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A B S T R A C T

In this paper we give conditions under which control Lyapunov functions exist that can be represented
by either piecewise affine functions or by neural networks with a suitable number of ReLU layers. The
results provide a theoretical foundation for recent computational approaches for computing control
Lyapunov functions with optimization-based and machine-learning techniques.

1. Introduction
A control Lyapunov function (CLF) is a powerful device

in control theory that provides a systematic method for the
design of stabilizing controllers. A CLF is a real-valued
function defined on the state space of a (potentially nonlin-
ear) control system that encodes the property that there exists
a feedback to stabilize the system to an equilibrium point.
This device finds employment in nonlinear and adaptive
control, where one finds systematic methods for the design
of stabilizing controllers even in the presence of input con-
straints. The early articles Artstein (1983) and Sontag (1983)
on the topic of CLFs were considerably influential and
spurred a range of developments, including Sontag (1989);
Lin and Sontag (1991), across wide areas of theoretical and
applied constructive nonlinear control.

Let us take a brief look at the question of existence of
CLFs. For continuous (nonlinear) control systems satisfy-
ing mild regularity (Lipschitz growth) conditions, having
compact admissible action sets and convex velocity sets,
CLFs are known to be intimately connected to the property
of their null controllability Sontag and Sussmann (1996).
The indicated property concerns the existence of controllers
that guarantee steering of initial states arbitrarily picked
from a domain to the origin over a finite time interval. It
is known (Sontag and Sussmann, 1996, Theorem 4.1) (see
also (Clarke, 2013, pp. 558-560)) that a control system of the
aforementioned kind admits a CLF if and only if it is null
controllable, and the minimal-time function (of the initial
states) serves as a CLF if the null controllability property
holds; moreover, the minimal-time function is continuous if
the origin lies in the velocity set at the origin.
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While from an engineering viewpoint, continuity of
CLFs is a desirable property and numerical methods for the
synthesis of CLFs certainly stand to benefit from stronger
regularity properties (such as continuous differentiability
or smoothness) of candidate CLFs, the points raised in
the preceding paragraph indicate that CLFs for continu-
ous control systems could well be nonsmooth. Indeed, as
shown in Sontag (1998), nonsmoothness of CLFs may be
unavoidable and is linked to topological obstructions that
require binary decisions such as whether to move clockwise
or counterclockwise. On the other hand, positive results in
the direction of structural regularity of CLFs, appearing
e.g., in Rifford (2000), provide sufficient conditions for the
existence of Lipschitz continuous and semiconcave CLFs.
In view of the above facts, algorithmic synthesis of CLFs
for nonlinear systems continues to remain a challenging
problem from both theoretical and numerical standpoints.

This article makes inroads into the challenging domain
of CLF synthesis on both the analysis and synthesis fronts.
The following are our key contributions:

(1) We begin by addressing the case of nonsmooth CLFs
that are representable as the pointwise minimum of
finitely many Lipschitz continuous CLFs. Proposition 9
shows that such a pointwise minimum is itself a CLF on
a neighborhood of the origin.

(2) The possibility of approximating CLFs via continuous
and piecewise affine (CPWA) functions is investigated
next. It is demonstrated that if there exists a semiconcave
CLF away from the origin and realized as the pointwise
minimum over finitely many 𝐶2 functions, then one can
find a continuous piecewise affine CLF away from the
origin; this is the content of Theorem 12. The CLF
property away from the origin is expressed formally via
practical CLFs — they encode the standard properties
of CLFs, but only outside a small ball centered at the
origin. The omission of a small ball around the origin is
part of the approximation.

(3) From a computational standpoint, attention to CPWA
functions is desirable because this class of functions
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possesses good numerical properties such as ease of rep-
resentation and quick computation; we refer the reader
to Baier, Braun, Grüne and Kellett (2019) and the ref-
erences therein for optimization-based computational
techniques for control Lyapunov functions using CPWA
functions as approximators. Moreover, since each ReLU
neural network produces a CPWA function, the inclu-
sion of neural networks as candidate CLFs also benefits
from the wide availability of efficient and contempo-
rary computational packages for function approximation
using ReLU neural networks; we refer the reader to
Grüne (2021); Grüne and Sperl (2023); Sperl, Mysliwitz
and Grüne (2024); Gaby, Zhang and Ye (2022); Liu,
Meng, Fitzsimmons and Zhou (2023, 2024) for recent
work on the synthesis of (control) Lyapunov functions
via neural networks. In this connection, Theorem 15
provides structural details of neural networks combin-
ing both smooth and ReLU activation functions, that
guarantee the existence of a practical CLF under the
assumptions of Theorem 12. We draw attention to the
at most logarithmic increase in the number of layers of
the neural network with the number of 𝐶2 functions in
the original CLF.

In summary, the results in this paper justify recent compu-
tational approaches for CLFs, because they give conditions
under which the approximators used in these approaches can
indeed represent CLFs.

This article exposes as follows: Section 2 sets down
the setting of CLFs in the context of continuous nonlinear
control systems, and Section 3 reviews known and prelimi-
nary results. The main results on representation of CLFs by
CPWA functions are presented in Section 4 and Section 5
contains the results on representation of CLFs by neural net-
works. A numerical experiment with the benchmark control
system known as Artstein’s circles is carried out in Section
6, and we conclude in Section 7 with a discussion of future
directions.

2. Setting and preliminaries
We consider control systems of the form

�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡))

with 𝑥(𝑡) ∈ ℝ𝑛 and 𝑢(𝑡) ∈ 𝑈 ⊂ ℝ𝑚. We assume that
𝑓 is continuous and Lipschitz in 𝑥 uniformly in 𝑢. By
Carathèodory’s Theorem this implies existence and unique-
ness of the solutions for each initial condition 𝑥(𝑡0) = 𝑥0 and
each control input 𝑢 ∈ 𝐿∞(ℝ, 𝑈 ), see e.g. (Sontag, 1998,
Appendix C).

