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Abstract 

Iron is the most abundant element by mass in the Earth. The iron content and its spin or 

oxidation state have a major influence on the physical properties of the main phases in the Earth’s 

interior. Therefore it is of vast importance to understand the behavior of iron in mineral phases at the 

temperature and pressure conditions of the Earth’s interior. This cumulative thesis investigates Fe spin 

crossovers in iron-containing magnesium aluminum silicates, iron-bearing silicate glasses, the iron 

carbide Fe3C and the effect of Fe spin crossovers on the Fe/Mg partitioning between perovskite and 

ferropericlase in pyrolitic model system of the Earth’s lower mantle. The goal is first to understand the 

nature of the Fe spin crossover in respect to its oxidation state and second to estimate the consequences 

of their occurrence to processes and the structure in the Earth. Central tools in these studies are laser 

heated diamond anvil cells, to reach the pressure and temperature conditions of the Earth’s interior, 

Mössbauer spectroscopy, which is a sensitive probe for detecting structural and spin changes in Fe-

bearing materials, and analytical transmission electron microscopy, as a probe of chemistry and 

oxidation state on the nm-scale. In this cumulative thesis I present the results of five research articles. 

For the analysis of conventional and recently developed synchrotron energy domain Mössbauer spectra 

the computer program MossA is introduced, which builds the basis for the analysis and interpretation of 

the results for the other studies. Based on synchrotron Mössbauer spectroscopy and electrical 

conductivity measurements of Fe-bearing silicate aluminum perovskite it is shown that Fe3+ occupies the 

dodecahedral A-site of the perovskite structure and remains in the high-spin state throughout the 

pressure and temperature conditions of the Earth’s lower mantle. Furthermore, a study on the electronic 

behavior of Fe in a Fe2+-rich aluminous silicate glass and a Fe3+-rich sodium silicate glass infers that no 

sharp high spin to low spin crossover occurs in silicate melts in the Earth’s lower mantle. This result 

excludes the possibility of negatively buoyant melts in the lower mantle in an early magma ocean solely 

due to strong preferential partitioning of iron into the melt phase, which would be induced by a Fe low-

spin bearing melt. New insights into to decoupled partitioning behavior of Fe2+ and Fe3+ between the two 

dominant phases of the Earth’s lower mantle, perovskite and ferropericlase, are presented. The 

intermediate spin to low spin crossover of Fe2+ in perovskite at about 110 GPa seems to have a strong 

effect on partitioning and oxidation state of Fe. It leads to a change of the partitioning behavior of Fe 

between perovskite and ferropericlase and induces a reduction of Fe3+ to Fe2+ in perovskite. Finally, a 

Mössbauer spectroscopic and single-crystal x-ray diffraction study of Fe3C reveals a two-stage loss of 

magnetism in Fe3C at high pressures at room temperature: a ferro- to paramagnetic transition around 8-

10 GPa and a para- to nonmagnetic transition at about 22 GPa. 
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Zusammenfassung 

Eisen ist bezogen auf die Masse das am häufigsten vorkommende Element in der Erde. Die 

Eisenkonzentration sowie Spin- und Oxidationszustände des Eisens haben einen starken Einfluss auf die 

physikalischen Eigenschaften der Hauptminerale des Erdinneren. Daher ist es von großer Bedeutung, das 

Verhalten von Eisen in Mineralen unter den Druck- und Temperaturbedingungen des Erdinneren zu 

verstehen. In der vorliegenden kumulativen Dissertation werden Spinübergänge in eisenhaltigen 

Magnesium-Aluminium-Silikaten, eisenhaltigen Silikatgläsern, dem Carbid Fe3C und der Effekt dieser 

Übergänge auf die Fe/Mg-Verteilung zwischen Perowskit und Ferroperiklas in einem pyrolitischen 

Modellsystem des unteren Erdmantels untersucht. Das Ziel dieser Dissertation besteht zunächst darin, 

die Art der Spinübergänge des Eisens in Bezug zu seiner Wertigkeit zu verstehen und darauf aufbauend 

die Konsequenzen von Spinübergängen für die Prozesse und den Aufbau des Erdinneren abzuschätzen. 

Im Rahmen der Arbeit wurden hauptsächlich Laser-geheizte Diamantstempelzellen zum Erreichen der 

Druck- und Temperaturbedingungen, Mößbauer-Spektroskopie für die Bestimmung der strukturellen 

und Spinübergänge in eisenhaltigen Materialen und analytische Transmissionselektronenmikroskopie für 

die Bestimmung der Elementkonzentrationen sowie der Oxidationststufen des Eisens im nm-Maßstab 

genutzt. Die vorliegende kumulative Dissertation beinhaltet die Ergebnisse von fünf Einzelstudien. Es 

wird das Computerprogramm MossA eingeführt, das zur Analyse von konventionellen und 

energieaufgelösten Synchrotron Mössbauer-Spektren dient und damit die Basis für die Interpretation 

aller hier präsentierten Einzelstudien bildet. Auf der Grundlagen von Synchrotron Mössbauer-

Spektroskopie und elektrischen Leitfähigkeitsmessungen von eisenhaltigem Aluminium-Silikat-Perowskit 

wird gezeigt, dass Fe3+ ausschließlich die dodekaedrisch koordinierte A-Position der Perowskit-Struktur 

besetzt und dass Fe3+ im High-Spin-Zustand unter den Druck- und Temperaturbedingen des unteren 

Erdmantels bleibt. Des Weiteren zeigt eine Untersuchung des Spinzustands von Fe in Fe2+-reichem 

Aluminium-Silikat-Glas und Fe3+-reichem Natrium-Silikat-Glas, dass keine abrupten Spinübergänge des 

Eisens in Silikatschmelzen unter Bedingungen des unteren Erdmantels erfolgen. Durch diese Ergebnisse 

kann ausgeschlossen werden, dass Silikatschmelzen im unteren Erdmantel allein durch die starke 

Anreicherung von Fe relativ zur Festphase, welche durch die Stabilität von Fe im Low-Spin Zustand in der 

Silikatschmelze induziert würde, dichter wird als das umgebende Festgestein. Neue Erkenntnisse wurden 

über die Elementverteilung von Fe2+ und Fe3+ zwischen den beiden Hauptmineralphasen des unteren 

Erdmantels, Ferroperiklas und Perowskit, erzielt. Es wird gezeigt, dass der Übergang vom intermediären 

Spin-Zustand zum Low-Spin-Zustand von Fe2+ bei ca. 110 GPa einen starken Effekt auf die 

Elementverteilung und den Oxidationsstatus von Eisen hat. Dieser führt erstens zu einer Änderung der 
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Elementverteilung und verursacht des Weiteren eine Reduktion von Fe3+ zu Fe2+ im Perowskit. Zum 

Abschluss wird in einer Studie mittels Mössbauer-Spektroskopie und Einkristall-Röntgenbeugung gezeigt, 

dass Fe3C seinen Magnetismus unter Druck bei Raumtemperatur in zwei Schritten verliert. Ein Übergang 

von ferro- zu paramagnetisch findet bei 8-10 GPa und ein Übergang von para- zu nicht-magnetisch findet 

bei ca. 22 GPa statt.  

 

 

  

6 
 



 

Acknowledgements 

I thank my scientific advisors Prof. Dr. Falko Langenhorst and Prof. Dr. Leonid Dubrovinsky for 

their guidance, patience and especially their optimism. I am grateful that I had the opportunity to work 

with both and that they always encouraged me to come up with my own ideas. Further I also want to 

thank Dr. Catherine McCammon for her assistance with Mössbauer spectroscopy, the critical reviewing 

of my scientific manuscripts and her open door for all my questions to come. It was a great pleasure to 

work in the highly professional and well organized environment of the Bayerisches Geoinstitut. I thank all 

of its present and former members for the inspiring discussions. I want to especially thank Uwe Dittmann 

and Hubert Schulze for their outstanding sample preparation skills, Gertrud Gollner, Petra Buchert, Lydia 

Kison-Herzing, Detlef Krausse and Dr. Stefan Keyssner for their help and support. I am particularly 

grateful for the assistance of Dr. Nobuyoshi Miyajima during my TEM sessions. Dr. Kilian Pollok is 

thanked for the help provided in the FIB preparation. Dr. Tiziana Boffa Ballaran is thanked for her 

support in the X-ray diffraction laboratory and for the help with the analysis of single-crystal X-ray 

diffraction data. In addition I would like to offer my special thanks to Dr. Vitali Prakapenka, Dr. Marco 

Merlini, Dr. Alexander Chumakov and Dr. Michael Hanfland for their assistance during synchrotron 

radiation experiments. The research of my PhD was funded by the ENB program “Structure, Reactivity 

and Properties of Oxide Materials” of the Bavarian State Ministry of Science, Research and the Arts. 

I would also like to thank my office mates and fellow colleagues for their support and friendship. 

Particular thanks go to Dr. Juliane Hopf, Dr. Geertje Ganskow, Dr. Linda Lerchbaumer, Antje Vogel, 

Mattia Giannini, Dr. Dennis Harries, Dr. Alexander Kurnosov, Dr. Konstantin Glazyrin and Dr. Yoichi 

Nakajima. 

Explicitly I want to thank my parents Elke Künzel and Johannes Prescher for their constant 

support and trust. My deepest gratitude further goes to Amrei Pirzer for the wonderful time in the final 

year of my PhD. 

  

7 
 



 

Table of Contents 

Abstract .................................................................................................................................. 4 

Zusammenfassung .................................................................................................................. 5 

Acknowledgements................................................................................................................. 7 

List of Figures ........................................................................................................................ 11 

List of Tables ......................................................................................................................... 13 

1 Introduction ............................................................................................................ 14 

1.1 Background and motivation ....................................................................................... 14 

1.1.1 Structure and mineralogical composition of the Earth’s interior ............................................14 

1.1.2 Oxidation state and spin state of Fe in the Earth’s lower mantle ...........................................16 

1.1.3 Motivation ...........................................................................................................................18 

1.2 Experimental methods ............................................................................................... 20 

1.2.1 Laser heated diamond anvil cell technique ...........................................................................20 

1.2.2 Powder and single crystal x-ray diffraction in a diamond anvil cell ........................................22 

1.2.3 Conventional and Synchrotron Mössbauer spectroscopy ......................................................23 

1.2.4 Focused ion beam preparation .............................................................................................25 

1.2.5 Transmission electron microscopy ........................................................................................27 

1.3 Detailed summary and linkage of research studies .................................................... 28 

1.4 List of manuscripts and statement of author’s contribution ...................................... 34 

2 MossA – a program for analyzing energy-domain Mössbauer spectra from 

conventional and synchrotron sources ................................................................... 36 

2.1 Abstract ...................................................................................................................... 36 

2.2 Introduction ............................................................................................................... 36 

2.3 Theory ........................................................................................................................ 37 

2.4 Program features........................................................................................................ 38 

2.5 Example workflow ...................................................................................................... 40 

2.6 Distribution ................................................................................................................ 41 

8 
 



 

2.7 Acknowledgements .................................................................................................... 41 

3 Effect of iron oxidation state on the electrical conductivity of the Earth’s lower 

mantle .................................................................................................................... 42 

3.1 Abstract ...................................................................................................................... 42 

3.2 Manuscript ................................................................................................................. 42 

3.3 Methods ..................................................................................................................... 48 

3.4 Supplementary information ....................................................................................... 49 

3.4.1 Synchrotron Mössbauer source ............................................................................................49 

3.4.2 Sample synthesis ..................................................................................................................51 

3.4.3 DAC experiments .................................................................................................................51 

3.4.4 Laser heating........................................................................................................................52 

3.4.5 SMS spectrum fitting ............................................................................................................53 

3.4.6 Cation site distribution in the perovskite structure ...............................................................55 

3.4.7 Electrical conductivity measurements...................................................................................56 

4 Iron spin state in silicate glass at high pressure: implications for melts in the Earth’s 

lower mantle .......................................................................................................... 58 

4.1 Abstract ...................................................................................................................... 58 

4.2 Introduction ............................................................................................................... 58 

4.3 Experimental details ................................................................................................... 59 

4.4 Results ........................................................................................................................ 61 

4.5 Discussion ................................................................................................................... 63 

4.6 Acknowledgements .................................................................................................... 67 

5 The effect of Fe spin crossovers on its partitioning behavior and oxidation state in a 

pyrolitic Earth’s lower mantle system..................................................................... 69 

5.1 Abstract ...................................................................................................................... 69 

5.2 Manuscript ................................................................................................................. 69 

5.3 Materials and methods .............................................................................................. 74 

 

9 
 



 

6 Structurally hidden magnetic transitions in Fe3C at high pressures ........................ 78 

6.1 Abstract ...................................................................................................................... 78 

6.2 Introduction ............................................................................................................... 78 

6.3 Experimental details ................................................................................................... 79 

6.4 Results and Discussion ............................................................................................... 80 

6.5 Conclusion .................................................................................................................. 84 

6.6 Acknowledgements .................................................................................................... 84 

6.7 Supplementary information ....................................................................................... 85 

7 References ............................................................................................................... 90 

Erklärung ............................................................................................................................. 101 

 

  

10 
 



 

List of Figures 

Chapter 1 

Figure 1-1 Mineral volume fraction of the Earth’s mantle in pyrolite model composition .........................................15 

Figure 1-2 Diagrams for the crystal field splitting of iron in octahedral and dodecahedral sites ...............................17 

Figure 1-3 Schematic drawing of a four-pin modified Merrill-Bassett diamond anvil cell .........................................21 

Figure 1-4 Hyperfine interactions for 57Fe nuclei .....................................................................................................24 

Figure 1-5 Focused ion beam and secondary electron pictures of the sample preparation for TEM. .........................26 

Figure 1-6 Example electron energy loss spectrum (EELS) of the Fe L2,3 edge in perovskite .......................................28 

 

Chapter 2 

Figure 2-1 Calibration of the FWHM of a Lorentzian-squared source line ................................................................39 

Figure 2-2 MossA user interface during the fitting process.  ....................................................................................40 

 

Chapter 3 

Figure 3-1 SMS spectra of Mg0.6Fe0.4Si0.63Al0.37O3 perovskite at room temperature showing their evolution with 

pressure ..............................................................................................................................................44 

Figure 3-2 Pressure variation of FeAlPv hyperfine parameters (CS and QS) ..............................................................45 

Figure 3-3 Relative change of electrical conductivity of FeAlPv as a function of pressure .........................................47 

Figure 3-S1 Optical scheme for SMS experiment for high-pressure studies.. ............................................................50 

Figure 3-S2 SMS spectrum of 25 µm thick natural α-iron foil used for energy calibration. ........................................51 

Figure 3-S3 SMS spectrum of K2Mg57Fe(CN)6 used to monitor the source linewidth. ................................................51 

Figure 3-S4 Room temperature Mössbauer spectra of FeAlPv samples at high pressure ..........................................54 

Figure 3-S5 Room temperature Mössbauer spectra of Mg0.78Fe0.2Al0.05Si0.97O3 perovskite at 86 GPa taken before and 

after laser heating. ..............................................................................................................................55 

Figure 3-S6 Influence of pressure on the resistance of Mg0.60Fe0.40Si0.63Al0.37O3 perovskite .......................................57 

 

Chapter 4 

Figure 4-1 Selected Mössbauer spectra of the F2B glass and variation in CS and QS of Fe2+ with pressure................61 

Figure 4-2 Selected Mössbauer spectra of the NFS glass.. .......................................................................................62 

Figure 4-3 Variation of CS and QS for Fe2+ and Fe3+ with pressure in NFS glass ........................................................63 

Figure 4-4 Variation of CS and QS for Fe2+ and Fe3+ in glasses. ................................................................................66 

11 
 



 

Chapter 5 

Figure 5-1 Variations of the Fe-Mg KD and Fe2+-Mg KD between Mg-Pv and Fp in pyrolite. .......................................71 

Figure 5-2 Fe3+/ΣFe ratios for Pv and Fp with pressure. ...........................................................................................72 

Figure 5-S1 Calculated Fe3+-Mg KD between Mg-Pv and Fp in pyrolite .....................................................................77 

Figure 5-S2 Incorporation mechanism of Fe3+and Al in Mg-Pv. ................................................................................77 

 

Chapter 6 

Figure 6-1 Volume-pressure data for Fe3C ..............................................................................................................81 

Figure 6-2 Selected ambient temperature Mössbauer spectra of Fe3C at high pressure. ..........................................82 

Figure 6-3 Variation of CS and BHF of Fe3C with pressure........................................................................................83 

Figure 6-S1 Crystal structure of Fe3C.......................................................................................................................85 

Figure 6-S2 Variation of FWHM of Fe3C. .................................................................................................................88 

Figure 6-S3 Calculated change in mean squared velocity of Fe3C due to the ferromagnetic to paramagnetic 

transition. ...........................................................................................................................................88 

Figure 6-S4 Evolution of Fe-Fe distances in Fe3C with pressure ................................................................................89 

Figure 6-S5 Variation of mean carbon-iron distance with pressure ..........................................................................89 

 

  

12 
 



 

List of Tables 

Chapter 3 

Table 3-S1 Experimental details and sample compositions ......................................................................................52 

Chapter 5 

Table 5-S1 Experimental conditions of the laser heated diamond anvil cell experiments ..........................................76 

Table 5-S2 Element compositions of Fp and Mg-Pv .................................................................................................76 

Chapter 6 

Table 6-S1 Results of single crystal X-ray diffraction refinement of Fe3C at different pressures. ...............................86 

 

13 
 



 

1 Introduction 

1.1 Background and motivation 

1.1.1 Structure and mineralogical composition of the Earth’s interior 

The interior of the Earth is ideally considered to be layered into several shells, which are defined 

by their chemical, elastic or rheological properties. The most widely used models for the Earth’s interior 

come from global inversion of seismological data, e.g. the “preliminary reference Earth model” (PREM) 

(Dziewonski and Anderson, 1981). The division into layers is based on discontinuous changes in seismic 

P-wave and S-wave velocities, which are induced by phase transformations of major rock-forming 

minerals (Fig. 1-1) or a complete change in chemistry.  

The Earth’s interior can be divided into three main geospheres: the crust, the mantle and the 

core. The continental crust and the oceanic crust have an average thickness of 35 km and 7 km, 

respectively. The transition from the crust to the Earth’s mantle is marked by a change from crustal rocks 

to a peridotitic upper mantle composition, thus, there is a change in chemistry and in physical 

properties, such as density and elasticity.  

The Earth’s mantle extending down to 2890 km depth is subdivided into an upper and a lower 

mantle based on structural phase transformations of the olivine (Mg,Fe)2SiO4 component. In the upper 

mantle olivine is stable up to 410 km, where it then transforms to its high pressure polymorph – 

wadsleyite with a modified spinel structure. At a depth of ~520 km wadsleyite transforms to a spinel-

structured phase – ringwoodite. The border between the upper and lower mantle occurs at ~660 km 

depth, where ringwoodite disproportionates into (Mg,Fe)O ferropericlase (Fp) and (Mg,Fe)(Si,Al)O3 

magnesium silicate perovskite (Mg-Pv). The depth range from 410 km down to 660 km is called the 

transition zone. The remaining non-olivine components of the Earth’s upper mantle (cpx – clinopyroxene 

and opx – orthopyroxene) undergo gradual transitions with depth, which are smeared out over several 

tens of kilometers (Fig. 1-1). Those phase transformations, therefore, lead only to changes in slope of the 

seismic velocity curves versus depth rather than causing discontinuities. The mineralogy of the Earth’s 

lower mantle in contrast is relatively simple; the modal abundances are ~7% CaSiO3 calcium perovskite, 

~13% Fp and 80% Mg-Pv. A distinct layer was found at the base of the lower mantle at ~2600 km depth 

called D’’. It is possibly caused by a phase transition of the Mg-Pv to post-perovskite phase (PPv) 

(Murakami et al., 2004). The PPv structure is composed of stacked SiO6 octahedral sheets along the b-
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axis. The Mg2+ and Fe2+ cations are located in between the octahedral layers. The structure is similar to 

that of CaIrO3. 

 The Earth’s core ranges from 2890 km depth to the center of the Earth at 6371 km depth. It is 

divided into two parts: (1) a liquid outer core, through which shear waves cannot pass, and (2) a solid 

inner core. Based on cosmo-chemical abundances of the elements in the solar system, meteoritic 

records and mean density of the Earth, the core is suggested to be primarily composed of a Fe1-xNix (0.5 

wt.% ≤ x ≤ 20 wt.%) alloy. However, the density of this alloy is slightly higher than the densities estimated 

from seismic wave velocities of the Earth’s core. The relative density deficits of the core to solid iron vary 

from 6%-10% for the outer core (Stevenson, 1981; Anderson and Isaak, 2002), and 1% to 3 % for the 

inner core (Jephcoat and Olson, 1987; Shearer and Masters, 1990; Stixrude et al., 1997; Dubrovinsky et 

al., 2000). The density deficit can be explained by the addition of light elements alloying with the Fe1-xNix 

alloy. From cosmo-chemical constraints several suitable candidates have been proposed: H, O, C, S, Si 

and N (Allègre et al., 1995; McDonough and Sun, 1995) and several iron oxides, carbides and nitrides are 

 

Figure 1-1 Mineral volume fraction of the Earth’s mantle in pyrolite model composition (Ringwood, 
1991; Stixrude and Lithgow-Bertelloni, 2005, 2011). Modified after Frost (2008). opx – 
orthopyroxene; cpx – clinopyroxene. 
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known to occur in iron-meteorites, which are believed to resemble planetary cores. However, till now 

there has been no final conclusion which light element or elements are accounting for the density deficit 

in the Earth’s core (McSween, 1999). 

