Multiproduct, Dynamic Pricing Model 

Research 
paper 4 

Customer Satisfaction at Large 
Charging Parks: Expectation-
Disconfirmation Theory for Fast 
Charging 

3. Reducing 
travel 
demand via 
active visitor 
management 

3.1 Occupancy 
prediction at 
touristic 
points of 
interest 

Research 
paper 5 

Using Machine Learning to Predict POI 
Occupancy to Reduce Overcrowding 

Research 
paper 6  

Enabling Active Visitor Management: 
Local, Short-Term Occupancy 
Prediction at a Touristic Point of 
Interest 

3.2 Data-
driven 
identification 
of similarities 

Research 
paper 7 

The Road Not Taken - Representing 
Expert Knowledge for Route 
Similarities in Sustainable Tourism 
Using Machine Learning 

Table 1. Structure of the thesis and overview of the research papers  
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II Integrating Electric Vehicles in the Course of 
Technological Advances 

The ramp-up of electromobility depends largely on the simultaneous expansion of the charging 

infrastructure. Beyond the necessary hardware expansion, the design and implementation of 

intelligent ISs for controlling and managing the charging infrastructure represents a pivotal 

aspect of this evolution. Therefore, a multi-perspective approach is essential, considering BEV 

drivers, operators, and the energy sector. BEV drivers require a suitable charging 

infrastructure that aligns with their daily and occasional mobility needs, offering accessible 

and convenient solutions that seamlessly integrate into existing mobility patterns (Funke et 

al., 2019). However, this requirement contrasts with the time-bound availability of RES, which 

are urgently needed to ensure the use of low-emission electricity to enable the sustainability of 

BEVs (Onat et al., 2019). 

Therefore, the subsequent sections delve into the development of multiple ISs to enable user-

centric expansion of charging infrastructure while enhancing RES utilization and operability. 

Section II.1 is dedicated to developing and analyzing two emission-reducing EMSs, including 

bidirectional charging infrastructure at the workplace (research paper 1) and for a hotel 

(research paper 2), which integrate existing commuting and recreational mobility patterns, 

respectively. Turning to the fast-charging infrastructure with short dwell times, emission 

reduction potential diminishes while other aspects gain relevance. Thus, Section II.2 

concentrates on the management of LFCHs to increase revenue via dynamic pricing (research 

paper 3) and to improve customer satisfaction (research paper 4) in resource-constrained 

situations. 

II.1 Vehicle-to-Building Strategies for Emission Reduction 

The coupling of the energy and transportation sectors, enabled by intelligent charging 

processes, not only plays a pivotal role in the decarbonization of mobility. It also contributes 

substantially to decarbonizing other sectors, including residential buildings, through 

sophisticated EMSs. The utilization of RES in the residential sector can be essential to increase 

the overall RES share and reduce residential GHG emissions, as this sector accounts for around 

28% of total German electricity demand in 2023 (BDEW, 2023). Although the share of 

renewables in the electricity mix is steadily increasing in the EU and Germany (European 

Environment Agency, 2024; Umweltbundesamt, 2024), residential emissions have stagnated 

in recent years. As emission minima associated with the electricity mix and residential 

consumption peaks decouple over time, residential emissions remain difficult to reduce. The 

residential demand of residents who leave home for work (referred to as commuters) typically 
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peaks twice: during morning and especially during evening hours (Fischer, Härtl and Wille-

Haussmann, 2015). At the same time, the emissions minima associated with the region-specific 

electricity mix occur at divergent times. For regions with grid conditions similar to Germany, 

for example, emissions in summer are typically lowest during midday, primarily due to high 

PV output. In winter, emissions might also reach their daily low at midnight when production 

from wind turbines is high and electricity demand is low. Thus, RES are especially challenging 

to integrate into established residential demand profiles. With the growing share of RES in the 

electricity mix, the decoupling of electricity demand and production will aggravate further. 

Additionally, the ramp-up of BEVs further increases the need for solutions, as current BEV 

charging patterns contribute primarily to residential evening and nighttime demand, thus, 

amplifying the decoupling of residential electricity demand and RES production (Mu et al., 

2014; Muratori, 2018). Charging at the workplace is one essential means to address this issue 

and to link BEV charging with RES on-peak hours, which can heavily reduce charging-

associated GHG emissions (Tulpule et al., 2013; Buresh, Apperley and Booysen, 2020). 

Additionally, the bidirectional charging technology, which allows BEVs to charge and 

discharge their battery, enables additional flexibility (Thompson and Perez, 2020). The 

combination of workplace charging and V2B opens up opportunities to extend the ecological 

benefits of workplace charging to the residential sector. If BEVs charge at midday during RES 

output on-peak hours while at work, they can act as mobile energy storage and transfer energy 

with a high share of renewable energy to households by driving home. Through the V2B 

approach, i.e., bidirectional charging or discharging of the BEV’s battery, BEVs can at least 

partially cover household demand during the night, which would otherwise have to be 

completely covered by electricity from the grid. This way, BEVs could reduce the decoupling 

between residential electricity demand and RES production by enabling virtual spatiotemporal 

residential load shifting. Literature refers to this combination of workplace charging with BEVs 

as mobile energy storage and residential discharging as Building to Vehicle to Building (V2B2) 

(Barone et al., 2019). However, the GHG emission reduction potential of V2B2 heavily depends 

on timing electricity demand and, thus, both region-specific electricity mixes and individual 

behavioral patterns. So far, V2B2 literature mostly neglects the influence of different user 

profiles and relies on exemplary simulation and synthetic profiles. Recently, Niu et al. (2024) 

started to address this gap by considering numerous profiles to present a margin for V2B2 

system costs. However, they still lack insights on why and how much their results change based 

on individual user behavior and the available electricity mix. 

In research paper 1, we seek to analyze why and by how much the emission reduction potential 

of spatiotemporal load shifting within V2B2 varies for a country-specific electricity mix with 

established individual user behavior. To analyze our question, we pick up the case of Germany 
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and consider a stratified subsample of over 26,000 German driving and over 150 residential 

electricity demand profiles obtained from empirical and real-world data. Further, we utilize 

the 2023 electricity mix of the German electricity grid. We enhance this data by calculating the 

upstream and directly with electricity production associated GHG emissions, measured in 

Carbon Dioxide (CO2) equivalents, at each 15-minute time step. We simulate a wide variety of 

different driving and residential electricity demand behavior combinations to obtain the CO2-

equivalent emissions associated with V2B2 operation. We further benchmark the model against 

a typical at-home charging-only scenario to obtain operational CO2-equivalent emission 

savings. Afterward, we select causal features to investigate the emission delta and train an 

Extreme Gradient Boosting (XGBoost) machine learning model. This enables us to examine in 

detail why and by how much the interaction between the available electricity mix and 

individual user characteristics changes the V2B2 potential using SHAP values. Figure 2 

illustrates an overview of the required datasets and modeling phases. 

 

Figure 2. Illustration of datasets and modelling phases for the V2B2 analyzes 

Our results reveal that the operation of a V2B2 concept in Germany, which draws electricity 

exclusively from the grid, exhibits a strong seasonal dependency on its emission reduction 

potential. For January, we observe an on-average negative potential of -0.2% from operating 

V2B2. This emission increase was primarily due to greater daytime emissions compared to 

nighttime emissions that the German electricity mix had in January 2023. During wind-heavy 

months with low PV output, conventional power plants had to compensate for the high daytime 

electricity demand, consequently heightening the emissions. Conversely, during the night, the 

high output from wind turbines decreased electricity mix emissions. This results in yearly 

repeating months like January 2023, where average emissions are lowest at night. The pattern 

observed in this paper is characteristic of regions in central Europe, such as Germany. In July, 

there is a substantial positive shift in the average emission reduction potential of more than 

23%. This shift arises from the German electricity mix in July 2023, where daytime emissions 

were temporarily reduced to almost half that of nighttime emissions. This is why the 

subsequent examination of behavior as an influencing factor will be limited to July. In the 

summer months, our findings align with the promising V2B2 potentials identified in existing 

literature (e.g., Barone et al., 2019, 2020; Buonomano, 2020). This correlation may be 

attributed to the similarities between German summers and the summer months in Italy, 
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which are frequently referenced in these papers. 

Depending on individual behavior, the user-specific potential varies considerably from the 

average emission reduction potential. In detail, we determine for Germany that the primary 

factors shaping the potential for V2B2 emission reduction in July are individual charging times 

and the transition of charging procedures to the workplace. We find the time of arrival at home 

and, thus, typically, the start of BEV charging to be particularly decisive for the individual V2B2 

emission reduction potential. If commuters who return home late shift their charging process 

to the workplace within V2B2, they profit by up to 10% above average. On top of that, our results 

indicate that especially commuters with long driving distances profit above average from 

implementing V2B2, especially if they arrive home later. In detail, we find that commuters who 

drive at least 110 km a day and arrive home after 08:00 p.m. exceed the average potential by 

more than 10%. In addition, the concept seems particularly suitable for users who can cover a 

high share of their daily residential demand with the BEV. We find that this tends to be the 

case for commuters who arrive home before 06:00 p.m.. Since the coverage of residential 

demand depends on BEV availability and the basic course of demand rather than on absolute 

consumption, these findings are well transferable to future conditions.  

In summary, our results of research paper 1 reveal that V2B2 for emission reduction through 

spatiotemporal residential load shifting exhibits both a strong seasonal dependence under 

central Europe weather conditions and a strong dependence on individual user behavior. 

Therefore, to ensure the most efficient implementation of V2B2, our results vote for a target 

group-specific incentivization strategy. As the literature primarily recommends monetary 

incentives (Kacperski and Kutzner, 2020), implementing time-dependent private electricity 

tariffs seems particularly promising. Especially in summer, tariff makers could encourage a 

shift to daytime charging by making late and night-time charging more expensive (Chakraborty 

et al., 2019). In winter, they might encourage later charging times at night, when emissions are 

at their lowest, to achieve the most efficient ecological contribution to our target of a net-zero 

energy future. 