It is well known that smooth control Lyapunov functions
do not exist in general. Hence, for their definition we need
a weak definition of a directional derivative. The following
definition provides the appropriate concept for Lipschitz
functions, which is a sufficiently rich class of functions for
our purpose in this paper.

Definition 1. Let 𝑉 ∶ 𝑂 → ℝ for an open set 𝑂 ⊂ ℝ𝑛 be a
Lipschitz function. The lower right Dini derivative of 𝑉 at a

point 𝑥 ∈ 𝑂 in the direction of 𝑤 ∈ ℝ𝑛 is defined as

𝐷𝑉 (𝑥;𝑤) ∶= lim inf
𝑡↘0

𝑉 (𝑥 + 𝑡𝑤) − 𝑉 (𝑥)
𝑡

.

The next definition specifies the notion of a control
Lyapunov function, going back to Sontag (1983), which
we present here in the by now standard form using ∞
functions. A control Lyapunov function is always defined
with respect to an equilibrium 𝑥∗ ∈ ℝ𝑛 of the system, which
we here assume to be the origin, i.e., 𝑥∗ = 0.

Definition 2. A Lipschitz function 𝑉 ∶ 𝑂 → ℝ for an open
set 𝑂 ⊂ ℝ𝑛 containing 0 is a control Lyapunov function
(CLF), if there exist three ∞ functions 𝛼𝑖, 𝑖 = 1, 2, 3, such
that the inequalities

𝛼1(‖𝑥‖) ≤ 𝑉 (𝑥) ≤ 𝛼2(‖𝑥‖) (1)
inf
𝑢∈𝑈

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) (2)

hold for all 𝑥 ∈ 𝑂. In the case of 𝑂 = ℝ𝑛, 𝑉 is called a
global CLF.

A global CLF exists if and only if the system can be
globally asymptotically controlled to 𝑥∗ = 0, which in turn
holds if and only if the system can be globally asymptotically
stabilized at 𝑥∗ = 0 in the sample-and-hold sense (for
precise statements and definitions of these properties see,
e.g., Clarke, Ledyaev, Sontag and Subbotin (1997)).

If either of these properties is not global, one can restrict
the definition of a CLF onto a subset of the system’s domain
of asymptotic controllability. One can even define CLFs
on the entire domain of asymptotic controllability 𝐷, cf.
Camilli, Grüne and Wirth (2008), but then at least one of
the inequalities in (1) and (2) must be modified near the
boundary of 𝐷.

When we want to find CLFs within a specific class
of “simple” functions, we may have to exclude those 𝑥
for which the 𝛼𝑖 are close to 0, as in these points even
small errors induced by the restriction to a limited class of
functions may lead to a violation of the inequalities (1) and
(2).

Definition 3. Given 𝜀 > 0, a Lipschitz function 𝑉 ∶ 𝑂 → ℝ
for an open set 𝑂 ⊂ ℝ𝑛 containing 0 is an 𝜀-practical
control Lyapunov function (𝜀-PCLF), if there exist three∞
functions 𝛼𝑖, 𝑖 = 1, 2, 3, such that the inequalities

𝛼1(‖𝑥‖) ≤ 𝑉 (𝑥) ≤ 𝛼2(‖𝑥‖) (3)
inf
𝑢∈𝑈

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) (4)

holds for all 𝑥 ∈ 𝑂 with ‖𝑥‖ ≥ 𝜀.

The existence of an 𝜀-PCLF still implies asymptotic con-
trollability and sample-and-hold stabilizability of a neigh-
borhood of 0 whose size is determined by 𝜀, see Kellett and
Teel (2004). More precisely, this neighborhood is at most as
large as the smallest sublevel set of 𝑉 that contains the ball
𝐵𝜀(0) with radius 𝜀 around 0. The radius of this neighbor-
hood can be conservatively estimated by 𝛼−11 (𝛼2(𝜀)).
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3. Known and preliminary results
Our construction is motivated by the notion of semicon-

cavity. Here we provide the definition used in Rifford (2000).

Definition 4. A function 𝑉 ∶ 𝑂 → ℝ defined on an open set
𝑂 ⊂ ℝ𝑛 is called semiconcave if for any point 𝑥0 ∈ 𝑂 there
exist 𝜌, 𝐶 > 0 such that

𝑔(𝑥) + 𝑔(𝑦) − 2𝑔
(𝑥 + 𝑦

2

)

≤ 𝐶‖𝑥 − 𝑦‖2

for all 𝑥, 𝑦 ∈ 𝐵𝜌(𝑥0) ⊂ 𝑂.

In the terminology of Cannarsa and Sinestrari (2004) this
is a semiconcave function with linear modulus, but in order
not to overload the terminology we will stick here to the
name semiconcave function.

Theorem 5. Assume that 𝑓 is locally Lipschitz in 𝑥 uni-
formly in 𝑢 and bounded on 𝐵𝑟(0) × 𝑈 for all 𝑟 > 0. As-
sume furthermore that the system is globally asymptotically
controllable to 𝑥∗ = 0. Then there exists a CLF that is
semiconcave and Lipschitz on ℝ𝑛 ⧵ {0}.

This follows from Theorem 1 and 2 in Rifford (2000).
Although there the properties of the CLF being Lipschitz
and semiconcave are stated separately, the construction in
the proof of Theorem 2 in this reference in fact provides
a CLF that has both properties at the same time, except
possibly at 0.

The crucial property of semiconcave functions that
serves as the motivation for our approach is described in the
following theorem, which is Theorem 3.4.2 in Cannarsa and
Sinestrari (2004) in its version for semiconcave functions
with linear modulus.

