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Abstract

Ensuring adequate water quantity and quality is essential for the well-being of both hu-

mans and ecosystems, particularly in the face of global challenges such as climate change

and population growth. To this aim, it is crucial to understand how water and solutes

move across rivers, lakes and groundwater at the catchment-scale. The Transit Time

Distribution (TTD) of streamflow allows conceptualizing the complexity of water flow

patterns within a catchment, thus revealing the catchment’s functioning and export dy-

namics of pollutants such as nitrates (NO3
-). While TTDs cannot usually be measured

directly, they can be inferred from transport models calibrated to stable water isotope

data (e.g. δ18O). However, the generally limited availability of high-frequency δ18O data

challenges global-scale analysis, encouraging the targeted use of low-frequency δ18O data

already available at a broader spatial coverage.

The aim of this thesis is to explore the potential of low-frequency δ18O data for modeling

TTDs at the catchment-scale, in order to gain insights into hydrological processes and

NO3
- export patterns. Study 1 quantifies the uncertainty in simulated TTDs resulting

from different choices in spatio-temporal interpolation techniques of low-frequency δ18O

data and model parameterization. Study 2 proposes alternative methods for simulating

TTDs making use of low-frequency δ18O data, with a focus on the young water fraction,

i.e. water younger than approximately three months (Fyw). Study 3 integrates δ18O data

into a NO3
--based water quality model to enhance the simulation of TTDs.

In all studies, TTDs were modeled using StorAge Selection (SAS) functions with δ18O

data. Studies 1 and 3 investigated a mesoscale German catchment within the Bode River

Basin, while Study 2 explored 23 sites in the same region. Monte Carlo experiments were

conducted to calibrate SAS parameters and simulate TTDs. The water median transit

time (TT50) derived from the TTD was used as a proxy for streamflow water age, and its

uncertainty was assessed with the 95% prediction uncertainty method (95PPU).

In Study 1, the impact of different methodological choices on the 95PPU of TT50 was

investigated. This involved assessing the effect of temporal interpolation methods (step

function vs. sine interpolation) and spatial representation choices (single-location vs.

spatial interpolation with kriging) of precipitation δ18O data, and SAS parameterizations
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Abstract

(time-invariant vs. time-variant functions). Sine interpolation led to both over- and un-

derestimation of δ18O data compared to the measured δ18O, hampering the interpretability

of the resulting TT50. Conversely, the step function preserved the maxima in the values of

precipitation δ18O data, thus likely improving the reliability of the simulated TT50. Using

precipitation δ18O data from a single location oversimplified the representation of δ18O

within the catchment compared to spatial interpolation using kriging. Time-invariant

functions resulted in relatively small variations in TT50, while time-variant functions

yielded pronounced fluctuations. The knowledge of catchment-specific water dynamics is

crucial for the choice of the appropriate SAS parameterization.

In Study 2, the effect of calibrating time-invariant SAS parameters with and without Fyw

on the 95PPU in TT50 was assessed. Fyw values were derived from fitting monthly δ18O

data in precipitation and streamflow with sine-waves. The Fyw values, exhibiting large

variability among the study sites (0.02 - 0.26), had different effects on reducing the 95PPU.

Catchments releasing more young water (Fyw ≥ 0.10) experienced an effective reduction

in the 95PPU, while catchments discharging less young water (Fyw ≤ 0.05) had a more

moderate reduction in the 95PPU. Consequently, Fyw values significantly improved the

predictability of TTD-based models, especially in catchments with a tendency towards

young water release.

In Study 3, three different targets — instream NO3
-, δ18O and both datasets — were

employed to calibrate SAS parameters and understand their impacts on the 95PPU of

TT50. A relatively similar pattern of simulated TT50 was observed across the different

targets, suggesting that NO3
- and δ18O data hold comparable information to describe

transport processes. While calibration to NO3
- led to a greater 95PPU of TT50 and

parameter equifinality, calibration to both datasets enhanced parameter identifiability and

reduced the 95PPU. Consequently, the inclusion of δ18O data enhanced the description

of hydrological transport in the NO3
- model.

In summary, these studies leveraged the high spatial coverage of low-frequency isotope

data to enhance the understanding of TTDs of streamflow in the absence of high-frequency

measurements. This thesis quantified challenges (Study 1) and highlighted opportunities

(Study 2) related to the use of low-frequency isotopic measurements and integrated them

into water quality modeling (Study 3) to improve the representation of hydrological, thus

NO3
- transport. Overall, this work advocates a shift in perspective from “how could we

obtain more data?” to “what meaningful insights can be derived from existing data?” until

more comprehensive datasets become available. This step is crucial for advancing current

and future challenges in water quantity and quality-related research and management,

particularly relevant given the escalating extremes in climate conditions and the rising

water pollution in the era of global change.
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Zusammenfassung

Die Sicherstellung einer ausreichenden Wassermenge und -qualität ist von entscheidender

Bedeutung für das Wohlergehen von Menschen und Ökosystemen, insbesondere angesichts

globaler Herausforderungen wie Klimawandel und Bevölkerungswachstum. Daher ist es

wichtig zu verstehen, wie sich Wasser und gelöste Stoffe in Flüssen, Seen und Grundwas-

ser auf der Einzugsgebietsebene bewegen. Die Transitzeitverteilung (TTD) von Wasser

im Fluss ermöglicht es, die Komplexität von Fließwegen innerhalb eines Einzugsgebiets

und somit seine Funktionsweise sowie die Dynamik des Schadstoffaustrags, zum Beispiel

von Nitrat (NO3
-), zu beschreiben. TTDs können nicht direkt gemessen werden, sondern

erfordern eine Modellierung mit Hilfe von Tracerdaten wie stabilen Wasserisotopen (z. B.

δ18O). Die begrenzte Verfügbarkeit von zeitlich hochaufgelösten δ18O-Daten stellt jedoch

eine Herausforderung für globale Analysen dar, was den gezielten Einsatz von niederfre-

quenten δ18O-Daten mit größerer räumlicher Abdeckung nahelegt.

Ziel dieser Arbeit ist es, das Potenzial niederfrequenter δ18O-Daten zur Modellierung von

TTDs auf Einzugsgebietsebene zu untersuchen, um Erkenntnisse in hydrologische Pro-

zesse und NO3
--Exportmuster zu gewinnen. Studie 1 quantifiziert die Unsicherheit in

den simulierten TTDs, die sich aus der Wahl der räumlichen und zeitlichen Interpolati-

onsverfahren für die δ18O-Daten und der Modellparametrisierung ergeben. In Studie 2

werden alternative Methoden zur Simulation von TTDs mit niederfrequenten δ18O-Daten

vorgestellt, indem der Anteil jungen Wassers (Fyw), d. h. Wasser, das jünger als drei

Monate ist, Anwendung findet. In Studie 3 werden δ18O-Daten in ein NO3
--basiertes

Wasserqualitätsmodell integriert, um die Simulationen von TTDs zu verbessern.

In allen Studien wurden TTDs mit Hilfe von StorAge Selection (SAS) Funktionen mit nie-

derfrequenten δ18O Daten modelliert. Die Studien 1 und 3 untersuchten ein mesoskaliges

deutsches Einzugsgebiet im Einzugsgebiet der Bode, während Studie 2 23 Standorte in

derselben Region untersuchte. Es wurden Monte-Carlo-Experimente durchgeführt, um die

SAS-Parameter zu kalibrieren und die TTDs zu simulieren. Der Median der Verweilzeit-

verteilung (TT50), abgeleitet aus der TTD, wurde als Indikator für das Alter des Wassers

im Fluss verwendet, und Unischerheiten wurde mittels einer 95%-Vorhersageunsicherheit

(95PPU) bestimmt.
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Zusammenfassung

In Studie 1 wurden die Auswirkungen verschiedener methodischer Entscheidungen auf

die 95PPU von TT50 untersucht, indem Methoden der zeitlichen Interpolation der δ18O-

Daten (Stufenfunktion vs. Sinusinterpolation), und der räumlichen Repräsentation von

Niederschlagsdaten (Einzelstandort vs. räumliche Interpolation mit Kriging) und der

SAS-Parametrisierungen (zeitlich konstante vs. variable Funktionen) bewertet wurden.

Die Sinusinterpolation führte sowohl zu über- als auch zu unterschätzten δ18O-Werten im

Vergleich zu den gemessenen Werten, was die Interpretierbarkeit der resultierenden TT50

beeinträchtigte. Die Stufenfunktion gibt die Maxima in den gemessenen δ18O-Daten exakt

wieder, was die Verlässlichkeit des simulierten TT50-Wertes verbesserte. Die Verwendung

von δ18O-Niederschlagsdaten eines einzigen Standorts vereinfachte die Repräsentation von

δ18O-Werten innerhalb des Einzugsgebiets im Vergleich zur räumlichen Interpolation mit-

tels Kriging zu stark. Zeitlich konstante SAS-Funktionen führten zu relativ geringen

Schwankungen von TT50, während zeitlich variable Funktionen zu großen Schwankungen

führten. Die einzugsgebietsspezifische Funktionsweise ist daher entscheidend für die Wahl

einer geeigneten SAS-Parametrisierung.

In Studie 2 wurde der Effekt einer Kalibrierung zeitlich konstanter SAS-Parameter mit

und ohne Fyw auf die Unsicherheit in TT50 bewertet. Die Fyw wurden aus der Interpola-

tion monatlicher δ18O-Daten in Niederschlag und Abfluss mit Sinuswellen abgeleitet. Die

Fyw-Werte, mit großer Variabilität zwischen den Untersuchungsstandorten (0,02-0,26),

hatten unterschiedliche Auswirkungen auf die Verringerung der 95PPU. Einzugsgebiete

mit viel jungem Wasser (Fyw ≥ 0,10) erfuhren eine effektive Reduzierung des Unsicher-

heitsintervalls, während Einzugsgebiete mit weniger jungem Wasser (Fyw ≤ 0,05) eine

moderatere Reduzierung des Unsicherheitsintervalls aufwiesen. Dies unterstreicht die Be-

deutung größerer Fyw-Werte für eine deutliche Verringerung der Unsicherheit von TT50

und die Verbesserung von TTD-basierten Modellen.

In Studie 3 wurden drei verschiedene Zielgrößen - NO3
-, δ18O und beide Datensätze gleich-

zeitig – zur Kalibrierung der SAS-Parameter verwendet, um die Auswirkungen auf die

95PPU von TT50 zu verstehen. Es wurde ein relativ ähnliches Muster der simulierten

TT50 für die verschiedenen Zielgrößen beobachtet, was darauf hindeutet, dass NO3
-- und

δ18O-Daten vergleichbare Informationen zur Beschreibung von Transportprozessen ent-

halten. Die Kalibrierung nur mit NO3
- führte jedoch zu einer größeren Unsicherheit und

Parameteräquifinalität. Die Kalibrierung mit beiden Datensätzen hingegen verbesser-

te die Identifizierbarkeit der Parameter und reduzierte die 95PPU. Folglich verbesserte

die Berücksichtigung von δ18O-Daten die Beschreibung des hydrologischen Transports im

NO3
--Modell.

Insgesamt nutzte diese Arbeit die große räumliche Abdeckung von Niederfrequenz-

Isotopendaten, um das Verständnis von TTDs in Einzugsgebieten zu verbessern, wenn
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Hochfrequenzdaten fehlen. In dieser Arbeit wurden die Herausforderungen quantifiziert

(Studie 1) und die Chancen hervorgehoben (Studie 2), die mit der Verwendung von nieder-

frequenten Isotopenmessungen und ihrer Integration in die Wasserqualitätsmodellierung

verbunden sind (Studie 3), um die Darstellung des hydrologischen Transports und damit

des NO3
--Transports zu verbessern. Allgemein plädiert diese Arbeit für einen Perspektiv-

wechsel von “Wie könnten wir mehr Daten bekommen?” zu “Welche sinnvollen Erkennt-

nisse lassen sich aus den vorhandenen Daten ableiten?”, bis umfassendere Datensätze

zur Verfügung stehen. Dieser Ansatz ist, von entscheidender Bedeutung für die Bewälti-

gung aktueller und zukünftiger Herausforderungen in der Forschung und Bewirtschaftung

im Zusammenhang mit der Wassermenge und -qualität. Dies ist besonders wichtig an-

gesichts der zunehmenden extremeren klimatischen Bedingungen und der zunehmenden

Wasserverschmutzung im Zeitalter des globalen Wandels.
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Chapter 1

Introduction

1.1 Addressing Water Challenges at Catchment-

Scale

Sufficient water quantity and good water quality are crucial for the well-being of humans

and ecosystems. Adequate water supply is essential for all living forms (Berghuijs et al.,

2014; Seager et al., 2007) while ensuring safe water is critical to prevent deficiencies in

water quality (Onda et al., 2012). Maintaining these aspects below critical levels is fun-

damental, otherwise the crossing of natural planetary boundaries is at risk (Steffen et al.,

2015), causing harmful consequences for human health and the aquatic ecosystem (Diaz

and Rosenberg, 2008; Jenny et al., 2020; Vörösmarty et al., 2010). To avoid these ad-

verse situations, it is necessary to prioritize water resources protection and management

to ensure good conditions in terms of water quantity and quality (European Environ-

ment Agency et al., 2018, 2021). In this regard, various regulations, such as the Water

Framework Directive of the European Union, have been established to address several

water management objectives by guaranteeing both qualitative and quantitative aspects

of water resources (EU, 2000). Despite these efforts, the global water crisis, driven by

climate change and human population growth, still poses significant challenges (Vitousek

et al., 1997; Jury and Vaux, 2007).

To comprehensively address water challenges, it is necessary to not only quantify wa-

ter volume but also explore how water moves through terrestrial landscapes, including

rivers, lakes and groundwater. This knowledge is essential for gaining hydrological in-

sights related to the transport of substances such as pollutants, sediments, and nutrients

(Hrachowitz et al., 2016; Kirchner et al., 2000). However, an appropriate spatial scale is

needed to explore these hydrological processes, and the catchment-scale offers a practical
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perspective to gain the fundamental knowledge needed for effective water management

and protection strategies (Sivapalan, 2006; Wagener et al., 2007).

A catchment is defined as the landscape element routing all precipitation water toward

a specific location, which is typically the outlet of a stream network. However, only a

portion of the precipitation that falls reaches the outlet and contributes to the streamflow

because processes such as tree canopies, evaporation of water that settles on the surface

and plant transpiration can reduce the amount of precipitation that reaches the stream

network. Precipitation that is not affected by these processes is called effective precipi-

tation, and it can take different routes through distinct flow paths within the catchment

before contributing to the streamflow (McGuire and McDonnel, 2006). The generation of

such flow paths depends on the catchment’s heterogeneity in terms of geology, topogra-

phy, wetness conditions, hydraulic soil properties and vegetation index (McGuire et al.,

2005). For example, water may travel rapidly through macropores in wet and shallow soils

formed via root holes or cracks (Tromp-van Meerveld and McDonnell, 2006), and slowly

through dry soil, thus facilitating deep flow paths that reach the groundwater (Jasechko

et al., 2016). These flow paths, once generated, significantly influence the overall export

of solutes from the catchment.

Understanding these complex dynamics within a catchment is a primary concern for

hydrologists. Nonetheless, the inherent complexity of catchments poses challenges for

an accurate understanding of water movement. Therefore, a practical tool is needed to

effectively conceptualize water transport processes at the catchment-scale.

1.2 Revealing Catchment Dynamics using Transit

Time Distributions

The water transit time (TT) of streamflow is a valuable tool for gaining insights into

the catchment-scale hydrological behavior. TT of streamflow represents the time elapsed

from the entry of a water parcel into the catchment through precipitation to its exit via

streamflow, thus informing on the duration that water parcels spend within the catchment.

As such, TT allows for the understanding of runoff generation processes (Hrachowitz et al.,

2016), the contact time of water with the soil matrix which influences biogeochemical

reactions (McClain et al., 2003), and the hydrological connectivity within the catchment

(Jencso et al., 2009). Even more crucial metric is the transit time distribution (TTD) of

streamflow, which effectively represents the entire spectrum of TTs in streamflow, offering

an ensemble view of water parcels at the catchment outlet (Botter et al., 2010; Rinaldo

et al., 2011; van der Velde et al., 2012).
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1.3. Significance of TTDs in Water Quality Models

While early studies have often assumed time-invariant TTDs for steady-state systems (Ri-

naldo et al., 2006), experiments have shown that TTDs are time-variant due to the vari-

ability in meteorological forcing (Botter et al., 2010; Hrachowitz et al., 2010; Heidbüchel

et al., 2020) and the activation and/or deactivation of flow paths in response to varying

hydrological conditions (Ambroise, 2004; Heidbüchel et al., 2013). Time-variant TTDs

of streamflow can be classified either as “backward” or “forward” depending on whether

they refer to the time water parcels have entered the catchment as precipitation or have

left the catchment as streamflow (Benettin et al., 2015a). Backward distributions are

more commonly used in hydrological studies as they provide insights into the streamflow

age by quantifying the contribution of past precipitation to a water sample collected at

the outlet at a specific time (Botter et al., 2011; Harman, 2015; van der Velde et al., 2012).

Similar to TTD, the residence time distribution (RTD) describes the age distribution of

water currently stored within the catchment. TTD and RTD are identical only when the

composition of streamflow matches that of the water in storage, a condition often referred

to as “well-mixed”.

A fundamental challenge with TTD applications is that TTDs are not directly measurable

quantities in the real world, but they require estimation with some modeling approaches.

In recent years, StorAge Selection (SAS) functions have emerged as an innovative approach

to represent the relationship between TTDs and RTDs, and estimating time-variant TTDs

based on non-stationary assumptions (Botter et al., 2011; van der Velde et al., 2012;

Rinaldo et al., 2015). SAS functions play a crucial role in characterizing whether a

catchment tends to discharge streamflow composed of young water (i.e. water entered

the catchment as precipitation recently) or old water (i.e. water entered the catchment

as precipitation a long time ago). This knowledge is crucial for inferring water ages in

streamflow, thus providing modelers with a novel framework for simulating TTDs. SAS

functions approach has proven effective in simulating TTDs and water release dynamics

across various settings, including lysimeters (Asadollahi et al., 2020, 2022; Kim et al.,

2016), hillslopes (Kim et al., 2022; Kim and Harman, 2022; Pangle et al., 2017), lakes

(Smith et al., 2018) and at the catchment-scale (Benettin et al., 2015b, 2017a; Harman,

2015).

1.3 Significance of TTDs in Water Quality Models

Due to the link between hydrology and biogeochemistry (Hrachowitz et al., 2016), the

significance of TTDs and SAS functions goes beyond their role in understanding water

quantity. They also offer valuable insights into the export of instream dissolved solutes,

thereby playing a key role in water quality modeling (Cirmo and McDonnell, 1997). The
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incorporation of TTDs into water quality models advances the representation of solute

transport as TTDs allow for the quantification of velocity, i.e. the actual water speed,

as opposed to celerity, i.e. the speed of a pressure pulse (Ilampooranan et al., 2019).

This distinction is crucial given that TTDs and water velocities provide meaningful in-

formation about the actual distribution of flow paths in a catchment, beyond hydrology’s

traditional focus on the typically pressure-driven hydrologic response and hydrograph.

Consequently, TTD-based water quality models are promising in simulating dissolved so-

lutes in catchments and predicting future solute trajectories under changing climate and

land use (Beck, 1987).

A central focus within water quality models is nitrogen (N). While N is essential for living

organisms, it represents a significant source of diffuse water pollution largely due to the

excessive use of fertilizers and manure in agriculture (Bouraoui and Grizzetti, 2014; Gal-

loway et al., 2004). Microbial processes in the soil play a crucial role in converting organic

and inorganic N compounds into nitrate (NO3
-), which is a harmful water pollutant (Eris-

man et al., 2013). Elevated NO3
- concentration threats water quality, making it unusable

for drinking purposes, and harms the aquatic ecosystem (Abbott et al., 2019; Knobe-

loch et al., 2000; Le Moal et al., 2019; Smith, 2003). Despite efforts such as the Nitrate

Directive of the European Union to reduce fertilizer application (EU, 1991), high NO3
-

concentration persists in surface water and groundwater (Bodirsky et al., 2014; Bouraoui

and Grizzetti, 2014), partly due to legacy effects resulting from the accumulation of N in

the subsurface and long TTs of NO3
- through the catchment (Van Meter and Basu, 2017).

This situation causes time lags in NO3
- concentration between diffuse and point-source N

inputs and the NO3
- at the catchment outlet (Meals et al., 2010). Consequently, there is

a gap between implemented measures aimed at reducing NO3
- concentrations and actual

improvements, which calls for further actions to enhance water quality status (Basu et al.,

2022).

Denitrification is the primary process responsible for the permanent removal of NO3
- in

water, involving the conversion of NO3
- to gaseous N by bacteria (Burgin and Hamilton,

2007). This biogeochemical reaction is crucial for the natural attenuation of NO3
- pollu-

tion. Denitrification is significantly influenced by the duration water remains in contact

with the soil matrix, as prolonged contact yields more efficient denitrification (McClain

et al., 2003). Therefore, simulating TTDs and water ages plays a key role in under-

standing NO3
- removal via denitrification. This knowledge is essential for implementing

effective NO3
- management strategies (Cirmo and McDonnell, 1997; Kumar et al., 2020)

and understanding time delays in NO3
- transport within catchments (Van Meter et al.,

2018).
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1.4. Isotope Hydrology to Estimate TTDs

1.4 Isotope Hydrology to Estimate TTDs

Modeling TTDs using SAS functions for applications in water quantity and quality does

not follow a direct modeling approach. Instead, TTDs are derived through inverse model-

ing, meaning that they are estimated using tracer concentrations observed in the stream-

flow. Tracer concentrations serve as calibration constraints for SAS model parameters,

and once these parameters are calibrated, they can be employed to estimate TTDs. There-

fore, measurements of tracer concentrations that parameterize TTD-based models play a

crucial role in overcoming equifinality issues typical of modeling (Beven, 2006).

Common tracers used to infer TTDs are stable water isotopes, which are atoms of the

same element with different amounts of neutrons in their nucleus. Stable water isotopes

are naturally occurring in the water cycle, thereby they provide valuable insights into

hydrological water transport (Jasechko, 2019). Key stable water isotopes include hydrogen

(e.g. 1H and 2H) and oxygen (e.g 16O and 18O), which are conservative tracers as they

do not react. Stable water isotopes are commonly represented as isotopic ratios such

as 1H/2H and 16O/18O. The deviation of these isotopic ratios in a given sample from

the Vienna Standard Mean Ocean Water, an international standard established by the

International Atomic Energy Agency, provides values of δ2H and δ18O. These values are

referred to as signatures of stable water isotopes of hydrogen and oxygen, respectively,

and are typically used in hydrological applications.

Stable water isotope analysis involves utilizing mass spectrometry on water samples col-

lected from precipitation and streamflow (Ghosh and Brand, 2003). Recognizing the

critical role of samples in hydrology (Beven, 2006), effective modeling of TTDs requires

well-executed spatial and temporal collection of water samples since water and solute

export dynamics are reflected in the measured sampled data. The impact of sampling

frequency and length of tracer data time series on understanding the catchment’s hydro-

logical behavior has been widely discussed (McGuire and McDonnel, 2006; Benettin et al.,

2022). However, one of the primary challenges to date is the lack of extensive sampling

campaigns with an appropriate spatial distribution that span over decades at a high fre-

quency (e.g. daily or sub-daily) as these campaigns encounter limitations due to cost and

logistical constraints (von Freyberg et al., 2022). While some well-equipped catchments,

such as the Bode region in Germany (Wollschläger et al., 2017) and the Plynlimon in

Wales (Neal et al., 2013), have abundant data, the majority of catchments worldwide lack

sufficient historical data due to limited monitoring instrumentation (Tetzlaff et al., 2018).

Low-frequency isotope measurements are therefore more widely available on a global scale

compared to high-frequency data.
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1.4. Isotope Hydrology to Estimate TTDs

To overcome challenges in less-equipped catchments, strategies for estimating TTDs in-

clude reconstruction in space of stable water isotope data in precipitation from nearby

monitoring stations (Bowen and Revenaugh, 2003). This method is also valuable for en-

hancing the understanding of ungauged basins (Hrachowitz et al., 2013; Seibert and Beven,

2009; Soulsby and Tetzlaff, 2008). Additionally, strategies for reconstructing stable water

isotope data over time involve using temporal smoothing functions (Allen et al., 2019;

Buzacott et al., 2020) to capture typical seasonal isotopic variations driven by tempera-

ture changes, i.e. more negative (or positive) values of stable water isotope signatures in

winter (or summer). An approach to infer specific aspects of the TTD from low-frequency

stable water isotope data involves the concept of the young water fraction (Fyw), repre-

senting the proportion of streamflow with a TT younger than approximately 2–3 months

(Kirchner, 2016a). Fyw is derived from the ratio of seasonal isotopic amplitudes in precip-

itation and streamflow and can be estimated from sparsely sampled stable water isotopes

covering 2-3 years only (Benettin et al., 2022). Serving as a robust descriptor under spa-

tially heterogeneous and non-stationary conditions (Kirchner, 2016b), Fyw is a proxy for

fast hydrological behavior and rapid solute transport dynamics (Benettin et al., 2017b).

Consequently, Fyw has been widely applied for water age quantification and catchments

inter-comparison (Jasechko et al., 2016).

To date, datasets on Fyw (Jasechko et al., 2016) and stable water isotope (Allen et al.,

2019) are gradually expanding. Additionally, the European Union’s COST Action WAT-

SON (https://watson-cost.eu/, last access: 16-10-2023) is building a comprehensive

database containing stable isotope data collected in Europe, to simplify future searches

for users of existing datasets. Despite these initiatives to improve the availability of stable

water isotope data, the wider global accessibility of low-frequency measurements, com-

pared to high-frequency stable water isotope data, suggests that researchers and water

managers should leverage the use of low-frequency data to address the limitations of miss-

ing intense monitoring campaigns. Currently, further efforts are needed to explore the

benefits of low-frequency data in the context of TTD-based modeling. Understanding

how to strategically employ low-frequency stable water isotopes in modeling applications

related to water quantity and quality is crucial for decision-making in the water resources

and NO3
- management until more complete datasets become available. This objective re-

quires a shift in perspective from “how could we obtain more data?” to “what meaningful

insights can be derived from existing data?”.
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Chapter 2

Research Question & Study

Overview

Stable water isotopes are crucial in catchment-scale transport models and the subsequent

estimation of TTDs. However, limited access to high-frequency sampling in many areas

worldwide has led to the more global accessibility of low-frequency stable water isotope

data. Considering such context, this thesis addresses the question:

Can low-frequency stable water isotope data provide valuable insights into catchment-scale

TTDs?

To answer this question, a dataset of δ18O time series covering a few years at monthly

frequency was employed across all three studies in this thesis. While Studies 1 and 3

focused on a mesoscale catchment, Study 2 expanded its analysis to multiple contrasting

catchments. Each study contributes to the overarching objective of understanding TTDs

using low-frequency δ18O data, although they explore distinct aspects, such as challenges

and opportunities related to the use of coarse datasets of δ18O. The specific sites, data and

methodologies of each study are summarized in Figure 1 and further detailed in the follow-

ing, providing a comprehensive overview of the individual aims and analytical approaches.

In Study 1, I converted low-frequency measured δ18O data in precipitation into high-

frequency time series to meet specific modeling requirements. Additionally, δ18O data

in precipitation were collected at different locations. While these δ18O data served as

input time series for model simulations, the conversion from low to high-frequency and

variation in collection locations can introduce uncertainty in the simulated TTDs. To

explore this uncertainty, I developed two contrasting techniques for both the temporal

reconstruction and the spatial representation of δ18O data in precipitation. For the

reconstruction of high-frequency temporal data, one technique captured the typical

δ18O seasonality, while the other emphasized individual δ18O measurements. Regarding
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Figure 1: Study design of the thesis and the three studies it comprises. P, Q and ET are
precipitation, streamflow and evapotranspiration, respectively; SAS functions refer to the Stor-
Age Selection functions; TTDs represent the transit time distributions; Fyw is the young water
fraction; and Da stands for the Damköhler number.

the spatial representation of δ18O data in precipitation, I considered collection at a

single location and multiple locations within the catchment. Thorough a comprehensive

uncertainty analysis, I compared the simulated TTDs of a mesoscale catchment using

these two temporal interpolation and spatial representation techniques for δ18O data.

The goal was to gain a deep understanding of how choices in model input data can

impact the simulated TTDs. Ultimately, I examined the implications the implications of

these choices for studies related to water quantity and quality.

In Study 2, I presented a novel method to constrain model parameters for simulating

TTDs by leveraging the use of the Fyw. This approach differs from the traditional cal-

ibration methods for TTD-based model parameters, which typically involve calibration

against a time series of instream tracer data. Specifically, I calculated values of Fyw

across diverse catchments from the fitting of seasonal cycles observed in low-frequency

δ18O data in precipitation and streamflow collected for 2-3 years. By calibrating the

parameters against Fyw values, I aimed to determine whether Fyw values could help

constrain SAS parameters and the simulation of TTDs. I tested the effectiveness of Fyw

as a calibration tool for TTDs through a “proof of concept” experiment by using time

series of instream δ18O data. Furthermore, I ranked the analyzed catchments based on

the efficiency of Fyw in constraining model parameters and deriving TTDs. With this

study, I contributed to advancing the understanding of the hydrological functioning and

water quality status in the study catchments by employing a new calibration technique,
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which proved especially beneficial when dealing with limited availability of tracer data.

In Study 3, I further expanded my investigations into water quality by simulating

TTDs through the calibration of model parameters with reactive solute concentrations,

specifically NO3
-. While NO3

- concentrations offer insights into both biogeochemical and

transport mechanisms, δ18O data provide more accurate information about hydrological

transport and TTDs due to their nature as conservative tracers. In other words, relying

solely on model parameters calibrated against NO3
- concentrations can lead to an inaccu-

rate representation of TTDs, as the calibration may be affected by potential interactions

and compensations between transport and reaction-related parameters inherent within

the model. To evaluate the suitability of NO3
- concentrations for informing about water

transport and TTDs, I separately validated TTDs using low-frequency δ18O data as a

means to infer transport processes. With this work, I contributed valuable insights into

the interplay between hydrological transport and biogeochemical reactions within the

study catchment and explored whether the integration of stable water isotopes in water

quality models for NO3
- is beneficial.

Within this thesis, Studies 1 and 2 collectively address challenges and opportunities posed

by low-frequency isotopic measurements, by employing numerical modeling, data recon-

struction, model calibration with traditional and alternative procedures, uncertainty anal-

ysis, and statistical techniques for catchment classification. On the other hand, Study 3

employs numerical modeling not only to understand hydrological processes but also bio-

geochemical reactions, specifically NO3
- removal via denitrification. This thesis aims to

provide insights into the use of low-frequency isotope data and it encourages researchers to

maximize their utility in understanding TTDs for tackling the absence of high-frequency

measurements. The ultimate goal is to enhance the understanding of catchment func-

tioning in order to foster catchment-scale water and NO3
- management strategies despite

limited isotope data.
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Chapter 3

Materials & Methods

3.1 Study Site

The study sites of this thesis are located in the Bode River Basin, a mesoscale catch-

ment with an area of 3,178 km2 at Staßfurt gauging station (Fig. 2). The Bode River

Basin drains into the Elbe River and represents a well-studied area integrated within the

TERENO (TERrestrial ENvironmental Observatories; Wollschläger et al. 2017) network

of the Helmholtz Association. Specifically, both Studies 1 and 3 focus on the mesoscale

Upper Selke catchment situated in the southern part of the Bode River Basin (Fig. 2).

On the other hand, Study 2 extends its spatial scale to include 22 additional diverse

catchments located within the region (Fig. 2).