1.1.2 Oxidation state and spin state of Fe in the Earth’s lower mantle 

As discussed in the previous section, the mineralogical composition of the Earth’s lower mantle is 

considered to be relatively homogeneous. However, more and more detailed studies of seismic wave 

velocities in the Earth’s lower mantle discover small anomalies which cannot be attributed to remnant 

slabs or ascending plumes (e.g. Trampert et al., 2004). In the last decade Fe spin crossovers, which occur 

at pressure and temperature conditions of the Earth’s lower mantle, have been proposed to provide 

possible explanations for these anomalies (e.g. Badro et al., 2003).  

The oxidation state of iron in Fp is mainly Fe2+ with a minor contribution of Fe3+ (2-15 %). Fe2+ in 

Fp occupies octahedral coordinated sites resulting in a splitting of the five 3d energy levels split into 

three lower t2g and two higher eg energy levels (Fig. 1-2). The energy levels are separated by the crystal 

field splitting energy ΔC (Burns, 1993). At low pressures the high spin (HS) configuration with two paired 

and four unpaired electrons is stable. However, with increasing pressure ΔC increases and at a certain 

pressure becomes larger than the spin-pairing energy, which makes the low spin (LS) configuration (6 

paired electrons occupying the t2g levels) energetically more favorable. The onset of this spin crossover 

has been estimated to be at ~50 GPa at room temperature (Badro et al., 2003a; Lin et al., 2005). 

Nevertheless, the spin crossover of Fe2+ is expected to occur over a very large pressure/depth interval 

due to iron-iron interactions, small variations in coordination environments between different iron 

atoms and thermal broadening. The Fe2+ HS-LS spin crossover region at geotherm temperatures has been 

estimated to occur from ~60 GPa to ~120 GPa (Sturhahn et al., 2005; Lin, Vankó, et al., 2007; Mao et al., 

2011). So far there have been no reports of spin transitions of Fe3+ in Fp at high pressures and 

temperatures. 

The most abundant phase in the Earth’s lower mantle, Mg-Pv (Mg,Fe)(Si,Al)O3, contains iron in 

Fe2+ and Fe3+ oxidation state. The Fe3+ content is either charge balanced by (1) oxygen vacancies when 

Fe3+ is occupying the octahedral B-site or (2) by charge coupled substitution of Fe3+-Al3+ for Mg2+-Si4+ 

(Lauterbach et al., 2000; Frost and Langenhorst, 2002), whereby the latter seems to be more favorable at 

higher pressures and with higher concentrations of Fe3+ and Al. The Fe3+ content in Mg-Pv is primarily 

controlled by its Al content (McCammon, 1997; Lauterbach et al., 2000; Frost and Langenhorst, 2002) 

and is contrary to expectations independent of oxygen fugacity (Frost et al., 2004). The ABO3 Mg-Pv 

structure exhibits a dodecahedrally coordinated A-site and an octahedral coordinated B-Site. Fe2+ only 
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occupies the dodecahedrally coordinated A-site. This coordination environment leads to a splitting of the 

five 3d electron energy levels into two lower eg and three higher t2g energy levels (Fig. 1-2) (Burns, 1993). 

This energy splitting leads to three possible spin configurations: (1) HS state with four unpaired and two 

paired electrons; (2) intermediate spin state with four paired and two unpaired electrons; and (3) LS 

state with 6 paired electrons. On the contrary, Fe3+
 has been reported to occupy the dodecahedrally 

coordinated A-site and/or the octahedrally coordinated B-site of the Mg-Pv structure. For Fe3+ only two 

spin configurations are stable in either of both environments: (1) HS state with five unpaired electrons 

and (2) LS state with four paired and one unpaired electron. The reported spin crossovers of Fe2+ and 

Fe3+ are less consistent with each other than in Fp. Some authors propose an onset of a gradual Fe2+ HS-

IS crossover at 35 GPa with Fe3+ staying in HS state (McCammon et al., 2008; Narygina et al., 2009), 

whereas others suggest that Fe2+ and Fe3+ occupying the A-site remain in HS state, and only Fe3+ 

occupying the B-site undergoes HS-LS crossover at 40-60 GPa (Jackson et al., 2005; Catalli et al., 2010, 

 

Figure 1-2 Diagrams for the crystal field splitting of iron in octahedral and dodecahedral sites 
occurring in minerals of the Earth’s lower-mantle. Electronic configurations for iron as (2+) or (3+) 
are shown for high-spin (HS), intermediate-spin (IS) (dodecahedral site) and low-spin (LS). Modified 
after Lin and Wheat (2011). 
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2011). Additionally, it has been proposed that Fe2+ becomes LS in Mg-Pv at about 110 GPa at high 

temperatures (McCammon et al., 2010). 

1.1.3 Motivation  

The main goal of this thesis is to understand the electronic behavior of iron on the physical 

properties of materials in the Earth’s lower mantle and the Earth’s core. We therefore investigated the 

physical and chemical consequences of spin crossovers in several case studies. 

Since the present results on spin crossovers in Mg-Pv are quite controversial with regard to the 

nature of spin transitions, we decided to apply a new synchrotron-based method of Mössbauer 

spectroscopy (SMS) to four different Mg-Pv compositions. SMS enables the collection of Mössbauer 

spectra with an acquisition time of several minutes of samples in a diamond anvil cell (compared to 

several days for conventional Mössbauer spectroscopy). The short collection time allows the 

measurement of energy domain Mössbauer spectroscopy in the diamond anvil cell with in-situ laser 

heating, with which it is possible to reach all pressure and temperature conditions present in the Earth’s 

lower mantle. 

One of the possible effects of Fe spin crossovers in Fp and Mg-Pv is the preferential partitioning 

of Fe into the LS bearing phase due to a gain in energy caused by the volume reduction from HS or IS to 

LS state. This would primarily change the Fe/Mg ratio in the co-existing minerals, resulting in changes in 

density, elasticity, electrical and thermal conductivity of the lower mantle assemblage due to spin 

crossover itself and the accompanied Mg/Fe ratio changes in Fp and Mg-Pv. It was, for example, 

proposed that Fe would preferentially partition into LS bearing Fp relative to HS or IS Fe-bearing Mg-Pv 

(Badro et al., 2003a). However, the results of experimental determinations on the partitioning behavior 

of Fe/Mg between Mg-Pv and Fp are diverse and partially in contradiction to each other. Some authors 

propose a change in partitioning behavior due to HS-LS crossover in Fp at ~40 GPa in a pyrolitic model 

composition (Irifune et al., 2010), whereas others report a change in partitioning behavior above ~70 

GPa in a simplified MgO-FeO-SiO2 system (16, 17). On the other hand the results of (Sinmyo et al., 2008) 

and (Kesson et al., 2002; Murakami et al., 2005) lack any discontinuity at the P,T conditions of the Earth’s 

lower mantle in simplified and pyrolitic systems, respectively. Another important factor controlling the 

partitioning behavior of Fe is its oxidation state. In Al bearing systems Fe3+ is stabilized in the Mg-Pv 

structure which increases its Fe content relative to Fp (Frost and Langenhorst, 2002). All of the previous 

investigations on the partitioning behavior of Fe between Fp and Mg-Pv at conditions of the Earth’s 

lower mantle have reported results for bulk iron content in the constituting minerals, without paying 
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special attention to iron oxidation state. However, the Fe3+ content is a major factor determining the 

elasticity (Glazyrin et al., subm.) and thermal conductivity (Goncharov et al., 2009; Goncharov, 

Prakapenka, et al., 2010) of Mg-Pv and Fp. Therefore, we decided to study the decoupled Fe2+ and Fe3+ 

partitioning coefficients between Mg-Pv and Fp in a pyrolitic lower mantle model composition by using 

laser heated diamond anvil cells, focused ion beam preparation of the recovered samples and 

transmission electron microscopy for chemical and oxidation state analyses. The main goal was to study 

possible effects of Fe2+ or Fe3+ spin crossovers in Fp and Mg-Pv on the partitioning behavior, which in 

turn should also change the Fe3+/ΣFe ratio in the constituting minerals. 

The present day Earth’s lower mantle is believed to be mostly solid apart from some small 

possible melt fractions near the core mantle boundary (CMB) (Williams and Garnero, 1996; Lay et al., 

2004). However, e.g. the moon-forming impact is believed to have induced a whole Earth magma ocean 

(Tonks and Melosh, 1993; Agnor et al., 1999). In such an environment, the density contrast between the 

on cooling crystallizing solids and remaining melt is a major factor influencing chemical stratification of 

the entire Earth. A recent study observed a sharp discontinuity in the pressure dependence of the Fe/Mg 

solid/melt partition at 75 GPa, resulting in a strong enrichment of Fe in the melt, which would produce a 

denser negatively buoyant melt. The sharp discontinuity was explained by an iron spin crossover seen in 

their XES data collected on (Mg0.95Fe0.05)SiO3 glass during room temperature compression. However, 

Andrault et al. (2012) reported a much lower degree of iron enrichment in silicate melt based on 

partitioning experiments at liquidus temperatures on a (Ca,Mg,Al,Si,Fe) oxide glass with chondritic 

composition, resulting in a melt that would be lighter than the surrounding mantle and hence would 

segregate upwards. In order to reconcile the difference between the results of Nomura et al. (2011) and 

Andrault et al. (2012), we decided to perform a Mössbauer spectroscopy study of a Fe2+-rich and a Fe3+-

rich silicate glass measured in situ in a diamond anvil cell at high pressure. Mössbauer spectroscopy is a 

much more sensitive probe for detecting structural and spin changes in Fe-bearing materials than 

partitioning experiments, which can only give indirect indications of the iron spin state.  

In order to understand which and to what extent specific light elements are present in the 

Earth’s core it is of primary importance to understand possible phases of Fe with the respective light 

elements. Two iron carbides exist as possible carbon bearing phases in the Earth’s core with different Fe-

C ratio: Fe3C and Fe7C3. Both minerals are magnetic at ambient condition and undergo magnetic phase 

transitions at high pressures and temperatures. To extrapolate and obtain physical properties of these 

phases at the temperature and pressure conditions of the Earth’s core it is of vast importance to 

understand the nature of the magnetic transitions at high pressures. However, despite the large number 
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of investigations, the transition pressure from the ferromagnetic state to the paramagnetic or 

nonmagnetic state is still highly debated. Investigations directly probing the atomic or electronic 

structure of iron revealed transition pressures of ∼6 GPa by synchrotron Mössbauer spectroscopy 

(nuclear forward scattering) (Gao et al., 2008), 6-10 GPa by Fe K-edge x-ray magnetic circular dichroism 

(XMCD) (Duman et al., 2005) and 25 GPa by x-ray emission spectroscopy (Lin et al., 2004); whereas, by 

means of indirect methods, several different effects at higher pressures were observed which the 

investigators attributed to a change in the electronic state of iron: a softening of phonon frequencies 

observed by inelastic x-ray scattering around 68 GPa (Fiquet et al., 2009) and a change in behavior of 

lattice parameters above 55 GPa observed by x-ray diffraction (Ono and Mibe, 2010). Furthermore, ab 

initio calculations suggest that the nonmagnetic state becomes stable only above 60 GPa (Vocadlo et al., 

2002). The span of the transition pressure range is too large to be attributed to different pressure 

calibrations or experimental uncertainties. If we assume that different investigations employed the same 

well-characterized iron carbide starting material, the only plausible explanation for the discrepancies is 

that different investigations probed different transitions in Fe3C that led to different observable effects 

which only can be detected by specific methods. In order to clarify these transition(s), we decided to 

perform a Mössbauer spectroscopic and single-crystal x-ray diffraction study of Fe3C at high pressure in a 

diamond anvil cell. 

1.2 Experimental methods 

This section gives a brief introduction to the main experimental techniques deployed in the 

research presented in this cumulative dissertation. Further details of operation of these and other 

conventional methods are given in the respective following chapters. 

1.2.1 Laser heated diamond anvil cell technique 

In order to understand the dynamics and properties of the Earth, we need to experimentally 

reproduce the conditions of the Earth’s interior. These extreme conditions by means of very high 

pressure and temperatures can be achieved by employing the laser heated diamond anvil cell ((LH)-DAC) 

technique. The LHDAC allows studying materials under almost all pressure and temperature conditions 

relevant for the Earth’s interior. It is possible to reach pressures as high as 300 GPa and temperatures as 

high as 6000 K simultaneously (Chandra Shekar et al., 2003).  

A DAC consists of two opposing brilliant-cut diamonds mounted on metallic plates, whereby the 

sample sits in between the culets surrounded by a gasket material (Fig. 1-3). The pressure is increased by 
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tightening screws between the two metal plates and forcing the two opposed anvils together and 

therefore pressurizing the µm-sized sample. To transform the uniaxial pressure supplied by this 

mechanism, usually a pressure transmitting medium, such as noble gases or a mixture of methanol and 

ethanol, is used. The pressure inside the sample chamber can be evaluated by either using the 

fluorescence of a ruby crystal (Mao et al., 1986), measured with Raman spectroscopy, or by measuring 

the lattice parameters of a simple cubic material, such as Au, Ne, or MgO, and estimating the pressure 

using its known equation of state (Fei et al., 2007). 

A unique advantage of the DAC as a static high-pressure apparatus is the transparency of 

diamond to electromagnetic radiation in a very broad range of the electromagnetic spectrum. Diamond 

is only opaque between 5 eV and 5 keV. This makes it possible to do in-situ measurements radiation in 

the energy range of microwaves, the far infrared (IR), visible (VIS), ultraviolet (UV) up to 5 eV and with x-

rays and γ-rays above 5 KeV again. These energy ranges make it possible to measure e.g. Raman 

spectroscopy, infrared spectroscopy, Brillouin spectroscopy, x-ray diffraction, Mössbauer spectroscopy, 

x-ray inelastic scattering, or nuclear inelastic scattering in-situ at high pressure and temperature. 

High temperatures in a DAC can be achieved by using either an external resistive heating or a 

laser heating system. In the resistive heating technique a large portion of the DAC is also heated which 

leads to a maximum achievable stable temperature of about 1000 K (Dubrovinskaia and Dubrovinsky, 

2003) at relative low pressures due to softening of the DAC components. It is very stable and accurate in 

temperature, however the maximum temperature is too low to experimentally reproduce all pressure 

and temperature conditions in the Earth’s interior. In the laser heating technique only a small part of the 

sample is heated, which makes it possible to access temperatures in excess of 6000 K (Chandra Shekar et 

.  

Figure 1-3 Schematic drawing of a four-pin modified Merrill-Bassett diamond anvil cell. 
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al., 2003). However, laser heating usually results in high temperature gradients in the sample chamber, 

which can lead to thermally induced diffusion (Sinmyo et al., 2011) or lateral movement of the sample. 

Several attempts have been made to decrease temperature gradients and stabilize laser heating in the 

DAC. Double sided laser heating is used to reduce the vertical gradient, and on the other side lateral 

gradients are reduced by transforming the Gaussian shaped laser beam to a flat top by inserting a Pi-

shaper into the beam path.  

In the studies presented in this work two types of DACs were used, either a modified Marrill-

Basett type with opposed four-pin plates or a piston cylinder type. Culet sizes were varied according to 

the desired pressures which were investigated. For the high pressure experiments above 90 GPa beveled 

culets were used. A portable double sided laser system (Dubrovinsky et al., 2009) was used at ID09a and 

ID18 at the European synchrotron radiation facility (ESRF) in Grenoble, France and the installed double 

sided laser heating facility at GSECARS at the advanced photon source (APS) in Chicago, USA, was used 

for the experiments conducted there.  

1.2.2 Powder and single crystal x-ray diffraction in a diamond anvil cell 

X-ray diffraction (XRD) is a basic method probing the long-range order of crystalline materials. 

Powder XRD has long been used as the main method for studying crystal structures in-situ at high 

pressure and temperature in a DAC. The basic relation of XRD is Braggs law 𝜆 = 2𝑑 𝑠𝑖𝑛𝜃, where 𝜆 is the 

x-ray wavelength, 𝑑 is the crystallographic interplanar spacing and 𝜃 is the diffraction angle. By 

determining d-spacings of different lattice planes (hkl) the unit cell parameters of a known structure can 

be estimated. The variation in unit cell parameters with pressure is then used to determine P-V(-T) 

equations of states. With this information it is possible to model densities of different phases in the 

Earth’s interior and to compare them with the densities estimated from seismic wave velocities 

(Dziewonski and Anderson, 1981).  

With single crystal X-ray diffraction (SXRD) it is possible to do a full structural refinement of the 

crystal lattice. Subtle changes in atomic coordinates can be detected and related to structural or 

magnetic transitions. In the last decade SXRD in a DAC has been advanced to achieve almost the whole 

pressure range of the lower mantle and additionally it is now possible to perform SXRD in combination 

with laser-heating (Dubrovinsky et al., 2010a). A strong advantage of SXRD in DACs over powder 

diffraction is that only a single small grain (e.g. 10x10x5 µm³) is measured and no stresses develop due 

the compaction of several grains lying above each other. This results in a better apparent hydrostaticity 
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and therefore more precise lattice parameters even without a full structural refinement of the atomic 

positions.  

In this work we used powder XRD mainly for phase analysis and SXRD for full structural 

refinement and determinations of the equation of state. Angle dispersive XRD powder diffraction was 

conducted at GSECARS at the APS in Chicago, USA; and angle dispersive SXRD was conducted at ID09a at 

the ESRF in Grenoble, France. The two dimensional powder XRD scans were integrated using Fit2D 

software (Hammersley, 1997) and processed with the GSAS software package (Larson and Von Dreele, 

2004). The SXRD data was processed using the CRYSALIS software [Oxford Diffraction (2006) CrysAlis 

RED, Version 1.171.31.8 Oxford Diffraction Ltd., Abingdon, Oxfordshire, UK] and the crystal structure 

refinements of integrated intensities were carried out using SHELX-97 WinGX version (Sheldrick, 2008). 

1.2.3 Conventional and Synchrotron Mössbauer spectroscopy 

Mössbauer spectroscopy allows the study of the local atomic environment around Mössbauer 

active atoms in a solid. It has an extremely high energy resolution which makes it possible to detect small 

changes in the atomic environment. It is able to distinguish between different oxidation and spin states 

of iron; furthermore it provides structural information such as on the coordination and geometry of 

crystallographic sites. However, it is a short-range probe and is only sensitive to the first two 

coordination shells at most. The physical principle of the Mössbauer effect is the recoilless absorption of 

γ-rays in solids (Mössbauer, 1958).  

A Mössbauer apparatus is relatively simple and is composed of three parts, a source, an absorber 

and a detector. In conventional 57Fe Mössbauer spectroscopy the source is a radioactive parent of the 

Mössbauer atom embedded in an Rh matrix producing γ-rays through nuclear decay. A usual source 

diameter for 57Co sources is in the order of 1 cm. A smaller source with higher density of 57Co in the 

matrix is used for high pressure studies, a so called “point-source”, which has a diameter of 0.5 mm 

(McCammon, 1994). The energy of the source radiation is modulated by accelerating the source back 

and forth, making use of the Doppler Effect. Another possibility to produce source radiation is the use of 

a synchrotron radiation facility. There are two techniques developed: (1) the sample is illuminated by a 

polychromatic white beam, inducing all 57Fe to get to the excited state and monitoring the decay (Rüffer 

and Chumakov, 1996) or (2) using the nuclear Bragg refraction of a FeBO3 single crystal, producing a 

highly monochromatic beam which is comparable to the width of γ-ray produced by natural decay of 
57Co (Potapkin et al., 2012). Method (1) is more difficult to analyze since the Mössbauer spectrum is 

recorded in the frequency domain, whereas in method (2) the Mössbauer spectrum is recorded in the 
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energy domain and can be analyzed in a similar way to conventional Mössbauer spectroscopy. The only 

difference is the lineshape of the source function, which has to be included in the fitting of the spectra.  

Synchrotron Mössbauer studies are extremely versatile in the field of high pressure and high 

temperature science. The small beam size, which is on the order of 20x20 µm² and the relatively low 

acquisitions times (~5-30 min) compared to conventional Mössbauer (~0.5-7 days) make it possible to 

study the high pressure and high temperature behavior of materials simultaneously, by employing laser 

heating diamond anvil cell techniques. This enables the possibility to study Earth relevant materials at all 

conditions present in the Earth’s interior. 

An 57Fe Mössbauer spectrum of a specific atomic site is defined by 3 different hyperfine 

parameters, center shift (CS), quadrupole splitting (QS) and magnetic hyperfine splitting (BHF) (Fig. 1-4) 

(McCammon, 2000) . The CS is decomposed into two contributions, the isomer shift (IS) and the second 

order Doppler shift (SOD). The IS arises through the electric monopole interaction between the positive 

 

Figure 1-4 Hyperfine interactions for 57Fe nuclei, showing the nuclear energy level diagram for (a) an 
unperturbed nucleus; (b) a change in center shift; (c) with quadrupole splitting; and (d) with 
magnetic dipole interaction. Each interaction is accompanied with a resulting Mössbauer spectrum. 
Modified after McCammon (2000). 
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nuclear charge and the electric field of the surrounding electrons. This results in a shift of the nuclear 

energy levels compared to an unperturbed nucleus. The magnitude of the shift is a function of difference 

in s-electron densities between the source and the absorber nuclei. The SOD arises due to atomic 

vibrations and is a function of temperature and the mean square velocities of the source and absorber 

nuclei. The QS is a measure of electric field gradient (EFG) at the nucleus. The EFG arises through a lattice 

term and a valence term (Ingalls, 1964). The lattice term comes from the deviation of cubic symmetry of 

the surrounding atoms in the crystalline lattice and the valence term comes from the asymmetry in the 

charge distribution of the valence electrons. For 57Fe the interaction between the quadrupolar moment 

and the EFG splits the excited state into two levels, giving rise to a doublet with equal component 

linewidths and areas in the ideal random absorber case. The third parameter, BHF, arises through a 

dipole interaction between the magnetic field at the nucleus and the nuclear magnetic dipole moment. 