The transition to BEVs not only offers emission reduction potential for residential electricity 

demand through V2B2, but also provides potential for other buildings. Compared to other 

commercial buildings, hotels demonstrate one of the highest energy demands, offering great 

decarbonization potential (Chung et al., 2015; Dibene-Arriola et al., 2021). Thereby, 85% of 

the energy demand is covered by purchasing energy, causing up to 90% of the associated 

emissions, depending on the composition of the electricity mix (Huang, Wang and Wang, 

2015). The travel patterns and mobility of hotel guests, especially their reliance on fossil-based 

transportation for arrival and departure, substantially elevate the carbon footprint associated 

with their stay. Given the hotel owner’s responsibility for Scope 3 emissions under the 
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Greenhouse Gas Protocol, hoteliers should consider guest mobility as a crucial factor in their 

sustainability strategies. Additionally, with the ongoing electrification of the transport sector, 

hotel guests increasingly demand onsite charging as a substitute for convenient home 

charging. During vacations, hotel guests anticipate seamless mobility, enabling them to enjoy 

the flexibility to engage in a variety of activities. Thus, the charging demand further burdens 

hotel energy demand, i.e., emissions (Funke et al., 2019). This is especially true for hotels in 

rural areas where the surrounding infrastructure is less developed regarding charging stations. 

Besides emissions, the already high costs for purchased energy will continue to rise with 

increasing CO2 prices demanding a solution to maintain energy costs within acceptable bounds 

(European Commission, 2019). Hence, the development of an EMS to enhance RES utilization, 

digitize energy management, and enable the utilization of energy flexibilities with the help of 

digital technologies may accelerate the change toward sustainable hospitality and decrease 

energy costs (e.g., Heffron et al., 2020; Leinauer et al., 2022). Integrating BEVs into a 

building’s EMS provides additional electricity storage capacity and fle ibility to interact with 

the electricity market and increase RES utilization (Liu et al., 2013). Similar to the V2B2 EMS 

at the workplace, it is crucial to incorporate the interests of all stakeholders of the hotel, 

including hotel guests, owners, and energy suppliers, to ensure their acceptance and utilization 

of the IS. The literature regarding EMS lacks, to a large extent, the consideration of hotels, as 

the focus lies primarily on residential, industrial, and office buildings (Mariano-Hernández et 

al., 2021). Additionally, the studies that consider hotels and model individual appliances 

concentrate on cost reduction than emission reduction (Mavrotas et al., 2003; Souza Dutra, 

Anjos and Le Digabel, 2019). Turning to the literature on V2B, we also see a strong emphasis 

on cost reduction rather than emission reduction in residential and office buildings, and a 

general lack of specific buildings such as hotels (Pearre and Ribberink, 2019). As demonstrated 

in research paper 1, it is imperative to consider BEV drivers’ behavior for coordinated 

(dis-)charging and energy consumption at times with low emissions, as it directly affects the 

available battery capacity of BEVs during the day. However, real-world data integrated into the 

V2B studies consist mainly of commuter driving behavior (research paper 1, Mao, Zhang and 

Zhou, 2018; Barone et al., 2019) and fleet vehicle availability (Barone et al., 2020). 

Recreational mobility behavior at the destination differs significantly from daily commuting, 

as it involves a more flexible schedule and a wider range of activities (Bursa, Mailer and 

Axhausen, 2022).  

Therefore, in research paper 2, we analyze the environmental and economic potentials of 

integrating a V2B concept in a hotel EMS, taking into account the recreational mobility 

behavior of hotel guests. We develop a hotel-specific EMS, including the V2B approach, in the 

form of a quantitative optimization model that aims to reduce either emissions or costs. For 
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evaluation, we implement our model using real-world data from a hotel in Central Europe. The 

EMS considers the complex energy demand of a hotel by individual modeling various 

appliances in areas such as wellness, kitchens, and guest rooms. Additionally, we include the 

mobility behavior of hotel guests, i.e., the BEV’s availability, as it differs drastically from 

everyday mobility behavior and has a major impact on the emission reduction potential. 

To develop the optimization model of a hotel’s EMS, we categorize the components of the EMS 

into four distinct areas, also illustrated in Figure 3. 

1. Hotel Electricity Demand encompasses both controllable and non-controllable 

appliances. Controllable appliances, such as Heating, Ventilation, and Air-Conditioning 

(HVAC) systems, dishwashers, and laundry machines, can have their usage adjusted based 

on optimization algorithms within specific framework conditions. In contrast, non-

controllable appliances, including lighting and elevators, operate according to fixed 

schedules or immediate demand. 

2. Energy Storage encompasses V2B capable BEVs and a stationary electricity storage 

system. Both systems can store electricity, either from the grid or locally generated via PV, 

and supply it back to the hotel. 

3. Electricity Generation involves the generation of electricity through a PV system. The 

PV system harnesses solar energy to produce electricity, contributing to the hotel’s 

renewable energy supply. 

4. Grid Connection includes both static and variable pricing structures for electricity 

purchased from the grid, as well as the associated emissions. The grid connection is a 

bac up to meet the hotel’s energy demands when renewable generation and storage are 

insufficient. 

 

Figure 3. Overview of the optimization model of a hotel’s EMS 

(1b) Time controllable appliances constraints

Dish washers (D), washing machines (W), dryers 

(Y), guest rooms (R), guest room appliances (G)

- Power level (D, W, Y, R, G)

- Running length (D, W, Y, R, G)

- Usage time frame    (D, W, Y, R, G)

- Maximum load (R, G)

- Temperature            (R, G)

- Heating                    (R, G)

(1a) Non-controllable 

appliances constraints

Kitchen (K), Operational 

demands (O), Sauna (S)

- Running length (K, O, S)

- Maximum load (K, O, S)

- Usage time frame   (K, O, S)

- Power level (S)

(1c) Power-level controllable appliances constraints

V2B-capable EVs (C), E-Bikes (B), HVAC wellness (V), common room (U),

Water heater (WH), Pool (P)

- State of charge (C, B)

- Battery of efficiency (C, B)

- Non-simultaneous (dis-)charging (C, B)

- (Dis-)charging speed (C, B)

- Availability (C, B)

(2) Energy storage 

system constraints

- State of charge

- Storage efficiency

- Non-simultaneous

(dis-)charging

- (Dis-)charging speed

- Tapering prevention

Energy Management System

OBJECTIVE FUNCTIONS

MIN    Costs (fixed energy price) 

Costs (variable energy price)

CO2 emissions

(4) Grid connection

- Balance of supply

and demand

- Grid demand limit

- Surplus PV feed-in 

HOTEL

- Charging limit         (C, B)

- Power ramp (C)

- Temperature            (V, U)

- Heating                   (V, U)

- Water tank heating  (WH)

electricity flow information flow

(3) Electricity Generation (constraints c.f. (4))
(1) Hotel Electricity 

Demand
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Based on this categorization, we construct our optimization model by accounting for each 

component’s specific energy flows and operational constraints. This model aims to optimize 

the overall energy management of the hotel, balancing demand, storage, generation, and grid 

interaction to achieve cost efficiency or CO2 efficiency (Gruber and Prodanovic, 2014). The 

study employs Mixed-Integer Linear Programming optimization to assess three distinct 

objective functions (OF), contrasting two variants of a cost-based EMS (fixed and variable 

retail price) against a CO2-based EMS. 

Our findings reveal significant differences in economic and environmental costs, seasonality, 

and V2B usage depending on the applied OF. Using our CO2-based OF, our real-world case 

study reveals the greatest savings of 152.84 kg CO2 during spring compared to a cost-based OF 

with fixed prices. Notably, this CO2 reduction incurs an additional energy cost of only EUR 

8.86, emphasizing that a CO2-minimizing EMS can be both environmentally and economically 

viable. The cost of these savings is lower than the market price for a ton of CO2 on the same 

day. When scaled up to one ton, the expenses for these CO2 savings add up to EUR 58.14, 

whereas offsetting at market prices costs EUR 84.20 per ton (Trading Economics, 2022). The 

V2B function contributes to cost and emission reduction in the EMS in varying degrees. In the 

OF with fixed electricity prices, the EMS utilizes the V2B function only during midday to meet 

the hotel’s high energy demands. Conversely, in OFs with variable electricity prices and 

emission factors, the EMS employs the V2B function differently across seasons, depending on 

the availability of PV power, BEV availability, and hourly price or emission levels. Notably, the 

mobility group with a single distant stop, with the longest time spent at the hotel, discharges 

the most energy from the BEV’s batteries to the hotel.  ence, this study provides valuable 

insights into the trade-off between cost-based and CO2-based digital EMS. It demonstrates the 

importance of considering hotel guests’ recreational mobility behavior when incentivizing and 

scheduling applications within their flexibility constraints. 

Summarizing the first two papers that analyze and apply V2B approaches in the context of daily 

commuting and recreational mobility, we conclude that consistently pursuing the Paris climate 

goals leads to a paradigm shift prioritizing carbon reduction over mere cost savings. We, 

therefore, advocate focusing on emission reduction in an area traditionally dominated by cost-

based strategies. Further, both presented EMSs can only be fully effective if individual mobility 

patterns are included in the systems’ development. For successful implementation and 

utilization, incentives must be tailored to prevailing conditions. Therefore, it is crucial to 

consider both time-dependent electricity generation from RES and individual mobility 

patterns, which are influenced by mobility needs and personal preferences. 
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II.2 Management of Large-Scale Fast-Charging Hubs 

Fast-charging infrastructure (i.e., level 3 charging) enables long-distance travel without 

excessively long charging times, and even if seldom used, it is a basic prerequisite to cover all 

personal mobility needs with BEVs (Funke et al., 2019; Funke, Plötz and Wietschel, 2019). This 

type of infrastructure is specifically required along highways and country roads. The 

construction of LFCHs with a higher number of charging points will steadily become more 

relevant as fixed costs per charging station decrease with an increasing number of installed 

charging stations (Nicholas, 2019). Thus, LFCHs will be more economical for CPOs and, as a 

result, more common in the future (Haupt et al., 2020). While investment in LFCHs is 

economical, operational profitability hinges on the location-specific utilization rates of the 

charging stations, which are influenced by the surrounding BEV usage and local traffic volume 

(Baumgarte, Kaiser and Keller, 2021). Today’s BEV market share of 12 % within the EU (ACEA 

- European Automobile Manufacturers’ Association, 2024) is still low and unevenly 

distributed, leading to unprofitable fast-charging infrastructure in many European areas and 

regions. To cover their fixed and variable electricity costs, many charging stations rely on policy 

support or exceptionally high charging tariffs (Madina, Zamora and Zabala, 2016; European 

Federation for Transport and Environment AISBL, 2020; Baumgarte, Kaiser and Keller, 2021). 

