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Zusammenfassung

Blut ist die Flüssigkeit, die die Funktionsfähigkeit des menschlichen Körpers durch
eine Vielzahl von Transportfunktionen im Herz-Kreislauf-System gewährleistet. Ro-
te Blutkörperchen sind der wichtigste zelluläre Bestandteil und machen Blut zu ei-
ner hochkomplexen Flüssigkeit, deren Strömungsverhalten bei Weitem noch nicht
vollständig erforscht ist. Diese Arbeit trägt zum Verständnis der Blutströmung bei,
indem die Formen der roten Blutkörperchen in verschiedenen Strömungsgeometrien
mit dreidimensionalen numerischen Simulationen untersucht werden.
In Mikrokanälen fließen rote Blutkörperchen in zwei charakteristischen Formen,

die als slipper und croissant bezeichnet werden und die auch als transiente Zwi-
schenformen auftreten können. In dieser Arbeit werden die Bedingungen und der
Prozess des Übergangs zwischen diesen beiden Formen in einer zeitabhängigen Strö-
mung untersucht. Außerdem wird die Dynamik des slipper-Zustands durch einen
engen Vergleich der Simulationsergebnisse mit entsprechenden experimentellen Stu-
dien näher beleuchtet. Die beobachtete Unstimmigkeit in der Frequenz der slipper-
Bewegung mit experimentellen Daten wird durch die zusätzliche Berücksichtigung
der Membranviskosität der Zelle im Simulationsmodell aufgelöst. Der Einfluss der
Erythrozytenparameter in verschiedenen Versuchsanordnungen wird untersucht, was
insbesondere die Bedeutung der Viskosität der Membran der roten Blutzelle für die
Dynamik des Deformationsprozesses aufzeigt, die sich von dem Einfluss der Viskosi-
tät der intrazellulären Flüssigkeit unterscheidet. Die untersuchten Systeme umfassen
die Dynamik der Zellen in einer Scherströmung und in einem Kanal der Längenskala
der Blutzellen sowie die Dehnung und anschließende Relaxation der Zelle in einem
System (optischer) Mikropinzetten. Außerdem untersucht wird die Zellverformung
in einer Expansionsgeometrie und in einem sich verengenden Kanal. Letzteres wird
für den Vergleich einer großen Anzahl von Deformationsdaten einzelner Zellen mit
experimentellen Daten aus einem Aufbau mit sehr hoher Durchsatzrate verwendet.
Im letzten Teil der Arbeit wird neben der detaillierten Analyse der Einzelzelldyna-
mik auch ein Ausblick auf das kollektive Zellverhalten in zeitabhängiger Strömung
gegeben. Die Bereiche im Umfeld einer Verengung in einem Mikrokanal, in denen
sich keine Zellen befinden, werden untersucht, wobei sich mithilfe der Simulationser-
gebnisse die Kopplung der Dynamik der zellfreien Regionen mit der Oszillation des
Strömungsfeldes erklären lässt.
Die Untersuchung der beschriebenen Systeme basiert auf der boundary integral-

Methode und der lattice Boltzmann-immersed boundary-Methode. Ein mathema-
tischer Ausdruck für die zusätzlich wirkenden Kräfte durch die viskose Spannung
aufgrund des bisher fehlenden Beitrags der Membranviskosität wird in einer Form
hergeleitet, die mit dem boundary integral-Verfahren kompatibel ist. Dieser Beitrag
wird erfolgreich implementiert und validiert. Im weiteren Verlauf der Arbeit wird
ein neuartiger Ansatz für den Vergleich von experimentellen und numerischen Da-



ten entwickelt, um aus den statistischen Daten vieler Zellen auf die Verteilung der
Zelleigenschaften zu schließen.



Abstract

Blood is the fluid that ensures the functionality of the human body through a variety
of transport functions in the cardiovascular system. Red blood cells are the main
cellular component and make blood a highly complex fluid, whose flow behaviour
is far from fully understood. This thesis contributes to the understanding of blood
flow, by investigating red blood cell shapes in various flow geometries with three-
dimensional numerical simulations.
In microchannels red blood cells flow in two characteristic shapes, named slipper

and croissant, which can also occur as transient intermediate shapes. This thesis
elucidates the conditions for and the process of the transition between these two
shapes in time-dependent flow and also sheds light on the dynamics of the slipper
state, by closely comparing the simulation results to related experimental studies.
The observed disagreement in the frequency of the slipper movement with the exper-
imental data is resolved by the incorporation of a membrane viscosity contribution
in the simulation model. The influence of the red blood cell parameters in different
setups is investigated. This especially demonstrates the significance of the viscosity
of the red blood cell membrane for the dynamics of the deformation process, which
is distinct from the influence of viscosity of the intracellular fluid. The investigated
systems include the study of the dynamics in shear flow and in the microchannel, the
stretching and subsequent relaxation of the cell in a tweezer system and the cell de-
formation in an expansion geometry as well as a narrowing channel. The latter setup
is used to compare the single cell deformation data for a large number of cells to an
experimental high-throughput cell analysis method. In the last part of the thesis, in
addition to the detailed analysis of single cell dynamics, an outlook on the collective
cell behaviour in time-dependent flow is given. The cell-depleted regions around a
constriction in a microchannel are studied, and the simulation results explain the
coupling of the dynamics of cell-free regions to the flow field oscillation.
The investigation of the described systems is based on the boundary integral

method and the lattice Boltzmann-immersed boundary method. A mathematical
expression for the additional membrane forces from the viscous stress due to the
previously missing membrane viscosity contribution is derived in a form compatible
with the boundary integral approach. This contribution is implemented and valid-
ated successfully. In the last part of the thesis, a novel approach for the comparison
of experimental and numerical data is developed, in order to infer the distribution
of the cell properties from the statistical data for many cells.
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1 Introduction

Some very general facts The study of blood flow is not only undertaken in the
fields of biology and medicine, but also became a subject of interest for physicists.
The goal is to gain systematic understanding of the physical mechanisms which
determine the blood flow behaviour, especially that of the main blood component,
the red blood cells (RBCs). About 40 % to 45 % of human blood consists of red
blood cells (erythrocytes), the remaining volume is taken up by blood plasma and
less than 1%̇ by other solid components, such as white blood cells and platelets [1].
This makes blood a highly complex fluid that cannot be described on the length scale
of individual cells, using the classic methods of hydrodynamics for simple fluids. The
flow properties are primarily determined by the interaction of the erythrocytes with
each other and with the surrounding plasma. RBCs are highly deformable and can
pass through orifices much smaller than the RBC rest shape [2]. These aspects make
it challenging to describe and understand the system using the methods of physics.
The study of the microfluidic flow behaviour of RBCs advances our knowledge of
in vivo blood flow. Changes in the mechanical properties of erythrocytes, such as
the viscosity of the cytoplasm or the bending rigidity of the cell membrane, can
change the red blood cell morphology and crucially impact flow behaviour in blood
vessels [3–6].

Why it is interesting to study blood flow Moreover, understanding the dynamics
of blood flow is interesting from the perspective of potential applications and can lead
to insights into various diseases related to blood cell abnormalities and pathological
changes in the circulatory system. If the morphology and behaviour of healthy
red blood cells are known, pathological changes in the blood can be detected and
investigated, such as those caused by diseases like malaria or sickle cell anemia [7].
Sorting cells based on their dynamic properties is also possible [8, 9]. Laboratory-on-
a-chip applications for biomedical appliance can be developed based on theoretical
and microfluidic investigation of microchannels and especially channel constrictions,
which strongly impact the organisation of the red blood cells. Furthermore, the shape
of RBCs is thought to influence oxygen transport in capillaries [10]. In recent studies,
changes in the red blood cell behaviour have been linked to COVID-19 disease [11,
12].

1



1 Introduction

From where this thesis starts The shape deformations of single RBCs in flow
have been studied since at least the the nineteen-eighties [13]. Red blood cells flow-
ing through microchannels exhibit different characteristic shapes. These are mainly
croissants, observed centred in the parabolic flow and asymmetric slippers, which
flow off-centred and show a characteristic tank-treading movement of the membrane
around the cell interior [13–17]. Theoretical investigations began with simulation
models for vesicles in two dimensions in unlimited and limited Poiseuille flow, where
in addition to croissants and slippers, projectile-shaped cell forms (bullets) occur [18,
19]. Like RBCs vesicles have a double lipid layer but, unlike red blood cells, they
do not possess shear elasticity. Since shear elasticity has no significance for a one-
dimensional surface, the vesicle and erythrocyte models are equivalent in two dimen-
sions. Further studies for two-dimensional vesicles find, that the interplay of channel
width and viscosity difference between the cell interior and surrounding fluid determ-
ines the use of tank-treading for slippers [20]. In addition, the transition between
slipper and croissant is determined not only by the channel geometry but also by the
flow intensity, whereby the initial shape of the simulated vesicle can also be decisive
in a region of coexistence [21]. Hariprasad et al. [22] find, that for certain channel
widths, the initial position of the simulated cell determines, whether it converges to
the center of the channel or moves away from the center line under tank-treading.
Simulations of red blood cells in three dimensions lead to a phase diagram that
predicts shape (slipper, croissant and discocyte) and dynamics (angle and distance
to the channel axis, movement . . . ) again as a function of channel width and flow
rate [23]. Due to the cylindrical geometry, for strongly constricted channels this
study finds no slippers, in contrast to the two-dimensional simulations mentioned
above. Similar simulations, which take into account that for healthy individuals the
viscosity of the cell interior has a larger value than the viscosity of the blood plasma,
lead to a qualitatively similar phase diagram with croissants at high flow rates in
narrow channels, which, however, only shows tumbling dynamics of the cells in the
area of the discocyte shape [24]. The experimental phase diagram presented in this
study [24] has no sharp transitions between the different cell shapes, instead, it is
constructed from the probability distribution for the occurrence of certain shapes.
These measured frequency distributions can be reproduced qualitatively by replacing
the constant value of the shear elasticity of the RBCs with a continuous distribution
in the simulation [24]. This approach is justified because RBCs are biological entit-
ies and their mechanical properties can vary in a physiologically reasonable range.
Guckenberger et al. [17] discuss for different cell velocities the decisive influence that
the starting position and initial shape of the blood cell have on the later shape in
simulations, in three dimensions and for a viscosity contrast of 5 between the cell in-
terior and the external fluid. The authors also compare their numerical results with
corresponding experiments, which show a distribution of the various RBC shapes as
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a function of the flow velocity. Moreover, recent numerical studies find, that not only
the viscosity of the cell interior but also the viscosity of the cell membrane influences
the dynamic cell deformation [25–27]. The various experimental and simulation res-
ults on the flow behaviour of individual erythrocytes in microchannels show, that the
extremely complex dynamics of red blood cells in flow are decisively influenced by
e.g. the channel geometry and flow intensity, the cells’ elastic and viscous properties
as well as the initial position of the cell. The last two points in particular are para-
meters that are difficult to measure or even control in experiments. This fact and
the large number of influencing factors makes it difficult to systematically compare
different studies and leads to phase diagrams in the literature for the shape of RBCs,
which are not always consistent. Moreover, Guckenberger et al. [17] point out that
transient slipper and croissant states exist, which, however, cannot be clearly identi-
fied as non-stationary shapes. This observation suggests that a reliable comparison
between experiment and simulation based on phase diagrams for stationary RBC
shapes is difficult.

Aim and structure of this thesis The aim of this thesis is to help towards a better
understanding of the transient red blood cell shapes in flow, using different numerical
methods. Transient shape first of all refers to the two predominant shapes slipper
and croissant but in the further development of the thesis also to other types of
transient shapes, which form in different types of flow. Following on from previous
observations [17] that croissant and slipper shapes can be transient states, chapter 3
investigates dynamic shape changes in time-dependent flow. In the first part of the
chapter the flow velocity-induced transition between slipper and croissant shape is
examined, together with the dynamics of slipper cells. The second part of the chapter
investigates the robustness of the phase diagram in pulsatile flow. The slipper dy-
namics are for the first time compared to novel experimental results. The details of
the dynamical comparison between experiment and simulation in this chapter reveal,
that in the simulation model a contribution to the RBC mechanics is missing. This
comparison also shows, that the study of the dynamical behaviour, such as frequency
results or dynamic shape transitions, is preferable compared to the construction of
static phase diagrams, which did not reveal this missing contribution. It can be
hypothesised that the missing part is a contribution which describes the viscosity
of the membrane of the cell. The next chapter 4 outlines how this contribution
can be included in the simulation model and shortly describes the implementation.
The influence of this additional viscous contribution on the RBC dynamics in the
microchannel setup is discussed in chapter 5 and the agreement with the experi-
mental data from previous chapters is analysed. In the literature the deformation of
RBCs stretched with (optical) tweezers and RBCs under shear flow are frequently
investigated to validate simulation models or infer RBC properties. Results for these
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systems with the implemented viscous RBC contribution, together with the results
for these RBCs in a constriction geometry are presented and compared with experi-
mental results in chapter 6. In addition to the investigation of single cell dynamics,
in chapter 7 a many-cell statistical approach is pursued. It is interesting to study the
accumulated deformation behaviour of many RBCs because RBCs, as biological ob-
jects, are subject to biological variability, which, in experiments, leads to a scattering
of the measurement results and in simulations should be expressed as a variation of
the RBC properties in a physiologically meaningful range. An approach to reconcile
experimental and simulation data for such a setup and strategies to infer informa-
tion about the physical properties of RBCs from that are presented in the chapter.
Finally, in the last chapter 8, again a time-dependent flow is considered and its in-
fluence on the collective behaviour of many red blood cells in a constricted geometry
is studied.
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2 Numerical simulations of red blood
cells

2.1 Overview
This chapter gives an overview of the simulation methods used in this thesis. First
the structure of RBCs and their modelling in numerical simulations is described in
section 2.2. There are different approaches to simulate RBCs in flow and to im-
plement the coupling of the membrane to the surrounding fluid. Many simulations
are based on implementations of the boundary integral method for systems with low
Reynolds numbers [15, 17, 18, 21, 28], which is based on the solution of the Stokes’
equation and thus neglects inertial effects. Section 2.3 explains the fundamentals of
the boundary integral method (BIM) and its implementation by Guckenberger [29].
BIM simulations in this thesis and extensions of the code are based on this imple-
mentation. The second numerical method used for simulations in this thesis, the
lattice Boltzmann method (LBM), is described in section 2.4, together with the
immersed boundary method (IBM) for the interaction of RBC and fluid. The LBM-
IBM method is not restricted to low Reynolds number systems and frequently used
in blood flow simulations [20, 25].

2.2 Red blood cell model
RBCs consist of a thin membrane which encloses the inner fluid. The membrane
is made up of a outer lipid bilayer and a inner membrane skeleton, mainly spectrin
philaments which lie beneath the bilayer [30]. The membrane can be modelled as
a two-dimensional (visco-)elastic sheet, because its thickness of around 100 nm is
negligible compared the the large radius R = 4 µm of the cell [31]. In simulations
the membrane is discretised with flat triangles with nodes at their edges as shown
in figure 2.1(a). Properties of the membrane are resistance to bending and surface
conservation due the lipid bilayer. In addition, the membrane skeleton is responsible
for the cell’s shear elasticity.
The latter two effects are described with phenomenological Skalak law [32, 33]

WS = κS

12
(
I2

1 + 2I1 − 2I2
)

+ κA

8 I2
2 (2.1)
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≈ 8 µm

(a) (b)

Figure 2.1: Modelling of RBCs in simulations. (a) The surface is discretised with flat triangles. (b)
A cut through the cell shows the symmetry of the discocyte shape. The dimples of the
cell are marked in green and blue.

where κS is the shear modulus, κA the area conservation modulus and I1, I2 are the
deformation invariants of the surface displacement gradient [34]. Note that different
conventions for the fractions of the prefactors in the Skalak law exist [32–36]. We
use the principal of virtual work to compute the elastic force on a membrane point
xi [35]

F (xi) = −∂WS

∂xi
. (2.2)

The Helfrich model describes the resistance to bending [37–40]

WB =
∫
S

2κB(H −H0)2dS (2.3)

where κB is the bending modulus and

H(x) = 1
2

3∑
i=1

(∆Sxi)ni(x) x ∈ S (2.4)

is the local mean curvature [40, 41] with the reference curvature H0. The reference
curvature is commonly reported in dimensionless form as c∗0 = 2H0a0 where a0 =
2.82 µm is the equivalent radius of a sphere whose surface area is identical to that
of the RBC. The integral in equation (2.3) runs over the whole membrane surface
S with normal vector n and points x on the surface. The resulting force on the
membrane is computed as a bending force density on the membrane [40].

∆fB = −2κB
[
∆S(H −H0) + 2(H −H0)(H2 −K +H0H)

]
n, (2.5)

with the Gaussian curvature K(x) = κ1κ2 and the mean curvatures κ1,2. The shear
and bending energy contributions lead to membrane forces, which together with the
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volume conservation of the RBC lead to the characteristic rest shape of the cell,
also called equilibrium shape. The RBC assumes its rest shape when located in a
quiescent fluid without external flow [42]. The rest shape is a discocyte with a rim
and two dimples, it has a long radius of R = 3.91 µm, abbreviated as radius of the
RBC, the surface area is A = 133.5 µm2 and the volume V = 93.5 µm3 [1, 7, 43].
A mathematical expression for the discocyte shape is used to generate this shape
in the simulation model [29, 43] shown in figure 2.1, in 2.1(b) the two dimples of
the cell are highlighted in green and blue. The RBC exhibits a shape memory [42,
44], if external forces on the RBC are removed, it relaxes back to its discocyte rest
shape with the dimples at the same position of the surface. Parameters in simulation
models must be chosen such that this rest behaviour is ensured.
For the shear contribution an elastic reference shape of the RBCmust be defined [45–

49], other common names are stress-free shape or natural state. The elastic shear ref-
erence can be interpreted as the cytoskeleton shape in absence of external forces and
is not necessarily identical to the rest shape of the RBCs. For the RBC mainly two
different possibilities are used in the literature, the discocyte and a nearly spherical
oblate spheroid. In recent years studies show a tendency towards an oblate spheroid
replacing the discocyte as shear reference shape [50–54]. The spheroid is defined by
its aspect ratio τ and its radius is chosen such, that the spheroid’s and the RBC’s
surface area are identical.
Typical values of the shear and bending moduli of the red blood cells are κS =

5× 10−6 N m−1 [31, 55, 56] and κB = 3× 10−19 N m [17, 25, 31, 57, 58]. Depending
on the reference shape, different reference curvatures c∗0 are appropriate [52], this is
discussed in detail in section 5.3. The particular specification in the simulations is
given in the setup description of the respective section.
The RBCs are suspended in a Newtonian fluid of dynamic viscosity µo and filled

with another Newtonian fluid of viscosity µi. The ratio of these defines the viscosity
contrast

λ = µi

µo
. (2.6)

The interior fluid of healthy RBCs is more viscous than blood plasma due to the
haemoglobin inside the cell, therefore the implementation of a viscosity contrast is
necessary for blood flow simulations [59].
Early experimental results proposed a value near λ = 5 for the viscosity contrast

between blood plasma and the fluid inside the RBCs [60, 61], which was assumed for
most simulation studies [17, 24]. We showed recently that larger values of the viscos-
ity contrast might better capture experimental results [62]. In this thesis different
values of λ are investigated, i.e. different values of the RBC internal viscosity. For
the absolute value of the outer viscosity µo the value of the dynamic blood plasma
viscosity 1.2 mPa s [63] is assumed if not stated otherwise.
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2.3 Boundary integral method simulations

2.3.1 The boundary integral method
In systems where the viscous forces are significantly larger than the inertial forces
the Navier-Stokes equation can be simplified to the Stokes equation

0 = −∇p+ µ∆v + f . (2.7)

with pressure p, dynamic viscosity µ, velocity v and a force term f . In general, the
Stokes equation and the continuity equation ∇ · v = 0 together must be solved to
compute the motion of the fluid.
A simple example is the velocity field [64]

vi(x) = 1
8πµGij(x,x0)Fj (2.8)

which is the solution of (2.7) for a point force f = F δ(x − x0) at x0. Here
Gij(x,x0), i, j = 1, 2, 3 is the Green’s function also called stokeslet. The associ-
ated stress tensor is

σil(x) = 1
8πTijl(x,x0)Fj (2.9)

with the stresslet Tijl(x,x0). The concrete shape of the Green’s function and stresslet
depends on the simulated system, for example free space, or in many applications a
three-dimensional periodic system [65, 66]. The expressions for Gij and Tijl in free
space are given by [64]

G∞ij (x,x0) = δij
r

+ x̂ix̂j
r3 T∞ijl(x,x0) = −6x̂ix̂jx̂l

r5 with x̂ = x− x0, r = |x̂|.
(2.10)

The BIM is based on the idea to discretise the surface of all objects in the incident
flow v∞ and treat the elements of the surfaces as point forces in the Stokes equation.
Then these point forces are sources of additional contributions to the background
flow v∞. Such objects can be RBCs, but channels are treated alike. Regarding the
technical implementation, the Stokes equation is written as an integral equation over
the discretised surface S [64, 67].

vj(x0) = 2
1 + λn

v∞j (x0)− 1
8πµo

N∑
m=1

∫
S

∆fi(x)Gij(x,x0)dS(x)

+ 1
8π

N∑
m=1

(1− λm)
∫
S

vi(x)Tijl(x,x0)nl(x)dS(x)
 . (2.11)
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Equation (2.11) is called Fredholm integral equation and gives the velocity at a
surface point x0 for particle n out of 1, . . . , N particles in the volume, and ∆fi is
the traction jump across the particle surface [67]. The second term in (2.11) is
called single-layer potential, the third term double-layer potential [64]. For RBCs
the viscosity contrast is defined in (2.6) and for walls it is λ = 1 [29].
Systems which are adequately described by Stokes equation feature a low Reynolds

number
Re = vLρ

µ
, (2.12)

which describes the ratio between the inertial and viscous forces of the system. Here
L is a characteristic length scale of the system. In these cases the BIM can be
used for numerical simulation. A prime example studied in this thesis are RBCs in
the microcirculation, mimicked by RBCs in microfluidic channels. The diameter of
the cell gives the characteristic length scale L = 2R and in many cases studied in
this thesis the viscosity is equal to the blood plasma viscosity, values are given in
section 2.2. The density is given by the blood plasma density ρ = 1 g cm−3 [68].

2.3.2 Implementation of the boundary integral method
The implementation of the BIM described here along general lines is the work of
Guckenberger [29, 69]. The implementation was written in C++ and validated for
several applications [17, 39, 65, 70, 71]. All objects in the flow, in this work RBCs
and channels, are discretised with flat triangles. In order to prevent numerical prob-
lems, rectangular channels have slightly rounded corners. Channel nodes are fixed
with springs of such high spring constant, that this implementation has negligible
influence on the simulation outcome. This approach leads to non-vanishing velo-
city at the wall which is numerically favourable when solving the Fredholm integral
equation [65, 72]. The membrane forces of the RBCs are included as traction jumps
across the membrane ∆f in the Fredholm integral equation (2.11). For the Skalak
contribution the negative of the force (2.2) is divided by the area attributed to node
xi, using ‘Meyer’s mixed area’ [40, 73]. The traction jump for the bending contri-
bution is directly given in (2.5). The numerical difficulty there is that because of
the second Laplace-Beltrami operator ∆S [74] in (2.4) a fourth derivative must be
computed on the triangulated surface [39]. The method used for computation of the
bending forces is Meyer’s algorithm [73], further details are given in method C in
[39]. For the integration of equation (2.11) a standard Gaussian quadrature [75] with
7 points per triangle is used and linear interpolation for each triangle [64]. Singular-
ity removal procedures for single-layer [65, 76] and double-layer potentials [65, 67,
77] make numerical evaluation possible for surface points with diverging, but still
integrable Green’s function. In systems with periodic boundary conditions Ewald
decomposition [78] in combination with a smooth particle mesh Ewald method [66,
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79] increase the performance for the computation of the Green’s functions. For the
solution of the ensuing linear, dense, non-symmetric system GMRES [80] is used.
This procedure returns the surface velocity as solution of equation (2.11) and

the surface nodes are moved accordingly using the kinematic boundary condition
v(x(t), t) = dx/dt [67]. The time integration of the kinematic boundary condition is
solved with a Bogacki-Shampine algorithm [81] with adaptive time step width, the
absolute tolerance is around 10−5 times the RBC radius. The volume conservation
of the cell is violated due to artificial changes related to the finite resolution of the
surface triangulation. These are corrected with a no-flux velocity condition and a
rescaling method for the volume [65, 82].

2.4 Lattice Boltzmann-immersed boundary method
simulations

2.4.1 Lattice Boltzmann method
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8 13

3

4

2 1

6

17

12

10 15

5

11

18

16 9

x

y

z

(a) (b)

Figure 2.2: Discretisation for the lattice Boltzmann-immersed boundary method implementation.
(a) The velocity set D3Q19 in three dimensions for discretisation of the velocity space in
LBM. (b) In IBM the velocity on the LBM lattice points (black) is interpolated at the
membrane vertices (blue points) as indicated with the orange arrows. For simplification
only one layer of the three-dimensional LBM grid is shown.

The LBM can be used to simulate various fluid flows [83], including microfluidic
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flows with immersed soft particles or cells [84, 85]. It provides a numerical solution
of the Boltzmann equation [86]

df
dt = ∂f

∂t
+ ξβ

∂f

∂xβ
+ Fβ

ρ

∂f

∂ξβ
= Ω(f), (2.13)

which describes the dynamics of the single particle distribution function f(x, ξ, t) of
the considered system, with space coordinates x, velocity components ξ and time
t. Here F summarise the external forces in the system and ρ is the density. The
collision term Ω(f) describes the interaction with the other N − 1 particles in the
system.
For numerical implementation we discretise space on a regular grid with lattice

distance ∆x and time with increment ∆t. In addition, the velocity space is discretised
as shown in figure 2.2(a). The discrete velocities are summarised in the velocity
set {ci}, here this set is D3Q19, i.e. i = 0, . . . , 18. This leads to the discretised
distribution function fi(x, t) where the index i refers to the position in velocity space.
Its evolution is described by the discretised version of (2.13), the lattice Boltzmann
equation

fi (x+ ci∆t, t+ ∆t) = fi (x, t) + Ωi (x, t) (2.14)
The most simple possibility to choose the collision operator is the Bhatnagar-Gross-
Krook (BGK) operator [86]

Ωi = −(fi − f eq
i )

τ
∆t (2.15)

which describes relaxation of the system towards its local equilibrium f eq
i with re-

laxation time τ . In the implementation used in this thesis a more accurate extension
of the BGK, the multiple relaxation times (MRT) collision operator is used [84, 87].
External forces in (2.13) are represented as additional source term on the right hand
side of the discretised lattice Boltzmann equation (2.14) [86]. For example a pressure
gradient in a straight channel, but also forces from immersed membranes acting on
the fluid can be included in the source term. One time step of the LBM basically
consists of two steps. First the right hand side of equation (2.14) is calculated,
this is called collision. Then the result is propagated to the lattice points in direct
neighbourhood specified by {ci} on the left hand side of equation (2.14), this is the
streaming step. Physical quantities like the density or local velocity v(x, t) can be
obtained as moments of the distribution function [86]

ρ =
∑
i

fi (2.16)

ρv =
∑
i

cifi (2.17)
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If forces are included they lead to an additional force correction in equation (2.17) [86].
At the beginning of a simulation the density and velocity fields are initialised. Then
the LBM algorithm is carried out for an arbitrary number of time steps: The local
equilibrium distribution is calculated from the density and velocity fields and the
collision-streaming scheme is carried out. This leads to an updated distribution
function and with that an update of the physical fields as indicated in equations
(2.16) and (2.17). No-slip boundary conditions at solid walls are implemented with
a bounce-back scheme [86] and lead to the formation of a Poiseuille velocity profile
in the absence of cells in a straight channel.
The LBM is a mesoscopic method as (in the context of fluid dynamics) it does

not consider the direct particle interaction as a microscopic method would, but also
does not directly solve the macroscopic Navier-Stokes equation. The approach via the
particle distribution function lies in between with respect to length scales and level of
abstraction. One major advantage of LBM is its straightforward parallelisability. The
LBM implementation used in this thesis is from the software package ESPResSo [88–
90].

2.4.2 Immersed boundary method
Cells immersed in the fluid move with the local fluid velocity at each membrane
position and on the cell surface the velocity must obey the no-slip boundary con-
dition. This coupling of the membrane to the fluid and vice versa is implemented
with the IBM [86, 91–93]. The difficulty of the implementation is that there exist
two different grids in the simulation, this is illustrated in figure 2.2(b). There are
the LBM lattice points, shown as black points in figure 2.2(b) and the membrane
vertices (blue points) of the triangulated cell membrane (shaded area in the figure).
The IBM is a two-way coupling between the two grids. First the membrane forces,
which are computed at the vertices, are allotted to the 8 LBM grid points in the
neighbourhood of the respective vertex (orange arrows in figure 2.2(b), for simplific-
ation only one layer of LBM lattice points is drawn). These forces are included as
a source term in the lattice Boltzmann equation. Then the local fluid velocity v is
calculated with the LBM as described in 2.4.1. The second step of the coupling is
the interpolation of the velocity field v at the membrane vertices, again shown by
the orange arrows. This interpolated velocity is used to advect the respective vertex.
The LBM lattice and cell triangulisation must have similar grid sizes. If the mean
distance is much smaller than around half the LBM grid distance, the resolution of
the flow field on the membrane surface is inadequate. If, on the other hand, the mean
vertex distance is larger than about one time the LBM grid distance, the membrane
forces are not distributed properly to all lattice points in vicinity of the membrane.
In IBM there is flow on both sides of a closed surface [86], for cell membranes this is
the interior fluid. The implementation of IBM used in this thesis is an extension of
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the ESPResSo software.
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3 Dynamic shape changes of red
blood cells in time-dependent flow

3.1 Overview
The aim of this chapter is to present the numerical investigation of RBC shape change
in time-dependent flow with the boundary integral method. In small microfluidic
channels whose diameter amounts to a few micrometers, RBCs are observed in mainly
two characteristic shapes. These are the symmetric croissant shape, flowing in the
centre of the channel, and the asymmetric slipper shape, which flows off-centred
and is accompanied by a tank-treading movement of the membrane around the cell.
Representative images of the two characteristic shapes are shownf in figure 3.1(a).
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Figure 3.1: Red blood cell shapes in a microchannel of cross section 8 µm to 11.5 µm. (a) Experi-
mental images of croissant and slipper shapes and corresponding simulation results in
a discretised channel. (b) The experimental phase diagram shows bistability of slipper
and croissant shapes in the experiment, depending on the pressure drop p in the chan-
nel, which can be converted to a flow velocity. Reproduced from [62] with permission
from Cell Press.

The symmetric croissants are predominant at smaller pressure drops, i.e. smaller
flow velocities and slippers at larger velocities, as the experimental phase diagram
in figure 3.1(b) shows. Detailed comparison with simulation phase diagrams [17] at
constant flow has shown the same bistability between croissant and slipper also in
simulations.
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A detailed investigation of the transition between these two bistable states in
time-dependent flow is presented in the first section 3.3. Recent experimental de-
velopments make comparison of the slipper shape dynamics with experimental data
possible. The results are discussed in section 3.4. Both sections 3.3 and 3.4 describe
work which has been published in the paper [62], the experimental data was provided
by S. M. Recktenwald, F. M. Maurer and T. John (members of the group of C. Wag-
ner in Saarbrücken). Finally, the last section 3.5 discusses the stability of the phase
diagram in time-dependent flow. The presentation of the results is preceded by a
short section 3.2 on the details of the methods.

3.2 Method and parameters
The BIM is used to simulate single RBCs flowing through a rectangular microchannel
of width W and height H in y-direction and z-direction, respectively. The length
of the channel in x-direction is L = 38.7 µm and periodic boundary conditions are
applied in this direction. In sections 3.3 and 3.4W = 11.5 µm andH = 8 µm are used
to make comparison with experiments in microchannels of the same size possible. In
the last section the channel dimensions are identical to those of former numerical
studies [17] with W = 12 µm and H = 10 µm, which serve as constant flow reference.
The Reynolds number (2.12) of the system is defined with the blood plasma viscosity
and density and the radius of the RBC, compare section 2.3. For typical velocities
of the system vc < 10 mm s−1 the Reynolds number is well below one Re < 0.1 and
the Stokes equation indeed adequately describes the flow. In sections 3.3 and 3.5 a
time-dependent flow velocity is used.
The surface of the RBCs is discretised with 2048 flat triangles. The shear modulus

is κS = 5× 10−6 N m−1, the area dilation modulus κA = 100κS and the discocyte is
used as elastic reference shape. A bending modulus of κB = 3× 10−19 N m and a flat
bending reference shape are used. The RBC starts with its symmetry axis parallel
to the channel axis and in the discocyte rest shape. In sections 3.3 and 3.4 it starts
centred in the channel, in 3.5 the initial position varies, as specified there.
The outer fluid viscosity is chosen equal to the blood plasma viscosity. In some

simulations larger values are employed to investigate the influence of more viscous
surroundings on the cell dynamics, these are labelled accordingly. Different viscosity
contrasts λ = 5, 10, 20 are used and discussed in section 3.4. In section 3.3 λ = 10 was
used, in section 3.5 λ = 5 for better comparison with a former numerical study [17].
Corresponding experiments presented in section 3.3 and 3.4 used a high-precision

pressure device for accurate modification of the pressure gradient in straight mi-
crochannels of cross section W = (10.8± 0.6) µm and H = (7.9± 0.3) µm and
length L = 40 mm. This device is combined with a feedback-mechanism of cam-
era and movable stage to follow the cells during their transition through the channel
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and thus record their dynamic shape changes. Details are described in the joint
publication [62].