The Bode region extends from the Harz Mountains to the Central German Lowlands,

thereby the study catchments are characterized by high diversity in size, land use, veg-

etation, soil, geology and climate. The size of the catchments ranges between 0.11 km2

and 200 km2, without considering the Bode catchment at Staßfurt. The altitude varies

from 14 to 1139 m above mean sea level (m.a.s.l.), while the mean slope ranges from 2%

to 19%. The headwater region is largely dominated by coniferous and broadleaf forests,

while the lowland areas are mainly used for agriculture. The soil consists of Cambisols,

Luvisols, Leptosols and Gleysols in the Harz Mountains, and Chernozems in the central

lowland (Wollschläger et al., 2017). The geology is characterized by Palaeozoic rocks

in the mountainous catchments (Frühauf and Schwab, 2008), whereas the lowlands are

dominated by Mesozoic and late Palaeozoic rocks covered by Tertiary and Quaternary

sediments (Schuberth, 2008). Geological composition in the Harz Mountains results in

a shallow groundwater system with relatively fast flow paths, while deep sedimentary

aquifers dominate the lowland region (Yang et al., 2018).
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3.2. Data

Figure 2: Bode region with its catchments (red polygon for Studies 1, 2 and 3, purple polygons
for Study 2), sampling points for precipitation and δ18O in precipitation (blue triangles), sam-
pling points for streamflow and δ18O in streamflow (orange hexagons), sampling points for NO3

-

in streamflow (pink dots), the river network (blue lines) and the elevation gradient in meters
above sea level (colored map). The location of the Bode region in Germany is shown in the
center.

3.2 Data

In well-studied catchments, such as those in the Bode River Basin, extensive data from

various sources and studies have contributed to a substantial amount of knowledge (Dupas

et al., 2017; Musolff et al., 2021; Nguyen et al., 2021, 2022; Yang et al., 2018; Winter et al.,

2021, 2022). This thesis uses a dataset that is described in the following.

At all gauging stations of the study catchments, daily precipitation (P) and actual evap-

otranspiration (ET) time series from 2013 to 2022 were supplied by the German Weather

Service (DWD). On the other hand, daily streamflow (Q) time series from 2013 to 2022

were provided by the State Office of Flood Protection and Water Management of Saxony-

Anhalt (LHW). For catchments with incomplete continuous measurements during the

study period, daily Q and ET time series were simulated using the mesoscale Hydrologic

Model (mHM; Kumar et al. (2013); Samaniego et al. (2010); Zink et al. (2017)). Time

series of Q and ET were calibrated and evaluated from multiple stations in the Bode

region (Mueller et al., 2016). Average annual P, ET and Q across the study sites were 795

(542 - 1311), 610 (494 - 802) and 202 (52 - 601) mm, respectively, with the mountainous

catchments experiencing higher annual P and Q than the lowland area.

Monthly oxygen isotope data (δ18O) for precipitation and streamflow from 2013 to 2015

were taken from Lutz et al. (2018). Streamflow δ18O data were grab samples collected at

the catchments’ outlet mainly during non-event flow conditions, while precipitation δ18O

data were sampled at different locations in the Bode region (Fig. 2). Precipitation δ18O
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data were subsequently spatially interpolated using kriging with altitude as external drift

and weighted with spatially distributed monthly precipitation specific to each catchment,

to obtain values of δ18O in precipitation representative of the entire catchment. Lastly,

daily instream NO3
- concentration from 2013 to 2022 was obtained from a water quality

sensor operated by the Helmholtz - Centre for Environmental Research, using an in-situ

UV-VIS-based probe. In Figure 3, the time series of hydroclimatic, tracer and solute data

is presented for the Upper Selke as an illustrative example. More detailed information on

the datasets can be found in Studies 1, 2 and 3.

Figure 3: Time series of (a) precipitation and δ18O data in precipitation, and (b) actual
evapotranspiration, streamflow, NO3

- and δ18O data in streamflow in the Upper Selke catchment.

3.3 StorAge Selection Functions

The overall research design of this thesis is based on the modeling framework of the Stor-

Age Selection (SAS) functions (Botter et al., 2011; Rinaldo et al., 2015; van der Velde

et al., 2012), which represent a novel approach for simulating time-variant TTDs. The

peculiarity of the SAS functions lies in their ability to relate the water age distribution in

storage and outflows. For example, considering a catchment where new water (i.e. precip-

itation) enters, while some water, that entered the system earlier, leaves (i.e. streamflow

and evapotranspiration), all the water remaining in the catchment can exhibit a wide

range of water ages. This allows the expression of each water parcel in the system with a

water age balance, a reinterpretation of the mass balance, describing the evolution of the

water depending on inputs, outputs and aging (Benettin et al., 2022). SAS functions play
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a crucial role in this water age balance as they represent statistical summaries describing

how the water within the catchment contributes to streamflow or evapotranspiration. The

water age balance with the SAS functions is expressed as (Botter et al., 2011; Harman,

2015; van der Velde et al., 2012):

∂ST (T, t)

∂t
+

∂ST (T, t)

∂T
= P (t)−Q(t) · ΩQ(ST , t)− ET (t) · ΩET (ST , t) (3.1)

where P(t) [L3T-1], Q(t) [L3T-1] and ET(t) [L3T-1] are precipitation, streamflow and evap-

otranspiration time series, respectively; ST(T,t) [L
3] is the age-ranked storage (i.e. volume

of water in storage ranked from youngest to oldest, Harman 2015); lastly, ΩQ(ST,t) [-] and

ΩET(ST,t) [-] are the cumulative SAS functions for Q and ET, respectively. The solution

of Eq. 3.1 allows the derivation of the TTD of streamflow [T-1] as (Benettin and Bertuzzo,

2018):

pQ(T, t) =
∂ΩQ(ST , t)

∂ST

· ∂ST

∂T
. (3.2)

TTDs can be skewed with long tails (Kirchner et al., 2001), mainly due to the challenge

of identifying older water components (Benettin et al., 2017a). Hence, in this study

I explored the median transit time, TT50 [T], a commonly used metric for streamflow

water age that overcomes the poor identifiability of older water. TT50 represents the time

at which 50% of the water has left the catchment as streamflow and is calculated from

the cumulative TTD reaching a value equal to 0.5 (i.e. 50% probability).

To calculate TTD with Eq. 3.2, hydrological fluxes and SAS functions need to be defined.

While hydrological fluxes are typically known from monitoring campaigns or simulated via

hydrological models, SAS functions cannot be directly observed, but are defined through

the calibration of their parameters. The calibration process is commonly done against

time series of isotope data in streamflow and involves (i) computing the TTD of streamflow

(Eq. 3.2) with multiple values of SAS parameters set a priori, (ii) simulating instream

isotope data and, when measured instream isotope data are available, (iii) finding the

best values of the SAS parameters while minimizing the difference between simulated and

measured isotope data. In detail, instream isotope data, such as instream δ18OQ [-], are

modeled as (Benettin and Bertuzzo, 2018):

δ18OQ(T, t) =

∫ ∞

0

δ18OS(T, t)pQ(T, t)dT (3.3)

where δ18OS(T,t) [-] is the isotopic signature of a water parcel in storage.

In all three studies, the calibration of SAS functions is the primary means for simulating

time series of TT50. For Studies 1 and 2, I used the tran-SAS transport model (Benettin
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and Bertuzzo, 2018), while I employed the mHM-SAS transport model in Study 3 (Nguyen

et al., 2021). Although a common modeling framework is shared across these studies, each

of them employs unique methodologies, as detailed in the subsections below, to address

specific research questions.

3.3.1 Parameterization and Interpolation

The form of the SAS functions is unknown, hence it is commonly parameterized using

probability distributions. The two most commonly used distributions are the power law

(Asadollahi et al., 2020; Benettin et al., 2017a) and the beta distribution (van der Velde

et al., 2012). These distributions are based on specific parameters that contain information

on various water release patterns, including young and/or old water release and a well-

mixed system. These patterns can be either constant or vary over time, resulting in

time-invariant or time-variant SAS functions and parameters. The time-variant nature of

the SAS functions is driven by the wetness of the catchment, meaning that the preference

for releasing young or old water depends on when the catchment is wet or dry. To

date, there is no common agreement on which parameterization should be used, therefore

a pragmatic approach is to choose one and estimate its parameters via the calibration

process described in Section 3.3 (Harman, 2015).

Furthermore, SAS functions rely on continuous isotope data in precipitation (Benettin

et al., 2022), emphasizing the need to fill data gaps (e.g. missing daily data between

monthly measurements). To reconstruct missing δ18O data, various temporal interpola-

tion methods can be employed, including the step function, where values between con-

secutive samples are assumed to be the same as the last sample, and sine interpolation,

which captures the seasonal variations often observed in δ18O data (Feng et al., 2009).

Additionally, the choice of input δ18O data in precipitation for SAS models depends on

whether precipitation data are collected at a single catchment location, in this study

referred to as “raw” δ18O data, or at multiple locations. In the latter case, spatial inter-

polation techniques, such as kriging, are utilized to assess the isotopic signature variability

in precipitation samples.

In Study 1, I explored the uncertainty in simulated TTDs by employing twelve different

model setups. These setups involved a range of SAS function parameterizations, including

power law time-invariant (PLTI), power law time-variant (PLTV) and beta time-invariant

(BETATI). Also, the setups considered various temporal interpolations and spatial distri-

butions of δ18O data in precipitation, as those discussed above. I conducted Monte-Carlo

experiments to calibrate SAS model parameters against instream δ18O time series and

simulate the associated TT50. Calibration involved minimizing the differences between
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simulated and measured instream δ18O, assessed using the Kling-Gupta efficiency (KGE;

Gupta et al., 2009), a highly used metric for evaluating model performance. To quantify

the uncertainty in the simulated TT50, I applied the 95% prediction uncertainty method

(95PPU; Abbaspour et al., 2004), by calculating the 2.5% and 97.5% percentiles within

the cumulative distribution of the time series of the TT50 values.

While Studies 2 and 3 are based on the same SAS methodology as Study 1, they maintain

a consistent setup made of SAS functions parameterized with a BETATI distribution,

step function for temporal interpolation and δ18O in precipitation spatially interpolated

using kriging. This allows us to fix the model input and structure while addressing other

aspects of the TTD-based models for Studies 2 and 3, as shown below.

3.3.2 Young Water Fraction

The Fyw has emerged as an innovative metric for deriving a fraction of the streamflow

water age that is younger than a specific threshold, leveraging low-frequency and short-

term isotope data. Values of Fyw can be estimated by fitting the seasonal cycles of

measured δ18O data in precipitation (δ18OP [-]) and streamflow (δ18OQ [-]) with sinusoids

as (Kirchner, 2016a):

δ18OP (t) = aP cos(2πft) + bP sin(2πft) + kP (3.4)

δ18OQ(t) = aQcos(2πft) + bQsin(2πft) + kQ (3.5)

where a and b [-] are the cosine and sine coefficients of the sinusoids, f [T-1] is the cycle

frequency and k [-] is the vertical displacement of the sinusoid. Values of f and k are

derived from the available monthly δ18O data, while a and b are determined using the

iteratively reweighted least squares regression, which is a method commonly employed

to limit the influence of outliers (Lutz et al., 2018; Stockinger et al., 2016; von Freyberg

et al., 2018). Following this, Fyw [-] can be calculated as the ratio of the amplitude of the

seasonal cycles in the δ18O in streamflow (AQ [-]) and precipitation (AP [-]) as (Kirchner,

2016a):

Fyw =
AQ

AP

=

√
a2Q + b2Q√
a2P + b2P

. (3.6)

Fyw values range from 0 to 1, indicating the dominance of young (or old) water in stream-

flow when Fyw is closer to 1 (or 0). The uncertainty in Fyw estimates can be expressed as

a standard error (SE), calculated from a Gaussian error propagation (von Freyberg et al.,

2018).

22



3.3. StorAge Selection Functions

The link between Fyw and TTD is challenged due to the stationary nature of Fyw in

contrast to time-variant TTDs simulated with SAS functions. To ensure comparability

between Fyw and TTD, it is possible to calculate the marginal TTD [-], intended as a

time-average of all TTDs (Eq. 3.2), as follows (Benettin et al., 2022; Botter et al., 2010):

< pQ(T ) >=
1

t

∫ t

0

pQ(T, t)dt. (3.7)

The marginal TTD can be assessed with a specific water age T = τyw [T], where τyw

represents the threshold for young water (e.g. with τyw = 10 days, I calculate a value for

Fyw corresponding to the water in streamflow younger than 10 days). The typical range

for τyw falls between 42 and 94 days (i.e. 2-3 months), based on the shape parameter α

of the assumed gamma TTD (Kirchner, 2016a).

Unlike the traditional approach of calibrating SAS function parameters against time series

of instream δ18O data (Study 1), Study 2 uses Fyw as a constraint for calibrating SAS

parameters and simulating TT50. Specifically, I compared values of Fyw, obtained by

fitting measured monthly δ18O data (Eq. 3.6) with the simulated marginal TTD (Eq.

3.7) for each of the 23 study catchments. I conducted a Monte-Carlo experiment and

whenever the simulated marginal TTD, calculated for a set of predefined SAS parameters

(i.e. prior parameters), matched the value of Fyw ± SE, I identified a set of acceptable

SAS parameters (i.e. posterior parameters) for simulating the associated TT50 values

(i.e. posterior solution of TT50). I clustered the catchments with the same Fyw values

and efficacy in Fyw to constrain the modeled TT50. To account for uncertainty in the

τyw value, I considered a range of [42-94] days in the calculation of the marginal TTD.

Evaluation of simulated TT50 uncertainty and model performance used the 95PPUmethod

and the KGE coefficient, respectively, as in Study 1.

3.3.3 Instream Nitrate Concentrations

SAS functions are not limited to conservative tracers such as δ18O data but also apply

to reactive solutes such as NO3
- concentrations. In the case of NO3

-, it can transform

within the catchment and, for example, biogeochemically degrade through denitrification,

a process governed by a first-order reaction constant. By including a first-order constant

in Eq. 3.3, previously used for deriving instream δ18O data, it is possible to estimate the

instream concentration of NO3
- [ML-3] as (Nguyen et al., 2021):

NO−
3 Q(T, t) =

∫ ∞

0

NO−
3 S(T, t)e

−kTpQ(T, t)dT (3.8)
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where NO3
-
S [ML-3] represents the NO3

- concentration in the storage and k [T-1] is the

first order denitrification rate parameter.

Instead of focusing solely on δ18O (Studies 1 and 2), Study 3 simulated instream NO3
-

concentration and TT50 of streamflow by calibrating SAS parameters in a Monte-Carlo

approach against time series of NO3
- concentration (i.e. Experiment 1). This mirrors

the methodology of Study 1 but with a focus on reactive solutes rather than conserva-

tive tracers. In addition, in two further Monte-Carlo experiments, SAS parameters were

calibrated to simulate TT50 of streamflow against δ18O data (i.e. Experiment 2) and

both NO3
- and δ18O data (i.e. Experiment 3). With these three experiments, I aimed to

explore the effect of using different target variables for model calibration by evaluating

differences and similarities among calibrated SAS parameters and simulated TT50. Also,

I aimed to understand the interaction, or correlation, between transport (i.e. SAS func-

tion parameters) and reaction-related parameters (i.e. denitrification rate), and assess if

simulated TT50 derived from model calibration against NO3
- concentrations (Experiment

1), is the same as TT50 derived with δ18O data (Experiments 2 and 3). To further reveal

the interaction between transport and reaction, the Damkőhler number (Da) was calcu-

lated as the ratio between TT50 and the inverse of the denitrification rate (Ocampo et al.,

2006). The distribution of SAS model parameters across experiments was analyzed using

kernel distributions. As in Studies 1 and 2, uncertainty in TT50 and model performance

were evaluated using the 95PPU method and KGE coefficient.
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Chapter 4

Key Findings & Discussions

4.1 Uncertainty Analysis in TTD-based Models

The comprehensive uncertainty analysis of Study 1 is the first attempt ever to explore

the impact of various choices in model input and structure on simulated TT50 time se-

ries. I identified the (i) temporal interpolation of δ18O in precipitation, (ii) non-spatially

interpolated δ18O in precipitation, (iii) selection between time-variant and time-invariant

SAS functions and (iv) dry flow conditions as primary sources of uncertainty for TT50 in

the Upper Selke.

When reconstructing high-frequency δ18O in precipitation from monthly samples via in-

terpolation, sine interpolation effectively captured the seasonality of the observed δ18O

data but smoothed detailed characteristics (Allen et al., 2019; Feng et al., 2009; McGuire

and McDonnel, 2006), causing an underestimation and an overestimation of high and low

values in δ18O data, respectively (Fig. 3 of Study 1). This smoothing effect might conceal

a more pronounced hydrological response of the system (Hrachowitz et al., 2011), hence

simulated TT50 relying on sine interpolation should be interpreted carefully (Fig. 4g-l).

In contrast, step function interpolation preserved the maxima in the values of monthly

δ18O in precipitation (Fig. 3 of Study 1), improving the fit of simulated instream δ18O

to measured data (Fig. 4a–f in Study 1) and enhancing overall model performance (Fig.

5 in Study 1). This suggests a more robust simulation of TT50 time series (Fig. 4a-f).

However, combining step function with raw δ18O resulted in a larger 95PPU (Fig. 4d-

f), reflecting the importance of a comprehensive uncertainty range exploration beyond

the sole goodness of fit. The spatial representation of δ18O in precipitation had minimal

influence on the pattern of TT50 (Fig. 4) as TT50 time series were similar with both

raw δ18O and δ18O spatially interpolated using kriging. However, interpolating δ18O in

precipitation from various locations using kriging was able to reduce the 95PPU in TT50

(Fig. 4a-c and g-i), possibly due to the substantial elevation gradient in the Upper Selke
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which makes measurements from a single location overly simplistic as representative of

the entire area. The choice of time-invariant functions such as PLTI and BETATI resulted

in moderate fluctuations in the 95PPU of TT50, whose mean value was around 250 days

(Fig. 4a, c, d, f, h, i, k and l). This behavior might result from the assumption of a con-

stant water selection preference over time. In contrast, time-variant SAS functions such

as PLTV (Fig. 4b, e, h and k), yielded pronounced seasonal fluctuations in the 95PPU

of TT50, which were linked to the catchment wetness leading to shorter (or longer) TT50

when the catchment was wet (or dry) during storm events (or low-flow periods) (Berghuijs

and Allen, 2019; Jasechko et al., 2016). Moreover, the 95PPU of TT50 was exceptionally

large during low-flow conditions, ranging at most between 259 and 1009 days (Fig. 4e).

The large 95PPU during low-flow conditions is likely due to the water moving through

drier soil zones, which causes erratic flow behavior with varying flow directions and pat-

terns influenced by soil moisture’s impact on conductivity. As a result, wet areas may

be patchy, with water flowing at specific locations only, posing challenges in constraining

older water ages. This large 95PPU during dry conditions may limit PLTV’s effectiveness

in understanding flow and solute transport during dry conditions.

In summary, Study 1 showcased the crucial role of spatiotemporal interpolations of δ18O

data and SAS parameterization in affecting the outcomes of TTD-based models. Regard-

ing δ18O data interpolation, the study suggests that, in the absence of high-frequency mea-

surements in precipitation, reconstructing high-frequency time series from low-frequency

data can serve as a viable approach to address the limitations of a coarse input dataset.

However, it emphasizes the need to acknowledge uncertainties introduced by such choices.

The significance of this uncertainty becomes evident in the highly different 95PPUs of

simulated TT50 observed across the twelve tested setups (Fig. 4).

Figure 4: Predicted TT50 of streamflow; the light blue line and the shaded area represent the
ensemble mean of all possible solutions and their range according to the 95PPU, respectively.
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4.2 Alternative Ways to Simulate TTDs

Study 2 leverages the metric of Fyw to constrain model parameters and simulations of

TTD-based models. The calculation of Fyw at 23 study sites revealed a significant range

from 0.02 to 0.26, indicating that 2-26% of streamflow is composed of water from the past

2-3 months (Fig. 5). Using these values of Fyw as the only constraint for TTD-based

modeling effectively reduced the equifinality in the model simulations, narrowing the

95PPU of the simulated TT50 from the prior to the posterior solution in most catchments.

However, this reduction in the 95PPU was site-specific (Fig. 6 in Study 2). Catchments

with 0.10 ≤ Fyw ≤ 0.26, experienced a notable reduction in the 95PPU of TT50, from

76% to 92% between prior and posterior solution (Fig. 6 of Study 2). This resulted in a

narrower posterior 95PPU skewed toward smaller values, with the mean of the TT50 time

series averaging approximately around 1 year across the catchments (Figs. 6a and S6 of

Study 2). The largest Fyw values were observed in lower-altitude mountainous catchments

(Fig. 5), likely influenced by rapid runoff through shallow flow paths during wet conditions

and soil saturation (Lutz et al., 2018; Sprenger et al., 2019). Larger Fyw values were also

observed in lowland areas (Fig. 5), where artificial drainage could trigger fast runoff into

the stream network (Musolff et al., 2015; Danesh-Yazdi et al., 2016; Lutz et al., 2018).

Catchments with Fyw ≤ 0.05 had a more moderately reduced 95PPU from 46% to 50%

between prior and posterior solution of TT50 (Fig. 6 of Study 2). This resulted in a larger

95PPU and longer TT50 values up to 12.5 years (Figs. 10c and S6 in Study 2). Smaller

Fyw values were predominantly observed in mountainous catchments (Fig. 5), potentially

due to the highly permeable soil of the Harz mountains, inducing rapid vertical infiltration

and, in turn, activation of deep flow paths (Jasechko et al., 2016).

These results indicate that smaller Fyw values were less effective in constraining TTD-

based models. The challenge of accurately representing old water components, character-

izing the catchments of the poor cluster, may be attributed to the strong attenuation in

the instream δ18O data used to derive Fyw, thus making it difficult to quantify old water

ages. On the contrary, the use of larger Fyw values successfully reduced uncertainty in the

95PPU of simulated TT50 from prior to posterior solution. This was further supported by

improved model performance in terms of KGE values in the posterior solution compared

to the prior solution (Figs. 9 and S5 of Study 2). Overall, in cases where only limited δ18O

data are available, relatively large values of Fyw can represent a practical and cost-effective

tool for constraining TTD-based models. This aligns with previous studies highlighting

the benefits of incorporating Fyw as an alternative constraint in model calibration (Lutz

et al., 2018; Callı et al., 2023).
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Figure 5: Fyw values obtained from the sine-wave approach in 23 catchments (black polygons)
with their corresponding identification number, the river network (blue lines), and elevation in
meters above sea level (colored map).

4.3 Validating Nitrate-Derived TTDs Using Isotopes

Study 3 simulated TT50 of streamflow obtained from model calibration against NO3
-

concentration (Experiment 1), low-frequency δ18O data (Experiment 2) and both datasets

(Experiment 3). Despite the different target variables for calibration, the 95PPUs of TT50

across all three experiments were comparable, ranging from 0 to 15 months in Experiment

1 (Fig. 6a), and from 0 to 11 months in Experiment 2 (Fig. 6b) and 3 (Fig. 6c). This

indicates that NO3
- and δ18O data contain similar information for describing hydrological

transport in the study catchment. All experiments showed seasonal variations in TT50

time series, with a significant decrease during high flows in winter and spring, and a

gradual increase during low flows in summer and early autumn (Fig. 6). The impact of

the 2018-2019 drought was evident (Winter et al., 2023), with TT50 peaking during and

after the drought years (Fig. 6). The analysis of SAS parameters α (Fig. 6a of Study 3),

describing transport processes within the catchment, yielded comparable calibrated values

across all experiments, indicating a major release of young water from the catchment (i.e.

α < 1 and β ≥ 1). However, Experiment 1 showed a greater interaction between α and

the denitrification rate (Table S4 in Study 3), leading to equifinality issues (Figs. 6a and

7 in Study 3). This interaction was reduced in Experiment 3 when incorporating δ18O

data in model calibration (Table S4 in Study 3), thus resulting in a better description of

hydrological transport as evident from the narrower range in α (Figs. 6a and 7 of Study

3) and 95PPU of TT50 time series (Fig. 6c) compared to Experiment 1. Analysis of the

Da number highlights the dominance of transport as the primary driving force for NO3
-

removal during high-flow conditions, with Da < 1 (Fig. 8 in Study 3). Thus, during
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high-flow conditions, there was a chemo-dynamic accretion pattern of the Upper Selke

(Musolff et al., 2015; Ebeling et al., 2021), characterized by rapid NO3
- release during

storm events (Fig. 3 of Study 3). In contrast, during low-flow periods with Da > 1,

denitrification became the primary driver of NO3
- removal (Fig. 8 in Study 3). The

Da number served as a key indicator to reveal the dynamic shift between transport and

biogeochemical processes based on flow conditions, enhancing the understanding of NO3
-

export dynamics within the catchment (Ocampo et al., 2006).

Overall, Study 3 demonstrated the similarity of the transport parameter α and the tem-

poral dynamic of TT50 values in the Upper Selke derived by calibrating the model using

instream NO3
- and δ18O time series, separately and simultaneously. However, the abso-

lute values differed, and employing a transport model with both low-frequency δ18O data

and NO3
- concentrations reduced the interaction between transport and reaction param-

eter. This was beneficial as it improved the description of hydrological transport. Hence,

I argue that incorporating δ18O data in water quality models for NO3
- can enhance the

robustness of transport description.

Figure 6: 95PPU of TT50 obtained by model calibration with (a) Experiment 1, (b) Experiment
2 and (c) Experiment 3; the dashed line is the ensemble mean derived from all solutions and the
dark blue area is the streamflow time series.
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Chapter 5

Synthesis and Outlook

5.1 Synthesis

This thesis leverages the use of low-frequency isotope data to gain valuable insights into

TTDs and, in turn, underlying hydrological processes and solute export dynamics at

the catchment-scale. Firstly, the thesis addresses challenges related to low-frequency

isotope data, analyzing uncertainties arising from spatio-temporal interpolations of low-

frequency δ18O data in precipitation and SAS functions parameterization in TTD-based

models. Secondly, the thesis explores alternative methods for simulating TTDs with low-

frequency δ18O data, highlighting the effectiveness of using the Fyw. Lastly, the thesis

validates NO3
--derived TTDs using low-frequency δ18O data, providing insights into both

hydrological and biogeochemical processes.

5.2 Water Transit Time across Studies

The studies focused on simulating TT50 time series across multiple catchments, including

the common site of the Upper Selke. Results across the three studies reveal consistent

patterns in the TT50 time series of the Upper Selke showing fluctuations dependent on

the hydrological state of the system. However, the magnitude of these fluctuations varies,

being more or less pronounced depending on the use of time-variant and -invariant SAS

functions, respectively. There are differences in absolute values of TT50 between Stud-

ies 1 and 2 compared to Study 3, averaging around 1 year and approximately 4 months

throughout the study period, respectively. This difference can be attributed to the differ-

ent models used in Studies 1 and 2 (tran-SAS; Benettin and Bertuzzo, 2018) compared

to Study 3 (mHM-SAS; Nguyen et al., 2021), which have different structure, parameters

and input data, potentially impacting the study outcomes. This aligns with the primary
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message of Study 1. Moreover, the results indicate consistent values of SAS parameters

in the Upper Selke across the three studies, suggesting a predominant release of young

water which often indicates the activation of shallow, fast flow paths (Mulholland et al.,

1990; Tetzlaff et al., 2007) such as lateral flow via macro pores (Tromp-van Meerveld

and McDonnell, 2006). This can enable rapid routing of water to the catchment out-

let (Berghuijs and Allen, 2019), and indicate the catchment’s short-term responsiveness

along with rapid solute transport. Despite the differences in the absolute values of TT50

between Studies 1 and 2 compared to Study 3, the outcomes for the Upper Selke in all

three studies suggest the same water release dynamics and fluctuations of TT50 based on

the streamflow time series. This emphasizes the robustness of employing low-frequency

δ18O data in TTD-based models in drawing the same conclusions, even when different

methodological approaches are used. Additionally, the results for the Upper Selke re-

garding water release dynamics found in this thesis align with other studies in the region

(Nguyen et al., 2021, 2022; Winter et al., 2021, 2022).

Study 2 also identified other catchments with short TT50, likely reflecting similar hy-

drological processes such as those described above. However, other sites showed longer

TT50, suggesting deep, long flow paths retaining water for a decade (Hrachowitz et al.,

2010; Jasechko et al., 2016; Jasechko, 2019). This implies slow catchment drainage with

long-term memory of past inputs (de Lavenne et al., 2022). Such different water release

behaviors highlight varying degrees of hydrological connectivity (Blume and van Meerveld,

2015) influenced by specific hydro-meteorological forcing and activation of source areas

(Kim et al., 2016).

5.3 Implications on Water Quality

The findings of this thesis provide valuable insights for water quality management. The

analysis of the 95PPU of TT50 time series in all studies is crucial, as a large 95PPU in-

dicates significant variations in the simulated TT50 values, which directly impacts solute

export dynamics, especially for reactive solutes such as NO3
-. For example, TT50 influ-

ences the NO3
- exposure time to the soil matrix (McClain et al., 2003), thus affecting

biogeochemical reactions such as denitrification (Kumar et al., 2020; Otero et al., 2009;

Smith et al., 2009). A larger Fyw and shorter values of TT50 indicate rapid solute trans-

port, which limits the time for denitrification and natural attenuation of contaminants

(Ocampo et al., 2006; Rivett et al., 2008; Jawitz et al., 2020). Conversely, a smaller Fyw

and larger values of TT50 are associated with old water release, which improves the ef-

ficacy of denitrification leading to reduced instream NO3
- concentration. Nonetheless, a

major release of old water may also cause delayed solute export responses (Dupas et al.,
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2016; Van Meter et al., 2017), contributing to long-term issues of diffuse NO3
- pollution

(Basu et al., 2022; Lutz et al., 2022).

Water quality modelers can utilize these findings to enhance the understanding of the

catchment’s functioning, thus supporting planning, design, and/or operational decisions

for effective water and NO3
- management strategies (Zessner, 2021). Recognizing uncer-

tainties in TTD-based models arising from model input is crucial, as they can impact the

conclusions of water quality studies for management purposes (Study 1). The effective-

ness of relatively large values of Fyw in reducing uncertainty in model simulations at sites

with shorter TT50 is promising, as these are typically the sites with elevated instream

solute concentration, prone to pollution and characterized by high water quality vulner-

ability (Study 2). Finally, the comparison of TTDs of water quality models calibrated to

instream NO3
- concentrations against simulated TTDs with δ18O data is a valuable way

to assess water quality models’ effectiveness in describing hydrological processes (Study

3).

5.4 Outlook

Follow-up research could further explore and validate the uncertainty analysis of TT50

time series (Study 1). For example, alternative methods for temporal interpolation, such

as Generalized Additive Models (GAM; Buzacott et al., 2020) based on smoothing func-

tions might offer another approach to evaluate the uncertainty in TT50 due to input

tracer data reconstruction. Similarly, considering the gamma SAS parameterization (Har-

man, 2015) could insights into model structure uncertainty. Additionally, gaining a more

comprehensive understanding of catchment functioning, including evapotranspiration and

catchment storage, could be valuable for future studies to enhance the accuracy of TTD

uncertainty characterization and determine which model setup is most plausible for the

specific catchment.

Moreover, research should leverage the global availability of Fyw. A study by Jasechko

et al. (2016), which calculated Fyw in 254 catchments worldwide using δ18O data, identified

a correlation with topographic gradient (i.e. smaller Fyw at higher altitude), indicating

potential for regionalizing Fyw across diverse regions and climates. This regionalization

could yield estimates of Fyw in ungauged areas, similar to deriving δ18O data in precipi-

tation through spatial interpolation with measurements from nearby monitoring stations

(Bowen and Revenaugh, 2003). Future studies could build extensive datasets containing

Fyw or sinusoidal cycles of δ18O data in precipitation (Allen et al., 2019) employed to cal-

culate Fyw, to enhance the use of Fyw as a helpful tool for supporting SAS-based models.
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However, further studies are needed to evaluate and exploit the possibilities associated

with Fyw regionalization.

The proposed use of low-frequency δ18O data as a validation tool for water quality models

gives room for further understanding of how different calibration targets produce compa-

rable outcomes in simulated TTDs. This can be especially explored in catchments with

diverse hydrological and geophysical settings compared to the Upper Selke. While the

findings in the Upper Selke emphasized similarities in TTDs and SAS model parame-

ters when using both NO3
- and δ18O data, catchments discharging predominantly old

water may show different TTDs and transport mechanisms when inferred with NO3
- or

δ18O data. Hence, future studies should check whether NO3
- and δ18O data hold similar

or different information for model calibration and transport processes description across

contrasting catchments.

