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Abstract

In this paper, we investigate the ability of neural networks to mitigate the curse of dimensionality in representing control
Lyapunov functions. To achieve this, we first prove an error bound for the approximation of separable functions with neural
networks. Subsequently, we discuss conditions on the existence of separable control Lyapunov functions, drawing upon tools
from nonlinear control theory. This enables us to bridge the gap between neural networks and the approximation of control
Lyapunov functions. Moreover, we present a network architecture and a training algorithm to illustrate the theoretical findings
on a 10-dimensional control system.
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1 Introduction

Control Lyapunov functions (clfs) serve as a certificate
of asymptotic null-controllability and can also be used
to examine robustness against uncertainties and distur-
bances or to study performance criteria. However, their
most common application lies in designing stabilizing
feedback laws using the clf as guidance towards the equi-
librium. Since, in general, it is quite hard to compute
clfs analytically, we rely on numerical methods. How-
ever, traditional numerical methods, which rely on a
grid-based approach for the computation of the deriva-
tive of the clf, suffer from the curse of dimensionality.
This means that, to achieve a certain accuracy, the num-
ber of required grid points and, thus, the numerical ef-
fort grows exponentially in the dimension of the state
space. Consequently, such approaches become impracti-
cal in high dimensions.

This paper concerns the use of neural networks (NNs)
to circumvent the curse of dimensionality for approxi-
mating clfs. Our approach is related to the work Sontag
(1991), which investigates structural properties on con-
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trol systems that allow for an exact representation of
a (possibly discontinuous) stabilizing feedback by NNs.
Further, there exist several papers that present algo-
rithms for the computation of clfs by NNs, see, e.g.
Khansari-Zadeh and Billard (2014); Long and Bayoumi
(1993). However, while the algorithms therein have sim-
ilarities with our numerical approach, none of them pro-
vides a complexity analysis regarding the curse of di-
mensionality. Establishing conditions for mitigating the
curse of dimensionality in computing clfs is the main
contribution of this work. Addressing this challenge re-
quires identifying a suitable class of functions that en-
ables NNs to avoid the curse of dimensionality.

There exist various recent papers that discuss results re-
garding a curse-of-dimensionality-free approximation of
solutions of particular kinds of partial differential equa-
tions, see, e.g., Beck et al. (2023); Darbon et al. (2020);
Gonon and Schwab (2023). In particular, some of these
references exploit the smoothness of solutions of 2nd or-
der Hamilton-Jacobi-Bellman equations. However, when
it comes to computing a clf for a deterministic system,
which can be characterized as a solution of a particular
first-order Hamilton-Jacobi-Bellman equation, we can-
not expect such a level of smoothness. Thus, we rely on a
different structural assumption that allows NNs to mit-
igate the curse of dimensionality. To this end, we con-
sider so-called separable functions. Informally speaking,
a mapping is called separable if it can be written as a
sum of functions that are each defined on some lower-
dimensional domain. Separable functions fall into the
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class of compositional functions. The ability of NNs to
avoid the curse of dimensionality for compositional func-
tions has been discussed for instance in Dahmen (2023);
Kang and Gong (2022); Poggio et al. (2017). Compared
to general compositional functions, separable functions
have a simpler structure that allows for more precise es-
timates, while the classes of control systems admitting
separable clfs are still non-trivial.

Contribution

In this paper, we bridge the gap between NN approxima-
tion theory and the computation of clfs via NNs. First,
we provide error estimates for the approximation of sep-
arable functions with NNs. While Grüne (2021); Grüne
and Sperl (2023) state asymptotic results forL∞ approx-
imation, this paper derives detailed error bounds, in-
cluding all relevant constants. Furthermore, under addi-
tional assumptions, we prove an extension of the approx-
imation result towards partial derivatives. Afterwards,
we extend the results for Lyapunov functions in Grüne
(2021) to clfs. Specifically, based on Grüne and Sperl
(2023) we use methods from nonlinear control theory to
identify conditions on the control system such that a sep-
arable clf exists. Additionally, we explore achieving sep-
arability through a state space transformation. Overall,
we identify scenarios where NNs can provably avoid the
curse of dimensionality in the computation of clfs. Fi-
nally, we propose a network architecture and training al-
gorithm, and provide an empirical evaluation of the ben-
efit of the separable structure. Compared to Grüne and
Sperl (2023), this paper contributes detailed theoretical
results on approximation errors, results on separability
after a suitable transformation, and extended numeri-
cal results. In this context, we would also like to men-
tion those topics that are not part of this paper. While
this paper provides an expressivity result and proposes
a training algorithm, it does not delve into the analy-
sis of the convergence of the training algorithm or the
generalization properties of the NN. Regarding the last
point, which is of high importance for practical usage,
we would like to refer to the works Dai et al. (2021);
Liu et al. (2023, 2024), where methods to verify that the
NN output satisfies the Lyapunov conditions have been
developed, thus providing a tool to verify generaliza-
tion properties. In particular, we would like to point out
that Liu et al. (2024) leverages a compositional struc-
ture of the control system for verification, aligning well
with the use of separability for efficient representation
discussed in this paper. Specifically, the separable struc-
ture might be beneficial for formal verification by en-
abling the decomposition of the verification process for
high-dimensional systems into the verification of smaller,
lower-dimensional subsystems. Moreover, we only con-
sider the case in which smooth clfs exist, which allows us
to better focus on the main results of this paper. Non-
smooth clfs will be addressed in future research.