3.3 Transition between red blood cell modes
3.3.1 Cell trajectories

tramp = 0.5 s
∆v = 4.7 mm s−1

Figure 3.2: Red blood cell velocity and trajectory in time-dependent flow. Simulation curves are
drawn in red, corresponding experiments in blue. The upper half of the figure shows
the linear increase and decrease of the cell velocity over time. This is accompanied by
a movement of the cell’s centre of mass (lower half of the figure) away from the channel
centre in y-direction for increasing velocity, and vice versa for decreasing velocity. Grey
dashed lines show the maximum velocity. Reproduced from [62] with permission from
Cell Press.

To study the dynamic transition between the two characteristic cell shapes crois-
sant and slipper the flow velocity in the channel is increased linearly over time from a
lower constant flow vlow = 1 mm s−1 to a variable upper mean velocity of vup and vice
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3 Dynamic shape changes of red blood cells in time-dependent flow

versa for the opposite shape transition. An example of the velocity ramps and cell
trajectory curves is shown in figure 3.2 in red for the simulations. The cell velocity
is the centre of mass velocity extracted from the simulation data. For a short time
of 0.2 s the RBC flows at constant velocity vlow = 1 mm s−1. Then the flow through
the channel is increased during the ramping time tramp = 0.5 s until a mean velocity
of vup = 5.8 mm s−1 is reached. Due to the increase in the cell velocity the croissant-
shaped RBC flowing at the channel centre transitions to a slipper and moves away
from the centre. This transition is slightly delayed compared to the start of the
velocity ramp as left column of figure 3.2 shows. The slipper exhibits a positional
oscillation of the cells centre of mass and thus a fluctuation in the cell velocity. The
opposite transition back to the centred croissant is induced by a subsequent decrease
of the average flow through the channel after a velocity plateau of approximately 1.5 s
in simulations. The downward transition is shown in the right panel of figure 3.2.
The lower right graph shows that the shape change back to the symmetric croissant
is considerably slower than the first transition and involves fluctuations of the centre
of mass connected with cell rotations and strong membrane deformations.
The blue curves in figure 3.2 show corresponding experiments [62], which varied

the pressure gradient in the channel to induce changes in the flow velocity. The gray
dashed lines show the result of a calculation of the maximal velocity which could be
reached in the channel for the applied pressure gradient [94]. During the velocity
increase the experimental curve rises above that line. In addition, an overshoot of
the cell velocity at the end of the upward transition can be observed. This is caused
by a widening of the microfluidic channels fabricated from PDMS polymer with the
(constant) increase of the pressure gradient [95], which in turn leads to a higher cell
velocity due to the larger cross section.

3.3.2 Transition times
In section 3.3.1 the difference between the speed of the transition from croissant to
slipper and vice versa was discussed. It can be characterised by the transition time
for the shape changes. Start and end of the transition are determined manually
based on the cell shape images [17]. In simulations and experiments two different
velocity differences ∆v = vup − vlow (or corresponding pressure gradient differences
in experiments) of 4.7 mm s−1 and 6.2 mm s−1 were used, and four different ramping
times tramp = 0.125 s, 0.25 s, 0.5 s, 1.0 s are investigated, similar to the example shown
in figure 3.2. The resulting transition times for all trajectories are summarised in
figure 3.3(a). Two major observations can be made. First, the mean transition time
for the upward croissant-slipper transition is significantly lower than that for the
slipper-croissant transition. This confirms that the transition time difference, dis-
cussed with figure 3.2 above, is a general feature of the system. The mean upward
transition time for simulations is 0.37 s compared to 2.15 s for the downward trans-
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3.3 Transition between red blood cell modes

(a) (b)

Figure 3.3: Transition times for cell shape changes. (a) Transition times for all simulations (red)
and all experiments (blue) are summarised. Triangle symbols indicate whether the cell
undergoes rotation during the shape change. (b) Two example trajectories of the cell
centre of mass for the slipper to croissant transition illustrate the spread of the transition
time distribution due to the cell orientation (insets) at the transition start. Reproduced
from [62] with permission from Cell Press.

ition, experimental means are consistent with these. Second, the slipper-croissant
transition times scatter more broadly than the croissant-slipper transitions.
There are two effects which explain these differences. The first is the difference

in the rotation behaviour. RBCs that show a pronounced rotation during transition
are marked with triangles in figure 3.3(a), this is in most cases connected with
larger transition times. In simulations, rotation occurs only for the slipper-croissant
transition. In experiments rotation is observed for 29 % of these, but only for 5 %
of the croissant-slipper transition. The physical explanation behind this is the more
symmetric shape of the croissant, were the membrane dimples are located at the side
of the cell and thus the cell in general needs more time to adjust and assume the
stable croissant shape. In addition, numerical simulations reveal that the transition
dynamics crucially depend on the orientation of the RBC membrane at the start of
the velocity change. In the slipper state the cell shows its characteristic tank-treading
movement of the membrane were the dimples of the cell, visualised in figure 2.1(b)
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3 Dynamic shape changes of red blood cells in time-dependent flow

travel along the cell in the x-y-plane, consistent with previous studies [17]. The insets
in figure 3.3(b) show the shape of the slipper cells and the location of its dimples
at the beginning of the downward velocity ramp. All other simulation parameters
equal, the difference in the slipper orientation leads to distinct transition trajectories
drawn in red in the respective graphs in figure 3.3(b). In experiments similar curves
can be observed, shown in blue in figure 3.3(b) but exact information of the slipper
orientation is not available from experiments. Although a clear correlation between
different dimple positions at the transition start and the resulting rotating behaviour
could not be extracted, simulations show how sensitive the system is to the exact
slipper orientation. All in all this effect leads to more variety in the slipper-croissant
transition and can explain the broad scattering in figure 3.3(a) with in general larger
transition times.
The second effect is the difference in the cell velocity during the largest part of the

transition. As was shown exemplarily in figure 3.2 the croissant-slipper transition is
delayed with respect to the velocity ramp, such that most of the transition happens
at larger velocities. The delay in the opposite transition is less pronounced but
also here most of the transition occurs at the target velocity, now vlow. Therefore,
the upward transition is aided by a faster flow velocity which facilitates the slipper
movement to its off-centre position. In contrast, the slipper-croissant transition is
slowed down at vlow. In cases where cell rotation occurs, this effect further leads to
acceleration or deceleration of the rotation.
Details of the transition time dependence on the velocity difference ∆v or ramping

time tramp are shown in figure 3.4(a) for the croissant-slipper and in (b) for the
slipper-croissant transition for representative tramp and ∆v [62]. If at an intermediate
tramp the velocity difference ∆v increases, a difference in the transition times for the
upward transition is not observed. More surprising, the duration of the ramping
process tramp also has no significant influence on the transition time, exemplified
for ∆v = 4.7 mm s−1 in figure 3.4(a), with even less difference for other ∆v [62].
Figure 3.4(b) shows that the same observation holds for the downward transition
from slipper to croissant.
Furthermore the transition length ∆x is studied, defined as the distance the RBC

covers during the transition process. It is calculated from the transition time ∆t
as ∆x =

∫∆t
0 v(t)dt. Here the transition start is set to t = 0 and the integral runs

over the current velocity of the cell. The results for all parameter combinations are
shown in figure 3.4(c). Aggregation of all results is justified as no dependence on
the parameters tramp and ∆v could be observed. In contrast to the transition time,
the transition lengths in simulations for the two direction are similar, due to the
differences in the integrated velocity, which is for the largest part of the integral
smaller for the slipper-croissant transition. The experiments show a slightly larger
mean transition length of 2.8 mm in croissant-slipper transition compared to 1.8 mm
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∆

tramp = 0.5 s

∆v = 4.7 mm s−1

∆v = 4.7 mm s−1

cr
oi

ss
an

t-
sli

pp
er

tr
an

sit
io

n
sli

pp
er

-c
ro

iss
an

t
t.

(a)

(b)

(c)

Figure 3.4: Details of the transition times and transition length. (a) Transition times for the crois-
sant to slipper transition and (b) opposite slipper-croissant transition depending on the
velocity difference ∆v or ramping time tramp for selected tramp or ∆v, respectively. (c)
Transition lengths summarised for all results depending on the ramp direction. Triangles
indicate that the cell undergoes rotation during the transition. Reproduced from [62]
with permission from Cell Press.

in the opposite direction. This is again ascribed to the velocity overshooting due to
the widening of the microfluidic channel during the pressure increase, discussed in
section 3.3.1. The RBC travels a distance of around 250-375 times its rest diameter
until the shape change is completed.
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3 Dynamic shape changes of red blood cells in time-dependent flow

3.4 Dynamics of the slipper state
3.4.1 Influence of the viscosity contrast on the dynamics

(a) (b)

(c)
λ = 10

Figure 3.5: Dynamics of the slipper red blood cell shape. The (a) frequency and (b) amplitude of
the slippers’ centre of mass oscillation in y-direction are plotted against the cell velocity.
In simulations (red symbols) the viscosity contrast λ is varied. Experimental results (in
blue) are summarised with blue dots, marking the mean of all frequency/amplitude
values, error bars are given as average of all measurements at the respective velocities.
Linear fits (solid lines) serve as guide to the eye. (c) Oscillation frequency for increased
outer viscosities µo, all with λ = 10. The results for µo = 1.2 mPa s from (a) are
repeated. Reproduced from [62] with permission from Cell Press.

The cell trajectories in figure 3.2 show a pronounced oscillation of the cell’s centre
of mass at larger velocities when the cell is in the slipper state. These oscillations
occur in all simulations and can be detected in approximately 50 % of the experi-
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3.4 Dynamics of the slipper state

mental slipper shapes. In order to compare the oscillation properties, the centre of
mass trajectories are fitted with a sine function and frequency and amplitude are
extracted. The results are shown in figure 3.5(a) and (b) for simulations (red) and
experiments (blue). In addition to the simulations with viscosity contrast λ = 10
discussed in section 3.3 simulations of slipper cells were conducted for λ = 5 and
λ = 20. Figure 3.5(a) shows that the frequency increases linearly with the RBC
velocity for a given viscosity contrast. If the viscosity contrast increases, i.e. the
interior fluid of the cell is more viscous, a decrease of the oscillation frequency for
a given velocity is observed. The explanation for this effect is that the positional
oscillation is connected to the tank-treading motion of the cell and an increase in
viscosity slows down the dynamic movement. Moreover, it is consistent with older
studies which identified an influence of the viscosity contrast on tank-treading in
shear flow [96–99]. Only for the highest viscosity contrast of 20 the frequencies are
in good agreement with the measurements. However, in simulations such RBCs show
peculiar membrane rotation behaviour after only few oscillations and are unstable
for larger velocities. The amplitude of the slipper as a function of the velocity in
figure 3.5(b) in contrast shows no pattern. For λ = 5, 10 the simulation results lie
within the large error bars of the experimental measurements, λ = 20 leads to a
distinctly larger amplitude.
In the experiments the cytosol viscosity of the cells could not be measured or

altered to obtain data for direct comparison with simulations. Hence, one must
resort to changing the viscosity of the surrounding fluid µo, thus changing the ratio
of the viscosities. Results for different µo in simulation and experiment are shown
in figure 3.5(c). As can be expected from the results in (a), when increasing the
outer viscosity, simulations and experiment show an increase in the slipper frequency.
There is still a linear dependence between velocity and frequency and for all µo
there is a constant factor of approximately 1.9 between simulation and experimental
measurement.
Variation of some RBC simulation parameters in a physiologically meaningful

range have been tested in simulations. The representative results for different bend-
ing reference shape and modulus κB and shear modulus κS are shown in figure 3.6.
The influence on the oscillation frequency is negligible and the amplitude shows only
slight changes depending on the parameter values.
To conclude, the RBC dynamics in channel flow crucially depend on the viscosity

contrast, which is in agreement with results for vesicles in Poiseuille [15, 20, 100] and
RBCs in shear flow [51, 52, 101]. For the velocity ramp simulations in section 3.3,
λ = 10 was chosen as a good compromise between agreement in frequency and
amplitude measurements. A possible explanation for the disagreement with the
experimental results in figure 3.5 might be that the membrane viscosity of RBCs
is not part of the simulation model. A higher inner viscosity could account for
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3 Dynamic shape changes of red blood cells in time-dependent flow

(a) (b)

Figure 3.6: Influence of membrane parameters on the slipper dynamics. (a) Frequency and (b)
amplitude of the centre of mass oscillations for different RBC membrane parameter
combinations. Red symbols reproduce the results from figure 3.5 for λ = 10 as reference.
Reproduced from [62] with permission from Cell Press.

some effects due to the viscosity of the membrane, but recent studies showed that
their influence is ‘similar but distinct’ [102]. Investigations of RBCs in shear flow
showed good agreement with experimental results if the membrane viscosity was
incorporated [25, 26]. This hypothesis is investigated in detail in the next chapters.
Initially, the observation that only 50% of all slippers in experiments showed pro-

nounced oscillation behaviour was attributed to a distribution of the RBCs’ inner
viscosity. Cells with larger cytosol viscosity in simulations after few slipper oscillation
periods showed a rotation of the membrane. After this rotation the cell, although
still a tank-treading slipper, exhibited a strong decrease in the oscillation amplitude.
The oscillation and oscillation frequency of such rotated slippers would be undetect-
able in experiments due to the additional noise in the measured trajectories, which
is on the same order of magnitude as the oscillation amplitude. However, this hy-
pothesis was refuted after membrane viscosity was included and the shear reference
state was adapted, because these changes did no longer allow a classification into
the two categories normal slipper and rotated slipper. Details of these changes in the
model and the discussion of the share of oscillating slippers observed in experiments
are deferred to chapter 5.

3.4.2 Different frequencies of the system
The frequencies discussed in the previous sections of this chapter were always those
of the RBCs’ centre of mass oscillation with respect to the channel axis, which are ac-
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Figure 3.7: Frequencies of the slipper state. (a) Image sequence of the slipper motion in the channel
during half a tank-treading period, as the blue and green markers on the simulated
cell surface show. In experiments a wrinkle travels over the cell surface, marked with
cyan circles. The cells’ centre of mass (black dots) movement relative to the channel
axis (dashed line) is difficult to discern. (b) Different frequencies of the slipper cell in
simulations. (c) Slipper outlines for maximally stretched/compressed instances, overlaid
such that the centre of mass positions coincide. Figures (a) and (b) are reproduced
from [62] with permission from Cell Press.

cessible in experiments. The relation between positional oscillation and tank-treading
movement of the cell membrane can be extracted from the simulation results. The
image sequence in figure 3.7(a) shows the slipper cell during a full period of the
positional oscillation. From the simulation images in the lower half of the figure one
can observe that this corresponds to exactly one half of a tank-treading period. The
blue and green markers on the cell surface visualise the dimples of the cell, which
move with the membrane around the cell interior. The RBC is symmetric with re-
spect to the dimples, compare the RBC shape in 2.1, which explains the factor of
two between the two frequencies. Systematic extraction of the two frequencies for
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3 Dynamic shape changes of red blood cells in time-dependent flow

different cell velocities lead to the graph shown in figure 3.7(b). Cells with larger v
show an increase in all frequencies. Green crosses show the tank-treading frequencies
and black dots the previously discussed centre of mass oscillation. In addition, cyan
circles show the frequency of a wrinkle travelling over the cell surface during one
centre of mass oscillation, which can be observed in approximately 5 % of experi-
mental slipper cells. In simulations the wrinkles increase in size if λ increases and
thus possibly related to cell age [103]. Finally, figure 3.7(c) shows a crosssectional
profile of the slipper at is maximal (green) and minimal (orange) elongation, which
have a distance of one fourth of the tank-treading period.

3.5 Robustness of the phase diagram in pulsatile flow

3.5.1 Motivation
Previous numerical and experimental studies [17] investigated the RBC shape in
Poiseuille flow in microchannels, depending on the constant flow velocity as well as
starting position and starting shape of the cell. The results were summarised in
phase diagrams with croissants predominantly at centred initial positions and with
a pronounced croissant peak at intermediate velocities. The border between the
croissant and slipper region from said study is reproduced in figure 3.8.
In this section the influence of an additional pulsatile component on the phase

diagram is discussed. Results are presented for selected points in the phase diagram,
marked in figure 3.8. The majority is located near the border between slipper and
croissant region, because there the perturbation of the flow due to the additional
pulsation is expected to lead to observable shape changes. The additional pulsatile
component to the constant part vc of the flow is a sine wave in time with frequency
fpulse and amplitude A

vin = vc + A sin (2πfpulset) . (3.1)

Amplitudes are given as relative amplitudes Ar = A/vc. For all selected points
simulations with three different amplitudes Ar = 0.2, 0.35, 0.5 and three different
pulsation frequencies fpulse = 10 Hz, 20 Hz, 40 Hz are carried out, i.e. 9 simulations
for each point. The location of the points in velocity direction in the phase diagram
indicates the mean velocity of the pulsatile flow. The flow pulsation frequencies fpulse
are chosen such that they are of similar magnitude as the slipper frequency in the
rectangular channel, compare figure 3.9.

3.5.2 Inside slipper region
First, simulations inside the slipper region were done for one point marked with
a red circle labelled A in figure 3.8. At this point a reference simulation without
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croissant

slipper
A a

b c
I

II

III
IV

Figure 3.8: Positions of the pulsed flow simulations in the phase diagram. The border of the phase
diagram which separates croissant and slipper regions for a discocyte as initial shape
according to Guckenberger et al. [17]. The labelled symbols mark the positions of
pulsatile flow simulations discussed in this section.

pulsation produced a slipper shaped cell. Note that the cell velocity at point A
is nearly identical to the velocity of the neighbouring croissant-shape cell (point I,
black triangle symbol). The reason for this is that slippers flow off-centred and are
therefore not as fast as centred croissants, when comparing both for an identical
mean flow through a channel.
All 9 simulations for different pulsatile frequencies and amplitudes at this point

produce slippers, similar to the constant flow reference. Trajectories of two slippers
are shown in figure 3.10(a,b) (red curves) in comparison with the constant flow ref-
erence (blue). Here only the radial position is shown which is nearly identical to
the y-component in direction of the longer channel axis, as is typical for slippers.
The cell trajectories hardly differ for all frequency and amplitude combinations. As
can be seen from 3.10(a,b), the centre of mass frequencies are perfectly in line with
the results shown in figure 3.9 (orange symbols). The corresponding cell velocities
are shown in the second row of figure 3.10(c,d). The red velocity curves oscillate
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Figure 3.9: Slipper oscillations in a 10 µm to 12 µm channel. Frequency of the centre of mass
oscillation of the slipper cells depending on the cell velocity in constant flow in the
rectangular channel (orange symbols) for λ = 5. Frequency of slippers in pulsating flow
are drawn with red symbols.

much more strongly, due to the additional pulsatile flow. This pulsation is superim-
posed by the velocity change due to the slippers positional oscillation which is also
present in the blue cell velocity curve under constant flow. This means that under
pulsatile flow the slipper is periodically accelerated and decelerated. This, however,
does not significantly influence its inherent oscillation dynamics, as the positional
oscillations in 3.10(a,b) show, and the slipper movement under pulsation is similar
to that described in section 3.4

3.5.3 Inside croissant region
Second, three points in the croissant region of the phase diagram are selected, marked
with blue squares (a to c) in figure 3.8. If at these points a pulsatile component is
added to the flow, no shape change is expected because the resulting maximal and
minimal velocities do not extend beyond the phase border. The results show that
indeed all 27 simulations lead to croissant-shaped RBCs as depicted in figure 3.1(a).
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(a) (b)

(c) (d)

Ar = 0.2
fpulse = 20 Hz

Ar = 0.5
fpulse = 10 Hz

Figure 3.10: Positional and velocity oscillation of slippers under pulsation. Exemplary trajectories
(a,b) and corresponding velocities (c,d) under pulsed flow (red curves). Simulations
for (a,c) small and (b,d) large pulsation amplitude, both in the slipper region of the
phase diagram at point A in figure 3.8. The blue lines show the reference simulation
without pulsation.

However, these croissants show a different dynamic behaviour, discussed in the fol-
lowing.
In general, three croissant types can be distinguished, classification for all simu-

lations is given in table 3.1. Their model trajectories as well as snapshots of their
shapes are shown in figure 3.11. The coordinate system is centred in the channel.
All cells start as discocytes and need time to deform to a steady state. The regular
type in figure 3.11(a) after the initial deformation is almost perfectly centred and
very symmetric, similar to previous observations [17]. The dimple positions marked
on the surface are located at the side of the cell, in direction of the z channel axis. It
should be noted that compared to previous sections and conventions [17, 62] the cell
snapshots in figure 3.11 are shown with the smaller channel axis along z in vertical
direction. The type in 3.11(b) is also quite symmetric and the dimples are located in
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Ar fpulse/Hz point a point b point c

0.2
10 reg. reg. reg.
20 reg. reg. reg.
40 reg. reg. reg.

0.35
10 reg. reg. reg.
20 breathing reg. reg.
40 breathing reg. reg.

0.5
10 reg. rotated (fTT ≈ 1.3 s−1) rotated (fTT ≈ 1.9 s−1)
20 reg. reg. reg.
40 breathing rotated (fTT ≈ 1.1 s−1) reg.

Table 3.1: Classification of the simulations in the croissant region with respect to croissant type.
All nine simulations per point a to c in figure 3.8 are classified as regular (reg.), breathing
or rotated shape, described in figure 3.11. For the rotated type an estimate of the tank-
treading frequency fTT is given.

the same direction with fixed position on the cell surface. However, the RBC flows
slightly off-centred and oscillates with a small amplitude in z-direction. This oscilla-
tion is connected to a periodic contraction and elongation of the cell in flow direction
as the superimposed cell outlines in figure 3.11(b) show. Due to this contraction-
expansion movement this type is labelled breathing. The frequency of this oscillation
is identical to the frequency of the pulsation, independent of the mean flow velo-
city. The third type in 3.11(c) is more asymmetric although still croissant-shaped.
The dimples, however, move to the sides of the cell in y-direction, therefore this
type is called rotated. The cell oscillates farther off-centred with the radial position
nearly identical to the absolute value of the z-position. The frequency of the radial
oscillation is not extracted because the minima and maxima cannot be determined
unambiguously, even more so for other simulations of this croissant type. Most curi-
ous, this croissant type shows a tank-treading motion of its membrane, but such, that
the dimples at the sides do not follow this tank-treading but retain an approximately
constant position on the surface, in contrast to the slipper tank-treading described
in the previous section. The frequency of this tank-treading motion is difficult to
define because of the irregularity of the membrane movement, estimates are given
in table 3.1. A relation to the pulsation frequency is not observed and the pulsa-
tion frequency for both mean velocities (compare location of the points in the phase
diagram) is much smaller than a (tank-treading) slipper frequency at this velocity
would be. Notably, the positional oscillation of the croissant types is in z-direction,
in contrast to slipper oscillations which are always in direction of the longer channel
axis in y-direction. The velocity curves show a oscillation around the mean due to
the pulsation with the corresponding frequency.
To conclude, an additional pulsatile component with largest relative amplitude of
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50 % leads in some cases to rotated croissants, which are remarkably different from
the regular shape. For smaller amplitudes, in some cases a breathing motion with
the same frequency as the pulsation is observed.
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Ar = 0.5
fpulse = 20 Hz

Ar = 0.35

fpulse = 20 Hz

Ar = 0.5

fpulse = 10 Hz

(a)

(b)

(c)

regular
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Figure 3.11: Different croissant types under pulsatile flow. Exemplary centre of mass trajectories
(left column) and corresponding shapes (right column). RBCs in (a-c) are started at
different initial positions and with different mean velocities. These correspond to (a,c)
point b in figure 3.8 and (b) point a. The shapes are snapshots from the converged
later part of the trajectories. In the right column in (b), in addition, the croissant
outlines for maximum and minimum of the breathing motion are superimposed.32
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3.5.4 Transitions at the phase border

Finally, simulations are carried out for four points in the phase diagram near the
border to the slipper phase, marked with black triangles in figure 3.8 (I to IV).
Due to the additional sine component from the pulsation, at the maximum the
velocity will be larger than its mean, marked in the phase diagram. Thus the border
to the slipper region in the phase diagram might be crossed, which could induce
the formation of slipper shapes. For each point one additional simulation without
pulsation was conducted as reference. The results are summarised in table 3.2,
slippers are highlighted in red, croissants are classified as in section 3.5.3. Again, the
breathing frequency is identical to the pulsation frequency.

First, in the region of the croissant peak at point II in figure 3.8 a new croissant
type is observed. The new type appears under pulsation as well as in the reference
simulation and is characterised by a transition from the slipper to the croissant state,
therefore called transient croissant. Transient cells have been observed in former
studies [17]. Two exemplary trajectories are shown in figure 3.12. None of these
croissants shows tank-treading. The duration of the transient slipper phase under
pulsation is for some simulations longer than in the reference simulation, and for
some shorter. Table 3.2 suggests that the croissant type depends on the mean flow
velocity instead of the pulsation parameters.

The second observation is that due to the pulsatile flow component indeed slipper-
shaped RBCs emerge, as listed in table 3.2. The dynamics of these slippers is sim-
ilar to that described in section 3.5.2, regarding the dimple movement during tank-
treading and the tank-treading frequency. Surprisingly, as for the results in 3.5.2
the centre of mass frequency depends only on the flow velocity and is independent
of the pulsatile flow component. This is shown in figure 3.9, where the frequencies
of the slippers from table 3.2 are plotted in red. Two slipper trajectories are shown
in figure 3.13 in comparison with the respective constant flow reference cell, which
forms a croissant. The trajectory for smaller mean velocity in (a) is similar to those
in figure 3.10 at similar v̄. The red curve in 3.13(b) shows an additional bead in
the frequency curve and in contrast to (a) the centre of mass slipper frequency is
much closer to the frequency of the pulsatile flow. In the synopsis in table 3.2 we
notice that slippers appear for smaller pulsation frequencies and larger amplitudes.
In addition, the points I and II at which slippers appear lie in croissant peaks near
the border to the slipper region in the phase diagram. To conclude, only few slippers
appear under pulsatile flow and only for slow pulsation.
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Ar fpulse/Hz point I point II point III point IV
ref. sim. reg. transient reg. reg.

0.2
10 reg. transient breathing reg.
20 reg. transient breathing reg.
40 reg. transient breathing reg.

0.35
10 slipper transient reg. reg.
20 reg. transient breathing reg.
40 reg. transient breathing reg.

0.5
10 slipper slipper reg. reg.
20 reg. transient breathing reg.
40 reg. transient breathing reg.

Table 3.2: Classification of the simulations along the border of the phase diagram. Slipper are
marked in red, croissants, if applicable, are classified according to the types in figure 3.11.
The transient croissant (blue) is the shape shown in figure 3.12. The first line in the
table gives the classification of the reference simulation at constant flow velocity.

(a) (b)
Ar = 0.2

fpulse = 20 Hz
Ar = 0.35

fpulse = 10 Hz

Figure 3.12: Trajectories of transient croissants. Radial, y and z development over time for two
simulations at point II in figure 3.8 are shown.
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(a) (b)

v̄ = 0.8 mm s−1

v̄ = 2.2 mm s−1

Figure 3.13: Trajectories of slippers under pulsating flow (red lines) in comparison with the respect-
ive reference simulation (blue lines) at (a) point I and (b) point II in figure 3.8. For
both pulsatile simulations fpulse = 10 Hz and Ar = 0.35 %.

3.6 Conclusion
The study of time-dependent velocity changes in section 3.3 revealed an asymmetry
in the transition between the two RBC states. The slipper-croissant transition hap-
pens significantly slower and transition times scatter more broadly. The numerical
simulations show that the sensitivity of the system to the exact membrane orienta-
tion of the cell is the main explanation for the observed differences. In section 3.4
the dynamics of the slipper shaped RBCs are studied with a one-to-one comparison
between experiment and simulation, made possible by recent advances in experi-
mental measurement technique [62]. This reveals a difference in the observed tank-
treading frequencies, which points to a viscosity contrast of RBCs larger than the
usually assumed value of 5. It is hypothesised, that including membrane viscosity in
the simulation model might resolve the observed discrepancy.
In section 3.5 the robustness of the RBC shape phase diagram under pulsatile

flow was explored. Only in few cases for slow pulsation a change from croissant to
slipper shape was observed and the slipper dynamics is robust against a pulsatile
flow component. In addition it was shown that croissant shapes come in different
types, which differ in details regarding their flow dynamics and orientation.
Both parts of this chapter used a time-dependent modulation of the flow through

the microchannel but differ in time scale and magnitude of the modulation. The
velocity ramps in the first part in 3.3 and 3.4 were one order of magnitude slower
than the pulsation in the second part 3.5, but the magnitude of the velocity change
was several orders larger. In the first part, the focus was on the dynamics of the
controlled shape changes induced by the flow, while the second part concentrated on
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the robustness of the observed shapes under faster pulsation.
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4 Including membrane viscosity in
the simulation model

4.1 Overview
In recent years the viscosity of the membrane was recognised as important factor
for the RBC behaviour and first models to include it in numerical simulations have
been developed [104, 105]. Its effects are found to be similar and yet distinct from
the interior fluid viscosity of the cell [102]. Recent numerical studies added mem-
brane viscosity as part of their model and began to study its influence on the cells’
dynamics, but detailed comparison with experiments remains scarce [25–27]. In this
chapter the inclusion of the membrane viscosity as an additional viscous contribution
to the membrane forces on the cell surface is described. The method is based on the
finite-difference approach by Li et al. [36, 106] which as the authors show has some
advantages compared to the simulation model by Yazdani et al. [105]. In section 4.2
the basic concept of this model for the membrane viscosity and its realisation as a
numerical method is described.
Li et al. [36] propose an algorithm which calculates viscous stress elements τ v,s, τ v,d

(for shear and dilational) which are added to the elastic tensor τ e (derived here for
the Skalak law). From the total membrane stress τ , the forces on the nodes of the
discretised cell surface must then be calculated. The force calculation method used
by Li et al. [36] is different from the procedure proposed by Krüger [35] and described
in chapter 2 of this thesis, where the forces are directly calculated from the elastic
energy (Skalak law), without ever calculating the stresses. This approach cannot
be used for the viscous contribution [36] as there is no formulation as an energy
law. The calculation of the forces from the stress is not detailed by Li et al. [36] or
Yazdani et al. [105], and only little information can be found in the work of Charrier
et al. [107], which is given as reference. For the general non-axisymmetric problem
formulas to obtain the forces from the stresses are presented by Shrivastava et al.
[108], equation (49) (beware of confusing notation).
In section 4.4 these formulas to obtain the forces from the stress are first used

to derive the forces for the Skalak elastic law, where the results are shown to be
identical to the virtual force derivation in Krüger [35]. Having shown this, the
additional viscous contribution to the forces is calculated in section 4.5 by following
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the same steps. The calculations are preceded by section 4.3 where definitions are
introduced and necessary identities are derived. Section 4.6 introduces dimensionless
parameters used in the simulations. In section 4.7 details of the implementation for
BIM are described. The last section 4.8 provides an overview of experimental results
for the strength of the membrane viscosity.