To improve profitability and mitigate risks associated with fast-charging infrastructure 

investments, operators can reduce operational costs or explore strategies to increase revenue. 

While cost reduction for fast-charging infrastructure is already well-researched, revenue 

maximization has received less attention. Thus, in research paper 3, we examine the 

applicability of the RM theory to LFCHs and develop an axiomatic quantitative dynamic 

pricing model to evaluate the quantitative impact. We conduct a simulation case study to 

identify the revenue improvements dependent on differently sized LFCHs through dynamic 

pricing compared to a fixed-price setting. 

To transfer RM theory to the distinct context of LFCHs, we build a theoretical framework that 

demonstrates how a dynamic pricing approach can be implemented in an LFCH. Therefore, 

we identify the core elements of RM and map them onto the characteristics of LFCHs. This 

literature-based alignment is grounded in the business model, resource availability, cost 

structure, and customer behavior inherent to LFCHs and results in the framework presented 

in Table 2. 
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 RM Element Specification for the LFCH 
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Integration of an 
external factor 

The external factor in an LFCH is a customer in the form of a BEV 
driver who decides to charge the BEV and start a charging process. 

Stochastic, 
heterogenous demand 

The demand trend of the LFCH depends on the location and is, for 
instance, influenced by the time of the week and the fluctuating, 
stochastic traffic volume of the adjoining roads (Xydas et al., 2016; 
Hecht et al., 2020; Baumgarte, Kaiser and Keller, 2021). 

Operational lack of 
flexibility 

Two resources constrain the LFCH capacity: the number of 
charging points, and the total available power capacity, which both 
have an operational lack of flexibility. The number of charging 
points is fixed in the short term. An increase is subject to a strategic 
decision and requires a long-term construction project. 

The total power capacity is either constrained by the physical limits 
of the transformer that can, analogue to the charging points, only 
be increased by a long-term construction project. Or the total power 
capacity is capped to limit peak demand costs. 

Standardization of 
products and processes 

The offered charging products of an LFCH differentiate by the 
charging power. The charging process is standardized and 
independent of the chosen product. The customer starts the 
charging process and ends as soon as a requested or predetermined 
SoC of the battery is achieved. 
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Myopic customers 
(Elmaghraby and 
Keskinocak, 2003) 

An LFCH is often located close to highways or other highly 
frequented country roads, as these locations face a high demand for 
fast-charging, given the typical long-distance journeys (Yang, Tan 
and Ren, 2020). Due to this travel behavior and the dominating 
one-time customers who do not pass the LFCH regularly, it can be 
assumed that customers make myopic decisions based on the 
current price. 

Infinite population 
(Talluri and van Ryzin, 
2004) 

Given that electricity is a consumable good it can be considered as 
an infinite population. 

Aggregate demand 
functions (Talluri and 
van Ryzin, 2004) 

The profitability of an LFCH is determined by the collective 
behavior of the population of charging BEVs. Consequently, 
aggregate demand functions represent the population's behavior 
rather than the individual assessment of BEV drivers. 
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No replenishment 
(Elmaghraby and 
Keskinocak, 2003) 

Since the LFCH is connected to the power grid and the power 
supply can be regarded as continuous, customers do not consume 
power and charging points; they use it for a limited time. Once the 
customer leaves the LFCH, a complete restoration of capacities 
occurs. 

Flexible resources 
(Bitran and Caldentey, 
2003) 

Within the capacity limits, the two resources charging points and 
total power capacity allow for a flexible allocation of resources to 
charging products, i.e. they can offer every charging product. 

Both classes of 
dynamics (den Boer, 
2015) 

In an LFCH, two classes of dynamics exist. First, the demand 
changes over time, for example, due to a variable traffic load, and 
therefore the demand functions change (Xydas et al., 2016; Hecht 
et al., 2020). Second, the LFCH utilization varies and the resource 
capacities adapt. 
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(Bitran and Caldentey, 
2003) 

To serve BEVs with different maximum charging power and to 
utilize the heterogeneous WTP, multiple products should be 
considered in the dynamic pricing model, which are optimized 
simultaneously. 

Continuous or discrete 
prices (Bitran and 
Caldentey, 2003) 

LFCH operator are not restricted in the pricing of their products, 
leading to a continuous price range. 

Adjustability of prices 
(Talluri and van Ryzin, 
2004) 

The prices are highly adjustable due to the rapid dissemination of 
price changes, for instance, through charging apps or navigation 
apps. Thus, a price change does not generate additional costs for 
the LFCH operator. 

Table 2. Framework for Applying RM with Dynamic Pricing in an LFCH 

After creating the theoretical framework, we develop a dynamic pricing model in the form of a 

mixed integer linear programming model. The dynamic pricing model consists of two sub-

models: a demand model and an optimization model. The optimization model determines the 

optimal price for the charging products offered at the LFCH based on the demand forecast 

provided by the demand model. As the demand for one charging product influences the 

availability of the remaining resources for other charging products, simultaneous price 

optimization of all charging products is necessary to integrate those dependencies into the 

model. Since the price optimization is deterministic, we incorporate the stochastic realization 

of customers, i.e., the actual utilization of resources in the LFCH, by splitting the day into 

multiple periods using a rolling window approach. Hence, the dynamic pricing model sets the 

optimal price of all charging products for one period, considering the expected demand and 

resource availability. Afterward, the customers realize stochastically based on the pronounced 

price for this period. For the following period, the optimization model incorporates the 

resource utilization of the actual, stochastically realized customers.  

To analyze the revenue effects of the developed dynamic pricing model in an LFCH, we apply 

the model to a case study for various exemplary LFCHs closely connected to the highway. Our 

analysis indicates that using RM in the form of dynamic pricing is reasonable for an LFCH as 

it can increase the operator’s revenues at times when at least one of the two resources for 

providing a charging product – the total power capacity or the number of charging points – is 

scarce. Thus, an optimal allocation of potential customers to available resources is required. 

Rapid BEV adaptation and a lack of charging infrastructure expansion will make peak demand 

situations in LFCHs more frequent in the near future. This is particularly evident in countries 

anticipating a serious market ramp-up of BEVs where the expansion of charging infrastructure 

is lacking (Gnann et al., 2018; Funke et al., 2019). Even with an adequate expansion of 

charging infrastructure, resources may be fully utilized during periods of peak demand because 

LFCHs are typically planned cost-effectively. Therefore, isolated peak times do not justify the 

additional investment costs. Furthermore, providing a one-time high total power capacity also 
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induces high fixed operating costs due to the price structure of electricity procurement and is 

therefore often capped. Consequently, revenue and demand management become crucial in 

providing charging services. 

Further, our results underline that the relative revenue improvements depend on the LFCH 

design. In the case study, the resource combination of high total power capacity and a low 

number of charging points exhibits the largest potential for increasing revenue. Although the 

dynamic pricing model improves the revenue of the LFCH in any scenario with scarce 

resources, it never compensates for an unfavorable combination of resources. This highlights 

the importance of strategic LFCH design decisions and their influence on profitability. The 

number of charging points should initially be chosen in accordance with the expected demand 

because expansion is always associated with major construction work. On the contrary, the 

resource limitation of the total power capacity is invisible to potential customers, who may 

experience irritation and frustration due to slower charging processes than expected. This 

invisibility highlights the necessity for an additional solution. 

Limited total power capacity leads to a growing gap between prior (individual) expectations 

and the actual performance regarding the servicing time of charging. According to EDT, this 

gap negatively impacts customer satisfaction (Oliver, 1980; Tse and Wilton, 1988). Further, 

the demand for immediate charging at LFCHs provides no flexibility for shifting the charging 

processes, thus, in situations with limited total power capacity, an actual power bottleneck 

occurs. Allocating the limited available power among all charging BEVs at an LFCH naively, 

i.e., uniformly, will not systematically address customer satisfaction in charging BEVs. This 

uniform power allocation potentially even harms the acceptance of electric mobility. Therefore, 

in research paper 4, we analyze the problem at hand with a social choice theory grounded 

optimization model based on a utilitarian welfare function that explicitly accounts for gaps 

associated with unexpected long(er) servicing times at LFCHs. Further, we evaluate the 

applicability of the derived optimization model with a simulated case study, including different 

utilization scenarios to represent a current real-world case and multiple future cases. 

Previous literature already identified that the gap between prior expectations and actual 

performance plays a central role in influencing customer satisfaction regarding fast-charging 

service (Halbrügge, Wederhake and Wolf, 2020). In the context of fast-charging service, 

customer satisfaction is generally lower if the gap is larger. In addition, the relationship 

between the gap and the resulting satisfaction appears to be non-linear. According to Lin et al. 

(2015), this non-linear correlation especially holds for negative service-expectation deviations. 

This implies that the longer the charging process duration deviates from a customer’s 

expectation, the increasingly less satisfied the customer will be with the charging service. 

Uniform power allocation does not take into account the resulting gap between expected and 
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actual servicing time. BEVs with lower maximum charging power tend to experience smaller 

gaps because they receive the (almost) expected power allocation. Conversely, BEVs with 

higher maximum charging power receive considerably less charging power than expected, 

resulting in a larger gap. Consequently, there is a spectrum of customers with small and 

considerably large gaps. Moreover, the interdependency with other concurrently charging 

BEVs in the LFCH introduces a notable degree of variability and uncertainty for BEV drivers 

across multiple charging events, further aggravating their dissatisfaction (Meyer, 1981). 

In general, the CPO decides on the realized power allocation (among the BEVs) and might – 

due to the respective power bottleneck situation – allocate less power than the BEV can be 

charged with. By applying energy-quantity-based pricing for the charging service, reallocating 

the same overall amount of power at one point in time between different BEVs does not change 

a C O’s costs, as the demand peak remains the same. Consequently, the CPO may benefit from 

reallocating power to address and improve overall customer satisfaction without (negative) 

effects on its costs. In other words, the CPO is indifferent between a given set of feasible power 

allocations from a cost perspective, which directly enables a reallocation of power to increase 

the aggregated vehicle driver satisfaction. All allocations will be Pareto efficient in a bottleneck 

situation, i.e., no vehicle drivers’ satisfaction can be improved without harming another driver. 