Outline

The remainder of this paper is organized as follows: The
problem formulation is introduced in the next section.
Afterwards, we provide a complexity analysis regarding
the approximation of separable functions with NNs. In
Section 4 we focus on the existence of separable clfs,
while numerical test cases are performed in Section 5.
Finally, Section 6 concludes the paper.

Notation

For n ∈ N we set [n] := {1, . . . , n}. We denote the in-
finity norm for continuous functions f on some compact
set K via ∥f∥∞,K := supx∈K∥f(x)∥. The symbol D is
used to denote the classic differential operator. More-
over, for some multi-index α ∈ Nn we use Dα to denote
the higher-order partial derivative with respect to α. We
make use of the comparison functions K and K∞, where
K denotes all continuous and strictly increasing func-
tions γ : R≥0 → R≥0 with γ(0) = 0 and K∞ comprises
all K-functions that satisfy limr→∞ γ(r) = ∞.

2 Problem formulation

We consider a control system of the form

ẋ = f(x, u), (1)

where the right-hand side f : Rn × U → Rn is continu-
ous, locally Lipschitz in x, and has an equilibrium at 0,
i.e., f(0, 0) = 0. The input set is denoted as U ⊂ Rm

and the admissible control functions are given as the set
of measurable and locally essentially bounded functions
u : R≥0 → U . In order to avoid technicalities, we assume
our system (1) to be defined on the whole domain Rn.
We are interested in stabilizing the system towards the
origin. To this end, we assume the control system (1) to
be asymptotically controllable. In (Sontag, 1983, Theo-
rem 2.5) it has been shown that asymptotic controllabil-
ity is equivalent to the existence of a clf in the sense of
Dini. However, in the scope of this paper, we will only
consider the case where our control system (1) admits a
continuously differentiable clf, where the Dini derivative
equals the gradient. This allows us to ensure compatibil-
ity with some theorems from the literature cited in the
subsequent sections and avoids distracting technical dif-
ficulties. The important case that no smooth clf exists
will be investigated in future research, cf. Section 6.

Definition 1 A continuously differentiable function
V : Rn → R is called (smooth) control Lyapunov func-
tion (clf) for (1) if there exist α1, α2 ∈ K∞ and α3 ∈ K
such that for x ∈ Rn

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (2a)
inf
u∈U

DV (x)f(x, u) ≤ −α3(∥x∥). (2b)

2



3 Neural networks approximating separable
functions

3.1 Preliminaries on neural networks

From a mathematical point of view, a neural network
(NN) is a mapping x 7→ W (x; θ) that takes some input
vector x ∈ Rn and processes it according to its parame-
ters θ in order to return some output. In case of a feed-
forward network, the value of a neuron y

(l)
k in layer l with

number k is determined via

y
(l)
k = σl

(Nl−1∑
i=1

w
(l)
k,iy

l−1
i + b

(l)
k

)
, (3)

where w
(l)
k,i ∈ R are weights, b(l)k ∈ R are bias terms and

σl : R → R is the activation function of layer l. We solely
consider feedforward networks with a one-dimensional
output W (x; θ) ∈ R and the identity as activation func-
tion in the last layer. It has been shown in Cybenko
(1989) that the set of NNs with one hidden layer and
a continuous sigmoidal activation function is dense in
C([0, 1]n). Since we are interested in the numerical ef-
fort, we need a quantitative version of an approximation
theorem. To this end, we characterize the complexity of
a NN by the number of neurons in its hidden layers. Fur-
ther, for p ∈ N, r ∈ R>0, and K ⊂ Rn compact we define

Wp,r(K) :=
{
F ∈ Cp(K,R)

∣∣ ∥F∥Wp(K) ≤ r
}
,

where ∥F∥Wp(K) :=
∑

0≤|α|≤p∥DαF∥∞,K .

Theorem 2 Let p ∈ N, r,R ∈ R>0 and σ ∈ C∞(R,R)
be not a polynomial. Then for every n ∈ N there exists
µn > 0 such that for all M ∈ N, any NN of the form

W (x; θ) =

M∑
k=1

w
(2)
k σ

(
n∑

i=1

w
(1)
k,ixi + bk

)
, (4)

and any F ∈ Cp(K,R) there exists a parameter vector
θF = (w

(1)
F , w

(2)
F , bF ) such that

∥W (·; θF )− F (·)∥∞,K ≤ µnM
− p

n R̃∥F∥Wp(K), (5)

where K := [−R,R]n, R̃ := max {Rp, 1}. Further, as-
sume p ≥ 2 and ∥σ′′∥∞,R ≤ Cσ for some Cσ > 0. Then
for a family of functionsF ⊂ Wp,r(K) for which ∥w(1)

F ∥∞
and ∥w(2)

F ∥1 are uniformly bounded by some Cθ > 0 for
all F ∈ F and M ∈ N, in addition we have for each
|α| = 1 and F ∈ F

∥DαW (·; θF )−DαF (·)∥∞,K ≤ √
µnM

− p
2n

√
CR̃,

where C = 2r(r + C3
θCσ) is independent of n and M .

PROOF. The first statement follows immediately from
(Mhaskar, 1996, Theorem 2.1). For the second state-
ment, observe that under the assumptions for all F ∈ F
and the corresponding WF = W (·; θF ) the derivatives
DαF and DαWF (·) are Lipschitz with Lipschitz con-
stants LF ′ = r and LW ′ = C3

θCσ, respectively. Then for
e = αT the mean value theorem implies that∣∣∣∣DαF (x)− F (x+ he)− F (x)

h

∣∣∣∣ ≤ LF ′h,

∣∣∣∣DαWF (x)−
WF (x+ he)−WF (x)

h

∣∣∣∣ ≤ LW ′h.