Theorem 6. Let 𝑉 ∶ 𝑂 → ℝ be a semiconcave function on
an open set 𝑂 ⊂ ℝ𝑛. Then 𝑉 can be locally written as the
minimum of functions of class 𝐶2. More precisely, for any
𝐾 ⊂ 𝑂 compact, there exists a compact set 𝑆 ⊂ ℝ2𝑛 and a
continuous function 𝐹 ∶ 𝑆 ×𝐾 → ℝ such that 𝐹 (𝑠, ⋅) is 𝐶2

for any 𝑠 ∈ 𝑆 with uniformly bounded 𝐶2-norm,1 and

𝑉 (𝑥) = min
𝑠∈𝑆

𝐹 (𝑠, 𝑥) for all 𝑥 ∈ 𝐾. (5)

Now consider a point 𝑥 ∈ 𝑂 in which two different functions
𝐹 (𝑠1, ⋅) ≠ 𝐹 (𝑠2, ⋅) realize the minimum in any neighborhood
 of 𝑥. Then, typically the function 𝑉 will not be differ-
entiable in 𝑥. As discussed in Sontag (1999), such points
of nondifferentiability correspond to points in which the
stabilizing feedback is discontinuous and a decision between
one of two or more possibilities for the directions in which
to control the system must be taken. In all examples we
were able to find in the literature, the number of points
at which this is necessary is limited to a finite number

1Recall that the 𝐶2-norm of a twice continuously differentiable func-
tion 𝑔 ∶ 𝑂 → ℝ defined on a nonempty subset 𝑂 ⊂ ℝ𝑛 is ‖𝑔‖𝐶2 ∶=

sup𝑥∈𝑂 |𝑔(𝑥)| + sup𝑦∈𝑂
‖

‖

‖

𝜕𝑔
𝜕𝑥 (𝑦)

‖

‖

‖

+ sup𝑧∈𝑂
‖

‖

‖

‖

𝜕2𝑔
𝜕2𝑥

(𝑧)
‖

‖

‖

‖

.

of hypersurfaces, suggesting that 𝑉 can be written as the
minimum over finitely many functions. Hence, even though
we are not aware of a theorem that gives rigorous conditions
for this fact, it appears that assuming that 𝑉 can be written
as the minimum over finitely many functions captures many
if not all cases that are discussed in the literature, including,
e.g., nonholonomic systems Sontag (1999).

We continue this section by discussing approximations
of 𝐶2 functions by piecewise affine functions and by neu-
ral networks. The following result is well known, but for
convenience of the reader we provide its proof. For its
formulation and proof we assume a familiarity with the usual
way piecewise affine functions can be expressed as functions
over a simplicid grid. Details can be found, e.g., in (Hafstein,
2007, Section 6.1).

Theorem 7. Let 𝑔 ∶ 𝑂 → ℝ be a𝐶2 function on an open set
𝑂 ⊂ ℝ𝑛 with 𝐶2 norm bounded by 𝐶 > 0. Consider a grid
of simplices with vertices 𝑆𝑘 of maximal diameter Δ > 0,
covering a compact set 𝐾 ⊂ 𝑂. Let 𝐶𝑆 > 0 be such that for
each simplex 𝑆𝑘 and its vertices 𝑥𝑖1 ,… , 𝑥𝑖𝑛+1 the matrix

(𝑥𝑖1 − 𝑥𝑖2 , 𝑥𝑖2 − 𝑥𝑖3 , ⋯ 𝑥𝑖𝑛 − 𝑥𝑖𝑛+1 ) ∈ ℝ𝑛×𝑛 (6)

has an inverse with norm bounded by 𝐶𝑆∕Δ. Let 𝑝 be the
(unique) continuous and piecewise affine function on the
grid with 𝑝(𝑥𝑖) = 𝑔(𝑥𝑖) for all vertices in the grid. Then for
all 𝑥 ∈ 𝐾 the inequalities

|𝑝(𝑥) − 𝑔(𝑥)| ≤ (𝐶𝑆 + 2)𝐶Δ2

and

‖𝐷𝑝|𝑆𝑘
−𝐷𝑔(𝑥)‖ ≤ (𝐶𝑆 + 1)𝐶Δ

hold for all 𝑥 ∈ 𝐾 , where in the second inequality 𝑆𝑘 is a
simplex containing 𝑥 and 𝐷𝑝|𝑆𝑘

is the derivative of 𝑝 on 𝑆𝑘.

Proof: Let 𝐾 ⊂ 𝑂 be compact and consider a triangulation
of 𝐾 with simplices of diameter ≤ 𝛿. Consider the piecewise
affine function 𝑝 uniquely defined by 𝑝(𝑥𝑖) = 𝑔(𝑥𝑖) for all
vertices 𝑥𝑖 of the grid. Then by the fact that the second
derivative of 𝑔 is bounded, Taylor’s theorem yields

𝑔(𝑥) = 𝑔(𝑦) +𝐷𝑔(𝑦)(𝑥 − 𝑦) + 𝑅(𝑦)

with |𝑅(𝑦)| ≤ 𝐶‖𝑥 − 𝑦‖2 for a constant 𝐶 independent of 𝑥
and 𝑦. For 𝑝 we obtain the same relation with 𝑅(𝑦) = 0 as
long as 𝑦 and 𝑥 are contained in the same simplex.

Setting 𝑦 = 𝑥𝑖 and choosing 𝑥 from a simplex 𝑆𝑘
containing 𝑥𝑖 as a vertex (which implies ‖𝑥 − 𝑥𝑖‖ ≤ 𝛿), we
obtain

𝑝(𝑥) − 𝑔(𝑥) = 𝑔(𝑥𝑖) +𝐷𝑔(𝑥𝑖)(𝑥 − 𝑥𝑖) + 𝑅(𝑥𝑖)
− 𝑝(𝑥𝑖) −𝐷𝑝|𝑆𝑘

(𝑥 − 𝑥𝑖) (7)
= 𝐷𝑔(𝑥𝑖)(𝑥 − 𝑥𝑖) −𝐷𝑝|𝑆𝑘

(𝑥 − 𝑥𝑖) + 𝑅(𝑥𝑖).