This causes a splitting of the nuclear energy states. For 57Fe this results in a splitting of the ground state 

into two levels and the excited state into four levels, giving eight possible transitions. Only six transitions 

are allowed to occur taking into account magnetic dipole interaction selection rules. In the ideal random 

absorber case that gives a sextet with equal component linewidths and relative line areas with a 

3:2:1:1:2:3 ratios.  

CS, QS and BHF parameters of individual 57Fe sites can be used as fingerprints to determine the 

oxidation state, coordination number or spin state. Area ratios of different sites in one material are used 

to assign the occupancy of iron in specific crystallographic sites and for determining the Fe3+ to Fe2+ ratio. 

Discontinuities in the CS, QS and BHF as function of pressure enable the detection of either a phase 

changes or spin crossover. 

Mössbauer spectra presented in this work were either recorded in transmission mode on a 

constant acceleration point source Mössbauer spectrometer (McCammon, 1994) or by using synchrotron 

Mössbauer spectroscopy in the energy domain at ID18 at ESRF (Potapkin et al., 2012). All samples were 

enriched in 57Fe, due to the small sample size in a DAC and the strong absorption of γ-photons by the 

diamond anvils. The velocity scales were calibrated relative to 25 µm Fe-foil and the spectra were fitted 

using the MossA software package (Prescher et al., 2012).  

1.2.4 Focused ion beam preparation 

In a focused ion beam (FIB) instrument an ion beam is scanned over the sample comparable to 

the electron beam scanning in a scanning electron microscope (SEM). A liquid metal ion source (LIMS), 

which is commonly a gallium source due to its low melting point (~30° C) and low vapor pressure 
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(Volkert and Minor, 2007), is used as source for the generation of ions. The ions are then accelerated by 

an electric field with energies of typically 2-30 kV and focused by electrostatic lenses. The beam 

interaction of the ions with the sample produces secondary electron similar to the process in an electron 

beam. These electrons can be detected to produce an image. However, the physically possible image 

resolution in modern FIB microscopes is with a lateral resolution of 10 µm higher than in a conventional 

SEM (Volkert and Minor, 2007).  

The large size and momentum of the ions in a FIB is inherently leading to an ejection of the 

sample’s surface atoms. However, this at first view negative effect has been made advantageous to do 

microscale machining of samples surfaces by combining the high resolution, controllability, and 

sputtering efficiency of FIB instruments. A particularly important capability of this method is the 

preparation of <100 nm thin lamellae for transmission electron microscope (TEM) studies. TEM slices can 

be obtained from selected areas of the sample which was previously very difficult or even impossible by 

conventional methods (e.g. milling, ultramicrotomy). This is especially useful for the preparation of 

samples recovered from DAC experiments. The selective capability of the FIB extraction method makes it 

possible to sample specifically the laser-heated part of the DAC sample (Fig. 1-5(a)). 

In this work a FEI Quanta3D field-emission FIB-SEM dual beam equipped with a Pt GIS and an 

Omniprobe micromanipulator was used at the Institute of Geoscience, University of Jena. This 

instrument combines a FIB and a SEM in order to use both techniques simultaneously. The gas injection 

system (GIS) enables an FIB assisted chemical vapor deposition of Pt. The deposited Pt provides 

protection to the sample and is used as ‘glue’ during the extraction process (Fig. 1-5(b)). The Omniprobe 

 

Figure 1-5 Focused ion beam and secondary electron pictures of the sample preparation for TEM. (a) 
Two trenches removed in the front and in back of the sampling position, which is protected by a 
layer of Pt. (b) Sample lift out from the gasket. (c) The slice is thinned to 30-100 nm thickness. 
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micromanipulator enables the lift-out of the sample and the attachment of the sample to a TEM copper 

grid were it is milled further to electron transparency (Fig. 1-5(c)). 

1.2.5 Transmission electron microscopy 

A transmission electron microscope (TEM) enables the structural and chemical investigation of a 

sample on nm scale. In a TEM electrons are accelerated with an energy of 100 to 400 keV towards the 

sample, whereby the sample has to be thinned to electron transparency prior to investigation (see FIB 

section). A wide variety of interactions occur due the electron-sample collision, which can be used to 

obtain different information of the probed sample. In this work we mainly used 2 techniques: energy 

dispersive x-ray microanalysis (EDS) and electron energy loss spectroscopy (EELS). 

EDS is used for obtaining the chemical composition of a sample. The incident electron beam 

ejects inner shell electrons of atoms creating an electron hole. An outer shell electron then fills the hole 

releasing an x-ray photon with energy similar to the energy difference between both shells, whereby 

those energy differences are characteristic for each element due to the different atomic structures and 

energy levels. By detecting the amount and energy of the different emitted x-ray photons it is possible to 

obtain the chemical composition. However, direct quantification of the EDS spectrum is difficult due to 

self-absorption of x-ray photons, whereby the degree of absorption depends on the composition, density 

and thickness of the sample. Therefore, usually standards with a chemical composition close to the 

measured sample composition are used as reference materials. In this work we used the method of van 

Cappellen and Doukhan (1994) to correct for absorption effects. This method is especially developed for 

ionic compounds. It is based on the principle of electro-neutrality of the specimen. It varies the thickness 

parameter in the absorption correction until the sum of all anions and cations times their respective 

valence state cancels out. 

EELS makes use of the inelastic scattering of the transmitted electrons during electron-sample 

interaction, whereby the amount of energy loss is characteristic for each element in the sample. 

Furthermore, the fine structure of the energy-loss spectrum is sensitive to the coordination environment 

and oxidation state of the particular element. This enables the determination of oxidation state of 

elements by comparison with measurements of reference materials with known oxidation state. In this 

work the method of van Aken and Liebscher (2002) was employed to quantify the oxidation state of Fe 

by using the Fe L2,3 edge fine structure. The Fe3+/ΣFe ratio is determined by either fitting the L3 edge with 

several Gaussian components or using the white line intensity ratio between the Fe3+ L3 and Fe2+ L2 edge 

(Fig. 1-6).  
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In this work we employed a PHILIPS CM20 FEG (field emission gun) STEM operating at 200 kV. 

Compositions were measured using a ThermoNoran Vantage energy-dispersive (EDS) system equipped 

with a Norvar ultra-thin window and a germanium detector. EELS measurements were performed using a 

Gatan PEELS 666 (parallel electron energy-loss spectrometer). 

1.3 Detailed summary and linkage of research studies 

The overall focus of this dissertation is to understand the nature and effect of iron spin 

crossovers on the physical properties of materials proposed to be present in the deep Earth’s interior. 

This includes changes in physical properties such as elasticity and electrical conductivity in the particular 

Fe bearing material where the spin crossover occurs and affects the partitioning behavior of Fe between 

coexisting iron bearing phases present in a multiphase assemblage. 

In this cumulative dissertation I present the results of five research articles. The first article 

introduces a new program for analyzing energy domain Mössbauer spectra from conventional and 

synchrotron source (Chapter 2), which has been an important analytical tool for the 4 other studies. In 

the second article we investigate the spin state of Fe2+ and Fe3+ in Fe-containing magnesium aluminium 

silicate perovskite and the effect on the electrical conductivity (Chapter 3). Article three explores the 

possibility of Fe2+ and Fe3+ spin crossovers at high pressures in silicate glasses, which serve as analogue 

materials for the behavior of melts in the Earth’s interior (Chapter 4). The effect of Fe spin crossovers on 

 

Figure 1-6 Example electron energy loss spectrum (EELS) of the Fe L2,3 edge in perovskite. Green 
areas show the integration windows for the quantification method of Fe3+/ΣFe after van Aken and 
Liebscher (2002). 
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its partitioning behavior and oxidation state in a model pyrolite lower mantle composition has been 

determined in Article four (Chapter 5) and the last article investigates the nature of electronic transitions 

at high pressures in Fe3C, a candidate for a carbon bearing phase in the Earth’s core (Chapter 6). 

Chapter 2 (published in the Journal of Applied Crystallography) introduces the Mössbauer fitting 

program MossA written in the MATLAB programming language. The program exhibits an easy-to-use 

graphical user interface with several features enabling a straightforward approach to the fitting process 

of the sometimes very complex Mössbauer spectra. The fitting of such spectra is especially dependent on 

the initial guess of the model. In MossA e.g. it is possible to define an initial model visually and observing 

the fitting process in real time. MossA aids in the data analysis process by providing built-in routines and 

additional controllable graphical user interfaces for the folding and calibration of Mössbauer spectra. 

Furthermore, it contains special fitting and calibration routines for energy-domain Mössbauer spectra 

from synchrotron sources, which was recently developed at beamline ID18 at the European synchrotron 

radiation facility (ESRF), Grenoble (Potapkin et al., 2012).  

In some cases an unconstrained fit, letting all parameters vary, leads to a physically improbable 

result. In MossA it is therefore possible to keep parameters constant, constrain parameters to fall within 

specific ranges, or even linearly couple several parameters. An application of the last feature is when 

there is information about site occupancy from crystallographical or crystal chemical considerations is 

available, which constrains the abundance relationships between the different sites of a phase. Detailed 

information of the program can be found in chapter 2. 

Chapter 3 (submitted to Nature Communications) presents a study on the spin state of Fe in iron-

containing magnesium aluminium silicate perovskite (FeAlPv). We collected energy-domain synchrotron 

Mössbauer spectra (Potapkin et al., 2012) of 4 different FeAlPv compositions at room temperature and 

pressures up to 122 GPa using diamond anvil cells, with or without laser annealing of the samples. The 

hyperfine parameters (center shift (CS) and quadrupole splitting (QS)) for Fe3+ in all samples are the same 

within experimental error, and there is no change in Fe3+/ΣFe ratio for the individual samples over the 

entire pressure range. The hyperfine parameters of the Fe3+ doublet are consistent with Fe3+ being in 

high spin (HS) state (Greenwood and Gibb, 1971), and their smooth variation with pressure indicates that 

Fe3+ does not undergo any spin transition within the entire pressure range. The weighted mean QS for 

Fe2+ in all samples increases dramatically with pressure, which arises from a decreasing intensity of the 

low QS Fe2+ doublet corresponding to the HS state (McCammon et al., 2008), and an increasing intensity 
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of the high QS doublet which can be assigned to the intermediate spin (IS) state (Lin et al., 2008; 

McCammon et al., 2008). 

Single-crystal X-ray refinements (Glazyrin et al., subm.) and crystal chemical calculations have 

shown that Fe3+ occupies only the A-site of the perovskite structure in our samples. Hence, our data 

demonstrates that Fe2+ undergoes a HS-IS crossover and Fe3+
A remains in HS state. However, several 

publications (Catalli et al., 2010, 2011; Fujino et al., 2012) have suggested that reduced volume of the 

low spin (LS) Fe3+ in the octahedral coordinated B-site of the FeAlPv structure would lead to a 

redistribution of Fe3+ from the A- to the B-site within the lower mantle. To test this hypothesis, we laser 

annealed 2 samples at a number of pressures and collected SMS spectra both during and after heating. 

The hyperfine parameters remain unchanged after a number of heating cycles and we therefore 

conclude that there is no exchange of Fe3+ between the A- and B-site at lower mantle pressures and 

temperatures. 

In addition to the SMS measurements we performed high-pressure high-temperature electrical 

conductivity measurements on a mainly Fe3+ bearing FeAlPv (Fe3+/ΣFe=93 %). The results show a 

continuous increase in electrical conductivity with pressure. Previous, measurements on electrical 

conductivity on single phase Mg0.9Fe0.1SiO3 perovskite (Ohta et al., 2008; Ohta, Hirose, Shimizu, et al., 

2010) and a pyrolitic mantle assemblage (Ohta, Hirose, Ichiki, et al., 2010) show a decrease in 

conductivity above 50 GPa, which they attribute to a HS-LS transition of Fe3+. However, this explanation 

can be ruled out by the results in the present work. The drop in electrical conductivity has to be 

explained by the HS-IS crossover of Fe2+. Our data shows that the Fe3+/ΣFe ratio in FeAlPv is an important 

factor determining the thermal conductivity of the Earth’s lower mantle at mid-mantle depths (1200-

1900 km). 

Chapter 4 (submitted to Earth and Planetary Science Letters) reports a Mössbauer spectroscopic 

study of a Fe2+-rich aluminous silicate (NFS) glass and a Fe3+-rich sodium silicate (NFS) glass measured in a 

diamond anvil cell up to 84 GPa. It is experimentally very challenging to stabilize melts at the 

temperature and pressure conditions of the Earth’s mantle. Therefore, we used silicate glasses as 

analogue materials for the liquid state and explored the spin state of Fe2+ and Fe3+ in silicate glasses at 

high pressures. The variations in center shift (CS) and quadrupole splitting (QS) vary smoothly with 

pressure and are consistent with a gradual increase in coordination number of Fe with pressure. Both, 

Fe2+ and Fe3+, remain in the high spin state and show no evidence of spin crossover over the measured 

pressure range.  
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Partitioning behavior of Fe between solid and melt would be strongly influenced by a 

discontinuous change in spin state in either of those phases. Indeed, a recent study reported a very 

sharp discontinuity in the pressure dependence of the Fe/Mg in solid/melt partitioning behavior in a San 

Carlos Olivine composition [(Mg0.9Fe0.1)2SiO4] at 76 GPa, resulting in a strong enrichment of Fe in the 

melt, which would produce a denser negatively buoyant melt. The sharp discontinuity was explained by 

an iron spin crossover seen in their XES data collected on (Mg0.95Fe0.05)SiO3 glass during room 

temperature compression (Nomura et al., 2011). However, Andrault et al. (2012) reported a much lower 

degree of iron enrichment in silicate melt based on partitioning experiments at liquidus temperatures on 

a (Ca,Mg,Al,Si,Fe) oxide glass with chondritic composition, resulting in a melt that would be lighter than 

the surrounding mantle and hence would segregate upwards.  

Our measurements of the Fe2+ and Fe3+ spin state in silicate glasses do not fully cover the 

pressure range of the Earth’s lower mantle. A spin crossover may eventually occur at the base of the 

lower mantle, however, a strong thermal broadening due to Boltzmann statistics of the crossover region 

infers that no sharp spin crossover would be expected at P,T conditions down to the base of the lower 

mantle. Our results therefore support the study of Andrault et al. (2012), which excludes the possibility 

of a negatively buoyant melts in a chondritic Earth’s lower mantle solely due to strong preferential 

partitioning of iron into the melt phase.  

Chapter 5 (for submission to Science) examines the partitioning behavior of major elements 

between the 2 dominant phases in the Earth’s lower mantle, Mg-silicate perovskite (Mg-Pv) and 

ferropericlase (Fp). Especially the concentration of iron and its oxidation state in both phases are 

fundamental for understanding the structure and dynamics of the Earth’s interior. Both factors may 

significantly influence densities, elasticity and transport properties such as electrical and thermal 

conductivity. Previous investigations on the behavior of Fe partitioning covering the P,T conditions of the 

Earth’s lower mantle have reported partitioning coefficients [KD =(Fe/Mg)Mg-Pv/(Fe/Mg)Fp] between Mg-Pv 

and Fp for bulk iron contents in the constituting minerals, without paying special attention to iron 

oxidation state. However, the Fe3+ content is a major factor determining the elasticity (Glazyrin et al., 

subm.) and thermal conductivity (Goncharov et al., 2009; Goncharov, Struzhkin, et al., 2010) of Mg-Pv 

and Fp. 

In this study we present bulk iron and decoupled Fe2+, Fe3+ partitioning coefficients between Mg-

Pv and Fp [KD =(Fe/Mg)Mg-Pv/(Fe/Mg)Fp] at P,T conditions of the Earth’s lower mantle. The bulk Fe KD first 

decreases linearly with pressure from 0.58 at 26 GPa to 0.45 at 79 GPa, then suddenly increases to 0.57 
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at 97 GPa and decreases again to 0.48 at 130 GPa. The discontinuous change of KD at 97 GPa is 

accompanied with a decrease of Fe3+/ΣFe ratio in Mg-Pv from 50(5) % at 79 GPa to 30 % at 97 GPa, 

whereby the bulk iron concentration stays constant. Therefore, the Fe2+ KD shows an even more 

amplified discontinuous step at this pressure. Recently, it was shown that Fe2+ in Mg-Pv undergoes a 

intermediate spin (IS) to low spin (LS) crossover at about 110 GPa (McCammon et al., 2010). A relatively 

narrow IS to LS crossover would result in a preferential partitioning of Fe2+ into Mg-Pv due to a change in 

atomic radii. This then results in an increase in KD which is exactly what can be seen in the behavior of 

the bulk Fe and Fe2+ KD at about 97 GPa. We furthermore propose that the IS-LS crossover not only 

affects the partitioning behavior, it also may cause a self-reduction of Fe3+ to Fe2+ in Mg-Pv. The Fe3+ 

content of Mg-Pv is mainly controlled by its Al content due to coupled substitution of (Mg2+,Fe2+)-Si4+ 

with Fe3+-Al3+ (e.g. (Lauterbach et al., 2000; Frost and Langenhorst, 2002)). It seems that this relationship 

is reversed at high pressure due to the Fe2+ IS-LS crossover. The coupled substitution is still dominant, 

although that the self-reduction of Fe3+ to Fe2+ now controls the Al content in Mg-Pv, which is decreased 

at 97 GPa and 130 GPa. 

The reduction of Fe3+ to Fe2+ needs to be balanced by oxidation of some other components. 

Diamond or volatile species such as CH4 or H2 could be oxidized to form CO2 or H2O. In the DAC 

experiments probably the diamond anvils were the reaction partner; however, the budget of those 

components in the Earth’s lower mantle is too low (probably on the order of 2000 p.p.m. (Wood et al., 

1996)) to account for the reduction alone. A more realistic scenario for the Earth would be that the 

amount of metallic Fe by disproportionation of Fe2+ (Frost et al., 2004) during crystallization of an early 

magma ocean is reduced at this depth.  

Another important effect of the change in Fe3+ content of Mg-Pv is the induced change in 

thermal conductivity. It has been shown that the radiative contribution of the thermal conductivity in 

Mg-Pv mainly depends on its Fe3+ content due to Fe2+-Fe3+ and Fe3+-O2- charge transfer bands (Goncharov 

et al., 2009; Goncharov, Struzhkin, et al., 2010). A decrease of Fe3+ content at 97 GPa will increase the 

thermal conductivity, creating a discontinuity which could act as thermal boundary layer between the 

mid-lower mantle and the lowermost lower mantle. 

Chapter 6 (published in Physical Review B Rapid Communications) comprises a study on the spin 

state of Fe in Fe3C at high pressure. By using diamond anvil cells we carried out 57Fe Mössbauer 

spectroscopy of Fe3C up to 88 GPa. The detailed analysis of the Mössbauer spectra reveals two regions of 

discontinuity. The first exhibits a loss of magnetic hyperfine splitting (BHF) at around 10 GPa, with an 
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accompanied increase and following decrease in center shift (CS), and the second is shown by a change 

in pressure dependence of the CS at about 22 GPa. In order to clarify whether those discontinuities are 

induced by electronic transitions or by structural changes we further performed single-crystal x-ray 

diffraction (SXRD) of Fe3C up to 47 GPa. Based on the refined unit-cell parameters and atomic positions, 

we found no evidence of a structural transition up to the highest pressure achieved. Distances between 

iron atoms and between iron and carbon atoms decrease continuously with pressure. Solely the 

evolution of the unit-cell volume with pressure shows a change in compressibility at ~24 GPa.  

The increase of CS at the ferro- to paramagnetic transition is consistent with a phonon softening. 

CS is influenced by two effects – the chemical isomer shift (IS) (which is a measure of s-electron density 

at the nucleus) and the second-order Doppler shift (SOD) (which is a measure of mean-squared velocities 

of the Mössbauer active atoms). An increase in chemical isomer shift is contrary to the expected increase 

in s-electron density at the nucleus with increasing pressure (IS decreases with increasing s-electron 

density). Thus, the increase in CS can only be explained by a change in SOD. 

By combining the Mössbauer spectroscopy and SXRD results we propose a two stage loss of 

magnetism in Fe3C at high pressure: a ferro- to paramagnetic transition around 8-10 GPa and a high-spin 

(HS) to low-spin (LS) crossover at about 22 GPa (para- to nonmagnetic). The results reconcile previous 

conflicting reports on magnetic transitions in Fe3C. The ferro- to paramagnetic transition corresponds to 

the transition observed in nuclear forward scattering (Gao et al., 2008) and Fe K-edge x-ray magnetic 

circular dichroism (Duman et al., 2005), while the HS-LS crossover is consistent with the transition 

observed in x-ray emission spectroscopy (Lin et al., 2004). 