To address the aforementioned open questions, a low-frequency isotopic dataset can be

employed and provide valuable insights into hydrological processes. While low-frequency

measurements may contain less information compared to high-frequency data, they are

generally characterized by greater global availability. This broader accessibility of data

allows for the exploration and comparison of numerous catchments, contributing to an

enhanced understanding of their functioning. Notably, the studies in this thesis are based

on low-frequency data, and the applied methodologies have proven successful in exploring

catchment-scale TTDs and their associated uncertainty. Consequently, these methods can

be transferred to other catchments, for which low-frequency data are also available, thus

promoting a comprehensive understanding of catchment-scale TTDs and solute transport

across diverse sites. This approach highlights the importance of shifting the research

focus from “how could we obtain more data?” to “what meaningful insights can be derived

from existing data?” until more high-frequency datasets become available. This change in

perspective highlights the need for optimizing the use of available resources for enhanced

water quantity and quality management, particularly crucial given increasingly extreme

weather conditions and water pollution due to global change.
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Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy,

J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan,

A., Gupta, H. V., Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D.,

Troch, P. A., Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E.

and Cudennec, C. (2013), ‘A Decade of Predictions in Ungauged Basins (PUB) — a

review’, Hydrological Sciences Journal 58, 1198–1255.

URL: https://doi.org/10.1080/02626667.2013.803183

Hrachowitz, M., Soulsby, C., Tetzlaff, D. and Malcolm, I. A. (2011), ‘Sensitivity of mean

transit time estimates to model conditioning and data availability’, Hydrol. Process.

25, 980–990.

URL: https://doi.org/10.1002/hyp.7922

Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I. A. and Schoups, G. (2010), ‘Gamma

distribution models for transit time estimation in catchments: Physical interpretation

40



References

of parameters and implications for time-variant transit time assessment’, Water Resour.

Res. 46, W10536.

URL: https://doi.org/10.1029/2010WR009148

https://watson-cost.eu/ (last access: 16-10-2023), ‘WATer isotopeS in the critical zONe:

from groundwater recharge to plant transpiration’.

URL: https://watson-cost.eu/

Ilampooranan, I., Van Meter, K. J. and Basu, N. B. (2019), ‘A Race Against Time:

Modeling Time Lags in Watershed Response’, Water Resour. Res. 55, 3941–3959.

URL: https://doi.org/10.1029/2018WR023815

Jasechko, S. (2019), ‘Global Isotope Hydrogeology — Review’, Reviews of Geophysics

57, 835–965.

URL: https://doi.org/10.1029/2018RG000627

Jasechko, S., Kirchner, J. W., Welker, J. M. and McDonnell, J. J. (2016), ‘Substantial

proportion of global streamflow less than three months old’, Nature Geosci 9, 126–129.

URL: https://doi.org/10.1038/ngeo2636

Jawitz, J., Desormeaux, A. M., Annable, M. D., Borchardt, D. and Dobberfuhl, D.

(2020), ‘Disaggregating Landscape-Scale Nitrogen Attenuation Along Hydrological

Flow Paths’, JGR Biosciences 125, e2019JG005229.

URL: https://doi.org/10.1029/2019JG005229

Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K. E. and Mar-

shall, L. A. (2009), ‘Hydrologic connectivity between landscapes and streams: Trans-

ferring reach- and plot-scale understanding to the catchment scale’, Water Resour. Res.

45, W04428.

URL: https://doi.org/10.1029/2008WR007225

Jenny, J.-P., Anneville, O., Arnaud, F., Baulaz, Y., Bouffard, D., Domaizon, I., Bocaniov,
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Leoni, B., Meybeck, M., Nava, V., Nõges, T., Nõges, P., Patelli, M., Pebbles, V., P.

M.-E., Rasconi, S., Ruetz, C. R., Rudstam, L., Salmaso, N., Sapna, S., Straile, D.,

Tammeorg, O., Twiss, M. R., Uzarski, D. G., Ventelä, A.-M., Vincent, W. F., Wilhelm,
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Abstract. Transit time distributions (TTDs) of streamflow
are useful descriptors for understanding flow and solute
transport in catchments. Catchment-scale TTDs can be mod-
eled using tracer data (e.g. oxygen isotopes, such as δ18O) in
inflow and outflows by employing StorAge Selection (SAS)
functions. However, tracer data are often sparse in space
and time, so they need to be interpolated to increase their
spatiotemporal resolution. Moreover, SAS functions can be
parameterized with different forms, but there is no general
agreement on which one should be used. Both of these as-
pects induce uncertainty in the simulated TTDs, and the in-
dividual uncertainty sources as well as their combined ef-
fect have not been fully investigated. This study provides
a comprehensive analysis of the TTD uncertainty resulting
from 12 model setups obtained by combining different in-
terpolation schemes for δ18O in precipitation and distinct
SAS functions. For each model setup, we found behavioral
solutions with satisfactory model performance for in-stream
δ18O (KGE> 0.55, where KGE refers to the Kling–Gupta ef-
ficiency). Differences in KGE values were statistically signif-
icant, thereby showing the relevance of the chosen setup for
simulating TTDs. We found a large uncertainty in the sim-
ulated TTDs, represented by a large range of variability in
the 95 % confidence interval of the median transit time, vary-
ing at the most by between 259 and 1009 d across all tested
setups. Uncertainty in TTDs was mainly associated with the
temporal interpolation of δ18O in precipitation, the choice
between time-variant and time-invariant SAS functions, flow
conditions, and the use of nonspatially interpolated δ18O in

precipitation. We discuss the implications of these results for
the SAS framework, uncertainty characterization in TTD-
based models, and the influence of the uncertainty for water
quality and quantity studies.

1 Introduction

Understanding how catchments store and release water of
different ages has significant implications for flow and solute
transport, as water ages encapsulate information about flow
paths’ characteristics (McGuire and McDonnel, 2006; Botter
et al., 2011), the contact time of solutes with the soil matrix
(Benettin et al., 2015a; Hrachowitz et al., 2016), and vulner-
ability assessment (Kumar et al., 2020). This plays an im-
portant role in water resources protection and management,
and it requires a tool that can effectively describe catchment-
scale transport processes (Rinaldo and Marani, 1987). The
age of water in outflows is commonly referred to as tran-
sit time (TT), i.e. the time that elapses between the entry
of a water parcel into the catchment via precipitation and
its exit via streamflow or evapotranspiration. Accordingly,
the transit time distribution (TTD) describes the whole spec-
trum of transit times in outflows (Botter et al., 2005; Van der
Velde et al., 2010). Early studies have often assumed simpli-
fied steady-state transport models, resulting in time-invariant
TTDs (Niemi, 1977; Rinaldo et al., 2006). However, exper-
imental simulations have shown that TTDs are time-variant
due to the variability in meteorological forcing (Botter et al.,
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2010; Hrachowitz et al., 2010; Heidbüchel et al., 2020)
and the activation/deactivation of flow paths in response to
varying hydrologic conditions (Ambroise, 2004; Heidbüchel
et al., 2013). Recent research has introduced new models for
representing time-variant TTDs, for example, allowing for
the estimation of TTDs without making prior assumptions
about their shape (Kirchner, 2019; Kim and Troch, 2020) or
with the parameterization of the StorAge Selection (SAS)
functions (Rinaldo et al., 2015; Harman, 2019). SAS func-
tions describe how catchments selectively remove water of
different ages from storage for outflows, and they have led
to a new framework of nonstationary transport models based
on water age, which have been successfully applied in vari-
ous studies (Benettin et al., 2015b; Queloz et al., 2015; Kim
et al., 2016; Lutz et al., 2017; Wilusz et al., 2017; Nguyen
et al., 2021).

Model-based TTDs are subjected to uncertainty, which
limits their ability with respect to decision support. In gen-
eral, model prediction uncertainty stems from model in-
puts, structure, and parameters (Beven and Freer, 2001). As
TTDs are not directly observable, conservative environmen-
tal tracers (e.g. oxygen isotopes, such as δ18O) in inflow
and outflows are commonly used to infer water ages (Hra-
chowitz et al., 2013; Birkel and Soulsby, 2015; Stockinger
et al., 2015). Long-term, high-frequency tracer data with an
appropriate spatial distribution are generally recommended
for a sufficient understanding of TTD dynamics across a
wide range of fast and heterogeneous hydrological behav-
iors (Kirchner et al., 2004; Danesh-Yazdi et al., 2016; von
Freyberg et al., 2017). Therefore, a lack of appropriate tracer
data coverage can hamper our understanding of TTD dy-
namics at the desired resolution (McGuire and McDonnel,
2006). Additionally, uncertainty in the driving hydroclimatic
fluxes, such as precipitation, discharge, and evapotranspira-
tion, could propagate into the uncertainty in the modeling
results. Further uncertainty emerges from the model struc-
ture due to the difficulty in representing physical processes
because of our incomplete knowledge of complex reality
(Ajami et al., 2007). Finally, specification of model parame-
ters is also an important source of uncertainty (Beven, 2006;
Kirchner, 2006), as the best-fit parameters may suffer from
equifinality (Schoups et al., 2008).

A few studies have investigated the uncertainty in the es-
timated TTDs with SAS models. Danesh-Yazdi et al. (2018)
and Jing et al. (2019) analyzed the effect of interactions be-
tween distinct flow domains, external forcing, and recharge
rate on the resulting TTDs. Several works (Benettin et al.,
2017; Wilusz et al., 2017; Rodriguez et al., 2018, 2021) have
explored model parameter uncertainty and suggested that ad-
ditional types of tracers, data on physical characteristics of
the catchment, and parsimonious parameterization may help
to further reduce parametric uncertainty in the SAS models.
More recently, Buzacott et al. (2020) investigated how gap-
filling of the δ18O record in precipitation propagated uncer-
tainty into the simulated mean water transit time (MTT), i.e.

the average time it takes for water to leave the catchment
(McDonnel et al., 2010).

Despite the studies cited above, there are other aspects that
are particularly significant for SAS modeling and cause un-
certainty in the simulated TTDs that have not yet been thor-
oughly investigated. First, isotope data are generally sparse
globally in space and time (von Freyberg et al., 2022), due
to laborious and costly sampling campaigns limited to well-
equipped areas (Tetzlaff et al., 2018). As SAS models re-
quire continuous time series of input tracer data, different
methods for temporal interpolation could be used to recon-
struct isotope values in precipitation; consequently, the in-
terpolated input data are subject to uncertainty. Furthermore,
the input data of SAS models are influenced by whether the
tracer data in precipitation are collected at a single location
within the catchment or at multiple locations. In the latter
scenario, there is a need to account for the spatial variabil-
ity in the tracer composition in precipitation, which is com-
monly done via spatial interpolation. Choosing data from one
approach (i.e. tracer data from a single location) over the
other (i.e. tracer data spatially interpolated based on multiple
locations, including stations outside the catchment bound-
aries) can potentially result in different resulting TTDs. Fi-
nally, SAS functions, employed to model TTDs, must be pa-
rameterized, and their functional forms need to be specified
a priori. Commonly used forms are the power law (Benet-
tin et al., 2017; Asadollahi et al., 2020), beta (van der Velde
et al., 2012; Drever and Hrachowitz, 2017), and gamma
(Harman, 2015; Wilusz et al., 2017) distributions. However,
there is no general agreement on which SAS function should
be used, as the hydrological processes that control the pat-
terns and dynamics of the subsurface vary across catchments.
Therefore, the most convenient approach is to simply rely
on a specific parameterization over another and estimate its
parameters (Harman, 2015). All of these aspects, related to
model input, structure, and parameters, induce uncertainty in
the simulated TTDs. To date, the role of these individual un-
certainty sources and their combined effect on the modeled
TTDs have not been adequately discussed.

This study bridges the aforementioned gaps by specifically
exploring the combined effect of tracer data interpolation and
model parameterizations on the simulated TTDs. We investi-
gated TTD uncertainty using an SAS-based catchment-scale
transport model applied to the upper Selke catchment, Ger-
many. We evaluated TTDs resulting from 12 model setups
obtained by combining distinct interpolation techniques of
δ18O in precipitation and parameterizations of SAS func-
tions. For each model setup, we searched for behavioral
parameter sets (i.e. those providing acceptable predictions)
based on model performance for in-stream δ18O, and we
evaluated the sources of uncertainty and their combined ef-
fects in the modeled TTDs. Overall, our results provide new
insights into the uncertainty characterization of TTDs, partic-
ularly in the absence of high-frequency tracer data, and the

Hydrol. Earth Syst. Sci., 27, 2989–3004, 2023 https://doi.org/10.5194/hess-27-2989-2023

Study 1

57



A. Borriero et al.: Uncertainty in water transit time estimation with SAS functions 2991

Figure 1. The upper Selke catchment, showing precipitation sam-
pling points (purple dots), the river network (blue lines), and the
elevation (in meters above sea level) as a colored map. The inset
presents the location of the upper Selke catchment in Germany.

use of SAS functions as well as the implications of TTDs’
uncertainty on water quantity and quality studies.

2 Study area and data

The upper Selke catchment is located in the Harz Moun-
tains in Saxony-Anhalt, central Germany (Fig. 1). The study
site is part of the Bode region, an intensively monitored area
within the TERENO (TERrestrial ENvironmental Observa-
tories; Wollschläger et al., 2017) network. The catchment
has a drainage area of 184 km2, the altitude ranges between
184 and 594 m above mean sea level, and the mean slope is
7.65 %. Land use is dominated by forest (broadleaf, conif-
erous, and mixed forest) and agricultural land (winter ce-
reals, rapeseed, and maize), representing 72 % and 21 % of
the catchment, respectively. The soil is largely composed of
Cambisols and the underlying geology consists of schist and
claystone, resulting in a predominance of relatively shallow
flow paths (Dupas et al., 2017; J. Yang et al., 2018).

Daily hydroclimatic and monthly tracer data in the up-
per Selke catchment were available for the period between
February 2013 and May 2015. Precipitation (P ) was taken
from the German Weather Service, whereas discharge (Q)
and evapotranspiration (ET) were simulated data obtained
from the mesoscale Hydrological Model (mHM; Samaniego
et al., 2010; Kumar et al., 2013), as continuous measure-
ments were not available for the given outlet and period. A
thorough evaluation of mHM performance for past measure-
ments has been conducted in previous studies (Zink et al.,
2017; X. Yang et al., 2018; Nguyen et al., 2021). The average
annual P ,Q, and ET are 703, 108, and 596 mm, respectively.
The area is characterized by high flow during November–
May (average Q= 0.88 m 3 s−1) and low flow during June–
October (average Q= 0.42 m 3 s−1). Evapotranspiration is
higher in June (109 mm per month) and lower in Decem-

Figure 2. Data of δ18O in precipitation (kriged values as pink dots
and raw values as yellow dots) and streamflow (blue dots).

ber (10 mm per month). The average monthly temperature
ranges from −0.7 ◦C in January to 17 ◦C in July. The δ18O
values in precipitation (δ18OP ) and in streamflow (δ18OQ)
at a monthly resolution were taken from Lutz et al. (2018)
and are displayed in Fig. 2. Values of δ18OP were used in the
form of “raw” (i.e. values collected at the catchment outlet)
and “processed” (i.e. values collected at multiple locations
and spatially interpolated using kriging) data (see Sect. 3.2
for more details). The variability in δ18OP was larger than
that in δ18OQ (Fig. 2) because of the damping of the precip-
itation signal due to mixing and dispersion within the catch-
ment. Temperature dependence caused more depleted (i.e.
more negative) δ18OP in winter than in summer (Fig. 2).

3 Methods

3.1 Catchment-scale transport model

In this study, we used the tran-SAS model (Benettin and
Bertuzzo, 2018a) for describing the catchment-scale water
mixing and solute transport based on SAS functions. The
catchment was conceptualized as a single storage S(t) (mm),
whose water-age balance can be expressed as follows (Benet-
tin and Bertuzzo, 2018a):

S(t)= S0+V (t) (1)
∂ST (T , t)

∂t
+
∂ST (T , t)

∂T
= P(t)−Q(t) ·�Q(ST , t)

−ET(t) ·�ET(ST , t), (2)
with an initial condition of ST (T , t = 0)= ST0(T ) (3)
and a boundary condition of ST (0, t)= 0. (4)

Here, S0 (mm) is the initial storage; V (t) (mm) represents
the storage variations; P(t) (mm d−1), Q(t) (mm d−1), and
ET(t) (mm d−1) are precipitation, discharge, and evapotran-
spiration, respectively; ST (T , t) (mm) is the age-ranked stor-
age; ST0(T ) (mm) is the initial age-ranked storage; and
�Q(ST , t) (–) and �ET(ST , t) (–) are the cumulative SAS
functions for Q and ET, respectively.
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By definition, the TTD of streamflow pQ(T , t) (d−1) is
calculated as follows (Benettin and Bertuzzo, 2018a):

pQ(T , t)=
∂�Q(ST , t)

∂ST
·
∂ST

∂T
. (5)

The isotopic signature in streamflow CQ(t) (‰) can be
obtained as follows (Benettin and Bertuzzo, 2018a):

CQ(t)=

+∞∫
0

CS(T , t) ·pQ(T , t) · dT , (6)

whereCS(T , t) (‰) is the isotopic signature of a water parcel
in storage. Equations (5) and (6) also apply for ET.

In this study, we tested three SAS parameterizations: the
power law time-invariant (PLTI; Eq. 7, Queloz et al., 2015),
power law time-variant (PLTV; Eq. 8, Benettin et al., 2017),
and beta time-invariant (BETATI; Eq. 9, Drever and Hra-
chowitz, 2017) distributions. Here, they are expressed as
probability density functions in terms of the normalized age-
ranked storage PS(T , t) (–), also known as fractional SAS
functions (fSAS):

ω(PS(T , t), t)= k · (PS(T , t))
k−1, (7)

ω(PS(T , t), t)= k(t) · (PS(T , t))
k(t)−1, (8)

ω(PS(T , t), t)=
(PS(T , t))

α−1
· (1−PS(T , t))

β−1

B(α,β)
. (9)

The parameters k, α, and β determine the catchment’s
water-age preference for outflows, while B(α,β) is the two-
parameter beta function. If k < 1, or if α < 1 and β > 1, the
system tends to discharge young water. If k > 1, or if α > 1
and β < 1, the catchment preferably releases old water. The
case of k = 1 or α = β = 1 describes no selection prefer-
ence (i.e. complete water mixing). PLTV is characterized by
k(t) varying linearly over time between two extremes, k1
and k2, as a function of the catchment wetness wi (–), i.e.
wi(t)= (S(t)−Smin)/(Smax−Smin), where Smin and Smax are
the respective minimum and maximum storage values over
the entire period.

3.2 Interpolation techniques for δ18O in precipitation

We tested the model with two spatial representation and two
temporal interpolation methods for δ18OP to explore the im-
pact of input tracer data on model performance, results, and
uncertainty. To evaluate the effect of spatial representation,
we firstly used single-point δ18OP measurements, which we
refer to in the following as raw δ18OP . These measurements,
obtained from Lutz et al. (2018), were taken at the catchment
outlet. The selection of δ18OP at the outlet assumes a precipi-
tation collector close to the stream gauge at the outlet, which
is a common occurrence in many catchments for logistical
reasons. Indeed, the outlet, where in-stream δ18O is sampled,
serves as the location where all precipitation inputs across

the catchment are integrated. For convenience, precipitation
monitoring is also often conducted at or near the gauging
station at the outlet. Secondly, we used spatially interpolated
δ18OP with kriging based on multiple locations. The spatial
interpolation was conducted in Lutz et al. (2018) using raw
δ18OP from 24 precipitation collectors spread over the larger
Bode region and using altitude as external drift. In a further
step, the kriged δ18OP data were weighted with spatially dis-
tributed monthly precipitation to obtain representative esti-
mates for the study catchment. In our study, the kriged δ18OP
resulted in slightly more negative values than the raw δ18OP
from the catchment outlet (Fig. 2) because of the inclusion of
more depleted δ18OP values from locations with higher alti-
tudes during the kriging process. By considering these two
options for the spatial representation of δ18OP , we intend to
assess the influence of spatial variability and uncertainty in
the simulated outputs between two opposing cases i.e. raw
isotopes representing the simplest approach and kriged iso-
topes derived from a more sophisticated method. While there
are other possibilities for the spatial representation of δ18OP ,
our choice allows us to effectively address our research ques-
tion regarding the effects on SAS models of tracer data in
precipitation collected at a single location within the catch-
ment or spatially interpolated from multiple sites.

SAS model results are sensitive to the choice of the tem-
poral resolution of input tracer data, and a finer resolution is
generally recommended to achieve a satisfactory level of de-
tail (Benettin and Bertuzzo, 2018a). Additionally, a forward
Euler scheme was employed to solve Eq. (2), whose preci-
sion increases with high-frequency time steps. For these rea-
sons, we reconstructed daily δ18OP estimates from monthly
values with two interpolation schemes. First, we used a step
function in which the values between two consecutive sam-
ples assumed the value of the last sample. Second, we used
a sine interpolation due to the fact that δ18OP samples typ-
ically exhibit pronounced seasonal variations with more de-
pleted values in winter than in summer (Fig. 2). The sine-
wave function has been used in several studies to describe
temporal variation in δ18OP (McGuire and McDonnel, 2006;
Feng et al., 2009; Allen et al., 2019). The seasonal pattern of
δ18OP values over a period of 1 year can be described as
follows (Kirchner, 2016):

δ18OP (t)= aP ·cos(2·π ·f ·t)+bP ·sin(2·π ·f ·t)+kP , (10)

where a and b are regression coefficients (–), t is the time
(decimal years), f is the frequency (yr−1), and k is the ver-
tical offset of the isotope signal (‰). The coefficients a and
b were estimated by fitting Eq. (10) to monthly δ18OP val-
ues using the iteratively re-weighted least-squares (IRLS) es-
timation (von Freyberg et al., 2018). In our study, we repro-
duced the daily frequency isotopic data through the estimated
regression coefficients of Eq. (10). Figure 3 displays the daily
kriged and raw δ18OP values simulated via step function and
sine interpolation; by employing step function and sine in-
terpolation as techniques to reconstruct tracer data in precip-
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Figure 3. Predicted δ18O in precipitation (kriged values as pink
lines and raw values as yellow lines) via step function and sine in-
terpolation.

itation, we aim to analyze the effects on SAS-based results
from two relatively simple, rather opposing approaches: one
focusing on individual measurements and the other on sea-
sonality.

3.3 Experimental design

In this study, different scenarios were used to quantify uncer-
tainty in the modeled results. We tested 12 setups composed
of three SAS functions (PLTI, PLTV, and BETATI), two tem-
poral interpolations (step and sine function), and two spatial
representations (raw and kriged values) of δ18OP (Table 1).
For each setup, we performed a Monte Carlo experiment by
running the model with 10 000 parameter sets generated by
Latin hypercube sampling (LHS; McKay et al., 1979). Model
parameters and their search ranges are shown in Table 2. A
5-year warm-up period (i.e. repetition of the input data) from
February 2008 to January 2013 was performed to reduce
the impact of model initialization. The period from Febru-
ary 2013 to May 2015 was used to infer behavioral param-
eters (i.e. parameter sets giving acceptable predictions) and,
subsequently, to interpret model results. The initial concen-
tration of δ18O in storage was set to 9.2 ‰, coinciding with
the mean δ18OQ over the study period.

The informal likelihood of the Sequential Uncertainty Fit-
ting (SUFI-2; Abbaspour et al., 2004) procedure was applied
to account for uncertainty in the parameter sets and result-
ing modeled estimates. In SUFI-2, the uncertainty is repre-
sented by a uniform distribution, which is gradually reduced
until a specific criterion is reached. In our study, we cal-
ibrated the values of model parameters until the predicted
output matched the measured δ18OQ to a satisfactory level,
defined by an objective function. As the objective function,
we employed the Kling–Gupta efficiency (KGE; Gupta et al.,
2009), and once the criterion of KGE≥ 0.5 was satisfied, we
defined a set of behavioral solutions for each model setup.
However, as the aim of this study is to investigate the im-
pact of various sources of uncertainty on simulated outputs,
rather than to determine the best model setup, we decided to
set a fixed sample size and narrow down those solutions gen-

Table 1. List of model setups.

Setup Interpolation SAS function

a step function
kriged δ18OP

PLTI
b PLTV
c BETATI

d step function
raw δ18OP

PLTI
e PLTV
f BETATI

g sine function
kriged δ18OP

PLTI
h PLTV
i BETATI

j sine function
raw δ18OP

PLTI
k PLTV
l BETATI

erated by SUFI-2 in the previous step. Setting a fixed sample
size ensures the comparability of results across the setups, as
different sample sizes could influence the uncertainty anal-
ysis (i.e. the greater the number of behavioral solutions, the
wider the uncertainty band). By fixing the sample size, we
can still meet the requirement of a minimum acceptable KGE
value (i.e. KGE≥ 0.5). In this study, we determined the final
behavioral solutions by using a fixed sample size that corre-
sponds to the best 5 % parameter sets and modeled results in
terms of the KGE.

To assess the range of possible behavioral solutions and
understand the level of uncertainty associated with it, we cal-
culated the 95 % confidence interval (CI) derived by comput-
ing the 2.5 % and 97.5 % percentile values of the cumulative
distribution in the parameters and time series of output vari-
ables (Abbaspour et al., 2004). These percentile values rep-
resent the lower and upper bounds of the CI, respectively. In
our experimental setup, the main output variables were the
in-stream δ18O signature and backward median transit time
(TT50, in days, i.e. the time it takes for half of the water par-
ticles to leave the system as streamflow at the catchment out-
let). Time series of TT50 were extracted directly from daily
TTDs (Eq. 5) and used as a metric for the streamflow age.
This was done because TTDs are typically skewed with long
tails (Kirchner et al., 2001); hence, the median is often a more
suitable metric than, for example, the MTT, as it is less im-
pacted by the poor identifiability of the older water compo-
nents (Benettin et al., 2017).

4 Results

4.1 Simulated δ18O in streamflow and model
performance

Modeled δ18O values in streamflow (δ18OQ) represented
by the 95 % confidence interval (CI) in the ensemble solu-
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Table 2. Model parameters and search ranges.

SAS parameter Symbol Unit Lower Upper
bound bound

kQ – 0.1 2
kQ1 – 0.1 2

Discharge SAS parameter kQ2 – 0.1 2
α – 0.1 2
β – 0.1 2

Evapotranspiration SAS parameter kET – 0.1 2
Initial storage S0 mm 300 3000

tion are displayed in Fig. 4. The results reveal how the pre-
dicted δ18OQ values enveloped the measured isotopic signa-
ture by reproducing its seasonal fluctuations, with depleted
(i.e. more negative) values in winter and enriched (i.e. less
negative) values in summer. Although the behavioral param-
eter sets were able to capture the seasonal isotopic trend,
they poorly reproduced the exact values; therefore, the en-
semble simulations are characterized by a non-negligible un-
certainty.

Figure 4 shows the distinct effects of the interpolated in-
put tracer data and model parameterization on the simulated
δ18OQ values. The step function interpolation generated an
erratic isotopic signature in streamflow with flashy fluctua-
tions (Fig. 4a–f). On the other hand, sine interpolation of
δ18OP values yielded a smooth response in the simulated
δ18OQ values (Fig. 4g–l). No significant visual distinction
was found between kriged (Fig. 4a–c) and raw (Fig. 4d–
f) δ18OP samples when the step function interpolation was
used, except for a slightly larger uncertainty observed with
raw δ18OP samples. Furthermore, when employing the sine
interpolation and raw δ18OP values (Fig. 4j–l), the simu-
lations overestimated the in-stream measurements in com-
parison with kriged values (Fig. 4g–i). Finally, distinct SAS
parameterizations did not produce remarkable differences
in the simulated δ18OQ values, although PLTV generally
yielded simulations that better enveloped the measured iso-
topic signature (Fig. 4b, e, h, k).

Despite the differences in the predicted δ18OQ values, all
simulations can be considered satisfactory given the KGE
values ranging between 0.55 and 0.72 across all tested se-
tups (Fig. 5). This aforementioned model performance can
be classified as intermediate (Thiemig et al., 2013) to good
(Andersson et al., 2017; Sutanudjaja et al., 2018). When con-
sidering the best fit, the combination of step function inter-
polation and raw δ18OP values performed best. Addition-
ally, PLTV generally yielded slightly better KGE values than
PLTI or BETATI when grouping the setups with the same
spatiotemporal interpolation of δ18OP . Differences in the
mean KGEs were statistically insignificant (t test with p val-
ues> 0.05) only between setups a–g, c–i–k, and j–l (Table 1),
as the mean KGE values were nearly identical; this largely

agrees with the visual analysis (Fig. 5). Contrarily, the differ-
ences in the mean KGE values of the remaining setups were
statistically significant (p values< 0.05), indicating that the
a priori methodological choices (i.e. interpolation techniques
of δ18OP values and/or SAS parameterization) strongly im-
pact the overall results. Nonetheless, this does not mean that
we can clearly identify the most suitable setup, but there is a
need to carefully analyze the multiple potential choices with
respect to SAS parameterization and tracer data interpola-
tions as well as to evaluate the uncertainty range in modeled
predictions.

Ranges of the behavioral SAS parameters for the tested
setups are summarized in Table S1 in the Supplement. Pa-
rameters for the SAS functions of Q (i.e. kQ, kQ1, kQ2, α,
and β) were different across the setups, although they were
generally relatively narrow and well identified. However, the
behavioral parameters were better constrained when using
the step function interpolation, as their 95 % CI was, on av-
erage, 34 % narrower than that provided by the sine inter-
polation, across all the SAS parameterizations. The param-
eters kQ1 and α were also better identified than kQ2 and β,
as their 95 % CI was, on average, 56 % narrower, across all
tested setups. Conversely, there was no clear difference in the
parameter ranges when using kriged or raw δ18OP values.
The evapotranspiration parameter (i.e. kET) was poorly iden-
tified in all setups, as any value in the search range provided
equally good results. The initial storage (i.e. S0) was only
partially constrained, as any value between 335 and 2895 mm
was considered acceptable.

4.2 Simulated transit times and model uncertainty

Figure 6 illustrates the 95 % CI of the behavioral solutions for
the predicted median transit time (TT50). The results show
that the model simulated largely different ranges of TT50
based on the tested setups. When using PLTI and BETATI
(Fig. 6a, c, d, f, g, i, j, l), the 95 % CI was relatively stable
with smaller fluctuations throughout the simulation period
compared with PLTV (Fig. 6b, e, h, k). However, minor dif-
ferences emerged across the simulated TT50 as a result of the
distinct interpolation techniques used for δ18OP . The 95 %
CI of TT50 was, on average, 37 % larger, across all tested se-

Hydrol. Earth Syst. Sci., 27, 2989–3004, 2023 https://doi.org/10.5194/hess-27-2989-2023

Study 1

61



A. Borriero et al.: Uncertainty in water transit time estimation with SAS functions 2995

Figure 4. Predicted δ18O values in streamflow. The dark blue filled circles represent the observed data, and the dashed light blue lines and
shaded areas represent the ensemble mean of all possible solutions and their range according to the 95 % CI, respectively.

Figure 5. Box plots of model performance ranges in behavioral solutions. The letters on the x axis refer to the model setup type according
to Table 1. Box plots filled with the same colors represent model setups characterized by the same interpolation scheme in space and time.
On each box, the central red line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively, namely the interquartile range (IQR). The whiskers extend to the most extreme data points not considered outliers, which are
the 25th percentile− 1.5× IQR and the 75th percentile+ 1.5× IQR, respectively. The outliers are plotted individually using the red “+”
markers.

tups, when using raw δ18OP (Fig. 6d–f and j–l) rather than
kriged δ18OP (Fig. 6a–c and g–i). This was especially visible
when the step function was used (Fig. 6a–f). Moreover, the
sine interpolation generated a 95 % CI of TT50 that was, on
average, 62 % narrower across all tested setups (Fig. 6g–l)
with respect to the step function (Fig. 6a–f). These differ-
ences were more evident for high-flow conditions where the
95 % CI of TT50 showed a significant reduction. In addition,
the behavioral solutions obtained with the sine interpolation
(Fig. 6g–l) were more skewed towards shorter mean TT50
values, across all tested setups, than those of the step func-
tion (Fig. 6a–f).