If we choose 𝑥 = 𝑥𝑗 ≠ 𝑥𝑖 to be another vertex in 𝑆𝑘, then
this implies

0 = 𝑝(𝑥𝑗)−𝑔(𝑥𝑗) = 𝐷𝑔(𝑥𝑖)(𝑥𝑗−𝑥𝑖)−𝐷𝑝|𝑆𝑘
(𝑥𝑗−𝑥𝑖)+𝑅(𝑥𝑖).
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Using (6), we thus obtain

‖𝐷𝑔(𝑥𝑖) −𝐷𝑝|𝑆𝑘
‖ ≤ 𝐶𝑆𝐶Δ,

from which, using that 𝐷𝑔 is Lipschitz with constant 𝐶 , we
obtain

‖𝐷𝑔(𝑥) −𝐷𝑝|𝑆𝑘
‖ ≤ (𝐶𝑆 + 1)𝐶Δ

for all 𝑥 ∈ 𝑆𝑘. Inserting this into (7) we immediately obtain

|𝑝(𝑦) − 𝑔(𝑦)|
≤‖𝐷𝑔(𝑥𝑖)(𝑥 − 𝑥𝑖) −𝐷𝑝|𝑆𝑘

(𝑥 − 𝑥𝑖) + 𝑅(𝑥𝑖)‖

≤(𝐶𝑆 + 2)𝐶Δ2

The next theorem summarizes universal approximation
results for neural networks that are relevant for this paper.

Theorem 8. Let 𝑔 ∶ 𝑂 → ℝ be a 𝐶2 function on an open
set 𝑂 ⊂ ℝ𝑛 with 𝐶2 norm bounded by 𝐶 > 0. Let 𝐾 ⊂ 𝑂 be
compact and 𝜀 > 0. Then

(a) there exists a neural network with ReLU activation
functions and at most ⌈log2(𝑛 + 1)⌉ + 1 layers such that the
function 𝑝 ∶ 𝐾 → ℝ represented by the neural network
satisfies

|𝑝(𝑥) − 𝑔(𝑥)| ≤ 𝜀 and ‖𝐷𝑝(𝑥) −𝐷𝑔(𝑥)‖ ≤ 𝜀, (8)

where the first inequality holds for all 𝑥 ∈ 𝐾 and the second
for all 𝑥 ∈ 𝐾 in which 𝑝 is differentiable;

(b) for any activation function 𝜎 ∈ 𝐶 𝑙(ℝ,ℝ), 𝑙 ≥ 2
and 0 < ∫ℝ |𝜎(𝑙)(𝑟)|𝑑𝑟 < ∞, there exists a neural network
with one hidden layer such that the function 𝑝 ∶ 𝐾 → ℝ
represented by the neural network satisfies (8) for all 𝑥 ∈ 𝐾 .

Proof: Statement (a) follows from the fact that Theorem 7
implies the existence of a piecewise affine function satis-
fying (8). By (Arora, Basu, Mianjy and Mukherjee, 2018,
Theorem 2.1) this function can be represented by a deep
neural network with ReLU activation functions and at most
⌈log2(𝑛+1)⌉+1 layers. Statement (b) follows from (Hornik,
Stinchcombe and White, 1990, Corollary 3.5).

We end this section with two results on functions satis-
fying the inequalities (1) and (2) in the CLF definition. The
first result shows that a minimum of such functions again
satisfies these inequalities.

Proposition 9. Consider Lipschitz functions 𝑉𝑖 ∶ 𝑂𝑖 → ℝ,
𝑖 = 1,… , 𝑞, with𝑂𝑖 ⊂ ℝ𝑛 being open sets. Assume that there
are 𝛼1, 𝛼2, 𝛼3 ∈ ∞ such each 𝑉𝑖 satisfies (1) and (2) for all
𝑥 ∈ 𝑂𝑖. Then the function 𝑉 defined for 𝑥 ∈ 𝑂 ∶=

⋃𝑞
𝑖=1𝑂𝑖

by

𝑉 (𝑥) = min
𝑖=1,…,𝑞
𝑥∈𝑂𝑖

𝑉𝑖(𝑥)

satisfies (1) and (2) for all 𝑥 ∈ 𝑂.

Proof: It is obvious that the inequalities in (1) carry over
to the minimum of the 𝑉𝑖. Concerning inequality (2), let
𝑥 ∈ 𝑂 and let 𝑉𝑖 be the function at which the minimum
in the definition of 𝑉 is realized in this 𝑥, i.e., 𝑉 (𝑥) = 𝑉𝑖(𝑥).
Fix 𝜀 > 0 and let 𝑢𝜀 ∈ 𝑈 be a control value that satisfies

𝐷𝑉𝑖(𝑥; 𝑓 (𝑥, 𝑢𝜀)) ≤ −𝛼3(‖𝑥‖) + 𝜀.

By the definition of the Dini derivative, this implies that
there is a sequence 𝑡𝑗 ↘ 0 with 𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀) ∈ 𝑂𝑖 and

lim
𝑗→∞

𝑉𝑖(𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉𝑖(𝑥)
𝑡𝑗

≤ −𝛼3(‖𝑥‖) + 𝜀.