The results are important for geophysical modeling of physical properties of Fe3C to the P,T 

conditions of the Earth’s core. Only the properties of the nonmagnetic phase should be used for 

extrapolation to these conditions. Chapter 6 provides further information and the detailed analysis of 

the elasticity of Fe3C. 
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2.1 Abstract 

The program MossA provides a straightforward approach to the fitting of 57Fe conventional and 

synchrotron energy-domain Mössbauer spectra. Sites can be defined simply by mouse clicks and 

hyperfine parameters can be constrained to constant values, within specific ranges, and be coupled 

linearly between different subspectra. The program includes a full transmission integral fit with 

Lorentzian line shape (conventional source) or Lorentzian-squared line shape (synchrotron source). The 

fitting process is graphically displayed in real time while fitting and can be interrupted at any time. 

Gaussian-shaped quadrupole splitting distributions for analyzing non-magnetic amorphous materials is 

included. MossA is designed especially for the rapid and comprehensive analysis of complex Mössbauer 

spectra due to its native graphical user input. 

2.2 Introduction 

Mössbauer spectroscopy is a unique tool for sampling spin states, oxidation states, and 

coordination of specific elements. Particularly in the Earth sciences it is frequently used due to the ease of 

obtaining structural information and the oxidation state of iron in rocks and minerals. The Mössbauer 

milliprobe technique (McCammon, 1994) has enabled an evaluation of the spin and oxidation state of 

iron in materials relevant to the Earth’s interior up to pressures of the Earth’s core (e. g. McCammon et 

al., 2008). However, detailed analysis of compounds with different iron environments or a mixture of 

different phases containing iron can be challenging due to the ambiguity of possible fitting models. The 

outcome of the fitting procedure can depend strongly on the input of the initial parameters of the 

distribution of sites. Therefore complex spectra need to be evaluated visually before fitting in order to 

define the initial parameters, and the progress of the fit should ideally be tracked while fitting in order to 

allow intervention if the solution becomes physically improbable. However, most recently described 

Mössbauer analysis programs (e.g., Große, 1993; Brand, 1995; Azevedo et al., 1997; Kent, 1998; Lagarec 
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and Rancourt, 1998; Žák and Jirásková, 2006; Hjøllum and Madsen, 2009) are based on a text based 

input of initial parameters, which makes fitting of complex spectra challenging or even impossible. 

Additionally the commonly used Gauss-Newton and Levenberg-Marquardt least squares methods do not 

search for the global minimum, but only for local minima which may be biased by the choice of initial 

parameters in the fitting model.  

We present the Matlab based Mössbauer fitting program “MossA” which overcomes these usual 

difficulties in the analysis of complicated spectra. Through its clear graphical user interface (GUI) and 

straightforward procedures for handling data and exporting parameters and fitted spectra, it is easy to 

analyze complex Mössbauer spectra even for users that are new to Mössbauer spectroscopy. 

2.3 Theory 

The experimental Mössbauer spectrum is described by the transmission integral, which is 

essentially a sum of the non-resonant background and a convolution of the source emission line 𝑁(𝐸, 𝑣) 

and the absorber response exp (−𝑡 𝜎(𝐸)): 

𝐶(𝑣) = 𝑁0 𝑒−𝜇0𝑡
′ �(1− 𝑓𝑆) + � 𝑁(𝐸, 𝑣)

+∞

−∞

exp�−𝑡 𝜎(𝐸)� 𝑑𝐸�, 

where 𝑁0 is the number of quanta emitted by the source, 𝜇0 is the mass absorption coefficient, 𝑡′ is the 

absorber thickness and 𝑡 is the effective absorber thickness. The source line 𝑁(𝐸, 𝑣) and the resonant 

cross section 𝜎(𝐸) are defined by a Lorentzian curve as given by the Breit-Wigner Equation: 

𝐼(𝐸) =
Γ (2𝜋)⁄

(𝐸 − 𝐸0)2 + (Γ/2)2
 , 

where Γ is the full width at half maximum (FWHM) and 𝐸0 is the center of the distribution. 

For thin absorbers with 𝑡 ≪ 1, the transmission integral can be expanded in a series. Using the 

first two terms of the expansion yields: 

𝐶(𝑣) = 𝑁0 𝑒−𝜇0𝑡
′ �1 − 𝑓𝑆

𝑡
2

Γ2

�𝐸0 �
𝑣
𝑐� − Δ𝐸� + Γ2

�, 
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which is a linear combination of two Lorentzian line shapes, which can be described by a Lorentzian line 

with the FWHM being a sum of the source and the absorber FWHM. This thin absorber approximation is 

frequently used in Mössbauer spectroscopic analysis because of the ease in computation. 

New advances in Mössbauer synchrotron technology have made it possible to obtain Mössbauer 

spectra in the energy domain with the aid of nuclear Bragg reflection, the so-called synchrotron 

Mössbauer source (Smirnov et al., 1997). This process leads to a slightly different source line shape, 

however, which due to the physics of the process is a normalized squared Lorentzian (Smirnov et al., 

1997): 

𝐼(𝐸) = πΓ�
Γ (2𝜋)⁄

(𝐸 − 𝐸0)2 + (Γ/2)2
�
2

. 

Synchrotron Mössbauer experiments in the energy domain are characterized by very high 

absorption (typically on the order of 50%) and by the lack of non-resonant background. The high 

absorption makes it absolutely necessary to use the transmission integral; however most of the current 

software packages for analyzing Mössbauer spectra lack the possibility for fitting these spectra. With 

MossA it is possible to fit data using the full transmission integral with either source line shape. A further 

characteristic of the synchrotron Mössbauer source is that radiation is linearly polarized. In the case of 

powder samples with random crystallite orientation, Mössbauer spectra are unchanged from those 

collected with an unpolarized source. However in the case of single crystals or powder samples with 

preferred orientation, the component area ratios of quadrupole doublets and of magnetic sextets will 

change. This effect can be accounted for by allowing component area ratios to vary, which is 

implemented in MossA. 

2.4 Program features 

MossA is based on the Matlab programming language, and uses its native GUI library and the 

Optimization Toolbox. MossA is capable of fitting Lorentzian, Gaussian, PseudoVoigt, and Lorentzian-

squared absorber line shapes. The available subspectra are singlets, doublets, and sextets. These 

subspectra are defined visually by two mouse clicks for singlets and three mouse clicks for doublets and 

sextets. In order to more precisely define specific parameters, values can be edited after adding the 

subspectrum. The parameters (center shift, FWHM, quadrupole splitting, magnetic hyperfine splitting) 

can be kept constant or can be constrained to fall within specific ranges in their search space during 

fitting. This can be useful when fitting overlapping subspectra, for example, to constrain a subspectrum 

to have a specific center shift range. Spectra of samples with preferential orientation or single crystals 
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can be treated empirically by fitting the component area ratios of doublets or sextets. Furthermore, it is 

possible to linearly couple two parameters (including component area ratios) from the same or different 

subspectra. One application of this feature is when information about site occupancy from 

crystallography or crystal chemistry is available, which constrains the abundance relationships between 

the different sites of a phase. If the Lamb-Mössbauer factor can be assumed to be the same for all of the 

sites, the fit can be constrained to fix the area ratios between different subspectra according to a specific 

factor inferred from crystallography. 

The analysis of Mössbauer spectra measured from amorphous samples can be challenging, even 

in the absence of magnetic hyperfine splitting. Due to the different environments of the Mössbauer 

active isotope, there is a significant line broadening and there can be a coupling of center shift and 

quadrupole splitting. One mathematical model for this coupling was introduced by Rancourt & Ping 

(1991) as a quadrupole splitting distribution (QSD). An interface for fitting such distributions is included 

in the program MossA. Sites with QSD can be combined with normal sites in a fit and also used in 

combination with the full transmission integral. 

The trust-region reflective method of the Matlab optimization toolbox is used as minimization 

algorithm. This method is more stable than the commonly used finite difference least squares procedure 

 

Figure 2-1 Calibration of the FWHM of a Lorentzian-squared source line. A second-order polynomial 
is automatically calculated to account for curvature in the baseline. 
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since it is more likely to detect global minima. The progress and direction of the fitting can be seen in the 

graphics window during the fitting process. If the fitting approaches a local minimum which is physically 

improbable, the user has the possibility to stop the fitting process at any time.  

The program is especially suited for analyzing synchrotron Mössbauer source data. The program 

features include a sinusoidal baseline, a squared Lorentzian source function for the full transmission 

integral and one mouse click calibration of the FWHM of the source function. 

The fitted parameters can be either copied directly to a spreadsheet or saved as plain text file. 

Graphical output formats include *.fig (Matlab editable plot file) or any other common picture format. 

For distributing and discussing with colleagues, the report option is most suitable as it presents the 

graphical data and fitted parameters in a PDF file. 

2.5 Example workflow 

The first step for sample analysis is to calibrate the velocity scale of the transducer by analyzing 

an α-Fe calibration spectrum. MossA has a tool to obtain the best fit values for the relative shift and the 

maximum of the velocity scale. After calibration, the values are saved in program memory. The next step 

 

Figure 2-2 User interface during the fitting process. The example spectrum shown is for a full 
transmission integral fit to Fe7C3 with three sextets, each with the component area ratio A13 fixed to 
3 and the intensities of the first and second sextets constrained to be equal as required by 
crystallographic constraints. 
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is to estimate the FWHM of the source function by calibrating a single line absorber (Fig. 2-1). Next the 

data file is loaded and the possible sites are defined by clicking the mouse at appropriate places in the 

graphics window (Fig. 2-2). If the initial estimates are satisfactory, the fitting process can be started. The 

progress of the fit is shown in the graphics window, where the chi-squared value is displayed as a 

measure of the goodness of fit. Depending on the outcome of the fitting, additional sites can be added, 

the background model can be changed, and parameters can be constrained or coupled. When the fitting 

process is completed satisfactorily, all parameters can be copied and pasted into a spreadsheet and the 

fit can be saved as numerical values for plotting with the user’s preferred plot software or directly output 

in one of the common picture formats from the MossA program. 

2.6 Distribution 

The program MossA and its documentation can be obtained at 

http://www.clemensprescher.com/ under Programs -> MossA after a registration. For running the 

program it is not necessary to have a Matlab license; only the Matlab runtime component is needed, 

which will be delivered with the program executable. MossA runs under Windows, MacOS X and Linux.  
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3.1 Abstract 

Iron has the ability to adopt different electronic configurations, namely spin states, in the 

dominant lower mantle phase, magnesium silicate perovskite, where the spin states of iron atoms can 

significantly influence mantle properties and dynamics. Previous studies have indicated that ferric iron 

(which constitutes at least half of the iron in lower mantle silicate perovskite (McCammon, 1997; Frost et 

al., 2004; Mccammon, 2005)) undergoes a high-spin to low-spin transition (Zhang and Oganov, 2006; 

Stackhouse et al., 2007; Catalli et al., 2010, 2011; Hsu et al., 2011), which has been suggested to cause 

seismic velocity anomalies (Catalli et al., 2011; Hsu et al., 2011) and a drop in laboratory-measured 

electrical conductivity (Ohta et al., 2008; Ohta, Hirose, Ichiki, et al., 2010; Ohta, Hirose, Shimizu, et al., 

2010). Here we apply a new synchrotron-based method of Mössbauer spectroscopy to four different 

compositions of lower mantle silicate perovskite at high pressure and high temperature and 

demonstrate unambiguously that Fe3+ remains in the high-spin state at conditions throughout the lower 

mantle. New high-pressure high-temperature electrical conductivity measurements show no 

conductivity drop for magnesium silicate perovskite with high Fe3+, strongly advocating that the 

conductivity drop observed for magnesium silicate perovskite with high Fe2+ (Ohta et al., 2008; Ohta, 

Hirose, Ichiki, et al., 2010; Ohta, Hirose, Shimizu, et al., 2010) is due to a transition of Fe2+ to the 

intermediate spin state. Correlation of transport and elastic properties of silicate perovskite with 

electromagnetic and seismic data provide a new probe of heterogeneity in the lower mantle. 

3.2 Manuscript 

The structure of iron-containing magnesium aluminium silicate perovskite (hereafter referred to 

as FeAlPv) contains two sites, a large 8-12 coordinated site (“A”) which is primarily occupied by Mg2+ and 
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Fe2+, and a smaller octahedral site (“B”) which is dominantly occupied by Si4+. Most studies observe a 

transition involving Fe2+ that starts above ~30 GPa, although there is disagreement as to whether it 

involves a high-spin (HS) (four unpaired d electrons) to intermediate-spin (IS) (two unpaired d electrons) 

transition (Badro et al., 2004; Lin et al., 2008; McCammon et al., 2008) or simply a structural modification 

of the local atomic environment (Hsu et al., 2010). With respect to Fe3+, broadly a high-spin (five 

unpaired d electrons) to low-spin (LS) (one unpaired d electron) transition is predicted when Fe3+ 

occupies the B-site, while Fe3+
A (i.e., Fe3+ in the A-site) is predicted to remain in the high-spin state at all 

pressures throughout the lower mantle (Zhang and Oganov, 2006; Stackhouse et al., 2007; Catalli et al., 

2010, 2011; Hsu et al., 2011; Fujino et al., 2012). Even though Fe3+ is predicted to occupy exclusively the 

A-site in lower mantle compositions of FeAlPv (Vanpeteghem et al., 2006), a HS-LS transition of Fe3+ was 

reported to occur in FeAlPv at high pressure, potentially due to exchange of Fe3+ from the A- to the B-site 

(Catalli et al., 2010, 2011; Fujino et al., 2012). Up to now, however, only methods which do not provide 

an unambiguous interpretation of the data have been used, so we have developed a new method which 

enables individual spin and valence states to be identified, which provides a clear answer to the question 

of whether Fe3+ undergoes a HS-LS transition in FeAlPv. 

Detecting spin transitions of Fe3+ in FeAlPv presents a significant challenge. X-ray emission 

spectroscopy provides information on the bulk spin number, but cannot separate individual 

contributions. In contrast energy domain 57Fe Mössbauer spectroscopy generally enables an 

unambiguous resolution of all hyperfine parameters which can be used to infer spin states; however high 

pressure measurements using conventional radioactive point sources require extremely long counting 

times (generally more than one week per spectrum). Third generation synchrotron sources offer a 

solution in the form of time-domain Mössbauer spectroscopy (i.e., nuclear forward scattering); however 

this method is not well suited to materials with a large number of components (such as FeAlPv) due to 

the resulting complex spectra. To solve this problem we have developed an energy-domain synchrotron 

Mössbauer source (SMS) that offers a number of advantages over conventional Mössbauer 

spectroscopy: high brilliance and a nearly fully resonant emitted beam that can be focused to a spot of 

only a few microns diameter, and in contrast to time domain spectroscopy, spectra that deliver direct 

and unambiguous information. Therefore SMS allows for rapid measurement of energy-domain 

Mössbauer spectra under extreme conditions with a quality generally sufficient to unambiguously 

deconvolute even highly complex spectra (further details of the method are given in the Supplementary 

Information). 
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In order to investigate the spin state of iron in lower mantle silicate perovskite, we studied four 

different silicate perovskite samples: Mg0.6Fe0.4Si0.63Al0.37O3 sample #1 (~80% Fe3+/ΣFe); 

Mg0.6Fe0.4Si0.63Al0.37O3 sample #2 (~70% Fe3+/ΣFe); Mg0.78Fe0.2Al0.05Si0.97O3 (~50% Fe3+/ΣFe) (sample #3); 

Mg0.94Fe0.06SiO3 (~20% Fe3+/ΣFe) (sample #4). We collected SMS spectra at room temperature and 

pressures up to 122 GPa using diamond anvil cells, with or without laser annealing of the samples. 

Details of sample synthesis and experiment methodology are given in the Supplementary Information. 

SMS spectra of Mg0.6Fe0.4Si0.63Al0.37O3 perovskite (sample #1), which contains iron dominantly as 

Fe3+, are extremely well resolved (Fig. 3-1). We fit the data to three quadrupole doublets, one assigned 

to Fe3+ and two assigned to Fe2+ based on their centre shifts. Visually there appears to be no change to 

 

Figure 3-1 SMS spectra of Mg0.6Fe0.4Si0.63Al0.37O3 perovskite sample #1 at room temperature showing 
their evolution with pressure (a) 2.5 GPa; (b) 37.9 GPa; (c) 67 GPa; (d) 93 GPa. The data were fit to 
one Fe3+ doublet (red) and two Fe2+ doublets (blue and black), and the fit residual is shown below 
each spectrum. Area asymmetry is due to preferred orientation of the sample, and the velocity scale 
is given relative to α-iron. 
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the Fe3+ doublet over the entire pressure range (Fig. 3-1 and Supplementary Fig. 3-S4). 

The hyperfine parameters (centre shift [CS] and quadrupole splitting [QS]) for Fe3+ in all samples 

are the same within experimental error, and there is no change in Fe3+/ΣFe for individual samples over 

 

Figure 3-2 Pressure variation of FeAlPv hyperfine parameters (centre shift [CS] and quadrupole 
splitting [QS]) (a) high-spin Fe3+; (b) Fe2+. Sample data are indicated as follows: Mg0.6Fe0.4Si0.63Al0.37O3 
perovskite sample #1 (red and blue circles); Mg0.6Fe0.4Si0.63Al0.37O3 perovskite sample #2 (orange and 
blue squares); Mg0.78Fe0.2Al0.05Si0.97O3 perovskite sample #3 (brown and dark blue circles); 
Mg0.94Fe0.06SiO3 perovskite sample #4 (purple and green circles). The expected quadrupole splitting 
for low-spin Fe3+ is shown as a horizontal red dotted line. Hyperfine parameters for Fe2+ are shown as 
weighted averages of the two doublets (colours as above) and quadrupole splitting for the high QS 
Fe2+ doublet (grey circles) (c) Pressure variation of Fe3+/ΣFe as determined from the relative areas in 
silicate perovskite Mössbauer spectra: sample #1 (red circles); sample #2 (orange squares); sample 
#3 (brown circles); sample #4 (purple circles). Horizontal lines are guides for the eye. Values obtained 
after laser heating of samples #2 and #3 are indicated by red stars. Error bars represent 2σ 
uncertainty based on fitting statistics. In all cases, parameters remained unchanged from those 
before heating within experimental error, demonstrating that there is no high-spin to low-spin 
transition in Fe3+ at the pressure-temperature conditions of the lower mantle. 
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the entire pressure range of the experiment (Fig. 3-2). The hyperfine parameters of the Fe3+ doublet are 

consistent with the high-spin state (Greenwood and Gibb, 1971), and their smooth variation with 

pressure indicates that Fe3+ does not undergo any spin transitions within the entire pressure range. 

Notably the QS value proposed for low-spin Fe3+ from both experimental (Catalli et al., 2010, 2011) and 

theoretical (Hsu et al., 2011) studies (red dashed line, Fig. 3-2a) is more than twice our observed values. 

The weighted mean quadrupole splitting for Fe2+ in all samples increases dramatically with 

pressure (Fig. 3-2b), which arises from a decreasing intensity of the low QS Fe2+ doublet (blue doublet in 

Fig. 3-1) corresponding to the HS state (McCammon et al., 2008), and an increasing intensity of the high 

QS doublet (black doublet in Fig. 3-1) which we assign to the IS state (Lin et al., 2008; McCammon et al., 

2008).  

Single-crystal X-ray refinements (Glazyrin et al., subm.) and crystal chemical calculations (see 

Supplementary Information) have shown that Fe3+ occupies only the A-site of the perovskite structure in 

our samples; hence our data demonstrate that Fe3+
A does not undergo a high-spin to low-spin transition 

up to at least 122 GPa. This conclusion is in agreement with results from experimental (Catalli et al., 

2010, 2011) and theoretical (Zhang and Oganov, 2006; Stackhouse et al., 2007; Hsu et al., 2011) studies. 

However several publications (Catalli et al., 2010, 2011; Fujino et al., 2012) have suggested that the 

reduced volume of LS Fe3+
B could lead to a redistribution of Fe3+ from the A- to the B-site in the 

perovskite structure within the lower mantle. To test this hypothesis, we laser annealed samples #2 and 

#3 at a number of pressures and collected SMS spectra both during and after heating. The total duration 

of heating reached several hours after multiple cycles. Visually SMS spectra collected after laser 

annealing showed no change to those taken before heating (Supplementary Fig. 3-S5) and hyperfine 

parameters remain unchanged (star symbols; Fig. 3-2). We therefore conclude that there is no exchange 

of Fe3+ between the A- and the B-site at lower mantle pressures and temperatures, in agreement with 

the results of a complementary study using high-pressure single-crystal X-ray diffraction with laser 

heating undertaken on the same composition as two of our samples (Glazyrin et al., subm.). 