Behavioral solutions obtained with PLTV revealed a simi-
lar pattern regardless of the interpolation employed (Fig. 6b,
e, h, k). Nonetheless, there was a noticeable difference in the
95 % CI of TT50 under distinct flow regimes. During low

flows and dry periods (i.e. summer and autumn), the time
series of predicted TT50 showed large uncertainties rang-
ing at most between 259 and 1009 d across the different
setups (Fig. 6e). Conversely, during high flows (i.e. winter
and spring), the 95 % CI was much narrower and varied at
least between 126 and 154 d (Fig. 6h). The large 95 % CI
and the notable differences across the tested setups highlight
the sensitivity and, in turn, the uncertainty in the predicted
TT50 to the model parameterization, temporal interpolation
of input data, hydrologic conditions, and nonspatially inter-
polated δ18OP .

In general, the variability in the predicted TT50 was con-
trolled by the hydrological state of the system (Fig. 6). High-
discharge events reduced the TT50 values, whereas low-flow
periods were associated with a longer estimated TT50. This is
expected, as streamflow during high (low) flows is dominated
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Figure 6. Predicted TT50 of streamflow. The dashed light blue lines and shaded areas represent the ensemble mean of all possible solutions
and their range according to the 95 % CI, respectively.

by near-surface runoff (groundwater) with shallow (deep)
flow paths leading to a shorter (longer) TT50. Such differ-
ences were particularly visible with PLTV (Fig. 6b, e, h, k),
as the exponent kQ(t) shifts the water selection preference
over time as a function of the wet/dry conditions. This re-
sulted in the variability in TT50 being more pronounced than
that of PLTI and BETATI, whose SAS parameters for Q are
constant over time.

4.3 Catchment-scale water release

SAS functions provided valuable insights into the catchment-
scale water release dynamics. Figure 7 presents the behav-
ioral solutions releasing water of different ages and also
shows that the catchment generally experienced a stronger
affinity for releasing young water (i.e. kQ < 1, or α < 1 and
β > 1), rather than old water (i.e. kQ > 1, or α > 1 and
β < 1). These findings are in agreement with other studies
in the upper Selke catchment (Winter et al., 2020; Nguyen
et al., 2021). Nonetheless, there were differences in the wa-
ter release scheme when comparing various combinations of
SAS functions and spatiotemporal interpolation techniques
of isotopes. The use of PLTV resulted in a substantial num-
ber of solutions, approximately 50 % of all behavioral solu-
tions, suggesting a preference for both young and old water.
On the other hand, only a few solutions showed affinity for
old-water release, and this was more prominent when using
the sine interpolation, raw δ18OP values, and PLTI across all
tested setups.

5 Discussion

5.1 Uncertainty in TTD modeling

In this study, we characterized the TTD uncertainty arising
from some significant and critical aspects for the SAS model-
ing. These aspects are also the most directly linked to the data

interpolation and SAS parameterization that we explored in
this work. The uncertainty analysis was carried out across
the 12 tested setups corresponding to different combinations
of spatiotemporal data interpolation techniques and SAS pa-
rameterizations. Our results show that the uncertainty (i.e.
95 % CI) of the simulated TT50 (Fig. 6) was firmly dependent
on the choice of model setup, as the 95 % CI was primarily
sensitive to the type of SAS function, temporal interpolation,
and spatial representation of δ18OP .

Uncertainty in the simulated TT50 differed considerably
between time-invariant (i.e. PLTI and BETATI; Fig. 6a, c,
d, f, g, i, j, l) and time-variant (i.e. PLTV; Fig. 6b, e, h, k)
SAS functions; thus, a large sensitivity is associated with the
choice of the SAS parameterization. For example, PLTI and
BETATI explicitly assume constant water selection prefer-
ence over time, as these functions do not consider the tempo-
ral variability in the catchment wetness. As a consequence,
the resulting TT50 had a moderately stable 95 % CI with
smaller fluctuations compared with those of PLTV. On the
other hand, including an explicit time dependence in the
SAS function strongly affected the 95 % CI of TT50. No-
tably, PLTV produced a wider 95 % CI during low-flow con-
ditions, which can hinder the TTDs ability to provide robust
insights into flow and solute transport behaviors in the study
area during low-flow conditions. This highlights the need to
further constrain PLTV with additional data, which could in-
volve obtaining tracer data at a finer resolution or additional
information on the evapotranspiration and initial storage. In
addition, the exceptionally old flow components associated
with a very large 95 % CI of TT50 might be a distortion of
the actual TT50 values, which can usually be more reliably
estimated using radioactive tracers than with stable isotopes
(Visser et al., 2019). Hence, PLTV-based TT50 greater than
the observed period (828 d) should be interpreted carefully.
It is important to note that we discussed the fractional SAS
(fSAS) functions in this study, but another form of the SAS
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Figure 7. Percentage of behavioral solutions releasing water of different ages.

functions, such as the rank SAS (rSAS) functions, may have
different uncertainty. This is mainly due to the difference in
how the storage is considered: fSAS functions are expressed
as function of the normalized age-ranked storage, which is
equal to the cumulative residence time, whereas rSAS func-
tions depend on the age-ranked storage, which is the volume
of water in storage ranked from youngest to oldest (Harman,
2015).

Likewise, the high-frequency reconstruction of δ18OP
from monthly samples via interpolation created further un-
certainty. The sine interpolation effectively captured the
dominant features of the observed δ18OP , such as seasonal-
ity. Consequently, sine interpolation successfully reproduced
the seasonal trend in in-stream δ18O, although simulations
overestimated the measurements (Fig. 4g–l). On the other
hand, sine interpolation poorly reproduced rainfall isotopes
during short-term flashy events and missed detailed char-
acteristics of the tracer dataset by smoothing the variabil-
ity in the observed δ18OP (Fig. 3). As a result, high values
of δ18OP are underestimated, whereas low values are over-
estimated. It is critical to recognize these limitations when
interpreting modeling results, as uncertainty in the simu-
lated δ18OP may conceal a more pronounced hydrological
response of the system (Dunn et al., 2008; Birkel et al., 2010;
Hrachowitz et al., 2011). Contrarily, step function interpola-
tion preserved the maxima in the monthly observed δ18OP
values by capturing their variation correctly (Fig. 3). Sim-
ulations showed a better fit with measured in-stream δ18O
(Fig. 4a–f) and higher model performance (Fig. 5). However,
combining step function with raw δ18OP resulted in larger
uncertainty in the simulated TT50 (Fig. 6d–f). This reflects
the need for a comprehensive exploration of the uncertainty
range, rather than relying solely on the goodness of fit. Over-
all, the choice between step function and sine interpolation
largely affected the reconstructed input data (Fig. 3), leading
to significant differences in the simulated TT50 and associ-
ated uncertainty. It is important to note that alternative meth-
ods, such as generalized additive models (GAMs; Buzacott
et al., 2020), offer other options for interpolating tracer data.
We conducted further tests with the SAS model using a GAM
to reconstruct both kriged and raw δ18OP using smoothing
functions; this provides a more sophisticated approach than
the intuitive methods used in this study. However, the results,
available in the Supplement, show that while a GAM pro-

vided more detailed reconstructed input tracer data (Fig. S1),
it did not significantly alter the SAS-based results (Figs. S2,
S3) or yield any new insights or conclusions about uncer-
tainty with respect to using step function and sine interpo-
lation. Therefore, we conclude that, while highly resolved
input data may seem appealing, they do not necessarily lead
to substantial benefits for the SAS-based output, supposedly
due to the conceptual simplifications in the SAS model.

The spatial representation of δ18OP values had limited im-
pact on the overall pattern of simulated TT50, as the time se-
ries were comparable with both kriged (Fig. 6a–c and g–i)
and raw (Fig. 6d–f and j–l) δ18OP . Nonetheless, the spatial
interpolation of δ18OP from different locations resulted in a
reduction in the uncertainty in the TT50, which was partic-
ularly evident with the step function (Fig. 6a–f). This dif-
ference may be attributed to the fact that the upper Selke is a
large (mesoscale) catchment with a substantial gradient in el-
evation, and, as a consequence, measurement for δ18OP from
only one location may be generally overly simplistic. This
finding highlights the importance of considering not only the
model performance (Fig. 5; raw values with a step function
interpolation produced higher KGE values) but also the un-
certainty range in predicted TT50.

Finally, we found that the uncertainty was larger under dry
conditions when lower flow and longer TT50 were observed.
This was especially visible when using the time-variant SAS
function (Fig. 6b, e, h, k). It might be due to the fact that,
under wet conditions, there is a high level of hydrologic con-
nectivity within the catchment (Ambroise, 2004; Blume and
van Meerveld, 2015; Hrachowitz et al., 2016), which results
in nearly all flow paths being active and contributing to the
streamflow. This, ultimately, may make TT50 values easier
to constrain. Conversely, under dry conditions, when usu-
ally only longer flow paths carrying older water are active
(Soulsby and Tetzlaff, 2008; Jasechko et al., 2017), water
partially flows through a drier soil zone where flow is more
erratic (i.e. flow directions and patterns can vary widely) as
the conductivity is controlled by soil moisture. As a result,
wet areas can be patchy and water flows preferentially at
certain locations only, as opposed to spatially uniform flow
through the soil matrix; this might make it more challeng-
ing to constrain older water ages. Similarly, Benettin et al.
(2017) found higher uncertainty in the simulated SAS-based
median water ages during drier periods, potentially due to
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higher uncertainty in the total storage. Moreover, non-SAS
function studies have observed major uncertainties and devi-
ations from observations in lumped modeled results during
low-flow conditions (Kumar et al., 2010). This was primarily
due to the lack of spatial variability in the catchment charac-
teristics in lumped models, which is a critical factor control-
ling low-flow regimes in rivers.

The dissimilarities in the simulated TT50 across the tested
setups underline the importance of accounting for uncer-
tainty in model-based TTDs. The uncertainty analysis with
SUFI-2 performed in this study was essential to best describe
the parameter identifiability and bounds of the behavioral
solutions of each output variable. Furthermore, our results
highlight the importance of gaining tracer datasets of good
quality (i.e. tracer data with a finer temporal resolution), con-
sidering the spatial variability in the isotopic composition in
precipitation, and, possibly, employing a model parameteri-
zation that best describes the catchment-specific storage and
release dynamics. The last point can be defined according to
a precise conceptual knowledge of the catchment’s function-
ing and information from previous studies in similar catch-
ments.

5.2 TTD modeling: advantages and limitations

Our results provide visually plausible seasonal fluctuations in
the predicted δ18OQ samples (Fig. 4) and satisfactory KGE
values (Fig. 5), despite the uncertainty arising from model
inputs, structure, and parameters. The good match with ob-
servations provides confidence in the simulated TT50 for the
upper Selke catchment. The magnitude of the uncertainty re-
sulting from different setups cannot be generalized, but the
overall approach for uncertainty assessment presented here
could be extended to other areas and TTD studies. However,
we recognize some limitations and indicate below possible
reasons and, in turn, improvements that future work could
achieve.

First, the limited length of the δ18O time series might not
describe the system accurately; hence, implementing longer
time series could improve the parameter identifiability and
provide a more accurate estimation of the TTDs. Second,
this study relied on stable water isotopes, which might un-
derestimate the tails of the TTDs (Stewart et al., 2010; Seeger
and Weiler, 2014), although recent works have contested this
(Wang et al., 2022). Possible advancements could be reached
by using decaying tracers varying over a longer timescale
than stable water isotopes (e.g. tritium; Stewart et al., 2012;
Morgenstern et al., 2015) and imparting more information
on old water. Next, future work should retrieve more infor-
mation on the evapotranspiration ET and initial storage S0,
whose parameters were poorly identified. However, this issue
is common in transport studies that rely on measurements of
in-stream stable water isotopes (Benettin et al., 2017; Buza-
cott et al., 2020). As a way forward, information on the ET
isotopic compositions might help better constrain ET param-

eters and assess their affinity for young/old water. Regard-
ing constraining the range of S0, further information can
be gained from geophysical surveys in the study areas or
groundwater modeling as well as by using decaying isotopes
(Visser et al., 2019).

5.3 Implications of TTD uncertainties

This study characterized the uncertainty in TTDs, which
summarize the catchment’s hydrologic transport behavior
and, therefore, comprise decisive information for water man-
agers. The value of TT50 has relevant implications for both
water quantity and quality, as does its uncertainty. The larger
the 95 % CI in the simulated TT50, the greater the difference
in the TT50 values, which, ultimately, implies distinct hydro-
logical processes, water availability, groundwater recharge,
and solute export dynamics (McDonnel et al., 2010).

For example, knowing the TTD and its uncertainty may
be crucial for characterizing the catchment’s response to cli-
matic change (Wilusz et al., 2017). Considering the increas-
ing severity of droughts in the past decades (Dai, 2013), a
catchment with a shorter TT50 and a dominant release of
young water might be more affected by droughts than a
catchment with a longer TT50, which means that its stream is
fed by relatively old water sources. Therefore, a short TT50
reveals a low drought resilience of the catchment and lim-
ited water availability, which could limit streamflow genera-
tion processes and change the in-stream water quality status
during drought periods (Winter et al., 2023). Likewise, TTD
uncertainty may affect the understanding of the water in-
filtration rate, hydrological processes, and aquifer recharge,
as a shorter TT50 suggests that water is quickly routed to
the catchment outlet rather than infiltrating deeply into the
groundwater. Finally, TTD uncertainty can have an impact
on the quantification of the modern groundwater age, i.e.
groundwater younger than 50 years (Bethke and Johnson,
2008). According to Jasechko (2019), the correct identifica-
tion of modern groundwater abundance and distribution can
help determine its renewal (Le Gal La Salle et al., 2001;
Huang et al., 2017), groundwater wells and depths most
likely to contain contaminants (Visser et al., 2013; Opazo
et al., 2016), and the part of the aquifer flushed more rapidly.

Uncertainty in TTDs also impacts on assessing the fate
of dissolved solutes, such as nitrates (X. Yang et al., 2018;
Nguyen et al., 2021, 2022; Lutz et al., 2022), pesticides
(Holvoet et al., 2007; Lutz et al., 2017), and chlorides (Kirch-
ner et al., 2000; Benettin et al., 2013). These solutes con-
stitute a crucial source of diffuse water pollution in agricul-
tural areas (Jiang et al., 2014; Kumar et al., 2020), as they
are spread on the soil in large quantities, especially during
the growing season. The exposure time of solutes with the
soil matrix has strong consequences for biogeochemical re-
actions, such as denitrification in the case of nitrates (Kolbe
et al., 2019; Kumar et al., 2020). A short TT50 suggests
that water can be rapidly conveyed to the stream network
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(Kirchner et al., 2001), with limited time for denitrification.
This explains the elevated in-stream concentration and short-
term impact of nitrate export compared with that of a longer
TT50, which is typically associated with old-water release
and a low nitrate concentration (Nguyen et al., 2021). Sim-
ilarly, pesticide transport is highly affected by the TTD un-
certainty, as a long TT50 suggests little pesticide degradation
due to decreased microbial activity along deeper flow paths
(Rodríguez-Cruz et al., 2006). In other cases, a shorter TT50
may limit the time for degradation, causing a peak in the
in-stream concentration (Leu et al., 2004). Overall, a longer
TT50 can delay or buffer the catchment’s reactive solute re-
sponse at the outlet (Dupas et al., 2016; Van Meter et al.,
2017). This creates a long-term effect of hydrological lega-
cies and a continuous problem with diffuse pollution of ni-
trates (Ehrhardt et al., 2019; Winter et al., 2020) and pes-
ticides (Lutz et al., 2013), which can persist in the catch-
ment for several years. Finally, TTD uncertainties also play
an important role in chloride transport, although chlorides
are commonly known to be conservative (Svensson et al.,
2012). A short TT50 may indicate rapid chloride mobiliza-
tion, whereas a long TT50 implies chloride persistence in
groundwater; therefore, chloride accumulates and is released
at lower rates, with impacts on the ecosystem functions, veg-
etation uptake, and metabolism (Xu et al., 1999).

Understanding the uncertainty in TTDs is crucial for the
aforementioned implications. While previous studies have
used only a specific SAS function and/or specific tracer data
interpolation technique in time and space, here we show that
there could be a wide range of different results in terms of
water ages, model performance, and parameter uncertainty.
This is due to the specific choice regarding SAS parameter-
ization and tracer data interpolation. With this, we want to
convey that uncertainty is omnipresent in TTD-based mod-
els, and we need to recognize it, especially when dealing with
sparse tracer data and multiple choices for model parameter-
ization. Therefore, we want to encourage future studies to
explore these uncertainties in other catchments and different
geophysical settings, with the final aim to investigate whether
these uncertainties may affect the conclusions of water quan-
tity and quality studies for management purposes.

6 Conclusions

This study explored the uncertainty in TTDs of streamflow,
resulting from 12 model setups obtained from different SAS
parameterizations (i.e. PLTI, PLTV, and BETATI), and re-
construction of the precipitation isotopic signature in time
and space via interpolation (step function vs. sine fit and raw
vs. kriged values).

We found satisfactory KGE values, whose differences
across the tested setups were statistically significant, mean-
ing that the choice of the setup matters. As a consequence,
distinct setups led to considerably different simulated TT50

values. The choice between using time-variant or time-
invariant SAS functions was crucial, as the time-invariant
functions generated moderate fluctuations in the 95 % CI
of the estimated TT50 because of the constant water se-
lection preference over time. On the other hand, the time-
variant SAS function captured the dynamics of the catch-
ment wetness, resulting in more pronounced fluctuations in
TT50. However, the time-variant SAS function also produced
a larger 95 % CI in TT50, notably during drier periods, which
might indicate the need to constrain the function with ad-
ditional data (e.g. finer tracer data resolution and/or infor-
mation on evapotranspiration and storage). Significant dif-
ferences in TT50 were observed depending on the employed
temporal interpolations. Results from the sine interpolation
produced a smaller uncertainty in TT50, with the time series
skewed towards smaller values. However, such results must
be interpreted carefully, as the sine interpolation poorly re-
produced flashy events in precipitation, thus indicating that
some more dynamic transport processes were not fully con-
sidered. Conversely, the step function interpolation resulted
in a larger uncertainty in the TT50, but it was able to better
reproduce the measured δ18OP data by capturing the peak
values, as opposed to the sine interpolation. Dry conditions
were another reason for uncertainty, as indicated by the high
variance in the simulated TT50 values, which is potentially
attributed to the water preferentially moving at certain loca-
tions, making wet areas patchy, so it may be more challeng-
ing to accurately constrain older water ages. Finally, there
was comparable pattern in the modeled results when using
kriged vs. raw isotopes, but the kriged values yielded an un-
certainty reduction in TT50. This highlights the potential ad-
vantage of spatially interpolated values over a single mea-
surement representative of the entire area, particularly in a
mesoscale catchment that varies with respect to elevation.

These findings provide new insights into TTD uncertainty
when high-frequency tracer data are missing and the SAS
framework is used. Regardless of the degree of efficiency or
uncertainty, the decision on which setup is more plausible
depends on the best conceptual knowledge of the catchment
functioning. We consider the presented approach to be po-
tentially applicable to other studies to enable a better char-
acterization of TTD uncertainty, improve TTD simulations
and, ultimately, inform water management. These aspects
are particularly crucial in view of increasingly extreme cli-
matic conditions and worsening water pollution under global
change.

Code and data availability. The version of the model used in
this study (v1.0) and its documentation are available at https:
//github.com/pbenettin/tran-SAS (last access: August 2020) and
https://doi.org/10.5281/zenodo.1203600 (Benettin and Bertuzzo,
2018b). The iteratively re-weighted least-squares (IRLS) method
used to obtain the modeled daily kriged and raw isotope
(δ18O) in precipitation information with the sine interpolation
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is presented at https://doi.org/10.5194/hess-22-3841-2018 (von
Freyberg et al., 2018). The hydroclimatic time series, δ18O
data, and interpolated δ18O time series can be accessed at
https://doi.org/10.5281/zenodo.8121108 (Borriero, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-27-2989-2023-supplement.
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Table S1. 95% confidence interval of the behavioral SAS parameter ranges for each tested setup.

Interpolation SAS parameters kQ [-] kQ1 or α [-] kQ2 or β [-] kET [-] S0 [mm]

step function
kriged δ18OP

PLTI 0.42 - 1.00 - - 0.34 - 1.93 590 - 2875
PLTV - 0.31 - 0.86 0.56 - 1.80 0.39 - 1.94 575 - 2754
BETATI - 0.49 - 1.00 0.26 - 1.98 0.35 - 1.95 783 - 2847

step function
raw δ18OP

PLTI 0.50 - 1.01 - - 0.18 - 1.92 600 - 2894
PLTV - 0.40 - 0.95 0.53 - 1.8 0.20 - 1.95 618 - 2875
BETATI - 0.55 - 0.99 1.01 - 1.97 0.20 - 1.93 788 - 2875

sine function
kriged δ18OP

PLTI 0.36 - 1.56 - - 0.18 - 1.93 335 - 1688
PLTV - 0.19 - 1.02 0.62 - 1.96 0.19 - 1.95 335 - 1441
BETATI - 0.41 - 1.06 0.84 - 1.99 0.24 - 1.96 411 - 2362

sine function
raw δ18OP

PLTI 0.49 - 1.83 - - 0.21 - 1.96 335 - 1087
PLTV - 0.24 - 1.47 0.81 - 1.97 0.22 - 1.94 353 - 1110
BETATI - 0.51 - 1.68 0.25 - 1.98 0.22 - 1.95 347 - 1781

Figure S1. Measured (dots) and predicted (line) δ18OP via GAM with kriged (pink) and raw (yellow) data.
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Figure S2. Predicted δ18O values in streamflow. The dark blue filled circles represent the observed data, and the dashed light blue lines and
shaded areas represent the ensemble mean of all possible solutions and their range according to the 95% CI, respectively.

Figure S3. Predicted TT50 of streamflow. The dashed light blue lines and shaded areas represent the ensemble mean of all possible solutions
and their range according to the 95% CI, respectively.
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A B S T R A C T

Transit time distributions (TTDs) of streamflow are informative descriptors of catchment hydrological func-
tioning and solute transport mechanisms. Conventional methods for estimating TTDs generally require model
calibration against extensive tracer data time series, which are often limited to well-studied experimental
catchments. We challenge this limitation and propose an alternative approach that uses the young water
fraction (Fyw

obs), an increasingly used water age metric which represents the proportion of streamflow with a
transit time younger than 2–3 months, and that can be robustly estimated with sparsely measured tracer data.
To this end, we conducted a proof of concept study by modeling TTDs using StorAge Selection (SAS) functions
with oxygen isotopes (𝛿18O) measurements for 23 diverse catchments in Germany. In a Monte-Carlo approach,
we computed the (averaged) marginal TTDs of a prior parameter distribution and derived a model-based
Fyw (Fyw

sim). We compared Fyw
sim with Fyw

obs, obtained from 𝛿18O measurements, and constrained the prior
SAS parameters distribution. Subsequently, we derived a posterior distribution of parameters and resulting
model simulations. Our findings showed that using Fyw

obs to constrain the model effectively reduced parameter
equifinality and simulation uncertainty. However, the value of Fyw

obs on reducing model uncertainty varied
across sites, with larger values (Fyw

obs≥0.10) leading to simulations with a narrower uncertainty band and
higher model efficiency, whilst smaller values (Fyw

obs≤0.05) had limited influence on reducing model output
uncertainty. We discussed the potential and limitations of combining SAS functions with Fyw

obs, and considered
broader implications of this approach for enhancing our understanding of catchment functioning and water
quality status.

1. Introduction

The streamflow water age, commonly referred to as water transit
time (TT), describes the time elapsed between the entry of a water par-
cel into a catchment and its exit via outflows (i.e. evapotranspiration or
streamflow). As there are multiple flowpaths in catchments with differ-
ent characteristics, the water transit time distribution (TTD) is used to
describe the entirety of water TTs in the outflows (Botter et al., 2010).
The TTD provides valuable insights into a catchment’s hydrological
behavior (Rinaldo and Marani, 1987), including water sources, flow-
path characteristics, and water mixing in streamflow (Kirchner et al.,
2000; McGuire et al., 2005; McGuire and McDonnel, 2006; Berghuijs
and Kirchner, 2017) across different environments (Botter et al., 2022).
Understanding these aspects is relevant for many purposes, such as
water resources management and protection, water supply (Seager

∗ Corresponding author.
E-mail address: arianna.borriero@ufz.de (A. Borriero).

et al., 2007; Berghuijs et al., 2014), water quality status (Benettin et al.,
2015a), and vulnerability assessment (Kumar et al., 2020).

As TTDs are not directly measurable, they have been simulated
with models based on non-stationary assumptions, resulting in time-
variant TTDs (Benettin et al., 2013; Engdahl et al., 2016; Kumar
et al., 2020; Heidbüchel et al., 2020). The time-variant nature of
TTDs is due to the variability of the meteorological forcing (Botter
et al., 2010; Heidbüchel et al., 2012; Harman, 2015), and the ac-
tivation/deactivation of flowpaths under different hydrological con-
ditions (Ambroise, 2004; Heidbüchel et al., 2013). In recent years,
StorAge Selection (SAS) functions have emerged as a novel way to
represent time-variant TTDs (Botter et al., 2011; van der Velde et al.,
2012; Rinaldo et al., 2015), as they describe the relationship between

https://doi.org/10.1016/j.jhydrol.2024.132238
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the water ages distribution in storage and outflows (Harman, 2019).
SAS functions describe the evolution of water balance depending on
water inputs, outputs and aging within the catchment (Benettin et al.,
2022), enabling the exploration of various water release patterns. Due
to these advantages, SAS functions have been implemented in many
water quantity and quality studies across different settings (Lutz et al.,
2017; Wilusz et al., 2020; Zhang et al., 2020; Nguyen et al., 2022; Li
et al., 2024).

SAS functions can be seen as catchment functioning properties
describing how water within the catchment contributes to stream-
flow or evapotranspiration fluxes, thus determining the preference for
young or old water-age selection in the outflows. SAS functions rely
on intrinsic parameters and connecting them to catchment-scale pro-
cesses is crucial. Because the values of these parameters are unknown,
their calibration is necessary. Current approaches involve calibrat-
ing SAS parameters to the time series of tracer data, such as stable
water isotopes, which provide valuable insights on water transport
and storage (Jasechko, 2019). Calibration against stable water iso-
topes allows the link of the SAS parameters with the catchment-scale
processes which, ultimately, control hydrological and solute export
dynamics (Kaandorp et al., 2018; Smith et al., 2018; Rodriguez and
Klaus, 2019; Lapides et al., 2022; Sprenger et al., 2022).

In data-rich experimental catchments, stable water isotopes in pre-
cipitation serve as model input data. They show variability at both
seasonal and event scales, which can be more or less pronounced de-
pending on climate conditions, geographical location, and evaporation
and condensation processes. Instead, instream stable water isotopes
are used to evaluate model simulations. They are also characterized
by seasonal variability which is, however, more damped and phase-
shifted compared to that of stable water isotopes in precipitation. The
more pronounced the seasonal variation in instream isotopes is, the
younger the water being discharged, whereas the more damped the
seasonal variation in instream isotopes is, the older the water being
released. Such contrast in variability between stable water isotopes in
precipitation and streamflow allows us to distinguish, via SAS func-
tions, stream water from precipitation events that have occurred over
different timescales.

Recent research has demonstrated the possibility of deriving metrics
for TTDs directly from tracer data without the need to calibrate models.
Relevant examples are the mean water transit time (MTT; i.e. the aver-
age time for water to leave the catchment) and the young water fraction
(Fyw; Kirchner (2016a)). Fyw has been shown to be less susceptible to
aggregation bias caused by the heterogeneity and nonstationarity of
real-world catchments, unlike MTT (Kirchner, 2016a,b). Fyw represents
the proportion of streamflow with a transit time younger than approx-
imately 2–3 months (Kirchner, 2016a), and it has been increasingly
reported as a useful proxy for fast hydrological and solute transport
dynamics (Benettin et al., 2017a). Fyw is commonly derived from the
ratio of the seasonal tracer amplitudes in precipitation and streamflow,
and can be readily estimated from sparsely sampled tracers spanning
at least 2–3 years (Benettin et al., 2022). Given its advantages, Fyw has
been widely applied in several studies to quantify water age contri-
bution to runoff and perform catchments inter-comparison (Jasechko
et al., 2016; Song et al., 2017; Lutz et al., 2018; von Freyberg et al.,
2018; Gentile et al., 2023).

The global availability of Fyw data was significantly enhanced by the
study of Jasechko et al. (2016), who calculated Fyw in 254 catchments
worldwide using 𝛿18O values. Their findings revealed a correlation
between Fyw and topographic gradient, thus providing valuable insights
for Fyw across different regions and climates. In our view, such an
analysis can offer potential for regionalizing Fyw values, so that corre-
sponding estimates can be possibly derived for other (ungauged) areas.
This is similar to 𝛿18O precipitation data whose values can be derived
through spatial interpolation methods using 𝛿18O measurements from
nearby monitoring stations (Bowen and Revenaugh, 2003). In addition,

with the advent of large datasets such as Allen et al. (2019), it is pos-
sible to estimate Fyw for catchments lacking local tracer measurements
in precipitation. This knowledge can potentially help address lack of
tracer data in areas with limited monitoring (Tetzlaff et al., 2018),
since long-term, high-frequency 𝛿18O data are often restricted to well-
equipped experimental catchments (von Freyberg et al., 2022), due to
cost and logistical constraints.

In this study, we hypothesize that Fyw estimates, derived from
fitting seasonal isotopic cycles, can contain useful information to con-
strain the predictions of a SAS-based transit time model, especially
in catchments where detailed information of instream 𝛿18O data may
not be available. This work serves as a ‘‘proof of concept’’ study for
exploring the potential and effectiveness of incorporating Fyw – as an
abstract metric that robustly encapsulates the input and output isotopic
relationship – into a SAS-based transit time model. Along with utilizing
low-frequency time series of instream 𝛿18O data for estimating Fyw, we
used them for cross-validation of model results. To this end, we applied
a SAS-based transit time model to multiple catchments within the Bode
River Basin, Germany, and employed estimates of Fyw to constrain a
prior SAS parameters distribution. With this approach, we derived a
posterior distribution of SAS parameters and generated posterior model
simulations, such as for the TTDs. We discussed the implications of
employing Fyw as a constraint for SAS-based transit time models, by
exploring the trend in the reduction from the prior to the posterior SAS
parameters and resulting model simulations. We highlighted potential
benefits and associated challenges of the use of Fyw in SAS-based
transit time models, and made broader considerations for enhancing
our understanding of catchments functioning and water quality status.

2. Materials

2.1. Study site

We conducted our analysis in the Bode River Basin and 22 sub-
catchments (Fig. 1), for a total of 23 catchments explored. These
catchments are characterized by diversity in size, land use, vegeta-
tion, soil, geology and climate (Lutz et al., 2018). The Bode River
Basin is a mesoscale catchment with an area of 3178 km2 at Staßfurt
gauging station. The catchment extends from the Harz Mountains to
the Central German Lowlands, and it is an intensively studied region
within the TERENO network (TERrestrial ENvironmental Observato-
ries; Wollschläger et al. (2017)). The size of the sub-catchments ranges
between 0.11 km2 and 200 km2, without considering the Bode catch-
ment at Staßfurt. The altitude varies from 14 to 1139 m above mean
sea level (m.a.s.l.), while the mean slope ranges from 2% to 19%. The
headwater region is largely dominated by coniferous and broadleaf
forest, while the lowland areas are mainly used for agriculture. The
soil consists of Cambisols, Luvisols, Leptosols and Gleysols in the Harz
Mountains, and Chernozems in the central lowland (Wollschläger et al.,
2017). The geology is characterized by Palaeozoic rocks in the moun-
tainous catchments (Fruhauf and Schwab, 2008), whereas the lowlands
are dominated by Mesozoic and late Palaeozoic rocks covered by
Tertiary and Quaternary sediments (Schuberth, 2008).