In this context, social choice theory builds on welfare economics and aggregates the 

preferences/behaviors of individuals, resulting in the concept of social welfare. The possibility 

to aggregate, e.g., summing up, individual satisfaction is subject to interpersonal 

comparability. There are different ways in which social welfare can be defined. One possibility 

is to sum up each satisfaction and treat each individual equally. Maximizing the social welfare 

of equally treated individuals (i.e., in a non-discriminatory way) refers to the utilitarian welfare 

function, also called the Benthamite welfare function (Bentham, 1970). 

Hence, we develop an optimization model whose objective is to enhance welfare through 

optimized power allocation while operating at a pre-defined power bottleneck. Our 

optimization model is the final layer in a holistic control system for the LFCH that allocates the 

available power in real-time to the charging stations with plugged-in BEVs in bottleneck 

situations, as shown in Figure 4. Based on EDT, the gap between service expectation and actual 

service performance is at the core of each vehicle driver’s evaluation of the servicing process. 

Thus, we measure satisfaction with a charging process by the gap between actual and expected 

servicing time for each vehicle driver d, i.e., Δ𝑇𝑖𝑚𝑒𝑑 = 𝑇𝑖𝑚𝑒𝑑
act − 𝑇𝑖𝑚𝑒𝑑

exp
. Maximizing the 

vehicle driver’s satisfaction, this gap needs to be minimized. The more the actual servicing time 

exceeds the expected servicing time, the increasingly less satisfied the vehicle driver tends to 

be. Therefore, we use an exponent to model the effect that stronger forms of aversion lead to 

larger gaps: Δ𝑇𝑖𝑚𝑒𝑑
𝑞, with 𝑞 > 1. Finally, following the social choice theory, we aggregate 
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individual utilities, i.e. charging customers,  using a utilitarian welfare function to maximize 

welfare: max     𝑊(𝑃𝑜𝑤1, … , 𝑃𝑜𝑤|𝐷|) = −∑ (Δ𝑇𝑖𝑚𝑒𝑑 + 1)𝑞𝑑 ∈ 𝐷 . 

 

Figure 4. Model setting. The stated numbers along the different lines indicate the number of 
connected components or actors 

For evaluation, we conduct a simulated case study that includes a scenario analysis of varying 

bottlenecks (i.e., total power capacity) and varying numbers of charging BEVs. Further, we 

evaluate five cases regarding the technological advancement of BEVs, which is characterized 

by an increasing battery capacity and maximum charging power, as well as an adjusted market 

share per BEV vehicle type. The results demonstrate that the optimized power allocation 

enhanced customer satisfaction compared to a uniform benchmark allocation. This is reflected 

not only in improving overall customer satisfaction with an increased welfare gain but also at 

the individual vehicle driver’s level by a reduction of the average gap in minutes since extreme 

values could be eliminated. Improvements for individual vehicle drivers can especially be 

realized concerning decreasing standard deviations of servicing times, as uncertainty 

additionally negatively affects satisfaction. It should be emphasized that welfare gains of our 

model – associated with generally reduced gaps – increase with a scarcer average available 

power per BEV compared to the benchmark power allocation, as long as there are sufficient 
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planning degrees of freedom. Such effects may be considered “positive” as they add the more 

welfare, the more critical the bottleneck. However, the absolute level of welfare generally 

declines the stronger, the scarcer the available power per BEV. We can, therefore, conclude 

that our model will generally utilize resources more “efficiently” than a uniform power 

allocation between all charging BEVs (i.e., our benchmark power allocation). However, similar 

to the dynamic pricing approach, our model may not overcompensate for poor LFCH planning, 

where power bottlenecks appear to be very large (Gnann et al., 2018). This may be the case 

when such a big gap between expected and actual servicing time results in the vehicle driver 

not recognizing an improvement due to the optimized power allocation. Overall, we 

quantitatively support the initial hypothesis that allocating power uniformly across all 

charging stations is not optimal concerning customer satisfaction using a utilitarian welfare 

function. 

To conclude the papers regarding LFCHs, even with optimal planning in the design phase, 

scarce resource capacities will occur due to irregular demand peaks. Therefore, dynamic 

pricing enables optimized use of resources to enhance profitability for LFCH operators and 

reserve resources for urgent charging demands. However, with the stochastic realization of 

customers, it is foreseeable that bottleneck situations of limited total power capacity will 

continue to occur. To enhance customer satisfaction by minimizing the gap between expected 

and actual servicing time, we developed an optimization model for non-linear power 

allocation. With technological progress and an additional increase in the number of BEVs on 

roads, it is important to emphasize that our dynamic pricing and customer satisfaction 

enhancement approach is becoming increasingly relevant as bottleneck situations will occur 

even faster and more frequently. Hence, intelligent layering and integration of ISs for the 

optimal operation and management of an LFCH can boost electromobility due to increased 

customer satisfaction, i.e., acceptance of electromobility, as well as the crucial expansion of 

charging infrastructure by securing profitability for LFCH operators.  
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III Reducing Travel Demand via Active Visitor Management 

While reducing GHG emissions by transitioning from ICVs to BEVs is a vital step towards a 

more sustainable mobility system, it is not a sufficient standalone solution. As Nykvist (2008) 

argues, transportation systems should not only mitigate their impact on global warming but 

also avoid harming the natural environment. Environmental damage, particularly resulting 

from overloading mobility infrastructure, manifests in forms such as traffic congestion, 

prolonged search times for parking spots, and illegal parking (McKinsey&Company, 2017; 

Paidi et al., 2022). The interplay between utilization and environmental damage (Monz, 

Pickering and Hadwen, 2013) leads to problems such as alterations in vegetation, shifts in 

wildlife behavior, compromised water quality, and elevated levels of noise and air pollution 

(Liddle, 1997; Newsome, Moore and Dowling, 2012; Wall, 2019).  

The challenges particularly arise at popular touristic POIs, where destination management 

organizations (DMOs) have often prioritized fast economic growth, resulting in uncontrolled 

tourism growth and, consequently, mobility growth (Séraphin et al., 2019; Butler and Dodds, 

2022). Due to insufficient implementation of sustainability-oriented recreational mobility at 

the often environmentally vulnerable destinations, the non-scientific community came up with 

the term overtourism to describe the negative impacts stemming from the constant growth of 

tourism (Ali, 2016, 2018). Closely related to overtourism is the concept of overcrowding, which 

refers to the temporary accumulation of people rather than the long-term problematic 

development of unsustainable tourism (Butler, 2018; Oklevik et al., 2019). In tourism, human 

crowding (i.e., limited space) and physical crowding (i.e., limited activities) are particularly 

relevant (Yin et al., 2020) and are reflected in the associated arrival traffic. Thus, overtourism 

and overcrowding are concerned with the subjective perception of the situation and its 

measurable impacts rather than relying on an absolute measurement of carrying capacity 

(Wall, 2019; Dogru-Dastan, 2022). Regarding location, overcrowding primarily occurs at 

freely accessible tourist destinations and POIs without access restrictions. These may include 

open-access, often historic, city centers or open-spaced, natural POIs. By an open-spaced POI, 

we understand a site that does not include a clear boundary allowing people to move freely and 

widely. While prior tourism-based research predominantly focused on overcrowded cities like 

Venice or Barcelona (McKinsey&Company, 2017; Mihalic, 2020; Butler and Dodds, 2022), 

natural POIs are highly vulnerable to environmental damage resulting from the strain on their 

often underdeveloped mobility infrastructure. 

To mitigate the harmful effects of overtourism and overcrowding, implementing visitor 

management measures is crucial for distributing tourists both temporally and spatially 

(Zelenka and Kacetl, 2013; McKinsey&Company, 2017). There are two approaches to 

implementing visitor management, referred to as "hard" and "soft" approaches (Kuo, 2002). 
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While "hard" visitor management is mandatory, "soft" visitor management is optional and may 

result in the self-regulating behavior of the tourists (Mason, 2005). Kuo (2002) separates the 

"hard" approach into three subcategories: (1) physical (e.g., constructions to protect nature 

sites, viewing platforms) (Butler and Dodds, 2022); (2) regulatory (e.g., rules and regulations 

to limit the number of visitors) (Bertocchi et al., 2020); and (3) economic (e.g., dynamic pricing 

or increased entry fees to distribute visitors to less popular days) (Enseñat-Soberanis, Frausto-

Martínez and Gándara-Vázquez, 2019). On the other hand, "soft" approaches appeal more to 

the visitor's goodwill by informing them about alternative tourist destinations or offering 

directional information like signs or a code of conduct (Kuo, 2002). If too many visitors are 

already at the POI, hard measures are no longer sufficient. Instead, preventive measures with 

close monitoring and active visitor management are required, specifically at open-spaced 

natural POIs (Schmücker et al., 2022).  

The following sections are, thus, devoted to the partial development of an active visitor 

management system to distribute visitors across multiple tourist destinations. The aim is to 

reduce associated mobility at the crowded destination without overloading another region. 

Section III.1 dives into monitoring an open-spaced and freely accessible POI aiming at the 

occupancy prediction of potential overcrowding events (research papers 5 and 6). Section III.2 

elaborates on the identification of similar tourist destinations to enable recommendations 

based on similarity rather than geographical proximity to reduce overcrowding in a specific 

region (research paper 7). 

III.1 Occupancy Prediction at Touristic Points of Interest 

In active visitor management, spatiotemporal granularity is arguably the most important 

property of occupancy prediction of open-spaced and freely accessible POIs. Identifying 

potential overcrowding events via monitoring and prediction necessitates a fine-grained 

analysis of both the geographical location and the temporal distribution. A systematic 

literature review of peer-reviewed research articles (Webster and Watson, 2002) revealed that 

the number of approaches for fine temporal or spatial granularities is quite limited. Regarding 

the time dimension, monthly and seasonal granularity are the most frequently used prediction 

times, whereas week is less frequently used than day. This may be because the day of the week 

plays an important role in tourism, as weekends are usually significantly more crowded than 

weekdays. Similarly, we observed that the year is a less frequently investigated prediction 

period, possibly due to its limited expressiveness. Regarding the spatial dimension, an 

interesting exception occurs for closed areas (i.e., hotels and parking lots), which have been 

more frequently regarded than open-spaced POIs, cities, or regions. Most likely, however, this 

is because closed areas are much easier to analyze due to the availability of clear measurement 
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points and (often) booking data. In addition to these separate perspectives, the combination of 

both dimensions is particularly interesting within the scope of active visitor management. The 

combination confirms that for open-spaced POIs, no research exists for an hourly prediction, 

and only below 1% of research includes a daily occupancy prediction. 