Electromagnetic induction data offer an important complement to seismic data with respect to 

lower mantle modeling, since the former are more sensitive to temperature and iron content, while the 

latter better constrain the mineralogy (Verhoeven et al., 2009). Laboratory electrical conductivity data of 

the relevant minerals are an important component of the approach, since they provide critical data on 

how the chemical and thermal state of the material influences the conductivity. Laboratory 

measurements of single-phase Mg0.9Fe0.1SiO3 perovskite (Ohta et al., 2008; Ohta, Hirose, Shimizu, et al., 
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2010) and a pyrolite mantle assemblage (Ohta, Hirose, Ichiki, et al., 2010) (Fe3+/ΣFe of the perovskite 

phase estimated to be 12% and 30%, respectively (McCammon et al., 2004)) show a decrease in 

conductivity above 50 GPa, comparable to the electrical conductivity decrease caused by HS-LS spin 

crossover of Fe2+ in (Mg,Fe)O (Lin, Weir, et al., 2007; Ohta et al., 2007; Yoshino et al., 2011). The drop in 

silicate perovskite conductivity has been attributed to a HS-LS transition of Fe3+ (Ohta et al., 2008; Ohta, 

Hirose, Ichiki, et al., 2010; Ohta, Hirose, Shimizu, et al., 2010); however this explanation is ruled out by 

the results in the present work. To investigate the relative contributions of Fe2+ and Fe3+, we measured 

the electrical conductivity of Mg0.6Fe0.4Si0.63Al0.37O3 perovskite (93% Fe3+/ΣFe) (Glazyrin et al., subm.) at 

high pressure and high temperature (details are given in Supplementary Information). In contrast to the 

large drop seen in samples dominated by Fe2+, there is a continuous increase in electrical conductivity 

with pressure (Fig. 3-3). Such behaviour strongly suggests that the conductivity drop in samples 

dominated by Fe2+ is due to the HS to IS transition in Fe2+, where electron mobility is reduced due to the 

spin transition, analogous to the behaviour of (Mg,Fe)O (Lin, Weir, et al., 2007; Ohta et al., 2007; Yoshino 

et al., 2011). The greater drop at high temperature (brown circles in Fig. 3-3) is consistent with the 

increasing stability of the IS state with temperature (Lin et al., 2008; McCammon et al., 2008). Previously 

temperature and total iron content have been considered to have the greatest influence on lower 

 

Figure 3-3 Relative change of electrical conductivity of FeAlPv as a function of pressure. Red squares 
indicate new data for Mg0.6Fe0.4Si0.63Al0.37O3 perovskite (Fe3+/ΣFe ~93%) collected at 1800 K. Also 
shown are two sets of literature data for Mg0.9Fe0.1SiO3 perovskite (Fe3+/ΣFe ~12%) at room 
temperature (blue circles) (Ohta, Hirose, Shimizu, et al., 2010) and a pyrolite assemblage (Fepv

3+/ΣFepv 
~30%) (McCammon et al., 2004) at 1800 K (brown circles) (Ohta, Hirose, Ichiki, et al., 2010). Data are 
plotted relative to the values at 30 GPa (σ30). 
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mantle electrical conductivity profiles (Verhoeven et al., 2009), but our data show that Fe3+/ΣFe will also 

affect conductivity significantly at mid-mantle depths (1200-1900 km). A companion work has shown 

that Fe3+/ΣFe will also affect bulk sound velocity in the lower mantle (Glazyrin et al., subm.); hence joint 

inversion of electromagnetic and seismic data based on these new data will likely yield different results. 

For example the superadiabatic temperature gradient inferred for the lower mantle from such a joint 

inversion (Verhoeven et al., 2009) may not be required due to the reduced electrical conductivity of 

silicate perovskite resulting from the HS-IS transition. Three-dimensional inversions of electromagnetic 

data are now possible, and show variations of more than one order of magnitude, many of which are 

correlated with fast and slow regions of seismic tomography models (Tarits and Mandéa, 2010). Our new 

data indicate that for silicate perovskite with lower mantle composition, a lower Fe3+/ΣFe ratio will cause 

lower conductivity (reduction of conductivity due to the Fe2+ HS-IS transition) and a higher bulk sound 

velocity (Glazyrin et al., subm.). Indeed many regions were found to show such a correlation (Tarits and 

Mandéa, 2010), which could be indicative of bulk mantle properties away from areas associated with 

subduction. 

In conclusion, based on novel SMS data we have clarified the hotly debated electronic behaviour 

of iron in silicate perovskite, in particular its effect on electrical conductivity. Our results provide 

improved constraints for forward modelling of electromagnetic data as well as for joint inversion of 

electromagnetic and seismic data, providing a new probe of heterogeneity in the lower mantle. 

3.3 Methods 

57Fe Synchrotron Mössbauer source (SMS) spectra were collected on the Nuclear Resonance 

beamline ID18 at the European Synchrotron Radiation Facility (ESRF) during operation in multibunch 

mode (7/8+1 filling) with the beam focused to roughly 10×10 μm2 using Kirkpatrick–Baez multilayer 

optics. Further details of the SMS method are given in the literature (Potapkin et al., 2012) and in the 

Supplementary Information. The velocity scale was calibrated relative to α-Fe foil, and spectra were 

collected over 10-60 min each. Spectra were fitted using the program MossA (Prescher et al., 2012), 

which takes into account the Lorentzian-squared source instrumental function (Smirnov et al., 2011). The 

dimensionless effective Mössbauer thicknesses were approximately 40 and 20 for the 

Mg0.6Fe0.4Si0.63Al0.37O3 perovskite samples #1 and #2, and 8 and 3 for the Mg0.78Fe0.2Al0.05Si0.97O3 and 

Mg0.94Fe0.06SiO3 perovskite samples, respectively. Electrical conductivity measurements were carried out 

at high pressure and high temperature according to a previously described method (Kuznetsov, 2007). 
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Further details of sample synthesis and experimental methodology are given in the Supplementary 

Information. 

3.4 Supplementary information 

3.4.1 Synchrotron Mössbauer source 

Energy-domain Mössbauer spectroscopy provides direct access to hyperfine parameters from 

which iron valence and spin state can be determined. It has a large advantage compared to nuclear 

forward scattering (NFS) and X-ray emission spectroscopy (XES) in that the contribution from each iron 

subsystem occupies a nearly unique energy range which generally enables an unambiguous resolution of 

all hyperfine components. This advantage of Mössbauer spectroscopy makes it an ideal tool to study 

systems where iron exists in different spin and valence states, and different crystallographic positions. 

Conventional energy-domain Mössbauer spectroscopy uses radioactive sources whose brilliance 

is very low; hence high-pressure studies using diamond anvil cells (DACs) require long measuring times 

since beam focusing is not possible. This reduces the quality of the results due to pressure gradients, 

increased background, and restricts the maximum pressure at which measurements are possible. These 

problems can be solved by combining the advantages of high-brilliance third generation synchrotrons 

(high flux, extreme focusing of the beam) with the resolution of energy-domain Mössbauer spectroscopy 

to produce a synchrotron source of Mössbauer radiation. 

A synchrotron Mössbauer source (SMS) provides a high-brilliance beam of synchrotron radiation 

with an energy bandwidth of ~20 neV. In addition, SMS has several further properties that a radioactive 

source does not possess. The SMS beam is polarized up to 99%, and it consists 100% of recoilless 

radiation with zero background. These properties enable rapid and precise measurements of Mössbauer 

spectra of samples under extreme conditions.  

The possibility to develop such a source was first demonstrated at the Nuclear Resonance 

beamline ID18 (Rüffer and Chumakov, 1996) at the European Synchrotron Radiation Facility (ESRF) in 

1997 (Smirnov et al., 1997) . Technical details of the configuration used in the present work are given in 

Potapkin et al. (2012).  
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Figure 3-S1 Optical scheme for SMS experiment for high-pressure studies. U - undulator; HHLM – high-
heat load monochromator; HRM – high resolution monochromator; SMS: Si – Si (311) crystal; IB – 
enclosed furnace (mounted on a velocity transducer) with the iron borate crystal inside; KBM - 
Kirkpatrick-Baez mirrors; DAC – diamond anvil cell; D – avalanche photo diode detector. 

Fig. 3-S1 shows the experimental setup. The synchrotron beam passes through the undulator (U), 

a high-heat load monochromator (HHLM) with energy bandwidth of ~2 eV, and a high resolution 

monochromator (HRM) with energy bandwidth of ~15 meV. This cascade of monochromators is required 

to decrease the heat load on the iron borate crystal in order to prevent a temperature gradient. The SMS 

itself is a monochromator composed of two crystals. The key element of the source is a highly perfect 

iron borate crystal (FeBO3) enriched in the 57Fe isotope. The crystal is used in (333) pure nuclear 

reflection. For such reflection, electronic diffraction is forbidden, while nuclear diffraction is allowed. The 

crystal is placed in an external magnetic field of ~110 Oe and heated close to its Néel temperature of 

348.75 K. Under these conditions the hyperfine magnetic structure collapses to a single line. The crystal 

therefore reflects synchrotron radiation within an energy bandwidth of ~20 neV. Further details of the 

physics of the process are given in (Smirnov et al., 2011). The furnace is enclosed and special 

arrangements of the magnets are used in order to ensure homogenous heating and magnetic field for 

stable operation. The furnace with the crystal inside is mounted on a velocity transducer in order to 

modulate the energy. The purpose of the Si (311) crystal is to direct the beam emitted by the SMS in a 

direction parallel to the incoming synchrotron beam, which allows for a more convenient installation of 

different types of sample environment such as DAC, cryostat, furnace, etc. The SMS is followed by a 

focusing mirror (KBM), which allows focusing of the synchrotron beam to a roughly 10 x 10 µm2 spot size 

on the sample located in the DAC. The transmitted γ-quanta are monitored by an avalanche photo diode 

detector. 

During the SMS experiment the linewidth of the source is controlled before and after each 

sample measurement using K2Mg57Fe(CN)6, whose Mössbauer spectrum consists of a single line (Fig.3- 

S2). The velocity scale is calibrated using 25 µm thick natural α-iron foil (Fig. 3-S3). 

U

SMS

DAC
HRM

HHLM

Si

IB
KBM

D
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3.4.2 Sample synthesis 

All silicate perovskite samples were synthesized using a multianvil press. The experiments were 

performed using Cr2O3-doped MgO octahedra fitted with a LaCrO3 heater in combination with tungsten 

carbide cubes following the methodology described in (Keppler and Frost, 2005). Chemical compositions 

were measured using an electron microprobe (S4850) or a field emission scanning electron microscope 

(S4949 and S5083). Details of each experiment are given in Table 3-S1. 

 

3.4.3 DAC experiments 

Samples for DAC experiments were carefully selected from the run products to be homogeneous 

under an optical microscope. Small plate-like pieces of the material (typical dimensions ~30×30×15 μm3) 

were loaded together with ruby chips (pressure marker) into the sample chambers of DACs available at 

Bayerisches Geoinstitut. Diamonds with culets of diameter 120, 250, and 300 μm were used in different 

experiments depending on the pressure range. The sample chamber was prepared by drilling a hole in a 

pre-indented rhenium gasket, and the hole was filled with the sample material and the quasi-hydrostatic 

pressure medium, Ne. 

 

Figure 3-S3 (left) SMS spectrum of K2Mg57Fe(CN)6 used to monitor the source linewidth. 

Figure 3-S2 (right) SMS spectrum of 25 µm thick natural α-iron foil used for energy calibration. 
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Table 3-S1 Experimental details and sample compositions 

Run number S4850 S4949 S5083 
Sample designation #1, #2 #3 #4 

Starting material Mg(OH)2, SiO2, Al2O3, 
Fe2O3 MgO, SiO2, Al2O3, Fe2O3 MgO, SiO2, Fe2O3 

Pressure (GPa) 25 26 26 
Temperature (°C) 1300 1800 1800 

Run duration (min) 30 30 50 
Capsule Pt Re Re 

Run product Pv, Al-rich hydrous 
phase, quenched melt Pv Pv 

Cation proportions 
(for 3 O) 

   

Mg 0.60(1) 0.78(2) 0.94(3) 
Fe 0.40(1) 0.20(2) 0.06(1) 
Al 0.37(1) 0.05(1) - 
Si 0.63(1) 0.98(2) 1.00(2) 

Fe3+/ΣFe 0.80(5) (sample #1) 
0.70(5) (sample #2) 

0.50(5) 0.20(8) 

 

3.4.4 Laser heating  

We used a modified and enhanced version of the portable laser heating setup described 

previously (Dubrovinsky et al., 2009, 2010b). The setup was installed on beamline ID18 and consists of a 

SPI laser system (SPI100, wavelength 1064 nm, 100 W) coupled by an optical fibre to a UniHead system, 

which allows simultaneous visual observation of the sample, laser heating and evaluation of 

temperature. In order to ensure homogeneous heating of the samples, a laser spot with a diameter of 

about 50 µm was used. In order to guarantee homogeneous heating we flattened the power profile of 

the laser beam using a special optical device (π-shaper) mounted on the UniHead. 

Samples #2 and #3 were heated for a total of several hours in multiple cycles during continuous 

laser operation mode. Thermal radiation from the heated sample was collected by an Ocean Optics 

QE65000 spectrometer, and the resulting spectra were fitted to the Planck radiation function (Bassett 

and Weathers, 1986), which gave temperatures between 2000 and 2400 K. 
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3.4.5 SMS spectrum fitting  

SMS spectra can be fitted using the same approach for conventional energy domain Mössbauer 

spectra provided the following criteria are met: (a) the source lineshape is implemented as a normalised 

squared Lorentzian (instead of a normalised Lorentzian) (Smirnov et al., 2011): 

𝐼(𝐸) = 𝜋Γ � Γ/(2𝜋)
(𝐸−𝐸0)2+(Γ/2)2�

2
;                                                                           (S.1) 

(b) the full transmission integral is used to fit the data due to the high absorption and the lack of non-

resonant background; and (c) component areas of doublets and sextets are not fixed to ideal values (i.e., 

1:1 for quadrupole doublets and 3:2:1:1:2:3 for magnetic sextets) due to the polarised nature of the 

synchrotron source combined with the tendency for preferred orientation in the DAC. 

We fit all of the SMS spectra to three quadrupole doublets, one with small centre shift (average 

value ~0.35 mm/s) corresponding to Fe3+, and two with larger centre shift (average value ~1 mm/s) 

corresponding to Fe2+. We applied the conventional constraint of equal widths but allowed the area 

ratios of component doublets to vary, with all area ratios of doublets within a single spectrum 

constrained to be the same based on the reasonable assumption that the principal directions of the 

electric field gradient for both the A and the B sites are the same based on the crystallography of the 

perovskite structure. 
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Figure 3-S4 Room temperature Mössbauer spectra of FeAlPv samples at high pressure: (a) 
(Mg0.6Fe0.4)(Si0.63Al0.37)O3 perovskite (sample #1) at 83 GPa; (b) (Mg0.6Fe0.4)(Si0.63Al0.37)O3 perovskite 
(sample #2) at 78 GPa; (c) Mg0.78Fe0.2Al0.05Si0.97O3 perovskite (sample #3) at 75 GPa; (d) Mg0.94Fe0.06SiO3 
perovskite (sample #4) at 75 GPa. The spectra were fit to the same model shown in Fig. 3-1 (one Fe3+ 
doublet and two Fe2+ doublets) with the same colour scheme. Vertical red lines show that the positions 
of the Fe3+ doublets do not change with composition, demonstrating that Fe3+ remains in the high-spin 
state in FeAlPv over a wide composition range. 
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Figure 3-S5 Room temperature Mössbauer spectra of Mg0.78Fe0.2Al0.05Si0.97O3 perovskite (sample #3) at 86 
GPa taken (a) before; and (b) after laser heating. Vertical red lines show that the positions of the Fe3+ 
doublets do not change, demonstrating that there is no shift of Fe3+ from the A to the B site as a 
consequence of laser heating, and that Fe3+ remains in the high-spin state. 

 

3.4.6 Cation site distribution in the perovskite structure 

Run S4850 - (Mg0.6Fe0.4)(Si0.63Al0.37)O3 perovskite  

We conducted full structural refinements of a single crystal of silicate perovskite synthesised using 

identical starting materials and experimental procedure (with the exception that iron was not 57Fe 

enriched) using in situ X-ray diffraction data collected in a DAC at pressures up to 80 GPa and 

temperatures over 1700 K (Glazyrin et al., subm.). All refinements showed that both Fe2+ and Fe3+ 

occupied the A-site exclusively at all conditions studied, indicating the following site distribution: 

[Mg0.6Fe2+
0.1Fe3+

0.3]A[Si0.63Al0.37]BO3 

 

Run S5083 - (Mg0.94Fe0.06)SiO3 perovskite  

We selected a single crystal of silicate perovskite from the same high-pressure synthesis run and 

conducted a full structural refinement using SHELXL97 software on X-ray diffraction data collected at 
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ambient conditions using an Oxford Diffraction Xcalibur diffractometer. Details of the structural 

refinement will be published elsewhere. The refinement showed that all iron occupied the A-site 

exclusively, indicating the following site distribution based on the chemical composition derived from 

SEM analysis: 

[Mg0.94Fe2+
0.05Fe3+

0.01]A[Si]BO3 

 

Run S4949 - (Mg0.78Fe0.2Al0.05)Si0.97O3 perovskite  

From the chemical composition and the Fe3+/ΣFe ratio, we determined the following site distribution: 

[Mg0.78Fe2+
0.1Fe3+

0.1Al0.02]A[Si0.97Al0.03]BO3 

All iron occupies only the A-site. 

3.4.7 Electrical conductivity measurements 

Resistance measurements were conducted at high pressure and high temperature on a sample 

of Mg0.60Fe0.40Si0.63Al0.37O 3 perovskite (Fe3+/ΣFe = 0.93±0.3) that was synthesized in the same multianvil 

run described in (Glazyrin et al., subm.). We used a BX90-type DAC [Kantor et al., in preparation] where a 

standard brilliant cut diamond with 400 µm culet was used as the first anvil, and a conventional beveled 

diamond with 120 µm culet was used as the second anvil. To prepare the gasket, a 50 µm diameter hole 

was drilled in a 25 µm thick piece of rhenium foil, after which the drilled piece of rhenium was cut into 

two halves using a near infrared laser with the cutting plane passing through the middle of the hole. The 

two rhenium foil halves were coated with a gold layer roughly 2 µm thick using a simple sputter coater 

and then glued onto a synthetic single crystal diamond, thus providing a split-gasket hole configuration 

for the sample chamber. A platinum wire with 20 µm diameter was used in a linear four-point probe 

scheme (see Kuznetsov (2007) for technical details). Current was supplied through two platinum leads 

glued onto different halves of the split-gasket and voltage was measured using the other two leads. The 

particular construction of the DAC used enabled the platinum leads from the gasket to emerge freely 

from the DAC to then be connected to measuring devices, while thin ceramic tubes prevented potential 

contact of the platinum wires with the metallic body of the DAC. Small pieces of sample roughly 10-12 

µm in diameter and 5-7 µm thick were loaded into the middle of the split-gasket hole. Synthetic diamond 

powder (grain size less than 1 µm) placed in the slits between the halves of the split-gasket provided 

reliable insulation of the two halves of the gasket, while the sample in the split-gasket hole closed the 
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circuit. The current and voltage measurements were read out using multimeters. The sample was heated 

using a portable laser heating system as previously described (Dubrovinsky et al., 2009). 

Resistance data were collected at pressures up to 146 GPa at three different temperatures (Fig. 

3-S6). The quantity σ/σ30 (i.e., the electrical conductivity relative to the value at 30 GPa) was calculated 

based on the change in height of the sample as a function of pressure that was measured in a separate 

experiment. 

 
Figure 3-S6 Influence of pressure on the resistance of Mg0.60Fe0.40Si0.63Al0.37O3 perovskite (Fe3+/ΣFe = 
0.93±0.3) measured using a laser-heated DAC at different temperatures: blue – 1250±50 K; green – 
1800±50K; red – 2300±100K. 
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4.1 Abstract 

We report a Mössbauer spectroscopic study of a Fe2+-rich aluminous silicate glass and a Fe3+-rich 

sodium silicate glass measured in a diamond anvil cell up to 84 GPa. The hyperfine parameters vary 

smoothly with pressure and are consistent with a gradual increase in coordination number with 

pressure. Fe2+ and Fe3+ remain in the high spin state and show no evidence of spin crossover over the 

measured pressure range. A spin crossover may eventually occur at higher pressures; however the 

strong thermal broadening of the crossover region due to Boltzmann statistics implies that no sharp spin 

crossover would be expected at P,T conditions down to the base of the lower mantle. Our results in 

combination with recent solid/melt partitioning data in a chondritic system exclude the possibility of 

negatively buoyant melts in the Earth’s lower mantle solely due to strong preferential partitioning of iron 

into the melt phase. 

4.2 Introduction 

The physical properties of melts in the Earth’s mantle have a fundamental influence on the 

chemical and thermal evolution of the Earth. Especially the density contrast between solid and melt is a 

major factor affecting chemical stratification during an early magma ocean after the moon-forming 

impact (Tonks and Melosh, 1993; Agnor et al., 1999). At low pressure melt densities are usually smaller 

than the density of the corresponding solids, resulting in a buoyant melt ascending to the Earth’s surface. 

However, experiments have shown that ultramafic melts become denser than the surrounding solids in 

the upper mantle, while in the transition zone this density relationship is reversed (Rigden et al., 1984; 

Agee and Walker, 1988; Miller et al., 1991). For the lower mantle, extrapolation of low pressure 
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experiments suggests that density crossovers between solids and melts will also occur near the core 

mantle boundary (CMB) (Ohtani and Maeda, 2001). In support of this suggestion there exists 

seismological evidence of stable partial melts at the CMB (Williams and Garnero, 1996). 

In principle there are two mechanisms for melts becoming denser than solids. The first 

mechanism is by faster densification of the melt network with pressure, e.g., coordination changes 

occurring in a melt at lower pressure than in the solid, while the second mechanism is by preferential 

partitioning of heavier elements into the melt. Recently Nomura et al. (2011) proposed the second 

mechanism to occur in the mid part of the lower mantle based on experiments in an olivine composition 

(Mg0.89Fe0.11)2SiO4. They observed a sharp discontinuity in the pressure dependence of the Fe/Mg 

solid/melt partition coefficient at 76 GPa, resulting in a strong enrichment of Fe in the melt, which would 

produce a denser negatively buoyant melt. The sharp discontinuity was explained by an iron spin 

crossover seen in their XES data collected on (Mg0.95Fe0.05)SiO3 glass during room temperature 

compression. However, Andrault et al. (2012) reported a much lower degree of iron enrichment in 

silicate melt based on partitioning experiments at liquidus temperatures on a (Ca,Mg,Al,Si,Fe) oxide glass 

with chondritic composition, resulting in a melt that would be lighter than the surrounding mantle and 

hence would segregate upwards. 