By the triangle inequality we obtain

|DαWF (x)−DαF (x)|

≤
∣∣∣∣DαWF (x)−

WF (x+ he)−WF (x)

h

∣∣∣∣
+

∣∣∣∣WF (x+ he)−WF (x)

h
− F (x+ he)− F (x)

h

∣∣∣∣
+

∣∣∣∣DαF (x)− F (x+ he)− F (x)

h

∣∣∣∣
≤ LW ′h+ 2µnM

− p
n R̃r/h+ LF ′h

≤
√

µnM− p
n 2r(LF ′ + LW ′)R̃,

where we used h =

√
2µnM− p

n R̃r/(LF ′ + LW ′) in the
last inequality, which minimizes the expression in the
second last step. This yields the claim. 2

Note that the requirement for σ to have a uniformly
bounded second derivative is satisfied by many com-
monly used smooth activation functions, such as the
softplus function σ(x) = log(1 + ex), the sigmoid func-
tion σ(x) = 1

1+e−x , and the hyperbolic tangent σ(x) =

tanh(x). In the following, for a function F ∈ Cp(K,R)
we denote by θF = (w

(1)
F , w

(2)
F , bF ) the vector of param-

eters satisfying (5) for a NN of the form (4). We can
conclude from Theorem 2 that the number of neurons
needed to provide an approximation up to some accu-
racy ε > 0 is given by M = O(ε−

n
p ), which has been

shown in Mhaskar (1996) to be best possible. Thus, in
general, NNs suffer from the curse of dimensionality.

3.2 Mitigating the curse of dimensionality with neural
networks

In this section, we derive an error bound for the approx-
imation of so-called separable functions with NNs. This
demonstrates that NNs can mitigate the curse of dimen-
sionality for a suitable class of functions and provides a
detailed expression of the dependency on the involved
constants.
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Definition 3 Let F ∈ Cp(Rn,R) and d ∈ [n]. Then
F is called (strictly) d-separable if for some s ∈ [n]
there exist d1, . . . , ds ∈ [d] and functions F1, . . . , Fs with
Fj ∈ Cp(Rdj ,R), such that for all x ∈ Rn it holds

F (x) =

s∑
j=1

Fj(zj), (6)

where zj = (xkj−1
, . . . , xkj−1) with k0 := 1 and kj :=

kj−1 + dj, j ∈ [s].

If F is a strictly d-separable function, its domain can be
split into s subspaces intersecting only at the origin, al-
lowing F to be written as a sum of s functions, which are
defined on the these subspaces. For simplicity, we will
omit the term “strictly” in what follows. The separable
structure can be exploited by a NN (see Figure 1), with
two hidden layers: the first using identity activation and
the second employing a smooth, non-polynomial activa-
tion function σ2 ∈ C∞(R,R). The second layer’s sublay-
ers can learn the functions Fj in (6).

x1

x2

xn

y11

y1d

y1∗

y1nd

y21

y2M

y2+

y2nM

W...

... ...

... ...

... ...

Fig. 1. Architecture of the NN with ∗ = (n − 1)d + 1,
+ = (n− 1)M + 1, and W = W (x; θ).

In the following, let d, p ∈ N and r,R ∈ R>0. Define
Kn := [−R,R]n for n ∈ N and

F (n)
r,d,p :=

{
F ∈ Wp,r(Kn)

∣∣∣ F is d-separable, F (0) = 0
}
.

Lemma 4 For all F ∈ F (n)
r,d,p we can write F =

∑s
j=1 Fj

for some Fj ∈ Wp,r(Kdj
) with dj ∈ [d] for j ∈ [s].

PROOF. Since F is d-separable, we can write F (x) =∑s
j=1 F̃j(zj). As

∑s
j=1 F̃j(0) = 0 by defining Fj(zj) :=

F̃j(zj)− Fj(0), we have Fj(0) = 0. This yields

Fj(zj) = Fj(zj) +
∑
i ̸=j

Fi(0) = F (0, . . . , 0, zj , 0, . . . , 0).

(7)
Further, observe that for x = (z1, . . . , zs) ∈ Rn

DF (x) =
[
DF1(z1) DF2(z2) · · · DFs(zs)

]
. (8)

Consequently, together with (7) it follows

∥Fj∥Wp(Kdj
) =

∑
0≤|α|≤p

∥DαFj∥∞,Kdj

≤
∑

0≤|α|≤p

∥DαF∥∞,Kn
≤ r. 2

Leveraging Lemma 4, we will henceforth assume that for
any F (n)

r,d,p ∋ F =
∑s

j=1 Fj , the components Fj belong to
Wp,r(Kdj ), without explicitly restating this assumption.

Theorem 5 There exists a constant µd > 0 such that for
all n ∈ N and M ∈ N the NN W (x; θ) depicted in Figure
1 with n(d+M) neurons satisfies that for all F ∈ F (n)

r,d,p

there exists θF such that

∥F (·)−W (·; θF )∥∞,Kn
≤ nrµdM

− p
d R̃,

where R̃ := max{Rp, 1}. Further, assume ∥σ′′∥∞,R ≤ Cσ

for some Cσ > 0, p ≥ 2, and let F ⊂ F (n)
r,d,p such that

for each F =
∑s

j=1 Fj ∈ F the parameters θFj
satisfy

that ∥w(1)
Fj

∥∞ and ∥w(2)
Fj

∥1 are uniformly bounded by some
Cθ > 0 over F and M ∈ N. Then, for each |α| = 1

∥Wα(·; θF )− Fα(·)∥∞,K ≤ √
µnM

− p
2d

√
CR̃

holds for all F ∈ F , where C = 2r(r + C3
θCσ).