2.2. Data

We used hydroclimatic and tracer data for model simulations. Daily
precipitation (P) data for each catchment were interpolated data based
on the German Weather Service, while daily streamflow (Q) and evap-
otranspiration (ET ) time series were simulated with the mesoscale
Hydrologic Model (mHM; Samaniego et al. (2010), Kumar et al. (2013)
and Zink et al. (2017)) as continuous measurements were not available
for all the given catchment outlets and study period. Time series of Q
and ET were calibrated and evaluated across multiple stations in the
Bode region (see Mueller et al. (2016) for more details). Additionally,
the performance of the mHM model simulations for past measurements
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Fig. 1. Location of the Bode region in Germany (left); Bode region with its sub-
catchments (black polygons), river network (blue lines), streamwater (light blue dots)
and precipitation sampling locations (blue triangles), and elevation in meters above
sea level as colored map (right). Not all sub-catchments are visible on the map due to
their very small size (e.g. 0.2 km2).

has been largely assessed (Yang et al., 2018; Nguyen et al., 2021),
and the use of time series of simulated Q ensured the water balance
closure. Average annual P, ET and Q across the study sites are 795
(542–1311), 610 (494–802) and 202 (52–601) mm, respectively, with
annual P and Q being higher in the mountainous catchments compared
to the lowland areas.

Monthly 𝛿18O in precipitation and streamflow were based on
monthly grab samples mostly collected during non-event flow condi-
tions (Lutz et al., 2018). The 𝛿18O in precipitation were sampled with
24 precipitation collectors and spatially interpolated using kriging with
altitude as external drift. These data were then weighted with spatially
distributed monthly precipitation to obtain areal monthly instream
𝛿18O for each catchment. Further details underlying the processing of
the isotope dataset can be found in Lutz et al. (2018).

3. Methodology

This study explores the use of Fyw as a constraint in a SAS-based
transit time model. To this end, we first derived estimates of Fyw by
fitting seasonal isotopic cycles in precipitation and streamflow. Then,
using SAS functions, we simulated TTDs with prior (unconstrained)
model parameters. Next, from the simulated TTDs we derived the
averaged (marginal) distribution and calculated the simulated Fyw. We
compared the simulated Fyw with Fyw, obtained from fitting the 𝛿18O
measurements, and constrained the prior SAS parameters distribution
by deriving a posterior distribution of parameters and resulting model
simulations. Lastly, we assessed the effectiveness of Fyw in constraining
the SAS model by evaluating model performance in matching the
instream 𝛿18O values for cross-validation, and simulations uncertainty.
Below, we provide a detailed description of each step.

3.1. Model description

3.1.1. Young water fraction estimation
The values of young water fraction obtained by fitting seasonal

isotopic cycles in precipitation and streamflow (referred in this study
as Fyw

obs), were estimated for each catchment according to Kirchner
(2016a). The time series of 𝛿18O in precipitation (𝛿18O𝑃 ) and stream-
flow (𝛿18O𝑄) were fitted with sinusoids as follows:

𝛿18𝑂𝑃 (𝑡) = 𝑎𝑃 ⋅ 𝑐 𝑜𝑠(2 ⋅ 𝜋 ⋅ 𝑓 ⋅ 𝑡) + 𝑏𝑃 ⋅ 𝑠𝑖𝑛(2 ⋅ 𝜋 ⋅ 𝑓 ⋅ 𝑡) + 𝑘𝑃 (1)

𝛿18𝑂𝑄(𝑡) = 𝑎𝑄 ⋅ 𝑐 𝑜𝑠(2 ⋅ 𝜋 ⋅ 𝑓 ⋅ 𝑡) + 𝑏𝑄 ⋅ 𝑠𝑖𝑛(2 ⋅ 𝜋 ⋅ 𝑓 ⋅ 𝑡) + 𝑘𝑄 (2)

where a [-] and b [-] are the cosine and sine coefficients of the
sinusoids, f [T−1] is the cycle frequency, and k [M] is the vertical

displacement of the sinusoid. The values for a and b were determined
using the iteratively reweighted least squares regression, which is
commonly employed to limit the influence of outliers (Stockinger et al.,
2016; Lutz et al., 2018; von Freyberg et al., 2018). Values of 𝛿18O
in precipitation were volume-weighted by their corresponding precip-
itation rates to reduce the impact of small precipitation events (von
Freyberg et al., 2018). Finally, Fyw

obs was calculated as the ratio of the
amplitude of the seasonal cycles in the isotopes in precipitation (AP)
and streamflow (AQ):

𝐹 𝑜𝑏𝑠
𝑦𝑤 =

𝐴𝑄

𝐴𝑃
=

√
𝑎2𝑄 + 𝑏2𝑄√
𝑎2𝑃 + 𝑏2𝑃

. (3)

The uncertainty in the estimated Fyw
obs values was expressed as

standard error (SE), calculated from a Gaussian error propagation (von
Freyberg et al., 2018).

3.2. SAS-based transit time model

The transit time distribution (TTD) of streamflow was simulated
using the tran-SAS v1.0 model (Benettin and Bertuzzo, 2018) based
on StorAge Selection (SAS) functions. In this study, we conceptualized
each study catchment as a single storage S(t) [L3], for which the
governing water-age balance equations are as follows (Botter et al.,
2011):

𝑆(𝑡) = 𝑆0 + 𝑉 (𝑡) (4)

𝜕 𝑆𝑇 (𝑇 , 𝑡)
𝜕 𝑡 +

𝜕 𝑆𝑇 (𝑇 , 𝑡)
𝜕 𝑇 = 𝑃 (𝑡) −𝑄(𝑡)⋅𝛺𝑄(𝑆𝑇 (𝑇 , 𝑡), 𝑡) −𝐸 𝑇 (𝑡)⋅𝛺𝐸 𝑇 (𝑆𝑇 (𝑇 , 𝑡), 𝑡)

(5)

Initial condition: 𝑆T(𝑇 , 𝑡 = 0) = 𝑆T0
(𝑇 ) (6)

Boundary condition: 𝑆T(0, 𝑡) = 0 (7)

where S0 [L3] is the initial storage; V(t) [L3] are the storage variations
at each time step t obtained from the hydrological balance equation
dV(t)/dt = P(t) - ET(t) - Q(t); P(t) [L3/T], Q(t) [L3/T], and ET(t)
[L3/T] are precipitation, streamflow and evapotranspiration fluxes, re-
spectively; ST(T,t) [L3] is the age-ranked storage with an age T ; ST0(T)
[L3] is the initial age-ranked storage; and 𝛺Q(ST,t) [-] and 𝛺ET(ST,t)
[-] are the cumulative SAS functions for Q and ET, respectively.

By solving Eq. (5), the main output of our study was derived, namely
the TTD of streamflow [T−1] and the instream isotopic signature 𝛿18𝑂𝑄
[ML−3]. The TTD was calculated as:

𝑝𝑄(𝑇 , 𝑡) =
𝜕 𝛺𝑄(𝑆𝑇 , 𝑡)

𝜕 𝑆𝑇
⋅
𝜕 𝑆𝑇
𝜕 𝑇 . (8)

The instream isotopic signature 𝛿18𝑂𝑄 [ML−3] was obtained from:

𝛿18𝑂𝑄(𝑡) = ∫
+∞

0
𝛿18𝑂𝑆 (𝑇 , 𝑡) ⋅ 𝑝𝑄(𝑇 , 𝑡) ⋅ 𝑑 𝑇 (9)

where 𝛿18OS(T,t) [ML−3] is the isotopic signature of a water parcel in
storage. The same equations apply to the ET flux.

SAS functions for Q and ET are approximated using probability
distributions. In this work, the SAS function for Q and ET was approx-
imated by the time-invariant beta function (van der Velde et al., 2012;
Drever and Hrachowitz, 2017), and time-invariant power law (Queloz
et al., 2015; Benettin et al., 2017b; Asadollahi et al., 2020), respec-
tively. They are expressed below as probability density function in
terms of the normalized age-ranked storage PS(T,t) [-] (van der Velde
et al., 2012):

𝜔𝑄(𝑃𝑆 (𝑇 , 𝑡), 𝑡) =
(𝑃𝑆 (𝑇 , 𝑡))𝛼−1 ⋅ (1 − 𝑃𝑆 (𝑇 , 𝑡))𝛽−1

𝐵(𝛼 , 𝛽) (10)

𝜔𝐸 𝑇 (𝑃𝑆 (𝑇 , 𝑡), 𝑡) = 𝑘 ⋅ (𝑃𝑆 (𝑇 , 𝑡))𝑘−1 (11)
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Table 1
Summary of the model parameters and their initial ranges.

SAS parameter Symbol Unit Lower bound Upper bound

Q parameter 𝛼 [–] 0.1 5
Q parameter 𝛽 [–] 0.1 5
ET parameter k𝐸 𝑇 [–] 0.1 1
Initial storage S0 [mm] 1000 5000

where 𝐵(𝛼 , 𝛽) is the beta function with two shape parameters 𝛼 and 𝛽,
and k is the power-law parameter. Time-invariant SAS functions assume
that SAS parameters are not coupled with any catchment state variable
(e.g. catchment wetness index parameter).

Finally, the model-based Fyw (Fyw
sim) was simulated by time-

averaging the ensemble distribution of all TTDs previously obtained
from Eq. (8) (Benettin et al., 2022), after editing the SAS model code
with the following equation:

⟨𝑝𝑄(𝑇 )⟩ = 1
𝑡 ∫

𝑡

0
𝑝𝑄(𝑇 , 𝑡) ⋅ 𝑑 𝑡 (12)

Eq. (12) represents the so-called marginal TTD (Botter et al., 2010;
Heidbüchel et al., 2012), as it is analogous to the concept of marginal-
ization in statistics. The averaging in Eq. (12) was done using daily
flows as weights to obtain a flow-weighted age distribution. By com-
puting the marginal TTD, we compared the SAS model with the ob-
servational estimates of Fyw

obs (see Section 3.3.2 for more details).
Indeed, the link between Fyw

obs and TTD is challenged by the fact that
Fyw

obs is stationary (a single value) while the TTDs simulated with SAS
functions are time-variant (a series of values). Given that the marginal
TTD represents an ensemble of time-averaged TTDs, we translate the
time-variant TTDs towards steady-state conditions, hence aligning with
the stationary nature of Fyw

obs derived from measured isotopes.

3.3. Model setup

3.3.1. Prior model solution
We executed the SAS-based transit time model as a Monte-Carlo

experiment generating 10,000 uniform parameter sets with Latin Hy-
percube Sampling (McKay et al., 1979). This yielded a prior solution
(i.e. the solution before the application of a constraint) characterized
by prior parameters, whose values and search ranges are given in
Table 1. The prior parameters covered a wide range, chosen based
on other studies in the region (Nguyen et al., 2021, 2022) and else-
where (Benettin et al., 2017b), indicating a lack of prior knowledge
about the SAS parameters and catchment storage. Additionally, by
using a uniform prior parameter distribution, we avoided introducing
preferences, biases, or outliers into the parameters values.

The values of 𝛼 and 𝛽 determine the selection preference for stream-
flow imposed by the beta SAS function (Eq. (10)). In this work, a wide
chosen range of values in the prior SAS parameters allows both old and
young water to be selected; the beta SAS parameters either assume 𝛼 <1
and 𝛽≥1 (i.e. preferably young water), or 𝛼≥1 and 𝛽 <1 (i.e. preferably
old water). The power law SAS parameter k𝐸 𝑇 (Eq. (11)) assumes
k𝐸 𝑇≤1, considering that ET is likely to be sampled from shallow, root-
accessible soil layers where young water ages usually prevail (Buzacott
et al., 2020; Thaw et al., 2021). The initial storage (S0) is difficult to
estimate without knowing the catchment’s physical characteristics and
volume of older water (Benettin et al., 2017b; Benettin and Bertuzzo,
2018); hence, S0 was also calibrated within a prior range based on
similar studies in the same area (Nguyen et al., 2021, 2022) and
elsewhere (Benettin et al., 2017b).

3.3.2. Posterior model solution
To compare Fyw

obs with the SAS model results, we utilized the
marginal TTD (Eq. (12)). For each set of prior parameters, we derived
the corresponding prior Fyw

sim value from the prior marginal TTD.
This approach is based on the principle that Fyw can be generally
viewed as the cumulative marginal TTD evaluated at T = 𝜏𝑦𝑤 (Benettin
et al., 2022), where 𝜏𝑦𝑤 is the young water threshold in streamflow.
According to Kirchner (2016a), 𝜏𝑦𝑤 can be approximated based on the
shape parameter 𝛼 of the assumed gamma TTD:

𝜏𝑦𝑤 = 0.0949 + 0.1065 ⋅ 𝛼 − 0.0126 ⋅ 𝛼2 (13)

The typical range for 𝛼 varies between 𝛼 = [0.2–2] (Kirchner,
2016a), corresponding to 𝜏𝑦𝑤 = [42–94 days]. Consequently, we eval-
uated the cumulative marginal TTD over T = [42–94 days], to account
for the entire range associated with 𝜏𝑦𝑤. Then, we selected the posterior
solution (i.e. the solution after the application of a constraint) based
on the condition that the prior cumulative marginal TTD at T = [42–
94 days] matches the values within the range of Fyw

obs±SE. This
allowed us to derive a set of posterior parameters and output variables,
corresponding to the so-called posterior solution.

The main output variables included the instream 𝛿18O (Eq. (9)) and
backward median transit time (TT50; i.e. the time over which half of the
water that has entered the catchment via precipitation has left at the
catchment outlet). The TT50 time series are widely used in hydrological
studies (Kirchner, 2016a), and were extracted directly as the median
(i.e. 50% probability) of the cumulative TTDs (Eq. (8)) calculated for
each day of the study period (Kumar et al., 2020). We explored TT50
for the many advantages it offers. Unlike MTT, TT50 is less affected by
the poor identifiability of old water (Benettin et al., 2017b), typically
associated with long-tailed TTDs. Additionally, unlike TTD, which is a
distribution function, TT50 is an abstract measure (median value) of
that distribution, represented as a time series. This allows for a more
effective interpretation of the effects of changing hydrometeorological
conditions on TT50, thus providing insights that may not be so straight-
forward to visualize when examining a distribution. The individual
steps in this methodology are summarized in Fig. 2.

After defining a posterior solution, we assessed its uncertainty
(Beven and Binley, 1992) based on the 95% prediction uncertainty
(95PPU) calculated from the 2.5% and 97.5% confidence intervals
of the cumulative distribution in the time series of the output vari-
ables (Abbaspour et al., 2004). We quantified the difference between
the prior and posterior solution of model parameters and output vari-
ables in terms of the reduction percentage in the 95PPU.

Finally, in a ‘‘proof of concept’’ study, we explored the potential and
effectiveness of incorporating Fyw

obs estimates in a SAS-based transit
time model by using measured instream 𝛿18O data for cross-validation
of 𝛿18O simulations. To this aim, we evaluated the Kling–Gupta ef-
ficiency (KGE; Gupta et al. (2009)), which quantifies the difference
between the observed and simulated instream 𝛿18O before (i.e. prior so-
lution) and after (i.e. posterior solution) the calibration against Fyw

obs.
The analysis of prior KGE values aligns with the classical modeling
approach that directly optimizes SAS-based transit time models with
instream tracer observations. Overall, we used 28 observed data points
of instream 𝛿18O signatures to evaluate the KGE.

3.3.3. Data processing and initial conditions
Model simulations were run at daily time step. Since we obtained

monthly data for 𝛿18O in precipitation after kriging of the monthly
composite samples from Lutz et al. (2018), we disaggregated them to
daily scale using a step function. Therefore, the missing daily values
between two consecutive samples matched the value of the more recent
sample. To minimize the impact of model initialization, the model was
run with a warm-up period (June 1999–January 2013) consisting of
repeated input data of available records. This warm-up period was
followed by the actual simulation from February 2013 to May 2015.
Initial values of instream 𝛿18O were set equal to the mean instream
𝛿18O of each catchment throughout the study period.
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Fig. 2. Flowchart of the methodology conceptualization.

4. Results

In the following, we first present our results based on the analysis of
Fyw

obs derived from the sine-wave fitting approach (Section 4.1), and
simulated Fyw

sim as well as marginal TTDs derived from the SAS-based
transit time model (Section 4.2). Second, we explore the identifiability
of SAS parameters (Section 4.3). Third, we assess the model fit of
posterior simulations to individual 𝛿18O measurements, which serve as
cross-validation to demonstrate the effectiveness of Fyw

obs as a model
constraint (Section 4.4). Finally, we evaluate the predictive uncertainty
in the TT50 time series (Section 4.5).

4.1. Young water fractions

The sample-based young water fractions (Fyw
obs), derived by fitting

the isotope cycles with sine-waves, are shown in Fig. 3; the correspond-
ing standard errors (SE) and the fitting of 𝛿18O values in precipitation
and streamflow with sine-waves are presented in the Supplement (Ta-
ble S1 and Fig. S1). The results exhibit a wide range of Fyw

obs across
the study sites, varying from 0.02 to 0.26 (mean of 0.12). This means
that 2%–26% of the streamflow is water that entered the catchments in
the past 2–3 months. Fyw

obs values vary across the study area based on
hydroclimatic conditions and land cover. Smaller values were found in
mountainous catchments having higher P, Q and forest cover fraction
(id 9, 14, 23 and 26 in Fig. 3), while larger values were located mostly
at lower altitudes (id 20, 79, 81 and 111 in Fig. 3). These values of
Fyw

obs are similar to those of Lutz et al. (2018), who examined Fyw
obs

at the same sites with a comparable approach (see Lutz et al. (2018)
for more details).

The sine-wave fitting of 𝛿18O values indicated a pronounced sea-
sonal amplitude in precipitation, with more negative (or positive)
values in winter (or summer). In contrast, the seasonal amplitude
of instream 𝛿18O data was more damped and the sine-waves were
phase-shifted. Larger values of Fyw

obs (e.g. id 20, 79, 81 and 111)
were associated with less damped amplitudes in the sine-waves. The
goodness of fit of the sine-wave for 𝛿18O values was assessed using
Pearson’s correlation coefficient, which ranged between 0.58 and 0.77
(mean of 0.66) for 𝛿18O in precipitation, and with 𝑝-value < 0.001
across all 23 catchments. Conversely, the fit of instream 𝛿18O values
was lower, with Pearson’s correlation coefficient ranging between 0 and
0.62 (mean of 0.36), and 𝑝-value < 0.001 in all 23 catchments.

4.2. Marginal transit time distributions

The model-based young water fraction (Fyw
sim), derived from the

cumulative marginal TTD of streamflow, was compared with Fyw
obs

to constrain the prior parameter distribution and obtain a posterior
solution for various output variables. To further support the idea that
stationary TTDs, like the gamma function, can represent the marginal
TTD, thereby making the comparison between the marginal TTD and
Fyw

obs more robust, we fit the marginal TTD with a gamma function.

Fig. 3. Fyw
obs values obtained from the sine-wave approach in 23 catchments (black

polygons) with their corresponding identification number, the river network (blue
lines), and elevation in meters above sea level (colored map). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Violin boxplot with Fyw
sim distribution for one example catchment obtained

before (i.e. prior; left, gray) and after (i.e. posterior; right, blue) applying Fyw
obs±SE as

a model constraint. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

We obtained mean values of 𝛼 = [0.28–0.78] in all study areas, thus in
the range of 𝛼 = [0.2–2] defined by Kirchner (2016a).

The prior Fyw
sim consists of 10,000 different values for each catch-

ment, with each value corresponding to a specific prior parameters set.
By constraining the prior Fyw

sim using Fyw
obs±SE, a narrower posterior

Fyw
sim was obtained at all sites. Fig. 4 displays the prior (gray) and

posterior (blue) Fyw
sim for one catchment; plots for all catchments are

available in the Supplement (Fig. S2). The reduction in the range of
Fyw

sim between prior and posterior solution was from 43% to 87%
across the 23 catchments. Notably, no significant correlation was ob-
served between the magnitude of reduction and factors such as land
use, land cover, size, elevation, area, and mean slope.

Constraining the model with Fyw
obs±SE yielded a posterior solution

for the cumulative marginal TTD. Fig. 5 illustrates the 95PPU of the
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Fig. 5. 95PPU of the marginal TTDs as a cumulative density function (CDF) obtained with the prior (gray) and posterior (blue) parameter sets for three representative catchments
categorized into good (a), moderate (b), and poor (c) clusters; the thick blue vertical area represents the range of T = [42–94 days], with the two blue asterisks indicating the
upper and lower limits defined by Fyw

obs±SE. The 𝑥-axis is shown in a logarithmic scale.

Fig. 6. Relation between the percentage reduction in the 95PPU of prior solution
(i.e. uncertainty reduction) and Fyw

obs, where each dot represents one catchment.

prior (gray) and posterior (blue) marginal TTD, expressed as a cumu-
lative density function (CDF), for three analyzed catchments; figures
for all the study sites are given in the Supplement (Fig. S3). It can be
seen that Fyw

obs did not uniformly constrained the prior marginal TTD
across the three catchments; instead, there is a relation between the
reduction in the 95PPU and the value of Fyw

obs, as shown in Fig. 6.
Overall, Fyw

obs±SE reduced the 95PPU of the prior marginal TTD from
46% to 92% (mean of 77%). The most substantial reduction (from 76%
to 92%) occurred when 0.10≤Fyw

obs≤0.26, whilst for Fyw
obs≤0.05 the

constraining effect was smaller (from 46% to 50%). Based on the value
of Fyw

obs and the constraining effect on the prior marginal TTD, the
23 catchments were grouped into three clusters: good, moderate and
poor. These clusters are those illustrated by the example catchments in
Fig. 5.

The good cluster includes 14 out of 23 sites with Fyw
obs ≥ 0.10

(Table S1). In this cluster, the 95PPU of posterior marginal TTDs was
well constrained (Fig. 6), and indicated preference for younger water
age release typically associated with a larger Fyw

obs (see example in
Fig. 5a). The moderate cluster consists of 5 out of 23 sites with 0.05 ≤
Fyw

obs ≤ 0.09 (Table S1). Despite the reduced number of simulations
in the posterior solution (Fig. 6), the posterior marginal TTDs showed
a relatively large 95PPU (see example in Fig. 5b). The poor cluster is
composed of the remaining 4 catchments with Fyw

obs ≤ 0.05 (Table
S1). The posterior solution for this cluster was only loosely constrained
(Fig. 6), resulting in widely spread posterior marginal TTDs (Fig. 5c),
and a substantial contribution of older water ages, typically related to
a small Fyw

obs (see example in Fig. 5c).

4.3. SAS model parameters

Fig. 7 compares the prior (black diagonal lines) and posterior (col-
ored lines) CDFs of the SAS parameters. Each colored line is the

posterior SAS parameter CDF for a given study catchment. The closer
the colored lines to the black lines, the less constrained the SAS
parameter is.

The SAS parameters for Q (𝛼 and 𝛽) were generally well identified
(Fig. 7a–d) as the use of Fyw

obs±SE reduced the parameter range by
65% and 33% for 𝛼 and 𝛽 respectively, across all catchments. The
posterior 𝛼 and 𝛽 give information about the water storage dynamics
of the study sites: most of the catchments (15 out of 23) had a majority
of posterior simulations indicating preference for young water release.
We found a significant positive (or negative) correlation (Pearson cor-
relation coefficient r = 0.78, 𝑝-value < 0.0001) between Fyw

obs and the
percentage of posterior solution with a greater affinity for younger (or
older) water ages, meaning that the larger (or smaller) Fyw

obs, the more
parameter sets suggest preference for younger (or older) water. These
results provide evidence in favor of Fyw

obs±SE for constraining model
parameters in the ‘‘right direction’’.

On the other hand, the parameter for ET (k𝐸 𝑇 ) and the initial
storage (S0) were poorly identified in all catchments, with a modest
average reduction between prior and posterior parameter range of only
5% and 7%, respectively (Fig. 7e–f). This indicates that the values of
Fyw

obs did not significantly constrain these model parameters, suggest-
ing the relative model insensitivity to changes in the ET flux and S0.
This highlights the need for additional data to better constrain these
parameters (see Section 5.2 for further discussion).

The simulations of instream 𝛿18O and TT50 time series explored in
this study were dependent on the posterior SAS parameters described
above. These simulations are classified and interpreted into the three
clusters – good, moderate, and poor – in the following sections.

4.4. Simulated instream isotopes

Fig. 8 illustrates the prior and posterior instream 𝛿18O for the
three catchments of the good (Fig. 8a), moderate (Fig. 8b), and poor
(Fig. 8c) cluster. Figures for all catchments are shown in the Supple-
ment (Fig. S4). The impact of Fyw

obs±SE on the reduction in the prior
95PPU of instream 𝛿18O varied across the clusters. By visually analyzing
Fig. 8, it is seen that in the good cluster (Fig. 8a), the posterior 95PPU
was notably reduced compared to the prior one, and successfully cap-
tured the seasonality in the measured 𝛿18O, with more negative values
in winter and less negative values in summer. However, the peaks of
the measured 𝛿18O were only partially captured. In the moderate cluster
(Fig. 8b), the posterior 95PPU of instream 𝛿18O were not appreciably
reduced compared to the prior 95PPU. In the poor cluster (Fig. 8c),
the posterior instream 𝛿18O exhibited a wide 95PPU, indicating that
smaller Fyw

obs values apparently resulted in a considerable uncertainty
and equifinality of the posterior solution.

Differences between the measured and simulated instream 𝛿18O
were evaluated with the Kling–Gupta efficiency (KGE) in a cross-
validation. Fig. 9 displays the reduction in KGE, represented as the
respective kernel density distributions, of the prior and posterior solu-
tion for the three representative catchments. Results for all catchments
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Fig. 7. CDFs of the SAS parameters; black diagonal lines are the CDFs of the prior SAS parameters, while colored lines are the catchment specific CDFs of the SAS posterior
parameters. SAS functions either assume values of 𝛼 < 1 and 𝛽 ≥ 1 (younger water release), or 𝛼 ≥ 1 and 𝛽 < 1 (older water release).

Fig. 8. 95PPU of instream 𝛿18O obtained with the prior (gray) and posterior (blue) parameter sets for three representative catchments categorized into good (a), moderate (b),
and poor (c) clusters; dark blue circles represent observed data, and the light blue dashed line represents the ensemble mean of all solutions. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

are shown in the Supplement (Fig. S5). The gray distributions represent
the initial 10,000 Monte-Carlo simulations, while the blue distributions
correspond to the posterior simulations after constraining with Fyw

obs.
The distributions highlight the range and density of model performance
from best (upper part of the distribution with values closer to 1) to
worst (lower part of the distribution with values closer to −∞).

Similar to the findings regarding the reduction in the 95PPU of the
marginal TTD and instream 𝛿18O in the three clusters, we observed
consistent behaviors in the KGE values within the same cluster clas-
sification. For example, applying Fyw

obs±SE improved the KGE values
in 19 out of 23 catchments (i.e. good and moderate cluster), yielding
a maximum posterior KGE ranging between 0.07 and 0.67 across all
study sites. The maximum median KGE at these 19 sites increased from
−0.04 to 0.52 after constraining the model with Fyw

obs±SE. On the
other hand, in 4 out of 23 study sites (i.e. poor cluster), the KGE values
diminished, resulting in a decreased maximum median KGE from −0.15
to −0.23 after using Fyw

obs±SE.
We found a significant positive correlation between Fyw

obs and the
median posterior KGE (Pearson correlation coefficient r = 0.74, 𝑝-value
< 0.0001), meaning that the larger Fyw

obs, the better the model perfor-
mances were (i.e. good cluster), whilst the smaller Fyw

obs, the worse
the model performances were (i.e. poor cluster). However, even in the
good cluster, fitting individual 𝛿18O measurements remained challeng-
ing, as the posterior solution captured the overall seasonality of the
measurements but missed some individual values. For example, when
examining catchment id 103 in Fig. S4, we observed simulations during
the second half of the study period that consistently underestimated
the measured data. It is important to acknowledge this uncertainty,
especially when dealing with low-frequency tracer data.

4.5. Median transit time

Fig. 10 shows the posterior simulated median transit times (TT50) of
streamflow representative of the good (Fig. 10a), moderate (Fig. 10b)
and poor (Fig. 10c) clusters. Figures for all catchments are illustrated
in the Supplement (Fig. S6). Figures comparing the TT50 time series be-
tween the prior and posterior solution are also given in the Supplement
(Fig. S7).

The simulated TT50 time series were relatively constant with mod-
erate temporal fluctuations as a function of Q (Fig. 10 and S6).
In the good cluster (Fig. 10a), the simulated TT50 time series were
skewed towards smaller values (e.g. lower bound of TT50 in Fig. 10a
ranges between 2.3 and 7.3 months), typically associated with a larger
Fyw

obs. The 95PPU of TT50 was relatively narrow (mean 95PPU of all
catchments in the good cluster is 3 years) compared to the moderate
and poor clusters. Conversely, in the moderate (Fig. 10b) and poor
(Fig. 10c) clusters, the TT50 values were comparably large (e.g. upper
bound of TT50 in Fig. 10c is up to 12.5 years), which reflects the
smaller Fyw

obs. These clusters exhibited a wider 95PPU (mean 95PPU
of all catchments in the moderate and poor cluster is 8 years) and
flatter TT50 time series compared to the good cluster. From these
results, we argue that the model simulated distinct ranges of 95PPU
depending on the specific Fyw

obs value. This is reflected in a significant
negative correlation (Pearson correlation coefficient r = 0.84, 𝑝-value
< 0.00001) between Fyw

obs and the mean 95PPU across the simulated
period for each site. The larger (or smaller) Fyw

obs, the narrower (or
wider) the 95PPU for TT50 and, in turn, the smaller (or greater) the
uncertainty in the model outputs were.
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Fig. 9. Violin boxplot with the distribution of KGE for instream 𝛿18O obtained with the prior (left, gray) and posterior (right, blue) parameter sets for three representative
catchments categorized into good (a), moderate (b), and poor (c) clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. 95PPU of TT50 in streamflow obtained with the posterior (light blue) parameter sets for three representative catchments categorized into good (a), moderate (b), and poor
(c) clusters; the light blue dashed line represents the ensemble mean of all solutions, and the dark blue area is the streamflow time series. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

5. Discussions

5.1. Young water fraction and water transit time in the Bode River Basin

This study explores the calibration of a SAS-based transit time
model to advance the understanding of water ages in the Bode River
Basin. Previous works have also explored water ages using tracer-
aided models and SAS functions (Benettin et al., 2015b; Wilusz et al.,
2017; Remondi et al., 2018; Kim and Harman, 2022), focusing on
modeling seasonal trends in instream isotope data over long time scales
(e.g. years). Like our study, these works aimed to understand the
dynamics of tracer transport and water movement across catchments
from inflow to outflow, thus revealing the pore water velocity repre-
sented by water transit time. This approach is in contrast with studies
on hydrograph separation, which primarily focused on the speed of
pressure pulses during streamflow events (e.g. hours) to understand
runoff generation from precipitation. However, unlike these studies
on transit time-based modeling, our approach uniquely applies Fyw

obs,
derived from fitting seasonal cycles of 𝛿18O, and SAS functions, with
the goal to gain meaningful insights into water age dynamics across
diverse catchments.

The values of Fyw
obs estimates, SAS parameters, 𝛿18O and TT50

time series serve as proxies for physical processes and water age
dynamics within the study areas. We found that catchments with
Fyw

obs≤0.05 were characterized by SAS parameters with greater affinity
for old water release (Fig. 7a–d), exhibited damped instream 𝛿18O
compared to precipitation (Fig. 8c, S1 and S4), and had a longer
TT50 up to 12.5 years (Fig. 10c and S6). This likely indicates the
presence of deep and long flowpaths within the catchments, releas-
ing water retained in the subsoil for more than a decade (Soulsby
and Tetzlaff, 2008; Hrachowitz et al., 2010; Jasechko et al., 2017).
The smallest Fyw

obs coupled with SAS parameters favoring old wa-
ter release, were mainly observed in the mountainous catchments
with high precipitation and streamflow rates. These findings align
with previous studies which employed Fyw

obs to explore water ages
contribution (Jasechko et al., 2016), and perform catchments inter-
comparison (Song et al., 2017; Lutz et al., 2018). However, this might

also contradict the fast water transmission observed in some mountain-
ous sites (Clow et al., 2018; Zhang et al., 2018), where larger Fyw

obs

values would be expected. Nonetheless, smaller Fyw
obs values and SAS

parameters indicating preference for old water release associated to
high-elevated catchments could be attributed to the highly permeable
soil of the Harz mountains. The permeability might enhance rapid ver-
tical water infiltration (Tetzlaff et al., 2009b), triggering the activation
of deep flowpaths (Jasechko et al., 2016). Through these flowpaths,
there can be a significant old water supply also during a precipitation
event (Botter et al., 2010), indicating a plug-flow regime, i.e. old water
export activated by precipitation that just entered the system (Kirchner,
2013), or slow catchment drainage with long-term memory of past
inputs (de Lavenne et al., 2022). From a water quality perspective,
this can result in a lagged solute export response (Dupas et al., 2016;
Van Meter et al., 2017).