Hence, to enable active visitor management at an open-spaced POI, we investigate in research 

papers 5 and 6 the predictive performance of various prediction models in predicting 

occupancy, especially peak occupancy. Further, we analyze what impact search query data have 

on the prediction performance and how the individual features influence the predicted value. 

To answer these research questions, we conduct a case study focusing on beach occupancy at 

the Bay in Lübeck, Scharbeutz, located on the Baltic Sea in northern Germany. We compare 

various cases in the prediction model development to pinpoint the optimal configuration to 

enable active visitor management. In predicting visitor movements, we differentiate between 

two variations: the visitor count prediction (which merely accounts for the entering people) 

and the occupancy prediction, which considers the beach occupancy. We further compare the 

performance of two different temporal aggregations, called time granularity, with 4-hour and 

24-hour timesteps because a higher aggregation may result in better predictions for a longer 

prediction time horizon. The spatial granularity refers to the spatial segmentation of the POI, 

where we consider entrances, beach sections, and the beach. In addition, we compare three 

different prediction time horizons: four hours, one day, and three days ahead, i.e., how far in 

advance the visitor movements are predicted. 

Our analysis reveals that XGBoost and Random Forest stand out as the most suitable 

prediction models for visitor movement prediction to enable active visitor management (c.f. 

Figure 5). Despite the slightly weaker prediction accuracy of beach occupancy compared to 

visitor count, beach occupancy remains a vital and required prediction for facilitating active 

visitor management. While visitor count merely reflects the number of ingoing individuals, it 

lacks information about the duration of their stay - a critical factor influenced by external 

variables such as season or weather. Consequently, precise identification of crowding or 

overcrowding times based solely on visitor count is challenging for the DMO. For instance, a 

similar visitor count in summer may result in overcrowding due to prolonged stays, while in 

winter, people often take brief walks and cause no overcrowding. In contrast, beach occupancy 

encompasses both the duration of stay and the precise time of crowding and overcrowding, 

providing a more nuanced understanding and enabling the implementation of time-specific 

steering measures. This underscores the significance of occupancy prediction in active visitor 

management, streamlining the need for multiple threshold definitions to initiate appropriate 

measures. Further, the beach occupancy prediction model should be applied at a larger spatial 

granularity, such as the entire beach. This approach ensures accuracy in occupancy 
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calculations, even when individuals use different entrances for exiting compared to entering 

the beach. Additionally, our findings suggest a preference for a shorter prediction time horizon 

for beach occupancy, as it significantly enhances prediction quality. 

 

Figure 5. R2 measures for the visitor movement, both occupancy (a) and visitor count (b), on the 
beach across all model types and prediction time horizons with a time granularity of 4 hours 

Concerning the integration of Google Trends data, our findings align with those of Önder et al. 

(2019). Due to the variability between use cases, an individual assessment of the improvement 

potential is required for each case. The marginal impact and modest improvement observed in 

the prediction models upon integrating Google Trends data can be attributed to the inherent 

characteristics of the data itself. Factors such as holidays or weather influence search query 

data and, thus, overlap with the features of our visitor movement prediction models. 

Consequently, the shared reliance on these influencing factors diminishes the potential for 

substantial improvement in the prediction models. However, despite the marginal 

improvement, the Google Trends features are still considered important in the SHAP value 

analysis because they reflect a similar trend to the visitor movement. Hence, due to the 

overlaps and dependencies with the Google Trends data, they distort the importance of the 

other features. Therefore, the importance of the factors should be interpreted without Google 

Trends data. 

To analyze the importance of features and how they influence the prediction, we utilize SHAP 

values. The most important features are the lagged historical values, time-related, and holiday-

related features. The mixed importance of weather categories implies that tourists primarily 

focus on simple weather forecasts, including temperature or precipitation form, but do not 

consider more detailed information. Our findings show that including detailed weather 

features only impacts visitor movement predictions when tourists consider such information 

during their planning process. Here, it is essential to emphasize in enhancing prediction 

models that the primary objective is not the precise prediction of visitor movement but, rather, 

the accurate anticipation of peak periods. Already, the correct identification of peaks during, 
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for example, holidays or breeding season allows one to decide about the right steering 

measures in an active visitor management system. Besides the potential improvement of the 

prediction models, the transferability to other public, open-spaced POIs is essential. Generally, 

the presented approach serves as a blueprint for measuring and predicting visitor count and 

occupancy of a public, open-spaced POI to identify potential demand peaks. The first step to 

transferring the approach to a new POI is to define the geographic boundaries of an 

overcrowded and monitored POI. Secondly, as with the beach entrances in Scharbeutz, sensors 

should be installed at natural bottlenecks, where there are optimally no or only unattractive 

alternative routes for people to pass by. Thirdly, data collection begins after installation, and 

visitor capacity updates may be accessed through DMO portals. After accumulating sufficient 

data over at least one season, the ML models XGBoost and Random Forest can be trained, 

evaluated, and deployed for ongoing occupancy monitoring and prediction. In addition to the 

universal implementation of occupancy prediction systems for individual use cases, models 

trained in similar environments, such as beaches, may be reused for comparable settings. 

Distinct POIs, such as mountainous regions geared towards hiking, necessitate developing new 

models tailored to specific features. However, determining the extent to which model reuse is 

feasible and identifying relevant features per case category remain areas for further 

investigation. The nature of the POI determines whether we can predict only visitor count or 

both visitor count and occupancy. Predicting occupancy is feasible for POIs resembling the 

beach, where visitors tend to stay and use the same exit as the entrance. However, at POIs like 

mountains with diverse hiking paths, visitors often choose different routes for the outward and 

return journey, resulting in higher error values when calculating occupancy. Despite this 

specific problem for occupancy prediction, visitor count still offers valuable insights with 

probably high prediction quality, and active visitor management remains feasible in multiple 

POIs to enable active visitor management. Identifying potential overcrowding events enables 

the development and implementation of an overarching active visitor management system that 

can mitigate peak times and ultimately benefit economic stakeholders, tourists, and the entire 

region towards sustainable growth.  

III.2 Data-Driven Identification of Similarities 

By predicting the tourism demand with ML algorithms, tourist destinations are able to better 

prepare in advance for days with peak demand. However, preparation at the destination itself 

is insufficient to avoid crowding and enable sustainable tourism. Therefore, overarching 

measures are required to distribute visitors across multiple tourist destinations and reduce the 

number of people at the crowded destination without overloading another region. One 

approach to developing sustainable IS, i.e., an active visitor management system, is a “data-
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based system that recommends sustainable product alternatives” (Tomkins et al., 2018; 

Lehnhoff, Staudt and Watson, 2021; Neubig et al., 2023). In this case, a visitor guidance 

concept serves as a solution, whereby in a predicted case of crowding (research papers 5 and 

6), a recommendation system directs the tourists in advance to alternative tourist destinations, 

i.e., an alternative POI or route. Hereby, the recommendation system's method of identifying 

alternative destinations determines whether crowding can be mitigated. Most current 

approaches recommend tourist destinations based on geological data and distance, which does 

not solve the crowding problem as most tourists stay in the general area (Yin et al., 2013; Wang 

et al., 2015; Pham, Li and Cong, 2017). Furthermore, many recommendation algorithms 

suggest popular POI instead of less overcrowded alternatives (Yuan et al., 2013; Yuan, Cong 

and Sun, 2014; Yao et al., 2016). This only increases the number of tourists at trending tourist 

destinations. To solve the crowding problem, the recommendation system should be based on 

the similarity of the tourist destination rather than geographical proximity. With the similarity 

of destinations as the basis of the recommendation system, the number of suggested 

destinations increases. Hence, tourists can choose from more destinations, and the crowding 

of overloaded regions can be reduced. Further, identifying similarities should be widely 

automated and digitized to enable large-scale use. 

While the similarity of POIs has been addressed in current research (Wang, Lu and Huang, 

2019; Zhao et al., 2019; Qiu, Gao and Lu, 2021), there is still a lack of literature considering 

the similarity of routes. In contrast to single POIs, a route can consist of several POIs and is 

composed of various properties. This implies that crowding occurs not only at the individual 

POIs but along the entire route in a larger area. Therefore, an alternative must be located 

outside this network of congested routes and crowded POIs. Especially for rural tourism, 

routes (e.g., trails, paths) are increasingly becoming more relevant for crowding analysis since 

recreational tourism, such as hiking, has increased significantly in recent years (Calbimonte et 

al., 2021). Furthermore, due to their exposed location, hiking trails are usually accessed by car, 

and there is a limited availability of parking spaces. If crowding on hiking trails can be 

mitigated, the environmental impact of travel mobility can also be reduced by limiting the use 

of shortcuts and eliminating illegal parking. Thus, in research paper 7, we develop a method to 

determine the similarity of routes based on their descriptive features. Thereby, we answer the 

question of how accurately various distance-based similarity and ML algorithms calculate 

route similarities using labeled and unlabeled data. Further, we analyze the most relevant 

features and how they influence the similarity prediction. To answer the research questions, 

we propose a method to evaluate the similarity of routes by applying and comparing two 

distance-based similarity and five ML algorithms. This approach is then applied and tested in 

a case study about the similarity of hiking routes in a nature park in the South of Germany with 
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descriptive company data provided by the online outdoor platform “Outdooractive”. In the case 

study, we integrate human expert knowledge by training and evaluating the models using 

survey results on the similarities of hiking routes conducted by nature park rangers. 

Furthermore, since many ML algorithms act like a “black box” (Bauer et al., 2021; Pfeuffer et 

al., 2023), we use SHAP values to shed light on the most significant descriptive features of the 

hiking routes and how they influence the prediction model. 

All relevant hiking route data was identified based on the geographical location within the 

nature park and downloaded using the Outdooractive API. After cleaning, 50 one-day routes 

are picked randomly using random sampling to get two sample datasets for further evaluation 

(Singh, 2003). Both contain the same routes, but in addition to the base dataset, the extended 

dataset also contains the tag features (e.g., dining, suitable for families). Both datasets are 

standardized before calculating the similarities to ensure that all features are on the same scale 

and, thus, no feature with a larger scale (e.g., length) could have a greater impact (Lesot, Rifqi 

and Benhadda, 2009).  