PROOF. We set the parameters corresponding to the
first hidden layer of the network depicted in Figure 1 such
that its first s sublayers contain the vectors zj , j ∈ [s],
respectively. For the output layer we choose w3

1,i = 1 for
i ∈ [dM ], w3

1,i = 0 for i > dM , and b31 = 0. Observe that

W (x; θ) =

n∑
j=1

M∑
i=1

y2(j−1)M+i =

s∑
j=1

M∑
i=1

y2(j−1)M+i, (9)

where for each j ∈ [s], the output
∑M

i=1 y
2
(j−1)M+i of the

j-th sublayer can be viewed as the output of a NN with
input zj and a hidden layer of M neurons (cf. Figure 1),
denoted by Wj(zj ; θj). Applying Theorem 2, we get

∥Fj(·)−Wj(·; θFj
)∥∞,Kdj

≤ rµdM
− p

d R̃.

For the resulting θF , by (9) we have for x ∈ Kn

∥F (x)−W (x; θF )∥ =
∥∥∥ s∑

j=1

Fj(zj)−Wj(zj ; θFj )
∥∥∥

≤
s∑

j=1

∥Fj(zj)−Wj(zj ; θFj
)∥ ≤ srµdM

− p
d R̃.
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As s ≤ n, this shows the first claim. Since

DW (x; θ) =
[
DW1(x; θ1) . . . DWs(x; θs)

]
,

together with (8), the second claim immediately follows
from Theorem 2. 2

In the proof of Theorem 5, the first (linear) layer of the
network in Figure 1 computes the decomposition of the
state x into vectors zj , 1 ≤ j ≤ s, as in Definition 3. This
layer maps x 7→ W 1x, whereW 1 ∈ Rnd×n represents the
decomposition. Since the weights w1

k,i, k ∈ [nd], i ∈ [n],
can take any real value, the first layer can express any
matrix W 1 ∈ Rnd×n, motivating the following defini-
tion.

Definition 6 Let d ∈ [n], F ∈ C1(Rn,R), and T ∈
Rn×n be invertible. Then F is called linearly d-separable
with respect to T if the mapping x 7→ F (Tx) is (strictly)
d-separable. Further, a function G ∈ C1(Rn,Rl) is called
linearly d-separable if each of its l component functions
is linearly d-separable.

The following corollary generalizes Theorem 5 to linearly
d-separable functions. For c ∈ R>0, let GLc

n denote the
set of invertible matrices T ∈ Rn×n with ∥T∥∞ ≤ c and
∥T−1∥∞ ≤ c. Note that any T ∈ Rn×n with condition
number ≤ c2 can be rescaled to lie in GLc

n. Further,
define

F (n)
r,d,p,c :=

{
F ∈ Wp,r(Kn)

∣∣∣ F is linearly d-separable

w.r.t. some T ∈ GLc
n, F (0) = 0

}
.

Corollary 7 There exists a constant µd > 0 such that
for all n ∈ N and M ∈ N the NN W (x; θ) depicted in
Figure 1 with n(d + M) neurons satisfies that for all
F ∈ F (n)

r,d,p,c there exists θF such that

∥F (·)−W (·; θF )∥∞,K ≤ cnrpµd max{R̃, 1}M− p
d ,

where R̃ := max{(cR)p, 1}. Further, assume ∥σ′′∥∞,R ≤
Cσ for someCσ > 0, p ≥ 2, and letF ⊂ F (n)

r,d,p,c such that
for each F (T ·) =

∑s
j=1 Fj(·) ∈ F the parameters θFj

satisfy that ∥w(1)
Fj

∥∞ and ∥w(2)
Fj

∥1 are uniformly bounded
by some Cθ > 0 over F and M ∈ N. Then, for each
|α| = 1 the inequality

∥Wα(·; θF )− Fα(·)∥∞,K ≤ √
µdM

− p
2d

√
R̃C

holds for all F ∈ F , where C = 2cpr(cpr + C3
θCσ).

PROOF. Let F ∈ F (n)
r,d,c,p. Consider the mapping

G : T−1Kn → R, x 7→ F (Tx). By assumption, G is a
d-separable function. Further, note that G(0) = 0 and
T−1Kn ⊂ cKn = [−cR, cR]n. Moreover, it holds that

∥G∥W1(T−1Kn) =
∑

0≤|α|≤p

∥DαF (T ·)∥∞,T−1Kn

≤ cp
n∑

0≤|α|≤p

∥Fα(T ·)∥∞,T−1Kn
≤ cp∥F∥Wp(Kn).

Hence, applying Theorem 5 yields θ̃F such that

∥G(·)−W (·; θ̃F )∥∞,T−1Kn
≤ ncprµd max{R̃, 1}M− p

d ,
(10)

where W (x; θ) is the NN constructed in the proof of
Theorem 5. Recall that the output of the first hidden
layer is Ŵ 1x for some Ŵ 1 ∈ Rnd×n. Replacing T−1Kn

as the input space withKn and adjusting the first hidden
layer weights to W 1 := Ŵ 1T−1 proves the first claim.
For the second claim, assume F ∈ F and observe that
for any |α| = 1 we have

∥DαW (·, θF )−DαF (·)∥∞,Kn

≤∥T−1∥∥DαW (·; θ̃F )−DαGα(·)∥∞,T−1Kn

≤c
√
µdM

− p
2d

√
R̃C,

where the last inequality follows from Theorem 5 applied
for G = F (T ·) ∈ F (n)

cpr,d,p. 2

The estimate (9) in Corollary 7 can also be derived us-
ing Theorem 4.10 from Kang and Gong (2022). Repre-
senting the separable function as a compositional func-
tion and estimating the constants in (Kang and Gong,
2022, Remark 4.12) yields arguments similar to those in
the proofs of Theorem 5 and Corollary 7. As a conse-
quence of Theorem 5 and Corollary 7, by counting the
total number of neurons in the hidden layers in Figure 1,
we obtain that the number of hidden neurons needed to
approximate (linearly) d-separable functions grows only
polynomially in the state dimension n. For L∞ approx-
imation this asymptotic result has already been stated
in Grüne (2021). The following Corollary extends it to
the W1-norm.