In order to reconcile the difference between the results of Nomura et al. (2011) and Andrault et 

al. (2012), it is important to understand the electronic behavior of iron in both glass and melt as a 

function of composition. Partitioning experiments can only provide an indirect indication of the iron spin 

state, while a more direct determination comes from a method such as Mössbauer spectroscopy, which 

is a sensitive probe for detecting structural and spin changes in Fe-bearing materials.  

In this paper we present a Mössbauer spectroscopic study of a Fe2+-rich and a Fe3+-rich silicate 

glass measured in situ in a diamond anvil cell at pressures up to 84 GPa. We investigate the effect of 

pressure on the hyperfine parameters of these silicate glasses and determine whether spin crossover 

occurs, and then apply our results to the behavior of silicate melts at lower mantle conditions. 

4.3 Experimental details 

The NaFeSi2O6 (NFS) and (Mg0.823Fe0.135Al0.057)(Si0.982)O3 (F2B) glasses were prepared from 

stoichiometric mixtures of dried, reagent grade Na2CO3, MgCO3, Al2O3, SiO2, and 57Fe2O3 (95.86% 57Fe). 

The powdered mixtures were decarbonated at 750 °C for 12 h in platinum crucibles. Starting material of 

NFS glass was melted at 1100 °C in an electric furnace in air for 2 h. The temperature was then brought 
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to 1300 °C for 2 h and finally to 1450 °C for 30 min. The melts were quenched by rapid immersion of the 

bottom of the crucible in water, ground to a powder and re-melted with the same cycle. This grinding–

melting process was repeated three times to ensure good chemical homogeneity. Starting material of 

F2B glass was melted at 1600 °C in a Fe-saturated platinum crucible for 4 h and quenched by rapid 

immersion in a crucible of water. The ground F2B glass was then reduced in a gas-mixing furnace in a H2-

CO2 atmosphere at 700 °C and log fO2=-21 for 1 hour.  

Diamond anvil cells with diamond culet sizes of 250 µm and a rhenium gasket with a 120 µm 

diameter hole were employed. The fluorescence of ruby chips (Mao et al., 1986) was used to estimate 

pressure before and after each measurement, whereby the error in pressure was calculated from the 

difference of both values. 

We ran three experimental series: (1) F2B glass with neon as pressure transmitting medium 

measured on compression up to 83 GPa, (2) NFS glass without pressure transmitting medium measured 

on compression and decompression up to 56 GPa, and (3) NFS glass with neon as pressure transmitting 

medium measured on compression up to 84 GPa. For neon gas loading the method of Kurnosov et al. 

(2008) was employed. 

Mössbauer spectra of F2B glass were collected using the recently developed Synchrotron 

Mössbauer source (SMS) (Potapkin et al., 2012) at the Nuclear Resonance beamline (ID18) (Rüffer and 

Chumakov, 1996) at the European Synchrotron Radiation Facility (Grenoble, France). SMS spectroscopy 

enables the collection of energy domain Mössbauer spectra of small samples with relatively low iron 

concentrations in a timescale of only minutes, compared to days of collection time using a conventional 

Mössbauer source. Mössbauer spectra of NFS glass were recorded at room temperature in transmission 

mode on a constant acceleration Mössbauer spectrometer with a nominal 370 MBq 57Co high specific 

activity source in a 12-µm-thick Rh matrix. The velocity scales for all series were calibrated relative to a 

25-µm-thick natural α-Fe foil and center shift values are given relative to α-Fe. F2B glass spectra were 

fitted using a full transmission integral with a normalized Lorentzian-squared source lineshape (Potapkin 

et al., 2012) and NFS glass spectra were fitted in the thin absorber approximation. The SMS linewidth 

was controlled before and after each sample measurement using K2Mg57Fe(CN)6. The spectra were fitted 

using the extended Voigt based fitting method (xVBF) (Lagarec and Rancourt, 1997) as implemented in 

the MossA software package (Prescher et al., 2012). 
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4.4 Results 

Figure 4-1a shows selected Mössbauer spectra and Fig. 4-1b shows the variation in center shift 

(CS) and quadrupole splitting (QS) with pressure of experimental series (1). The asymmetry in the height 

and width of the two peaks can be explained by a correlation between the CS and the QS. This 

correlation can be successfully fitted using the xVBF method (Lagarec and Rancourt, 1997), which was 

especially developed for disordered systems such as glasses. In the xVBF approach Gaussian distributions 

of CS and QS are utilized, whereby a linear correlation is allowed between the two parameters. The 

spectra were fitted with a Fe2+ doublet having a xVBF CS-QS coupling between -0.5 and -0.6; see Lagarec 

& Rancourt (1997) for further details. The plotted values of CS and QS are the means of the Gaussian 

distributions of the respective parameters. The CS decreases almost linearly up to 50 GPa and stays 

constant up to 83 GPa; whereas the QS increases up to 30 GPa and stays constant at higher pressures up 

to 83 GPa.  

Figure 4-2 shows selected spectra of the NFS glass measurements. The spectra are composed of 

an intense Fe3+ doublet and a weak Fe2+ doublet. The widths of the doublets in experimental series (2) 

are highly broadened compared to those in experimental series (3). This is likely an effect due to the 

absence of a pressure transmitting medium, which results in higher pressure gradients and stresses 

throughout the sample chamber. To account for this broadening in experimental series (2) the Fe3+ site 

was modeled with two Gaussian QS components, whereas in experimental series (3) Fe3+ was modeled 

with only one QS component. The correlation between CS and QS of Fe3+ is almost zero for both sites in 

both experiments. Figure 4-3 shows the variation in hyperfine parameters with pressure. The CS and QS 

 

Figure 4-1 (a) Selected Mössbauer spectra of the F2B glass. (b) Variation in center shift (CS) and 
quadrupole splitting (QS) of Fe2+ with pressure up to 83 GPa. Error bars are given as 2σ of the fitted 
parameters.  
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values of experimental series (2) were calculated as the weighted average of the two Gaussian QS 

distributions. The QS for both Fe2+ and Fe3+ increases up to 15 GPa, it is nearly constant between 15 and 

60 GPa and it increases moderately above 60 GPa. The CS of Fe2+ and Fe3+ increases up to 15 GPa and 

then remains constant within experimental uncertainty up to 84 GPa. The relative area of the Fe3+ 

absorption to the Fe2+ absorption in series (2) increases from 70 % at 0.3 GPa to 83 % at 56 GPa and 

decreases on compression back to 77 %; whereas it increases in series (3) from 80 % at 1.7 GPa to 93 % 

at 84 GPa with pressure (Fig. 4-2).  

 

Figure 4-2 Selected Mössbauer spectra of the NFS glass. The upper three spectra are from the 
experimental series (2) and show from top to bottom the initial spectrum, the highest achieved 
pressure, and the spectrum after decompression. The lower two spectra are from experimental 
series (3) and show a spectrum at low and high pressure. 
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4.5 Discussion 

At sufficiently high pressures, glasses typically adapt their atomic structure to compression by 

changing the coordination of the atoms and decreasing their polyhedral volumes. This behavior has two 

opposing effects on the CS of the corresponding Mössbauer doublet. CS is a measure of the difference in 

s-electron density at the nucleus between the source and the absorber, whereby the sign of the change 

in CS for a given change in s-electron density is determined by the sign of the relative change in the 

nuclear radius during the transition induced by the Mössbauer γ-ray. The excited state of 57Fe is smaller 

than the ground state which means that CS decreases when the electron density at the nucleus 

increases. Pure compression of a coordination polyhedron will decrease CS with pressure, whereas a 

change to a higher coordination number typically increases CS, since the distance to the surrounding 

oxygen ions increases and consequently the electron density at the nucleus decreases.  

The CS of Fe2+ in the F2B glass and Fe2+ and Fe3+ in the NFS glass behave differently with 

compression. In the NFS glass the CS of the Fe3+ and the Fe2+ sites increases up to around 15 GPa and 

remains essentially constant up to the highest pressures achieved, which is consistent with a gradual 

increase in coordination number up to 15 GPa. On the other hand in the F2B glass the CS of Fe2+ 

 

Figure 4-3 Variation of center shift and quadrupole splitting for Fe2+ and Fe3+ with pressure in NFS 
glass up to 84 GPa. The symbols for the experimental series (2) and (3) are indicated in the legend 
and parameters for the two series are plotted together. Error bars are given as 2σ of the fitted 
parameters. 
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decreases up to 50 GPa and remains constant thereafter, which is consistent with a decreased 

interatomic distance up to 50 GPa. A similar trend has been observed for Fe2+ in amorphous 

(Mg0.9Fe0.1)2SiO4 (Rouquette et al., 2008). However, according to the general predicted behavior of 

transition metals in silicate glasses under pressure, the Fe coordination number should increase with 

pressure (e. g. Keppler and Rubie, 1993). This suggests that while the average coordination number of 

Fe2+ in the F2B glass increases with pressure, the compression of the polyhedron due to increased 

pressure has a stronger influence on the s-electron density, resulting in a net CS decrease with pressure. 

The constant value of CS above 50 GPa suggests that there may be a change in compression mechanism 

at this pressure, for example a change in the coordination number of Si from 4- to 6-fold. Results for SiO2 

glass in the literature give two different transition pressures that have been estimated from 

experimental data obtained from different methods. Brillouin spectroscopy (Zha et al., 1994; Murakami 

and Bass, 2010), X-ray emission spectroscopy (XES) (Lin, Fukui, et al., 2007) and X-ray Raman scattering 

(Lee et al., 2008) give an estimate of 25 GPa, while X-ray diffraction measurements suggest that the 

density of SiO2 glass approaches that of coesite around 40-50 GPa (Sato and Funamori, 2008; Funamori 

and Sato, 2010). The former methods likely indicate the onset of a gradual Si coordination change, while 

the latter method likely indicates the pressure at which most of the Si atoms are in 6-fold coordination in 

order to achieve a density similar to coesite. In addition molecular dynamic simulations of MgSiO3 liquid 

show the absence of 4-fold-coordinated Si around 55 GPa (Stixrude and Karki, 2005). It is therefore 

reasonable to suggest that the change in slope of the CS with pressure around 50 GPa of Fe2+ in the F2B 

glass is related to a change in Si coordination number from 4- to 6-fold.  

Quadrupole splitting (QS) is a measure of the electric field gradient (EFG) acting on the nucleus. 

In the crystal field model the EFG can be expressed as the sum of a lattice term and a valence term 

(Ingalls, 1964). The lattice term arises from a deviation from cubic symmetry of the surrounding atoms in 

the crystalline lattice, while the valence term arises from an asymmetry in the charge distribution of the 

valence electrons. The QS is therefore affected by the valence state and the coordination environment as 

well as the distortion of the crystallographic site. The pressure dependence of the QS can be negative or 

positive, depending on the relative magnitude of the valence and lattice terms (e. g. McCammon, 2000). 

The QS of Fe2+ and Fe3+ in both glasses increases in the first 15-30 GPa and remains roughly constant up 

to the highest pressures achieved (similar to the behavior of Fe2+ in amorphous (Mg0.9Fe0.1)2SiO4; 

Rouquette et al. 2008). The increase can be understood as an increased distortion of the coordination 

polyhedron, and the slope of the QS increase with pressure is similar to that seen in the QS pressure 
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dependence of high-spin Fe2+ and Fe3+ in silicate perovskite (e. g. McCammon et al., 2008) and high-spin 

Fe2+ in ferropericlase (e.g. Lin et al., 2006). 

The change in relative area of the Fe3+ site over the Fe2+ site with pressure in the NFS glass might 

be attributed to one or more of several effects. The first is a change of the recoil-free fractions of Fe2+ 

and Fe3+ relative to one another with increasing pressure. The recoil-free fraction, which is related to the 

mean-square displacement of the nucleus, could change differently with pressure for Fe3+ and Fe2+ due 

to differences in the change of the coordination environments. A second possibility is a pressure-induced 

oxidation of Fe2+, either by reacting with residual oxygen adhering to the sample powder or by the 

disproportionation reaction 3Fe2+2Fe3++Fe0, forming small amounts of nanoparticle metallic iron that 

would not be easily detectable in the Mössbauer spectra. Without further information from other 

methods, it is not possible to further clarify the origin of the change in relative areas. Whatever the 

cause, however, the CS and QS hyperfine parameters of the Fe2+ and Fe3+ sites would not be affected, 

and therefore the conclusions drawn in this study remain the same. 

The hyperfine parameters associated with the low-spin states of Fe2+ and Fe3+ in iron-bearing 

compounds generally differ significantly to their high-spin counterparts, providing a probe of spin 

crossover. CS and QS show a large decrease during HS-LS crossover of Fe2+ due to drastic changes in the 

shielding of the nucleus by d-electrons and the more symmetrical distribution of d-electrons in the LS 

state. During Fe3+ HS-LS crossover CS also decreases; however QS shows a large increase due to the loss 

of symmetry of the d-electron distribution. By comparing expected changes for HS to LS crossover of Fe2+ 

and Fe3+ with the measured hyperfine parameters in this study (Fig. 4-4), it is apparent that there is no 

evidence for spin crossover in either of the studied glasses. 

Nomura et al., (2011) found evidence using X-ray emission spectroscopy for complete Fe2+ spin 

crossover in Mg0.95Fe0.05SiO3 glass in a narrow pressure range from 59 to 77 GPa, while partial spin 

crossover of Fe2+ was found over a much larger pressure range in a pressure-induced amorphised sample 

of (Mg0.9Fe0.1)2SiO4 (Rouquette et al., 2008). The higher iron concentration in the latter sample leads to 

enhanced iron-iron electronic exchange which stabilises the high-spin state relative to the low-spin state 

(e. g. Kantor et al., 2009). We observed no Fe2+ spin transition in the F2B glass up to 83 GPa, which can 

be understood through stronger iron-iron electronic exchange compared to amorphised (Mg0.9Fe0.1)2SiO4 

due to its higher iron concentration (Fe#=0.14), and also larger interatomic distances due to substitution 

of the larger Al3+ for the smaller Si4+. A similar argument can be applied to explain why no Fe2+ spin 

crossover is observed up to 84 GPa in the NFS glass. Although spin crossover might eventually occur at 
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higher pressures, the strong thermal effect which increases the width of the crossover region according 

to Boltzmann statistics (e. g. Kantor et al., 2009) means that no sharp spin crossover would be expected 

at P,T conditions down to the base of the lower mantle. 

We observe no evidence for Fe3+ spin crossover in the NFS glass up to 84 GPa, in contrast to 

reports in the literature for several other Fe3+-rich oxides and silicates (Hearne et al., 1995; Xu et al., 

2001; Pasternak et al., 2002; Sarkisyan et al., 2002; Catalli et al., 2010, 2011; Hsu et al., 2011). In those 

studies Fe3+ occupies a relatively undistorted octahedral site, for example Fe3+ in ASiO3 perovskite 

undergoes a HS-LS crossover at ~50 GPa only when it occupies the octahedral B-site (Catalli et al., 2010, 

2011; Hsu et al., 2011); whereas it remains in the HS state up to at least ~120 GPa when it occupies the 

8-12-coordinated A-site (Catalli et al., 2010; Hsu et al., 2011). The coordination of Fe3+ in the NFS glass at 

ambient pressure is 4- to 5-fold (Weigel et al., 2008). The increasing CS from 0 to 15 GPa suggests a 

gradual change to higher coordination number, although it is not possible to determine the exact 

coordination population of Fe3+ from Mössbauer spectroscopy. The absence of a HS-LS spin crossover of 

Fe3+ in the NFS glass, however, suggests that Fe3+ coordination at high pressure differs from the highly 

symmetrical octahedral environment of the B-site in the perovskite structure. The crystal field splitting, a 

major driving factor for HS-LS crossover, is largest in an octahedral environment (e.g. Burns, 1993); 

 

Figure 4-4 Variation of center shift (CS) and quadrupole splitting (QS) for Fe2+ and Fe3+ in glasses. 
Symbols indicate results from this study, where symbol size increases with increasing pressure. The 
shaded regions indicate values derived from Mössbauer spectra at ambient conditions of HS Fe2+ and 
HS Fe3+ in inorganic glasses (Dyar, 1985). Values of ΔCS and ΔQS during HS to LS transitions were 
taken from the literature for Fe2+ (amorphous olivine – Rouquette et al. (2008)) and Fe3+ (rare earth 
orthoferrites and FeBO3 – Hearne et al. (1995); Xu et al. (2001); Sarkisyan et al. (2002)) in order to 
estimate the corners of the regions where LS hyperfine parameters would be predicted to fall for the 
glasses in the current study (indicated in red and green for LS Fe2+ and LS Fe3+, respectively). 
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hence a different coordination would increase the pressure of HS-LS crossover. To more accurately 

determine the coordination of Fe3+ in NFS glass at high pressure requires further investigation with 

measurement methods such as EXAFS that are more diagnostic for coordination number. 

Nomura et al. (2011) reported a discontinuity around 76 GPa in the variation of the Fe-Mg 

solid/liquid partition coefficient of laser-heated olivine with pressure that they attributed to spin 

crossover in the melt. The sharpness of the discontinuity (width < 3 GPa) and the relative invariance of 

partition coefficients with pressure extending on either side of the discontinuity would require complete 

spin crossover over a narrow pressure range. Such behaviour would imply not only negligible iron-iron 

interactions in the melt and minimal variation of coordination environments between different iron 

atoms, but also virtually no thermal broadening of the width of the transition region (e.g. Kantor et al., 

2009). Shock-wave data from a recent study of liquid Fe2SiO4 up to 161 GPa could be fit to a single 

Hugoniot (Thomas et al., 2012), suggesting either the absence of spin crossover or its occurrence over a 

wide pressure range. Andrault et al. (2012) performed partitioning experiments similar to those of 

Nomura et al. (2011), but used a chondritic-type material instead, and observed no discontinuity in the 

variation of solid/melt partition coefficient with pressure. Although their partition coefficients (KD) were 

significantly higher (meaning that the chondritic melt is less iron-rich relative to the solid phases than the 

(Mg,Fe)2SiO4 melt at all pressures), the chondritic KD values do show a linear decrease from 0.60(5) at 

42 GPa to 0.47(5) at 120 GPa. This decrease means that the chondritic melt does become more Fe-rich 

with increasing pressure, possibly due to a coordination change in the melt that stabilizes a higher 

concentration of iron (e.g. Murakami and Bass, 2011). However, the data of Andrault et al. (2012) lack a 

discontinuity, indicating that no sharp spin crossover occurs in chondritic melts at depths of the Earth’s 

lower mantle. The results of our Mössbauer spectroscopy investigation of the electronic behavior of Fe 

in glasses suggests that Fe2+ and Fe3+ will remain in the HS state in more complex Al- and Na-bearing 

melts. Hence the magnitude of Fe enrichment is not sufficient for a chondritic silicate melt to become 

negatively buoyant in the Earth’s lower mantle (Andrault et al, 2012). Nevertheless, such Fe enrichment 

coupled with the structural changes in the Si polyhedron proposed by Murakami and Bass (2011) might 

be sufficient to generate negatively buoyant melts near the CMB, which could explain the anomalies at 

the CMB seen by seismology (Williams and Garnero, 1996). 

4.6 Acknowledgements 

We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron 

radiation (ID18) and we would like to thank Jean-Philippe Celse for additional technical assistance. The 

67 
 



Chapter 4 Iron spin state in silicate glasses 

project was partly supported by funds from the German Science Foundation (DFG) through both the 

Priority Programme SPP1236 and a normal research grant, from the PROCOPE exchange programme, 

and from the German Federal Ministry for Education and Research (BMBF). 

 

68 
 



 

5 The effect of Fe spin crossovers on its partitioning behavior and 

oxidation state in a pyrolitic Earth’s lower mantle system 
by C. Prescher1*, F. Langenhorst2, L. Dubrovinsky1 and V. Prakapenka3 

1Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany  
2Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, 
D-07745 Jena, Germany 
3Consortium for Advanced Radiation Sources (CARS), University of Chicago, Chicago, IL 60637, USA 
*Corresponding author. Email: clemens.prescher@gmail.com 
 

For submission to Science 

5.1 Abstract 

Geophysical interpretations of the Earth’s interior and its dynamics are significantly influenced by 

phase transitions of the constituting minerals and their chemical compositions. Pressure induced Fe spin 

crossovers in the main mineral phases of the Earth’s lower mantle, Mg-Fe silicate perovskite and 

ferropericlase, have been suggested to influence Fe partitioning resulting in separate layers with distinct 

physical properties. However, previous results remain ambiguous regarding the exact effect of Fe spin 

crossovers and the actual transition pressures. We observe here a continuous decrease of the Fe2+-Mg 

partition coefficient KD between silicate perovskite and ferropericlase from 25 GPa to 79 GPa in a 

pyrolitic Earth’s lower mantle system. At about 97 GPa the KD significantly increases with an 

accompanied decrease of the Fe3+/ΣFe ratio in perovskite, which therefore leads to an amplified change 

in the Fe2+ KD. We conclude that the Fe2+ high-spin to low-spin crossover in ferropericlase and the Fe2+ 

high-spin to intermediate spin crossover in perovskite at mid-lower mantle pressures (30-80 GPa) exert 

no control on KD, but the Fe2+ intermediate-spin to low-spin crossover in silicate perovskite at about 100 

GPa preferentially partitions Fe into silicate perovskite and reduces its Fe3+ content. The change in 

oxidation state and partitioning behavior of Fe will increase thermal conductivity and probably could 

induce a thermal boundary layer at this depth. 