4.2 Short outline of the method
Li et al. [36] use a standard linear solid (SLS) model with a one-dimensional Maxwell
element to describe the viscoelastic behaviour of the membrane. The derivation of
membrane forces uses the idealised representation of the actual membrane surface
as a sheet of plane triangular elements which can be seen as ‘finite element idealisa-
tion’ [107] of the surface. The membrane is considered to be infinitely thin and is
modelled as a 2D sheet [36]. Using a finite difference (FD) scheme the authors derive
a stress term σM(t) (equation (18) in [36]), which they then by analogy [106] trans-
late to viscous stresses for the two-dimensional viscoelastic membrane in equations
(21) to (24) in [36] which are repeated here

τv,s
xx (ti) = AFD

s τv,s
xx (ti −∆t) +BFD

s [Es
xx(ti)− Es

xx(ti −∆t)] (4.1)
τv,s
xy (ti) = AFD

s τv,s
xy (ti −∆t) +BFD

s

[
Es
xy(ti)− Es

xy(ti −∆t)
]

(4.2)

τv,d
xx (ti) = AFD

d τv,d
xx (ti −∆t) +BFD

d

[
Ed
xx(ti)− Ed

xx(ti −∆t)
]

(4.3)
τv,s
yx = τv,s

xy , τv,s
yy = −τv,s

xx , τv,d
xy = τv,d

yx = 0, τv,d
yy = τv,d

xx (4.4)

with the abbreviations

AFD
s = 4µs − k′

s∆t
4µs + k′

s∆t
, BFD

s = 4µsk
′
s

4µs + k′
s∆t

, (4.5)

AFD
d = 4µd − k′

d∆t
4µd + k

′
d∆t , BFD

d = 4µdk
′
d

4µd + k
′
d∆t . (4.6)

The shear and dilational strain tensor elements (equation (20) in [36]) are

Es
xx = Exx − Eyy

2 , Es
xy = Exy, Ed

xx = Exx + Eyy

2 . (4.7)

Here µs and µd are the shear and dilational membrane viscosities and k
′
s, k

′
d the

respective artificial spring constants from the SLS model. ∆t is the time interval for
the recalculation of the viscous contribution. The strain tensor E is defined∗ as [34]

E = 1
2
(
F TF − I

)
(4.8)

∗There is an unharmful mistake in equation (8) in [36] and equation (7) in [106] in the definition
of E with the symmetric tensor G, compare section 4.3 for the correct version.
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with the deformation gradient tensor F and identity matrix I. In the simulation
implementation, F is calculated from the displacement vectors of vertices of the
surface elements, for the BIM these are the nodes of the surface triangles.
Together the contributions (4.1) to (4.4) constitute the symmetric viscous stress

tensor τ v and we abbreviate

τ v = τ v,s + τ v,d =
(
τv,s
xx + τv,d

xx τv,s
xy

τv,s
yx τv,s

yy + τv,d
yy

)
=:
(
Txx Txy
Txy Tyy

)
. (4.9)

These viscous contributions are added to the elastic stress tensor τ e

τ = τ e + τ v,s + τ v,d. (4.10)

Here the Skalak law is used to describe the elastic part and thus the elastic stress
τ e is calculated from the shear energy (2.1), details are given in section 4.4. From
the stress tensor one can then derive the forces on the membrane. Li et al. [36] hint
to older studies [105, 107] for the force calculation but give neither details of the
derivation nor results.

4.3 Definitions and useful identities

4.3.1 Outline
In this section definitions for important quantities are given, together with the dif-
ferent terms used for them in the publications cited. Furthermore several identities
necessary for the calculation of the membrane forces are derived.

4.3.2 Cauchy-Green deformation
The (surface) deformation gradient tensor (called D in [35] in equation (C.8) and
used in its linearised form in equation (C.9)), also called surface displacement gradi-
ent [33]

F =
(
Fxx Fxy
Fyx Fyy

)
, (4.11)

defines the squared displacement gradient G [35], called right Cauchy-Green deform-
ation tensor [109]

G = F TF , (4.12)

which is obviously symmetric, i.e. GT = G. The left Cauchy-Green deformation
tensor is [109]

C = F F T . (4.13)
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4 Including membrane viscosity in the simulation model

It is straightforward to show that trace and determinant of these matrices are
identical

tr(G) = Gxx +Gyy (4.14)
= tr(C) , (4.15)

det(G) = GxxGyy −GxyGyx (4.16)
= det(C). (4.17)

4.3.3 Principal stretch ratios
The eigenvalues of G and equivalently of C are (equation (7) in [107]) are

λ2
1,2 = 1

2

(
Gxx +Gyy ±

√
(Gxx −Gyy)2 + 4GxyGyx

)
(4.18)

(4.14)(4.16)= 1
2

(
tr(G)±

√
tr(G)2 − 4 det(G)

)
(4.19)

(4.15)(4.17)= 1
2

(
tr(C)±

√
tr(C)2 − 4 det(C)

)
(4.20)

and can be identified as the squared principal stretch ratios. From this we can easily
see that

λ2
1 + λ2

2 = tr(C) = tr(G) (4.21)

λ2
1λ

2
2 = 1

4
(

tr(C)2 − ( tr(C)2 − 4 det(C))
)

= det(C) = det(G) (4.22)

and with (4.13)
(λ1λ2)2 = det(F TF ) = det(F )2. (4.23)

The strain invariants in the energy functional for the Skalak law (2.1) are defined by
the principal stretch ratios as in [33]

I1 = λ2
1 + λ2

2 − 2 (4.24)
I2 = λ2

1λ
2
2 − 1. (4.25)

4.4 Derivation of the forces from the stress tensor for
the Skalak law

4.4.1 Stress tensor
The approach to calculate the elastic force for the Skalak law, defined in section 2.2, is
the following. First the elastic stress (without the viscous contribution) is computed
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4.4 Derivation of the forces from the stress tensor for the Skalak law

via equation (6) and (7) in [36]. Then equation (49) from [108] is used to obtain
the nodal forces. This calculation method must lead to nodal forces identical to the
results from appendix C.1 in [35].
The elastic stress tensor is [36]

τ e = τ e
1 e1 ⊗ e1 + τ e

2 e2 ⊗ e2 (4.26)

with the principal directions e1, e2, which are eigenvectors of the left Cauchy-Green
deformation tensor (4.13). The calculations to obtain these eigenvectors and the
respective eigenvalues (4.18) are written out in appendix A.
The principal stresses are [36]

τ e1 = 1
λ2

∂WS

∂λ1

(B.6)= κS

3
λ1

λ2
(λ2

1 − 1) + κA

2 (λ2
1λ

2
2 − 1)λ1λ2 (4.27)

τ e2 = 1
λ1

∂WS

∂λ2

(B.7)= κS

3
λ2

λ1
(λ2

2 − 1) + κA

2 (λ2
1λ

2
2 − 1)λ1λ2. (4.28)

where identities from appendix B.1 have been used. This leads to the elastic stress
tensor

τ e = κS

3λ1λ2

[
λ2

1(λ2
1 − 1)(e1 ⊗ e1) + λ2

2(λ2
2 − 1)(e2 ⊗ e2)

]
+ κA

2 (λ2
1λ

2
2 − 1)λ1λ2(e1 ⊗ e1 + e2 ⊗ e2) (4.29)

(A.19)= κS

3λ1λ2

[
λ2

1(λ2
1 − 1)(e1 ⊗ e1) + λ2

2(λ2
2 − 1)(e2 ⊗ e2)

]
+ κA

2 λ1λ2(λ2
1λ

2
2 − 1)I. (4.30)

The first part in brackets can also be simplified

λ2
1(λ2

1 − 1)(e1 ⊗ e1) + λ2
2(λ2

2 − 1)(e2 ⊗ e2) (4.31)
(4.21)= λ2

1( tr(C)− λ2
2 − 1)(e1 ⊗ e1) + λ2

2( tr(C)− λ2
1 − 1)(e2 ⊗ e2) (4.32)

(A.19)= λ2
1( tr(C)− 1)(e1 ⊗ e1) + λ2

2( tr(C)− 1)(e2 ⊗ e2)− λ2
1λ

2
2I (4.33)

(4.21)= (λ2
1 + λ2

2 − 1)(λ2
1(e1 ⊗ e1) + λ2

2(e2 ⊗ e2))− λ2
1λ

2
2I (4.34)

(A.26)= (λ2
1 + λ2

2 − 1)C − λ2
1λ

2
2I. (4.35)

In total the elastic stress tensor becomes

τ e = κS

3λ1λ2

[
(λ2

1 + λ2
2 − 1)C − λ2

1λ
2
2I
]

+ κA

2 λ1λ2(λ2
1λ

2
2 − 1)I. (4.36)
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This intermediate result is identical to equation (2.8) in [33] which can be seen if we
use the identities (B.1) and (B.2) from appendix B.1. We continue and use (4.13) to
abbreviate

τ e = c1FF
T + c2I. (4.37)

with

c1 = κS

3λ1λ2
(λ2

1 + λ2
2 − 1) (4.24)= κS

3λ1λ2
(I1 + 1) (4.38)

c2 = −κS

3 λ1λ2 + κA

2 λ1λ2(λ2
1λ

2
2 − 1) (4.25)= λ1λ2

(
−κS

3 + κA

2 I2

)
. (4.39)

4.4.2 Force calculation

The membrane is modelled as a two-dimensional sheet and thus only in-plane stresses
and forces are considered in the derivation [36]. The forces {P } on the nodes (de-
scribed in detail and visualised in [35]) can be computed from the stresses with the
help of equation (49) in [108].

{δu}T{P } = tr
(
[δF ][F ]−1[τ e]

)
A (4.40)

where {P } = {P 1
x , P

1
y , P

2
x , P

2
y , P

3
x , P

3
y }T and {δu}T = {δu1, δv1, δu2, δv2, δu3, δv3}.

The number denotes the node number of the respective triangle (three nodes per
triangle). u, v describe the velocity in the x-y-direction, respectively. A is the area
of the deformed element. Compared to the original version [108], in equation (4.40)
the stresses σ, which are defined as force per area [108], are replaced with τ e, defined
as force per unit length [34]. As a consequence the volume of the deformed element
V must be replaced by the area A. Note however, that Shrivastava et al. [108] do
consider thin membranes where the stress in the thickness direction is zero. [δF ] is
defined as (equation (50) in [108])

[δF ] =
(∑3

i=1 aiδui
∑3
i=1 biδui∑3

i=1 aiδvi
∑3
i=1 biδvi

)
. (4.41)

In contrast to [108] there is no prefactor (2A(0))−1, it is absorbed in the constants
ai, bi which are defined as in equations (C.5) to (C.7) in [35]. Using equation (4.37)
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the right hand side of equation (4.40) can be simplified to

c1 tr
(
[δF ][F ]T

)
A+ c2 tr

(
[δF ][F ]−1

)
A (4.42)

= c1 tr
((∑3

i=1 aiδui
∑3
i=1 biδui∑3

i=1 aiδvi
∑3
i=1 biδvi

)(
Fxx Fyx
Fxy Fyy

))
A

+ c2

det(F ) tr
((∑3

i=1 aiδui
∑3
i=1 biδui∑3

i=1 aiδvi
∑3
i=1 biδvi

)(
Fyy −Fxy
−Fyx Fxx

))
A (4.43)

= c1

(
Fxx

3∑
i=1

aiδui + Fxy
3∑
i=1

biδui + Fyx
3∑
i=1

aiδvi + Fyy
3∑
i=1

biδvi

)
A

+ c2

det(F )

(
Fyy

3∑
i=1

aiδui − Fyx
3∑
i=1

biδui − Fxy
3∑
i=1

aiδvi + Fxx
3∑
i=1

biδvi

)
A (4.44)

Now the terms in front of all δui, δvi on the left and right hand side of equation (4.40)
are compared and thus the forces P i

x, P
i
y can be determined

P i
x = A

[
c1(Fxxai + Fxybi) + c2

det(F )(Fyyai − Fyxbi)
]

(4.45)

P i
y = A

[
c1(Fyxai + Fyybi) + c2

det(F )(−Fxyai + Fxxbi)
]
. (4.46)

With equations (4.38) and (4.39) and the ratio between deformed and undeformed
surface area A

A(0) = λ1λ2 [34] this leads to

P i
x = A(0)

[
κS

3 (I1 + 1)(Fxxai + Fxybi)

+
(
−κS

3 + κA

2 I2

)
det(F )(Fyyai − Fyxbi)

]
(4.47)

P i
y = A(0)

[
κS

3 (I1 + 1)(Fyxai + Fyybi)

+
(
−κS

3 + κA

2 I2

)
det(F ) (−Fxyai + Fxxbi)

]
(4.48)

where in addition λ2
1λ

2
2

det(F ) = det(F ), see (4.23), has been used.
The next step is the comparison of these forces on the single nodes with the expres-

sions obtained with the method by Krüger [35]. Starting with equation (C.13) [35]
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and collecting all parts in the appendix C therein leads to

P i
x = −

∑
j,k,l

A(0)∂WS

∂Il

∂Il
∂Gjk

∂Gjk

∂Vix
(4.49)

= −A(0)
[
∂WS

∂I1

(
∂I1

∂Gxx

∂Gxx

∂Vix
+ ∂I1

∂Gxy

∂Gxy

∂Vix
+ ∂I1

∂Gyx

∂Gyx

∂Vix
+ ∂I1

∂Gyy

∂Gyy

∂Vix

)

+∂WS

∂I2

(
∂I2

∂Gxx

∂Gxx

∂Vix
+ ∂I2

∂Gxy

∂Gxy

∂Vix
+ ∂I2

∂Gyx

∂Gyx

∂Vix
+ ∂I2

∂Gyy

∂Gyy

∂Vix

)]
(4.50)

= . . . (4.51)

= −A(0)
[
κS

3 (I1 + 1)(aiFxx + biFxy)

+
(
−κS

3 + κA

2 I2

)
det(F )(aiFyy − biFyx)

]
(4.52)

P i
y = −

∑
j,k,l

A(0)∂WS

∂Il

∂Il
∂Gjk

∂Gjk

∂Viy
(4.53)

= . . . (4.54)

= −A(0)
[
κS

3 (I1 + 1)(aiFyx + biFyy)

+
(
−κS

3 + κA

2 I2

)
det(F )(−aiFxy + biFxx)

]
. (4.55)

The calculations omitted in (4.51) and (4.54) are listed in appendix B.2. Note
that in the linearly approximated deformation gradient tensor F , used for the BIM
implementation in section 2.3, one off-diagonal element is zero, Fyx = 0 [35]. In this
derivation, however, the contribution is carried along.
Comparing equations (4.47) and (4.48) with (4.52) and (4.55) shows that apart

from the negative sign in the prefactor, the two approaches indeed lead to identical
results. In [35] the forces are those acting on node i against the deformation (see equa-
tion (C.10) therein) while [108] uses the convention of [107], equation (26) therein,
and thus does not have the negative sign.

4.5 Derivation of the forces from the stress tensor for
the viscous contribution

Having derived the nodal forces from the elastic stress for the Skalak law, we can now
add the viscous contribution to the stress tensor and derive the ensuing contribution
to the nodal forces. The calculation is identical to that in section 4.4. The total
stress tensor is (4.10) with viscous shear (s) and dilation (d) contributions and the
viscous stress tensor (4.9) (note the symmetry). We replace τ e in (4.40) by the total
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stress tensor and compute the additional forces on the nodes {P v}. Because the full
stress tensor is a sum of the individual components, the additional viscous forces are
simply added to those computed from the Skalak law in (4.47), (4.47). The equation
to solve is

{δu}T{P v} = tr([δF ][F ]−1[τ v])A (4.56)
The right hand side can be rewritten as

λ1λ2A
(0)

detF tr
((∑3

i=1 aiδui
∑3
i=1 biδui∑3

i=1 aiδvi
∑3
i=1 biδvi

)(
Fyy −Fxy
−Fyx Fxx

)(
Txx Txy
Txy Tyy

))
(4.57)

=A(0) tr
((∑3

i=1 aiδui
∑3
i=1 biδui∑3

i=1 aiδvi
∑3
i=1 biδvi

)(
FyyTxx − FxyTxy FyyTxy − FxyTyy
−FyxTxx + FxxTxy −FyxTxy + FxxTyy

))
(4.58)

=A(0)
( 3∑
i=1

aiδui(FyyTxx − FxyTxy) +
3∑
i=1

biδui(−FyxTxx + FxxTxy)

+
3∑
i=1

aiδvi(FyyTxy − FxyTyy) +
3∑
i=1

biδvi(−FyxTxy + FxxTyy)
)

(4.59)

Now, analogously, we compare the coefficients of δui, δvi to obtain the forces

P v,i
x = A(0) (ai(FyyTxx − FxyTxy) + bi(−FyxTxx + FxxTxy)) (4.60)
P v,i
y = A(0) (ai(FyyTxy − FxyTyy) + bi(−FyxTxy + FxxTyy)) (4.61)

with Tij from (4.9) and the components given in (4.1) to (4.4). In order to adhere to
the convention in [35] and obtain the forces acting on node i, a negative sign must
be added in the prefactor of equations (4.60) and (4.61).

4.6 Dimensionless parameters
We use the non-dimensional Boussinesq number to characterise the strength of the
membrane viscosity contributions µv,s, µv,d [36]

Bqs = µs

µoR
, Bqd = µd

µoR
(4.62)

Both are defined with respect to the outer fluid viscosity in the system µo, similar
to the definition of λ (2.6), except where otherwise specified. R is the characteristic
length scale of the simulated system, e.g. for spherical capsules it is the radius of the
sphere. For RBCs in blood flow simulations either the radius of a sphere with the
same volume as the RBC or the large radius of the RBC in its rest shape is used. In
blood flow simulations we always set

Bq := Bqs = Bqd (4.63)
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with Bqs, Bqd from equations (4.62). This is common practice [25], due to the fact
that experimental results even for a ‘general’ membrane viscosity are scarce. Data
from the literature will be discussed in detail in section 4.8. The artificial spring
constants k′

s, k
′
d have the dimensionless representations

κs/2 = k
′
s

µst−1 , κd/2 = k
′
d

µdt−1 (4.64)

with a characteristic inverse time t−1. This definition is identical to the definition of
the non-dimensional stiffness parameter in section 4.3 in [106]. In shear flow t−1 is
equal to the shear rate γ̇ [106], and in channel blood flow t−1 = Uavg

R
, where R is the

RBC radius and Uavg is the average flow strength in BIM which determines the flow
velocity in the channel.

4.7 Implementation for the boundary integral method

4.7.1 Technical details
The derived forces for each triangles (4.60) and (4.61) are added in the BIM imple-
mentation described in section 2.3.2. Apart from the FD scheme [36] two integral
schemes (Int1 and Int2) for the viscous stress computation [106] are implemented.
Comparison of eq. (18) in [36] with eq. (20) and tables 1 and 2 in [106] shows that
only the coefficients (4.5) and (4.6) in the computation of the viscous stresses (4.1)
to (4.3) change, if other schemes are used, they become for the first integral scheme
Int1

AInt1
s = exp

(
−∆t k

′
s

2µs

)
, BInt1

s = 2µs
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[
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and for Int2
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In contrast to the lattice Boltzmann-immersed boundary method used in [36, 106]
the time step ∆t is not constant in BIM. The implementation described in 2.3.2 uses
a time integration algorithm with an adaptive step width. Therefore, the viscous
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stresses τv
ij as well as the strain tensor elements Eij of each successful time step

must be saved for the computation of the new viscous stresses. In this context,
the subsampling after Nδt from [36] is here implemented as a subsampling after
every N -th successful time step. For best accuracy [106], N = 1 was chosen for the
simulations discussed in this thesis.

4.7.2 Validation and comparison with the literature
Simulations of viscoelastic capsules in shear are used to validate the implementation.
The radius of the spherical capsules is R = 4 µm and they are immersed in a fluid
of viscosity µo = 1.2 mPa s, the viscosity contrast is 1. Their membrane is endowed
with shear elasticity with modulus κS = 5× 10−6 N m−1 modelled with the Skalak
law, with a sphere as reference shape. Capsules are volume conserving because the
fluid inside the capsule cannot penetrate the membrane. The surface area, however,
changes during the deformation and thus κA = κS. The membrane is discretised
with nt = 5120 triangles, if not stated otherwise. The shear Boussinesq number Bqs
is varied between 0 and 40, the dilation part Bqd is set to zero. We choose as shear
rate γ̇ = 208.3 s−1 for all simulation, which leads to a capillary number of

Ca = γ̇µoR

8/12 κS
= 0.3, (4.69)

equal to the value chosen by Li et al. [106]. The constant factor 8/12 in the de-
nominator is due to the different definition of the shear modulus in [106]. With a
characteristic velocity of v = γ̇R the Reynolds number (2.12) of the simulated system
is very small and the BIM can be used.
We compare the time-dependent Taylor deformation index D of the capsule with

results from former studies [25, 26, 106] in figure 4.1(a). The four simulation im-
plementations do not lead to exactly identical results, but the overall agreement is
good. On the right in figure 4.1(b) the influence of the membrane viscosity strength
on the deformation is shown. Increasing Bqs leads to smaller deformation D in the
shear flow, the rotating capsule is closer to the original spherical shape. This is due
to the viscous membrane, which slows down the deformation and in combination
with the tank-treading of the membrane in shear flow leads to smaller D.
In figure 4.2 the dependence of the deformation on the surface triangulation is

presented. Surprisingly, the orientation of the initially spherical surface mesh in the
shear flow has an equally strong influence on the results as the number of triangles nt
(inset in figure 4.2). The images of the capsule surface on the right in figure 4.2 show
the wrinkles on the surface, whose development depends not only on the resolution
but also on the orientation. Such wrinkles arise also for non-viscous capsules when
resistance to bending of the surface is absent [110]. These findings might also explain
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Figure 4.1: Deformation index D for various membrane viscosity values Bqs. (a) Comparison with
results from the literature by Guglietta et al. [25], Matteoli et al. [26] and Li et al. [106]
shows good agreement. (b) Increasing the membrane viscosity leads to a decrease in
the deformation index.

the difference between the curves shown in figure 4.1(a). Li et al. [106] for example
use 5120 surface triangles, but the orientation is not discussed.

Finally, the different schemes for the viscous stress computation Fd, Int1 and Int2
and the influence of the (dimensionless) artificial spring constant (4.64) are tested.
Figure 4.3(a) shows that the different computation schemes implemented here lead
to identical results, as has been reported in [106]. The artificial spring constant
κs/2 = 5, 10, 20, 30 has negligible influence for smaller membrane viscosity value
Bqs = 5 ,compare figure 4.3(b). At larger Bqs = 40 a slight difference between
κs/2 = 10 and 20 can be observed. Compared to the influence of the surface grid
discussed in figure 4.2, however, the effect is very small.

Following the analysis of this section, in the applications of the following chapter
the FD scheme with subsampling after a fixed number N of time steps is used, and
N = 1. The dimensionless spring constants (4.64) are set to κs/2 = κd/2 = 10.
The recursively defined viscous stresses (4.1) to (4.4) are initialised with zero at the
beginning of the simulation.
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Figure 4.2: Deformation of the spherical capsule for different triangulation nt of the capsule. The
inset shows the deformation for a capsule with rotated spherical mesh (red curve) at
nt = 5120. The images on the right illustrate the wrinkling of the capsule membrane
for three different parameter combinations (see coloured arrows), black arrows indicate
the shear direction. Bqs = 10 for all simulations.

4.8 Experimental results for the membrane viscosity

Experimental values for the membrane viscosity are rare and the results span a wide
range, as summarised in table 4.1. For a better overview the table also includes the
Boussinesq numbers used for the cell modelling in other simulation studies. The first
part of the tables lists mainly experimental studies and one coarse-grained simulation
approach, which used different techniques to determine the viscosity. The second part
lists the upper boundary of the membrane viscosity for four recent simulation studies.
The value of the membrane viscosity µm is taken from the respective study. The
simulation studies mostly reported a dimensionless value which was converted into
µm for better comparison. The last column gives the Boussinesq number calculated
from µm via equation (4.63) with the RBC radius R = 4 µm and the plasma viscosity
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Figure 4.3: Influence of the technical parameters on the deformation. (a) Three different viscous
stress computation schemes are tested for Bqs = 10, 20. (b) Influence of the artificial
spring constant κs/2 on the deformation for Bqs = 5, 40.

µo = 1.2 mPa s.
In addition to the inevitable scattering of experimental measurements Chien et al.

[112] obtained different results for the membrane viscosity, depending on the strength
and duration of the deformation of the cells. The authors hypothesise that this may
be due to rearrangement of the surface molecules under strain [112]. After initial
measurements at room temperature [113], Hochmuth et al. [114] found that the cell
recovery from a stretched state is highly temperature dependent, which leads to
different estimates of the Boussinesq number. Linderkamp et al. [115] measured the
cell relaxation for centrifuged cells and found a difference in the relaxation time scale
of around 50 % between the cells at the bottom, which are denser, and the cells at
the top. The cell density increases with the cell age because the water loss of the cell
over time leads to an increase of the relative haemoglobin concentration inside the
cell. Hochmuth et al. [121] in addition discuss the membrane viscosity for various
abnormal cell conditions.
With only few exceptions [117] membrane viscosity values are reported only for

the shear contribution. This thesis therefore follows Guglietta et al. [25], setting
Bqd = Bqs as mentioned in section 4.6. The overview in table 4.1 shows that
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(exp.) technique µm/(10−7 Pa s m) Bq

Evans 1976 [111] micropipette 10 213aspiration

Chien 1978 [112] micropipette 0.06 - 206 1.3 - 4390aspiration

Hochmuth 1979 [113] cell extensional 6 - 8 128 - 171recovery

Hochmuth 1980 [114]

21 (at 6 °C) 448
cell extensional 14 (at 15 °C) 298

recovery 7.4 (at 25 °C) 158
3.6 (at 37 °C) 77

Linderkamp 1982 [115] cell extensional 9.5± 2.2 (bottom) 202± 47
recovery 5.4± 1.5 (top) 115± 32

Tran-Son-Tay 1984 tank-treading 0.57 12[116] cells rheoscopy
Dimova 1996, 2006 falling ball 0.05 1.07[117, 118]† viscosimetry

Mills 2004 [55] optical tweezers 3-28 64-597(extens. recovery)

den Otter 2007 [119] coarse-grained 0.0001 0.002simulations

Noguchi 2005 [120] − 0.144 3.1
Yazdani 2013 [105] − 10 213

Li 2019, 2020 [36, 106] − 1.92 41
Guglietta 2020 [25], − 3.18 68Matteoli 2021 [26]
† Study of lipid bilayer cells in general, not specifically RBCs.

Table 4.1: Literature overview for membrane viscosity values. Experimental studies in the first and
simulation studies in the second part of the table. µm is taken from the literature, Bq
is computed via equation (4.63) for RBCs in blood plasma. For simulation studies the
upper boundary of the used viscosity values is given.

experimental measurements do not provide a precise value for the membrane viscosity
of RBCs, the results can only give a rough estimate.
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5 Influence of membrane viscosity on
the red blood cell dynamics in
microchannels

5.1 Overview

This chapter takes up the question of the RBC slipper dynamics from chapter 3.4.
Here the influence of the membrane viscosity on the slipper dynamics is studied,
using the implementation described in chapter 4. It will be shown that including
membrane viscosity in the simulation model leads to slipper dynamics consistent with
the experimental measurements. This extension of the simulation model requires
discussion and adaptation of the RBC elastic reference shape which will also be
part of this chapter. The outline of the chapter is as follows: Modifications of the
simulation setup are described in the first section 5.2. The next section 5.3 focuses
on the RBC shear reference state. In the first part 5.3.1 an overview of results from
the literature on this problem is given, highlighting the fact that a definite solution
for the appropriate reference state does not exist so far and different assumptions
are made in simulation studies. Following this literature overview the influence of
the reference state on the RBC rest shape is discussed. Section 5.3 finishes with
a short discussion of the influence the reference shape has on the slipper dynamics
in the microchannel. Section 5.4 finally shows the results for the slipper dynamics
including viscosity of the membrane in comparison with the experiments and former
results. In the subsequent section 5.5 the experimental evidence and reliability of
the comparison is discussed in detail. This is based on a discussion and comparison
of the data processing methods in experiment and simulation. Additional data for
the slipper length oscillation is presented, as well as statistical information on the
slipper observation. The experimental data discussed in this chapter was provided
by S. M. Recktenwald (member of the group of C. Wagner in Saarbrücken). Some
experimental data is repeated from section 3.4. The next section 5.6 presents the
phase diagrams for RBCs in channel flow with membrane viscosity. In the conclusion
in 5.7 the simulation settings and results from the previous sections are summed up
and a short overview of how they fit in with the experimental evidence is given.
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5.2 Simulation setup
Complementary to section 3.4 the dynamics of slippers in a rectangular channel of
size 11.5 µm to 8 µm is studied with the BIM. Changes to these earlier simulations are
variations of the elastic shear modulus κS and the stress-free shape, where in addition
to the discocyte an oblate spheroid of aspect ratio τ = 0.9 was used, compare
section 2.2. Changes in the shear contribution of the RBC entail changes in the
bending modulus κB and the (spatially constant) reference shape with reference
curvature c∗0, because bending and shear resistance together determine the rest shape
in simulations, which must be the discocyte shape. Different parameter combinations
are discussed in section 5.3.2. For the rest of the chapter the moduli were set to
κS = 5× 10−6 N m−1 and κB = 4× 10−19 N m with reference curvature c∗0 = 4 for
the oblate spheroid reference state. Simulations with a discocyte reference state for
good comparison have the same simulation parameters as used in chapter 3. The
Boussinesq number (4.63) is defined with respect to the RBC radius R. Different
values for λ are use in this chapter. Very recent (still unpublished) experimental
results by our collaborators from the group of C. Wagner in Saarbrücken lead to
the conclusion that the internal fluid viscosity is indeed significantly larger than the
formerly used value of λ = 5, the experimental mean lies between 10 and 20.

5.3 A short digression on the shear reference state

5.3.1 Literature overview
5.3.1.1 Discussion of the reference shape

Tsubota et al. [48] present simulations of stop-and-go shear flow and in that context
discuss equilibrium shapes. The Skalak law is used to describe shear and dilation
contributions and a spring model for the bending. Interpolations between a sphere
and a discocyte are used as stress-free shapes. With this approach the authors
rule out near-spherical shapes for the stress-free shape because in equilibrium for
realistic moduli these lead to cup-shaped RBCs, similar to stomatocytes, a form of
diseased RBC shape [48]. Tsubota et al. [48] argue for a near-oblate reference shape
as this matches their shear flow results better. However, the bending model may
have (crucial) influence on the equilibrium shape and the authors add that further
investigations in this direction are necessary.
Lim H.W. et al. [122] use an ADE model [123] and show that depending on the

area difference between the two monolayers of the lipid bilayer in the natural state,
different equilibrium shapes like discocyte, stomatocyte and ‘spiky’ echinocyte result.
The author discuss how different reference shapes lead to these equilibrium shapes,
however, the analysis is expected to depend heavily on the ADE bilayer model. The
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area difference introduced in the study [122] is related to the concept of a (constant)
reference curvature and the findings suggest that it is necessary to introduce a non-
zero reference curvature. Interestingly, the authors included experimental images of
the cup-shaped RBCs from Jay [124], which were obtained by adding albumin in
the fluid surrounding the RBC. In this solution mechanical stirring led to reversible
shape transition from discocyte to stomatocyte [124], which suggest that in this
surrounding, it is a metastable state.
Cordasco et al. [52] present simulations in shear flow to compute, amongst others,

phase diagrams and slipper frequencies. The Skalak and Helfrich laws are used with
constant non-zero curvature and the authors check that the cells have the correct
equilibrium shape. As reference shapes the discocyte and three oblate spheroids
with different aspect ratios are used in the study. For the most spherical oblate
spheroid with aspect ratio τ = 0.9 the authors report that a bending modulus of
κB = 6× 10−19 N m, a value larger than what is commonly used but still in the
experimental range, and a spontaneous curvature of c∗0 = 4 is necessary to obtain the
biconcave equilibrium shape [52]. The authors also consider negative spontaneous
curvatures. The main finding of the study is that only for viscosity contrast values
much smaller than the physiological range, significant changes due to different stress-
free states are visible [52].
These parameter combinations, which lead to the correct rest shape of the RBC,

are used for subsequent studies. Lanotte et al. [4] employ two different simula-
tion methods to investigate RBCs in shear flow, a finite-volume method with the
YALES2BIO software [125] and a smoothed dissipative particle dynamics (SDPD)
method [126], and show that the variety of observed shapes agrees well experiments.
A viscosity contrast of λ = 5 is used throughout the study and the authors state for
one method that the RBC parameters are set as in the paper by Cordasco et al. [52].
In the theoretical study by Pozrikidis [127] constitutive equations are employed

for the RBC bending moments and membrane tension. The author derives the
rest shape for different oblate spheroid and discocyte reference shapes with different
curvatures and compares the results with the experimental measurement results for
RBCs. The results support Helfrich’s notion that the Helfrich bending model with a
negative natural state curvature, equal to approximately the curvature of the sphere
with same surface area as the discocyte, leads to correct equilibrium shapes [127].
The author does not find cup-shaped RBCs and the difference between different rest
shapes close to the experimental result are small.
Cordasco et al. [44] use shear flow go-and-stop simulations of RBCs and investigate

the resulting equilibrium shapes. The stress-free shapes are similar to an earlier
work [52] discussed above. The authors find a high dependence on the stress-free
shape, e.g. in the time scales of the relaxation behaviour, but cannot compare the
results to experiments and thus cannot give an answer as to which reference shape
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is the correct one. Other observations are, that larger viscosity contrast λ increases
the relaxation time scales and, secondly, that the bending contribution is responsible
for recovering the discocyte rest shape, while the shear contribution accounts for the
shape position memory.
The study by Sinha et al. [51] presents RBC shear flow simulations with a disco-

cyte as reference shape together with the Skalak and Helfrich law for RBC modelling
and ascertain, that the correct equilibrium shape results. The authors investigate
the bending reference curvature using a constant curvature, discocyte and oblate
spheroid and find the best agreement with experimental results for an oblate spher-
oid [51]. Whether this finding also holds for other reference shapes was not investig-
ated. Note that the authors also give an argument against the simplifying assumption
of a spatially constant reference curvature, stating that ‘proteins have been shown to
preferentially bind via curvature-sensing mechanism’ [51] (compare ref. 42 therein).
Peng et al. [53] develop simulations for a multiscale fluid-structure interaction

model of the RBC and investigate the RBC’s rest shape and its behaviour in shear
flows of small shear rate. Only spheroidal reference shapes are investigated and the
authors find that more spherical spheroids need a larger spontaneous curvature to
relax to the correct rest shapes. Moreover, for more spherical reference shapes the
tank-treading is observed already at significantly smaller shear rates and these match
experimental comparison best [53].
Dupire et al. [128] present an extended Keller and Skalak (KS) model, where the

RBC is represented as an ellipsoid which now possesses shear elasticity. In this model
the stress-free state has a large impact on the behaviour in shear flow. The authors
obtain parameters by fitting their model to experimental results of tank-treading
RBCs from the same group [98] and find that an oblate spheroid with aspect ratio
τ = 0.993 fits best. More experimental results and related observations from this
group are presented in Viallat et al. [50] and Dupire et al. [129].
Levant et al. [54] study the in vitro dynamic states of a rabbit RBC in planar linear

flow as a generalisation of simple shear flow to construct the phase diagram, describe
the dynamic RBC states and study the transition between these. The authors report
good agreement with experimental results for human RBCs in shear flow but state
that their results are not in agreement with the experimental evidence by Dupire
et al. [129] and the simulation results from the work of Tsubota et al. [48], Cordasco
et al. [52] and Peng et al. [53]. More specifically, Levant et al. [54] argue that the
interpretation of the experimental evidence [129] is no sufficient justification for the
introduction of the modified simulation models with spheroid reference shape [48,
52, 53], which were based on this evidence. The second point the authors make is,
that the theoretical models depend on many physical parameters which are specified
(partly) from experimental measurement and crucially influence the RBC’s shape.
Therefore, Levant et al. [54] state that so far the question of the correct stress-free
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shape has not yet been answered satisfactorily and the discocyte shape on these
grounds should not be ruled out.