Corollary 8 Let ε > 0 and consider the setting from
Corollary 7. Then for n ∈ N the number of hidden neu-
rons N ∈ N needed to ensure

sup
F∈F

inf
θ
∥F (·)−W (·; θ)∥W1([−R,R]n) ≤ ε

is given by N = O
(
nd+

(
n
ε

) 2d
p +1

)
.
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4 Existence of separable control Lyapunov func-
tions

In this section, we use methods from nonlinear systems
theory for providing conditions for the existence of (lin-
early) separable clfs. Thus, by invoking the results from
Section 3 we can identify classes of systems that allow
NNs to mitigate the curse of dimensionality.

4.1 Separability via small-gain theory and active nodes

This subsection proves the existence of separable clfs
based on small gain theory, leveraging the notion of ac-
tive nodes from Chen and Astolfi (2020, 2024). We con-
sider a control system (1) and assume that it can be de-
composed into s ∈ N subsystems denoted by

Σj : żj = fj(x, ũj) = fj(zj , z−j , ũj), j ∈ [s], (11)

x =


z1
...

zs

 , u =


ũ1

...

ũs

 , f(x, u) =


f1(x, ũ1)

...

fs(x, ũs)

 ,

with zj ∈ Rdj ,U = U1×· · ·×Us, ũj ∈ Uj , fj : Rn×Uj →
Rdj , and

z−j :=
(
z1, . . . , zj−1, zj+1, . . . , zs

)T
∈ Rn−dj .

We explicitly allow for the case that some subsystems Σj

are independent of the control u, which corresponds to
the case Uj = {0}. Such a decomposition in now repre-
sented as a directed graph that consists of s nodes. Each
node belongs to one subsystem and there exists an edge
from node i to node j, j ̸= i, if the subsystem i influ-
ences the subsystem j, i.e., if the function fj depends on
the vector zi. Figure 2 illustrates the graph correspond-
ing to a decomposition into 1-dimensional subsystems of
the control system (12) from Chen and Astolfi (2020).

x1

x2 x3

ẋ1 = x3 + u,

ẋ2 = x1 − x2 + x2
1,

ẋ3 = x2 − x3.

(12)

Fig. 2. A control system and its corresponding graph.

Assumption 9 For each j ∈ [s] there exists a feedback
function Fj : Rdj → Uj, comparison functions αj ∈ K∞,
γi,j ∈ K∞, i ̸= j, as well as a positive-definite and radi-
ally unbounded function Vj ∈ C1(Rdj ,R) such that

DVj(zj)fj(zj , z−j , Fj(zj))

≤− αj(Vj(zj)) +
∑
i ̸=j

γi,j(Vi(zi)). (13)

Note that for a subsystem Σj that is not influenced by
the control, the left-hand side in (13) does not depend
on any feedback function Fj . In particular, Assumption
9 states that for all j ∈ [s], the function Vj is an ISS-
Lyapunov function (see Sontag and Wang (1995)) for
the system żj = fj(zj , z−j , Fj(zj)), where z−j is seen as
the external input. Given such a stability assumption on
each of the subsystems, small-gain theory can be used to
obtain a stability property of the overall system, see, for
instance, Dashkovskiy et al. (2010); Rüffer (2007). In the
following, we focus on the theory developed in Chen and
Astolfi (2024) that allows to formulate a graph-based
criterion for the existence of a separable clf. Note that we
do not impose regularity conditions on Fj in Assumption
9 since this is not necessary in order to apply the results
from Chen and Astolfi (2024), whereas regularity of Fj

is of course required for the existence of solutions of the
control system.

Definition 10 (cf. Chen and Astolfi (2024)) Let
j ∈ [s] and consider a subsystem Σj as in (11). The
subsystem is called active if there exist ᾱj, γi,j ∈ K∞,
i ̸= j, and a function Vj ∈ C1(Rdj ,R) such that for all
αj > ᾱj there exists Fj : Rdj → Uj such that (13) holds.

Intuitively, Definition 10 implies that, for given gain
functions γi,j , the rate of decrease of Vj along the direc-
tion of the vector field can be made as steep as desired
by applying an appropriate feedback Fj . Using this no-
tion of active subsystems (or active nodes), the results of
Chen and Astolfi (2024) yield the following proposition.

Proposition 11 Consider a control system of the form
(1) given through subsystems of the form (11) and let
Assumption 9 hold. Moreover, assume that in each cycle
of the directed graph corresponding to the decomposition
(11) there is at least one active subsystem. Then there
exists a d-separable clf for the system (1).

PROOF. Let Vj , j ∈ [s], denote the ISS-Lyapunov
functions obtained from Assumption 9. Applying The-
orem 4 and Theorem 5 in Chen and Astolfi (2024), re-
spectively, yields the existence of continuous, positive
definite functions λj : R≥0 → R≥0, j ∈ [s], such that

V (·) :=
s∑

j=0

∫ Vj(·)

0

λj(s) ds

is a Lyapunov function for

żj = fj(zj , z−j , Fj(zj)), j ∈ [s].