From this we conclude that

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢𝜀)) = lim inf
𝑡↘0

𝑉 (𝑥 + 𝑡𝑓 (𝑥, 𝑢𝜀)) − 𝑉 (𝑥)
𝑡

≤ lim
𝑗→∞

𝑉 (𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉 (𝑥)
𝑡𝑗

= lim
𝑗→∞

𝑉 (𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉𝑖(𝑥)
𝑡𝑗

≤ lim
𝑗→∞

𝑉𝑖(𝑥 + 𝑡𝑗𝑓 (𝑥, 𝑢𝜀)) − 𝑉𝑖(𝑥)
𝑡𝑗

≤ −𝛼3(‖𝑥‖) + 𝜀.

In turn, this yields

inf
𝑢∈𝑈

𝐷𝑉 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) + 𝜀,

and since 𝜀 > 0 was arbitrary, the preceding inequality gives
us (2).

The second preparatory result shows that if a function
satisfies the inequalities (1) and (2) on a compact set, then
it also satisfies these inequalities with an adjusted family of
𝛼𝑖’s on a neighborhood of this compact set.

Lemma 10. Assume that 𝑓 is locally Lipschitz in 𝑥 uni-
formly in 𝑢 and bounded on 𝐵𝑟(0) × 𝑈 for all 𝑟 > 0. Let
𝑖 ∈ {1,… , 𝑞}, 𝑂𝑖 ⊂ ℝ𝑛 be open, and consider a 𝐶2 function
𝑉𝑖 ∶ 𝑂𝑖 → ℝ with 𝐶2 norm of 𝑉𝑖 on 𝑂𝑖 bounded by
some 𝐶 > 0. Assume there are 𝛼1, 𝛼2, 𝛼3 ∈ ∞, Lipschitz
with constant 𝐿𝛼 , such that 𝑉𝑖 satisfies (1) and (2) for all
𝑥 ∈ int𝐾𝑖 for a compact set 𝐾𝑖 ⊂ 𝑂𝑖 with 𝐾𝑖 = cl int𝐾𝑖.
Then, given 𝜀 > 0, there exists 𝛿 > 0, depending only on
the bounds and Lipschitz constants of the involved functions,
such that 𝑉𝑖 satisfies (1) and (2) with �̃�1 = 𝛼1∕2, �̃�2 = 2𝛼1
and �̃�3 = 𝛼3∕2 instead of 𝛼1, 𝛼2, 𝛼3 on (𝐵𝛿(𝐾𝑖)∩𝑂𝑖)⧵𝐵𝜀(0).

Proof: By definition of the 𝐶2 norm, we know that 𝑉𝑖 and
𝐷𝑉𝑖 are bounded and Lipschitz with constant 𝐶 on 𝑂𝑖. Let 𝐿
and𝑀 be the Lipschitz constant and bound of 𝑓 on𝐵1(𝐾𝑖)×
𝑈 , respectively, and let 𝜂 ∶= min{𝛼𝑖(𝑟) | 𝑖 = 1, 2, 3, 𝑟 ≥ 𝜀}.

Now consider a point 𝑥 ∈ 𝑂𝑖 with 𝑥 ∉ 𝐾𝑖 and 𝑥 ∉ 𝐵𝜀(0).
Let 𝑦 ∈ 𝐾𝑖 be a closest point in 𝐾𝑖 and let 𝑑 = ‖𝑥 − 𝑦‖
be the distance of 𝑥 to 𝑦 (and hence to 𝐾𝑖). Then since
𝐾𝑖 = cl int𝐾𝑖 we can estimate

𝑉𝑖(𝑥) ≥ 𝑉𝑖(𝑦) − 𝐶‖𝑥 − 𝑦‖ ≥ 𝛼1(‖𝑦‖) − 𝐶𝑑
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≥ 𝛼1(‖𝑥‖) − (𝐶 + 𝐿𝛼)𝑑

and

𝑉𝑖(𝑥) ≤ 𝑉𝑖(𝑦) + 𝐶‖𝑥 − 𝑦‖ ≤ 𝛼2(‖𝑦‖) + 𝐶𝑑
≤ 𝛼2(‖𝑥‖) + (𝐶 + 𝐿𝛼)𝑑,

which leads to

inf
𝑢∈𝑈

𝐷𝑉𝑖(𝑥; 𝑓 (𝑥, 𝑢)) = inf
𝑢∈𝑈

𝐷𝑉 (𝑥)𝑓 (𝑥, 𝑢)

≤ inf
𝑢∈𝑈

𝐷𝑉 (𝑦)𝑓 (𝑦, 𝑢) + 𝐶𝑀𝑑 + 𝐶𝐿𝑑

≤ − 𝛼3(‖𝑦‖) + (𝐶𝑀 + 𝐶𝐿)𝑑
≤ − 𝛼3(‖𝑥‖) + (𝐶𝑀 + 𝐶𝐿 + 𝐿𝛼)𝑑.

Now if we choose 𝛿 such that (𝐶 + 𝐿𝛼)𝛿 ≤ 𝜂∕2 and
(𝐶𝑀 +𝐶𝐿+𝐿𝛼)𝛿 ≤ 𝜂∕2, then the assertion follows.

4. Representation by piecewise affine
functions
Now we turn to our main result on the representation

of CLFs by piecewise affine functions. Before stating our
main result, we first show an approximation result for each
component 𝑉𝑖 of 𝑉 .

Lemma 11. Let the assumptions of Lemma 10 hold and
assume that 𝑔 = 𝑉𝑖 satisfies the assumptions of Theorem
7 on 𝑂 = 𝑂𝑖. Then, for any compact set 𝐾 ⊂ 𝑂 and all
𝜈1, 𝜈2 > 0 there is a piecewise affine function 𝑉 𝑝

𝑖 satisfying

𝛼1(‖𝑥‖) − 𝜈1 ≤ 𝑉 𝑝
𝑖 (𝑥) ≤ 𝛼2(‖𝑥‖) + 𝜈1 (9)

inf
𝑢∈𝑈

𝐷𝑉 𝑝
𝑖 (𝑥; 𝑓 (𝑥, 𝑢)) ≤ −𝛼3(‖𝑥‖) + 𝜈2 (10)

for all 𝑥 ∈ 𝐾 .