5.3.1.2 Further red blood cell simulation studies

In this subsection further RBC simulation studies are listed, which, however, do not
specifically discuss the RBC rest shape, to give an impression of the different models
and assumptions about the stress-free shape in the literature.
Yazdani et al. [130] use a discocyte reference shape with a negative reference

curvature, as studied in [52], which implies that the rest shape conforms with the
experimentally observed biconcave disc.
Fedosov et al. [96] model the RBC with connected elastic springs and perform an

RBC recovery test, the simulation method is a dissipative particle dynamics (DPD)
technique. Fedosov et al. [23] also use this spring model, together with a SDPD
method, and note that for slow flows the shape is identical to the unperturbed
RBC rest shape. Both studies use a stress-free membrane model and the bending
contribution is included in the spring potential [23, 96]. In a subsequent study, the
authors Mauer et al. [101] refer for the modelling of elasticity, bending energy, area
and volume conservation to Fedosov et al. [96], but use an oblate spheroid stress-free
shape. Reichel et al. [24] refer to earlier work [101] and also use an oblate spheroid
stress-free shape, as it was shown to fit observations well. A recent study from
the same working group [6] again uses the spheroid reference shape. In contrast
to the Helfrich model (2.3), where the bending curvature is a direct input quantity
in equation (2.4), this is not the case for the RBC spring model and thus direct
comparison is not possible.
Mendez et al. [131] use a near-spherical oblate spheroid as stress-free shape but

a zero reference curvature (compare supplementary material of the study [131]) and
a low bending modulus of κB = 3× 10−19 N m. With these parameters, simulations
with BIM conducted for this thesis did not lead to the correct biconcave rest shape,
examples are given in the following sections. Comparison of this observation with
results in the paper [131] is not possible, because results on the equilibration of the
RBC in a quiescent fluid are not included there. A subsequent study by Matteoli
et al. [26] also uses the oblate spheroid reference shape, details on the reference
curvature or the RBC relaxation are not given.
Two recent studies, Guglietta et al. [25] and Guglietta et al. [132], do not men-

tion the stress-free state and the bending reference but in relaxation simulations
obtain the correct rest shape. The conclusion in the later work [132] suggests that a
discocyte is used as reference shape.
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5.3.1.3 Summary

In recent years, the oblate spheroid is increasingly being used as stress-free RBC
shape in simulation studies, replacing the former choice of a discocyte. Choosing
a spheroid as reference shape for the shear contribution effectively means that the
RBC is pre-stressed in its natural rest shape, the biconcave disc. Most studies
refer to earlier publications for motivation why they use certain stress-free states
and (corresponding) bending reference curvatures, in particular these are the studies
from Cordasco et al. [44, 52]. A necessary precondition for the choice of stress-free
state and bending curvature is that it leads to the discocyte rest shape of the RBC.
The justification for selecting a certain stress-free state and bending curvature is
that experimental observations of RBC dynamics are better reproduced. As dis-
cussed above in 5.3.1.1, identification of the appropriate stress-free shape is difficult.
The main difficulties are that many other parameters, e.g. the elastic and bending
moduli, influence the RBC dynamics, and systematic testing of feasible parameter
combinations for different flow systems amounts to a impractically large number of
simulations. Moreover, RBCs are biological entities and thus experimental results
scatter due to their biological heterogeneity, therefore, detailed comparison, e.g. of
RBC rest shapes is problematic. Finally, as Levant et al. [54] point out, the spa-
tial resolution of the RBC imaging crucially determines the shape characterisation,
which hampers qualitative shape comparison in experiment and simulation.

5.3.2 Red blood cell rest shape in simulation models
All simulation models for RBCs must reproduce the discocyte as correct rest shape
of the cell. In particular, simulation parameters such as bending and shear reference
shapes and moduli must be chosen such that this outcome is ensured. An approach
to check this for a particular parameter combination is discussed in the following.
For any simulation parameter combination listed in table 5.1 two simulations with
different start shapes are run, one with the discocyte shape specified in the RBC
model and one with a deformed slipper-like shape. The cells are placed in an in-
finite quiescent fluid where they start to relax towards their rest shape. Example
relaxation trajectories are shown in figures 5.1(a) and 5.2. Discocyte start shapes
(solid lines) relax to discocytes with marginally different deformation parameter.
This difference reflects the very slight difference in the cross section of the respective
discocyte rest shape, shown in figure 5.1(b) in green and blue. The orange points
in figure 5.1(b) show the inital discocyte shape at time 0 in (a), modelled according
to experimental measurements [43]. It is marginally flatter in the middle, however,
all the differences are within experimental measurement errors. The deformed cells
(dashed lines in 5.1(a)) need more time for the relaxation towards the respective
rest shape. Changes in the shear modulus can influence the exact form of the dis-
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cocyte rest shape. This is exemplified for a larger κS in figure 5.2 (light blue lines).
In addition, the relaxation towards the rest shape is marginally faster than for a
smaller shear modulus. The viscosities of fluid and membrane do not influence the
final rest shape but only the time scale on which a deformed cell relaxes towards
the rest shape. An example trajectory for λ increased by a factor of two is shown
in figure 5.2 (black dashed line). The relaxation time until the cell reaches the rest
shape is significantly longer. This is in line with earlier results [44], discussed in
section 5.3.1.1.

(a) (b)

(c)

Figure 5.1: Red blood cell rest shapes in numerical simulation. (a) Relaxation of RBCs towards
discocyte rest shapes for oblate spheroid (green) and discocyte (blue) reference shape,
starting from a discocyte (solid lines) and a deformed slipper-like shape (dashed lines).
The red curves show relaxation towards a cup-shape. Parameter combinations are
given in table 5.1. (b) Slice through the two discocyte rest shapes (green and blue) in
comparison with the initial discocyte shape (orange points). (c) Cup-shaped rest shape
for different parameter combinations.

For some parameter combinations in table 5.1 (in red) the slipper-like deformed
RBC does not relax towards a discocyte but instead towards a cup-like shape shown
in figure 5.1(c). These parameter combinations should not be used in simulations.
The deformation index for these is significantly lower as shown in figure 5.1(a) in red.
Especially a flat reference curvature c∗0 = 0 which is used for the discocyte reference
simulations in 3 does not work for the oblate spheroid reference shape.
For the discocyte reference the RBCs relax correctly in all cases, due to the in-

fluence of the shear reference. For the oblate spheroid reference, however, cup-
like rest shapes occur if the bending reference curvature in combination with the
bending modulus is not large enough to overcome the influence of the shear con-
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Figure 5.2: Influence of red blood cell parameters on the rest shapes. The relaxation of RBCs
towards a discocyte rest shapes for a the discocyte reference shape is repeated from fig-
ure 5.1(a) (dark blue lines), again starting from a discocyte (solid lines) and a deformed
slipper-like shape (dashed lines). The qualitative changes in the relaxation behaviour
for increased shear modulus κS and increased viscosity contrast λ are added in light
blue and black, respectively. Parameter combinations are given in table 5.1.

tribution, whose strength is given by κS. For an oblate reference shape with κS =
5× 10−6 N m−1 [31, 55, 56] at c∗0 = 4 [52], the correct rest shape is obtained if a
moderately larger bending modulus κB = 4× 10−19 N m, which is not significantly
larger than the usually reported values [17, 25, 31, 57], is used. In the following,
this combination is used for simulations with an oblate reference shape. Variations
of the parameters have negligible influence on the dynamic RBC behaviour as has
been shown before in section 3.6.

5.3.3 Slipper movement of red blood cells with oblate spheroid
shear reference

In this section the influence of the oblate spheroid reference shape on the slip-
per movement is discussed. Figure 5.3(a) shows an example slipper trajectory at
v̄ ≈ 5 mm s−1, in comparison with earlier results for the discocyte shear reference
from chapter 3. The blue curve is representative for the slipper movement at these
parameter combinations. It consists of an initial phase, where the slipper flows off-
centred in y-direction but symmetric with respect to the x-y-plane, as the first inset
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5.3 A short digression on the shear reference state

ref. shape κS c∗0
κB remarks

/(10−6 N m−1) /(10−19 N m)

disc.

5.0 -2.09 6.0 c∗0, κB from [44, 52]
5.0 0 3.0 fig. 5.1(a) for λ = 5,

and fig. 5.2 for λ = 5, 10
5.0 4.0 3.0
5.0 4.0 6.0
7.5 0 3.0 fig. 5.2 for λ = 5

obl.
spher.
(τ = 0.9)

5.0 0 3.0 cup-shaped
5.0 0 6.0 cup-shaped, fig. 5.1(a)
5.0 2.8 6.0
5.0 4.0 3.0 cup-shaped
5.0 4.0 6.0
5.0 4.0 4.0 fig. 5.1(a) for λ = 5
7.5 4.0 4.0 cup-shaped
7.5 4.0 6.0 κS, c

∗
0, κB from [44, 52]

10.0 4.0 8.0
15.0 4.0 8.0 cup-shaped
15.0 4.0 12.0

Table 5.1: Simulation parameter combinations and resulting rest shapes. In the first four columns
the cell parameters are specified, these are the reference shape, the shear modulus κS, the
bending curvature c∗

0 and the bending modulus κB. The last column contains remarks.
Lines with parameter combinations which lead to the cup-shaped rest shape are marked
in red, all other combinations lead to the correct discocyte rest shape.

of the three-dimensional RBC shape shows. It then transitions to a state with the
slipper flowing slightly lopsided, connected to a smaller centre of mass offset and
no longer centred in z-direction. This is connected to a decrease in frequency. For
larger mean velocities the transition occurs at earlier times. However, in both states
the slipper shows a regular tank-treading movement. From such trajectories, the fre-
quency and amplitude of the first phase of the oscillation are extracted (if possible)
and plotted in figures 5.3(b,c). For the two largest velocities, the first phase consist of
very few oscillations such that extraction of e.g. the frequency is not possible. Hence,
the oscillation parameters are extracted from the second phase. This explains the
non-linear behaviour of the blue points in figure 5.3(b). Compared to the data for the
discocyte the amplitudes shown in (c) are very small. In experiments, for such small
amplitudes the oscillation is too small in comparison with experimental noise and
in most cases impossible to extract from the data, as was already remarked in [62].
The graph inset in figure 5.3(a) shows the positional oscillation of an RBC with
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xy

z

(a)

(b) (c)

Figure 5.3: Slipper dynamics for oblate spheroid shear reference. (a) Comparison of the slipper
oscillation for the spheroid reference (blue lines) with the earlier results for the discocyte
reference shape (orange) at approximately identical mean velocity v̄ ≈ 5 mm s−1. The
plot inset in addition shows a discocyte with positive bending reference curvature and
κB = 6× 10−19 N m (red curve). The (b) frequencies and (c) amplitudes at different
velocities are compared to the results for discocytes shown earlier in figure 3.5(a,b). For
all results the viscosity contrast is λ = 10.

discocyte shear reference and a positive bending reference curvature c∗0 (red curve).
The amplitude is comparable to the orange curve but the transition to a lopsided
slipper is identical to the behaviour for the oblate spheroid reference, the frequency
decrease included. Note that for the discocyte with negative reference curvature or
smaller bending modulus (compare table 5.1) no lopsided slippers appear.
This leads to the conclusion that the decrease in amplitude is due to the change

from discocyte to spheroid shear reference, while the transition to the lopsided slipper
must be attributed to the positive bending reference curvature in combination with
large κB. The physical explanation for the decrease in amplitude is the sphericity of
the oblate spheroid reference. During the tank-treading movement, the dimples of the
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5.4 Influence of the membrane viscosity on the red blood cell slipper dynamics

RBC follow the membrane rotation as shown in section 3.4 and the cell shows a length
oscillation, described as breathing motion. If the shear reference is a discocyte, this
leads to larger elastic restoring forces during this breathing motion when the dimples
are at opposite sites of the elongated slipper, compared to the near-spherical oblate
spheroid reference, and thus to more violent positional oscillations.

5.4 Influence of the membrane viscosity on the red
blood cell slipper dynamics

5.4.1 Frequency, amplitude and offset of the slipper oscillation
In this section results for the slipper oscillation of RBCs with oblate spheroid refer-
ence shape and additional viscosity of the membrane are presented. These slippers
show regular tank-treading oscillations similar to the discocyte reference RBCs in
section 3.4. The rotations described in section 5.3.3 in the absence of membrane
viscosity are no longer observed.
Similar to earlier analysis the frequency, amplitude and position of the slipper in

the microchannel are analysed and summarised in figure 5.4. For comparison, the
former results for the discocyte without membrane viscosity and the experimental
measurements from chapter 3 are repeated in orange and black, respectively. Start-
ing from former results for λ = 5 (orange squares), a membrane viscosity of Bq = 5
in the model (red squares) leads to a significant decrease in the frequency shown in
figure 5.4(a). For larger values of λ = 10, 20 this effect of the increased membrane vis-
cosity Bq is less pronounced (red circles and triangles). An explanation for this could
be that membrane and interior viscosity have a similar influence on the dynamics
and if λ is already comparatively large, the damping effect of additional membrane
viscosity is smaller. If the membrane viscosity is increased to Bq = 10 (purple
symbols) the frequency decreases only slightly compared to the former Bq = 5. Sur-
prisingly, for even larger Bq = 20 (blue symbols) the frequency again increases by a
small amount. The effect of λ and Bq on the amplitude in figure 5.4(b) is a clear
increase with increasing viscosity of the inner fluid or the membrane. The difference
in amplitude compared to the former discocyte results (orange symbols) is due to
the spheroid reference shape, discussed in section 5.3. The mean RBC position in
direction of the y channel axis is shown in figure 5.4(c). The increase in λ as well
as Bq has an ambiguous influence on the position of the cell in the channel. The
significance of the comparison to the experimental measurements will be detailed in
section 5.5 below. In contrast to the earlier results without membrane viscosity it
is now possible to reach higher velocities for λ = 20 in simulations. As a side effect
the damping of the slipper dynamics due to the membrane viscosity leads to better
numerical stability of the RBC moving through the channel.
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(a)

(b) (c)

Figure 5.4: Dynamics of the slipper red blood cell state with membrane viscosity. The (a) frequency,
(b) amplitude and (c) offset from the channel centre in y-direction of the slipper’s centre
of mass oscillations. Different symbols (squares, circles, triangles) are used for different
viscosity contrasts λ. Simulation results for Bq = 5, 10, 20 are drawn in red, purple and
blue, these have an oblate spheroid shear reference. Simulation data for Bq = 0 (orange
symbols) and experimental data (black symbols) in (a,b) is reproduced from figure 3.5
for comparison, the respective data (orange, black symbols) in (c) is reproduced from
the joint publication [62].

It must be noted that if the membrane viscosity is increased further to e.g. Bq =
40, 60 all slippers vanish and instead cell shapes classified as others [17, 62] emerge.
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5.4 Influence of the membrane viscosity on the red blood cell slipper dynamics

Figure 5.5: Trajectory of the red blood cells with membrane viscosity and discocyte reference shape.
The reference curve for λ = 10 without membrane viscosity from figure 5.3(a) is repeated
in orange. The green curves show the trajectories of the RBCs if membrane viscosity
Bq 6= 0 is used. For larger λ = 20, the trajectories are drawn in blue.

5.4.2 Differences in case of discocyte shear reference shape

The previous section discussed the slipper dynamics of RBCs with oblate spheroid
reference shape. If for the shear reference shape instead the discocyte is used, this
leads to the trajectories shown in figure 5.5. For λ = 10 with membrane viscosity
the oscillation frequency is nearly equal to the former result (orange curve) and the
amplitude of the oscillation slightly larger. If, however, the viscosity contrast is
increased to λ = 20 in the presence of membrane viscosity, the RBC starts to deform
violently while moving through the channel (blue curves). Already for Bq = 5, the
RBC is no longer clearly distinguishable as slipper shape and in experiments would
be classified as type other. Similar trajectories were not observed in the analysed
experimental data set. It should be noted that due to the uneven movement of the
RBC membrane, including the formation of localised wrinkles on the surface for these
large viscosity values (blue curves), the exact trajectory in simulations depends on the
details of the cell’s triangulation. This is similar to the effect observed in figure 4.2.
The source of the jerking movements at high viscosity in figure 5.5 is the com-

bination of the large restoring forces due to the reference shape, analogously to the
explanation at the end of section 5.3.3, and the viscous contributions which would
slow down the movement.
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5 Influence of membrane viscosity on the red blood cell dynamics in microchannels

5.5 Discussion of the experimental evidence

5.5.1 Methods to extract the dynamic cell characteristics

experiment
(a) (b)

(c)

Figure 5.6: Fitting procedures to extract cell trajectories. (a) Ellipsoidal fit (red) to the experi-
mental image. (b) Two fitting methods (in red and blue) to the cell contour (gray dots)
from simulations. The coloured points mark the respective result for the centre of mass
(c.o.m., exact position marked by orange cross). (c) Image fit for the centre of mass
computation based on the visualisation of the simulation result. Note that the cell in
the simulation flows in the upper half of the channel. Experimental image provided by
S. M. Recktenwald (member of the group of C. Wagner in Saarbrücken).

The comparison between experiment and simulation results in figure 5.4(a) shows
that if an oblate spheroid is used as shear reference, a large viscosity contrast λ = 20
leads to slipper frequencies which fit the experimental measurements. In addition, as
figure 5.4(b) shows, in contrast to former studies [62] the amplitude of the oscillation
also lies within the experimental measurement error. The mean channel position in
simulations is slightly larger than expected from experimental results (figure 5.4(c)).
In general, comparison of the frequencies is more reliable than that of amplitude
and position. Measurement errors of the channel dimension on the micrometer scale
and the fitting procedure for the centre of mass movement have no or only negligible
influence on the frequency measurement. In the following, it will be discussed that
the deviation in the amplitude and position comparison can be explained by the
fitting procedure which is used to extract the experimental trajectories.
For evaluation of the experimental data an ellipse is fitted to the cell images as

shown in figure 5.6(a) for every recorded time step. Then the position of its centre as
well as the ellipse length (major axis) can be extracted and plotted over time. From
the resulting trajectory, frequency, amplitude and position are extracted, together
with the ellipse length. These results are compared in figure 5.4 to the simulation
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5.5 Discussion of the experimental evidence

results, which are based on the exact centre of mass movement. Especially for the
amplitude and position the exact centre of mass movement of the ellipse might
differ from what is extracted from the image data. To investigate this and thus
the reliability of the comparison, different fitting methods for the simulation data
are discussed in the following. The frequency is expected to be identical to the
conventional centre of mass calculation, while the amplitude and mean position of the
cell oscillation are expected to differ from it, depending on the calculation method.
It will be shown that this is indeed the case.
The first approach is based on the numerical information of the cell contour points

plotted in figure 5.6(b). The cell is sliced in half along a plane perpendicular to the
z-axis in the channel centre and the resulting contour (gray points) is extracted from
the cell surface nodes in the vicinity of this plane. Method 1 (red curve) fits an ellipse
to these points with the least squares method, the central point of the ellipse is taken
as centre of mass. Method 2 (in blue) takes the leftmost and rightmost contour points
and determines their mid-value. The orange cross in figure 5.6(b) for comparison
shows the result from the exact centre of mass computation in simulations. For an
exemplary simulation at approximately 8 mm s−1 the resulting trajectories for both
methods are shown in figure 5.7.
Figure 5.7(a) shows the position in y-direction of the centre of mass according to

method 1 on the left (red curve) and method 2 on the right (blue curve). Method 1
produces a regular curve while the trajectory from method 2 is very noisy. However
it can be smoothed using an appropriate Savitzky–Golay filter which produces the
black the curve overlaying the blue one, where the frequency is again clearly visible.
Both fitting methods lead to similar mean y-position values which are larger than
the conventional centre of mass results (orange curve) from simulations. For the
length oscillations in 5.7(b) method 1 produces more noisy data, which can also be
smoothed, and method 2 gives the smoother trajectory. In addition, method 2 here
leads to a visibly smaller estimate for the mean cell length than method 1. For both
position and length oscillation as a matter of course the noisy method leads to a
larger amplitude estimate, indicated with horizontal gray lines in figure 5.7.
The second approach to extract the slipper oscillation is depicted in figure 5.6(c).

It is based on a visualisation of the simulation results in Paraview, mimicking the
experimental image data used for fitting. The cell form is converted to a greyscale
image, binarised and then fitted with an ellipse. The y-position and length oscil-
lations resulting from this procedure are shown in figure 5.8(a,b) together with an
estimate for their respective amplitudes (horizontal dashed lines). Again the fitting
method leads to a larger estimate for the offset than the conventional centre of mass
data (orange curve) gives, but the difference is smaller than for the two other meth-
ods above. The mean length estimate is similar to that of method 2 in 5.7(b), but
its amplitude is much less accurate. The second approach - image fitting - is concep-
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(a)

(b)

Figure 5.7: Oscillation detection from simulations with contour fitting methods. Oscillation of the
(a) cell position and (b) cell length from method 1 (left column, red) and method 2
(right column, blue) from figure 5.6(b). The centre of mass (c.o.m.) curve is plotted
in orange for comparison. Gray horizontal lines indicate the extracted amplitude. The
simulation parameters are λ = 20, Bq = 5 and v̄ = 8 mm s−1.

tionally closest to the experimental data analysis method and indeed compares good
to the experimental oscillation characteristics, as shown in the following section.

5.5.2 Positional and length oscillation characteristics for
different methods

Figure 5.9 shows the result of the fitting approaches presented in section 5.5.1, ap-
plied to the simulations at λ = 20 from section 5.4.1. For comparison, the former
results from figure 5.4 in that section are repeated in figure 5.9 together with the
experimental measurement results. The amplitudes extracted via the image fitting
method and the two contour fitting methods scatter broadly in an irregular fash-
ion and have on average larger values compared to the former results. Figures 5.7
and 5.8 show that the amplitude can only be roughly estimated with the fitting
approaches. This can be an explanation for the observed experimental amplitude
range, which is also based on image fitting. Regarding the mean cell position, fig-
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(a)

(b)

Figure 5.8: Oscillation detection from simulations with an image fitting method. Oscillation of the
(a) cell position and (b) cell length from the image fit in figure 5.6(c). The centre of mass
(c.o.m.) curve is again plotted in orange for comparison. Gray dashed lines indicate an
estimate for the amplitude drawn by eye. The data is from the same simulation as in
figure 5.7.

ure 5.9(b) shows that the image fitting overestimates the centre of mass position as
was already observed in section 5.5.1 and is larger than the experimental y-position
measurement. Here, two points must be made, which can explain the experimental
mean cell position and its broad scattering. First, it is very difficult to determine the
exact channel wall position in the experimental images, a variable, however, to which
the position measurement is very sensitive. Second, in contrast to the simulation,
the experimental microchannels are not constant in cross section along their length
but are wider at the entrance due to the pressure drop applied along the channel.
In addition, the measurements of the channel dimensions have a measurement error,
leading to discrepancies between real channel size in experiment and numerical chan-
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(a)

(b) (c)

λ = 20

Figure 5.9: Dynamic cell characteristics from different fitting methods. (a) Amplitude, (b) mean
y-position and (c) frequency of the slipper oscillation. The results for different Bq at
λ = 20 are repeated for comparison from figure 5.4 (triangle symbols) together with
the experimental results. Red square symbols show simulation results for exemplary
variation of the channel dimensions. The results from the different fitting approaches
are added. The respective Bq is indicated by the color of the symbol.

nel size in simulations and thus deviations in the slipper dynamics of these two. To
support this second claim, simulations can show that the slipper mean positions are
not robust against changes of the channel dimension in y-direction. In figure 5.9 red
squares mark simulations with channel widths W = 10 µm, 10.5 µm, 11 µm, 12 µm
compared to the standardW = 11.5 µm. This is in line with the experimental spread
of the channel widths, compare section 3.2. Here the simulation evaluation is again
based on the centre of mass results, not on the image fitting. Figure 5.9(b) shows
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5.5 Discussion of the experimental evidence

that indeed the channel width crucially influences the mean cell position. Changes in
W , however, have negligible influence on amplitude and especially the frequency as
figure 5.9(a,c) shows. Note that all fitting approaches presented in section 5.5.1 lead
to the same frequency, as expected, and are therefore not included in the frequency
plot.
To conclude, the contour and especially image fitting methods can explain the

scattering of the amplitude results in the experiment. Deviations in the mean cell
position in the simulation results can be explained by variations in the experimental
channel size. The parameter values used here for λ and Bq therefore lead to results
which agree with the experimental measurements of the slipper dynamics in the
microchannel. The frequency measurement is best suited for detailed comparison
as it is less prone to systematic errors due to channel variations or data analysis
methods.

(a) (b)
λ = 20

Figure 5.10: Dynamics of the slipper length oscillation. (a) Mean cell length and (b) amplitude of
the length oscillation at different velocities for λ = 20 in comparison with experimental
results (orange triangles). Two different fitting methods are used (diamond and as-
terisk shapes). Colours indicate the size of Bq. Experimental data provided by S. M.
Recktenwald (member of the group of C. Wagner in Saarbrücken).

The results for the length oscillation analysis are summarised in figure 5.10. Method
2 and the image fitting lead to similar results for the mean length of the slipper but
the image fit overestimates the length amplitude. In general, the experimental res-
ults for the slipper length in figure 5.10(a) lie clearly below the simulation estimates.
Revisiting the length estimation methods shown in figure 5.6 above well explains this
systematic deviation. The experimental image shows a fuzzy cell outline where the
cell ends are not captured by the fitted ellipse, while the simulation fitting routines
include the cell ends. Regarding the length amplitude, the results of method 2
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5 Influence of membrane viscosity on the red blood cell dynamics in microchannels

agree well with the experimental results. Provided that the simulation model indeed
captures the experimental setup correctly, this means that although conceptionally
closest to the experimental analysis, the image fit in this case fluctuates more strongly
around the cell shape than the experimental one does, compare figure 5.6. Looking
at figure 5.8(b) it becomes clear that this amplitude is a approximate guess which
might indeed overestimate the amplitude.

5.5.3 Statistics of the slipper oscillation occurrence

(a) (b) experimental
data

66 %

34 %

not fittablefittable

co
un

t

Figure 5.11: Slipper oscillation occurrence in experiments. (a) Examples of slipper cells whose tra-
jectory allows or does not allow extraction of frequency and amplitude in blue and
red, respectively. (b) Absolute number and percentage of these in the experimental
measurements. The fittable data in the blue area contains all results presented in
figure 3.5(a,b) and repeated in 5.4, 5.9. Experimental data provided by S. M. Reckt-
enwald (member of the group of C. Wagner in Saarbrücken).

In experiments not all oscillating slippers allow the extraction of the frequency and
amplitude. Two examples are shown in figure 5.11(a). If the positional oscillation has
a small amplitude (red curve), due to experimental noise and the image processing
error it might not be possible to fit a sinusoidal curve to the measurements. This
is the case for about one third of all measurements, as figure 5.11(b) shows. Note
that at least for this number of measurements, this ratio does not depend on the
cell velocities and is similar if the measurements with larger outer viscosity from
chapter 3 are analysed. Parameter combinations which in simulations were shown to
lead to small amplitude oscillation, e.g. low Bq values in figures 5.4 and 5.9, might
therefore not be reflected in experimental results due to this unavoidable limitation.
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Figure 5.12: Phase diagrams of red blood cells in channels with membrane viscosity. The diagrams
are obtained from simulations with λ = 20 for different initial shapes and different Bq.

In this section the simulation phase diagrams for different initial shapes and dif-
ferent Bq are presented in figure 5.12. All these simulations used the oblate spheroid
reference and λ = 20. Slipper shapes are observed predominantly at higher velocit-
ies and for more off-centred initial cell positions in the channel. A croissant peak
at smaller velocities near 1 mm s−1 is observed only for initial croissant shape. The
phase diagrams show the same general features as earlier work without membrane
viscosity for λ = 5, 10 [62] and in a slightly larger channel for λ = 5 [17]. One inter-
esting difference, however, is the emergence of shapes classified as others at larger
cell velocities for larger membrane viscosity Bq = 20. In section 5.4 it was remarked
that if the membrane viscosity is increased further to Bq = 40, 60, only cells which
are classified as ‘others’ are observed in simulations. As the experimental measure-
ments of Bq collected in table 4.1 do not rule out such large values, cells, whose
membrane is very viscous, contribute to the considerable fraction of others observed
in experimental phase diagrams as shown in figure 3.1(b). Former numerical stud-
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ies without membrane viscosity [17, 62] did not observe this substantial amount of
RBCs classified as others.
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Figure 5.13: Fraction of croissants in experiment and simulation. The phase diagrams in figure 5.12
are combined with the experimental entrance distribution to obtain an estimate of the
fraction in simulations. The curves for both Bq and discocyte initial shape (in orange)
coincide, those for croissant initial shape differ for larger velocities (in green and red).
The connecting lines serve as guide to the eye. Evaluation of the fraction is done at
the experimental mean velocities for which the entrance distribution was measured.
The experimental curve (in blue) is reproduced from figure 3.1(b), it is identical to the
border of the croissant region.

Guckenberger et al. [17] used experimental results for the initial shape distribution
in microchannels to convert the information from the phase diagram 5.12 into an
estimate of the croissant fraction at different velocities in simulations. The results
for the microchannel used in this chapter are presented in figure 5.13. The border of
the croissant phase in figure 5.12 is identical for the two diagrams in the first line. The
two diagrams for initial shape croissant (second line) differ only at larger velocities.
Therefore, when the phase diagrams in 5.12 are folded with the experimental entrance
distribution, the first two diagrams can be summarised in figure 5.13 in one line
(orange) and the other two (green and red curves) coincide, except for at larger
velocities. Below 3 mm s−1 with the discocyte initial shape, simulations predict less
croissant shaped cells than observed while for the initial shape croissants only below
1 mm s−1 simulations predict a different fraction, in this case more croissants. For
velocities from around 1 mm s−1 the results from simulation and experiment agree
excellently. The initial shape cannot be observed in experiments and the overall
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agreement is satisfactory. The croissant peak in the experimental phase diagram lies
at approximately 1 mm s−1, similar to experiments from an earlier study [17] in a
slightly larger channel geometry. The authors of this earlier study, however, found
that in the simulation phase diagrams the croissant peak was at cell velocities larger
than 1 mm s−1. In order to elucidate the reason for the difference, simulation of RBCs
with membrane viscosity are carried out in the larger channel from [17]. The results
show a croissant peak shifted to the smaller velocity values of around 1 mm s−1, which
suggests that the difference is indeed due to the additional membrane viscosity. The
phase diagram in this larger channel is included in appendix C.

y
z

x

(a) (b)

Figure 5.14: Rotated slippers in the microchannel. All simulations have λ = 20 and Bq = 5. (a)
The rotation behaviour depends on the initial shape and the cell velocity. (b) Example
shape of a rotated slippers whose dimples (in blue and green) are located at the outside
of the cell.