This implies that V satisfies condition (2b), whence V
is a clf for (1). This gives us the decomposition of V as
d-separable function as in Definition 3. 2
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Revisiting the control system in (12), we can check that
Vj(xj) = x2

j is an ISS-Lyapunov function for each sub-
system and that the first subsystem is active. Thus,
Proposition 11 yields the existence of a 1-separable clf
for Example 12. Overall, by invoking Corollary 8 we can
conclude that Proposition 11 identifies a class of con-
trol systems, where a clf can be approximated by a NN
without the curse of dimensionality.

4.2 Linear separability via linearization

This subsection extends the discussion from Subsection
4.1 to the existence of linearly d-separable clfs. This is
motivated by the system

ẋ1 = x3 + u, ẋ2 = x1 − x2 + x2
2, ẋ3 = x2 + x3, (14)

which is a variation of (12) for which it has been shown
in Grüne and Sperl (2023) that it has a clf, but no 1-
separable clf. However, it can be shown to possess a lin-
early 1-separable clf in a neighborhood around the ori-
gin. We first prove that stabilizable linear systems al-
ways admit a linearly 1-separable clf.

Proposition 12 Consider a linear control system of the
form

ẋ = Ax+Bu, (15)
where A ∈ Rn×n and B ∈ Rn×m. Assume that (A,B)
is stabilizable. Then there exists a linearly 1-separable clf
V for the system (15). The function V is quadratic, i.e.,
V (x) = xTPx for some P ∈ Rn×n and satisfies

inf
u∈Rm

DV (x)(Ax+Bu) ≤ DV (x)(A+BF )x ≤ −c∥x∥22
(16)

for a suitable feedback matrix F ∈ Rn×m and some c > 0.

PROOF. It is known that for a linear and stabilizable
system, there always exists a clf of the form V (x) =
xTPx for a suitable symmetric and positive definite ma-
trix P ∈ Rn×n. The inequality (16) then follows from
the usual matrix Lyapunov inequality. As P is symmet-
ric and positive-definite, there exists an orthogonal ma-
trix T ∈ Rn×n such that

P̃ := T−1PT = TTPT = diag(p1, . . . , pn)

is a diagonal matrix. Thus,

V (Tx) = (Tx)TP (Tx) = xT P̃ x =

n∑
i=1

pix
2
i

is a 1-separable function. 2

Proposition 12 implies that linearizable control systems
locally possess linearly 1-separable clfs.

Corollary 13 Consider a control system (1) with a C1-
function f and assume that its linearization at the origin
is stabilizable. Then the control system (1) possesses a
linearly 1-separable clf on some neighborhood of the ori-
gin.

PROOF. Write f(x, u) = Ax+Bu+ g(x, u) with

lim
∥(x,u)∥→0

∥g(x, u)∥
∥(x, u)∥

= 0.

Since (A,B) is stabilizable, Proposition 12 yields the ex-
istence of c ∈ R≥0, F ∈ Rn×m, and a linearly 1-separable
function V (x) = xTPx such that (16) holds. Following
the proof of (Sontag, 1998, Theorem 19), we obtain

inf
u

DV (x)f(x, u) ≤ −c∥x∥22 + 2xPg(x, F (x)) < 0

for x sufficiently small, since ∥2xPg(x,F (x))∥
∥x∥2 → 0 for x →

0. Hence, V is a clf for the nonlinear system (1) in a
suitable neighborhood of the origin. 2

4.3 Linear separability via feedback linearization

Next we explore a class of systems for which Proposi-
tion 12 can be employed to achieve linear separability
through a potential nonlinear transformation. To this
end, we extend the definition of feedback linearizability
from (Sontag, 1998, Section 5.3) to multi-input systems.

Definition 14 An affine control system

ẋ = f(x) +

m∑
j=1

gj(x)uj

with control input u = (u1, . . . , um)T ∈ Rm is called
feedback linearizable, if there exists a diffeomorphism S ∈
C1(Rn,Rn) as well as maps aj , bj : Rn → R, j ∈ [m],
such that the transformed control system

˙̃x = f̃(x̃) +

m∑
j=1

g̃j(x̃)vj

with transformed state x̃ = S(x), new control input v =
(v1, . . . , vm)T ∈ Rm and

f̃(x̃) = DS(x)
(
f(x) +

m∑
j=1

aj(x)gj(x)
)
,

g̃j(x̃) = bj(x)DS(x)gj(x),

is a linear control system, i.e., if there exist matrices
A ∈ Rn×n and B ∈ Rn×m such that f̃(x̃) = Ax̃ and
(g̃1(x̃), . . . , g̃m(x̃)) = B holds for all x̃ ∈ Rn.

7



Theorem 15 Consider a feedback linearizable affine
control system with transformation S satisfying S(0) =
0, for which the pair (A,B) is stabilizable. Then the
control system has a clf V of the form V (x) = Ṽ (S(x))

with a linearly 1-separable function Ṽ : Rn → R.

PROOF. According to Proposition 12, we have

inf
v∈Rm

DṼ (x̃)(Ax̃+Bv) ≤ DṼ (x̃)(Ax̃+BFx̃) ≤ −c∥x̃∥22

for suitable c ∈ R≥0, F ∈ Rn×m, and some linearly
1-separable mapping Ṽ . For V (x) = Ṽ (S(x)) and uj =
aj(x) + bj(x)vj we then obtain

DV (x)
(
f(x) +

m∑
j=1

gj(x)uj

)
= DṼ (S(x))DS(x)

(
f(x) +

m∑
j=1

gj(x)(aj(x) + bj(x)vj)
)

= DṼ (x̃)
(
f̃(x̃) +

m∑
j=1

g̃j(x̃)vj
)

= DṼ (x̃)(Ax̃+Bv).