5.2 Manuscript 

The concentration of iron and its oxidation state in minerals of the Earth’s lower mantle are 

fundamental for understanding the structure and dynamics of the Earth’s interior. Both factors 

significantly influence densities, elasticity, and transport properties such as electrical and thermal 

conductivities of the major minerals constituting the lower mantle. In comparison to the complex 

structure of the Earth’s upper mantle, the lower mantle is considered to be relatively homogeneous. 
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However, recent seismological studies have demonstrated that discontinuities exist in the upper and 

lower sections of the lower mantle (Hitoshi and Fenglin, 1994; Williams and Garnero, 1996; Kaneshima, 

1999; van der Hilst, 1999). These discontinuities have been attributed either to the presence of remnant 

subducted slabs (Hitoshi and Fenglin, 1994; Kaneshima, 1999), melts (3), or electron spin crossovers in 

Fe-bearing materials (Badro et al., 2003b). To assign these discontinuities to a specific origin, precise 

investigation of phase relations and partitioning behavior between the minerals constituting the Earth’s 

lower mantle is needed. 

In a pyrolitic mantle system, major phases constituting the Earth’s lower mantle are Mg-silicate 

perovskite (Mg-Pv), ferropericlase (Fp) and Ca-silicate perovskite (Ca-Pv). In addition, majorite garnet 

(Fujino et al., 2012) and post-perovskite (Murakami et al., 2004) are present in the uppermost and 

lowermost parts of the lower mantle, respectively. Experimental investigations in simplified MgO-FeO-

SiO2 systems have shown that Fe preferentially partitions into Fp relative to Mg-Pv (Ito and Takahashi, 

1989; Sinmyo et al., 2008; Sakai et al., 2009; Narygina et al., 2011; Nakajima et al., 2012). However, in 

more complex systems, particularly in the presence of Al, the Fe-Mg partitioning coefficient between 

Mg-Pv and Fp [KD =(Fe/Mg)Mg-Pv/(Fe/Mg)Mw] increases considerably due to the coupled incorporation of 

Fe3+ and Al3+
 for Mg2+ and Si4+ in Mg-Pv (Frost and Langenhorst, 2002; Kesson et al., 2002; Murakami et 

al., 2005; Irifune et al., 2010). Laser heated diamond anvil cell (LHDAC) studies report a KD of ~0.4-0.5 in 

the pressure and temperature conditions throughout the entire lower mantle (Kesson et al., 2002; 

Murakami et al., 2005). However, multi-anvil studies have shown a KD increasing to almost unity in the 

top of the lower mantle (30 GPa) with a subsequent drop in KD at 40 GPa to the values obtained by 

LHDAC experiments (Irifune et al., 2010). All of the previous investigations on the Fe partitioning 

behavior in the Earth’s lower mantle have reported KD values for bulk iron content in the constituting 

minerals, neglecting the oxidation state of iron. It is however well known that Fe3+ is structurally 

stabilized in Mg-Pv (Frost et al., 2004) and thus the oxygen fugacity may exert an important control on 

the partitioning of iron in the Lower mantle. Furthermore, the Fe3+ content is a major factor determining 

the physical properties of Mg-Pv and Fp, such as their elasticities (Glazyrin et al., subm.) and thermal 

conductivities (Goncharov et al., 2009; Goncharov, Prakapenka, et al., 2010). Besides the Fe3+ content, 

electron spin crossovers of Fe in Fp and Mg-Pv have been proposed to significantly alter the KD in favor of 

the phase with stable Fe (Badro et al., 2003a).  

To estimate the effect of spin crossovers on the partitioning behavior and oxidation state of Fe, 

we have separately determined the Fe2+ and Fe3+ partitioning coefficients between Mg-Pv and Fp in a 

pyrolitic lower mantle system. LHDAC experiments were conducted in the pressure range from 26 to 130 
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GPa and at temperatures along a typical adiabatic geotherm (Supplementary materials). The chemical 

compositions of the coexisting minerals in the recovered samples were quantified by energy dispersive x-

ray spectroscopy in the transmission electron microscope. Fe valence states were determined by 

Mössbauer spectroscopy for the starting material and by electron energy loss spectroscopy (EELS) for the 

recovered diamond anvil cell samples. 

The concentrations of major elements in Mg-Pv stay almost constant over the entire pressure 

range investigated (Table S2), whereas the Fe content in Fp increases from 26 GPa to 79 GPa, drops at 

97 GPa and increases again at 130 GPa. The resulting bulk Fe KD is thus largely controlled by the variation 

of Mg and Fe contents in Fp. The KD linearly decreases from 0.58 at 26 GPa to 0.45 at 79 GPa, then 

abruptly increases to 0.57 at 97 GPa and decreases again to 0.48 at 130 GPa (Fig. 1(a)). The Fe3+/ΣFe ratio 

in Mg-Pv is 42(5) % in the starting material (Fig S1) and stays almost constant up to 79 GPa; at 97 GPa it 

drops to ~30 % (Fig. 2(a),(d)). On the contrary, the Fe3+/ΣFe ratio of Fp increases from under 5 % in the 

starting material to about 16 % at 59 GPa and stays constant up to 130 GPa (Fig. 2(b),(d)). By combining 

bulk Fe KD and the Fe3+/ΣFe ratios we can estimate the partitioning coefficient of Fe2+ and Fe3+ separately 

(Fig. 1(b), S1). The Fe3+ partitioning coefficient decreases in the investigated pressure range and reaches 

almost unity at 130 GPa (Fig. S2), whereas the Fe2+ partitioning coefficient first deceases linearly up to 79 

GPa from 0.4 to 0.22, jumps to 0.57 at 97 GPa and decreases again at 130 GPa (Fig. 1(b)).  

Figure 5-1 (a) Variations of the Fe-Mg KD between Mg-Pv and Fp in pyrolite as a function of pressure. 
Data is compared with previous studies on a pyrolitic lower mantle assemblage. (b) Calculated Fe2+-
Mg KD between Mg-Pv and Fp in pyrolite on the basis of the bulk Fe KD and Fe3+/ΣFe ratios estimated. 
The Fp Fe3+/ΣFe ratio at 97 GPa has been estimated by linear interpolation between the adjacent 
points. The pressure evolution shows a discontinuity at about 97 GPa probably produced by the IS-LS 
crossover of Fe2+ in Mg-Pv. 

 

 

71 
 



Chapter 5 Partitioning behavior and oxidation state of Fe in the Earth’s lower mantle 

In the last decade, it has been demonstrated by experimental and theoretical studies that an 

electronic high-spin (HS) to low-spin (LS) crossover of Fe2+ occurs in Fp over a large pressure range from 

~35 GPa to 80 GPa (Badro et al., 2003b; Lin et al., 2005; Lin, Vankó, et al., 2007). The effective ionic 

radius of Fe2+ in LS state is smaller than that of Mg2+, which should significantly alter the partitioning 

behavior. Recently, this spin crossover has been proposed to induce a discontinuity in KD in a pyrolitic 

composition at ~40 GPa (Irifune et al., 2010). However, our results and previous estimates (Murakami et 

al., 2005) lack abrupt changes at this pressure and show a rather smooth decrease of KD, which is a 

reasonable behavior considering the broad pressure range of the spin crossover. Two other studies using 

San Carlos olivine with a composition of (Mg0.9Fe0.1)SiO4 as starting material proposed a gradual decrease 

in KD above pressures of ~70 GPa (16, 17). On the contrary, a careful examination of chemical 

heterogeneity using the same starting material and LHDAC technique actually shows an increase of KD in 

this pressure range (Sinmyo et al., 2008). Thus, it is unclear whether the Fe2+ spin crossover in Fp really 

affects the KD in an olivine system or whether variations can be explained by experimental uncertainties. 

In case of pyrolitic composition reported so far data suggest that the spin crossover in Fp does not have a 

pronounced effect on KD (Fig. 1 and (Murakami et al., 2005)). 

 

Figure 5-2 Respective Fe L2,3 electron energy loss spectra (EELS) of (a) Mg-Pv and (b) Fp at each 
pressure point. (c) Mössbauer spectrum of the pyrolitic starting material synthesized in a multianvil 
apparatus. (d) Variation in Fe3+/ΣFe ratio of Mg-Pv and Fp in pyrolitic lower mantle system with 
pressure and the respective geotherm temperatures. 
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Electronic spin crossovers of Fe have also been reported for Mg-Pv but data on the spin 

crossover pressures do not give a uniform picture. Some authors propose an onset of a Fe2+ HS to 

intermediate-spin (IS) crossover at about 35 GPa (McCammon et al., 2008), whereas others suggest that 

Fe2+ and Fe3+ occupying the bicapped trigonal prism (“A”) crystallographic site stay in HS state, and only 

Fe3+ occupying the octahedral (“B”) site undergoes HS to LS crossover at 40-60 GPa (Catalli et al., 2010). 

Additionally, it has been shown that Fe2+ becomes LS in Mg-Pv at about 110 GPa at high temperature 

(McCammon et al., 2010). The ionic radii of HS and IS Fe2+ are similar, whereby there is a decrease in 

electronic entropy which may lower the KD at the HS-IS crossover. However, the IS-LS crossover occurs 

over a large pressure range (McCammon et al., 2008) and overlaps with the HS-LS crossover in Mw which 

makes it difficult to assign the smooth decrease of KD to either spin crossovers. Nevertheless, a relatively 

narrow Fe2+ IS to LS crossover would result in a preferential partitioning of Fe2+ into Mg-Pv due to a 

change in atomic radii being shown by an increase in KD. This is exactly what can be seen in the behavior 

of the bulk and Fe2+ KD (Fig. 1) at ~100 GPa. An effect of the HS-LS crossover in Fe3+ occupying the B-site 

of the Mg-Pv structure on the KD in a pyrolitic composition is improbable. From calculated cation 

occupation (table S2) of the A and B sites of Mg-Pv and single crystal XRD (Glazyrin et al., subm.) it has 

been shown that Fe3+ only occupies the A site. 

The discontinuous change in KD is mainly caused by a decrease in Fe content in Fp and is 

accompanied by a relative decrease of the Fe3+ content in Mg-Pv, whereby the bulk Fe concentration in 

Mg-Pv remains the same, resulting in an amplified increase in the Fe2+ KD (Fig 1). On the basis of the 

change in KD and the change in Fe3+ in Pv at 97 GPa we propose that the electronic IS-LS crossover of Fe2+ 

not only affects the partitioning behavior of Fe2+, it also may cause a self-reduction of Fe3+ to Fe2+ in Mg-

Pv. Experimental investigations of the Fe3+/ΣFe ratio in Al-bearing Mg-Pv at low pressures have shown 

that the Fe3+ content is mainly controlled by the Al content due to the coupled substitution of (Mg2+,Fe2+) 

- Si4+ with Fe3+- Al3+
 (Lauterbach et al., 2000; Frost and Langenhorst, 2002). Due to the Fe2+ IS-LS crossover 

this relationship is eventually reversed at high pressures. The coupled substitution mechanism is still 

dominant, but the self-reduction of Fe3+ to Fe2+ results in a decreasing Al content (Fig. S2). The Al content 

of Ca-Pv and Mw stays constant at this pressure; therefore it is unclear where the excessive Al remains. A 

possibility would be the formation of a small amount of an Al-rich phase, although we did not see any 

direct evidence for the presence of the additional phase either in-situ by x-ray diffraction or in the TEM. 

The reduction of Fe3+ to Fe2+ needs to be balanced by oxidation of some other components. 

Diamond or volatile species such as CH4 or H2 could be oxidized to form CO2 or H2O. In the DAC 

experiments probably the diamond anvils were the reaction partner; however, the budget of those 
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components in the Earth’s lower mantle is too low (probably on the order of 2000 p.p.m. (Wood et al., 

1996)) to account for the reduction alone. A more realistic scenario for the Earth would be that the 

amount of metallic Fe by disproportionation of Fe2+ (Frost et al., 2004) during crystallization of an early 

magma ocean is reduced at this depth.  

Another important effect of the change in Fe3+ content of Mg-Pv is the induced change in 

thermal conductivity. It has been shown that the radiative contribution of the thermal conductivity in 

Mg-Pv mainly depends on its Fe3+ content due to Fe2+-Fe3+ and Fe3+-O2- charge transfer bands (Goncharov 

et al., 2009; Goncharov, Struzhkin, et al., 2010). A decrease of Fe3+ content at 97 GPa will increase the 

thermal conductivity, creating a discontinuity which could act as thermal boundary layer between the 

mid-lower mantle and the lowermost lower mantle. 

5.3 Materials and methods 

A pyrolitic starting powder was prepared from reagent grade oxides with Fe added as hematite. 

The oxides were ground together, cold pressed into pellets and then fired in a CO-CO2 gas mixing furnace 

at 1000 °C for 1 day at an oxygen fugacity 2 log units below the fayalite magnetite quartz buffer. 

Quenched samples were re-ground thoroughly. The pyrolitic lower mantle assemblage was synthesized 

employing a multianvil press with 7/3 octahedral pressure assemblies. A LaCrO3 furnace and a Re capsule 

were used. The experiment was run for 8 hours at 25 GPa and 1650 °C. The recovered sample was 

crushed and subsequently used as starting material for the diamond anvil cell experiments. A Mössbauer 

spectrum of the starting material was recorded at room temperature in transmission mode on a 

constant acceleration Mössbauer spectrometer with a nominal 370 MBq 57Co high specific activity source 

in a 12- µm-thick Rh matrix. The velocity scale was calibrated relative to a 25-µm-thick natural α-Fe foil. 

The spectrum was analyzed with the MossA software package (Prescher et al., 2012).  

Six separate laser heated diamond anvil experiments between 33 to 130 GPa were conducted. 

Ne was used as pressure medium and pressure calibrant (Kurnosov et al., 2008). A double-sided YLF laser 

system with a Pi-shaper was used for heating the samples to temperatures corresponding to respective 

geotherm temperatures at each pressure. Each sample was heated for at least 30 minutes to ensure 

equilibrium. Detailed experimental conditions are given in table S1. X-ray diffraction maps of every 

experiment were measured before and after heating using a monochromatic X-ray beam (0.3344 Å) at 

13ID-D of the Advanced Photon Source (APS), Argonne National Laboratory (ANL).  
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Thin slices of 30-60 nm thickness were prepared from the central laser heated part of the 

recovered samples and the starting material using the FEI Quanta3D field-emission FIB-SEM. These 

slices were observed in a PHILIPS CM20 FEG (field emission gun) STEM operating at 200 kV. To reduce 

electron irradiation damage during operation, TEM thin foils were cooled to nearly liquid nitrogen 

temperature (ca. 100 K) in a Gatan cooling holder. Compositions were measured with a ThermoNoran 

Vantage energy-dispersive (EDX) system equipped with a Norvar ultra-thin window and a germanium 

detector. The method of van Cappellen and Doukhan (Cappellen and Doukhan, 1994) for quantification 

of EDX microanalysis was used. EDX maps were measured for every recovered sample in order to detect 

possible diffusion gradients. The Fe3+/ΣFe ratios were analyzed using a Gatan PEELS 666 (parallel electron 

energy-loss spectrometer). The determination of the Fe3+/ΣFe ratio was based on the quantification 

method of (van Aken and Liebscher, 2002). This method is based on the white line intensities at the Fe 

L23 edge. Fe L23 ELNES spectra were measured in diffraction mode with convergence and collection semi-

angles of α=8 mrad and β=2.7 mrad and an energy dispersion of 0.01 eV per channel. An energy 

resolution, measured as width of the zero-loss peak at half maximum, of 0.8-0.9 was obtained. Special 

care was taken to only measure fresh crystalline grains of magnesium silicate perovskite, since Mg-Pv 

easily amorphizes under the high electron flux needed for EELS measurements. To check for possible 

beam induced changes in valence state, six spectra were measured in a time series with integration 

times of 20 s each. Spectra were then corrected for dark current and channel-to-channel gain variation. 

The pure single-scattering core-loss signal was extracted by subtracting an inverse power-law 

background and removing the multiple scattering contribution by the Fourier-ratio technique (Egerton, 

1996). The Fe3+/ΣFe ratio of Fp at 97 GPa is missing due to a sample loss during the investigation in the 

TEM. However, there is no anomaly expected at this pressure for the Fe3+/ΣFe ratio in Fp, since both 

adjacent ratios are almost the same. Error evaluation for the Fe3+/ΣFe ratios is difficult. Van Aken and 

Liebscher (2002) reported that the errors using their white line integration method would be on the 

order of 0.015. However, we have chosen the errors to be larger to be confident that the variation of 

Fe3+/ΣFe ratios are really significant. For Fp a value of 0.05 and for Pv a value of 0.07 have been used. The 

error of the Fe3+/ΣFe in Pv was chosen to be larger to resemble the error introduced by the strongly 

overlapping peaks at the L3 edge. 
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Table 5-S1 Experimental conditions of the laser heated diamond anvil cell experiments. Errors in 
pressure were calculated by estimating the pressure from the Ne equation of state before and after the 
heating procedure. Temperatures are calculated as mean values from measured temperatures every 
minute of the 30 minute laser heating time. Errors in temperatures are calculated as standard mean 
deviation. 

Table 5-S2 Element composition of Fp calculated per 1 oxygen and element composition of Mg-Pv 
calculated per 3 oxygens. 

 Fp       
Pressure 

(GPa) Mg Fe Cr Al Na 
26(2) 0.800(5) 0.158(4) 0.0065(6) 0.0015(9) 0.027(2) 
33(1) 0.82(3) 0.16(2) 0.004(3) 0.004(4) 0.027(8) 
40(2) 0.83(2) 0.15(1) n.d. 0.005(2) 0.023(7) 
59(2) 0.80(3) 0.17(3) n.d. n.d. 0.02(1) 
79(2) 0.77(1) 0.19(1) n.d. 0.01(5) n.d. 
97(3) 0.79(1) 0.155(3) 0.006(1) 0.001(1) 0.027(2) 

130(3) 0.78(1) 0.167(4) 0.008(1) 0.004(4) 0.018(8) 
        
 Mg-Pv       
 Mg Fe Ca Cr Al Si Ti 

26(2) 0.85(1) 0.098(2) 0.019(5) 0.0036(6) 0.05(1) 0.957(6) 0.0087(8) 
33(1) 0.85(2) 0.101(6) 0.019(2) n.d. 0.066(27) 0.95(2) 0.0102(14) 
40(2) 0.89(3) 0.091(3) 0.011(9) n.d. 0.054(4) 0.955(6) n.d. 
59(2) 0.88(2) 0.095(10) 0.016(3) n.d. 0.058(5) 0.95(1) n.d. 
79(2) 0.87(1) 0.097(3) 0.017(3) n.d. 0.058(3) 0.95(1) n.d. 
97(3) 0.86(1) 0.096(3) 0.019(4) 0.0033(7) 0.043(3) 0.96(1) 0.008(1) 

130(3) 0.87(1) 0.090(9) 0.017(2) 0.0038(6) 0.045(5) 0.96(1) 0.009(1) 

Sample Pressure 
(GPa) 

T 
(K) 

DC 
(µm) 

DS 
(µm) 

PyAPS-C6 33(1) 1980(80) 250 120 

PyAPS-C4 40(2) 2120(150) 250 120 

PyAPS-C5 59(2) 2190(90) 250 120 

PyAPS-C2 79(2) 2300(140) 120B 60L 

PyAPS-C1 97(3) 2450(140) 120B 60L 

PyAPS-C7 130(3) 2500(150) 60B 30L 

DC – diamond anvil culet diameter, B – beveled diamond anvil; DS – sample hole diameter, L – was drilled 
by Laser 
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Figure 5-S1 Calculated Fe3+-Mg KD between Mg-Pv and Fp in pyrolite on the basis of the bulk KD and 
Fe3+/ΣFe ratios estimated. The Mw Fe3+/ΣFe ratio at 97 GPa has been estimated by linear interpolation 
between the adjacent points. 

 

 
 

Figure 5-S2 (a) Plot of the 4-valent cations (Si4+ and Ti4+) against the 3-valent cations (Al3+ and Fe3+) per 
formula unit (PFU) in Mg-Pv. The lines indicate two possible substitution mechanisms, the A2O3 

substitution indicates that the incorporation of A3+ cations takes place onto both six-fold and eight-fold 
sites (coupled substitution), while the MgAO2.5 substitution indicates that A3+ cations are only 
incorporated on the six-fold site and the charge is balanced by oxygen vacancies. (b) Plot of Al3+ against 
Fe3+ content per formula unit (PFU) in Mg-Pv showing that all Fe3+ is charge balanced by Al through a 
Fe3+AlO3 component. The shift of the 1:1 lines indicates that an Al2O3 component is also present with an 
abundance determined by the y-axis intersection (0.014). 
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6.1 Abstract 

We report a Mössbauer spectroscopic study of cementite (Fe3C) in a diamond anvil cell up to 88 

GPa. The hyperfine parameters reveal a two-stage loss of magnetism in Fe3C: a ferro- to paramagnetic 

transition around 8 to 10 GPa and a spin transition at about 22 GPa. Full structural refinement based on 

single-crystal X-ray diffraction data collected at pressures up to ∼50 GPa reveals that there are no 

structural changes associated with the electronic transitions in Fe3C. Our study resolves the long standing 

controversy regarding the nature of phase transitions of Fe3C at high pressure. 