Proof: First observe that by standard constructions of sim-
plicid grids for any Δ > 0 we can find a grid covering 𝐾 and
satisfying the requirements of Theorem 7. Choosing 𝑉 𝑝

𝑖 = 𝑝
from Theorem 7, this implies the first two inequalities with
𝜈1 = (𝐶𝑠+2)𝐶Δ2, which can be made arbitrarily small. The
Dini derivative of a piecewise affine and continuous function
satisfies

𝐷𝑉 𝑝
𝑖 (𝑥; 𝑓 (𝑥, 𝑢)) = 𝐷𝑉 𝑝

𝑖 |𝑆𝑘
𝑓 (𝑥, 𝑢),

where𝐷𝑉 𝑝
𝑖 |𝑆𝑘

is the derivative of 𝑉 𝑝
𝑖 on one of the simplices

𝑆𝑘 containing 𝑥. More precisely, the relevant simplex 𝑆𝑘 is
the one that also contains 𝑥 + ℎ𝑓 (𝑥, 𝑢) for sufficiently small
ℎ > 0, but this is not relevant here, as the error estimate
for the derivative in Theorem 7 holds for all simplices
containing 𝑥. From this error estimates and denoting by 𝑀
a bound on ‖𝑓 (𝑥, 𝑢)‖, we obtain

|𝐷𝑉 𝑝
𝑖 (𝑥; 𝑓 (𝑥, 𝑢)) −𝐷𝑉𝑖(𝑥; 𝑓 (𝑥, 𝑢))|

=||
|

𝐷𝑉 𝑝
𝑖 |𝑆𝑘

𝑓 (𝑥, 𝑢) −𝐷𝑉𝑖(𝑥)𝑓 (𝑥, 𝑢)
|

|

|

≤𝑀(𝐶𝑆 + 1)𝐶Δ

for all 𝑥 ∈ 𝐾 , 𝑢 ∈ 𝑈 . This carries over to the minimum over
𝑢 and thus shows the claim with 𝜈2 = 𝑀(𝐶𝑆 +1)𝐶Δ, which
can again be made arbitrarily small.

As discussed after Theorem 5, we now assume that, at
least away from the origin, the minimum in Theorem 5 can
be realized as a minimum over finitely many functions 𝑉𝑖.
For systems admitting such a CLF, the next theorem shows
that for each 𝜀 > 0 there exists a practical CLF that can
be written as the minimum of finitely many piecewise affine
functions.

Theorem 12. Consider an open set 𝑂 containing the origin
and an 𝜀 > 0. Assume that there exists a semiconcave CLF
on 𝑂 that on 𝑂 ⧵ 𝐵𝜀(0) is given by a minimum over finitely
many functions, i.e.,

𝑉 (𝑥) = min
𝑖=1,…,𝑁

𝑉𝑖(𝑥) for all 𝑥 ∈ 𝑂𝜀 ∶= 𝑂 ⧵ 𝐵𝜀(0),

with each 𝑉𝑖 being 𝐶2. Then for any compact set 𝐾 ⊂ 𝑂 with
𝐾 = cl int𝐾 and cl𝐵𝜀(0) ⊂ int𝐾 there exists an 𝜀-PCLF
𝑉 𝑝 on 𝐾 that can be written as the minimum of finitely many
piecewise affine functions 𝑉 𝑝

𝑖 , i.e.,

𝑉𝑝(𝑥) = min
𝑖=1,…,𝑁

𝑉 𝑝
𝑖 (𝑥) for all 𝑥 ∈ 𝐾𝜀 ∶= 𝐾 ⧵ 𝐵𝜀(0).

Proof: Consider the sets

𝐶𝑖 ∶= {𝑥 ∈ 𝐾𝜀 |𝑉 (𝑥) = 𝑉𝑖(𝑥)} and 𝑂𝑖 ∶= int 𝐶𝑖.

Since the 𝑉𝑖 are continuous and 𝐾𝜀 is compact, the sets 𝐶𝑖
are compact, hence closed. Moreover, 𝐾𝜀 ⊂

⋃

𝑖=1,…,𝑁 𝐶𝑖
holds. We claim that

𝐾𝜀 ⊂
⋃

𝑖=1,…,𝑁
cl𝑂𝑖 (11)

holds. In order to prove (11), it is sufficient to show that
each 𝑥 ∈ int𝐾𝜀 is contained in cl𝑂𝑖 for some 𝑖. Hence,
consider an arbitrary 𝑥 ∈ int𝐾𝜀 and the closed ball 𝐵𝛿(𝑥)
for a sufficiently small 𝛿 > 0 such that 𝐵𝛿(𝑥) ⊂ 𝐾𝜀. Define
𝐶𝛿,𝑖 ∶= 𝐶𝑖 ∩ 𝐵𝛿(𝑥). Then

𝐵𝛿(𝑥) ⊂
⋃

𝑖=1,…,𝑁
𝐶𝛿,𝑖. (12)

Now, if all closed sets 𝐶𝛿,𝑖 have empty interior, then it
follows from Baire’s Category Theorem that their union has
empty interior, too, but then the inclusion (12) cannot hold.
Hence, at least one of the 𝐶𝛿,𝑖 has nonempty interior.