Another type in the phase diagram is the rotated slipper, typical trajectories are
shown in figure 5.14(a). After an initial phase of regular slipper oscillation, which
allows the extraction of the amplitude, the oscillation ceases. The cell still shows
the usual slipper shape but the dimples of the cell are then rotated to the outside,
as shown in figure 5.14(b). For the regular slipper movement, the dimples follow
the tank-treading of the slipper as illustrated before in figure 3.7(a) with the full
shape shown in figure 3.3(b). The trajectories in (a) show that the croissant initial
shape transitions quickly to the rotated slipper (red curve) but the transition begin
is retarded if the cell flows faster (orange curve). The phase diagram in figure 5.12
shows that overall only few rotated slippers are observed and their number decreases
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if Bq is larger, possibly due to the dampening effect of the increased viscosity. If the
initial shape is a croissant, there are a few more rotated slippers.
Note that for simulations without membrane viscosity and with discocyte reference

shape rotated slippers occur in most simulations during the simulated time as was
discussed in the joint publication [62]. In addition, there the dimples were almost
perfectly centred at the two sides of the cells while the rotated slippers shown here
sometimes have dimples which move irregularly along the sides of the cell during
the tank-treading. A plausible explanation for this observation is that for the oblate
spheroid shear reference the dimples are no longer distinguished by the stress-free
shape but only by the bending reference shape and thus their exact position is less
strongly coupled to the determinants of the cell deformation.
The rotated slippers show very small amplitudes and are potential candidates for

the large fraction of not fittable cells in experiments from section 5.5.3. An argument
against it, however, is that the these occur independent of the velocity while rotated
slippers are observed at smaller velocities.

5.7 Conclusion

Bq = 0 Bq 6= 0

discocyte
shear ref.

obl. spher.
shear ref.

• section 3.4
• f exceeds measurements
(f � fexp.)

• section 5.4.2
• irregular trajectories

• section 5.3.3
• small amplitude oscill.
(smaller than exp. noise)

• section 5.4.1
• matches exp. results

Table 5.2: Overview of the investigated parameter combinations. The two different shear reference
shapes discocyte and oblate spheroid in combination with simulations which exclude
(Bq = 0) or include (Bq 6= 0) membrane viscosity are discussed in the section listed
in the table. The second point in each case summarises the main result regarding the
compatibility with experimental measurements.

The effect the membrane viscosity in the RBC model has on the slipper dynamics
is closely linked to the respective shear reference shape of the cell. In table 5.2 the
different investigated parameter combinations are listed. For all these combinations
results regarding the slipper oscillation dynamics were presented in the sections listed
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in the table. For the first case, the frequently used combination of a discocyte ref-
erence shape without membrane viscosity, slipper frequencies were clearly above the
experimental measurements. If membrane viscosity of a certain strength is included,
this leads to irregular oscillations of the slipper cell. In the second line in table 5.2
the two cases for the oblate spheroid reference shape are listed. For negligible or zero
membrane viscosity Bq = 0 the slipper shows very small oscillation amplitudes. The
amplitude, however, increases with increasing Bq until amplitudes comparable to
the experiments are reached. For these cells, frequency and amplitude of the slipper
oscillation both agree with measurement results.
Note that the scattering of the frequencies and amplitudes in experiments is not

only due to the unavoidable measurement error but is also caused by biological vari-
ability of the RBCs, for example variations in the interior viscosity or the viscosity
of the membrane. The emergence of cells with small Bq, which leads to small amp-
litudes, is a possible explanation for the two different slippers categories observed
experimentally. These are the regular and the non-fittable slippers discussed in sec-
tion 5.5.3. This would mean that the experimental data does not consist of two
clear-cut categories but instead a continuum of different amplitudes where some are
too small for fitting a sinusoidal curve, due to the unavoidable measurement noise.
The trajectory in section 5.5.3 shows an example which supports this hypothesis.
There the amplitude of the non-fittable experimental curve is within or only slightly
below the amplitude error bars in section 5.4.1, figure 5.4(b).
The phase diagrams for this most plausible parameter combination were presented

in 5.6. They are consistent with the experimental phase diagrams, similar to earlier
simulation studies. In addition, they can explain the large fraction of RBCs which are
classified neither as slipper nor as croissant shapes in experiments at larger velocities.
The comparison of the slipper dynamics and especially the frequencies is, however,
the more promising approach.
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6.1 Cell stretching in optical tweezers

6.1.1 Introduction
In simulation studies, results for RBCs stretched in optical tweezers are frequently
used for the purpose of model validation. In these cases the static deformation of the
RBCs is compared with experimental measurements. The RBCs in experiment are
stretched by attaching microscale beads to the cell which are then pulled apart with
optical tweezers. More recently the time-dependent behaviour of the deformation
has been investigated for RBC models which include membrane viscosity. In this
section tweezer simulation results for RBCs are presented and discussed with regard
to results from the literature. After a short literature overview in 6.1.2, details of the
implementation are presented in 6.1.3. Finally in sections 6.1.4 and 6.1.5 the results
are compared and discussed.

6.1.2 Literature overview
6.1.2.1 Experiments

The experimental data of RBCs stretched with optical tweezers comes from two
papers, both around twenty years old. Mills et al. [55] fix the RBC between two
beads, one held in place and the other one moved by the force F . A simulation
model which mimics this setup is shown in figure 6.1. In simulations this is mimicked
by applying F at the one and F at the other end of the cell and stretching it
symmetrically. The experimental study by Mills et al. [55] includes example images of
the resulting cell shapes. Experimental data for axial and transversal diameter of the
stretched cell for different forces is presented in the study. In addition an exponential
fit for the relaxation of the RBCs is provided, the calculated time constant is 190 ms.
The authors in addition present simulations with the Abaqus software. The cells are
fixed to the beads at a circular region of diameter 2 µm and then stretched. In this
state they exhibit a peculiar bisection, dented in at the position of the cell dimples.
Note that the paper is an extension and correction of older work from the same
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group [133], where a problem with the tweezer calibration occurred. The second
main experimental paper for this problem by Suresh et al. [134] is a study of infected
RBCs, where measurements of healthy RBCs are presented as control group. No
detailed method description is given but references are made to the method by Mills
et al. [55]. The results differ slightly from the first study as will be shown below,
but lie within the limits of the error estimates. Complimentary FEM simulations
agree very well with the authors results. Earlier tweezer experiments by Hénon et
al. [135] disagree with the results discussed so far even for small forces, possibly
due to disadvantages in the image acquisition. For the relaxation time, however, a
similar result of τ = 206 ms is obtained [135]. Regarding the RBC relaxation time,
Bronkhorst et al. [136] present experiments where the RBCs are bended with three
optical traps, not stretched. The measured time constants for the relaxation range
from 100 ms for young to 300 ms for old cells.

Figure 6.1: Illustration of the red blood cell stretch with (optical) tweezers. Example of a simulation
model with two beads attached to the cell. The RBCs are stretched by applying a force
on the two attached beads.

6.1.2.2 Simulations

Simulation studies use different approaches to model the tweezer experiment. Li
et al. [137] perform FEM and MD simulations for a spectrin microstructure model.
In their model the stretching forces act on the two opposite ends of the cell on all
vertices above a fixed distance to the centre at the beginning of the simulations, in
total on 10% of all vertices. The resulting cell shapes show protuberances at the
cell ends, different to the experimental images. The long axial diameter, however,
fits the experimental results [55] very well but the smaller transversal diameter is
overestimated in the simulation. Pivkin et al. [138] use a coarse-grained model for
the RBC and the same setup, i.e. 10% of all nodes are subject to the stretching force.
The results very slightly underestimate the axial elongation from Mills et al. [55] and
again overestimate the transversal one. As in Mills et al. [55] the simulations show
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a peculiar bisection. Walsh et al. [139] simulate RBC tweezers by applying a force
on in total 4% of all vertices which mimics a contact region between cell and bead of
radius 1 µm. The contact radius decreases during stretching which is consistent with
experimental observations [55]. As before the axial deformations agree very well, the
transversal is overestimated and the cells have pronounced protuberances at the ends.
Fedosov et al. [140] apply a force on the two opposite ends of the RBC and on 2% of
all nodes per side. In their model this is again equivalent to a contact region of radius
of 1 µm. In the stretched state, contrary to the experimental results [55], the cell
shows protuberances at the ends which contribute to the axial diameter calculation.
Notwithstanding this additional contribution, the comparison with the experimental
data [134] shows very good agreement in the axial diameter and good agreement in
the transversal diameter up to 200 pN. Krüger et al. [141] present RBC stretching
results up to a force of 90 pN. No information about the implementation is given,
but the cell images suggest that a contact radius comparable to the experimental
setup is ensured by cutting off or flattening the cell ends. The results are in excellent
agreement with the experimental data [134]. This suggests that the details of the
implementation have a crucial effect on the results, as the study by Fedosov et al. [96]
also achieved very good agreement although the cell ends, which have decisive effect
on the axial length estimate, have an entirely different shape. Guglietta et al. [25] fix
two beads to the cell which leads to a contact radius of approximately 1 µm and apply
a force on both beads. The cell deformation is plotted up to a force 90 pN, it is in very
good agreement with the experimental data [134]. This paper [25] is the first tweezer
simulation study which includes membrane viscosity of the RBC. In addition, time-
dependent curves of deformation and relaxation for different membrane viscosity
values are given. The authors compare their relaxation results for different membrane
viscosities with relaxation times from the literature. Sigüenza et al. [142] finally
argue that previous simulations often produced peculiarly deformed shapes because
elasticity laws, which violated area conservation, were used. The author also present
RBC stretching simulations for which they control the contact area. They show that
the crucial parameter for the RBC deformation in these experiments and simulations
is the contact radius, compare also appendix D. Moreover the authors argue that
stress-free shape has little influence on the deformation behaviour.

6.1.3 Implementation
The implementation of the tweezer system is done within the framework of the
BIM described in chapter 2.3. The surface of the RBC is discretised with 2048
triangles with the elastic moduli κS = 5× 10−6 N m−1, κB = 4× 10−19 N m, reference
curvature c∗0 = 4 and an oblate spheroid of aspect ratio τ = 0.9 as stress-free shape.
The Boussinesq number (4.63) is defined with respect to the RBC radius R. Different
values for λ and Bq are used for the tweezer simulations in this section. The value
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of the membrane viscosity was restricted to Bq ≤ 20 because larger values no longer
lead to slipper-shaped RBCs in microchannels as discussed in the previous chapter.

50 pN

(a) (b)

Figure 6.2: Details of the tweezer implementation. (a) Exemplary shape change for 50 pN. In
simulations forces at the opposite ends are used to stretch the cell. (b) Sketch of the
contact region, here with diameter 2.4 µm marked in blue. Stretching forces are applied
on nodes near the contact radius (green points).

In simulations the beads attached to the RBC in experiments are not model expli-
citly but instead forces are applied directly on selected cell vertices. This approach
is sketched in figure 6.2(a). A constant force F is symmetrically applied at two op-
posite sides of the RBC rim. Under the force the RBC stretches until a steady state
is reached. The axial and transversal deformations dA and dT of the RBC are com-
puted as shown in the figure. The forces replacing the beads are modelled such, that
the cell shape in the stretched condition resembles the experimental images [55]. The
force F at one end is distributed to the cell vertices marked in green in figure 6.2(b).
They lie within an annulus on the RBC surface at (1.2± 0.1) µm, determined by
the contact radius of 1.2 µm (blue line). Not distributing the forces to all vertices
within the contact region prevents the cell ends to taper when stretched, which in
experiments is prevented by the attached beads. Therefore, in this implementation
the circular contact region at the cell end is replaced by a contact annulus.
Direct comparison of the shapes is not possible, as the images in Mills et al. [55] are

contracted in axial direction due to the viewing angle of the microscope for which the
authors have to correct for in the data analysis. However, the experimental images
show that the final contact diameter significantly decreases with increasing stretching
force, which the simulation setup implemented here also reproduces. The procedure
to estimate the size of the experimental contact diameter is shown in figure 6.3. On
the left in figure 6.3(a) a sketch visualises how the contact diameter is calculated from
the image data. The margins of the cell-bead contact area are identified, marked
with a red line, and then the distance is computed using the constant bead size.
Estimates of the diameter for all applied forces in the experimental study [55] are
listed in figure 6.3(b).
An earlier approach to implement the tweezers tested within this thesis is shown

in figure 6.1. Two spherical beads modelled as stiff triangulated capsules (in the BIM

82



6.1 Cell stretching in optical tweezers

force/pN
contact diameter

estimate/µm
0 2.43
67 1.51
130 1.44
193 1.03

(a) (b)

Figure 6.3: Estimate of the size of the tweezer contact region from experiments. (a) A sketch
illustrates how the contact diameter is estimated from the experimental images provided
by Mills et al. [55]. Red marks are inserted at the margins of the contact region and
their distance is calculated by making use of the constant bead size. (b) Size of the final
tweezer contact diameter estimated from the experiments [55] for different forces.

code this runs faster than solid spheres) are attached to the cell and pulled apart with
force F . The cell nodes in the contact region are fixed to neighbouring bead nodes
with stiff springs and the contact region is defined by specifying a maximal distance
for the connection between bead nodes and cell nodes. There are two disadvantages
of this method. First, it is computationally more than ten times slower than the
implementation describe above. Second, the contact region is not clearly specified
but depends on the combination of bead radius, maximal cell-bead distance and the
results therefore indirectly depend on the node grid. Especially the second point
is an important aspect in disfavour of this method, because the size of the contact
region is crucial for the deformation of the cell.

6.1.4 Results
6.1.4.1 Steady state deformation

In the tweezer simulations forces in the range 5 pN to 200 pN are applied to stretch
the cell. The results for the equilibrium axial and transversal deformation are shown
in figure 6.4. The axial deformation is for all forces slightly larger than the mean
experimental results but still within the experimental error estimation. For forces
below 100 pN we find excellent agreement in the transversal deformation. For lar-
ger forces, the experimental values plateau while the simulation data continues to
decrease. The steady state deformation is not influenced by changes in Bq, because
increased membrane viscosity only slows down the dynamics of cell deformation. The
same would apply to changes in the interior RBC viscosity, i.e. changes in λ.
The results from two other simulation studies [25, 141] are slightly closer to the

experimental axial deformation [134], as shown in the appendix D in figure D.1.
These studies, however, did limit the applied forces to below 100 pN.
The initial contact radius of rc = 1.2 µm in figure 6.4 is motivated by the estimate
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(a) (b)

Figure 6.4: Deformation of the red blood cell in tweezer simulations in comparison with experiments.
The (a) axial deformation dA increases and the (b) transversal deformation dT decreases
with increasing stretching force. Simulation results are shown for viscosity contrast
λ = 20 and membrane viscosities Bq = 5 (orange circles) and Bq = 20 (red squares)
and compared with experimental data from Mills et al. [55] and Suresh et al. [134]. For
all simulations the initial contact radius is rc = 1.2 µm.

in figure 6.3. The choice of the contact radius has distinct influence on the axial
deformation dA but little on the transversal deformation dT as shown in appendix D
in figure D.2. This is related to an earlier study [142], who for a slightly different
simulation setup showed that the size of the beads in the tweezer model have precisely
this effect, and also observe that dT is relatively robust to changes in the contact
radius.

6.1.4.2 Time dependence of the deformation

While the interior and membrane viscosity do not influence the final deformation
of the cell, they do determine the time dependence of the deformation until the
steady state is reached. This is shown in figure 6.5 for both axial and transversal
deformation. The time-dependent deformations dA(t), dT (t) are normalised with
the respective final deformations dA, dT from figure 6.4 and plotted over time. An
increase of the internal viscosity or the membrane viscosity, measured by Bq, slows
down the deformation process. The tweezer force in comparison has little influence on
the deformation speed, as the comparison between the transversal deformation curves
for 10 pN and the inset for 70 pN shows. For larger forces the absolute difference
between undeformed state and final deformation is larger. For this reason, in the
inset in figure 6.5(b) the slight overshooting of the transversal deformation, which is
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(a) (b)
10 pN

70 pN

10 pN

Figure 6.5: Time-dependent deformation in tweezer simulations. The time dependence of (a) axial
and (b) transversal deformations relative to the respective final values are shown ex-
amplarily for a tweezer force of 10 pN. Solid lines indicate the simulation results for
different λ, Bq. The results from the simulation study by Guglietta et al. [25] are re-
produce for comparison (coloured symbols, normalisation added). The inset plot shows
the deformation over time for a tweezer force of 70 pN.

due to an additional relaxation of the cell after the tweezer force-induced deformation,
is not visible.
For comparison the simulation results from the study by Guglietta et al. [25] are

reproduced∗ in figure 6.5. The authors used λ = 5 throughout the study and the
shear reference shape presumably is a discocyte, see the discussion in 5.3.1. The
results without membrane viscosity for λ = 5 (green lines and symbols) are nearly
identical to the axial deformation observed here, and the deformation dynamics is
only slightly slower for the transversal deformation. For larger membrane viscosity
values the literature values show a clearly slower deformation dynamics. One-to-one
comparison was not aimed at and cannot be expected, due to the differences in the
cell model and the implementation of the tweezer system.

6.1.4.3 Relaxation behaviour

Also of interest is the dynamics of the relaxation behaviour after the RBC is released
from the stretching force and relaxes back to its rest shape. The relaxation behaviour

∗Data is reproduced from fig. 7 in [25]. Comparison to the previous results therein leads to the
conclusion that the results shown are indeed for a force of 10 pN, contrary to the figure caption.

85



6 Red blood cells with membrane viscosity in different applications

is summarised with the elongation index defined as [55]

Λ(t) = [dA(t)/dT (t)]2 − 1)([dA/dT ]2 + 1)
[(dA(t)/dT (t)]2 + 1)([dA/dT ]2 − 1) (6.1)

Figure 6.6: Relaxation behaviour of red blood cells released from the tweezer force. The elonga-
tion index is compared for RBCs with different interior and membrane viscosity after
stretching with 70 pN. Relaxation data from simulation by Guglietta et al. [25] and from
experiments by Mills et al. [55] and Hochmuth et al. [113] is reproduced for comparison.

The relaxation behaviour of the cell in simulations is shown in figure 6.6. The
coloured solid lines are simulation results for different cell parameters which are
compared to results from the literature. The experimental values from Mills et al. [55]
are reproduced from a fitted exponential curve therein, single measurement relaxation
curves are not provided. Hochmuth et al. [113] provided single measurement curves
which, however, collapse nicely on one exponential fit with time constant tc = 0.1,
which is shown in figure 6.6 (black line). Note that the authors stretch the RBCs
with mircopipettes, not tweezers. No direct experimental measurement data of the
RBC relaxation behaviour with tweezers could be found in the literature. Mills
et al. [55] and Hochmuth et al. [113] used their relaxation measurements of the
elongated RBCs to estimate the size of the RBC membrane viscosity. The results
are listed in table 4.1 in chapter 4.7. In both studies these are larger than the
values used in the BIM simulations and the simulations by Guglietta et al. [25].
The results of the simulations even for large viscosity values show a faster relaxation
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than reported in the experiment. The simulation study [25] results reproduced in
figure 6.6 for comparison also show much faster relaxation, although for very large
Bq = 68 the curve approaches the measurement fit (in black). However, as discussed
in the previous chapter, for the majority of RBCs Boussinesq numbers around and
below 20 are expected.
Note that a shear reference shape discocyte and other parameter changes such as

different shear moduli do not lead to different time scales of the relaxation.

6.1.5 Discussion
Different approaches from the literature have been described and are now reassessed,
making use of the knowledge gained from the results of the tweezer simulations.
The analysis showed that the combination of contact region between cell and beads,

in simulations the size of region where the forces act on the cell, together with the
details of the tweezer implementation is decisive for the deformation result. A variety
of implementations lead to good agreement with the experimental data, although,
depending on the study, the forces act on 4 % to 10 % of all cell vertices [137–140].
Furthermore, some cell shapes have pronounced protuberances when stretched [137,
140] while other studies ensure flattened ends in the simulations [25, 141]. The
approach used in this work is designed such that the cell shows a shape change
during deformation which compares well to the experimental observations. This
approach also leads to good agreement in the deformation curves.
In general, the transversal deformation dT can be determined more accurately

from experiments than the axial deformation dA, because no beads are attached in
that direction. Moreover, the deformation in the transversal direction is more robust
to changes in the contact radius.
The relaxation of the cells after release from the tweezer force in simulations was

found to be faster than the relaxation fit from one experimental study [55]. Note
that in different setups the relaxation of RBCs towards their rest shape might ex-
hibit different relaxation times as for example the relaxation of slipper-like cells in
figure 5.1 showed. An overview of experimental relaxation times in different settings,
e.g. micropipette aspiration, is given by Guglietta et al. [25].
To conclude, new experimental results for the time-dependent deformation as well

as detailed experimental observations of the relaxation behaviour when releasing the
stretched cell would be helpful for better comparison with the different simulation
approaches. For the validation of an RBC simulation model the tweezer setup is
suitable only to a limited extent, due to the scarce experimental data and the variety
of implementation details, which lead to consistent results. For this reason tweezer
simulation results do not provide a suitable basis for the inference of RBC parameter
values like the Boussinesq number.
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6.2 Red blood cells in shear flow

6.2.1 Introduction
RBCs in shear flow have been investigated both experimentally and with numerical
simulations and ample results can be found in the literature. However, only one
recent simulation study [26] quantifies the influence of the membrane viscosity of
RBCs on the dynamics in shear flow.
RBCs in shear flow at small viscosity contrast λ and moderate shear rates follow

a tank-treading motion, at small shear rates they transition to tumbling motion [4,
101, 130]. In this section we focus on the tank-treading motion and the deformation
and frequency behaviour of the RBCs for this motion pattern and do not investigate
in detail the transition to tumbling and other RBC modes, which has already been
studied extensively [101, 130]. Some results of these transitions and the resulting
phase diagram for RBCs with membrane viscosity, however, are shortly presented
in appendix E. Apart from phase diagrams for the different shapes, former studies
analysed the general dynamics of the RBC motion patters in shear [131, 143], in
some cases this includes results on the tank-treading frequency of the cells [26, 48,
51, 52, 96, 99, 144–146]. In experiments, small λ is achieved by placing the cell in a
fluid of high viscosity. Several experimental studies exist, which investigate the cells’
tank-treading frequencies [97, 116, 147, 148]. Similar to the previous chapter 5 com-
parison of the frequency results is the most promising approach for the comparison
of experimental results with different simulation outcomes.
In section 6.2.3 simulation results using the method from chapter 4 are presented

for the tank-treading dynamics of the RBCs and compared with former simulation
studies. The assessment of the results in comparison with experimental measure-
ments is presented in section 6.2.4, followed by a discussion section 6.2.5.

6.2.2 Simulation setup and dimensionless quantities
The BIM is used for most simulations in this section. The RBC is placed in the
centre of a shear flow of shear rate γ̇ as visualised in figure 6.7(a). The strength of
the shear flow γ̇ and fluid viscosity are chosen in the range where the cell exhibits
a tank-treading motion during its periodic deformation in the flow, compare the
discussion in appendix E.
The RBC is discretised with 2048 flat triangles. It is endowed with resistance to

shear with an oblate spheroid reference shape with τ = 0.9. The shear modulus is
κS = 5× 10−6 N m−1. The area dilation modulus is κA = 100κS and the bending
modulus is κB = 4× 10−19 N m with bending curvature c∗0 = 4. The inner viscosity
is µi = 24 mPa s, which for RBCs in a fluid of the same viscosity as blood plasma,
corresponds to a viscosity contrast of λ = 20. The small values of λ which are
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necessary for the tank-treading motion are achieved with an increased outer viscosity
µo, similar to the experimental approach. Thus in simulations viscosity contrasts of
λ = 0.2, 0.5, 1 are used. The Boussinesq number in this section is defined as

Bq = µs

µpa0
, (6.2)

i.e. with respect to the blood plasma viscosity µp = 1.2 mPa s instead of the outer
fluid viscosity in (4.62). This facilitates the comparison with the previous chapters
and prevents changes in the membrane viscosity when the outer viscosity is varied.
The dimensionless length a0 = 2.82 µm is the radius of a sphere with its volume
identical to the RBC volume.
The only exceptions to the above listed parameters occur in the literature com-

parison section 6.2.3.1. The main reference study [26] uses a definition of the Skalak
law with prefactors different from Barthès-Biesel [34], which leads to a shear mod-
ulus defined as GS = κS/3. For accurate comparison a value of GS = 2.5 N m−1 in
the literature therefore is equivalent to an increased value of κS = 7.5× 10−6 N m−1.
The inner RBC viscosity in this reference study is smaller µi = 11 mPa s and λ is
defined with respect to that. Finally, in section 6.2.3.1 the dimensionless membrane
viscosity is defined with respect to the inner viscosity as

Bqint = µs

µia0
(6.3)

to facilitate the comparison.
As part of the literature comparison some simulations are performed using the

LBM. For these no membrane viscosity is included and the RBC is discretised with
5120 triangles. The shear reference is again κS = 7.5× 10−6 N m−1 for better com-
parison and the reference state is the discocyte shape with zero bending curvature.
The inner RBC viscosity is µi = 11 mPa s and simulations are performed for λ = 1.
The Reynolds number for the system is

Re = γ̇R2ρ

µo
(6.4)

with the RBC radius R and the blood plasma viscosity ρ. For the shear rates used
in the simulations the Reynolds number is well below 0.01 and the BIM can be used.
The RBC dynamics in the shear flow is analysed by calculation of the cell de-

formation and the tank-trading frequency, both depending on the shear rate. The
deformation of the cell in the flow is defined as

D = L−W
L+W

(6.5)
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L

L

W

(a) (b)

Figure 6.7: Red blood cells in shear flow. (a) Side view and (b) top view of a tank-treading RBC.
The length L is measured direction of the shear flow and is not identical to the major
cell axis. The cell width W is the second longest cell axis under shear. This definition
of length scales is chosen with regard to the literature comparison [26].

where L is the cell elongation in direction of the shear flow and W is the second
longest cell axis, compare the sketches in figure 6.7. During the tank-treading move-
ment the deformation oscillates in time. The tank-treading frequency f is obtained
by marking a point on the cell surface and calculating its movement with the mem-
brane for several periods. Similar to the slipper movement in chapter 3 this frequency
is half the deformation frequency of the cell. A dimensionless representation of the
frequency is [26]

f ∗TT = 4πf
γ̇
. (6.6)

For the dimensionless representation of the shear rate the capillary number is used,
here defined as

Ca = µoγ̇a0

κS/3
. (6.7)

The factor 3 in the denominator is due to the different shear rate definitions as was
explained above.

6.2.3 Tank-treading frequency and deformation
6.2.3.1 Detailed literature comparison for viscous red blood cells

As a first step simulations are presented which mimic the setup used for elastic and
viscoelastic RBCs by Matteoli et al. [26], as described above. First, results without
membrane viscosity but for different λ = 0.2, 0.5, 1 are compared in figure 6.8 (blue,
green and purple symbols)†. For the smallest λ, membrane viscosity is added with

†Note that the Ca numbers in the original paper [26] in figure 5 are smaller by an erroneous
factor 2, inconsistent with the Ca definition therein. The confusion was due to a reference to an
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f
∗ T

T
(a)

(b)

Figure 6.8: Comparison of the deformation and tank-treading frequencies of red blood cells in shear
flow. (a) The mean deformation D and (b) the dimensionless frequency f∗

TT change with
the capillary number Ca. The different colours indicate different membrane viscosities
Bqint and different outer viscosities, described by λ. Results from Matteoli et al. [26],
figure 5 therein, are reproduced with triangle symbols, the simulations for different
Bqint, λ are equally colour coded. The lines serve as guide to the eye.

the Boussinesq numbers Bqint = 1, 5 (orange and black symbols). The results for the

older publication [130], which uses yet another definition of the shear modulus in the Skalak law,
different by this additional factor 2.
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mean deformation over time of the RBC in figure 6.8(a) scatter only for larger Ca and
are in very good agreement with the literature results (triangle symbols, same colours
for same parameter combination) with only a small negative deviation at larger Ca.
The results for the tank-treading frequency, however, are significantly larger than the
literature results. The displacement between them seems to be almost identical for
the five different parameter sets. This in particular also holds for simulations without
membrane viscosity. i.e. Bq = 0. From this it follows that the membrane viscosity
implementation can be ruled out as the cause of the constant displacement. The
results even confirm that the implementation presented here leads to qualitatively
similar trends for f ∗TT as found in the literature.

f
∗ T

T

λ = 0.2

λ = 1

Figure 6.9: Shear tank-treading frequencies in comparison with other simulation studies. Results
are shown for viscosity contrast λ = 0.2 (points with f∗

TT > 0.55) and λ = 1, all with
Bq = 0. The literature values plotted for comparison are taken from Matteoli et al. [26],
Tsubota et al. [48], Cordasco et al. [52], Yazdani et al. [99], Sui et al. [144] and Dodson
et al. [145]. Apart from these (differently coloured crosses) and the BIM simulation
results (orange circles), LBM simulation results are shown (red triangles).

Therefore, the next step is to compare the results with Bq = 0 to older studies,
which did not yet include membrane viscosity but also gave results for the tank-
treading frequencies. This comparison is shown in figure 6.9 for two different λ.
Results from the previous figure 6.8(b) are repeated in orange and in green for the
literature comparison. The literature results [48, 52, 99, 144, 145] added in the
figure are converted to a consistent Ca definition, see equation (6.7), and normalised
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frequencyf ∗TT, see equation (6.6). The results from different studies all show the
decrease in the frequency with increasing capillary number, but the exact levels of
the frequency results differ.
The scattering of the frequency results could originate from the different simulation

methods. To further investigate this, results from LBM simulations at λ = 1 and
Ca = 1, 2, 3 are added in figure 6.9 (upwards pointing red triangles). The frequency
results are nearly identical to the BIM outcome, at maximum less than 2 % decrease
in the frequency is observed. Similar to the BIM setup the Reynolds number was
well below 0.1 in all simulations. To speed up LBM simulations for systems at small
Re a Reynolds number scaling approach is frequently used. The Reynolds number is
increased to some value < 1, which is still small enough, so that no artificial inertia
effects are introduced. Matteoli et al. [26] used a Finite Volume solver method for
the incompressible Navier-Stokes equation, coupled with IBM, and set Re = 0.2,
following this scaling approach. To test the influence of a scaling to Re ≈ 0.2 (for
Ca = 3; other Ca proportionally smaller due to smaller γ̇) in LBM simulations
the shear rate was scaled up by a factor of 10 and the viscosity was scaled down
by a factor of 10. While the Reynolds number (6.4) increases, this has no effect
on the capillary number (6.7). The dimensionless frequency f ∗TT results from the
ratio between the new tank-treading frequency and the increased shear rate and is
again shown in figure 6.9 (downwards pointing red triangles). A significant decrease
in the frequency towards the values from Matteoli et al. [26] is observed. Another
indication that the simulation method in combination with the Reynolds number
is indeed responsible, is the comparison with the other simulation studies. Dodson
et al. [145] and Tsubota et al. [48] both use a boundary element method for Stokes
flow and are very close to the BIM results. Cordasco et al. [52] and Yazdani et al. [99]
use a front-tracking method developed by the group [149] and mention a Reynolds
number of Re ≈ 0.01. Sui et al. [144] use a LBM-IBM approach and state that
Re ≈ 0.1 in their simulations. The frequency results from these three studies are
indeed closer to the results from Matteoli et al. [26]. Note that if the Reynolds
number scaling relies on scale-down of the shear modulus κS instead of the scale-up
of the shear rate it has no significant influence on the tank-treading frequency.