On the other hand, we found that catchments with 0.10≤Fyw
obs

≤0.26 had SAS parameters revealing greater preference towards dis-
charging young water (Fig. 7a–d), and a shorter TT50 (Fig. 10a and S6).
This likely indicates the activation of fast flowpaths such as lateral flow
via macropores (Tromp-van Meerveld and McDonnell, 2006), which
can route water to the outlet more quickly (Berghuijs and Allen, 2019).
This implies a short-term responsiveness of the catchment associated
with a rapid transmission of solutes. The largest Fyw

obs values were
observed in the lower-altitude mountainous catchments, where there
can be rapid runoff via shallow flowpaths caused by wet conditions and
soil saturation (Lutz et al., 2018; Sprenger et al., 2019). Additionally,
larger Fyw

obs values were observed in the lowland areas where faster
runoff to the stream could be triggered by artificial drainage (Musolff
et al., 2015; Danesh-Yazdi et al., 2016; Lutz et al., 2018).

Exploring multiple heterogeneous catchments with different Fyw
obs

values using the SAS-based transit time model revealed highly different
water release behaviors. Some catchments predominantly discharged
younger water to the outlet, while others released water retained in
the subsurface for longer. This was elucidated by the SAS parame-
ters which enabled us to infer varying physical processes governing
catchment’s connectivity, influencing water quantity and quality dy-
namics. In the study sites, we found varying degrees of hydrological
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connectivity (Blume and van Meerveld, 2015), driven by the catch-
ment’s spatio-temporal hydro-meteorological forcing and arrangement
of contributing source area (Tetzlaff et al., 2007, 2009a; Kim et al.,
2016).

5.2. Challenges and recommendations for using the Young water fraction
in TTD modeling

The use of Fyw
obs in the SAS-based transit time model helped reduce

uncertainty in model parameters and simulations for catchments with
Fyw

obs≥0.10. Most study sites demonstrated improved model perfor-
mance, as indicated by higher posterior KGE values than the prior
ones (Fig. S5). The posterior KGEs were constrained to positive values
up to 0.67, indicative of good simulations (Sutanudjaja et al., 2018;
Knoben et al., 2019; Towner et al., 2019). These results provide fur-
ther evidence to support the validity of Fyw

obs as a model constraint.
In addition, we used a relatively wide range for the young water
threshold in streamflow 𝜏𝑦𝑤 = [42–94 days] in the marginal TTD anal-
ysis (see Section 3.3.2), as opposed to using a single value. Nonethe-
less, we recognize some limitations and indicate possible reasons and
recommendations for future work.

The poor cluster, characterized by small values of Fyw
obs and long

values of TT50, exhibited large 95PPU (Figs. S3, S4 and S6) and poor
model performance (Fig. S5). However, the prior solution of the poor
cluster also failed to accurately capture 𝛿18O measurements (see gray
95PPU in Fig. 8 and S4, and distribution in Fig. 9 and S5). This
may be attributed to the inherent difficulty of accurately representing
old water components, which are prominent in the catchments of the
poor cluster. The strong attenuation in instream tracer concentration
(Fig. 8) results in a uniform signal which makes it challenging to fit
with sine-waves (Fig. S1), hence to quantify old water ages (Benettin
et al., 2017b). The use of radioactive tracers (e.g. tritium; Michel et al.
(2015), Morgenstern et al. (2015) and Visser et al. (2019)) may be more
favorable to model TTDs over longer time scales (Duvert et al., 2016;
Rodriguez et al., 2021).

Similar to the poor cluster, the moderate cluster showed relatively
large 95PPUs (Figs. S3, S4 and S6), despite the reduced number of
simulations in the posterior solution (Fig. 6). This highlights how un-
certainty also likely exists due to parameter combinations influencing
output variables (Beven and Freer, 2001). Nevertheless, it is important
to note that in most catchments (i.e. 19 out of 23), the high values
in the distribution of the KGE values (Fig. 9 and S5) are indicative
of good model performance and, hence, demonstrate the robustness
of the SAS-based transit time model. In other words, this means that
posterior parameter sets found in this study can realistically simulate
𝛿18O measurements.

Another noteworthy limitation is that monthly grab samples during
non-event flow conditions may have underestimated Fyw

obs, particu-
larly in those mountain catchments classified into the poor cluster.
This is because mountainous catchments are typically associated with
high streamflow variability (Arnell, 1989), therefore there is limited
opportunity to sample young water ages during rapid events (Gallart
et al., 2020). The limited number of samples may contribute to the high
uncertainty found in the catchments of the poor cluster. However, our
analysis found comparable coefficients of variation of streamflow (CV;
i.e. the ratio of the standard deviation to the mean) between the daily
streamflow simulated with the mHM model for the entire study period
(CV = 1.14) and the streamflow simulated with the mHM model on the
dates when monthly grab-samples were collected (CV = 1.11), for the
poor cluster catchments. Additionally, a t-test revealed no significant
differences (𝑝-value > 0.1) in mean values between daily streamflow
for the entire study period and streamflow at the day of the monthly
sampling in all catchments. These findings indicate that the sampled
streamflow and thus Fyw

obs are likely representative of the variability
of the whole study period. While we acknowledge that high-frequency
data hold more information than low-frequency measurements, the

more widespread availability of low-frequency data makes it crucial
to leverage their potential. Similarly, while an automated logging
scheme is more ideal for accurately capturing various hydrological flow
conditions, its cost and implementation remain challenging. Until such
systems are widely available, grab sampling data, such as those used in
this study, remain the best option.

Additionally, parameters related to ET (k𝐸 𝑇 ) and initial storage (S0)
were poorly constrained (Fig. 7e–f) using Fyw

obs derived from instream
tracer concentrations. Retrieving measurements of ET tracers could
help improve the identifiability of k𝐸 𝑇 , whilst conducting geophysical
surveys in the study areas or groundwater modeling could address the
poor identification of S0. However, poor identifiability of S0 is quite
common in other SAS-based studies (Benettin et al., 2017b; Nguyen
et al., 2021; Borriero et al., 2022).

Furthermore, we recognize that constraining the model with Fyw
obs

may exclude some simulations that can accurately represent instream
𝛿18O measurements and yield high KGE values. To explore this, we
evaluated the percentage of non-behavioral solution (i.e. that ignored
by Fyw

obs) that produced a positive KGE in the good cluster catchments
(Table S2). This percentage ranged from 13% to 33% (average of
23%). In contrast, the percentage of posterior solution within the good
cluster that produced positive KGE values ranged from 28% to 100%
(average of 87%), being significantly higher than the non-behavioral
solution. This suggests that while Fyw

obs may neglect some good simu-
lations, the posterior solution consists mostly or entirely of simulations
that accurately reproduce instream 𝛿18O values, rather than including
simulations that they do not.

Regardless of the aforementioned challenges, our results highlight
the potential of Fyw

obs in conveying crucial information through model
calibration. Despite the limited data availability in our study, the use
of Fyw

obs to constrain the model produced reliable simulations at most
study sites, giving confidence that we are modeling the right processes
for the right reason (Kirchner, 2006). This approach is particularly
beneficial at locations and periods when continuous high-frequency
data are lacking.

5.3. Broader considerations on the potential use of the Young water fraction

It is widely recognized that hydrology heavily relies on measure-
ment techniques (Beven, 2006), because underlying processes, which
determine variations in water fluxes, are reflected in the measured
sampled data (Knapp et al., 2019). As a consequence, it is important
to determine how much sampled data is sufficient for an accurate
representation of the estimates of Fyw

obs and the underlying hydrolog-
ical process. This is especially crucial when considering that collect-
ing high-frequency water samples can be expensive and that not all
catchments worldwide may be well equipped to collect high-frequency
measurements.

In our study, it was not possible to explore the impact of sam-
pling frequency due to limited 𝛿18O measurements in the catchments.
However, the impact of sampling frequency and tracer data series
length on hydrological behavior have been extensively discussed in
other studies (Hrachowitz et al., 2011; McGuire and McDonnel, 2006;
Timbe et al., 2014; Stockinger et al., 2016; Stevenson et al., 2021;
Benettin et al., 2022), some of which have shown that isotope sampling
frequencies affect the estimated TTD and Fyw

obs. Additionally, Fyw
obs is

a derived metric based on observed 𝛿18O data rather than a direct mea-
surement, which may have uncertainties due to its derivation through
sine-wave fitting (Fig. S1). Despite these drawbacks, Fyw

obs is the only
metric that can be calculated when limited tracer data are available
and has been reported as a robust method for estimating some water
age statistics (Benettin et al., 2022). Future studies should explore the
effects of 𝛿18O sampling frequencies on Fyw

obs used as a constraint for a
SAS-based transit time model, and understand how potential errors and
biases arising from sampling, analytical techniques, or interpretation
models can affect its reliability.

Journal of Hydrology 645 (2024) 132238 

9 

Study 1

83



A. Borriero et al.

Overall, Fyw
obs can represent a practical and cost-effective tool

particularly useful in data-scarce regions where there is absence of
intensive monitoring campaigns, ultimately leading to a lack of high-
frequency tracer data. Therefore, compared with methods that rely
on high-frequency measurements, Fyw

obs has the potential to be more
widely applicable across broad spatial domains. Furthermore, the po-
tential regionalization of Fyw

obs may help to derive corresponding esti-
mates for some (ungauged) areas, hypothetically contributing to mod-
eling experiments in regions lacking extensive data. The establishment
of a database containing derived Fyw

obs, similar to isotopic seasonal
cycles datasets (Allen et al., 2019), coupled with SAS-functions, can
facilitate catchment inter-comparison and improve our understanding
of hydrological processes.

Additionally, similar to previous studies highlighting the benefits of
incorporating Fyw

obs as an additional constraint in the calibration of
transit-time based models (Lutz et al., 2018; Çallı et al., 2023), our
work showed, in a ‘‘proof of concept’’, the general benefit of using
Fyw

obs as the sole constraint in SAS-based transit time models. In this
way, we were able to provide a unique perspective on Fyw

obs capacity
to constrain model parameters independently of previous calibration
targets, and fully explore Fyw

obs potentials and limitations in modeling
outcomes. As demonstrated in this study, utilizing Fyw

obs to constrain
model calibration helps distinguish the most informative model outputs
from prior Monte-Carlo simulations.

In terms of water quality, the use of SAS-based transit time modeling
along with Fyw

obs has potential to assist water managers in solving
water chemistry issues. Due to the link between hydrology and water
quality (Hrachowitz et al., 2016), biogeochemical processes affecting
solute transport are partially controlled by the amount of time water
spends and interacts within the subsoil (Li et al., 2021). By reducing
uncertainty in simulated TTDs, we can improve prediction of, for
example, nitrate (Yang et al., 2018; Ehrhardt et al., 2019; Winter et al.,
2020; Lutz et al., 2022; Li et al., 2024) and pesticide (Holvoet et al.,
2007; Lutz et al., 2013) transport. Catchments with a larger Fyw

obs

and shorter transit times generally indicate pollution-prone catchments
with high water quality vulnerability, as there is less time for natural
attenuation of contaminants (Ocampo et al., 2006; Rivett et al., 2008;
Otero et al., 2009; Jawitz et al., 2020; Kumar et al., 2020). On the
other hand, catchments with a smaller Fyw

obs and larger transit times,
combined with continuous solute input, might be prone to legacy
effects (Ascott et al., 2021; Basu et al., 2022; Lutz et al., 2022). Our
results are promising considering that uncertainty in model parameters
and simulations has been largely reduced at sites with shorter transit
times. Therefore, combining an elaborated transit time model such as
those based on SAS functions and Fyw

obs, derived from the relatively
simple sine-wave fitting approach, can improve the understanding of
water quantity and quality status, intended to support planning, design,
and/or operational decisions for land management at local and regional
scale.

6. Conclusions

This study serves as a ‘‘proof of concept’’ to assess the effectiveness
of using Fyw

obs, derived from fitting seasonal isotopic cycles, in con-
straining SAS-based transit time models. We applied this approach to
23 diverse catchments in Central Germany, using instream 𝛿18O time
series for cross-validation purpose. Our results showed that using Fyw

obs

as the sole model constraint effectively reduced parameters equifinality
and simulation uncertainty, as evidenced by a narrowing of the prior
95PPU of the simulated outputs (e.g. marginal TTDs, instream 𝛿18O and
water ages) in most catchments. The effectiveness of Fyw

obs was further
supported by an overall improvement in maximum median KGE values
for instream 𝛿18O increasing from −0.04 to 0.52, after constraining the
model with this metric. However, Fyw

obs did not consistently reduce the
uncertainty across all sites, as Fyw

obs≥0.10 yielded a narrower 95PPU
in the output variables and higher model efficiency, whilst Fyw

obs≤0.05

was less effective in constraining model output due to a lower reduction
in the 95PPU and limited model efficiency.

These results highlight the advantages of using Fyw
obs, particularly

with the increasing availability of seasonal isotopic time series and
Fyw

obs values for catchments across the globe. The potential region-
alization of these values provides an opportunity to derive them in
ungauged areas, where detailed data on 𝛿18O may be lacking. While
this study demonstrates the effectiveness of Fyw

obs in constraining a
SAS-based transit time model, it is important to acknowledge some
limitations such as the reduced capacity of Fyw

obs≤0.05 in constraining
model simulations. For this reason, further research is needed to ex-
plore the broader applicability of Fyw

obs, especially in other catchments
and different geophysical settings. Overall, the combination of SAS
models, which describe water movement and storage, and Fyw

obs, a
metric for young water age, can effectively characterize water age
dynamics. This knowledge is crucial to address catchment management
challenges and develop water management strategies in an era of
increasing hydroclimatic risk and water quality problems.
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Table 1: Identification number of the sub-catchments, values of the young water fractions
and standard errors from the sine-wave approach, as well as the cluster to which the
sub-catchments belong.

catchment Fyw
obs±SE cluster

id 2 0.09 ± 0.04 moderate
id 6 0.08 ± 0.06 moderate
id 9 0.04 ± 0.06 poor
id 14 0.05 ± 0.06 poor
id 20 0.21 ± 0.09 good
id 23 0.02 ± 0.06 poor
id 26 0.04 ± 0.06 poor
id 43 0.08 ± 0.07 moderate
id 50 0.16 ± 0.06 good
id 59 0.13 ± 0.06 good
id 68 0.15 ± 0.06 good
id 75 0.09 ± 0.05 good
id 79 0.26 ± 0.10 good
id 81 0.20 ± 0.06 good
id 89 0.05 ± 0.04 moderate
id 90 0.15 ± 0.07 good
id 94 0.06 ± 0.05 moderate
id 98 0.16 ± 0.08 good
id 103 0.10 ± 0.06 good
id 111 0.20 ± 0.09 good
id 118 0.10 ± 0.05 good
id 128 0.12 ± 0.05 good
id 131 0.12 ± 0.05 good

c c c
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Table 2: Identification number of the sub-catchments and number of posterior solutions
after constraining the SAS-based transit time model against values of the young water
fractions.

catchment posterior solution

id 2 842
id 6 1390
id 9 4989
id 14 5128
id 20 1915
id 23 5154
id 26 5362
id 43 1817
id 50 1541
id 59 1523
id 68 1561
id 75 1185
id 79 2405
id 81 1832
id 89 1304
id 90 2058
id 94 1327
id 98 2093
id 103 1574
id 111 2420
id 118 1438
id 128 1499
id 131 1490
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Figure 1: Sine-wave fitting of δ18O data in precipitation and streamflow. Values of δ18O
were fitted to sine-waves using the iteratively reweighted least squares regression.
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Figure 2: Violin boxplot with the distribution of Fyw simulated from the marginal TTD
computed via SAS functions (i.e. Fyw

sim) obtained before (i.e. prior; grey) and after (i.e.
posterior; blue) applying Fyw

obs±SE from the sine-wave approach as a model constraint.
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Figure 3: 95PPU of the marginal TTDs obtained with the prior (gray) and posterior (blue)
parameter sets; the thick blue vertical area represents the range of T=[42-94 day], with
two blue asterisks indicating the upper and lower limits defined by Fyw

obs±SE. The x-axis
is shown in a logarithmic scale.

6

Study 1

92



Figure 4: 95PPU of instream δ18O obtained with the prior (grey) and posterior (blue)
parameter sets, dark blue filled circles represent the observed data and the light blue
dashed line represents the ensemble mean of all possible solution.
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Figure 5: Violin boxplot with the distribution of KGE obtained before (i.e. prior; grey)
and after (i.e. posterior; blue) applying Fyw

obs±SE from the sine-wave approach as a
model constrained.
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Figure 6: 95PPU of TT50 in streamflow obtained with the posterior (blue) parameter sets;
light blue dashed line represents the ensemble mean of all possible solution, and dark blue
area is the streamflow time series.
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Figure 7: 95PPU of TT50 in streamflow obtained with the prior (grey) and posterior
(blue) parameter sets; light blue dashed line represents the ensemble mean of all possible
solution, and dark blue area is the streamflow time series.
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Abstract

Transit time-based water quality models using StorAge Selection (SAS) functions are

crucial for nitrate (NO3
�) management. However, relying solely on instream NO3

�

concentration for model calibration can result in poor parameter identifiability. This is

due to the interaction, or correlation, between transport parameters, such as SAS

function parameters, and denitrification rate, which challenges accurate parameters

identification and description of catchment-scale hydrological processes. To tackle

this issue, we conducted three Monte-Carlo experiments for a German mesoscale

catchment by calibrating a SAS-based model with daily instream NO3
� concentra-

tions (Experiment 1), monthly instream stable water isotopes (e.g. δ18O) (Experiment

2) and both datasets (Experiment 3). Our findings revealed comparable ranges of SAS

transport parameters and median water transit times (TT50) across the experiments.

This suggests that, despite their distinct reactive or conservative nature, and sampling

strategies, the NO3
� and δ18O time series offer similar information for calibration.

However, the absolute values of transport parameters and TT50 time series, as well

as the degree of parameter interaction differed. Experiment 1 showed greater inter-

action between certain transport parameters and denitrification rate, leading to

greater equifinality. Conversely, Experiment 3 yielded reduced parameters interac-

tion, which enhanced transport parameters identifiability and decreased uncertainty

in TT50 time series. Hence, even a modest effort to incorporate only monthly δ18O

values in model calibration for highly frequent NO3
�, improved the description of

hydrological transport. This study showcased the value of combining NO3
� and δ18O

model results to improve transport parameter identifiability and model robustness,

which ultimately enhances NO3
� management strategies.
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1 | INTRODUCTION

Today's global food production heavily relies on the intensive use of

synthetic fertilizers and animal manure in agriculture (Bouraoui &

Grizzetti, 2014; Lu & Tian, 2017; Steffen et al., 2015). This practice

results in high nutrient enrichment in the landscape, particularly nitro-

gen (N), which can be converted by soil bacteria into nitrate. Elevated

nitrate concentrations can cause eutrophication of fresh and marine

waters (Boeykens et al., 2017; Le Moal et al., 2019; Rabalais

et al., 2002), and hypoxic dead zones in coastal oceans (Diaz &

Rosenberg, 2008). Several initiatives have attempted to regulate agri-

cultural fertilizer inputs such as the Nitrate Directive

(EU Commission, 1991) and the Water Framework

Directive (EU Commission, 2020). Despite these efforts, high nitrate

concentrations still impact water quality (Bodirsky et al., 2014;

Bouraoui & Grizzetti, 2014; Van Meter et al., 2023) due to legacy

effects, that is, accumulation of N in the soil and long transport times

of nitrate through soil and groundwater (Lutz et al., 2022; Nguyen,

Sarrazin et al., 2022; Van Meter & Basu, 2017). This situation can cre-

ate time delays between implemented measures and actual improve-

ments (Kopáček et al., 2013; Puckett et al., 2011; Van Meter

et al., 2016), and calls for further actions to enhance water quality sta-

tus (Solomon et al., 2015) and protect drinking water supplies (Carrard

et al., 2019).

The aforementioned lag times are related to the transit time dis-

tribution (TTD) of streamflow, the probability distribution of the time

elapsed between the entry of a water parcel into the catchment as

precipitation and its exit via streamflow (Benettin et al., 2022; Botter

et al., 2010; McGuire & McDonnell, 2006; Rinaldo et al., 2011). Envi-

ronmental tracers, such as stable water isotopes, have been widely

employed for determining TTDs through various modelling

approaches. More specifically, by integrating stable water isotopes in

TTD-based models, we can effectively differentiate between the pres-

sure pulse progression speed (i.e., celerity), and the pore water flow

velocity (Birkel & Soulsby, 2015; Ilampooranan et al., 2019; Yang,

Tetzlaff, et al., 2021). This distinction is a crucial step in improving the

realism of solute transport modelling (Hrachowitz et al., 2016; Lutz

et al., 2022). Recent advancements in TTD-based models have

acknowledged the time-variant nature of TTDs (Benettin et al., 2013;

Kaandorp et al., 2018; Kim et al., 2016) due to meteorological variabil-

ity (Harman, 2019; Heidbüchel et al., 2020) and temporal dynamics of

flow paths partitioning (Ambroise, 2004; Heidbüchel et al., 2012;

Jencso et al., 2009). This development has led to the concept of Stor-

Age Selection (SAS) functions (Rinaldo et al., 2015; van der Velde

et al., 2012), a novel way to link water age in storage and outflows

(Harman, 2019). SAS functions have significantly advanced our under-

standing of catchment hydrology and have been applied in several

water and solute transport process studies (Benettin et al., 2015; Kim

et al., 2016; Yang, Heidbüchel, et al., 2018).

In addition to hydrological transport, biogeochemical processes,

such as plant uptake (Wang et al., 2012) and denitrification (Ocampo

et al., 2006), control the fate of nitrate within the catchment. Such

processes cause changes in nitrate concentration as nitrate travels

from diffuse and point-source inputs to the outlet. Water quality

models are employed to analyse these changes and predict future

nitrate trajectories under changing climate and land use (Beck, 1987;

Burigato Costa et al., 2019; Wang et al., 2013). Water quality models

such as the Soil Water Assessment Tool (SWAT; Arnold et al., 1998),

the Hydrological Predictions for the Environment (HYPE; Lindström

et al., 2010) and the Integrated Catchment model (INCA; Wade

et al., 2002) are widely used for simulating nitrate concentration

(Wellen et al., 2015). However, the hydrological transport of these

models is based on celerity rather than pore water flow velocity,

which may lead to challenges in representing longer time delays in

nitrate (Hrachowitz et al., 2016; Ilampooranan et al., 2022; Lutz

et al., 2022). Nonetheless, incorporating TTDs into water quality

models to describe hydrological transport based on pore water flow

water velocity remains largely unexplored. For example, van der Velde

et al. (2010) revealed that TTD dynamics explain nitrate and chloride

concentration fluctuations in a small agricultural catchment. Similarly,

Kaandorp et al. (2021) coupled groundwater TTDs and tritium, chlo-

ride and nitrate concentrations in a lowland stream, and found how

different groundwater pathways contributed to seasonal and long-

term fluctuations in instream solute concentration. Van Meter et al.

(2017) simulated nitrate transport and retention with a TTD-based

approach for the entire Mississippi and Susquehanna River basins.

Yang, Heidbüchel, et al. (2018) found lower nitrate concentration in

correspondence of older streamflow water ages in an agricultural

headwater catchment, due to greater nitrate denitrified along deeper

flow paths. Nguyen et al. (2021) and Nguyen, Kumar, et al. (2022)

explored nitrate concentration using a TTD-based nitrate transport

model and incorporating SAS functions in a mesoscale catchment with

mixed land use. More recently, Yu et al. (2023) integrated a SAS-based

water age modelling with chloride measurements, and analysis of

nitrate and oxygen isotopes of nitrate in a tile-drained corn-soybean

field. In this study, they revealed nitrate export characterized by a

chemostatic regime. Overall, TTD-based water quality models for

nitrate can be beneficial for management activities, tracking old or

new N releases and introducing a robust mechanistic framework for

catchment-scale nitrate description (Lutz et al., 2022).

When modelling nitrate with a TTD-based approach using SAS

functions, specific model parameters need to be assigned to account

for both hydrological and biogeochemical processes. However, relying

solely on instream nitrate concentration for calibration can lead to

interaction between transport and reaction parameters (Beven, 2005,

2006; Beven & Freer, 2001), thus yielding transport parameters

(i.e., SAS parameters affecting the water age selection preference for

streamflow and subsequently the TTD) that are misleading due to

compensation by reaction parameters (i.e., first-order denitrification

rate). Parameter interaction refers to the correlation between parame-

ters, which makes them difficult to identify. This is a common problem

in hydrological and water quality models (Beven, 2006; Nguyen

et al., 2021). Disentangling hydrological and biogeochemical processes

by calibrating models with both nitrate concentration and stable water
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isotope can ensure that good results for nitrate concentration also

correspond to a reasonable representation of hydrological transport.

While some studies have used time-variant TTDs in nitrate simula-

tions (Kumar et al., 2020; Nguyen et al., 2021; Nguyen, Kumar,

et al., 2022; van der Velde et al., 2012; Yang et al., 2022; Yang,

Heidbüchel, et al., 2021; Yang, Jomaa, et al., 2018; Yang, Tetzlaff,

et al., 2021), a comprehensive analysis of the specific interaction

between model parameters that define hydrological and biogeochemi-

cal processes in nitrate simulations is still missing. This understanding

is critical for effective water and nitrate management at local and

regional scales, necessitating the use of a mechanistically plausible

model.

This study aims to test whether nitrate concentration can offer

comparable insights into catchment-scale transport processes as sta-

ble water isotopes. Here, for the first time, we compared TTDs of

streamflow derived from model calibration with instream nitrate con-

centrations and stable water isotope values. We aimed to identify

potential interaction between transport and biogeochemical parame-

ters affecting parameter identifiability and model's robustness in

describing hydrological processes. With this objective, we used the

mesoscale Hydrologic Model (mHM) and the SAS function, namely

the mHM-SAS transport model (Nguyen et al., 2021), in a central Ger-

man mesoscale catchment. We conducted three experiments by cali-

brating (i) transport and reaction parameters with daily nitrate values,

(ii) only transport parameters with monthly instream isotope values

and (iii) transport and reaction parameters with both datasets. Our

analysis explored the differences and similarities among experiments

not only in terms of using calibration targets of distinct nature (reac-

tive vs. conservative) but also in contrasting sampling strategies (daily

vs. monthly). We evaluated the ability to calibrate model parameters

and simulate water ages by improving the understanding of hydrologi-

cal and biogeochemical processes in the study catchment, and ulti-

mately offering insights for enhancing catchment-scale nitrate

management.

2 | DATA AND METHODS

2.1 | Study site

The Upper Selke catchment (Figure 1) is located in the north-eastern

region of the Harz Mountains in Central Germany, as part of the larger

Bode catchment. This region represents a well-studied area integrated

within the TERrestrial ENvironmental Observatories network

(TERENO; Wollschläger et al., 2016). The catchment covers a total

area of 184 km2, with elevation ranging between 184 and 594 m

above mean sea level and a mean slope of 7.65%. The study area has

an average annual precipitation (P), actual evapotranspiration (ET) and

streamflow (Q) of 613, 437 and 171 mm, respectively. Forest is the

most dominant land use, accounting for 72% of the entire area, fol-

lowed by agricultural land use, constituting 21% of the landscape. The

soils, primarily consisting of cambisols, and overlaying schist and

claystone layers, exhibit relatively high permeability. This results in a

shallow groundwater system with relatively fast flow paths (Jiang

et al., 2014; Yang, Jomaa, et al., 2018).

2.2 | Data

As input data for model simulations, we used daily hydroclimatic time

series covering the period from February 2013 to December 2022.

Daily P and actual ET time series were supplied from the German

Weather Service, while Q time series were simulated with the (mHM;

Kumar et al., 2013; Samaniego et al., 2010) model based on raw

Q data provided by the State Office of Flood Protection and Water

Management of Saxony-Anhalt. Simulated Q was used to ensure a

closure of the water mass balance. A thorough evaluation of mHM

performance for past measurements has been conducted in previous

studies (Nguyen et al., 2021; Yang, Jomaa, et al., 2018; Zink

et al., 2017).

As data for model calibration, we utilized datasets with different

sampling frequency, length of time series and natural characteristics

(conservative vs. reactive). Firstly, we used daily instream nitrate

concentrations from February 2013 to December 2022, obtained

with an in situ ultraviolet-visible probe used in other studies in the

same region (Nguyen, Kumar, et al., 2022; Rode et al., 2016; Winter

et al., 2022). Secondly, we used monthly isotope data in precipita-

tion and streamflow from the study by Lutz et al. (2018), spanning

the period from February 2013 to May 2015. Instream isotope sam-

ples were grab samples collected at the catchment outlet during

low-flow conditions, while precipitation isotope data were sampled

at different locations in the broader Bode region and integrated at a

monthly time scale. Precipitation isotope data were subsequently

spatially interpolated using kriging with altitude as external drift and

weighted with spatially distributed monthly precipitation of the

Upper Selke.

F IGURE 1 Upper Selke catchment with precipitation (purple dots)

and streamflow sampling points (pink triangle), the river network (blue
lines) and the elevation gradient (coloured map). The location of the
Upper Selke catchment in Germany is shown in the lower right
corner.
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2.3 | The mHM-SAS model

The mHM-SAS model (Nguyen et al., 2021) consists of a spatially dis-

tributed N model in the well-mixed soil (i.e., root zone) and a lumped

transport model for nitrate in the entire subsoil compartment of the

whole catchment (i.e., unsaturated zone and groundwater). The model

is based on (i) the mHM model to simulate the hydrological processes

accounting for variability of catchment properties; (ii) the mHM-

Nitrate model (Yang, Jomaa, et al., 2018) to describe the fate of N in

the soil through spatially explicit representation of agricultural prac-

tices and (iii) the SAS functions (Botter et al., 2011; Rinaldo

et al., 2015; van der Velde et al., 2012) to represent the TTD-based

nitrate transport in the subsoil along with denitrification.

The mHM-Nitrate model incorporates N inputs from atmospheric

deposition, fertilizer, manure application and plant residues. It also

accounts for N removal processes including denitrification and plant

uptake, and transformations such as degradation, dissolution

(i.e., conversion of active solid organic N to dissolved organic N), and

mineralization within distinct pools, designed for dissolved

inorganic N, dissolved organic N, active organic N and inactive organic

N. Land-use dependent parameters, adapted spatially and temporally

based on environmental conditions such as soil moisture and tempera-

ture, regulate N transformations within the pools and denitrification

rate. The model assumes that dissolved inorganic N is exclusively

nitrate (NO3
�), which can be transported to the subsoil and, eventu-

ally, to the stream. In the subsoil, NO3
� denitrification and transport

are described with SAS functions.

In this study, we employed a simplified version of the mHM-

SAS model, by utilizing a pre-calibrated mHM-Nitrate model for the

soil for which optimal parameters for mineralization, dissolution and

denitrification were selected based on their fit to observed instream

NO3
� (Nguyen, Kumar, et al., 2022; Nguyen, Sarrazin, et al., 2022).

Hence, we focused on the subsoil only where water potentially con-

taminated with NO3
� can reach water supply wells. Previous studies

in the Upper Selke have demonstrated the significance of subsoil

denitrification (Nguyen et al., 2021; Winter et al., 2021). Notably,

the calibrated parameters used in this study (see Section 2.4.1 for

parameters calibration) are among those affecting most of the

instream NO3
� dynamics in the original mHM-SAS model (see

Nguyen et al. (2021) and Nguyen, Kumar, et al. (2022) for parameter

sensitivity).

The mHM-SAS model employed in this work is depicted in

Figure 2. We used a lumped version of the transport model in the sub-

soil, thereby applying the SAS function to the entire compartment.