Now consider a sequence 𝛿𝑘 → 0. Then the argument
above implies that there is a sequence of indices 𝑖𝑘 and points
𝑥𝑘 ∈ int 𝐶𝛿𝑘,𝑖𝑘 ⊂ int 𝐶𝑖𝑘 = 𝑂𝑖𝑘 . Since 𝛿𝑘 → 0, it follows
that 𝑥𝑘 → 𝑥 as 𝑘 → ∞. Since the 𝑖𝑘 can only assume
finitely many different values, there exists a subsequence 𝑖𝑘𝑙 ,
𝑘𝑙 → ∞, such that 𝑖𝑘𝑙 = 𝑖′ for all 𝑙 ∈ ℕ. Hence, 𝑥𝑘𝑙 → 𝑥
as 𝑙 → ∞ and 𝑥𝑘𝑙 ∈ 𝑂𝑖′ for all 𝑙 ∈ ℕ. Thus, 𝑥 ∈ cl𝑂𝑖′ and
(11) follows.
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Now, by Lemma 3.2 in Calderón and Zygmund (1961),
for each 𝑖 = 1,… , 𝑁 , there exists a 𝐶∞ function 𝑓𝑖 ∶ ℝ𝑛 →
ℝ, such that

𝑐1𝑑(𝑥, cl𝑂𝑖) ≤ 𝑓𝑖(𝑥) ≤ 𝑐2𝑑(𝑥, cl𝑂𝑖),

for constants 𝑐1, 𝑐2 > 0, where 𝑑(𝑥, cl𝑂𝑖) denotes the
distance from 𝑥 to cl𝑂𝑖. Replacing each 𝑉𝑖 by 𝑉𝑖 + 𝑓𝑖, the
assumptions on 𝑉 and 𝑉𝑖 obviously remain true, but now we
have the additional property that 𝑉𝑗(𝑥) ≥ 𝑉𝑖(𝑥) + 𝑐1𝛿 for all
𝑥 ∈ 𝑂𝑖 ⧵ 𝐵𝛿(𝑂𝑗). For these modified 𝑉𝑖 we now pick 𝛿 > 0
from Lemma 10 for 𝐾𝑖 ∶= cl𝑂𝑖. Next, using Theorem 7
we approximate each 𝑉𝑖 by a piecewise affine function 𝑉 𝑝

𝑖
with error in the function values ≤ 𝜈1 ≤ 𝛿∕3 and error in the
derivatives ≤ 𝜈1, where 𝜈1 and 𝜈2 will be determined below.
Then it follows that for all 𝑥 ∉ 𝐵𝛿(𝐾𝑗) we have

𝑉 𝑝
𝑗 (𝑥) ≥ 𝑉𝑗(𝑥) − 𝛿∕3 ≥ min

𝑖=1,…,𝑁
𝑉𝑖(𝑥) + 𝛿 − 𝛿∕3

≥ min
𝑖=1,…,𝑁

𝑉 𝑝
𝑖 (𝑥) − 𝛿∕3 + 𝛿 − 𝛿∕3 > min

𝑖=1,…,𝑁
𝑉 𝑝
𝑖 (𝑥).

This implies that 𝑉 𝑗
𝑝 (𝑥) can only attain the minimum

min𝑖=1,…,𝑁 𝑉 𝑝
𝑖 (𝑥) for 𝑥 ∈ 𝑂𝛿,𝑖 ∶= 𝐵𝛿(𝐾𝑗). This implies

that for all 𝑥 ∈ 𝐾 we obtain

min
𝑖=1,…,𝑁

𝑉 𝑝(𝑥) = min
𝑖=1,…,𝑞
𝑥∈𝑂𝛿,𝑖

𝑉 𝑝
𝑖 (𝑥). (13)

By choosing 𝜈1 and 𝜈2 sufficiently small (depending on
𝜀), using Lemma 11 we can ensure that 𝑉 𝑝

𝑖 satisfy (1) and
(2) on 𝑂𝛿,𝑖 for suitably adapted 𝛼1, 𝛼2, 𝛼3. Now the statement
follows from Proposition (9) with𝑂𝛿,𝑖 in place of𝑂𝑖, because
by (13) the minimum in the assertion coincides with the
minimum in Proposition (9).

Corollary 13. Under the assumption of Theorem 12, for
each compact set 𝐾 ⊂ 𝑂 and each 𝜀 > 0 there exists a
continuous and piecewise affine 𝜀-PCLF on 𝐾 .

Proof: This statement follows immediately from Theorem
12, because the minimum of finitely many continuous and
piecewise affine functions is again a continuous and piece-
wise affine function.

5. Representation by neural networks
We now turn to the representation of 𝜀-PCLFs via neural

networks. We first consider the case of ReLU networks,
for which the existence proof works similar to the proof of
Theorem 8(a).

Corollary 14. Under the assumption of Theorem 12, for
each compact set 𝐾 ⊂ 𝑂 and each 𝜀 > 0 there exists
a continuous and piecewise affine 𝜀-PCLF on 𝐾 that can
be represented by a neural network with ReLU activation
functions and at most ⌈log2(𝑛 + 1)⌉ + 1 layers.

Proof: Theorem 7 implies the existence of a piecewise affine
function satisfying (8). By (Arora et al., 2018, Theorem 2.1)

this function can be represented by a deep neural network
with ReLU activation functions and at most ⌈log2(𝑛+1)⌉+1
layers.

While this result is theoretically appealing, its practical
relevance may be limited. The reason is that, as worked out
in detail in Baier et al. (2019), for checking inequality (2)
or (4) for a continuous and piecewise affine function, the
points at which the function is not differentiable need to
be treated differently depending on their local convexity or
concavity: While for points of nondifferentiability 𝑥 at which
𝑉 is locally concave it is sufficient to know that (2) or (4)
are satisfied in all adjacent regions in which 𝑉 is smooth, if
𝑉 is locally convex near 𝑥 then additional conditions need
to be checked (see condition (iv) in Algorithm 2 in Baier
et al. (2019) for details). This does not only complicate the
construction of a loss function for the training of a neural
network, but also requires that sampling points are placed
on each edge between two simplices defining the piecewise
affine function.