This implies

inf
u∈Rm

DV (x)
(
f(x) +

m∑
j=1

gj(x)uj

)
≤ −c∥S(x)∥22.

Since S is a diffeomorphism with S(0) = 0, there exist
α1, α2 ∈ K∞ with α1(∥x∥2) ≤ (∥S(x)∥2) ≤ α2(∥x∥2),
see Lemma 1 in Kellett and Dower (2015). Thus, V sat-
isfies all inequalities in (2), whence it is a clf. 2

Corollary 16 Consider the setting of Theorem 15 and
assume that the transformation map S is linearly k-
separable for some k ∈ [n]. Then the control system has
a clf V that is a composition of a linearly 1-separable
function with a linearly k-separable function.

Note that Corollary 16 in particular applies to linear
mappings S, as linear mappings are always 1-separable.
We can conclude that in the setting of Corollary 16 there
exists a curse-of-dimensionality-free approximation with
a NN that is built as in Figure 1, but has one additional
hidden layer at the beginning, which is used to represent
the k-separable transformation S.

5 Numerical illustration

5.1 Network structure and training algorithm

The structure of the NN that we use for the computation
of a linearly separable clf is exactly the one depicted in

Figure 1 with the modification of introducing a hyper-
parameter s for the number of sublayers, i.e., replacing
the n sublayers in Figure 1 by s sublayers. An important
feature of this network architecture is the fact that the
decomposition of the state vector x into the vectors zj ,
1 ≤ j ≤ s, is determined by the first hidden layer. Thus,
the detection of a suitable splitting of the state space (see
Definition 3) is part of the training process. This means
that the numerical algorithm presented in this section
does not need to know the splitting or coordinate trans-
formation discussed in Section 4. Rather, this structure
will be “learned” by the network in the training process.

It is possible to incorporate the linear transformation
computed by the first hidden layer in Figure 1 into the
second hidden layer, that is, to merge the two hidden
layers into one hidden fully-connected layer. Since the
NN in Figure 1 can be viewed as a fully-connected NN
with some particular weights set to 0, a fully connected
NN still preserves the property of mitigating the curse
of dimensionality for separable clfs. However, in our nu-
merical test cases, the NN with two hidden layers as de-
picted in Figure 1 frequently demonstrated an improved
numerical performance. On the other hand, if no a priori
estimates of the hyperparameters d and s are possible,
the usage of a fully connected NN is more practical. A
detailed comparison of these NN architectures, includ-
ing different numbers of hidden layers, is of high impor-
tance but is deferred to future research due to space lim-
itations.

We define a loss-functionL that penalizes the violation of
the three inequalities defining a smooth clf in Definition
1. For any point x ∈ K we set

L(x,W (x; θ), DW (x; θ)) :=

([W (x; θ)− α1(∥x∥)]−)2 + ([W (x; θ)− α2(∥x∥)]+)2

+ η
([

α3(∥x∥) + inf
u∈U

DW (x; θ)f(x, u)
]
+

)2
, (17)

where α1, α2 ∈ K∞, α3 ∈ K, [·]+ := max(·, 0), [·]− :=
min(·, 0), and η > 0 is a weighting factor. Note that
the functions α1, α2, and α3, as well as the parameter
η are hyperparameters of the algorithm. Their choice
can significantly affect the training process, whence a
system approach for selecting these hyperparameters is
important and will be investigated in future research.

Note that L depends on the point x, the evaluation
W (x; θ) and the orbital derivative DW (x; θ)f(x, u). We
calculate this orbital derivative alongside the evaluation
of W (x; θ) via automatic differentiation. This means
that the orbital derivative is computed on the fly from
the separable network, using the built-in differentiation
via backpropagation in Tensorflow (see Abadi et al.
(2015)). Thus, the derivative does not need to be stored
separately, whence separability of the orbital deriva-
tive, which cannot be expected since f is not separable,
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is not needed. Moreover, we need to evaluate the ex-
pression infu∈U DW (x; θ)f(x, u). This expression can
be simplified for systems with U = [−C,C]m for some
C > 0 and an affine linear control input of the form
ẋ = f(x, u) = h(x) + g(x)u, since then we have

inf
u∈U

DW (x; θ)f(x, u)

=DW (x; θ)h(x)− C∥DW (x; θ)g(x)∥1,
(18)

cf. (Grüne and Sperl, 2023, Lemma 6). The training pro-
cess of the NN is then performed by minimizing the value
of the loss function (17) over a finite set of training data
DT ⊂ K.

Remark 17 Clfs can be characterized as solutions of
Zubov’s equation Camilli et al. (2008); Grüne and Wirth
(2000), i.e., as optimal value functions for suitable opti-
mal control problems. For such problems, NN approaches
have been proposed in the literature, see e.g. Albi et al.
(2022); Liu et al. (2023); Nakamura-Zimmerer et al.
(2022); Zhou et al. (2024). However, they are difficult
to apply in our setting, because while we assume that a
separable clf exists, we do not know its precise form and
thus also not the corresponding optimal control problem.