Time series of percolation flux (I) and NO3
� concentration (NO3

� in I)

from the soil to the subsoil were simulated with the mHM and mHM-

Nitrate model. Both I and NO3
� in I were spatially lumped over the

entire catchment. The δ18O signature in I (δ18O in I) was calculated

from an isotopic balance in the soil as outlined below in Equations (8)

and (9).

Here, we provide a technical description for the subsoil within

the mHM-SAS model. The water-age balance based on SAS functions

is expressed as (Benettin & Bertuzzo, 2018; Botter et al., 2011;

Harman, 2015; van der Velde et al., 2012):

Ssub tð Þ¼ S0
subþV tð Þ, ð1Þ

∂ST
sub T,tð Þ
∂t

þ ∂ST
sub T,tð Þ
∂T

¼ I tð Þ�Q tð Þ�ΩQ T,tð Þ, ð2Þ

Initial conditions : ST
sub T,t¼0ð Þ¼ ST0

sub Tð Þ, ð3Þ

Boundary conditions : ST
sub T¼0ð Þ¼0, ð4Þ

where Ssub(t) [L3] is the subsoil storage at time t [T]; T [T] is the water

age; S0
sub [L3] is the initial subsoil storage; V [L3] is the subsoil storage

variations obtained from the mHM model; I(t) [L3T�1] and Q(t) [L3T�1]

are the percolation and streamflow fluxes entering and leaving the

subsoil, respectively; ST
sub(T, t) [L3] is the age-ranked subsoil storage

at time t; and ΩQ [�] is the cumulative SAS function for Q.

In this study, we assumed that the SAS function for Q is time-

invariant and follows the beta function (Drever & Hrachowitz, 2017),

F IGURE 2 Representation of the
mHM-SAS model with its two
hydrological compartments (soil and
subsoil), and the associated
hydrological and solute/tracer data
time series. mHM, mesoscale
hydrologic; SAS, StorAge Selection.
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which is expressed below as the probability density function of the

normalized age-ranked storage Ps(T, t) (van der Velde et al., 2012):

ωQ Ps T,tð Þ,tð Þ¼Ps T,tð Þα�1� 1�PS T,tð Þð Þβ�1

B α,βð Þ , ð5Þ

where B(α, β) is the beta function characterized by the shape (α) and

scale (β) parameters, representing the transport parameters of our

modelling scheme.

From Equation (2), we derived the TTD of streamflow [T�1] and

the instream isotopic signature [�] as (Benettin & Bertuzzo, 2018):

pQ T,tð Þ¼
∂ΩQ SsubT T,tð Þ,t

� �

∂SsubT T,tð Þ �SsubT T,tð Þ
∂T

, ð6Þ

CQ
δ18O

tð Þ¼
ð∞
T¼0

Csub
δ18O T,tð Þ�pQ T,tð Þ�dT, ð7Þ

where Csub
δ
18

O [�] is the isotopic signature of a water parcel in the

subsoil carried by the percolation flux from the soil compartment

(Figure 2). The value of Csub
δ
18

O is derived from the following isotope

balance in the soil, assuming that the soil is well-mixed and there is no

isotope fractionation:

∂Ssoil tð Þ
∂t

¼P tð Þ�ET tð Þ� I tð Þ, ð8Þ

∂Mδ18O
soil tð Þ

∂t
¼Cδ18O

P tð Þ�P tð Þ�Cδ18O
soil tð Þ� I tð ÞþET tð Þð Þ, ð9Þ

where Ssoil(t) [L3] is the water storage at time t [T] provided by the

mHM model (initially Ssoil (t = 0) = Ssoil0 ); P(t) [L3T�1] is the precipita-

tion flux; ET(t) [L3T�1] is the actual evapotranspiration; Msoil
δ
18

O(t) [L]

is the isotopic signature integrated with the soil storage; and CP
δ
18

O(t)

[�] is the isotopic signature in precipitation. Csoil
δ
18

O(t) is the isotope

signature in soil storage and in the percolation flux (due to the well-

mixed assumption), therefore, Csoil
δ
18

O(t)=Csub
δ
18

O(t�T) of

Equation (7) (e.g. Queloz et al. 2015).

Finally, we simulated the concentration of NO3
� in the subsoil

undergoing denitrification, which is expressed with a first-order reac-

tion. Hence, the instream NO3
� concentration [ML�3] is calculated as

(Nguyen et al., 2021):

CQ
NO3

� tð Þ¼
ð∞
0
Csub

NO3
� T,tð Þ�e�k�T �pQ T,tð Þ�dT, ð10Þ

where CsubNO₃̄ [ML�3] represents the NO3
� concentration in the subsoil

and k [T�1] is the first-order denitrification rate parameter in the subsoil.

2.4 | Experimental design

In this study, we calibrated the mHM-SAS model against (i) instream

NO3
� concentrations, (ii) instream δ18O values and (iii) both datasets.

These three experiments aim to explore simulated TTDs, calibrated

parameters and their correlations, when using different calibration tar-

gets. In all experiments, we did not re-simulate the hydrological fluxes

(i.e., Q and I), and the NO3
� leaching flux (i.e., NO3

� in I) with the

mHM model, but instead we took the best simulation from a prior

study by Nguyen, Kumar, et al. (2022), Nguyen, Sarrazin, et al. (2022)

for the same area. We selected the simulation of Q, I and NO3
� in

I with the highest efficiency for observed Q and instream NO3
� con-

centrations, ensuring the most accurate representation of hydrological

and water quality processes for our study. Hence, in this study, we

calibrated only the transport parameters in the subsoil (see Table 1

in 2.4.3).

2.4.1 | Experiment 1

In Experiment 1, we calibrated the model against daily instream NO3
�

concentrations using 100 000 parameter sets generated in a Monte-

Carlo experiment with Latin hypercube sampling (LHS; McKay

et al., 1979). Model parameters and their initial ranges can be found in

Table 1. Initial ranges for model parameters were chosen based on

other studies in the region (Nguyen et al., 2021; Nguyen, Kumar,

et al., 2022) and elsewhere (Benettin et al., 2017; Van Meter

et al., 2017). Nonetheless, the selected parameter ranges were wide,

implying no prior knowledge regarding the SAS functions, catchment

storage and denitrification within the catchment. The SAS parameters

α and β assume values that determine the catchment's preference for

realizing young water (i.e., α < 1 and β ≥ 1), old water (i.e., α ≥ 1 and

β < 1), complete mixing (i.e., α = β = 1), or both young and old water

(i.e., α > 0 and β < 1), hence representing transport processes. The

model parameters were calibrated from February 2013 to December

2022. The initial NO3
� concentration in the subsoil, corresponding to

the value of Csub
NO₃̄ in Equation (10) at the first model iteration, was

1.6 mg N-NO3
�/L (i.e., mass of N in NO3

�) and matched the mean

instream NO3
� observed throughout the study period.

The output of the Monte-Carlo simulations is detailed in Table 2,

which, for Experiment 1, is instream NO3
� concentration

TABLE 1 Summary of the calibrated
model parameters and their respective
initial search ranges used for calibration.

Calibrated parameter Symbol & unit Lower bound Upper bound Use

SAS parameter α (�) 0.1 3 Experiments 1, 2 and 3

SAS parameter β (�) 0.1 3 Experiments 1, 2 and 3

Denitrification rate k (d�1) 6 � 10�6 1 � 10�1 Experiments 1 and 3

Initial soil storage Ssoil0 (mm) 300 500 Experiments 2 and 3

Initial subsoil storage Ssub0 (mm) 500 1000 Experiments 1, 2 and 3

BORRIERO ET AL. 5 of 17
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(Equation 10) and backward median transit time (TT50; i.e., the time it

takes for half of the water to leave the catchment as streamflow at

the outlet). The TT50 of streamflow was calculated as the 50th per-

centile (i.e., median) of the TTDs for each day of the study period

(Equation 6). Therefore, it approximates the TT of water after it has

reached the stream and excludes the TT of water that has not yet

reached the stream. The TT50 is often used as it overcomes the poor

identifiability of old water especially in the case of long-tailed TTDs

(Benettin et al., 2017).

After running the 100 000 simulations corresponding to 100 000

random parameter sets, we selected behavioural simulations based on

the Kling–Gupta efficiency (KGE; Gupta et al., 2009), quantifying the

difference between the observed and simulated instream NO3
�. We

employed 2980 data points of observed instream NO3
� concentra-

tions to evaluate KGE, having a coefficient of variation (CV; the ratio

between the standard deviation to the mean) of 0.8. We selected

model parameters from the simulations, which yielded KGE ≥0.4 for

NO3
�, indicative of satisfactory model efficiency. We assessed model

output uncertainty with the 95% prediction uncertainty (95PPU) by

calculating the 2.5% and 97.5% percentiles within the cumulative dis-

tribution of the time series of the output variables (Abbaspour

et al., 2004).

2.4.2 | Experiment 2

In Experiment 2, we calibrated 100 000 parameter sets in a Monte-

Carlo analysis against δ18O data. The initial range of model parameters

corresponds to the lower and upper bound of Table 1. In Experiment

2, we simulated instream δ18O (Equation 7) and TT50 of streamflow.

Model simulations covered the period from February 2013 to May

2015 for δ18O values and from February 2013 to December 2022 for

TT50 time series. The initial concentration of δ18O in the soil, corre-

sponding to the value of Csoil
δ
18

O and Csub
δ
18

O in Equations (7) and

(9), respectively at the first model iteration, was set to �9.2 ‰, corre-

sponding to the mean instream δ18O during the study period. We fol-

lowed the procedure of Experiment 1 for the uncertainty assessment

and model performance evaluation by analysing model parameters

and results based on KGE ≥0.4 for δ18O values. We assessed model

performance using 27 observed instream δ18O values, resulting in a

CV of 0.05.

2.4.3 | Experiment 3

In Experiment 3, we conducted a Monte-Carlo analysis with 100 000

parameter sets calibrated against both NO3
� and δ18O data. We simu-

lated instream NO3
� concentration (Equation 10), instream δ18O

values (Equation 7) and TT50 of streamflow. The initial parameter

ranges correspond to the lower and upper bound given in Table 1.

Model simulations covered the time period from February 2013 to

December 2022 for NO3
� and TT50 simulations, and from February

2013 to May 2015 for δ18O simulations. The initial values of NO3
�

concentration in the subsoil and δ18O data in the soil were 1.6 mg N-

NO3
�/L and � 9.2 ‰, respectively. We followed the procedure of

Experiments 1 and 2 for uncertainty assessment and model perfor-

mance evaluation, analysing model parameters and results with KGE

≥0.4 for both NO3
� and δ18O values. The KGE was calculated sepa-

rately for NO3
� and δ18O to ensure that they were equally weighted.

3 | RESULTS

The calibration of the mHM-SAS model within Experiments 1, 2 and

3, with the criterion of KGE ≥0.4, resulted in 1332, 1706

and 315 model parameters set out of 100 000, respectively. The cor-

responding simulated output variables are described below.

3.1 | Instream nitrate concentrations

The 95PPU of simulated daily instream NO3
� concentrations from

Experiments 1 and 3 is illustrated in Figure 3. Comparison between

instream NO3
� concentration and NO3

� in I is reported in Figure S1.

The simulated NO3
� were similar between the experiments, and sea-

sonal and event-scale variations in the measured daily NO3
� were

well reproduced. The model yielded satisfactory performance with

KGE values in the range of [0.40–0.68] across the 1332 and 315 simu-

lations of Experiments 1 and 3. Additionally, the 95PPU covered

approximately 63% and 58% of the measured data (p-factor = 0.64

and 0.58) for Experiments 1 and 3.

In both experiments, the model accurately reproduced higher

NO3
� during high-flow conditions in winter and spring and predicted

lower NO3
� during low-flow periods in summer and early autumn.

We further compared the simulated and observed NO3
� under differ-

ent flow conditions, specifically during low flow (Q < Q10% percentile)

and high flow (Q > Q95%) periods (Kumar et al., 2010;

Smakhtin, 2001). The mean simulated NO3
� during high flows was

2.64 and 2.88 mg N-NO3
�/L for Experiments 1 and 3, whereas the

mean measured NO3
� during high flows was 3.94 mg N-NO3

�/L.

During low flows, Experiments 1 and 3 had mean simulated NO3
� of

0.77 mg N-NO3
�/L and 0.85 mg N-NO3

�/L, whereas the mean mea-

sured NO3
� during low flows was 0.45 mg N-NO3

�/L. Relation

between simulated NO3
� and Q throughout the study period was fur-

ther supported by a mean Spearman's rank correlation coefficient of

TABLE 2 Summary of the simulated model outputs.

Simulated parameter

Symbol

& unit Use

Instream nitrate

concentration

NO3
� (mg/L) Experiments 1 and 3

Instream stable water

isotopes value

δ18O (‰) Experiments 2 and 3

Median transit time TT50 (d) Experiments 1, 2

and 3
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ρ = 0.64 for Experiment 1 and ρ = 0.56 for Experiment 3. The corre-

lation between measured NO3
� and Q was ρ = 0.85.

The 95PPU of NO3
� exhibited a relatively narrow band over the

simulation period, particularly in the first half, while the 95PPU

increased in the second half of the simulations, coinciding with the

exceptional drought in 2018–2019. The deviation of the simulated

NO3
� from the mean value, represented as the ratio of the 95PPU

range to the mean value of simulated NO3
� concentration, showed a

significant negative correlation with Q, with a mean Pearson correla-

tion coefficient of r = �0.48 and r = �0.37 for Experiments 1 and

3. A narrower 95PPU was observed during high flows, with mean

95PPU values of 0.50 and 0.46 mg N-NO3
�/L for Experiments 1 and

3, and a wider range during low flows, with mean 95PPU values of

2.29 and 2.96 mg N-NO3
�/L for Experiments 1 and 3. A summary

of all the statistical characteristics for NO3
� discussed in this sub-

section is given in Table S1.

3.2 | Instream isotope signatures

The simulated monthly instream δ18O values from Experiments 2 and

3, represented as the 95PPU of the ensemble solutions, are presented

in Figure 4. Simulations for Experiments 2 and 3 were nearly identical

and characterized by a notably narrower 95PPU compared to that of

NO3
� (Figure 3). In both experiments, the simulated δ18O captured

the isotopic seasonality but did not precisely match the observed

monthly measurements, which is characterized by depleted (i.e., more

negative) values in winter and enriched (i.e., less negative) values in

summer.

Simulated δ18O values could not capture individual observations,

which could be due to uncertainty in the observed data (e.g. noise,

measurement errors). However, despite the δ18O time series spans a

relatively short period (February 2013–May 2025) and the observa-

tions may not be perfectly simulated, we highlight the importance of

employing a modelling approach to accurately reproduce δ18O sea-

sonality, as detailed in Text S1. This is in contrast with relying solely

on a straight-line simulation for instream δ18O data. In addition, it is

important to note the significant influence of δ18O values and their

inherent seasonality on the model results, as elaborated in Text S2

and illustrated in Figure S2 and S3.

3.3 | Median transit times

The 95PPU for the simulated TT50 of streamflow of Experiments 1, 2

and 3 are presented in Figure 5. The 95PPU values ranged approxi-

mately from 0 to 15 months in Experiment 1 (Figure 5a), and from 0 to

11 months in Experiments 2 (Figure 5b) and 3 (Figure 5c) throughout

the study period. Hence, the 95PPU of TT50 time series in Experiments

2 and 3 (Figure 5b,c) was narrower than in Experiment 1 (Figure 5a).

All three experiments exhibited pronounced seasonality in TT50

values, linked to the catchment's hydrological conditions. There was a

F IGURE 3 95PPU of simulated daily instream NO3
� for (a) Experiment 1 with 1332 simulations and (b) Experiment 3 with 315 simulations;

the grey circles are the observed data; the dashed line is the ensemble mean derived from all solutions; the dark blue area is the streamflow time
series.

BORRIERO ET AL. 7 of 17
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strong difference in the TT50 values between high- and low-flow

periods; during high flows, as outlined in 3.1, TT50 values sharply

decreased to a mean value of 17, 13 and 4 days for Experiments 1, 2

and 3. Conversely, during low flows, TT50 values were characterized

by a gradual increase and their mean value was approximately

8 months for all experiments. The impact of the drought in 2018–

2019 was clearly visible, with a prominent peak in TT50 values corre-

sponding to these years and the onward period, which was character-

ized by very dry summers. In support of this, the maximum TT50

values in the period before the 2018–2019 drought reached

12.4 months for Experiment 1, and 8.8 months Experiments 2 and

3. Conversely, after the years 2018–2019, TT50 values exhibited a

peak of 15.5, months for Experiment 1, and 11.1 months for Experi-

ments 2 and 3. A summary of the statistical characteristics of NO3
�

and TT50 in the experiments is given in Table S2.

3.4 | mHM-SAS parameters

Ranges of model parameters calibrated in all experiments are pre-

sented as kernel distributions in Figure 6, with mean, minimum, and

maximum values detailed in Table S3. Kernel distributions of the

F IGURE 4 95PPU of simulated
monthly instream δ18O for
(a) Experiment 2 with 1706 simulations
and (b) Experiment 3 with
315 simulations; the grey circles
correspond to observed data; the
dashed line is the ensemble mean
derived from all solutions; the dark
blue area is the streamflow time series.

F IGURE 5 95PPU of simulated TT50 of streamflow for (a) Experiment 1 with 1332 simulations, (b) Experiment 2 with 1706 simulations and
(c) Experiment 3 with 315 simulations; the dashed line is the ensemble mean derived from all solutions; the dark blue area is the streamflow time
series.
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100 000 parameter sets, which are uniform distributions, are dis-

played in Figure S4. Within all experiments, the parameter α

(Figure 6a) was strongly constrained to smaller values. Notably, values

for α in Experiments 2 and 3 were more constrained and similar to

each other compared to Experiment 1. This difference is supported by

statistically different mean α values (Kruskal-Wallis test, p-value

<0.00001) and distributions of α (two-sample Kolmogorov–Smirnov

test, p-value <0.00001) in Experiments 2 and 3 versus Experiment

1. The parameter β (Figure 6b) was well constrained to greater values

across all experiments (Figure 6b). Overall, low values of α and high

values of β indicate that the catchment predominantly discharges

younger water throughout the study period (i.e., α < 1 and β ≥ 1).

The subsoil denitrification rate k in Experiments 1 and 3 was well

constrained towards larger values [10�3–10�4 d�1] than the initial

range [10�2–10�7 d�1] (Figure 6c). Significant differences were found

between Experiments 1 and 3 in terms of mean values of

k (Kruskal-Wallis test, p-value <0.05) and distribution of k (two-sample

Kolmogorov–Smirnov test, p-value <0.05), with a more pronounced

peak of k in Experiment 1 in contrast to the flatter distribution in

Experiment 3. The initial soil storage employed in Experiments 2 and

3 exhibited moderate constraints towards smaller values (Figure 6d).

The initial subsoil storage was loosely constrained towards smaller

values in all three experiments (Figure 6e).

For gaining an in-depth understanding into the interactions

between model parameters, we examined the Pearson correlation

coefficients among parameters within the same experiment. Results

are available in Table S4. Experiment 1 showed a negative correlation

with r = �0.43 (p-value <0.0001) between α and k (Table S4). How-

ever, in Experiment 3, this correlation decreased to r = �0.23 (p-

value <0.0001), and this result is visually supported by Figure 7. Also,

a correlation existed between α and β in Experiments 1, 2 and 3 with

r = 0.41 (p-value <0.00001), r = 0.34 (p-value <0.00001) and

r = 0.38 (p-value <0.00001), respectively (Table S4 and Figure S4).

3.5 | Damköhler number

To reveal which driver between riverine transport and denitrification

controls NO3
� export from the catchment, we calculated the Dam-

köhler number (Da) as the dimensionless ratio between the flow path

transit time and NO3
� reaction time. In our study, we used TT50 [T]

and 1/k [T] as representative transport and reaction time scales

F IGURE 6 Kernel distribution of mHM-SAS parameters. The x-axis for k in the subsoil (panel c) is expressed in a logarithmic scale for better
displaying small values. The y-axis represents the probability per unit value of the mHM-SAS parameters. Note that the kernel probability on the
x-axis extends beyond the dataset limits due to the sum effect of individual Gaussian probability distributions applied to each value in the dataset.
mHM, mesoscale hydrologic; SAS, StorAge Selection.
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respectively, resulting in the calculation of Da50. While we are aware

that Da represents a distribution, we chose Da50 as a single metric to

describe the interaction between transport and reaction in our work.

When Da50 < 1, transport processes dominate NO3
� export, whereas

Da50 > 1 indicates the primary influence of reaction processes. In this

study, the Da50 analysis focused on the subsoil, hence on the release

of NO3
� to the stream.

Figure 8 illustrates the 95PPU for Da50 obtained from Experi-

ments 1 and 3. Da50 values exhibited a mean value of 2.2 in both

Experiments 1 and 3. Oscillations in the Da50 number clearly

depended on the catchment's hydrological state, with Da50 < 1 during

high-flow periods and Da50 > 1 during low-flow or dry periods.

During high-flow periods, as outlined in 3.1, Da50 had a mean value of

0.23 and 0.12 across all simulations for Experiment 1 and 3. Con-

versely, during low-flow periods, Da50 exhibited a mean value of 5.2

and 7.1 across all simulations for Experiments 1 and 3. A summary of

the statistical characteristics of Da50 in the experiments is provided in

Table S5.

4 | DISCUSSION

4.1 | Comparative analysis among the experiments

This study explored how model parameters and TTDs of a SAS-based

water quality model are constrained with daily NO3
� and monthly

δ18O data separately (i.e., Experiments 1 and 2) and simultaneously

(i.e., Experiment 3). While previous studies have simulated NO3
� con-

centrations using SAS functions (Nguyen et al., 2021; Nguyen, Kumar,

et al., 2022; van der Velde et al., 2012), our focus is on understanding

the interaction between transport and reaction parameters when

using distinct calibration targets, sampling frequencies and length of

time series. This exploration has implications for interpreting catch-

ment functioning and NO3
� export dynamics.

Experiments 1 and 3 produced closely aligned NO3
� simulations

(Figure 3), thus indicating the validity of combining δ18O and NO3
�

data for describing NO3
� dynamics. Across all the experiments, TT50

patterns were comparable (Figure 5) and calibrated parameter ranges

were similar (Figure 6). However, there were differences in the abso-

lute values of TT50 time series (Figure 5) and transport parameter α

F IGURE 8 95PPU of simulated Da50 number obtained from (a) Experiment 1 with 1332 simulations and (b) Experiment 3 with
315 simulations; the dashed line is the ensemble mean derived from all solutions; the dark blue area is the streamflow time series; left y-axis is
expressed in logarithmic scale.

F IGURE 7 Relation between α and k in Experiment 1 with 1332
simulations and Experiment 3 with 315 simulations.
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(Figure 6a) between Experiments 2 and 3 versus Experiment 1. In

Experiments 2 and 3, the range of the parameter α was narrower than

in Experiment 1 (Figure 6a), indicating the capacity of instream δ18O

values to better constrain the parameter. This was also evident by the

decreased correlation between parameters α and k in Experiment

3 (r = �0.23) compared to Experiment 1 (r = �0.43). Nonetheless, a

correlation is expected due to the inverse relationship between TT50

and denitrification (Hrachowitz et al., 2016). Hence, α and k are better

constrained in Experiment 3 compared to Experiment 1. A better con-

straint on the parameter α corresponded to a narrower 95PPU of the

TT50 time series in Experiment 3 (Figure 5c) compared to Experiment

1 (Figure 5a). This is because α is one of the determining factors

influencing water age selection preference (Nguyen, Kumar,

et al., 2022; Nguyen, Sarrazin, et al., 2022), thus affecting both the

TTD and TT50. We also found a correlation between α and β in Experi-

ment 1 (r = 0.41), which decreased in Experiment 2 (r = 0.34) and

3 (r = 0.38). This yielded a narrower range in α in Experiments 2 and

3 compared to Experiment 1 (Figure S1).

Given that our results were generally consistent across the exper-

iments, the parameter interactions outlined in Table S1 did not

severely impact TTDs and the α parameter. This suggests that

monthly δ18O and daily NO3
� time series hold similar information

content to constrain the hydrological transport in the study catch-

ment. The subsequent subsections examine details of the model

parameters in the three experiments.

4.1.1 | Water release dynamics

Parameters α and β (Figure 6a,b) showed a convergence towards the

same values across the experiments, indicating that the catchment

predominantly discharged young water (i.e., α < 1 and β ≥ 1) during

the study period. This release of young water, associated with a sharp

decrease in TT50 values during precipitation events (Figure 5), sug-

gests that precipitation quickly turns into runoff via fast, shallow flow

paths (Tetzlaff et al., 2007; Tromp-van Meerveld & McDonnell, 2006),

activated by wet conditions and soil saturation which enhance con-

nectivity within the catchment (Ambroise, 2004; Blume & van Meer-

veld (Ilja), 2015). Rapid water routing to the outlet limits water

interaction with the subsoil, where NO3
� may be retained or denitri-

fied. Consequently, fast water movement results in a quick mobiliza-

tion and transport of solutes during storm events, contributing to the

catchment short-term responsiveness (Berghuijs & Allen, 2019) and

limiting time for denitrification. Ultimately, this leads to elevated

instream NO3
� concentrations in streamflow (Figure 3).

While the catchment primarily releases young water, it is crucial

to recognize the seasonal variations in TT50 values (Figure 5), which

increase (or decrease) during low (or high) flows. During low flows,

TT50 values gradually increase (Figure 5), and suggest that streamflow

is likely sustained by older water from deeper groundwater via long

flow paths established between rainfall events (Jasechko et al., 2016;

Soulsby & Tetzlaff, 2008). This condition is due to limited connectivity

within the catchment caused by less or no saturation, unlike during

precipitation events. Longer TT50 values correspond to prolonged

exposure time of water with the soil matrix, facilitating denitrification

and leading to smaller NO3
� concentrations in streamflow (Figure 3).

Nonetheless, longer TT50 values can also result in a significantly

delayed response of solute export to input changes (Dupas

et al., 2016; Van Meter et al., 2017), thus inducing legacies and long-

term problems associated with diffuse NO3
� pollution persisting in

the subsoil, provided that denitrification is limited (Basu et al., 2022;

Kumar et al., 2020; Lutz et al., 2022). Overall, the water release

dynamics observed in the Upper Selke catchment are consistent with

prior work conducted in the region (Borriero et al., 2023; Nguyen

et al., 2021; Winter et al., 2021).

4.1.2 | Catchment storage

Calibrated initial soil storage had similarly and relatively well-

constrained values in Experiments 2 and 3 (Figure 6d); hence, soil

storage was well constrained by the instream δ18O time series. In con-

trast, the initial subsoil storage in all experiments was more loosely

constrained (Figure 6e). Given the substantial impact of catchment

storage on water and NO3
� transport times, it is critical to improve

subsoil storage estimation from other methods. For example, ground-

water modelling could help better understand the catchment's physi-

cal characteristics and the older water volume, both useful for

inferring the storage. Nonetheless, difficulty in estimating the subsoil

storage is common in other works based on SAS functions (Benettin

et al., 2017; Borriero et al., 2023; Buzacott et al., 2020; Nguyen

et al., 2021).

4.1.3 | Denitrification processes

The calibrated denitrification rate in the subsoil was well constrained

in both Experiments 1 and 3 (Figure 6c). However, when the density

distribution is more uniform, a parameter tends to be less identifiable.

Hence, while the denitrification rate generally falls within the same

range between Experiments 1 and 3, it appears less identifiable in

Experiment 3 compared to Experiment 1. Overall, the accuracy of

these values cannot be verified as the ‘true’ shape of the parameter's

posterior density distribution is unknown. Nonetheless, values for the

denitrification rate found in this study are within the ranges of other

studies conducted in the same region (Nguyen et al., 2021; Nguyen,

Kumar, et al., 2022; Yang, Heidbüchel, et al., 2018) and elsewhere

(Van Meter et al., 2017; Yu et al., 2023). The mass of denitrified N in

the subsoil, along with its balance in the subsoil, is reported

in Table S6, while for the N balance in the soil, we refer to the original

studies of Nguyen et al. (2021); Nguyen, Sarrazin, et al. (2022).

Previous work comparing the Upper Selke catchment with down-

stream areas, such as the Lower Selke catchment, showed that deni-

trification is a key factor of NO3
� removal in the Upper Selke. For

example, Nguyen, Sarrazin, et al. (2022) and Winter et al. (2021) found

higher denitrification rates in the Upper Selke than in the Lower Selke

BORRIERO ET AL. 11 of 17
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based on NO3
� model applications. The subsoil hydrochemical condi-

tions of the Upper Selke allow for more effective denitrification than

the Lower Selke. Despite showing a generally smaller TT50 than the

Lower Selke (Nguyen, Sarrazin, et al., 2022; Winter et al., 2021),

the Upper Selke is characterized by a significant TT50 variability

(Figure 5), which allows denitrification under low-flow conditions (see

Da50 number in Figure 8). In contrast, the Lower Selke, has a more

stable TT50 time series and, although having a generally longer TT50

than the Upper Selke, the transport time scale is still shorter than the

very long reaction time scale due to very low denitrification rates. As

a consequence, denitrification is limited (Nguyen, Sarrazin,

et al., 2022; Winter et al., 2021). Additionally, Hannappel et al. (2018)

showed a clear sign of ongoing denitrification in the Upper Selke

based on groundwater samples. Considering that denitrification is the

only process leading to permanent NO3
� removal (Boyer et al., 2006;

Burgin & Hamilton, 2007), there is a highly relevant role of denitrifica-

tion in the Upper Selke for natural attenuation of water pollution

(Otero et al., 2009; Singleton et al., 2007; Smith et al., 2009).

4.2 | Interplay between hydrological and
biogeochemical processes

Addressing NO3
� pollution in water and understanding the fate of

NO3
�, that is, its transport and retention within and export from the

catchment, requires a comprehensive exploration of hydrological and

biogeochemical processes across different catchment compartments

at various time scales (Bouwman et al., 2013; Kumar et al., 2020; Liao

et al., 2012). In this regard, the Damköhler number offers insights into

the primary driver of NO3
� removal (Lansdown et al., 2015), that is,

hydrological transport or denitrification (Ebeling et al., 2021; Minaudo

et al., 2019; Musolff et al., 2015, 2021). Our results for Da50 number

(Figure 8) revealed that during high-flow periods (i.e., Da50 < 1), trans-

port processes predominantly controlled the fate of NO3
�. Hence,

denitrification played a limited role in NO3
� removal, and NO3

� and

δ18O time series likely conveyed similar information in the study area.

In further support of this conclusion, we found a significant positive

correlation (r = 0.81; p-value <0.0001) among KGE values for Experi-

ments 1, 2 and 3, which indicates that when the SAS parameters per-

form well for δ18O, the same parameters, when coupled with the

denitrification rate, are equally effective for NO3
�. On the other hand,

during low-flow periods (i.e., Da50 > 1) denitrification became primar-

ily responsible for NO3
� removal from the catchment (Benettin

et al., 2020). Our results for the Da50 number clearly show the contin-

uous switch between the dominance of transport and denitrification

in NO3
� export dynamics, depending on the flow conditions.

The relationship between Q and solute concentration is often

explored through streamflow-concentration (C–Q) relationships,

revealing patterns in solute export dynamics (Godsey et al., 2009;

Musolff et al., 2017, 2021). Our results indicate that, generally, during

high Q periods, NO3
� concentration peaks, suggesting a chemo-

dynamic accretion pattern in the Upper Selke (Godsey et al., 2009).

This pattern can be influenced by the activation of source areas for

NO3
� during storm events, resulting in a rapid release of NO3

� into

the stream network (Ambroise, 2004; Blume & van Meerveld

(Ilja), 2015; Jencso et al., 2009). Furthermore, this suggests that NO3
�

is more likely stored in shallow subsoil zones rather than deeper

within the catchment (Musolff et al., 2021; Rozemeijer &

Broers, 2007; Tiemeyer et al., 2008).