6.2.3.2 Discussion of the viscosity effects in the standard setup

Figure 6.10 shows the influence of viscosity contrast and membrane viscosity for
the RBC parameter set used in channel flow and tweezer simulations in the previ-
ous chapters. Compared to the previous literature comparison, changes include an
increase in the inner fluid viscosity of the RBC and a decrease in κS, confer sec-
tion 6.2.2. The small dots in figure 6.10(b) are repeated from 6.9 and show that
the changes in the setup have no influence on the dimensionless frequency. In order
to achieve comparability with the previous chapters the membrane viscosity is here
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Figure 6.10: Tank-treading frequencies of red blood cells for different viscosities. Results are shown
for viscosity contrasts λ = 0.2, 1 and Bq = 0, 5, 20 (a) directly and (b) in dimensionless
form. Small dots in (b) are the BIM simulation results for Bq = 0 repeated from
figure 6.9, which belong to another parameter combination used for the literature
comparison.

computed with respect to the RBC plasma viscosity, see equation (6.2). Only results
for zero membrane viscosity are repeated from the previous figure because previously
the Boussinesq number was defined with respect to the inner viscosity and the real
membrane viscosity is therefore larger by a factor of around 10.
An increase in the viscosity contrast or the membrane viscosity slows down the

tank-treading movement, similar to the channel flow discussed in chapter 5. This is
resolved better in the dimensionless figure 6.10(b), because f ∗TT decreases by only a
small amount with Ca. Changes in the Boussinesq number have less influence on
the tank-treading frequency than changes in the viscosity contrast λ have.

6.2.4 Comparison with experimental results
Several experimental studies exist for which the tank-treading frequency of RBCs in
shear flows was measured. Figure 6.11 shows BIM simulation data in comparison
with the experimentally measured tank-treading frequencies, in (a) for smaller shear
rates and in (b) in a log-log plot for the whole measured range. The viscosity values
for the surrounding fluid are reported in centipoise (1 cP = 1 mPa s) as in the original
publications to facilitated to comparison.
The simulations have fixed inner viscosity µi = 24 mPa s and viscosity ratios λ =
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0.2 (circle), λ = 0.5 (square) and λ = 1 (diamond shape). The customary values for
the membrane viscosities with Bq = 0 (green), Bq = 5 (blue) and Bq = 20 (red) are
used. Some of the results have already been shown in figure 6.10. At larger shear
rates, only the most viscous RBCs produce stable results in simulations, similar to
the observation for Poiseuille flow in chapter 5. For example at γ̇ ≈ 200 s−1 and
γ̇ ≈ 400 s−1 only simulations with artificially large Bq = 100 are stable, these are
shown for comparison over the whole range.

In experiments, two different measurement approaches are used. Basu et al. [148]
investigate optically trapped RBCs in direct shear flow while the other experimental
studies [97, 116, 147] use a rheoscope. The frequencies measured by Basu et al.
[148] are, for medium shear rates in figure 6.11(a), smaller than those from the other
three studies. In contrast to the comparatively large outer viscosities in the other
experimental studies, Basu et al. [148] report a small value of µo = 0.92 cP. The
authors are aware of previous studies which did not obtain tank-treading cells at such
parameter combination but still report tank-treading frequencies at all shear rates.
Basu et al. explain that this discrepancy is the reason for the small frequencies
observed up to medium shear rates around 30 s−1, while at high shear rates the
difference is expected to vanish [148]. Assuming that the inner viscosity is around
24 mPa s the measurements by Fischer et al. [147] and Fischer [97] for different outer
fluid viscosities fall in the range λ = 0.4, . . . , 2.2, the measurements by Basu et al.
[148] would correspond to λ = 26. The old and young cells from Tran-Son-Tay et al.
[116] might differ considerably in their inner viscosity values. Older cells have lost
some water over their lifetime which increases the relative haemoglobin concentration
inside the cell. This leads to a higher density of the cytoplasma and possibly also to
a higher viscosity of the inner fluid. Experiments with centrifuged blood have shown
that denser (i.e. older) cells have a membrane viscosity twice as large as the less
dense cells [115], values are listed in table 4.1. This is another possible explanation
for the decreased frequency of the old cells in Tran-Son-Tay et al. [116].

Most experimental measurements discussed above were performed at room tem-
perature around 23 °C to 25 °C [97, 116, 147]. In addition to the results reproduced
in figure 6.11 the study by Basu et al. [148] presents results for temperatures between
20 °C and 40 °C. However, the outer fluid viscosity is again adjusted to 0.92 cP and at
larger shear rates, where the frequency results at room temperature compare well to
the other experimental studies, only few measurement points lie. For these, the au-
thors show that a temperature increase can lead to a noticeably larger tank-treading
frequency. As the membrane viscosity decreases with increasing temperature [114]
this observation is in agreement with the influence of Bq on the frequency.
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6.2.5 Discussion
Similar to the earlier observations for RBCs in Poiseuille flow, also in shear flow
increased inner fluid viscosity and membrane viscosity lead to a decrease in the
tank-treading frequency. Detailed comparison with a simulation study [26] in sec-
tion 6.2.3.1 showed that changes in both λ and Bq have precisely the same influence
on the frequency. The only difference is a constant shift between all curves, which
can be explained by differences in the simulation method. It was shown that LBM
simulations agree very well with the BIM results, but the scale-up of the Reynolds
number in LBM simulations for computational efficiency can lead to an artificial
drop in the frequency. Comparison with more simulation studies of purely elastic
RBCs in shear flow [48, 52, 99, 144, 145] shows that the exact frequency levels in
general scatter slightly.
The experimental data available for tank-treading RBCs in highly viscous fluid was

compared to the BIM frequency results. All simulation results in a physiologically
sensible parameter range are well compatible with the experimental measurements.
To resolve the differences in the simulation results they are best converted to dimen-
sionless numbers and plotted depending on the capillary number. In experiments,
however, this is not feasible as the membrane shear properties are not known exactly.
Moreover, especially the influence of the membrane viscosity is difficult to discern.
The very good qualitative agreement with the literature again confirms the imple-

mentation of the membrane viscosity simulation method in this work. Quantitative
conclusions regarding the viscosity of RBC membrane and interior, however, cannot
be drawn with this approach.
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(a)

(b)

Figure 6.11: Shear tank-treading frequencies compared with experimental measurements. Frequen-
cies are plotted (a) at small shear rates and (b) over the whole measurement range in
a log-log graph. BIM simulation data is shown for different Bq (different colours) and
different viscosity contrasts λ (circle, square and diamond shapes). The experimental
data (coloured points) is reproduced from the literature from Fischer et al. (1978) [147],
Fischer (2007) [97], Tran-Son-Tay et al. [116] and Basu et al. [148]. Some measure-
ment data from Fischer (2007) [97] was taken from a secondary source (Matteoli et
al. (2021) [26]). The viscosity values in centipoise for the experimental measurements
refer to the viscosity of the outer fluid. The measurements by Tran-Son-Tay et al. [116]
were done with an outer fluid viscosity of approximately 35 cP (value determined at
2 % RBC concentration). Basu et al. [148] have an outer viscosity of 0.92 cP, the data
is reproduced from their fig. 4. 97
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6.3 Expanding channel geometry
6.3.1 Introduction
A microscale expansion geometry offers another setup to study the RBC relaxation
behaviour for viscoelastic RBCs in the comparison of experiment and simulation.
The experiments include age-separated RBCs at different velocities in a microchan-
nel with an expansion leading to a larger microchannel. A similar setup is modelled
in simulations to compare the recorded deformation behaviour of the RBC. All ex-
perimental data was provided by M. Nouaman and S. M. Recktenwald (members of
the group of C. Wagner in Saarbrücken).
In the first section 6.3.2 the setup and RBC parameters are introduced and the

initial shapes and velocity curves are discussed. The results are presented in sec-
tion 6.3.3, followed by a discussion in 6.3.4.

6.3.2 Setup and observation parameters

y

xz

a

bW1 W2

0 µm−10 µm−20 µm 10 µm 20 µm

(a)

(b)

Figure 6.12: RBCs flowing in an expanding channel setup. (a) Region of interest of the experimental
microchannel and (b) corresponding expansion geometry in BIM simulations in 2D
projection. The starting point of the expansion is chosen as the origin in x-direction.
The flow is in positive x-direction. Deformation of the red blood cell is measured with
its extension a in x-direction and b in y-direction. Experimental image provided by
M. Nouaman (member of the group of C. Wagner in Saarbrücken).

The expansion geometry studied in this section is shown in figure 6.12. The cells
flow in from the left and travel through the smaller part of the channel up to the
extension, where they enter the broader part of the channel. The width in y-direction
before the expansion is W1 = 8.4 µm and behind the expansion W2 = 17 µm. The
height of the microchannel in z-direction is H = 5 µm. The experimental microchan-
nel in figure 6.12(a) is fabricated with standard soft lithography. The channel geo-
metry in BIM shown in figure 6.12(b) is constructed with the program Gmsh [150]
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to mimic the experimental channel. The channel has a triangulated surface, it is not
periodic and is treated as object in the flow. The simulated channel is much shorter
than the experimental setup, this allows comparison of the cell trajectories and de-
formation at the region of interest, around the expansion, at reasonable computation
times.
The RBCs are discretised with 2048 flat triangles, shear and bending contributions

are modelled with the Skalak law with κS = 5× 10−6 N m−1, κA = 100κS and the
Helfrich model with κB = 4× 10−19 N m and a constant bending reference curvature
c∗0 = 4. The shear reference shape is the oblate spheroid with τ = 0.9. The inner
viscosity of the RBC is varied in the simulations which leads to changes in the
viscosity contrast λ, defined via equation (2.6) with respect to the constant outer
viscosity µo = 1.2 mPa s. The Boussinesq number (4.63) is defined with with respect
to the length scale R, the radius of the RBC in rest. The characteristic inverse time
for the definition of the spring constants in (4.64) is the average flow divided by R.
The cell dimensions in x- and y-direction, a and b, are marked in figure 6.12(b),
these are recorded during the simulation. From the two lengths a and b the non-
dimensional deformation of the cell is calculated as

D = a− b
a+ b

. (6.8)
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Figure 6.13: Inflowing red blood cell shapes at the expansion geometry. (a) Experimental snapshots
in the smaller channel part and (b) initial RBC shapes in the simulations. The flow
direction is from the left to the right. The capital letters in (b) label the different
initial shapes whose dynamics is discussed in the following sections. Experimental
images provided by M. Nouaman and S. M. Recktenwald (member of the group of C.
Wagner in Saarbrücken).

In the experiments, the cells enter the smaller channel part in figure 6.12(a) on the
left from a larger reservoir and are thus pre-deformed. Examples for these are shown
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in figure 6.13(a). In order to mimic this deformation prior to the channel section
shown in figure 6.12, in the simulations deformed RBCs from a periodic channel
simulation are used. These shapes are shown in figure 6.13(b). The shape differences
result from different cell parameters, λ and Bq, or different starting conditions in the
preliminary periodic channel. In total six different initial RBC shapes at the channel
entrance are investigated in the simulations.

Figure 6.14: Velocity of the red blood cells in the expanding channel. The bluish curves show the
simulation results for larger cell velocities, corresponding to an experimental pressure
drop of 100 mbar, with different RBC parameters λ and Bq. The curves in red and
orange represent simulations results corresponding to a pressure drop of 70 mbar. Ex-
perimental measurement curves of single cells for the two pressure drops are added in
light grey. The origin of the x-axis lies at the expansion, compare figure 6.12(b).

The constant flow strength in BIM is adapted such that different cell velocities
result, these are shown in figure 6.14, the RBCs move with around 0.9 mm s−1 and
1.3 mm s−1 in the smaller channel part. These velocities lead to a Reynolds num-
ber (2.12) well below 0.1. In experiments different cell velocities are obtained by
adapting the pressure drop in the channel, the pressure drops corresponding to the
simulation cell velocities are 70 mbar and 100 mbar. The velocity curves of the cells
in experiments show a wide spread, compare figure 6.14 (light grey curves). In both
experiment and simulation the cell velocity decreases at and behind the expansion
due to the increase of the channel cross section. A qualitative agreement between
the velocity development is observed for the region of interest around the constric-
tion. In experiments, however, farther behind the constriction the velocity decreases
to a smaller value compared to the simulations. A possible reason for this obser-
vation is that the channel widens behind the constriction when a pressure drop is
applied, thus leading to a larger cross section and smaller velocity. The significance
of this observation for the result of the comparison is discussed below. The results
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in the following sections concentrate on the region of interest directly around the
constriction.
The experimental channel in figure 6.12(a) is slightly asymmetric with respect

to the expansion in its middle. Test cases in BIM simulations with corresponding
channel asymmetry showed that this has negligible influence on the cell behaviour.

6.3.3 Results

increasing

density

λ = 5
Bq = 0

λ = 20
Bq = 5

λ = 20
Bq = 20

(a)

(b)

(c)

(d)

Figure 6.15: Deformation behaviour of the red blood cells at the expansion. (a-c) Experimental
and (d) simulation results are shown in comparison. (a) Deformation curves around
the constriction for 650 cell measurements at the lowest pressure drop of 70 mbar. (b)
Single cell measurement exemplarily shows the overshooting of the deformation at the
constriction. (c) The fraction of cells which show overshooting of the deformation D
changes with the cell density in the different layers in experiments, all data shown is
for a pressure drop of 70 mbar. (d) Deformation curves in the simulations for different
λ, Bq with different initial shapes at the channel entrance and different velocities,
compare figure 6.14.

Example trajectories for experiment and simulation are shown in figure 6.15. The
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experimental measurements in (a) show the broad scattering of the deformation D.
A large number of cells has a flat deformation transition at the expansion. Some
deformation curves, however, show an overshooting at the expansion, which means
that the RBC first expands quickly in y-direction, i.e. the length b increases compared
to a, and then relaxes back. An exemplary single cell measurement is shown in
figure 6.15(b). In experiments, the RBCs are separated by centrifugation and thus
form several layers of increasing density. Separate measurement for these layers shows
that the fraction of cells, whose deformation curve overshoots, depends on the density
of the cell, compare figure 6.15(c). The simulation results shown in figure 6.15(d)
shed light on the origin of the experimental observations. First, the simulations
show that slight variations in the start shapes, see especially for the shapes E and
F and, though less pronounced, for C and D, can have a distinct influence on the
level of the deformation curves. This observation can explain the wide scattering
of deformation levels in the experiment in 6.15(a). All deformations observed in
the simulations agree with the experimental range. Second, the cell velocity has no
significant influence on the deformation behaviour as the two velocities investigated
in simulations show (red vs. blue curves), which suggests that the difference in the
velocity development in figure 6.14 is not harmful for the comparison. Finally, the
three plots in figure 6.15(d) show that in simulations the overshoot in the deformation
occurs only at smaller values of λ and Bq, larger inner and membrane viscosity
suppress this effect.

The experimental data from the group of C. Wagner includes results of the de-
formation behaviour of RBCs treated with different concentrations of diamide. Data
evaluation analogously to the bar chart in figure 6.15(c) shows that for cells treated
with the largest concentration of 2 mmol l−1 diamide, the fraction of overshoots in-
creases by the factor 2.5 compared to untreated whole blood RBCs. As discussed
in section 7.3.2 diamide links the cytoskeletons’ proteins and thus increases the cells
stiffness. In simulations this could be reflected by a larger shear modulus κS, how-
ever, the exact relation between diamide concentration and shear modulus remains
unclear, compare again section 7.3.2. Mainly for this reason but also because the sim-
ulations in the expansion geometry are time-intensive, additional simulations with
larger κS have not been run here. The overshooting is a dynamic process and thus
reference to the relaxation behaviour of RBCs in quiescent flow in section 5.3.2 is
of interest. In figure 5.2, for one example it was shown that larger shear modulus
leads to a slightly faster relaxation back to the rest shape of the RBC, but the effect
of the change in κS is marginal. One can hypothesise that the overshooting is more
frequent for stiffer cells because the relaxation dynamics is faster, for a definitive
conclusion, however, more simulation data is necessary.
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6.3.4 Discussion

The experiments show that cells with larger density, which is attributed to older
cell age, have a smaller fraction of overshooting deformation behaviour. In simula-
tions, the same decrease in overshooting is observed for larger interior and membrane
viscosity of the cells. In the literature, a connection between haemoglobin concentra-
tion inside the cell, due to variations in the cell density, and the viscosity of the cell
is discussed. The review article by Hochmuth et al. [121] summarises results from
earlier studies. It was shown that the concentration of haemoglobin in the cytoplasm
of the cell has a strong influence on the cell’s membrane viscosity, possibly because
the haemoglobin proteins can bind to the cell membrane [121, 151, 152]. The shear
modulus κS of normal cells, however, was found to be independent of the haemo-
globin concentration [58, 115, 121, 153–155]. This supports the simulation approach,
where the influence of κS was not further investigated. Moreover, the authors showed
in relaxation experiments that from a collection of cells, the 5 % of highest density
needed 1.5 times longer for the relaxation compared to the 5 % of lowest density [115,
121, 153], compare the shear simulations section 6.2.4.
If the connection is made between the denser/older cells in the experiments and

the more viscous cells in simulations, the comparison of experiment and simulation
provides an explanation for the observed overshooting cell behaviour. The more
viscous cells, i.e. those which have larger inner fluid viscosity and larger membrane
viscosity, react on a slower time scale and thus ‘miss’ the deformation overshoot.
Cells which are less dense and have smaller viscosity values, however, react on a
faster time scale and show a deformation overshoot. This argument is also in line
with the observations of the RBC relaxation behaviour in section 5.3.2, where the
doubling of the inner viscosity (λ×2) was shown to lead to a twice slower relaxation
back to the RBC rest shape. A detailed quantitative comparison of simulation and
experimental results remains challenging in this setup, due to the sensitivity to the
start shape and the resulting scattering of the deformation curves. Inference of
specific viscosity values of RBCs from this setup is therefore not possible.
The recent study by Nouaman et al. [103] investigated the influence of the age-

separated cell layers discussed here on the phase diagrams of RBCs flowing through
microchannels. It was found that with increasing cell density the fraction of crois-
sants at small velocities increased and the fraction of slipper cells at larger velocities
decreased, where other cell shapes become predominant [103]. In section 5.6 of this
work the influence of membrane viscosity on the simulation phase diagrams is presen-
ted for cells with viscosity contrast λ = 20. The results show that an increase in
Bq leads to a pronounced increase in the occurrence of RBCs classified as others,
which is in agreement with the increase of other cell shapes in experiment. Resolving
changes in the fraction of croissants, however, is not possible for the presented data,
because their occurrence heavily depends on the choice of the initial shape and initial
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cell position as the simulation phase diagrams in figures 5.12 and 5.13 confirm. In
order to make a clear statement of that from simulations, more information about
the initial cell state would be necessary. This fact makes the comparison of phase
diagrams in this setup challenging.
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7 Analysis of red blood cell
properties based on many-cell
statistical behaviour

7.1 Overview
The validation of simulation results against experimental measurements of the RBC
dynamics so far was based on the comparison of single RBC observations, with the
aim of inferring the physical properties of RBCs. RBCs are, however, biological ob-
jects and their properties are thus subject to biological variability. In experiments,
this is reflected in the fact that the scattering of measurement results is not only due
to measurement error but also due to this natural variation. For simulations, this
implies that physical properties of RBCs cannot be expressed in single quantities for
certain parameters but should rather be expressed on a range. The new approach
in this chapter is to explore this many-cell statistical behaviour of RBCs by com-
paring statistical measurement results from experiments with numerical simulations
of RBCs whose cell properties are varied on a physiologically appropriate range.
The experimental data comes from real-time deformability cytometry (RT-DC), a
technique developed by the group of J. Guck at the MPL in Erlangen. With this tech-
nique it is possible to analyse thousands of blood cells in a few minutes and process
the images of the deformed cells in real time [156]. The recorded cell characteristics,
for example the deformation and size of the cells, can be used to distinguish RBCs
from other blood constituents and for the investigation of the mechanical properties
of RBCs in health and disease [156]. This method has been applied to study changes
in the RBC deformability linked to COVID-19 [11] and depressive disorders [157].
The key question, namely whether it is possible to deduce the mechanical proper-

ties of RBCs from these many-cell measurements, will be addressed in this chapter.
In section 7.2 first the flow setup modelled with the BIM, based on the experimental
RT-DC geometry, is introduced in 7.2.1, followed by the discussion of the cell shape
data analysis in 7.2.2. The next section 7.3 consists of a presentation and compar-
ison of the RBC deformation result, with respect to the shape data in 7.3.1 and
based on the statistical data in 7.3.2. This qualitative comparison shows good agree-
ment between the simulation results and the experimental data, which scatter due
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to biological cell variability and initial conditions, as well as measurement error in
experiments. The purpose of the next section 7.4 is to examine whether and how
information about the distribution of RBC properties from the statistical data is pos-
sible. Two different methods are considered in 7.4.1 and 7.4.2, followed by a short
discussion and outlook in section 7.4.3. Finally, a concluding discussion is given in
section 7.5.
All experimental data presented in this chapter was provided by F. Reichel (mem-

ber of the group of J. Guck at MPL in Erlangen).

7.2 Setup and methods

7.2.1 Boundary integral method simulations based on the
experimental setup

The BIM is used in this work to investigate the RT-DC measurement setup in
numerical simulations. The experimental flow setup in RT-DC is shown in fig-
ure 7.1(a) [156]. The cells enter the channel on the left, are focused in the stream and
enter the measurement section marked with the solid red box in the experimental
image. An example measurement of one RBC is shown in figure 7.1(b). The RBCs
are stretched in a peculiar drop-like shape in the measurement channel. When the
experimental data is processed, cells whose detected area is below or above a certain
threshold and whose contour has an aspect ratio which is not between 2 and 20,
are filtered out, leaving in total 8299 single cell observations for the analysis. The
filtering is done with the software Shape-Out [158], developed to process the RT-DC
measurements. This prevents that cell aggregates and other invalid events, like re-
corded debris in the channel, are included in the analysis, but is also intended to
exclude other blood cell types [156, 159].
In BIM, the section highlighted with a dashed red line in figure 7.1(a) is rebuild,

the resulting three-dimensional channel model is shown in figure 7.2(a). As in the
experiments, the smaller measurement channel has a quadratic cross section with
side length W = H = 20 µm. The channel is discretised with flat triangles and has
slightly rounded corners for numerical stability. At the beginning of the simulation
the cells start at negative x-values in figure 7.2(b) at different y-positions. Due to
the symmetry of the channel only positive y-values are chosen.
Note that in initial test simulations only the smaller measurement channel section

from experiments with quadratic cross section was simulated. The results did not
agree with the experimental cell shapes, which is ascribed to the fact that most of
the cell deformation in experiments takes place before the cell enters the channel.
Therefore, it is necessary to include the funnel-shaped entrance region in simulations.
In BIM, including an even larger entrance region to model the full deformation history
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Figure 7.1: Experimental flow setup for the RT-DC measurements. (a) Measurement channel with
flowing RBCs, the image is reproduced from the work of Toepfner et al. [156] published
in eLife, here flow direction, scale bar and regions of interest (in red) were added [160].
The solid red line surrounds the experimental observation region, the dashed line the
region which is rebuild in simulations. (b) Shape of a single RBC in the RT-DC meas-
urement. Image data provided by F. Reichel (member of the group of J. Guck at MPL
in Erlangen), the scale bar was added here.

of the cell would further increase the computation time. Thus, the model shown in
figure 7.2 is a compromise between accurate emulation of the experimental setup and
reasonable computing times.
In the experimental measurements the cells are suspended in a buffer solution

containing methyl cellulose (0.6 %). This solution is shear thinning [161] with a
viscosity at rest of µo = 15 mPa s, measured in a falling-sphere viscometer. At
the experimental flow rate of 0.06 µl s−1 in the small measurement channel and at
room temperature of 25 °C, this leads to an effective viscosity [162] of around µeff

o =
5.2 mPa s.
In the BIM implementation the inflow is adapted such, that the flow velocity in

the smaller channel part matches the experimental flow rate if an Poiseuille velocity
profile is assumed. The fluid in the measurement channel thus has a mean velocity
around v = 15 cm s−1. The outer fluid viscosity in simulations is µo = 5× 10−3 mPa s,
larger by a factor of 4.17 compared to the blood plasma viscosity. This leads to an
estimate for the Reynolds number (2.12) in the channel of Re = vLρ

µo
≈ 0.6, where

as characteristic length scale L the channel height H is used and for ρ the density
of the blood plasma is taken. As detailed in section 2.3.1 the BIM is developed for
systems with low Reynolds number, where inertia effects are small compared to the
viscous effects. Therefore, this system is near the limit where the BIM can still be
used.
The RBCs are discretised with 1280 triangles, preliminary tests with 2048 triangles

did not show significant differences in the cell shape. The shear reference is an oblate
spheroid with moduli κS = 5× 10−6 N m−1 and κA = 1000κS. The phenomenological
area dilation modulus κA is chosen by a factor of 10 larger compared to the previously
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Figure 7.2: Channel model in boundary integral method simulations. (a) The three-dimensional
discretised channel has equal width W and height H of 20 µm. (b) The cut through the
whole channel section shows the inlet on the left and different observation points at the
channel end in the right part of the channel. Two exemplary RBC shapes at an initial
position and in the middle of the channel are included (red shapes).

used values, in order to guarantee that the surface area deviation of the RBC remains
small, albeit strong deformations occur due to the large flow velocity. The bending
reference curvature is c∗0 = 4 and the bending modulus κB = 4× 10−19 N m. The
cells are started slightly off-centred in z-direction, shifted by one tenth of the cell
radius zinit = 0.4 µm. This is done in order to prevent a perfectly symmetric entry in
simulations which does not occur in experiments. The initial position in y-direction
yinit is varied in the simulations such that yinit = 0.4 µm, 2 µm, 4 µm, 6 µm, 8 µm, 10 µm
or 12 µm. For illustration, one RBC with yinit = 6 µm is shown in figure 7.2(b) at
its initial position at the left channel entrance. In different simulations the viscosity
ratio λ and the Boussinesq number Bq are also altered. Here Bq is defined as in
equations (4.63) and (4.62), but with respect to the blood plasma viscosity µp =
1.2 mPa s instead of the outer viscosity µo, to facilitate comparison with the results
in the previous chapters. For the length scale in the Bq definition the long radius R of
the RBC is used. In simulations the Boussinesq number was varied between Bq = 1
and Bq = 25 in steps of 1. The viscosity ratio λ was varied between λ = 1 and λ = 5.
Because the viscosity of the fluid in the channel is 4,17 times larger than the blood
plasma viscosity, the values of λ must be rescaled with 4,17 for comparison with the
previous chapters of this thesis. The start shape of the cell is either the discocyte
rest shape or a slipper shape. The characteristic inverse time in the definition of the
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artificial spring constants in equation (4.64) is the flow velocity divided by the RBC
radius.
Taking into account the different starting shapes and positions, and the variations

in Bq and λ, in total 1750 simulations have been carried out. One can observe that
for small membrane viscosities the cell shapes are in many cases unstable, especially
for the deformed slipper starting shape. Therefore, the analysis of the following
sections is limited to simulations with Bq = 5, 6, . . . , 22 for discocyte initial shape
and Bq = 5, 6, . . . , 17 for the slipper.
In the simulations the details of the rheology of the outer fluid, e.g. its shear

thinning property, have been neglected. This is a reasonable good approximation,
because the cells flow very close to the channel centre and it is assumed that the
viscosity does not vary significantly on the length scale of the deformed cell. Accurate
LBM simulations of strongly shear thinning fluid are difficult to achieve and a field
of ongoing research [163].

7.2.2 Analysis of the red blood cell shape data
The numerical simulations output the full three-dimensional shape of the RBC at
different positions along the channel length. Following the experimental results, the
key cell features extracted in the analysis are the two-dimensional cell area or cell
size A and the deformation D of the cell. The cell size A is defined as the two-
dimensional area of the convex hull of the cell contour, the length of the hull contour
is l. From these two the non-dimensional deformation D of the RBC is calculated as

D = 1− 2
√
πA

l
. (7.1)

This measure is zero for a circular shape and approaches one for a degenerate ellipse
whose eccentricity approaches one, i.e. a line. Computation of the convex hull was
done using SciPy’s ConvexHull class, based on the Qhull library [164].
Another measure to characterise the deformed cell shape is its aspect ratio, here

approximated as the ratio between the longer and shorter side of the cell contour’s
bounding box, in analogy to the procedure used in Shape-Out [158]. This is a
reasonably good approximation because the cells are stretched primarily in flow
direction as shown in figure 7.1.
In order to compute the convex hull, first the cell contour must be determined

from the simulation output. The contour can be obtained from the three-dimensional
shape in two different ways, illustrated in figure 7.3. The straightforward approach
is to project all the surface points of the RBC onto the x-y-plane and compute the
contour of these, as shown in the left images in figure 7.3(a,b). The second approach
is to consider only a small slice of the RBC of ±1 µm around the channel centre in
z-direction, and project the surface points of this slice onto the x-y-plane. This is
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Figure 7.3: Extraction of the cell features from the simulation. (a,b) Two examples of deformed
RBCs illustrate how from the three-dimensional shape (first row, respectively) the cell
contour (black line in the second row images, respectively) is extracted. The red points
illustrate the projection of the selected surface points onto the x-y-plane. The left
images show the projection method, the right images the slice method. (c) The different
methods lead to differences in the results for the cell features size and deformation. Here
the data from all valid simulations is included.

illustrated in the right images in figure 7.3(a,b). The second approach is motivated
by the experimental imaging technique, where the focus lies in the channel centre and
only a slice of thickness 2 µm around it is recorded. For elongated RBCs as the one
shown in figure 7.3(a), the difference between projection and slice method is small.
If, however, the RBC shows a complex deformed shape, exemplified in figure 7.3(b),
the contours calculated from the two methods differ visibly. An overview over all
valid simulation results is given in figure 7.3(c), excluded are only those cells which
have an aspect ratio smaller than 2, in accordance with the experimental analysis.
The deformation is plotted against the cell size for the projection method (grey) and
the slice method (green). In general, the projection method leads to larger cell sizes
because more surface points are included. The range of the observed deformations is
hardly affected. The two methods lead to different results especially for RBCs which
show a small deformation, i.e. are closer to a circular shape, in combination with a
small cell size. This is consistent with the observations made for figures 7.3(a,b). The
results shown in figure 7.3(c) belong to RBCs flowing near the channel end around
x = 240 µm, compare figure 7.2(b). For the analysis in the following sections the
slice method is used because it is conceptionally closer to the experimental analysis.
The automatised output of the experimental analysis with Shape-Out described

in section 7.2.1 is the two-dimensional image of the cell as shown in figure 7.4(a),
cropped to a length in x-direction of around 80 µm, together with the detected cell
contour (drawn in blue). The Shape-Out analysis algorithm directly cuts channel
images to small parts in x-direction, which include the single cells. Therefore it is
not possible to directly observe changes in the aggregated cell features along the
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Figure 7.4: Results of the analysis of the experimental cell shapes for different methods. (a) Cell
image and contour in the Shape-Out output. (b) Comparison of the y-position and
volume results for the experimental data. The blue points show the results for the RBC
features in the Shape-Out output, the red points are computed with the method used
for the simulation analysis, which is applied on the experimental data. Experimental
data provided by F. Reichel (member of the group of J. Guck at MPL in Erlangen).

whole channel length and compare them to simulation results, where slight changes
along the channel are observed. In addition, Shape-Out directly provides a list of
computed cell features, such as the cell size, deformation, volume and y-position of
the cell in the channel. For the volume computation, rotational symmetry of the
RBC is assumed. Applying the simulation analysis method described above on the
experimental data leads to perfect agreement of the cell size and deformation results
with the cell feature data from Shape-Out, which uses the same computation routine.
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Apart from the deformation and size, an analysis routine for the y-position in the
channel and the volume of the cell has been developed. The y-position is computed
as the mean of the cell surface points. For the volume computation first the principle
axis of the cell contour is calculated. Then the cell contour is divided into a lower and
upper half by the principal axis. Assuming rotational symmetry of the cell around
the principal axis separately for these two halves of the cell allows the calculation
of the RBC volume. Finally these two volume results are averaged to obtain an
estimate for the RBC volume. The position and volume calculation methods are also
applied to the experimental cell contour and compared to the direct feature output
by Shape-Out in figure 7.4(b). Here slight differences between the two methods are
observed although the overall agreement is satisfactory. The figure shows, that for
all offset position in the channel the volume scatters broadly. Note that the stripes
in the data in the y-direction are due to the image resolution in the experiments.
Due to the volume conservation of RBCs in simulations the volume is identical for
all cells. If the volume is computed based on the two-dimensional cell contour,
however, the results also scatter broadly. The rotational symmetry for the cells is
an inaccurate assumption, as will be shown below. Moreover, in experiments the
volume is directly obtained from the cell size measurement which is already used for
comparison. Therefore, the volume computation was not pursued further for this
study.