Furthermore, in our numerical tests it has turned out
that the most significant error usually lies around the
origin. We tackle this by adding the term W (0; θ)2 +
∥DW (0; θ)∥2 to the loss-function used for the training of
the network, cf. Chang et al. (2019). Adding these terms
to the loss function encourages the used optimization
routine to stay at W (0; θ) = 0 and DW (0; θ) = 0 during
the training. While this approach produced the best re-
sults for us, different ways to address issues at the origin
have successfully been implemented in the literature, for
instance by transforming the NN output, cf. Gaby et al.
(2022); Mukherjee et al. (2022).

5.2 Numerical test case

Finally, we illustrate the presented algorithm on the fol-
lowing 10-dimensional control system

ẋ = f(x, u) =



−x1 + x1x2 − 0.1x2
9

−x2u1

−x3 + x3x4 − 0.1x2
1

−x4u2

−x5 + x5x6 + 0.1x2
7

−x6u3

−x7 + x7x8

−x8u4

−x9 + x9x10

−x10u5 + 0.1x2
2



(19)

with U = [−1, 1]5. It consists of 5 two-dimensional bilin-
ear subsystems of the form ẏ = −y + zy, ż = −uz cou-
pled with small non-linearities. For u = 1 this recovers
the ODE presented in Ahmadi et al. (2011), where it is
shown that there does not exist a polynomial Lyapunov
function for this system on R2. While there still exists
a quadratic clf with appropriate coefficients on compact
sets, enlarging the training domain makes it more diffi-
cult to recover it. This can cause the NN to defer from a
quadratic influence of the variables, cf. Figure 3. To illus-
trate the ability of our approach to determine subspaces
that lead to separability, we consider the transformed
system ẋ = T−1f(Tx, u), where T = I10 + P ∈ R10×10

with P being normally distributed around 0 with scale
0.1. Note that the subsystem that are computed dur-
ing the training process are typically not the original
subsystems from (19). We employed the hyperparame-
ters α1(r) = 0.5r2, α2(r) = 10r2, α3(r) = 0.01r2, as
well as d = 2, s = 5, and M = 64 in a training pro-
cess with 2 × 105 training data, a batch size of 64, and
the softplus-function as activation function in the sec-
ond hidden layer. The training process was conducted to
compute a clf on the domain [−4, 4]10, where we before-
hand transformed x 7→ 1

4x and performed the training
on [−1, 1]10 for numerical reasons. Our computations are
carried out with Python 3.10.6 and Tensorflow 2.11.0
on an NVIDIA GeForce RTX 3070 GPU. The optimiza-
tion has been performed with the ADAM stochastic gra-
dient descent method. After 30 epochs and a training
time of 470 seconds, the algorithm reached an L1 error
of 9.8 × 10−5 in the training data. An evaluation at in-
dependently chosen 2 × 105 validation data showed an
L1 error of 9.3× 10−7 and an L∞ error of 9.3× 10−2.

x1 1.00.50.00.51.0 x6

1.0
0.5

0.0
0.5

1.0

W
,D

W
f

4

2

0

2

4

Fig. 3. Approximate clf (solid) and its corresponding orbital
derivative (mesh) on the (x1, x3)-plane.

Figure 3 shows the computed NN output W (x; θ) pro-
jected onto the (x1, x6)−axis as surface plot. Further,
the directional derivative DW (x; θ)f(x, u∗) with

u∗(x) = argminDW (x; θ)f(x, u) (20)

is calculated according to (18) and depicted as wireframe
plot. Figure 4 depicts the evaluation of W (x; θ) along-
side 20 trajectories with initial values randomly sampled
in [−0.5, 0.5]10 and control u∗(x) as in (20). Note that
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Fig. 4. Evaluation of W (x; θ) along trajectories.

the convergence of the trajectories in Figure 4 towards
0 as well as the plots in Figure 3 provide empirical evi-
dence that the computed NN output might indeed by a
clf. However, there is no formal guarantee that the Lya-
punov conditions are met at every point. For verification
techniques, we refer to the corresponding discussion in
the introduction.
Further, we trained neural networks towards clfs for
the control system (19), adjusted to dimensions n =
2, 4, . . . , 16. For each dimension, we utilized a network
architecture as shown in Figure 4 with n/2 sublayers.
The sublayer size M was decreased as far as possible
while still achieving an L1 loss below a tolerance of 10−4

on both the training and independently chosen valida-
tion data. The resulting total number of neurons in the
network and its number of trainable parameters in de-
pendence of the dimension are shown in Figure 5. No-
tably, the growth in both the number of neurons and
trainable parameters is non-exponential and appears al-
most linear. This trend arises because the minimal sub-
layer size M remains in {2, 3, 4, 5} across all dimen-
sions. This indicates that the bounds derived in Section
3 are conservative for this example, as expected, since
the theoretical error bounds consider the worst-case sce-
nario where each subsystem simultaneously attains its
maximal error for the same input x. Our Tensorflow
code is available on https://github.com/MarioSperl/
SeparableCLF-NN.
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Fig. 5. Scaling of neurons and parameters with dimension.

6 Conclusion

In this paper, we have discussed the capability of NNs
to approximate clfs in high space dimensions. To this
end, we have shown that NNs can mitigate the curse
of dimensionality for approximating (linearly) separable
functions and provided conditions for the existence of
(linearly) separable clfs. Thus, we have identified control
systems that allow for a representation of a clf with a
NN mitigating the curse of dimensionality. Moreover, a
numerical algorithm was presented. For future research,
we intend to systematically study the influence of the
hyperparameters determining the NN architecture and
the loss function. Afterwards, a comparison to other nu-
merical methods is of interest, as it was for example done
in Zhou et al. (2024). Moreover, we aim to investigate
the approximation of non-smooth clfs with NNs.
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