4.3 | Towards improved representation of nitrate
transport modelling

Acknowledging the importance of modelling NO3
� with TTDs

(Benettin et al., 2020; Kumar et al., 2020; Nguyen et al., 2021;

Nguyen, Kumar, et al., 2022; Nguyen, Sarrazin, et al., 2022; van der

Velde et al., 2010), our study demonstrates that evaluating NO3
�

transport models against δ18O data can improve the identifiability of

transport parameter α and reduce the 95PPU of TT50 time series,

thus enhancing the description of hydrological transport. This is

critical for environmental policies and decision-making aimed at

enhancing NO3
� management strategies and regulating fertilizer

applications (Basu et al., 2022; Bouraoui & Grizzetti, 2014; Van Meter

et al., 2023).

Our findings in the Upper Selke suggested that during high flow

conditions, NO3
� export was primarily driven by hydrological trans-

port, and associated with a main release of young water. Additionally,

our results demonstrated that the insights derived from calibrating the

model against the time series of NO3
� concentrations closely mir-

rored the information gained by the corresponding time series of

δ18O values. Indeed, despite the interaction between transport

parameter α and reaction parameter k (Table S4), there were small dif-

ferences in time series of TT50 and posterior distribution of α

(Figures 5 and 6a) when derived using daily NO3
� and monthly δ18O

separately (i.e., Experiments 1 and 2) or simultaneously

(i.e., Experiment 3). This highlights the value of both NO3
� and δ18O

in understanding the hydrological processes in the Upper Selke catch-

ment. However, these results may be site-specific and not readily

apply to all catchments. For example, in a recent study by Yu et al.

(2023) conducted in a tile-drained agricultural field, SAS functions

were calibrated using chlorides, revealing a significant preference for

young water more pronounced during wetter conditions, as observed

in our study. Instead, the NO3
� export regime was classified as che-

mostatic (i.e., NO3
� concentrations remain stable over time) based on

C–Q relationships, which was attributed to a substantial mixing vol-

ume and the absence of a pronounced vertical contrast in NO3
�

levels. Therefore, our results may be particularly relevant to catch-

ments with hydrological conditions and solute export regimes similar

to the Upper Selke, that is, the preferential release of young water

along with the mobilization of solutes during precipitation events.

Whereas, the information derived from NO3
� concentration in terms

of hydrological processes might differ from that derived from δ18O

values at other sites. For this reason, a systematic assessment of

water quality models for NO3
� against TTDs inferred from δ18O

values is needed across diverse catchments.

12 of 17 BORRIERO ET AL.
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Our study demonstrated successfully constrained model parame-

ters (Figure 6) and simulated TT50 time series (Figure 5) with even a

few years of monthly δ18O observations. This aligns with a recent

study in the region that used a different transport model to simulate

instream δ18O values and TT50 time series using monthly δ18O values

in the same region (Borriero et al., 2023). In addition, incorporating

low-frequency δ18O values into model calibration alongside high-

frequency NO3
� concentrations proved beneficial in further con-

straining model simulations, as highlighted by the narrower 95PPU of

most of the model results in Experiment 3 as compared to those in

Experiment 1. This emphasizes the significance of low-frequency,

short-term observations in providing useful information about the

underlying hydrological processes.

Nonetheless, we advocate for richer datasets of high-frequency

δ18O values (e.g. daily or sub-daily) that may provide valuable insights

into underlying processes. However, collecting high-frequency water

samples can be expensive. Hence, it is crucial to know whether this

expense is justified in terms of better representation of the hydrologi-

cal process. Yet, in this study, we could not test the effect of δ18O

sampling on the modelled results due to insufficient δ18O observa-

tions. Stockinger et al. (2016) showed that isotope sampling frequen-

cies affect the estimated TTD and related metrics (i.e., young water

fraction). Therefore, future studies should explore the effects of δ18O

sampling frequencies on the water age selection preference and TTD

with a SAS-based modelling approach, and the sampling frequency of

δ18O data that can provide useful information for NO3
� transport

modelling.

Overall, our results demonstrated that constraining NO3
� trans-

port models with sparse δ18O data can serve as a validation tool for

water quality models. This allows for easy reproducibility in other

regions with different hydrological and geophysical settings. Ulti-

mately, this can facilitate a systematic evaluation across multiple

catchments, to assess how using different target variables for model

calibration may impact the simulation of water transport dynamics.

Improving the realism of our modelling approaches is particularly cru-

cial in view of increasingly extreme weather conditions and increased

water pollution due to global change.

5 | CONCLUSIONS

This study calibrated an NO3
� transport model using instream NO3

�

and δ18O values to determine whether both data sources provide

equivalent insights into catchment-scale transport processes. To this

aim, different Monte-Carlo experiments were conducted using SAS

functions and by calibrating model parameters with instream NO3
�

only (Experiment 1), instream δ18O only (Experiment 2) and with both

datasets (Experiment 3).

Our results showed similar transport parameters regardless of

the calibrated data used in the experiments. In addition, our find-

ings displayed a similar temporal dynamic of the simulated TT50

among the experiments, suggesting that NO3
� and δ18O values

contain similar information for model calibration, despite their

differing nature (reactive vs. conservative) and contrasting sam-

pling frequencies (daily vs. monthly). However, we identified inter-

action between transport parameter α and reaction parameter k in

Experiment 1, which was reduced when incorporating monthly

δ18O values in Experiment 3. This reduction was beneficial as it

improved the description of hydrological transport by reducing the

uncertainty in the transport parameters α and TT50 time series.

Notably, these interactions did not significantly affect the overall

model outcomes, given their general similarities across the

experiments.

We attributed the general similarity in transport mechanisms

between NO3
� and δ18O values to the chemo-dynamic accretion pat-

tern for solute export behaviour, characterized by rapid NO3
� release

during storm events. This highlighted the dominance of transport as

the driving force for NO3
� export during high flows, supported by

Da50 < 1. Hence, in the Upper Selke where NO3
� export is primarily

transport-driven during high flows, simulated TT50 and calibrated

transport parameters derived from NO3
� concentration will likely

align with those derived from δ18O values. However, these results

may not readily apply to all catchments, as simulated TT50 and cali-

brated transport parameters might differ when using NO3
� and δ18O

data at other sites.

This study explored the relationship between hydrology and bio-

geochemistry governing solute export from catchments, and

highlighted how validation of NO3
� transport models with a coarse

dataset of δ18O values can enhance the robustness of transport

description. This ultimately can improve NO3
� management strategies

under changing environmental conditions.

ACKNOWLEDGEMENTS

A. Borriero conducted the model simulations, carried out the analysis,

interpreted the results, prepared the figures and wrote the original

draft of the paper. A. Borriero, A. Musolff, T. V. Nguyen and R. Kumar

designed and conceptualized the study. T. V. Nguyen provided sup-

port for modelling. A. Musolff, T. V. Nguyen, R. Kumar and SRL pro-

vided data for model simulations. A. Borriero, A. Musolff, T. V.

Nguyen and R. Kumar conceived the methodology and experimental

design. All co-authors helped A. Borriero interpret the results. All

authors contributed to the review, final writing and finalization of

this work.

The research was supported by TERENO (TERrestrial ENviron-

mental Observatories), funded by the Helmholtz-Centre for

Environmental Research of the Helmholtz Association, and the Fed-

eral Ministry of Education and Research (BMBF). The authors thank

the German Weather Service and State Office of Flood Protection

and Water Management of Saxony-Anhalt for providing the necessary

input raw data to set up the mHM-SAS model. The authors would like

to thank Michael Rode and Uwe Kiwel for providing the in situ

nitrate-N data. Open Access funding enabled and organized by Pro-

jekt DEAL.

CONFLICT OF INTEREST STATEMENT

The authors have no competing interests to declare.

BORRIERO ET AL. 13 of 17

 10991085, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15154 by H

elm
holtz - Z

entrum
 Fuer, W

iley O
nline L

ibrary on [30/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Study 1

109



DATA AVAILABILITY STATEMENT

Source codes of the mHM-SAS model are available at https://git.ufz.

de/nguyenta/mhm-sas (Nguyen et al., 2021) and https://git.ufz.de/

yangx/mHM-Nitrate (X. Yang et al., 2018).Values of stable water iso-

tope data in precipitation and streamflow are available at https://doi.

org/10.1029/2017WR022216 (Lutz et al., 2018).

ORCID

T. V. Nguyen https://orcid.org/0000-0001-9111-4393

REFERENCES

Abbaspour, K. C., Johnson, C. A., & van Genuchten, M. T. (2004). Estimat-

ing uncertain flow and transport parameters using a sequential uncer-

tainty fitting procedure. Vadose Zone Journal, 3(4), 1340–1352.
https://doi.org/10.2136/vzj2004.1340

Ambroise, B. (2004). Variable ‘active’ versus ‘contributing’ areas or

periods: A necessary distinction. Hydrological Processes, 18(6), 1149–
1155. https://doi.org/10.1002/hyp.5536

Arnold, C. J., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998).

Large area hydrologic modeling and assessment part I: Model develop-

ment 1. Journal of the American Water Resources Association, 34(1),

73–89.
Basu, N. B., Van Meter, K. J., Byrnes, D. K., Van Cappellen, P., Brouwer, R.,

Jacobsen, B. H., Jarsjö, J., Rudolph, D. L., Cunha, M. C., Nelson, N.,

Bhattacharya, R., Destouni, G., & Olsen, S. B. (2022). Managing nitro-

gen legacies to accelerate water quality improvement. Nature Geosci-

ence, 15(2), 97–105. https://doi.org/10.1038/s41561-021-00889-9
Beck, M. B. (1987). Water quality modeling: A review of the analysis of

uncertainty. Water Resources Research, 23(8), 1393–1442. https://doi.
org/10.1029/WR023i008p01393

Benettin, P., & Bertuzzo, E. (2018). Tran-SAS v1.0: A numerical model to

compute catchment-scale hydrologic transport using StorAge selection

functions. Geoscientific Model Development, 11(4), 1627–1639.
https://doi.org/10.5194/gmd-11-1627-2018

Benettin, P., Fovet, O., & Li, L. (2020). Nitrate removal and young stream

water fractions at the catchment scale. Hydrological Processes, 34(12),

2725–2738. https://doi.org/10.1002/hyp.13781
Benettin, P., Kirchner, J. W., Rinaldo, A., & Botter, G. (2015). Modeling

chloride transport using travel time distributions at Plynlimon, Wales.

Water Resources Research, 51(5), 3259–3276. https://doi.org/10.

1002/2014WR016600

Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J.,

Harman, C. J., van der Velde, Y., Hrachowitz, M., Botter, G.,

McGuire, K. J., Kirchner, J. W., Rinaldo, A., & McDonnell, J. J. (2022).

Transit time estimation in catchments: Recent developments and

future directions. Water Resources Research, 58(11), e2022WR033096.

https://doi.org/10.1029/2022WR033096

Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., & Rinaldo, A.

(2017). Using SAS functions and high-resolution isotope data to

unravel travel time distributions in headwater catchments. Water

Resources Research, 53(3), 1864–1878. https://doi.org/10.1002/

2016WR020117

Benettin, P., van der Velde, Y., van der Zee, S. E. A. T. M., Rinaldo, A., &

Botter, G. (2013). Chloride circulation in a lowland catchment and the

formulation of transport by travel time distributions. Water Resources

Research, 49(8), 4619–4632. https://doi.org/10.1002/wrcr.20309

Berghuijs, W. R., & Allen, S. T. (2019). Waters flowing out of systems are

younger than the waters stored in those same systems. Hydrological

Processes, 33(25), 3251–3254. https://doi.org/10.1002/hyp.13569
Beven, K. (2005). On the concept of model structural error. Water Science

and Technology, 52(6), 167–175. https://doi.org/10.2166/wst.2005.

0165

Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrol-

ogy, 320(1), 18–36. https://doi.org/10.1016/j.jhydrol.2005.07.007
Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty

estimation in mechanistic modelling of complex environmental sys-

tems using the GLUE methodology. Journal of Hydrology, 249(1), 11–
29. https://doi.org/10.1016/S0022-1694(01)00421-8

Birkel, C., & Soulsby, C. (2015). Advancing tracer-aided rainfall–runoff
modelling: A review of progress, problems and unrealised potential.

Hydrological Processes, 29(25), 5227–5240. https://doi.org/10.1002/
hyp.10594

Blaen, P. J., Khamis, K., Lloyd, C., Comer-Warner, S., Ciocca, F.,

Thomas, R. M., MacKenzie, A. R., & Krause, S. (2017). High-frequency

monitoring of catchment nutrient exports reveals highly variable storm

event responses and dynamic source zone activation. Journal of Geo-

physical Research: Biogeosciences, 122(9), 2265–2281. https://doi.org/
10.1002/2017JG003904

Blume, T., & van Meerveld (Ilja), H. J. (2015). From hillslope to stream:

Methods to investigate subsurface connectivity. WIREs Water, 2(3),

177–198. https://doi.org/10.1002/wat2.1071

Bodirsky, B. L., Popp, A., Lotze-Campen, H., Dietrich, J. P., Rolinski, S.,

Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F.,

Biewald, A., & Stevanovic, M. (2014). Reactive nitrogen requirements

to feed the world in 2050 and potential to mitigate nitrogen pollution.

Nature Communications, 5(1), 3858. https://doi.org/10.1038/

ncomms4858

Boeykens, S. P., Piol, M. N., Samudio Legal, L., Saralegui, A. B., &

Vázquez, C. (2017). Eutrophication decrease: Phosphate adsorption

processes in presence of nitrates. Journal of Environmental Manage-

ment, 203, 888–895. https://doi.org/10.1016/j.jenvman.2017.05.026

Borriero, A., Kumar, R., Nguyen, T. V., Fleckenstein, J. H., & Lutz, S. R.

(2023). Uncertainty in water transit time estimation with StorAge

selection functions and tracer data interpolation. Hydrology and Earth

System Sciences, 27(15), 2989–3004. https://doi.org/10.5194/hess-

27-2989-2023

Botter, G., Bertuzzo, E., & Rinaldo, A. (2010). Transport in the hydrologic

response: Travel time distributions, soil moisture dynamics, and the

old water paradox. Water Resources Research, 46(3), W03514. https://

doi.org/10.1029/2009WR008371

Botter, G., Bertuzzo, E., & Rinaldo, A. (2011). Catchment residence and

travel time distributions: The master equation. Geophysical Research

Letters, 38(11), L11403. https://doi.org/10.1029/2011GL047666

Bouraoui, F., & Grizzetti, B. (2014). Modelling mitigation options to reduce

diffuse nitrogen water pollution from agriculture. Science of the Total

Environment, 468–469, 1267–1277. https://doi.org/10.1016/j.

scitotenv.2013.07.066

Bouwman, A. F., Bierkens, M. F. P., Griffioen, J., Hefting, M. M.,

Middelburg, J. J., Middelkoop, H., & Slomp, C. P. (2013). Nutrient

dynamics, transfer and retention along the aquatic continuum from

land to ocean: Towards integration of ecological and biogeochemical

models. Biogeosciences, 10(1), 1–22. https://doi.org/10.5194/bg-10-1-
2013

Boyer, E. W., Alexander, R. B., Parton, W. J., Li, C., Butterbach-Bahl, K.,

Donner, S. D., Skaggs, R. W., & Del Grosso, S. J. (2006). Modeling deni-

trification in terrestrial and aquatic ecosystems at regional scales. Eco-

logical Applications, 16(6), 2123–2142. https://doi.org/10.1890/1051-
0761(2006)016[2123:MDITAA]2.0.CO;2

Burgin, A. J., & Hamilton, S. K. (2007). Have we overemphasized the role

of denitrification in aquatic ecosystems? A review of nitrate removal

pathways. Frontiers in Ecology and the Environment, 5(2), 89–96.
https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2

Burigato Costa, C. M. d. S., da Silva Marques, L., Almeida, A. K.,

Leite, I. R., & de Almeida, I. K. (2019). Applicability of water quality

models around the world—A review. Environmental Science and Pollu-

tion Research, 26(36), 36141–36162. https://doi.org/10.1007/

s11356-019-06637-2

14 of 17 BORRIERO ET AL.

 10991085, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15154 by H

elm
holtz - Z

entrum
 Fuer, W

iley O
nline L

ibrary on [30/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Study 1

110



Buzacott, A. J. V., van der Velde, Y., Keitel, C., & Vervoort, R. W. (2020).

Constraining water age dynamics in a south-eastern Australian catch-

ment using an age-ranked storage and stable isotope approach. Hydro-

logical Processes, 34(23), 4384–4403. https://doi.org/10.1002/hyp.

13880

Carrard, N., Foster, T., & Willetts, J. (2019). Groundwater as a source of

drinking water in Southeast Asia and the Pacific: A multi-country

review of current reliance and resource concerns. Water, 11(8), 1605.

https://doi.org/10.3390/w110816

Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and conse-

quences for marine ecosystems. Science, 321(5891), 926–929. https://
doi.org/10.1126/science.1156401

Drever, M. C., & Hrachowitz, M. (2017). Migration as flow: Using hydro-

logical concepts to estimate the residence time of migrating birds from

the daily counts. Methods in Ecology and Evolution, 8(9), 1146–1157.
https://doi.org/10.1111/2041-210x.12727

Dupas, R., Jomaa, S., Musolff, A., Borchardt, D., & Rode, M. (2016). Disen-

tangling the influence of hydroclimatic patterns and agricultural man-

agement on river nitrate dynamics from sub-hourly to decadal time

scales. Science of the Total Environment, 571, 791–800. https://doi.
org/10.1016/j.scitotenv.2016.07.053

Ebeling, P., Kumar, R., Weber, M., Knoll, L., Fleckenstein, J. H., &

Musolff, A. (2021). Archetypes and controls of riverine nutrient export

across German catchments. Water Resources Research, 57(4),

e2020WR028134. https://doi.org/10.1029/2020WR028134

EU Commission. (1991). Directive 91/676/EEC. Council directive of

12 December 1991 concerning the protection of waters against pollu-

tion caused by nitrates from agricultural sources. Official Journal of

European Community, L375, 1–8.
EU Commission. (2020). Directive 2000/60/EC of the European Parlia-

ment and of the council of 23 October 2000 on establishing a frame-

work for community action in the field of water policy. Official Journal

of European Community, L327, 1–72.
Godsey, S. E., Kirchner, J. W., & Clow, D. W. (2009). Concentration–

discharge relationships reflect chemostatic characteristics of US catch-

ments. Hydrological Processes, 23(13), 1844–1864. https://doi.org/10.
1002/hyp.7315

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposi-

tion of the mean squared error and NSE performance criteria: Implica-

tions for improving hydrological modelling. Journal of Hydrology,

377(1), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
Hannappel, S., Köpp, C., & Bach, T. (2018). Charakterisierung des Nitratab-

bauvermögens der Grundwasserleiter in Sachsen-Anhalt. Grundwasser,

23(4), 311–321. https://doi.org/10.1007/s00767-018-0402-7
Harman, C. J. (2015). Time-variable transit time distributions and trans-

port: Theory and application to storage-dependent transport of chlo-

ride in a watershed. Water Resources Research, 51(1), 1–30. https://
doi.org/10.1002/2014WR015707

Harman, C. J. (2019). Age-ranked storage-discharge relations: A unified

description of spatially lumped flow and water age in hydrologic sys-

tems. Water Resources Research, 55(8), 7143–7165. https://doi.org/
10.1029/2017WR022304

Heidbüchel, I., Troch, P. A., Lyon, S. W., & Weiler, M. (2012). The master

transit time distribution of variable flow systems. Water Resources

Research, 48(6), W06520. https://doi.org/10.1029/2011WR011293

Heidbüchel, I., Yang, J., Musolff, A., Troch, P., Ferré, T., &

Fleckenstein, J. H. (2020). On the shape of forward transit time distri-

butions in low-order catchments. Hydrology and Earth System

Sciences, 24(6), 2895–2920. https://doi.org/10.5194/hess-24-2895-

2020

Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O.,

Howden, N. J. K., Ruiz, L., van der Velde, Y., & Wade, A. J. (2016).

Transit times—The link between hydrology and water quality at the

catchment scale. WIREs Water, 3(5), 629–657. https://doi.org/10.

1002/wat2.1155

Ilampooranan, I., Van Meter, K. J., & Basu, N. B. (2019). A race against

time: Modeling time lags in watershed response. Water Resources

Research, 55(5), 3941–3959. https://doi.org/10.1029/2018W

R023815

Ilampooranan, I., van Meter, K. J., & Basu, N. B. (2022). Intensive agricul-

ture, nitrogen legacies, and water quality: Intersections and implica-

tions. Environmental Research Letters, 17(3), 35006. https://doi.org/10.

1088/1748-9326/ac55b5

Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. J. (2016). Sub-

stantial proportion of global streamflow less than three months old.

Nature Geoscience, 9(2), 126–129. https://doi.org/10.1038/ngeo2636
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M.,

Bencala, K. E., & Marshall, L. A. (2009). Hydrologic connectivity

between landscapes and streams: Transferring reach- and plot-scale

understanding to the catchment scale. Water Resources Research,

45(4), W04428. https://doi.org/10.1029/2008WR007225

Jiang, S., Jomaa, S., & Rode, M. (2014). Modelling inorganic nitrogen leach-

ing in nested mesoscale catchments in central Germany. Ecohydrology,

7(5), 1345–1362. https://doi.org/10.1002/eco.1462
Kaandorp, V. P., Broers, H. P., van der Velde, Y., Rozemeijer, J., & de

Louw, P. G. B. (2021). Time lags of nitrate, chloride, and tritium in

streams assessed by dynamic groundwater flow tracking in a lowland

landscape. Hydrology and Earth System Sciences, 25, 3691–3711.
https://doi.org/10.5194/hess-25-3691-2021

Kaandorp, V. P., de Louw, P. G. B., van der Velde, Y., & Broers, H. P.

(2018). Transient groundwater travel time distributions and age-

ranked storage-discharge relationships of three lowland catchments.

Water Resources Research, 54(7), 4519–4536. https://doi.org/10.

1029/2017WR022461

Kim, M., Pangle, L. A., Cardoso, C., Lora, M., Volkmann, T. H. M., Wang, Y.,

Harman, C. J., & Troch, P. A. (2016). Transit time distributions and

StorAge selection functions in a sloping soil lysimeter with time-

varying flow paths: Direct observation of internal and external trans-

port variability. Water Resources Research, 52(9), 7105–7129. https://
doi.org/10.1002/2016WR018620
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Text S1: Importance of modeling to reproduce instream δ18O observations 

The observed δ18O time series was not perfectly simulated in both Experiments 2 and 3. By 
examining Fig. 4 of the main text, it appears that a straight line could potentially fit the δ18O data 
as well as the curved line. To explore this possibility, we conducted an experiment in which we 
assumed a constant value for the simulated δ18O over time and calculated the corresponding KGE. 
For example, using a constant value of the simulated δ18O of -9.2‰ (the average of the observed 
δ18O) resulted in a KGE of -0.41. In addition, we tested a range of 100,000 simulated δ18O constant 
values within the range of observed δ18O (-10.5‰ to 8.1‰) and found KGE values consistently 
between -0.41 and -0.42. 
These KGE values were significantly lower than those obtained through the model calibration 
conducted in our study, which yielded a maximum KGE value of 0.68. Therefore, these results 
showcase the importance of using a modeling approach to accurately reproduce δ18O seasonality, 
rather than relying solely on a straight line to simulate instream δ18O data. 

Text S2: Model's sensitivity to δ18O values and their seasonality 

We tested the sensitivity of the model to δ18O values and their seasonality by calibrating the model 
parameters with a synthetic instream δ18O data set, as a new iteration of Experiment 2. This 
synthetic time series lacks seasonality as it is derived from randomly selected values a with a 
normal distribution with a mean of -9.2‰ and a standard deviation of 0.55‰, reflecting the 
statistical properties of the observed instream δ18O data. To ensure statistical robustness and 
generalize our results, we used three separate time series of randomly selected δ18O values. 
Our results highlight the significant influence of δ18O values and their seasonal patterns on the 
model results. Calibration using non-seasonal synthetic δ18O data resulted in inaccuracies, as the 
model could not accurately reproduce the synthetic instream δ18O for the three-time series, 
achieving maximum KGE values of only 0.20, 0.06, and 0.27, respectively These values are well 
below the KGE of 0.68 obtained with the original δ18O data set. Simulations based on the synthetic 
time series with KGE > 0 yielded a total of 945, 73, and 1,743 solutions out of 100,000, resulting 
in larger 95PPU (Fig. S2 a, b and c) compared to the narrow and seasonal 95PPU observed with 
the original δ18O data (Fig S2 d). 
Similarly, the calibrated model parameters showed discrepancies between the use of synthetic and 
original instream δ18O (Fig. S3). For the three synthetic time series of δ18O, the SAS parameters α 
and β indicated greater release of old water (i.e. α ≥ 1 and β < 1), as shown by the green distribution 
in Fig. S3. Conversely, using the original δ18O time series resulted in parameters indicating greater 
release of young water (i.e. α < 1 and β ≥ 1). 
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Table S1: Summary of the mean statistical characteristics of simulated NO3

- among all solutions 
throughout the entire study period, high and low flows, for Experiments 1 and 3, and 
measurements; values in squared brackets represent the minimum and maximum.  
 

 Experiment 1 
(NO3

-) 
Experiment 3 
(NO3

- + δ¹⁸O) Measured NO3
- 

Spearman's rank 
correlation coefficient 

[-] 
(NO3

- vs. Q) 

ρ = 0.64 
[0.46 — 0.87] 

ρ = 0.56 
[0.46 — 0.69] 

ρ = 0.85 

p-factor of 95PPU [-] 0.64 0.58 - 
NO3

- in high flow 
[mg/L] 

2.64 
[0.27 — 5.66] 

2.88 
[0.27 — 5.66] 

3.94 
[1.93 — 6.27] 

NO3
- in low flow 
[mg/L] 

0.77 
[0 — 4.23] 

0.85 
[0 — 4.23] 

0.45 
[0.03 — 1.31] 

95PPU in high flow 
[mg/L] 

0.50 
[0.3 — 0.95] 

0.46 
[0.29 — 1.27] 

- 

95PPU in low flow 
[mg/L] 

2.29 
[1.14 — 4.07] 

2.96 
[0.54 — 6.36] - 

 
Table S2: Summary of the mean statistical characteristics of TT50 among all solutions throughout 
the entire study period, high and low flows, for Experiments 1, 2, and 3; values in squared brackets 
represent the minimum and maximum.  
 

 Experiment 1 
(NO3

-)  
Experiment 2  

(δ18O)  
Experiment 3 
(NO3

- + δ18O)  
Pearson coefficient [-] 

(TT50 vs. Q)  -0.52 [-0.59 — 0.37]  -0.47 [-0.57 — 0.19]  -0.47 [-0.57 — 0.37]  

TT50 in study period [d]  116 [0 — 472]  81 [0— 339]  72 [1 — 338]  
TT50 in high flow [d]  17 [0 — 349]  13 [0 — 28]  4 [0 — 28]  
TT50 in low flow [d]  247 [0 — 472]  240 [0 — 339]  229 [0 — 337]  

TT50 before drought [d]  92 [0— 376]  54 [0 — 267]  46 [0— 267]  
TT50 after drought [d]  139 [0— 472]  108 [0 — 339]  97 [0— 338]  
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Table S3: Summary of the mean calibrated parameters of the mHM-SAS model utilized in this 
study for Experiments 1, 2, and 3; values in squared brackets represent the minimum and 
maximum.  
 

 Experiment 1 
(NO3

-) 
Experiment 2 

(δ18O) 
Experiment 3 
(NO3

- + δ18O) 
α [-] 0.24 [0.10 — 0.48] 0.17 [0.10 — 0.25] 0.15 [0.10 — 0.24] 
β [-] 1.93 [0.48 — 2.96] 2.01 [0.54 — 2.97] 1.97 [0. 56 — 2.98] 

k [d-1] 0.02 [0.005 — 0.07] - 0.03 [0.007 — 0.09] 
Ssoil

0 [mm] - 360 [302 — 455] 361 [302 — 453] 
Ssub

0 [mm] 725 [510 — 982] 719 [509 — 982] 704 [510 — 973] 
 
 
Table S4: Matrix of Pearson correlation coefficients between pairs of calibrated mHM-SAS 
parameters used in this study. 
 

Exp. 1.  α  β  k  Ssoil
0  Ssub

0  
α  1 0.41 -0.43 0.005 -0.15 
β  0.41 1 0.04 0.03 0.006 
k  -0.43 -0.04 1 0.06 0.007 

Ssoil
0  0.005 0.03 0.06 1 0.04 

Ssub
0  -0.15 0.006 0.007 0.04 1 

Exp. 2  α  β  k  Ssoil
0  Ssub

0  
α  1 0.34 - -0.39 -0.09 
β  0.34 1 - 0.19 0.07 
k  - - - - - 

Ssoil
0  -0.39 0.19 - 1 -0.1 

Ssub
0  -0.09 0.07 - -0.1 1 

Exp. 3  α  β  k  Ssoil
0  Ssub

0  
α  1 0.38 -0.23 -0.37 -0.13 
β  0.38 1 0.1 0.17 0.08 
k  -0.23 0.01 1 0.18 0.07 

Ssoil
0  -0.37 0.17 0.18 1 -0.03 

Ssub
0  -0.13 0.08 0.07 -0.03 1 

 
Table S5: Summary of the mean statistical characteristics of Da50 among all solutions during high 
and low flows, for Experiments 1 and 3; values in squared brackets represent the minimum and 
maximum. 
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 Experiment 1 (NO3
-) Experiment 3 (NO3

- + δ18O) 
Da50 in the study period 

[-] 2.1 [0 — 23.2] 2.2 [0 — 28.3] 

Da50 in high flow [-] 0.23 [0 — 3.9] 0.12 [0 — 2.5] 
Da50 in low flow [-] 5.2 [0 — 23.2] 7.1 [0 — 28.3] 

Spearman's rank 
correlation coefficient [-] 

(Da50 vs. Q) 

-0.79 
[-0.94 — -0.45] 

-0.82 
[-0.94 — -0.56] 

Table S6: Summary of the mean statistical characteristics of N balance in the subsoils, for 
Experiments 1 and 3; values in squared brackets represent the minimum and maximum; negative 
values of changes of N storage indicate that final N in storage is less than initial N in storage. 
 

 Experiment 1 (NO3
-) Experiment 3 (NO3

- + δ18O) 
N input from infiltration 

[kg/ha/year] 7.67 7.67 

N denitrified 
[kg/ha/year] 4 [2.45 – 4.91] 3.64 [2.47 – 4.87] 

N exported to stream 
[kg/ha/year] 3.7 [2.72 – 5.22] 4.02 [2.76 – 5.22] 

N changes in storage 
[kg/ha] -0.31 [-1.71 – 0.49] 0.09 [-0.9 – 0.49] 
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Fig. S1: Measured daily instream NO3
- as grey circles and simulated daily NO3

-, percolating from 
soil to subsoil, as yellow circles; the dark blue area is the streamflow time series. 

 
 

Fig S2: 95PPU of simulated monthly instream δ¹⁸O for Experiment 2: (a) 945, (b) 73, (c) 1,743, 
and (d) 1,706 simulations; grey circles represent synthetic (a, b, and c) and original (d) observed 
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instream δ¹⁸O data; the dashed line is the ensemble mean derived from all solutions; the dark blue 
area is the streamflow time series. 

 
 

Fig S3: Kernel distributions of transport-related mHM-SAS parameters. Blue distributions stand 
for parameters calibrated using the original instream δ¹⁸O data, while green distributions stand for 
synthetic δ¹⁸O data. For the green distributions, panels (a)-(b) show results for 945 simulations, 
(c)-(d) for 73 simulations, and (e)-(f) for 1,743 simulations. The y-axis represents the probability 
per unit value of the mHM-SAS parameters. Note that the kernel probability on the x-axis extends 
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beyond the dataset limits due to the sum effect of individual Gaussian probability distributions 
applied to each value in the dataset. 

 
 
Fig. S4: Kernel distribution of the 100,000 mHM-SAS parameters, which are uniform 
distributions. The x-axis for k in the subsoil (panel c) is expressed in a logarithmic scale for better 
displaying small values. The y-axis represents the probability per unit value of the mHM-SAS 
parameters. Note that the kernel probability on the x-axis extends beyond the dataset limits due to 
the sum effect of individual Gaussian probability distributions applied to each value in the dataset. 
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Fig. S5: Relation between α and β in Experiment 1, 2 and 3 with 1,332, 1,706 and 315 simulations, 
respectively. 
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