It is therefore desirable to avoid points of nondifferen-
tiability in which the function represented by the neural
network is not locally convex. Fortunately, this is possible
if we design our function such that it is the minimum of a
finite number of smooth functions 𝑉 𝑝

𝑖 , 𝑖 = 1,… , 𝑁 . This is
because in this case points of nondifferentiability 𝑥 can only
occur when the minimum is attained in two different 𝑉 𝑝

𝑖 in
any neighborhood of 𝑥 and in such points the function must
be locally convex. The following theorem and the network
construction in its proof show how this can be achieved.

Theorem 15. Under the assumption of Theorem 12, for
each compact set 𝐾 ⊂ 𝑂 and each 𝜀 > 0 there exists
a continuous 𝜀-PCLF on 𝐾 , which is the minimum over
𝑁 twice continuously differentiable functions and can be
represented by a neural network with at most ⌈log2(𝑁)⌉ +
1 hidden layers, of which one uses a smooth activation
function as specified in Theorem 8(b) and the remaining
layers use ReLU activation functions.

Proof: We first follow the proof of Theorem 12, replacing
the piecewise affine approximations 𝑉 𝑝

𝑖 provided by The-
orem 7 with 𝐶2 approximations 𝑉 𝑠

𝑖 provided by Theorem
8(b). This results in an 𝜀-PCLF of the form min𝑖=1,…,𝑁 𝑉 𝑠

𝑖 ,
where each of the 𝑉 𝑠

𝑖 can be represented by a neural network
with one hidden layer. We combine the hidden layers of these
𝑁 neural networks in the first hidden layer of the network we
construct.

Now we observe that the minimum min{𝑥, 𝑦} of two
reals 𝑥, 𝑦 ∈ ℝ can be realized in an NN by a ReLU layer
with 4 nodes, since

min{𝑥, 𝑦} = 1
2

(

𝜌(𝑥+𝑦)−𝜌(−𝑥−𝑦)−𝜌(𝑥−𝑦)−𝜌(𝑦−𝑥)
)

, where 𝜌(𝑥) = max{𝑥, 0} is the ReLU activation function.
Hence, by adding another ⌈log2(𝑁)⌉ additional ReLU layers
(with at most 2𝑁 , 𝑁 , 𝑁∕2, … 4 nodes), the network
represents the desired function min𝑖=1,…,𝑁 𝑉 𝑠

𝑖 .
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6. Numerical example
We illustrate our numerical findings by the following

two-dimensional control system known as Artstein’s circles
Artstein (1983), whose dynamics is given by

�̇� = 𝑓 (𝑥, 𝑢) =
(

(−𝑥21 + 𝑥22)𝑢
−2𝑥1𝑥2𝑢

)

(14)

with 𝑢 ∈ 𝑈 = [−1, 1]. The solutions of this control systems
evolve on the circles shown in Figure 1, where 𝑢 determines
whether the solutions move clockwise or counterclockwise.

𝑥1

𝑥2

Figure 1: Invariant sets for the solutions of (14)

It is known that this system admits a CLF, but not a
smooth one. In fact, in order to asymptotically stabilize the
system at 0, at some point on each circle a discontinuous
decision to move clockwise or counterclockwise must be
taken. A natural choice for the points where the direction
of movement changes is the 𝑥2-axis. A known CLF for this
system is

𝑉 (𝑥) =
√

4𝑥21 + 3𝑥22 − |𝑥1|, (15)

in which the nondifferentiability, which corresponds to the
change of direction, occurs precisely at 𝑥1 = 0, i.e., on the
𝑥2-axis.

Figure 2 shows a piecewise affine PCLF computed with
the mixed integer programming based technique proposed in
Baier et al. (2019). One clearly sees that also in this CLF the
concave “ridge” at which the direction of movement changes
(approximately) lies on the 𝑥2-axis.

Figure 3 shows a piecewise smooth PCLF represented
by a neural network of the form discussed in Theorem
15 and its proof. The wireframe in the lower part of the
figure shows the expression on the left hand side in (4).
The nondifferentiability of the function is clearly visible and
again lies along the 𝑥2-axis.

The corresponding neural network architecture is de-
picted in Figure 4. It consists of two shallow subnetworks,
each containing 𝑀 = 512 neurons using the sigmoid activa-
tion function. These subnetworks are trained in a supervised
way such that their outputs 𝑊1 and 𝑊2 satisfy 𝑊1(𝑥) ≈

0

1

2

1

V
(x
)

4

x2

0

x1

0

-1 -1

Figure 2: Piecewise affine PCLF for Artstein’s circles
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Figure 3: Neural network PCLF for Artstein’s circles

√

4𝑥21 + 3𝑥22 − 𝑥1 and 𝑊2(𝑥) ≈
√

4𝑥21 + 3𝑥22 + 𝑥1, respec-
tively. To compute the minimum of the two functions, the
neurons 𝑧1,… , 𝑧4 use the ReLU activation function together
with fixed weights as described in the proof of Theorem 15.

x1

x2

y11

y21

yM1

y12

y22

yM2

W1

W2

W

z1

z2

z3

z4

...

...

Figure 4: Neural network architecture for representing the
PCLF from Figure 3

7. Conclusion and future work
We have shown that nonsmooth CLFs can be approxi-

mated by piecewise affine functions and by suitably designed
neural networks, provided they can be expressed as the
minimum over finitely many smooth functions. Approxi-
mation here is to be understood in an 𝜀-practical sense on
compact subsets of the state space. These results on the
one hand justify the algorithmic approach using piecewise
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affine functions presented in Baier et al. (2019), because they
show that the piecewise affine functions PCLFs constructed
in this reference exist. On the other hand, the results yield
a neural network architecture that is able to express nons-
mooth CLFs. This motivates the development of unsuper-
vised training algorithms that are able to learn nonsmooth
CLFs without a priori information on their functional form,
which will be an important topic of future research.
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