To determine the similarities between the hiking routes, we first calculate the Euclidean and 

Gower similarity for each route pair in the base dataset and the extended dataset on unlabeled 

data. Examining the correlation between prediction and rating from the expert survey reveals 

a positive correlation, which is supported by the Spearman rank correlation. When comparing 

the base dataset with the extended dataset, both similarity algorithms outperform across all 

metrics on the base dataset. Although the Gower similarity algorithm achieves a slightly higher 

R² and lower MSE score than the Euclidean algorithm, the Spearman rank correlation is higher 

for the Euclidean similarity. Thus, the distance-based similarity algorithms enable a general 

prediction of similarity. Comparing the results of the similarity algorithms with ML models, 

the ML models demonstrate superior performance, particularly when trained on the extended 

dataset. Already achieving higher R² values, there is a 4.2% increase in the R² score from the 

base to the extended dataset. Among the ML algorithms, Random Forest Regression performs 

the best, with SVR achieving lower R² and MSE scores but better results for the Spearman 

correlation. Despite the differences in performance among ML algorithms, the results are 

closely clustered. 

The utilization of SHAP values allows a closer examination of the various features. Figure 6 

presents a global SHAP values plot for the Random Forest Regression, the best-performing 

model, trained and evaluated on the extended dataset. All features with "tag" in their names 

exclusively belong to the extended dataset, while all other features are part of both datasets. 

Although calculated differently from the feature importance determined by the models, SHAP 

values also identify length as the most important feature, followed by the duration, maximum 

elevation, and total ascent. The most important additional feature from the extended dataset 
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is scenic, followed by the suitability of a route for families. Interestingly, despite the 15 least 

important features being tags (five depicted, ten not depicted), models trained on the extended 

dataset outperform those on the base dataset. Examining the distribution of features impact, 

we observe that the length values are mostly evenly distributed, although slightly skewed to 

the right. The time feature exhibits a high concentration of values with a negative impact of 

approximately -0.3. In contrast, values with a positive impact do not display a similar 

accumulation. The maximum altitude contains numerous values with minimal impact and 

several extreme outliers that notably influence the model output. In terms of correlation, we 

generally expect a negative correlation between the features and the target data, given that the 

features represent the distance between two routes. This holds true for most features, although 

with some exceptions (i.e., elevation descent or ridge). Concluding, the analysis of SHAP 

values allows for an interpretation of how various features influence prediction performance. 

However, it is essential to note that SHAP values describe the model's interpretation of features 

and may not capture general relations, given that the Random Forest Regression model does 

not achieve perfect results. This becomes evident as some features influence the model in the 

expected way while others do the opposite. 

 

Figure 6. SHAP values of the Random Forest Regression 

By analyzing and comparing various algorithms for distance-based similarity alongside ML 

approaches, we aim to pave the way for more sustainable recreational tourism practices and 

enrich the toolkit available to researchers and practitioners for recommendation systems in 

diverse domains. Contributing to practice, these insights enable the implementation of a 

recommendation system fit for the interest of users and to prevent crowding. Contrary to many 
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other recommendation systems, this approach can suggest routes outside of a crowded region 

based on inherent route similarity, contributing to a more even distribution of visitors. 

Therefore, the number of visitors can be aligned with the existing infrastructure, reducing 

illegal parking and minimizing search traffic. Furthermore, designated trails remain adequate, 

as visitors refrain from creating additional paths to avoid crowded areas. Implementing such 

measures not only results in fewer people per square meter and reduced utilization but also 

mitigates trampling effects, leading to a decline in the deterioration of flora and fauna. Finally, 

lower emissions contribute to the overall protection of the natural environment and climate. 

Beyond environmental protection, active visitor management offers notable social benefits. 

Restricting the maximum number of visitors can alleviate traffic congestion, crowded public 

transport, and long queues. This, in turn, enhances tourism acceptance among residents, 

fostering increased friendliness and openness while preserving the integrity of the local 

culture.  
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IV Conclusion 

IV.1 Summary and Outlook 

In light of the still-growing issue of emissions from the transport sectors, making personal 

mobility more sustainable is of utmost importance. The transition towards sustainable 

mobility can be accomplished through combining complementary strategies, including 

technological innovation, a reduction in travel demand, and a shift towards alternative 

transport modes. Novel sustainable mobility solutions must encompass the full spectrum of 

mobility needs, ranging from daily commuting to long-distance travel and recreational 

mobility at the destination (c.f. Figure 1). In addition, the successful introduction of new 

services and products demands considering and integrating several perspectives. Enhancing 

acceptance requires user-oriented systems built on viable business models to ensure longevity. 

Simultaneously, effective resource allocation is crucial including the consideration of sector 

coupling to proactively manage the utilization of RES. Therefore, the integration of all 

requirements necessitates the implementation of overarching ISs that leverage ICTs to 

promote the development of sustainable, intelligent, and user-oriented personal transport 

systems. 

This doctoral thesis comprises seven research papers collectively aimed at enabling the 

transformation toward sustainable personal mobility (c.f. Table 1). The thesis addresses two 

key aspects: introducing technological advancements along with mulitple mobility needs and 

reducing travel demand for recreational mobility at the destination. Section II dives into the 

technological advancement of BEVs, focusing on the challenges of integrating charging 

processes in established mobility behaviors and enhancing RES utilization via sector coupling. 

Specifically, in Section II.1 I develop and analyze V2B strategies for maximal RES utilization 

within the contexts of the workplace (paper 1) and a hotel (paper 2), taking established mobility 

behaviors during recreational and daily activities into account. In Section II.2 I elaborate on 

the application of RM in LFCHs to maximize revenue under scarce resources (paper 3) and 

improve customer satisfaction through optimized power allocation (paper 4). Thus, this 

section aims at direct measures to achieve sustainable personal mobility by supporting the shift 

from ICVs to BEVs with appropriate ISs to facilitate user-oriented charging infrastructure that 

maximizes RES utilization. Section III addresses the reduction of travel demand in recreational 

mobility to prevent environmental damage due to overcrowding caused by overloaded 

infrastructure. The overarching objective is to enable the development of an active visitor 

management system that employs soft steering measures to distribute visitors across a wider 

area, thereby avoiding overloading any specific POI. To achieve this, Section III.1 concentrates 

on predicting crowding events (papers 5 and 6). Building on this, Section III.2 investigates 
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automated and digitized identification of similarities (paper 7) to enable crowding prevention 

through recommendations. Consequently, this section outlines indirect measures to achieve 

sustainable personal mobility by reducing the crowding at touristic POI and, thus, reducing 

arrival mobility and environmental damage. 

The thesis contributes to the research field of Green IS and sustainable personal mobility by 

developing various optimization models, e.g., energy management, revenue optimization, and 

customer satisfaction enhancement. It utilizes multiple real-world data sets to analyze, 

combine, and develop ML models. Moreover, widely recognized theories and methods, such as 

RM with dynamic pricing or EDT including utilitarian welfare function are applied within a 

new context. From a practical point of view, the thesis offers insights into newly developed 

EMSs, including bidirectional charging, while considering established user behavior to 

enhance acceptance and raise RES utilization. It provides recommendations for revenue-

optimized yet user-oriented management of LFCHs to facilitate long-distance travels with 

BEVs. Further, by predicting occupancy and identifying similarities, the research proposes 

data-driven solutions to distribute visitors more evenly across multiple POIs. Consequently, 

this thesis offers policymakers and practitioners new approaches and recommendations to 

support the transition towards sustainable personal mobility. 

IV.2 Limitations and Future Research 

The research field of sustainable personal mobility and mobility needs is extensive, which is 

why this thesis, like any scientific research, is subject to certain limitations while also offering 

potential avenues for further research. 

Firstly, the majority of analyses were carried out using regional data sets (e.g., mobility demand 

or RES expansion). Similarly, the selected data for investigating influences of specific 

behaviors was drawn from the European region or was based on standard Western behaviors. 

As a result, the specificity of analysis and recommendations is confined to regions and 

behaviors that precisely match the referenced data. Therefore, to provide a comprehensive 

understanding of the research questions, further studies are necessary to assess the 

applicability of these findings across different regions. 

Secondly, the analyses, optimizations, and ML models were all carried out with attention to 

user needs. However, while established behaviors and expectations were incorporated into the 

research, there was no explicit investigation into the acceptance of the proposed approaches. 

Thus, to validate whether the developed ISs attain the desired outcome, they could be 

deployed, and their usage could be studied experimentally in future research, either through 

simulation or real-world application. 
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Thirdly, this dissertation presents the development, implementation, and analysis of several 

components of ISs. Each was designed with the intention of integration into a comprehensive 

IS framework. For instance, the effective management of LFCHs at scarce resource availability 

necessitates the combination of the dynamic pricing model with the power allocation model to 

enhance revenue and customer satisfaction. Similarly, including occupancy predictions 

alongside similarity identifications is essential for active visitor management systems. This 

work's findings open various possibilities for future research beyond merely combining these 

IS components. For example, integrating local PV generation or electricity storage solutions 

for LFCHs could further optimize revenue, grid stability, and customer satisfaction, offering 

yet another potential area of exploration. In the case of active visitor management, the 

recommendation system should be examined in more detail to provide an overarching 

solution. In summary, before implementing individual parts of IS, it is essential to explore and 

expand upon them further in a research context and subsequently deploy them in real-world 

applications. This transition can be carried out cohesively, with initial real-world execution 

also providing an avenue for further research into practicality and acceptance. 

While this thesis primarily focuses on analyzing and developing new ISs for specific 

applications, future research may consider a comprehensive perspective across all mobility 

solutions and mobility needs. This would enable the prioritization of targeted technologies, the 

development of policy measures, and the identification of appropriate user incentives. In 

conclusion, this doctoral thesis substantially contributes to advancing the understanding and 

implementation of sustainable personal mobility. By addressing both the technological 

advancement of BEV adoption and travel demand reduction via active visitor management, the 

research provides multiple approaches toward decarbonization and environmental protection. 

The findings underscore the importance of interdisciplinary collaboration and digital 

technology integration, driving the transition toward a more sustainable and resilient future.  
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Route Similarities in Sustainable Tourism Using Machine Learning 

Bollenbach, J.; Rebholz, D.; Keller, R. (2024). The Road Not Taken – Representing Expert 

Knowledge for Route Similarities in Sustainable Tourism Using Machine Learning. Working 

paper submitted and under review in Electronic Markets. 