7.3 Deformation of the red blood cells in the channel

7.3.1 Comparison of the shape data

The deformed cell shapes in the numerical simulations very well match the experi-
mental observations. Different examples are shown in figure 7.5. In the first row the
experimental images are overlaid with the cell contour from simulations (in red). A
visualisation of the full three-dimensional shape of the cells is shown in the second
row in figure 7.5 from the same observation perspective as in the experiments. In
the third row the same cell shapes are shown rotated by 90° around their long axis.
Note that the simulation with small membrane viscosity Bq = 5 shown in (b) shows
a tendency towards becoming unstable. Due to the asymmetric channel inlet and
the orientation of the cell before the channel entrance, the cell has formed a flattened
cell rear. The simulation results shows that the rotational symmetry assumption for
the deformed RBCs is not applicable. If this assumption is used to calculate the
volume of the cell, however, the error is expected to be small, because the rear of
the cell contributes much less to the volume than the larger front part.
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(a) (b) (c)

nr. 1297 nr. 7029 nr. 9043

Figure 7.5: Comparison of deformed red blood cell shapes in experiment and simulation. The cell
images from different RBCs (numbers are added in the images) in the experimental
measurement series are overlaid with fitting cell contours from the simulations in red
(first row). The second row shows the full 3D shape from the simulation from the same
point of view. The third row shows the respective cells from the top view, i.e. rotated by
90° around the x-axis. The respective simulations differ in the initial shape, the viscosity
contrast λ, the membrane viscosity Bq and the initial y-position. The properties in the
simulations are (a) discocyte initial shape with λ = 2, Bq = 6, yinit = 0.1 (b) slipper
initial shape with λ = 2, Bq = 5, yinit = 0.1 (c) slipper initial shape with λ = 3, Bq = 9
and yinit = 0.5. Experimental image data provided by F. Reichel (member of the group
of J. Guck at MPL in Erlangen).

7.3.2 Comparison of the statistical data
Apart from the direct shape comparison for single cells, the cell feature data for
all measurements and simulations can be compared. Figure 7.6(a) shows the cell
deformation plotted against the cell size. Each blue cross is one experimental cell
measurement, the simulation results (green points) are superimposed on these. The
simulations cover most of the experimentally observed range, except for observations
with very large cell sizes. The second observation is that the simulation results at
small deformations of 0.1 to 0.15 are not observed in experiments. The RBCs at
small deformations are more spherical and have a smaller aspect ratio, as is shown
in figure 7.6(b). The aspect ratio and the deformation both measure the sphericity
of the cell and the plots therefore show a high correlation between these two. The
colour encoding of the simulation results shows, that higher membrane viscosity is
associated with smaller deformation, i.e. less cell elongation and smaller cell size.
The second effect must be due to a different allocation of the cell mass perpendicular
to the observation plane for different Bq.
A visualisation of the deformation D and the cell size A depending on the y-
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(a) (b)

Figure 7.6: Comparison of the statistical data for the cells’ size and deformation measures. (a) The
deformation D is plotted against the cell size A. (b) The aspect ratio of the shape is
plotted against the deformation D. The blue crosses represent the measurement points
for single cells from the experiment. The greenish yellow points represent all simulation
results, including both initial shapes slipper and discocyte. The colour encoding shows
the Boussinesq numbers used in the simulations.

position of the RBC is given in figure 7.7, again showing the experimental data
in blue and superimposed the simulation results in greenish yellow. In both plots,
clusters around different y-positions are clearly distinguishable. These stem from the
seven different initial positions yinit listed in section 7.2.1. This leads to the conclusion
that inside the channel, there is very little cross-streamline migration of the RBCs.
Figure 7.7(a) shows that RBCs which start far off-centre show a smaller deformation
D. These are more spherical and rarely observed in experiments. The plot also shows
that the simulations do not capture the highly deformed cells at larger y-position
recorded in the experiment. The focusing of the cells in the flow before the channel
entrance in experiments is complicated and not in detail replicated in the simulations,
compare section 7.2, which also influences the cell shape at the entrance. For the off-
centred initial position, these differences are expected to be more relevant and could
thus explain the mismatch between experimental and simulation results at larger y-
position. Figure 7.7(b) shows that the cell size variation in experiments is covered by
the simulations. The experimentally observed sizes, however, are independent of the
y-position, while in simulations a tendency towards larger sizes for larger offsets is
observed. For larger y-offset the deformation decreases as discussed for 7.7(a), i.e the
hull of the cell contour is more spherical. This is illustrated in the RBC example in
figure 7.3(b). The two-dimensional cell size is approximated as the area of the convex
hull, therefore, a more spherical deformation as in the example is associated with an
increase in the cell size, which can explain the correlation observed in figure 7.7(b)
for the simulations.
Another experimental study by Reichel et al. [165] uses the RT-DC setup to in-
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(a) (b)

Figure 7.7: Comparison of the statistical data for the cells’ size and deformation depending on
the cross-stream position. Experimental (blue crosses) and simulation data (greenish
yellow points) for the y-position relative to the channel center plotted against (a) the
deformation D and (b) the cell size A. The colour bar shows the Boussinesq number
belonging to the respective simulation.

vestigate changes in blood cell deformability in a neurodegenerative disorder and the
influence of drug treatment. In addition, the study presents results for RBCs treated
with diamide, which crosslinks the proteins of the cell’s spectrin network. The au-
thors find that both the cell size and the deformation of the cells decrease for large
diamide concentrations. For smaller concentrations the opposite effect, albeit small,
on the deformation was observed. An overview of the results is shown in figure S3 in
the supplementary material of the publication [165]. The cell size decreases by up to
7 %, the deformation by up to 15 % for the largest diamide concentration, with the
values for intermediate concentrations in between. The linking of the proteins of the
cytoskeleton adds additional stiffness, in simulations represented by a larger shear
modulus κS of the RBC, compare section 2.2. The magnitude of the change in κS
induced by different concentrations of diamide remains unexplored, as measurement
results of the shear modulus even for healthy, unmodified RBCs are difficult to ob-
tain. One additional series of simulations with larger shear modulus κS× 3 has been
run, the results are shown in appendix F.1 in figure F.1. The stiffer RBCs show the
same trend as the experiments with smaller cell sizes and smaller deformations for
all simulation pairs. The areas decrease by around 3 % to 5 % and the deformations
between 2.5 % and 4 % for the different initial positions.
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7.4 Inference of the cell properties from the
statistical data

7.4.1 Method 1: Weighting of the simulation points with the
frequency of the attributed experimental observations

observation frequency fit to exp. data(a)

(b) (c) (d)

Figure 7.8: Fits of the distribution of the observables in experiments. (a) The observation fre-
quencies of different deformation and cell size combinations (left plot) is used to fit a
two-dimensional Gaussian distribution to the full experimental data (right plot), on a
grid of 40 × 40. (b-d) The fit is limited to data points of cells with a distance to the
channel centre (b) smaller than 0.5 µm (c) between 0.5 µm and 1 µm and (d) beyond
and including 1 µm. Here a grid of 20 × 20 is used to fit to the fewer experimental
observations.

In the previous section 7.3 the qualitative comparison of the shape and statistical
deformation data showed good agreement between simulation and experiment. The
scattering of the simulation data arises from the cell property variation, which is due
to the biological variability of the RBCs, and from different initial conditions. These
two factors in experiments also lead to a scattering of the results, together with
the measurement error. From the simulations, however, the relation between RBC
property and resulting observable, e.g. deformation or cell size, can be obtained.
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The purpose of this section is to infer information about the distribution of the
cell properties from the statistical data by using the informations provided by the
simulations. The procedure is as follows. First, the experimental observation fre-
quency in the two-dimensional space of cell deformation versus cell size shown in
figure 7.8(a), is fitted with a two-dimensional Gaussian distribution. In the second
step this distribution is used to assign to the simulation results a likelihood of their
occurrence. This is then transferred to a likelihood for the respective parameter
combination.

fig. 7.8(a) fig. 7.8(b) fig. 7.8(c) fig. 7.8(d)
all data |y| < 0.5 µm 0.5 µm ≤ |y| < 1.0 µm 1.0 µm ≤ |y|

Ā = 37.6 µm2 Ā = 37.9 µm2 Ā = 37.5 µm2 Ā = 37.4 µm2

σA = 3.7 µm2 σA = 3.9 µm2 σA = 3.8 µm2 σA = 3.4 µm2

D = 0.256 D = 0.256 D = 0.253 D = 0.258
σD = 0.024 σD = 0.030 σD = 0.026 σD = 0.019

rA,D = 0.34± 0.01 rA,D = 0.51± 0.02 rA,D = 0.37± 0.02 rA,D = 0.10± 0.02

Table 7.1: Overview of the results of the multivariate Gaussian distribution fitted to the exper-
imental data. The mean cell size Ā and deformation D are listed together with the
respective standard deviations σA, σD for the different data sets from figure 7.8. In
the last line the correlation coefficient from the fit is given, together with its standard
deviation from the fitting procedure.

The first step is illustrated in figure 7.8(a). The observation frequency of the
observables (left) is fitted with a Gaussian distribution (plot shown on the right)
using the SciPy method curve_fit [166]. The fit again shows the positive correl-
ation between deformation and cell size. As discussed in the previous section, the
simulations show that the y-coordinate of the RBCs in the channel is crucial for the
observed deformation and size, compare figure 7.7. Therefore, the fitting procedure is
repeated for different parts of the experimental data, separated by their y-coordinate
in the channel. The results are shown in figure 7.8(b-d), where the grid for the fit
is coarser than in (a), due to the decrease in the number of included experimental
observation points. Table 7.1 summarises the fitting results, i.e. the results for the
multivariate Gaussian distribution. The mean value of cell area and deformation Ā
and D do not vary significantly if the cells are separated by their y-coordinate, the
same is true for the related spreads measured with the standard deviations of the
distributions σA and σD. This is in line with the observations in figure 7.7 although it
does not directly follow from it. The computed correlation rA,D, however, decreases
strongly for the cells which flow off-centred. This difference is reflected in the plots
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in figure 7.8. The standard deviation of the correlation from the fitting procedure
- not to be confused with the standard deviation of the Gaussian distribution - is
added in the table, which is related to the uncertainty of the fit. For the mean values
and standard deviations this measure for the fit uncertainty is only around or below
1 % of the respective result in table 7.1 and therefore not listed. The correlation for
the most off-centred positions has the largest uncertainty.

(a) (b)

(c) (d)

Figure 7.9: Weighting of the simulation points with their likelihood based on the experimental res-
ults. Likelihood of the respective simulations (a,b) in the space of the observables and
(c,d) in λ-Bq space. The left column (a,c) shows the results including all simulations
and weighted with the experimental distribution from figure 7.8(a). The right column
includes only those simulations started at the three smallest yinit-positions, correspond-
ing to y-positions with y ≤ 0.5 µm, and accordingly weighted with the results from
figure 7.8(b).

The results of the second step are shown in figure 7.9. All single simulation points
are weighted with their likelihood according to the respective fitted experimental
distribution. The first plot 7.9(a) shows the same data as figure 7.6(a) but weighted
with the fit result from figure 7.8(a), the resulting likelihood of the simulation points
is colour coded. In the second plot 7.9(b) the simulation results are restricted to
those y-positions closest to the channel centre and thus the fit from figure 7.8(b) is
used for the weighting. The discussion in section 7.3.2 showed that this subset at
small y-positions of the results is best suited for comparison and further analysis.
The second line of plots shows the weighted simulation results for the respective
first plot in parameter space, λ plotted versus Bq. The spread around the different
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values of λ on the x-axis is chosen randomly for illustrative purposes only, to prevent
complete overlapping of the simulation points at same λ and Bq.
Figure 7.9 shows that the full set of results on the left and the subset at centred cell

positions on the right lead to a similar pattern in the parameter space. Intermediate
values of Bq for λ ≥ 2 tend to have larger likelihood values. For the subset of RBCs
in figure 7.9(d), as expected, a clearer picture emerges, because experimental and
simulation results are better matched. The maximal likelihood values predominantly
appear between Bq = 10 and Bq = 15 around λ = 3, however, unambiguous assign-
ment is not possible and results related to small likelihood values also appear at these
positions. The interpretation of these observations is the following: Those λ-Bq com-
binations with (more) darker green points are more likely because for some initial
condition they lead to observation values D and A which are frequently observed in
experiments. However, these λ-Bq combinations can also lead to observation values
which are less frequent (light green beige points). In general, it would be incorrect
to average over the likelihood of the simulation results in the λ-Bq space, because
the location and density of these points is arbitrarily chosen and the result of this
averaging depends on this choice of simulation points.

7.4.2 Method 2: Estimation of the parameter distribution
The second method aims at a more quantitative and precise characterisation of the
cell parameter distribution. After some assumptions are made, this method estimates
the parameter distribution from the simulation and experimental results.
Parameters can be cell properties such as λ and Bq but also initial conditions such

as the cell position yinit and the initial shape of the cell can be included. An exper-
imental measurement of one cell in this framework is perceived as a random draw
of a parameter combination from a random distribution, and experimental noise is
neglected, i.e. experimental scatter is assumed to be caused by heterogeneity in the
initial conditions and the properties of the cells. First, assumptions about the shape
of these distributions have to be made. Here for the initial cell shape, a discrete
parameter, equal probabilities for both discocyte and slipper are assumed and for
the continuous yinit a uniform distribution is assumed. The continuous quantities λ
and Bq are modelled with a multivariate Gaussian distribution, which is biologically
motivated by the assumption, that biological cell properties scatter around a mean
value. This distribution is determined by the means λ, Bq, the respective stand-
ard deviations σλ, σBq and the correlation coefficient rλ,Bq. Apart from λ and Bq,
independence of the parameters is assumed. The initial cell shape, for example, is
assumed not to correlate with the initial position.
Observables in this setup are the cell area A and the cell deformation D, which are

both continuous and summarised as f = (A,D). From experiments, we determine
the first two moments of the joint observable distribution by fitting a two-dimensional

119



7 Analysis of red blood cell properties based on many-cell statistical behaviour

Gaussian distribution in figure 7.8, the extracted values are given in table 7.1 and
are in the following abbreviated with the vector of means f exp and the corresponding
covariance matrix M exp of the cell deformation and cell area. In simulations, the
cell parameters are chosen beforehand, on a regular grid as discussed in 7.2.1. The
observables depend on these parameters, we abbreviate A := A(λ,Bq, yinit, . . . ),
D := D(λ,Bq, yinit, . . . ).
Now, to compute the vector of means f = (A,D) and corresponding covariance

matrix M of the observables from all simulations, the integrals

f =
∫

dλ dBq . . . f Π (λ,Bq, . . . ) (7.2)

M =
∫

dλ dBq . . .
(
f − f

) (
f − f

)
Π (λ,Bq, . . . ) (7.3)

must be computed. Here the probability density function Π (λ,Bq, . . . ) depends on
all varied simulation parameters, i.e. λ, Bq, yinit and the initial shape, over which the
integrals (for discrete parameters substituted by a sum) run. As discussed above, Π
contains a multivariate Gaussian distribution for Bq and λ and a uniform distribution
(discrete or continuous) for the remaining parameters. The integration in λ-Bq space
is computed over the simulation grid, on which the parameter values and results for
the observables are known. For the numerical integration the trapezoidal rule is
used, details are given in appendix F.2.
Finally, an iterated fitting routine is used to find the best fit for the unknown

parameters λ, Bq and their standard deviations and correlation σλ, σBq, rλ,Bq in
the probability distribution Π, by matching simulation and experimental results.
This is done with a standard non-linear optimisation method which minimises the
discrepancies between f , M and the respective experimental values f exp, M exp.
Note that while for the distribution of the parameters it is necessary to assume
a shape of the probability distribution Π, for the observables only the first two
moments, means and (co)variances are used and computed. In particular, this means
that the full distribution is not computed and representation of the results as a two-
dimensional Gaussian distribution in A-D space is an additional assumption, which
is useful for visualisation of the results. Note that for the integration in the iterated
fitting routine, start values for the unknown quantities λ, Bq, σλ, σBq, rλ,Bq in the
probability distribution Π must be set.
The database used for this second method here is the subset shown in figures 7.8(b)

and 7.9(b,d), these are the cells with a centre of mass distance smaller than 0.5 µm
in experiments, in simulations the respective cells start at the three smallest yinit-
positions. In figure 7.8 it was shown that there is a noticeable difference between
the cell subsets and therefore it is appropriate to separate the data according to the
cell position and match the respective subsets from experiment and simulation.
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(a) (b)

Figure 7.10: Observables distribution from the parameter distribution estimation. (a) The fit to the
experimental data in figure 7.8(b) is repeated here for comparison. (b) Estimation of
the distribution of area and deformation from the fitting of the simulation data. The
predicted values are Ā = 36.2 µm2, σA = 3.26 µm2, D = 0.226, σD = 0.021, rA,D =
0.46, they are visualised as parameters of a two-dimensional Gaussian distribution.

A result of the fitting procedure is visualised in figure 7.10. A discussed above, the
results of the fitting are estimates of the means and (co)variances of the observables
A and D. These are visualised in figure 7.10(b) by plotting a Gaussian distribution
with these parameter values, which can easily be compared to the experimental result
in (a), repeated from the previous section. The mean deformation and area estimates
are slightly smaller than the experimental result, as well as their standard deviations.
The correlation coefficient is also smaller, which is clearly visible comparing the two
plots in figure 7.10. This fitting method returns estimates for the RBC parameters,
unobservable in experiments, which are λ = 2.0, Bq = 14.4, σλ = 1.0, σBq = 6.0
and rλ,Bq = 0.92. Comparing these results with the previous section shows that the
mean and standard deviation values are well compatible with the findings of the
previous section 7.4.1. However, for the correlation between λ and Bq a comparably
large value near 1, the completely linear correlation, is observed. The interpretation
of this observation is that for cells with a large λ, a large value for Bq is also to
be expected. This is a plausible statement, considering that both variables describe
viscosity contributions, which might increase with increasing cell age.
Evidently, method 2 returns plausible results for both observable and parameter

values. Closer examination of the fitted values, however, reveals that the mean and
standard deviation results for λ are identical to the lower bound for each parameter,
which is necessarily set during the optimisation routine, and the standard deviation
of Bq is at its upper bound. Therefore, variation of the bound for the variables
can crucially influence the fitting outcome, which, in addition, is also true for the
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start values for the probability distribution. Moreover, it is found that technical-
ities of the fitting process also influence the outcome of the fitting routine. These
include changes in the definition of the minimised quantities, for example whether
the discrepancy of standard deviations and correlation coefficient, as opposed to the
discrepancy of variances and covariance, is minimised. The normalisation of the
computed discrepancies with the constant experimental values is another influencing
factor. Therefore, while this second method presented in this section is technically
interesting, further investigation is necessary to reliably estimate the observables and
parameter distribution.

7.4.3 Outlook
One possible extension of the method is the combined fitting of the different data
subsets, which are delimited by different values of the cells’ position in the channel,
compare figure 7.8. If this approach is pursued, the assumption of a uniform initial
position distribution must be adapted.
Regarding the analysed cell parameters, this set could be extended to include ad-

ditional parameters or broaden the range on which the existing parameters vary, e.g.
including other initial shapes. Moreover, additional correlations could be included,
for example the initial shape might correlate with the initial position or the viscous
properties of the cell, which determine the speed of shape changes.
An observable, which was left out in the analysis, is the cell’s position in the

channel, because it is very strongly correlated with the initial position in simulations.
Very useful for the analysis would be to have an observable, which is sensitive to
only one of the parameters λ and Bq and could thus allow isolation of the respective
parameter distribution. Another approach could be to include not only the first two
moments of the observable distribution from experiments, but also higher moments.
An altogether different approach regarding the simulations could be to use a Monte

Carlo method for the cell parameter distribution. The disadvantage of this approach
would be that existing simulations cannot be reused and a large number of new
simulation runs is necessary.

7.5 Discussion and conclusion
One major challenge of the experimental-numerical comparison are the variations in
the experimental setup. The channel geometry and general measurement architec-
ture remain the same, however, the flow conditions such as flow rate, properties of the
buffer solution and selection of RBCs (donors health, artificially stiffened cells etc.)
can be varied easily in experiments. In simulations, however, such changes would re-
quire re-running of all simulations with adapted parameters. A further experimental
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study is from Kubánková et al. [11], who investigate RBCs from healthy but also
from COVID-19 patients, using the same flow rate of 0.06 µl s−1 as used for the data
presented above. The medium, however, has a higher percentage of methyl cellulose
(0.84% MC) and thus a viscosity in rest of µo = 60 mPa s. Following the approach
discussed in section 7.2, this leads to an effective outer viscosity of µeff

o = 6.75 mPa s.
As a result, Kubánková et al. [11] report higher RBC deformations. Moreover, the
raw data [11] shows a concentration of the cells in one half of the symmetric channel,
in contrast to the data analysed above, possibly due to changes in the measurement
analysis or calibration during data evaluation. The study by Toepfner et al. [156] has
the same viscosity of the medium as describe in section 7.2.1 but the total channel
flow rate is higher with 0.12 µl s−1. Walther et al. [157] investigate the connection
between depressive disorders and the morphological features of blood cells under flow
with the RT-DC setup. In this study the flow properties are the same as summarised
in section 7.2.1, the cell deformations results are shown in boxplots.
In general, the analysis of the data is very sensitive to inaccuracies in the length

scaling, which influences the cell size axis and could shift the fitted experimental
distribution relative to the simulation results, visible e.g. in figure 7.9, where precise
comparison is necessary.
The first method in section 7.4 allows to determine the range of the RBC parameter

values, while the second method aims at a quantitative estimate of the parameter
distribution from dynamic measurements and simulation results of deformed RBCs.
Possible future modifications and improvements are outlined in section 7.4.3.
Another direction of future studies could be the implementation of membrane vis-

cosity also for the LBM, which allows simulation of larger Reynolds number systems.
Moreover, the combination of the viscoelastic RBCs with a shear thinning fluid could
be treated with this method.
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8 Cell-free layer of red blood cells in
a constricted microchannel under
time-dependent flow

8.1 Overview

The last chapter of this work picks up on chapter 3, where the dynamics of single
RBCs in time-dependent flow has been discussed. The focus here lies on the collective
behaviour of RBCs instead of the single cell dynamics.

In the small vessels of the microcirculation, RBCs form a core flow, leaving a
small cell-free layer (CFL) at the walls [167, 168]. The CFL has been studied in
both experiments [169–172] and numerical simulations [173–182], showing that flow
rate, haematocrit, channel size and RBC parameters influence the formation and size
of the CFL. The CFL in turn is an important factor influencing the blood separation
at vessel branches, the particle and leukocyte transport in the blood, or the oxygen
exchange with the surrounding tissue [72, 169, 173, 174, 183]. Constricted channel
geometries are of special interest because they serve as a model for blood vessels with
a stenosis which hinders the blood circulation. Studies which investigate the CFL
in constricted channels [171, 175, 179, 182, 184] focus on steady flow or technical
applications for the extraction of blood plasma [185–187]. The aim of the work
presented here is to extend the investigation to time-dependent flow in constricted
channels.

Here the CFL around a constriction in a rectangular microchannel is investigated.
Section 8.2 gives an overview of the method used. First, benchmark simulations for
steady flow in the constricted microchannel are carried out, these are presented in
section 8.3. In the next section 8.4 the results for time-dependent flow through the
constriction are discussed. The results described in this chapter have been published
in the joint paper [188], all experimental results were provided by S. M. Recktenwald
(member of the group of C. Wagner in Saarbrücken).
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8 Cell-free layer of red blood cells in a constricted microchannel
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Figure 8.1: Constriction geometry in experiment and simulation. (a) Experimental channel section
around the constriction. Reprinted from [188] with permission from APS. (b) Discretised
simulation channel in plane view, reproduced from [188] with permission from APS. (c)
Three-dimensional image of the simulated channel.

8.2 Methods and setup

8.2.1 Numerical simulations
The simulated channel was modelled after the microfluidic constriction used in ex-
periments, which is shown in figure 8.1(a). In figure 8.1 the channel geometry is
shown in (b) in plane view around the constriction and in (c) three-dimensionally
over the whole simulated length. The width of the channel pre- and postconstric-
tion is W = 211 µm, it has a constant height of H = 50 µm and the total length
is L = 832 µm. The constriction has a length of Lc = 142 µm and is Wc = 38 µm
wide. The slope of the inclined wall is 2. The cells are inserted at the channel
entrance at randomised positions to mimic the inflow from a fluid reservoir. The
feed-in haematocrit at the entrance is Ht = 1 %. When the cells have reached the
end of the simulated channel they are removed from the simulation.
The fluid inside the channel is Newtonian with the dynamic viscosity of µ =

1.2 mPa s and a density of ρ = 1 g cm−3 of blood plasma. The flow velocities at the
channel centre under steady flow are vc = 80 mm s−1, 120 mm s−1, and 160 mm s−1,
larger flow velocity quickly lead to numerical instabilities at the constriction. This
leads to Reynolds numbers (2.12) of Re ≈ 5.3, 8 and 11, respectively. The charac-
teristic length used for the calculation of Re is the hydraulic diameter of the channel
L = 2WH/(W + H), the density and viscosity are in good approximation the val-
ues of the plasma due to the small haematocrit of 1 %. The time-dependent flow is
modelled as a sinusoidal oscillation between the flow velocities vc = 80 mm s−1 and
vc = 160 mm s−1 at the channel centre, i.e. with a relative amplitude of 0.33. This
amplitude is a compromise between a significant velocity variation on the one hand
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8.2 Methods and setup

and on the other hand a sufficiently large lower velocity in relation to the channel size
and oscillation timescale. The constant frequency of the oscillating flow is f = 20 Hz.
The dimensionless Womersley number Wo relates inertial effects from the pulsation
to viscous effects and is defined as Wo = L/2

√
ωρ/µ [189], ω = 2πf is the fre-

quency in radians. If the Womersley number is large Wo > 1, the viscous effects are
dominated by inertia effects, which can lead to significant deviation from the steady
Poiseuille flow profile. In simulations Wo ≈ 0.4 and in experiments Wo ≈ 0.05� 1,
as discussed in section 8.2.2 below. The numerical and experimental flow profiles
under steady flow are in good agreement as shown in figure 8.2. Under pulsatile
flow in simulations the flow profile oscillates in a regular fashion between the purple
and orange curve in figure 8.2, therefore, one can conclude that the viscous forces
dominate.

Figure 8.2: Flow profiles before the constriction in steady flow. Simulation (solid lines) and exper-
iment (symbols) are in good agreement for different flow velocities vc at the channel
centre. The haematocrit is 1 %. Reproduced from [188] with permission from APS.

The simulation method is the three-dimensional LBM together with the IBM,
implemented in the software package ESPResSo. Details of this method are described
in section 2.4. The LBM-IBM is well suited for systems with larger Reynolds number
Re > 1 and simulations run reasonably fast for larger channel geometries with many
cells.
The RBCs are modelled as described in section 2.2. Their surface is discretised

with 162 flat triangles per RBC. The shear modulus is κS = 25× 10−6 N m−1, which
is 3 to 5 times larger than the values usually used for RBCs, compare section 2.2. It is
reasonable to expect that this modification has negligible influence on the collective
behaviour of the RBCs. The stability of the cell under high shear stresses at the con-
striction entrance, however, is increased, such that the target velocities and Reynolds
number Re can be achieved. The empirical area dilation modulus κA is set to 40κS,
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8 Cell-free layer of red blood cells in a constricted microchannel

the bending modulus is κB = 2× 10−19 N m and the bending reference shape is flat.
The viscosity contrast between cell interior and surrounding fluid is λ = 1. Because
here the focus lies on the collective behaviour of a suspension of many cells and not
on the detailed dynamics of a single cell the viscosity contrast is neglected. In the
LBM implementation no viscous contribution of the RBC membrane is included.

8.2.2 Comparison to microfluidic experiments
An image of the channel geometry for the corresponding microfluidic experiments by
from the group of C. Wagner is shown in figure 8.1(a) above. In front and behind the
constriction section shown there, the channel continues for a length of 10 mm in both
directions until it opens out into a reservoir. In the straight channel the RBC flow
equilibrates and forms its CFL before reaching the constriction or the outlet reservoir.
Due to the limitation of the total runtime, this cannot be mimicked in simulations.
Moreover, the channel geometry in experiments is proportionally smaller by a factor
of two, e.g. the constant channel height is 25 µm. The difference is due to the stability
limitations in simulations, where very small constriction size leads to high shear rates
at the constriction and thus instabilities of the triangulated cell membranes. As a
consequence, the Reynolds numbers of experimental and numerical velocity profiles
in figure 8.2 for each matching curve disagree by a factor of around two. Again for
performance reasons, simulations were restricted to Ht = 1 %, i.e. to fewer cells in
the system, and the oscillation frequency of the flow is larger by a factor 20 than the
experimental 1 Hz. Compared to the velocity time scale, the f = 20 Hz oscillation
in simulations is slow enough, such that its effects can be observed separately, but it
does not require a large increase in computation time.

8.2.3 Computation of the cell-free layer
For quantitative comparison it is necessary to develop a routine to compute the size
of the CFL along the channel axis. An exemplary visualisation of the simulation
result is shown in figure 8.3.
In experiments the CFL in steady flow is usually determined by stacking a multi-

tude of images and thus detecting the region of the RBC core flow. Analogously, in
simulations the analysis of data can be carried out on the basis of the graphical rep-
resentation of the simulation results as shown in figure 8.3, using this experimental
image stacking routine. The second possibility for simulation analysis is to use the
numerical information of the cell node positions and construct the RBC core flow
from these, which is called cell contour method in the following. The advantage of
the first method is that direct comparison with the experimental results is possible,
the disadvantage is that under pulsating flow it requires a large number of simulated
periods. The results from both methods for the example from figure 8.3 are shown
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Figure 8.3: Snapshot of the red blood cell flow through the constriction in the simulation. The
flow is constant and from left to right with centre flow velocity vc = 80 mm s−1. The
haematocrit in the simulations is 1 %.

in figure 8.4(a) and compared to experimental results in (b). For the cell contour
method the channel is divided in x-direction into bins approximately 10 µm wide.
For the steady flow simulations inside each bin the cell surface position (considering
all cells inside the respective bin) is determined, which is nearest to the upper/lower
channel border, and then the minimal distance is taken. This is repeated for all time
frames of the simulation and the minimum distance per bin over all frames gives
the CFL(x). Because every cell membrane part of every RBC is considered over
the whole simulation time, this method gives a CFL smaller than the image stack-
ing method. In the image stacking routine a single RBC flowing closer to the wall
might not contribute to the RBC core flow, because this detection mechanism is not
sensitive enough to register singular events. For the sinusoidal flow simulations, in
addition to the positional bins in the channel, one time period is divided into 50 time
bins, in order to compute the CFL separately for different phases of the oscillating
flow. The simulations run over more than one period, and all simulation frames are
assigned to one of the 50 bins, which matches the phase of the frame. Then the
steady flow cell contour method is used separately for each time bin, which gives a
CFL(x) for each time bin.
Analysis of the experiments for oscillating flow follows the same principle, the

technical details are complicated, these are presented in the joint work Recktenwald
et al. [188].
Directly before and after the constriction not only the CFL but also large cell-free

areas (CFA) can form, as can be seen in the channel snapshot in figure 8.3. The CFA
pre- and postconstriction in the steady case and the CFA per time bin is obtained
by numerical integration of the respective CFL result along the channel length. This
is illustrated in the graphs in figure 8.4 with the shaded regions. Start point (pre-
constriction) and end point (postconstriction) of the integration are determined by
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8 Cell-free layer of red blood cells in a constricted microchannel

the channel position, up to which the CFL is approximately constant, the respective
second integration boundary is the constriction start/end. It should be noted that
for consistent simulation data evaluation the fit boundary is chosen constant over
the oscillation period. Comparison of the experimental and simulation CFL post-
constriction in figure 8.4 shows that in experiments the CFL is smaller by a factor
of around two, due to the smaller channel dimensions in all directions. Detailed
comparison of the CFL development is not possible, because the channel length in
simulations is significantly smaller than in experiments, such that the RBCs do not
equilibrate before they reach the channel end.

The results from the oscillation simulations are based on 7 periods of sinusoidal
flow, with around 1060 frames output per period for the CFL determination.

(a)
simulation

(b)

Figure 8.4: Exemplary cell-free layer (CFL) along the flow direction y at the constriction under
steady flow. Contour method (red) and image stacking (grey) are used for the simula-
tion analysis in (a). The corresponding experimental measurements (blue) are shown for
comparison in (b). Flow velocity and pressure drop are vc = 80 mm s−1 and 250 mbar.
The shaded regions correspond to the cell-free area post- and preconstriction. Repro-
duced from [188] with permission from APS.
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Figure 8.5: Red blood cell distribution pre- and postconstriction. In simulations the distribution
is calculated around (a) x = −300 µm (preconstriction) and (b) x = 300 µm (post-
constriction), all cells within one cell radius around these positions are included. The
experimental distribution is shown for the region of interest directly (c) before and (d)
behind the constriction. The flow velocity and pressure drop are vc = 80 mm s−1 and
250 mbar, respectively. Adapted from [188] with permission from APS. Slight differ-
ences in the exact height of the histogram bars compared to figure 3 in [188] are due to
minor differences in the bin division.