6.2 Introduction 

Carbon is one of the candidate light elements for the Earth’s core (Wood, 1993).The importance 

of carbon for the Earth’s interior has motivated many high pressure experimental and computational 

investigations of iron carbide Fe3C (mineral name cohenite), both for its potential as an accessory 

mineral of the Earth’s lower mantle and also as one of the probable components of the Earth’s inner 

core. Moreover Fe3C is a common component of steels and has interesting physical properties – it is a 

metallic ferromagnet with a Curie temperature of 483 K and exhibits the Invar effect in the 

ferromagnetic state below TC (Tsuzuki et al., 1984; Acet et al., 2001; Wood et al., 2004).  

At ambient conditions the cementite structure has orthorhombic symmetry (space group Pnma) 

with two independent iron positions (one iron surrounded by 12 other iron atoms, while the other has 

11 iron neighbors). Carbon is surrounded by 6 iron atoms forming a trigonal prism (Fig. 6-S1). 

Despite the large number of investigations the transition pressure from the ferromagnetic state 

to the paramagnetic or nonmagnetic state is still highly debated. Investigations probing directly the 

atomic or electronic structure of iron revealed transition pressures of ~6 GPa by synchrotron Mössbauer 
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spectroscopy (nuclear forward scattering) (Gao et al., 2008), 10 GPa by X-ray magnetic circular dichroism 

(XMCD) (Duman et al., 2005) and 25 GPa by X-ray emission spectroscopy (XES) (Lin et al., 2004); whereas 

by means of indirect methods several different effects at higher pressures were observed which the 

investigators attributed to a change in the electronic state of iron: a softening of phonon frequencies 

observed by IXS around 68 GPa (Fiquet et al., 2009) and a change in behavior of lattice parameters above 

55 GPa observed by X-ray diffraction (Ono and Mibe, 2010).Furthermore ab initio calculations suggest 

that the non-magnetic state becomes stable only above 60 GPa (Vocadlo et al., 2002).  

The span of the transition pressure range is too large to be attributed to different pressure 

calibrations or experimental uncertainties. If we assume that different studies employed the same well-

characterized iron carbide starting material, the only plausible explanation for the discrepancies is that 

different investigations probed different transitions in Fe3C that led to different observable effects which 

only can be detected by specific methods. 

In order to clarify these phase transition(s) we performed a Mössbauer spectroscopic study of 

Fe3C up to 88 GPa and a single-crystal X-ray diffraction study up to 47 GPa, both measured in a diamond 

anvil cell. Mössbauer spectroscopy is one of the traditional methods addressing magnetic properties of 

iron-bearing materials; it provides direct information on the magnetic and electronic properties of iron 

atoms. Furthermore, single crystal X-ray diffraction provides precise and unambiguous information on 

the effect of magnetic or electronic transition(s) on crystal structure.  

6.3 Experimental details 

The Fe3C sample powder for the Mössbauer spectroscopic study was synthesized from a mixture 

of 80 wt. % carbon and 20 wt. % iron (~95 % enriched in 57Fe) treated at 5 GPa and 1200 °C for 3 h in a 

MgO capsule using a multianvil press at the Bayerisches Geoinstitut. We employed a LaCrO3 heater 

assembly and controlled temperature based on a W75Re25/W97Re3 thermocouple. X-ray diffraction and 

Mössbauer spectroscopy confirmed that the synthesized material consisted mainly of Fe3C, but with an 

excess of carbon. Fe3C was cleaned from the carbon by magnetic separation. The single crystals were 

synthesized from pure iron in a carbon capsule at 5 GPa and 1300 °C in a multianvil press. 

Diamond anvil cells with diamond culet sizes of 250 μm and a rhenium gasket with a 120 μm 

diameter hole were employed. Neon gas was used as a pressure transmitting medium to improve 

hydrostaticity (Kurnosov et al., 2008) and the fluorescence of ruby chips was used to measure pressure 
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(Mao et al., 1986) before and after each measurement, whereby the error was calculated from the 

difference of both values. 

57Fe Mössbauer spectra were recorded at room temperature in transmission mode on a constant 

acceleration Mössbauer spectrometer with a nominal 370 MBq 57Co high specific activity source in a 

12 μm thick Rh matrix. The velocity scale was calibrated relative to 25 μm thick α-Fe foil using the 

positions certified for (former) National Bureau of Standards reference material no. 1541; line widths of 

0.36 mm/s for the outer lines of α-Fe were obtained at room temperature. Spectra took 1 to 6 days each 

to collect, and Mössbauer spectra were fitted to Lorentzian line shapes using the software package 

MossA (Prescher et al., 2012). 

Single-crystal high pressure DAC experiments were conducted at ID09a at the European 

Synchrotron Radiation Facility (ESRF). Diffraction data were collected at 293K using the MAR555 

Flatpanel detector, radiation with a wavelength of 0.4148 Å, beam size of 10×10 µm2 and a crystal-to-

detector distance of about 310 mm. 120 frames in the ω-scanning range of −30° to +30° were collected 

(0.5° scanning step size) with an exposure time of 1 s. The data were processed using the CrysAlis® 

software (Oxford Diffraction (2006) CrysAlis RED, Version 1.171.31.8. Oxford Diffraction Ltd, Abingdon, 

Oxfordshire, UK). Crystal structure refinements of integrated intensities were carried out using the 

SHELXL-97 WinGX version  [3]. 

6.4 Results and Discussion 

The refined unit-cell parameters and atomic positions are listed in table 6-S1. We found no 

evidence of structural transitions up to 47 GPa (highest pressure achieved in our single crystal X-ray 

diffraction experiments) and we could refine structures at all pressures based on about 100 observed 

unique independent reflections with R1-factors better than 8 % (table S1). Distances between iron atoms 

and between iron and carbon decrease continuously with pressure (Fig. 6-1). To a first approximation the 

compressional behavior of Fe3C can be described by a single isothermal third-order Birch-Murnaghan 

equation of state, giving for the entire studied pressure range a bulk modulus K = 161(2) GPa and its first 

pressure derivative K’ = 5.9(2) (Fig. 6-1). However, the Birch normalized pressure (Fe) against Eulerian 

strain (f) plot (a more sensitive representation of the same data) shows a change in slope around 24 GPa, 

indicating a change in compressional behavior which may reflect specific changes in the electronic or 

magnetic state of Fe3C. One of the best and most direct methods to elucidate the nature of the changes 

is Mössbauer spectroscopy. 
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Fe3C has two non-equivalent Fe sites which results into two sextets with nearly equal magnetic 

hyperfine field (BHF) and central shift (CS) at room temperature (Le Caer et al., 1976) in the Mössbauer 

spectrum. However, the statistics of our data measured in a diamond anvil cell with a high non-resonant 

background level were only sufficient to fit the data with a single sextet. This is an acceptable 

approximation since the parameters of the two different sites are nearly equal (Le Caer et al., 1976). 

Selected spectra from the entire pressure range are shown in Fig. 6-2. The variation of BHF and CS with 

increasing pressure is shown in Fig. 6-3. BHF is generally proportional to the average Fe magnetic 

moment and it approaches zero at around 8 GPa, indicating that the net magnetic moment of the 

material is lost. Consequently the data were fitted to a doublet above this pressure. The FWHM of the 

doublet drops exponentially from pressures starting at 8 GPa to around 20 GPa and then the value stays 

constant up to 88 GPa (Fig. 6-S2). 

The CS variation with pressure can be divided into 3 parts (Fig. 6-3). First, up to 8 GPa CS 

decreases linearly with increasing pressure. Second, from 8 to 22 GPa, CS shows a sharp increase 

followed by a more gradual decrease, where the maximum is situated around 10 GPa. Third, from 22 to 

88 GPa CS decreases linearly but with a slope different to previous values. The anomalous behavior in 

the CS variation is also observed if the data at pressures above 8 GPa are fit to a sextet instead of a 

doublet. Therefore the jump is independent of the fitting model. 

 

Figure 6-1 Volume-pressure data for Fe3C with fitted 3rd order Birch Murnaghan equation of state. 
Upper insets shows a plot of the Eulerian strain (f) against Birch-normalized pressure (Fe). A change 
in compressional behavior is visible around 24 GPa. Lower inset shows the mean Fe-Fe of the 
separate iron sites distances to their coordinating iron atoms. Individual distances can be seen in Fig. 
6-S4 and Fig. 6-S5. 
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The data show essentially two regions of discontinuity in the variation of hyperfine parameters 

with pressure: the first from 8 to 11 GPa and the second from 20 to 23 GPa. In the region from 8 to 11 

GPa the loss of ferromagnetism in Fe3C is observed as a decrease in BHF. Furthermore, the loss of BHF 

near 8 GPa is accompanied by an increase in CS. This parameter is influenced by two effects - the 

chemical isomer shift (which is a measure of s-electron density at the nucleus), and the second order 

Doppler shift (SOD, which is a measure of mean squared velocities of the Mössbauer active atoms). An 

increase in chemical isomer shift is contrary to the expected increase of s-electron density at the nucleus 

with increasing pressure, since the excited state of the 57Fe nucleus is smaller than the ground state. 

Consequently the increase in CS can only be explained by a change in the SOD.  

To estimate the contribution of the SOD to the CS, δSOD, we approximated the chemical isomer 

shift by fitting a straight line through the 3 lowermost pressure points (at 0, 1.95, and 4.5 GPa), and 

assumed that the remaining contribution to CS could be used to calculate the change in mean squared 

velocity <v²> due to the SOD. The variation in mean squared velocity can be calculated by Δ<v²> = 

2 c δSOD(Josephson, 1960), where c is the speed of light in vacuum. The result of this calculation suggests 

phonon softening in the region of the ferro- to paramagnetic transition (Fig. 6-S3). The maximum of this 

 

Figure 6-2 Selected ambient temperature Mössbauer spectra of Fe3C over the whole pressure range 
studied. 
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curve is at 10 GPa, which is slightly higher than the pressure indicated by the rapidly decreasing BHF at 

around 8 GPa. The decrease of BHF before phonon softening occurs can be understood as the loss of 

long range order (which BHF is sensitive to) before the transition is complete at the local scale. 

The interpretation of the transition in Fe3C at around 10 GPa observed by Mössbauer 

spectroscopy as a transformation from the ferro- to paramagnetic state agrees with our structural 

results, i.e., the absence of any discontinuous changes in structure or compressional behavior. Indeed 

such ferro- to paramagnetic transitions in many metals (pure iron, for example) and compounds occur 

structurally unnoticed. 

The second transition region around 22 GPa shows a small jump and a change in slope of CS 

variation as a function of pressure. The change in slope suggests a reconfiguration of the shielding 

electrons on iron atoms which affects the variation in CS with respect to pressure. According to our 

single crystal X-ray diffraction data and previously reported X-ray diffraction studies (Scott et al., 2001; Li 

et al., 2002; Ono and Mibe, 2010; Sata et al., 2010), there are no structural phase transitions up to at 

least 55 GPa. The jump can only be attributed to a spin transition of the iron atoms with a loss of 

magnetic moment (paramagnetic to non-magnetic transition). This conclusion is supported by XES 

studies which also suggest high-spin to low-spin crossover at 25 GPa (Lin et al., 2004). 

 

Figure 6-3 Variation of central shift (CS) (relative to α-Fe) of Fe3C showing two transitions - 
ferromagnetic (FM) to paramagnetic (PM), and paramagnetic to non-magnetic (NM). Error bars of CS 
are shown as 2σ. Inset shows the variation of magnetic hyperfine field (BHF) of Fe3C as a function of 
pressure at ambient temperature. Error bars of BHF are shown as 2σ. 
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In ionic or covalent materials spin transitions are usually accompanied by a change of interatomic 

distance due to a decrease in the size of the atom. This results in a volume decrease, e.g., for CaFe2O4 

and FeCO3 there is a volume drop of 8.4 % (Merlini et al., 2009) and 10 % (Lavina et al., 2010), 

respectively. In metals the physical process is less clear; however spin transitions in metals are usually 

accompanied by structural phase transitions; e.g., in Fe a bcc-hcp transition (Cort et al., 1982; Ekman et 

al., 1998; Rueff et al., 1999; Klotz and Braden, 2000) and in Co a hcp-fcc transition (Yoo et al., 2000; Iota 

et al., 2007; Ishimatsu et al., 2011; Torchio et al., 2011). In Fe3C we did not observe any structural 

changes at 22 GPa, but softening of the material on compression above this pressure is clearly visible on 

a f-Fe plot (Fig. 6-1). Thus, Fe3C demonstrates that pressure-induced spin crossover is not always 

associated with first order structural transformations.  

Theoretical ab initio calculations predict (Vocadlo et al., 2002) magnetic collapse at 60 GPa (at 

higher pressures than we observed) and a significant increase of bulk modulus in the non-magnetic 

phase (to K0 = 316 GPa and K’ = 4.3). In fact fitting our experimental data using a third-order Birch-

Murnaghan equation of state for pressures below the spin transition (i.e., below 22 GPa) gives K0 = 

145(3) GPa and K’ = 8.5(7), while the interval 22-47 GPa gives K0 = 172(1) GPa and K’ = 5.1(1). Thus our 

experimental observations reproduce at least qualitatively the increase in K0. However, the strong 

decrease of K’ in our study results in an actual lattice softening at the pressure of the magnetic to non-

magnetic transition in Fe3C contrary to the theoretically predicted lattice stiffening. 

6.5 Conclusion 

Our combined single-crystal structural and Mössbauer spectroscopy studies of Fe3C provide a 

reconciliation of previous conflicting reports. The ferro- to paramagnetic transition observed between 8 

and 10 GPa corresponds to the transition observed in nuclear forward scattering (Gao et al., 2008) and 

XMCD (Duman et al., 2005) experiments, while observed changes in XES spectra (Lin et al., 2004) are 

consistent with the high-to-low spin transformation that we found at around 22 GPa. To our knowledge, 

this is the first study where pressure-induced phonon softening through a second order ferro- to 

paramagnetic phase transition is large enough to be resolved by a variation in CS with pressure. 
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6.7 Supplementary information 

 

Figure 6-S1 Crystal structure of Fe3C showing the trigonal prisms of Fe surrounding the carbon atoms. 
The two crystallographic positions of Fe are indicated. 
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Table 6-S1 Results of single crystal X-ray diffraction refinement of Fe3C at different pressures. 

  Lattice parameters  
P (GPa) R1 (%) a (Å) b (Å) c (Å) V (Å³) Atomic parameters (xyzU) 

1.8(1) 6.3 4.501(1) 5.0726(8) 6.699(4) 152.98(7) C 0.441(2) 0.876(2) 0.25 0.017(2) Fe1 0.3354(2) 0.1796(2) 
0.0668(3) 0.0092(4) Fe2 0.8398(3) 0.0373(3) 0.25 0.0095(5)  

4.7(1) 6.8 4.4785(5) 5.0468(8) 6.666(3) 150.65(8) C 0.439(4) 0.871(3) 0.25 0.017(4) Fe1 0.3363(3) 0.1808(3) 
0.0663(4) 0.0097(7) Fe2 0.8414(5) 0.0369(5) 0.25 0.0100(7)  

6.7(2) 6.7 4.4568(4) 5.0210(8) 6.639(3) 148.56(6) C 0.438(4) 0.871(3) 0.25 0.016(3) Fe1 0.3375(3) 0.1821(3) 
0.0664(4) 0.0093(6) Fe2 0.8426(5) 0.0367(4) 0.25 0.0100(6)  

9.1(1) 6.2 4.4377(4) 5.0034(7) 6.614(3) 146.85(7) C 0.440(3) 0.873(3) 0.25 0.017(3) Fe1 0.3380(3) 0.1827(3) 
0.0663(4) 0.0090(6) Fe2 0.8441(4) 0.0361(4) 0.25 0.0094(6)  

11.4(1) 6.2 4.4209(4) 4.9875(8) 6.593(3) 145.36(8) C 0.441(4) 0.872(4) 0.25 0.022(4) Fe1 0.3385(3) 0.1832(3) 
0.0659(4) 0.0092(7) Fe2 0.8443(4) 0.0362(4) 0.25 0.0096(8)  

13.4(2) 6.3 4.4073(4) 4.9738(8) 6.574(3) 144.10(8) C 0.441(5) 0.870(4) 0.25 0.020(4) Fe1 0.3386(4) 0.1840(4) 
0.0653(5) 0.0111(9) Fe2 0.8453(5) 0.0354(6) 0.25 0.012(1)  

16.2(1) 6.4 4.3889(4) 4.9578(8) 6.549(3) 142.50(7) C 0.442(4) 0.866(4) 0.25 0.021(4) Fe1 0.3391(3) 0.1837(3) 
0.0655(4) 0.0084(7) Fe2 0.8460(4) 0.0356(4) 0.25 0.0090(8)  

18.4(2) 6.4 4.3787(5) 4.9482(9) 6.534(4) 141.56(9) C 0.439(5) 0.867(5) 0.25 0.025(5) Fe1 0.3396(3) 0.1842(4) 
0.0653(5) 0.0100(8) Fe2 0.8463(5) 0.0352(5) 0.25 0.0105(9)  

20.7(2) 6.4 4.3652(6) 4.935(1) 6.514(4) 140.34(9) C 0.438(4) 0.867(4) 0.25 0.021(4) Fe1 0.3399(3) 0.1843(3) 
0.0651(4) 0.0089(8) Fe2 0.8471(5) 0.0354(5) 0.25 0.0099(8)  

22.6(1) 6.5 4.3558(6) 4.928(1) 6.502(5) 139.58(11) C 0.438(5) 0.866(5) 0.25 0.029(6) Fe1 0.3404(4) 0.1841(4) 
0.0649(5) 0.010(1) Fe2 0.8476(5) 0.0352(6) 0.25 0.010(1)  

25.3(1) 8.2 4.3408(6) 4.912(1) 6.481(5) 138.20(8) C 0.439(4) 0.872(4) 0.25 0.018(4) Fe1 0.3409(4) 0.1844(3) 
0.0647(4) 0.0096(7) Fe2 0.8484(5) 0.0346(5) 0.25 0.0102(8)  
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P (GPa) R1 (%) a (Å) B (Å) c (Å) V (Å³) Atomic parameters (xyzU) 

27.5(2) 8.0 4.3305(7) 4.902(1) 6.465(5) 137.26(9) C 0.443(4) 0.866(4) 0.25 0.023(4) Fe1 0.3413(4) 0.1846(4) 
0.0649(4) 0.011(1) Fe2 0.8487(5) 0.0345(6) 0.25 0.012(1)  

29.7(1) 8.0 4.3201(7) 4.892(1) 6.452(5) 136.37(9) C 0.444(4) 0.870(4) 0.25 0.020(4) Fe1 0.3411(4) 0.1848(4) 
0.0643(4) 0.0106(9) Fe2 0.8492(5) 0.0340(5) 0.25 0.012(1)  

32.1(2) 5.8 4.3002(7) 4.877(1) 6.444(4) 135.14(4) C 0.438(4) 0.869(4) 0.25 0.030(4) Fe1 0.3416(4) 0.1846(3) 
0.0639(4) 0.0081(7) Fe2 0.8481(4) 0.0344(5) 0.25 0.0101(8)  

34.7(2) 6.0 4.2890(8) 4.865(1) 6.433(4) 134.24(6) C 0.428(6) 0.880(7) 0.25 0.034(6) Fe1 0.3426(4) 0.1847(4) 
0.0637(5) 0.0099(7) Fe2 0.8489(6) 0.0345(5) 0.25 0.0107(7)  

37.0(1) 6.4 4.2783(7) 4.855(1) 6.415(4) 133.25(7) C 0.430(7) 0.870(8) 0.25 0.041(7) Fe1 0.3427(5) 0.1851(4) 
0.0637(6) 0.0107(9) Fe2 0.8496(6) 0.0345(7) 0.25 0.011(1)  

39.6(2) 6.6 4.2632(8) 4.849(2) 6.400(4) 132.31(5) C 0.438(6) 0.873(6) 0.25 0.032(6) Fe1 0.3420(4) 0.1850(4) 
0.0635(5) 0.0086(7) Fe2 0.8498(6) 0.0336(5) 0.25 0.0095(7)  

41.9(1) 6.1 4.2528(9) 4.838(2) 6.388(4) 131.45(5) C 0.434(6) 0.873(6) 0.25 0.031(6) Fe1 0.3426(4) 0.1849(4) 
0.0632(5) 0.0090(7) Fe2 0.8507(6) 0.0333(5) 0.25 0.0097(7)  

47.4(2) 7.5 4.226(1) 4.820(2) 6.357(6) 129.50(5) C 0.435(8) 0.871(8) 0.25 0.042(8) Fe1 0.3428(5) 0.1857(5) 
0.0629(6) 0.0107(9) Fe2 0.8509(7) 0.0328(7) 0.25 0.011(1)  
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Figure 6-S2 Variation of the full width at half maximum of the Fe3C doublet above the ferromagnetic 
to paramagnetic transition. 

 

 

Figure 6-S3 Calculated changes in mean squared velocity of Fe3C due to the ferromagnetic to 
paramagnetic transition.  
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Figure 6-S4 Evolution of Fe-Fe distances in Fe3C with pressure. Distances are divided into 3 groups 
according to their occurrence with respect to the structure-forming trigonal prisms around the 
carbon atom. (1) open symbols indicate distances in the basal planes of the trigonal prism, (2) solid 
black symbols indicate the height of the trigonal prism and (3) solid gray symbols indicate the 
distance between two non-connected trigonal prisms. 

  

 

Figure 6-S5 Variation of mean carbon-iron distance with pressure. The mean is calculated from the 
distances to the individual iron atoms surrounding carbon in the trigonal prism. 
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