Beyond the research papers included in this dissertation, I also co-authored the following 

research paper, whitepapers, and book chapter, which are not part of the doctoral thesis: 

• Bayer, D.; Bollenbach, J.; Lersch, J.; Rusche, S.; Weibelzahl, M. (2023). Smart Mobility 

Meets Industry: Enhancing Energy Flexibility Potentials by Combining Industrial 

Production & Electric Vehicle Charging. In: AMCIS 2023 Proceedings. 13. (VHB-Jourqual 

3 Category: D) 

• Jordan, P.; Scharmer, V.; Schulz, J.; Wörle, M.; Zäh, M.; Hohmann, A.; Karg F.; Roth, S.; 

Bollenbach, J.; Buhl, H. U.; Michaelis, A.; Parak, D.; Renner, J.; Weibelzahl, M.; Winter, C 

(2023). Energieflexible Modellregion Augsburg – Lessons Learned aus dem 

konzeptionellen Testbetrieb zum regionalen Energieflexibilitätshandel. 

DOI:10.14459/2023MD1687088 

• Menke, F.; Bollenbach, J.; Keller, R. (2024): Why do we crowd? Causal Explanations for 

Visitor Management. Working Paper 

• Buhl, H. U.; Bollenbach, J.; Breiter, K.; Weissflog, J. (2024): Schaufenster für Quartiere 

der Zukunft. Erfahrungen aus der Praxis. Technische Hochschule Augsburg. Institutsteil 

Wirtschaftsinformatik des Fraunhofer-Instituts für Angewandte Informationstechnik FIT, 

Augsburg/Bayreuth. 

• Eisele, J.; Bollenbach, J.; Brey, S.; Schubert, J.; Sommer, G.; Keller, R. (2022). 

Besucherlenkung und Reduktion des motorisierten Freizeitverkehrs – das Potential 

datengetriebener und flexibler Busangebote. In: Leonhardt, S.; Neumann, T.; Kretz, D.; 

Teich, T.; Bodach, M. (Hrsg.), In: Innovation und Kooperation auf dem Weg zur All Electric 

Society (S. 175-193). Wiesbaden, Deutschland: Springer Fachmedien Verlag. 
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• Schoormann, T.; Kammler, F.; Gembarski P. C.; Hagen, S.; Brinker, J.; Bollenbach, J.; 

Jussen-Lengersdorf, I.; Keller, R.; Kortum-Landwehr H.; Möller, F.; Petrik, D.; Schweihoff 

J.; Stachon, M.; Winkelmann S. (2024): Sustainable ecosystems: Findings from the 

NaWerSys workshop series. In: INFORMATIK 2022. Lecture Notes in Informatics (LNI). 

(VHB-Jourqual 3 Category: C) 

VI.2 Individual Contribution to the Research Papers 

This is a cumulative doctoral thesis and consists of seven research papers. Since all of them 

were written in collaboration with multiple co-authors, I will outline my individual 

contribution to each of the seven papers in the following. 

Research paper 1 (cf. VI.3) was written by a team of four co-authors. The paper was initially 

submitted to the Journal of Applied Energy and is currently being revised for a new 

submission. All authors contributed equally to this paper. My involvement in this research 

project included contributing to ideating and conceptualizing the research aim. Additionally, I 

supervised the overall research process, including the development of the evaluation 

framework and critically analyzing the results. Further, I took a central role in reviewing and 

editing the original draft of this paper. 

Research paper 2 (cf. VI.4) was written by a team of three co-authors. The paper is accepted 

for publication in the Journal of Energy Informatics. The paper started as a conference paper 

with equal contributions from each of the three co-authors. As it evolved into a journal article, 

we agreed that Lynne Valett would continue in the role of lead author while I would continue 

to provide support as a subordinate author by reviewing and editing. In the initial submission, 

I was primarily responsible for compiling, researching, and writing the introduction and 

literature review regarding V2B in an EMS and the embedding in the IS research field. Further, 

I supported the conceptualization and evaluation of the analysis and wrote parts of the 

methodology and case study.  

Research paper 3 (cf. VI.5) was written by a team of five co-authors, and all co-authors 

contributed equally to this paper. The paper was submitted to the Journal of Applied Energy 

and is currently under review. I took a key role in initiating the project. I conceptualized the 

research approach, implemented the simulated case study, and evaluated the results. Further, 

I wrote the initial draft of the entire paper. During the revision process of this paper, I was 

highly involved in the additionally demanded analysis and evaluation, as well as the 

contextualization of the results in the discussion. 
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Research paper 4 (VI.6) was written by a team of five co-authors, and all co-authors 

contributed equally to this paper. The paper was submitted and published in the Journal of 

Applied Energy. My main responsibilities included conceptualizing and implementing the 

simulated case study for the optimization model. Additionally, I evaluated the results and 

wrote and edited the relevant sections of the study. In the revision phase, I conducted further 

research in academic literature and edited a majority of the paper for improvements. 

Research paper 5 (VI.7) was written by a team of five co-authors, with me as the lead author. 

The paper was submitted to and presented at the INFORMATIK 2022 conference and 

subsequently published in the Lecture Notes in Informatics. As the primary author, I was 

responsible for structuring the research process, designing the research approach, and 

implementing the case study, which involved evaluating the results. Besides one part of the 

literature review, I wrote and edited the entire paper and carried out the revision.  

Research paper 6 (VI.8) was written by a team of five co-authors, with me as the lead author. 

The paper is a further development of the previous paper and was submitted and published in 

the Journal of Information Technology & Tourism. Continuing in my role as the primary 

author, I conceptualized the enhancement of the research, expanded the model, and conducted 

and evaluated additional results. Furthermore, I broadened the embedding of the results in the 

research field and deepened the discussion.  

Research paper 7 (VI.9) was written by a team of three authors. The paper was initially 

submitted to the Journal of Business Information Systems Engineering and is currently being 

revised for a new submission. All authors contributed equally to this paper. I contributed by 

supervising the research project, including conceptualization, structuring, and formalizing the 

analysis. Further, I provided input for the literature review. Regarding the text of the paper, I 

closely assisted in its development and composition. 
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VI.3 Research paper 1 – The impact of user behavior and grid-associated 

emissions on the emission reduction potential of electric vehicle-based 

spatiotemporal residential load shifting 

Authors 

Bollenbach, Jessica; Eiser, Niklas; Keller, Robert; Strüker, Jens 

Status 

Under Review in Cleaner Production 

Extended abstract 

Decelerating climate change and accelerating the transition toward a more sustainable net-

zero society requires a set of different measures, including decarbonization of residential 

electricity demand. Although the share of renewables in the electricity mix is steadily 

increasing in the EU and Germany (European Environment Agency, 2024), residential 

emissions stagnated in recent years as RES production peak and residential consumption peak 

decouple over time (Umweltbundesamt, 2016). Residential demand of residents who leave 

home for work (referred to as commuters in this paper) typically peaks twice: during morning 

and especially during evening hours (Fischer, Härtl and Wille-Haussmann, 2015). At the same 

time, minima of emissions associated with the country-specific electricity mix occur at 

divergent times. For regions with grid conditions similar to Germany, for example, emissions 

in summer are typically lowest during midday, primarily due to high photovoltaics (PV) output. 

In winter, emissions might also reach their daily low at midnight when production from wind 

turbines is high, and electricity demand is low. Thus, RESs are especially challenging to 

integrate into established residential demand profiles. Therefore, households need solutions 

for energy storage to combine their morning and evening demand peaks with periods of high 

RES output. Additionally, the decarbonization of transport via electrification further increases 

the need for residential storage solutions, as current BEV charging patterns contribute 

primarily to residential evening and nighttime demand (Muratori, 2018). Charging at the 

workplace is one essential means to address this issue and to link BEV charging with RES on-

peak hours, which can heavily reduce charging-associated GHG emissions (Buresh, Apperley 

and Booysen, 2020). Workplace charging offers even more opportunities by considering BEVs 

as a vital part of the ecosystem. Often, these concepts involve bidirectional charging, which 

allows BEVs not only to charge but also to discharge their battery and feed electricity back into 

the home, building, or grid (Thompson and Perez, 2020). More specifically, this paper adapts 

and investigates the operation of a V2B2 concept where electric vehicles charge grid electricity 

at the workplace, act as mobile energy storage when driving home, and cover residential 

electricity demand through battery discharging. To maximize residential emission reduction 

under this strategy, timing electricity demand is the key factor. However, individual user 
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behavior constrains the possibility of optimization. Here, we seek to analyze why and by how 

much the emission reduction potential of spatiotemporal load shifting within V2B2 varies for a 

country-specific electricity mix with established individual user behavior. Here, we contribute 

to the current literature by picking up the case of the German electricity mix and analyzing why 

and by how much the emission reduction potential changes for different German residential 

electricity demands and driving behaviors. In this way, we identify key parameters for 

countries with comparable conditions that drive the potential to guide locally targeted V2B2 

implementation measures. For the simulation of our at-home charging benchmark scenario 

and the V2B2 implementation, we rely on a huge dataset of empirical and real-world behavioral 

data. The results indicate that the potential of a grid-dependent V2B2 operation in Germany is 

highly seasonal. In winter, we find an average emission increase 

(-0,2%), while summer yields a promising average potential (23% emission reduction). 

Keywords 

Electric vehicle, Emission reduction, Established user behavior explanation, Mobile energy 

storage, Shapley additive explanations, Spatiotemporal load shifting 
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VI.4 Research paper 2 – Empowering Sustainable Hotels: A Guest-Centric 

Optimization for Vehicle-to-Building Integration  

Authors 

Valett, Lynne; Bollenbach, Jessica; Keller, Robert 

Status 

Energy Informatics (2024) 

Extended abstract 

In light of global warming, hotels account for one of the highest energy demands within the 

building sector, offering great decarbonization potential. As electrification increases, so does 

the demand for Electric Vehicle (EV) charging stations at hotels and the proportion of Vehicle-

to-Building-capable EVs. Therefore, the study explores the potential of guest-centric energy 

management. To accomplish this, we develop an optimization model for an energy 

management system that focuses on either cost-efficiency or Carbon Dioxide Equivalents 

(CO2)-efficiency, grounded in a real-world case study. Through scenario analyses considering 

seasons as well as different guest mobility behaviors, this study discusses the expenses 

associated with CO2 savings using digital solutions. It emphasizes the currently perceived 

conflict between cost reduction and decarbonization goals to achieve a sustainable design of 

information systems. Thereby, this study highlights the critical importance of individual 

mobility behavior in enabling sustainable energy management for hotels. 