8.3 Cell-free layer under steady flow

8.3.1 Cell distribution over the channel cross section

First the spatial cell distribution in front of and behind the constriction is invest-
igated. Figure 8.5 exemplarily shows these RBC distributions for a velocity of
80 mm s−1. The cell count is based on the cells’ centre of mass position and is shown
over the cross section of the channel along the longer channel wall in (a) and (b),
in comparison with experimental results in (c) and (d). At all channel positions the
distribution shows two pronounced peaks near the channel walls while fewer RBCs
flow in the channel centre. The CFL appears in the distribution as the small section
next to the channel walls at y = ±0.5W which is devoid of RBCs. In simulations, the
peaks of the distribution become more centred postconstriction, which is connected
to a larger CFL postconstriction, as the comparison of figure 8.5(a) and (b) shows.
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8 Cell-free layer of red blood cells in a constricted microchannel

Comparison to the experimental results in figures 8.5(c) to (d) shows the same trend.
The distribution preconstriction in (c) is recorded 10 mm behind the inlet reservoir
in experiments, in the region directly preceding the constriction. Such long chan-
nels are not feasible in the simulations, where the cells are fed in around 410 µm
before the constriction, and thus travel a much shorter distance before they reach
the constriction. This difference could explain the quantitative differences between
the experimental and simulation distribution, especially the smaller CFL before the
constriction in simulations. Postconstriction, the CFLs in experiment and simulation
are of similar size, as figures 8.5(b) and (d) show. Similar two-peaked cell distribution
profiles for RBC suspensions of low concentration are reported by Zhou et al. [170],
using experiments as well as LBM-IBM simulations. The authors studied a rectangu-
lar channel of similar size in experiment and simulation, but used a flow rate around
one to two orders of magnitude smaller, i.e. at negligible inertia Re� 1. They find
the peaks of the distribution at |y/W | ≈ 0.35− 0.4 and, moreover, showed, that the
inflow configuration has an influence of the RBC ordering in the channel [170].

1 2 3 4 5 6 7

(a)

(b) (c)

Figure 8.6: Local haematocrit in the constricted simulation channel. (a) The simulation channel is
divided into 7 bins of different size. (b) Local haemtocrits Ht fluctuate over time. (c)
Mean of the local haematocrits for the different bins with standard deviation as error
bars. Results are shown exemplarily for the simulation at vc = 80 mm s−1.

A local haematocrit Ht can be calculated for different channel sections. The
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8.3 Cell-free layer under steady flow

simulated channel is divided into several bins of different size, shown in figure 8.6(a).
The haematocrit is calculated for the representative example at flow velocity vc =
80 mm s−1. Figure 8.6(b) shows the haematocrit over time exemplarily for the three
bins before, inside and directly after the constriction. In bin 3 (blue curve) the
local haematocrit varies around the feed-in value Ht = 1 %. Inside the constriction
(orange curve) it is smaller and fluctuates strongly, because fewer cells move faster
through the constriction. Directly behind the constriction Ht fluctuates on an even
lower level because of the large cell-free region which occur there. Bin 5 is chosen
such, that the areas with the increase CFL in figure 8.3 are included. These findings
are summed up in figure 8.6(c), where the mean local haematocrit is shown for all
bins. In addition, one can observe a slight increase in Ht in bin 3 preconstriction,
the cells accumulate before entering the narrow section. Postconstriction, in bins 6
and 7 the haematocrit has returned to a slightly lower level of 0.8 %. This shows
that at least for the simulated channel lengths, postconstriction the influence of the
constriction is still noticeable. In the haematocrit calculation the start-up flow with
the first cells entering the channel from the left has been excluded.

8.3.2 Development of the cell-free layer along the channel

The development of the CFL along the channel is shown exemplarily for a flow
strength of vc = 80 mm s−1 in figure 8.4(a). Before the constriction in the region
x < −180 µm, the CFL is overall small, but shows a slight increase in x-direction
after the feed-in region, when the RBCs move away from the channel walls. After
a subsequent increase directly preconstriction, the CFL approaches zero where the
cells enter the constriction. Inside the constriction, again a very thin CFL starts to
form. Postconstriction, after a sudden increase of the CFL, where the cells leave the
constricted region, it decreases to a stable value on the length scale of around 50 µm.
The experimental results exhibit a quantitative similar behaviour as figure 8.4(b)

shows. The different shape of the CFL curve around the constriction in experiment
and simulation is due to the differences in the shape of the channel edges, com-
pare figure 8.1. All details of the experimental findings are presented in the joint
publication [188].
Numerical simulations of RBCs flowing through a cylindrical microchannel with a

stenosis showed that for very small channel diameters (e.g. 11 µm) and reasonably
large pressure drops the effect can be reversed, the CFL preconstriction exceeds the
CFL postconstriction [179]. However, for increasing channel diameter Vahidkhah
et al. [179] also report a larger CFL postconstriction.
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8 Cell-free layer of red blood cells in a constricted microchannel

(a) (b)

Figure 8.7: Cell-free areas (CFAs) at different flow velocities vc. Results of the simulation evalu-
ation (red and grey symbols and black axes) are shown for the areas (a) pre- and (b)
postconstriction and compared with experimental measurements (blue circles and blue
axes at the top and right). Every blue circle represents a single measurement run. The
contour method and image stacking results for the simulation evaluation are shown in
red and grey, respectively. Reproduced from [188] with permission from APS.

8.3.3 Cell-free areas at the constriction
The exemplary CFL curves in figure 8.4 show that the CFAs (shaded regions) before
the constriction are significantly smaller than postconstriction. The results under
steady flow for different velocities are summarised in figure 8.7. The CFA precon-
striction in (a) does not significantly change with the flow velocity while the CFA
postconstriction increases with increasing flow strength. The image stacking method
yields larger results for the CFA than the contour method, due to its larger CFL
estimate, discussed in section 8.2.3. This effect is more pronounced postconstriction,
which leads to the conclusion that postconstriction more singular events occur, i.e.
more RBCs enter the typically cell-depleted region. These are taken into account for
the CFL calculation with the contour method, but not the image stacking.
Comparison with the experimental results in figure 8.7 (blue circles and axes)

shows that the experimentally measured CFAs in good approximation amount to
one fourth of the simulation results. This observation is consistent with the channel
scaling in the experiment, where all channel dimensions are smaller by a factor of two.
In addition the shape of the constricted section in figure 8.1 shows minor differences
in experiment and simulation which also influences the CFA results. Experiments
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8.4 Cell-free layer under time-dependent flow

show that the increase in CFA size with increasing pressure drop is larger for smaller
haematocrits [188].
The experimental studies by Rodríguez-Villarreal et al. [171] and Abay et al. [184]

report a similar increase of the CFA after a constriction with increasing pressure
drops for steady flow. However, no quantitative estimate of the size of the cell-
depleted areas is given in that study.

8.4 Cell-free layer under time-dependent flow
8.4.1 Cell-free area dynamics at the constriction
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Figure 8.8: Time-dependent development of the cell-free areas (CFAs) around the constriction.
(a,b) Simulation results for one oscillation period T with mean centre velocity v0 =
120 mm s−1 and amplitude vA = 40 mm s−1, reproduced from [188] with permission
from APS. (c,d) Experimental measurements at p0 = 250 mbar and pA = 200 mbar,
reprinted from [188] with permission from APS. The solid lines show the sinusoidal fit
to the data. The CFA dynamics is shown preconstriction in (a,c) and postconstriction
in (b,d).

In this section the results for a time-dependent flow through the channel are collec-
ted. In addition to the constant mean centre velocity v0 = 120 mm s−1, the flow has
an oscillating part such that v(t) = v0+vA sin (2πtf), with amplitude vA = 40 mm s−1

and frequency f = 20 Hz. In experiments, analogously, an sinusoidal pressure modu-
lation p(t) = p0 +pA sin (2πtf) is applied. The time-dependent dynamics of the CFA
around the constriction is studied by determining CFL and CFA as for the steady
flow, but separately for different phases of the sinusoidal oscillation. This means
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8 Cell-free layer of red blood cells in a constricted microchannel

that for every phase a CFL curve as shown in figure 8.4 is recorded and the CFA is
extracted. The result is shown in figure 8.8 over one oscillation period T = f−1 of
the flow velocity. Each point gives the CFA for one of the phases. The CFA values
preconstriction in simulations in figure 8.8(a) scatter over time, its dynamics does
not reflect the sinusoidal flow. In contrast, in the CFA oscillation postconstriction
in (b) the flow oscillation is clearly mirrored.
An exemplary measurement result is shown in figure 8.8(c-d). The time-dependent

behaviour preconstriction here also shows a sinusoidal dependency, although clearly
out of phase. The grey dashed lines in 8.8(c,d) indicate the estimate of the experi-
mental error, details of its computation are given in [188]. Behind the constriction
the CFA result is clearly above the error limit, while preconstriction the measure-
ment is of the same order of magnitude as the experimental error. These curves
are recorded at an RBC concentration of Ht = 1 % and a pressure modulation
with p0 = 250 mbar (this corresponds to a flow velocity of vc ≈ 80 mm s−1) and
pA = 200 mbar. The small experimental frequency of f = 1 Hz allows this flow
modulation with a minimal pressure drop of 50 mbar in the channel. In experiments
other combinations of mean pressure, pressure amplitude and haematocrit were in-
vestigated. Most noticeable is the strong increase in the amplitude of the CFA with
an increase of the pressure amplitude, while the mean value of the CFA is not signi-
ficantly influenced [188]. This means, conversely, that a pressure amplitude smaller
than in figure 8.8(c) could lead to a CFA oscillation below the detection limit. This
can explain why the preconstriction CFA does not mirror the sinusoidal flow beha-
viour in simulations, where the relative velocity amplitude is only vA/v0 ≈ 33 %,
which is small compared to the experimental pA/p0 = 80 %. In simulations the flow
velocity at the minimum is restricted by a detection time scale, due to the faster
oscillation frequency f = 20 Hz, and the maximal flow velocity is limited by numer-
ical stability. Therefore, such large relative amplitudes cannot be achieved in the
simulations.

8.4.2 Phase shift
In addition to the data points in figure 8.8, a sinusoidal fit to the data over the
whole period is shown. From this fit, the phase shift ϕ is extracted from the CFA
data as CFA(t) ∝ sin (2π(t− ϕ)f). The results are summarised in figure 8.9. The
experimental data shows a peculiar phase shift preconstriction, the values of ϕ scat-
ter around T/2. This was observed exemplarily in figure 8.8(c). As discussed in
section 8.4.1 this effect cannot be resolved in the CFA trajectory from simulations.
Postconstriction, ϕ is above but close to zero. This means that the CFA dynamics
is slightly slower than the oscillation of the flow but in principle in-phase with the
flow velocity, as both simulation and experiment show.
The velocity field of the flow extracted from the 3D simulations can help to un-
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8.4 Cell-free layer under time-dependent flow

Figure 8.9: Phase shift of the cell-free area. The phase shift ϕ over the oscillation period T is shown
for the CFA dynamics pre- and postconstriction for simulation (red) and experiments
(blue). Only experiments at 1 % haematocrit with p0 = 500 mbar and pA = 400 mbar,
where detection of the CFA oscillation preconstriction is possible, are included here.
Reproduced from [188] with permission from APS.

derstand this phase shift. In general, in front of the constriction there must be a
net flow towards the channel centreline at y = 0, z = 0 and postconstiction, there is
an expanding flow towards the channel walls. In figure 8.10 the normalised velocity
component in y-direction vy is shown at z = H/2 over the channel length and width.
The top image (a) shows the velocity at the maximum of the sinusoidal modulation,
the bottom image (b) at the minimum of the modulation. The absolute value of the
component vy is symmetric with respect to the channel centre. Preconstriction no
difference of the lateral flow fields at vmax and vmin can be observed, but postcon-
striction they differ visibly. During the increase of the velocity to vmax the region
of heightened vy is extended further in x-direction. At the minimal velocity vmin,
in contrast, directly behind the constriction it is shifted towards the channel walls.
Moreover, the maximal value of |vy/vc| postconstriction is larger at vmin.
Figure 8.11 shows the corresponding streamlines along a horizontal channel slice

at z = H/2 for the maximum and minimum velocity during the oscillation. Each
pair of streamlines starts at the same y-value at the channel entrance and due to
the symmetry around y = 0 only the bottom half of the channel is shown. The
observed difference of the flow field postconstriction is reflected clearly in the course
of the streamlines. Behind the constriction the streamlines at the minimal velocity
(blue lines) run much closer to the wall than those at maximal velocity (red lines).
Moreover, in the streamline plot a very slight difference between the flowfield vmax and
vmin preconstriction can be resolved. Preconstriction, the course of the streamlines
is reversed, the red lines are bent minimally closer to the walls than the blue lines.
For higher velocity amplitudes, which could not be reached in the simulations

described above, the magnitude of the observed differences is expected to increase.

137



8 Cell-free layer of red blood cells in a constricted microchannel
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Figure 8.10: Flow field towards the channel centre at the constriction during time-dependent flow.
Absolute values of the y-component of the flow vy at (a) the maximum and (b) the
minimum flow velocity during the modulation, normalised with the respective centre
flow velocity vc. The flow field is taken in the centre of the channel in z-direction.
Adapted from [188] with permission from APS. Here both channel halves are shown
for the minimal and maximal velocity.

Thus, phase shifts similar to the experimental observation at high pressure drop
differences are expected. The flow field visualisation in figure 8.11 can explain the
occurrence of these phase shifts. At higher velocities the cells follow the red stream-
lines which are pressed closer to the wall preconstriction, flow through the constric-
tion and are then swept away quickly along the red line behind the constriction.
Therefore, at the maximal velocity the CFA preconstriction decreases and increases
postconstriction. At the minimal flow velocities, in contrast, the RBCs flow fur-
ther away from the walls before entering the constriction but can flow closer to the
walls postconstriction. Hence, the effect of the velocity modulation on the CFA is
reversed postconstriction, it is approximately in phase with the flow oscillation. Due
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—– vmax = 160 mm s−1

—– vmin = 80 mm s−1

—– channel border

Figure 8.11: Streamlines of the flow around the constriction during time-dependent flow. The
streamlines are shown for the bottom half of the constriction at the maximal vmax
(red) and the minimal vmin (blue) flow velocity. All streamline pairs have the same
y-position at the beginning of the channel. The flow field is taken in the centre of the
channel in z-direction. Reproduced from [188] with permission from APS.

to these effects a phase shift of T/2 for the CFA dynmics preconstriction, but not
postconstriction, is observed in the microfluidic experiments. The slight delay of the
phase shift postconstriction is due to the propagation delay of the velocity oscillation
along the channel length. To further support this interpretation of the velocity field
dynamics, numerical simulations at higher velocity amplitudes, which could not be
reached in the simulation setup presented here, should be performed.

8.5 Conclusion
Simulations and corresponding experiments of the blood flow through a microchan-
nel with a narrow constriction show the emergence of smaller cell-depleted zones
before and larger ones behind the constriction. Extending the investigation to time-
dependent flow through the constriction shows the dynamic evolution of the CFAs at
the constriction. The CFA postconstriction follows the sinusoidal oscillation of the
velocity modulation. In corresponding experiments from the group of C. Wagner,
where higher relative amplitudes of the flow modulation are feasible, in addition an
out-of-phase oscillation of the CFA preconstriction could be detected. The CFA dy-
namics in front of the constriction shows a phase shift of half the oscillation period
compared to the velocity modulation. Detailed study of the time-dependent velocity
field in the numerical simulations can explain the coupling of the CFA dynamics to
the flow field oscillation.
For future work, increasing the feasible range of the flow velocity in simulations

139



8 Cell-free layer of red blood cells in a constricted microchannel

would be interesting. This would allow larger velocity amplitudes such that resolu-
tion of the CFA dynamics preconstriction could be improved and the influence of the
velocity field could be confirmed. Constrictions can appear in blood vessels in the
human body in the form of stenoses, where the dynamics of the blood flow before
and behind this blockage is of great interest. Moreover, the LBM used for the nu-
merical simulations could be adapted to investigate the dynamics of the cell-depleted
regions in time-dependent blood flow through other, more complex, geometries. The
method presented here could be adapted to study arbitrary time-dependent flows,
for example the influence of the blood pressure waveform on the CFAs around a con-
striction could be investigated. Another interesting research direction might be the
investigation of complex fluids of non-Newtonian flow behaviour for RBC suspen-
sions. Due to their different rheological properties, these fluids can have a decisive
influence on the RBC suspension dynamics in constricted channels and thus the
emergence and time-dependent behaviour of the CFAs.

140



9 Conclusion
This thesis investigated transient red blood cell shapes in various flow geometries,
using different numerical methods. Starting point of the thesis was the investigation
of the transition between the two prevailing red blood cell shapes in microchan-
nel flow, the slipper and the croissant, in order to be able to identify a potential
stationary shape and conditions for its formation. This research question was motiv-
ated by the observation, also found in earlier studies, that shape changes, e.g. from
croissant to slipper, could still be observed after simulated times of several minutes,
which makes the construction of a phase diagram for the cell shape problematic.
The transition between the two predominant shapes was studied in time-dependent
flow. First, the stability of the phase diagram with the addition of a pulsatile flow
component was investigated. The phase diagram was found to be robust under the
pulsation. However, the analysed croissant shapes showed significant differences in
their dynamic behaviour and orientation in the channel, raising doubt whether the
assumption of two clear-cut categories, slipper and croissant, was correct. Secondly,
when examining the transition between the croissant and slipper shape by means of
a gradual flow velocity increase in the channel, a new experimental setup made the
investigation of the slipper dynamics possible. Here it became apparent, that the
dynamical behaviour of the slipper cells observed experimentally, was not sufficiently
matched in simulations. This was attributed to a missing viscous contribution of the
cell in the simulation model. These two points led to the implementation of a mem-
brane viscosity contribution in the boundary integral method simulation code, which
was subsequently validated successfully. When the membrane viscosity effect was in-
tegrated in the model, simulations of RBCs in channel flow quickly showed, that
its effect on the dynamics of the slipper cell is closely linked to the shear reference
state of the red blood cell. Combinations which are compatible with the experi-
mental results regarding the slipper oscillations in the microchannel were identified
for further use in the simulation setup. The analysis of these results in addition
well explains the relatively large fraction of red blood cells in experimental studies
which cannot be identified as slipper or croissant shape. This full simulation model
was tested for various applications. It was demonstrated that the results for red
blood cell stretching with (optical) tweezers and red blood cells in shear flow agree
well with the experimental data, as well as with former simulation studies available
for these. However, it was shown that neither of the two approaches is suitable for
drawing conclusions about the correct red blood cell parameter values, for example
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9 Conclusion

the membrane viscosity strength, because for variation in a physiologically sensible
range the results for the output quantities are not sufficiently distinct. In case of the
tweezer model, moreover, variation of the implementation details was found to have
a crucial effect on the stretching behaviour, which makes it questionable to draw
conclusions from this comparison. Another flow setup, for which novel experimental
data was available, was compared to the respective simulations in this context. Here
the qualitative comparison of cells with smaller and larger membrane viscosity values
could indeed explain observed differences in the deformation behaviour. Again, de-
tailed quantitative comparison of simulation and experimental results and inference
of red blood cell parameter values remained challenging, due to the sensitivity to the
start shape, which is not controlled in experiments, and leads to scattering of the
deformation results.

The first part of the work described so far was based on the comparison of single
cell dynamics in different flow setups, e.g. the cell deformation under different shear
rates. In contrast to this, the novel approach in the second part of the work was
to analyse the statistical behaviour of many cells under constant flow conditions.
The motivation for this approach is twofold. First, it must be assumed that the
scattering of experimental results, for biological entities like red blood cells, is not
only caused by the unavoidable measurement error, but also by the inherent biological
variability of the cells. From this consideration it follows, that in simulations the
cell parameters should vary on a certain range and the resulting multiple simulation
outcomes should be appropriately compared to the experimental values. Second, the
red blood cell dynamics is influenced by the combination of different parameters,
e.g. the membrane viscosity and interior cell viscosity. Separate variation of these
parameters might not correctly reflect the biological reality. Moreover, the variation
of all parameters together leads to a multitude of simulation results, which differ
only slightly, such that determination of the correct parameter combination based
on single-cell dynamical comparison is not feasible. The first method developed
for this many-cell statistical comparison allowed to determine a range, on which
the parameters, describing the red blood cell properties, vary. The second method
aspired to give a quantitative estimate of the red blood cell parameter distribution
from the comparison of many-cell simulation and experimental results.

Finally, the last chapter of the thesis provided an outlook on the collective beha-
viour of red blood cells, flowing through a microchannel with a narrow constriction,
again under time-dependent flow, as investigated in the first part of the thesis. The
study of the cell-depleted zones before and behind the constriction showed, that
the cell-free area postconstriction follows the sinusoidal oscillation of the flow ve-
locity modulation. The out-of-phase oscillation of the cell-free area preconstriction
observed in experiments, could not be resolved in simulations, however, the simula-
tions were able to explain the coupling of the cell-free area dynamics to the flow field
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oscillation.
Based on the results of this thesis, different interesting future research questions

arise. If more detailed, time-resolved experimental results for the tweezer cell stretch-
ing and relaxation setup were available, comparison with the time-resolved simulation
data could verify and possibly improve the cell model and thus our understanding
of the cells’ dynamics.
Regarding the many-cell statistical approach, two lines of future research are pro-

posed. First, the fitting method could be improved in different ways. The presented
approach could be extended to yield fitting results for all data subsets, which are
then combined for the final parameter estimation, or more, possibly correlated para-
meters could be included in the estimated set, instead of assigning them a fixed
distribution. This improvement of the fitting method is closely related to the second
proposal, the extension of the data base, both in simulations and regarding the
analysed experimental data sets. In simulations this could include an extension of
already considered variations, for example additional initial cell shapes, but also the
variation of other cell parameters, which were previously kept constant, for example
the shear reference shape of the cell. Such variations lead to a very rapid increase
in the parameter space, such that additional methods are required in the simulation
procedure and for the analysis of the results, in order to keep the computational
effort within feasible limits.
For systems with larger Reynolds number, where the BIM cannot be used, in this

thesis a LBM was employed. Implementation of the membrane viscosity method
also for the LBM would permit the investigation of RBC flow in systems, where
the inertial force contribution cannot be neglected. In addition, with the LBM,
the simulation of fluids with shear thinning and possibly viscoelastic properties, as
are used for example in RT-DC measurements, is feasible. These fluids have dif-
ferent rheological properties and could crucially influence the flow behaviour and
thus a combination with the viscoelastic RBC model in simulations is highly desir-
able. Moreover, in the framework of LBM, construction of various flow geometries
is straightforward. This allows the investigation of more complex geometries, e.g.
the constriction geometry discussed in the last part of the thesis. Such geometries
are found in the blood circulation system and thus the blood flow dynamics around
them is of great interest.
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A Eigenvalues and eigenvectors of
the Cauchy-Green tensor

This section shows the calculation of the eigenvalues and corresponding eigenvectors
of the left Cauchy-Green deformation tensor (4.13). These results are not new,
but are collected and recapitulated here to aid the reader’s understanding. The
eigenvalues are called λ2

i . First the respective eigenvectors ei are calculated(
Cxx Cxy
Cyx Cyy

)(
exi
eyi

)
= λ2

i

(
exi
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)
(A.1)
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The condition for normalised eigenvectors is

(exi )2 + (eyi )2 = 1. (A.4)

Now the squared equation (A.2) is combined with (A.4) and exi is eliminated

(Cxx − λ2
i )2(1− (eyi )2) = C2

xy(e
y
i )2 (A.5)

and solving for the second vector component leads to
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The sighs of exi follow from the first condition (A.2). We choose the positive sign
in (A.6) and thus the negative in (A.7). Note that this choice is irrelevant for the
second condition (A.4). Now writing out the first vector explicitly leads to

e1 = 1√
(Cxx − λ2

1)2 + C2
xy

(
−Cxy

Cxx − λ2
1

)
. (A.8)
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The second vector e2 could be obtained analogously, exchanging λ1 for λ2. Using
equation (4.20) we can show that these eigenvectors e1, e2 and respective eigenvalues
also fulfil the condition (A.3)

Cyxe
x
i + (Cyy − λ2

i )e
y
i = 0⇔ (A.9)

Cyx(−Cxy) + (Cyy − λ2
i )(Cxx − λ2
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In order to avoid the second parameter λ2 in the eigenvector e2 one can make use
of the orthogonality of the two vectors ei

e1 · e2 = 0⇔ ex1e
x
2 + ey1e

y
2 = 0. (A.15)

Together with (A.4) for the second vector this finally leads to
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where instead of the parameter λ2 the parameter λ1 appears.
Now it can easily be shown that
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and thus

e1 ⊗ e1 + e2 ⊗ e2 = I. (A.19)
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For the difference we find
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Another useful identity is
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B Derivation of the membrane forces

B.1 Useful derivatives and identities
The derivatives of the Skalak law (2.1) are
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Another useful identity is
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The proof is simple
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B Derivation of the membrane forces

B.2 Details of the force calculation
In the following, the individual terms of the calculation omitted in (4.51) and (4.54)
in section 4.4.2 are collected. These results are listed similarly in appendix C in
Krüger [35] but without intermediate steps and with slightly different notation. In
addition, due to the linear approximation of F the author directly sets Fyx = 0
in all expressions [35], while for the general derivation in section 4.4.2 this term is
carried along. Furthermore, Krüger [35] omits all terms including Gyx, using the
symmetry (4.12) of G, hence Gyx = Gxy, and instead includes an additional factor 2
in all appropriate equations. The BIM implementation described in 2.3 does not use
this symmetry but instead carries along Gyx. For all these reasons, the calculations
are repeated here for better overview with the conventions used for the derivation
and the BIM implementation.
The derivatives of WS are already written down in (B.1) and (B.2), in each case

the first identity is needed here. Next, the derivatives of I1, I2 are calculated.
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Finally, the derivatives of Gij must be calculated. The components of the deform-
ation tensor G written out are(
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B.2 Details of the force calculation

The relation of the deformation gradients Fij, in turn, to the constants ai, bi (compare
section 4.4.2) is give by equation (C.9) in [35] as

Fxx = 1 +
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where all calculations follow the same scheme. The remaining derivatives are for Gxy

∂Gxy

∂Vix
= aiFxy + biFxx ,

∂Gxy

∂Viy
= aiFyy + biFyx (B.29)

and for Gyy
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= 2biFxy ,
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Due to symmetry the respective derivatives of Gyx are identical to those of Gxy. Ob-
taining the solution in (4.52) is now straightforward, all terms in (4.50) are collected
using the calculated derivatives, (4.55) is analogous.
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C Phase diagrams for viscous red
blood cells in a larger channel
geometry
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Figure C.1: Phase diagram of RBCs in a rectangular channel of cross section 12 µm to 10 µm. The
RBCs have a viscosity contrast of λ = 10 and membrane viscosity Bq = 5 and the
initial shape in the channel is a discocyte. Compared to [17] the croissant peak of the
phase diagram is shifted.
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D Further comparison of tweezer
simulation results with the
literature

(a) (b)

Figure D.1: Deformation of the red blood cells in tweezer simulations in comparison with other
simulation studies. Simulation results from Guglietta et al. [25] and Krüger et al. [141]
for (a) axial dA and (b) transversal dT deformation are added to figure 6.4, where
experimental results from Mills et al. [55] and Suresh et al. [134] were discussed. No
results for forces beyond 100 pN are presented in the simulations studies [25, 141].
The green symbols are for dA closer to the mean experimental results by Suresh et al.
[134] than the results of the simulations presented herein. Note that in both studies the
contact region is held constant during stretching, contrary to experimental observations.
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D Further comparison of tweezer simulation results with the literature

rcy

x

(a)

(b) (c)

Figure D.2: Importance of the contact radius in tweezer simulations. (a) Illustration of the con-
tact region on the triangulated RBC surface (side view) and different contact radii rc.
Coloured points mark the x-y-position of contact nodes on the cell surface. The black
circles visualise the respective contact radius, which is computed as the mean of the
radial distance of the contact nodes. (b,c) Deformation for different forces in axial and
transversal direction. The results for different radii (blue, orange and green symbols)
are compared to the mean experiment results from Mills et al. [55] and Suresh et al.
[134], for the sake of clarity here without the errorbars. All simulations used for this
figure have a discocyte reference shape with c∗

0 = 0 and λ = 5, Bq = 0.
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E Phase diagram of a single red
blood cell with membrane viscosity
in shear flow

Yazdani et al. [130] investigated in detail the phase diagram for RBCs in shear flow
without membrane viscosity. In figure 6 therein, the authors present the RBC’s
dynamical modes depending on the flow strength, measured by Ca, and on the
viscosity contrast λ. For Ca > 0.3 the authors mainly observe tank-treading and
tumbling modes, depending on the value of λ. The border between these modes in
the phase diagram lies around λ = 2.
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λ = 2

Figure E.1: Phase diagram of the RBC dynamics in shear with membrane viscosity at λ = 2. Ca-
pillary number Ca and dimensionless membrane viscosity Bq determine the transition
between the tank-treading (black) and tumbling (red) modes.

In order to investigate the influence of Bq on the phase diagram, simulations
with membrane viscosity are conducted at λ = 2, where the additional influence of
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E Phase diagram of a single red blood cell with membrane viscosity in shear flow

the membrane viscosity is expected to determine the RBC dynamical mode. The
parameters of the simulation are chosen as described in section 6.2.2, Bq is defined
in (6.2). The results are presented in figure E.1 analogously to figure 6 in [130]. On
the x-axis, however, Bq instead of λ is plotted. An increase in the membrane viscosity
induces the transition from the tank-treading (black symbols) to the tumbling mode
(red symbols), analogously to the transition observed for increased λ in [130]. This
observation again highlights the fact that the membrane viscosity of the RBC can
have a similar effect on the RBC dynamics as the interior viscosity of the cell. Details
of the RBC’s dynamical behaviour in the different modes are presented and analysed
in [130] and therefore not repeated here. Note that the discrimination between tank-
treading in biconcave shape (black filled symbols) and in combination with swinging
(black empty symbol) is difficult, to emphasise this fact the single simulation point
with tank-treading/swinging is also coloured black. The tumbling cells at large
capillary number are extreme cases, where due to the high flow velocity the cell
rotation in the dented state (compare figure 4 in [130]) is so fast, that the cell no
longer relaxes back to its elongate shape in between dented states.
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F Analysis of the many cell statistical
behaviour

F.1 Influence of the cell shear modulus on the
deformation behaviour in the RT-DC setup

κS × 3

Figure F.1: Influence of the red blood cell shear elasticity on the deformation features of the cell in
simulations. The deformation D and two-dimensional cell size A for RBCs with λ = 4,
Bq = 5 and discocyte initial shape for the setup described in section 7.2.1 are shown in
blue. The different symbols show the different initial positions yinit. The red symbols
give the position of the simulation results for increased shear modulus κS.

F.2 Details of the integration routine
Here, some details of the evaluation of the integrals (7.2) and (7.3) are given. The in-
tegration over the different initial positions yinit and inital shapes is omitted, because
it was assumed that these are represented by a uniform distribution, which greatly

157



F Analysis of the many cell statistical behaviour

simplifies the resulting sums. The integration over λ and Bq is approximated with
the trapezoidal rule on the simulation grid as sketched in figure F.2.
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Figure F.2: Integration scheme for the trapezoidal rule. The simulations are run for a regular
grid of the parameters λ and Bq. The other two parameters, the initial shape and
initial position yinit are omitted in the sketch. For each grid cell, its contribution Vij is
approximated by calculating the mean of the values at the grid points belonging to the
respective cell and taking into account the size of the grid cell.

The integrals are thus approximated by two sums along the two directions of the
grid

f = 1
V

n−1∑
i=1

m−1∑
j=1

1
4 ∆λ ∆Bq

[
f i,jΠ (λi, Bqj) + f i,j+1Π (λi, Bqj+1) +

f i+1,jΠ (λi+1, Bqj) + f i+1,j+1Π (λi+1, Bqj+1)
]
. (F.1)

The integral over the probability distribution Π (λi, Bqj) on the grid might deviate
from one, depending on the specification of the distribution. Therefore, the scaling
prefactor 1

V
is included to normalise the result and thus reduce the error. The

calculation of M goes equivalently, the formula was given in equation (7.3).
The fitting routine described in section 7.4.2 uses the non-linear optimisation

method least_squares from SciPy. The fitting routine operates with the standard
deviations and the correlation coefficient computed from the covariance matrix M ,
not directly with the entries of M .
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