Keywords 

Energy management system, Hotel energy use, Guest mobility behavior, Mobility patterns, 

Vehicle-to-building, Sustainable tourism, Sustainable hospitality  
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VI.5 Research paper 3 – Revenue Management in a Large-Scale Fast-

Charging Hub for Electric Vehicles: A Multiproduct, Dynamic Pricing 

Model 

Authors 

Bollenbach, Jessica; Kaiser, Matthias; Baumgarte, Felix; Keller, Robert; Weibelzahl, Martin 

Status 

Under Review in Applied Energy 

Extended abstract 

Battery electric vehicles (BEVs) offer considerable potential to reduce emissions compared to 

internal combustion engine cars, especially when charged using renewable energy sources 

(Hawkins et al., 2013; Onat et al., 2019). However, the adoption of BEVs heavily relies on the 

availability of sufficient and widely distributed charging infrastructure (Robinson and 

Erickson, 2021). To enable longer driving distances and prevent queuing at charging locations, 

the demand is growing for LFCHs along highways, which offer multiple charging points and 

high total power capacity (Neubauer and Wood, 2014; Greene et al., 2020). However, the 

profitability of LFCHs hinges on the location-specific utilization rates of the charging stations, 

which are influenced by the surrounding BEV usage and local traffic volume (Baumgarte, 

Kaiser and Keller, 2021). Today’s BEV mar et share of 12 % within the EU (ACEA - European 

Automobile Manufacturers’ Association, 2024) is still low and unevenly distributed, leading to 

unprofitable fast-charging infrastructure in many European areas and regions. While cost 

reduction for fast-charging infrastructure is already well-researched, revenue maximization 

for fast-charging infrastructure operations has received less attention. Most of the literature 

about revenue maximization in the field of electric vehicle charging relates to stations with only 

a few charging points. It focuses on grid stability or energy distribution between several 

charging points, which reveals itself as closely connected to the cost minimization literature 

(Kong, Bayram and Devetsikiotis, 2015; Kuran et al., 2015). Few articles apply a dynamic 

pricing approach to maximize revenue for charging infrastructure operations. However, they 

do not consider the characteristics of large fast-charging locations, such as the ability to serve 

several customers simultaneously with high charging power (Guo et al., 2016; Luo, Huang and 

Gupta, 2018). Thus, we examine the applicability of the RM theory to LFCHs and develop an 

axiomatic quantitative dynamic pricing model to evaluate the quantitative impact. We conduct 

a simulation case study to identify the revenue improvements dependent on differently sized 

LFCHs through dynamic pricing compared to a fixed-price setting. We contribute to the 

literature by developing a theoretical framework demonstrating how a dynamic pricing 

approach can be implemented in an LFCH and evaluate the actual performance with a 

sensitivity analysis. The results underline that RM can be effectively applied in LFCHs and that 

the proposed dynamic pricing model significantly increases the revenue for LFCH operators 
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when resources are scarce. Particularly with scarce charging points and sufficient power 

capacity, the highest relative revenue improvements are realized, whereby the model cannot 

compensate for bad strategic LFCH design decisions. Overall, applying dynamic pricing in 

LCFHs can make investments more attractive and facilitate the expansion of charging 

infrastructure. 

Keywords 

Charging Hub Operation, Electric Vehicle Charging, Dynamic Pricing, Revenue Management 
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VI.6 Research paper 4 – Customer Satisfaction at Large Charging Parks: 

Expectation-Disconfirmation Theory for Fast Charging 

Authors 

Bollenbach, Jessica; Kaiser, Matthias; Baumgarte, Felix; Keller, Robert; Weibelzahl, Martin 

Published in 

Applied Energy (2024) 

Abstract 

Drivers of battery electric vehicles, especially along motorways, require fast-charging services 

and expect maximum charging power to overcome long servicing times. However, charging 

park operators cannot always meet customer expectations due to economic and technical 

restrictions. According to the expectation-disconfirmation theory, the resulting expectation-

performance gap increases the dissatisfaction of vehicle drivers regarding the servicing time in 

a non-linear manner. Therefore, we present an optimization model with a utilitarian welfare 

function grounded in social choice theory. Besides a current real-world case based on a fast-

charging park in Germany, we analyze further (technical) developments of electric mobility 

with four future cases. Compared to a uniform power allocation, our results display a reduced 

absolute average gap of up to 4 min (i.e., 13.3%) between expected and actual servicing time in 

the real-world case, thus, improving welfare by 22.9%. With an increased average gap 

reduction of up to 5.2 min, our future cases show the importance of addressing the expectations 

of battery electric vehicle drivers. Without a smart power allocation, the gap and 

simultaneously the dissatisfaction of vehicle drivers regarding the servicing time can increase, 

and potentially more hardware upgrades may be necessary. 

Keywords 

Electric mobility, Smart charging, Fast charging, Utilitarian welfare, Customer satisfaction, 

Expectation-performance gap  
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VI.7 Research paper 5 – Using Machine Learning to Predict POI Occupancy to 

Reduce Overcrowding 

Authors 

Bollenbach, Jessica; Neubig, Stefan; Hein, Andreas; Keller, Robert; Krcmar, Helmut 

Published in 

INFORMATIK 2022 - Lecture Notes in Informatics (LNI) (2022) 

Abstract 

Due to the rapid growth of the tourism industry, associated effects like overcrowding, 

overtourism, and increasing greenhouse gas emissions lead to unsustainable development. A 

prerequisite for avoiding those adverse effects is the prediction of occupancy. The present 

study elaborates on the applicability and performance of various prediction models by taking 

a case study of beach occupancy data in Scharbeutz, Germany. The case study compares 

different machine learning models once as supervised machine learning models and once as 

time series models with a persistence model. XGBoost and Random Forest as time series 

demonstrate the most accurate prediction, followed by the supervised XGBoost model. 

However, the short prediction span of time series models is a disadvantage for longer-term 

visitor management to avoid the explained unsustainable effects through steering measures, 

so depending on the use case, the XGBoost model is to be favoured. 

Keywords 

Beach Occupancy, Time series Forecast, XGBoost, Random Forest, Support Vector Regression, 

SARIMA, Tourism Demand 
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VI.8 Research paper 6 – Enabling Active Visitor Management: Local, Short-

Term Occupancy Prediction at a Touristic Point of Interest 

Authors 

Bollenbach, Jessica; Neubig, Stefan; Hein, Andreas; Keller, Robert; Krcmar, Helmut 

Published in 

Information Technology & Tourism (2024) 

Abstract 

After the temporary shock of the COVID-19 pandemic, the rapid recovery and resumed growth 

of the tourism sectors accelerates unsustainable tourism, resulting in local (over-)crowding, 

environmental damage, increased emissions, and diminished tourism acceptance. Addressing 

these challenges requires an active visitor management system at points of interest (POI), 

which requires local and timely POI-specific occupancy predictions to predict and mitigate 

crowding. Therefore, we present a new approach to measure visitor movement at an open-

spaced, and freely accessible POI and evaluate the prediction performance of multiple 

occupancy and visitor count machine learning prediction models. We analyze multiple case 

combinations regarding spatial granularity, time granularity, and prediction time horizons. 

With an analysis of the SHAP values we determine the influence of the most important features 

on the prediction and extract transferable knowledge for similar regions lacking visitor 

movement data. The results underline that POI-specific prediction is achievable with a 

moderate relation for occupancy prediction and a strong relation for visitor count prediction. 

Across all cases, XGBoost and Random Forest outperform other models, with prediction 

accuracy increasing as the prediction time horizon shortens. For effective active visitor 

management, combining multiple models with different spatial aggregations and prediction 

time horizons provides the best information basis to identify appropriate steering measures. 

This innovative application of digital technologies facilitates information exchange between 

destination management organizations and tourists, promoting sustainable destination 

development and enhancing tourism experience.  

Keywords 

Visitor management, Tourism demand, Machine learning prediction, Sustainable tourism, 

Overcrowding 
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VI.9 Research paper 7 – The Road Not Taken - Representing Expert 

Knowledge for Route Similarities in Sustainable Tourism Using Machine 

Learning 

Authors 

Bollenbach, Jessica; Rebholz, Dominik; Keller, Robert 

Status 

Under Review in Electronic Markets 

Extended abstract 

With the rapid recovery of tourism after the COVID-19 pandemic, the benefits of economic 

growth and employment opportunities are returning, but so is the problem of crowding, which 

is a major concern for many popular tourist destinations (Palacios-Florencio et al., 2021; 

Tiwari and Chowdhary, 2021). Crowding causes environmental degradation, loss of natural 

biodiversity, and increased pollution (Wall, 2019). Furthermore, it negatively impacts the local 

infrastructure, tourist infrastructure, and living conditions, as well as the cultural heritage of 

the residents (Adie, Falk and Savioli, 2020; Drápela et al., 2021; Milano, Novelli and Cheer, 

2021). While the latter primarily affects nature and local residents, crowding also deteriorates 

the tourist experience (Tokarchuk, Barr and Cozzio, 2022). Most efforts to mitigate the effects 

of crowding are often insufficient to actually prevent crowding as a cause of these effects, as 

many approaches focus on a single tourist destination (Butler and Dodds, 2022). However, to 

avoid crowding and enable sustainable tourism, preparation at the destination itself is not 

sufficient. Therefore, overarching measures are required to distribute visitors across multiple 

tourist destinations and reduce the number of people at the crowded destination without 

overloading another region. To facilitate sustainable tourism, an information system for visitor 

management, including recommendations, is required. A significant challenge in this context 

is the identification of similar routes for recommendations outside the congested area. 

Therefore, the paper proposes a method to calculate route similarities based on descriptive 

data to enable the redirection of visitors to alternative, less-crowded routes. Distance-based 

algorithms and machine learning models are used to analyze labeled and unlabeled route data. 

To validate this approach, a case study in a nature park is conducted by training the models on 

real-world hiking data provided by the outdoor platform Outdooractive. Further, labeled data 

of route combinations' similarities is obtained with an expert survey to evaluate the results and 

enhance the model's accuracy. The findings reveal that while traditional distance-based 

methods provide a baseline, integrating them with machine learning significantly enhances 

accuracy and alignment with expert assessments. The research advances sustainable tourism 

management by providing a data-driven approach to identifying route similarities aligning 

with tourist preferences. 
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